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Abstract

An interesting area of machine learning is methods for multi-view
data, relational data whose features have been partitioned. Multi-view
learning exploits relationships between views, giving it certain advantages
over traditional single-view techniques, which may struggle to find these
relationships or only learn them implicitly. These relationships are often
especially salient in understanding the data or performing prediction.
This work explores an underutilized approach in multi-view learning:
to focus on multi-view relationships—the latent variables that govern
relations between views—themselves as units of analysis. We investigate
how this approach impacts analytics and inference in ways that standard
multi-view and single-view learning cannot. We hypothesize that by
ignoring relations between views or factoring them in only indirectly,
standard approaches risk overlooking key structure. Accordingly, our goal
is to investigate the extent multi-view relationships can be characterized
and employed as units of analysis in descriptive analytics and inference.
We present novel methods to do so, either using domain knowledge or by
learning from data, which reveal structure that alternative methods do
not or have competitive performance with the state of the art. Empirical
results are presented in several application domains. First, we use domain
knowledge to assume a known form for multi-view relationships in the
task of gamma source detection. We aggregate the views by filtering
their inferences collectively to perform classification. Second, we assume
multi-view relationships are linear and learn them from data in a different
approach toward gamma source detection. Our method detects anomalies
when these relationships are disrupted. Third, we relax the assumption
of linearity and propose a novel clustering method that finds cluster-wise
linear relationships. This method discovers explanatory structure in a
medical problem. Fourth, we extend this method to classification and
demonstrate its competitive performance on a load monitoring problem.
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Chapter 1

Introduction

A promising direction in machine learning is multi-view learning, which leverages

different ways to observe a data-generating process in order to discover novel

structure and enhance prediction. Formally, a relational dataset is multi-view if its

features are partitioned into multiple observation-aligned subsets, known as views.

This kind of natural partitioning exists in many common scenarios, such as:

Multiple sensors: Multiple sensors simultaneously observe related signals, where

each sensor is a view. For example, gamma-ray spectrometers at separate but nearby

locations search for a source in parallel. Their observed photons are related via source

and background radiation.

Time series: Temporal relations can be represented by consecutive sliding

windows. For example, each time step might have a window on either side. Each

window is a view and represents either “before” or “after” the time step. The views

are related via dynamics that determine change over time.

Multiple modalities: A subject can be observed through different mediums,

where each medium is a view. For instance, a sentence can be spoken or written in

the same language. Here the views would be related by semantic and language traits.

What the examples above—and practically all multi-view datasets—have

in common is a set of latent variables that governs the relationship between views.

These relationships often prove especially salient in understanding the data or

performing inference. The exploitation of this structure by multi-view learning

1



2 CHAPTER 1. INTRODUCTION

explains why it can exhibit advantages over single-view techniques, which may

struggle to find these relationships or only learn them implicitly.

1.1 Main objective

1.1.1 Background

This work explores an underutilized approach in multi-view learning: to focus

on multi-view relationships—the latent variables that govern relations between

views—themselves as units of analysis. We investigate how this approach impacts

analytics and inference in ways that standard multi-view and single-view learning

cannot.

We present an illustrative example in Figs. 1.1–1.3. These figures show a

multi-view dataset with three spatially overlapping clusters in two dimensions. Each

dimension represents a projection, such as the top principal component, of one of

two views. The ground truth is shown in Fig. 1.1. The result of common single-view

clustering methods is shown in Fig. 1.2. Since these methods operate on spatial

relationships, they fail to reveal the overlapping structure based on multi-view

relationships. Next, the result of a popular multi-view clustering approach is shown

in Fig. 1.3. Although this approach discovers overlapping clusters, it only finds

two clusters, and they appear to be random samples from the original distribution.

It finds clusters by applying a single-view approach to each view while enforcing

agreement between the results. The issue with this procedure is that all information

about the clusters is lost in this dataset if considered from only one view.

The failure of these methods broadly represents single-view and current

multi-view methods: by ignoring relations between views or factoring them in only

indirectly, they risk overlooking key multi-view structure. According to Liu et al.

(2013), multi-view clustering strategies can usually be grouped into three categories.

First, multiple views are integrated through the loss function, which includes the

method in Fig. 1.3. Second, multi-view data are projected to a common subspace,

in which any standard clustering algorithm is then applied. Third, a clustering

solution is computed for each view individually, and then they are all fused to

achieve a consensus. Every category, however, overlooks multi-view relationships.

Even the second category of subspace learning, though most similar to the ideas

we propose, ultimately operates on spatial relationships in some feature space by
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Figure 1.1: Ground truth clusters for an overlapping dataset, drawn translucently
to illustrate overlap.
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Figure 1.2: Clusters from k-means or spectral clustering for an overlapping dataset.
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Figure 1.3: Clusters from modern multi-view clustering for an overlapping dataset.
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spatially clustering data points in the end. These shortcomings generalize to almost

all multi-view learning. In contrast, our methods define the inference task at hand

through multi-view relationships, by, for example, identifying cluster variables as

the relations themselves. In short, almost all current multi-view methods lack an

additional layer of abstraction on top of views to truly separate themselves from

single-view methods that project into a different feature space or apply a specific

mode of regularization.

To provide this layer, we delve into three applied domains in which we showcase

largely empirical results from novel methods. First, we investigate the problem of

gamma source detection. A key research topic here is how to aggregate observations

from different points in time and space, using known temporal and spacial relations

between them to improve inference. Second, we examine physiological response

to bodily trauma by analyzing blood pressure. We consider the inspiration and

expiration phases of respiration as temporal views and learn the relationship between

them to discover explanatory structure across both time and subjects. Third, we

study how temporal views can improve inference in non-intrusive load monitoring.

Our methodology attempts to exploit temporal dynamics often overlooked by

standard methods.

One of these applications use an unconventional understanding of the notion

multi-view, which raises an important point about the definition. In Ch. 2 we explore

a task whose data are a multivariate time series. In our work it may be unclear at

first how the task is multi-view. The natural approach would be to directly partition

the features to obtain views, but instead we consider each time step itself as a

different view. The rationale is that each observation comes from a different point

in space, so they are different views of the same physical process. This idea reveals

that the term multi-view is highly nebulous. If this line of thinking is generalized

by treating observations of any dataset as views, an interesting argument can be

made that almost any dataset can be considered multi-view. Consequently, we must

clarify that we focus on multi-view datasets whose relationships between views are

governed by an explainable latent process. This focus excludes the vast majority

of arbitrary datasets because their observations are merely random samples from a

population. Interestingly, however, it could include many non-stationary time series

whose time steps are treated as views.

Furthermore, this thesis limits its scope to the development and evaluation of

multi-view methods to investigate certain scientific hypotheses. These hypotheses
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explore unconventional applications of machine learning and do not have much

crossover with popular problems and datasets in mainstream machine learning. For

example, an interesting multi-view problem is to develop cross-lingual models of

language, or word embeddings, using neural translation techniques (Ruder et al.,

2017). If different languages are seen as views, they are related by semantic variables.

It would be valuable to apply approaches in this work to this problem to show how

they could complement popular methods. Multi-view tasks like this one are especially

common in deep learning literature because of its suitability for modalities such as

vision, audio, and text. Nonetheless, these topics only rarely intersect the scientific

questions we study. We do our best to unite the two sides where relevant but mostly

attempt to contribute in an orthogonal direction.

1.1.2 Hypothesis

This thesis investigates multi-view relationships as units of analysis in two ways.

Part I assumes these relationships are known through domain knowledge to improve

inference. This work is highly specialized to the task of gamma source detection,

and we advance the state of the art in the aggregation of multiple views. Then

Part II does not assume these relationships are known, so it learns them from data

to perform clustering and classification. This idea has been previously addressed

in statistics and machine learning but has received minimal attention. We make

the earlier work more principled and show better empirical performance on gamma

source detection, medicine, and load monitoring.

In the end, both approaches demonstrate the utility of multi-view relationships.

This hypothesis is summarized by the thesis statement:

Thesis Statement: It is possible to characterize multi-view relationships and

employ them as units of analysis in descriptive analytics and inference.

We present novel methods that characterize multi-view relationships, either

using domain knowledge or by learning from data, and employ them as units of

analysis. They reveal structure that alternative methods do not or have competitive

empirical performance with the state of the art. This approach has received minimal

attention in the past.

Moreover, this thesis promotes the underused concept of learning on properties
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of data distributions, particularly in Part II. Typically, machine learning operates

on data points: a foundational condition is that similar points ought to have

similar labels. This work, however, suggests to examine not individual points but

multiple points as part of a distribution and then perform learning on properties

of that distribution. The condition here is that similar distributions ought to have

similar labels. For instance, our clustering method groups points together by which

multi-view relationships they satisfy—relationships that can be considered properties

of the data distribution. Thus, our work is one instance of learning on distributions.

We aim to show that this kind of thinking can lead to learning methods that

leverage novel characteristics of data. This concept has been studied in different

ways previously, but we are among the first to apply it to multi-view learning.

1.2 Outline

In Part I, we cover known multi-view relationships in the task of gamma source

detection. The problem of gamma source detection is to determine whether a

potentially harmful source is present given counts of radioactive particles in the

area. Every material, harmful or not, emits a spectrum of photons; this spectrum

is usually a signature of the emitting material. The sum of photons from all

sources is observed, but the target harmful source may or may not be present.

Although many methods exist already, they often make assumptions that may prove

unrealistic in practice. Ch. 2 proposes a method that handles the case when the

assumption of informative training data is violated (Lei et al., 2017a). Exploiting

smoothness in physical phenomena, this method may be considered multi-view

if observations from different times and locations are considered different views,

though admittedly this definition may be unconventional. Then Ch. 3 extends this

method to aggregate observations from multiple sensors that simultaneously move

on different paths, which can be regarded as separate views. The extension leverages

the contemporaneous relationships between the sensors using domain knowledge. We

show how the views can be aggregated by filtering their inferences collectively using

structural information about their relationships.

In Part II, we address the problem of learning multi-view structure and apply

it to descriptive analytics and inference. Ch. 4 proposes a method for gamma

source detection when the target source template is only partially known (Lei et al.,

2016). The method learns linear multi-view correlations and detects anomalies
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when these correlations are disrupted. Next, Ch. 5 extends this idea to nonlinear

multi-view correlations by introducing a clustering method whose correlations

are cluster-wise linear (Lei et al., 2017b, 2019). Standard clustering methods

such as k-means and spectral clustering group observations together based on

spatial relationships. However, another way to determine clusters is to instead

consider correlations between observations. In a multi-view setting, we can cluster

observations depending on the relationships between views. For example, it is

possible that for some observations the features X and Y have positive correlation

while for others it is negative. The chapter presents a novel method to accomplish this

multi-view correlation clustering inspired by Canonical Correlation Analysis (CCA),

a traditional statistical technique that somewhat resembles a two-view analogue

of Principal Components Analysis. In short, CCA finds latent components that

explain correlation between two views. Mathematically, it solves the optimization

maxu,v Corr(X>u, Y >v) where X and Y are random vectors and u and v are vectors

of coefficients. Our clustering method discovers correlations similar to those in CCA

that differ between clusters. We present empirical results on synthetic data and a

dataset in medicine that demonstrate the utility of the method.

Then, Ch. 6 extends the multi-view clustering method to perform supervised

classification by deciding class based on the cluster to which an observation

belongs (Lei et al., 2017b, 2019). This method is demonstrated on the medical

data and an electricity problem. This latter problem is called non-intrusive load

monitoring, the task of identifying which appliances in a building are responsible

for energy consumption. The total power consumption, which is the sum of

consumptions of individual devices, is measured at the utility service entry and

must be disaggregated. There are multiple ways to frame the problem, but here we

frame it as a pipeline and consider the first two modules: event detection and event

classification. Event detection is to identify time points at which an appliance is

turned on or off; event classification is to identify the appliance at each event. Our

classification method demonstrates superior results than state-of-the-art baselines

on a common benchmarking dataset. Lastly, Ch. 7 summarizes key ideas and results

and proposes future work.
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Part I

Multi-view filtering using known

multi-view relationships

9





Chapter 2

Gamma Source Detection by

Simultaneous Estimation of Source

Strength and Background

2.1 Introduction

This part of the thesis leverages multi-view relationships assuming they are known

through domain knowledge. In particular, we build toward a method to aggregate

multiple views by filtering. This specific chapter builds toward this goal by presenting

a filtering method for a single view. The subsequent chapter explains how multiple

views that each correspond to one of these filters can be combined through structural

information.

Variation in local background has long been recognized as a principal challenge

in gamma source detection (Ziock and Goldstein, 2002; Aage and Korsbech, 2003;

Ziock and Nelson, 2007; Aucott et al., 2014; Bandstra et al., 2016). Background

intensities and spectra vary with geology, composition of nearby buildings, amount

of visible sky, cloud cover, humidity, and other atmospheric conditions (Bandstra

et al., 2016). This variation may obfuscate detectability of especially less pronounced

threatening sources. It can be particularly impactful in the context of mobile

detectors as they move over heterogeneous environments. As a result, the data

generating distributions for source detection tasks differ from commonly assumed

Poisson and depend on application and environment (Bandstra et al., 2016). This

challenge is often addressed by building statistical models of background variation

11
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designed to account for and suppress its influence. This approach is prevalent in

source detection algorithms such as Spectral Anomaly Detection, Censored Energy

Window, and matched filters (Nelson and Labov, 2009, 2010; Huggins et al., 2014;

Tandon et al., 2016; Tandon, 2016). Modeling background variation requires training

data from which background distributions can be estimated. Systems such as

RadMAP (Bandstra et al., 2016) have been used to collect copious amounts of

background data to enable studying natural variation of background radiation.

However, during a source detection operation (the detection algorithm’s test time),

detection performance may suffer if the training data used to model background

variation does not represent well the actual distribution. This effect can be quite

limiting in practice when a detection algorithm needs to be used in new, unmapped

yet environments. For example, the background inside a tunnel is probably much

different from the outside.

To handle background variation, a state-of-the-art adaptive method is the

Orthonormal Subspace Projection Matched Filter (RDAK) (Labov and Nelson,

2019), which learns and updates a representation of background. However, it requires

a warm-up period of about 10 minutes before detection. This warm-up can be

considered another type of training, and there are practical scenarios in which it

would be infeasible, such as if

• Detection must begin as soon as possible, leaving no time for warm-up.

• The warm-up period could be contaminated by nuisance or threatening sources.

• The test background differs substantially from the warm-up.

These scenarios motivate our work. We propose a novel method that adapts to

current local background and substantially reduces dependence of gamma source

detection algorithms on relevant, comprehensive, and representative training data

or warm-up. We demonstrate its effectiveness in scenarios when a training set is

unavailable or when it differs from the background radiation distribution observed

at the time of deployment. Assuming that background spectra vary smoothly

over time and space, we apply filtering techniques to simultaneously track mean

background spectrum and estimate source intensity via the Kalman filter (Kalman,

1960). We test two approaches to detection. First, we directly use source intensity

estimated by the filter. Second we combine filtering with an existing detection

method by substituting the dynamically estimated rates for the methods’ static
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parameters. This work demonstrates this second approach on a classical matched

filter for source detection (Huggins et al., 2014). We illustrate the performance

of these approaches on a partially simulated roadside source detection task using

gamma-ray spectrometers in two authentic datasets. In the first dataset, we alter

training data to differ substantially from the test distribution in order to demonstrate

the robustness of the method. The proposed method is empirically compared to a

range of non-adaptive alternatives and demonstrates significant improvements in

robustness. In the second dataset, we make no changes to the original background

spectra, which contain more natural variation than the first. The method is compared

to the state of the art, RDAK. It is demonstrated to perform much better when both

methods have short but equal amounts of warm-up and when the warm-up differs

significantly from test background.

In general, the presented results suggest that it is possible to adaptively,

accurately, and simultaneously estimate the source intensity and background

spectrum in real-time without prior accurate knowledge of the background radiation

distribution, by exploiting smoothness in background rates and source intensity. The

proposed approach lessens dependence of gamma source detection systems on costly,

highly variable background radiation reference data for training capable detection

models. Additionally, it establishes an alternative to RDAK in scenarios where

warm-up is impractical.

2.2 Source detection task

This section describes foundations of the source detection task. The observed sets

of gamma-ray spectrometer measurements can be expressed as time-ordered vectors

of photon counts ct, wherein each position corresponds to a range of photon energies

(energy bin) and the photon counts are aggregated over a short period of time

(integration time). We consider binned data with a one-second integration time,

though the techniques used here could be easily modified for unbinned list-mode

data streams. The count ct,i of particles observed in time interval t and energy bin

i can be viewed as a Poisson random variable with rate λi(t) (Bai et al., 2011),

which can be decomposed into the sum of the background radiation rate and the

source radiation rate. Examples of a radiation source spectrum, and the result of

its injection into the background spectrum, are shown in Figure 2.1. Additionally,

source intensity is inversely proportional to the square of distance from the detector
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Figure 2.1: Example of a background radiation gamma-ray spectrum, source
radiation spectrum, and the injected spectrum, which is the sum of background
and source.

to the source (Miller et al., 2016). The higher the intensity, the more confident a

detection method should be that the sought after source is present, keeping other

factors constant such as relative distance between source to be detected and the

sensor, shape of background radiation spectrum, and the extent of its variability.

Although the energy spectra are known for most harmful materials, this

knowledge is often not sufficient when facing a noisy background environment due to

the effects of shielding, and to the sensor’s exposure to multiple emitting materials at

varying distances in its proximity, and so the perception of the environment would

vary depending on the spectrometer’s position and over time. Consequently, the

aggregate spectrum of the background sources is dynamic and generally not known

exactly, although it is often approximated in practice as the mean of background

spectra computed from a reference training set. The spectrum of the target source,
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on the other hand, can be assumed to be at least partially known by many detection

methods (Nelson and Labov, 2012; Tandon, 2016). This is helped by the libraries

constructed by domain experts: nuclear physicists have enumerated the spectra

of a wide array of possible source types of interest, with various configurations of

radioactive material and shielding (Nelson and Labov, 2012).

One requirement shared by all source detection methods listed above is a

training set of background measurements. Typically some properties of the training

background are learned, and when test measurements deviate from those properties,

they are considered more likely to involve a non-background source to be detected.

However, the training set could differ substantially from the test set, creating an

opportunity to reduce dependence on the training set by updating the model with

the test observations. To accomplish this, we propose an adaptive Kalman filter that

exploits smoothness to simultaneously estimate local source strength and background

spectrum.

2.3 Related work

2.3.1 Non-adaptive methods

Many non-adaptive methods have been proposed for source detection in the presence

of noisy background. One fundamental approach is to treat the source detection as

anomaly detection task in which one does not rely on information about the target

source, but instead builds a model of expected background distribution to compare

expected and measured spectra, and issue an alert when the observed discrepancy is

substantial. Well-known instances of this approach, Spectral Anomaly Detection

(SAD) methods are typically based on some variant of Principal Components

Analysis (PCA) to learn the expected characteristics of variability of background

radiation.

PCA-based anomaly detection (Nelson and Labov, 2012) utilizes a training set

of background measurements. The top principal components of the background

distribution are removed from consideration and new observations are scored by

their reconstruction error versus the basis reduced to the remaining low-eigenvalue

components. Conceptually, this approach learns the most important characteristics

of the background presumably random variability and then subtracts them from the

new measurements. If the remainder is small, then the measurement is adequately
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explained by background features. If the remainder is large, however, then the

measurement is not explained well by background, which may indicate the presence of

a novel source. A number of other Spectral Anomaly Detectors have been proposed as

well. Aage and Korsbech (2003) suggest noise-adjusted singular value decomposition

and a method of “stripping” away common background features. Runkle et al.

(2006) fit a multivariate normal distribution to background in the top principal

components space, and scored new observations by Mahalanobis distance. Du et al.

(2010) suggest using k-nearest neighbors in the top principal components space of

the background, given the availability of labeled training data. De-Arteaga et al.

(2015) use Canonical Autocorrelation Analysis to discover multivariate correlation

structures among subsets of bins of background spectra to create a null space model

for Spectral Anomaly Detection task.

If the source spectrum template is known, in contrast to the anomaly detection

scenario, more powerful classes of methods can be used. A popular type of method is

the classical matched filter (MF) (Turin, 1960), which often achieves state-of-the-art

results in radiation detection (Nelson and Labov, 2012). These filters attempt to

intelligently measure the presence of a template in a signal. For instance, a standard

MF that maximizes output signal-to-noise ratio takes as input a source template s

and data matrix of background counts Y and learns the filter h = Cov(Y )−1s. Then

a new observation y is scored as f(y) = hTy.

Another source-type-aware detection method is the Censored Energy Window

(CEW) (Nelson and Labov, 2012). CEW finds a set of energy bins, called the energy

window, in which a particular type of source is expected to be seen most clearly. A

regression model is then fit using background data to predict the total counts within

the window from the outer spectrum. New observations are scored according to the

degree to which the predicted in-window background counts are exceeded.

Other detection methods also exist. In Anderson et al. (2008), an approach

was presented that computes a ratio between observed and expected counts in

key energy bins. This method may be viewed as a precursor to the Censored

Energy Window Tandon (2016). An improved version of the ratio method was given

by Pfund et al. (2016). A method was developed by Bai et al. (2011) and Kump et al.

(2013) that uses the variable selection capability of LASSO regression Tibshirani

(1996) when fitting the observed spectra to their expected values. Other types of

statistical methods were surveyed by Fagan et al. (2012), including peak finding and

discriminant analysis. The authors point out that Bayesian methods were largely
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untapped at the time and could improve performance by incorporating all sources of

uncertainty. Subsequently, Tandon et al. (2016) developed Bayesian approaches for

aggregating multiple observations and detection methods to achieve better detection.

2.3.2 Orthonormal Subspace Projection Matched Filter

The Orthonormal Subspace Projection Matched Filter (herein called RDAK after

its software package) is an adaptive method that exhibits state-of-the-art detection

performance (Labov and Nelson, 2019). The main intuition is that when given a new

spectra, RDAK evaluates its discrepancy with previous background. The spectral

shape of the discrepancy is then compared to the source template. Mathematically,

it represents background with a basis B, similar to previous methods such as Spectral

Anomaly Detection. Unlike them, however, B is updated adaptively when the

current background does not fit. When RDAK has B at each step, it estimates

a diagonal precision matrix W from the mean ȳ of recent background counts as

W = (diag(ȳ) + cI)−1, where c > 0 is a small constant and I is the identity matrix.

The reason for W is to weight the energy bins to control for variance. Let s be the

source template and Y a new observation. The score of RDAK is

RDAK(y) =
s>W (I −B(B>WB)−1B>W )y√

|y|1
.

RDAK requires a warm-up period to learn B before detection can begin. In our

experiments, we find the ideal period to be 10 minutes.

2.4 Simultaneous estimation of source strength

and background

All the source detection methods described above rely on training data, which could

refer to warm-up, to learn characteristics of the background distribution. When

the training set resembles the test set, the methods perform well. Nonetheless, in

practice, there exist several scenarios in which training is infeasible. For example,

there may not be time to train or warm-up, or there could be source contamination.

Another example is if the test observations come from a much different distribution,

which could happen realistically with step changes in background resulting from
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sudden changes in environment, such as passing through a tunnel or building. In

these cases the methods above become less reliable. A final reason to avoid training

is that it would be practically convenient for methods to function without setup.

Accordingly, we introduce a method to adaptively estimate source strength and

background. We demonstrate how to limit dependence on training data and adapt

to the test data by exploiting smoothness in source intensity and background rates.

In particular, we simultaneously estimate source intensity and background spectrum

using an adaptive Kalman filter (Mehra, 1970). From these estimates we propose

two ways of source detection in the setting of a known source spectrum. First,

we simply use the source strength estimated by the method as a detection score.

Second, we improve existing methods by substituting the adaptively estimated rates

for static background parameters. In this work, we select classical MF (not RDAK)

to demonstrate this approach.
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Figure 2.2: Using the Kalman filter to estimate background rates from noisy
measurements in one energy bin over a sequence of 1-second spectral measurements.
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2.4.1 Notation

We consider discrete stochastic processes indexed by t ∈ {1, . . . , T}. We use ai:j to

refer to {ai, ai+1, . . . , aj} in a stochastic process {at}. Let x(i) be the ith element

of vector x. Let x(i:j) be a vector containing elements i through j (inclusive) of x.

Let diag(z) be a function that maps a vector z to a diagonal matrix whose diagonal

elements are given by z.

2.4.2 Kalman filter for radiation detection

First we explain the general Kalman filter, a widely used method for estimating an

unobserved signal (state) of a linear dynamical system underlying an observed noisy

discrete time series (Kalman, 1960). Implicitly assuming smoothness, it filters out

statistical noise to obtain more precise estimates of a signal, such as in Fig. 2.2.

Consequently, it is a natural candidate to model sequences of measured radiation

spectra. Let xt ∈ Rd be the state space and yt ∈ Rp be the observation at time t.

Let A ∈ Rd×d and C ∈ Rp×d be the transition and emission matrices respectively.

Let Qt ∈ Rd×d and Rt ∈ Rp×p be the covariances of process noise and measurement

noise respectively. The parameters A, C, {Qt}, and {Rt} are assumed to be known.

In this model we allow the covariances to be non-stationary, which is uncommon,

but as long as they are non-random, all calculations are functionally identical to the

stationary case. The linear dynamical system is defined as

xt+1 = Axt + wt yt = Cxt + vt

where E(wt) = 0, Var(wt) = Q, E(vt) = 0, and Var(vt) = R. We assume the {wt}
and {vt} are independent. The Kalman filter gives the best linear minimum mean

squared error estimator of xt given y1:t. Also, if the noise variables are Gaussian, then

it is the optimal minimum mean squared error estimator (Shimkin, 2009). Update

equations are given in A.

Now we discuss how the Kalman filter can be applied to simultaneously estimate

source intensity and background rates. We dynamically estimate the background

rates at each step. The state space xt ∈ Rd+1 contains the background rates in

each of d energy bins in the first d elements. Furthermore, the source intensity is

modeled in order to decouple its effect on the measured spectra from the background

radiation. Source intensity can vary with distance and obfuscation by attenuating
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objects. As a result, we model source intensity in the last element x
(d+1)
t . The

observation yt ∈ Rd contains the measured photon counts at time t. The transition

matrix A is set to the identity matrix because we have no a priori expectation as to

how the background rates change. Thus, we propose the dynamical system given by

xt+1 = xt + wt yt = x
(1:d)
t + x

(d+1)
t s+ vt

where s ∈ Rd is the target source spectrum. The second equation implies a form for

the emission matrix C. The Kalman filter estimates the background rates x
(1:d)
t .

The equations for updating the belief state after receiving a new measurement

are provided in Appendix A. Note that since estimated rates can be non-positive

in practice, we force them to be at least 0 after every iteration, which boosted

performance in experiments.

The natural detection score of the Kalman filter method is simply the estimated

intensity. We test this score in our experiments; however, we also aim to demonstrate

how the adaptively estimated background rates can boost the performance of other

methods that learn parameters from background. Here we use the standard matched

filter (MF) as an example. Given a template s and data matrix B of background

counts, the MF is h = Cov(B)−1s. A new observation y is scored as f(y) = hTy.

When the data B are unavailable or do not match the test distribution, the

performance of MF may degrade. We can ameliorate this issue by estimating

the background rates in real-time via the Kalman filter. We propose that we

estimate Cov(B) as diag(xt) where xt is the estimated background at time t. This

technique utilizes the Poisson maximum likelihood estimate of variance. It also

assumes independence between energy bins, a simplifying assumption that reduces

the amount of samples needed to a single point. Furthermore, since the estimated

rates can be zero in practice, we add 10−3 to the estimated variances.

Next we explain how to set the remaining parameters, the transition noise

covariances {Qt} and emission noise covariances {Rt}.

2.4.3 Adaptive covariance

Conventionally, the covariances of process and measurement noise are taken as input

to the Kalman filter; in many scenarios, however, their values are unknown (Mehra,

1970). For instance, in the gamma source detection application it is possible that

training data are scarce or differ from the test data, so it would be infeasible
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to estimate the covariances beforehand. When the covariances are estimated in

real-time, the resulting method is known as an adaptive Kalman filter, and is

well studied. Various approaches include Bayesian, maximum likelihood, covariance

matching, and correlation techniques (Ottersten et al., 1998; Akesson et al., 2008;

Bavdekar et al., 2011; Odelson et al., 2016). Most adaptive Kalman filters rely

on estimators with desirable statistical properties such as asymptotic normality,

unbiasedness, and consistency, yet these estimators are often computationally

expensive. Here we propose a simple method for estimating the noise covariances

by exploiting knowledge of the radiation domain. We do not show any statistical

properties of the estimators but instead showcase their utility empirically. Although

performance could be further improved by a more accurate and precise means of

covariance estimation, the aim of this work is not to compare this method to other

adaptive filters but only to show that it performs well compared to non-filtering

approaches.

The method for computing the noise covariances is to use the previous state

estimates as training data. In the process noise covariance Qt, only the upper d ×
d block is estimated. For the remainder, we assume the background rates to be

independent of source intensity, and the standard deviation of the intensity is set to

10. The exact value of this setting appeared insignificant in our experiments. For the

upper d×d block, we first compute ∆x̂i = x̂i− x̂i−1 for i = 1, . . . , t−1. We let Q̂0 be

the sample covariance of this variable.The next step is to apply Gaussian smoothing

to Q̂0. We selected a kernel length of 2 with a unit variance, but the smoothing

hyperparameters were not found to be especially important. In our experiments,

this process produced an effective, if potentially biased, estimator.

The measurement noise Rt can also be easily computed. Given the state xt,

the measurement noise vt = yt − xt is Poisson. In particular, v
(j)
t ∼ Poisson(x

(j)
t ).

Furthermore, the elements are known to be conditionally independent. Therefore

Rt = diag(xt). However, since x̂t is not known at time t, we instead estimate

R̂t = diag(x̂t−1). In practice, this estimate performs better when divided by 2,

which causes the estimated state to track the measurements more closely.

Additional design considerations reflect the challenge of unquantified uncertainty

and filter burn-in. First, the approach for adaptively estimating the noise covariances

described above is inconsistent with the assumptions of the method. While the

conventional Kalman filter assumes Qt and Rt are non-random, the estimators in

this method depend on the output of the filter itself at the previous time steps,
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which is subject to random noise. Hence, when the filter estimates the uncertainty

of its prediction, it misses the additional uncertainty contributed by the covariance

estimators. This issue is solved in other approaches to adaptive filtering, but here

we leave it as future work.

Second, we found it useful to enforce a filter burn-in period in our experiments.

In particular, we assumed that measurements taken over the first L time steps do not

contain source spectra, so we forced x̂
(d+1)
t = 0 when t ≤ L regardless of the output

of the Kalman filter. The assumption is partially justified since a spectrometer can

often stay in a zone known to have no source during the burn-in period. In the first

dataset we set L = 150. When warm-up was used in the second dataset, we used half

the warm-up as burnin. This approach allows the filter to calibrate to the correct

noise covariances.

2.5 Experiments

This section includes experiments on single-pass roadside detection in two datasets.

2.5.1 Background with synthetic variation

Here we describe an experiment that simulated a source in the presence of heavily

shifting background radiation.

Data

Our dataset was a collection of over 11,000 gamma-ray measurements recorded

in one-second intervals by a sodium-iodide detector mounted on a vehicle moving

around an urban area in and around Berkeley, CA, USA (Fig. 2.3), created as part of

the RadMAP project (Bandstra et al., 2016). On average there were 10,000 photons

counted per second, but this measure had significant variability (Fig. 2.4). Each

measurement consisted of d = 116 quadratically spaced energy bins of photon counts.

The measurements were assumed to be clean background data without presence of

target or nuisance sources. Each measurement was annotated with the GPS position

of the sensor vehicle and time. The background rates were estimated from the

measurements and viewed as the true rates using GP estimation over observations

within 10 meters of the current measurement being estimated (Miller et al., 2016).

To facilitate source detection experiments, we synthetically injected this background
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Figure 2.3: Path of the sensor.

data with signatures of a source spectrum corresponding to Americium-241, a nuclear

waste isotope. Injections were generated as random samples from the Poisson rates

determined by the source spectrum and assumed intensity.

Procedure

This experiment tested detection of a roadside source in a single pass. In each run

of the experiment, a location for the synthetic source was randomly sampled from

the set of points at most 100 meters from the path of the sensor. The test set was

taken to be the data points where the sensor was at most 150 meters away from the

source, along with all data points in between, forming a contiguous window. The

window was extended on either side by 450 observations. The training set was taken

to be the remaining data points.

To simulate different distributions between the training and test sets, we applied a
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Figure 2.4: Fluctuation of total background counts per second over time.

shifting algorithm to each measurement in the training set (Fig. 2.5), which simulated

gain drift (App. B). Photon counts in any particular energy bin were partially shifted

to higher energy bins with a gain drift coefficient of 0.3. This shift led to Pearson

correlation of roughly 50% between the mean training background spectrum and the

test background spectra. Counts of photons yielded by the source were sampled and

added to each observation in the test set according to the distance to the source.

The detection rule states that a source is predicted to be present if the maximum

observation score is above a fixed decision threshold. All experimental runs were

repeated identically except with no source injection, thereby producing negative

examples.

Results

We compared performance between several methods:
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Figure 2.5: Mean background, showing training observations shifted to decrease
correlation with test observations.

1. Oracle: Poisson likelihood ratio using perfect knowledge of the background

rates and source intensity.

2. KF Intensity (KFI): Intensity estimated by the Kalman filter directly as score.

3. Matched Filter (MF): Matched filter calibrated on training data.

4. Adaptive Matched Filter (AMF): Matched filter combined with Kalman filter.

Figs. 2.6, 2.7, and 2.8 show the Receiver Operating Characteristics computed

over 250 positive and negative runs with maximum source intensities of M ∈
{75, 125, 175} photon counts per second (cps), obtained by varying the detection

thresholds of the considered algorithms. The graphs show cumulative performance of

the considered alternative models in terms of probability of source detection (denoted

as TPR, true positive rate) as a function of false detection probability (denoted as
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Figure 2.6: Receiver Operating Characteristics at source intensity of 75 photon
counts per second.

FPR, false positive rate, shown in decimal logarithm scale). Furthermore, Table 2.1

provides statistics for the M = 125 case: Area-Under-Curve (AUC), TPR at 1%

FPR, FPR at 50% TPR, and errors on estimated background rates and intensities for

applicable methods. The background rate error is computed as the Kullback-Leibler

divergence between the actual and predicted Poisson distributions, averaged over

all observations and bins in the case where a source is present. Uncertainties of

rate errors are extremely low and therefore omitted. The intensity error is the

root-mean-square error between the actual and predicted source intensity in the

case where a source is present. The uncertainties of these metrics can be found in

Table 2.2.

For every M the best method was the Oracle, which was expected because it

used more information than realistically available. We used these methods as a

reference to calibrate upper-bound performance of the more practical alternatives.
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Figure 2.7: Receiver Operating Characteristics at source intensity of 125 photon
counts per second.

The next best was one version of our proposed method, KFI, followed by the other

version, AMF. The worst performer was MF. This advantage demonstrated the value

of adaptive estimation of local background rates and source strength.

Fig. 2.9 visualizes the estimated background rates in an energy bin over a single

trial of the experiment. It compares the actual rates to those estimated by the

Kalman filter. In this trial, the sensor remained stationary near the source for some

time. Visually, the Kalman filter tracked actual rates with minimal lag. Additionally,

it overestimated the rate only slightly when the source intensity peaked.

Fig. 2.10 presents how the adaptive Kalman filter estimated the source intensity.

Although there was substantial noise in the estimate when source intensity was zero,

the estimated intensity detected the peak and plateau with minimal lag. This method

was also able to detect the initial spike in source intensity, but this window lasted

only briefly, and it was difficult to separate it from the substantial noise.
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Figure 2.8: Receiver Operating Characteristics at source intensity of photon 175
counts per second.

2.5.2 Background with authentic variation

The previous experiment induced synthetic background variation, which may not

reflect actual background conditions. Here we describe an experiment on data that

contained substantially more background variation naturally.

Data and procedure

We used spectroscopic data from a major metropolitan area. 1 The average gross

background count was about 400. We synthetically injected a source, Cobalt-60, an

industrial isotope. The injections occurred at random roadside locations. Again, we

tested single-pass detection. The passes included about 10 seconds before and after

the source, and about 20,000 passes were simulated. This dataset included multiple

1Not publishable.



2.5. EXPERIMENTS 29

Table 2.1: Quantitative performance at source intensity of 125 photon counts per
second. “Rate” refers to background rate estimation error in natural units. “Int.”
refers to source intensity estimation error. Its two columns correspond to units of
counts per second and percentage of the maximum intensity respectively.

AUC TPR FPR Rate Int. Int. (%)
Oracle 100.0 100.0 0.0
KFI 85.5 66.8 1.8 0.06 13.6 10.9
MF 65.9 19.5 28.3
AMF 83.2 59.0 6.3
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Figure 2.9: Actual background rates in the first energy bin (blue) are tracked
very well by the KF method (red) despite a 175 gross cps source injection (black)
containing about 150 cps in this bin.
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Figure 2.10: Source intensity estimated directly using KF method (red) over one
trial with a 175 cps source (actual intensity shown in black).
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Table 2.2: Uncertainty of quantitative performance at source intensity of 125 photon
counts per second. Twice the standard error of values in Table 2.1.

AUC TPR FPR Int. Int. (%)
KFI 4.4 5.9 1.7 0.3 0.3
MF 5.9 5.0 5.6
AMF 4.7 6.2 3.0

Figure 2.11: ROCs as warm-up varies for RDAK but is fixed for KF. Left: standard
ROCs. Right: recall normalized by KF with 1 minute warm-up.

sensors in different parts of the area. All procedures carried over from the previous

experiment unless otherwise mentioned.

Results

The first experiment varied the amount of warm-up given to KF and RDAK.

Warm-up was taken from a disjoint time from the same sensor as used in the pass.

Fig. 2.11 illustrates the performance when KF warm-up is fixed at 1 minute while

RDAK is given varying amounts. The best method was RDAK with 10 or more

minutes of warm-up, but it performed poorly with less than that. In the middle

was KF with only 1 minute. Next, Fig. 2.12 illustrates performance when RDAK

warm-up was fixed at 10 minutes and KF varied. Although KF with 0 warm-up

performed poorly, it was largely insensitive to the amount of warm-up otherwise. In

sum, RDAK was superior after running 10 minutes, while KF was better before that.

This result suggests to create a switching scheme where KF is used while RDAK is

warming up to improve overall detection performance. Interestingly, KF did not

improve much with more warm-up, which probably reflected its limited memory as a
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Figure 2.12: ROCs as warm-up varies for RDAK but is fixed for KF. Left: standard
ROCs. Right: recall normalized by RDAK with 10 minutes warm-up.

smoothing algorithm. Nevertheless, there are potential problems with using warm-up

in the first place. First, there may be no time to warm-up. Second, the warm-up

could be contaminated by nuisance or threatening sources, which could drastically

alter RDAK’s basis. Third, the test background could have a severe mismatch with

warm-up. An extreme example of this case would be a step change in background

if, for instance, RDAK is warmed up inside a building and taken outside.

Thus, we simulated a step change between warm-up and test in the second

experiment. Previously warm-up data were from the same sensor as the pass, whereas

now we used distinct random sensors, an approach we called cross-training. Since

sensors were from different places in time and space, the warm-up background was

much less likely to match the test background. The results are shown in Fig. 2.13,

which highlights a large dropoff in performance by RDAK when cross-trained.

Meanwhile, KF was robust to the effects of the step change, signifying that it adapted

better to large background fluctuations. This result indicated KF may be well-suited

to environments with many sudden changes in background, such as a highway with

many bridges and tunnels.

In the previous experiments, we only used a single source type. Therefore, we

conducted a third experiment in which we tested the Minimum Detectable Amount

of different injected source types. The strength of 15 different source types was

adjusted until TPR was 50% at 8 false positives. We compared KF with 2 minutes

of warm-up to RDAK with 10 minutes of warm-up (Tbl. 2.3). The results suggested

that the difference between KF and RDAK was stable across different threats. On

average RDAK outperforms KF because of its long warm-up period.
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Figure 2.13: ROCs with and without cross-training. Left: standard ROCs. Right:
recall normalized by KF with 10 minutes warm-up.

Table 2.3: Minimum Detectable Amount across 15 source types. Values show the
source strength for KF with 2 minutes of warm-up divided by source strength for
RDAK with 10 minutes of warm-up. Values over 100% indicate KF needs a brighter
source to have equal performance to RDAK.

Source Type
KF MDA
normalized
by RDAK MDA

Pu 1 70%
Co60 2 87%
Co60 3 107%
Co60 1 116%
Cs137 3 123%
Cs137 2 128%
Cs137 1 133%
HEU 3 165%
HEU 1 172%
HEU 2 187%
Am241 188%
HEU 4 189%
Pu 3 305%
Pu 4 362%
Pu 2 365%
Mean 180%
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2.6 Conclusion

A method based on the Kalman filter was proposed for the gamma source detection

problem in the presence of noisy and unknown background radiation. Background

and source radiation were modeled as a linear dynamical system, allowing the filter to

exploit smoothness to simultaneously estimate source intensity and background rates,

thereby separating source from background. We proposed two ways to convert the

filter’s estimates to detection scores. First, the intensity can be used directly. Second,

the background rates may be inserted into previous methods to substitute their

static parameters with local estimates. We showcased this second approach using a

standard matched filter. The advantage of the presented method is that it does not

assume an informative and comprehensive training set of background radiation data

is available yet remains adaptive to changes in background, although it does assume

that the source’s spectrum template is known. The new method was empirically

demonstrated to perform better than realistic alternatives on RadMAP data when

a mismatch was induced between training and test data in both classification

performance and quality of the estimates of source intensity and background rates.

Additionally, it was evaluated against a state-of-the-art adaptive algorithm on

unaltered background from another dataset. These experiments showcased better

performance with extremely short warm-up periods and robustness against dramatic

changes in background. These results suggest our method is a preferred alternative

in many practical scenarios.

To more rigorously evaluate the method, an option would be to marginalize over

multiple source types. Typically the correct source template is unknown, and it is

assumed to be one among a library of them. Methods like KF and RDAK are run on

each template and the scores aggregated, often by a simple maximum. In our work

we only used the correct source template, which would reduce false positives across

all methods. To better simulate practical conditions, it would be ideal to include

marginalization over a realistic source library.

Another extension of this method might be to track weights for a background

basis rather than the full spectrum of background rates because a basis can efficiently

represent background characteristics with less variance in its predictions. Ideally the

basis would be computed adaptively, perhaps in the same manner as RDAK, which

would make our method perform better with more warm-up. Another approach to

computing the basis, albeit non-adaptive, is given by Bilton et al. (2019), using a
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nonnegative matrix factorization that minimizes Poisson rather than Gaussian loss.

It is possible that this method could applied to a rolling window of background to

compute an adaptive basis.

An additional intellectual opportunity created by this work is to integrate RDAK

and the Kalman filter. We previously remarked that we could switch between them.

However, there could be a more principled way to combine them. For example,

RDAK employs its own algorithm to adaptively estimate background, but it is

possible that this algorithm could be replaced by the Kalman filter.

Lastly, the work here applied to radiation with relatively high counts per bin.

This condition allowed the Kalman filter to perform near optimally because the

Poisson distribution can be approximated by the normal. However, there are many

datasets in which counts are too low. Here, the Kalman filter could break down. A

future avenue would be to test modifications of this work for low count conditions.

One simple change would be to apply an Anscombe transform (Anscombe, 1948) to

change counts to have an approximately normal distribution. Another would be to

replace the Kalman filter with a particle filter, which can handle non-Gaussian cases.
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Chapter 3

Multi-view filtering using known

multi-view relationships

3.1 Introduction

This chapter extends the previous one to multiple views by exploiting domain

knowledge about the multi-view relationship to improve inference. We consider a

similar problem setting as the previous chapter but with multiple sensors at separate

but nearby locations, a common practical scenario (Tandon, 2016). For instance,

multiple vehicles could scan the area around the same building. Here, sensors would

be exposed to different background radiation and source intensity. Our objective

is to investigate how multiple views can be combined using structural information

about their temporal and spatial relationships to enhance prediction. We model this

relationship with physical domain knowledge to refine our inferences, aggregating

multiple simultaneous sensors by a novel multi-view filtering method tailored to the

domain. This approach allows us to identify a source of interest in an adaptive

manner similar to the Kalman filter method but with greater expected detection

performance. The first advantage of our method compared to other aggregation

methods is a lesser dependence on the amount of data. The second advantage is that

if sensor passes are simultaneous, we leverage all collective information gathered to

refine inference in real-time. Our work assumes at most one source is present, the

source template is known and stationary, any source is isotropic and stationary in

position, and no occlusions exist.

37
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3.2 Bayesian Aggregation

Our method extends Bayesian Aggregation (BA), a state-of-the-art detection method

that can flexibly incorporate many variables such as multiple sensors (Tandon, 2016).

BA spatially aggregates detection scores {xi}Ti=1 to compute probabilities of different

source hypotheses. Let the luminosity of a point source refer to the total observed

counts per second from the source by a sensor that coincides in space. In its simplest

form, BA tracks a null hypothesis H0 that no source is present as well as k alternate

hypotheses H1,L, . . . , Hk,L that a source of luminosity Ik and fixed type is at a

particular location L. A planar grid is placed over the area with the null and alternate

hypotheses at each lattice point. Then Bayes’ theorem is used to update hypothesis

probabilities upon new observations. An important assumption is that xi and xj are

independent if i 6= j. The final score is the highest likelihood ratio of nonzero source

intensity to zero source intensity,

max
k,L

∏T
i=1 Pr(xi|Hk,L)∏T
i=1 Pr(xi|H0)

.

Multiple sensors are not explicitly modeled but naturally incorporated by dynamic

updates at any point in time and space.

BA requires two training sets. The first set is used to train a model of background

radiation variability, called the detector, such as Matched Filter or Censored Energy

Window, to get the xi variables from raw observed spectra. The second set is

used to learn probability distributions Pr(x|H) over the scores for each hypothesis

given the expected exposure to source radiation, a function of distance, velocity, and

duration of measurement. These distribution can be estimated nonparametrically,

such as with a kernel density estimator. Alternatively, if scores are given by an affine

function of the observed spectra, the distributions can be estimated parametrically

by assuming a normal distribution. The distribution can be directly fit for the null

hypothesis, and for each hypothesis the distribution can be derived in closed-form.
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3.3 Aggregation of sensors by multi-view filtering

3.3.1 Motivation

Although BA performs well empirically, it requires a large quantity of training data

to achieve confident predictions (Tandon, 2016). This drawback motivates a need for

a detection method with reduced dependence on training. Additionally, although BA

can flexibly incorporate inferences from multiple detectors at different sensors, if the

series of inferences are simultaneous, it misses the opportunity to share information

between sensors to refine detection in real-time. We propose to use BA to aggregate

information from all sensors at every time step; furthermore, we use the aggregated

information to form a feedback loop by informing each detector of BA’s inferences

about potential sources. This strategy allows sensors to indirectly communicate

information through a central hub.

This new method, which we name the Bayesian Aggregation Filter (BAF),

extends BA. It can be summarized by the following changes to BA:

1. By leveraging physical relationships, BAF requires little to no training data,

in contrast to BA’s requirement for two training sets. To enable this feature,

BAF uses the Kalman filter (KF) from Ch. 2 for the detector at each sensor to

skip the detector training step. The KF intensity is the detector score. Then

it applies a physical model (Eqn. 3.1) to skip the distribution training step.

2. At each time step, BAF strengthens the detector at each sensor by feeding

it the collective inference of all sensors from the previous time step, unlike

BA, which does not exploit temporal or multi-view structure across detector

scores. To enable this feature, BAF applies BA at each time step to the

KF estimates of intensity so far, computing the most likely source hypothesis

according to likelihood ratio. Then the expected intensity at each sensor is

computed according to a physical model (Eqn. 3.1). Lastly, BAF modifies

the KF detectors to incorporate the previous step’s expected intensity as an

observed variable.

The key difference between BA and BAF is that BA assumes observations are

independent, whereas our method contrarily assumes dependencies exist across both

time and sensors.

The most important practical assumptions of this work are that each sensor makes

a single pass by the source, as in Fig. 3.1, and that these passes occur simultaneously.
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Figure 3.1: Path of four sensors near the same source over six minutes.

After all, our goal is to utilize contemporaneous multi-view structure; it would be less

interesting to aggregate sensor passes that intersect in space but not in time because

there would be no such structure. However, we are careful not to exploit the exact

knowledge that the source is detectable to all sensors simultaneously, which would

be infeasible to know in practice. Instead, our method leverages contemporaneous

structure to keep all detectors up-to-date with their collective knowledge. Also, we

assume all sensors are identical spheres. We ignore that sensor velocity and other

factors affect source intensity, assuming source exposure is only a function of distance.

3.3.2 Technical details

In the remainder of this section, we describe the technical details of BAF, whose

pseudocode is given by Alg. 1. In this pseudocode, xi:j = {xi, . . . , xj} and xi:j,m:n =

{xu,v} where u = 1, . . . , j and v = m, . . . , n. According to Eqn. 3.1, if luminosity
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Algorithm 1 Bayesian Aggregation Filter

1: procedure BAF(source template s, sequence of spectra {Yt,1:K}∞t=1 from K
sensors, coordinates of sensor paths)

2: H0 ← 0 luminosity source at arbitrary coordinates
3: for t = 1, . . . do
4: for k = 1, . . . , K do
5: Compute expected intensities Ī1:t,k at sensor k from Ht−1
6: Estimate intensities γ1:t,k with Kalman filter on {Y1:t,k, Ī1:t,k}
7: Compute Ht using BA on γ1:t,1:K

and location of a source is presumed known, we can compute the expected source

intensity at a sensor at time t as I(rt), where rt is the distance between source and

sensor. Now we explain the first change to BA (1). To get a distribution over a

KF estimate of intensity Ît, we use a normal distribution with mean µt = I(rt) and

variance σ2t = V̂ar(It) from the KF estimate of state variance. Since luminosity and

location are given by each hypothesis, the score probabilities can be computed in

this manner. The normal distribution is selected to match the KF assumption of

normality.

Next we explain the second change to BA (2). At time t, after BA selects a

source hypothesis Ht−1, the expected intensity to each sensor is computed. It can

be shown that a sensor a distance of r away from a source observes an intensity I(r)

of approximately (Miller et al., 2016; Tandon, 2016)

I(r) ∝ 1/r2. (3.1)

However, since the hypothesis can change at every iteration, we compute not just

intensity at t but at every step τ so far, {I(rτ )}tτ=1. These values are incorporated

as an observed variable in the KF, which is run over all observations τ = 1, . . . , t at

each sensor. The observation model simply states that the observed intensity ought

to match the estimated intensity in expectation. Mathematically,

I(rτ ) = Îτ + ετ

where ετ ∼ N(0, σ2) and σ2 = 100 is a hyperparameter that we set by hand

to approximately match the scale of the variance of Îτ . In our experiments,

this hyperparameter does not impact the method much unless multiple orders of
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magnitude away from 100. Separately, since the estimates Îτ change at every step t,

we run BA from scratch on the new estimates. In total, both KF and BA is restarted

at each step, which results in O(T 2) runtime, where T is the total number of steps

in the pass. This runtime is a significant slowdown from all other methods, which

are all O(T ) to our knowledge.

A final design choice is the technique to compute the final score that aggregates all

passes. In BA, this score is typically the maximum likelihood ratio over hypotheses.

In BAF, however, our experiments showed that this approach performed no better

than BA. Therefore, we choose a different technique: we take the maximum over each

KF detector’s final estimated intensities; then we average the top two values. In our

experiments this approach performed best out of many other aggregation techniques

such as mean, median, maximum, and minimum over sensors. Intuitively, there

is a tradeoff to using using values from more sensors. One one hand, it decreases

the impact of outliers, but on the other hand, it increases the impact of ordinary

stochastic variance in the KF intensity, especially in the sensors farther away because

they do not observe as high of intensities in the first place. Thus, the choice of two as

the number of sensors used may represent a point of parity between the two effects.

3.4 Experiments

3.4.1 Procedure

We test our methods on the same dataset as in the second experiment of Ch. 2,

which contains spectroscopic data from a major metropolitan area recorded by

vehicle-mounted NaI detectors. We use a subset of 6.6 hours with an integration

window of one second, yielding about 24,000 observations. Our procedure is identical

to Ch. 2 except for some changes. Since simultaneous nearby passes by multiple

sensors are rare, we simulate these scenarios by multiple disjoint passes of the same

sensor at different times. This simulation only lacks exact fidelity because of temporal

variation of background, which should not be too impactful since passes are separated

by hours at most. KF is ran without any warm-up period. We vary the number

M of passes between 1 and 4 and constrain all passes to come within at least 20

meters of the randomly placed source. Then BA is trained on all data outside

the passes, half for each training set. The outside data are also used to compute

mean gross counts, which is given to BP. In all methods the hypothesis space was
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spatially restricted to the intersection of a 100 meter envelope around each sensor

path. The source luminosity is computed by setting the maximum source intensity

at any sensor to 84 cps, which corresponds to SNR of 4. Each pass contains three

minutes before passing the source and three minutes after. In addition, we selected

a source template that corresponds to Cobalt-57, a medical and industrial isotope,

although simple experiments showed the choice of template did not affect results

significantly. Lastly, all hyperparameter tuning was conducted on a separate fold of

the data that was entirely disjoint in time and almost disjoint in space.

3.4.2 Results

We compared BAF to BA, using a classical Matched Filter (Turin, 1960) as BA’s

detector. ROCs are displayed in Fig. 3.2. Also, certain points on the ROC are

illustrated in Fig. 3.3, in particular TPR at 1% FPR and FPR at 50% TPR. Overall

the results demonstrate that BAF has comparable performance to BA at one sensor

but enjoys a significant advantage with multiple sensors. Also, BP exhibits close

to nil detection power. Furthermore, BAF performance hugely improves with more

than one sensor but does not differ between values above one. In contrast, BA’s

TPR at 1% FPR consistently improves with the number of sensors, although the

same does not hold for the FPR at 50% TPR.

The relative performance of BA and BAF matches our expectations. First,

they perform comparably with only one sensor. This result makes sense because

no multi-view structure exists for BAF to exploit. Accordingly, BAF performs much

better than BA with more sensors. This difference reflects the advantage BAF creates

by disseminating collective inferences to each sensor at every step. It is less intuitive

that BAF does not improve with more than two sensors. A plausible explanation is

that the third and fourth sensors observe intensities that are too low to be detectable

within background noise. Thus, no detection power is added. In fact, the background

noise may be worsening performance. This result suggests that it can be detrimental

to add views to a multi-view approach if their SNR is too low. Unlike BAF, however,

BA marginally improved in TPR at low FPR with more sensors. This trend may

indicate that BA is more robust at finding signal in highly noisy observations.

Additionally, we present an example of estimated intensities at each sensor from

a single trial in Fig. 3.4. The figures shows collective inferences in both injected

and background runs from BAF as well as individual inferences in a background
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(b) ROC with 2 sensors. Dashed lines indicate results from previous number of sensors.
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(c) ROC with 3 sensors. Dashed lines indicate results from previous number of sensors.
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(d) ROC with 4 sensors. Dashed lines indicate results from previous number of sensors.

Figure 3.2: ROCs with multiple sensors.
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Figure 3.3: Statistics from ROCs as the number of sensors varies. Error bars show
95% confidence intervals from bootstrapped sensor passes.
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(a) Source intensity at first of four sensors.
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(b) Source intensity at second of four sensors.



48 CHAPTER 3. MULTI-VIEW FILTERING

0 50 100 150 200 250 300 350

Time (sec)

0

10

20

30

40

50

60

In
te

n
si

ty
 (

cp
s)

Source intensity at sensor 3

Actual (inj)

Estimated collectively (bg)

Estimated collectively (inj)

Estimated individually (bg)

(c) Source intensity at third of four sensors.
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(d) Source intensity at fourth of four sensors.

Figure 3.4: Source intensities at different sensors, comparing collective to individual
inferences.
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run from standard single-view KF. The goal is to illustrate how collective inference

greatly enhances estimates by suppressing noise. In Figs. 3.4b and 3.4d, for example,

individual estimates in a background run reach values as high as the actual injected

intensity. These errors result from the uncertainty in KF. Yet when the estimates are

made with collective information, these false peaks decrease significantly or vanish

altogether. This improvement results from the hypothesis selected by BA using

inferences from all sensors, which informs each KF of what intensity to expect.

3.5 Conclusion

We proposed a novel method for gamma source detection by aggregating observations

from multiple sensors. The method has two principal advantages over the state of the

art, Bayesian Aggregation (BA). First, it does not require any training data. Second,

it leverages contemporaneous multi-view structure between sensors to enhance the

quality of predictions. Empirically it performs as well as or better than BA, a notable

feat given the lack of training. The method employs individual Kalman filters for

each sensor, which are then synthesized by BA to track location and strength of

the source. It sends its inferences back to the individual sensors to enhance their

predictions in a feedback loop. This method illustrates how multi-view relationships

can be explicitly modeled by structural information to inform inference.

An interesting direction of future work is to utilize not only the intensity from

the Kalman filter but also the background rates. We propose to refine each sensor’s

background estimates by smoothing across sensors using spatial information. More

precisely, we could use a kernel smoother on background estimates from every sensor

at each time step. The smoothed background would be incorporated in the observed

variables of the Kalman filter in the same manner as the refined source intensity

from BA. By leveraging the spatial smoothness of background, this approach would

augment the method with an orthogonal multi-view relationship to what we use here.
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Part II

Learning multi-view relationships
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Chapter 4

Robust Gamma Source Detection

with Incomplete Source

Information and Gain Drift

4.1 Introduction

This part of the thesis investigates how to learn multi-view relationships when they

are unknown, in contrast to the previous part. This particular chapter assumes

the relationships are linear and demonstrates how to use them for prediction. We

present a method that utilizes linear relationships to perform anomaly detection in

the gamma source detection problem.

Many effective statistical methods, including Spectral Anomaly Detection,

Censored Energy Window, and Matched Filter (Tandon, 2016), rely on reliable

knowledge about spectral shapes of target sources and/or background spectra and

their variability patterns. There has been little investigation on effects of error in

this information, which may be flawed due to differences in sensor hardware used to

collect training data and at time of deployment (e.g. miscalibration or gain drift)

or uncertainty in source composition or shielding. Here we explore the effects of low

quality information on existing methods and propose a new robust alternative.

The proposed method extends the Censored Energy Window approach using

Canonical Correlation Analysis (Hotelling, 1936). We simulate incomplete and

inaccurate information by removing a target source from a known source library

that is utilized by the method, thereby simulating a situation in which a previously
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unknown target source is encountered. The method is applied to an authentic

radiation dataset and demonstrated to significantly improve performance over

alternatives with incomplete or inaccurate source information. Additionally, we

evaluate the impact of imperfect information due to miscalibration (gain drift) on

different methods. Our method is shown to outperform the baseline methods. In

general, these results suggest that our extension of the Censored Energy Window

method is robust to distortions in spectral information. For a summary of related

work, please see Ch. 2.3.

The proposed method extends the known Censored Energy Window approach

using Canonical Correlation Analysis (Hotelling, 1936). To validate our method

empirically, we emulate incomplete and inaccurate information by removing a target

source from a library of known source types that is utilized by the method, which

models a situation in which a target source of a previously unknown design is

encountered. The method is applied to an authentic spectroscopic dataset and

demonstrated to significantly improve performance over alternatives in scenarios

involving incomplete or inaccurate source information. Additionally, we evaluate

the impact of imperfect information due to miscalibration (gain drift) on different

reference methods. Our approach is shown to outperform these baselines. In general,

our results suggest that the proposed extension of the Censored Energy Window

approach can be robust to distortions in spectral information.

4.1.1 Censored Energy Window

Introduced by (Nelson and Labov, 2012), Censored Energy Window (CEW) assumes

partial knowledge of the sought-after source spectrum. It takes as input a set of (not

necessarily contiguous) energy bins, referred to as the energy window, in which the

target source is expected to be seen most clearly. If the source spectrum is known,

this corresponds to the signal-to-noise ratio-maximizing energy window for the given

background radiation variation pattern. CEW learns a linear relationship between

out-of-window energy bins and the total in-window photon count, in the absence of

a source. If the in-window counts significantly exceed the predicted value, then a

source is likely present. If the source and background spectra are known, the optimal

energy window can be computed by Algorithm 2 in App. C (Miller et al., 2016). In

practice, if the source spectrum is known, the mean background spectrum learned

from training data is often used to determine the window.
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Figure 4.1: Example of an energy window and mean background. The blue line
shows a source template, and the shaded gray area is the (non-contiguous) energy
window found for it to maximize the SNR vs. mean background template. The
orange line shows the mean background on a different scale. The dashed black lines
show the empirical 95% interval about the median.

A multiple linear regression model is then fit to predict the sum of counts inside

the window from the vector of counts outside of it. The source detection score is then

defined as a difference between the predicted and the actually observed particle count

in the window. Figure 4.2 illustrates the processing flow of the CEW method. The

linear regression step may use ridge regression with a small regularization parameter

to alleviate overfitting and collinearity. As a last step not shown in Fig. 4.2, the

in-window sum of counts ŷ is normalized. Since the score quantity can be modeled

as a Poisson random variable, the Anscombe transform (Anscombe, 1948) A(x) =

2
√
x+ 3/8 can be used to transform the in-window counts to an (approximately)

normally distributed random variable with unit variance. This stabilizes the variance
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Figure 4.2: The CEW detection algorithm. The sum of in-window counts is predicted
from the out-of-window counts via linear regression. The prediction error is the score.
(Normalization step not shown.)

of the photon counts, especially if they are low. The final score is a (function of)

A(ŷ)− A(y).

4.2 Robust method for incomplete information

When methods like CEW and Matched Filter (MF) are given accurate information

about target sources, they can perform well. In practice, however, the source

spectrum could be uncertain due to different configurations of material, shielding,

and environmental factors (Tandon, 2016). These methods can then underperform

when their input information is incomplete or inaccurate. In CEW for example, the

energy window may be misspecified and the observed in-window counts might not

show a sufficiently strong signal when a source is present to facilitate its detection.

To remedy these effects, we propose using a Canonical Correlation Analysis (CCA)
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Figure 4.3: The CCA detection algorithm. The canonical variates from in-window
counts are predicted from the canonical variates from out-of-window counts via linear
regression. The sum of squared prediction errors is the score. (Normalization step
not shown.)

based detection. This method discovers a source in the presence of background noise

while tolerating imperfect knowledge of the source template. It could be useful in

practical applications when the characteristics of the sought-after sources are not

precisely known a priori.

4.2.1 Background: Canonical correlation analysis

In this section we summarize canonical correlation analysis (CCA), a useful starting

point for understanding the proposed methods. CCA analyzes cross-covariance

between two sets of variables that have aligned observations. By performing CCA,

one can understand how much variance in the sets can be explained by common

factors. It finds linear projections from each view into a shared latent space such that

the projections have maximal correlation. According to Bach and Jordan (2006), the



58 CHAPTER 4. INCOMPLETE INFORMATION

canonical, or latent, variables can be considered the basis of a generative Gaussian

model for the observed views. These canonical variables often have some practical

meaning, such as a certain combination of genes that corresponds to a combination

of phenotypes Witten and Tibshirani (2009). CCA, or more generally component

analysis, can therefore be used to analyze complex datasets in an interpretable

fashion.

We mathematically define CCA. Let X ∈ RdX and Y ∈ RdY be random vectors.

Without loss of generality, assume E[X] = E[Y ] = 0. Then CCA for the m-th

component solves the problem

max
u∈RdX ,v∈RdY

Corr(XTu, Y Tv)

subject to Cov(Xu,Xui) = Cov(Y v, Y vi) = 0,

i = 1, . . . ,m− 1.

(4.1)

Define ΣXY = Cov(X, Y ), ΣXX = Cov(X), and ΣY Y = Cov(Y ). This optimization

is non-convex, but it has a closed-form solution Hardoon et al. (2004): u and v are

the respective m-th largest eigenvectors of

A = Σ−1XXΣXY Σ−1Y Y ΣT
XY ,

B = Σ−1Y Y ΣT
XY Σ−1XXΣXY .

4.2.2 Robust Censored Energy Window via CCA detection

Our method takes as input a collection of background measurements and an energy

window. This window may be taken as a set of (not necessarily consecutive) energy

bins that collectively maximize the signal-to-noise ratio (SNR) for a particular source

template of interest, as in Algorithm 2, but it can be arbitrary, and we vary its

alignment with the properties of the target source spectra in our experiments. The

first step is to apply CCA to the training set composed of reference background

spectra measurements. Here, X and Y correspond to photon counts in the spectrum

bins inside and outside of the chosen energy window respectively. Next, for each pair

(u, v) of weights found, we fit a simple linear regression of XTu on Y Tv. We compute

the residuals for all samples and fit a univariate normal distribution to them. Then

given a new sample to classify, we compute the regression residuals and find their

z-scores for each pair (u, v). The sign of each score is not meaningful, unlike CEW in
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which only an elevated observation suggests presence of a source. Thus, we square the

z-scores and compute the sum of squares as the final source detection score. In the

same way that CEW finds a single-output linear relationship between photon counts

inside and outside the energy window, CCA identifies and concurrently leverages

multiple arbitrary multiple-to-multiple linear relationships between bins of measured

spectra. Figure 4.3 illustrates the information processing flow of the method.

4.3 Experiments

We demonstrate the utility of the CCA-based detection algorithm using authentic

field data in which imperfect information is simulated in three experiments. First,

we corrupt a predefined source spectrum template. Second, we remove the true

template from a library of known sources. Third, we corrupt measurements by

inducing miscalibration of the detector.

4.3.1 Data

Our data consists of over 86,000 gamma ray measurements recorded using a

one-second integration time using a sodium-iodide detector mounted on a vehicle

moving around an urban area in Baltimore, MD, USA. On average, it measured

2,600 background photon counts per second. Each raw measurement was projected

onto d = 116 linearly spaced energy bins. The resulting dataset was partitioned into

training and test subsets with the first 60% as training. Along with the background

measurements, we used a library of 67 source templates corresponding to high-fidelity

source simulations applying a range of configurations of radioactive material and

shielding (Nelson and Labov, 2012). The templates were normalized to each produce

100 photons from the source per second. Each template was independently sampled

for every positive test set observation. These simulated source signatures were

added to the field observations to form synthetic positive measurements. This

process resulted in a labeled set of negative (no source injected) and positive (source

signatures injected) data, separately for each source template in the library.



60 CHAPTER 4. INCOMPLETE INFORMATION

Figure 4.4: Example of methods’ performance on a single source template. MF
(blue), CEW (red), and CCA (cyan) perform best when the source template is
known. When it is unknown, CCA-Max (purple) performs better than MF-Max
(magenta), CEW-Max (green), and PCA (brown).

4.3.2 Incomplete source information

The task was binary classification of each observation as either containing a source

or not. We compared CCA detection with MF and CEW given perfect source

information. These methods benefit from strictly more information and thus

approximate an upper-bound on expected detection performance. We also compared

to the source-unaware PCA method. Additionally, we let MF, CEW, and CCA

address imperfect information by marginalizing over the source library and taking

the maximum score (CEW-Max, MF-Max, and CCA-Max).
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Imperfect energy window

In our first experiment, we directly measured the impact of energy window quality.

Note that among methods we consider, only CEW and CCA use energy windows.

We quantify detection performance of CEW-Max and CCA as the energy window

changed from an accurate, source-specific window to a common window that

maximizes average SNR across all considered types of sources in the library, but

not specifically tailored to any of them. To emulate this, a convex combination was

taken between the target source source template and the average source template

with alternative weights of 0, 0.25, 0.5, 0.75, and 1, where 0 corresponds to the

simple average and 1 to the true target. The energy window was computed for the

interpolated spectrum. Detection performance was measured by the false positive

rate (FPR) at a fixed true positive rate (TPR) of 50%, and TPR at a fixed FPR of 1%.

The results, were averaged across all sources in the library, taking each as the target

in turn. These average detection performances are displayed in Figures 4.5b and 4.5a,

along with the performance of the source-optimal MF and PCA-based SAD. With

fully source-specific windows, CCA performed slightly but insignificantly worse on

average than CEW. With a common, source-type-nonspecific window, CCA enjoyed

large, statistically significant advantages in both metrics, boosting resistance to false

positives at 50% detection probability by a substantial margin.

Unknown source template

In our second experiment, we simulated a lack of information. We removed a group

of mutually similar sources from the library and used one of them as the target

for detection. To do so, we clustered the source template library using K-means

algorithm with K = 10. For MF-Max, CEW-Max, and CCA, we tested them for

each source template by removing its cluster from the dataset and marginalizing

over the remainder. Figure 4.4 shows an example ROC obtained for the considered

methods using a source template including Cobalt-57, an industrial isotope. The

distribution of FPR and TPR over source templates is displayed in Figure 4.6. By

TPR (Figure 4.6a), it is difficult to distinguish between PCA, CCA, and MF-Max.

By FPR (Figure 4.6b), however, the CCA method usually performs better than

MF-Max, CEW-Max, and PCA.
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Gain drift

In our third experiment, we simulate miscalibration of the sensor by gain drift in test

data. The gain drift coefficient was varied between 0 and 0.1 by increments of 0.01,

resulting in transformed spectra such as those depicted in Figure 2.5. This range

was selected as an approximation of drift that might be encountered in practice. To

simulate gain drift, we employed an algorithm that effectively transforms a spectrum

to a different definition of energy bins. Given photon counts data, the energy

frequencies of the current bin boundaries, and the energy frequencies of the new

bin boundaries, the algorithm adapts the counts data to the new bins. When the

new boundaries come in-between the old ones, counts are linearly interpolated. In

this experiment, the CCA method was compared to MF (non-marginalized version),

CEW, and PCA. The TPR and FPR metrics of the methods observed at each

coefficient, averaged over sources, are displayed in Figure 4.8. While CCA was

not initially the best, it obtained an advantage that became more pronounced as

gain drift increased, especially in terms of lower false detection rates. In Figure 4.9,

we show the performance of the methods at 0.1 gain drift along with paired t-test

statistics demonstrating that the CCA method can be superior with statistical

significance when facing sensor miscalibration issues.

In the remainder of this section, we discuss the relationship between CEW and

CCA. Fig. 4.10 displays the similarity between CEW scores and each component of

CCA scores at 10% gain drift. The first component is almost perfectly correlated

to CEW, while the others differ substantially. This result suggests CCA finds

multiple uncorrelated relationships and is therefore more robust to disturbances in

any particular one.

In Fig. 4.11, we illustrate the hypothesis that CCA performs better than CEW

because it utilizes multiple relationships. The figure shows the observed spectra

projected onto four pairs of canonical component projections sorted by the decreasing

order of their correlation with mean background spectrum. The blue contours show

the kernel density estimated distribution of the background data on which CCA was

learned. The trendlines indicate the linear relationship between the views in each

canonical projection. In green and red we highlight a small set of test spectra. The

green are background while the red have the same background but have added source

injections. As expected, the green points generally fit the trendlines, while the red

are farther away. Longer lengths of the residual to the line contribute more to the
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CCA detection score, so these plots show how source template injection results in

higher scores. Consider, for example, the observation marked by a triangle. In the

first component, the residual actually shrinks, lowering the contribution to score. In

the other components, the residual grows significantly as expected. This example

demonstrates how different components are more sensitive to injection. In particular,

the first component, which is almost the same as CEW, contains minimal signal.

On the other hand, the change in score can be seen much more clearly in the other

components. This result explains why multiple components offer benefits over CEW.

Lastly, in Fig. 4.12a and 4.12b, we show detection performance of CEW and CCA

with related methods at 10% gain drift. The leftmost method is Gross Counts (GC),

the sum of counts in all bins. The next is Energy Window Gross Counts (EW-GC),

the sum of counts in the energy window. The next is Univariate CEW (Uni-CEW),

CEW in which the out-of-window counts are summed and treated like a single bin.

Altogether, these five methods form a spectrum that operates on accumulated counts

in different ranges. On the left is the simplest, which uses only one weighting of

bins—uniform—and on the right is the most complex, which uses multiple learned

weightings in two groups to capture maximal structure in the background spectra.

This spectrum of complexity largely aligns with detection performance.

4.4 Conclusion

We have introduced a new method, CCA detection, for processing gamma-ray

spectral measurements and applied it to the task of detecting gamma-ray sources in

noisy background radiation environments. This new method is intended to enhance

practical utility of radiation detection systems by making them more robust to

various imperfections of the application settings, such as limited knowledge of the

sought-after source designs, or sensor miscalibration, that frequently undermine the

performance of radiation threat detection systems in practical application scenarios.

Our experiments demonstrate that CCA detection can be more robust to poor

knowledge of the target source template in the task of gamma source detection.

When the source is unknown to the reference library, CCA detection usually

performs better than relevant alternatives including PCA-based Spectral Anomaly

Detection, CEW-Max, and MF-Max. Likewise, when the energy window is

suboptimally computed—corresponding to a situation in which the target source

template is unknown or inaccurately represented—CCA detection performs better
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than CEW-Max by a significant margin. We hypothesize that this robustness

advantage over the CEW method stems from the fact that whereas CEW finds one

relationship between in-window and out-of-window energy bins, CCA detection finds

multiple such relationships, which when considered jointly, reduce the impact of one

or a few of them becoming uninformative when the window definition becomes less

accurate. Intuitively, by taking a simple sum of photon counts in the window, CEW

only utilizes a fraction of the spectral information available. By comparison, CCA

detection utilizes much more information by finding more than one relationship.

Furthermore, a plausible explanation for why CCA can be more robust than MF is

that it simply allows weaker knowledge of the source—an energy window instead of

the exact template. Intriguingly, CCA also performs better than the completely

source independent PCA detection, even if the knowledge about the source is

imperfect. In contrast, MF and CEW, which depend much more on exact source

information, tend to be worse than PCA in these situations.

Thus, CCA detection may represent a superior trade-off between robustness to

imperfect source information and capacity to leverage that information, and as such

it can serve as a universal tool whose applicability spans the full range of problem

configurations from the perfect knowledge of the targeted source design, to the

complete ignorance about such design. The same reasons can also help explain

why the CCA method can perform better in the presence of sensor gain drift.

The work in this chapter showcases the utility of learning linear multi-view

relationships as discriminative factors in classification. The next step is to extend to

nonlinear relationships.
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(a) Comparison between methods’ TPR at fixed FPR of 1%.

(b) Comparison between methods’ FPR at fixed TPR of 50%.

Figure 4.5: Comparison between methods as energy windows change from common
to source-specific. Values are averaged over all available source templates, and bands
correspond to two standard errors on each side.
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(a) Comparison between methods’ TPR at fixed FPR of 1% (log scale).
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(b) Comparison between methods’ FPR at fixed TPR of 50%.

Figure 4.6: Comparison between methods when target source’s cluster is missing
from the library. Box plots show distribution over source templates. MF, which
knows the true target source, is included as a reference.
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Figure 4.7: Example of a gain drift-shifted spectrum with a coefficient of 0.1.
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(a) Comparison between methods’ TPR at fixed FPR of 1% as the degree
of gain drift increases (log scale).

(b) Comparison between methods’ FPR at fixed TPR of 50% as the
degree of gain drift increases.

Figure 4.8: Comparison between methods as the degree of gain drift increases.
Values are averaged over all available source templates, and bands correspond to
two standard errors.
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(b) Comparison between methods’ FPR at fixed TPR of 50%.

Figure 4.9: Comparison between methods when gain drift is fixed at 0.1. Box plots
show distribution of results over library of source templates.
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Figure 4.10: Comparison of CEW scores and scores in each CCA component. The
first component is almost equivalent to CEW.
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Figure 4.11: Background and injected test samples and how they fit the learned
correlations from background. Blue contours show levels of the kernel density
estimated distribution of training background at 0.1, 0.01, and 0.001. Green and red
symbols show test observations before and after injection. The impact of injection is
small in individual components but is noticeable when all components are considered
together.
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Figure 4.12: Comparison between methods when gain drift is fixed at 0.1. Box plots
show distribution of results over the library of source templates.



Chapter 5

Clustering by Multi-View

Relationships

5.1 Introduction

In this chapter, we ask how we can learn and perform inference on multi-view

relationships, but unlike the previous chapter, we move our attention to nonlinear

multi-view relationships.It is often interesting to analyze the correlation between

two views using Canonical Correlation Analysis (CCA) Hotelling (1936), which

finds linear relationships. A more detailed explanation can be found in 4.2. In

many practical scenarios, however, the relationships may be nonlinear. One way

to represent such structure is cluster-wise linearity. That is, different subsets of

observations may have distinct patterns of correlation; important canonical variables

might differ between subsets of observations. For instance, certain subpopulations

might express a gene combination differently, or distinct subsets of subjects might

have a different physiological response to medical trauma. Additionally, there may

be globally nonlinear correlation structure in the data that may be approximated by

cluster-wise linear models.

To allow discovery of such structures, we propose a method called Canonical

Least Squares (CLS) clustering for dense, continuous data. A single CLS model can

be regarded as a multiple-to-multiple correlation model that finds latent variables to

connect inputs and outputs, somewhat like CCA. The proposed approach, however,

also identifies a clustering of observations, which may be useful when different

correlation structures appear in different subsets of the data. This approach can be

73
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considered a form of correlation clustering, a class of clustering methods that groups

observations based on their correlation patterns Zimek (2009). We also introduce

a supervised classification method that relies on CLS clustering. Practical benefits

of these methods stem from their capability to find interpretable structure in the

data to explain their predictions. In the simplest case, discussed in this paper, the

correlation structures found in each cluster are linear, which aids interpretation,

and the classification score has a gradient that is straightforward to compute and

interpret.

To illustrate our approach, consider the two-dimensional dataset in Fig. 5.1.

It contains three spatially overlapping Gaussian clusters with different covariance

structures. When k-means or Gaussian kernel spectral clustering is employed, the

resulting clusters are displayed in Fig. 5.2. As expected, they are contiguous in

space, but they do not match the ground truth because of the overlap in data. In

contrast, Fig. 5.4 illustrates the clusters learned by CLS clustering. They closely

resemble the ground truth despite the overlapping data, though the learned clusters

do not overlap. This example demonstrates that there are certain problems in which

the data have an interesting structure that cannot be discovered by straightforward

methods. This idea motivates our approach, distinguished from more common

methods by the ability to account for such more unusual, but prevalent in practice,

structures.

5.2 Related work

5.2.1 Multi-view clustering

There has been substantial past work on multi-view clustering. Multi-view

versions of k-means and Expectation Maximization were considered by Bickel and

Scheffer (2004) and found to outperform the single-view counterparts. A method

by Chaudhuri et al. (2009) uses CCA to find the subspace spanned by the means

of mixture components. However, their work assumes views are conditionally

uncorrelated given the component. This is essentially the opposite of our work,

which directly exploits these correlations. Kumar et al. (2011) propose a multi-view

spectral clustering. This framework employs co-regularization to enforce agreement

between spectral clusterings in different views. Another line of work by Nie et al.

(2011) and Wang et al. (2013) approaches clustering as a regression-like problem
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of fitting the data to cluster membership probabilities. Wang et al. (2013) apply

structured sparsity to weight features in different views by their importance.

According to Liu et al. (2013), multi-view clustering strategies can usually be

grouped into three categories. First, multiple views are integrated through the loss

function. Second, multi-view data are projected to a common subspace, in which

any clustering algorithm is then applied. Third, a clustering solution is computed

for each view individually, and then they are all fused to achieve a consensus.

Recent work has heavily focused on Liu et al. (2013)’s work on the first strategy

of clustering by non-negative matrix factorization (NMF). Their idea is to seek a

common latent factor by regularizing similarity between a matrix factorization of

each view. Most current articles propose extensions of this work. For example, Zhao

et al. (2017) propose a hierarchical NMF with graph regularization that incrementally

groups points from the same class closer together in each layer. In addition, Zong

et al. (2017) propose a multi-manifold regularized NMF that better preserves local

geometric structure of the multi-view space. However, almost all previous multi-view

clustering strategies identify clusters from spatial relationships; clusters are defined

as sets of points near each other in some space—either in each view or a combined

space—but the relationships between views are not an explicit factor in determining

clusters.

5.2.2 Single-view correlation clustering

Zimek (2009) considers the problem of clustering data based on patterns of

correlation when the variables are not partitioned into two groups. Unlike CLS or

CCA, however, this work assumes a single view; the correlation refers to correlation

between all the variables, not just between two sets. The paper presents a diverse

body of algorithms for the task.

5.2.3 Cluster-wise linear

Späth (1982) introduces a method for clustering the observations in a single-output

regression dataset. Like k-means, this method is greedy and iterative and alternates

between two steps. Given cluster labels, it fits a linear regression to each cluster.

Given regression coefficients, it assigns each observation to the cluster whose

regression residual is the smallest for that observation. It is simple to show that

this method is a special case of CLS clustering in which the regression inputs are one
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set of variables and the regression output by itself is the other set—i.e., one view is

univariate.

5.2.4 Dependency seeking clustering

An interesting approach to correlation clustering is explored by Klami and Kaski

(2008) and Rey and Roth (2012). Klami and Kaski (2008) establish a probabilistic

generative modeling framework to allow Bayesian inference. They do so by proposing

a model of probabilistic families for finding dependency and give a general clustering

algorithm for this family. CCA is shown to be a special case. A key assumption is

that a linearly transformed Gaussian latent variable produces the variation in the

data. However, there may be severe model mismatch when this assumption was

violated. To remedy this behavior, Rey and Roth (2012) deploy a copula mixture

model to the framework, enabling them to model mixtures of CCA, similar to the

clustering setup in this work. A Bayesian clustering algorithm is proposed and

shown to perform well on synthetic and real datasets. However, a disadvantage of

this approach is that it requires a prior distribution to be specified for every feature,

which could require substantial tuning to avoid mismatch.

5.2.5 Correlational spectral clustering

In Blaschko and Lampert (2008), a multi-view clustering method is proposed based

on kernel CCA (KCCA). It simply runs KCCA on the kernel matrices of two views

and then runs k-means on the latent variables in one view. The authors state that

this method generalizes spectral clustering to arbitrary kernels and paired data.

A notable distinction from our work is that KCCA cluster assignments for test

observations depend on only one view. For example, if it were run on the data in

Fig. 5.1, it would find clusters divided along vertical lines. Hence, the clusters have

limited dependence on correlation between views.

5.3 Canonical least squares

In this section we develop our method for correlation clustering called Canonical

Least Squares (CLS) clustering. We then describe how it can serve as the basis

of supervised classification. Recall Canonical Correlation Analysis (CCA), the
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multi-view method summarized in Ch. 4.2.1. A standard reformulation Hardoon

et al. (2004) of the objective function in (4.1) relevant to our method is

min
u∈RdX ,v∈RdY

E
[
‖Xu− Y v‖22

]
. (5.1)

Like CCA, CLS takes sets of variables X and Y and produces up to m ≤ dX ∧
dY ∧ rank(XTY ) pairs of vectors (u, v) such that the components XTu and Y Tv

have some kind of relationship. Unlike CCA, this relationship is not of maximum

correlation but of least squared error. It functions best on dense, continuous data.

5.3.1 First components

First consider only the top pair of components (m = 1). We redefine X ∈ Rn×dX

and Y ∈ Rn×dY as centered data matrices. Then (5.1) becomes

min
u∈RdX ,v∈RdY

‖Xu− Y v‖22

subject to uTXTXu = vTY TY v = 1.

We propose the following modification, which has the same objective but different

constraints:

min
u∈RdX ,v∈RdY

‖Xu− Y v‖22

subject to vTv = 1.
(5.2)

This optimization has a positive semidefinite objective but quadratic constraints.

We denote (5.2) CLS (for the first component). One major difference from CCA

is the lack of X or Y in the constraints. This difference enables CLS to form the

building block of a clustering method with a well-defined optimization procedure,

as will soon be explained. The other difference is the lack of u in the constraints.

When only v is constrained, the problem generalizes ordinary least squares, which

does not constrain the coefficients of the independent variables, to multiple outputs.

Next we present the solution to (5.2). First let v be fixed. The problem becomes

ordinary least squares in u, yielding

u = (XTX)−1XTY v.
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Let H = I−X(XTX)−1XT, a symmetric idempotent matrix. After substituting for

u, the problem in v is given by

min
v∈RdY

‖HY v‖22 subject to vTv = 1.

This problem resembles PCA except with a minimum instead of maximum. The

solution v is the eigenvector with the lowest eigenvalue of Y THTHY = Y THY . The

complexity of this routine is O(n(dX + dY )2 + (dX + dY )3).

5.3.2 Multiple components

In CCA, subsequent canonical variables are uncorrelated with each other. After

changing these constraints to be independent of the data, we are left with simple

orthogonality constraints between vectors of coefficients. The generalization of (5.2)

to m components is then

min
U∈RdX×m

V ∈RdY ×m

‖XU − Y V ‖2F

subject to V TV = I.

(5.3)

Again, this problem has a positive semidefinite objective but quadratic

constraints. It is difficult to solve analytically because all components must be

found simultaneously. We instead choose an easier suboptimal solution: let V be the

eigenvectors corresponding to the m lowest eigenvalues from the solution to (5.2),

and compute U accordingly. This solution corresponds to greedily solving for each

component sequentially under orthogonality. The computational runtime of this

algorithm is O(n(dX +dY )2). It is an interesting tangent to juxtapose this procedure

with Principal Components Analysis (PCA), which solves a similar problem

max
W∈Rd×d

‖ZW‖2F subject to WTW = I

where Z ∈ Rn×d is a centered data matrix. In PCA, the greedy eigenvector solution is

optimal because of the orthogonality constraints between full vectors of coefficients.

In CLS, however, only the vectors vi must be orthogonal, rendering the greedy

solution suboptimal.

Separately, in the special case that m = min{dX , dY }, then U or V is an
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orthogonal matrix, so CLS reduces to ordinary least squares on the columns of X or

Y respectively.

5.4 CLS clustering

So far we have presented how to change CCA, a multiple correlation problem, to CLS.

On its own, CLS is probably uninteresting, but it becomes relevant in the context

of clustering. Our proposed CLS clustering algorithm takes matrices X and Y , a

number k of clusters, and a number m of components. Let X(i) and Y (i) denote X

and Y with rows sub-sampled to those in cluster i. Let the coefficients corresponding

to that cluster be U (i) and V (i). To find cluster labels for each data point, we iterate

the following steps until convergence:

• CLS step Given cluster labels, for each cluster i = 1, . . . , k: run CLS (5.3)

on X(i) and Y (i) to find U (i) and V (i).

• Labeling step Given CLS coefficients U (i) and V i), for each observation

(x`, y`), ` = 1, . . . , n: assign it to

argmini ‖yT` V
(i) − xT` U

(i)‖22.

This procedure takes a block coordinate-wise iterative approach, resembling

Expectation-Maximization Dempster et al. (1977), to solving the overall optimization

problem ∑
i

min
U (i)∈Rd1×m

V (i)∈Rd2×m

‖R(i)(XU (i) − Y V (i))‖2F

subject to V (i)TV (i) = I, i = 1, . . . , k,

(5.4)

where R(i) is a length n diagonal matrix whose `-th diagonal element is the binary

indicator of whether observation ` is assigned to cluster i.

A convergence guarantee exists when m = 1, i.e., when only the first pair of

components is used. The CLS step optimizes over the ui’s and vi’s, while the

labeling step optimizes over the R(i)’s. Thus the objective is non-increasing at every

step, so convergence is guaranteed. If m > 1, an exact solution to CLS would also

guarantee monotonicity, but since a greedy approximation is used, monotonicity is

not guaranteed. Nevertheless, we have found the objective function to usually behave

monotonic empirically.
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Furthermore, in some applications it is helpful to add must-link constraints that

designate sets of points that must appear in the same cluster. These constraints can

be encoded by assigning each set of points to the cluster that minimizes the sum of

squared errors over the points.

In addition, an analogous clustering algorithm was proposed by Fern and Friedl

(2005) called CCA clustering. While CCA maximizes correlation between variables

in the latent space, CLS minimizes the squared error. These objectives are similar,

but CLS can find components with weaker correlation and smaller residuals, which

is not necessarily an advantage or disadvantage. However, CLS clustering solves

one important issue with CCA clustering. Recall that the CCA optimization had

constraints dependent on data,

uTXTXu = vTY TY v = 1.

As a result, when cluster assignments change, the constraints for each cluster’s

CCA problem change as well. To be consistent, the search space for cluster

assignments would also have to satisfy those constraints, but this requirement is

infeasible. Consequently, there is no reason for the CCA clustering algorithm

to improve its solution at each iteration. By removing the dependence on data

in constraints, CLS clustering avoids this problem and therefore permits a more

well-behaved optimization routine. Indeed, we conducted simple simulations on

synthetic Gaussian data and found that CCA clustering often finds poor solutions

whereas CCA clustering finds reasonable solutions much more often.

5.5 Practicalities

Intercept An intercept should be incorporated in CLS clustering by augmenting

X with a column of 1’s.

Data scale CCA is affine-invariant with respect to X and Y . However, CLS is

sensitive to scaling because it uses Euclidean distance, similar to k-means. Therefore,

we recommend normalizing the column variance in preprocessing.
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Initialization Like in all greedy iterative algorithms similar to k-means, random

initialization over many runs improves the chance of CLS clustering to reach a robust

solution.

5.6 Synthetic data experiment

We deployed different clustering methods on a medium-sized synthetic dataset. The

dataset consisted of 10 equally sized clusters of 1,000 points each. Each cluster was

sampled from a different multivariate Gaussian in R100 centered at the origin with

covariance drawn from a Wishart distribution. The first 50 features composed one

view while rest composed the other view.

Table 5.1: Cluster Quality on Synthetic Data

CLS CCA k-means SC

ARI .99 ± .01 .94 ± .02 .005 ± .003 .000± .000

We computed the Adjusted Rand Index (ARI) relative to the true cluster

labels Yeung and Ruzzo (2001). We compared CLS clustering to CCA clustering,

k-means, and Gaussian kernel spectral clustering (SC). The simulation was run

50 times. Table 5.1 displays the average ARI and two times the standard error.

The best performer was CLS clustering. The next best was CCA clustering, which

usually produced solutions with ARI of either about 1.00 or .89 possibly because

of convergence issues. Lastly, k-means and SC performed very poorly because they

searched for isolated L2 clusters structure while the true clusters overlapped.

5.7 Bleeding experiment

We used a medical dataset to conduct three sets of experiments corresponding to

different levels of supervision for CLS clustering.
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5.7.1 Background

We considered a dataset in which we attempted to detect the presence of bleeding and

other conditions by monitoring central venous pressure (CVP), the blood pressure

measured invasively in the central veins close to the heart, or estimated from indirect

less invasive measurements. It helps quantify right atrial pressure and can be used as

an estimate of right ventricular preload. Predictive tasks based on CVP have been

the subject of several studies in the medical literature (Michard and Teboul, 2000;

Pinsky and Payen, 2005; Kumar et al., 2004; Marik and Cavallazzi, 2013; Damman

et al., 2009; Boyd et al., 2011). Here we investigate the CVP signal within a controlled

setting by attempting to classify CVP waveforms as indicative of an active bleeding

episode vs. periods of no-bleeding. We show how CLS can make predictions as well

as automate the discovery of insights of potential clinical interest. CLS clusters

can be interpreted as clinical phenotypes characterizing patients’ pre-bleeding or

post-bleeding responses. Also, the relationship of bleeding with inspiration and

expiration can be interpreted in terms of the original CVP waveforms.

5.7.2 Data description

The data were collected from an experiment in which healthy pigs were subjected

to controlled bleeding. The experimental procedure was similar to that in Pinsky

(1984). Thirty-eight Yorkshire pigs were anesthetized, instrumented with catheters,

and allowed to stabilize for 30 minutes. Then they were bled at a constant rate of 20

mL/min. Their CVP was monitored for 25 minutes before bleeding and 25 minutes

after its onset. Two CVP waveforms (Fig. 5.5) were extracted from each respiration

cycle, one from the top of the inspiration phase of breathing and the other from

the bottom of expiration. The respiration cycles lasted 5.2 seconds each on average,

resulting in an average of 556 observations per pig over the 50 minutes of observation.

Thirteen features were extracted from each waveform as averages and ratios between

different characteristic points of the CVP waveform, landmarks used commonly in

clinical analysis. These features included differences between peaks and troughs such

as the height SA between points S and A as well as ratios of ranges such as V R over

CQ (Fig. 5.5).
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5.7.3 Blood loss known exactly

In the first experiment, the exact amount of blood loss was assumed to be known

as zero before bleeding and linear at a rate of 20 mL/min after the onset of induced

bleeding. CLS clustering was run to cluster respiration cycles with all CVP features

as the input view and blood loss as the output view. The data from all 38 pigs were

concatenated. Since the output view was univariate, the method corresponded to

cluster-wise linear regression (Späth, 1982). The purpose of this experiment was to

learn clusters that corresponded to bleeding status by directly incorporating bleeding

information. We tried k = 4 and m = 4. These values were selected by hand to

optimize visual quality of the clusters. The cluster assignments are shown in Fig. 5.6.

Each row represents a subject, while each column represents a time step. The clusters

are color-coded. The clusters were largely contiguous in time, even though there was

no such constraint in the method. One cluster corresponded to no bleeding, but

the bleeding period was separated into three separate phases. This result confirms

the hypothesis that the chosen parameterization of the CVP waveform carries in its

structure the information about the bleeding status of the subject and is to some

extent informative of the amount of blood lost.

5.7.4 Blood loss unknown

In the previous setting, the amount of blood loss is unknown in practice, but this

information is required at test time to cluster new observations. To simulate a

more practical environment, the second experiment was to deploy CLS clustering

on only CVP features without knowing blood loss. The two views were inspiration

and expiration, which are both known at test time. Observations from the same

pig were constrained to belong to the same cluster during training. The pigs were

partitioned into training and test sets of 25 and 13 subjects respectively. Data

from all training pigs were concatenated to learn the cluster model. The purpose of

this experiment was to examine the qualitative performance of this method in more

realistic conditions. We chose k = 4 and m = 4 to match the previous experiment.

The cluster assignments are shown in Fig. 5.8. The clusters were still mostly

time-contiguous, although they appeared significantly noisier than before. This

result was expected because critical information, the amount of bleeding, was

excluded. Two clusters corresponded predominantly to either no bleeding or

bleeding, but the two other clusters identified two small groups of pigs that appeared
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distinctive before the onset of bleeding. This suggests that our method discovered

diversity within the subjects’ physiology in the stable state, later confirmed via

independent review. Crucially, the clusters still corresponded to bleeding status

even though no information about bleeding was known. For comparison, Fig. 5.7

displays the clusters from k-means on the concatenated views. The clusters are time

contiguous and smoother than CLS clusters, which is expected because observations

close in time are probably close in L2 distance. Overall, the two approaches find

similar cluster structures. However, there are important differences. Most notably,

our method finds a much clearer divide between no bleeding and bleeding, such as

in Pigs 1, 3, and 11. In addition, Pig 4 is interesting because k-means does not

differentiate between its bleeding and no-bleeding states, whereas for CLS clustering

that distinction is more clear. These results indicate multi-view relationships are

more powerful than spatial relationships for discovering temporal structure in the

physiological response to bleeding. Furthermore, it is plausible that k-means is

underfitting the clusters, while the noise in the CLS clusters indicates that our

method may be further from underfitting (and closer to overfitting).

Additionally, Fig. 5.9 shows for comparison the clusters from CCA clustering on

inspiration and expiration views. The same constraints and number of clusters and

components were used as in CLS clustering, yet the clusters do not appear much

time-contiguous and do not correspond with bleeding status. Also, we clustered the

same data using spectral clustering (Von Luxburg, 2007) using a Gaussian kernel to

produce the affinity matrix, but over 98% of data points were assigned to the same

cluster.

Fig. 5.10 shows the four latent components over time of one pig in a particular

cluster. The components appear almost constant before bleeding and become more

or less linear after bleeding. This behavior is interesting because it resembles the

amount of blood loss over time, even though this information was excluded from

training. Although this example is from one cluster, it is also representative of all

other clusters.

5.7.5 Discussion

Clinical relevance Discussed in Sec. 6.3.



5.7. BLEEDING EXPERIMENT 85

Quantitative evaluation of correlation clusters To our knowledge, there is

no consensus in correlation clustering community on a framework for quantitative

evaluation. Ideally, our method’s cluster quality would be numerically compared

on real datasets to alternatives such as k-means, spectral clustering, correlational

spectral clustering (Blaschko and Lampert, 2008), CCA clustering (Fern and Friedl,

2005), and copula-based dependency-seeking clustering (Rey and Roth, 2012).

However, there are a couple underlying issues with such comparisons. First, the

former three alternatives are based on L2 distance to some extent, which makes

them improper comparisons because they identify fundamentally different cluster

variables. The second issue is the shortage of ground truth in public datasets for

correlation clusters. Consequently, in correlation clustering literature, it is common

practice to perform qualitative evaluation of clusters rather than quantitative (Fern

and Friedl, 2005; Rey and Roth, 2012; Zimek, 2009). We do the same in this work,

following our best intuition.

Bleeding clusters Figs. 5.6 and 5.8 highlight an interesting pattern. For many

pigs, there was a dominant cluster before bleeding, but when bleeding started, a

different cluster took over. This new cluster typically only held observations from

the first ten or fewer minutes after bleeding. Afterward, other clusters became

dominant. One interpretation is that the physiological response to bleeding changed

as the induced stress escalated. There may have been an initial compensation surge,

followed by a more systemic response mediated through autonomic nervous control

which could also change in its modality as a function of escalating stress. This

hypothesis may be supported by Fig. 5.10, which shows that the immediate onset of

bleeding corresponded to a spike in latent variables. This pattern is an example of

how the interpretable structure of CLS clustering can lend itself to finding practical

insights. In addition, our method identified diversity

Appropriate types of data In elided experiments we tested CLS clustering

on many different types of synthetic data, which we summarize here. The most

appropriate type was found to be continuous values with no missing data. Some

distributions on which it performed included Gaussian, log-normal, and uniform. On

missing or sparse data, the method requires additional treatment such as imputation

before or during the learning process.
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Soft clustering We developed a soft clustering extension of CLS based on ideas

in Hathaway and Bezdek (1993). One way to view this extension is that cluster

probabilities of an observation are regularized toward a uniform distribution over

clusters. In the soft version, the optimization is much smoother, resulting in more

consistent solutions over different runs. In the applications shown in this paper,

however, it was outperformed by the hard version, even though the assignment step

in the hard version is highly non-smooth. A potential avenue for future work would

be to analyze this and other theoretical optimization properties of the method.

Spectral interpretation Recall that the solution v for the first component of CLS

was given by the last eigenvector of Z ≡ Y T(I−X(XTX)−1XT)Y . Let Σxx = XTX,

Σxy = XTY , and Σyy = Y TY . Assuming the data are centered, these variables are

covariance and cross-covariance matrices of X and Y . Then Z = Σyy−ΣT
xyΣ

−1
xxΣxy is

the Schur complement of the covariance matrix of the joint distribution of X and Y .

If this joint distribution is multivariate normal, then Z is the conditional covariance

of Y given X. Hence CLS can be interpreted as finding the direction of minimum

variance in Y given X. When Y has less variance after controlling for its relationship

with X, it is easier to find a better linear fit with X. CLS clustering is similar in

this regard to correlation clustering methods by Zimek (2009), which also leverage

eigenvectors of lower variance.

5.8 Conclusion

This work considered the problem of discovering interpretable structures in complex

datasets. In particular, we proposed a method to learn correlation clusters for

multi-view data, where important relationships between the views are discovered.

The method was tested on CVP waveform datasets of induced bleeding and was

demonstrated to find interesting structure. Although we demonstrated the potential

utility of the proposed method on the task of real-time monitoring of surgical

patients, it can be useful in a wide range of multi-view problems in clinical and

biological engineering applications, wherever distinct multi-modal structures of

relationships between views of data can reveal operationally useful information.

A useful extension of this method would be to incorporate sparseness, most likely

via an L1 penalty in the CLS objective. Although it is not difficult to preserve the

analytic solution with this penalty on one view, it is an open problem to do so while
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penalizing both views.

Another possibility for future work would be to augment the CVP featurization

with systematic features. It is potentially problematic that the current featurization

depends on synchronicity of inspiration and expiration by pairing them as views

because the phases often do not align well. A solution would be to create features

using harmonic or wavelet transforms. Rather than extracting a single waveform

from each phase, the transforms would be applied to each entire phase. This change

would reduce the noise in features and would complement the existing featurization.

Another future direction in clustering would be to generalize to arbitrary

nonlinear relationships, not only cluster-wise linear ones. One approach would be to

kernelize CLS similar to Kernel CCA (Akaho, 2006). Alternatively, nonlinear models

have become highly popular with the advent of deep learning. It would be intriguing

to extend our framework with a technique such as Deep CCA (Andrew et al., 2013)

to replace CLS.

This chapter showed how multi-view relationships can be learned nonlinearly to

perform unsupervised learning. This result raises the question of whether we can do

the same for supervised learning, the subject of the following chapter.
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Figure 5.1: Ground truth clusters for an overlapping Gaussian dataset, drawn
translucently to illustrate overlap.
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Figure 5.2: Clusters from k-means or spectral clustering for an overlapping Gaussian
dataset.
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Figure 5.3: Clusters from deep non-negative matrix factorization Zhao et al. (2017)
for an overlapping Gaussian dataset.
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Figure 5.4: CLS clusters for an overlapping Gaussian dataset.
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Figure 5.5: An example of a central venous pressure waveform for inspiration and
expiration phases of breathing cycle, along with labeled key points.
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Figure 5.6: CLS cluster assignments with 4 clusters when blood loss is known.
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Figure 5.7: Cluster assignments from k-means with 4 clusters when blood loss is
unknown.
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Figure 5.8: CLS cluster assignments with 4 clusters when blood loss is unknown.
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Figure 5.9: CCA cluster assignments with 4 clusters when blood loss is unknown.
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Figure 5.10: CLS latent components over time for one cluster when blood loss is
unknown.
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Chapter 6

Classification by Multi-View

Relationships

6.1 Introduction

This chapter is an extension of Ch. 5, which focused on descriptive analytics. Here

we switch to prediction—classification in particular. We aim to use the same idea

of nonlinear multi-view correlations, but now we hypothesize that each class has

its own distinct structure. The intuition is that we perform comparisons similar

to the nearest-neighbor algorithm but with multi-view relationship features rather

than spatial features. This approach generalizes the previous anomaly detection

method in Ch. 4. The importance of this chapter is that it proposes a unique

multi-view approach to classification based on multi-view relationships rather than

the agreement between views of spatial relationships. Additionally, it offers a

quantitative way to evaluate mixtures of linear relationships, our choice to represent

globally nonlinear relationships.

6.2 Method

It is straightforward to build a supervised classification method on top of CLS

clusters. First CLS clusters are learned independently on each class. Then new

points are scored for each class according to the best fitting (lowest scoring) cluster

in that class’s fitted model. More formally, the score of point (x, y) in cluster i is

93
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given by

−1

2
‖xTU (i) − yTV (i)‖22.

The minimum of these scores is taken over the clusters in a given class to produce

the score for that class. The final classification is the class that has the best fitting

cluster overall. In addition, the procedure can be run many times with different

random initializations and the scores averaged, which would make this classifier an

ensemble method.

One possible drawback of this method is that by learning models on different

classes independently, it does not maximize separation between classes. However,

anomaly detection does not either. Indeed, this method can be considered a nonlinear

multiclass generalization of the anomaly detection method in Ch. 4. This intuition

may justify why it performed well in experiments.

Additionally, in many applications, it is interesting to examine only two of the

learned clusters and ask how to decide which of them a new observation should

belong to. It is possible to derive a locally linear model of the relevant factors, which

should be readily interpretable. Of course, we can only interpret a single weak learner

from the ensemble, not the entire ensemble at once, but this difficulty is shared by

all ensemble methods. Now, let the observation be given by (x, y) and let z be the

vertical concatenation of x and y. Let the two clusters of interest have coefficients

U (i) and V (i), where i ∈ {0, 1}, and let W (i) be the vertical concatenation of U (i)

and −V (i). The loss in cluster i is then zTW (i)W (i)Tz/2. The classification score

between the two clusters is

1

2
zT(W (0)W (0)T −W (1)W (1)T)z

where a higher score indicates membership in cluster 1. We determine the effect of

a small change in any individual feature by computing the gradient,

(W (0)W (0)T −W (1)W (1)T)z.

6.3 Experiment on bleeding data

In the unsupervised setting, it was difficult to obtain quantitative measures without

ground truth. Thus, the third experiment was to run CLS classification. The

classification task was to decide whether an observation came from before or after the



6.3. EXPERIMENT ON BLEEDING DATA 95

-200 -100 0 100 200 300

Time from bleeding (respiratory cycles)

2

4

6

8

10

12

P
ig

 n
u
m

b
er

NA

1

2

3

4

5

6

7

8

C
lu

st
er

 n
u

m
b

er

Figure 6.1: CLS cluster assignments with 3 non-bleeding (1-3) and 5 bleeding (4-8)
clusters when blood loss is known as a binary label.

onset of bleeding. The binary label is required at training time but is not needed to

classify or cluster unseen observations, so this form of supervision is more practical

than the first. Under the same training/test split, data from all training pigs were

concatenated to learn the cluster model. Leave-one-subject-out cross-validation was

employed to select the hyperparameters k and m for non-bleeding and bleeding

models. Following the classification algorithm from the previous section, CLS

clusters were learned separately on the two classes. Observations from the same pig

were constrained to belong to the same cluster during training. The classification

scores on a left-out pig were used to compute the area under the receiver operating

characteristic curve (AUC), true positive rate (TPR) at a false positive rate (FPR)

of 10% and 1%, and FPR at a TPR of 50%. Hyperparameters were selected by

optimizing the AUC. We chose 3 clusters with 6 components each for pre-bleeding

and 5 clusters with 7 components each for post-bleeding.
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Table 6.1: Bleeding Classification Performance

Single cluster CLS Final CLS Random forest

AUC .701 ± .128 .862 ± .064 .891 ± .075
TPR @ .10 FPR .468 ± .185 .674 ± .145 .762 ± .167
TPR @ .01 FPR .222 ± .134 .501 ± .185 .610 ± .210
FPR @ .50 TPR .239 ± .152 .064 ± .055 .073 ± .075

Fig. 6.1 illustrates the resulting cluster assignments. Similarly to the previous

experiment, the clusters are mostly time contiguous but contain substantial

noise. There is one predominant cluster for no bleeding and several for bleeding.

Intriguingly, the cluster structure does not appear too similar to the previous

experiment and has more differentiation between subjects during the bleeding period,

suggesting some extent of individualization of the response to harmful effects of

bleeding across subjects.

Table 6.1 shows performance metrics of the final model on test data. It also gives

results from a model that learns only one cluster on each class. The sizable gap in

results demonstrates the benefit of searching for correlations that exist in subsets of

the data, as opposite to a global correlation model identifiable in the whole set. The

table includes results from a random forest classifier (Breiman, 2001) with 100 trees

trained on the combined views. The random forest performs best in most metrics,

but its advantage vs. CLS is not statistically significant. This result is acceptable

since CLS enables detailed yet interpretable view of discovered structures in data

while its performance metrics remain within the confidence interval of otherwise

powerful random forest classifier. The explainability of CLS results will be discussed

later in this section and in Sec. 5.7.5.

To understand the model’s decisions, we used the method involving the gradient

derived in the previous section on weak learners from the pre- and post-bleeding

ensembles. We checked the score that determined whether a certain pig belonged to

cluster 1 or 4, where cluster 1 was pre-bleeding and cluster 4 was post-bleeding. We

computed the gradient of the score on a pre-bleeding observation. The results are

displayed in Fig. 6.2. The original waveform of the observation is plotted on the left.

According to the gradient, the most major changes that would make the observation

closer to a bleeding waveform were shortening the lengths SA and AP during
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Figure 6.2: A pair of CVP waveforms from expiration before and after bleeding. The
impact of certain features has been labeled on the pre-bleeding side. Arrows indicate
lengths that must decrease to appear more like a waveform from after bleeding.

expiration. Correspondingly, the figure shows on the right an expiration waveform

from soon after the onset of bleeding. The two characteristic waveform parameters

have shrunk dramatically, and bumps and dips at A and S have substantially

diminished.

Clinical relevance Many physiologic factors interact to define a given CVP or

its mean change during the ventilatory cycle making these measures insensitive

to changes in effective circulating blood volume as bleeding occurs except at the

extremes, where such monitoring is not needed. Importantly, as depicted in Fig. 6.2,

the dynamical waveform changes at end-expiration in the CVP waveform features

compared to end-inspiration are very informative of dynamic changes in volume

status, even if the absolute CVP values are not. This is relevant to bedside

monitoring of critically ill patients for several reasons. First, CVP monitoring is

common in critically ill patients because central venous catheters safely deliver

fluid and drugs that cannot safely be infused by a peripheral source. Thus, its

monitoring is readily available. Second, although absolute CVP values may be

inaccurate for technical reasons of zero reference values, the pressure waveform

datasets remain accurate, allowing their featurization for CLS and other machine

learning applications that until now have been underutilized. And finally, early

identification of occult bleeding would allow earlier corrective therapies to minimize

or prevent hypovolemia associated tissue hypoperfusion. Such earlier interventions
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would markedly reduce hypoperfusion related morbidities, like acute kidney injury,

ileus and secondary wound infection.

Comparison to random forest In the above experiments we compared the

classification performance of the proposed method to a random forest (Breiman,

2001). Our goal was to illustrate that CLS classification was pragmatically close to

state-of-the-art of methods used in clinical settings, even if just slightly worse. The

advantage of the proposed method is not intended to be classification performance

but rather its interpretable structure. Although the individual decision trees in

a random forest are somewhat interpretable, a major difference are the types of

problems for which they are suited. The proposed method is more suited for

multi-view data that are hypothesized to have interesting correlations between the

views, especially when those correlations differ between subsets of observations, as

random forests do not incorporate any clustering mechanism.

6.4 Application to non-intrusive load monitoring

6.4.1 Introduction

This chapter covers an additional application of our classification methodology.

We continue to use our methodology to investigate temporal structure of signals

but in a new application. The previous source separation problem covered here,

radiation detection, included exactly two kinds of signals, the source and background.

Furthermore, information is often known about the source. It is interesting to

consider a different source separation problem that comes with less structure. We

turn to the task of non-intrusive load monitoring (NILM), in which there is an

arbitrary unknown number of unknown source types. We characterize change points

in an aggregated signal by relationships between past and present windows of time.

As demand grows, it is increasingly important to conserve energy for financial

and environmental purposes. This problem is addressed statistically in NILM, a

problem about discovering which appliances in a building are responsible for energy

consumption. The aggregated power consumption is measured at the utility service

entry and must be disaggregated into consumptions of individual appliances. This

information could then detect anomalous consumption patterns, allow homeowners

to compare their patterns to each other, help electrical utilities refine their load
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profiles to better forecast loads, and analyze load flexibility of different buildings. In

the event-based workflow of NILM (Hart, 1992), the process is often broken down

into at least three steps. First, time steps are identified at which an appliance is

switched on or off. Second, the identified events are classified according to which

appliance was involved. Third, the exact power usage is computed for each appliance.

In this work, we focus on the first step, event detection, and the second step, event

classification (also known as load identification). In time series literature, when an

abrupt change must be detected, the problem is called change detection. This domain

has inspired the current state-of-the-art of NILM event detection, the chi-squared

goodness-of-fit (GOF) test, which compares two consecutive windows of power to

check if an event occurred between them (Jin et al., 2011b). This method makes

questionable assumptions. To address these problems, we propose a novel approach

that applies our multi-view classification methodology to harmonic features derived

from power. The views in this problem represent times before an event and times

after, so the relationship between views is temporal change. We hypothesize that our

method can characterize this change in a highly discriminative fashion. Separately,

detected events must be classified by appliance. Many methods have been explored in

the past; see Zoha et al. (2012) for a survey. The most relevant of these simply apply

a standard classifier to features derived from power. We, however, demonstrate that

a more powerful classifier can be trained with our multi-view methodology under the

same intuition as event detection. We consider these two problems independently,

which is standard in the literature albeit impractical.

6.4.2 Related work

There is an interesting collection of literature on the event detection step of

event-based NILM. Most methods are based on probabilistic models. In Shaw et al.

(2002), the authors draw from change detection literature to propose generalized

likelihood ratio (GLR), which checks if a time step is an event by evaluating whether

it came from the window immediately before or after under an assumed distribution,

typically Gaussian. A voting scheme is applied to smooth the scores (Anderson et al.,

2012). GLR is often used as a baseline. Another popular baseline is the previously

mentioned GOF (Jin et al., 2011b,a), often referred to as state-of-the-art. Recently,

De Baets et al. (2017) argue that GOF is too sensitive to variance in base load power

consumption and requires extensive parameter optimization. Accordingly, they
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propose a modified version of GOF, which they show to have greater performance

with a higher base load. Additionally, a recent paper by Pereira and Larsys (2017)

proposes to use GLR but replace the voting scheme with a locator algorithm for the

extrema of scores. Another category of method is based on heuristics. For example,

in Meehan et al. (2014), an event is detected by checking whether the absolute

difference of power between two points exceeds a pre-defined threshold.

A significant amount of research has been done on event classification too.

Sadeghianpourhamami et al. (2017) provides a survey on different techniques for

feature selection. Many techniques process the P -Q plane, the series of real power

(P ) and reactive power (Q), using harmonic analysis. Some techniques process raw

waveforms, and others VI trajectories, the series of voltage (V ) and current (I). In

terms of classification techniques, there have been a variety of approaches, partially

surveyed by Zoha et al. (2012). Figueiredo et al. (2011) try typical classifiers, Support

Vector Machine and k-Nearest Neighbors. Lin et al. (2011) apply a classifier based

on Fuzzy C-Means to exploit cluster structure in crest factors. Recently, research has

focused on deep learning. Chang et al. (2014) employ wavelet transforms to featurize

power waveforms and feed them to a neural network for classification. Several other

deep neural architectures are tested by Kelly and Knottenbelt (2015). More recent

work has included Convolutional Neural Networks (De Baets et al., 2018; de Paiva

Penha and Garcez Castro, 2018).

6.4.3 Baselines

GOF is referred to as the state-of-the-art in event detection (Jin et al., 2011b).

Given a time series of power, it checks whether an event has occurred in a window

by comparing the window to a previous window. A hypothesis test is performed to

analyze whether the windows come from the same probability distribution. With a

window size of n, let {pi}n1 and {qi}n1 be consecutive windows of power. The test

statistic is ∑
i

(pi − qi)2

pi
,

which follows a χ2n−1-distribution under a Gaussian assumption on power. If the test

statistic is high, there is more evidence to believe that the distributions differ and

an event occurred in the second window.

The voting scheme in Anderson et al. (2012) can be applied to GOF. A window
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of length wvote is moved over a series of scores. A vote is given to the highest score in

each window. This procedure greatly reduces false positives at the expense of some

true positives.

In event classification, there is no single state-of-the-art method, but many

standard classifiers have competitive performance (Zoha et al., 2012). We employ a

random forest on the same harmonic features as in event detection. Preliminary

experiments showed k-NN, SVM, and multinomial regression probably held no

advantage over random forest.

6.4.4 Proposed approach

We hypothesize CLS classification can outperform GOF in event detection. Although

GOF may be considered a basic multi-view method where each window is a view,

it potentially oversimplifies the multi-view structure of the problem because it only

considers pairs of corresponding time steps in order. The i-th observation of a

window is only compared to the i-th of the other; however, there is no physical

reason for these observations to correspond. There is room for improvement if

this constraint is relaxed so that multiple relationships between observations are

considered. Furthermore, GOF explicitly assumes that power is normally distributed,

but in real datasets this does not appear to always hold. To address these

drawbacks, we replace GOF with the CLS classification method in Ch. 6. By

characterizing events and non-events by correlation patterns between the windows,

our method learns much more complex multi-view structure. It also does not make

any assumptions about the probability distribution of power. Since GOF is applied

to just power, a univariate feature, we restructure the data to be multivariate

by computing harmonic features over the windows using the Fourier transform, a

common featurization (Sadeghianpourhamami et al., 2017). We then select the top

nPC = 5 principal components in each window. After the classifier is run, the

voting scheme is applied to the scores. Note that the harmonic features are linear

combinations of power, meaning that a Gaussian assumption propagates. Thus,

GOF can be applied by summing the test statistics over channels.

Furthermore, we conjecture that CLS classification can also outperform random

forest in event classification. Although random forest makes no obviously

problematic assumptions, it is inherently single-view; its constituent trees split on

individual features at a time without analyzing how they relate to other features.
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By explicitly characterizing temporal change as a multi-view relationship, we believe

our method can readily capture dependencies often missed by single-view methods.

Additionally, rather than use simple CLS classification, we run with many different

initializations and average the class scores across models, building an ensemble of

classifiers. This technique reduces variance and empirically improved performance

in this task.

6.4.5 Experiments

The dataset is BLUED (Filip, 2011), a collection of high-frequency electricity data

in one building. The dataset is commonly used for benchmarking. It contains

measurements of current and voltage on two phases A and B at 12kHz from which

we compute active power. Here we select phase B because it is has many appliances

that frequently overlap. Ground truth events are provided. We compute the discrete

Fourier transform (DFT) from 12kHz power, but we evaluate the methods at 60Hz

in testing.

Event detection

We compare our method to GOF using both 12kHz power and DFT. Positive

samples are from time steps containing events, while negatives are one-second blocks

separated by three seconds on either end of each event. Results are shown in Fig. 6.3

and Tbl. 6.2. Our method performs better at all levels of TPR with statistical

significance, where randomness is over model initialization. This example shows

how our method outperforms a multi-view alternative because of its less restrictive

assumptions.

Table 6.2: Comparison of FPR of event detection methods on BLUED dataset.

TPR 80% 85% 90% 95% 98%
GOF on power .10% .15% .50% .81% 5.46%
CLS on DFT .08% .09% .26% .67% 3.92%

Event classification

We compare our method to random forest on harmonic features. We subsample

the events to the most common appliances because many appliances have very
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Figure 6.3: ROCs of event detection methods on BLUED dataset.

few samples. Classes are defined by both appliance type and direction of the

switch—increase or decrease in total power. We use the M top classes, where

M ∈ [4 . . 10]. Since we consider event classification in a vacuum, as is standard in the

literature (Zoha et al., 2012), the data lack complications such as false positive events

and unknown classes in test data. Results are shown in Fig. 6.4 and Tbl. 6.3. Our

method performs better in F1, precision, and recall (uniformly averaged over class)

at every value of M with statistical significance, where randomness is over model

initialization and subsampling. This example reveals how the multi-view nature of

our method provides an advantage over single-view methods.

Next we present a case analysis of a mistake made by random forest but not

by CLS classification. In Fig. 6.5 there are features of three examples with five

features in each view. The examples (a) and (b) are from the same class while (c) is

from a different class. CLS correctly classifies both (a) and (b), but random forest

misclassifies (a) as the same class as (c). The features of (a) and (b) are similar and
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Figure 6.4: Comparison of methods’ F1 as the number of samples to include a class
grows.

have the same multi-view relationship, which allows CLS to classify them properly.

However, the value of Feature 2 in the “After” view differs from about 2 to about 1.

It turns out that many decision trees in the random forest quickly classify examples

with this value of Feature 2 as the class of (c) because it is an effective rule for

that class, as demonstrated by Fig. 6.5c. The random forest can make this mistake

because it only looks at individual features and not at the relationship between views.

6.4.6 Discussion

Performance of our method

We have demonstrated our method of CLS classification to outperform baselines in

event detection and classification. The method performs better than the multi-view

baseline in detection because it learns much more sophisticated multi-view structure.
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(b) Features of example where both CLS and the baseline are correct.
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(c) Features of example in class that the baseline mistakenly assigned the
example above in Fig. 6.5b.

Figure 6.5: Features of three examples, with five features in each view. The top two
are the same class and appear similar. The bottom is a different class and is only
similar in the first two features of the ”After” view.
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It also performs better than the single-view baseline in classification because it

can identify useful changes in temporal structure through multi-view analysis. As

detection and classification comprise core components of event-based NILM, these

results suggest that our method might help advance the state of the art. Furthermore,

this work supports the hypothesis that classification can be approached by using

multi-view relationships as a unit of analysis to leverage structure that other methods

struggle to find.

The results highlight the advantage of a multi-view treatment of event

classification. Our method models dynamics of temporal change through views of

“before” and “after,” a well-suited treatment for frequently sharp or step changes

when appliances are switched. This intuition inspires potential augmentations to

random forest to improve its ability to exploit these dynamics. For example, each

decision tree could be constrained to consider features that alternate between views

or to always select the corresponding feature from the other view. In addition, the

random forest could be given a features that represent multi-view relationships, such

as the CLS projections in each cluster.

End-to-end evaluation

In a practical scenario detection and classification should be evaluated end-to-end.

The ideal evaluation would be to reconstruct a binary signal of whether each device

is on or off and treat it as a series of classification tasks. However, in this work we

consider the problems independently because numerous practical issues arise that

we consider out-of-scope. First, many devices have state spaces more complex than

Table 6.3: Classification performance as the number of events to include a class
grows. Asterisk (*) denotes statistically significant advantage. Note F1 is not tested.

Min.
training
events

Num.
classes

RF
F1

CLS
F1

RF
Precision

CLS
Precision

RF
Recall

CLS
Recall

14 10 55 56 56 66* 55 56
15 9 54 59 55 70* 53 58
16 8 52 53 53 60 51 54
23 6 81 88 82 89* 80 89*
27 5 77 88 78 87* 76 90*
52 4 86 95 89 97* 85 94*
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just on or off, such as a fan with multiple speeds. Many common appliances have

this problem. Moreover, these states are not labeled in the data, so one would need

to propose an approach to estimate the states. Second, detection will produce false

positives that are then fed to classification, and true positives may be unknown

devices. A method must be designed to purge these anomalies; we believe a good

approach is to insert an independent anomaly detector after classification for each

class, but there may be better ways. Third, the ON and OFF events predicted by

classification do not always come in pairs, which would be expected in appliances

with only two states. A simple fix would be to only consider adjacent pairs of ON

and OFF events, but doing so would often ignore many events that are correctly

detected but misclassified. A rigorous treatment for this problem is suggested in

Giri and Bergés (2017). Due to the scope and difficulty of these three issues, we opt

to leave end-to-end evaluation as future work.

VI trajectory

Our multi-view approach to NILM focused on temporal views. Nonetheless, there

may be other viable approaches. According to Sadeghianpourhamami et al. (2017),

some researchers have used features based on the P -Q plane or VI trajectory. These

features would be naturally multi-view. For example, the VI trajectory is circular

for phase shifted power and current. We could imagine that different combinations

of appliance states could result in different circles. Then a multi-view clustering

method might be an ideal candidate to identify these states.

6.5 Conclusion

Like the previous chapter, this work considered the problem of discovering multi-view

structure in complex datasets. We proposed a classification method that learns

correlation clusters for multi-view data on each class individually and makes

classifications based on which model fits better. The method was tested on

CVP waveform datasets of induced bleeding and in NILM on event detection and

classification. Experiments demonstrated it to perform well because it leveraged

relations between views. In essence, these results illustrate that cluster-wise

nonlinear multi-view relationships can be employed as discriminative factors in

classification.
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In the future it would be relevant to investigate why our method performs in

terms of the original power signal. For instance, it would be interesting to check if

some events corresponded to certain changes in power that were easier or harder to

detect with our method. One way to do so would be to perform a gradient analysis on

the classification score to measure the impact of different features, which correspond

to principal components of the Fourier transform. The components could then be

projected back to the original feature space. Alternatively, an interpretable classifier

could be fit to the binary variable of whether our method is correct while random

forest is not. Its decisions could then be interpreted in terms of features of the

original power.

Additionally, we could attempt to try other distribution tests to replace the

baseline GOF test such as Maximum Mean Discrepancy (Borgwardt et al., 2006), a

distribution-free test that does not make the same problematic assumptions.

Another interesting future avenue would be to obtain theoretical results about

the performance of this method. In the empirical results here, we explained how

our method leveraged multi-view structure, but we did not attempt to understand

the underlying reason our method could perform better than baselines rather than

just by operating on different statistical properties. A challenging but important

research topic would be to quantify the strength or discriminativeness of multi-view

relationships to theoretically bound the effectiveness of this method.
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Chapter 7

Conclusion

In multi-view learning, common approaches lack a layer of abstraction to truly

separate themselves from single-view methods. To attempt to provide this layer, this

thesis initially postulated that it is possible to characterize multi-view relationships

and employ them as units of analysis in descriptive analytics and inference. To

this end, our work proposed machine learning algorithms based on these multi-view

relationships, which we demonstrated to discover novel structure or have competitive

empirical performance with the state of the art. We tested our methods on a variety

of domains with significant practical ramifications.

7.1 Contributions

Now we summarize our key contributions. This thesis was divided into two parts.

In Part I considered a specific application in which the relationship between views

was known from domain knowledge. This work was complemented by Part II, which

showed how to learn unknown multi-view relationships from data.

Starting off Part I, Ch. 2 introduced the problem of gamma source detection,

where the principal statistical challenge was low signal-to-noise ratio. We raised

concerns with the standard assumption of training data or a warm-up period: source

contamination, need for immediate detection, and mismatch between training and

background. These issues could severely degrade performance in practical scenarios

with commonly used methods. Consequently, we proposed a method based on the

Kalman filter to reduce dependence on learning from training or warm-up data. The

filter exploited smoothness in radiation dynamics to simultaneously estimate source

111
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intensity and background. Experiments demonstrated that our method was robust to

background variation and low amounts of training. Thus, this method could improve

detection performance in a variety of situations in which training is undesirable.

That work was extended in Ch. 3, which brought multiple views into the problem

through multiple sensors. Because the location over time of each sensor was known,

there existed a multi-view relationship between them that involved their relative

proximities to the source. Our goal was to leverage this relationship, a task ignored

by the state-of-the-art baseline, Bayesian Aggregation (BA). Although BA already

offered a way to aggregate observations, it did not utilize the information that

certain observations corresponded to different sensors. Instead, it assumed that

each observation was independent, a likely false assumption. To leverage their

contemporaneous multi-view relationships, we constructed a multi-view filter, named

the Bayesian Aggregation Filter, based on our previous Kalman filter detector. The

filter shared information between sensors at every time step to refine their inferences.

The information was shared by utilizing relationships between views known from

domain knowledge. This method had equal or superior empirical performance to the

BA, all with little to no training data, rendering it a practical and effective choice

in multi-sensor situations.

To complement the ideas in the first part, Part II considered the case in which

multi-view relationships were unknown, establishing how to learn and perform

analytics and inference on them. It began by modeling and applying linear

relationships in Ch. 4. These relationships were computed by Canonical Correlation

Analysis (CCA). We used them to devise an anomaly detection method, which we

evaluated on the gamma source detection task. The experiments simulated imperfect

source information, violating a standard assumption to model a practical scenario,

as well as sensor miscalibration. The problem was treated as multi-view because

of energy windows, energy ranges in which a source was expected to be seen most

clearly. Energy windows were considered more robust to imperfect information, so

they were a natural fit for a multi-view environment. The results demonstrated

that detection utilizing multiple linear multi-view relationships was more robust to

imperfect information than baselines. These scenarios corresponded to a variety

of practical situations. This study also demonstrated that multi-view relationships

could effectively serve as discriminative factors in classification.

Then we extended our approach toward multi-view analysis to nonlinear

relationships in Ch. 5 because there could be many datasets in which a linear
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model of relationships would not suffice. We considered unsupervised learning based

on these relationships. Our intuition was that different subsets of observations

could exhibit distinct linear relationships. To generalize CCA nonlinearly, we

modeled nonlinearity as clusters of linear relationships, intuitively similar to a

mixture model of latent variable models. We proposed the Canonical Least Squares

(CLS) Clustering algorithm to learn these clusters and relationships simultaneously.

The key characteristic of this approach was that it defined cluster variables

by linear multi-view relationships rather than spatial relationships. Thus, the

clusters it discovered could potentially be radically different from almost all other

clustering methods. This work was evaluated quantitatively on synthetic data

and demonstrated good performance. In addition, we employed it on a medical

dataset and discovered qualitatively useful insights about physiological behavior. In

particular, our work was possibly the first to showcase the utility of a type of blood

pressure in characterization of hemodynamic stability, which could be useful and

interesting to practitioners.

Lastly, in Ch. 6, we aimed to apply our multi-view framework to supervised

learning. We proposed a classification method using our clustering method as

a foundation. Hypothesizing that multi-view relationships could be employed as

discriminative factors between classes, our method learned CLS clusterings on

each class. We classified new observations by checking which class fit best with

a philosophy similar to the nearest-neighbor algorithm, except with multi-view

relationships rather than spatial features. This method could be considered a

nonlinear multiclass generalization of CCA detection. The method was evaluated

on the medical dataset and showed fair quantitative performance. Additionally, it

was deployed on two tasks in non-intrusive load monitoring and performed better

than the state of the art in both on a commonly benchmarked dataset. These results

illustrated that multi-view relationships could effectively characterize different classes

compared to modern single-view methods that operated on spatial relationships. We

included case analysis to show how our method leveraged multi-view structure to

avoid mistakes made by alternatives because select features from a single view could

appear as a different class while the multi-view relationship was more robust.

In sum, our work established the utility of multi-view relationships as units

of analysis. Using relationships known through domain knowledge, we improved

the state of the art in an applied domain by performing inference on explainable

latent variables. Then we showed how to fit unknown relationships from data. We
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presented empirical evidence that such relationships can characterize useful structure

in unsupervised learning and serve as discriminative factors in supervised learning,

exploiting a severely underutilized property of multi-view data.

7.2 Future work

Our work exposes many additional intriguing questions for future consideration.

First, in Part II although we considered a few specific application domains, our

methodology can easily be applied to many fields. For instance, our multi-view

approach to time series analysis can be used in virtually any temporal data. The

method for event detection in NILM can be carried over to any type of change

detection. To recap the method, views are represented by windows before and after

each time step in order to characterize dynamics of temporal change. Features are

computed for each window through various time series featurizations such as the

Fourier transform. Then we can apply our framework to arbitrary classification

tasks. Additionally, our clustering procedure from medical data can be generally

utilized to segment multiple time series temporally and cross-sectionally, assuming

temporal alignment. A potential domain to try both procedures would be in financial

markets. Change detection could be applied to classify time steps as market crashes,

while clustering could be used to find similar patterns of behavior across industry

and time. For example, one could investigate parsimony and phenotypical structure

among patterns of response or various stocks or industries to change-points in the

market.

Also, we presented methods for clustering and classification; conspicuously

missing is regression. One approach might be to modify CLS classification to predict

continuous output; however, it is difficult to see a natural way to do so. Instead,

it may be possible to extend our ideas to regression by a different strategy, though

one that still leverages a mixture of linear multi-view relationships. We assume

that each mixture component expresses a multi-view relationship in the inputs and

a corresponding regression function. A natural choice of mechanism under these

conditions is the Mixture of Experts (Jacobs et al., 1991), which learns a mixture of

regression functions fj on inputs zi and a gating network g to assign mixture weights

to each point. Many forms can be selected for the fj such as linear regression. An

important change would be that to assign mixture weights, rather than feed each

point zi directly to the gating network as g(zi), we would apply the gating network
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to the multi-view relationship expressed by multiple points. For example, if each

zi contained two views xi and yi, we would compute the cross-correlation matrix C

between the views of a set of points {zi}i∈Sr
given by an index set Sr. Then all these

points would be assigned the same mixture weights g(C). This change corresponds

to a representation of multi-view relationships using correlation matrices rather than

latent projections, but the main idea of the method is still to find clusters based on

multi-view relationships. The sets Sr would cover all input indices and be predefined

in the data. For instance, in time series data they could be contiguous windows of

points. One of the main challenges here would be to simplify this representation

of relationships because of the relatively high number of data points demanded to

compute the correlation matrix.

Next, there are avenues for theoretical contributions. For instance, although

we know how our CLS clustering methodology works—by operating on cluster-wise

linear multi-view relationships—we currently do not have any theoretical justification

for why it could perform better or worse on different datasets. An interesting project

would be to quantify the strength of multi-view relationships. For example, if we

assume the data are generated by a mixture model similar to a mixture of CCA, we

might consider stochastic noise added to the points that reduces the discriminative

power of the multi-view relationships. Say one mixture component generates

observed random variables X and Y from a latent variable Z as X = f(Z) + U

and Y = g(Z) +V where U and V are stochastic noise. We could attempt to bound

the performance of CLS clustering in terms of Var(U) and Var(V ). A challenge in

this problem would be to connect this probabilistic model to the distribution-free

characteristics of our work.

On a related note, the applicability of our framework could be investigated. Udell

and Townsend (2019) prove that observed data have a low-rank latent factorization

under relatively general conditions. They consider a latent variable model in which

random variables in two latent spaces are mapped by an arbitrary function to

the observed space X. Under fairly relaxed conditions about boundedness and

smoothness, the authors prove any n×d matrix of observations in X has approximate

rank O(p(log(n+ d))) where p is a finite degree polynomial. We propose to examine

whether this relationship can be inverted to show that latent variables have multiple

observed factorizations. In particular, we could consider a latent variable model

in which random variables in one latent space are mapped to to multiple observed

spaces. The aim would be to prove a matrix of these latent variables would have



116 CHAPTER 7. CONCLUSION

logarithmic rank in the dimensions of the observed space. If so, it would suggest

that meaningful multi-view relationships can be commonly found in real data.

Also, our work in Part II is limited to two views. To truly claim generality,

it would need to be extended to an arbitrary number. A possible approach to do

so is highlighted by Horst (1961) with Generalized Canonical Correlation Analysis

(GCCA), whose main idea is to learn canonical covariates shared by all views. More

precisely, let Xj be the data matrix of the j-th view. Then GCCA solves

max
Uj ,G

∑
j

‖G− U>j Xj‖2F .

This problem can be solved by an eigendecomposition in a similar manner to classical

CCA. We could conceivably replace CCA in our methods with GCCA. Also, it might

be feasible to generalize CLS in in the same fashion. Doing so would extend our

methodology to more than two views.

An additional line of questioning would be to connect this work to mainstream

machine learning. Our framework could be compared to well-known baselines by

applying it to common multi-modal problems. Especially popular in this area

is deep learning, which is well-suited for vision, text, and audio. Multi-modal

data are trivially multi-view, and there exist many interesting problems such

as audiovisual speech classification (Ngiam et al., 2011), object recognition from

captions on images (Srivastava and Salakhutdinov, 2014; Eitel et al., 2015), and

emotion recognition in video (Kahou et al., 2016). Furthermore, many current

multi-view classification methods are tailored to these data types. These tasks

represent the best opportunity to compare the more specific but well-known methods

to our framework. It must be understood, however, that our work fundamentally

differs in concept because virtually all these other classifiers leverage multiple views

by finding agreement between them, not by explicitly analyzing relations between

them, so they operate on separate properties of data that could often disagree.

Furthermore, it should be possible to generalize our framework for learning

multi-view relationships to arbitrary nonlinear relationships rather than cluster-wise

linear ones. A possibility would be to replace Pearson correlation in CCA, which

only measures linear correlation, with a measure such as mutual information. Then

we would consider an optimization problem such as

max
u,v

I(Xu;Y v)
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where I(A;B) is the mutual information between random variables A and B. Such

a setting would also easily extend to more than two views. Alternatively, we could

map features nonlinearly to higher dimensions by kernel methods such as Kernel

CCA (Akaho, 2006) or deep learning methods such as Deep CCA (Andrew et al.,

2013). Similar to our idea for GCCA, we could replace CCA with these nonlinear

variants in our methodology. The result would have the ability to model general

nonlinear multi-view structure, eliminating the need to cluster. Principal challenges

would include overfitting and lack of interpretability.
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Appendix A

Kalman filter updates

The updates for the Kalman filter in Ch 2 are as follows. Let x̂t|t be the a posteriori

state estimate given observations {y1, . . . , yt}. Let Pt|t be the a posteriori error

covariance matrix of x̂t|t given the same observations. Then

x̂t|t−1 = x̂t−1|t−1,

Pt|t−1 = Pt−1|t−1 +Qt,

Kt = Pt|t−1C
>(Rt + CPt|t−1C

>)−1,

x̂t|t = x̂t|t−1 +Kt(yt − Cx̂t|t−1),

Pt|t = Pt|t−1 −KtCPt|t−1.
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Appendix B

Rebinning algorithm

Here we describe our method for shifting energy bins of counts to simulate gain drift

in Ch. 2 and Ch. 4. The inputs are the counts data, the energy frequencies of the

current bin boundaries, and the energy frequencies of the desired bin boundaries.

The output is the counts data adjusted for the new bins. The method is simply to

linearly interpolate counts where new boundaries intersect old ones. For example,

if the old boundaries are [0, 10, 20] and the new boundaries are [0, 7, 14, 21], then

70% of counts in the old [0, 10] bin are moved to the new [0, 7] bin. The remaining

30%, plus 40% of the old [10, 20] bin, are moved to the new [7, 14] bin. The same

routine is applied to the remaining bins. In the experiments here, the desired bin

boundaries are set to the original boundaries multiplied by the gain drift coefficient.
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Appendix C

Energy window algorithm

Here we give the algorithm to compute the energy window in Ch. 4.

Algorithm 2 Energy window computation

1: procedure Optimize(source template s ∈ Rd, mean background spectrum µ ∈
Rd)

2: for k = 1, . . . , d do
3: rk ← sk/µk

4: for k = 1, . . . , d do
5: C ← set of bins with k highest rj values
6: Sk ←

∑
j∈C sj

7: Bk ←
∑

j∈C µj

8: k∗ ← argmaxSk/
√
Bk

9: return set of bins with k∗ highest rj values
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