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Abstract

As deep learning methods have obtained tremendous success over the years,
our understanding of these models has yet to keep up with the development the
models. Explainable machine learning is one of the main research fields dedicated to
understanding complex machine learning models. While there are ever-increasing
proposed instances of explanations, the evaluation of explanations has been an open
question. Evaluations involving humans are expensive in the development phase
of explanations. To address the difficulty to involve human-in-the-loop during the
design of explanations, this thesis aims to define objective criteria which allow
one to measure some goodness property explanations without humans and design
explanations that are desirable with respect to the objective criteria.

In this thesis, we discuss different criteria for making evaluating explainable
AI methods more objective, where our methods can mainly be categorized in three
prongs: (a) faithfulness-oriented (b) theoretically-motivated (c) application-driven. A
faithfulness-oriented metric is usually connected to the core concept that an expla-
nation of the model should faithfully “explain” the model. Theoretically-motivated
objective criteria usually have the form “when the model and data satisfy a certain
property, the explanation should satisfy a corresponding property”. Application-
driven objective criteria simulate quantitatively how explanations can help in certain
applications without humans. We design objective criteria for different types of
explanations and use these objective criteria to guide the design of new explanations.
Finally, some human studies are done to verify the design of these new explanations.
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Chapter 1

Introduction

The field of explainable artificial intelligence (XAI) is concerned with the task of explaining
machine learning models, which has attracted increasing attention as the complexity of modern
machine learning models grows. The need to explain the complicated internal workings of
machine learning models has also grown significantly, especially when the machine learning
models are applied to high-stakes decisions, including finance, law, medical, social applications,
and autonomous driving. In these applications, explanations of high-stakes decisions are useful
to understand and debug the models, enhance users’ trust in the model, clarify accountability of
the model, and communicate with models on human-AI collaborations. For instance, a doctor
using AI to help with diagnosis would benefit by understanding how the AI predicted to determine
whether to trust it. In social applications, it is also crucial to understand why the models make
certain decisions to examine whether the algorithm is fair or not. Furthermore, the General Data
Protection Regulation claims that data protection authorities have the right to be explained the
output of the algorithm [123].

One crucial difficulty to explain a machine learning model is that the term “explain” or
“interpretability” is not well-defined. Most current explanations explain some type of “property”
of the complex model that can be digested by humans. Some common properties include but are
not limited to the most salient data input features used by the model, the most salient training data
used by the model, the most salient human understandable concept used by the model, and how to
alter the feature of a data point to change the prediction of the model. However, there are many
different explanations with contradicting philosophies. For instance, given an image classifier, the
crucial pixels of the image classifier may be considered a good explanation to certain users as it
shed light on how the model makes its prediction, but may also be considered not interpretable
as the most salient features may not be sufficient to infer the reasoning rationale of the model.
One can perform human studies and interviews and ask users to select the most interpretable
algorithms among a given set of different explanations, which is related to metric elicitation in
fairness [27, 75]. However, asking humans to select the most interpretable explanations may also
have its flaw. Human is well-known to suffer from confirmation bias, and an explanation may
seem to be interpretable but is unrelated to a model. Recent works have even shown that many key
explanations disagree with each other, and the users may decide which explanations to use based
on personal preference [92]. How does one choose the right “property” of a complex machine
learning model to explain?
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An alternative to gauge the effectiveness of explanations may be through evaluating the
usefulness of explanations along with humans in applications, which is suggested by many recent
works. Doshi-Velez and Kim [39], Murdoch et al. [116] have proposed to evaluate explanations
in real-world applications involving human users and test how explanations may aid users in
real-world applications. Similarly, Chen et al. [25] encourages interpretable machine learning
problems to be more closely connected to target use cases, and simulations based on a simulated
version of the real task are suggested to be considered. While such evaluation is based on real
applications, it may be expensive to utilize such types of evaluations, especially in the development
stages of explanations, as the evaluation often requires the involvement of real humans. Therefore,
a sensible functional-grounded evaluation may be useful for designing/ choosing an explanation
to be used, and application-driven evaluations could be used to validate that the designed/ chosen
explanation can aid humans in real-world applications or simulated use cases. We name this class
of functional-grounded evaluation as objective criteria, mainly since it does not require actual
human involvement during the evaluation stage.

In this thesis, we mainly consider three classes of objective criteria (functional-grounded
evaluations): (1) faithfulness-motivated objective criteria, which are motivated by how well can the
explanation describe the model (2) application-motivated objective criteria, which are motivated by
how the explanations can be used in real-world applications (3) theoretically-motivated axiomatic
criteria, which aid the design for explanations by certain theoretical property of explanations. In
the following, we discuss these three classes of objective criteria in deeper detail.

Faithfulness-motivated Objective Criteria One class of functional-grounded evaluations is
based on how faithfully the explanation explains a given model and is also termed the faithfulness
of explanations or descriptive accuracy [116]. The faithfulness of explanations are crucial as
the “faithfulness” is usually difficult to be measured by human – human may prefer explanations
that look visually appealing but is unrelated to the model to be explained. One form of objective
criteria is based on the question “does the explanation explain this model?”. The core idea for
these evaluations is to identify properties that a faithful explanation should satisfy, and perform
tests on the model-explanation pair to verify if the properties are satisfied. It is also called
descriptive accuracy by Murdoch et al. [116], as it measures how accurately an explanation
explains the model. For instance, many explanations are linear approximations within a local
neighborhood, and faithfulness metrics measure how well the explanations approximate the model
in the local neighborhood. One popular example by Adebayo et al. [2] is to design a sanity check
for explanations that changing the model weights randomly should also change the resulting
explanations. Surprisingly, not all explanations pass this sanity check convincingly, which may
imply some explanations are not faithful to the model.

Application-motivated Objective Criteria A different form of objective criteria is based on
applications related to the explanation, especially those that applications where human involvement
is not required or could be simulated automatically. For instance, finding hurtful training examples
is a key application for example-based explanations, and certain evaluations for example-based
explanations involve removing the hurtful training examples based on the explanations and
retraining the model and measuring the new model performance. As human involvement is not
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necessary for such applications, the remove-and-retrain evaluation has been a crucial objective
criterion for example-based explanations motivated by real-world applications.

Theoretical-motivated Objective Criteria An alternative form of functional-grounded eval-
uation for explanations is theoretical properties in the form of axioms. Axioms can be seen as
theoretical constraints of how explanations should behave in certain specific inputs. If the machine
learning model to explain has some desired property, one would hope that such desired property
may be reflected in the explanations. Such constraints of explanations are called axiomatic
properties. For example, if the machine learning models are completely symmetric in two features,
and the two features have the same value for some given input, the explanation value for these
two features to this input should be the same. This is the symmetric axiom that is widely used for
explanation methods. Perhaps the most common line of work in incorporating axioms to design
explanations is the family of Shapley values [139], which originated from the cooperative game
theory community.

The goal of this thesis is to develop and define meaningful objective criteria and use these
objective criteria to aid our design for different types of explanations. As different explanation
types would naturally follow different objective criteria, we aim to design objective criteria
for a wide variety of explanation types, including feature-importance explanations, feature-set
explanations, feature interaction importance explanations, example importance explanations, and
concept-based explanations.

1.1 Background
We first briefly introduce some classes of explanation types in the field of interpretable machine
learning. One way to classify explanations is regarding the model to be explained by explanations.
Post-hoc explanations aim to explain an arbitrarily given model, while self-interpretable models
embed some form of explainability in the model design during training. Another classification of
explanations is in the form of explanations, including the importance of individual features, the
importance of individual training examples, counterfactual explanations, and concept explanations.

Post-hoc Explanations Consider the following general supervised learning setting: input space
X ⊆ Rd, an output space Y ⊆ R, and a (machine-learnt) predictor f ∈ F : Rd 7→ R, which
at some test input x ∈ Rd, predicts the output f(x). Local post-hoc explanations for machine
learning models explains the function f(x), while global post-hoc explanations for machine
learning models explains the function f(x) for x ∈ X. Many explanation types for machine
learning models explain the target f(x) by an importance vector for v units, and the explanation
can be seen as a function that takes the machine learning model f and the input x as input, and
outputs the importance for each of the v units Φ : F ×X 7→ Rv. Post-hoc explanations have the
benefit to be very widely applicable to different model types and can be applied to models when
the user does not have control over the training process.

Self-interpretable Models Self-interpretable models embed some form of inherent interpretabil-
ity in the model design. Consider the following general supervised learning setting: input space
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X ⊆ Rd, an output space Y ⊆ R, an importance-based self-interpretable model outputs both the
prediction and the explanation associated with the prediction f ∈ F : Rd 7→ R × Rv, where the
explanation here is a v-dimension importance vector. Some common self-interpretable models
include sparse linear models [21, 161], decision trees or decision lists [32, 42, 170], case-based
models [86, 117]. Rudin [131] has argued to use self-interpretable models for explainability
instead of post-hoc explanations, as inherently interpretable models may have more faithful
explanations compared to post-hoc explanations which may suffer from not being faithful to the
model [2]. However, a self-interpretable model may be limited since it may not be straightforward
how state-of-the-art deep learning architecture can be altered to be inherently interpretable, thus
limiting its use cases. Moreover, while it is argued that there is no necessary trade-off between
interpretability and accuracy, most self-interpretable models are not tested on state-of-the-art
architecture possibly due to the expensive tuning required.

Feature Importance Explanations Given a machine learning model with input Rd trained on a
set of training data with d features, we may explain a specific prediction by showing a heatmap of
feature importance weights. Such explanations are called feature importance explanations, as they
output explanations of how important each feature is with respect to the prediction f(x). However,
there have been different prongs of feature importance explanations, as there may be several
different definitions for the “importance” of features. One popular idea of feature importance
is based on how perturbing the value of the feature will affect the model output f(x), which
resembles the definition of gradient ∇f(x), which is a popular feature importance [11, 144, 150].
As shown by Ancona et al. [5], many recent explanations such as ϵ-LRP [10], Deep LIFT [142],
and Integrated Gradients [156] can also be seen as variants of gradient explanations.

Another class of feature importance explanations is based on perturbing the feature values and
measuring the prediction difference. In this line of work, [45, 187] use perturbations with grey
patch occlusions on CNNs, while [20, 124, 193] improve upon these perturbations via generative
models and advanced smoothing designs. Another way to view perturbation-based features is to
first select a local neighborhood of interest, learn a linear model in the neighborhood and use the
parameter of each feature as importance [129]. This has been further applied to different domains
by [126, 186] and different local neighborhood weights [104] by subsequent works.

Example Importance Explanations Example importance explanations attribute the model
prediction to individual training examples that are used to train the model f(x) in the training
process. Prototype selection methods [14, 85, 86] explain a model by constructing the model
with a (usually Bayesian) case-based reasoning classifier which provides a set of “representative”
samples from the training data set during the prediction. Kim et al. [87] additionally provides
criticism alongside the prototypes to explain what is not captured by prototypes via greedy
selection. Koh and Liang [89] provide approximations to estimating the influence of training
samples defined as how down-weighting the training example would affect prediction loss via
gradient of the training point and the sum of hessian of all training data. This was further
accelerated by [65] by using a k-nearest-neighbors-based selection over training samples. [6]
use a graph over the training samples to select influential training samples. [128] propose to
estimate the training data importance by the gradient product between the training point and
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testing point along the training trajectory, which approximates the change of testing point loss
during the training process.

Counterfactual and Contrastive Explanations Counterfactual explanations [35, 58, 74, 80,
167] answer the question of what to alter in the current input to change the model outcome. Such a
contrastive perspective is very amenable to interactive explanations that enable users to understand
the model [80, 127]. Counterfactual explanations are related to adversarial examples [18, 56] as
they both try to find small perturbations to the test input that changes the model prediction [168],
while the distinction is that counterfactual explanations usually target a . Xu et al. [176] add
group sparsity regularization to improve the semantic structure of such adversarial perturbations.
Ribeiro et al. [130] deems a set of features important if the model prediction does not change a lot
when only perturbing features are not in the set.

Concept Explanations Concepts are human-defined descriptions that match a set of the training
example. For instance, the “white” concept can be matched to any training example where the main
object is mostly white, and “stripe” can be matched to any training example that contains a stripe.
These training examples that match the concepts are usually labeled by a human. Given these
labeled concepts and the associated training examples, concept-based explanations aim to provide
human-centered explanations which answer the question “does this human understandable concept
relates to the model prediction?”[88, 192]. Some follows-up for concept-based explanations
include when are concept sufficient to explain a model [181], computing interventions on concepts
for post-hoc models [57] and self-interpretable models [90], combining concept with other feature
attributions [138], unsupervised discovery of concepts [49, 53, 182], and debiasing concepts [12],
and addressing the possibility that concept does not necessarily lie in the linear subspace of some
activation layer [26] by a self-interpretable model.

1.2 Our Contributions
In this thesis, we mainly target post-hoc explanations as they are currently much more widely
applicable to different model architecture, but many objective criteria that we developed in this
thesis may also be applied to self-interpretable models. Our goal is to develop meaningful objective
criteria that can be used to evaluate explanations of a certain type, and use the objective criteria to
guide our design for new explanations. We apply application-based human evaluation in certain
works to verify the designed explanations are useful in certain applications. Our designed objective
criteria span different explanation types including feature-importance explanations, feature-set
explanations, feature interaction importance explanations, example importance explanations, and
concept-based explanations.

Unified Faithfulness for Feature Importance Explanations [180] In chapter 2, we propose
a faithfulness-motivated objective criterion for feature importance explanations. The objective
criterion is the infidelity measure, which captures how well a feature importance explanation (one
feature importance value per feature) matches the given model. The idea for infidelity is that if
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we perturb the input by some specific perturbations, the model output will change accordingly.
We find that for gradient-based feature explanations and perturbation-based feature explanations,
the explanations can be seen as a linear approximation of the model with a certain perturbation
neighborhood of the input. Thus, the infidelity measures the expected difference between the
model output perturbation, and its approximation using the explanation. Note that this general
setup allows for any choice of significant input perturbations, and we can evaluate different forms
of explanations when human users are interested in a certain perturbation. It moreover holds that
the optimal explanation for minimizing infidelity can be calculated in closed form. This in turn
allows one to propose new explanations by introducing new classes of perturbations. Finally, we
verify the usefulness of infidelity in a certain application where the perturbation of interest is clear,
and the optimal explanation of infidelity can be the most useful explanation via human studies.

Axiomatic Characterization for Value Function of Feature Importance Explanations [184]
Despite the success of feature importance explanations, there is some hidden design choice for
feature importance that may not be clear in a different setting. One of the hidden design choices
is the value function, a function that transforms the machine learning model to a set function
such that perturbation-based explanations can be applied. In chapter 3, we visit a specific feature
explanation motivated through theoretic properties – the Shapley value [31, 104, 139]. However,
there has been an ongoing debate on what is the right value function to use along with the Shapley
value, as the theoretic properties of Shapley value do not cover the value functions, as they are
developed in the setting of set functions. To tackle this problem, we choose to provide theoretical-
motivated objective criteria for value functions of Shapley value by introducing axioms to value
functions. We show that a new value function – Joint Baseline Shapley Value – can uniquely
satisfy a set of axioms designed for the value function when used along with the Shapley value
explanation.

Robustness-Based Feature Set Explanations [77] In chapter 4, we design objective criteria for
feature set explanations. Here, feature set explanations can be seen as the top-k most important
features based on feature importance score. As it seems less feasible to extract model perturbation
sensitivity from a numerical standpoint as above, we propose faithfulness-motivated objective
criteria that measure robustness to perturbations of a set of features instead. The key idea is that if
we get the important feature set right, then the model will be robust to perturbations restricted to
the complement of these important features (namely, the unimportant features): changing these
unimportant features should not change the model output too much. Similarly, if we restrict
the perturbations to only the important features, we expect the model to be very non-robust to
such perturbations: changing the truly important features should change the model outputs a
lot. Drawing from the test-time adversarial robustness literature, they measure robustness using
the maximum function difference under such perturbations. We then propose scalable greedy
algorithms that optimize this robustness criterion, to extract the “important features”. The feature
set feature importance method is also baseline-free, which may be useful in cases where the right
baseline is not obvious.
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Completeness Axiom for Example-Based Explanations [179] In section 5, we focus on a
completely different type of explanation – example-based explanations. For example-based expla-
nations, where the goal is to explain the model prediction at a test input in terms of contributions
of different training points, we focus on a simple objective criterion – the sum of the contributions
of different training points should sum up to the model prediction at the test point. We then design
a “representer theorem,” that provides just such a decomposition for general deep neural networks,
with the slight addendum that the model is trained till convergence with a small ℓ2 regularization
weight. The representer theorem is a natural way to decompose the function value of the test point
to training data points in a way that aligns with the training of the model, and we show that our
resulting algorithm is very efficient to apply to real-world applications.

Sufficiency and Attribution for Concept Explanations [182] In section 6, we focus on
objective criteria for concept-based explanations, which are arguably closest to how humans
reason [88]. Existing concept-based explanations do not account for whether a set of concepts are
sufficient for the model prediction, which may lead to a set of relevant concepts that cannot fully
explain the model, which may not be fully trusted. To overcome this shortcoming, we propose an
objective completeness evaluation metric, “completeness”, which measures how sufficient are a
set of concepts to explain the prediction of a model by assuming the concept scores of “sufficient
concepts” will be sufficient statistics to the model prediction. We then use game theoretic notions
to aggregate the importance of each concept by how much they contribute to the completeness
score, which is also motivated by the axiomatic properties of the importance of each concept.
We then propose a concept discovery algorithm to discover concepts that are both complete
and interpretable by optimizing the completeness score along with regularizations to ensure the
concepts are interpretable, which we validate our experiment results through qualitative and
quantitative studies on both image and language datasets.

Axiomatic-motivated Feature Interaction Explanations [162] In section 7, we focus on
objective criteria for feature interaction importance explanations, which assign importance to not
only the features but also the interaction between features. The rationale for feature interaction
explanation is that certain features are only crucial to the model output when some complementary
feature exist, and thus simple feature importance explanation may not reflect the interaction effect
between features for a model. One natural solution is to assign importance to both feature and
feature interactions, such that one can gauge whether a feature is helpful to the model on its
own or by co-occurring with another feature. We then provide theoretically-motivated objective
criteria in the form of axioms for feature interactions. We also consider a generalized version of
feature infidelity as one of the properties that feature interactions should satisfy. By combining
the constraint that feature interaction should be faithful to the model along with a natural set
of well-known axioms, we can derive novel and unique feature interactions which we term
Faith-Shap.

Layer Selection Based on Fixing Evaluation for Example-Based Explanations [185] In sec-
tion 8, we revisit objective criteria for example-based explanations and propose a new application-
driven objective criterion for example-based explanations. One of the main use cases for example-
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based explanations is to find helpful and hurtful training examples for specific test points, espe-
cially when the test points are mispredicted by the model. We, therefore, propose to measure
whether removing hurtful training examples can actually fix the testing example’s prediction.
This evaluation was never conducted by prior example-based explanations perhaps due to the
computational cost. While many existing influence functions use the last layer weight parameters
as an approximation, we find that this approximation leads to a significant performance drop on
the fixing evaluation, which can be attributed to the “cancellation effect”. Instead, we show that
by using the first layer weight parameters, we can reduce the cancellation effect, and verify that
the resulting example-based explanations achieve much better results on the fixing evaluation.

1.2.1 Other Contributions
This thesis includes a coherent line of works (either submitted work or accepted conference/journal
papers) in explainable AI that designs explanations based on objective criteria, we also briefly list
some other contributions during the graduate study that were not discussed in the thesis:

Unsupervised Speech Classification [178]: We study how to do unsupervised speech classifi-
cation (phoneme classification) based on the empirical distribution. The key idea is to first cluster
and segment the phonemes with unsupervised techniques, and match the n-gram statistics of
unsupervised phonemes with the n-gram statistics of phonemes based on texts. We then propose to
iterate between the segmentation components and the unsupervised components to reach stronger
results.

Zero-shot Multi-Label Classification [99]: We study how using a knowledge graph neural
network can aid in predicting the unseen labels for multi-label classification, which is also called
generalized zero-shot learning. The key idea is to build a label graph based on our knowledge graph
and to learn how label predictions can propagate in the graph during training. The propagation
can then be applied to unseen labels during test time to achieve zero-shot learning.

Learning Sparse Representations for Faster Retrieval [122]: We study learning sparse repre-
sentation to optimize the retrieval time (FLOPS) for the representation. While most representation
learning aims to find a dense low-dimension embedding that can be optimized for efficient re-
trieval, we propose to learn a sparse high-dimension embedding to achieve even more efficient
retrieval. Our theoretical analysis shows that to achieve efficient retrieval, each dimension of the
embedding space should be equally activated. We incorporate this insight in our algorithm to
learn sparse representation, which we show to achieve faster retrieval speed.

Survey on Concept-Based Explanations [183]: We survey recent advances for concept-based
explanations and discuss the connections of these advances to other fields of explanations. For
instance, the saliency of concept-based methods is often inspired by advances in feature attribution,
and the what-if questions involving concepts are often related to the counterfactual class of
explanations. We then discuss some major problems in concept explanations and end with some
examples of how concept explanations are used in various science fields.
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Chapter 2

Feature Importance: Infidelity and
Sensitivity

We consider the task of how to explain a complex machine learning model, abstracted as a function
that predicts a response given an input feature vector, given only black-box access to the model. A
popular approach to do so is to attribute any given prediction to the set of input features: ranging
from providing a vector of importance weights, one per input feature, to simply providing a set of
important features. For instance, given a deep neural network for image classification, we may
explain a specific prediction by showing the set of salient pixels, or a heatmap image showing the
importance weights for all the pixels. But how good is any such explanation mechanism? We can
distinguish between two classes of explanation evaluation measures [94, 113]: objective measures
and subjective measures. The predominant evaluations of explanations have been subjective
measures, since the notion of explanation is very human-centric; these range from qualitative
displays of explanation examples, to crowd-sourced evaluations of human satisfaction with the
explanations, as well as whether humans are able to understand the model. Nonetheless, it is also
important to consider objective measures of explanation effectiveness, not only because these
place explanations on a sounder theoretical foundation, but also because they allow us to improve
our explanations by improving their objective measures.

One way to objectively evaluate explanations is to verify whether the explanation mechanism
satisfies (or does not satisfy) certain axioms, or properties [104, 156]. In this paper, we focus on
quantitative objective measures, and provide and analyze two such measures. First, we formalize
the notion of fidelity of an explanation to the predictor function. One natural approach to measure
fidelity, when we have apriori information that only a particular subset of features is relevant, is
to test if the features with high explanation weights belong to this relevant subset [30]. In the
absence of such apriori information, Ancona et al. [5] provide a more quantitative perspective on
the earlier notion by measuring the correlation between the sum of a subset of feature importances
and the difference in function value when setting the features in the subset to some reference
value; by varying the subsets, we get different values of such subset correlations. In this work, we
consider a simple generalization of this notion, that produces a single fidelity measure, which we
call the infidelity measure.

Our infidelity measure is defined as the expected difference between the two terms: (a) the
dot product of the input perturbation to the explanation and (b) the output perturbation (i.e., the
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difference in function values after significant perturbations on the input). This general setup
allows for a varied class of significant perturbations: a non-random perturbation towards a single
reference or baseline value, perturbations towards multiple reference points e.g. by varying subsets
of features to perturb, and a random perturbation towards a reference point with added small
Gaussian noise, which allows the infidelity measure to be robust to small mis-specifications or
noise in either the test input or the reference point.

We then show that the optimal explanation that minimizes this infidelity measure could
be loosely cast as a novel combination of two well-known explanation mechanisms: Smooth-
Grad [148] and Integrated Gradients [156] using a kernel function specified by the random
perturbations. As another validation of our formalization, we show that many recently proposed
explanations can be seen as optimal explanations for the infidelity measure with specific pertur-
bations. We also introduce new perturbations which lead to novel explanations by optimizing
the infidelity measure, and we validate the explanations are qualitatively better through human
experiments. It is worth emphasizing that the infidelity measure, while objective, may not capture
all the desiderata of a successful explanation; thus, it is still of interest to take a given explanation
that does not have the form of the optimal explanation with respect to a specified infidelity measure
and modify it to have lesser infidelity.

Analyzing this question leads us to another objective measure: the sensitivity of an explanation,
which measures the degree to which the explanation is affected by insignificant perturbations
from the test point. It is natural to wish for our explanation to have low sensitivity, since that
would entail differing explanations with minor variations in the input (or prediction values), which
might lead us to distrust the explanations. Explanations with high sensitivity could also be more
amenable to adversarial attacks, as Ghorbani et al. [52] show in the context of gradient based
explanations. Regardless, we largely expect explanations to be simple, and lower sensitivity could
be viewed as one such notion of simplicity. Due in part to this, there have been some recent efforts
to quantify the sensitivity of explanations [4, 52, 115]. We propose and analyze a simple robust
variant of these recent proposals that is amenable to Monte Carlo sampling-based approximation.
Our key contribution, however, is in relating the notion of sensitivity to our proposed notion
of infidelity, which also allows us to address the earlier raised question of how to modify an
explanation to have better fidelity. Asking this question for sensitivity might seem vacuous, since
the optimal explanation that minimizes sensitivity (for all its related variants) is simply a trivial
constant explanation, which is naturally not a desired explanation. So a more interesting question
would be: how do we modify a given explanation so that it has lower sensitivity, but not too much.
To quantify the latter, we could in turn use fidelity.

As one key contribution of the paper, we show that a restrained lowering of the sensitivity of an
explanation also increases its fidelity. In particular, we consider a simple kernel smoothing based
algorithm that appropriately lowers the sensitivity of any given explanation, but importantly also
lowers its infidelity. Our meta-algorithm encompasses Smooth-Grad [148] which too modifies
any existing explanation mechanism by averaging explanations in a small local neighborhood
of the test point. In the appendix, we also consider an alternative approach to improve gradient
explanation sensitivity and fidelity by adversarial training, which however requires that we be
able to modify the given predictor function itself, which might not always be feasible. Our
modifications improve both sensitivity and fidelity in most cases, and also provides explanations
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that are qualitatively better, which we validate in a series of experiments.1

2.1 Infidelity: A measure of the Faithfulness of Feature Expla-
nation to the Model

Consider the following general supervised learning setting: input space X ⊆ Rd, an output
space Y ⊆ R, and a (machine-learnt) black-box predictor f : Rd 7→ R, which at some test
input x ∈ Rd, predicts the output f(x). Then a feature attribution explanation is some function
Φ : F × Rd 7→ Rd, that given a black-box predictor f, and a test point x, provides importance
scores Φ(f, x) for the set of input features. We let ∥ · ∥ denote a given norm over the input and
explanation space. In experiments, if not specified, this will be set to the ℓ2 norm.

2.1.1 Defining the infidelity measure
A natural notion of the goodness of an explanation is to quantify the degree to which it captures
how the predictor function itself changes in response to significant perturbations. Along this
spirit, [10, 142, 156] propose the completeness axiom for explanations consisting of feature
importances, which states that the sum of the feature importances should sum up to the difference
in the predictor function value at the given input and some specific baseline. [5] extend this to
require that the sum of a subset of feature importance weights should sum up to to the difference
in the predictor function value at the given input and to a perturbed input setting the subset of
features to some specific baseline value. When the the subset of features is large, this would
entail that explanations capture the combined importance of the subset of features even if not
the individual feature importances, and when the the subset of features is small, this would
entail that explanations capture the individual importance of features. We note that this can be
contrasted with requiring the explanations to capture the function values itself as in the causal
local explanation metric of [126], rather than the difference in function values, but we focus
on the latter. Letting Sk denote a subset of k features, [5] then measured the discrepancy of
the above desiderata as the correlation between ∑i∈Sk

Φ(f, x)i and f(x)− f(x[xSk = 0]), where
x[xS = a]j = a I(j ∈ S) + xj I(j /∈ S).

One minor caveat with the above, is that we may be interested in perturbations more general
than setting feature values to 0, or even to a single baseline; for instance, we might simultaneously
require smaller discrepancy over a set of subsets, or some distribution of subsets (as is common
in game theoretic approaches to deriving feature importances [31, 104, 151]), or even simply a
prior distribution over the baseline input. The correlation measure also focuses on second order
moments, and is not as easy to optimize. We thus build on the above developments, by first
allowing random perturbations on feature values instead of setting certain features to some single
value, and secondly, by replacing correlation with expected mean square error (our development
could be further generalized to allow for more general loss functions). We term our evaluation
measure explanation infidelity.
Definition 1. Given a black-box function f, explanation functional Φ, a random variable I taking
values in I and with probability measure µI, which represents meaningful perturbation of interest,

1Implementation available at https://github.com/chihkuanyeh/saliency_evaluation.
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we define the explanation infidelity of Φ as:

INFD(Φ, f, x) = EI∼µI [∥ITΦ(f, x)− (f(x)− f(x − I))∥2]. (2.1)

I represents significant perturbations around x, and can be specified in various ways. We begin
by listing various plausible perturbations of interest.

• Difference to baseline: I = x − x0, the difference between input and baseline.
• Subset of difference to baseline: for any fixed subset Sk ⊆ [d], ISk = x − x[xSk = (x0)Sk ]

corresponds to the perturbation in the correlation measure of [5] when x0 = 0.
• Difference to noisy baseline: I = x − z0, where z0 = x0 + ϵ, for some zero mean random

vector ϵ, for instance ϵ ∼ N (0, σ2).
• Difference to multiple baselines: I = x − x0, where x0 is a random variable that can take

multiple values.
As we will next show in Section 2.1.3, many recently proposed explanations could be viewed
as optimizing the aforementioned infidelity for varying perturbations I. Our proposed infidelity
measurement can thus be seen as a unifying framework for these explanations, but moreover, as a
way to design new explanations, and evaluate any existing explanations.

2.1.2 Explanations with least Infidelity
Given our notion of infidelity, a natural question is: what is the explanation that are optimal
with respect to infidelity, that is, have the least infidelity possible. This naturally depends on the
distribution of the perturbations I, and its surprisingly simple form is detailed in the following
proposition.
Proposition 1. Suppose the perturbations I satisfy the condition that

(∫
IITdµI

)−1 be invertible.
The optimal explanation Φ∗(f, x) that minimizes infidelity for perturbations I can then be written
as

Φ⋆(f, x) =
(∫

IITdµI

)−1(∫
IITIG(f, x, I)dµI

)
, (2.2)

where IG(f, x, I) =
∫ 1

t=0 ∇f(x + (t − 1)I) dt is the integrated gradient [156] of f(·) between
(x − I) and x, but can be replaced by any functional that satisfies ITIG(f, x, I) = f(x)− f(x − I).
We note that the optimal solution in (2.2) can be seen as applying a smoothing operation reminis-
cent of SmoothGrad on Integrated Gradients (or any explanation that satisfies the completeness
axiom) with a special kernel IIT.

2.1.3 Many Recent Explanations Optimize Infidelity
As we show in the sequel, many recently proposed explanation methods can be shown to be
optimal with respect to our infidelity measure in Definition 1, for varying perturbations I.
Proposition 2. Suppose the perturbation I = x − x0 is a fixed scalar equal to the difference
between x and some baseline x0. Then for any explanation Φ∗(f, x) that is optimal with re-
spect to infidelity for perturbations I, satisfying INFD(Φ∗, f, x) = 0, Φ∗(f, x)⊙ I satisfies the
completeness axiom; also satisfied by IG [156], DeepLift [142], LRP [10].
Proposition 3. Suppose the perturbation Iϵ = ϵ · ei where ei is a coordinate basis vector,
then the optimal explanation Φ∗

ϵ(f, x) with respect to infidelity for perturbations Iϵ, satisfies:
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limϵ→0 Φ∗
ϵ(f, x) = ∇f(x), so that the limit point of the optimal explanations is the gradient

explanation [141].
Proposition 4. Suppose the perturbation I = ei ⊙ x, where ei is a coordinate basis vector. Then
for the optimal explanation Φ∗(f, x) with respect to infidelity for perturbations I, Φ∗(f, x)⊙ x is
the occlusion-1 explanation[187].
Proposition 5. Following the notation in [104], given a test input x, suppose there is a mapping
hx : {0, 1}d 7→ Rd that maps simplified binary inputs z ∈ {0, 1}d to the real-valued inputs
x ∈ Rd, and suppose that the given test input x = hx(z0) where z0 is a vector with all ones
and hx(0) = 0 where 0 is the zero vector. Now, suppose the perturbation I = hx(Z) where
Z ∈ {0, 1}d is a binary random vector with distribution: P(Z = z) ∝ d−1

( d
∥z∥1

) ∥z∥1 (d−∥z∥1)
. Then

for the optimal explanation Φ∗(f, x) with respect to infidelity for perturbations I, Φ∗(f, x)⊙ x is
the Shapley value[104].

2.1.4 Some Novel Examples of Optimal Explanations
By varying the perturbations I in our infidelity definition 1, we can not only recover existing
explanations (as those that optimize the corresponding infidelity), as discussed in the previous
section, but also design some novel explanations. We provide two such instances below.

Noisy Baseline. The completeness axiom is one of the most commonly adopted axioms in the
context of explanations, but a caveat is that the baselines is set to some fixed vector, which does
not account for noise in the input (or the baseline itself). We thus set the baseline to be a Gaussian
random vector centered around a certain clean baseline (such as the mean input or zero) depending
on the context. The explanation that optimizes infidelity with corresponding perturbations I is a
novel explanation that can be seen as satisfying a robust variant of the completeness axiom.

Square Removal. Our second example is specific for image data. We argue that perturbations
that remove random subsets of pixels in images may be somewhat meaningless, since there
is very little loss of information given surrounding pixels that are not removed. Also ranging
over all possible subsets to remove (as in SHAP [104]) is infeasible for high dimension images.
We thus propose a modified subset distribution from that described in Proposition 5 where the
perturbation Z has a uniform distribution over square patches with predefined length, which is
in spirit similar to the work of [193]. This not only improves the computational complexity, but
also better captures spatial relationships in the images. One can also replace the square with more
complex random masks designed specifically for the image domain [124].

2.1.5 Local and Global Explanations
As discussed in [5], we can contrast between local and global feature attribution explanations:
global feature attribution methods directly provide the change in the function value given changes
in the features, whereas local feature attribution methods focus on the sensitivity of the function
to the changes to the features, so that the local feature attributions need to be multiplied with
the input to obtain an estimate of the change in the function value. Thus, for gradient-based
explanations considered in [5], the raw explanation itself such as the gradient is a local explanation,
while the raw explanation multiplied with the raw input is called a global explanation. In our
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context, explanations optimizing Definition 2.1.1 are naturally local explanations as I is real-
valued. However, this can be easily modified to a global explanation by multiplying with x − x0
when I is a subset of x − x0. The reason we emphasize this distinction is that since global and
local explanations capture subtly different aspects, they should be compared separately. We note
that our definition of local and global explanations follows the description of [5], distinct from
that in [126].

2.2 Objective Measure: Explanation Sensitivity
A classical approach to measure the sensitivity of a function, would simply be the gradient of the
function with respect to the input. Therefore, the sensitivity of the explanation can be defined as:
for any j ∈ {1, . . . , d},

[∇xΦ(f(x))]j = lim
ϵ→0

Φ(f(x + ϵ ej))− Φ(f(x))
ϵ

,

where ej ∈ Rd is the j-th coordinate basis vector, with j-th entry one and all others zero. It
quantifies how the explanation changes as the input is varied infinitesimally. And as a scalar-
valued summary of this sensitivity vector, a natural approach is to simply compute some norm of
the sensitivity vector: ∥∇xΦ(f(x))∥. A slightly more robust variant would be a locally uniform
bound:

SENSGRAD(Φ, f, x, r) = sup
∥δ∥≤r

∥∇xΦ(x + δ)∥. (2.3)

This is in turn related to local Lipschitz continuity [4] around x:

SENSLIPS(Φ, f, x, r) = sup
∥δ∥≤r

∥Φ(x)− Φ(x + δ))∥
∥δ∥ , (2.4)

Thus if an explanation has locally uniformly bounded gradients, it is locally Lipshitz continuous
as well. In this paper, we consider a closely related measure, we term max-sensitivity, that
measures the maximum change in the explanation with a small perturbation of the input x.
Definition 2. Given a black-box function f, explanation functional Φ, and a given input neighbor-
hood radius r, we define the max-sensitivity for explanation as:

SENSMAX(Φ, f, x, r) = max
∥y−x∥≤r

∥Φ(f, y)− Φ(f, x))∥.

It can be readily seen that if an explanation is locally Lipshitz continuous, it has bounded
max-sensitivity as well:

SENSMAX(Φ, f, x, r) := max
∥δ∥≤r

∥Φ(f, x + δ)− Φ(f, x))∥ ≤ SENSLIPS(Φ, f, x, r) r, (2.5)

The main attraction of the max-sensitivity measure is that it can be robustly estimated via Monte-
Carlo sampling, as in our experiments. Can we then modify a given explanation so that it has
lower sensitivity? If so, how much do we lower its sensitivity? There are two key objections to
the very premise of these questions on how to lower sensitivity of an explanation. For the first
objection, as we noted in the introduction, sensitivity provides only a partial measure of what
is desired from an explanation. This can be seen from the fact that the optimal explanation that
minimizes the above max-sensitivity measure is simply a constant explanation that just outputs a
(potentially nonsensical) constant value for all possible test inputs. The second objection is that
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natural explanations might have a certain amount of sensitivity by their very nature, either because
the model is sensitive, or because the explanations themselves are constructed by measuring the
sensitivities of the predictor function, so that their sensitivities in turn is likely to be more than
that of the function. In which case, we might not want to lower their sensitivities, since it might
affect the fidelity of the explanation to the predictor function, and perhaps degrade the explanation
towards the vacuous constant explanation.

As one key contribution of the paper, we show that it is indeed possible to reduce sensitivity
“responsibly” by ensuring that it also lowers the infidelity, as we detail in the next section. We
start by relating the sensitivity of an explanation to its infidelity, and then show that appropriately
reducing the sensitivity can achieve two ends: lowering sensitivity of course, but surprisingly, also
lowering the infidelity itself.

2.3 Reducing Sensitivity and Infidelity by Smoothing Explana-
tions

We then introduce a robust version of explanation fidelity which measures the maximum infidelity
while adding a small perturbation to x:
Definition 3. Given a black-box function INFD, explanation functional Φ, a random variable I
which represents meaningful perturbation of interest, we define the robust fidelity of x as:

RINFD(Φ, INFD, x) = max
∥u∥≤r

INFD(Φ, INFD, x + u)

= max
∥u∥≤r

EI[∥ITΦ(INFD, x + u)− (INFD(x + u)− INFD(x + u − I))∥2].

We note that the optimal explanation that optimizes the robust infidelity equals to the optimal
explanation that optimizes the infidelity. Therefore, by introducing the robust infidelity, we do
not modify the optimal explanation but only capture a more robust measurement of the infidelity
score. We introduce the following theorem that gives a lower bound for the robust infidelity that
relates to the explanation sensitivity. The intuition is that by Definition 3, ITΦ(INFD, x + u)
and INFD(x + u)− INFD(x + u − I) should be close for all u. However, if ITΦ(INFD, x + u)
and INFD(x + u)− INFD(x + u − I) have a very different sensitivity when perturbing u, the
difference will naturally be large for some u.
Theorem 1. Given a black-box function INFD, explanation functional Φ, a random vari-
able I, and let A(x) = max∥u∥≤r EI[∥ITΦ(INFD, x + u) − ITΦ(INFD, x)∥], and B(x) =
max∥u∥≤r EI[∥INFD(x + u)− INFD(x)∥].

RINFD(x) ≥ (
A(x)− B(x)− B(x − I)

2
)2.

We note A(x) can be approximated by SENSMAX(Φ, INFD, x, r), which shows that A(x)
is related to the sensitivity of explanation Φ and B(x) can be seen as the sensitivity of function
INFD. When the explanation is much more sensitive than the model, the robust infidelity is lower
bounded by the difference between explanation sensitivity and model sensitivity, which is clearly
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undesirable. This suggests that we may improve the explanation sensitivity along with explanation
infidelity.

We have shown that if the explanation sensitivity is much larger than the function sensitivity
around some input x, the infidelity measure in turn will necessarily be large for some point around
x (that is, loosely, infidelity is lower bounded by the difference in sensitivity of the explanation
and the function). Given that a large class of explanations are based on sensitivity of the function
at the test input, and such sensitivities in turn can be more sensitive to the input than the function
itself, does that mean that sensitivity-based explanations are just fated to have a large infidelity?
In the following, we show that this need not be the case: by appropriately lowering the sensitivity
of any given explanation, we not only reduce its sensitivity, but also its infidelity.

Given any kernel k(x, z) over the input domain with respect to which we desire smoothness,
and some explanation functional Φ(f, z), we can define a smoothed explanation as

Φk(f, x) :=
∫

z Φ(f, z) k(x, z)dz. When k(x, z) is set to the Gaussian kernel, Φk(f, x) be-
comes Smooth-Grad [148]. We now show that the smoothed explanation is less sensitive than the
original sensitivity averaged around x.
Theorem 2. Given a black-box function f, explanation functional Φ, the smoothed explanation
functional Φk,

SENSMAX(Φk, f, x, r) ≤
∫

z
SENSMAX(Φ, f, z, r)k(x, z)dz.

Thus, when the sensitivity SENSMAX is large only along some directions z, the averaged
sensitivity could be much smaller than the worst case sensitivity over directions z.

We now show that under certain assumptions, the infidelity of the smoothed explanation
actually decreases. First, we introduce two relevant terms:

C1 = max
x

∫
I

∫
z ∥f(z)− f(z − I)− [f(x)− f(x − I)]∥2k(x, z)dzdµI∫
I

∫
z ∥ITΦ(f, z)− [f(x)− f(x − I)]∥2k(x, z)dzdµI

, (2.6)

C2 = max
x

∫
I ∥
∫

z{ITΦ(f, z)− [f(x)− f(x − I)]}k(x, z)dz∥2dµI∫
I

∫
z ∥ITΦ(f, z)− [f(x)− f(x − I)]∥2k(x, z)dzdµI

. (2.7)

We note that when the sensitivity of f is much smaller than the sensitivity of ITΦ(f, ·), the
numerator of the term C1 will be much smaller than the denominator of C1, so that the term C1
will be small. The term C2 is smaller than one by Jensen’s inequality, but in practice it may be
much smaller than one when ITΦ(f, z)− [f(x)− f(x − I)] have different signs for varying z.
We now present our theorem which relates the infidelity of the smoothed explanation to that of
the original explanation.
Theorem 3. Given a black-box function f, explanation functional Φ, the smoothed explanation
functional Φk, some perturbation of interest I, C1, C2 defined in (2.6) and (2.7) where C1 ≤ 1√

2
,

INFD(Φk, f, x) ≤ C2

1 − 2
√

C1

∫
z

INFD(Φ, f, z)k(x, z)dz.

When C2
1−2

√
C1

≤ 1, we show that the infidelity of Φk is less than the infidelity of Φ, as∫
z INFD(Φ, f, z)k(x, z)dz is usually very close to INFD(Φ, f, z). This shows that smoothed

explanation can be less sensitive and more faithful, which is validated in the experiments.
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Datasets MNIST

Methods SENSMAX INFD

Grad 0.86 4.12

Grad-SG 0.23 1.84

IG 0.77 2.75

IG-SG 0.22 1.52

GBP 0.85 4.13

GBP-SG 0.23 1.84

Noisy
Baseline 0.35 0.51

(a) Results for local explanations
on MNIST dataset.

Datasets MNIST Cifar-10 Imagenet

Methods SENSMAX INFD SENSMAX INFD SENSMAX INFD

Grad 0.56 2.38 1.15 15.99 1.16 0.25

Grad-SG 0.28 1.89 1.15 13.94 0.59 0.24

IG 0.47 1.88 1.08 16.03 0.93 0.24

IG-SG 0.26 1.72 0.90 15.90 0.48 0.23

GBP 0.58 2.38 1.18 15.99 1.09 0.15

GBP-SG 0.29 1.88 1.15 13.93 0.41 0.15

SHAP 0.35 1.20 0.93 5.78 – –

Square 0.24 0.46 0.99 2.27 1.33 0.04

(b) Results for global explanations on MNIST, Cifar-10 and ima-
genet.

Table 2.1: Sensitivity and Infidelity for local and global explanations.

2.4 Experiments
Setup. We perform our experiments on randomly selected images from MNIST, CIFAR-10, and
ImageNet. In our comparisons, we restrict local variants of the explanations to MNIST, since
sensitivity of function values given pixel perturbations make more sense for grayscale rather than
color images. To calculate our infidelity measure, we use the noisy baseline perturbation for
local variants of the explanations, and the square removal for global variants of the explanations,
and use Monte Carlo Sampling to estimate the measures. We use Grad, IG, GBP, and SHAP to
denote vanilla gradient [142], integrated gradient [156], Guided Back-Propagation [150], and
KernelSHAP [104] respectively, and add the postfix “-SG” when Smooth-Grad [148] is applied.
We call the optimal explanation with respect to the perturbation Noisy Baseline and Square
Removal as NB and Square for simplicity.

Explanation Sensitivity and Infidelity. We show results comparing sensitivity and infidelity
for local explanations on MNIST and global explanations on MNIST, CIFAR-10, and ImageNet
in Table 2.1. Recalling the discussion from Section 2.1.5, global explanations include a point-wise
multiplication with the image minus baseline, but local explanations do not. We observe that
the noisy baseline and square removal optimal explanations achieve the lowest infidelity, which
is as expected, since they explicitly optimize the corresponding infidelity. We also observe that
Smooth-Grad improves both sensitivity and infidelity for all base explanations across all datasets,
which corroborates the analysis in section 2.3, and also addresses plausible criticisms of lowering
sensitivity via smoothing: while one might expect such smoothing to increase infidelity, modest
smoothing actually improves infidelity. We also perform a sanity check experiment when the
perturbation follows that in SHAP (Defined in Prop.2.5), and we verify that SHAP has the lowest
infidelity for this perturbation.
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Figure 2.1: Examples of explanations on Ima-
genet.

Figure 2.2: Examples of local explanations on
MNIST.

Visualization. For a qualitative evaluation, we show several examples of global explanations on
ImageNet, and local explanations on MNIST. The explanations optimizing our infidelity measure
with respect to Square and Noisy Baseline (NB) perturbations, show a cleaner saliency map,
highlighting the actual object being classified, when compared to then other explanations. For
example, Square is the only explanation that highlights the whole bannister in the second image
of Figure 2.1. For local examples on MNIST, NB clearly shows the digits, as well as regions that
would increase the prediction score if brightened, such as the region on top of the number 6, which
gives more insight into the behavior of the model. We also observe that SG provides a cleaner
set of explanations, which validates the experimental results in [148], as well as our analysis in
Section 2.3. We provide a more complete set of visualization results with higher resolution in the
appendix.

Human Evaluation. We perform a controlled experiment to validate whether the infidelity
measure aligns with human intuitions in a setting where we have an approximated ground truth
feature for our model, following the setting of [88]. We create a dataset of two classes (bird and
frog), with the image of the bird or frog in one half of the overall image, and just the caption in
the other half (as shown in Figure 2.4). The images are potentially noisy with noise probability
p ∈ {0, 0.6}: when p = 0, the image always agrees with the caption, and when p = 0.6, we
randomize the image 60 percent of the time to a random image of another class. We train two
models which both achieve testing accuracy above 0.95, where one model only relies on the image
and the other only relies on the caption2. We then show the original input with aligned image and
text, the prediction result, along with the corresponding explanations of the model (among Grad,
IG, Grad-SG, and OPT) to humans, and test how often humans are able to infer the approximated
ground truth feature (image or caption) the model relies on. The optimal explanation (OPT) is the
explanation that minimizes our infidelity measure with respect to perturbation I defined as the
right half or the left half of the image (since the location of the caption is in one half of the overall
image in our case; but note that in more general settings, we could simply use a caption bounding
box detector to specify our perturbations). Our human study includes 2 models, 4 explanations,
and 16 test users, where each test user did a series of 8 tasks (2 models × 4 explanations) on

2When p = 0, the trained model solely relies on the image (accuracy for image only input is 0.9, but accuracy for
caption only input is 0.5). When p = 0.6, the trained model only relies on the caption (the accuracy for caption only
input is 0.98 but the accuracy for image only input is 0.5
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Figure 2.3: Examples of various explanations for
the original model and the randomized model.

Figure 2.4: One example of explanations
where the approximated ground truth is the
right block (model focuses on the text). Some
explanations focus on both text and image, so
that just from these explanations, might be dif-
ficult to infer the ground truth feature used.

Grad Grad-SG IG IG-SG Square

Corr 0.17 0.10 0.18 0.16 0.13

Corr (abs) 0.57 0.62 0.61 0.62 0.28

Table 2.2: Correlation of the explanation between the
original model randomized model for the sanity check.

Grad Grad-SG IG OPT

Infid. 0.55 0.38 0.35 0.00

Acc. 0.47 0.50 0.53 0.88

Table 2.3: The infidelity and the ac-
curacy human are able to predict the
input blocked used based on the expla-
nations.

random images. We report the average human accuracy and the infidelity measure for each
explanation models in Table 2.3. We observe that unsurprisingly OPT has the best infidelity score
by construction, and we also observe that the infidelity aligns with human evaluation result in
general. This suggests that a faithful explanation communicates the important feature better in
this setting, which validates the usefulness of the objective measure.

Sanity Check. Recent work in the interpretable machine learning literature [2, 38] has strongly
argued for the importance of performing sanity checks on whether the explanation is at least
loosely related to the model. Here, we conduct the sanity check proposed by Adebayo et al. [2],
to check if explanations look different when the network being explained is randomly perturbed.
One might expect that explanations that minimize infidelity will naturally be faithful to the model,
and consequently pass this sanity check. We show visualizations for various explanations (with
and without absolute values) of predictions by a pretrained Resnet-50 model and a randomized
Resnet-50 model where the final fully connected layer is randomized in Figure 2.3. We also
report the average rank correlation of the explanations for the original model and the randomized
model in Table 2.2. All explanations without the absolute value pass the sanity check, but the rank
correlation for explanations with the absolute value between the original model and the randomized
model is high. In this case, Square has the lowest rank correlation and the visualizations for
two models look the most distinct, which supports the hypothesis that an explanation with low
infidelity is also faithful to the model.
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Connection To Later Work The proposed infidelity is a general metric that connects the
design of many feature attribution methods by the core design idea of feature attribution: that the
explanation should be faithful to the model. For instance, one of our key design of a theoretic-
motivated feature interaction Faith-Shap in later chapters is that the feature interaction should be
faithful to the model for some non-degenerate perturbation function.
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Chapter 3

Threading the needle for off-manifold and
on-manifold value functions for Shapley
Value

Shapley values [140] were originally proposed to measure the contributions of players in the
context of cooperative games. They have since gained significant traction in the area of explainable
machine learning, where they are used to measuring contributions of different features [31, 63,
102, 104, 119, 120], data points [50, 79], neurons [51], and concepts [182], towards the output of
a learned model.

Despite their popularity, using Shapley values in an explainable machine learning context
is not straightforward. In a cooperative game setting, the game is characterized by a set value
function that takes as input a subset (also called a coalition) of players, and outputs the value
or utility of this subset. Given this set value function, Shapley values then provide real-valued
player-wise contributions. In a machine learning context, however, there is no well-defined set
value function that takes as input a subset of features and outputs the value of this subset. Instead,
we have the model p, data distribution p, and the test data point x. A critical ingredient in order to
derive Shapley values is to define a “value function” fx,p,p(S) which takes a set of features S as
input, along with the model p, the test data point x, and data distribution p. The value function
describes how p(x) would change if only a set of features in x participates in an cooperative
setting.

However, there is no consensus on how to specify the value function. Existing value functions
can be roughly classified into two classes: so-called off-manifold value functions measure the
utility of coalitions of features by perturbing features outside the coalition (and hence taking
the inputs outside the data manifold), while so-called on-manifold value functions measure
the utility of coalitions of features by marginalizing out features outside the coalition while
respecting the data distribution/manifold. Both approaches come with their respective caveats
[95]. Off-manifold value functions by construction evaluate the model on data that is not from
the training data distribution; and hence are sensitive to how the model handles off-manifold
test data [76, 147], and where machine learning models are typically unstable [46]. Moreover,
the resulting explanations are very susceptible to manipulation: one can manipulate the model
function only on off-manifold regions while preserving its behavior on-manifold, just to get the
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desired explanation (e.g. to show that the model is unbiased, while maintaining biased behavior
on-manifold) [147]. In other words, the off-manifold value functions respect the model function,
but not the data distribution. This is problematic since these value functions evaluate the model
outside the data manifold, where most ML training methods do not come with any guarantees on
model performance.

On-manifold value functions on the other hand are in general computationally expensive,
particularly if they involve conditional expectations due to marginalizing over out-of-coalition
features while conditioning on the coalition features. Approximating these conditional expecta-
tions via empirical distributions could result in idiosyncratic issues, such as all features having the
same attribution [155]. Aas et al. [1], Lundberg and Lee [104], Štrumbelj and Kononenko [151]
compute the conditional value function via distributional assumptions, such as independence and
Gaussian mixtures, which may not be flexible enough for complex data. Lundberg et al. [105]
attempt to calculate the conditional expectation value function for tree ensembles, but which
Sundararajan and Najmi [155] criticize as having unclear assumptions on the features. Frye et al.
[46] propose approximating these conditional expectations via a supervised and an unsupervised
approach. As we show however, the supervised approach converges to the empirical conditional
value function, while the unsupervised approach generates samples whose coalition features need
not be set to the conditioned values. Another principled approach of calculating the conditional
expectation based value function is by using importance sampling on the joint distribution, but
this is computationally expensive. Further, we show that conditional expectation based value
functions, even when calculated accurately, will also be prone to adversarial manipulation off the
data manifold. Another caveat with on-manifold value functions is that they result in Shapley
values that violates natural axioms [155]. Moreover, they might respect the data distribution at
the price of fidelity to the model function: a feature with no intervention effect can still receive
non-zero feature importance, which was seen as a positive aspect by Adler et al. [3], but a negative
aspect by Merrick and Taly [112], Sundararajan and Najmi [155].

So both on-manifold and off-manifold value functions, and their resulting Shapley value
explanations, have their competing pros and cons, and Chen et al. [24] among others have
suggested to “pick one’s poison” when faced with a specific application. Kumar et al. [95] have
even suggested that these two competing approaches present a serious concern with using Shapley
values itself. But what if we can design value functions that respect both the model and the
data manifold, and are not susceptible to adversarial manipulations in low density data regions?
Surprisingly, we show that we indeed can. Towards this, we first propose a set of axioms that
aim to formalize the desiderata in the question above, and show that there exists a unique value
function that satisfies these axioms, which we call the Joint Baseline value function, satisfies these
axioms. While the Shapley value by Joint Baseline value function does not satisfy the original set
of axioms proposed in Sundararajan and Najmi [155], it does satisfy a new set of axioms which
takes both data density and function model into account. Moreover, we show that this unique
value function is robust to low density adversarial manipulations. We also show that the resulting
Shapley value, Joint Baseline Shapley (JBshap), can be computed efficiently and scaled to high
dimensional data such as images.
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3.1 Different Value Functions for Shapley Value Explanations

3.1.1 Problem Definition

Given a machine learning model p(·) : Rd → R trained on d-dimensional data, data distribution
p, and an explicand (i.e. test input) x ∈ Rd, we aim to attribute the model output f (x) to the
individual features. We use Φp,p,i(x) to denote this attribution to the i-th feature. In certain
cases, there is also a given baseline value x′ ∈ Rd, which is often set to 0 or the data mean.
When applying Shapley values (which originate in cooperative game theory) to this attribution
problem, a critical first step is to capture the key elements of p, p, x into a set value function
fx,p,p(S) : 2d → R, where S ⊆ [d] is a subset of features. In this context, subsets of features can
be thought of as subsets of players; in the sequel, we will often refer to the i-th feature as the
i-th player to emphasize the connection to game theory at play with Shapley explanations. Given
such a set value function v(·), Shapley value attributions to the i-th player can be computed as
ϕi(v) =∑S⊆[d]/i

s!(n−s−1)!
n! [v(S ∪ i)− v(S)]. In other words, the Shapley value of player i is the

weighted average of its marginal contribution v(S ∪ i)− v(S) averaged over all possible subsets
S ⊆ [d] that do not include player i. The Shapley value has been shown to be the unique solution
satisfying a set of reasonable axioms; see [140] for a further discussion and history. We will
provide a more detailed discussion of such axioms in Sec. 3.3 and Sec. 3.4.

In the explainable AI context, using the set value function fx,p,p(·), we can then compute the
Shapley importance values Φp,p,i(x) = Φi(fx,p,p(·)), where Φi is the Shapley value attribution
to the i-th player as detailed above. The critical question however is: how to specify the set value
function fx,p,p(·)?

3.1.2 Notation for Existing On-Manifold and Off-Manifold Value Functions

Different choices of the set value function v would lead to different Shapley values ϕi(v), and
indeed the proper selection of v has been of great interest within the explainable AI community.
We first set up some notation. We let xS denote the sub-vector of x corresponding to the feature
set S ⊆ [d], and xS̄ as the sub-vector corresponding to the complementary subset S̄ ⊆ [d]. Given
a baseline x′ ∈ Rd, we will be using the notation f (xS; x′S̄) to refer to the function f with input
sub-vectors xS and x′S̄ corresponding to features in S and S̄ respectively.

3.1.2.1 On-Manifold Value Functions

In this paper, we consider the prototypical on-manifold value function of Conditional Expectation,
which in turn results in the Conditional Expectation Shapley value (CES) [104, 155]. We will be
overloading notation and term the value function itself as CES.

CES: fC
x,p,p(S) = Ex′S̄∼p(x′S̄|xS)

[p(xS; x′S̄)] =
∫

x′S̄
p(xS; x′S̄)p(x′S̄|xS)dx′S̄. In other words, CES

takes the expectation of f (xS; x′S̄) over the conditional density of x′S̄ given xS (with respect to the
joint density p(·)).
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3.1.2.2 Off-Manifold Value Functions

As discussed earlier, off-manifold value functions quantify the contribution of a coalition of
features by perturbing or intervening on the off-coalition features. In this paper, we consider
the prototypical off-manifold value functions of Baseline Shapley (Bshap) [104, 154]) and its
randomized variant.

Bshap: fB
x, f ,p(S) := p(xS; x′S̄). Bshap directly takes the value of f corresponding to x, and

ignores the data density model p.

RBshap: fRB
x,p,p(S) = Ex′S̄

[p(xS; x′S̄)] =
∫

x′S̄
p(xS; x′S̄)pb(x′S̄)dx′S̄, where pb is the marginal

density of xS̄. RBshap is a natural extension of Bshap, where the baseline x′ in Bshap is
generalized to a distribution of baselines, which is represented by pb(x′).

3.2 Issues of Existing Value Functions

3.2.1 Off-Manifold Value function: Not “Respecting” the Data Manifold

The main difference between on-manifold value functions and off-manifold value functions is that
off-manifold value functions do not take the data manifold (density) into account. The machine
learning model p may not be trained to have meaningful prediction values when the input is
[xS; x′S̄]. For instance, for image inputs, [xS; x′S̄] would represent an image where certain random
pixels are replaced by some baseline value (such as setting to black). [46] thus raise the concern
that Shapley values calculated by off-manifold value functions could be over-reliant on function
values in off-manifold regions, which is not where the model is trained on. Issues could arise
when the model behavior is different on the data manifold and off the data manifold. For instance,
if the image classifier tends to predict an image with many random black pixels as “dog”, the
Shapley explanation for an image of a dog may be strongly affected by how the model handles
such artifacts. This problem is emphasized by Slack et al. [147] as they show that they can train a
new model that only differs to the original model in off-manifold regions, and they are able to
manipulate the Shapley explanations for off-manifold value functions. We further discuss this
issue in Sec. 3.2.3.

3.2.2 On-Manifold Value function: Difficulty to Calculate Conditional
Value

In contrast to the robustness challenges of the previous section, the main difficulty with conditional
expectation (CES) based value functions is computational. Many variants have been proposed to
simplify the computational burden of calculating the CES value, however, they may come with
the cost of its new issues. We discuss some key variants and their respective issues.
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3.2.2.1 CES-Empirical

One variant is called CES-Empirical, which uses the empirical probability to calculate the condi-
tioned value. To formally define CES-Empricial, let pE(x) = 1

m1[x in dataset] denote the empiri-
cal distribution, given m points in the dataset. In this case, fCE

x,p,pE(S) = Ex′S̄∼pE(x′S̄|xS)
[p(xS; x′S̄)] =

∑m
i=1 1[x

i
S=xS]p(xi)

∑m
i=1 1[x

i
S=xS]

will be the average prediction of the points in the dataset where its feature set S
is equal to xS.

Although CES-Empirical can be easy to calculate, the caveats of CES-Empirical have been
discussed in a line of recent work; we summarize the key ones below. The main criticism of
CES-Empirical is that when an explicand has feature values that are unique in the dataset (which
is likely to be the case with a continuous data distribution), each feature will get the same Shapley
value importance even if the model is not symmetric in all features [155].

3.2.2.2 CES-Supervised

Another popular CES version is called CES-Supervised [46]. The method is motivated by the
observation that the conditional expectation fx,p,p(S) = Ex′S̄∼p(x′S̄|xS)

[p(xS; x′S̄)] can be seen to

minimize the MSE loss mse(v(xS)) := Ex′S̄∼p(x′S̄|xS)
[p(xS; x′S̄)− v(xS)]

2. Thus, Frye et al. [46]
propose to learn the value function by a surrogate model g by minimizing the MSE loss:

fCS
x,p,pE(S) = arg min

g
Ex∼pEES∼shapley[(p(x)− g(xS))

2],

and the conditioned value fCS
x,p,pE(S) can be obtained by the surrogate model g by g(xS). Frye

et al. [46] propose to use a neural network with masked inputs as the surrogate model.
In order to calculate CES-supervised, Frye et al. [46] follow the standard approach of empirical

risk minimization, and optimize the empirical MSE loss:

Ex∼pE(x)ES∼shapley[(p(x)− fCS
xS,p,p)

2]. (3.1)

One issue of CES-Supervised is that it requires retraining the model completely, where the
sample space is all possible subsets for every input. The training of the model g is even more
difficult than the training of the original model p.

Another issue is that the resulting optimal ERM CES-supervised estimator is exactly the
CES-Empirical estimate, as we show in the following theorem.
Proposition 1. The global minimizer to (3.1), where pE(x) = 1

m1[x in dataset] is exactly equal
to f CE

x,p,pE(S). Thus, fCS
xS,p,p = f CE

x,p,pE(S) when the empirical distribution is used.
The proof follows from a simple analysis of the stationary conditions of the objectives above.

As a consequence of this surprising theorem, all pitfalls of CES-Empirical still carry over to
CES-supervised when the empirical distribution is used. Even although Frye et al. [46] use a
masked encoder model to learn fCS

xS,p,p, when the encoder is sufficiently flexible (e.g. large neural
models) this still converges to CES-Empirical, and not the true conditioned value. One evidence
is that CES-supervised is invariant to the behavior of p off the data points in the dataset. However,
the true conditioned expectation should be dependent on the behavior of p off the data manifold.
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We note that when the learning of the surrogate model has strong regularization, CES-SUP may
not necessarily converge to CES-Empirical, but the fact that CES-SUP is invariant to the behavior
of p off the data points validates that it does not capture the real conditioned value. Another issue
of CES-Supervised, which is demonstrated in the experiment section, is that the empirical MSE
loss can still be low even if the training objective is altered, and thus leaving CES-supervised to
be prone to model-based attack.

3.2.2.3 CES-Sample

Suppose we have access to the conditioned probability p(x′S̄|xS), we can use Monte-Carlo sam-
pling to estimate fCSam

x,p,p (S) =
∫

x′S̄
p(xS; x′S̄)p(x′S̄|xS)dx′S̄. To obtain the conditioned probability,

Frye et al. [46] proposed a Masked variational auto-encoder approach, which results in samples
that does not respect the conditioned value. An alternative is to sample conditioned probability
that satisfies the conditioned constraint is to use importance-sampling, by first sampling uniformly
from all x′S̄, and average the value of p(xS; x′S̄)p(x′S̄|xS) for each sampled point. The main down-
side of CES-Sample is that it is computationally expensive to calculate fCSam

x,p,pE(S), each of which
may take around 10 to 100 accesses to the model p; in contrast, the computation of most other
value functions require single access to the model p. Thus, CES-sample may be 10× to 100×
more expensive to calculate compared to other value functions.

3.2.3 Off-Manifold and On-Manifold Value function: Sensitivity to Pertur-
bation In Low-Density Regions

For off-manifold value functions, it is shown that one can manipulate the Shapley value expla-
nations by perturbing the functions on off-manifold regions [147]. The methodology of Slack
et al. [147] is that given an original black-box model f which has explanation ϕ( f ), one may
perturb f to f ′ by only changing the behavior in low-density regions. In practice, we usually only
check the test accuracy and test prediction, and the difference of f and f ′ may not be detected in
several cases. However, the explanation ϕ( f ) and ϕ( f ′) may differ drastically. This undermines
the original explanation ϕ( f ), as there are now ground truth for how the model f should behave
off-manifold. While previous works [46] claim that on-manifold value function is robust to
such manipulation, we show that one can also manipulate (the Shapley values corresponding to)
on-manifold value functions by perturbing the functions on low density regions (while fixing the
model behavior on high density regions).

We first formalize a definition of robustness to off-manifold manipulations, and discuss the
sensitivity (robustness) of existing value functions to off-manifold manipulations.
Definition 1. Given any two models p1(x), p2(x) and any probability measure p(x), if maxx |p1(x)−
p2(x)|p(x) ≤ ϵ always entails |fx,p1,p(S)− fx,p2,p(S)| ≤ Tϵ for any S, we term the value func-
tion fx,p,p(S) as strong T-robust to off-manifold perturbations.

The premise maxx |p1(x) − p2(x)|p(x) ≤ ϵ bounds the maximum perturbation on low
density regions. For instance, if we require that maxx |p1(x) − p2(x)|p(x) ≤ 0.01, then in
regions with density less than 0.01, we can perturb the function values by at most 1.0. However,
we show that both Bshap and CES are not strong T-robust.
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Proposition 2. Bshap and CES are not strong T-robust to off-manifold perturbations for |T| < ∞.
The key reason that Bshap and CES does not satisfy strong T-robustness is that the value

function fx,p,p(S) for Bshap and CES can be determined by the behavior of p on low density
regions. To address this issue, we show that the strong- T-robustness can be obtained by taking
the data density into account in the calculation of value functions.

We empirically evaluate the sensitivity of Bshap and CES when the function is perturbed in
low-density regions in practice in Sec. 3.6.

3.3 Axioms for Value Functions & A New Value Function
In this section, we argue that it is possible to get the best of, and avoiding the pitfalls of, both
worlds — of on-manifold and off-manifold value functions — by taking both the function and the
data distribution into account.

We first propose a set of axioms on set value functions that takes these desiderata into account.
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1. Linearity (over functions and distributions) (Lin.): For any functions p, p1, p2, p, p1, p2,
α1fx,p1,p(S)+ α2fx,p2,p(S) = fx,α1p1+α2p2,p(S), for α1, α2 ∈ R and α1fx,p,α1 p1(S)+ α2fx,p,p1(S) =
fx,p,α1 p1+α2 p2(S) for α1, α2 ≥ 0.

2. Symmetry (over functions and distributions) (Sym.): for all i, j ̸⊆ S, p, p, x, x′ all being
symmetric in the i-th and j-th dimensions implies fx,p,p(i ∪ S) = fx,p,p(j ∪ S). That is, if
both the function p and the probability p are symmetric with respect to two features, then
so should the value function f.

3. Dummy Player (over functions and distributions) (Dum.): p, p being invariant in the
i-th dimension implies fx,p,p(S) = fx,p,p(i ∪ S). That is, a completely irrelevant feature in
both the function value and data density should also be irrelevant in the value function.

4. Null Player (over functions and distributions) (Null): if p′, p′ satisfies p(x′) = p′(x′), p(x′) =
p′(x′), then fp,p,x(Ø) = fp′,p′,x(Ø). That is, the value function when no players are in the
set function solely depends on the function value and data density of the baseline.

5. Efficiency (over functions and distributions) (Eff.): fp,p,x[d]− fp,p,x[Ø] = p(x)p(x)−
p(x′)p(x′). The difference between the value function of all players and no players is equal
to the total joint density. Note that this axiom is not needed in the uniqueness of JBshap.

6. Set Relevance (over functions and distributions) (Set.): If p1(xS, x̄S̄) = p2(xS, x̄S̄) and
p1(xS, x̄S̄) = p2(xS, x̄S̄) for any x̄, fp1,p1,x(S) = fp2,p2,x(S). The set relevance axiom
states that the value function is determined by how p, p behaves when the feature set S is
fixed to be equal to xS.

7. Strong-T-Robustness (over functions and distributions) (Rob.): For any functions
p1, p2, p, if maxx |p1(x)− p2(x)|p(x) ≤ ϵ, then |fx,p1,p(S)− fx,p2,p(S)| ≤ Tϵ for some
constant T. This axiom has been discussed in Sec. 3.2.3.

As discussed earlier, Shapley values originated in a cooperative game context, as the unique
attribution function that assigns attributions to individual players, given a set value function that
specifies utilities of sets/coalitions of players. Our set of axioms above on the other hand are
for the set value function itself: on what properties such set-value functions should satisfy. Our
linearity axiom states that for a linear combination of models should have a corresponding linear
combination of set-value functions. Similarly a convex combination (i.e. mixture) of distributions
should have a corresponding convex combination of value functions.

Note that Shapley values themselves satisfy a linearity axiom, that states that a linear combina-
tion of set-value functions should have a linear combination of corresponding Shapley values. By
combining the linearity axioms for set-value functions we specify here, with the linearity axiom of
Shapley value feature attributions, it can be seen that we get that a combined linearity axiom: that
for linear (convex) combinations p (p), the Shapley attributions should in turn be linear (convex)
combinations of the corresponding Shapley values. We formalize the complete set of transitive
axioms in Sec. 3.4.

The set relevance axiom states that the value function is determined by the behavior of p and p
when the feature set of S is set to the value of x. The rationale is that the value function identifies
the contribution of xS in p(x) and p(x), and thus should be only relevant to p(x̄) and p(x̄) when
x̄S = xS. In other words, how p(x̄), p(x̄) behaves when x̄S is not equal to xS should not affect the
value function fp,p,x(S).

28



We next show the following uniqueness result:
Theorem 4. fx,p,p(S) satisfies (Lin.), (Sym.), (Dum.), (Null), (Eff.), (Set.), (Rob.) axioms if and
only fx,p,p(S) = p(xS, x′S̄)p(xS, x′S̄).

This result specifies the unique value function that satisfies natural axioms which take both
the data and model into account. We term this unique value function the Joint Baseline Shapley
value (JBshap):
Definition 2. (JBshap):

fJ
x,p,p(S) = p(xS; x′S̄)p(xS; x′S̄) (3.2)

An interesting fact is that for the uniqueness result, the efficiency axiom is not needed. Suppose
the model f (xS; x′S) converges to the conditional distribution p(y|xS, x′S), then from (3.2), it can
be seen that vJ

x, f ,p(S) → p(y|xS, x′S)p(xS; x′S) = p(y, xS, x′S). In other words, as the model itself
converges to the Bayes optimal classifier, JBshap assigns a value to xS that is consistent with the
joint density of the observation y and (xS, x′S). We highlight that JBshap resembles on-manifold
value function since it respects the data manifold, but can also be considered as off-manifold since
it takes an interventional approach similar to off-manifold value functions.

A natural extension of JBshap is to average over all possible baseline values x′, and we obtain
RJBshap:
Definition 3. (RJBshap):

fRJ
x,p,p(S) =

∫
x′S̄
[p(xS; x′S̄)p(xS; x′S̄)pb(x′)]dx′S̄,

where pb(·) is the prior probability for a set of baseline values. We point out that RJBshap
still satisfies the axioms (Lin.), (Sym.), (Dum.), (Null), (Eff.), (Rob), with the slight modification
of (Sym.), (Null), (Eff.) by replacing the baseline x′ in JBshap by the random baseline x′ with
distribution pb(x′)

It is easy to observe that JBshap is equal to Bshap when the function p(x) is replaced by
p(x)p(x) since fJ

x,p,p(S) = fB
x,p·p,p(S). The clear difference is that JBshap takes account of the

data density p(·) and thus will not be effected by off-manifold regions x since p(x) will be
small. We can also relate RJBshap and CES, by noting that CES value function can be written
as fC

x,p,p(S) = Ex′S̄∼p(x′S̄|xS)
[p(xS; x′S̄)] =

∫
x′S̄
p(xS; x′S̄)p(x′S̄; xS)/p(xS)dx′S̄. When the baseline

follows an uniform solution for all possible values (such that pb is a constant), CES corresponds
to RJBshap divided by p(xS)/C0, where C0 is the constant value of pb. However, we point out
that the calculation of p(xS) requires marginalizing over |S̄| variables to obtain p(xS), which
is computationally difficult. Thus, RJBshap is much more computational tractable compared to
CES. By not dividing over p(xS), both JBshap and RJBshap are strong T-robust to off-manifold
manipulations, in contrast to CES.

3.4 Translative Relation For Shapley value Axioms
In this section, we better motivate the axioms for the value functions in Sec. 3.3 by introducing its
relation to the axioms of Shapley value. Recall the set of axioms we introduced in Sec. 3.3, we
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rename their abbreviations here for simpler presentations. Lin. in main text is renamed as (L-DS),
Sym. in main text is renamed as (S-DS), Dum. in main text is renamed as (D-DS), Null in main
text is renamed as (N-DS), Eff. in main text is renamed as (E-DS), Set. in main text is renamed
as (Set-DS), and the renaming makes the axioms easier to distinguish to other versions of the
respective axioms.

1. Linearity (over functions and distributions) (L-DS): For any functions p, p1, p2, p, p1, p2,
α1fx,p1,p(S)+ α2fx,p2,p(S) = fx,α1p1+α2p2,p(S), for α1, α2 ∈ R and α1fx,p,α1 p1(S)+ α2fx,p,p1(S) =
fx,p,α1 p1+α2 p2(S) for α1, α2 ≥ 0; α1 + α2 = 1.

2. Symmetry (over functions and distributions) (S-DS): for all i, j ̸⊆ S, p, p, x, x′ all being
symmetric in the i-th and j-th dimensions implies fx,p,p(i ∪ S) = fx,p,p(j ∪ S).

3. Dummy Player (over functions and distributions) (D-DS): p, p being invariant in the i-th
dimension implies fx,p,p(S) = fx,p,p(i ∪ S).

4. Null Player (over functions and distributions) (N-DS): if p′, p′ satisfies p(x′) = p′(x′), p(x′) =
p′(x′), then fp,p,x(Ø) = fp′,p′,x(Ø).

5. Efficiency (over functions and distributions) (A-DS): fp,p,x[d]− fp,p,x[Ø] = p(x)p(x)−
p(x′)p(x′).

6. Set Relevance (over functions and distributions) (Set-DS): If p1(xS, x̄S̄) = p2(xS, x̄S̄)
and p1(xS, x̄S̄) = p2(xS, x̄S̄) for any x̄, fp1,p1,x(S) = fp2,p2,x(S).

7. Strong-T-Robustness (over functions and distributions) (Rob-DS): For any functions
p1, p2, p, if maxx |p1(x)− p2(x)|p(x) ≤ ϵ, then |fx,p1,p(S)− fx,p2,p(S)| ≤ Tϵ.

We then introduce the following definitions for a set of axioms for a value function. Define
the set [d] := {1, 2, . . . , d}. We first start from axioms with only a single input function f :

1. Linearity (over functions) (L-IS): fx,p1,p(S) + fx,p2,p(S) = fx,p1+p2,p(S).
2. Symmetry (over functions) (S-IS): for all i, j ̸⊆ S, p, x, all being symmetric in the i-th

and j-th dimensions implies fx,p,p(i ∪ S) = fx,p,p(j ∪ S).
3. Dummy Player (over functions) (D-IS): p being invariant in the i-th dimension implies

fx,p,p(S) = fx,p,p(i ∪ S).
4. Null Player (over functions) (N-IS): if p(x) = p′(x), then fp,p,x(Ø) = fp′,p,x(Ø).

5. Efficiency (over functions) (E-IS): fp,p,x[d]− fp,p,x[Ø] = p(x)− p(x′).
6. Set Relevance (over functions) (Set-IS): If p1(xS, x̄S̄) = p2(xS, x̄S̄) for any x̄, fp1,p,x(S) =

fp2,p,x(S).
The difference is that these set of axioms disregard the data distribution p.
We then define the following axioms between the Set function v and Explanation ϕ as Axioms-

SE. This is a classic set of axioms in game theory and has been widely discussed. See, e.g., the
work of Lundberg and Lee [104], Shapley [140], Sundararajan and Najmi [155].

1. Linearity from set to explanation (L-SE): Φ(f1) + Φ(f2) = Φ(f1 + f2) for any two
value functions f1 and f2.

2. Symmetry from set to explanation (S-SE): f(S∪ i) = f(S∪ j) for any S ⊆ [d]\{i, j},
Φi(f) = Φj(f).

30



Figure 3.1: An illustration of the relation between the three sets of axioms. Axioms-IS and
Axioms-SE satisfy a transfer property: broadly speaking, a pair v, ϕ satisfies Axioms-IE if v
satisfies Axioms-IS and ϕ satisfies Axioms-SE.

3. Dummy Player from set to explanation (D-SE): f(S ∪ i) = f(S) for any S ⊆ [d]\{i}
implies Φi(f) = 0.

4. Efficiency from set to explanation (E-SE): ∑i Φi(f) = f([d])− f(Ø).

The Shapley value is well-known to be the unique function that satisfies the above four axioms.
However, this set of axioms assumes a set function. On the other hand, the machine learning
model takes a real-valued input instead of a set.

Thus, we propose the following set of axioms between the Input functions ( f and p) and
Explanation ϕ, which we term Axioms-IE. Axioms-IE can be viewed as a parallel to the axioms
proposed by Sundararajan and Najmi [155]; the main difference is that our axioms take into
account the in-data classifier p.

1. Linearity from double input to explanation (L-DE): Φp1,p(x)+Φp2,p(x) = Φp1+p2,p(x)
and Φp,p1(x) + Φp,p2(x) = Φp,p1+p2(x), for any functions p, p1, p2, p, p1, p2.

2. Symmetry from double input to explanation (S-DE): if p, p, x′, x are symmetric in the
i-th and j-th dimensions, then Φp,p,i(x) = Φp,p,j(x).

3. Dummy Player from double input to explanation (D-DE): both p, p being invariant in
the i-th dimension implies Φp,p,i(x) = 0. In other words, if feature i is not used in the
model, then

4. Efficiency from double input to explanation (E-DE): ∑i Φp,p,i(x) = p(x)p(x) −
p(x′)p(x′).

We remark that when ignoring p, this recovers a version of Axioms-IE proposed by Sun-
dararajan and Najmi [155]: when ignoring p, it should be quite evident that value functions that
depend on p (such as CES and JBshap) would easily fail to satisfy linearity and dummy defined
by [155]. However, we argue that (CD-DE) is the form of dummy player axiom satisfied by CES
and (D-DE) is the form of dummy player axiom satisfied by JBshap. This suggests that previous
discussions on this topic may need restatements based on our proposed Axioms-IE, which takes
into account the dependencies of p.

The intricate relation between Axioms-IS, Axioms-SE and Axioms-IE is captured in the
following theorem.
Theorem 5. If set function fx,p,p(·) satisfies Axioms-IS, and explanation ϕx,p,p(·) satisfies Axioms-
SE, then (fx,p,p(·), Φ(fx,p,p(·))) satisfies Axioms-IE. Similarly, if set function fx,p,p(·) satisfies
(L-DS), (S-DS), (D-DS), (M-DS), (N-DS), and (E-DS), and explanation ϕx,p,p(·) is the Shapley
value, then (fx,p,p(·), Φ(fx,p,p(·))) satisfies (L-DE), (S-DE), (D-DE), (E-DE).

Here, theorem states the translative relationship between set of axioms from input to set, set
to explanations, and input to explanations, as shown in Fig. 3.1.
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This further motivates the design of axioms shown in Sec.3.3.
We remark that these sets of axioms can be useful to explanations not limited to the Shapley

value. For instance, the Banzhaf value (SE version) shares a set of axioms with the Shapley value
(SE version), together with our proposed (DS version of axioms), we may get resulting (DE)
axioms for the Banzhaf value also. However, since this paper is focused to the Shapley value as
an explanation, we do not further discuss explanations other than the Shapley value.

3.5 Estimating P(x)

In our discussion of off and on-manifold value functions, we discussed that the key caveat of
on-manifold value function of CES in particular is that it requires expectation (or sampling) with
respect to the conditional distributions p(x′S̄|xS). But if JBshap also requires computing the joint
distribution, is it more computational efficient compared to CES at all?

We emphasize that JBshap is much more tractable computationally, since instead of the
difficult conditional expectations, we only need to compute the much more amenable joint density
p(x′S̄; xS). Moreover, we only need estimates of the data density on the space x′S̄; xS instead of the
entire domain Rd. Towards this, we could use noise-contrastive estimation [66] to estimate the
data density on space in the form x′S̄; xS. The idea of noise-contrastive estimation is to estimate
the data density of an unknown distribution by comparing it to a self-specified noise distribution.
In this case, the event space where we need to query the data density p(x′S̄; xS) is the subspace
[x′S̄; xS] for all possible x and S. We thus specify a self specified noise Q to have an constant
probability for every possible [x′S̄; xS].

To estimate p(x′S̄; xS), we can then train an Out-of-Distribution (OOD) classifier model
OOD(x) that outputs 1 when the input x ∈ D comes from the true data and outputs 0 when the
input x ∈ Q is self-generated noise, and control the input to the training of the OOD classifier
to have balanced true and noise data. When the OOD classifier converges, OOD(x) = p(x ∈
D|x) = p(x|x∈D)

p(x|x∈D)+p(x|x∈Q)
. By simple algebra, we can then get p(x|x ∈ D) = p(x|x ∈

Q)× OOD(x)
1−OOD(x) . We emphasize that since we do not require sampling from p(x′S̄; xS), and the

subspace of x′S̄; xS is much more tractable compared to the real space Rd, the estimation of
p(x′S̄; xS) is a much easier problem than estimating p(x) for general x. Furthermore, estimating
even the full joint p(x), is much easier than computing the conditional expectations p(x′S̄|xS)
(to provide a sense of the difficulty of the latter: even for simpler probabilistic graphical models,
it is always tractable to compute the unnormalized joint density, while intractable in general to
compute conditional marginals.)

While the calculation of JBshap only requires learning p(x) by training an OOD classifier,
the calculation of CES either requires learning p(x) and sampling from it for each query (CES-
Sample), or retraining a new model that estimates the conditioned value (CES-Supervised). Thus,
the computation for calculating JBshap is much more affordable compared to the calculation of
CES value functions, as we verify in the experiments.
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Figure 3.2: Global Shapley values for different value functions on the UCI Adult dataset; with two
bars for each feature: on an original model (blue, left) and a fine-tuned model (orange, right). The
importance for “sex” feature (which is boxed) of RBshap, Bshap, and CES is significantly reduced
after the fine-tuning, while the importance for “sex” feature of JBshap is almost unchanged.

3.6 Experiments

Figure 3.3: Visualization of Shapley values for JBshap, Bshap, CES-Supervised on Imagenet.

3.6.1 Robustness to off-manifold manipulation.
Recall that in Sec. 3.2.3, we have shown that both Bshap and CES are not strong T−robust, and
thus are prone to manipulations in low-density regions. To evaluate the robustness to off-manifold
manipulations in practice, we perform an empirical study on the UCI Census Income data dataset
[40] for value functions Bshap, RBshap, JBshap, RJBshap, CES-Supervised, CES-Sample. Given
a pretrained biased model, we want to test whether we are able to hide the dependency of a biased
feature in the Shapley value by fine-tuning the model only on off-manifold regions.

We trained a four-layer neural network to predict whether an individual’s income exceeds
$50k based on demographic features in the data based on the UCI income Data. To create a biased
model, we add 0.1 times the feature value of “sex” to the individual’s income following the setting
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Figure 3.4: Deletion curve for JBShap, BShap, and CES-supervised on Imagenet for joint density
(left) and model output (right).

of [147]. We then train a “fine-tuned network” such that the dependency of the feature “sex” is set
to the negative off the data manifold (while it is positive on the data manifold), while making the
same prediction as the original biased model on over 99% of the testing points. To validate that
the bias is not hidden in the 1% testing point with different predictions, we find that the average
difference (L1 Loss) in the prediction probability for data where the fine-tuned model and the
original model disagrees (and agrees) is 0.07 (0.01), demonstrating that the model prediction for
fine-tuned model and original model are close for all test data points.

For CES-Supervised, we train a “fine-tuned network” for the surrogate model g, with the
constraint that the fine-tuned network behaves similar to the original surrogate model on the on-
manifold points and has a similar empirical MSE loss as the original surrogate model (validation
MSE loss for the fine-tuned model decreased from 0.0278 ± 0.001 to 0.0277 ± 0.001, while
training MSE Loss increased from 0.0136± 0.001 to 0.0139± 0.001). To determine off-manifold
data, we train an OOD detector and use noise-contrastive estimation to obtain p(x) to calculate
JBshap and CES-Sample. For numerical stability, we clip the output the of the OOD classifier
between the range [0.01, 0.99]. For CES-Sample, we sample 100 points per value function with
p(x). We then average the Shapley value based on different value functions on 100 testing points
with feature of “sex” having value 1 to obtain the global Shapley value. We do 5 separate runs
with different data splits (via random seeds), we report the global Shapley value for different value
functions in the top figure with error bars representing the standard deviation. We normalize the
global Shapley value such that the sum of absolute value of Shapley value for all features sum up
to one.

We present our results in Figure 3.2; each feature has two bars, each corresponding to the
average normalized Shapley values, of the original model (left) and the fine-tuned model (right).
We observe that the importance of the feature “sex” of the fine-tuned model is strongly reduced
for existing value functions Bshap, RBshap and has a negative value for the fine-tuned model.
For CES-Sample and CES-Supervised, the respective Shapley value of the feature “sex” is not
perturbed as severely as Bshap and RBshap, but they are also reduced more than half compared
to the original. On the other hand, the Shapley value for JBshap and RJBshap are only slightly
reduced for the fine-tuned model. This verifies our theoretical analysis that JBshap is robust
to off-manifold manipulations, in contrast to existing value functions. We also note that the
Shapley value of JBshap for all features have standard deviation less than 0.01, demonstrating the
robustness of JBshap over different OOD classifiers and data splits.
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3.6.2 Visualization on High Dimensional Data.

In this section, we visualize the Shapley values for different value functions on image data. We
perform experiments on Imagenet subset with the first 50 classes (the total number of classes is
1000). We first fine-tune a Resnet-18 model that reaches 80% top-1 accuracy as our base model.
We then train a masked surrogate model with the same architecture to calculate CES-Supervised,
and we train an OOD classifier to estimate p(x) by noise contrastive estimation to calculate
JBshap. To calculate the Shapley value, we use the permutation sampling approach introduced
in Castro et al. [19] with 10 permutations per image. We compare the Shapley values from
different value functions: Bshap, JBshap, CES-Supervised. Note that we omit other variants of
value function since they require more than one function pass during the calculation of the value
function, which will make the computation infeasible on high-dimension. The training of the
surrogate model takes around 2976 seconds, while the training of the OOD classifier only take
around 74 seconds. The cost of the training of the surrogate model will become even more costly if
the model is trained on the full set of imagenet, not just a subset of imagenet. Thus, the additional
training time for JBshap is much lower than the additional training time for CES-Supervised.
The Shapley value computation for each image takes around 1800 seconds, which is equal for
Bshap, JBshap, and CES-supervised. All computations are done on a single 1080-Ti GPU. The
visualization results are shown in Figure 3.3, and we can observe that while the Shapley value
for different value functions all focus on the object in the image, the Shapley value for JBshap
concentrates on a smaller part of the image. For instance, in the bottom right image, Bshap and
CES-supervised focuses on the whole alligator, while JBshap focuses more specifically on the
head on the alligator. One possible reason is that Bshap and CES-supervised captures pixels that
contributes to the model prediction, while JBshap focuses on pixels that contributes to both the
data density of the image and the model prediction.

Quantitative evaluation on ImageNet We perform an evaluation for the Shapley values based
on different variants of value function, where we choose the well-known deletion evaluation
criteria for our results in ImageNet over the average of 50 data points, where we remove the top
pixels by Shapley value and evaluate how the function decreases (lower is better) [9, 136] in
Fig. 3.4, where we show the resulting joint density f (x)p(x) in the left and model value f (x)
in the right after removing top pixels, where the x-axis is the percent of pixels. The area under
curve (AUC) (where smaller is better) of f (x)p(x) for JBShap, Bshap, CES is 0.207, 0.27, 0.348
respectively, and the AUC for f (x) for JBShap, Bshap, CES is 0.549, 0.504, 0.556 respectively.
Thus, we hypothesize that JBShap highlights features that affect both f (x) and p(x), and Bshap
highlights pixels that only affect f (x). We also report the rank correlation version of sensitivity-
n [5], which measures the correlation between the function drop and sum of Shapley values for
random sets of pixels, where the random sets of pixels is set to 1 − 20 percent of pixels, and
the average sensitivity-n rank correlation for JBShap, Bshap, CES, are 0.182 ± 0.007, 0.132 ±
0.004, 0.119 ± 0.01 respectively.
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3.7 Conclusion
In this work, we discussed the issues of interventional and conditional value functions, including
different implementation variants of conditional value functions. To address these issues, we
propose JBshap, which uniquely satisfies a set of axioms considering both the model and data
manifold, while being robust to manipulation and computationally efficient.
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Chapter 4

Using Robustness analysis to Evaluate and
Design Feature Set Explanations

There is an increasing interest in machine learning models to be credible, fair, and more generally
interpretable [39]. Researchers have explored various notions of model interpretability, ranging
from trustability [129], fairness of a model [191], to characterizing the model’s weak points
[89, 179]. Even though the goals of these various model interpretability tasks vary, the vast
majority of them use so called feature based explanations, that assign importance to individual
features [5, 10, 11, 20, 104, 129, 142, 144, 156, 187, 193]. There have also been a slew of recent
evaluation measures for feature based explanations, such as completeness [156], sensitivity-n
[5], infidelity [181], causal local explanation metric [126], and most relevant to the current
paper, removal- and preservation-based criteria [30, 45, 124, 136]. A common thread in all these
evaluation measures is that for a good feature based explanation, the most salient features are
necessary, in that removing them should lead to a large difference in prediction score, and are also
sufficient in that removing non-salient features should not lead to a large difference in prediction
score.

Thus, common evaluations and indeed even methods for feature based explanations involve
measuring the function difference after “removing features”, which in practice is done by setting
the feature value to some reference value (also called baseline value sometimes). However,
this would favor feature values that are far way from the baseline value (since this corresponds
to a large perturbation, and hence is likely to lead to a function value difference), causing an
intrinsic bias for these methods and evaluations. For example, if we set the feature value to black
in RGB images, this introduces a bias favoring bright pixels: explanations that optimize such
evaluations often omit important dark objects such as a dark-colored dog. An alternative approach
to “remove features” is to sample from some predefined distribution or a generative model [20].
This nevertheless in turn incurs the bias inherent to the generative model, and accurate generative
models that approximate the data distribution well might not be available in all domains.

In this work, instead of defining prediction changes with “removal” of features (which
introduces biases as we argued), we alternatively consider the use of small but adversarial
perturbations. It is natural to assume that adversarial perturbations on irrelevant features should
be ineffective, while those on relevant features should be effective. We can thus measure the
necessity of a set of relevant features, provided by an explanation, by measuring the consequences
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Figure 4.1: Illustration of our explanation highlighting both
pertinent positive and negative features that support the predic-
tion of “2”. The blue circled region corresponds to pertinent
positive features that when its value is perturbed (from white
to black) will make the digit resemble “7”; while the green and
yellow circled region correspond to pertinent negative features
that when turned on (black to white) will shape the digit into
“0”,“8”, or “9”.

of adversarially perturbing their feature values: if the features are indeed relevant, this should
lead to an appreciable change in the predictions. Complementarily, we could measure the
sufficiency of the set of relevant features via measuring consequences of adversarially perturbing
its complementary set of irrelevant features: if the perturbed features are irrelevant, this should
not lead to an appreciable change in the predictions. We emphasize that by our definition of
“important features”, our method may naturally identify both pertinent positive and pertinent
negative features [35] since both pertinent positive and pertinent negative features are the most
susceptible to adversarial perturbations, and we demonstrate the idea in Figure 4.1. While exactly
computing such an effectiveness measure is NP-hard [83], we can leverage recent results from
test-time robustness [18, 108], which entail that perturbations computed by adversarial attacks
can serve as reasonably tight upper bounds for our proposed evaluation. Given this adversarial
effectiveness evaluation measure, we further design feature based explanations that optimize this
evaluation measure.

To summarize our contributions:
• We define new evaluation criteria for feature based explanations by leveraging robustness

analysis involving small adversarial perturbations. These reduce the bias inherent in other
recent evaluation measures that focus on “removing features” via large perturbations to
some reference values, or sampling from some reference distribution.

• We design efficient algorithms to generate explanations that optimize the proposed criteria by
incorporating game theoretic notions, and demonstrate the effectiveness and interpretability
of our proposed explanation on image and language datasets: via our proposed evaluation
metric, additional objective metrics, as well as qualitative results and a user study.1

4.1 Robustness Analysis for Evaluating Explanation Set

4.1.1 Problem Notation
We consider the setting of a general K-way classification problem with input space X ⊆ Rd,
output space Y = {1, . . . , K}, and a predictor function f : X → Y where f (x) denotes the
output class for some input example x = [x1, . . . , xd] ∈ X . Then, for a particular prediction
f (x) = y, a common goal of feature based explanations is to extract a compact set of relevant
features with respect to the prediction. We denote the set of relevant features provided by an
explanation as Sr ⊆ U where U = {1, . . . , d} is the set of all features, and use Sr = U \ Sr, the

1Code available at https://github.com/ChengYuHsieh/explanation_robustness.
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complementary set of Sr, to denote the set of irrelevant features. We further use xS to denote the
features within x that are restricted to the set S.

4.1.2 Evaluation through Robustness Analysis
A common thread underlying evaluations of feature based explanations [124, 136], even ranging
over axiomatic treatments [104, 156], is that the importance of a set of features corresponds to
the change in prediction of the model when the features are removed from the original input.
Nevertheless, as we discussed in previous sections, operationalizing such a removal of features,
for instance, by setting them to some reference value, introduces biases (see Section 4.3 and
Section 4.4.2 for formal discussion and empirical results on the impact of reference values). To
finesse this, we leverage adversarial robustness, but to do so in this context, we rely on two key
intuitive assumptions that motivate our method:

Assumption 1: When the values of the important features are anchored (fixed), perturbations
restricted to the complementary set of features has a weaker influence on the model prediction.

Assumption 2: When perturbations are restricted to the set of important features, fixing the
values of the rest of the features, even small perturbations could easily change the model prediction.

Based on these two assumptions, we propose a new framework leveraging the notion of
adversarial robustness on feature subsets, as defined below, to evaluate feature based explanations.

Definition 4. Given a model f , an input x, and a set of features S ⊆ U where U is the set of all
features, the minimum adversarial perturbation norm on xS, which we will also term Robustness-S
of x is defined as:

ϵ∗xS
= g( f , x, S) =

{
min

δ
∥δ∥p s.t. f (x + δ) ̸= y, δS = 0

}
, (4.1)

where y = f (x), S = U \ S is the complementary set of features, and δS = 0 means that the
perturbation is constrained to be zero along features in S.

Suppose that a feature based explanation partitions the input features of x into a relevant set Sr,
and an irrelevant set Sr, Assumption 1 implies that the quality of the relevant set can be measured
by ϵ∗xSr

– by keeping the relevant set unchanged, and measuring the adversarial robustness norm by
perturbing only the irrelevant set. Specifically, from Assumption 1, a larger coverage of pertinent
features in set Sr entails a higher robustness value ϵ∗xSr

. On the other hand, from Assumption 2, a
larger coverage of pertinent features in set Sr would in turn entail a smaller robustness value ε∗xSr

,
since only relevant features are perturbed. More formally, we propose the following twin criteria
for evaluating the quality of Sr identified by any given feature based explanation.
Definition 5. Given an input x and a relevant feature set Sr, we define Robustness-Sr and
Robustness-Sr of the input x as the following:

Robustness-Sr = ε∗xSr
. Robustness-Sr = ε∗xSr

.

Following our assumptions, a set Sr that has larger coverage of relevant features would yield
higher Robustness-Sr and lower Robustness-Sr.

39



Evaluation for Feature Importance Explanations. While Robustness-Sr and Robustness-Sr
are defined on sets, general feature attribution based explanations could also easily fit into the
evaluation framework. Given any feature attribution method that assigns importance score to
each feature, we can sort the features in descending order of importance weights, and provide the
top-K features as the relevant set Sr. The size of K (or |Sr|), can be specified by the users based
on the application. An alternative approach that we adopt in our experiments is to vary the size
of set K and plot the corresponding values of Robustness-Sr and Robustness-Sr over different
values of K. With a graph where the X−axis is the size of K and the Y−axis is Robustness-Sr
or Robustness-Sr, we are then able to plot an evaluation curve for an explanation and in turn
compute its the area under curve (AUC) to summarize its performance. A larger (smaller) AUC
for Robustness-Sr (Robustness-Sr) indicates a better feature attribution ranking. Formally, given a
curve represented by a set of points C = {(x0, y0), . . . , (xn, yn)} where xi−1 < xi, we calculate
the AUC of the curve by: AUC(C) = ∑n

i=1(yi + yi−1)/2 ∗ (xi − xi−1).

Relation to Insertion and Deletion Criteria. We relate the proposed criteria to a set of
commonly adopted evaluation metrics: the Insertion and Deletion criteria [124, 136, 152]. The
Insertion score measures the model’s function value when only the top-relevant features, given by
an explanation, are presented in the input while the others are removed (usually by setting them to
some reference value representing feature missingness). The Deletion score, on the other hand,
measures the model’s function value when the most relevant features are masked from the input.
As in our evaluation framework, we could plot the evaluation curves for Insertion (Deletion) score
by progressively increasing the number of top-relevant features. A larger (smaller) AUC under
Insertion (Deletion) then indicates better explanation, as the identified relevant features could
indeed greatly influence the model prediction. We note that optimizing the proposed Robustness-
Sr and Robustness-Sr could roughly be seen as optimizing a lower bound for the Insertion and
Deletion score respectively. This follows from the intuition: Robustness-Sr considers features
that when anchored, would make the prediction most robust to “adversarial perturbation". Since
adversarial perturbation is the worst case of “any arbitrary perturbations", the prediction will also
be robust to different removal techniques (which essentially correspond to different perturbations)
considered in the evaluation of Insertion score; The same applies to the connection between
Robustness-Sr and Deletion score. We shall see in the experiment section that explanation
optimizing our robustness measurements enjoys competitive performances on the Insertion /
Deletion criteria.

Untargeted v.s. Targeted Explanation. Definition 4 corresponds to the untargeted adversarial
robustness – a perturbation that changes the predicted class to any label other than y is considered
as a successful attack. Our formulation can also be extended to targeted adversarial robustness,
where we replace (4.1) by:

ϵ∗xS,t =

{
min

δ
∥δ∥p s.t. f (x + δ) = t; δS = 0

}
, (4.2)

where t is the targeted class. Using this definition, our approach will try to address the question
“Why is this example classified as y instead of t” by highlighting the important features that
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contrast between class y and t. Further examples of the “targeted explanations” are in the
experiment section.

Robustness Evaluation on Feature Subset. It is known that computing the exact minimum
distortion distance in modern neural networks is intractable [83], so many different methods
have been developed to estimate the value. Adversarial attacks, such as C&W [18] and projected
gradient descent (PGD) attack [108], aim to find a feasible solution of (4.1), which leads to an
upper bound of ϵ∗xS

. They are based on gradient based optimizers which are usually efficient.
On the other hand, neural network verification methods aim to provide a lower bound of ϵ∗xS

to
ensure that the model prediction will not change within certain perturbation range [48, 146, 171,
172, 174, 188, 189]. The proposed framework can be combined with any method that aims to
approximately compute (4.1), including attack, verification, and some other statistical estimations
for more discussions on estimating adversarial robustness for different types of model). However,
for simplicity we only choose to evaluate (4.1) by the state-of-the-art PGD attack [108], since the
verification methods are too slow and often lead to much looser estimation as reported in some
recent studies [134]. Our additional constraint restricting perturbation to only be on a subset of
features specifies a set that is simple to project onto, where we set the corresponding coordinates
to zero at each step of PGD.

4.2 Extracting Relevant Features through Robustness Analysis
Our adversarial robustness based evaluations allow us to evaluate any given feature based ex-
planation. Here, we set out to design new explanations that explicitly optimize our evaluation
measure. We focus on feature set based explanations, where we aim to provide an important
subset of features Sr. Given our proposed evaluation measure, an optimal subset of feature Sr
would aim to maximize (minimize) Robustness-Sr (Robustness-Sr), under a cardinality constraint
on the feature set, leading to the following set of optimization problems:

maximize
Sr⊆U

g( f , x, Sr) s.t. |Sr| ≤ K (4.3)

minimize
Sr⊆U

g( f , x, Sr) s.t. |Sr| ≤ K (4.4)

where K is a pre-defined size constraint on the set Sr, and g( f , x, S) computes the the minimum
adversarial perturbation from (4.1), with set-restricted perturbations.

It can be seen that this sets up an adversarial game for (4.3) (or a co-operative game for (4.4)).
In the adversarial game, the goal of the feature set explainer is to come up with a set Sr such
that the minimal adversarial perturbation is as large as possible, while the adversarial attacker,
given a set Sr, aims to design adversarial perturbations that are as small as possible. Conversely
in the co-operative game, the explainer and attacker cooperate to minimize the perturbation norm.
Directly solving these problems in (4.3) and (4.4) is thus challenging, which is exacerbated by
the discrete input constraint that makes it intractable to find the optimal solution. We therefore
propose a greedy algorithm in the next section to estimate the optimal explanation sets.
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4.2.1 Greedy Algorithm to Compute Optimal Explanations
We first consider a greedy algorithm where, after initializing Sr to the empty set, we iteratively
add to Sr the most promising feature that optimizes the objective at each local step until Sr reaches
the size constraint. We thus sequentially solve the following sub-problem at every step t:

arg max
i

g( f , x, St
r ∪ i), or arg min

i
g( f , x, St

r ∪ i), ∀i ∈ St
r (4.5)

where St
r is the relevant set at step t, and S0

r = ∅. We repeat this subprocedure until the size of set
St

r reaches K. A straightforward approach for solving (4.5) is to exhaustively search over every
single feature. We term this method Greedy. While the method eventually selects K features for
the relevant set Sr, it might lose the sequence in which the features were selected. One approach
to encode this order would be to output a feature explanation that assigns higher weights to those
features selected earlier in the greedy iterations.

4.2.2 Greedy by Set Aggregation Score
The main downside of using the greedy algorithm to optimize the objective function is that it
ignores the interactions among features. Two features that may seem irrelevant when evaluated
separately might nonetheless be relevant when added simultaneously. Therefore, in each greedy
step, instead of considering how each individual feature will marginally contribute to the objective
g(·), we propose to choose features based on their expected marginal contribution when added
to the union of Sr and a random subset of unchosen features. To measure such an aggregated
contribution score, we draw from cooperative game theory literature [41, 67] to reduce this to
a linear regression problem. Formally, let St

r and St
r be the ordered set of chosen and unchosen

features at step t respectively, and P(St
r) be all possible subsets of St

r. We measure the expected
contribution that including each unchosen feature to the relevant set would have on the objective
function by learning the following regression problem:

wt, ct = arg min
w,c

∑
S∈P(St

r)

((wTb(S) + c)− v(St
r ∪ S))2, (4.6)

where b : P(St
r) → {0, 1}|St

r| is a function that projects a set into its corresponding binary
vector form: b(S)[j] = I(St

r[j] ∈ S), and v(·) is set to be the objective function in (4.3) or (4.4):
v(Sr) = g( f , x, Sr) for optimizing (4.3); v(Sr) = g( f , x, Sr) for optimizing (4.4). We note that
wt corresponds to the well-known Banzhaf value [13] when St

r = ∅, which can be interpreted
as the importance of each player by taking coalitions into account [41]. Hammer and Holzman
[67] show that the Banzhaf value is equivalent to the optimal solution of linear regression with
pseudo-Boolean functions as targets, which corresponds to (4.6) with St

r = ∅. At each step t,
we can thus treat the linear regression coefficients wt in (4.6) as each corresponding feature’s
expected marginal contribution when added to the union of Sr and a random subset of unchosen
features.

We thus consider the following set-aggregated variant of our greedy algorithm in the previous
section, which we term Greedy-AS. In each greedy step t, we choose features that are expected
to contribute most to the objective function, i.e. features with highest (for (4.3)) or lowest (for
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(4.4)) aggregation score (Banzhaf value), rather than simply the highest marginal contribution to
the objective function as in vanilla greedy. This allows us to additionally consider the interactions
among the unchosen features when compared to vanilla greedy. The chosen features each step are
then added to St

r and removed from St
r. When St

r is not ∅, the solution of (4.6) can still be seen
as the Banzhaf value where the players are the unchosen features in St

r, and the value function
computes the objective when a subset of players is added into the current set of chosen features
St

r. We solve the linear regression problem in (4.6) by sub-sampling to lower the computational
cost, and we validate the effectiveness of Greedy and Greedy-AS in the experiment section. 2

4.3 Bias for Reference-Value Methods
In Sec. 4.3.1, we show that many explanations are biased to reference value (IG, SHAP, LRP,
DeepLift). For example, if the reference value is a zero vector (which means black pixels in
image), then any black pixel will get a zero attribution value no matter if the object of interest is
actually back. We note that the Expected Gradient [44] is not biased to reference value by this
theoretic definition since the baseline is actually a distribution. However, for feature values that
are close to the distribution of , the attribution score will be lower (but not 0 as our theoretic
definition), when feature values are far from the distribution of , the the attribution score will be
larger, which still has some biased involve. We leave further investigation of the problem to future
work to use more advanced analysis to quantify such a bias for explanations when the baseline
follows a distribution.

In Sec. 4.3.2, we added theoretical analysis that when a feature is equal to the replaced
reference value, no matter how important it actually is, it will not contribute to the Deletion
score nor the Insertion score. However, the lower the deletion score is better, and the higher the
insertion score is better, and choosing an important feature that corresponds to the reference value
will inevitably not improve the Deletion score and Insertion score. The reference values such as
blurring out or adding noise may still make the original features unchanged (such as when the
main part of the image is already blurred, blurring the image will not change the image, and thus
the main part of the image is biased to blurred baseline).

4.3.1 Bias for Reference-Value Based Explanations
Theorem 6. For any reference-value based explanation with the form ϕ( f , x, x′) = (x − x′)⊗
K( f , x, x′) for any meta-function K, we know that if xi = x′i, ϕi( f , x) = 0. That is, when ever a
feature value coincides with the baseline value x′, it will get 0 attribution even if it is the main
feature contributing to the prediction. We call such explanations biased to the reference value x′.
Corollary 1. IG, LRP, DeepLift are biased to the reference value x′.

Following the definition in [5], let ∂gxc
∂xi

= ∑p∈Pic ∏ wp ∏ g(z)p where Pic is the set of all
paths that connect an unit i to unit c in a deep neural network, wp are the weights existing in path
p, z be the value of an unit before nonlinear activation, and g() be any generic function. Note that

2We found that concurrent to our work, greedy with choosing the players with the highest restricted Banzhaf was
used in Elkind et al. [43].
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if g() = f ′(), the definition corresponds to the standard partial derivative of unit c to unit i.

ϕIG
i ( f , x) = (xi − x′i) · K( f , x, x′), where K( f , x, x′) =

∫ 1

α=0

∂ f (x′ + α(x − x′))
∂xi

dα (4.7)

ϕLRP
i ( f , x) = (xi − x′i) · K( f , x, x′), where x′ = 0 and K( f , x, x′) =

∂g f (x)
∂xi

with g =
f (z)

z
(4.8)

ϕ
DeepLi f t
i ( f , x) = (xi − x′i) · K( f , x, x′), where K( f , x, x′) =

∂g f (x)
∂xi

with g =
f (z)− f (z′)

z − z′
(4.9)

For example, if the reference value x′ is a zero vector (which means black pixels in image),
then any black pixel will get a zero attribution value no matter if the object of interest is actually
back.
Theorem 7. For any average reference-value based explanation with the form ϕ( f , x, x′) =
Ex′∼pb

[(x − x′)⊗ K( f , x)] for some meta function K, if xi = Ex′∼pb
[x′i], ϕi( f , x) = 0. That is,

they are biased to the reference value Ex′∼pb
[x′].

Corollary 2. Averaging LRP over multiple baselines are bias to the reference value Ex′∼pb
[x′].

ϕ
avgLRP
i ( f , x, x′) = Ex′∼pb

[(xi − x′i) · K( f , x)], (4.10)

where K( f , x) =
∂g f (x)

∂xi
with g =

f (z)
z

Theorem 8. The baseline Shapley value [155] is biased to reference value x′.

ϕ
BShap
i ( f , x, x′) = ∑

S⊆N\i

|S|! · (|N| − |S| − 1)!
|N|! (v(S ∪ i)− v(S)) (4.11)

where v(s) = f (xS; x′N\S) and N is the set of all features.

These above analysis shows that more explanations are also biased to reference value. We
note that by Expected Gradient [44] is not biased to reference value by this theoretic definition
since the baseline x′ is actually a distribution. However, for feature values xi that are close to
the distribution of x′i, the attribution score will be lower (but not 0 as our theoretic definition),
when feature values xi are far from the distribution of x′i, the the attribution score will be larger,
which still shows some level of bias. We leave this to future work to use more advanced analysis
techniques to quantify such a biased for explanations when the baseline follows a distribution.

4.3.2 Bias for Reference-value Based Evaluations
Definition 6. (Informal) Given a data point x, a reference point x′, the deletion score of a model
f given a set of important features S (and denote the complement of S as S̄), which we abbreviate
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as DEL(x, x′, S), is defined as f (x′S; xS̄). Here, x′ can be a fixed value or a random value, or
even a blurred component (by a slight abuse of notations). Similarly, we define the insertion
score for a data point x, a reference point x′, important set of features S, and a model f as
INSR(x, x′, S) = f (xS; x′S̄).

Note that the lower the DEL score is better, and the higher the INSR score is better.

Theorem 9. If xi = x′i, then DEL(x, x′, S) = DEL(x, x′, S ∪ i) for i ̸⊆ S. Similarly, if xi = x′i,
INSR(x, x′, S) = INSR(x, x′, S ∪ i) for i ̸⊆ S

The implication of Thm. 9 is that if a feature happens to correspond to the reference value, no
matter how important it actually is, it will not contribute to the DEL score nor the INSR score.
However, the lower the DEL score is better, and the higher the INSR score is better, and choosing
an important feature that corresponds to the reference value will inevitably not improve the DEL
score and INSR score. Thus, DEL score and INSR score will deem feature with the same value as
the reference value as non-important even if the features are actually crucial.

4.4 Experiments
In this section, we first evaluate different model interpretability methods on the proposed criteria.
We justify the effectiveness of the proposed Greedy-AS. We then move onto further validating
the benefits of the explanations extracted by Greedy-AS through comparisons to various existing
methods both quantitatively and qualitatively. Finally, we demonstrate the flexibility of our
method with the ability to provide targeted explanations as mentioned in Section 4.1.2. We
perform the experiments on two image datasets, MNIST [98] and ImageNet [33], as well as a
text classification dataset, Yahoo! Answers [190]. On MNIST, we train a convolutional neural
network (CNN) with 99% testing accuracy. On ImageNet, we deploy a pre-trained ResNet model
obtained from the Pytorch library. On Yahoo! Answers, we train a BiLSTM sentence classifier
which attains testing accuracy of 71%.

Setup. In the experiments, we consider p = 2 for ∥ · ∥p in (4.1) and (4.2). We note that (4.1) is
defined for a single data example. Given n multiple examples {xi}n

i=1 with their corresponding
relevant sets provided by some explanation {Si}n

i=1, we compute the overall Robustness-Sr

(-Sr) by taking the average: for instance, 1
n ∑n

i=1 g( f , xi, Si) for Robustness-Sr. We then plot
the evaluation curve as discussed in Section 4.1.2 and report the AUC for different explanation
methods. For all quantitative results, we report the average over 100 random examples. For the
baseline methods, we include vanilla gradient (Grad) [142], integrated gradient (IG) [156], and
expected gradient (EG) [44, 152] from gradient-based approaches; leave-one-out (LOO) [101,
187], SHAP [104] and black-box meaningful perturbation (BBMP) (only for image examples)
[45] from perturbation-based approaches [5]; counterfactual explanation (CFX) proposed by
Wachter et al. [168]; Anchor [130] for text examples; and a Random baseline that ranks feature
importance randomly. Following common setup [5, 156], we use zero as the reference value for
all explanations that require baseline.
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Table 4.1: AUC of Robustness-Sr and Robustness-Sr for various explanations on different datasets.
The higher the better for Robustness-Sr; the lower the better for Robustness-Sr.

Datasets Explanations Grad IG EG SHAP LOO BBMP CFX Random Greedy-AS

MNIST Robustness-Sr 88.00 85.98 93.24 75.48 74.14 78.58 69.88 64.44 98.01
Robustness-Sr 91.72 91.97 91.05 101.49 104.38 176.61 102.81 193.75 82.81

ImageNet Robustness-Sr 27.13 26.01 26.88 18.25 22.29 21.56 27.12 17.98 31.62
Robustness-Sr 45.53 46.28 48.82 60.02 58.46 158.01 46.10 56.11 43.97

Yahoo!Answer Robustness-Sr 1.97 1.86 1.96 1.81 1.74 - 1.95 1.71 2.13
Robustness-Sr 2.91 3.14 2.99 3.34 4.04 - 2.96 7.64 2.41

4.4.1 Robustness Analysis on Model Interpretability Methods
Here we compare Greedy-AS and various existing explanation methods under the proposed
evaluation criteria Robustness-Sr and Robustness-Sr. We list the results in Table 4.1.

Comparisons between Different Explanations. Furthermore from Table 4.1, we observe that
the proposed Greedy-AS consistently outperforms other explanation methods on both criteria.
On one hand, this suggests that the proposed algorithm indeed successfully optimizes towards
the criteria; on the other hand, this might indicate the proposed criteria do capture different
characteristics of explanations which most of the current explanations do not possess. Another
somewhat interesting finding from the table is that while Grad has generally been viewed as a
baseline method, it nonetheless performs competitively on the proposed criteria. We conjecture
the phenomenon results from the fact that Grad does not assume any reference value as opposed to
other baselines such as LOO which sets the reference value as zero to mask out the inputs. Indeed,
it might not be surprising that Greedy-AS achieves the best performances on the proposed criteria
since it is explicitly designed for so. To more objectively evaluate the usefulness of the proposed
explanation, we demonstrate different advantages of our method by comparing Greedy-AS to
other explanations quantitatively on existing commonly adopted measurements, and qualitatively
through visualization in the following subsections.

4.4.2 Evaluating Greedy-AS

The Insertion and Deletion Metric. To further justify the proposed explanation not only
performs well on the very metric it optimizes, we evaluate our method on the suite of quantitative
measurements mentioned above: the Insertion and Deletion criteria [124, 136, 152]. Recall that
evaluations on Insertion and Deletion score require specifying a reference value to represent
feature missingness. Here, we first focus on the results when the reference values are randomly
sampled from an uniform distribution, i.e., U (0, 1) for image inputs and random word vector
for text inputs, and we shall discuss the impact on varying such reference value shortly. We
plot the evaluation curves and report corresponding AUCs in Table 4.4. On these additional two
criteria, we observe that Greedy-AS performs favorably against other explanations. The results
further validate the benefits of the proposed criteria where optimizing Robustness-Sr (-Sr) has
tight connection to optimizing the Insertion (Deletion) score. We note that on ImageNet, SHAP
obtains a better performance under the Deletion criterion. We however suspect such performance
comes from adversarial artifacts (features vulnerable to perturbations while not being semantically
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meaningful) since SHAP seems rather noisy on ImageNet (as shown in Figure 4.3), and the
Deletion criterion has been observed to favor such artifacts in previous work [20, 30]. We note
that although Greedy-AS exploits regions that are most susceptible to adversarial attacks, such
regions may still be meaningful as shown in our visualization result.

Impact and Potential Bias of Reference Value. From Table 4.4, one might wonder why
explanations like IG and SHAP would suffer relatively low performance although some of these
methods (e.g., SHAP) are intentionally designed for optimizing Insertion- and Deletion-like
measurements. We anticipate that such inferior performances are due to the mismatch between
the intrinsic reference values used in the explanations and the ones used in the evaluation (recall
that we set the intrinsic reference value to zero for all explanation methods, but utilize random
value for Insertion and Deletion). To validate the hypothesis, we evaluate all explanations on
Insertion and Deletion criteria with different reference values (0, 0.25, 0.5, 0.75, 1), and we
show empirical analysis on how different reference values would affect the evaluation results of
different explanation methods in Table 4.2 and Table 4.3.

Table 4.2: AUC of the Insertion and Deletion criteria with different reference values for various
explanations on MNIST. The higher the better for Insertion; the lower the better for Deletion.

Reference Values Explanations Grad IG SHAP LOO BBMP CFX EG Random Greedy-AS

Reference value = rand Insertion 174.18 177.12 125.93 121.99 108.97 102.05 228.64 51.71 270.75
rand ∼ Unifrom(0, 1) Deletion 153.58 150.90 213.32 274.77 587.08 137.69 113.21 312.07 94.24

Reference value = 0 Insertion 393.25 802.57 656.55 706.63 212.12 81.59 450.37 120.65 502.32
Deletion 214.81 134.64 66.36 119.91 362.95 840.78 138.57 453.01 252.44

Reference value = 0.25 Insertion 293.92 424.45 412.87 453.29 142.00 77.33 341.05 78.73 455.74
Deletion 162.24 133.06 115.88 204.75 442.23 354.05 161.28 426.21 90.89

Reference value = 0.5 Insertion 218.18 317.55 136.51 189.87 42.76 86.80 382.31 49.15 479.92
Deletion 209.83 258.50 271.11 424.66 549.11 90.50 195.47 392.69 155.59

Reference value = 0.75 Insertion 220.90 204.92 79.28 125.73 21.97 163.46 285.66 67.35 325.47
Deletion 305.17 305.38 481.67 712.46 708.93 89.38 250.57 451.18 176.85

Reference value = 1 Insertion 234.61 206.54 89.83 128.71 25.31 229.02 276.48 81.44 313.66
Deletion 364.01 372.18 647.68 956.88 823.90 101.31 310.50 495.91 223.99

We validate that zero-baseline SHAP and IG perform much stronger when the reference value
used in Insertion / Deletion is closer to zero (matching the intrinsically-used baseline) and perform
significantly worse when the reference value is set to 0.75, 1, or U (0, 1). On the other hand, we
observe EG that does not rely on a single reference point (but instead averaging over multiple
baselines) performs much more stably across different reference values. Finally, we see that
Greedy-AS performs stably among the top across different reference values, which could be the
merits of not assuming any baselines (but instead consider the worst-case perturbation). These
empirical results reveal potential risk of evaluations (and indeed explanations) that could largely
be affected by the change of baseline values.

4.4.3 Qualitative Results
Image Classification. To complement the quantitative measurements, we show several visual-
ization results on MNIST and ImageNet in Figure 4.2 and Figure 4.3. On MNIST, we observe
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Table 4.3: AUC of the Insertion and Deletion criteria with different reference values for various
explanations on ImageNet. The higher the better for Insertion; the lower the better for Deletion.

Reference Values Explanations Grad IG SHAP LOO BBMP CFX EG Random Greedy-AS

Reference value = rand Insertion 86.16 109.94 28.06 63.90 135.98 97.33 150.81 31.73 183.66
rand ∼ Unifrom(0, 1) Deletion 276.78 256.51 143.27 290.10 615.13 281.12 244.88 314.82 219.52

Reference value = 0 Insertion 125.32 214.85 85.57 61.37 138.00 135.31 183.47 69.57 182.61
Deletion 313.04 260.75 181.11 262.78 665.49 333.98 288.52 312.66 234.34

Reference value = 0.25 Insertion 291.06 329.24 39.74 163.81 243.92 287.58 245.46 103.63 293.30
Deletion 408.95 395.37 328.50 365.03 686.75 421.56 433.78 516.56 322.50

Reference value = 0.5 Insertion 301.78 343.77 45.77 178.18 250.25 270.03 348.66 129.65 305.87
Deletion 431.17 412.70 345.84 388.64 689.08 421.89 420.31 546.30 321.11

Reference value = 0.75 Insertion 222.63 217.26 29.39 131.92 243.44 215.11 248.74 87.38 286.40
Deletion 364.28 340.24 279.51 325.71 701.97 375.87 329.11 402.97 262.36

Reference value = 1 Insertion 109.89 136.10 55.29 89.26 135.06 109.44 170.96 59.23 189.96
Deletion 245.57 218.09 207.57 234.28 658.54 329.20 203.84 217.39 191.96

Table 4.4: AUC of the Insertion and Deletion criteria for various explanations on different datasets.
The higher the better for Insertion; the lower the better for Deletion.

Datasets Explanations Grad IG EG SHAP LOO BBMP CFX Random Greedy-AS

MNIST Insertion 174.18 177.12 228.64 125.93 121.99 108.97 102.05 51.71 270.75
Deletion 153.58 150.90 113.21 213.32 274.77 587.08 137.69 312.07 94.24

ImageNet Insertion 86.16 109.94 150.81 28.06 63.90 135.98 97.33 31.73 183.66
Deletion 276.78 256.51 244.88 143.27 290.10 615.13 281.12 314.82 219.52

Yahoo!Answers Insertion 0.06 0.06 0.20 0.07 0.18 - 0.05 0.10 0.21
Deletion 2.57 2.96 2.07 2.23 2.07 - 2.35 2.63 1.56

that existing explanations tend to highlight mainly on the white pixels in the digits; among which
SHAP and LOO show less noisy explanations comparing to Grad and IG. On the other hand,
the proposed Greedy-AS focuses on both the “crucial positive” (important white pixels) as well
as the “pertinent negative” (important black regions) that together support the prediction. For
example, in the first row, a 7 might have been predicted as a 4 or 0 if the pixels highlighted by
Greedy-AS are set to white. Similarly, a 1 may be turned to a 4 or a 7 given additional white
pixels to its left, and a 9 may become a 7 if deleted the lower circular part of its head. From the
results, we see that Greedy-AS focuses on “the region where perturbation on its current value
will lead to easier prediction change”, which includes both the crucial positive and pertinent
negative pixels. Such capability of Greedy-AS is also validated by its superior performance on the
proposed robustness criteria, on which methods like LOO that highlights only the white strokes of
digits show relatively low performance. The capability of capturing pertinent negative features
has also been observed in explanations proposed in some recent work [10, 35, 118]. From the
visualized ImageNet examples shown in Figure 4.3, we observe that our method provides more
compact explanations that focus mainly on the actual objects being classified. For instance, in
the first image, our method focuses more on the face of the Maltese while others tend to have
noisier results; in the last image, our method focuses on one of the Japanese Spaniel whereas
others highlight both the dogs and some noisy regions.
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Figure 4.2: Visualization on top 20 percent
relevant features provided by different explana-
tions on MNIST. We see Greedy-AS highlights
both crucial positive and pertinent negative fea-
tures supporting the prediction.

Figure 4.3: Visualization of different explana-
tions on ImageNet, where the predicted class
for each input is “Maltese", “hippopotamus",
“zebra", and “Japanese Spaniel". Greedy-AS
focuses more compactly on objects.

Figure 4.4: Explanations on a text classification model which correctly predicts the label “sport".
Unlike most other methods, the top-5 relevant keywords highlighted by Greedy-AS are all related
to the concept “sport".

Figure 4.5: Visualization of targeted explanation. For each input, we highlight relevant regions
explaining why the input is not predicted as the target class. We see the explanation changes in a
semantically meaningful way as the target class changes.

Text Classification. Here we demonstrate how our explanation method could be applied to text
classification models. We showcase an example in Figure 4.4. We see that the top-5 keywords
highlighted by Greedy-AS are all relevant to the label “sport”, and Greedy-AS is less likely to
select stop words as compared to other methods. Additionally, we conduct an user study where
we observe that Greedy-AS generates explanation that matches user intuition the most.

Targeted Explanation Analysis. In section 4.1.2, we discussed about the possibility of using
targeted adversarial perturbation to answer the question of “why the input is predicted as A but
not B”. In Figure 4.5, for each input digit, we provide targeted explanation towards two different
target classes. Interestingly, as the target class changes, the generated explanation varies in an
interpretatble way. For example, in the first image, we explain why the input digit 7 is not classified
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as a 9 (middle column) or a 2 (rightmost column). The resulting explanation against 9 highlights
the upper-left part of the 7. Semantically, this region is indeed pertinent to the classification
between 7 and 9, since turning on the highlighted pixel values in the region (currently black in the
original image) will then make the 7 resemble a 9. However, the targeted explanation against 2
highlights a very different but also meaningful region, which is the lower-right part of the 7; since
adding a horizontal stroke on the area would turn a 7 into a 2.
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Chapter 5

Representer Point Framework

As machine learning systems start to be more widely used, we are starting to care not just about
the accuracy and speed of the predictions, but also why it made its specific predictions. While
we need not always care about the why of a complex system in order to trust it, especially if we
observe that the system has high accuracy, such trust typically hinges on the belief that some
other expert has a richer understanding of the system. For instance, while we might not know
exactly how planes fly in the air, we trust some experts do. In the case of machine learning models
however, even machine learning experts do not have a clear understanding of why say a deep
neural network makes a particular prediction. Our work proposes to address this gap by focusing
on improving the understanding of experts, in addition to lay users. In particular, expert users
could then use these explanations to further fine-tune the system (e.g. dataset/model debugging),
as well as suggest different approaches for model training, so that it achieves a better performance.

Our key approach to do so is via a representer theorem for deep neural networks, which
might be of independent interest even outside the context of explainable ML. We show that we
can decompose the pre-activation prediction values into a linear combination of training point
activations, with the weights corresponding to what we call representer values, which can be
used to measure the importance of each training point has on the learned parameter of the model.
Using these representer values, we select representer points – training points that have large/small
representer values – that could aid the understanding of the model’s prediction.

Such representer points provide a richer understanding of the deep neural network than
other approaches that provide influential training points, in part because of the meta-explanation
underlying our explanation: a positive representer value indicates that a similarity to that training
point is excitatory, while a negative representer value indicates that a similarity to that training
point is inhibitory, to the prediction at the given test point. It is in these inhibitory training
points where our approach provides considerably more insight compared to other approaches:
specifically, what would cause the model to not make a particular prediction? In one of our
examples, we see that the model makes an error in labeling an antelope as a deer. Looking at its
most inhibitory training points, we see that the dataset is rife with training images where there
are antelopes in the image, but also some other animals, and the image is labeled with the other
animal. These thus contribute to inhibitory effects of small antelopes with other big objects: an
insight that as machine learning experts, we found deeply useful, and which is difficult to obtain
via other explanatory approaches. We demonstrate the utility of our class of representer point
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explanations through a range of theoretical and empirical investigations.

5.1 Related Work
There are two main classes of approaches to explain the prediction of a model. The first class
of approaches point to important input features. Ribeiro et al. [129] provide such feature-based
explanations that are model-agnostic; explaining the decision locally around a test instance by
fitting a local linear model in the region. Ribeiro et al. [130] introduce Anchors, which are locally
sufficient conditions of features that “holds down” the prediction so that it does not change in a
local neighborhood. Such feature based explanations are particularly natural in computer vision
tasks, since it enables visualizing the regions of the input pixel space that causes the classifier
to make certain predictions. There are numerous works along this line, particularly focusing on
gradient-based methods that provide saliency maps in the pixel space [10, 142, 144, 156].

The second class of approaches are sample-based, and they identify training samples that have
the most influence on the model’s prediction on a test point. Among model-agnostic sample-
based explanations are prototype selection methods [14, 86] that provide a set of “representative”
samples chosen from the data set. Kim et al. [87] provide criticism alongside prototypes to
explain what are not captured by prototypes. Usually such prototype and criticism selection
is model-agnostic and used to accelerate the training for classifications. Model-aware sample-
based explanation identify influential training samples which are the most helpful for reducing
the objective loss or making the prediction. Recently, Koh and Liang [89] provide tractable
approximations of influence functions that characterize the influence of each sample in terms of
change in the loss. Anirudh et al. [6] propose a generic approach to influential sample selection
via a graph constructed using the samples.

Our approach is based on a representer theorem for deep neural network predictions. Repre-
senter theorems [137] in machine learning contexts have focused on non-parametric regression,
specifically in reproducing kernel Hilbert spaces (RKHS), and which loosely state that under
certain conditions the minimizer of a loss functional over a RKHS can be expressed as a linear
combination of kernel evaluations at training points. There have been recent efforts at leveraging
such insights to compositional contexts [16, 166], though these largely focus on connections
to non-parametric estimation. Bohn et al. [16] extend the representer theorem to compositions
of kernels, while Unser [166] draws connections between deep neural networks to such deep
kernel estimation, specifically deep spline estimation. In our work, we consider the much simpler
problem of explaining pre-activation neural network predictions in terms of activations of training
points, which while less illuminating from a non-parametric estimation standpoint, is arguably
much more explanatory, and useful from an explainable ML standpoint.

5.2 Decomposing Testing Point Value by Training Data

5.2.1 Problem Setup
Consider a classification problem, of learning a mapping from an input space X ⊆ Rd (e.g.,
images) to an output space Y ⊆ R (e.g., labels), given training points x1, x2, ...xn, and corre-
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sponding labels y1, y2, ...yn. We consider a neural network as our prediction model, which takes
the form ŷi = σ(f(xi, Θ)) ⊆ Rc, where f(xi, Θ) = Θ1fi ⊆ Rc and fi = f2(xi, Θ2) ⊆ R f is the
last intermediate layer feature in the neural network for input xi. Note that c is the number of
classes, f is the dimension of the feature, Θ1 is a matrix ⊆ Rc× f , and Θ2 is all the parameters to
generate the last intermediate layer from the input xi.

Thus Θ = {Θ1, Θ2} are all the parameters of our neural network model. The parameterization
above connotes splitting of the model as a feature model f2(xi, Θ2) and a prediction network
with parameters Θ1. Note that the feature model f2(xi, Θ2) can be arbitrarily deep, or simply the
identity function, so our setup above is applicable to general feed-forward networks.

5.2.2 Completeness for Training Data Importance: Decomposition of f(x)
by Training Data Contribution

Our goal is to understand to what extent does one particular training point xi affect the prediction
ŷt of a test point xt as well as the learned weight parameter Θ. Let L(x, y, Θ) be the loss,
and 1

n ∑n
i L(xi, yi, Θ) be the empirical risk. To indicate the form of a representer theorem,

suppose we solve for the optimal parameters Θ∗ = arg minΘ

{
1
n ∑n

i L(xi, yi, Θ) + g(||Θ||)
}

for some non-decreasing g. We would then like our pre-activation predictions f(xt, Θ) to have the
decomposition: f(xt, Θ∗) = ∑n

i αik(xt, xi). Given such a representer theorem, αik(xt, xi) can be
seen as the contribution of the training data xi on the testing prediction f(xt, Θ).

5.2.3 A Representer Theorem that Satisfies the Decomposition
However, such representer theorems have only been developed for non-parametric predictors,
specifically where f lies in a reproducing kernel Hilbert space. Moreover, unlike the typical RKHS
setting, finding a global minimum for the empirical risk of a deep network is difficult, if not
impossible, to obtain. In the following, we provide a representer theorem that addresses these two
points: it holds for deep neural networks, and for any stationary point solution.
Theorem 10. Let us denote the neural network prediction function by ŷi = σ(f(xi, Θ)), where
f(xi, Θ) = Θ1fi and fi = f2(xi, Θ2). Suppose Θ∗ is a stationary point of the optimization

problem: arg minΘ

{
1
n ∑n

i L(xi, yi, Θ)) + g(||Θ1||)
}

, where g(||Θ1||) = λ||Θ1||2 for some
λ > 0. Then we have the decomposition:

f(xt, Θ∗) =
n

∑
i

k(xt, xi, αi),

where αi =
1

−2λn
∂L(xi,yi,Θ)

∂f(xi,Θ)
and k(xt, xi, αi) = αifT

i ft, which we call a representer value for xi
given xt.

Proof. Note that for any stationary point, the gradient of the loss with respect to Θ1 is equal to 0.
We therefore have

1
n

n

∑
i=1

∂L(xi, yi, Θ)

∂Θ1
+ 2λΘ∗

1 = 0 ⇒ Θ∗
1 = − 1

2λn

n

∑
i=1

∂L(xi, yi, Θ)

∂Θ1
=

n

∑
i=1

αifT
i (5.1)
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where αi = − 1
2λn

∂L(xi,yi,Θ)
∂f(xi,Θ)

by the chain rule. We thus have that

f(xt, Θ∗) = Θ∗
1ft =

n

∑
i=1

k(xt, xi, αi), (5.2)

where k(xt, xi, αi) = αifT
i ft by simply plugging in the expression (5.1) into (5.2). ■

We note that αi can be seen as the resistance for training example feature fi towards minimizing
the norm of the weight matrix Θ1. Therefore, αi can be used to evaluate the importance of the
training data xi have on Θ1. Note that for any class j, f(xt, Θ∗)j = Θ∗

1jft = ∑n
i=1 k(xt, xi, αi)j

holds by (5.2). Moreover, we can observe that for k(xt, xi, αi)j to have a significant value, two
conditions must be satisfied: (a) αij should have a large value, and (b) fT

i ft should have a large
value. Therefore, we interpret the pre-activation value f(xt, Θ)j as a weighted sum for the feature
similarity fT

i ft with the weight αij. When ft is close to fi with a large positive weight αij, the
prediction score for class j is increased. On the other hand, when ft is close to fi with a large
negative weight αij, the prediction score for class j is then decreased.

We can thus interpret the training points with negative representer values as inhibitory points
that suppress the activation value, and those with positive representer values as excitatory examples
that does the opposite. We demonstrate this notion with examples further in Section 5.3.2. We
note that such excitatory and inhibitory points provide a richer understanding of the behavior
of the neural network: it provides insight both as to why the neural network prefers a particular
prediction, as well as why it does not, which is typically difficult to obtain via other sample-based
explanations.

5.2.4 Setting 1: Training an Interpretable Model by Imposing L2 Regular-
ization.

Theorem 10 works for any model that performs a linear matrix multiplication before the activation
σ, which is quite general and can be applied on most neural-network-like structures. By simply
introducing a L2 regularizer on the weight with a fixed λ > 0, we can easily decompose the
pre-softmax prediction value as some finite linear combinations of a function between the test and
train data. We now state our main algorithm. First we solve the following optimization problem:

Θ∗ = arg min
Θ

1
n

n

∑
i

L(yi, f(xi, Θ)) + λ||Θ1||2. (5.3)

Note that for the representer point selection to work, we would need to achieve a stationary point
with high precision. In practice, we find that using a gradient descent solver with line search or
LBFGS solver to fine-tune after converging in SGD can achieve highly accurate stationary point.
Note that we can perform the fine-tuning step only on Θ1, which is usually efficient to compute.
We can then decompose f(xt, Θ) = ∑n

i k(xt, xi, αi) by Theorem 10 for any arbitrary test point xt,
where k(xt, xi, αi) is the contribution of training point xi on the pre-softmax prediction f(xt, Θ).
We emphasize that imposing L2 weight decay is a common practice to avoid overfitting for deep
neural networks, which does not sacrifice accuracy while achieving a more interpretable model.
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5.2.5 Setting 2: Generating Representer Points for a Given Pre-trained
Model.

We are also interested in finding representer points for a given model Φ(Θgiven) that has already
been trained, potentially without imposing the L2 regularizer. While it is possible to add the L2
regularizer and retrain the model, the retrained model may converge to a different stationary point,
and behave differently compared to the given model, in which case we cannot use the resulting
representer points as explanations. Accordingly, we learn the parameters Θ while imposing the
L2 regularizer, but under the additional constraint that Φ(xi, Θ) be close to Φ(xi, Θgiven). In this
case, our learning objective becomes f(xi, Θgiven) instead of yi, and our loss L(xi, yi, Θ) can be
written as L(f(xi, Θgiven), f(xi, Θ)).
Definition 7. We say that a convex loss function L(f(xi, Θgiven), f(xi, Θ)) is “suitable” to an
activation function σ, if it holds that for any Θ∗ ∈ arg minΘ L(f(xi, Θgiven), f(xi, Θ)), we have
σ(Φ(xi, Θ∗)) = σ(Φ(xi, Θgiven)).

Assume that we are given such a loss function L that is “suitable to” the activation function σ.
We can then solve the following optimization problem:

Θ∗ ∈ arg min
Θ

{
1
n

n

∑
i

L(f(xi, Θgiven), f(xi, Θ)) + λ||Θ1||2
}

. (5.4)

The optimization problem can be seen to be convex under the assumptions on the loss
function. The parameter λ > 0 controls the trade-off between the closeness of σ(Φ(X, Θ)) and
σ(Φ(X, Θgiven)), and the computational cost. For a small λ, σ(Φ(X, Θ)) could be arbitrarily
close to σ(Φ(X, Θgiven)), while the convergence time may be long. We note that the learning
task in Eq. (5.4) can be seen as learning from a teacher network Θgiven and imposing a regularizer
to make the student model Θ capable of generating representer points. In practice, we may take
Θgiven as an initialization for Θ and perform a simple line-search gradient descent with respect to
Θ1 in (5.4). In our experiments, we discover that the training for (5.4) can converge to a stationary
point in a short period of time, as demonstrated in Section 5.3.5.

We now discuss our design for the loss function that is mentioned in (5.4). When σ is
the softmax activation, we choose the softmax cross-entropy loss, which computes the cross en-
tropy between σ(Φ(xi, Θgiven)) and σ(Φ(xi, Θ)) for Lsoftmax(f(xi, Θgiven), f(xi, Θ)). When σ is
ReLU activation, we choose LReLU(f(xi, Θgiven), f(xi, Θ)) = 1

2 max(f(xi, Θ), 0)⊙ f(xi, Θ)−
max(f(xi, Θgiven), 0)⊙ f(xi, Θ), where ⊙ is the element-wise product. In the following Propo-
sition, we show that Lsoftmax and LReLU are convex, and satisfy the desired suitability property in
Definition 7. The proof is provided in the supplementary material.
Proposition 6. The loss functions Lsoftmax and LReLU are both convex in Θ1. Moreover, Lsoftmax
is “suitable to” the softmax activation, and LReLU is “suitable to” the ReLU activation, following
Definition 7.

As a sanity check, we perform experiments on the CIFAR-10 dataset [93] with a pre-trained
VGG-16 network [143]. We first solve (5.4) with loss Lsoftmax(f(xi, Θ), f(xi, Θgiven)) for λ =
0.001, and then calculate f(xt, Θ∗) = ∑n

i=1 k(xt, xi, αi) as in (5.2) for all train and test points.
We note that the computation time for the whole procedure only takes less than a minute, given
the pre-trained model. We compute the Pearson correlation coefficient between the actual output
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Figure 5.1: Pearson correlation between the actual and approximated softmax output (expressed
as a linear combination) for train (left) and test (right) data in CIFAR-10 dataset. The correlation
is almost 1 for both cases.

σ(Φ(xt, Θ)) and the predicted output σ(∑n
i=1 k(xt, xi, αi)) for multiple points and plot them in

Figure 5.1. The correlation is almost 1 for both train and test data, and most points lie at the both
ends of y = x line.

We note that Theorem 10 can be applied to any hidden layer with ReLU activation by defining
a sub-network from input x and the output being the hidden layer of interest. The training could
be done in a similar fashion by replacing Lsoftmax with LReLU. In general, any activation can be
used with a derived "suitable loss".

5.3 Experiments
We perform a number of experiments with multiple datasets and evaluate our method’s perfor-
mance and compare with that of the influence functions.1 The goal of these experiments is
to demonstrate that selecting the representer points is efficient and insightful in several ways.
Additional experiments discussing the differences between our method and the influence function
are included in the supplementary material.

5.3.1 Dataset Debugging
To evaluate the influence of the samples, we consider a scenario where humans need to inspect the
dataset quality to ensure an improvement of the model’s performance in the test data. Real-world
data is bound to be noisy, and the bigger the dataset becomes, the more difficult it will be for
humans to look for and fix mislabeled data points. It is crucial to know which data points are
more important than the others to the model so that prioritizing the inspection can facilitate the
debugging process.

To show how well our method does in dataset debugging, we run a simulated experiment on
CIFAR-10 dataset [97] with a task of binary classification with logistic regression for the classes

1Source code available at github.com/chihkuanyeh/Representer_Point_Selection.
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Figure 5.2: Dataset debugging performance for several methods. By inspecting the training points
using the representer value, we are able to recover the same amount of mislabeled training points
as the influence function (right) with the highest test accuracy compared to other methods (left).

automobiles and horses. The dataset is initially corrupted, where 40 percent of the data has the
labels flipped, which naturally results in a low test accuracy of 0.55. The simulated user will
check some fraction of the train data based on the order set by several metrics including ours,
and fix the labels. With the corrected version of the dataset, we retrain the model and record the
test accuracies for each metrics. For our method, we train an explainable model by mimimizing
(5.3) as explained in section 5.2.4. The L2 weight decay is set to 1e−2 for all methods for fair
comparison. All experiments are repeated for 5 random splits and we report the average result. In
Figure 5.2 we report the results for four different metrics: “ours” picks the points with bigger |αij|
for training instance i and its corresponding label j; “influence” prioritizes the training points with
bigger influence function value; and “random” picks random points. We observe that our method
recovers the same amount of training data as the influence function while achieving higher testing
accuracy. Nevertheless, both methods perform better than the random selection method.

5.3.2 Excitatory (Positive) and Inhibitory (Negative) Examples

We visualize the training points with high representer values (both positive and negative) for some
test points in Animals with Attributes (AwA) dataset [175] and compare the results with those of
the influence functions. We use a pre-trained Resnet-50 [72] model and fine-tune on the AwA
dataset to reach over 90 percent testing accuracy. We then generate representer points as described
in section 5.2.5. For computing the influence functions, just as described in [89], we froze all top
layers of the model and trained the last layer. We report top three points for two test points in the
following Figures 5.3 and 5.4. In Figure 5.3, which is an image of three grizzly bears, our method
correctly returns three images that are in the same class with similar looks, similar to the results
from the influence function. The positive examples excite the activation values for a particular
class and supports the decision the model is making. For the negative examples, just like the
influence functions, our method returns images that look like the test image but are labeled as a
different class. In Figure 5.4, for the image of a rhino the influence function could not recover
useful training points, while ours does, including the similar-looking elephants or zebras which
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might be confused as rhinos, as negatives. The negative examples work as inhibitory examples for
the model – they suppress the activation values for a particular class of a given test point because
they are in a different class despite their striking similarity to the test image. Such inhibitory
points thus provide a richer understanding, even to machine learning experts, of the behavior of
deep neural networks, since they explicitly indicate training points that lead the network away
from a particular label for the given test point. More examples can be found in the supplementary
material.

Ours Influence Function

Figure 5.3: Comparison of top three positive and negative influential training images for a test
point (left-most column) using our method (left columns) and influence functions (right columns).

Ours Influence Function

Figure 5.4: Here we can observe that our method provides clearer positive and negative examples
while the influence function fails to do so.

5.3.3 Understanding Misclassified Examples
The representer values can be used to understand the model’s mistake on a test image. Consider
a test image of an antelope predicted as a deer in the left-most panel of Figure 5.5. Among 181
test images of antelopes, the total number of misclassified instances is 15, among which 12 are
misclassified as deer. All of those 12 test images of antelopes had the four training images shown
in Figure 5.5 among the top inhibitory examples. Notice that we can spot antelopes even in the
images labeled as zebra or elephant. Such noise in the labels of the training data confuses the
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model – while the model sees elephant and antelope, the label forces the model to focus on just the
elephant. The model thus learns to inhibit the antelope class given an image with small antelopes
and other large objects. This insight suggests for instance that we use multi-label prediction to
train the network, or perhaps clean the dataset to remove such training examples that would be
confusing to humans as well. Interestingly, the model makes the same mistake (predicting deer
instead of antelope) on the second training image shown (third from the left of Figure 5.5), and
this suggests that for the training points, we should expect most of the misclassifications to be
deer as well. And indeed, among 863 training images of antelopes, 8 are misclassified, and among
them 6 are misclassified as deer.

Figure 5.5: A misclassified test image (left) and the set of four training images that had the most
negative representer values for almost all test images in which the model made the same mistakes.
The negative influential images all have antelopes in the image despite the label being a different
animal.

5.3.4 Sensitivity Map Decomposition
From Theorem 10, we have seen that the pre-softmax output of the neural network can be
decomposed as the weighted sum of the product of the training point feature and the test point
feature, or f(xt, Θ∗) = ∑n

i αifT
i ft. If we take the gradient with respect to the test input xt for both

sides, we get ∂f(xt,Θ∗)
∂xt

= ∑n
i αi

∂fT
i ft

∂xt
. Notice that the LHS is the widely-used notion of sensitivity

map (gradient-based attribution), and the RHS suggests that we can decompose this sensitivity
map into a weighted sum of sensitivity maps that are native to each i-th training point. This gives
us insight into how sensitivities of training points contribute to the sensitivity of the given test
image.

In Figure 5.6, we demonstrate two such examples, one from the class zebra and one from the
class moose from the AwA dataset. The first column shows the test images whose sensitivity maps
we wish to decompose. For each example, in the following columns we show top four influential
representer points in the the top row, and visualize the decomposed sensitivity maps in the bottom.
We used SmoothGrad [148] to obtain the sensitivity maps.

For the first example of a zebra, the sensitivity map on the test image mainly focuses on the
face of the zebra. This means that infinitesimally changing the pixels around the face of the zebra
would cause the greatest change in the neuron output. Notice that the focus on the head of the
zebra is distinctively the strongest in the fourth representer point (last column) when the training
image manifests clearer facial features compared to other training points. For the rest of the
training images that are less demonstrative of the facial features, the decomposed sensitivity maps

59



accordingly show relatively higher focus on the background than on the face. For the second
example of a moose, a similar trend can be observed – when the training image exhibits more
distinctive bodily features of the moose than the background (first, second, third representer
points), the decomposed sensitivity map highlights the portion of the moose on the test image
more compared to training images with more features of the background (last representer point).
This provides critical insight into the contribution of the representer points towards the neuron
output that might not be obvious just from looking at the images itself.

Figure 5.6: Sensitivity map decomposition using representer points, for the class zebra (above
two rows) and moose (bottom two rows). The sensitivity map on the test image in the first column
can be readily seen as the weighted sum of the sensitivity maps for each training point. The less
the training point displays spurious features from the background and more of the features related
to the object of interest, the more focused the decomposed sensitivity map corresponding to the
training point is at the region the test sensitivity map mainly focuses on.

5.3.5 Computational Cost and Numerical Instabilities
Computation time is particularly an issue for computing the influence function values [89] for
a large dataset, which is very costly to compute for each test point. We randomly selected a
subset of test points, and report the comparison of the computation time in Table 5.1 measured on
CIFAR-10 and AwA datasets. We randomly select 50 test points to compute the values for all train
data, and recorded the average and standard deviation of computation time. Note that the influence
function does not need the fine-tuning step when given a pre-trained model, hence the values being
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0, while our method first optimizes for Θ∗ using line-search then computes the representer values.
However, note that the fine-tuning step is a one time cost, while the computation time is spent
for every testing image we analyze. Our method significantly outperforms the influence function,
and such advantage will favor our method when a larger number of data points is involved. In
particular, our approach could be used for real-time explanations of test points, which might be
difficult with the influence function approach.

Influence Function Ours
Dataset Fine-tuning Computation Fine-tuning Computation

CIFAR-10 0 267.08 ± 248.20 7.09 ± 0.76 0.10 ± 0.08
AwA 0 172.71 ± 32.63 12.41 ± 2.37 0.19 ± 0.12

Table 5.1: Time required for computing an influence function / representer value for all training
points and a test point in seconds. The computation of Hessian Vector Products for influence
function alone took longer than our combined computation time.

While ranking the training points according to their influence function values, we have
observed numerical instabilities, more discussed in the supplementary material. For CIFAR-10,
over 30 percent of the test images had all zero training point influences, so influence function
was unable to provide positive or negative influential examples. The distribution of the values is
demonstrated in Figure 5.7, where we plot the histogram of the maximum of the absolute values
for each test point in CIFAR-10. Notice that over 300 testing points out of 1,000 lie in the first bin
for the influence functions (right). We checked that all data in the first bin had the exact value of 0.
Roughly more than 200 points lie in range [10−40, 10−28], the values which may create numerical
instabilities in computations. On the other hand, our method (left) returns non-trivial and more
numerically stable values across all test points.

Figure 5.7: The distribution of influence/representer values for a set of randomly selected 1,000
test points in CIFAR-10. While ours have more evenly spread out larger values across different
test points (left), the influence function values can be either really small or become zero for some
points, as seen in the left-most bin (right).
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Chapter 6

Completeness of Concepts – How Sufficient
are Concepts to Explain a Model

The lack of explainability of deep neural networks (DNNs) arguably hampers their full potential
for real-world impact. Explanations can help domain experts better understand rationales behind
the model decisions, identify systematic failure cases, and potentially provide feedback to model
builders for improvements. Most commonly-used methods for DNNs explain each prediction by
quantifying the importance of each input feature [104, 129]. One caveat with such explanations is
that they typically focus on the local behavior for each data point, rather than globally explaining
how the model reasons. Besides, the weighted input features are not necessarily the most
intuitive explanations for human understanding, particularly when using low-level features such
as raw pixel values. In contrast, human reasoning often comprise “concept-based thinking,”
extracting similarities from numerous examples and grouping them systematically based on their
resemblance [8, 160]. It is thus of interest to develop such “concept-based explanations” to
characterize the global behavior of a DNN in a way understandable to humans, explaining how
DNNs use concepts in arriving at particular decisions.

A few recent studies have focused on bringing such concept-based explainability to DNNs,
largely based on the common implicit assumption that the concepts lie in low-dimensional
subspaces of some intermediate DNN activations. Via supervised training based on labeled
concepts, TCAV [88] trains linear concept classifiers to derive concept vectors, and uses how
sensitive predictions are to these vectors (via directional derivatives) to measure the importance
of a concept with respect to a specific class. Zhou et al. [192] considers the decomposition of
model predictions in terms of projections onto concept vectors. Instead of human-labeled concept
data, Ghorbani et al. [54] employs k-means clustering of super-pixel segmentations of images
to discover concepts. Bouchacourt and Denoyer [17] proposes a Bayesian generative model
involving concept vectors. One drawback of these approaches is that they do not take into account
how much each concept plays a role in the prediction. In particular, selecting a set of concepts
salient to a particular class does not guarantee that these concepts are sufficient in explaining the
prediction. The notion of sufficiency is also referred to as “completeness” of explanations, as
in [55, 177]. This motivates the following key questions: Is there an unsupervised approach to
extract concepts that are sufficiently predictive of a DNN’s decisions? If so, how can we measure
this sufficiency?
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In this paper, we propose such a completeness score for concept-based explanations. Our
metric can be applied to a set of concept vectors that lie in a subspace of some intermediate DNN
activations, which is a general assumption in previous work in this context [88, 192]. Intuitively
speaking, a set of “complete” concepts can fully explain the prediction of the underlying model.
By further assuming that for a complete set of concepts, the projections of activations onto the
concepts are a sufficient statistic for the prediction of the model, we may measure the “completion”
of the concepts by the accuracy of the model just given these concept based sufficient statistics.
For concept discovery, we propose a novel algorithm, which could also be viewed as optimizing a
surrogate likelihood of the concept-based data generation process, motivated by topic modeling
[15]. To ensure that the discovered complete concepts are also coherent (distinct from other
concepts) and semantically meaningful, we further introduce an interpretability regularizer.

Beyond concept discovery, we also propose a score, ConceptSHAP, for quantification of
concept attributions as contextualized importance. ConceptSHAP uniquely satisfies a key set of
axioms involving the contribution of each concept to the completeness score [104, 140]. We also
propose a class-specific version of ConceptSHAP that decomposes it with respect to each class
in multi-class classification. This can be used to find class-specific concepts that contribute the
most to a specific class. To verify the effectiveness of our automated completeness-aware concept
discovery method, we create a synthetic dataset with apriori-known ground truth concepts. We
show that our approach outperforms all compared methods in correct retrieval of the concepts
as well as in terms of its coherency via a user study. Lastly, we demonstrate how our concept
discovery algorithm provides additional insights into the behavior of DNN models on both image
and language real-world datasets.

6.1 Defining Completeness of Concepts
Problem setting: Consider a set of n training examples x1, x2, ..., xn, corresponding labels
y1, y2, ..., yn and a given pre-trained DNN model that predicts the corresponding y from the input
x. We assume that the pre-trained DNN model can be decomposed into two functions: the first
part Φ(·) maps input xi into an intermediate layer Φ(xi), and the second part h(·) maps the
intermediate layer Φ(xi) to the output h(Φ(xi)), which is a probability vector for each class,
and hy(Φ(x)) is the probability of data x being predicted as label y by the model p. For DNNs
that build up by processing parts of input at a time, such as those composed of convolutional
layers, we can additionally assume that Φ(xi) is the concatenation of [ϕ(xi

1), ..., ϕ(xi
T)], such that

Φ(·) ∈ R(T·d), and ϕ(·) ∈ Rd. Here, xi
1, xi

2, ..., xi
T denote different, potentially overlapping parts

of the input for xi, such as a segment of an image or a sub-sentence of a text. These parts for
example, can be chosen to correspond to the receptive field of the neurons at the intermediate
layer Φ(·). We will use these xi

t to relate discovered concepts. As an illustration of such parts,
consider the fifth convolution layer of a VGG-16 network with input shape 224 × 224 have the
size 7 × 7 × 512. If we treat this layer as Φ(xi), ϕ(xi

1) corresponds to the first 512 dimensions
of the intermediate layer (with size 7 × 7 × 512), and Φ(xi) = [ϕ(xi

1), ..., ϕ(xi
49)]. Here, each

xi
j corresponds to a 164 × 164 square in the input image (with effective stride 16), which is the

receptive field of convolution layer 5 of VGG-16 [7]. We note that when the receptive field of
ϕ(·) is equal to the entire input size, such as for multi-layer perceptrons, we may simply choose
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T = 1 so that xi
1:T = xi and Φ(xi) = ϕ(xi

1). Thus, our method can also be generally applied to
any DNN with an arbitrary structure besides convolutional layers. To choose the intermediate
layer to apply concepts, we follow previous works on concept explanations [54, 88] by starting
from the layer closest to the prediction until we reached a layer that user is happy with, as higher
layers encodes more abstract concepts with larger receptive field, and lower layers encodes more
specific concepts with smaller receptive field.

Suppose that there is a set of m concepts denoted by unit vectors1 c1, c2, ..., cm that represent
linear directions in the activation space f(·) ∈ Rd, given by a concept discovery algorithm. For
each part of data point xt (We omit i for notational simplicity), The inner product between the data
and concept vector is viewed as the closeness of the input xt and the concept c following [54, 88].
If ⟨ϕ(xt), cj⟩ is large, then we know that xt is close to concept j. However, when ⟨ϕ(xt), cj⟩ is less
than some threshold, the dot product value is not semantically meaningful other than the the input
is not close to the concept. Based on this motivation, we define the concept product for part of
data xt as vc(xt) := TH(⟨ϕ(xt), cj⟩, β)m

j=1 ∈ Rm, where TH is a threshold which trims value less
than β to 0. We normalize the concept product to unit norm for numerical stability, and aggregate
upon all parts of data to obtain the concept score for input x as vc(x) = ( vc(xt)

∥vc(xt)∥2
)T

t=1 ∈ RT·m.
We assume that for “sufficient” concepts, the concept scores should be sufficient statistics for

the model output, and thus we may evaluate the completeness of concepts by how well we can
recover the prediction given the concept score. Let g : RT·m → RT·d denote any mapping from
the concept score to the activation space of Φ(·). If concept scores vc(·) are sufficient statistics
for the model output, then there exists some mapping gp such that h(gp(vc(x))) ≈ p(x). We can
now formally define the completeness core for a set of concept vectors c1, ..., cm:
Definition 8. Completeness Score: Given a prediction model p(x) = h(f(x)), a set of concept
vectors c1, ..., cm, we define the completeness score ηp(c1, ..., cm) as:

ηp(c1, ..., cm) =
supg Px,y∼V [y = arg maxy′ hy′(g(vc(x)))]− ar

Px,y∼V [y = arg maxy′ py′(x)]− ar
, (6.1)

where V is the set of validation data and supg Px,y∼V [y = arg maxy′ hy′(g(vc(x)))] is the best
accuracy by predicting the label just given the concept scores vc(x), and ar is the accuracy of
random prediction to equate the lower bound of completeness score to 0. When the target y is
multi-label, we may generalize the definition of completeness score by replacing the accuracy with
the binary accuracy, which is the accuracy where each label is treated as a binary classification.

To calculate the completeness score, we can set g to be a DNN or a simple linear projection,
and optimize using stochastic gradient descent. In our experiments, we simply set g to be a two-
layer perceptron with 500 hidden units. We note that we approximate p(xt) by h(gp(vc(xt))),
but not an arbitrary neural network hg(vc(xt)) for two benefits: (a) the measure of completeness
considers the architecture and parameter of the given model to be explained (b) the computation
is much more efficient since we only need to optimize the parameters of g, instead of the whole
backbone hg. The completeness score measures how “sufficient” are the concept scores as a
sufficient statistic of the model, based on the assumption that the concept scores of “complete”
concepts are sufficient statistics of the model prediction p(·). By measuring the accuracy achieved

1We apply additional normalization to ϕ(·) so it has unit norm and keep the notation for simplicity.
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by the concept score, we are effectively measuring how “complete” the concepts are. We note
that the completeness score can also be used to measure how sufficient concepts can explain a
dataset independent of the model, by replacing ϕ(·), h(·) with identical functions, and p(x) with
y. Below is an illustrative example on why we need the completeness score:
Example 1. Consider a simplified scenario where we have the input x ∈ Rm, and the intermediate
layer Φ is the identity function. In this case, the m concepts c1, c2, ..., cm are the one-hot encod-
ing of each feature in x. Assume that the concepts c1, c2, ..., cm follow independent Bernoulli
distribution with p = 0.5, and the model we attempt to explain is f (x) = c1 XOR c2... XOR cm.
The ground truth concepts that are sufficient to the model prediction should then be c1, c2, ..., cm.
However, if we have the information on c1, c2, ..., cm−1 but do not have information on cm, we may
have at most 0.5 probability to predict the output of the model, which is the same as the accuracy
of random guess. In this case, ηp(c1, c2, ..., cm−1) = 0. On the other hand, given c1, c2, ..., cm,
ηp(c1, c2, ..., cm) = 1.

The completeness score offers a way to assess the ‘sufficiency’ of the discovered concepts
to “explain" reasoning behind a model’s decision. Not only the completeness score is useful
in evaluating a proposed concept discovery method, but it can also shed light on how much of
the learned information by DNN may not be ‘understandable’ to humans. For example, if the
completeness score is very high, but discovered concepts aren’t making cohesive sense to humans,
this may mean that the DNN is basing its decisions on other concepts that are potentially hard to
explain.

6.2 Discovering Completeness-aware Interpretable Concepts
6.2.1 Limitations of existing methods
Our goal is to discover a set of maximally-complete concepts under the definition 8, where each
concept is interpretable and semantically-meaningful to humans. We first discuss the limitations
of recent notable works related to concept discovery and then explain how we address them.
TCAV and ACE are concept discovery methods that use training data for specific concepts and use
trained linear concept classifier to derive concept vectors. They quantify the saliency of a concept
to a class using ‘TCAV score’, based on the similarity of the loss gradients to the concept vectors.
This score implicitly assumes a first-order relationship between the concepts and the model
outputs. Regarding labeling of the concepts, TCAV relies on human-defined labels, while ACE
uses automatically-derived image clusters by k-means clustering of super-pixel segmentations.
There are two main caveats to these approaches. The first is that while they may retrieve an
important set of concepts, there is no guarantee on how ‘complete’ the concepts are in explain
the model – e.g., one may have 10 concepts with high TCAV scores, but they may still be very
insufficient in understanding the predictions. Besides, human-suggested exogenous concept data
might even encode confirmation bias. The second caveat is that their saliency scores may fail to
capture concepts that have non-linear relationships with the output due to first-order assumption.
The concepts in Example 1 might not be retrieved by the TCAV score since XOR is not a linear
relationship. Overall, our completeness score complements previous works in concept discovery
by adding a criterion to determine whether a set of concepts are sufficient to explain the model.
The discussion of our relation to PCA is in the Appendix.
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6.2.2 Our method
The goal of our method is to obtain concepts that are complete to the model. We consider the case
where each data point xi has parts xi

1:T, as described above. We assume that input data has spatial
dependency, which can help learning coherent concepts. Thus, we encourage proximity between
each concept and its nearest neighbors patches. Note that the assumption works well with images
and language, as we will demonstrate in the result section. We aim that the concepts would obtain
consistent nearest neighbors that only occur in parts of the input, e.g. head of animals or the grass
in the background so that the concepts are pertained to certain spacial regions. By encouraging
the closeness between each concept and its nearest neighbors, we aim to obtain consistent nearest
neighbors to enhance interpretability. Lastly, we optimize the completeness terms to encourage
the completeness of the discovered concepts.

Learning concepts: To optimize the completeness of the discovered concepts, we optimize the
surrogate loss for the completeness term for both concept vectors c1:m and the mapping function
g:

arg max
c1:m,g

log P[hy(g(vc(x)))] (6.2)

An interpretation for finding the underlying concepts whose concept score maximizes the
recovered prediction score is analogous to treating the prediction of DNNs as a topic model. By
assuming the data generation process of (x, y) follows the probabilistic graphical model xt → zt
and z1:T → y, such that the concept assignment zt is generated by the data, and the overall
concept assignment z1:T determines the label y. The log likelihood of the data log P[y|x] can be
estimated by log P[y|x] = log

∫
z P[y|z]P[z|x] ≈ log P[y|E[z|x]], by replacing the sampling by

a deterministic average. We note that vc(x1:T) resembles E[z|x] and P(y|h(g(vc(x))) resembles
P[y|E[z|x]], and as in supervised topic modeling [111], we jointly optimize the latent “topic” and
the prediction model, but in an end-to-end fashion to maintain efficiency instead of EM update.

To enhance the interpretability of our concepts beyond “topics”, we further design a reg-
ularizer to encourage the spacial dependency (and thus coherency) of concepts. Intuitively,
we require that the top-K nearest neighbor training input patches of each concept to be suffi-
ciently close to the concept, and different concepts are as different as possible. This formu-
lation encourages the top-K nearest neighbors of the concepts would be coherent, and thus
allows explainability by ostensive definition. K is a hyperparameter that is usually chosen
based on domain knowledge of the desired frequency of concepts. In our results, we fix K
to be half of the average class size in our experiments. When using batch update, we find
that picking K = (batch size · average class ratio)/2 works well in our experiments, where
average class ratio = average instance of each class/total number of instances. That is, the reg-
ularizer term tries to maximize Φ(xi

t) · ck while minimizing cj · ck. Φ(xi
t) · ck is the similarity

between the tth patch of the ith example and cj · ck is the similarity between the jth concept vector
and the kth concept vector. By averaging over all concepts, and defining Tck as the set of top-K
nearest neighbors of ck, the final regularization term is

R(c) = λ1

∑m
k=1 ∑xb

a∈Tck
Φ(xb

a) · ck

mK
− λ2

∑j ̸=k cj · ck

m(m − 1)
.
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By adding the regularization term to (6.2), the final objective becomes

arg max
c1:m,g

log P(hy(g(vc(x1:T))) + R(c), (6.3)

for which we use stochastic gradient descent to optimize variables c1:m, g jointly. When the
optimization converges, g is a (local) optimal value given c1:m. Since only concept vectors c1:m,
and the mapping function g is optimized in the process, the optimization process converges much
faster compared to training the model from scratch. The computational cost for discovering
concepts and calculating conceptSHAP is about 3 hours for AwA dataset and less than 20 minutes
for the toy dataset and IMDB, using a single 1080 Ti GPU, which can be further accelerated
with parallelism. The choice of which layer to apply hy, g and the corresponding architecture are
further discussed in the appendix.

6.2.3 ConceptSHAP: How important is each concept?
Given a set of concept vectors CS = {c1, c2, ...cm} with a high completeness score, we would like
to evaluate the importance of each individual concept by quantifying how much each individual
concept contributes to the final completeness score. Let si denote the importance score for
concept ci, such that si quantifies how much of the completeness score η(CS) is contributed
by ci. Motivated by its successful applications in quantifying attributes for complex systems,
we adapt Shapley values [140] to fairly assign the importance of each concept (which we call
ConceptSHAP):
Definition 9. Given a set of concepts CS = {c1, c2, ...cm} and some completeness score η, we
define the ConceptSHAP si for concept ci as

si(η) = ∑S⊆Cs\ci

(m − |S| − 1)!|S|!
m!

[η(S∪{ci})− η(S)],

The main benefit of Shapley for importance scoring is that it uniquely satisfies the set of desired
axioms: efficiency, symmetry, dummy, and additivity. As these axioms are widely discussed in
previous works [104, 140], we leave the definitions and proof to Appendix.

Per-class saliency of concepts: Thus far, conceptSHAP measures the global attribution (i.e.,
contribution to completeness when all classes are considered). However, per-class saliency, how
much concepts contribute to prediction of a particular class, might be informative in many cases.
To obtain the concept importance score for each class, we define the completeness score with
respect to the class by considering data points that belong to it, which is formalized as:
Definition 10. Given a prediction model p(x) = h(f(x)), a set of concept vectors c1, c2, ..., cm
that lie in the feature subspace in f(·), we define the completeness score ηp,j(c1, ..., cm) for class j
as:

ηp,j(c1, ..., cm) =
Px,y∈Vj [y = arg maxy′ hy′(ĝ(vc(x)))]− ar,j

Px,y∈V [y = arg maxy′ py′(x1:T)]− ar
, (6.4)

where Vj is the set of validation data with ground truth label j, and ar,j is the accuracy of
random predictions for data in class j, and ĝ is derived via the optimization of completeness. We
then define the perclass ConceptSHAP for concept i with respect to class j as:
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(a) Two random images and corresponding ground
truth concepts (with their legend on the left) – each
object corresponds to a ground truth concept solely
via the shape information.

(b) Top nearest neighbors (each neighbor corre-
sponds to a part of the full image) of each discov-
ered concepts. The ground truth concepts, deter-
mined by their shape (with random colors), are on
the left.

Figure 6.1: Examples (left) and nearest neighbors of our method (right) on Synthetic data.

Definition 11. Given a prediction model p(x), a set of concept vectors in the feature subspace
in f(·). We can define the perclass ConceptSHAP for concept i with respect to class j as:
si,j(η) = si(ηp,j).

For each class j, we may select the concepts with the highest conceptSHAP score with respect

to class j. We note that ∑j
|Vj|
|V| ηp,j = η and thus with the additivity axiom, ∑j

|Vj|
|V| si,j(ηp,j) = si(η).

6.3 Experiments
In this section, we demonstrate our method both on a synthetic dataset, where we have ground
truth concept importance, as well as on real-world image and language datasets.

6.3.1 Synthetic data with ground truth concepts
Setting: We construct a synthetic image dataset with known and complete concepts, to evaluate
how accurately the proposed concept discovery algorithm can extract them. In this dataset, each
image contains at most 15 shapes (shown in Fig. 6.1a), and only 5 of them are relevant for the
ground truth class, by construction. For each sample xi, zi

j is a binary variable which represents

whether xi contains shape j. zi
1:15 is a 15-dimensional binary variable with elements independently

sampled from Bernoulli distribution with p = 0.5. We construct a 15-dimensional multi-label
target for each sample, where the target of sample i, yi is a function that depends only on zi

1:5,
which represents whether the first 5 shape exists in xi. For example, y1 =∼ (z1 · z3) + z4, y2 =
z2 + z3 + z4, y3 = z2 · z3 + z4 · z5, where ∼ denotes logical Not (details are in Appendix). We
construct 48k training samples and 12k evaluation samples and use a convolutional neural network
with 5 layers, obtaining 0.999 accuracy. We take the last convolution layer as the feature layer
f(x).

Evaluations: We conduct a user-study with 20 users to evaluate the nearest neighbor samples
of a few concept discovery methods. At each question, a user sees 10 nearest neighbor images of
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each discovered concept vector (as shown on the right of Fig. 6.1b), and is asked to choose the
most common and coherent shape out of the 15 shapes based on the 10 nearest neighbors. We
evaluate the results for our method, k-means clustering, PCA, ACE, and ACE-SP when m = 5
concepts are retrieved. Each user is tested on two randomly chosen methods in random order, and
thus each method is tested on 8 users. We report the average number of correct concepts and the
number of agreed concepts (where the mode of each question is chosen as the correct answer) for
each method answered by users in Table 6.1. The average number of correct concepts measures
how many of the correct concepts are retrieved by user via nearest neighbors. The average number
of agreed concepts measures how consistent are the shapes retrieved by different users, which
is related to the coherency and conciseness of the nearest neighbors for each method. We also
provide an automated alignment score based on how the discovered concept direction classifies
different concepts – see Appendix for details.

Results: We compare our methods to ACE, k-means clustering, and PCA. For k-means and
PCA, we take the embedding of the patch as input to be consistent to our method. For ACE, we
implement a version which replaces the superpixels with patches and another version that takes
superpixels as input, which we refer as ACE and ACE-SP respectively. We report the correct
concepts and agreed concepts from the user study, and an automated alignment score which
does not require humans. We do not calculate the alignment score of ACE-SP since it does not
operate on patches and thus is unfair to compare with others (which would lead to much lower
scores.) Our method outperforms others on corrected concepts and alignment score, is superior in
retrieving the accurate concepts beyond the limitations of others. The number of agreed concepts
is also the highest for our method, showing how highly-interpretability it is to humans such that
the same concepts are consistently retrieved based on nearest neighbors. As qualitative results, Fig.
6.1b shows the top-6 nearest neighbors for each concept ck of our concept discovery method based
on the dot product ⟨ck, Φ(xa)b⟩. All nearest neighbors contain a specific shape that corresponds
to the ground-truth shapes 1 to 5. For example, all nearest neighbors of concept 1 contain the
ground truth shape 1, which are cross as listed in Fig. 6.1a. A complete list of the top-10 nearest
neighbors of all concept discovery methods is shown in Appendix.

Figure 6.2: Completeness scores on synthetic dataset (left) and completeness scores on AwA
(right) versus different number of discovered concepts m for all concept discovery methods in the
synthetic dataset. Ours-noc refers to our method without the completeness score objective as an
ablation study.

70



Table 6.1: The average number of correct and agreed concepts by users based on nearest neighbors.

ACE ACE-SP PCA k-means Ours

correct concepts 3.0 ± 0 2.75 ± 0.46 3.875 ± 0.35 3.75 ± 0.46 5.0 ± 0
agreed concepts 4.625 4.75 4.375 4.75 5.0
automated alignment 0.741 − 0.876 0.864 0.98

6.3.2 Image classification
Setting and metrics: We perform experiments on Animals with Attribute (AwA) [96] that
contains 50 animal classes. We use 26905 images for training and 2965 images for evaluation. We
use the Inception-V3 model, pre-trained on Imagenet [159], which yields 0.9 test accuracy. We
apply our concept discovery algorithm to obtain m = 70 concepts. We conduct ad-hoc duplicate
concept removal, by removing one concept vector if there are two vectors where the dot product
is over 0.95. This gives us 53 concepts in total. We then calculate the ConceptSHAP and per
class saliency score for each concept and each class. For each class, the top concepts based on the
conceptSHAP are the most important concepts to classify this class, as shown in Fig.6.3. While
ConceptSHAP is useful in capturing the sufficiency of concepts for prediction, sometimes we may
want to show examples. We propose to measure the quality of the nearest neighbors explanations
by the average dot product between the nearest-neighbor patches that belongs to the class and the
concept vector. In other words, the quality of the nearest neighbors explanations is simply the
first term in R(c), which we denote as R1(c) = ∑m

k=1 ∑xb
a⊆Tck

⟨Φ(xb
a), ck⟩, where the top-K set is

limited to image patches in the class of interest. When the nearest neighbor set contains patches
of the same original image, we only show the patch with the highest similarity to the concept to
increase the diversity.

Results: We show the top concepts (ranked by conceptSHAP) of 3 classes with R1(c)>0.8 in
Fig. 6.3 (full results are in Appendix). Note that since our method finds concepts for all classes as
opposed to specific to one class (such as [23, 54]), we discover common concepts across many
classes. For example, concept 7, whose nearest neighbors show grass texture, is important for
the classes ‘Squirrel’, ‘Rabbit’, ‘Bob Cat’, since all these animals appear in prairie. Concept 8
shows a oval head and large black round eyes shared by the classes ‘Rabbit’, ‘Squirrel’, ‘Weasel’,
while concept 46 shows head of the ‘Bob cat’, which is shared by the classes ‘Lion’, ‘Leopard’,

Figure 6.3: Concept examples with the samples that are the nearest to concept vectors in the
activation space in AwA. The per-class ConceptSHAP score is listed above the images.
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Table 6.2: The 4 discovered concepts and some nearest neighbors along with the most frequent
words that appear in top-500 nearest neighbors.

Concept Nearest Neighbors Frequent words ConceptSHAP

poorly constructed what comes across as interesting is the worst (168) ever (69) movie (61) seen (55)
1 wasting my time with a comment but this movie film (50) awful (42) time(40) waste (34) 0.280

awful in my opinion there were <UNK> and the poorly (26) movies (24) films (18) long (17)

normally it would earn at least 2 or 3 not (58) movie (39) make (25) too (23)
2 <UNK> <UNK> is just too dumb to be called film (22) even (19) like (18) 2 (16) 0.306

i feel like i was ripped off and hollywood never (14) minutes (13) 1 (12) doesn’t (11)

remember awaiting return of the jedi with almost <UNK> movies (19) like (18) see (16) movie (15)
3 better than most sequels for tv movies i hate love (15) good (12) character (11) life (11) 0.174

male because marie has a crush on her attractive little (10) ever (9) watch (9) first (9)

new <UNK> <UNK> via <UNK> <UNK> with absolutely hilarious excellent (50) film (25) perfectly (19) wonderful (19)
4 homosexual and an italian clown <UNK> is an entertaining perfect (16) hilarious (15) best (13) fun (12) 0.141

stephen <UNK> on the vampire <UNK> as a masterpiece highly (11) movie (11) brilliant (9) old (9)

and ‘Tiger’, ‘Antelope’, and ‘Gorilla’, which all show animal heads that are more rectangular
and significantly different to the animal heads of concept 8. We find that having concepts shared
between classes is useful to interpret the model. Fig. 6.2 shows that our method achieves the
highest completeness of all methods on both the synthetic dataset and AwA. As a sanity check,
we include the baseline ‘ours-noc’, where the completeness objective is removed from (6.3).
Our method has much higher completeness than ‘ours-noc’, demonstrating the necessity of the
completeness term.

Human Study: We conduct a human study for the top neighbors for concepts discovered by
our method, PCA, and Kmeans on the classes ‘Squirrel’, ‘Rabbit’, ‘Bob Cat’. For each method,
we randomly choose 1 top concept per class for the 3 classes, and thus we choose 3 concepts
per method (9 concepts in total). For each concept, we show users 4 top images of that concept,
and ask users to choose the image (out of 3 different options) that they believe should belong
to the same concept (where one of the option will actually belong to the same concept, and the
other two are random image patches of the same class that does not belong to that concept). We
then calculate the average accuracy to measure the human interpretability of the concept discover
method. We conduct a user study with 10 users, where each of them are asked with the same
9 questions (1 question per concept chosen). The average correct ratio for our method, PCA,
and Kmeans are 0.733, 0.267, and 0.6 respectively, showing our method’s superiority. Kmeans
outperforms PCA as it also encourages closeness of top nearest neighbors (which is better for
ostensive definition).

6.3.3 Text classification
Setting: We apply our method on IMDB, a text dataset with movie reviews classified as either
positive or negative. We use 37500 reviews for training and 12500 for testing. We employ a 4-layer
CNN model with 0.9 test accuracy. We apply our concept discover method to obtain 4 concepts,
where the part of data xi

j consists of 10 consecutive words of the sentence. The completeness of
the 4 concepts is 0.97, thus the 4 concepts are highly representative of the classification model.

Result: For each concept, Table 6.2 shows (a) the top nearest neighbors based on the dot product
of the concept and part of reviews (b) the most frequent words in the top-500 nearest neighbors
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(excluding stop words) (c) the conceptSHAP score for each concept. We can see that concepts 1
and 2 contain mostly negative sentiments, evident from the nearest neighbors – concept 1 tends
to criticize the movie/film directly, while concept 2 contains negativity in comments via words
such as “not”, “doesn’t”, “even”. We note that the ratings in concept 2 are also negative since the
scores 1 and 2 are considered to be very negative in movie review. On the other hand, concepts
3 and 4 contain mostly positive sentiments, as evident from the nearest neighbors – concept 3
seems to discuss the plot of the movie without directing acclaiming or criticizing the movie,
while concept 4 often contains very positive adjectives such as “excellent”, “wonderful” that are
extremely positive. More nearest neighbors are provided in the Appendix.

Appending discovered concepts: We perform an additional experiment where we randomly
append 5 nearest neighbors (out of 500-nearest neighbors) of each concept to the end of all testing
instances for further validation of the usefulness of the discovered concepts. For example, we
may add “wasting my time with a comment but this movie” along with 4 other nearest neighbors
of concept 1 to the end of a testing sentence. The original average prediction score for the testing
sentences is 0.516, and the average prediction score after randomly appending 5 nearest neighbors
of each concept becomes 0.103, 0.364, 0.594, 0.678 for concept 1, 2, 3, 4. As a controlled
experiment, we appended 5 random sentences to the testing sentences, and the average prediction
score is 0.498. This suggests that the concept score is highly related to the how the model makes
prediction and may be used to manipulate the prediction. We note that while concept 1 contains
stronger and more direct negative words than concept 2, concept 2 has a higher conceptSHAP
value than concept 1. We hypothesize this is due to the fact that concept 2 may better detect weak
negative sentences that may be difficult to be explained by concept 1, and thus may contribute
more to the completeness score.
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Chapter 7

Faith-Shap: The Faithful Shapley
Interaction Index

Explaining the prediction of a black-box machine learning model via attributions to its features
is an increasingly important task. Most approaches have focused on attributions to individual
features, which does not always suffice to provide insight into the model when there are heavy
feature interactions. For instance, when explaining models with text input, we might also ask for
attributions to phrases and sequences of words rather than just individual words. Similarly, in
Question Answering (QA), it is of interest to measure attributions to query answer tuples, rather
than just individual entities associated with answers. Such feature interactions are also salient with
images as input, where instead of attributions to individual pixels, we might prefer attributions to
groups of pixels.

A large class of recent approaches for individual feature attributions reduce the task to
a cooperative game theory problem. Given a machine learning model, a test point, and the
underlying data distribution, one can devise a “set value function” that takes as input a set of
features, and outputs the value of that set of features. There are many choices for such a reduction
to a set function [24, 46, 104, 155]. We can then relate this to a cooperative game theory problem
where the features are players, the set function above is the value function of the coalition game
that specifies the value of various player coalitions, and we wish to derive feature attributions
given such a value function. This meta-approach has led to a slew of explanation approaches when
the goal is to obtain individual feature attributions. The key question we focus on in this paper is to
obtain attributions to feature interactions instead. In this setting, any feature interactions (up to a
given order), along with each individual features, should get some attribution score. This question
has attracted some attention in the cooperative game theory and the explainable AI literature, with
the broad strategy of extending popular approaches for individual feature attributions, such as
Shapley and Banzhaf values [71, 139], to the interaction context. But these existing proposals
come with many caveats.

Part of the attraction of the cooperative game theory based explanations above is that for
the case of individual feature attributions, if we stipulate some natural axioms such as linearity,
symmetry, dummy, and efficiency (detailed in a later section), there exist unique attributions such
as Shapley and Banzhaf (depending on the notion of efficiency). Thus we have both a strong
axiomatic foundation to the explanations, as well as a very compelling uniqueness result that there
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can exist no other explanations that satisfy these axioms. These have thus led to an explosion of
Shapley value based explanations in the XAI literature that assign attributions to features, data,
and even concepts [31, 50, 63, 79, 102, 104, 119, 120, 182]. However,when we move to the
context of feature interactions, while the axioms above have natural extensions from the individual
feature to the feature interaction context, they no longer result in a unique feature attribution
value.

Approaches to address this have thus focused on adding additional less natural axioms to
ensure uniqueness. One set of unique feature attributions — Shapley interaction and Banzhaf
interaction indices [59] — derive unique attributions via a recursive axiom, which specifies how
higher order feature attributions be derived from lower order feature interaction attributions (all
the way to individual feature attributions). Thus, given the uniqueness at the level of individual
feature attributions, we in turn get uniqueness at all levels of interaction attributions. One major
caveat of these Shapley interaction and Banzhaf interaction indices is that they do not satisfy
the efficiency axiom for interaction feature attributions, and hence can no longer be viewed as
distributing the total contribution of the model prediction among all feature interactions. The
other caveat is that the recursive axiom, while convenient to extend uniqueness from individual to
interaction feature attributions, is much less “natural” when compared with the original Shapley
axioms. To address these caveats, Sundararajan et al. [158] proposed the interaction distribution
axiom that entails distributing higher order interactions to the topmost interaction indices at the
expense of impoverished lower order interactions. This makes the interaction attributions unique
for unanimity games [139], and since these act as a basis for set value functions, by linearity
this ensures uniqueness of interaction attributions for general games. The caveat however is that
the specified attribution distribution inordinately favors the topmost interactions, which in turn
affects the usefuless of both the lower and highest order interactions as we show in our examples.
And arguably, the interaction distribution axioms too is much less natural when compared to the
original Shapley axioms. Thus, there remains an open problem to specify a “natural” restriction
or axiom that allows for unique interaction attributions.

An additional desideratum is that the feature interaction attributions be cognizant of the
maximum interaction order of the interaction attributions we require. For instance, with individual
feature attributions, the maximum interaction order is one, while with pairwise feature attributions,
the maximum interaction order is two. This would allow the explanations to be tailored to the
set of possible interactions and satisfy the relevant axioms with respect to just these interactions,
instead of all possible subsets of feature interactions.

In this work, rather than devising potentially less natural axioms to ensure uniqueness, we
work from yet another viewpoint of Shapley values, that they be faithful to the set value function:
for all subsets, the sum of individual feature attributions over a subset should approximate the set
value function evaluated on that subset. When formalized as a weighted regression problem, this
yields Shapley and Banzhaf values depending on the weights in the weighted regression [13, 132].
We then extend the above weighted regression to feature interactions up to a given maximum
interaction order, which then yields what we call Faith-Interaction indices. We show that when
restricting to the class of Faith-Interaction indices, together with the (interaction extensions of the
individual) Shapley axioms, we obtain a unique interaction index, which we term the Faith-Shap
(for Faithful Shapley Interaction) index, and which reduces to the individual feature Shapley values
when the top interaction order is one. We thus posit Faith-Shap as the natural extension of Shapley
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values from individual features to interaction indices. Similarly, when the efficiency axiom is
replaced by the generalized 2-efficiency axiom, we obtain a unique interaction index, which we
term Faith-Banzhaf (for Faithful Banzhaf Interaction) index. The latter has also appeared in other
guises in prior work [61, 67]. Unlike the other restrictive axioms discussed earlier, here we only
require that the explanations be faithful to the model, which has always been a big attraction
of Shapley values in the explainable AI (XAI) context. We corroborate the usefulness of these
Faith-Interaction indices by contrasting them with prior indices in two illustrative coalition games,
as well as real-world XAI applications. We then discuss algebraic properties of Faithful Shapley
Interaction index by relating them to cardinal indices, i.e. indices that can be expressed as a linear
combinations of marginal contributions, as well as in terms of approximations to multilinear
extensions of the coalition set value function. An additional benefit of the Faith Interaction indices
is that the estimation becomes much more efficient via leveraging the weighted linear regression
formulation, and which we validate in our experiments.

7.1 Preliminaries

7.1.1 Notations
Suppose we are given a black-box model f : X 7→ Rd, with input domain X ⊆ Rd; and suppose
we wish to explain its prediction at a given test point x ∈ X . Suppose also given the tuple f , x
(and possibly with additional information about the underlying data distribution on which f is
trained on, and from which x is drawn), there is a well-defined set function fx : 2d → Rd. We
can interpret such a set function as specifying the value of a subset of the set of d features. Many
popular explanations employ such a reduction of the model and its prediction context to set value
functions; see Lundberg and Lee [104], Ribeiro et al. [129], Sundararajan et al. [158] for many
examples. When clear from the context, and for notational simplicity, we will often omit x and
simply use f to denote the set function. Such a reduction allows us to leverage results from
cooperative game theory, by relating the set of features to a set of players, and the set function
above as specifying the values of coalitions of players.

We are then interested in quantifying the importance of interactions between different features
up to some order ℓ ∈ [d]. Note that in this context, when we mean interactions between features,
we mean non-self interactions between distinct features, since self-self interactions could simply
be identified with the individual features. In other words, we require an importance function Φ
which for each coalition S ⊆ [d] where 0 ≤ |S| ≤ ℓ, outputs a scalar ΦS(f, ℓ). Let Sℓ denote
the set of all subsets of [d] with size less than or equal to ℓ; the size of this set can be seen to
be dℓ := ∑ℓ

j=0 (
d
j). We then use the shorthand Φ(f, ℓ) = (ΦS(f, ℓ))S∈Sℓ

∈ Rdℓ . To simplify
notation, we omit braces for small sets and write T ∪ i to represent T ∪ {i}.

7.1.2 Definitions
We begin by recalling the concept of discrete derivatives.
Definition 1. (Discrete Derivative) Given a set function f : 2d 7→ R and two finite disjoint
coalitions S, T ⊆ [d] with S ∩ T = Ø, the S-derivative of f at T, ∆S(f(T)), is defined recursively
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as follows:
∆if(T) = f(T ∪ i)− f(T), ∀i ∈ [d], and (7.1)

∆S(f(T)) = ∆i[∆S\i(f(T))] = ∑
L⊆S

(−1)|S|−|L|f(T ∪ L), ∀i ∈ S. (7.2)

The second equality in Eqn. (7.2) can be shown via induction on S [47]. As an illustration of
discrete derivatives, for a subset S of size 2, the discrete derivative can be written as

∆{i,j}f(T) = f(T ∪ {i, j})− f(T ∪ j)− f(T ∪ i) + f(T).

∆{i,j}f(T) captures the joint effect of features i and j co-occurring compared to the individual
effects of i and j. If ∆{i,j}f(T) > 0 (resp. < 0), we say i and j have positive (resp. negative)
interaction effect in the presence of T since the presence of i increases (resp. decreases) the
marginal contribution of j to coalition T. Following the intuition from the two features example,
the discrete derivative ∆S(f(T)) can be viewed as a measurement of the marginal interaction
of S in the presence of T. When a set of features have a positive (negative) interaction effect,
the discrete derivative is positive (negative). Discrete derivatives play a fundamental role in
measurement of interaction effects. As we will see in the following section, the Shapley and
Banzhaf interaction indices can be viewed as a weighted average of S-derivatives over all subsets
T ⊆ [d]\S.
Next, let us recall the concept of the Möbius transform.
Definition 2. (Möbius transform) Given set function f : 2d 7→ R, the Möbius transform of f(·) is

a(f, S) = ∑
T⊆S

(−1)|S|−|T|f(T) for all S ⊆ [d]. (7.3)

An important property [139] of the Möbius transform is that any set function f(·) can be
expressed as:

f = ∑
R⊆[d]

a(f, R) fR, (7.4)

where fR for any R ⊆ [d] has the form fR(S) = 1 if S ⊇ R and 0 otherwise; and is also known
as a unanimity game value function in game theory. Eqn. (7.4) states that any set function can be
expressed as a linear combinations of these unanimity game value functions (so that {fR}R⊆[d]
form a basis for real-valued set value functions), with the Möbius transforms a(f, R) as their
coefficients. Note that if an interaction index satisfies the interaction linearity axiom (to be
discussed in the sequel), the interaction index for general set value functions can be expressed as
a linear combination of the interaction indices for unanimity games.

7.2 Background: Axioms for Interaction Indices
In this section, we present natural extensions of Shapley axioms for individual features to the
feature interactions [59, 158]. We then discuss the key interaction indices proposed so far in
the literature — the Shapley interaction index, Banzhaf interaction index and Shapley-Taylor
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interaction index — with respect to these axioms. In all these axioms, we allow for dependence
on the maximum interaction order ℓ ∈ [d].
Axiom 11. (Interaction Linearity): For any maximum interaction order ℓ ∈ [d], and for any
two set functions f1 and f2, and any two scalars α1, α2 ∈ R, the interaction index satisfies:
Φ(α1f1 + α2f2, ℓ) = α1Φ(f1, ℓ) + α2Φ(f2, ℓ).

The interaction linearity axiom states that the feature interaction index is a linear functional of
the set function f(·). It ensures that the corresponding indices scale with the value function f(·).
Axiom 12. (Interaction Symmetry): For any maximum interaction order ℓ ∈ [d], and for any set
function f : 2d 7→ R that is symmetric to elements i, j ∈ [d], so that f(S∪ i) = f(S∪ j) for any
S ⊆ [d]\{i, j}, the interaction index satisfies: ΦT∪i(f, ℓ) = ΦT∪j(f, ℓ) for any T ⊆ [d]\{i, j}
with |T| < ℓ.

The interaction symmetry axiom entails that if the value function treats two features the same,
their corresponding feature interaction index values should be the same as well.
Axiom 13. (Interaction Dummy): For any maximum interaction order ℓ ∈ [d], and for any set
function f : 2d 7→ R such that f(S ∪ i) = f(S) for some i ∈ [d] and for all S ⊆ [d]\{i}, the
interaction index satisfies: ΦT(f, ℓ) = 0 for all T ∈ Sℓ with i ∈ T.

The interaction dummy axiom entails that a dummy feature i ∈ [d] that has no influence on
the function f should have no interaction effect with the other features.
Axiom 14. (Interaction Efficiency): For any maximum interaction order ℓ ∈ [d], and for any
set function f : 2d → R, the interaction index satisfies: ∑S∈Sℓ\Ø ΦS(f, ℓ) = f([d])− f(Ø) and
ΦØ(f, ℓ) = f(Ø).

The interaction efficiency axiom ensures that the interaction index distributes the total value
f([d]) among the different subsets in Sℓ. This form of interaction efficiency has also been
considered by Sundararajan et al. [158]. As we will detail in the sequel, some of the recently
proposed interaction indices do not satisfy such an efficiency axiom. For instance, the chaining
interaction and Shapley interaction indices only requires the total sum of individual feature
importances to sum to f([d]) − f(Ø), without consideration of the higher order interaction
importances.

Challenge: Lack of Uniqueness: These axioms are natural extensions to the interaction setting
of classical axioms for individual feature attributions; see Fujimoto et al. [47], Grabisch and
Roubens [59] for a counterpart of these interaction axioms without consideration of the maximum
interaction order ℓ ∈ [d]. As Sundararajan et al. [158] note, though the linearity, symmetry,
dummy and efficiency axioms uniquely specify a feature attribution when the maximum interaction
order ℓ = 1 (i.e. for individual feature attributions), they no longer do when ℓ > 1. In other
words, there could exist many interaction indices that all satisfy the axioms specified above. A big
attraction of the individual Shapley value was its uniqueness given the corresponding individual
attribution axioms. Accordingly, a line of work has focused on specifying additional axioms that
together specify a unique interaction index.
Axiom 15. (Recursive Interaction): For any maximum interaction order 2 ≤ ℓ ≤ d, and for any
set function f : 2d → R, let the reduced set functions f[d]\j, f[d]\j

∪j : 2d−1 → R be defined as:

f[d]\j(T) = f(T), and f[d]\j
∪j (T) = f(T ∪ j)− f(j) , ∀ T ⊆ [d]\j.
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Then the interaction index satisfies: ΦS(f, ℓ) = ΦS\j(f
[d]\j
∪j , ℓ)−ΦS\j(f[d]\j, ℓ), ∀S ∈ Sℓ with |S| ≥

2, and ∀j ∈ S.
The recursive axiom above is a natural extension of the recursive axiom of Grabisch and

Roubens [59] to account for arbitrary maximum interaction orders. The axiom can be informally
interpreted as “how does the presence or absence of feature j influence the share of feature set
S”. But more importantly (and the reason is it is termed the recursive axiom) is that it specifies
how higher-order interaction scores are uniquely determined given lower-order interaction indices.
By recursion, the higher-order interaction indices are thus uniquely specified given just the
singleton feature attributions. The reason this helps with uniqueness is that so long as the axioms
entail unique singleton attributions, together with this recursive axiom, they would entail unique
interaction attributions.

Shapley Interaction Index: Grabisch and Roubens [59] thus show that there is a unique
interaction index that satisfies the interaction linearity, symmetry, dummy, and the recursive
axioms (but not the efficiency axiom), and whose restrictions to singleton sets corresponds
to Shapley values. They term this interaction index Shapley interaction index. This Shapley
interaction index has the following closed form:

ΦShap
S (f, ℓ) = ∑

T⊆[d]/S

|T|!(d − |S| − |T|)!
(d − |S|+ 1)!

∆S(f(T)), ∀S ∈ Sℓ. (7.5)

A critical caveat of the the resulting Shapley interaction value is that it no longer satisfies the
interaction efficiency axiom when the maximum interaction order ℓ > 1. Indeed, simply summing
the contributions to singleton sets (i.e. the classical individual attribution Shapley values) is
already equal to f([d])− f(Ø), so the only way for the interaction efficiency axiom to be satisfied
if all the other interaction attributions sum to zero, which they do not.

Banzhaf Interaction Index: Grabisch and Roubens [59] further show that there is a unique
interaction index that satisfies the interaction linearity, symmetry, dummy, and the recursive axioms
(but not the interaction efficiency axiom), and whose restrictions to singleton sets corresponds to
the Banzhaf values. They term this interaction index Banzhaf interaction index, which has the
following closed form:

ΦBzf
S (f, ℓ) = ∑

T⊆[d]/S

1
2d−|S| ∆S(f(T)), ∀S ∈ Sℓ. (7.6)

It can be again shown that the Banzhaf interaction index does not satisfy the interaction efficiency
axiom even when ℓ = 1; though they do satisfy the generalized 2-efficiency axiom, which can be
stated as follows.
Axiom 16. (Generalized Interaction 2-Efficiency): Define the reduced function f[ij] : 2d−1 → R

given any i, j ∈ [d] as f[ij](S) = f(S) for all sets S containing both i and j, and f[ij](S ∪ [ij]) =
f(S ∪ {i, j}) for all S containing neither i nor j. That is, the reduced function considers features i
and j together as a group [ij]. Then the interaction index satisfies: ΦS∪[ij](f[ij], ℓ) = ΦS∪i(f, ℓ) +
ΦS∪j(f, ℓ) for all S ⊆ [d]\{i, j}, and ℓ = |S|+ 1.
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The generalized interaction 2-efficiency axiom above is an extension of the generalized 2-
efficiency axiom of [59] to account for arbitrary maximum interaction orders. It states that when
features i, j form a group in the set function f[ij] with d − 1 features, the importance of S ∪ [ij]
equals to the sum of importances of S ∪ i and S ∪ j with respect to the original set value function.
When S = Ø and ℓ = 1, it reduces to the classical 2-efficiency axiom [71] that indicates that the
importance of [ij] as a group should be equal to the sum of importance of individual features i
and j.

Shapley Taylor Interaction Index: Sundararajan et al. [158] stipulate an additional interaction
distribution (ID) axiom, which can be stated as follows.
Axiom 17. (Interaction distribution [158]): Define fT parameterized by a set T ⊆ [d] as
fT(S) = 0 if T ̸⊆ S and fT(S) = 1 otherwise. Then for all ℓ ∈ [d], and for all S with S ̸⊆ T
and |S| < ℓ, the interaction index satisfies: ES(fT, ℓ) = 0.

The key idea behind the ID axiom is to uniquely specify an interaction index for unanimity
games {fT}T⊆[d], given the interaction linearity, symmetry, dummy and efficiency axioms. Since
unanimity games form a basis for the set of all games, in the presence of interaction linearity
axiom, we then get unique interaction indices. They thus show that there exists a unique interaction
index that satisfies interaction linearity, symmetry, dummy, efficiency, and interaction distribution
axioms and which they term Shapley Taylor index (for reasons which will become clearer in a
later section when we discuss algebraic properties of various interaction indices). The Shapley
Taylor interaction index has the following closed form:

ΦTaylor
S (f, ℓ) =

{
∆S(f(Ø)) , if |S| < ℓ.

∑T⊆[d]/S
|T|!(d−|T|−1)!|S|

d! ∆S(f(T)) , if |S| = ℓ.
(7.7)

A key advantage of this interaction index is that it depends on the maximum interaction order ℓ,
in contrast to previously proposed interaction indices such as the Shapley interaction and Banzhaf
interaction indices. Indeed, in order for an interaction index to satify the interaction efficiency
axiom for maximum interaction order ℓ, it has to distribute the contributions among subsets in Sℓ,
and hence has to be cognizant of the maximum interaction order ℓ. However, a key caveat of the
interaction distribution axiom is that the specified attribution distribution inordinately favors the
topmost interaction. As can be seen from Eqn.(7.7), the importance of a set S with |S| < ℓ is only
specified by the marginal contribution of S in the presence of the empty set, and not the presence
of other subsets T ⊆ [d]\S. This impoverishes lower-order interactions, which in turn hurts the
meaningfulness of both lower and highest order interactions as we will show in Section 7.4.

Thus a key open question that this section has made salient is: how do we more naturally
constrain interaction indices beyond interaction linearity, symmetry, dummy and efficiency axioms,
so as to obtain a unique interaction index?

7.3 Faith-Interaction Indices
In this section, in contrast to additional axioms, we draw from another viewpoint of singleton
Shapley feature attributions: that they are faithful to the underlying value function.
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Faithfulness of Singleton Shapley Values: Given singleton feature attributions {Φi}i∈[d], we
can require that:

f(S) ≈ ∑
i∈S

Φi, ∀S ⊆ [d].

Note that we can only ask for approximate rather than exact equality for all sets S, since an exact
equality would entail we solve 2d linear equalities (corresponding to the subsets of [d]) with d
variables (corresponding to the d singleton feature attributions {Φi}i∈[d]), which may not always
have a feasible solution. One approach to formalize such an approximate equality is via weighted
regression:

min
Φ∈Rd+1

∑
S⊆[d]

µ(S)

(
v(S)− ΦØ − ∑

i∈S
Φi

)2

, (7.8)

where µ : 2[d] 7→ R+ ∪ {∞} is some weighting over the subsets S ⊆ [d] which can be interpreted
as the importance of different coalitions. Note that the range of µ is the extended positive reals.
When µ(S) = ∞ for some sets S, we can interpret the above as solving the constrained problem:

min
Φ∈Rd+1

∑
S⊆[d] : µ(S)<∞

µ(S)

(
v(S)− ∑

i∈S
Φi

)2

s.t. f(S) = ∑
i∈S

Φi, ∀S : µ(S) = ∞.

It has been shown that we can recover the singleton Shapley values as the solution of the
weighted regression problem above by setting µ(S) ∝ d−1

( d
|S|) |S| (d−|S|)

and µ(Ø) = µ([d]) =

∞ [22]. And we can recover singleton Banzhaf values by using the uniform distribution µ(S) =
1/2d [67].

From Singleton Attributions to Interaction Indices: In this section, we consider the natural
generalization of the above to interaction indices, so that we now require:

f(S) ≈ ∑
T⊆S,|T|≤ℓ

ET(f, ℓ), ∀S ⊆ [d].

Again here we ask for approximate rather than exact equality since when the order of interactions
is less than the number of features, so that ℓ < d, the latter would entail we solve 2d linear
equalities with dℓ variables, which may not always have a feasible solution. Accordingly, we
consider the following weighted regression problem as a formalization of the above:

Φ(f, ℓ) = arg min
E⊆Rdℓ

∑
S⊆[d]

µ(S)

f(S)− ∑
T⊆S,|T|≤ℓ

ET(f, ℓ)

2

, (7.9)
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where µ : 2d → R+ ∪ {∞} is a coalition weighting function. And as before of µ(S) = ∞ for
some sets S, we can interpret above as solving the constrained problem:

Φ(f, ℓ) = arg min
E⊆Rdℓ

∑
S⊆[d] : µ(S)<∞

µ(S)

f(S)− ∑
T⊆S,|T|≤ℓ

ET(f, ℓ)

2

s.t. f(S) = ∑
T⊆S,|T|≤ℓ

ET(f, ℓ), ∀S : µ(S) = ∞. (7.10)

We note that the range of the weighting function µ is not allowed to include zero since it is
a necessary condition to ensure that there exists a unique minimizer (which is shown in the
following proposition 8). This is not an issue in practice since we can always choose an arbitrary
small positive value instead of zero to approximate the intended constraint that µ(S) = 0 for
some S ⊆ [d].
Proposition 7. If the coalition weighting function µ(·) is finite such that µ(S) ∈ R+ for all
S ⊆ [d], Eqn.(7.9) is strictly convex.

Given that Eqn.(7.9) is strictly convex, we next show that the minimization problems have a
unique minimizer.
Proposition 8. The (constrained) regression problems defined in Eqn.(7.10) with a proper weight-
ing function µ ( Definition 3) have a unique minimizer.

This proposition is a straight-forward application of the following fact: For a minimization
problem with linear constraints, if the objective is strictly convex, then it has a unique minimizer.

Also, we note that having positive measure for all subsets of [d] on the weighting function µ(·)
is necessary to ensure the uniqueness of the minimizer. Consider the case when the maximum
interaction order equals to the number of feature, i.e. ℓ = d, there are 2d variables with 2d

equalities. That is, f(S)− ∑T⊆S ΦS(f, d) = 0 for all S ⊆ [d]. In this case, we can not have any
S ⊆ [d] such that µ(S) = 0 due to the lack of equations.

In this special case of ℓ = d, we have the following closed-form expression. We note that this
results are independent of the weighting function as long as we have µ(S) > 0 for all S ⊆ [d].
Proposition 9. When the maximum interaction order ℓ = d, the minimizer of Eqn.(7.10) the
Möbius transform of f, i.e. ΦS(f, d) = a(f, S) = ∑T⊆S(−1)|S|−|T|f(T) for all subsets S ⊆ [d].

We can also see from Eqn. (7.9) that when the weighting function is infinite for many subsets,
this entails corresponding equality constraints on the interaction index, which may not have a
feasible solution. We thus consider the following set of what we term proper weighting functions.

Definition 3. (Proper weighting function) We say that a weighting function µ : 2d 7→ R+ ∪ {∞}
is proper if µ(S) is finite for all S ⊆ [d] with 1 ≤ S ≤ d − 1.

This then leads to our definition of Faith-interaction indices.
Definition 4. (Faith-Interaction Indices): We say that E is a Faith-Interaction index, given any
set value function f : 2d → R and any maximum interaction order ℓ ∈ [d], if there exists a proper
weighting function µ : 2d → R+ ∪ {∞} such that E(f, ℓ) minimizes the corresponding weighted
regression objective in Eqn.(7.10).

When the coalition weighting function µ is fully finite so that µ(S) are finite for all sets

83



S ⊆ [d], Faith-interaction indices have a simple closed-form expression as detailed in the
following proposition.
Proposition 10. Any Faith-Interaction index E(f, ℓ) with respect to a finite weighting function
µ(·) has the form:

E(f, ℓ) =

(
∑

S⊆[d]
µ(S)p(S)p(S)T

)−1

∑
S⊆[d]

µ(S)f(S)p(S), (7.11)

where p : 2[d] → {0, 1}dℓ is specified as: p(S)[T] = 1[(T ⊆ S) ∨ (T = Ø)] for any T ∈ Sℓ.
When the coalition weighting function µ(·) is not fully finite, we have a linearly constrained

least squares problem which does not have a closed form, but whose solution can be characterized
via its Lagrangian.

7.3.1 Axiomatic Characterization of Faith-Interaction Indices

In this section, we investigate the axiomatic properties of our class of Faith-Interaction indices.
We first show that all faith-interaction indices satisfy the interaction linearity axiom.
Proposition 11. Faith-Interaction indices E satisfy the interaction linearity axiom.

For Faith-Interaction indices corresponding to finite coalition weighting functions µ(·), this
result easily follows from Proposition 10 that these are linear functionals of the set value function
f(·). For Faith-Interaction indices where the weighting function is no longer finite for some sets
S ∈ {Ø, [d]}, they solve a linearly constrained least squares problem which does not have a
closed-form solution. But by a more nuanced analysis of its Lagrangian, we can again show that
the interaction indices are linear functionals of the set value function f(·).

We next show that Faith-Interaction indices also satisfy the linearity symmetry axiom provided
that the weighting functions are permutation invariant (“symmetric”), and hence only depend on
the size of the set.
Proposition 12. Faith-Interaction indices E satisfy the interaction symmetry axiom if and only if
the weighting functions are permutation invariant, and hence only depend on the size of the set,
so that µ(S) is only a function of |S|.

We next consider the dummy axiom.
Proposition 13. Faith-Interaction indices E satisfy the interaction dummy axiom if the features
behave independently of each other when forming coalitions in the weighting function, so that the
coalition weighting functions can be expressed as µ(S) ∝ ∏i∈S pi ∏j ̸∈S(1 − pj) for all S ⊆ [d],
where 0 < pi < 1 is the probability of the feature i to be present.

Proposition 13 implies that a dummy feature has no impact on other features when the
weighting function treats features independently.

So far, we have analyzed when Faith-Interaction indices satisfy the interaction linearity,
symmetry, and dummy axioms. When they satisfy all three simultaneously, and the coalition
weighting function is finite, then we can show that the latter has a specific algebraic form.
Theorem 18. Faith-Interaction indices E with a finite weighting function satisfy the interaction
linearity, symmetry, and dummy axioms if and only if the weighting function µ has the following
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form:

µ(S) ∝
d

∑
i=|S|

(
d − |S|
i − |S|

)
(−1)i−|S|g(a, b, i), where g(a, b, i) =

{
1 if i = 0

∏
j=i−1
j=0

a(a−b)+j(b−a2)
a−b+j(b−a2)

if 1 ≤ i ≤ d,

(7.12)

for some a, b ∈ R+ with a > b such that µ(S) > 0 for all S ⊆ [d].
Theorem 18 shows the surprising fact that Faith-Interaction indices satisfying the interaction

linearity, symmetry, and dummy axioms with finite weighting functions have only two degrees
of freedom: a, b ∈ R. Given these, we can fully specify the weighting function, and hence the
corresponding Faith-Interaction indices.

Theorem 18 states that the finite weighting function must in the following form:

µ(S) ∝
d

∑
i=|S|

(
d − |S|
i − |S|

)
(−1)i−|S|g(a, b, i), where g(a, b, i) =

{
1 , if i = 0.

∏
j=i−1
j=0

a(a−b)+j(b−a2)
a−b+j(b−a2)

, if 1 ≤ i ≤ d.

for some a, b ∈ R+ with a > b such that µ(S) > 0 for all S ⊆ [d].
To better understand this formula, a critical question needs to be answered: What kind

of a, b makes µ(S) > 0 for all S ⊆ [d]? To answer (1), we show that a simple condition
1 ≥ a > b ≥ a2 > 0 suffices to make µ(S) > 0 for all S ⊆ [d].
Proposition 14. When a, b ∈ R+ such that 1 ≥ a > b ≥ a2 > 0, we have

d

∑
i=|S|

(
d − |S|
i − |S|

)
(−1)i−|S|g(a, b, i) > 0 for all S ⊆ [d],

where g(a, b, i) is defined in Eqn.(7.12).
We note that it is only a sufficient condition for selecting a and b: For some small d ∈ N, we

may have some a, b such that 1 > a2 > b > 0 but makes µ(S) > 0 for all S ⊆ [d]. However, if
a = µ̄1 and b = µ̄2 need to make the weighting function positive for all d ∈ N, we must have
the condition 1 ≥ a > b ≥ a2 > 0.

Faith-Banzhaf Interaction Index: As a first application of this theorem, suppose in addition to
the three axioms above, we additionally require the Faith-Interaction indices to satisfy generalized
2-efficiency. The following theorem shows that there is a unique Faith-Interaction index satisfying
these four axioms, which we term the Faith-Banzhaf index.
Theorem 19. (Faith-Banzhaf) For any d ≥ 3, there is a unique Faith-Interaction index that
satisfies the interaction linearity, symmetry, dummy and generalized 2-efficiency axioms, with its
coalition weighting function given as µ(S) ∝ 1

2d for all S ⊆ [d]. We term this unique interaction
index as Faithful Banzhaf Interaction index (Faith-Banzhaf), and which has the form:

ΦF-Bzf
S (f, ℓ) = a(f, S) + (−1)ℓ−|S| ∑

T⊇S,|T|>ℓ

(
1
2

)|T|−|S| (|T| − |S| − 1
ℓ− |S|

)
a(f, T), ∀S ∈ Sℓ,

(7.13)
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where a(f, ·) is the Möbius transform of f(·). Moreover, its highest order interaction terms
coincides with corresponding interaction terms from the Banzhaf interaction index introduced
earlier:

EF-Bzf
S (f, ℓ) = ∑

T⊆[d]\S

1
2d−|S| ∆S(f(T)) for all S ∈ Sℓ with |S| = ℓ. (7.14)

Our derivation of Faith-Banzhaf indices follows the pseudo-Boolean function approximation
results from Grabisch et al. [61].

Faith-Shapley Interaction Index: When moving from generalized 2-efficiency to the more
natural interaction efficiency axiom, we have the following proposition.
Proposition 15. Faith-Interaction indices satisfy the interaction efficiency axiom if and only if the
weighting functions satisfy µ(Ø) = µ([d]) = ∞.

That the condition in the proposition is sufficient is a straight-forward consequence of the fact
that µ(Ø) = µ([d]) = ∞ entails that the corresponding linear constraint be exactly satisfied, so
that: ∑S∈Sℓ

ΦS(f, ℓ) = f([d]) and ΦØ(f, ℓ) = f(Ø), which is precisely the interaction efficiency
axiom. We now have the machinery to present our main result on the unique Faith-Interaction
index that satisfies the four (interaction counterparts of the) standard axioms that the singleton
Shapley value satisfies.
Theorem 20. (Faith-Shap) There is a unique Faith-Interaction index that satisfies the interaction
linearity, symmetry, dummy and efficiency axioms, with its coalition weighting function given as:

µ(S) ∝
d − 1

( d
|S|) |S| (d − |S|)

for all S ⊆ [d] with 1 ≤ |S| ≤ d − 1, and µ(Ø) = µ([d]) = ∞.

(7.15)
We term this unique interaction index as the Faithful Shapley Interaction index (Faith-Shap),
and which has the form:

ΦF-Shap
S (f, ℓ) = a(f, S) + (−1)ℓ−|S| |S|

ℓ+ |S|

(
ℓ

|S|

)
∑

T⊃S,|T|>ℓ

(|T|−1
ℓ )

(|T|+ℓ−1
ℓ+|S| )

a(f, T), ∀S ∈ Sℓ,

(7.16)
where a(f, ·) is the Möbius transform of f(·). Moreover, its highest order interaction terms can be
expressed as a weighted average of discrete derivatives:

EF-Shap
S (f, ℓ) =

(2ℓ− 1)!
((ℓ− 1)!)2 ∑

T⊆[d]\S

(ℓ+ |T| − 1)!(d − |T| − 1)!
(d + ℓ− 1)!

∆S(f(T)) for all S ∈ Sℓ with |S| = ℓ.

(7.17)
When the maximum interaction order ℓ = 1, so that we only require singleton feature

contributions, the explanation coincides with the classical singleton Shapley values. Thus for
larger orders with ℓ > 1, Faith-Shap can be seen to be a “natural” generalization of the first-order
Shapley value. Note that the set of axioms it satisfies are (interaction extensions of) the classical
linearity, symmetry, dummy and efficiency axioms. As noted before in an interaction context
these axioms alone do not uniquely specify an interaction index. In contrast to the less intuitive
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axioms such as recursive and interaction distribution axioms, we merely require an interaction
extension of the faithfulness property of singleton Shapley values: that the interaction Shapley
values approximate the given set value function for all possible subsets.

7.4 Contrasting Faith-Interaction with other Interaction In-
dices

In this section, we compare our Faith-Interaction indices, specifically Faith-Shap, with the other
interaction indices introduced earlier.

Comparison with Shapley Interaction and Banzhaf Interaction Indices: As noted earlier,
the Shapley interaction and Banzhaf interaction indices do not satisfy the interaction efficiency
axiom, that states that the sum of interaction weights should equal the difference between the
value function evaluated over the complete and empty sets. A critical advantage of the interaction
efficiency axiom is that it forces the interaction index to distribute a fixed contribution (difference
between the value function evaluated over the complete and empty sets) among the different
interactions; without such a distributive requirement, the resulting weights can become quite
non-intuitive. For instances of such non-intuitive behaviors, we refer to Sundararajan et al. [158],
who provided many simple examples where the sum of Shapley interaction values over all subsets
diverges as the number of features increases, even when the value function is bounded and
f([d]) = 1. Another caveat with these two interaction indices is that they are not cognizant of the
maximum interaction order, and hence we cannot compute Shapley values that differ with varying
maximum interaction orders.

Comparison with Shapley Taylor index: The Shapley Taylor index does satisfy the four
axioms of interaction linearity, symmetry, dummy and efficiency. However, as noted earlier these
four axioms do not uniquely determine interaction indices. The fifth axiom Shapley Taylor index
then imposes for uniqueness is the interaction distribution axiom, which has caveats of imbalanced
distributions of values to coalitions of different orders, namely, inordinately favoring the maximum
interaction order. In particular, the interaction distribution axiom states that higher than max order
interaction values (order > ℓ) be distributed to the max-order interactions (order = ℓ), but these
max-order terms end up unable to solely explain all higher order interactions. On the other hand,
it entails lower than max order interactions (order < ℓ) do not take into account sub-coalitions
other than the empty set, which can be contrasted for instance with singleton Shapley value that
explicitly takes into account even higher order coalitions that contain the single feature. Thus the
interaction distribution has the consequence of making both lower and max order interactions less
faithful to the model.

In contrast, in our Faith-Interaction indices, even lower-order interaction weights take into
account all possible coalitions, and where the weights are balanced so that the overall set of
interaction indices optimally approximate the behavior of the underlying value function.
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7.4.1 Examples
Example 1: We illustrate the difference between these interaction indices using a function with
diminishing marginal utility. Consider the following value function with 11 features:

f(S) =

{
0 , if |S| ≤ 1.
|S| − p × (|S|2 ) , otherwise.

(7.18)

This function represents the payoff when any subset of 11 people work on a task. Each person
contributes 1 unit to the overall payoff, and the task requires at least 2 people. However, the
marginal utility is diminishing in nature, since any two people also have a probability of p of
being non-cooperative. Given this payoff function, it is worth reflecting that what the attributions
to individuals should be. While it might seem that zero is a good value since at least two people
are needed for the task, this attribution would only correspond to the marginal contribution of
an individual player i.e. how much a player would contribute when they are by themselves.
Whereas we would like our attributions to also take into account larger coalitions, and marginal
contributions to such larger coalitions: this is one of the motivations for considering coalitional
game-theoretic indices. Once we do so, then it can be seen that an individual effect of one is much
more reasonable. Similarly, we would expect that the pairwise interaction effects be close to −p.

In Table 7.1, we list the values for different interaction indices for p = 0.1, 0.2. When the
maximum interaction order ℓ = 1, all indices are similar since their restrictions to singleton are the
Shapley/Banzhaf values. When the maximum interaction order ℓ = 2, our Faith-Shap accurately
captures individual contribution and pairwise interaction effects by assigning 0.95/0.95 and
−0.091/ − 0.191 for order 1 and 2 and for p = 0.1/0.2 respectively, which are very close to the
intuitions we outlined earlier. However, the Shapley Taylor index assigns the individual effect
of i by using the marginal f({i})− f(Ø), which can be highly inaccurate since such a marginal
contribution does not take into account marginal contributions to larger coalitions.

For p = 0.1, Shapley Taylor along with Interaction Shapley assign a positive/zero value to
interaction effect, which suggests that forming groups have complimentary/no effects. On the
contrary, Banzhaf interaction and Faith-Banzhaf give negative values for interaction between
players, which correctly reflects the decrease in marginal utility of this game.

For p = 0.2, the Shapley Taylor index is uniformly zero for any order. This highlights the
other drawback of the Shapley Taylor index: the impoverished lower-order interaction indices
make the max-order indices less faithful to the model. Specifically, for p = 0.2, and with d = 11
players, we can see that f([d]) = f(∅) = 0. We have already seen that ΦTaylor

{i} (f, ℓ) = 0, for
i ∈ [d]. For ℓ = 2, we then have that the summation of the max-order (i.e. order two) indices
equals f([d]) − f(∅) − ∑d

i=1 ΦTaylor
{i} (f, ℓ) = 0 by the efficiency axiom. Since all max-order

indices have the same value by the symmetry axiom, the max-order indices are uniformly zero.
In this case, the Shapley Taylor indices do not take into account the function values f(S) with
ℓ ≤ |S| < d, and can be arbitrarily unfaithful to these orders. Here, the Banzhaf interaction
and Faith-Banzhaf again correctly reflect the negative interaction between players. However, the
Banzhaf interaction value gives a value close to 0 for the first-order indices. Taken together with
its negative interaction effects, it might seem that coalitions can only be hurtful to the payoff,
which is misleading since the total utility is positive when 2 to 10 players are present. On the other
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hand, our Faith-Banzhaf gives a positive value close to 1 for individual effects of order 1. Taken
together with its negative interaction effects, the value given by the Faith-Banzhaf seems more
intuitive: each single player contributes to the utility, while each pair of players hurts the utility.

Another instructive viewpoint for interaction values is by inspecting their utility for approx-
imating the overall payoff function. In Figure 7.1 and 7.2, we approximate the function f(S)
using ∑T⊆S,|T|≤2 ET(f, ℓ) for different interaction indices. We can see that our Faith-Shap/Faith-
Banzhaf are (almost) faithful to all orders except for |S| = 1. However, the Shapley Taylor index
is only fully faithful to the model when the order is 0, 1, 11, and curves for other interaction
indices are unfaithful.

Indices
p = 0.1 p = 0.2

ℓ = 1 ℓ = 2 ℓ = 1 ℓ = 2
Order 1 Order 1 Order 2 Order 1 Order 1 Order 2

Faith-Shap 0.5 0.95 -0.091 0 0.95 -0.191
Shapley Taylor 0.5 0 0.1 0 0 0

Interaction Shapley 0.5 0.5 0 0 0 -0.1
Banzhaf Interaction 0.51 0.51 -0.113 0.009 0.009 -0.213

Faith-Banzhaf 0.51 1.08 -0.113 0.009 1.08 -0.213

Table 7.1: Values for different interaction indices of different orders for p = 0.1, 0.2 with different
maximum interaction orders. Note that ΦF-Shap

Ø (f, ℓ) = 0 and ΦF-Bzf
Ø (f, ℓ) = −0.24 for both

p = 0.1 and p = 0.2.

Figure 7.1: Function approximation of
Eqn.(7.18) using different interaction indices
for p = 0.1 with the maximum interaction or-
der ℓ = 2.

Figure 7.2: Function approximation of
Eqn.(7.18) using different interaction indices
for p = 0.2 with the maximum interaction or-
der ℓ = 2.

Example 2: We provide another example, this time with increasing marginal utility. Consider a
family who are in the wind energy business, with d = 11 family members. Currently, the family
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owns 1 wind turbine, and they can get 3 units of revenue per wind turbine they own. Now, each
family member is considering whether to manage a wind turbine. To build x wind turbines, the
cost is described by the function cost(x) = x + 2 log(x + 1), as they may get a discount from
the constructor to build more wind turbines at the same time. If exactly one member chooses to
manage a wind turbine, the building cost will be 0 since the family already owns one wind turbine.
The total revenue for the family when S is the set of members that participate in building new
wind turbines can be described by the following function:

f(S) =


0 , if |S| = 0.
3 , if |S| ≤ 1.
3|S| − (|S| − 2 log(|S|+ 1)) , if 2 ≤ |S| ≤ 11.

(7.19)

This function has an increasing marginal utility since the marginal cost is decreasing. Therefore,
we would expect the interaction effect to be positive. However, from Table 7.2, only Faith-Shap,
Faith-Banzhaf and Banzhaf interaction indices capture this effect.

Moreover, the Faith-Shap and Faith-Banzhaf indices have the following intuitive interpretation:
Having one more member joining the family business increases the total revenue by 1.20/1.19
unit, with 0.07/0.09 additional unit of revenue when two members join together since they are
cooperative. In contrast, we can not interpret the Banzhaf interaction index for orders 1 and 2
jointly since it is not cognizant of the maximum interaction order ℓ.

Indices
ℓ = 1 ℓ = 2

Order 1 Order 1 Order 2
Faith-Shap 1.55 1.20 0.07

Shapley Taylor 1.55 3 -0.29
Shapley Interaction 1.55 1.55 -0.12

Faith-Banzhaf 1.65 1.19 0.09
Banzhaf Interaction 1.65 1.65 0.09

Table 7.2: Values for different interaction indices
of different orders with the maximum interaction
order ℓ = 2. Note that ΦF-Shap

Ø (f, ℓ) = 0 and
ΦF-Bzf

Ø (f, ℓ) = 0.48 for the indices corresponding
to empty sets.

Figure 7.3: Function approximation of
Eqn.(7.19) using different interaction in-
dices with the maximum interaction order
ℓ = 2.

7.5 Algebraic Properties of Faith-Interaction Indices

In the following two sub-sections, we discuss how Faith-Shap can be represented as a cardinal
index, as well as through the lens of a multilinear approximation.
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7.5.1 Cardinal Indices
Grabisch and Roubens [59] show that any interaction index (they only consider the classical case
with maximum interaction order ℓ = d) that satisfies the linearity, dummy, and symmetry axioms
necessarily has the following form:

ΦS(f, d) = ∑
T⊆[d]\S

p|S||T|∆Sf(T), ∀S ⊆ [d], (7.20)

and for some family of constants {ps
t}s∈[0:d],t∈[0:d−s]. They term this class of interaction indices

as cardinal interaction indices. Of course this is a large class, and it is not apriori clear how to
further constrain the indices so as to get specific values for the constants {ps

t}. We remark in
passing that Shapley and Banzhaf interaction indices impose additional structure on the constants
{ps

t}.
We can also consider the class of probabilistic interaction indices:

ΦS(f, d) = ∑
T⊆[d]\S

pS
T∆Sv(T),

where for any S ⊆ [d], the constants {pS
T}T⊆[d]\S form a probability distribution on [d]\S. We can

then define cardinal-probabilistic indices as those indices that are both cardinal and probabilistic
interaction indices, so that pS

T = p|S||T|, for some family of constants {ps
t}s∈[1:d],t∈[0:d−s] that

satisfy:
d−s

∑
t=0

(
d − s

t

)
ps

t = 1.

Fujimoto et al. [47] shows that indices that satisfy certain additivity, monotonicity, symmetry, and
dummy partnership axioms are necessarily cardinal probabilistic indices. As Fujimoto et al. [47]
shows, Shapley and Banzhaf interaction indices do fall into this class.

One could of course naturally extend these notions of cardinal, probabilistic and cardinal-
probabilistic indices to be cognizant of the maximum interaction order ℓ ∈ [d]. It is an interesting
open question to investigate extensions of results of Fujimoto et al. [47] to such a sub-class of
cardinal-probabilistic indices cognizant of the max-interaction order. In this section, we provide
a modest initial result along these lines, focusing on the top interaction level of the interaction
index.
Proposition 16. For any maximum interaction order 1 ≤ ℓ ≤ d, and for any set value function
f : 2d 7→ R, the top level of the Faithful Shapley Interaction index can be expressed as a
cardinal-probabilistic index:

ΦF-Shap
S (f, ℓ) = ∑

T⊆[d]\S
pℓ|T|∆S(f(T)), ∀S ⊆ [d] with |S| = ℓ, (7.21)

where pℓt =
(2ℓ−1)!(ℓ+t−1)!(d−t−1)!

((ℓ−1)!)2(d+ℓ−1)! . Moreover, it satisfies ∑d−ℓ
t=0 (

d−ℓ
t )pℓt = 1.

Therefore, the top level of the Faithful Shapley Interaction index captures the interactions of
features in S in the presence of all subsets T ⊆ [d]\S.
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7.5.2 Multilinear Formulation

Any set value function f : 2[d] 7→ R has a unique multi-linear extension g : [0, 1]d 7→ R, also
referred to the Owen multilinear extension [121], given as:

g(x) := ∑
T⊆[d]

f(T)∏
i∈T

xi ∏
i ̸∈T

(1 − xi), ∀x ∈ [0, 1]d.

For any set S ⊆ [d], with S = {i1, . . . , is}, denote its S-derivative as ∆Sg(x) := ∂sg(x)
∂xi1

...∂xis
.

7.5.2.1 Path Integrals

Grabisch et al. [61] show that Shapley interaction index can be written as:

ΦShap
S (f, d) =

∫ 1

x=0
∆Sg(x, . . . , x)dx, ∀S ⊆ [d].

That is, we can obtain the Shapley interaction index by integrating the S-derivative along the
diagonal of the unit hypercube.

On the other hand, the Banzhaf interaction index can be written as:

ΦBzf
S (f, d) =

∫
x∈[0,1]d

∆Sg(x)dx, ∀S ∈ Sd.

That is, we can obtain the Banzhaf interaction index by integrating the S-derivative over the entire
unit hypercube. In this case, it also has the closed form: ∆Sg(1/2, . . . , 1/2).

Fujimoto et al. [47] show that any cardinal probabilistic index Φ has the form:

ΦS(f, d) =
∫ 1

x=0
∆Sg(x, . . . , x)dF|S|(x), ∀S ∈ Sd,

for some family of CDFs {Fs}s∈[d]. That is, we can obtain any cardinal probabilistic index
by integrating the S-derivative along the diagonal of the unit hypercube with respect to some
distribution over [0, 1].

It is an interesting open question whether we could extend these results from Grabisch et al.
[61] and Fujimoto et al. [47] to interaction indices that are cognizant of the maximum interaction
order ℓ ∈ [d]. In this section, we provide a modest initial result along these lines, focusing on the
top interaction level of the interaction index.
Proposition 17. For any maximum interaction order 1 ≤ ℓ ≤ d, and for any set function
f : 2d 7→ R, the top level of the Faithful Shapley Interaction index value can be expressed as:

ΦF-Shap
S (f, ℓ) =

∫ 1

x=0
∆Sg(x, · · · , x)dIx(ℓ, ℓ), ∀S ∈ Sℓ with |S| = ℓ, (7.22)

where Ix(ℓ, ℓ) is cumulative distribution function of the beta distribution B(x; ℓ, ℓ).
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7.5.2.2 Taylor Expansion

In contrast to path integrals, Sundararajan et al. [158] use the Taylor expansion of g(1) = f([d])
around g(0) = f(Ø) Taylor derivations to derive their interaction index. Specifically, they show
that Shapley Taylor index ΦTaylor

S (f, ℓ) is equal to the |S|th term of the (ℓ− 1)th order Taylor
expansion of g(·) with Lagrange remainder:

g(1) =
ℓ−1

∑
j=0

g(j)(0)
j!

g(0) +
∫ 1

x=0

(1 − x)ℓ−1

(ℓ− 1)!
g(ℓ)(x, · · · , x)dx

=
ℓ−1

∑
j=0

∑
|S|=j

∆Sg(0) + ∑
|S|=ℓ

∫ 1

x=0
ℓ(1 − x)ℓ−1∆Sg(x, · · · , x)dx

[158, Theorem 3]

=
ℓ−1

∑
j=0

∑
|S|=j

ΦTaylor
S (f, ℓ) + ∑

|S|=ℓ

ΦTaylor
S (f, ℓ),

where g(j)(x) is the jth derivative of the function g(x, · · · , x), ΦTaylor
S (f, ℓ) = ∆Sg(0) for |S| < ℓ

and ΦTaylor
S (f, ℓ) =

∫ 1
x=0 ℓ(1 − x)ℓ−1∆Sg(x, · · · , x)dx with |S| = ℓ. This can be seen to result

in impoverished lower order subset interactions, which now no longer take into account higher
order coalitions that include that subset.

7.5.2.3 Pseudo-Boolean Function Approximation

While we have so far discussed the continuous multi-linear extension of a set value function
f : 2[d] 7→ R, we can also simply consider its equivalent pseudo-Boolean counterpart g ∈ F with
F = {g : {0, 1}d 7→ R}:

g(x) := ∑
T⊆[d]

f(T)∏
i∈T

xi ∏
i ̸∈T

(1 − xi), ∀x ∈ {0, 1}d.

One can also derive the pseudo-Boolean function gΦ corresponding to interaction indices Φ,
and ask for interaction indices with pseudo-Boolean counterparts gΦ that best approximate the
pseudo-Boolean counterpart g of the set value function. Specifically, given a maximum interaction
order ℓ ∈ [d] and an interaction index Φ ∈ Rdℓ , its pseudo-Boolean counterpart gΦ ∈ F is
defined as:

gΦ(x) := ∑
T⊆[d],|T|≤ℓ

ΦT(f, ℓ)∏
i∈T

xi, ∀x ∈ {0, 1}d.

Hammer and Holzman [67] and Grabisch et al. [61] consider solving for the best ℓ2-norm ap-
proximation by the function gΦ(·) with degree up to ℓ. That is, ∥g− gΦ∥2 =

√
∑x∈{0,1}d(g(x)− gΦ(x))2.

Using this perspective, we can see that Faith-Banzhaf interaction indices can in turn be related to
such a function approximation:

ΦF-Bzf(f, ℓ) = min
Φ∈Rdℓ

∥g(x)− gΦ(x)∥2 = min
Φ∈Rdℓ

∑
S⊆[d]

f(S)− ∑
T⊆S,|T|≤ℓ

ΦT

2

,
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and where the solution has the closed-form expression we detail in Theorem 18.
For the singleton attribution case, with max order ℓ = 1, Ding et al. [36] and Ruiz et al. [133]

consider µ-norm function approximations ∥g(x)− gΦ(x)∥µ =
√

∑x∈{0,1}d µ(x)(g(x)− gΦ(x))2,

but where µ only depends on ∥x∥1, and where µ(0) and µ(1) can both be infinity. Ding et al.
[36] provide a closed-form expression for gΦ(x), while Ruiz et al. [133] analyze its axiomatic
properties.

For the specific case where the probability of coalition S can be expressed as µ(x) =
∏i:xi=1 pi ∏j:xj=0(1 − pj) for some 0 < pi < 1 indicating the probability of the feature i being

present, Ding et al. [37] and Marichal and Mathonet [109] considers solving the best ℓth order
polynomial approximation under ∥ · ∥µ norm.

In contrast to the above work, our developments could be cast as pseudo-Boolean approxi-
mations for the general weighted norm case ∥ · ∥µ, for general weighting functions µ(·) without
stringent structural assumptions, and while allow for arbitrary maximum interaction orders ℓ ∈ [d].

7.6 Experiments
We first provide some experiments validating the relative computational efficiency of computing
our Faith-Interaction indices, followed by quantitative and qualitative demonstrations of their use
as explanations of ML models over a language dataset.

The language dataset we use throughout the experiment is the simplified IMDB [107] dataset,
where the model only uses the first two sentences of movie reviews as input, and predicts the
probability of the reviews being positive. The model being explained is a BERT language model
[34] with 0.82 accuracy on the test set.

7.6.1 Computational Efficiency

Exact computation of interaction indices that aggregate over all possible feature subsets exactly
typically requires 2d model evaluations (with d features) which is impractical in most machine
learning applications. A key advantage of our Faith-Interaction indices, as compared to other
recently proposed interaction indices such as the Shapley Taylor index and Shapley Interaction
index, is that they can be computed by solving a weighted least squares problem. As we empirically
show in this section, this enables us to provide more accurate estimates with fewer model
evaluations, compared to the other recent approaches that employ permutation-based sampling
methods.

Setup: To demonstrate the computational efficiency of Faith-Interaction indices, we compare
our proposed Faith-Shap with Shapley interaction and Shapley Taylor interaction indices using
different estimation methods. For the Faith-Shap interaction index, we sample each coalition
S ∈ [d] with probability ∝ d−1

( d
|S|) |S| (d−|S|)

, and set µ(Ø) and µ([d]) to a large number (in lieu of

infinity). We then solve the corresponding linear regression problem with ℓ1 regularization, and
regularization parameter α = 10−6 and α = 10−4 for maximum interaction orders ℓ = 2 and
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ℓ = 3 respectively. For the Shapley Taylor interaction and Shapley Interaction indices, we use the
permutation-based sampling methods.

We compare these indices in two settings: (1) language data: we randomly choose 50
data with length d = 15 from simplified IMDB dataset and set ℓ = 3. (2) sparse synthetic
function: We parameterize the synthetic sparse function f : 2d → R with ∑N

i=1 ai ∏j∈Si
xi, where

S1, S2, · · · , SN are subsets of [d] and a1, · · · , aN are coefficients. We set d = 70, N = 30, ℓ = 2,
sample each ai uniformly over [ i

10 , i
10 ], and each Si uniformly over subsets of |S| with sizes ≤ 5.

To measure how close is an interaction index to its ground-truth value, we use two evaluation
metrics: (1) averaged squared distance, ∥Φ − Φest∥2

2/(d
ℓ), and (2) precision at 10, which we

measure the proportion of top-10 feature interactions (with respect to absolute value) in the top-10
ground-truth interactions as top interactions are more critical when these indices are used in XAI.
We also note that we drop the lower-order indices and only compare top-order indices (order=ℓ)
since computing lower-order Shapley Taylor indices are trivial. Each evaluation metric is reported
by averaging 50 different inputs with 100/10 different random seeds for language data and sparse
synthetic functions, respectively.

Results: From Figure 7.4, we see that Faith-Shap can be estimated more accurately and uses
fewer model evaluations: in both language data and sparse settings, as well as in terms of all
evaluation metrics.

(a) Averaged squared dis-
tance (language).

(b) Precision@10 (lan-
guage).]

(c) Average squared dis-
tance (sparse)

(d) Precision@10
(sparse).

Figure 7.4: Comparison of Faith-Shap, Shapley Taylor and Shapley interaction indices in terms
of computational efficiency in language data and synthetic sparse functions. The shaded areas
indicate the 5th and 95th percentiles.

7.6.2 Explanations on a Language Dataset
In this section, we use our Faith-Shap interaction index to explain a deep-learning model on the
simplified IMDB dataset. We set the maximum interaction order ℓ = 2. Table 7.3 shows some of
the interesting interactions we found.

In the first two examples, we see non-complementary interaction effects. In the first example,
while the importance values of the individual words “Never” and “forgot” are negative (as shown
in Tables 7.5, 7.6), their joint effect as shown in the table here is extremely positive. Similarly,
for the second, the words “only” and “good” are individually positive, while their joint effect
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Index
Sentences (bold words are the interactions with the highest (absolute) importance
values)

Model
Predic-
tion

Interaction
score

1 I have Never forgot this movie. All these years and it has remained in my life. Positive 0.818

2
TWINS EFFECT is a poor film in so many respects. The only good element is that it
doesn’t take itself seriously..

Negative -0.375

3
I rented this movie to get an easy, entertained view of the history of Texas. I got a
headache instead.

Negative 0.396

4
Truly appalling waste of space. Me and my friend tried to watch this film to its
conclusion but had to switch it off about 30 minutes from the end.

Negative 0.357

5 I still remember watching Satya for the first time. I was completely blown away. Positive 0.283

Table 7.3: Top interactions of different examples on IMDB.

is strongly negative. The fourth and fifth examples show more subtle non-complementarity
effects. In the fourth example, while the individual words “headache” and “instead” have negative
importance scores, their joint effect is positive, since the total effect of the phrase is less than
the sum of the individual importance of these two words. The last example shows the effect of
complementarity: words in a phrase are only meaningful when all words are present, and hence
have a positive interaction effect. In Tables 7.4, 7.5, 7.6, we further show the top-15 important
interactions and compare them to those from the Shapley Taylor index. We find that the first-order
Shapley Taylor index yields meaningless interactions since they are the difference of predicted
probabilities of a sentence containing only one word and an empty sentence (a baseline). They
are all nearly zero since both the empty sentence and the sentence containing only one word are
meaningless. This is another consequence of impoverished lower-order values of Shapley Taylor
indices.

7.7 Related work

In cooperative game theory, a set function f(·) with f(∅) = 0 corresponds to a transferable
utility game (TU-game), and a set function with order ≤ ℓ is called an ℓ-additive TU-game
[62]. Therefore, our approach can be viewed as a least squares approximation of a TU-game
by an ℓ-additive TU-game; see for instance Eqn. (7.10). Variants and special cases of this least
squares approximation problem have been studied in the cooperative game theory field. For
ℓ = 1, Charnes et al. [22] first give general solutions when the weighting function is symmetric
and positive, and show that the Shapley value results from a particular choice of the weighting
function. Ruiz et al. [132, 133] consider the same setting, and study the axiomatic properties
of the solutions of the least squares problems. Ding et al. [36] further generalize the previous
results by considering the cases where some weights are allowed to be zero. For the case where
maximum interaction order ℓ > 1, Hammer and Holzman [67] and Grabisch et al. [61] solve
the least squares problem when the weighting function is a constant, and show that the top-level
coefficients coincide with those of the Banzhaf interaction indices of order ℓ. Ding et al. [37] and
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Marichal and Mathonet [109] consider a certain weighted version of the problem, and propose
weighted Banzhaf interaction indices. Grabisch and Rusinowska [60] consider the approximation
problem under the constraints that both TU-games yield the same Shapley value. Marichal
and Roubens [110] extend the Shapley value and propose the chaining interaction index whose
definition is based on maximal chains of ordered sets. For more details on this line of work, see
the recent book [62]. From the lens of TU-game approximation, our work could be viewed as
allowing for general weighting functions µ(·) without stringent structural assumptions, as well as
arbitrary maximum interaction orders ℓ ∈ [d].

Feature interactions have also been investigated in the machine learning community. Lundberg
et al. [106] quantify feature interactions in tree-based models using the Shapley interaction index.
Tsang et al. [165] quantify the interaction within a feature group S via the marginal importance
f(S)− f(∅). Cui et al. [29], Janizek et al. [78] explain pairwise interactions in neural networks,
and Bayesian neural networks respectively via second-order derivatives. Singh et al. [145] build
hierarchical explanations within a deep neural network (DNN) using hierarchical clustering of
features. Tsang et al. [163] detect feature interactions by examining weight matrices of DNNs.
Tsang et al. [164] disentangle complex feature interactions within DNNs by forcing the weights
matrices to be block-diagonal. Molnar et al. [114] measures the strength of feature interaction via
accumulated local effects (ALE).

7.8 Conclusion
Deriving unique interaction indices that satisfy the interaction extensions of the individual Shapley
axioms has been a long-standing open problem. Existing approaches introduce additional less
natural axioms, with some even sacrificing natural ones such as efficiency, in order to specify
unique interaction indices. In this work, we take the alternate route of considering the family
of what we term faithful interaction indices, which similar to individual Shapley values, aim to
approximate the given set value function for all feature subsets. We show that when restricting
to the class of faithful interaction indices, we obtain a unique interaction index that satisfies the
interaction extensions of the individual Shapley axioms, and which we term the Faithful Shapley
Interaction Index (Faith-Shap). We show the benefits of the faithful Shapley interaction index via
specific games of interest where there is diminishing return and increasing return, and connect the
Faith-Shap to cardinal probabilistic indices and multilinear approximations. Finally, we show that
Faith-Shap is efficient to estimate thanks to its connection to weighted linear regression in sparse
settings, and provide some qualitative results for their use as explanations of machine learning
models on a real language dataset.
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Index Sentences
Predicted
Prob.

1

I have Never forgot this movie. All these years and it has remained in my life. 0.992

Faithful Shapley indices Shapley Taylor indices

Feature (interactions) Scores Feature (interactions) Scores

Never, forgot 0.818 Never, forgot 1.077

life 0.383 Never, life -0.211

forgot -0.254 remained, movie -0.177

and 0.168 Never, this -0.160

it 0.168 forgot, life -0.149

Never -0.163 and, forgot -0.149

years 0.156 in, life -0.143

All 0.132 Never, it -0.122

my 0.126 Never, movie -0.114

has 0.120 have, Never -0.110

have 0.112 I, have 0.106

Never, life -0.106 forgot, in -0.105

forgot, it -0.096 Never, All -0.104

my, life -0.086 years, life -0.101

this 0.081 it, forgot -0.101

Index Sentences
Predicted
Prob.

2

TWINS EFFECT is a poor film in so many respects. The only good element is that it
doesn’t take itself seriously.

0.012

Faithful Shapley indices Shapley Taylor indices

Feature (interactions) Scores Feature (interactions) Scores

poor -0.341 only, good -0.450

respects 0.297 EFFECT, good -0.182

only, good -0.243 good, is -0.171

poor, only 0.206 poor, film -0.169

good 0.176 only, element -0.168

poor, respects -0.173 doesn’t, poor 0.151

doesn’t -0.169 only, poor 0.150

poor, good 0.122 respects, poor -0.149

only, doesn’t 0.115 itself, poor -0.142

poor, doesn’t 0.111 respects, good -0.137

many 0.095 it, doesn’t -0.108

it 0.084 it, only -0.098

itself 0.083 take, seriously 0.095

element 0.076 doesn’t, good -0.094

poor, many -0.070 doesn’t, only 0.093

Table 7.4: Top-15 important feature (interactions) for Faithful Shapley indices and Taylor Shapley
indices for language dataset. The predicted probability is the out probability of the sentence
having positive sentiment.
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Index Sentences
Predicted
Prob.

3

I rented this movie to get an easy, entertained view of the history of Texas. I got a
headache instead.

0.026

Faithful Shapley indices Shapley Taylor indices

Feature (interactions) Scores Feature (interactions) Scores

instead -0.321 headache, instead 0.268

headache, instead 0.252 view, instead -0.178

headache -0.205 headache, Texas -0.139

easy, 0.158 rented, instead 0.137

view 0.130 instead, easy, -0.125

history 0.123 got, headache -0.118

rented -0.122 entertained, instead -0.115

Texas 0.101 rented, headache 0.109

entertained 0.095 got, easy, -0.108

rented, instead 0.085 got, history -0.105

Texas, headache -0.069 a, I -0.100

history, instead -0.064 view, history 0.100

the 0.059 got, rented -0.100

entertained, instead -0.057 got, a -0.099

this 0.052 history, an 0.094

Index Sentences
Predicted
Prob.

4

Truly appalling waste of space. Me and my friend tried to watch this film to its
conclusion but had to switch it off about 30 minutes from the end.

0.002

Faithful Shapley indices Shapley Taylor indices

Feature (interactions) Scores Feature (interactions) Scores

waste -0.345 appalling, waste 0.298

appalling, waste 0.257 Truly, waste -0.296

appalling -0.251 switch, it -0.248

Truly 0.169 tried, waste 0.230

waste, tried 0.167 but, watch -0.210

friend 0.162 friend, waste -0.184

space 0.149 friend, tried -0.172

tried -0.134 friend, but -0.169

Truly, waste -0.118 Truly, but -0.145

watch 0.087 but, waste 0.145

off -0.086 waste, watch -0.140

and 0.078 waste, off 0.138

waste, friend -0.074 had, space -0.128

waste, space -0.058 Truly, film 0.126

of 0.055 30, waste 0.124

Table 7.5: Top-15 important feature (interactions) for Faithful Shapley indices and Taylor Shapley
indices for language dataset. The predicted probability is the out probability of the sentence
having positive sentiment.
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Index Sentences
Predicted
Prob.

5

I still remember watching Satya for the first time. I was completely blown away. 0.994

Faithful Shapley indices Shapley Taylor indices

Feature (interactions) Scores Feature (interactions) Scores

remember 0.337 blown, away 0.345

blown, away 0.293 the, first 0.191

time 0.281 time, first 0.182

Satya 0.208 watching, for -0.169

remember, blown -0.158 time, away -0.167

watching 0.153 time, Satya -0.151

blown 0.146 time, still -0.145

time, away -0.127 still, watching -0.144

completely, away -0.101 I, watching -0.131

Satya, time -0.091 watching, first -0.128

remember, time -0.073 remember, away 0.118

I, watching -0.071 Satya, away -0.118

completely, blown 0.063 was, watching -0.115

first, blown -0.053 remember, blown -0.110

first 0.049 completely, away -0.107

Table 7.6: Top-15 important feature (interactions) for Faithful Shapley indices and Taylor Shapley
indices for language dataset. The predicted probability is the out probability of the sentence
having positive sentiment.
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Chapter 8

First is better than last for Language data
Influence

Training data influence methods study the influence of training examples on a model’s weights
(learned during the training process), and in turn on the predictions of other test examples. They
enable us to debug predictions by attributing them to the training examples that most influence
them, debug training data by identifying mislabeled examples, and fixing mispredictions via
training data curation. While the idea of training data influence originally stems from the study of
linear regression [28], it has recently been developed for complex machine learning models like
deep networks.

Prominent methods for quantifying training data influence for deep networks include influence
functions [89], representer point selection [179], and TracIn [128]. While the details differ, all
methods involves computing the gradients (w.r.t. the loss) of the model parameters at the training
and test examples. Thus, they all face a common computational challenge of dealing with the
large number of parameters in modern deep networks. In practice, this challenge is circumvented
by restricting the study of influence to only the parameters in the last layer of the network. While
this choice may not be explicitly stated, it is often implicit in the implementations of larger neural
networks. In this work, we revisit the choice of restricting influence computation to the last layer
in the context of large-scale Natural Language Processing (NLP) models.

We first introduce the phenomenon of “cancellation effect” of training data influence, which
happens when the sum of the influence magnitude among different training examples is much
larger than the actual influence sum. This effect causes most training examples to have a higher
magnitude of influence score, and reduces the discriminative power of data influence. We also
observe that different weight parameters may have different level of cancellation effects, and
the weight parameters of bias parameters and latter layers may have larger cancellation effects.
To mitigate the “cancellation effect” and find a scalable algorithm, we propose to operate data
influence on weight parameters with the least cancellation effect – the first layer of weight
parameter, which is also known as the word embedding layer.

While word embedding representations might have the issue of not capturing any high-
level input semantics, we surprisingly find that the gradients of the embedding weights do not
suffer from this. Since the gradient chain through the higher layers, it thus takes the high-level
information captured in those layers into account. As a result, the gradients of the embedding
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weights of a word depend on both the context and importance of the word in the input. We develop
the idea of word embedding based influence in the context of TracIn due to its computational and
resource efficiency over other methods. Our proposed method, TracIn-WE, can be expressed as
the sum of word embedding gradient similarity over overlapping words between the training and
test examples. Requiring overlapping words between the training and test sentences helps capture
low-level similarity, while the word gradient similarity helps capture the high-level semantic
similarity between the sentences. A key benefit of TracIn-WE is that it affords a natural word-level
decomposition, which is not readily offered by existing methods. This helps us understand which
words in the training example drive its influence on the test example.

We evaluate TracIn-WE on several NLP classification tasks, including toxicity, AGnews,
and MNLI language inference with transformer models fine-tuned on the task. We show that
TracIn-WE outperforms existing influence methods on the case deletion evaluation metric by
4 − 10×. A potential criticism of TracIn-WE is its reliance on word overlap between the training
and test examples, which would prevent it from estimating influence between examples that
relate semantically but not syntactically. To address this, we show that the presence of common
tokens in the input, such as a “start” and “end” token (which are commonly found in modern NLP
models), allows TracIn-WE to capture influence between semantically related examples without
any overlapping words, and outperform last layer based influence methods on a restricted set of
training examples that barely overlaps with the test example.

8.1 Preliminaries
Consider the standard supervised learning setting, with inputs x ∈ X , outputs y ∈ Y , and
training data D = {(x1, y1), (x2, y2), ...(xn, yn)}. Suppose we train a predictor f with pa-
rameter Θ by minimizing some given loss function ℓ over the training data, so that Θ =
arg minΘ ∑n

i=1 ℓ(f(xi), yi). In the context of the trained model f, and the training data D,
we are interested in the data importance of a training point x to the testing point x′, which we
generally denote as δ(x, x′).

8.1.1 Existing Methods
We first briefly introduce the commonly used training data influence methods: Influence func-
tions [89], Representer Point selection [179], and TracIn [128]. We demonstrate that each method
can be decomposed into a similarity term S(x, x′), which measures the similarity between a
training point x and the test point x′, and loss saliency terms L(x) and L(x′), that measures the
saliency of the model outputs to the model loss. The decomposition largely derives from an
application of chain rule to the parameter gradients.

δ(x, x′) = L(x)S(x, x′)L(x′)

The decomposition yields the following interpretation. A training data x has a larger influence
on a test point x′ if (a) the training point model outputs have high loss saliency, (b) the training
point x and the test point x′ are similar as construed by the model. In Section 8.2.3,we show that
restricting the influence method to operate on the weights in the last layer of the model critically
affects the similarity term, and in turn the quality of influence. We now introduce the form of each
method, and the corresponding similarity and loss saliency terms.
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Influence Functions:

Inf(x, x′) = −∇Θℓ(x, Θ)T H−1
Θ ∇Θℓ(x′, Θ),

where HΘ is the hessian ∑n
i=1 ∇2

Θℓ(x, Θ) computed over the training examples. By an application
of the chain rule, we can see that Inf(x, x′) = L(x)S(x, x′)L(x′), with the similarity term

S(x, x′) = ∂f(x,Θ)
∂Θ

T
H−1

Θ
∂f(x′,Θ)

∂Θ , and the loss saliency terms L(x) = ∂ℓ(x,Θ)
∂f(x,Θ)

. The work by Sui
et al. [153] is very similar to extending the influence function to the last layer to satisfy the
representer theorem.

Representer Points:

Rep(x, x′) = − 1
2λn

∂ℓ(x, Θ)

∂fj(x, Θ)
σ(x, Θ)Tσ(x′, Θ), (8.1)

where σ(x, Θ) is the final activation layer for the data point x, λ is the strength of the ℓ2
regularizer used to optimize Θ, and j is the targeted class to explain. The similarity term is
S(x, x′) = σ(x, Θ)Tσ(x′, Θ), and the loss saliency terms are L(x) = 1

2λn
∂ℓ(x,Θ)
∂fj(x,Θ)

, L(x′) = 1.

TracIn:

TracIn(x, x′) = −
d

∑
c=1

ηc∇Θcℓ(x, Θc)
T∇Θcℓ(x′, Θc), (8.2)

where Θc is the weight at checkpoint c, and ηc is the learning rate at checkpoint c. In the
remainder of the work, in our notation, we suppress the sum over checkpoints of TracIn for
notational simplicity. (This is not to undermine the importance of summing over past checkpoints,
which is a crucial component in the working on TracIn.) For TracIn, the similarity term is
S(x, x′) = ∇Θf(x, Θ)T∇Θf(x′, Θ), while the loss terms are L(x) = ∂ℓ(x,Θ)

∂f(x,Θ)
, L(x′) = ∂ℓ(x′,Θ)

∂f(x′,Θ)
.

8.1.2 Evaluation: Case Deletion
We now discuss our primary evaluation metric, called case deletion diagnostics [28], which
involves retraining the model after removing influential training examples and measuring the
impact on the model. This evaluation metric helps validate the efficacy of any data influence
method in detecting training examples to remove or modify for targeted fixing of misclassifications,
which is the primary application we consider in this work. This evaluation metric was also noted
as a key motivation for influence functions [89]. Given a test example x′, when we remove
training examples with positive influence on x′ (proponents), we expect the prediction value for
the ground-truth class of x′ to decrease. On the other hand, when we remove training examples
with negative influence on x′ (opponents), we expect the prediction value for the ground-truth
class of x′ to increase.

An alternative evaluation metric is based on detecting mislabeled examples via self-influence
(i.e. influence of a training sample on that same sample as a test point). We prefer the case
deletion evaluation metric, as it more directly corresponds to the concept of data influence. Similar
evaluations that measure the change of predictions of the model after a group of points is removed
is seen in previous works. Han et al. [70] measures the test point prediction change after 10%
training data with the most and least influence are removed, and Koh et al. [91] measures the
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correlation of the model loss change after a group of trained data is removed and the sum of
influences of samples in the group, where the group can be seen as manually defined clusters of
data.

Deletion curve. Given a test example x′ and influence measure δ, we define the metrics
DEL+(x′, k, δ) and DEL−(x′, k, δ) as the impact on the prediction of x′ (for its groundtruth class)
upon removing top-k proponents and opponents of x′ respectively:

DEL+(x′, k, δ) = E[ fc(x′, Θ+;k)− fc(x′, Θ)],

DEL−(x′, k, δ) = E[ fc(x′, Θ−;k)− fc(x′, Θ)],

where, Θ+;k ( Θ−;k) are the model weights learned when top-k proponents (opponents) according
to influence measure I are removed from the training set, and c is the groundtruth class of x′. The
expectation is over the number of retraining runs. We expect DEL+ to have large negative, and
DEL− to have large positive values. To evaluate the deletion metric at different values of k, we
may plot DEL+(x′, k, δ) and DEL−(x′, k, δ) for different values of k, and report the area under the
curve (AUC): AUC-DEL+ = ∑km

k=k1

1
m DEL+(x′, k, δ), and AUC-DEL− = ∑km

k=k1

1
m DEL−(x′, k, δ).

We note that the case deletion diagnostics is different to the leave-one-out evaluation of Koh
and Liang [89] by two points. First, leave-one-out evaluation focuses on removing one point,
which is more meaningful in the convex regime where the optimization is initialization-invariant.
We consider the leave-k-out evaluation which is closer to actual applications, as one may need
to alter more than one training data to fix a prediction. Second, we consider the expected value
of leave-k-out, to hedge the variance caused by specific model states, which was pointed out by
Søgaard et al. [149] to be a major issue for leave-one-out evaluation (especially when the objective
is no longer convex).

8.2 Cancellation Effect of Data Influence
The goal of a data influence method is to distribute the test data loss (prediction) across training
examples, which can be seen as an attribution problem where each training example is an agent.
We observe cancellation across the data influence attributions to training examples, i.e., the sign
of attributions across training examples disagree and cancels each other out. This leads to most
training examples having a large attribution magnitude, which reduces the discriminatory power
of attribution-based explanations.

Our next observation is that the cancellation effect varies across different weight parameters.
In particular, when a weight parameter is used by most of the training examples, the cancellation
effect is especially severe. One such parameter is the bias, whose cancellation effect is illustrated
by the following example:
Example 1. Consider an example where the input x ∈ Rd is sparse, and xi has feature i with
value 1 and all other features with value 0. The prediction function has the form f(x) = x · w + b.
It follows that a set of optimal parameters are wi = yi, b = 0. For a test point xt = x0, it is
clear that x0 should be the most influential training example contributing to reducing the loss of
xt, and w0 should be the most influential weight parameter that contributes to it. However, all
training examples will influence xt through the bias parameter b, while only x0 can influence xt
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through the parameter w0. We also note that the gradients ∂L(f(x0),y0)
∂w0

and ∂L(f(x0),y0)
∂b will always

be equal mathematically, and thus TracIn(x0, xt) will be contributed by parameters w0 and b
equally. This will result in the bias parameter b, which is not crucial for the model f(·), to have
high influence magnitude but differing signs across all examples.

The above example illustrates that while the bias parameter is not important for the prediction
model (removing the bias can still lead to the same optimal solution), the total gradient that flows
through the bias is much higher than the gradient that flows through each wi. Hence, the total
influence that flows through the bias will be larger than that flowing through the weight, since
each training example’s gradient will affect the bias but the total contribution will be cancelled
out, so the bias will remain 0.

8.2.1 Measuring the Cancellation Effect
In the above example, we defined strong cancellation effect when some weight parameters does
not change a lot during training (or has saturated in the training process), but the total strength of
the gradient of the weight parameters summed over training data is large. For weights W, we first
define two terms ∆Wc and G(W)c,

∆Wc = ∥Wc+1 − Wc∥,

G(W)c = ∑
xi,yi∼D

ηc∥
∂l(xi, yi)

∂Wc
∥,

where ∆Wc measures the norm of weight parameter change between checkpoint c and c + 1,
and G(W)c measures the sum of weight gradient norm times learning rate summed over all
training data. When ∆Wc is small, this means that the weight W may have saturated at checkpoint
c, and the weight may not actually change the model output much. When G(W)c is large, this
means that the sum of gradient norm with respect to Wc is still large, and the influence norm
caused by ∂l(xi,yi)

∂Wc
will also be large.

To measure the cancellation effect, we define the cancellation ratio of a weight parameter W
as:

C(W) =
∑c G(W)c

∑c ∆Wc
.

When G(W)c is large and ∆Wc is small, this means that a non-important weight Wc caused a
large change in the total influence norm, which implies high cancellation. In the contrary, when
G(W)c is closer to ∆Wc, that means that the total actual weight change has a similar scale to the
total influence caused by the weight change, which implies low cancellation.

8.2.2 Removing Bias In TracIn Calculation to Reduce Cancellation Effect
To investigate whether removing weights with high cancellation effect really helps improve
influence quality, we conducted an experiment on a CNN text classification on Agnews dataset
with 87% test accuracy. The model is defined as follows: first a token embedding with dimension
128, followed by two convolution layers with kernel size 5 and filter size 10, one convolution
layers with kernel size 1 and filter size 10, a global max pooling layer, and a fully connected layer;
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all weights are randomly initialized. The first layer is the token embedding, the second layer is
the convolution layer, and the last layer is a fully connected layer.

The model has 21222 parameters in total (excluding the token embedding), in which 102
parameters are bias variables. We find C(bias) to be 16789, and C(weight) to be 2555, which
validates that the bias variables have a much stronger cancellation effect than the weight variables.
A closer analysis shows that G(bias) is similar to G(weight) (627206 and 559142), but ∆(bias)
is much smaller than ∆(weight) (0.74 and 4.37.) Even though the bias parameters has a much
smaller total change compared to the weight parameters, their impact on the gradient norm (and
thus influence norm) is even higher than the weight parameters. This verifies the intuition in
Example 1 that the bias parameter has a stronger cancellation effect since the gradient to bias is
almost activated for all examples despite the actual bias change being small.

To further verify that the TracIn score contributed by the bias may lower the overall discrimi-
natory power, we compute AUC-DEL+ and AUC-DEL− for TracIn and TracIn-weight on AGnews
with our CNN model. The AUC-DEL+ for TracIn and TracIn-weight is −0.036 and −0.065
respectively, and the AUC-DEL+ for TracIn and TracIn-weight is 0.011 and 0.046. The result
shows that by removing the TracIn score contributed by the bias (with only 102 parameters), the
overall influence quality improves significantly. Thus, in all future experiments, we automatically
remove the bias in calculation of data influence if not stated otherwise.

8.2.3 Influence of Latter Layers May Suffer from Cancellation
For scalability reasons, most influence methods choose to operate only on the parameters of the
last fully-connected layer Θlast. We argue that this is not a great choice, as the influence scores that
stems from the last fully-connected weight layer may suffer from cancellation effect, as different
examples “share logics” in the activation representation of this layer. Early layers, where examples
have unique logic, may suffer less from the cancellation effect. We report the cancellation ratio
for each of the TracIn layer varaint in Table 8.1, where TracIn-first, TracIn-second, TracIn-third,
TracIn-last, TracIn-All refer to TracIn scores based on weights of the first layer, second layer,
third layer, last layer, and all layers (the bias is always omitted). As we suspected, early layers
suffers less from cancellation, and latter layers suffers more from cancellation.

To assess the impact on influence quality, we evaluate the AUC-DEL+ and AUC-DEL− score
for TracIn calculated with different layers on the AGnews CNN model in Tab. 8.1. We observe
that removing examples based on influence scores calculated using parameters of later layers
(with more “share logic"") leads to worse deletion score compared to removing examples based
on influence scores calculated using parameters of earlier layers (with more “unique logic”).
Interestingly, the performance of TracIn-first even outperforms TracIn-all where all parameters
are used. We hypothesize that since the TracIn score based on later layers contain too much
cancellation, it is actually harmful to include these weight parameters in the TracIn calculation.
In the following, we develop data influence methods by only using the first layer of the model,
which suffers the least from cancellation effect.

8.3 Word Embedding Based Influence
In the previous section, we argue that using the latter layers to calculate influence may lead to
the cancellation effect, which over-estimates influence. Another option is to calculate influence
on all weight parameters, but may be computational infeasible when larger models with several
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Table 8.1: Cancellation Ratio and AUC-DEL table for various layers in CNN model in AGnews.

Dataset Metric TR-first TR-
second

TR-third TR-last TR-all

AGnews Cancellation ↓ 1863 2019 3126 2966 2368
AUC-DEL+ ↓ −0.077 −0.075 0.012 −0.016 −0.065
AUC-DEL− ↑ 0.045 0.022 0.006 −0.032 0.046

Table 8.2: Examples for word similarity for different examples containing word “not”.

Example Premise Hypothesis Label

S1 I think he is very annoying. I do not like him. Entailment
S2 I think reading is very boring. I do not like to read. Entailment
S3 I think reading is very boring. I do not hate burying myself in books. Contradiction
S4 She not only started playing the piano be-

fore she could speak, but her dad taught
her to compose music at the same time.

She started to playing music and mak-
ing music from very long ago.

Entailment

S5 I think he is very annoying. I don’t like him. Entailment
S6 She thinks reading is pretty boring She doesn’t love to read Entailment
S7 She not only started playing the piano be-

fore she could speak, but her dad taught
her to compose music at the same time

She started to playing music and mak-
ing music from quite long ago

Entailment

millions of parameters are used. To remedy this, we propose operating on the first layer of the
model, which contains the less cancellation effect since early layers encodes “unique logit”. The
first layer for language classification models is usually the word embedding layer in the case of
NLP models. However, there are two questions in using the first layer to calculate data influence:
1. the word (token) embedding contains most of the weight parameters, and may be computational
expensive 2. the word embedding layer may not capture influential examples through high-level
information. In the rest of this section, we develop the idea of word embedding layer based
training-data influence in the context of TracIn. We focus on TracIn due to challenges in applying
the other methods to the word embedding layer: influence functions on the word embedding
layer are computationally infeasible due to the large size (vocab size × embedding_dimension) of
the embedding layer, and representer is designed to only use the final layer. We show that our
proposed influence score is scalable thanks to the sparse nature of word embedding gradients, and
contains both low-level and high-level information since the gradient to the word embedding layer
can capture both high-level and low-level information about the input sentence.

8.3.1 TracIn on Word Embedding Layer
We now apply TracIn on the word embedding weights, obtaining the following expression:

TracIn-WE(x, x′) = −∂ℓ(x, Θ)

∂ΘWE

T ∂ℓ(x′, Θ)

∂ΘWE
, (8.3)
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Implementing the above form of TracIn-WE would be computationally infeasible as word em-
bedding layers are typically very large (vocab size × embedding dimension). For instance, a
BERT-base model has 23M parameters in the word embedding layer. To circumvent this, we
leverage the sparsity of word embedding gradients ∂ℓ(x,Θ)

∂ΘWE
, which is a sparse vector where only

embedding weights associated with words that occur in x have non-zero value. Thus, the dot
product between two word embedding gradients has non-zero values only for words w that occur
in both x, x′. With this observation, we can rewrite TracIn-WE as:

TracIn-WE(x, x′) = − ∑
w∈x∩x′

∂ℓ(x)
∂Θw

T

· ∂ℓ(x′)
∂Θw

, (8.4)

where Θw are the weights of the word embedding for word w. We call the term ∂ℓ(x)
∂Θw

T
· ∂ℓ(x′)

∂Θw
the word gradient similarity between sentences x, x′ over word w.

Table 8.3: Word Decomposition Examples for TracIn-WE

Sentence content Label

Test Sentence 1 - T1 I can always end my conversations so you would not get any answers because
you are too lazy to remember anything

Toxic

Test Sentence 2 - T2 For me, the lazy days of summer is not over yet, and I advise you to please
kindly consider to end one’s life, thank you

Toxic

Train Sentence - S1 Oh yeah, if you’re too lazy to fix tags yourself, you’re supporting AI universal
takeover in 2020. end it. kill it now.

Non-
Toxic

Word Importance Total

TracIn-WE(S1, T1) [S]: −0.28, [E]: −0.07, to: −0.15, lazy: −7.6, you: −0.3, end:−0.3,
too:−0.3

−9.2

TracIn-WE(S1, T2) [S]: −0.17, [E]: −0.23, to: 0.54, lazy: −0.25, you: 0.25, end: −3.12 −3.45

8.3.2 Interpreting Word Gradient Similarity
Equation 8.4 gives the impression that TracIn-WE merely considers a bag-of-words style similarity
between the two sentences, and does not take the semantics of the sentences into account. This
is surprisingly not true! Notice that for overlapping words, TracIn-WE considers the similarity
between gradients of word embeddings. Since gradients are back-propagated through all the
intermediate layers in the model, they take into account the semantics encoded in the various
layers. This is aligned with the use of word gradient norm ∥ ∂f(x)

∂Θw
∥ as a measure of importance of

the word w to the prediction f(x) [144, 169]. Thus, word gradient similarity would be larger for
words that are deemed important to the predictions of the training and test points.

Word gradient similarity is not solely driven by the importance of the word. Surprisingly,
we find that word gradient similarity is also larger for overlapping words that appear in similar
contexts in the training and test sentences. We illustrate this via an example. Table 8.2 shows
4 synthetic premise-hypothesis pairs for the Multi-Genre Natural Language Inference (MNLI)
task [173]. An existing pretrained model [73] predicts these examples correctly with softmax
probability between 0.65 and 0.93. Notice that all examples contain the word ‘not’ once. The
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word gradient importance ∥ ∂f(x)
∂Θw

∥ for “not” is comparable in all 4 sentences. The value of word
gradient similarity for ‘not’ is 0.34 for the pair S1-S2, and −0.12 for S1-S3, while it is −0.05
for S1-S4. This large difference stems from the context in which ‘not’ appears. The absolute
similarity value is larger for S1-S2 and S1-S3, since ‘not’ appears in a negation context in these
examples. (The word gradient similarity of S1-S3 is negative since they have different labels.)
However, in S4, ‘not’ appears in the phrase “not only ... but”, which is not a negation (or can be
considered as double negation). Consequently, word gradient similarity for ‘not’ is small between
S1 and S4. In summary, we expect the absolute value of TracIn-WE score to be large for training
and test sentences that have overlapping important words in similar (or strongly opposite) contexts.
On the other hand, overlap of unimportant words like stop words would not affect the TracIn-WE
score.

8.3.3 Word-Level Decomposition for TracIn-WE
An attractive property of TracIn-WE is that it decomposes into word-level contributions for both
the testing point x′ and the training point x. As shown in (8.4), word w in x contributes to

TracIn-WE(x, x′) by the amount ∂ℓ(x)
∂Θw

T
· ∂ℓ(x′)

∂Θw
1[w ∈ x′]; a similar word-level decomposition

can be obtained for x′. Such a decomposition helps us identify which words in the training
point (x) drive its influence towards the test point (x′). For instance, consider the example in
Table. 8.3, which contains two test sentences (T1, T2) and a training sentence S1. We decompose
the score TracIn-WE(S1, T1) and TracIn-WE(S1,T2) into words contributions, and we see that the
word “lazy” dominates TracIn-WE(S1, T1), and the word “end” dominates TracIn-WE(S1, T2).
This example shows that different key words in a training sentence may drive influence towards
different test points. The word decomposition of TracIn-WE is also helpful in applications where
we seek to fix mis-classifications by dropping or substituting words in the training examples that
most influence it.

8.3.4 An approximation for TracIn-WE
As we note in Sec. 8.3.1, the space complexity of saving training and test point gradients scales
with the number of words in the sentence. This may be intractable for tasks with very long
sentences. We alleviate this by leveraging the fact that the word embedding gradient for a
word w is the sum of input word gradients from each position where w is present. Given this
decomposition, we can approximate the word embedding gradients by saving only the top-k
largest input word gradients for each sentence. (An alternative is to save the input word gradients
that are above a certain threshold.) Formally, we define the approximation

∂ℓ(x, Θ)

∂Θw
|top-k = ∑

i∈xtop-k ∧ xi=w

∂ℓ(x, Θ)

∂xi (8.5)

where xi is the word at position i, and xtop−k is the set of top-k input positions by gradient norm.
We then propose

TracIn-WE-Topk(x, x) = − ∑
w∈x∩x′

∂ℓ(x, Θw)

∂Θw
|Ttop-k ·

∂ℓ(x′, Θw)

∂Θw
|top-k. (8.6)

Computational complexity Let L be the max length of each sentence, d be the word embedding
dimension, and o be the average overlap between two sentences. If the training and test point
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Figure 8.1: Deletion Curve for removing opponents (top figure, larger better) and proponents
(bottom figure, smaller better) on Toxicity (left), AGnews (mid), and MNLI (right).

gradients are precomputed and saved then the average computation complexity for calculating
TracIn-WE for m training points and n testing points is O(mnod). This can be contrasted with
the average computation complexity for influence functions on the word embedding layer, which
takes O(mnd2v2 + d3v3), where v is the vocabulary size which is typically larger than 104,
and o is typically less than 5. The approximation for TracIn-We-Topk drops the computational
complexity from O(mnod) to O(mnokd) where ok is the average overlap between the sets of
top-k words from the two sentences. It has the additional benefit of preventing unimportant words
(ones with small gradient) from dominating the word similarity by multiple occurrences, as such
words may get pruned. In all our experiments, we set k to 10 for consistency, and do not tune this
hyper-parameter.

8.3.5 Influence without Word-Overlap
One potential criticism of TracIn-WE is that it may not capture any influence when there are no
overlapping words between x and x′. To address this, we note that modern NLP models often
include a “start” and “end” token in all inputs. We posit that gradients of the embedding weights
of these tokens take into account the semantics of the input (as represented in the higher layers),
and enable TracIn-WE to capture influence between examples that are semantically related but
do not have any overlapping words. We illustrate this in S5-S7 in Tab. 8.2 via examples for the
MNLI task. Sentence S5 has no overlapping words with S6 and S7. However, the word gradient
similarity of “start” and “end” tokens for the pair S5-S6 is 1.15, while that for the pair S5-S7 is
much lower at −0.05. Indeed, sentence S5 is more similar to S6 than S7 due to the presence of
similar word pairs (e.g., think and thinks, annoying and boring), and the same negation usage. We
further validate that TracIn-WE can capture influence from examples without word overlap via a
controlled experiment in Sec. 8.4.

8.4 Experiments
We evaluate the proposed influence methods on 3 different NLP classification datasets with BERT
models. We choose a transformer-based model as it has shown great success on a series of
down-stream tasks in NLP, and we choose BERT model as it is one of the most commonly used
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Table 8.4: AUC-DEL table for various methods in different datasets.

Dataset Metric Inf-Last Rep TR-
last

TR-WE TR-WE-
topk

TR-TFIDF

Toxic AUC-
DEL+ ↓

−0.022 −0.021 −0.025 −0.105 −0.104 −0.067

AUC-
DEL− ↑

−0.001 0.006 0.007 0.122 0.125 0.044

AGnews AUC-
DEL+ ↓

−0.025 −0.021 −0.032 −0.148 −0.152 −0.083

AUC-
DEL− ↑

0.023 0.021 0.017 0.100 0.100 0.054

MNLI AUC-
DEL+ ↓

0.006 −0.198 −0.004

AUC-
DEL− ↑

0.026 0.169 0.005

Dataset Metric Inf-Last Rep TR-
last

TR-WE TR-WE-
topk

TR-WE-NoC

Toxic AUC-
DEL+ ↓

−0.011 −0.015 −0.007 −0.033 −0.016 0.005

Nooverlap AUC-
DEL− ↑

0.013 0.012 0.013 0.043 0.042 −0.002

transformer model. For the smaller Toxicity and AGnews dataset, we operate on the Bert-Small
model, as it already achieves good performance. For the larger MNLI dataset, we choose the
Bert-Base model with 110M model parameters, which is a decently large model which we believe
could represent the effectiveness of our proposed method on large-scale language models. As
discussed in Section 8.1.2, we use the case deletion evaluation and report the metrics on the
deletion curve.

Baselines One question to ask is whether the good performance of TracIn-WE is a result that it
captures the low-level word information well. To answer this question, we design a synthetic data
influence score as the TF-IDF similarity [135] multiplied by the loss gradient dot product for x
and x′. TR-TFIDF can be understood by replacing the embedding similarity of TracIn-Last by the
TF-IDF similarity, which captures low level similarity.

TR-TFIDF(x, x′) = −Tf-Idf(x, x′)
∂ℓ(x, Θ)

∂f(x, Θ)

T ∂ℓ(x′, Θ)

∂f(x, Θ)
. (8.7)

Toxicity. We first experiment on the toxicity comment classification dataset [81], which contains
sentences that are labeled toxic or non-toxic. We randomly choose 50, 000 training samples and
20, 000 validation samples. We then fine-tune a BERT-small model on our training set, which
leads to 96% accuracy. Out of the 20, 000 validation samples, we randomly choose 20 toxic and
20 non-toxic samples, for a total of 40 samples as our targeted test set. For each example x′ in
the test set, we remove top-k proponents and top-k opponents in the training set respectively,
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and retrain the model to obtain DEL+(x′, k, δ) and DEL−(x′, k, δ) for each influence method
δ. We vary k over {10, 20, . . . , 100}. For each k, we retrain the model 10 times and take the
average result, and then average over the 40 test points. We implement the methods Influence-last,
Representer Points, TracIn-last, TracIn-WE, TracIn-WE-Topk, TracIn-WE-Syn, TracIn-TFIDF,
and abbreviate TracIn with TR in the experiments. The AUC-DEL+ and AUC-DEL− scores are
reported in Table 8.4. We see that our proposed TracIn-WE method, along with its variants
TracIn-WE-Topk outperform other methods by a significant margin. As mentioned in Sec. 8.2.3,
TF-IDF based method beats the existing data influence methods using last layer weights by a
decisive margin as well, but is still much worse compared to TracIn-WE. Therefore, TracIn-WE
did not succeed by solely using low-level information.

AGnews. We next experiment on the AG-news-subset [64, 190], which contains a corpus of
news with 4 different classes. We follow our setting in toxicity and choose 50, 000 training
samples, 20, 000 validation samples, and fine-tune with the same BERT-small model that achieves
90% accuracy on this dataset. We randomly choose 100 samples with 25 from each class as our
targeted test set. The AUC-DEL+ and AUC-DEL− scores for k ∈ {10, 20, . . . , 100} are reported
in Table 8.4. Again, we see that the variants of TracIn-WE significantly outperform other existing
methods applied on the last layer. In both AGnews and Toxicity, removing 10 top-proponents
or top-opponents for TracIn-WE has more impact on the test point compared to removing 100
top-proponents or top-opponents for TracIn-last.

MNLI. Finally, we test on a larger scale dataset, Multi-Genre Natural Language Inference
(MultiNLI) [173], which consists of 433k sentence pairs with textual entailment information,
including entailment, neutral, and contradiction. In this experiment, we use the full training and
validation set, and BERT-base which achieves 84% accuracy on matched-MNLI validation set.
We choose 30 random samples with 10 from each class as our targeted test set. We only evaluate
TracIn-WE-Topk, TracIn-last and TracIn-TFIDF as those were the most efficient methods to run at
large scale. We vary k ∈ {20, . . . , 5000}, and the AUC-DEL+ and AUC-DEL− scores for our test
set are reported in Table 8.4. Unlike previous datasets, here TracIn-TFIDF does not perform better
than TracIn-Last, which may be because input similarity for MNLI cannot be merely captured
by overlapping words. For instance, a single negation would completely change the label of the
sentence. However, we again see TracIn-WE-Topk significantly outperforms TracIn-Last and
TracIn-TFIDF, demonstrating its efficacy over natural language understanding tasks as well. This
again provides evidence that TracIn-WE can capture both low-level information and high-level
information. The deletion curve of Toxicity, AGnews, MNLI is in shown in Fig. 8.1.

No Word Overlap. To assess whether TracIn-WE can do well in settings where the training
and test examples do not have overlapping words, we construct a controlled experiment on the
Toxicity dataset. Given a test sentence x′, we only consider the top-5000 training sentences (out
of 50, 000) with the least word overlap for computing influence. We use TF-IDF similarity to
rank the number of word overlaps so that stop word overlap will not be over-weighted. We also
find that when the word-embedding layer is fixed during training (result when word-embedding
is not fixed is in the appendix, where removing examples based on any influence method does
not change the prediction), sentence with no word overlaps carry more influence. The AUC-DEL+
and AUC-DEL− scores are reported in the lower section of Table 8.4. We find that TracIn-WE
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variants can outperform last-layer based influence methods even in this controlled setting, showing
that TracIn-WE can retrieve influential examples even without non-trivial word overlaps. In
Section 8.3.5, we claimed that this gain stems from the presence of common tokens (“start”,
“end”). To validate this, we compared with a controlled variant, TracIn-WE-NoCommon (TR-
WE-NoC) where the common tokens are removed from TracIn-WE. As expected, this variant
performed much worse on the AUC-DEL+ and AUC-DEL−scores, thus confirming our claim.

8.5 Related Work
In the field of explainable machine learning, our works belongs to training data importance
[79, 84, 89, 128, 153, 179]. Other forms of explanations include feature importance feature-based
explanations, gradient-based explanations [5, 10, 11, 104, 124, 129, 142, 144, 156, 181, 187]
and perturbation-based explanations [104, 124, 129, 181], self-explaining models [23, 100, 170],
counterfactuals to change the outcome of the model [35, 58, 74, 167, 168], concepts of the model
[88, 192]. For applications on applying data importance methods on NLP tasks, there have
been works identifying data artifacts [70, 125] and improving models [68, 69] based on existing
data importance method using the influence function or TracIn. In this work, we discussed
weight parameter selection to reduce cancellation effect for training data attribution. There
has been works that discuss how to cope with cancellation in the context of feature attribution:
Liu et al. [103] discusses how regularization during training reduces cancellation of feature
attribution, Kapishnikov et al. [82] discusses how to optimize IG paths to minimize cancellation
of IG attribution, and Sundararajan et al. [157] discusses improved visualizations to adjust for
cancellation.

8.6 Conclusion
In this work, we revisit the common practice of computing training data influence using only
last layer parameters. We show that last layer representations in language classification models
can suffer from the cancellation effect, which in turn leads to inferior results on influence. We
instead recommend computing influence on the word embedding parameters, and apply this
idea to propose a variant of TracIn called TracIn-WE. We show that TracIn-WE significantly
outperforms last versions of existing influence methods on three different language classification
tasks, with trained-from-scratch to fine-tuning training strategy, and also affords a word-level
decomposition of influence that aids interpretability.
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Chapter 9

Conclusion and Discussions

In this thesis, we have discussed extensive forms of objective criteria for different types of
explanations, where our main goal is to develop new and useful explanations based on the
objective criteria. Faithfulness-motivated objective criteria are crucial to capture model properties
by explanations, and theoretical-motivated objective criteria are useful to motivate the design
of explanations theoretically. Application-motivated objective criteria are closely connected to
real-world applications but may be less straightforward to guide our design of explanations. In
Chapter 8, we have demonstrated the deletion evaluation (a application-motivated objective
criterion) is useful for layer selection of explanations of TracIn [128], which itself is motivated by
theoretical-motivated objective criteria. This is an example where multiple objective criteria can
be combined to design a new explanation.

While our focus in this thesis is on how to use objective criteria to guide the design of
explanations, we emphasize that objective criteria should not be used as the golden standard
evaluation for explanations but rather as a motivation to design explanations. It is possible that
explanations satisfy some objective criteria, but is not interpretable or faithful to the model at
all. Therefore, users of explanations should always try to first understand the objective criteria
that motivated an explanation, and then decide whether these objective criteria suit the user’s
application. For instance, while we learn a set of complete concepts in [182], the concepts are not
guaranteed to be interpretable based on the completeness criteria. To address this, we introduced
an interpretable regularizer to enforce the concepts to be understandable by humans, which is
verified by a user study.

Another limitation is that the objective criteria might not be generally applicable to all use
cases. For example, the infidelity criteria require a user-defined perturbation, which makes a lot of
sense if the users know which features they would like to perturb. However, there may not be a very
clear perturbation distribution based on the application, and it may not be straightforward how to
use the infidelity metric. This limitation similarly applies to theoretically-motivated explanations,
as it may not always be obvious whether a specific axiomatic property is helpful for a user or
not. Therefore, the faithfulness-motivated and theoretically-motivated objective criteria should
be seen as a design motivation for explanations in a specific context but not a golden standard
evaluation for any explanations. Practitioners should only use the objective criteria to select
or design explanations when the objective criteria fit the user’s need (which potentially makes
the choice of “objective” criteria not so objective). On the other hand, the application-driven
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objective criteria may be more generally applicable to different explanations, since the evaluation
is designed with a specific application in mind, which can be applied whenever the application is
relevant to the end users. The pitfall of application-driven objective criteria is that it is usually not
as straightforward to design explanations that optimize the objective criteria.
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