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A B S T R A C T

Probabilistic modeling refers to a set of techniques for modeling data that allows one to
specify assumptions about the processes that generate data, incorporate prior beliefs
about models, and infer properties of these models given observed data. Benefits
include uncertainty quantification, multiple plausible solutions, reduction of overfit-
ting, better performance given small data or large models, and explicit incorporation
of a priori knowledge and problem structure. In recent decades, an array of inference
algorithms have been developed to estimate these models.

This thesis focuses on post-inference methods, which are procedures that can be
applied after the completion of standard inference algorithms to allow for increased
efficiency, accuracy, or parallelism when learning probabilistic models of big data
sets. These methods also allow for scalable computation in distributed or online
settings, incorporation of complex prior information, and better use of inference
results in downstream tasks. A few examples include:

• Embarrassingly parallel inference. Large data sets are often distributed over a
collection of machines. We first compute an inference result (e.g. with Markov
chain Monte Carlo or variational inference) on each machine, in parallel, with-
out communication between machines. Afterwards, we combine the results to
yield an inference result for the full data set.

• Prior swapping. Certain model priors limit the number of applicable inference
algorithms, or increase their computational cost. We first choose any “conve-
nient prior” (e.g. a conjugate prior, or a prior that allows for computationally
cheap inference), and compute an inference result. Afterwards, we use this
result to efficiently perform inference with other, more sophisticated priors or
regularizers.

• Sequential decision making and optimization. Model-based sequential deci-
sion making and optimization methods use models to define acquisition func-
tions. We compute acquisition functions using the inference result from any
probabilistic program or model framework, and perform efficient inference in
sequential settings.

We also describe the benefits of combining the above methods, present methodology
for applying the embarrassingly parallel procedures when the number of machines
is dynamic or unknown at inference time, illustrate how these methods can be ap-
plied for spatiotemporal analysis and in covariate dependent models, show ways to
optimize these methods by incorporating test-functions of interest, and demonstrate
how these methods can be implemented in probabilistic programming frameworks
for automatic deployment.
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1
I N T R O D U C T I O N

Probabilistic modeling allows us to incorporate assumptions about the processes
that generate data, explore prior beliefs about our models, infer properties of these
models when given observations, and quantify uncertainty about our inferences.
These types of models are often called probabilistic graphical models, or generative
latent variable models. They are typically defined via a generative process that
produces data x ∈ X, and consist of latent variables θ ∈ Θ, a prior distribution p(θ)
over these variables, and a generating distribution p(x|θ) that describes how the
data is generated given θ. Bayesian inference algorithms are used to compute or
approximate distributions associated with a given model. One primary task of these
algorithms is to infer the conditional distribution over the latent variables given the
data, known as the posterior distribution p(θ|x). Posterior inference can become
more difficult in the following settings:

• Big data: when datasets contain large numbers of observations, there can be a
high computational cost of many inference algorithms.

• Distributed data: when data are partitioned over multiple machines or loca-
tions, it may be difficult for inference algorithms to operate in these distributed
settings without high communication costs, especially if the data are private
and cannot be moved or pooled.

• Streaming data: when data are collected in a streaming manner, it may be
difficult to process the data and perform correct inference, especially when we
want to use multiple machines to process the data without storing it.

• Rich priors: when we have complicated or sophisticated prior modeling as-
sumptions, there may be a much higher computational cost of many inference
algorithms.

This thesis concerns new techniques that allow posterior inference to be more-
easily performed in the above settings. It also focuses on the development of new
models and procedures for downstream tasks in computer vision, network and text
analysis, and in model-based sequential decision making and optimization.

1.1 post-inference methods

Algorithmically, our main strategy involves post-inference methods. These are pro-
cedures that can be applied after the completion of standard inference algorithms
to provide increased efficiency, accuracy, or parallelism when learning probabilistic

1
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models. These methods allow for scalable computation in distributed or online set-
tings, incorporation of complex prior information, and better use of inference results
in downstream tasks. Three examples of post-inference methods are:

1. Embarrassingly parallel inference. Large data sets are often distributed over a
collection of machines. We first compute an inference result (e.g. with Markov
chain Monte Carlo or variational inference) on each machine, in parallel, with-
out communication between machines. Afterwards, we combine the results
to yield an inference result for the full data set. These methods can allow for
efficient inference on large, distributed, and streaming datasets.

2. Prior swapping. Certain model priors limit the number of applicable inference
algorithms, or increase their computational cost. We first choose any “conve-
nient prior” (e.g. a conjugate prior, or a prior that allows for computationally
cheap inference), and compute an inference result. Afterwards, we use this
result to efficiently perform inference with other, more sophisticated priors or
regularizers. This also lets us efficiently incorporate new or updated prior in-
formation, post inference. These methods can allow for efficient inference on
models with complex priors, and can also aid in the application of embarrass-
ingly parallel inference methods.

3. Sequential Decision Making and Optimization Model-based sequential de-
cision making and optimization methods use probabilistic models to define
acquisition functions, which are used to determine subsequent queries or de-
cisions. Today, Gaussian process models are predominantly used, which allow
for easy computation of acquisition functions. However, we may wish to use a
broader set of modeling tools and techniques. We develop methods to compute
acquisition functions using the inference result from any probabilistic program
or model framework, and to perform efficient inference in sequential settings.

In this thesis, we aim to develop scalable inference methods that can be applied
to large, streaming, and distributed datasets, and to probabilistic models with com-
plex priors. We also aim to demonstrate how these methods can help probabilistic
modeling in downstream applications. Towards this end, we develop new Bayesian
models for text, network, and video data, and new procedures for flexibly defining
and using models for improved sequential decision making and Bayesian optimiza-
tion.

Concretely, in Part 1 of this thesis, we present new probabilistic models for tasks
in computer vision and analysis of citation networks; in Part 2, we focus on em-
barrassingly parallel inference methods, which allow for more efficient inferences
given large and distributed datasets; and in Part 3, we focus on methods to flexibly
incorporate useful structure into both models and model-based sequential decision
making procedures. This includes methods for prior swapping, which allow for
more efficient inferences given models with complex priors, and a system called
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ProBO, which more easily allows for models defined using different probabilistic
modeling frameworks to be used for model-based sequential decision making and
optimiation.

In this thesis, we also describe strategies for combining embarrassingly parallel
and prior swapping methods, present methodology for applying the parallel pro-
cedures when the number of machines is dynamic or unknown at inference time,
develop randomized algorithms for efficient application of post-inference methods
in distributed environments, show ways to optimize the post-inference methods by
incorporating test-functions of interest, outline how these methods can be applied
to aid in the analysis of spatiotemporal and streaming data, and demonstrate how
these methods can be implemented in probabilistic programming frameworks for
automatic deployment.

1.2 use cases for probabilistic modeling

In this section, we aim to describe the benefits of probabilistic modeling over other
non-probabilistic or non-Bayesian strategies for machine learning, give application
areas where it is useful, and detail various downstream applications.

why is probabilistic modeling useful? It is important to consider and
summarize the benefits of probabilistic modeling over other strategies for modeling
and machine learning, and discuss the settings where it is most useful. To be con-
crete, we use the term probabilistic modeling to mean using latent variable probabilistic
graphical models to define a generative process, and then using the mechanisms of
Bayesian inference to update our prior beliefs about the latent variables to posterior
beliefs about these variables given a set of observed data. A few of the main benefits
of probabilistic modeling are that it can

• Quantify uncertainty over estimated quantities: performing inference in prob-
abilistic models returns a posterior distribution over possible models (or some
function of this distribution).

• Provide multiple plausible solutions: inference algorithms can be used to com-
pute multiple models, of which each could plausibly explain an observed set
of data.

• Allow for explicit incorporation of prior knowledge and problem structure:
this additional information can be incorporated both by specifying how the
data is generated and by specifying prior distributions over latent variables.

• Help reduce overfitting: prior distributions in these models often provide reg-
ularization, which helps reduce overfitting to observed (training) data.

• Yield better performance given small data or large models: due to the incor-
poration of constraints, regularization, and additional model structure, proba-
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bilistic models can perform well when learning large models, i.e. models with
many parameters relative to the number of observations.

A few example areas of machine learning where the above properties are useful
include unsupervised machine learning, such as generative modeling, or analysis
of large unstructured data; supervised machine learning that requires uncertainty
quantification, such as Bayesian classification or Gaussian process regression; and
sequential decision making, such as Bayesian optimization or Bayesian design of
experiments.

use cases in industry We now describe a few popular real-world and indus-
try applications in which these models are used.

Topic modeling, such as the method of latent Dirichlet allocation (LDA) [28] is
used for feature exactraction for text and web corpora [88, 211], user modeling, and
recommendation systems, by many large technology companies. It is also used for
data compression, representation, and embedding. Related models are probabilistic
clustering models, record linkage models [179], and probabilistic matrix factoriza-
tion models [160]. Inference in these models can be carried out with sampling meth-
ods (e.g. Gibbs sampling), variational inference (e.g. stochastic variational inference),
or optimization to a maximum a posteriori (MAP) point estimate.

Bayesian versions of standard parametric models are often used when it is ben-
eficial to quantify the uncertainty of estimation results. For example, in simple
classification or regression tasks, Bayesian logistic regression [66, 67] or Bayesian
linear regression [113] are used in industry settings. Inference in these models can
sometimes be carried out exactly (depending on the model and choice of prior) or
via sampling or variational inference methods.

Bayesian optimization is a popular method for query-efficient hyperparameter
tuning and model selection [174] in industry [47, 167]. A popular recent use case
is for tuning the hyperparameters of large neural network models [75]. Bayesian
models are particularly useful here, because Bayesian optimization algorithms lever-
age the models’ uncertainty estimates to effectively manage the tradeoff between
exploration and exploitation, which allows them to achieve efficient optimization
performance [32]. For this application, Gaussian process models are typically used,
where inference can often be carried out exactly.

Hierarchical Bayesian models (particularly parametric regression and classifica-
tion models) are used in marketing and decision sciences. Here, the ability to incor-
porate structure between groups or hierarchies of data, quantification of uncertainty
over estimated quantities, and incorporation of specific prior assumptions, is partic-
ularly useful [157]. In these settings, even when data grows large, there may still be
high levels of uncertainty over fine-grained or local components of models, such as
those corresponding to individual consumers [156].

Deep generative models are used for generating complex, structured, or high di-
mensional data (such as images) [76, 100, 154]. A majority of these models have
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been developed in recent times and the broad potential for industry impact is still
being explored.

1.3 a few key concepts and notation

Here we include common notation and definitions used throughout this thesis, de-
scribe the distributed and streaming data settings, and formalize the typical goals of
Bayesian inference.

Data. Suppose we have n data points in p dimensions, denoted

xn = (x1, . . . , xn) ∈ X ⊆ Rp×n. (1)

Likelihood. Assume that the data are drawn from a class of models parameterized
by θ ∈ Θ ⊆ Rd, with a likelihood function

L(θ) = p(xn|θ) (2)

where p(xn|θ) denotes the probability density function (PDF) of a conditional distri-
bution over X.

Prior. Suppose we’ve chosen a prior distribution over Θ, with PDF p(θ). Note that,
at various points in this thesis, when noted, we denote the prior PDF as π(θ).

Joint distribution. The likelihood and prior can be used to define a joint distribution
over Θ×X, with PDF

p(θ, xn) = p(θ)p(xn|θ). (3)

Posterior distribution. In Bayesian inference, we are interested in the posterior
distribution, a conditional of this joint distribution, with PDF defined to be

p(θ|xn) =
p(θ)p(xn|θ)∫
p(θ)p(xn|θ) dθ

=
p(θ)p(xn|θ)

p(xn)
(4)

Data-distributed setting. Suppose that we have paritioned our data into M groups,
i.e.

xn = {xn11 , . . . , xnLM }, (5)

where xnmm = (xm,1, . . . , xm,nm) ∈ X ⊆ Rp×nm (6)

and the mth set has nm data points. We will refer to these as local data sets. We can
also write the full or aggregate set of data by xn =

⋃M
m=1x

nm
m .
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Factorization assumption. We assume that each local data set is independent given
a parameter θ, i.e. that the likelihood factorizes in the following way:

L(θ) = p
(⋃M

m=1
xnmm |θ

)
=

M∏
m=1

p(xnmm |θ). (7)

Posterior expectation. When performing Bayesian inference, we are often interested
in the following task: for a chosen prior p(θ) and set of observations xn, sample from
or compute the PDF of the associated target posterior p(θ|xn)—or, more generally,
for some test function h(θ), compute the expectation

µh = Ep [h(θ)] (8)

with respect to the target posterior.

1.4 an intuitive model overview

In this section we give a non-technical overview of different model types that will
be encountered in this thesis. Namely, we describe models with global latent vari-
ables, models with local latent variables, and models that are dependent on some
covariate. In the following chapters, we will develop post-inference methods—e.g.
algorithms that allow for distributed inference or efficient inferences with additional
prior information—for these different model types.

1.4.1 Global Variable Models

An initial class of models to consider is the set of probabilistic models for a dataset
xi
n
i=1 with a single global latent variable θ. A couple examples of this are:

• Bayesian logistic regression: in this model [66, 67], a global parameter dictates
the probability of binary observations.

• Bayesian neural networks: in this model [119, 135], a global parameter corre-
sponding to neural network weights yields predictions.

Note that the global parameter θ is associated with (i.e. is assumed to control gen-
eration of) the full set of data xini=1. We visualize a graphical model with a global
latent variable, using plate notation, in Figure 1 (left).

1.4.2 Local Variable Models

Some models have local variables associated with data points or subsets of data,
possibly in addition to global variables associated with an entire data set. A couple
examples of this are:
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• Mixture models: in some formulations [22, 49], there are assignment latent
variables for each data point, which specify the mixture component that a
given data belongs to.

• Topic models: in some formulations [28, 78] there are latent variables corre-
sponding to each document in a corpus, and other latent variables correspond-
ing to each word in a document.

We visualize a graphical model with local latent variables, using plate notation, in
Figure 1 (right). Here, we assume that each observation xi has an associated local
latent variable zi.

Figure 1: Model with global latent variables θ (left), and model with both global latent vari-
ables θ and local latent variables zi (right).

1.4.3 Covariate Dependent Models

Some models have repetitive structure that depends on a certain covariate, such as
time, spatial position, or network structure. In this thesis, we refer to these models as
dependent models. Dependent models can have both local and global latent variables.
A couple examples of this are:

• Hidden Markov models: in HMMs [72, 159], there is typically a latent variable
at each time step, which is generated dependent on the latent variable at the
previous time step. Observations are drawn given the latent variable at each
time step.

• Network dependent models: in dependent models with network covariates
[57, 102], a directed network is defined over a collection of models (where each
model is associated with a node of the graph), and each model is dependent
on its parents in the graph.

We visualize a covariate dependent graphical model with both global and local la-
tent variables, using plate notation, in Figure 2. Here, the dependent model is the
graphical model with local variables shown in Figure 1 (right), and the covariate is
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Figure 2: Covariate dependent model with both global and local time-varying latent vari-
ables (θt and zi,t, respectively). Here, the covariate is the time step t.

the time step t for a sequence 1, . . . , T . We assume that both global and local latent
variables are dependent on the respective latent variables of the previous time step.

In the following sections we give examples of Bayesian models for spatio-temporal
and network data. These models are typically dependent on some covariate, such
as time or network structure. We will define these probabilistic graphical models
and describe typical inference algorithms for these models. In later chapters, we
will develop new inference algorithms for models like these, and show how these
models and inference procedures can be used for sequential decision making.

1.5 overview of probabilistic programming

Probabilistic programming languages (PPLs) are modern tools for specifying Bayesian
models and performing inference. At a high level, most PPLs:

1. Allow users to specify a Bayesian model, including the generative process that
yields data, the unknown (latent) model parameters, and prior beliefs over
these latent parameters.

2. Allows users to provide a set of observed data.

3. Compute and return the posterior beliefs over the latent model parameters in
an automatic fashion.

PPLs allow for easy incorporation of prior knowledge and model structure, com-
position of models, quick deployment, and automatic inference, often in the form
of samples from or variational approximations to a posterior distribution. PPLs
may be used to specify and run inference in a variety of models, such as graphical
models, GPs, deep Bayesian models, hierarchical models, and implicit (simulator-
based) models, to name a few [7, 21, 38, 50, 117, 121, 127, 161, 186, 202]. In this
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thesis, we will discuss the interplay between post-inference methods, probabilistic
programming, and sequential decision making.

1.6 chapter overview

In Part 1, we develop probabilistic models for text, network, and video data, and de-
rive approximate inference algorithms for these models. In Chapter 2, we introduce
the latent random offset (LRO) model for citation networks. In Chapter 3, we intro-
duce the dependent Dirichlet process mixture of objects for detection-free tracking
and object modeling.

In Part 2, we present algorithms for scalable approximate inference on big data
and in distributed settings. In Chapter 4, we introduce methods for embarrassingly
parallel Markov chain Monte Carlo (MCMC). In Chapter 5, we introduce methods
for embarrassingly parallel variational inference (VI), and for low-communication
black box variational inference (BBVI). In Chapter 6, we describe methods for em-
barrassingly parallel inference in quasi-ergodic settings and in dependent models or
models with local latent variables.

In Part 3, we focus on methods that allow for the incorporation of structure: either
prior structure in models, or model structure in model-based sequential decision
making and optimization procedures. In Chapter 7, we introduce methods for prior
swapping for efficient incorporation of prior information. In Chapter 8, we intro-
duce methods for allowing arbitrary probabilistic models, defined via probabilistic
programs, to be used in Bayesian optimization and other sequential decision making
procedures.

We visualize the components and contributions of this thesis (with a focus on
applications, models, and inference methods) in Figure 3.
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Figure 3: A visualization of the topics and chapters in this thesis. The primary contributions
of this thesis are in bold.
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2
M O D E L I N G C I TAT I O N N E T W O R K S U S I N G L AT E N T
R A N D O M O F F S E T S

2.1 chapter summary

Out of the many potential factors that determine which links form in a document
citation network, two in particular are of high importance: first, a document may
be cited based on its subject matter—this can be modeled by analyzing document
content; second, a document may be cited based on which other documents have
previously cited it—this can be modeled by analyzing citation structure. Both factors
are important for users to make informed decisions and choose appropriate citations
as the network grows. In this chapter, we present a novel model that integrates
the merits of content and citation analyses into a single probabilistic framework.
We demonstrate our model on three real-world citation networks. Compared with
existing baselines, our model can be used to effectively explore a citation network
and provide meaningful explanations for links while still maintaining competitive
citation prediction performance.

2.2 introduction

Many large citation networks—Wikipedia, arXiv, and PubMed1, to name a few—
continue to quickly grow in size, and the structure of these networks continues
to increase in complexity. To effectively explore large-scale and complex data like
these and extract useful information, users rely more and more on various types
of guidance for help. An important type of guidance comes from the citations (or
links) in the network. Citations serve as paths that users can easily follow, and do
not require users to specify certain keywords in advance. In scientific research, for
example, researchers often find potentially interesting articles by following citations
made in other articles. In Wikipedia, users often find explanations of certain terms
by following the links made by other Wikipedia users. Thus, generating relevant
citations is important for many users who may frequently rely on these networks to
explore data and find useful information.

We believe that, among many, two important factors largely determine how a doc-
ument citation network is formed: the documents’ contents and the existing citation
structure. Take as an example a citation network of computer science articles. A re-
search paper about “support vector machines (SVMs)”, for instance, might be cited

1 http://www.wikipedia.org/, http://arxiv.org/,
and http://www.ncbi.nlm.nih.gov/pubmed

13
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by several other articles that develop related methods, based on the subject matter
alone. This type of information can be well captured by analyzing the content of the
documents. However, the existing citation structure is also important. If this SVM
paper included great results on a computer vision dataset, for example, it might be
cited by many vision papers that are not particularly similar in content. Though
different in content, this SVM paper could be very important to users in a different
topic area, and should be considered by these users when choosing citations. This
type of information cannot be easily captured by analyzing document content, but
can be discovered by analyzing the existing citation structure among documents
while studying the contents of the papers that generated these citations.

Given these observations, we present a probabilistic model to accurately model
citation networks by integrating content and citation/link information into a single
framework. We name our approach a latent random offset (LRO) model. The basic
idea is as follows: we first represent the content of each document using a latent
vector representation (i.e. “topics”) that summarizes the document content. Then,
each latent representation is augmented in an additive manner with a random offset
vector; this vector models information from the citation structure that is not well
captured by document content. The final augmented representation is then used
to model how this document is cited by other documents. To motivate this rep-
resentation, we present sample outputs from running LRO on the Simple English
Wikipedia.

Examples from Simple English Wikipedia. The first graph in the top row of Fig-
ure 4 shows, for the Sistine Chapel article in the Simple English Wikipedia, the latent
vector representation, which is concentrated around three topics: countries (italy,
italian, china, russian), Christianity (church, christ, jesus, god), and architecture

(built, side, large, design). Here we’ve listed the top four words in each topic (in
parens). The incoming links to the Sistine Chapel article are also shown; these cit-
ing documents determine the random offsets for Sistine Chapel. The random off-
sets can be thought of as “corrections” to the latent vector representation, based on
the content of citing documents—for example, the two largest positive offsets are
Christianity (church, christ, jesus, god) and Anglicanism (english, knight, translated,
restoration), meaning that the citing documents strongly exhibit these two topics
(compared to the Sistine Chapel article). On the other hand, there is a large negative
offset on architecture (built, side, large, design), indicating that the citing documents
do not exhibit this topic as much as Sistine Chapel.

Notably, the topic Anglicanism (containing words related to Christianity in Eng-
land) is found in the random offsets for Sistine Chapel, but is absent from its latent
vector representation. This is because the Sistine Chapel is in the Vatican City, and
thus its article does not emphasize content relating to England or Anglicanism (even
though they are all related to Christianity). However, documents that link to Sistine
Chapel, such as Chapel, talk about the Anglican Church in England. This is an ex-
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Chapel was built between 1473 and 1481 by Giovanni dei Dolci for Pope Sistus IV...The Sistine Chapel is 
famous for its fresco paintings by the Renaissance painter Michelangelo..."

Sistine Chapel  (Simple English Wikipedia)
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Figure 4: Analysis of content, latent offsets, and predicted links for the Sistine Chapel docu-
ment in the Simple English Wikipedia dataset. The first row shows an example
passage from the document. The next row shows the names of the documents
that cite Sistine Chapel. The next row shows the initial latent topics (first column),
the latent offsets learned from links (second column), and the latent topics after
applying the offsets (third column). The final row shows interpretable link predic-
tions; for each predicted link, we show the relative weight that each latent topic
contributed to the prediction.

ample where pertinent information is found in the citation structure, but not in the
document content. By capturing this citation information, the LRO model provides
insights into the context surrounding a document.

Following this idea, we can add the latent vector and random offsets together to
obtain the “augmented representation” of a document (i.e. the “topics after random
offsets” graph in Figure 4), which takes into account not just its content, but the
content of its citing documents as well. Link predictions in the LRO model are based
upon the intuition that a document i cites document j only if both documents have
similar representations. This intuition is captured in the bottom row of graphs in
Figure 4, which explains three out-links predicted by the LRO model for the Sistine
Chapel document. For each predicted link, we show the topics that contributed most
to the prediction, and not surprisingly, the most important topics for each link also
feature strongly in the augmented representation for the Sistine Chapel. Knowing
which topics contributed to the prediction of links not only helps users interpret
existing links within a document corpus, but also gives users an explanation for
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every new link predicted by the LRO model—for instance, a user might invoke LRO
to recommend citations for an academic paper, and such “link explanations” give
the user a quick overview of why each recommendation is relevant.

We note that of the three predicted out-links for Sistine Chapel, two of them (Chapel,
Italy) are actual out-links in Sistine Chapel, while the third, Christian, is obviously rel-
evant but not found in the document. This motivates another application of LRO:
predicting relevant but missing links in document corpora; in this case, we are com-
pleting the references for a Wikipedia article. Another application context is aca-
demic paper writing: LRO can be used to recommend important (but otherwise
overlooked) citations for a newly-written academic paper.

The rest of this chapter is organized as follows: we begin by formalizing latent ran-
dom offset modeling, and then show how we can use it to model citation networks.
We then develop a fast learning algorithm with linear complexity in the size of the
number of citations, and empirically evaluate our approach using three real-world
citation networks. Compared with several baselines, our model not only improves
citation prediction performance, but also provides meaningful explanations for ci-
tations within the networks. By studying latent random offset representations, we
show these explanations can be used to effectively interpret why our model predicts
links for given documents and to explore citation networks.

2.3 latent random offset models

We introduce the general framework of latent random offsets for citation network
modeling. Suppose our citation network consists of D documents (i.e. nodes), D =

{x1, x2, ..., xD}. We use yij = 1 or 0 to indicate whether document i cites document j
or not. Note that yij is directed, meaning yij is not necessarily the same as yji.

Each document xj is usually a high-dimensional vector in RV , where V is the
vocabulary size, so it is desirable to represent xj using a low-dimensional vector θj.
In other words, the mapping

θj = θj(xj) (9)

serves as a summarization of the original document content xj, and these summa-
rizations can be used to measure the content similarities of different documents.

However, in real citation networks, a document can be cited by others for reasons
outside of its content information. For example, a target document might provide
an influential idea that can be used in many different fields and thus be cited by a
diverse set of documents. This information is encoded not in the document content
but in the citation network structure. We choose to model this phenomenon by
allowing a random offset vector εj to augment the low-dimensional vector θj, which
gives the augmented representation

vj = θj + εj. (10)
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The offset vector εj is used to capture the network structure information that is not
contained in the document’s content. One important property of this augmented
representation is that the random offset εj is aligned in the same space as θj. If
the dimension of θj has some semantic explanations, then εj can be understood as
modifications of those explanations.

Finally we consider using a function f to model the citation from document i to
document j, such that

f(θi, θj + εj) ≈ yij (for all i, j)

where yij is the citation indicator from document i to document j. Notice the asym-
metric structure here for document i and j—we do not consider the offset vector εi
for document i in our function f. In real citation networks, when a new document
joins the citation network by citing some other documents, this new document is
effectively “not in” the network. It will be most likely to cite other documents based
only on their content and their citations, as no network information exists for this
new document. One advantage of this formulation is that we can make citation
predictions for a brand new document by only using its content information.

In the next two sections, we first describe how we create the low-dimensional
document content representation θj and how we use the latent random offset model
for citation network modeling.

2.3.1 Probabilistic Topic Models for Representing the Contents of Documents

There are many potential ways to create the low-dimensional document content rep-
resentation described in Eq. 9. Here we choose to use probabilistic topic models.
Topic models [24] are used to discover a set of “topics” (or themes) from a large
collection of documents. These topics are distributions over terms, which are biased
to be associated under a single theme. One notable property of these models is
that they often provide an interpretable low-dimensional representation of the docu-
ments [41]. They have been used for tasks like corpus exploration [39], information
retrieval [197] and recommendation [190].

Here we describe the simplest topic model, latent Dirichlet allocation (LDA) [26]
and use it to create the low-dimensional document content representations. Assume
there are K topics, βk, k = 1, ...,K and each βk is a distribution over a fixed vocabu-
lary. For each document j, the generative process is as follows,

1. Draw topic proportions θj ∼ Dirichlet(α)

2. For each word xjn in document j,

a) Draw topic assignment zjn ∼ Mult(θj)

b) Draw word xjn ∼ Mult(βzjn)



18 modeling citation networks using latent random offsets

0 1

1

T
o

p
ic

1

Topic 2

1-simplex in

Figure 5: Left: The LRO graphical model. Only two documents (i and j) and one citation
(from i to j) are shown. The augumented latent representation representation for
document j is vj = θj + εj. Right: An illustration of the random offsets. We show
each document’s content vector θj (which lies on the simplex), its offsets εj due
to link structure (the superscript indicates the dimension for εj), and the resulting
augmented latent representation vj.

This process describes how the words of a document are generated from a mixture of
topics that are shared by the corpus. The topic proportions θj are document-specific
and we use these topic proportions as our low-dimensional document content rep-
resentation.

Given a document collection, the only observations are the words in the docu-
ments. The topics, topic proportions for each document, and topic assignments for
each word, are all latent variables that have to be determined from the data. LDA
has been extensively studied in the literature and many efficient algorithms have
been proposed to fit the LDA model variables [26, 86, 172]. For example, standard
learning algorithms like variational EM or Gibbs sampling can be used to estimate
these quantities [26]. These methods give us the estimated document content repre-
sentations θj in terms of an approximate posterior distribution or point estimates.

2.3.2 Modeling Citations via Random Offsets

Having described how we represent the documents in a low dimensional space, we
now consider how to create the augmented representations introduced in Eq. 10. We
model our latent random offset vector εj with a multivariate Gaussian distribution

εj ∼ N(0, λ−1IK).

where λ is a scalar precision parameter for the latent random offsets.
Using the general idea of latent random offset modeling shown in Eq. 10 and

probabilistic topic models described in Section 2.3.1, our latent random offset model



2.3 latent random offset models 19

(LRO) for citation network modeling has the following generative process (Figure 5

shows the graphical model). Assuming K topics, β1:K,

1. For each document j,

a) Draw topic proportions θj ∼ Dirichlet(α)

b) Draw latent random offset εj ∼ N(0, λ−1IK) and set the document aug-
mented representation as vj = θj + εj

c) For each word xjn,

i. Draw topic assignment zjn ∼ Mult(θ)

ii. Draw word xjn ∼ Mult(βzjn)

2. For each directed pair of documents (i, j), draw the citation indicator

yij ∼ N(y|wθ>i vj, τ
−1
ij ).

where w ∈ R+ is a global scaling parameter to account for potential inefficiencies
of the topic proportions θi, which are constrained to the simplex.2 We chose a
Gaussian response to model the citations, in similar fashion to [190]. Notation τ−1ij
is the precision parameter for the Gaussian distribution. Here, we choose to stray
from a formal generative process and also treat the yij as parameters, such that τij
satisfies

τij =

τ1 if yij = 1

τ0 if yij = 0 .

In this formulation, τ1 specifies the precision if a link exists from document i to j,
while τ0 is for the case where the link does not exist. We set τ0 to be much smaller
(i.e. higher noise) than τ1 — this is similar to the assumption made in [190], which
models the fact that yij = 0 could either mean it is not appropriate for document
i to cite document j, or simply that document i should cite document j but has
inadvertently neglected to cite it. This also enables a fast learning algorithm with
complexity linear in the number of citations (See Section 2.4 for details).

The expectation of the citation can be computed as

E[yij] = wθ
>
i vj = w(θ

>
i θj) +w(θ

>
i εj).

This reveals how likely it is for a citation from document i to document j to occur
under our model. If the documents have similar content or document j has certain
large positive offsets, it is more likely to be cited by document i.

For a document j, our latent representation θj is over a simplex. In Figure 5 (right),
we show how the random offsets εj produce the augmented representation vj.

2 Our experiments show that optimizing the global scaling parameter w is important for obtaining good
results.
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2.3.3 Citation Prediction

In a system for citation prediction, it is more realistic to suggest citations than to
make hard decisions for the users. This is common in many recommender sys-
tems [89, 190]. For a particular document i, we rank the potential citations according
to the score

Sij = wθ>i vj,

for all other documents j, and suggest citations based on this score (excluding docu-
ment i and all pre-existing citations).

2.4 learning algorithm

We use maximum a posteriori (MAP) estimation to learn the latent parameters of
the LRO, where we perform a coordinate ascent procedure to carry out the opti-
mization. Maximization of the posterior is equivalent to maximizing the complete
log likelihood of v1:D, θ1:D and β1:K, which we can write as

L =−
λ

2

∑
j

(vj − θj)
>(vj − θj) −

∑
i 6=j

τij

2
(yij −wθ

T
i vj)

2

+
∑
j

∑
n

log

(∑
k

θjkβk,xjn

)
.

where we have omitted a constant and set α = 1.
First, given topics β1:K and augmented representations v1:D, for all documents, we

describe how to learn the topic proportions θj. We first define φjnk = q(zjn = k).
Then we separate the items that contain θj and apply Jensen’s inequality,

L(θj) > −
λ

2

∑
j

(vj − θj)
>(vj − θj)

+
∑
n

∑
k

φjnk
(
log θjkβk,xjn − logφjnk

)
= L(θj, ffij).

where ffij = (φjnk)
D×K
n=1,k=1. The optimal φjnk then satisfies

φjnk ∝ θjkβk,xjn .

The L(θj, ffij) gives the tight lower bound of L(θj). We cannot optimize θj analyti-
cally, but we can use the projection gradient [18] method for optimization.3

3 On our data, we found that simply fixing θj as the estimate from the LDA model gives comparable
performance and saves computation.
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Second, given this ffi, we can optimize the topics β1:K with

βkx ∝
∑
j

∑
n

φjnk1[xjn = x].

This is the same M-step update for topics as in LDA [26].
Next, we would like to optimize the augmented representations v1:D. We can

write the component of the log likelihood with terms containing vj as

L(vj) =−
λ

2
(vj − θj)

>(vj − θj)

−
∑
i,i 6=j

τij

2
(yij −wθ

>
i vj)

2.

To maximize this quantity, we take the gradient of L(vj) with respect to vj and set it
to 0, which gives an update for vj

v∗j ←
(
λIK +w2

(
(τ1 − τ0)

∑
i∈{i:i→j}

θiθ
>
j + τ0

∑
i,i 6=j

θiθ
>
j

))−1

×
(
θj +wτ1

∑
i∈{i:i→j}

θi

)
(11)

where {i : i → j} denotes the set of documents that cite document j. For the second
line of Eq. 11, we can see that the augmented representation vj is affected by two
main parts: the first is the content from document j (topic proportions θj) and the
second is the content from other documents who cite document j (topic proportions
θi, where i ∈ {i : i→ j}).

Next, we want to optimize the global scaling variable w. Isolating the terms in the
complete log likelihood that contain w gives

L(w) = −
∑
i 6=j

τij

2
(yij −wθ

>
i vj)

2.

In a similar manner as the previous step, to maximize this quantity we take the
gradient of L(w) with respect to w and set it to 0, which gives its update4

w∗ ←
(∑

j

(
(τ1 − τ0)

∑
i∈{i:i→j}

(θ>i vj)
2 + τ0

∑
i,i 6=j

(θ>i vj)
2

))−1

×
(
τ1
∑
j

∑
i∈{i:i→j}

θ>i vj

)
. (12)

Empirically, we found that an optimal trade-off between computation time and per-
formance involves performing LDA [26] initially to learn the latent representations
θj, and then performing coordinate ascent to learn the augmented representations
vj and global parameter w. We detail this procedure in Algorithm 1.

4 In theory, this update could lead to a negative value. However, in our experiments, we did not see this
happen.
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Algorithmus 1 : MAP Parameter Learning from Neiswanger et al. [141]

Input : A citation network of documents {xj}
D
j=1 with directed links yij for

i, j ∈ {1, . . . ,D}, and stopping criteria δ
Output : Latent content representations θj, link-offset representations vj, and

global scale parameter w
1 Run LDA [26] on {xj}

D
j=1 to learn θ1:D

2 Initialize v1:D = θ1:D and eps =∞
3 while eps > δ do
4 Update w← w∗ . Equation 12

5 for j = 1 to D do
6 Update vj ← v∗j . Equation 11

7 Set eps← ‖v1:D − ṽ1:D‖

Computational efficiency. We now show that our learning algorithm (Algo-
rithm 1) has runtime complexity linear in the number of documents and citations.

First, estimating the topic proportions θj, j = 1, ...,D has the same complexity as
the standard learning algorithm for LDA, which is linear in the number of docu-
ments.

Second, the augmented representations vj, j = 1, ...,D and global scaling parame-
ter w can be estimated in linear time, via a caching strategy — this is similar to the
method adopted by [89, 190]. We now describe this strategy.

For the augmented representation vj (Eq. 11), we cache θ0 =
∑
i θi. This allows

us to update vj (Eq. 11) using the identity∑
i,i 6=j θi = θ0 − θj.

Every time we update a θj, we also update the cache θ0, and this takes constant time
w.r.t. the number of documents and citations.

For the global scaling parameter w (Eq. 12), we can compute∑
i,i 6=j(θ

>
i vj)

2 =
∑
i,i 6=j v

>
j θiθ

>
i vj

= v>j (
∑
i,i 6=j θiθ

>
i )vj

= v>j (
∑
i θiθ

>
i )vj − v

>
j θjθ

>
j vj

in O(K2) time (constant in the number of docs and citations) by simply caching
Θ0 =

∑
i θiθ

>
i . This cache variable also requires O(K2) time to update whenever we

modify some θj.
The remaining sums in Eqs 11,12 touch every citation exactly once, therefore a

single update sweep over all vj and w only requires constant work per edge (treating
K as constant). We have therefore shown that Algorithm 1 is linear in the number
of documents and citations. Moreover, we have attained linear scalability without
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resorting to treating missing citations as hidden data. This gives our LRO a data
advantage over methods that hide missing citations, such as the RTM [40].

2.5 related work

Our proposed work focuses on two aspects of citation network modeling: 1) net-
work understanding/exploration and 2) citation prediction. We therefore divide the
related work section into these two categories.

Network understanding/exploration. Network exploration is a broad empiri-
cal task concerned with, amongst other things, understanding the overall structure
of the network [148], understanding the context of individual nodes [4], and dis-
covering anomalous nodes or edges [169]. In addition to methods that operate on
purely graph data, there are techniques that leverage both the graph as well as tex-
tual content, such as relational topic models (RTM) [40], Link-PLSA-LDA [131], and
TopicFlow [133]. The idea behind such hybrid methods is that text and graph data
are often orthogonal, providing complementary insights [85].

Our LRO model incorporates network information by modeling per-document
random offsets that capture topical information from connected neighbors. These
random offsets represent relevant topics that would otherwise not be found in the
documents through content analysis. The Simple English Wikipedia analysis from
the introduction provides a good example: the Sistine Chapel article’s random offsets
(the top row of Figure 4) contain the topic Anglicanism (which is also related to
Christianity), even though the article text’s latent topic representation makes no
mention of it. In this manner, the LRO model helps us understand the context of
network nodes (a.k.a. documents), and helps us to detect anomalous nodes (such as
documents whose random offsets diverge greatly from their latent topic vectors).

Citation prediction. The citation prediction task can be approached by consider-
ing text features, network features, or a combination of both. In the text-only setting,
approaches based on common text features (e.g., TF-IDF scores [20]) and latent space
models (e.g., topic models [24]) can be used to the measure similarities between two
documents, allowing for ranking and prediction. However, text-only approaches
cannot account for citation behavior due to the network structure.

In the network-only setting without document content, there are a number of
commonly-used measures of node similarity, such as the Jaccard Coefficient, the
Katz measure [99] and the Adamic/Adar measure [1]. Latent space models such
as matrix factorization (MF) methods [104] can be used here. However, when test
documents are out-of-sample with respect to the network (when we consider newly-
written papers with no preexisting citations), these measures are inapplicable.

Finally, there are methods that combine both document content and network struc-
ture to predict citations. One such method is the relational topic models (RTM) [40],
in which link outcomes depend on a reweighted inner product between latent po-
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sitions (under the LDA model). The weights are learned for each latent dimension
(topic), but are not specific to any document, and thus only capture network be-
havior due to topic-level interactions. In contrast, our random offsets are learned
on a per-document basis, capturing interaction patterns specific to each document,
which in turn yields better predictive performance as shown in our empirical study.
In [114], in addition to the document content, author information is also considered
to model the citation structure. In [131], citations were treated as a parallel docu-
ment (of citations) as to the document content of words. Neither of these methods
use per-document offsets to model citation structure.

2.6 empirical study

We will empirically demonstrate the use of our model for modeling citation net-
works. We will first show quantitative results for citation prediction then present
qualitative results using our model to explore citation networks.

Datasets. We use three citation network datasets,

1. The ACL Anthology paper citation network (ACL) contains 16,589 documents
and 94,973 citations over multiple decades.

2. The arXiv high energy physics citation network (arXiv) contains 34,546 arXiv/hep-
th articles and 421,578 citations from January 1993 through April 2003.

3. The Simple English Wikipedia citation network (Wikipedia) contains 27,443 ar-
ticles, and 238,957 citations corresponding to user-curated hyperlinks between
articles.

2.6.1 Citation Prediction

For citation prediction, we compare against the RTM [40], matrix factorization (MF) [104],
LDA-based predictions [26], and three common baseline algorithms. A detailed de-
scription is given below.

The first task is predicting held-out citations. Here we used a five-fold cross
validation: for each document that has cited more than 5 documents, we held out
20% of the documents into test set and the rest into the training set.

The second task is predicting citations for new documents. To simulate this sce-
nario, we train our model using all the citations before a certain year and predict
the citations of the new documents published in that year. This task is important for
a real citation prediction system, where user may input some text without existing
citations. For this experiment, we excluded MF from the comparisons, because it
cannot perform this task.

Evaluation metric. Our goal is to make citation predictions, where it is more
realistic to provide a rank list of citation predictions than to make hard decisions for
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Figure 6: Left: Citation prediction performance on the ACL dataset for task one (predicting
held-out citations).Right: Citation prediction performance on task two (predicting
citations for new documents) on subsets of the ACL dataset for 7 years. In both
cases, the LRO yields the highest recall over all ranges.

the users. For a given set of M predicted citations, we use a performance metric,
Recall@M,

Recall@M =
number of citations in the predicted set

total number of citations
which can be viewed as the proportion of “true” citations successfully predicted by
a given method, when the method is allowed to provide M guesses.

Comparison methods. We compare our model with a number of competing
strategies, starting with the RTM [40]. In order to make predictions using the RTM,
we learn a latent representation for each document and predict citations using a
similarity function between these representations (detailed in [40]). The second com-
parison is an LDA-based prediction strategy, in which document predictions are
determined by the similarity between the latent document representation vectors θj.
The similarity is computed using inverse of the Hellinger distance [25]

Sij = H(θi, θj)−1 =
√
2
∥∥√θi −√θj∥∥−1 .

Third, we compare with matrix factorization (MF), but only on the first task. (MF
cannot make the citation predictions for a brand new document.) Finally, we com-
pare with three simple baseline methods on both tasks. The first is that of Adam-
ic/Adar [1], described in Section 2.5. The second is based on term frequence-inverse
document frequency (TF-IDF) scores, where citations are predicted based on similar-
ities in the documents’ scores [20]. The third baseline is called “in-degree”, where
each document is given a score proportional to the number of times it is cited; in
this case, the same set of predictions are given for every test document. Hyperpa-
rameters are set via cross validation.
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Task one: predicting held-out citations. Given the document contents and the
remaining links, the task is to predict the held out citations for each document. We
show results for our model and six comparison methods on the ACL dataset in
Figure 6. Our model (LRO) achieves a significantly higher recall over all ranges
of the number of predictions, and we observed similar results for the other two
datasets.

We also wanted to determine how our method performs across different datasets.
To make the results comparable, we normalized the number of predictions M by set-
ting it to a fraction of the total number of documents in each respective dataset. The
results are shown in Figure 7: LRO performs well on all three datasets, though we
note that ACL has a much better score than the other two. We attribute this to the
fact that ACL contains only refereed academic papers, and is therefore more struc-
tured than either arXiv (which is unrefereed) or Simple English Wikipedia (whose
articles are not always subject to editorial attention).

Task two: predicting citations for new documents. The second task is to predict
citations for documents with no prior citation information, corresponding to scenar-
ios in which one needs to suggest citations for newly written documents. This task
is often referred to as the “cold start problem” in recommender systems.

We simulate the process of introducing newly written papers into a citation net-
work by dividing them according to publication year. Specifically, from the ACL
citation network dataset, we select the citations and documents that existed before
the year Y as training data, for Y ranging from 2001 to 2006. After training on
this subset, the task is then to predict the citations occurring in year Y for the new
documents written in year Y.

For this task, we compared our model against the same comparison methods used
in the previous task, except for matrix factorization, which cannot make citation
predictions for new documents. Figure 6 (right) shows the results. We fix the number
of citation predictions M = 150 (other M values have similar trends). Again, our
model achieves the best performance over a majority of the M values in all six years,
and increases its lead over the comparison methods in later years, after a larger
portion of the citation network has formed and can be used as training data.

Hyperparameter sensitivity. We also study how different hyperparameters affect
performance, including the number of topics K, precision parameters τ0 and τ1, and
latent random offset precision parameter λ (Figure 7, right). Again, we fix M = 150.
First, we varied the number of topics from 75 to 250, and found an optimal value
of approximately 175 topics. Next, in order to find the optimal balance between
parameters τ0 and τ1, we fixed τ1 = 1 and varied τ0 from 1/10000 to 1, finding an
optimal value of approximately τ0 = 1/100. Finally, we varied the parameter λ from
5 to 40, and found an optimal value at approximately λ = 9.
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Figure 7: Left: citation prediction performance of our LRO model on three real-world
datasets. The ACL dataset has a better score than the other two datasets. See main
text for details. Right: citation prediction performance for a range of hyperparam-
eter settings, including the number of topics K, the non-link variance parameter τ0,
and the latent random offset variance parameter λ.

2.6.2 Exploring Citation Networks

The latent random offsets can yield useful information that allows for analysis and
exploration of documents in the citation network. Our model provides, for each
document, a content representation vector θj, which captures the topics associated
with the content of the document, and a latent offset vector εj, which captures topics
not necesarily contained within the document but expressed by others who cited the
document. Highly positive latent offsets may capture the topics where a given doc-
ument has been influential within the context of the citation network; alternatively,
negative offsets can represent topics that are expressed highly in a document, but
that have not proven to be influential within the context of the network.

Given a document, we can therefore explore its contents by examining the learned
set of topics, and we can explore its role in the citation network (and see the topics of
documents that it has influenced) by examining the latent offsets. In Figures 4 and 8

we show the latent topic representations of document contents, the learned random
offsets, and the final augmented representations (the sum of topic representations
and random offsets), for a document in each of the Simple English Wikipedia and
ACL datasets. The augmented representations provide information on both the
content and context of a document: they incorporate information contained in the
document as well as in other documents that cite it.

For highly cited documents, we have a great deal of information from the citing
documents (i.e. the in-links), and this information can be used to more strongly off-
set the latent topic representations. Intuitively, the content is like a prior belief about
a document’s latent representation, and as more sources start citing the document,
this outside information further offsets the latent topic representations. Additionally,
the offsets do not only “add” more information to the latent representation from the
citing documents. In Figure 8 (top row), the offsets acted primarily to reduce the
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weights of many of the largest topics in the content representation, and only added
weight to two topics. Here, the offsets served to dampen many of the content topics
that did not appear to be relevant to the citing documents, and for this reason, the
augmented representation is more sparse than the initial content representation.

Topics after Random OffsetsInitial Topics Offsets Learned from Links (Random Offsets)

Text: "This paper ... is based on the idea of 'roles tagging', to the complicated problems of Chinese 
unknown words recognition ... an unknown word is identified according to its component tokens and 
context tokens. In order to capture the functions of tokens, we use the concept of roles...We have got 
excellent precision and recalling rates, especially for person names and transliterations..."

Automatic Recognition Of Chinese Unknown Words Based On Roles Tagging  (ACL)

In-Links (Citing Documents):  (1) A...word segmentation system for Chinese, (2) Chinese lexical analysis..., (3) 
HHMM-based Chinese lexical analyzer..., (4) Chinese word segmentation...of characters, (5) Chinese 
unknown...character-based tagging...
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Figure 8: Interpreting citation predictions for the document Automatic Recognition Of Chinese
Unknown Words Based On Roles Tagging in the ACL dataset. For each predicted link,
we show the relative weight that each latent topic (denoted by the top four words)
contributed to the prediction. These provide reasons why each predicted link was
chosen, in terms of the topics.

Interpreting predictions. In addition to maintaining competitive prediction per-
formance, our model allows for interpretable link prediction: for each predicted link
we can use our latent representations to give users an understanding of why the link
was returned. In particular, we can find the contribution that each topic provides to
the final prediction score in order to determine the “reasons” (in terms of the latent
topics) why a given document was predicted. We illustrate this in Figures 4 and 8

(bottom row of graphs). In Figure 4, for the Sistine Chapel document, Chapel is cited
largely due to three topics (architecture, Christianity, and buildings), Christian
is cited primarily due to a single topic (Christianity), and Italy is mainly cited due
to six lower-weighted topics (countries, Christianity, architecture, buildings,
music, and populace). Since Italy is a highly cited document and its augmented la-
tent representation emphasizes a large number of topics (many of those expressed
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by its in-links), it was predicted due to a slight similarity in a number of topics as
opposed to a strong similarity in just a few.

In Figure 8 we show three predictions for the document Automatic Recognition of
Chinese Unknown Words Based on Roles Tagging. We can see that each of the predicted
documents was due to a different aspect of this paper: the document Automatic Rule
Induction For Unknown-Word Guessing was chosen primaily due to the unknown-word

topic (related to the paper’s goal of recognizing unknown words), the document
Word Identification for Mandarin Chinese Sentences was chosen primarily due to the
China topic (related to the paper’s language domain area), and the document A
Knowledge-Free Method For Capitalized Word Disambiguation was chosen primarily due
to the pronoun topic (related to the paper’s use of names, locations, and roles).

2.7 conclusion

In this chapter, we proposed a probabilistic approach for citation network modeling
that integrates the merits of both content and link analyses. Our empirical results
showed improved performance compared with several popular approaches for ci-
tation prediction. Furthermore, our approach can suggest citations for brand new
documents without prior citations—an essential ability for building a real citation
recommendation system.

Qualitatively, our approach provides meaningful explanations for how predictions
are made, through the latent random offsets. These explanations provide additional
information that can be useful for making informed decisions. For example, in a ci-
tation recommendation system, we can inform users whether a citation is suggested
more due to content similarities or due to the existing network structure, and we can
show the relative amounts that individual topics contributed to the prediction. In
future work, we would like to conduct user studies to quantify how this additional
information helps users find more relevant citations in a more efficient way.
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T H E D E P E N D E N T D I R I C H L E T P R O C E S S M I X T U R E O F
O B J E C T S F O R D E T E C T I O N - F R E E T R A C K I N G

3.1 chapter summary

This chapter explores a probabilistic model for finding, tracking, and representing
arbitrary objects in a video without a predefined method for object detection. We
present a model that localizes objects via unsupervised tracking while learning a
representation of each object, avoiding the need for pre-built detectors. Our model
uses a dependent Dirichlet process mixture to capture the uncertainty in the number
and appearance of objects and requires only spatial and color video data that can be
efficiently extracted via frame differencing. We give two inference algorithms for use
in both online and offline settings, and use them to perform accurate detection-free
tracking on multiple real videos. We demonstrate our method in difficult detection
scenarios involving occlusions and appearance shifts, on videos containing a large
number of objects, and on a recent human-tracking benchmark where we show per-
formance comparable to state of the art detector-based methods.

3.2 introduction

Algorithms for automated object detection and tracking in video have found applica-
tion in a wide range of fields, including robotic vision, cell tracking, sports analysis,
video indexing, and video surveillance [188, 209]. The goal of these algorithms is
to find the sequences of positions held by each object of interest in a video. A ma-
jority of modern methods require a pre-trained object detector or make use of prior
knowledge about the objects’ physical characteristics (such as their color or shape) to
perform detection [31]. Often, these methods will apply the detector in each frame
of a video, and then use the detection results in tracking or data association algo-
rithms. Other algorithms use heuristics to find, or require manual initialization of,
object positions and then search for similar image patches in consecutive frames to
perform tracking [124]. Both techniques require some predefined detection strategy
for each type of object they intend to find and track.

When the objects to be tracked have highly variable appearance, if one wishes to
track many different types of objects, or if one simply does not know the types of
objects in advance, it is often hard to find a suitable detection strategy [13]. Fur-
thermore, common video conditions such as variable lighting, low quality images,
non-uniform backgrounds, and object occlusions can all reduce detection accuracy
[203].

31
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Cases such as these, where it is difficult to construct an object detector in advance,
prompt the need for a method to automatically localize and track arbitrary objects.
Some methods towards this end have involved background subtraction and blob
tracking, which segment foreground patches to localize objects, and optical flow-
based tracking, which separate objects based on their relative motion. Both have
trouble consistently and accurately segmenting objects and tracking through occlu-
sion [15, 189]. A recent work introduced the term “detection-free tracking” for this
task, and proposed a method based on spectral clustering of trajectories [59].

Bayesian models have also been employed to capture the components of a video,
and a number of recent works have incorporated nonparametric Bayesian priors for
finding the patterns of motion in scenes [56, 195]. However, there has been little
work towards building Bayesian models of arbitrary objects in order to perform
detection-free tracking.

In this chapter, we develop a nonparametric Bayesian model for jointly learning a
representation of each object and performing unsupervised tracking, thereby allow-
ing for accurate localization of arbitrary objects. We combine a dependent Dirichlet
process mixture with object and motion models to form the dependent Dirichlet
process mixture of objects (DDPMO). The advantages of our model are that it can
(a) accurately localize and track arbitrary video objects in a fully unsupervised fash-
ion, (b) jointly learn a time-varying model for each object and use these models to
increase the localization/tracking performance, (c) infer a distribution over the num-
ber of distinct objects present in a video, (d) incorporate a model for the motion of
each object, and (e) begin tracking as objects enter the video frame, stop when they
exit, and track through periods of partial or full occlusion.

3.3 dependent dirichlet process mixture of objects

To find and track arbitrary video objects, the DDPMO models spatial and color
features that are extracted as objects travel within a video scene (described in Sec-
tion 3.3.1). The model isolates independently moving video objects and learns ob-
ject models for each that capture their shape and appearance. The learned object
models allow for tracking through occlusions and in crowded videos. The unify-
ing framework is a dependent Dirichlet process mixture, where each component is
a (time-varying) object model. This setup allows us to estimate the number of ob-
jects in a video and track moving objects that may undergo changes in orientation,
perspective, and appearance.

3.3.1 Preliminaries

Dependent Dirichlet process prior. Dirichlet process (DP) priors for component
weights in mixture models have long been used as nonparametric Bayesian tools
to estimate the number of clusters in data [9]. Dependent Dirichlet process (DDP)
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mixtures extend this by allowing cluster parameters to vary with some covariate
[118]. In our case, a DDP object mixture lets us estimate, and capture the uncertainty
in, the number of objects while modeling their time-varying parameters.

A DDP known as a generalized Polya urn (GPU) [36] has the desired properties
that, when used in a mixture model, clusters can be created and die off and cannot
merge or split. In this model, the nth data point at time t, xt,n, has an assignment
ct,n to a cluster k ∈ {1, . . . ,Kt,n} (where Kt,n denotes the total number of assigned
clusters after reaching xt,n). Each assignment increases the cluster’s sizemkt,n by one.
After each time step, cluster sizes may decrease when observations are uniformly
“unassigned” in a deletion step. The generative process for the GPU, at each time
step t, is

1. For k = 1, . . . ,Kt−1,Nt−1

a) Draw ∆mkt−1 ∼ Binom(mkt−1,Nt−1 , ρ)

b) Set mkt,0 = m
k
t−1,Nt−1 −∆m

k
t−1

2. For n = 1, . . . ,Nt

a) Draw ct,n∼ Cat
(

m1
t,n−1

α+
∑
km

k
t,n−1

,
m
Kt,n−1
t,n−1

α+
∑
km

k
t,n−1

, α
α+
∑
km

k
t,n−1

)
b) If ct,n 6 Kt,n−1:

Set mct,nt,n = m
ct,n
t,n−1 + 1, m

\ct,n
t,n = m

\ct,n
t,n−1, and Kt,n = Kt,n−1

c) If ct,n > Kt,n−1:
Set mct,nt,n = 1, m\ct,n

t,n = m
\ct,n
t,n−1, and Kt,n = Kt,n−1 + 1.

where Cat is the categorical distribution, m\ct,n
t,n is the set {m1t,n, . . . ,mKt,nt,n } \ {m

ct,n
t,n },

Binom is the binomial distribution, α is the DP concentration parameter, and ρ is a
deletion parameter that controls temporal dependence of the DDP. We will refer to
this process as GPU(α, ρ).

Data. At each frame t, we assume we are given a set of Nt foreground pixels,
extracted via some background subtraction method (such as those detailed in [209]).
These methods primarily segment foreground objects based on their motion relative
to the video background. For example, an efficient method applicable for stationary
videos is frame differencing: in each frame t, one finds the pixel values that have
changed beyond some threshold, and records their positions xst,n = (xs1t,n, xs2t,n). In
addition to the position of each foreground pixel, we extract color information. The
spectrum of RGB color values is discretized into V bins, and the local color distribu-
tion around each pixel is described by counts of surrounding pixels (in an m×m
grid) that fall into each color bin, denoted xct,n = (xc1t,n, . . . , xcVt,n). Observations are
therefore of the form

xt,n = (xst,n, xct,n) = (xs1t,n, xs2t,n, xc1t,n, . . . , xcVt,n) (13)

Examples of spatial pixel data extracted via frame differencing are shown in Figure 9

(a)-(g).
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Figure 9: (a - f) Two pairs of consecutive frames and the spatial observations xst,n extracted
by taking the pixel-wise frame difference between each pair. (g) The results of
frame differencing over a sequence of images (from the PETS2010 dataset).

3.3.2 DDPMO

Our object model F(θkt ) is a distribution over pixel data, where θkt represents the
parameters of the kth object at time t. We wish to keep our object model general
enough to be applied to arbitrary video objects, but specific enough to learn a repre-
sentation that can aid in tracking. Here, we model each object with

xt,n ∼ F(θkt ) = Normal(xst,n|µt,Σt)Mult(xct,n|δt) (14)

where object parameters θt = {µt,Σt, δt}, and
∑V
j=1 δ

j
t = 1. The object model cap-

tures the objects’ locus and extent with the multivariate Gaussian and color distri-
bution with the multinomial. We demonstrate in Section 3.5 that this representation
can capture the physical characteristics of a wide range of objects while allowing ob-
jects with different shapes, orientations, and appearances to remain isolated during
tracking.



3.3 dependent dirichlet process mixture of objects 35

We would also like to model the motion of objects. Assuming as little as possible,
we take each object’s parameters θkt to be a noisy version of the previous parameters
θkt−1 (if the object existed at the previous time step) and define

θkt |θ
k
t−1 ∼

T(θkt−1) if k 6 Kt−1,Nt−1

G0 if k > Kt−1,Nt−1

(15)

where T denotes a transition kernel, the k > Kt−1,Nt−1 case is when a new cluster
has been created at time t, and G0 is the base distribution of the dependent Dirichlet
process, which represents the prior distribution over object parameters. We define
G0 to be

G0(θ
k
t ) = NiW(µkt ,Σkt |µ0, κ0,ν0,Λ0)Dir(δkt |q0) (16)

where NiW denotes the normal-inverse-Wishart distribution and Dir denotes the
Dirichlet distribution; these act as a conjugate prior to the object model. We can
therefore write the generative process of the DDPMO as, for each time step t =

1, . . . , T :

1. Draw {ct,1:Nt , Kt,Nt , m
1:Kt−1,Nt−1
t,0 } ∼ GPU(α, ρ)

2. For k = 1, . . . ,Kt,Nt :

draw θkt ∼

T(θkt−1) if k 6 Kt−1,Nt−1

G0(µ0, κ0,ν0,Λ0,q0) if k > Kt−1,Nt−1

3. For n = 1, . . . ,Nt: draw xt,n ∼ F(θct,nt )

where the notation c1,1:N1 = {c1,1, . . . , c1,N1}. A graphical model for the DDPMO is
shown in Figure 10.

To meet technical requirements of the GPU, the transition kernel T must satisfy∫
G0(θ

k
t−1)T(θ

k
t |θ
k
t−1)dθ

k
t−1 = G0(θ

k
t ) (17)

or, equivalently, its invariant distribution must equal the base distribution [61]. One
way to satisfy this while providing a reasonable transition kernel is to introduce a
set of M auxiliary variables zkt = (zkt,1, . . . , zkt,M) for cluster k at time t such that

P(θkt |θ
k
t−1) =

∫
P(θkt |z

k
t )P(z

k
t |θ
k
t−1)dzkt (18)

With this addition, object parameters do not directly depend on their values at a pre-
vious time, but are instead dependent through an intermediate sequence of variables.
This allows the cluster parameters at each time step to be marginally distributed
according to the base distribution G0 while maintaining simple time varying be-
havior. We can therefore sample from the transition kernel using θkt ∼ T(θkt−1) =

T2 ◦ T1(θkt−1), where

zkt,1:M ∼ T1(θ
k
t−1) = Normal(µkt−1,Σkt−1)Mult(δkt−1) (19)

µkt ,Σkt , δkt ∼ T2(z
k
t,1:M) = NiW(µM, κM,νM,ΛM)Dir(qM) (20)
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Figure 10: Graphical model of the dependent Dirichlet process mixture of objects (DDPMO).
All observations at time t are denoted as xt and their assignments as ct.

where µM, κM,νM,ΛM and qM are posterior NiW and Dir parameters, given the
auxiliary variables zt,1:M (formulas given in Section 3.4.1.1).

3.4 inference

We describe two inference algorithms for the DDPMO: sequential Monte Carlo
(SMC) with local Gibbs iterations, and Particle Markov Chain Monte Carlo (PM-
CMC).

3.4.1 Sequential Monte Carlo

We first derive an SMC (particle filter) inference algorithm where we draw samples
from a proposal distribution by iterating through local Gibbs updates (detailed in
Section 3.4.1.1). SMC allows us to make a single pass through the data and draw
posterior samples in an online fashion.

3.4.1.1 Local Gibbs Updates

We perform Gibbs sampling on the assignments and object parameters (at a given
t) to draw SMC proposals; this allows for the proposal of well-mixed samples
given newly introduced data in a particular frame. For an assignment ct,n, we can
compute a value proportional to the posterior for each possible assignment value
1, . . . ,Kt,n, and then sample from the resulting categorical distribution (after nor-
malizing). The first proposal distribution Q1 is the probability of an assignment
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Algorithmus 2 : SMC for the DDPMO from Neiswanger et al. [144]
Input : Extracted pixel data {x1,1:N1 , . . . , xT ,1:NT }, number of particles L,

number of local Gibbs iterations S, and prior parameters α, ρ, µ0, κ0,
ν0, Λ0 and q0.

Output : Posterior samples
{
θ
1:K1,N1
1 , . . . , θ

1:KT ,NT
T

}(1:L)
of the object model

parameters.
1 for t = 1 to T do
2 for l = 1 to L do
3 for iter = 1 to S do
4 Sample (ct,1:Nt)

(l) ∼ Q1 and (θ
1:Kt,Nt
t )(l) ∼ Q2

5 for k = 1 to Kt,Nt do
6 Sample (∆mkt )

(l) ∼ Binom((mkt,Nt)
(l), ρ)

7 Set (mkt+1,0)
(l) = (mkt,Nt)

(l) − (∆mkt )
(l)

8 Sample (zkt+1,1:M)(l) ∼ T1((θ
k
t )

(l))

9 Compute particle weight w̃(l)
t

10 Normalize particle weights and resample particles

ct,n given current cluster sizes, cluster parameters, and concentration parameter α,
written

Q1

(
ct,n|m

1:Kt,n−1
t,n−1 , θ1:Kt,n−1t ,α

)
∝ Cat(m1t,n−1, . . . ,mKt,n−1t,n−1 ,α)

×

F(xt,n|θ
ct,n
t ) if ct,n 6 Kt,n−1∫

P(xt,n|θ)G0(θ)dθ ct,n > Kt,n−1

(21)

where we set the number of clusters Kt,n and their sizes m1:Kt,nt,n appropriately as
each ct,n is assigned, and assume K1,0 = 0 for consistency at t = 1. The integral in
the case of a new cluster (k > Kt,n−1) has an analytic solution∫

P(xt,n|θ)G0(θ)dθ = tν0−1

(
xst,n

∣∣ µ0,
Λ0(κ0 + 1)

κ0(ν0 − 1)

)
×

V∏
j=1

Γ(xct,n)
Γ(q0)

×
Γ(
∑V
j=1 q0)

Γ(
∑V
j=1 xct,n)

(22)

where tν0−1 denotes the multivariate t-distribution with ν0 − 1 degrees of freedom,
where we follow the three-value parameterization [64], and Γ denotes the gamma
function.

The conjugacy of appearance model and transition kernel allow us to sample
from the second proposal distribution Q2, which is the posterior distribution over
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the object parameters given current observations, auxiliary variables, and previous
time object parameters, written

Q2(θ
k
t |θ
k
t−1, xkt,1:Nt , z

k
t,1:M) = F(xkt,1:Nt |θ

k
t )T2(θ

k
t |z
k
t,1:M)

= NiW(µkt ,Σkt |µN, κN,νN,ΛN)

×Dir(δkt |qN)

(23)

where xkt,1:Nt = {xt,n ∈ xt,1:Nt |ct,n = k} and the parameters for the NiW and Dir
distributions are given when xkt,1:Nt and zkt,1:M are taken to be the “observations” in
the following posterior updates

κN = κ0 +N (24)

νN = ν0 +N (25)

µN =
κ0

κ0 +N
µ0 +

N

κ0 +N
xs (26)

ΛN = Λ0 + Sxs (27)

qN = q0 +

N∑
i=1

xci (28)

whereN is the number of observations, {µ0, κ0,ν0,Λ0} are the NiW prior parameters,
q0 is the Dir prior parameter, xs and xc respectively denote the spatial and color
features of the observations, and x and Sx respectively denote the sample mean and
sample covariance of the observations.

3.4.1.2 Particle Weights

At each time, the particle weights are set to be

w̃
(l)
t =

P
(
(ct,1:Nt)

(l), (θ
1:Kt,Nt
t )(l), xt,1:Nt |Λ

)
P
(
(ct,1:Nt)

(l), (θ
1:Kt,Nt
t )(l)|Λ

) (29)

where we’ve defined

Λ = {(θ
1:Kt−1,Nt−1
t−1 )(l), (m

1:Kt−1,Nt−1
t,0 )(l)} (30)

Note that the numerator decomposes into

P
(

xt,1:Nt |(ct,1:Nt)
(l), (θ

1:Kt,Nt
t )(l)

)
× P

(
(ct,1:Nt)

(l), (θ
1:Kt,Nt
t )(l)|Λ

) (31)

which can be computed using the DDPMO local probability equations defined in
Section 3.3.2, and the denominator can be computed using equations 21 and 23.
After the particle weights are computed, they are normalized; particles are then
redrawn based on their normalized weights in a multinomial resampling procedure
[52].
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3.4.1.3 Computational Cost

Assume N extracted pixels per frame, T frames, L particles, M auxiliary variables, S
local Gibbs iterations, and fewer than K sampled objects (K(1:L)

T ,NT
6 K). In the SMC

inference algorithm, each local Gibbs iterations is O(KN+M) and evaluating each
particle weight is O(K +N); the SMC algorithm therefore scales as O(TL(K(SN +

M)+SM+N)). If we neglect the number of auxiliary variablesM, as we can usually
fix this at a small value, the algorithm scales as O(TLKSN). We have empirically
found that an SMC implementation in MATLAB, while not tuned for speed, usually
requires 4-20 seconds for every 1 second of video, depending on the number of
objects (after frame-rate has been subsampled to approximately 3 images/second
in all cases). It is not unreasonable to believe that this could be scaled to real time
tracking, given parallel computation and efficient image processing.

3.4.2 Particle Markov Chain Monte Carlo

SMC provides an efficient, online method for posterior inference, but can suffer from
degeneracy; notably, a large majority of the returned particles correspond to a single,
non-optimal tracking hypothesis. Ideally, we would like to infer a full posterior over
object paths. MCMC methods are guaranteed to yield true posterior samples as the
number of samples tends to infinity; however, we have found batch Gibbs sampling
to be impractical for inference in the DDPMO, as samples tend to remain stuck in
local posterior optima (often when a track begins on one object before switching to
another) and cannot converge to a high accuracy tracking hypothesis in a reasonable
amount of time.

PMCMC [8] is a Markov chain Monte Carlo method that attempts to remedy
these problems by using SMC as an intermediate sampling step to move efficiently
through high dimensional state spaces. We implement a specific case known as the
Particle Gibbs (PG) algorithm, where we sample from the conditional distributions
used in Gibbs sampling via a modified version of Algorithm 1 referred to as condi-
tional sequential Monte Carlo.

3.4.2.1 Conditional SMC

Conditional SMC [8] allows for SMC to be used as a proposal distribution in a Gibbs
sampling algorithm. We must first introduce the notion of a particle’s lineage. Let
A1:Lt denote the indices of the L particles chosen during the resampling step in time
t (in Algorithm 1). The lineage B(l)

1:T of a particle is recursively defined as B(l)
T = l

and for t = (T − 1), . . . , 1, B(l)
t = A

B
(l)
t+1
t . More intuitively, for the lth particle, which

contains the variables Θ(l)
1:T at the final time T, B(l)

t denotes the index of the particle
that contained the variables Θ(l)

1:t⊂Θ
(l)
1:T at time t.
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Conditional SMC uses lineages to ensure that a given particle will survive all re-
sampling steps, whereas the remaining particles are generated as before. We define
conditional SMC for the DDPMO in Algorithm 2. Note that computation of particle
weights and resampling (for relevant particles) is performed in the same manner as
in SMC inference (Algorithm 1).

Algorithmus 3 : Conditional SMC for the DDPMO from Neiswanger et al.
[144]
Input : Extracted pixel data {x1,1:N1 , . . . , xT ,1:NT }, number of particles L,

number of local Gibbs iterations S, condition particle Φ(η)
1:T with

lineage B(η)
1:T (η ∈ {1, . . . ,L}).

Output : Particle-conditional posterior samples {Θ1:T }
(1:L) of all latent model

variables.
1 for t = 1 to T do
2 for l = 1 to L do
3 if l 6= B(η)

t then
4 for iter = 1 to S do
5 Sample (ct,1:Nt)

(l) ∼ Q1 and (θ
1:Kt,Nt
t )(l) ∼ Q2

6 for k = 1 to Kt,Nt do
7 Sample (∆mkt )

(l) ∼ Binom((mkt,Nt)
(l), ρ)

8 Set (mkt+1,0)
(l) = (mkt,Nt)

(l) − (∆mkt )
(l)

9 Sample (zkt+1,1:M)(l) ∼ T1((θ
k
t )

(l))

10 Set Θ(l)
t =

{
(ct,1:Nt)

(l), (θ
1:Kt,Nt
t )(l), (m

1:Kt,Nt
t+1,0 )(l), (z

1:Kt,Nt
t+1,1:M)(l)

}
11 else
12 Set Θ(l)

t = Φ
(η)
t

13 Compute particle weight w̃(l)
t

14 for l = 1 to L do
15 if l 6= B(η)

t then
16 Normalize particle weights and resample particles

3.4.2.2 Particle Gibbs

In the particle Gibbs (PG) algorithm [8], the model variables are first initialized,
and then conditional SMC (Algorithm 2) is run for a number of iterations. More
specifically, at the end of each iteration, a sample is drawn from the set of weighted
particles returned by conditional SMC, and this sample is conditioned upon in the
next iteration. The PG algorithm for the DDPMO is formalized in Algorithm 3.



3.5 experiments 41

As the PG inference requires all variables to be initialized, SMC inference (Algo-
rithm 1) can be used as a quick way to provide near-MAP initialization of variables.

Algorithmus 4 : PMCMC (Particle Gibbs) for the DDPMO from Neiswanger
et al. [144]
Input : Extracted pixel data {x1,1:N1 , . . . , xT ,1:NT }, number of global Gibbs

iterations G, number of particles L, number of local Gibbs iterations S

Output : Posterior samples
{
θ
1:K1,N1
1 , . . . , θ

1:KT ,NT
T

}1:G
of the object model

parameters
1 Initialize all model variables to Φ(L)

0

2 for g = 1 to G do
3 Run conditional SMC (Algorithm 3) with input {x1,1:N1 , . . . , xT ,1:NT }, L, S,

and conditional on particle Φ(L)
g−1 to get particle set {Θ(1)

1:T , . . . ,Θ(L)
1:T }

4 Draw Φ
(L)
g ∼ Unif({Θ(1)

1:T , . . . ,Θ(L)
1:T })

5 Return
{
θ
1:K1,N1
1 , . . . , θ

1:KT ,NT
T

}1:G
∈ Φ(L)

1:G

3.5 experiments

We demonstrate the DDPMO on three real video datasets: a video of foraging ants,
where we show improved performance over other detection-free methods; a human
tracking benchmark video, where we show comparable performance against object-
specific methods designed to detect humans; and a T cell tracking task where we
demonstrate our method on a video with a large number of objects and show how
our unsupervised method can be used to automatically train a supervised object
detector.

Detection-free comparison methods. Detection-free tracking strategies aim to
find and track objects without any prior information about the objects’ characteristics
nor any manual initialization. One type of existing strategy uses optical flow or fea-
ture tracking algorithms to produce short tracklets, which are then clustered into full
object tracks. We use implementations of Large Displacement Optical Flow (LDOF)
[34] and the Kanade-Lucas-Tomasi (KLT) feature tracker [184] to produce tracklets 1.
Full trajectories are then formed using the popular normalized-cut (NCUT) method
[168] to cluster the tracklets or with a variant that uses non-negative matrix factor-
ization (NNMF) to cluster motion using tracklet velocity information [42] 2. We also
compare against a detection-free blob-tracking method, where extracted foreground

1 The LDOF implementation can be found at http://www.seas.upenn.edu/~katef/LDOF.html and the KLT imple-
mentation at http://www.ces.clemson.edu/~stb/klt/.

2 The NCUT implementation can be found at http://www.cis.upenn.edu/~jshi/software/ and the NNMF imple-
mentation at http://www.ornl.gov/~czx/research.html.

http://www.seas.upenn.edu/~katef/LDOF.html
http://www.ces.clemson.edu/~stb/klt/
http://www.cis.upenn.edu/~jshi/software/
http://www.ornl.gov/~czx/research.html
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pixels are segmented into components in each frame [178] and then associated with
the nearest neighbor criterion [209].

Performance metrics. For quantitative comparison, we report two commonly
used performance metrics for object detection and tracking, known as the sequence
frame detection accuracy (SFDA) and average tracking accuracy (ATA) [98]. These
metrics compare detection and tracking results against human-authored ground-
truth, where SFDA∈ [0, 1] corresponds to detection performance and ATA∈ [0, 1]
corresponds to tracking performance. We authored the ground-truth for all videos
with the Video Performance Evaluation Resource (ViPER) tool [51].

3.5.1 Insect Tracking

In this experiment, we aim to demonstrate the ability of the DDPMO to find and
track objects in a difficult detection scenario. The video contains six ants with a sim-
ilar texture and color distribution as the background. The ants are hard to discern,
and it is unclear how a predefined detection criteria might be constructed. Futher,
the ants move erratically and the spatial data extracted via frame differencing does
not yield a clear segmentation of the objects in individual frames. A still image
from the video, with ant locations shown, is given in Figure 3(a). We compare the
SMC and PMCMC inference algorithms, and find that PMCMC yields more accurate
posterior samples (3(d)) than SMC (3(c)). Ground-truth bounding boxes (dashed)
are overlaid on the posterior samples. The MAP PMCMC sample is shown in 3(b)
and posterior samples of the object tracks are shown in 3(f), along with overlaid
ground-truth tracks (dashed). SFDA and ATA performance metrics for all compar-
ison methods are shown in 3(e). The DDPMO yields higher metric values than all
other detection-free comparison methods, with PMCMC inference scoring higher
than SMC. The comparison methods seemed to suffer from two primary problems:
very few tracklets could follow object positions for an extended sequence of frames,
and clustering tracklets into full tracks sharply decreased in accuracy when the ob-
jects came into close contact with one another.

3.5.2 Comparisons with Detector-based Methods

In this experiment we aim to show that our general-purpose algorithm can com-
pete against state of the art object-specific algorithms, even when it has no prior
information about the objects. We use a benchmark human-tracking video from the
International Workshop on Performance Evaluation of Tracking and Surveillance
(PETS) 2009-2013 conferences [55], due to its prominence in a number of studies
(listed in Figure 12(f)). It consists of a monocular, stationary camera, 794 frame
video sequence containing a number of walking humans. Due to the large number
of frames and objects in this video, we perform inference with the SMC algorithm
only.
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Figure 11: The ants in (a) are difficult to discern (positions labeled). We plot 100 samples
from the inferred posterior over object parameters (using SMC (c) and PMCMC
(d)) with ground-truth bounding boxes overlaid (dashed). PMCMC proves to give
more accurate object parameter samples. We also plot samples over object tracks
(sequences of mean parameters) using PMCMC in (f) , and its MAP sample in (b).
We show the SFDA and ATA scores for all comparison methods in (e).

The DDPMO is compared against ten object-specific detector-based methods from
the PETS conferences. These methods all either leverage assumptions about the ori-
entation, position, or parts of humans, or explicitly use pre-trained human detectors.
For example, out of the three top scoring comparison methods, [31] uses a state of
the art pedestrian detector, [208] performs head and feet detection, and [43] uses as-
sumptions about human geometry and orientation to segment humans and remove
shadows.

In Figure 4(a-d), the MAP sample from the posterior distribution over the object
parameters is overlayed on the extracted data over a sequence of frames. The first 50

frames from the video are shown in 4(e), where the assignment of each data point
is represented by color and marker type. We show the SFDA and ATA values for all
methods in 4(f), and can see that the DDPMO yields comparable results, receiving
the fourth highest SFDA score and tying for the second highest ATA score.



44 the dependent dirichlet process mixture of objects

3.5.3 Tracking Populations of T Cells

Automated tracking tools for cells are useful for cell biologists and immunologists
studying cell behavior. We present results on a video containing T cells that are hard
to detect using conventional methods due to their low constrast appearance against
a background (Figure 5(a)). Furthermore, there are a large number of cells (roughly
60 per frame, 92 total). In this experiment, we aim to demonstrate the ability of the
DDPMO to perform a tough detection task while scaling up to a large number of
objects. Ground-truth bounding boxes for the cells at a single frame [123] are shown
in 5(b) and PMCMC inference results (where the MAP sample is plotted) are shown
in in 5(c). A histogram illustrating the inferred posterior over the total number of
cells is shown in 5(e). It peaks around 87, near the true value of 92 cells.

Manually hand-labeling cell positions to train a detector is feasible but time con-
suming; we show how unsupervised detection results from the DDPMO can be used
to automatically train a supervised cell detector (a linear SVM), which can then be
applied (via a sliding window across each frame) as a secondary, speedy method
of detection (Figure 5(d)). This type of strategy in conjunction with the DDPMO
could allow for an ad-hoc way of constructing detectors for arbitrary objects on the
fly, which could be taken and used in other vision applications, without needing an
explicit predefined algorithm for object detection.

3.6 conclusion

The DDPMO provides the ability to find, track, and learn representations of arbitrary
objects in a video, in a single model framework, in order to accomplish detection-free
tracking. We detail inference algorithms that can be used in both online and offline
settings and provide results on a number of real video datasets. We consistently
achieve better performance than other detection-free tracking strategies and even
achieve competitive performance with object-specific detector-based methods on a
human tracking benchmark video. Furthermore, we’ve demonstrated the ability
of our model to perform accurate localization and tracking in videos with large
numbers of objects, and in those that contain instances of full or partial occlusion,
objects with shifting appearance or orientation, and objects for which it is difficult
to construct an explicit detection strategy.

We’ve also shown how the DDPMO can provide an unsupervised, detection-free
way to train a discriminative object detector for arbitary objects. This combination
could provide a way to build object detectors for unknown objects on the fly and
increase the accuracy or speed of localization and tracking within our model frame-
work. We envision the DDPMO to be particularly useful in settings where the num-
ber and type of objects are unknown, or the objects’ appearances are highly variable,
and a high-quality general-purpose object localization and tracking method is desir-
able.
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Figure 12: DDPMO results on the PETS human tracking benchmark dataset and compari-
son with object-detector-based methods. The MAP object parameter samples are
overlaid on four still video frames (a-d). The MAP object parameter samples
are also shown for a sequence of frames (a 50 time-step sequence) along with
spatial pixel observations (e) (where the assignment variables ct,n for each pixel
are represented by marker type and color). The SFDA and ATA performance
metric results for the DDPMO and ten human-specific, detection-based tracking
algorithms are shown in (f), demonstrating that the DDPMO achieves compa-
rable performance to these human-specific methods. Comparison results were
provided by the authors of [55].
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Figure 13: T cells are numerous, and hard to detect due to low contrast images (a). For a
single frame, ground-truth bounding boxes are overlaid in (b), and inferred detec-
tion and tracking results are overlaid in (c). A histogram showing the posterior
distribution over the total number of cells is shown in (e). The SFDA and ATA
for the detection-free comparison methods are shown in (f). Inferred cell posi-
tions (unsupervised) were used to automatically train an SVM for supervised cell
detection; SVM detected cell positions for a single frame are shown in (d).
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4.1 chapter summary

Communication costs, resulting from synchronization requirements during learning,
can greatly slow down many parallel machine learning algorithms. In this chapter,
we present a parallel Markov chain Monte Carlo (MCMC) algorithm in which sub-
sets of data are processed independently, with very little communication. First, we
arbitrarily partition data onto multiple machines. Then, on each machine, any clas-
sical MCMC method (e.g., Gibbs sampling) may be used to draw samples from a
posterior distribution given the data subset. Finally, the samples from each machine
are combined to form samples from the full posterior. This embarrassingly parallel
algorithm allows each machine to act independently on a subset of the data (with-
out communication) until the final combination stage. We prove that our algorithm
generates asymptotically exact samples and empirically demonstrate its ability to
parallelize burn-in and sampling in several models.

4.2 introduction

Markov chain Monte Carlo (MCMC) methods are popular tools for performing ap-
proximate Bayesian inference via posterior sampling. One major benefit of these
techniques is that they guarantee asymptotically exact recovery of the posterior dis-
tribution as the number of posterior samples grows. However, MCMC methods may
take a prohibitively long time, since for N data points, most methods must perform
O(N) operations to draw a sample. Furthermore, MCMC methods might require
a large number of “burn-in” steps before beginning to generate representative sam-
ples. Further complicating matters is the issue that, for many big data applications,
it is necessary to store and process data on multiple machines, and so MCMC must
be adapted to run in these data-distributed settings.

Researchers currently tackle these problems independently, in two primary ways.
To speed up sampling, multiple independent chains of MCMC can be run in parallel
[110, 130, 199]; however, each chain is still run on the entire dataset, and there is no
speed-up of the burn-in process (as each chain must still complete the full burn-in
before generating samples). To run MCMC when data is partitioned among multiple
machines, each machine can perform computation that involves a subset of the data
and exchange information at each iteration to draw a sample [109, 147, 173]; however,
this requires a significant amount of communication between machines, which can

49
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greatly increase computation time when machines wait for external information [2,
84].

We aim to develop a procedure to tackle both problems simultaneously, to allow
for quicker burn-in and sampling in settings where data are partitioned among ma-
chines. To accomplish this, we propose the following: on each machine, run MCMC
on only a subset of the data (independently, without communication between ma-
chines), and then combine the samples from each machine to algorithmically con-
struct samples from the full-data posterior distribution. We’d like our procedure to
satisfy the following four criteria:

1. Each machine only has access to a portion of the data.

2. Each machine performs MCMC independently, without communicating (i.e.
the procedure is “embarrassingly parallel”).

3. Each machine can use any type of MCMC to generate samples.

4. The combination procedure yields provably asymptotically exact samples from
the full-data posterior.

The third criterion allows existing MCMC algorithms or software packages to be
run directly on subsets of the data—the combination procedure then acts as a post-
processing step to transform the samples to the correct distribution. Note that this
procedure is particularly suitable for use in a MapReduce [46] framework. Also note
that, unlike current strategies, this procedure does not involve multiple “duplicate”
chains (as each chain uses a different portion of the data and samples from a differ-
ent posterior distribution), nor does it involve parallelizing a single chain (as there
are multiple chains operating independently). We will show how this allows our
method to, in fact, parallelize and greatly reduce the time required for burn-in.

In this chapter we will (1) introduce and define the subposterior density—a mod-
ified posterior given a subset of the data—which will be used heavily, (2) present
methods for the embarrassingly parallel MCMC and combination procedure, (3)
prove theoretical guarantees about the samples generated from our algorithm, (4)
describe the current scope of the presented method (i.e. where and when it can be
applied), and (5) show empirical results demonstrating that we can achieve speed-
ups for burn-in and sampling while meeting the above four criteria.

4.3 embarrassingly parallel mcmc

The basic idea behind our method is to partition a set of N i.i.d. data points xN =

{x1, · · · , xN} into M subsets, sample from the subposterior—the posterior given a data
subset with an underweighted prior—in parallel, and then combine the resulting
samples to form samples from the full-data posterior p(θ|xN), where θ ∈ Rd and
p(θ|xN) ∝ p(θ)p(xN|θ) = p(θ)

∏N
i=1 p(xi|θ).
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More formally, given data xN partitioned into M subsets {xn1 , . . . , xnM}, the pro-
cedure is:

1. For m = 1, . . . ,M (in parallel):
Sample from the subposterior pm, where

pm(θ) ∝ p(θ)
1
Mp(xnm |θ). (32)

2. Combine the subposterior samples to produce samples from an estimate of the
subposterior density product p1···pM, which is proportional to the full-data
posterior, i.e. p1···pM(θ) ∝ p(θ|xN).

We want to emphasize that we do not need to iterate over these steps and the
combination stage (step 3) is the only step that requires communication between
machines. Also note that sampling from each subposterior (step 2) can typically be
done in the same way as one would sample from the full-data posterior. For example,
when using the Metropolis-Hastings algorithm, one would compute the likelihood

ratio as p(θ∗)
1
Mp(xnm |θ∗)

p(θ)
1
Mp(xnm |θ)

instead of p(θ
∗)p(xN|θ∗)

p(θ)p(xN|θ)
, where θ∗ is the proposed move.

In the next section, we show how the combination stage (step 3) is carried out to
generate samples from the full-data posterior using the subposterior samples.

4.4 combining subposterior samples

Our general idea is to combine the subposterior samples in such a way that we are
implicitly sampling from an estimate of the subposterior density product function
̂p1···pM(θ). If our density product estimator is consistent, then we can show that we

are drawing asymptotically exact samples from the full posterior. Further, by study-
ing the estimator error rate, we can explicitly analyze how quickly the distribution
from which we are drawing samples is converging to the true posterior (and thus
compare different combination algorithms).

In the following three sections we present procedures that yield samples from
different estimates of the density product. Our first example is based on a sim-
ple parametric estimator motivated by the Bernstein-von Mises theorem [111]; this
procedure generates approximate (asymptotically biased) samples from the full pos-
terior. Our second example is based on a nonparametric estimator, and produces
asymptotically exact samples from the full posterior. Our third example is based
on a semiparametric estimator, which combines beneficial aspects from the previous
two estimators while also generating asymptotically exact samples.

4.4.1 Approximate Posterior Sampling with Parametric Density Product Estimation

The first method for forming samples from the full posterior given subposterior sam-
ples involves using an approximation based on the Bernstein-von Mises (Bayesian
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central limit) theorem, an important result in Bayesian asymptotic theory. Assum-
ing that a unique, true data-generating model exists and is denoted θ0, this theorem
states that the posterior tends to a normal distribution concentrated around θ0 as the
number of observations grows. In particular, under suitable regularity conditions,
the posterior P(θ|xN) is well approximated by Nd(θ0, F−1N ) (where FN is the fisher
information of the data) when N is large [111]. Since we aim to perform posterior
sampling when the number of observations is large, a normal parametric form often
serves as a good posterior approximation. A similar approximation was used in
[3] in order to facilitate fast, approximately correct sampling. We therefore estimate
each subposterior density with p̂m(θ) = Nd(θ|µ̂m, Σ̂m) where µ̂m and Σ̂m are the
sample mean and covariance, respectively, of the subposterior samples. The prod-
uct of the M subposterior densities will be proportional to a Gaussian pdf, and our
estimate of the density product function p1···pM(θ) ∝ p(θ|xN) is

̂p1···pM(θ) = p̂1···p̂M(θ) ∝ Nd

(
θ|µ̂M, Σ̂M

)
,

where the parameters of this distribution are

Σ̂M =

(
M∑
m=1

Σ̂−1
m

)−1

(33)

µ̂M = Σ̂M

(
M∑
m=1

Σ̂−1
m µ̂m

)
. (34)

These parameters can be computed quickly and, if desired, online (as new subposte-
rior samples arrive).

4.4.2 Asymptotically Exact Posterior Sampling with Nonparametric Density Product Esti-
mation

In the previous method we made a parametric assumption based on the Bernstein-
von Mises theorem, which allows us to generate approximate samples from the full
posterior. Although this parametric estimate has quick convergence, it generates
asymptotically biased samples, especially in cases where the posterior is particu-
larly non-Gaussian. In this section, we develop a procedure that implicitly samples
from the product of nonparametric density estimates, which allows us to produce
asymptotically exact samples from the full posterior. By constructing a consistent
density product estimator from which we can generate samples, we ensure that the
distribution from which we are sampling converges to the full posterior.
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Given T samples1 {θmtm}
T
tm=1 from a subposterior pm, we can write the kernel

density estimator p̂m(θ) as,

p̂m(θ) =
1

T

T∑
tm=1

1

hd
K

(‖θ− θmtm‖
h

)

=
1

T

T∑
tm=1

Nd(θ|θ
m
tm

,h2Id),

where we have used a Gaussian kernel with bandwidth parameter h. After we have
obtained the kernel density estimator p̂m(θ) for M subposteriors, we define our
nonparametric density product estimator for the full posterior as

̂p1···pM(θ) = p̂1···p̂M(θ)

=
1

TM

M∏
m=1

T∑
tm=1

Nd(θ|θ
m
tm

,h2Id)

∝
T∑
t1=1

···
T∑

tM=1

wt·Nd

(
θ
∣∣∣θ̄t·, h2

M
Id

)
. (35)

This estimate is the probability density function (pdf) of a mixture of TM Gaussians
with unnormalized mixture weights wt·. Here, we use t· = {t1, . . . , tM} to denote
the set of indices for the M samples {θ1t1 , . . . , θ

M
tM

} (each from a separate machine)
associated with a given mixture component, and we define

θ̄t· =
1

M

M∑
m=1

θmtm (36)

wt· =

M∏
m=1

Nd
(
θmtm |θ̄t·,h

2Id
)

. (37)

Although there are TM possible mixture components, we can efficiently generate
samples from this mixture by first sampling a mixture component (based on its
unnormalized component weight wt·) and then sampling from this (Gaussian) com-
ponent. In order to sample mixture components, we use an independent Metropolis
within Gibbs (IMG) sampler. This is a form of MCMC, where at each step in the
Markov chain, a single dimension of the current state is proposed (i.e. sampled)
independently of its current value (while keeping the other dimensions fixed) and
then is accepted or rejected. In our case, at each step, a new mixture component is
proposed by redrawing one of the M current sample indices tm ∈ t· associated with
the component uniformly and then accepting or rejecting the resulting proposed

1 For ease of description, we assume each machine generates the same number of samples, T . In practice,
they do not have to be the same.
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component based on its mixture weight. We give the IMG algorithm for combining
subposterior samples in Algorithm 5.2

In certain situations, Algorithm 5 may have a low acceptance rate and therefore
may mix slowly. One way to remedy this is to perform the IMG combination algo-
rithm multiple times, by first applying it to groups of M̃ < M subposteriors and
then applying the algorithm again to the output samples from each initial applica-
tion. For example, one could begin by applying the algorithm to all M2 pairs (leaving
one subposterior alone if M is odd), then repeating this process—forming pairs and
applying the combination algorithm to pairs only—until there is only one set of
samples remaining, which are samples from the density product estimate.

Algorithmus 5 : Asymptotically Exact Sampling via Nonparametric Density
Product Estimation from Neiswanger et al. [142]

Input : Subposterior samples: {θ1t1}
T
t1=1

∼ p1(θ), . . . , {θMtM}TtM=1 ∼ pM(θ).
Output : Posterior samples (as T →∞): {θi}Ti=1 ∼ p1···pM(θ) ∝ p(θ|xn)

1 Draw t· = {t1, . . . , tM}
iid
∼ Unif({1, . . . , T })

2 for i = 1, . . . , T do
3 Set h← i−1/(4+d)

4 for m = 1, . . . ,M do
5 Set c· ← t·
6 Draw cm ∼ Unif({1, . . . , T })
7 Draw u ∼ Unif([0, 1])
8 if u < wc·/wt· then
9 Set t· ← c·

10 Draw θi ∼ Nd(θ̄t·, h
2

M Id)

4.4.3 Asymptotically Exact Posterior Sampling with Semiparametric Density Product Es-
timation

Our first example made use of a parametric estimator, which has quick convergence,
but may be asymptotically biased, while our second example made use of a nonpara-
metric estimator, which is asymptotically exact, but may converge slowly when the
number of dimensions is large. In this example, we implicitly sample from a semi-
parametric density product estimate, which allows us to leverage the fact that the
full posterior has a near-Gaussian form when the number of observations is large,
while still providing an asymptotically unbiased estimate of the posterior density, as
the number of subposterior samples T →∞.

2 Again for simplicity, we assume that we generate T samples to represent the full posterior, where T is
the number of subposterior samples from each machine.
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We make use of a semiparametric density estimator for pm that consists of the
product of a parametric estimator f̂m(θ) (in our case Nd(θ|µ̂m, Σ̂m) as above) and
a nonparametric estimator r̂(θ) of the correction function r(θ) = pm(θ)/f̂m(θ) [83].
This estimator gives a near-Gaussian estimate when the number of samples is small,
and converges to the true density as the number of samples grows. Given T samples
{θmtm}

T
tm=1 from a subposterior pm, we can write the estimator as

p̂m(θ) = f̂m(θ) r̂(θ)

=
1

T

T∑
tm=1

1

hd
K

(‖θ− θmtm‖
h

)
f̂m(θ)

f̂m(θmtm)

=
1

T

T∑
tm=1

Nd(θ|θ
m
tm

,h2Id)Nd(θ|µ̂m, Σ̂m)

Nd(θ
m
tm

|µ̂m, Σ̂m)
,

where we have used a Gaussian kernel with bandwidth parameter h for the non-
parametric component of this estimator. Therefore, we define our semiparametric
density product estimator to be

̂p1···pM(θ) = p̂1···p̂M(θ)

=
1

TM

M∏
m=1

T∑
tm=1

Nd(θ|θ
m
tm

,hId)Nd(θ|µ̂m, Σ̂m)

hdNd(θ
m
tm

|µ̂m, Σ̂m)

∝
T∑
t1=1

···
T∑

tM=1

Wt·Nd (θ|µt·,Σt·) .

This estimate is proportional to the pdf of a mixture of TM Gaussians with unnor-
malized mixture weights,

Wt· =
wt· Nd

(
θ̄t·|µ̂M, Σ̂M + h

MId

)
∏M
m=1Nd(θ

m
tm

|µ̂m, Σ̂m)
,

where θ̄t· and wt· are given in Eqs. 36 and 37. We can write the parameters of a
given mixture component Nd(θ|µt·,Σt·) as

Σt· =

(
M

h
Id + Σ̂

−1
M

)−1

,

µt· = Σt·

(
M

h
Idθ̄t· + Σ̂

−1
M µ̂M

)
,

where µ̂M and Σ̂M are given by Eq. 33 and 34. We can sample from this semi-
parametric estimate using the IMG procedure outlined in Algorithm 5, replacing the
component weights wt· with Wt· and the component parameters θ̄t· and h

MId with
µt· and Σt·.
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We also have a second semiparametric procedure that may give higher acceptance
rates in the IMG algorithm. We follow the above semiparametric procedure, where
each component is a normal distribution with parameters µt· and Σt·, but we use
the nonparametric component weights wt· instead of Wt·. This procedure is also
asymptotically exact, since the semiparametric component parameters µt· and Σt·
approach the nonparametric component parameters θ̄t· and h

MId as h → 0, and
thus this procedure tends to the nonparametric procedure given in Algorithm 5.

4.5 method complexity

GivenM data subsets, to produce T samples in d dimensions with the nonparametric
or semiparametric asymptotically exact procedures (Algorithm 1) requires O(dTM2)

operations. The variation on this algorithm that performs this procedure M−1 times
on pairs of subposteriors (to increase the acceptance rate; detailed in Section 4.4.2)
instead requires only O(dTM) operations.

We have presented our method as a two step procedure, where first parallel
MCMC is run to completion, and then the combination algorithm is applied to the
M sets of samples. We can instead perform an online version of our algorithm:
as each machine generates a sample, it immediately sends it to a master machine,
which combines the incoming samples3 and performs the accept or reject step (Al-
gorithm 1, lines 3-12). This allows the parallel MCMC phase and the combination
phase to be performed in parallel, and does not require transfering large volumes of
data, as only a single sample is ever transferred at a time.

The total communication required by our method is transferring O(dTM) scalars
(T samples from each of M machines), and as stated above, this can be done online
as MCMC is being carried out. Further, the communication is unidirectional, and
each machine does not pause and wait for any information from other machines
during the parallel sampling procedure.

4.6 theoretical results

Our second and third procedures aim to draw asymptotically exact samples by sam-
pling from (fully or partially) nonparametric estimates of the density product. We
prove the asymptotic correctness of our estimators, and bound their rate of conver-
gence. This will ensure that we are generating asymptotically correct samples from
the full posterior as the number of samples T from each subposterior grows.

3 For the semiparametric method, this will involve an online update of mean and variance Gaussian
parameters.



4.6 theoretical results 57

4.6.1 Density Product Estimate Convergence and Risk Analysis

To prove (mean-square) consistency of our estimator, we give a bound on the mean-
squared error (MSE), and show that it tends to zero as we increase the number of
samples drawn from each subposterior. To prove this, we first bound the bias and
variance of the estimator. The following proofs make use of similar bounds on the
bias and variance of the nonparametric and semiparametric density estimators, and
therefore the theory applies to both the nonparametric and semiparametric density
product estimators.

Throughout this analysis, we assume that we have T samples {θmtm}
T
tm=1 ⊂ X ⊂ Rd

from each subposterior (m = 1, . . . ,M), and that h ∈ R+ denotes the bandwidth of
the nonparametric density product estimator (which is annealed to zero as T → ∞
in Algorithm 5). Let Hölder class Σ(β,L) on X be defined as the set of all ` = bβc
times differentiable functions f : X→ R whose derivative f(l) satisfies

|f(`)(θ) − f(`)(θ ′)| 6 L
∣∣θ− θ ′∣∣β−` for all θ, θ ′ ∈ X.

We also define the class of densities P(β,L) to be

P(β,L) =
{
p ∈ Σ(β,L)

∣∣∣ p > 0,
∫
p(θ)dθ = 1

}
.

We also assume that all subposterior densities pm are bounded, i.e. that there exists
some b > 0 such that pm(θ) 6 b for all θ ∈ Rd and m ∈ {1, . . . ,M}.

First, we bound the bias of our estimator. This shows that the bias tends to zero
as the bandwidth shrinks.

Lemma 4.6.1. The bias of the estimator ̂p1···pM(θ) satisfies

sup
p1,...,pM∈P(β,L)

∣∣E [ ̂p1···pM(θ)
]
− p1···pM(θ)

∣∣ 6 M∑
m=1

cmh
mβ

for some c1, . . . , cM > 0.

Proof. For all p1, . . . ,pM ∈ P(β,L),

|E
[

̂p1···pM
]
− p1···pM| = |E [p̂1···p̂M] − p1···pM|

= |E [p̂1]···E [p̂M] − p1···pM|

6
∣∣(p1 + c̃1hβ)···(pM + c̃Mh

β) − p1···pM
∣∣

6
∣∣c1hβ + . . .+ cMh

Mβ
∣∣

6
∣∣c1hβ∣∣+ . . .+ ∣∣cMhMβ∣∣

=

M∑
m=1

cmh
mβ

where we have used the fact that |E [p̂m] − p| 6 c̃mhβ for some c̃m > 0.
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Next, we bound the variance of our estimator. This shows that the variance tends
to zero as the number of samples grows large and the bandwidth shrinks.

Lemma 4.6.2. The variance of the estimator ̂p1···pM(θ) satisfies

sup
p1,...,pM∈P(β,L)

V
[

̂p1···pM(θ)
]
6

M∑
m=1

(
M

m

)
cm

Tmhdm

for some c1, . . . , cM > 0 and 0 < h 6 1.

Proof. For all p1, . . . ,pM ∈ P(β,L),

V[ ̂p1···pM] = E
[
p̂21
]
···E

[
p̂2M
]
− E [p̂1]

2···E [p̂M]2

=

(
M∏
m=1

V [p̂m] + E [p̂m]2
)
−

(
M∏
m=1

E [p̂m]2
)

6
M−1∑
m=0

(
M

m

)
c̃mcM−m

TM−mhd(M−m)

6
M∑
m=1

(
M

m

)
cm

Tmhdm

where we have used the facts that V [p̂m] 6 c
Thd

for some c > 0 and E [p̂m]2 6 c̃ for
some c̃ > 0.

Finally, we use the bias and variance bounds to bound the MSE, which shows that
our estimator is consistent.

Theorem 4.6.3. If h � T−1/(2β+d), the mean-squared error of the estimator ̂p1···pM(θ)

satisfies

sup
p1,...,pM∈P(β,L)

E

[∫ (
̂p1···pM(θ) − p1···pM(θ)

)2
dθ

]
6

c

T2β/(2β+d)

for some c > 0 and 0 < h 6 1.

Proof. For all p1, . . . ,pM ∈ P(β,L), using the fact that the mean-squared error is
equal to the variance plus the bias squared, we have that

E

[∫ (
̂p1···pM(θ) − p1···pM(θ)

)2
dθ

]
6

(
M∑
m=1

cmh
mβ

)2
+

M∑
m=1

(
M

m

)
c̃m

Tmhdm

6 kT−2β/(2β+d) +
k̃

T1−d(2β+d)
(for some k, k̃ > 0)

6
c

T2β/(2β+d)

for some c1, . . . , cM > 0 and c̃1, . . . , c̃M > 0.
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4.7 method scope

The theoretical results and algorithms in this chapter hold for posterior distribu-
tions over finite-dimensional real spaces. These include generalized linear models
(e.g. linear, logistic, or Poisson regression), mixture models with known weights,
hierarchical models, and (more generally) finite-dimensional graphical models with
unconstrained variables. This also includes both unimodal and multimodal poste-
rior densities (such as in Section 4.9.2). However, the methods and theory presented
here do not yet extend to cases such as infinite dimensional models (e.g. nonpara-
metric Bayesian models [68]) nor to distributions over the simplex (e.g. topics in
latent Dirichlet allocation [28]). In the future, we hope to extend this work to these
domains.

4.8 related work

In [3, 151, 198], the authors develop a way to sample approximately from a posterior
distribution when only a small randomized mini-batch of data is used at each step.
In [103], the authors used a hypothesis test to decide whether to accept or reject
proposals using a small set of data (adaptively) as opposed to the exact Metropolis-
Hastings rule. This reduces the amount of time required to compute the acceptance
ratio. Since all of these algorithms are still sequential, they can be directly used
in our algorithm to generate subposterior samples to further speed up the entire
sampling process.

Several parallel MCMC algorithms have been designed for specific models, such
as for topic models [147, 173] and nonparametric mixture models [200]. These ap-
proaches still require synchronization to be correct (or approximately correct), while
ours aims for more general model settings and does not need synchronization until
the final combination stage.

Consensus Monte Carlo [164] is perhaps the most relevant work to ours. In this
algorithm, data is also portioned into different machines and MCMC is performed
independently on each machine. Thus, it roughly has the same time complexity as
our algorithm. However, the prior is not explicitly reweighted during sampling as
we do in Eq 32, and final samples for the full posterior are generated by averaging
subposterior samples. Furthermore, this algorithm has few theoretical guarantees.
We find that this algorithm can be viewed as a relaxation of our nonparametric,
asymptotically exact sampling procedure, where samples are generated from an
evenly weighted mixture (instead of each component having weight wt·) and where
each sample is set to θ̄t· instead of being drawn from N

(
θ̄t·, hMId

)
. This algorithm

is one of our experimental baselines.
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4.9 empirical study

In the following sections, we demonstrate empirically that our method allows for
quicker, MCMC-based estimation of a posterior distribution, and that our consistent-
estimator-based procedures yield asymptotically exact results. We show our method
on a few Bayesian models using both synthetic and real data. In each experiment,
we compare the following strategies for parallel, communication-free sampling:4

• Single chain full-data posterior samples (regularChain)—Typical, single-chain
MCMC for sampling from the full-data posterior.

• Parametric subposterior density product estimate (parametric)—For M sets
of subposterior samples, the combination yielding samples from the paramet-
ric density product estimate.

• Nonparametric subposterior density product estimate (nonparametric)—For
M sets of subposterior samples, the combination yielding samples from the
nonparametric density product estimate.

• Semiparametric subposterior density product estimate (semiparametric)—
For M sets of subposterior samples, the combination yielding samples from
the semiparametric density product estimate.

• Subposterior sample average (subpostAvg)—For M sets of subposterior sam-
ples, the average of M samples consisting of one sample taken from each sub-
posterior.

• Subposterior sample pooling (subpostPool)—For M sets of subposterior sam-
ples, the union of all sets of samples.

• Duplicate chains full-data posterior sample pooling (duplicateChainsPool)—
For M sets of samples from the full-data posterior, the union of all sets of
samples.

To assess the performance of our sampling and combination strategies, we ran
a single chain of MCMC on the full data for 500,000 iterations, removed the first
half as burn-in, and considered the remaining samples the “groundtruth” samples
for the true posterior density. We then needed a general method to compare the
distance between two densities given samples from each, which holds for general
densities (including multimodal densities, where it is ineffective to compare mo-
ments such as the mean and variance5). Following work in density-based regression

4 We did not directly compare with the algorithms that require synchronization since the setup of these
experiments can be rather different. We plan to explore these comparisons in future work.

5 In these cases, dissimilar densities might have similar low-order moments. See Section 4.9.2 for an
example.
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Figure 14: Bayesian logistic regression posterior ovals. We show the posterior 90% prob-
ability mass ovals for the first 2-dimensional marginal of the posterior, the M
subposteriors, the subposterior density product (via the parametric procedure),
and the subposterior average (via the subpostAvg procedure). We show M=10

subsets (left) and M=20 subsets (right). The subposterior density product gen-
erates samples that are consistent with the true posterior, while the subpostAvg

produces biased results, which grow in error as M increases.

[150], we use an estimate of the L2 distance, d2(p, p̂), between the groundtruth pos-
terior density p and a proposed posterior density p̂, where d2(p, p̂) = ‖p− p̂‖2 =(∫

(p(θ) − p̂(θ))2dθ
)1/2.

In the following experiments involving timing, to compute the posterior L2 error
at each time point, we collected all samples generated before a given number of
seconds, and added the time taken to transfer the samples and combine them using
one of the proposed methods. In all experiments and methods, we followed a fixed
rule of removing the first 16 samples for burn-in (which, in the case of combination
procedures, was applied to each set of subposterior samples before the combination
was performed).

Experiments were conducted with a standard cluster system. We obtained sub-
posterior samples by submitting batch jobs to each worker since these jobs are all
independent. We then saved the results to the disk of each worker and transferred
them to the same machine which performed the final combination.

4.9.1 Generalized Linear Models

Generalized linear models are widely used for many regression and classification
problems. Here we conduct experiments, using logistic regression as a test case,
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on both synthetic and real data to demonstrate the speed of our parallel MCMC
algorithm compared with typical MCMC strategies.
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Figure 15: Posterior L2 error vs time for logistic regression. Left: the three combi-
nation strategies proposed in this chapter (parametric, nonparametric, and
semiparametric) reduce the posterior error much more quickly than a sin-
gle full-data Markov chain; the subpostAvg and subpostPool procedures yield
biased results. Right: we compare with multiple full-data Markov chains
(duplicateChainsPool); our method yields faster convergence to the posterior
even though only a fraction of the data is being used by each chain.

4.9.1.1 Synthetic data

Our synthetic dataset contains 50,000 observations in 50 dimensions. To generate the
data, we drew each element of the model parameter β and data matrix X from a stan-
dard normal distribution, and then drew each outcome as yi ∼ Bernoulli(logit−1(Xiβ))
(where Xi denotes the ith row of X)6. We use Stan, an automated Hamiltonian Monte
Carlo (HMC) software package,7 to perform sampling for both the true posterior (for
groundtruth and comparison methods) and for the subposteriors on each machine.
One advantage of Stan is that it is implemented with C++ and uses the No-U-Turn
sampler for HMC, which does not require any user-provided parameters [87].

In Figure 14, we illustrate results for logistic regression, showing the subposterior
densities, the subposterior density product, the subposterior sample average, and
the true posterior density, for the number of subsets M set to 10 (left) and 20 (right).
Samples generated by our approach (where we draw samples from the subposte-
rior density product via the parametric procedure) overlap with the true posterior

6 Note that we did not explicitly include the intercept term in our logistic regression model.
7 http://mc-stan.org
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much better than those generated via the subpostAvg (subposterior sample average)
procedure— averaging of samples appears to create systematic biases. Futher, the
error in averaging appears to increase as M grows. In Figure 15 (left) we show the
posterior error vs time. A regular full-data chain takes much longer to converge
to low error compared with our combination methods, and simple averaging and
pooling of subposterior samples gives biased solutions.

We next compare our combination methods with multiple independent “dupli-
cate” chains each run on the full dataset. Even though our methods only require
a fraction of the data storage on each machine, we are still able to achieve a sig-
nificant speed-up over the full-data chains. This is primarily because the duplicate
chains cannot parallelize burn-in (i.e. each chain must still take some n steps before
generating reasonable samples, and the time taken to reach these n steps does not
decrease as more machines are added). However, in our method, each subposterior
sampler can take each step more quickly, effectively allowing us to decrease the time
needed for burn-in as we increase M. We show this empirically in Figure 15 (right),
where we plot the posterior error vs time, and compare with full duplicate chains as
M is increased.

Using a Matlab implementation of our combination algorithms, all (batch) combi-
nation procedures take under twenty seconds to complete on a 2.5GHz Intel Core i5
with 16GB memory.
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Figure 16: Left: Bayesian logistic regression classification accuracy vs time for the task of
predicting forest cover type. Right: Posterior error vs dimension on synthetic
data at 1000 seconds, normalized so that regularChain error is fixed at 1.
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4.9.1.2 Real-world data

Here, we use the covtype (predicting forest cover types)8 dataset, containing 581,012

observations in 54 dimensions. A single chain of HMC running on this entire dataset
takes an average of 15.76 minutes per sample; hence, it is infeasible to generate
groundtruth samples for this dataset. Instead we show classification accuracy vs
time. For a given set of samples, we perform classification using a sample estimate
of the posterior predictive distribution for a new label y with associated datapoint
x, i.e.

P(y|x,yN, xN) =
∫
P(y|x,β,yN, xN)P(β|xN,yN)

≈ 1

S

S∑
s=1

P(y|x,βs)

where xN and yN denote theN observations, and P(y|x,βs) = Bernoulli(logit−1(x>βs)).
Figure 16 (left) shows the results for this task, where we use M=50 splits. The par-
allel methods achieve a higher accuracy much faster than the single-chain MCMC
algorithm.

4.9.1.3 Scalability with dimension

We investigate how the errors of our methods scale with dimensionality, to compare
the different estimators implicit in the combination procedures. In Figure 16 (right)
we show the relative posterior error (taken at 1000 seconds) vs dimension, for the
synthetic data withM=10 splits. The errors at each dimension are normalized so that
the regularChain error is equal to 1. Here, the parametric (asymptotically biased)
procedure scales best with dimension, and the semiparametric (asymptotically ex-
act) procedure is a close second. These results also demonstrate that, although the
nonparametric method can be viewed as implicitly sampling from a nonparametric
density estimate (which is usually restricted to low-dimensional densities), the per-
formance of our method does not suffer greatly when we perform parallel MCMC
on posterior distributions in much higher-dimensional spaces.

4.9.2 Gaussian Mixture Models

In this experiment, we aim to show correct posterior sampling in cases where the
full-data posterior, as well as the subposteriors, are multimodal. We will see that
the combination procedures that are asymptotically biased suffer greatly in these
scenarios. To demonstrate this, we perform sampling in a Gaussian mixture model.
We generate 50,000 samples from a ten component mixture of 2-d Gaussians. The
resulting posterior is multimodal; this can be seen by the fact that the component la-
bels can be arbitrarily permuted and achieve the same posterior value. For example,

8 http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets
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Figure 17: Gaussian mixture model posterior samples. We show 100,000 samples from a
single 2-d marginal (corresponding to the posterior over a single mean parame-
ter) of the full-data posterior (top left), all subposteriors (top middle—each one
is given a unique color), the subposterior average via the subpostAvg procedure
(top right), and the subposterior density product via the nonparametric proce-
dure (bottom left), semiparametric procedure (bottom middle), and parametric

procedure (bottom right).

we find after sampling that the posterior distribution over each component mean
has ten modes. To sample from this multimodal posterior, we used the Metropolis-
Hastings algorithm, where the component labels were permuted before each step
(note that this permutation results in a move between two points in the posterior
distribution with equal probability).

In Figure 17 we show results for M=10 splits, showing samples from the true
posterior, overlaid samples from all five subposteriors, results from averaging the
subposterior samples, and the results after applying our three subposterior combina-
tion procedures. This figure shows the 2-d marginal of the posterior corresponding
to the posterior over a single mean component. The subpostAvg and parametric

procedures both give biased results, and cannot capture the multimodality of the
posterior. We show the posterior error vs time in Figure 18 (left), and see that our
asymptotically exact methods yield quick convergence to low posterior error.
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Figure 18: Left: Gaussian mixture model posterior error vs time results. Right: Poisson-
gamma hierarchical model posterior error vs time results.

4.9.3 Hierarchical Models

We show results on a hierarchical Poisson-gamma model of the following form

a ∼ Exponential(λ)

b ∼ Gamma(α,β)

qi ∼ Gamma(a,b) for i = 1, . . . ,N

xi ∼ Poisson(qiti) for i = 1, . . . ,N

for N=50,000 observations. We draw {xi}
N
i=1 from the above generative process (after

fixing values for a, b, λ, and {ti}
N
i=1), and useM=10 splits. We again perform MCMC

using the Stan software package.
In Figure 18 (right) we show the posterior error vs time, and see that our combina-

tion methods complete burn-in and converge to a low posterior error very quickly
relative to the subpostAvg and subpostPool procedures and full-data chains.

4.10 future work on embarrassingly parallel inference

4.10.1 The Unknown M Case

Embarrassingly parallel inference methods do not, in general, infer a correct pos-
terior on each machine (given the subset of data on each machine); they instead
compute a quantity, the subposterior, that depends on the total number of machines
M. Further, the full collection ofMmachines must be combined, while any arbitrary
subset of machines typically cannot be combined to construct any meaningful result.
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More concretely, in the future, we would like to mitigate the following issues of
embarrassingly parallel inference:

1. We must specify M in advance of parallel inference.

2. We cannot include additional groups of data after inference using other data
is underway (or complete) without starting over.

3. In some cases, using an M that is too large (i.e. splitting the data too finely)
can cause difficulties for inference algorithms in practice, as the prior becomes
“too underweighted”.

4. We do not begin with a meaningful uncertainty estimate for the subset of data
on a given machine, which might be of independent interest.

5. We cannot combine an arbitrary subset of inference results, and must combine
exactly all M inference results.

6. There are few guarantees about the existence or uniqueness of underweighted
prior distributions and their resulting subposterior distributions.

The main issue behind the above issues lies in the fact that each subposterior is
defined with respect to M. Namely, we write the subposterior as

pm(θ) ∝ p(θ)
1
Mp(xnm |θ).

Running inference algorithms during the parallel MCMC or VI step therefore re-
quires M to be specified in advance. Ideally, we would instead perform parallel
inference on, and then run combination procedures using, the actual posterior given
a subset of data (without the underweighted prior), i.e.

p(θ|xnm) ∝ p(θ)p(xnm |θ).

In the future, we aim to develop methods that carry out the following two things:
(1) every local machine performs a meaningful local inference, which gives the cor-
rect posterior given the local set of data. (2) any subset of the machines can combine
to yield a correct combined posterior given the pooled subset of data. We discuss
methods that make progress toward this goal in Chapter 7.

4.11 discussion

In this chapter, we present an embarrassingly parallel MCMC algorithm and provide
theoretical guarantees about the samples it yields. Experimental results demonstrate
our method’s potential to speed up burn-in and perform faster asymptotically cor-
rect sampling. Further, it can be used in settings where data are partitioned onto
multiple machines that have little intercommunication—this is ideal for use in a
MapReduce setting. Currently, our algorithm works primarily when the posterior
samples are real, unconstrained values and we plan to extend our algorithm to more
general settings in future work.





5
L O W- C O M M U N I C AT I O N D I S T R I B U T E D VA R I AT I O N A L
I N F E R E N C E

5.1 chapter summary

In this chapter, we develop parallel variational inference (VI) procedures for use in
data-distributed settings, where each machine only has access to a subset of data and
runs VI independently, with limited communication to other machines. However,
in many cases it is not possible to directly extend this procedure to VI methods
without requiring certain restrictive exponential family conditions on the form of
the model. Furthermore, most existing (nonparallel) VI methods are restricted to
use on conditionally conjugate models, which limits their applicability. To combat
these issues, we propose two methods. The first makes use of the recently proposed
nonparametric VI to facilitate an embarrassingly parallel VI procedure that can be
applied to a wider scope of models, including to nonconjugate models. For the
second procedure, we describe how similar parallelization methods can be applied
to black box variational inference, which uses sampling to perform gradient updates.
We derive our low-communication VI algorithms, analyze our methods theoretically,
and demonstrate our methods empirically on a few nonconjugate models.

5.2 introduction

Many large, modern datasets are collected and stored in a distributed fashion by
multiple sensors or data-collecting agents. Examples of this include medical data
recorded in hospitals throughout a country, weather data gathered by a collection
of sensors, web data scraped by a network of machines, and cell phone data col-
lected on users’ phones. Inference algorithms that can operate in these distributed
settings—by processing subsets of data separately and in parallel—are particularly
advantageous. This is because they mitigate the need for transfering data to a cen-
tral location for analysis, reduce both the memory usage and computation time of
inference [115, 142], allow for continuous data collection from independently operat-
ing agents [35], and allow for sensitive data to be processed independently in secure
locations (which can yield privacy guarantees [149]).

Variational inference (VI) methods are general procedures for approximate infer-
ence in Bayesian models, and they have been applied successfully in a wide variety
of domains [16, 95]. This chapter is concerned with developing better VI methods
for use in distributed settings. One major issue with most existing parallel meth-
ods is that they often require synchronization between machines at regular intervals

69
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[132, 207, 210]. Communication between machines due to this synchronization can
greatly reduce the efficiency of these procedures, as each machine must wait for in-
formation from other machines before proceeding with computation. Furthermore,
communication requirements may increase the difficulty of system implementation
and maintenance [115], and necessitate the transfer of (potentially sensitive) data
between machines [200].

We aim to develop a new “embarrassingly parallel” algorithm for VI in data-
distributed settings, which is a type of parallel algorithm where there is no regular
communication between machines. Given a dataset partitioned over a collection of
machines, embarrassingly parallel VI methods carry out the following two steps:

1. Perform variational inference on the subset of data on each machine in parallel
(independently, without communication between machines).

2. Combine the results from all machines to yield a variational inference result
for the full-data posterior distribution.

These two steps are only performed once, and there is only communication between
machines at one point in the second step, when collecting results from each of the
local instances of VI.

Recently, progress has been made toward this goal for mean field variational in-
ference methods limited to models with certain exponential family restrictions on
the likelihood and prior distribution [33, 35]. These methods use a decomposition
of the posterior that takes advantage of closedness properties of exponential family
densities under products and quotients. However, these modeling assumptions are
fairly restrictive, and this decomposition cannot be applied to many popular models
(including logistic regression, correlated topic models, and nonlinear matrix factor-
ization models). Additionally, this approximation family is typically inadequate to
capture multimodal densities [69].

A separate line of work has aimed to develop “nonconjugate” variational inference
methods for models without tractable exponential family conditional distributions
[69, 192]. Similar to these methods, we would like a general inference algorithm
that can be applied to a wide class of Bayesian models, yet operates in this em-
barrassingly parallel setting. However, the variational families employed by these
nonconjugate methods are not in a form that allows us to apply the above-mentioned
decomposition strategy for parallelization.

Recent papers in the Markov chain Monte Carlo (MCMC) literature have intro-
duced an alternative decomposition of the posterior for parallel inference [142, 164,
193], which involves the product of so called subposterior densities (i.e. posterior
densities given a subset of data with an underweighted prior). We apply this new
decomposition to a nonconjugate variational inference method called nonparametric
variational inference (NVI) [69] to perform low-communication, parallel inference in
a general class of models. In particular, we only require weak differentiability con-
ditions on the joint log probability.
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The main contribution of our method is that it provides a way to perform em-
barrassingly parallel inference in data distributed settings for a more-general class
of Bayesian models without requiring conditional conjugacy or exponential family
assumptions on the model likelihood or prior. In the following sections, we derive
the posterior decomposition used by our method, show how we can combine local
nonparametric variational approximations to form a variational approximation to
the full-data posterior density, and analyze the computational complexity of our al-
gorithms. Finally, we demonstrate our method empirically on a few nonconjugate
Bayesian models.

5.3 preliminaries

We describe existing work on embarrassingly parallel VI with exponential family
restrictions, existing work on embarrassingly parallel MCMC, and the difficulties
with extending these methods to variational inference in more general, nonconjugate
models.

Suppose we have a large set of N i.i.d. data points, xN = {x1, . . . , xN}, a likelihood
for these data parameterized by θ ∈ Rd, written p(xN|θ), and a prior density for θ,
written p(θ). We can write the posterior density given all N data points (which we
will also refer to as the “full-data” posterior) as

p(θ|xN) ∝ p(θ)p(xN|θ) = p(θ)
N∏
i=1

p(xi|θ). (38)

Now suppose the data xN is partitioned into M subsets {xn1 , . . . , xnM} of sizes
n1, . . . ,nM, and distributed over M machines. Recent works in embarrassingly par-
allel VI [33, 35] have proposed the following solution for inference in this setting.
First, in an embarrassingly parallel fashion, compute

q∗1, . . . ,q∗M = arg min
q1,...,qM

M∑
m=1

KL [qm(θ)||p(θ|xnm)] (39)

where p(θ|xnm) is the posterior given a subset of data xnm . Second, form the full-
data posterior variational approximation with

q∗(θ) ∝

(
M∏
m=1

q∗m(θ)

)
/p(θ)M−1. (40)

The justification for this solution is that the full-data posterior can be decomposed as
p(θ|xN) ∝

(∏M
m=1 p(θ|x

nm)
)
/p(θ)M−1, and further, it can be shown that the above

objective retains an important property of the classic (nonparallel) KL objective: if
the objective is zero then the full-data approximation q∗(θ) is equal to the full-data
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posterior p(θ|xN). I.e., if
∑M
m=1KL[qm(θ)||p(θ|xnm)] = 0 =⇒ KL[q∗(θ)||p(θ|xN)] =

0 =⇒ q∗(θ) = p(θ|xN).
However, this solution has a few major restrictions on the form of the variational

approximation and model. Namely, to form q∗, these methods must tractably com-
pute the product of the M variational approximations divided by the prior density
(equation (40)). These methods do this by limiting their scope to conditionally conju-
gate exponential family models, and then using mean field variational methods that
restrict the variational approximation to the same exponential family as the prior.

To attempt to extend the scope of models to which embarrassingly parallel VI
methods can be applied, we turn to a separate line of work on embarrassingly
parallel MCMC methods [142, 164, 193]), which use an alternative decomposition
of the posterior distribution. Let the mth subposterior density, pm(θ), be defined
as the posterior given the mth data subset with an underweighted prior, written
pm(θ) = p(θ)

1
Mp(xnm |θ). This is defined such that the product of the M subposte-

rior densities is proportional to the full-data posterior, i.e.

p1 · · ·pM(θ) ∝ p(θ)
M∏
m=1

p(xnm |θ) ∝ p(θ|xN). (41)

In these methods, a subposterior density estimate p̂m(θ) is learned on each machine
(via sampling), and the product of these estimates

∏M
m=1 p̂m(θ) yields an approxi-

mation of the full-data posterior density.
However, we cannot directly apply this new decomposition to typical mean field

variational inference approximations (as is done in embarrassingly parallel VI) for
the following two reasons:

1. The underweighted prior p(θ)
1
M in the subposterior density may lose conju-

gacy necessary for the requisite exponential-family-conditionals. Hence, it may
not be easy to directly apply these VI methods to approximate the subposte-
rior.

2. Even if we are able to learn a variational approximation for each subposte-
rior, the product of subposterior variational approximations may not have a
tractable form that we can analytically compute.

Therefore, to use this alternative decomposition to apply VI to a broader scope of
models, we need a family of variational approximations that can be run on general
subposterior densities (including those of nonconjugate models) while maintaining
a tractable density product that can be analytically computed.

5.4 embarrassingly parallel variational inference in noncon-
jugate models

Embarrassingly parallel variational inference (EPVI) in nonconjugate models is a par-
allel approximate Bayesian inference method for continuous posterior distributions.
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It is generally applicable, requiring only that the first two derivatives of the log-
joint probability density are computable. For a dataset partitioned over M machines,
VI is run in parallel on each machine to approximate the M subposterior densi-
ties; afterwards, the local subposterior approximations are combined by computing
their product, which approximates the full-data posterior density. Each machine
performs variational inference without sharing information, in an embarrassingly
parallel manner. We summarize this procedure in Algorithm 6.

Algorithmus 6 : Embarrassingly Parallel Variational Inference in Nonconju-
gate Models from Neiswanger et al. [143]
Input : Partitioned dataset {xn1 , . . . , xnM}.
Output : Variational approximation q∗(θ) for the full-data posterior density

p(θ|xN).
1 for m = 1, . . . ,M do in parallel
2 Learn a variational approximation q∗m(θ) for the mth subposterior pm(θ),

given data xnm .

3 Compute product
∏M
m=1 q

∗
m(θ) of subposterior approximations to yield the

full-data variational approximation q∗(θ).

We illustrate our EPVI procedure for a Bayesian logistic regression model on a toy
dataset in Figure 19.
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Figure 19: Illustration of our embarrassingly parallel VI method, shown for a Bayesian lo-
gistic regression model on a toy dataset. In (a) we show the first two dimensions
of the full-data posterior density. In (b) we show the first two dimensions of each
of the M = 6 subposterior variational approximations after running VI on each
subset of data independently. In (c) we show the first two dimensions of the
combined product density (formed using the six subposterior variational approx-
imations), which recovers the posterior shown in (a).

5.4.1 EPVI with Nonparametric Variational Inference

In a recently proposed method known as nonparametric variational inference (NVI)
[69], a posterior approximation is selected from a variational family of densities of
the form q(θ) = 1

K

∑K
k=1Nd(θ|µk,σ2kId). Some advantages of this method are that

it can capture multimodal posterior distributions, can be applied to many noncon-
jugate models (in fact, the only requirement is that the first two derivatives of the
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log joint probability are computable), and has an efficient algorithm to optimize the
variational objective. In our case, NVI allows us to perform variational inference
on subposterior densities without worrying if they retain the conjugacy necessary
to easily apply typical mean-field approximations, and also allows us to develop a
method to combine the subposterior variational approximations (i.e. allows us to
derive an analytic form for the product of these approximations) to produce a full-
data posterior variational approximation. After running this procedure on a subset
of data xnm on a machine m, we can write the inferred variational approximation
for the subposterior distribution as

q∗m(θ) =
1

K

K∑
k=1

Nd(θ|µ
(m)
k ,σ2

(m)

k Id). (42)

Due to this choice of q∗m, we have an analytic form for the product of these den-
sities,

∏M
m=1 q

∗
m(θ), which gives us a variational approximation for the subposte-

rior density product (and hence for the full-data posterior). In particular, the prod-
uct of these M mixture-of-Gaussians variational densities gives a (non-uniformly
weighted) mixture-of-Gaussians density with KM components. We can write this
product mixture as

q∗(θ) ∝
M∏
m=1

q∗m(θ) =
1

KM

M∏
m=1

K∑
km=1

Nd

(
θ|µ

(m)
km

,σ2
(m)

km
Id

)

=

K∑
k1=1

· · ·
K∑

kM=1

wk·Nd(θ|µk·,σ2k·Id) (43)

where we use k· = (k1, . . . ,kM) to denote the vector of M subposterior-component-
indices (one from each subposterior variational approximation mixture) associated
with a given component in this product mixture, and where

σ2k· =

(
M∑
m=1

(
σ2

(m)

km

)−1)−1

(44)

µk· = σ
2
k·Id

(
M∑
m=1

((
σ2

(m)

km

)−1
Id

)
µ
(m)
km

)
(45)

wk· =

∏M
m=1Nd

(
µ
(m)
km

|µk·,σ2
(m)

km
Id

)
Nd
(
µk·|µk·,σ2k·

) (46)

5.4.2 Computing the Variational Density Product Mixture

After learning the optimal local parameters {µ
(m)
km

,σ2
(m)

km
}Kkm=1 for each of the m ∈

{1, . . . ,M} subposteriors, we wish to form a variational approximation to the full-
data posterior density by taking the product of theMmixtures. However, computing
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the parameters and weights for all KM components in the product mixture becomes
infeasible as M grows.

We typically perform Bayesian inference in order to compute expectations with
respect to, and explore, the posterior distribution. In practice, one common way to
achieve this is to sample from the posterior, and then compute a sample expectation;
this is done in both MCMC methods and in VI methods (in the latter case, to com-
pute expectations with respect to a variational approximation after VI has finished
runnning [27, 69, 153]). Hence, instead of computing the product mixture (and af-
terwards, sampling from it to compute expectations), our solution is to bypass this
step and directly generate samples from the product mixture. We give a procedure
that allows us to compute expectations with respect to the variational approxima-
tion in this common sampling manner without requiring us to actually compute the
variational approximation.

We give our method for sampling from the full-data variational approximation in
Algorithm 7, and then prove that this yields correct samples. The intuitive idea be-
hind our algorithm is the following. To sample from a mixture, one can first sample
a component index (proportional to the component weights) and then sample from
the chosen mixture component. We therefore need a way to sample product mix-
ture components (proportional to their weights) without first computing all of the
KM component weights. Our solution is to form a Markov chain over the product
mixture component indices, and prove that its stationary distribution is a categorical
distribution with probability mass values proportional to the product mixture com-
ponent weights. Hence, at each step in this Markov chain, we can produce a sample
from the full variational approximation while only needing to compute a single new
product mixture component.

Note that in Algorithm 7, at each step in the Markov chain, we perform two sim-
ple steps to sample the next product mixture component: we select a subposterior
uniformly at random (line 3), and then re-draw one of its K components uniformly at
random (line 5); this specifies a new product mixture component. We then compute
the ratio of the weight of this new product mixture component with the previous
component’s weight (line 7) and accept or reject this proposal (line 8). We then
compute the parameters of the sampled component (lines 10-11).

Correctness of Algorithm 7. We prove that Algorithm 7 defines a Markov chain
whose stationary distribution is the distribution over the KM components in the
product mixture density.

Theorem 5.4.1. The procedure given by Algorithm 7 defines a Markov chain whose station-
ary distribution is the categorical distribution (over KM categories) with category-probability
parameter equal to the vector of product mixture component weights.

Proof. Note that each of the KM product mixture components is associated with
an M-dimensional vector k· = (k1, . . . ,kM) ∈ {1, . . . ,K}M (where km denotes the
index of the mth subposterior’s component that contributed a factor to this prod-
uct mixture component). Hence, instead of sampling an index from a categorical



76 low-communication distributed variational inference

Algorithmus 7 : Markov chain for sampling variational density product mix-
ture components from Neiswanger et al. [143]
Input : Number of samples R, number of burn-in steps b, learned

subposterior variational approximations {q∗1(θ), . . . ,q
∗
M(θ)}.

Output : Parameters {µr,σ2r }Rr=1 for the R sampled product mixture
components.

1 Draw k· = (k1, . . . ,kM)
iid
∼ Unif({1, . . . ,K}); /* Initialize Markov chain */

2 for s = 1, . . . ,b+ R do
3 Draw m ∼ Unif({1, . . . ,M})

4 Set c· = (c1, . . . , cM)← k·
5 Draw cm ∼ Unif({1, . . . ,K})
6 Draw u ∼ Unif([0, 1]);
7 if u < wc·/wk· then
8 Set k· ← c·
9 if s > b then

10 Set µs−b ← µk·; /* Compute mean of sampled mixture component */

11 Set σ2s−b ← σ2k·; /* Compute var of sampled mixture component */

distribution, we can equivalently view our task as sampling an M-dimensional vec-
tor from a joint distribution over the space {1, . . . ,K}M, where each element in this
space has a probability mass proportional to its associated product mixture compo-
nent weight. We can therefore perform Gibbs sampling over this space, where we
sample from the conditional distribution over a subposterior component index km
given all other component indices. To compute and then sample from this condi-
tional distribution, we could iterate over the K possible values of km (and compute
the component weight of each); however, this could potentially be expensive for
large K. Instead, we sample one of the K values for km uniformly at random (line 5),
and our algorithm becomes a Metropolis-within-Gibbs algorithm [73] where we’ve
used an independent Metropolis proposal [12, 74] (which we achieve by accepting
or rejecting, in lines 6-8, the independent Metropolis proposal made in line 5). Note
that the dimension m along which we take a Gibbs sampling step is chosen in line
3. Since this Metropolis-within-Gibbs algorithm has been shown to have the correct
stationary distribution [73], our proof is complete.

We describe the complexity of Algorithm 7 in Section 5.4.3. In Section 5.7, we
verify that this algorithm achieves the same results as taking expectations after com-
puting the mixture product exactly, while drastically speeding-up performance.

sequential subposterior subset products . In some cases, it may be sim-
pler to sample from the product mixture in a sequential fashion by sampling from
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the product of only a few subposteriors multiple times: we first sample R compo-
nents from the product of groups of M̃ < M approximations, and then repeat this
process on the resulting (uniform) mixtures formed by the sampled components.
This continues until samples from only one mixture remain. For example, one could
begin by sampling components from the product of all M2 pairs (leaving one sub-
posterior approximation alone if M is odd), thereby forming M

2 uniformly weighted
mixtures comprised of the sampled components. This process is then repeated—
forming pairs and sampling from the pair product mixture—until there are only
samples from one product mixture remaining (which are approximate samples from
the full-data posterior). This method is potentially advantageous because each in-
termediate round of product mixture sampling could be done in parallel. However,
more samples are potentially required from each intermediate round to generate
valid samples from the full variational approximation at the final product. We com-
pare the effectiveness of this method in Section 5.7.

5.4.3 Method Complexity

Consider a dataset with N observations, partitioned over M machines. Assume we
have approximated each subposterior using NVI with K components, where each
component is defined by a d-dimensional parameter. Computing all components
of the product mixture exactly requires O(dMKM) operations. Computing R sam-
ples from the product mixture approximation via Algorithm 7 requires O(dRM)

operations (assuming a constant number b of burn-in steps). Computing sequential
subposterior subset product samples with R samples at each intermediate product
requires O(dRM2) operations overall, but this could be reduced to O(dR logM) op-
erations on a single machine if each of the O(logM) rounds of sampling are done in
parallel.

Each machine learns and then communicates the optimal variational parameters,
which consist of K mean parameter vectors (each in d dimensions), K variance pa-
rameter scalars, and K weight parameter scalars. In total, MK(d + 2) scalars are
communicated throughout the entire procedure.

5.5 low communication distributed black box vi

Recent methods, known as black box VI methods, aim to allow for VI optimization
updates that require minimal analytic derivations, with the goal of providing more
automated methods of inference with less work for practitioners. In these black
box VI methods, optimization is performed via stochastic gradient descent, where
stochastic gradients are computed via Monte Carlo estimates of expectations in the
evidence lower bound, using samples drawn from the variational approximation.

We hope to combine our embarrassingly parallel inference methods with black
box VI. Recall that methods from embarrassingly parallel inference allow us to draw
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samples from the density proportional to the product of subposteriors; this is the
combination procedure. We aim to use black box VI together with embarrassingly
parallel inference in two ways. First, we can use black box VI to perform varia-
tional inference on each subposterior (in the exact same setup as our embarrassingly
parallel variational inference procedure). Second, we can incorporate the combina-
tion sampling procedure into a black box VI method, which takes the subposterior
variational approximations and uses the combination procedure to perform further
stochastic gradient updates, in order to refine the combined posterior approximation
and return a more accurate variational approximation to the full posterior.

5.5.1 Background and Motivation

Black box variational inference (BBVI) is a popular inference method used in proba-
bilistic programming frameworks, since it allows for efficient approximate Bayesian
inference with minimal human derivations. We consider the setting where we want
to perform inference given a large dataset distributed over multiple machines, in a
communication-efficient manner. We provide BBVI methods for this setting, which
require very low communication between machines. We first give an embarrassingly
parallel BBVI algorithm that yields an approximate solution, and then show how we
can perform a post-inference procedure to refine this solution. We also release a
probabilistic programming implementation.

There are many cases where a large group of computers are used to collect, store,
or process data in a distributed setting. Some examples include weather data gath-
ered by a collection of sensors, web data scraped by a network of computers, and
medical data recorded in hospitals throughout a country (which may be private and
cannot be moved or pooled).

The goal of this work is to develop automatic Bayesian inference techniques—
specifically, methods for black box variational inference—for use in probabilistic pro-
gramming frameworks, which are effective in this multi-machine/data-distributed
setting, with minimal communication needed between machines.

5.5.2 Preliminaries

Consider data {xi}
N
i=1, where xi ∈ Rp; a model for the data with probability density

function (PDF) p(xN|θ) =
∏N
i=1 p(xi|θ), parameterized by θ ∈ Rd; and a prior dis-

tribution over θ, with PDF p(θ). The model and prior define a joint density, written
p(θ, xN) = p(θ)p(xN|θ). In Bayesian inference, we are interested in the posterior dis-
tribution, a conditional of p(θ, xN), with PDF p(θ|xN) = p(θ)p(xN|θ)/

∫
p(θ)p(xN|θ)dθ.

black box variational inference . In many cases it is not possible to com-
pute p(θ|xN) exactly, and one must resort to approximate inference methods. Varia-
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tional inference (VI) is a popular method for computing an approximation to p(θ|xN),
where one chooses a family of densities {q(θ; λ) : λ ∈ L}, and then computes

λ∗ = arg min
λ∈L

KL
[
q(θ; λ)||p(θ|xN)

]
, (47)

where KL denotes the Kullback-Leibler divergence [44]. Afterwards, the variational
approximation q(θ; λ∗) is used as a surrogate for the posterior PDF. To compute λ∗,
most VI methods maximize an objective called the evidence lower bound (ELBO),
defined as

ELBO(λ) = Eq(θ;λ)
[
logp(θ, xN) − logq(θ; λ)

]
. (48)

Black box variational inference (BBVI) aims to run VI in an automatic manner with
few model-specific derivations. In BBVI, the ELBO is typically optimized with
stochastic gradient descent (SGD), where a Monte Carlo step, which draws samples
from the variational approximation, is used to compute stochastic gradients.

data-distributed setting . Suppose that xN is partitioned over M machines,
i.e. xN = {xn1 , . . . , xnM}, where xnm contains nm data points. Similar to previous
work in data-distributed inference [142, 146, 194], we will make use of the subpos-
terior, which is a posterior given only a subset of the data, with an underweighted
prior. We define the mth subposterior density to be

pm(θ|xnm) ∝ p(θ)
1
Mp(xnm |θ). (49)

Note that the product of the M subposterior densities is proportional to the full
posterior density, i.e.

∏M
m=1 pm(θ|xnm) ∝ p(θ|xN). We similarly define the mth local

joint density as pm(θ, xnm) ∝ p(θ)
1
Mp(xnm |θ). Strategies for parallel inference in

prior work [142, 146, 194] have involved sampling from the subposterior density on
each machine, and then using these sets of samples as inputs to a “combination”
algorithm that generates samples from the subposterior product.

5.5.3 Method Overview

We first present a solution, which is embarrassingly parallel—i.e. each machine can
run BBVI independently on a subset of data and afterwards do a single round of
communication to yield a solution for the full data. However, we describe how this
strategy only approximately solves the VI objective, and derive an algorithm that
fixes this issue and optimizes the exact objective.

an approximate embarrassingly parallel solution. Consider the fol-
lowing procedure:
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1. On each machine m, in parallel and without communication, use BBVI to com-
pute

λ∗m = arg max
λm

ELBOm(λm)

= arg max
λm

Eq(θ;λm)

[
log

pm(θ, xnm)
q(θ; λm)

]
, (50)

where ELBOm(λm) denotes the ELBO on the mth machine with the mth sub-
set of data. This gives a variational approximation to each subposterior, i.e.
q(θ; λ∗m) ≈ pm(θ|xnm).

2. Draw L samples from each of the variational approximations, i.e.

{θm` }L`=1 ∼ q(θ; λ∗m), for m = 1, . . . ,M. (51)

This can be done via the same sampling process used in BBVI (step 1).

3. Use combination methods from embarrassingly parallel MCMC to draw S sam-
ples from the product of the M variational approximations, i.e.

{θ∗s}
S
s=1 = Combine

(
{θ1` }

L
`=1, . . . , {θM` }L`=1

)
∼ q̃(θ; λ∗1:M) ∝

M∏
m=1

qm(θ; λ∗m) ≈ p(θ|xN). (52)

issues with the above method. In practice, the above procedure yields sam-
ples that appear to approximate the full data posterior p(θ|xN). However, it is un-
clear if the above method is minimizing the KL divergence beween some variational
family and the full data posterior (i.e. performs valid VI) and if it will always work.
To remedy this, we present a post-inference method, which is run after the above
is complete, that improves the inference result and minimizes a correct quantity—
the KL divergence between an explicitly defined variational family of densities and
p(θ|xN). We first define the variational family and then describe the post-inference
method.

definition : density-product variational family . Let Q = {q(θ; λ) : λ ∈ L} be
an arbitrary parametric family of densities with parameter λ ∈ L. Let ΠQ be a family
of densities with parameter tuple Λ = (λ1, . . . , λM) ∈ LM = L× . . .×L, consisting
of normalized products of M densities from Q, i.e.

ΠQ =
{
q (θ;Λ) ∝

M∏
m=1

qm(θ; λm) : qm(θ; λm) ∈ Qm = 1 . . . ,M
}

. (53)

We call ΠQ a density product family (DPF) on Q. Note that in some cases (e.g. for expo-
nential families) Q is closed under products, and therefore q (θ;Λ) ∈ ΠQ =⇒ q (θ;Λ)
∈ Q. For a given q(θ;Λ), let Z(Λ) denote its normalizing constant, i.e. q (θ;Λ) =
1

Z(Λ)

∏M
m=1 qm(θ; λm).
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optimizing the elbo for the dpf . The goal of VI with a DPF is to find
parameters Λ∗ = (λ∗1, . . . , λ∗M) that minimize the KL divergence between q (θ;Λ)
and p(θ|xN), which is typically done by maximizing the ELBO objective. We can
write this objective for the variational DPF as

Λ∗ = (λ∗1, . . . , λ∗M) = arg max
Λ∈LM

ELBO (Λ) (54)

= arg max
Λ∈LM

M∑
m=1

Eq(θ;Λ)

[
log

pm (θ, xnm)
qm (θ; λm)

]
+ logZ(Λ).

We have derived black box methods for computing the gradient of (54), where we
denote the jth component of this gradient as ∇ΛELBO(Λ)j.

post-inference method for valid vi solution. We can then perform the
following steps, after the initial round of embarrassingly parallel BBVI, to improve
the solution and ensure that we are minimizing the exact KL objective.

1. On each machine j, in parallel and without communication between machines,
use BBVI to compute:

λ∗j = arg max
λj

ELBO(Λ)j. (55)

where we perform optimization using black-box gradients ∇ΛELBO(Λ)j.

2. Communicate updated {λ∗j }
M
j=1 to all machines.

3. Repeat until convergence.

Afterwards, we can apply steps 2 and 3 from the embarrassingly parallel procedure
given initially to generate samples from the final variational approximation. We find
that only a small number of communication rounds are needed for the algorithm to
converge on a final result.

5.6 method scope

The algorithms described in this chapter hold for posteriors distributions with twice-
differentiable densities in finite-dimensional real spaces. This method may be ap-
plied to nonconjugate Bayesian models, and models with multimodal posteriors,
with little further restriction on the form of the model and prior distribution.

However, there are certain model types for which our method is not appropriate.
These include discrete models, continuous posterior distributions over the simplex,
and infinite dimensional models. Furthermore, our method may not be well suited
to posteriors with high correlations or different scales between dimensions, and
multimodal models suffering from label switching.
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5.7 empirical study

We demonstrate empirically the ability of our method to significantly speed up VI
on nonconjugate models in a distributed setting, while maintaining an accurate pos-
terior approximation. In particular, our experiments aim to show that:

1. We can perform inference in a fraction of the time of nonparallel VI methods
as we increase M.

2. We can achieve similar performance as nonparallel VI methods as we increase
M.

3. Expectations computed via our product mixture sampling method (Algorithm 7)
achieve similar performance as those computed via exact computation of the
product mixture.

To demonstrate these, we conduct experimental comparisons with the following
strategies:

• Full-data nonparametric variational inference (NVI)—A (nonparallel) varia-
tional inference method designed for use in nonconjugate models, which we
run on the full dataset. This method takes as a parameter the number of mix-
ture components K.

• Subposterior inference on data subsets (Subposteriors)—The subposterior
variational approximations, run on subsets of data. This method takes as a
parameter the number of mixture components K, and each run returns M of
these approximations.

• Embarrassingly parallel variational inference (exact product) (EPVI_exact)—
The method introduced in this chapter, which combines the M subposteriors
by computing all components of the product mixture density.

• Embarrassingly parallel variational inference (mixture product sampling)
(EPVI_sample)—The method introduced in this chapter (Algorithm 7), which
samples from the product of the M subposterior approximations.

• Embarrassingly parallel variational inference (sequential subset products)
(EPVI_subset)—The method introduced in this chapter, which samples from
products of pairs of subposteriors sequentially.

We do not aim to compare the benefits of VI in general in this work, and there-
fore exclude comparisons against alternative approximate inference methods such
as MCMC, expectation propagation, or other deterministic dynamics inference al-
gorithms (such as herding or Bayesian quadrature). To assess the performance of
our method, we compute the log-likelihood of held-out test data given our inferred
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variational approximation (which we can compute in a consistent manner for many
types of models).

Experiments were conducted with a standard cluster system. We obtained sub-
posterior variational approximations by submitting batch jobs to each worker, since
these jobs are all independent. We then saved the results to the disk of each worker
and transfered them to the same machine, which performed the product mixture
sampling algorithms. In each of the following experiments involving timing, we
first ran the variational inference optimization procedures until convergence (to pro-
vide a time for the Subposteriors and NVI strategies). Afterwards, we added the
(maximum) time required for learning the subposterior approximations, the time
needed to transfer the learned parameters to a master machine, and the time re-
quired to run the product mixture sampling algorithms (to provide a time for the
EPVI methods).
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Figure 20: Diagram of the data partitioning scheme for the hierarchical logistic regression
model.
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Figure 21: Diagram of the data partitioning scheme for the topographic latent source analy-
sis model.

5.7.1 Bayesian Generalized Linear Models

Generalized linear models are widely used for a variety of regression and classifi-
cation problems. We use a hierarchical Bayesian logistic regression model as a test
case in the following experiments. This model places a Gaussian prior on a set of
coefficients w ∈ RV and draws class labels y ∈ RN, conditioned on the product
of an observation matrix X ∈ RN×V and the coefficients, passed through a logistic
transform; further, Gamma priors are placed on the variance parameter for each co-
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efficient. Notably, this model lacks conditional conjugacy. We write the generative
model as

1. Draw global hyperparameter α ∼ Gamma (a,b)
2. For v = 1, . . . ,V , draw coefficient
wv ∼ N

(
0,α−1

)
3. For n = 1, . . . ,N, draw observation
yn ∼ Bernoulli

(
logit−1

(
−w>xn

))
where xn denotes the nth row of X. We partition the data by splitting X and y into M
disjoint subsets each of size N

M , and inferring a variational approximation on each
subset. This is illustrated in Figure 20.

Data. We demonstrate our methods on the SUSY particles dataset1, in which the
task is to classify whether or not a given signal (measured by particle detectors in an
accelerator) will produce a supersymmetric particle. This dataset has N = 5, 000, 000
observations, of which we hold out 10% for evaluating the test log-likelihood.
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Figure 22: Experimental results for hierarchical Bayesian logistic regression under varying
numbers of (a) data-splits M and (b) NVI mixture components K. In (c) we show
that the EPVI_sample method maintains a consistent classification accuracy over a
wide range of M.
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Figure 23: Comparison of the two product mixture sampling methods with the exact prod-
uct mixture computation under (a)-(b) varying M and (c)-(d) varying K.

Performance under varying M. We vary the number of data-splits M from 2 to
20, and record the held-out negative log-likelihood and time taken to converge for
each method. For the Subposteriors result, we report the maximum time taken to
converge and the average negative log-likelihood (over the set of M subposteriors).

1 https://archive.ics.uci.edu/ml/datasets/SUSY
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We also record the time taken to converge and the negative log-likelihood for the NVI

(M = 1) standard VI result. The number of mixture components for the NVI part
of all methods is fixed at K = 4. We plot these results in Figure 22(a), and see that
EPVI_sample reduces the time to convergence by over an order of magnitude while
maintaining nearly the same test negative log-likelihood as NVI. In Figure 22(c) we
show that performance of the EPVI_sample method does not suffer as we increase
the number of machines over a greater range, from M = 10 to M = 200. In this table,
to give a more interpretable view of performance, we show classification accuracy
(on the held out data) for each M. We see that classification accuracy stays nearly
constant at approximately 0.7865 as we increase M throughout this range.

Performance under varying K. Next, we vary the number of NVI mixture compo-
nents K from 2 to 8, and record the held-out negative log-likelihood and time taken
to converge for each method. For parallel methods, we fix M = 10. We plot these re-
sults in Figure 22(b), and see that for all values of K, EPVI_sample decreases the time
to convergence by nearly tenfold, while maintaining virtually identical test negative
log-likelihood values.

Product mixture sampling methods. We also conduct experiments to judge the
quality of our two product mixture sampling procedures. We aim to show that our
methods yield similar test log-likelihoods as computing expectations via the exact
product mixture while greatly decreasing the computation time. We demonstrate
this empirically over a range ofM and K values. Note that, since we need to compare
with the exact product, we restrict this range to values in which we can compute all
of the (exponentially-many) product mixture components. For both sampling meth-
ods, we fix R = 500. Note that we perform the O(log(M)) rounds of EPVI_subset
sequentially on the machine on which all samples are collected (not in parallel). We
plot our results in Figure 23, and see that our sampling methods yield very similar
held-out negative log-likelihoods as the exact product over all M (Figure 23(a)) and
K (Figure 23(c)) values. We also see that for roughly M > 6 (Figure 23(b)) and K > 4
(Figure 23(d)), the time needed to compute the exact product increases substantially.
Additionally, EPVI_sample appears to fare slightly better than EPVI_subset in terms
of both the test log-likelihood and computation time.
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Figure 24: Experimental results for the nonlinear matrix factorization (topographical latent
source analysis) model under varying numbers of (a) data-splits M, (b) mixture
components K, and (c) latent sources L.
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5.7.2 Nonlinear Matrix Factorization

We next apply our algorithm to a nonlinear matrix factorization model known as
topographic latent source analysis (TLSA) [69]. This model can be viewed as rep-
resenting an observed matrix as a covariate-dependent superposition of L latent
sources. In particular, an observed matrix U ∈ RN×V is assumed to be drawn con-
ditioned on an observed matrix of covariates X ∈ RN×C, an inferred weight matrix
W ∈ RC×L, and a basis matrix G ∈ RL×V constructed by evaluating a parameter-
ized spatial basis function with parameters {r̄l, λl}, written glv = exp{λ−1l ‖rl − r̄l‖2}.
Similar to the previous model, this model lacks conditional conjugacy. We can write
the full generative process as

1. For latent source l = 1, . . . ,L,
a) Draw hyperparameter λl ∼ Exponential(ρ)
b) For d = 1, . . . ,M, draw r̄ld ∼ Beta(1, 1)
c) For c = 1, . . . ,C, draw wcl ∼ N(0,σ2w)

2. For n = 1, . . . ,N,
a) For v = 1, . . . ,V , draw observation
unv ∼ N

(∑C
c=1 xnc

∑L
l=1wclglv, τ−1

)
We partition the data by splitting observed matrices U and X into M disjoint subsets
each of size N

M , and inferring a variational approximation on each subset. This is
illustrated in Figure 21.

Data. In the following experiments, we generateN = 1, 000 observations in V = 50

dimensions by choosing hyperparameters {τ = 1, σ2w = 5, ρ = 1}, and drawing from
the above generative process. We hold out 10% of the data for evaluating the test
log-likelihood.

Performance under varying M, K, and L. Similar to the previous model, we first
conduct experiments showing held-out negative log-likelihood versus time under
varying values for the number of data-splits M and NVI mixture components K.
These results are shown in Figure 24(a)-(b). We see that EPVI_sample reduces the
time to convergence (particularly as the number of subposteriors M increases) while
maintaining a similar test negative log-likelihood as NVI. We also evaluate the perfor-
mance of our method under different numbers of latent sources L. We vary L from
2 to 8, and record the held-out negative log-likelihood and time taken to converge,
and again see positive results (Figure 24(c)).

5.8 conclusion

In this chapter, we developed an embarrassingly parallel VI algorithm for Bayesian
inference in a distributed setting, that does not require models with conditional con-
jugacy and exponential family assumptions. Unlike existing methods, our strategy
uses a decomposition of the full-data posterior involving a product of subposte-
rior densities, which was recently developed in the parallel MCMC literature. We
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have shown promising empirical results on nonconjugate models, which illustrate
the ability of our method to perform VI in a distributed setting, and provide large
speed-ups, while maintaining an accurate posterior approximation.





6
E M B A R R A S S I N G LY PA R A L L E L I N F E R E N C E I N
D E P E N D E N T M O D E L S A N D Q U A S I - E R G O D I C S E T T I N G S

6.1 chapter summary

A number of recent works have proposed “embarrassingly parallel” Markov chain
Monte Carlo (MCMC) methods that share the following procedure: data is parti-
tioned among a set of machines, MCMC is run to completion on each machine in
parallel without communication, and then the resulting samples are combined to
construct samples from the full-data posterior distribution. While some of these
methods come with asymptotic guarantees about the correctness of samples, in cer-
tain models they can all run into the practical issue of quasi-ergodicity, i.e. when
the parallel chains become stuck in disparate posterior modes and the sample com-
bination procedures fail. In this chapter, we aim to extend these methods for use
in quasi-ergodic settings by initially introducing a small amount of communication
between machines, which is annealed to zero at a certain rate, so that the algorithm
becomes embarrassingly parallel. Theoretically, we prove that our method gener-
ates asymptotically correct samples. Empirically, we demonstrate that our method
effectively mitigates the quasi-ergodicity issue on several popular Bayesian models
including mixture models, latent Dirichlet allocation, and probabilistic matrix factor-
ization, in which current embarrassingly parallel MCMC methods fail to generate
useful samples. We also show results on a large spatiotemporal data analysis task
concerning urban transportation, using a novel model for collections of intracity car
trips.

6.2 introduction

The nonparametric density estimation method studied in [142] retains a key guaran-
tee of classical MCMC: it generates asymptotically exact samples from the posterior
distribution. However, even with this theoretical guarantee, the applicability of this
method (as well as the others) is greatly limited due to the issue of quasi-ergodicity,
or poor mixing, in many popular Bayesian models that have highly multimodal pos-
terior distributions. Quasi-ergodicity refers to the problem where an MCMC chain
enters a mode, and remains in this mode for the finite duration that sampling is
performed, without exploring the full posterior space [65, 130]. For example, such
behavior can be seen for MCMC in mixture models, topic models, matrix factor-
ization models, neural networks, and other large Bayesian networks and Markov
random fields. Often, samples drawn from around a single mode of the posterior

89
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are still useful in practice, and hence quasi-ergodicity does not pose a major prob-
lem to classical (single chain) MCMC methods. However, it can be a major issue for
embarrassingly parallel MCMC strategies, as separate chains may become stuck in
different posterior modes, causing the accuracy of the final combined samples to be
greatly diminished.

In this chapter, we aim to develop a class of embarrassingly parallel MCMC meth-
ods that exhibit good performance in these quasi-ergodic settings while retaining
their asymptotic guarantees. We accomplish this by adding an initial phase to the
parallel sampling procedure where we introduce a small amount of communication
between machines to steer each of the parallel chains to a similar region of the poste-
rior space before beginning fully embarrassingly parallel MCMC. While the chains
initially undergo periodic synchronization, this is annealed until the procedure tran-
sitions into embarrassingly parallel MCMC.

We first define a general framework for embarrassingly parallel MCMC in quasi-
ergodic settings in which one specifies a synchronization function, and we prove
that if this function satisfies certain criteria and is applied at a certain decreasing fre-
quency, we generate asymptotically correct samples. We then specify a few example
synchronization procedures well-suited to different MCMC algorithms.

Unlike embarrassingly parallel MCMC methods that run separate, independent
Markov chains on each machine, some existing MCMC parallelization methods
aim to parallelize the computation for a single Markov chain [84, 94, 147], which
we call single-chain parallel MCMC. Single-chain parallel MCMC does not suffer
from quasi-ergodicity, at the expense of frequent synchronization. Our method can
be viewed as a middle ground between these two extremes. In our procedure, data
is partitioned over machines, computation involving only the subset of data is per-
formed on each machine, and machines are synchronized according to the annealing
schedule. We show that special cases of our methods can be framed as versions of
single-chain parallel MCMC where communication is annealed to zero; this provides
speedups as well as theoretical guarantees about the correctness of the samples, two
major benefits over existing single-chain parallel MCMC methods.

our contribution In this chapter we develop techniques that extend the scope
of embarrassingly parallel MCMC to many popular Bayesian models in which quasi-
ergodicity occurs. We begin by introducing a general framework that allows us to
derive multiple new parallel MCMC algorithms. We then prove that our algorithms
inherit the same theoretical guarantees as existing embarrassingly parallel methods
(in terms of asymptotically correct samples), under certain conditions, which we
quantify. Empirically, we demonstrate the effectiveness of our methods on a few
models in which current embarrassingly parallel MCMC methods fail in practice,
including mixtures of Gaussians with large numbers of components, latent Dirichlet
allocation, and Bayesian probabilistic matrix factorization.



6.3 embarrassingly parallel mcmc in quasi-ergodic settings 91

6.3 embarrassingly parallel mcmc in quasi-ergodic settings

The embarrassingly parallel MCMC algorithm described above performs well when
the posterior distribution is likely to be unimodal. However, when the posterior is
multimodal, the separate, independent Markov chains can become stuck in different
local modes, making it difficult for the final combination stage to work well. The
key issue is that the embarrassingly parallel MCMC algorithm does not allow any
communication during the MCMC run, making it impossible to steer each of the
parallel chains to a similar region of the posterior space. Our general idea is to add
a small amount of communication at the beginning of the run and later transit to
embarrassingly parallel MCMC through a well-designed communication annealing
procedure.

In the following subsections we first provide a general framework for embarrass-
ingly parallel MCMC in quasi-ergodic settings through the use of a Synch() function,
which dictates how parallel chains are synchronized, and a SynchSched() function,
which dictates the schedule under which the chains are synchronized. We then give
criteria for these functions under which we attain an embarrassingly parallel proce-
dure that yields asymptotically exact samples (proven in Section 6.4). Finally, we
specify a few cases of Synch() functions on common models and make connections
with single-chain parallel MCMC methods.

6.3.1 General Framework

There are four main components in the framework: a Synch() function, which syn-
chronizes the Markov chains, a SynchSched() function, which dictates the frequency
of the synchronization, an MCMC() function, which samples the next step in a Markov
chain for a subposterior density, and a Combine() function, which applies one of the
existing sample combination procedures (listed in the introduction) to the sets of
generated subposterior samples. We denote by Synchmi () the synchronization func-
tion applied to the mth Markov chain (i.e. the Markov chain on the mth machine) at
the ith synchronization instance. We give the framework for embarrassingly parallel
MCMC in quasi-ergodic settings in Algorithm 8.

6.3.2 Criteria for Synch() and SynchSched() Functions

Here we give criteria for the Synch() and SynchSched() functions to allow for a pro-
cedure that becomes embarrassingly parallel and yields asymptotically exact sam-
ples. First, the synchronization function must have a decreasing influence on each
parallel chain, i.e. we must ensure that

lim
i→∞ Synchmi (θ1:M) = θm. (56)
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Algorithmus 8 : Framework for Quasi-Ergodic Embarrassingly Parallel
MCMC from Neiswanger et al. [137]
Input : A partition of data {xn1 , . . . , xnM}, Synch() function, SynchSched()

function, MCMC() update function, Combine() function, and number of
total samples T .

Output : T samples, θ1:T , from the full-data posterior.
1 i← 1; /* Initialize counter for synchronization loop */

2 t← 1; /* Initialize counter for combined sample index */

3 for m = 1, . . . ,M, initialize θ0m; /* Initialize Markov chains */

4 while t < T do
5 for m = 1, . . . ,M do in parallel
6 for j = 1, . . . , SynchSched(i) do
7 θtm ← MCMC(θt−1m ); /* Take MCMC step for subposterior */

8 t← t+ 1 ;

9 for m = 1, . . . ,M, θtm ← Synchmi (θt1:M); /* Synchronize Markov chains

*/

10 i← i+ 1;

11 θ1:T ← Combine(θ1:T1 , . . . , θ1:TM ); /* Combine subposterior samples */

In most cases described below, we introduce a parameter γi, a function of the syn-
chronization index i, which dictates the influence of the Synch() function: when
γi = 1, all chains are synchronized to the same point, and when γi = 0, each chain
is left unaffected. By picking an appropriate sequence of γi terms we can ensure that
that our Synch() functions satisfy the above criteria. For example, we can set γi = 1

ik

for some k > 1 or γi = max{0, 1− ci} for some c ∈ [0, 1]. We prove guarantees about
the samples produced under this criteria in Section 6.4. By fixing γi = 0 throughout
the entire run, we are left with existing embarrassingly parallel MCMC procedures.

Second, in order to ensure that our procedure becomes embarrassingly parallel,
we must anneal the frequency of synchronization. We let SynchSched(i) give the
number of MCMC steps in between the (i− 1)th and ith synchronization. Hence,
we require that

lim
i→∞ SynchSched(i) =∞. (57)

For example, we could use the schedule SynchSched(i) = cik for some c,k > 1, or
keep the schedule at a constant value c > 1 until a condition is met (such when the
synchronization influence parameter γi goes below a certain thereshold), and then
set SynchSched(i) =∞.
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6.3.3 Synchronization Functions

We describe a few examples of Synch() functions, give examples to illustrate their
use in practice, and show how certain choices of these functions can be used to
generalize existing single-chain parallel MCMC methods.

6.3.3.1 Synchronization to a Posterior Sample Estimate

During embarrassingly parallel MCMC, each parallel chain samples from a subposte-
rior density pm(θ). Here, we synchronize all chains to an estimated sample from the
full-data posterior density p(θ|xN) ∝ p1 · · ·pM(θ). In existing embarrassingly par-
allel MCMC strategies, a subposterior sample combination procedure is performed
after MCMC is complete, to construct samples from the full-data posterior; here it is
performed once to generate a single sample at each synchronization instance.

We denote by θ̂p1···pM a draw from an estimate of the product of subposterior
densities, i.e.

θ̂p1···pM ∼ ̂p1 · · ·pM(θ) ≈ p(θ|xN). (58)

In order to make the Synch() function satisfy the criteria described above, we in-
troduce the γi parameter to ensure that the Synch() function has a decreasing effect
on the current state of the Markov chain. Hence, to synchronize to an estimated
posterior sample, we can write the Synch() function as

Synchmi (θ1:M) = γiθ̂p1···pM + (1− γi)θm. (59)

example : a posterior sample estimate via sample averages . Scott et
al. [164] provide a combination procedure to construct approximate samples from
the full-data posterior distribution, which involves taking the arithmetic mean of
subposterior samples. This procedure yields samples from an, in general, biased
estimate of the density product function, though it can be carried out with very little
computational cost. We can write the synchronization function as

Synchmi (θ1:M) =
γi
M

M∑
m=1

θm + (1− γi)θm (60)

where the γi parameter dictates a weighted average between the estimated posterior
sample and the current state of the mth Markov chain θm. Note that this function
reduces to an arithmetic mean of subposterior samples when γi = 1 and equals the
unaffected Markov chain state θm when γi = 0.

A more complex subposterior combination procedure involving sample averages
is given by [142], which is proven to yield samples from an unbiased estimate of
the subposterior density product. The Sync() function for this procedure can be
similarly formulated by substituting this estimate for θ̂p1···pM into Equation 59.
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6.3.3.2 Synchronization with Single-Chain Parallel MCMC

There exist single-chain parallel methods where data is partitioned over machines,
and computation involving only the subset of data is performed on each machine.
During sampling, the machines are synchronized at regular intervals [84, 94, 147].
However, many of these methods do not have theoretical guarantees regarding the
correctness of the samples [94].

Using our framework, we can derive versions of these parallel single-chain MCMC
methods, where we anneal communication (both the influence and frequency of the
Synch() function) so that they transition to multiple-chain embarrassingly parallel
MCMC methods. By doing this, we can both reduce the amount of communication
required by these procedures (eventually making them communication-free), and
ensure that they achieve theoretically correct sampling.

In many single-chain parallel MCMC procedures, each machine governs a subset
of the model parameters and then overwrites this subset on the other machines
during synchronization [84, 94, 147]. Some of these methods [94, 147], when used
for Gibbs sampling, only perform the Gibbs updates on a given machine for the
subset of parameters that the machine governs, while leaving the others fixed; these
fixed parameters are only refreshed at each synchronization point.

Suppose we partition the model parameters θ ∈ Rd into M disjoint subsets
{B1, . . . ,BM}, i.e. θ = (θB1 , . . . , θBM). We assume the mth machine governs the
mth parameter block, and overwrites the values for this block on all other machines
during synchronization. The synchronization step for single-chain parallel MCMC
methods can therefore be written

Synchmi (θ1:M) = (θ1,B1 , θ2,B2 , . . . , θM,BM) (61)

where θm,Bm denotes the mth parameter block on the mth machine.
To adhere to the above criteria, and convert this into a form that transitions into

an embarrassingly parallel algorithm, we rewrite the above update with the γi in-
fluence parameter. Instead of fully overwriting each parameter block, we now take
a weighted average between the values to be overwritten and the current Markov
chain states. We can then write the synchronization function as

Synchmi (θ1:M) = (γiθ1,B1 + (1− γi)θm,B1 , . . . ,

γiθM,BM + (1− γi)θm,BM) (62)

example : collapsed gibbs sampling on topic models In collapsed Gibbs
sampling for latent Dirichlet allocation (LDA) [78], the goal is to infer a posterior dis-
tribution over topic assignment variables za,b for a set of documents a = 1, . . . ,A
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and words in each document b = 1, . . . ,Ba. Gibbs sampling proceeds by iterating
through each variable za,b, and sampling from the conditional distribution

p(za,b|z−(a,b),y,α,β) ∝

(c
−(a,b)
za,b,a,1:J +αza,b) · (c

−(a,b)
za,b,1:A,ya,b

+βya,b)

c
−(a,b)
za,b,1:A,1:J +

∑J
j=1 βj

where z−(a,b) denotes all other assignment variables, y denotes all words in all

documents, c−(a,b)
k,a,j is a counter that denotes the number of times word j is assigned

to topic k in document a excluding the assignment za,b, we’ve assumed a vocabulary
of J words, and we’ve pre-specified hyperparameter vectors α and β.

Suppose we partition the documents over M machines. For a given machine
m, we use d(m) to denote the subset of documents on this machine and d(−m)

to denote all other documents. To apply the synchronization procedure described
above, we let each machine m govern the subset of assignment variables associated
with the documents in d(m), written zd(m) . At every synchronization, this machine
will overwrite the values of its variables zm

d(m) on all other machines, i.e.

Synchmi (z1:M) =
(
z1
d(1) , . . . , zMd(M)

)
(63)

We use the variation of this procedure mentioned above where, on a machine m, we
fix the values of the variables governed by other machines during sampling between
synchronization points. We can then derive an expression for the conditional distri-
bution used in Gibbs sampling for our method. At each synchronization, on a given
machine m, after updating the assignment variables from all other machines, we can
update the associated counter c−(a,b)

k,d(−m),j (where the set d(m) in the index denotes the
sum over all counters in that set). After incorporating the influence parameter γi, we
can write an updated Gibbs step for sampling from the conditional distribution as a
slightly modified version of the original Gibbs sampling distribution. The formula
for the updated Gibbs step can be written as

p(za,b|z−(a,b),y,α,β) ∝ A
∗ ·B∗

C∗
(64)

where

A∗ = c
−(a,b)
za,b,a,1:J +αza,b

B∗ = c
−(a,b)
za,b,d(m),ya,b

+ γic
−(a,b)
za,b,d(−m),ya,b

+βya,b

C∗ = c
−(a,b)
za,b,d(m),1:J + γic

−(a,b)
za,b,d(−m),1:J +

J∑
j=1

βj
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6.3.4 Method Complexity

We characterize the complexity of MCMC techniques for sampling from the sub-
posterior density on each machine, the complexity of the annealed communication
procedures (described in Section 6.3.3) for synchronizing the chains, and the com-
munication complexity (in terms of the total amount of information communicated).

Consider a dataset with N observations, and assume we have partitioned the data
onto M machines, each holding N

M observations. Running MCMC on each machine
requiresO

(
N
M

)
operations per iteration, as opposed toO(N) operations per iteration

for typical MCMC methods applied to the full dataset.
For the synchronization procedures, assume we are sampling from posterior den-

sities over d parameters. Synchronization to a posterior sample estimate via sample
averaging (Section 6.3.3.1) requires O(dM) operations for each application of the
Synch() function. Similary, synchronization with single-chain parallel MCMC (Sec-
tion 6.3.3.2) requires O(dM) operations for each aplication of the Synch() function.

Communication in our procedures occurs when each machine sends information
during each application of the Synch() function. In both of the above-mentioned
methods of synchronization (to a posterior sample estimate and with single-chain
parallel MCMC), each machine must communicate a single parameter sample. There-
fore, in both cases, dM scalars are communicated at each application of the Synch()

function.

6.4 theoretical guarantees

We now prove that, when the Synch() function adheres to the criteria given in Sec-
tion 6.3.2, our proposed algorithm retains guarantees about the correctness of sam-
ples given by existing embarrassingly parallel procedures. In particular, we show
that the Markov chain on each machine has the same stationary distribution as that
in current embarrassingly parallel methods as t → ∞. Hence, when Combine()

procedures are applied to samples from each chain, we have the same asymptotic
guarantees as current methods. In the following, we use δ to denote the total varia-
tion distance, defined as δ(P,Q) = supA⊂S ‖P(A) −Q(A)‖ for distributions P and Q
on a state space S. In the following, we sometimes write this distance equivalently
as δ(p(θ),q(θ)), where p and q are, respectively, the PDFs of P and Q.

Theorem 6.4.1. On a given machine m, let M1(θ|θ
′) denote the transition kernel for an

MCMC procedure generating samples from subposterior pm(θ), where θ, θ ′ ∈ S. LetMt
2(θ|θ

′)

denote the same transition kernel, at iteration t, when the Synch() function is applied peri-
odically as in Algorithm 8. If the criteria in Equation 56 is satisfied, then for each θ ′ ∈ S,

lim
t→∞ δ(M1(·|θ ′) −Mt

2(·|θ ′)) = 0. (65)
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Proof. Let the ith synchronization instance on a given machine m be written θ ∼

Synchim(θ|θ1:M). We write ti to denote the iteration that this synchronization takes
place.

For all θ ′ ∈ S, we can write the transition kernel pdf as

Mt
2(θ|θ

′) =

Synchim(θ|θ1:M) if t = ti

M1(θ|θ
′) otherwise

For the given synchronization procedures described in Sec. 6.3.3, which use the
formulation in terms of influence parameter γi, we can write θis as being drawn from
a mixture of M1 and some secondary distibution Sim, i.e. θis ∼ Synchim(θ|θ1:M) =

(1− γi)M1(θ|θ
′) + γiS

i
m(θ|θ1:M), where again we assume that Synchim(θ|θ1:M) de-

notes the ith synchronization instance on a given machine m, and where the param-
eter γi → 0 as t→∞. We can therefore write the above transition kernel as

Mt
2(θ|θ

′) =

(1− γi)M1(θ|θ
′) + γiS

i
m(θ|θ1:M) if t = ti

M1(θ|θ
′) otherwise

This implies that limt→∞Mt
2(·|θ ′) = M1(·|θ ′), i.e. that Mt

2(·|θ ′) converges in
distribution to M1(·|θ ′). We can then apply Scheffe’s theorem [162], which directly
gives that limt→∞ δ(M1(·|θ ′) −Mt

2(·|θ ′)) = 0.
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Figure 25: Empirical results for Gaussian mixture models. (a) Performance of our method
versus comparison methods. (b) Performance for different numbers of machines
M = 1, 2, 4, 8. (c) The average communication rate for each method.

Theorem 6.4.2. Let M1(θ|θ
′) be the transition kernel for a Markov chain with stationary

distribution π(θ) and letMt
2(θ|θ

′) be the transition kernel for a Markov chain parameterized
by t such that for each θ ′ ∈ S, limt→∞ δ(M1(θ|θ

′) −Mt
2(θ|θ

′)) = 0. Then,

lim
t→∞ δ

(∫
θ ′∈S

π(θ ′)Mt
2(θ|θ

′) − π(θ)

)
= 0 (66)

i.e. in the limit, a stationary distribution exists for M2 and is equal to π(θ).
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Proof. We are given that, for each θ ′ ∈ S, limt→∞ δ(M1(θ|θ
′) −Mt

2(θ|θ
′)) = 0 ⇐⇒

∀θ ′ ∈ S,∀ε > 0,∃t ′ s.t. ∀t > t ′, supΘ⊂S
∣∣∫
θ∈Θ

(
M1(θ|θ

′) −Mt
2(θ|θ

′)
)∣∣ < ε.

This implies that, ∀ε > 0, ∃t ′′ = t ′ s.t. ∀t > t ′′,

δ

(∫
θ ′∈S

π(θ ′)Mt
2(θ|θ

′) − π(θ)

)
= sup
Θ⊂S

∣∣∣∣∫
θ∈Θ

(
π(θ) −

∫
θ ′∈S

π(θ ′)Mt
2(θ|θ

′)

)∣∣∣∣
= sup
Θ⊂S

∣∣∣∣∫
θ∈Θ

(∫
θ ′∈S

π(θ ′)M1(θ|θ
′) −

∫
θ ′∈S

π(θ ′)Mt
2(θ|θ

′)

)∣∣∣∣
= sup
Θ⊂S

∣∣∣∣∫
θ∈Θ

∫
θ ′∈S

π(θ ′)
(
M1(θ|θ

′) −Mt
2(θ|θ

′)
)∣∣∣∣

= sup
Θ⊂S

∣∣∣∣∫
θ ′∈S

π(θ ′)

∫
θ∈Θ

(
M1(θ|θ

′) −Mt
2(θ|θ

′)
)∣∣∣∣

6 sup
Θ⊂S

∫
θ ′∈S

π(θ ′)

∣∣∣∣∫
θ∈Θ

(
M1(θ|θ

′) −Mt
2(θ|θ

′)
)∣∣∣∣

(via triangle inequality)

6
∫
θ ′∈S

π(θ ′) sup
Θ⊂S

∣∣∣∣∫
θ∈Θ

(
M1(θ|θ

′) −Mt
2(θ|θ

′)
)∣∣∣∣

(via Jensen’s inequality)

6
∫
θ∈S

π(θ)ε

(via given hypothesis)

= ε

∫
θ∈S

π(θ) = ε

Hence limt→∞ δ (∫θ ′∈S π(θ ′)Mt
2(θ|θ

′) − π(θ)
)
= 0.

6.5 scope of methods and related work

The methods described in this chapter can be directly used in conjunction with pre-
viously developed embarrassingly parallel MCMC procedures by performing syn-
chronization to a posterior sample estimate using the Combine() function of the
existing method (or by using another Synch() function that meets the given criteria).
Existing embarrassingly parallel MCMC procedures have been derived for posterior
distributions over real, finite dimensional parameters such as in Bayesian general-
ized linear models, nonparametric regression models, and hierarchical models [142,
164, 193, 206], as well as some infinite dimensional nonparametric Bayesian models,
such as Gaussian processes [128, 177], and our methods can also be applied in these
scenarios.

However, no existing embarrassingly parallel methods have yet been applied to
sampling in large graphical models where parallel chains may get stuck in disparate
modes, which is the main contribution of our methods. In [142], the authors propose
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a way to sample from all modes in small-component mixture models by permuting
cluster labels at each step in a Metropolis Hasting sampler in order for each cluster
component to explore all modes. This bypasses the problem of quasi-ergodicity, and
allows existing embarrassingly parallel methods to be applied here. However, the
number of modes arising due to permutations of cluster labels grows factorially with
the number of components, and so this strategy cannot scale to more than a mod-
est number of components; further, this method only works for equally weighted
mixtures.
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Figure 26: Empirical results for latent Dirichlet allocation. (a) Performance of our method
versus comparison methods. (b) Performance for different numbers of machines
M = 1, 2, 4, 8. (c) The average communication rate for each method.

6.6 empirical study

We evalute our method on three popular types of models in machine learning: fi-
nite mixture models, topic models, and probabilistic matrix factorization. For each
model, we compare fully embarrassingly parallel MCMC (no communication during
sampling), synchronous parallel single-chain MCMC (constant levels of communica-
tion during sampling), and our annealed communication methods (which go from
synchronous to embarrassingly parallel during sampling) under different Synch()

and SynchSched() functions. We also show results for a non-parallel single chain
of MCMC, and we show how our methods scale as the number of machines M in-
creases. Specifically, for each of the three models, we have the following comparison
methods:

• EmbOrig: Fully embarrassingly parallel MCMC, where we fix γi = 0 over all
iterations.

• Linear: At each synchronization, we decrease γi linearly, i.e. we let γi =

max{0, 1− ci}. We let c = 0.05, which becomes embarrassingly parallel after
the 20th synchronization.

• 1-By-N: At each synchronization, we decrease γi by 1
n , i.e. we let γi = 1−

(i− 1) 1n . After 20 iterations, we fix γi = 0 and begin embarrassingly parallel
MCMC.
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• 1-By-N2: At each synchronization, we decrease γi by 1
n2

, i.e. we let γi =

1 − (i − 1) 1
n2

. After 20 iterations, we fix γi = 0 and begin embarrassingly
parallel MCMC.

• DecSched: At each synchronization, we decrease γi linearly, i.e. we let γi =
max{0, 1− 0.05i}. We also decrease the frequency of communication until em-
barassingliy parallel MCMC begins, i.e. we set SynchSched(i) = SynchSched(1)+

(i− 1)20.
• Constant: We synchronize at regular intervals without decreasing the influ-

ence parameter, i.e. we fix γi = 1 over all iterations.
• SingleChain: Typical, single chain MCMC run on the full data, without any

parallelism.
For mixture models and probabilistic matrix factorization, we conducted experi-
ments using a standard cluster system. We obtained subposterior samples by sub-
mitting batch jobs to each worker since these jobs are all independent. We then
saved the results to the disk of each worker and transferred them to the same ma-
chine, which performed the final combination. In these experiments, to generate the
plots showing performance versus time, we collected all samples generated before
a given number of seconds, and added the time taken to transfer the samples and
perform the final combination step (note that our final combination procedure used
the nonparametric algorithm given in [142]). For latent Dirichlet allocation, we con-
ducted experiments on a multi-core machine with a shared memory architecture. In
these experiments, in the plots showing performance versus time, we plot absolute
wall-clock time.

gaussian mixture models (gmm). In a Bayesian Gaussian mixture model
(GMM), assume that we have a weighted average of K Gaussian densities, with
mean parameters µ1, . . . ,µK, which generate N observed variables x1, . . . , xN. Each
observed variable xi is paired with an associated assignment variable zi. Further,
assume that we have placed a uniform prior with a fixed range (a,b) on each of the
mean parameters, and a categorical prior with parameter π on each of the assign-
ment variables. We can write the generative process for this model as

1. Draw µk ∼ Uniform (a,b) for k = 1, . . . ,K.

2. For i = 1, . . . ,N:

a) Draw zi ∼ Cat (π)

b) Draw xi ∼ N
(
µzi ,σ

2
)

We generate a synthetic dataset for this model by drawing N = 1, 000, 000 obser-
vations from a K = 50 component univariate, uniformly weighted Gaussian mixture.
Each component mean was drawn from a Uniform(0, 10) distribution, and each com-
ponent variance was fixed at σ2 = 0.01.

For each of the above-described comparison methods, we used a Metropolis Hast-
ings sampler for our MCMC procedure. For the Synch() function, we synchronized
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to an estimated posterior sample via averaging, as described in Section 6.3.3. For
each of our methods, we fix SynchSched(1) = 500, and keep this constant until the
influence parameter γi = 0, at which point we set SyncSched(i) =∞ (except for the
DecSched method, which is described above). After completing MCMC with each
method, we inferred a mixture component assignment for each observation to get a
clustering result.

To evaluate the performance of our methods, we computed the F1 score between
the clusterings obtained by each algorithm and the ground truth clustering. Let
Pg denote the set of pairs of observations clustered together in the ground truth,
and let Pr denote the set of pairs of observations clustered together by a given
proceedure. The F1 score is then defined to be the harmonic mean between the
precision = |Pg ∩ Pr|/|Pr| and the recall = |Pg ∩ Pr|/|Pg|. This definition of F1 score
is invariant to permutations of the observations [200].

The results for this model are shown in Figure 25. Figure 25(a) shows the F1 score
versus time for each of our competing procedures, with the number of machines
fixed at M = 8. We see that fully embarrassingly parallel MCMC (EmbOrig) fails
to generate useful samples (and yields an F1 score that only decreases after initial-
ization), while the methods proposed in this chapter (and in particular the 1-By-N2

method) give the best performance. Figure 25(b) shows that our methods yield im-
proved performance as the number of machines is increased, for a fixed amount
of data (demonstrated in this plot with the Linear synchronization method). Fig-
ure 25(c) shows the average number of bits used in communication by each of the
methods at each point in time.

latent dirichlet allocation (lda). In latent Dirichlet allocation (LDA),
assume that we have K topic vectors, φ1, . . . ,φK (each a J-dimensional vector that
sums to 1, where we’ve assumed a vocabulary of J words), from which we generate
a set of documents indexed a = 1, . . . ,A and words in each document wb, b =

1, . . . ,Ba (using the notation from Section 6.3.3.2). Each document a is associated
with a topic allocation vector θa (a K-dimensional vector that sums to 1), and a topic
assignment variable zb for each word b = 1, . . . ,Ba in that document. We place a
multinomial prior on each topic vector, and a Dirichlet prior on each document’s
topic allocation vector. We can write the generative process for this model as

1. Draw φk ∼ Mult(β) for k = 1, . . . ,K

2. For a = 1, . . . ,A :

a) Draw θa ∼ Dir(α)

b) For b = 1, . . . ,Ba :

i. Draw zb ∼ Cat(θ)

ii. Draw wb ∼ Cat(φzb)
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Figure 27: Empirical results for Bayesian probabilistic matrix factorization. (a) Performance
of our method versus comparison methods. (b) Performance for different num-
bers of machines M = 1, 2, 4, 8. (c) The average communication rate for each
method.

We demonstrate our methods for LDA on the NIPS dataset1, which has approx-
imately 2, 000, 000 tokens (i.e. assignment variables zi, over all documents) and a
vocabulary of 12, 000 words. Here, we use collapsed Gibbs sampling for the MCMC

procedure, where we use the Synch() function given in the LDA example in Sec-
tion 6.3.3.2. For each of our methods, we fix SynchSched(1) = 100, and keep this
constant until the influence parameter γi = 0, upon which we set SyncSched(i) =∞
(except for the DecSched method, which is described above). For the Constant com-
parison method, this procedure is very similar to the approximate distributed LDA
(AD-LDA) algorithm given by [147]. We ran each of the comparison methods on
90% of the data and then computed the perplexity on the final held-out 10% of the
data, using the formula in [147].

The results for this model are shown in Figure 26(a)-(c). Notably, we see in Fig-
ure 26(a) that we can achieve a lower test perplexity when we reduce the commu-
nication of AD-LDA to achieve embarrassingly parallel sampling. We can therefore
generate more-accurate samples in less time (and require much less synchroniza-
tion). We also see improved performance as the number of cores is increased in
Figure 26(b).

bayesian probabilistic matrix factorization (bpmf). We next demon-
strate our methods for Bayesian probabilistic matrix factorization (BPMF) [160]. Sup-
pose we haveN users andMmovies, where Rij is the rating given by user i for movie
j. Let Ui and Vj, respectively, be user-specific and movie-specific latent feature vec-
tors. Further, suppose we have user hyperparameters ΘU = {µU,ΛU} (for the prior
on each Ui) and movie hyperparameters ΘV = {µV ,ΛV } (for the prior on each Vj),
each of which is also given a prior with parameters Θ0 = {µ0,β0,W0,ν0}. We can
write the full generative process as

1. Draw ΘU ∼ N(µU|µ0, (β0ΛU)
−1)W(ΛU|W0,ν0)

2. Draw ΘV ∼ N(µV |µ0, (β0ΛV)
−1)W(ΛV |W0,ν0)

1 https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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Figure 28: Graphical model for the hidden segments mixture model (HSMM) for taxi
records.

3. For i = 1, . . . ,N:

a) Draw Ui ∼ N(µU,Λ−1
U )

4. For j = 1, . . . ,M:

a) Draw Vj ∼ N(µV ,Λ−1
V )

5. For i = 1, . . . ,N and j = 1, . . . ,M:

a) Draw Rij ∼ N(U>i Vj,α
−1)

where W(W0,ν0) denotes a Wishart distribution with ν0 degrees of freedom and a
matrix scale parameter W0.

We apply our model to a subset of the Netflix dataset2, which contains 1, 000, 000
(user, movie, rating) triples. For the MCMC procedure, we applied a Gibbs sampler†,
and for the Synch() procedure, we synchronized to an estimated posterior sample
via averaging. To evaluate performance, we compute the root mean squared error
(RMSE), defined in [160], on a held-out test set of 10% of the data, for each of the
competing methods.

The results for this model are shown in Figure 27(a)-(c). We again see in Fig-
ure 27(a) that typical embarrassingly parallel MCMC (without any initial synchro-
nization) shows poor results (where the RMSE begins to increase significantly),
while the methods presented in this chapter are able to continually decrease the
RMSE as sampling continues.

6.7 analyzing new york city taxi records

Our final experiment involves a large-scale exploratory analysis of spatiotemporal
transportation-flow data, which allows users to flexibly analyze traffic patterns at
arbitrarily chosen portions of, for example, the day, week, and year. To achieve
this analysis, we design a graphical model for this data and use it in a large scale
distributed inference experiment.

2 http://www.cs.toronto.edu/ rsalakhu/BPMF.html
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Our data consisted of New York City taxi records from the year 2015
3. Each taxi

record consists of a time and location for both pickup (i.e. start of the trip) and
dropoff (i.e. end of the trip.). There are roughly 14 million taxi trips each month
and 170 million total trips in 2015. Taxi locations range over the five New York City
Boroughs, as well as some nearby locations in New Jersey (and, in rare cases, other
states).

In this experiment we aim to demonstate the ability of our method to allow for
flexible analysis of spatiotemporal data. In particular, we aim to show that our
embarrassingly parallel MCMC methods can allow for analysis of arbitrarily chosen
subsets of a large datset after inference has already been completed. As an example
use case, consider the taxi records datset. This is a time-varying dataset, and we
can use this temporal component to split up the data into groups. In this case, we
split our data into fine grained groups of taxi trips with pickup times occuring in
the same hour (for example, in the Month of February of 2015 alone, this yields
672 groups of data). We can then perform MCMC on each subset (i.e. each hour)
of data. In previous experiments, we have been interested in combining all locally
inferred models. Here, we are interested in taking any subset of models (i.e. any
arbitrary group of hours) and selectively combining those. By doing this, we can
yield an inference result on queries such as the flow of traffic during weekdays
versus weekends, or in morning rush hours versus evening rush hours; we can also
aim to analyze traffic patterns on days with certain, for example, weather events (i.e.
hours where it was sunny versus stormy) or in the presence of other covariates.

We next describe our model. Denote the ith taxi trip pickup location as xsi and
dropoff location as xei . In this model, we assume that pickup and dropoff locations
tend to cluster at common locations in the city; we will refer to these clusters as
“hubs” or “transportation hubs”. Our model includes an independent set of hubs
for both pickup locations and dropoff locations. Let zsi be an assignment variable
for pickup location xsi , which labels the identity of the associated pickup hub for
the ith record, and let zei be a similar assignment variable for dropoff xei . Further,
assume there are Ks pickup hubs (i.e. zsi ∈ {1, . . . ,Ks}) and Ke dropoff hubs (i.e.
zei ∈ {1, . . . ,Ke}). Additionally, let θsk denote the parameters of the emission distribu-
tion fs for the kth pickup hub (i.e. parameters of the distribution fs that generates
the xsi assigned to pickup hub k) and let θek denote the parameters of the emission
distribution fe for the kth dropoff hub (i.e. parameters of the distribution fe that
generates the xei associated with pickup hub k). Finally, assume there is an appro-
priately normalized transition matrix T that dictates the transition, or relationship,
between a taxi record’s pickup hub and its dropoff hub; more specifically, the entry
Tk1,k2 in this matrix will dictate the probability of transitioning to dropoff hub k2
from pickup hub k1.

3 http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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(a) (b)

Figure 29: One hour of (a) taxi pickup locations in blue, and (b) taxi dropoff locations in red.

The generative process of our model, which we call a hidden segments mixture
model (HSMM) for taxi records i = 1, . . . ,N, can be written as following:

θsk ∼ gs(αs), for k = {1, . . . ,K}

θek ∼ ge(αe), for k = {1, . . . ,K}

zsi ∼ Uniform ({1, . . . ,K})

zei ∼ Categorical(Tzsi ,:)

xsi ∼ fs

(
θszsi

)
xei ∼ fe

(
θszsi

)
where gs and ge are, respectively, prior distributions over pickup hub and dropoff
hub parameters (and are parameterized by αs and αe) and Tk,: denotes the kth row
of transition matrix T . In the following experiments, we will assume very simple
emission distributions for both taxi pickups and dropoffs: we choose fs and fe to be
Gaussian, and hub parameter priors gs and ge to be Normal-Wishart. Furthermore,
we fix K = 30 through all experiments; this value was chosen via visual inspection
of inference results on a subset of the data. A graphical depiction of this model is
drawn in Figure 28. When performing the combination procedure in this model,
we use the parametric combination strategy (Section 3.1), which yields better re-
sults given the highly multimodal posterior density landscape in this latent variable
model.

We plot one hour of this data in Figure 29. Plot (a) shows all pickup locations in
blue, and plot (b) shows all dropoff locations in red. There are slightly over 30,000

taxi records in this hour alone. On individual groups of data (i.e. over individual
hours), we perform inference in this model using Gibbs sampling. We run each
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 30: Combined inference results for the HSMM applied to one month of taxi data,
showing taxi traffic patterns at different times of the day and week. Each plot
shows the inferred pickup hubs (blue crosses), dropoff hubs (red circles), and
highest-weighted transitions between pickup and dropoff hubs (directed edges
denote the largest 40 elements of T , where a darker edge corresponds with a
stronger weight). See text for details on individual plots.

of these chains of MCMC for 50,000 steps, and then thin and randomly permute
the resulting samples. Our Gibbs sampling implementation takes on the order of
one hour to yield these samples. We also run our combination algorithm for 50,000

steps; in the following visualizations, we plot the parameters yielded by the final
step of this algorithm (we are therefore plotting an approximate point estimate, as it
is difficult to visualize a posterior distribution over the parameters of this model).

In this set of experiments, we combine selective subsets of the inferred local
(hourly) results to analyze taxi traffic flow; in particular, we determine pickup hubs,
dropoff hubs, and transition probabilities between the hubs, at different times of the
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(a) (b) (c)

(d) (e) (f)

Figure 31: Combined inference results for the HSMM applied to one month of taxi data,
showing taxi traffic patterns either to or from a selected individual hub. Each
plot shows the inferred pickup hubs (blue crosses), dropoff hubs (red circles), and
highest-weighted transitions for a single pickup or dropoff hub (directed edges
denote the largest 20 elements of the row or column of T associated with this
pickup or dropoff hub, where a darker edge corresponds with a stronger weight).
The top row of plots shows the distribution over pickup hubs for three dropoff
hubs (one in Manhattan, one in Queens, and one in Brooklyn), while the bottom
row of plots shows the distribution over dropoff hubs for three pickup hubs (in
three similar locations). See text for more details on individual plots.

day and week, over the course of the month of February 2015. We show results in
Figure 30. In each plot, we overlay the found pickup hubs (blue crosses) and dropoff
hubs (red circles) on top of the outlines of the five New York City boroughs (note that
some of the hubs are positioned outside of the boroughs in New Jersey). To show the
transition probabilities between the hubs, we plot arrows between hubs for the 40

highest weighted entries of the transition matrix T ; these arrows are colored based
on their weights, with a darker arrow corresponding to a stronger transition between
hubs. As an example, we show an inference result for a single hour (17:00-18:00 on
Thursday, February 2015) in Figure 30 (d); Note that this result is yielded directly
from local inference, without any futher combination.

In Figure 30, plot (a) shows the inference result of combining all possible hours
(i.e. the model posterior over the full dataset). We see here that the hubs are fairly
evenly distributed over Manhattan, Brooklyn, and Queens (with a concentration
along the East and West side of Manhattan), and a small collection of pickup hubs
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in New Jersey. We furthermore see that the transitions between hubs concentrate
in Manhattan and East Queens, but are all fairly homogeneous (without a large
pattern of specific highly weighted transitions). Plots (b) and (c) show the traffic
of pattern during morning rush hour (06:00-09:00) and evening rush hour (16:00-
19:00), respectively. In (b), we see a strong concentration of traffic going to midtown
Manhattan (particularly, midtown east) and the financial district (South Manhattan).
In these morning hours, there is relatively little taxi traffic in Brooklyn and Queens
(though we do see a major flow from a hub associated with LaGuardia airport, in
North Queens, to midtown Manhattan). In (c), during the evening hours, we see
major traffic to and between Greenwich Village and East Village in Manhattan, and
to the West and East sides of cental park; we also see increased activity in both
Queens and Brooklyn. Plots (e), (f), (h), and (i) aim to elicit the differences in traffic
patterns between weekdays and weekends. In particular, plots (e) and (f) show
combined model results during weekdays (i.e. Mondays through Fridays), where (e)
shows results for the 09:00 hour only, and (f) shows results taken over all hours in
the day. Likewise, plots (h) and (i) show combined model results during weekends
(i.e. Saturday and Sunday), where (h) shows results taken for the 09:00 hour only,
and (i) shows results taken over all hours in the day. We see in weekdays, there is
a much higher concentration of taxi traffic in Manhattan (and looking at the 09:00

hour, we see a particular concentration in Midtown Manhattan and East Queens near
the border of Manhattan), while in weekends, there is a much higher concentration
around the border of central park, throughout Queens, and in Brooklyn. Finally,
in plot (g), we show taxi traffic results combined only over late-night hours (00:00-
04:00). In this plot, we see far more traffic in small clusters throughout Brooklyn,
Queens, and the Bronx, and a cluster near Greenwich Village and East Village in
Manhattan.

We can also use the inferred model results to show the transportation patterns
for a selected individual hub. For example, we might select the hub closest to the
LaGuardia airport in North Queens, and want to see the distribution over hubs that
people take the taxi to (from LaGuardia) or the distribution over hubs that people
take the taxi from (to LaGuardia). We can get these types of results for any of our
inferred hubs. In Figure 31, we show such results for a few selected hubs. Plot
(a) shows the distribution over pickup hubs for a single dropoff hub in midtown
Manhattan. We see that most taxi trips are from neighboring hubs in Manhattan, and
from LaGuardia airport in North Queens and John F. Kennedy airport in Southeast
Queens. Similarly, in Plot (b), we show the distribution over dropoff hubs for a single
pickup hub in Manhattan, and see a similar transportation pattern. In plots (b) and
(e) we show the same type of results for a dropoff hub and pickup hub in North
Queens, and in plots (c) and (f) we show the same type of results for a dropoff hub
and pickup hub in central Brooklyn. Of note is that plots (b) and (e) correspond to
the dropoff and pickup hubs closest to LaGuardia airport in queens; we see that the
highest weighted pickup hubs traveling to to this airport are in Queens and Brooklyn
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(including the hub located at John F. Kennedy Airport), while the highest weighted
dropoff hubs traveling from this airport are in West Queens and Manhattan.

6.8 conclusion

Current embarrassingly parallel MCMC approaches allow for parallel sampling with
very low communication costs, but are not able to be applied in quasi-ergodic set-
tings, which includes many popular machine learning models. In this chapter we
proposed a generic framework to extend embarrassingly parallel techniques to these
settings by introducing an initial communication phase that steers parallel MCMC
chains to a similar region of the posterior space. The amount of communication goes
to zero as the chains converge, and the procedure transitions to an embarrassingly
parallel sampler. We used our general framework to derive multiple new parallel
MCMC algorithms and showed how special cases of these algorithms are similar to
existing single-chain MCMC methods, with the benefits of less communication and
stronger theoretical guarantees regarding the correctness of samples. Additionally,
we proved that our proposed method retains the asymptotic convergence guarantees
of existing methods, and we demonstrated good empirical performance on multiple
applications, including clustering with mixture models, topic modeling, matrix fac-
torization, and analysis of a large urban transportation dataset.
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P R I O R S WA P P I N G

7.1 chapter summary

While Bayesian methods are praised for their ability to incorporate useful prior
knowledge, in practice, convenient priors that allow for computationally cheap or
tractable inference are commonly used. In this chapter, we investigate the following
question:

For a given model, is it possible to compute an inference result with any con-
venient false prior, and afterwards, given any target prior of interest, quickly
transform this result into the target posterior?

A potential solution is to use importance sampling (IS). However, we demonstrate
that IS will fail for many choices of the target prior, depending on its parametric
form and similarity to the false prior. Instead, we propose prior swapping, a method
that leverages the pre-inferred false posterior to efficiently generate accurate poste-
rior samples under arbitrary target priors. Prior swapping lets us apply less-costly
inference algorithms to certain models, and incorporate new or updated prior in-
formation “post-inference”. We give theoretical guarantees about our method, and
demonstrate it empirically on a number of models and priors.

7.2 introduction

There are many cases in Bayesian modeling where a certain choice of prior distribu-
tion allows for computationally simple or tractable inference. For example,

• Conjugate priors yield posteriors with a known parametric form and therefore
allow for non-iterative, exact inference [48].

• Certain priors yield models with tractable conditional or marginal distribu-
tions, which allows efficient approximate inference algorithms to be applied
(e.g. Gibbs sampling [170], sampling in collapsed models [181], or mean-field
variational methods [192]).

• Simple parametric priors allow for computationally cheap density queries,
maximization, and sampling, which can reduce costs in iterative inference
algorithms (e.g. Metropolis-Hastings [125], gradient-based MCMC [134], or
sequential Monte Carlo [53]).

For these reasons, one might hope to infer a result under a convenient-but-unrealistic
prior, and afterwards, attempt to correct the result. More generally, given an infer-
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ence result (under a convenient prior or otherwise), one might wish to incorporate
updated prior information, or see a result under different prior assumptions, with-
out having to re-run a costly inference algorithm.

This leads to the main question of this chapter: for a given model, is it possible to
use any convenient false prior to infer a false posterior, and afterwards, given any
target prior of interest, efficiently and accurately infer the associated target poste-
rior?

One potential strategy involves sampling from the false posterior and reweighting
these samples via importance sampling (IS). However, depending on the chosen tar-
get prior—both its parametric form and similarity to the false prior—the resulting
inference can be inaccurate due to high or infinite variance IS estimates (demon-
strated in Sec. 7.3.1).

We instead aim to devise a method that yields accurate inferences for arbitrary
target priors. Furthermore, like IS, we want to make use of the pre-inferred false
posterior, without simply running standard inference algorithms on the target pos-
terior. Note that most standard inference algorithms are iterative and data-dependent:
parameter updates at each iteration involve data, and the computational cost or qual-
ity of each update depends on the amount of data used. Hence, running inference
algorithms directly on the target posterior can be costly (especially given a large
amount of data or many target priors of interest) and defeats the purpose of using a
convenient false prior.

In this chapter, we propose prior swapping, an iterative, data-independent method
for generating accurate posterior samples under arbitrary target priors. Prior swap-
ping uses the pre-inferred false posterior to perform efficient updates that do not
depend on the data, and thus proceeds very quickly. We therefore advocate break-
ing difficult inference problems into two easier steps: first, do inference using the
most computationally convenient prior for a given model, and then, for all future
priors of interest, use prior swapping.

In the following sections, we demonstrate the pitfalls of using IS, describe the
proposed prior swapping methods for different types of false posterior inference
results (e.g. exact or approximate density functions, or samples) and give theoretical
guarantees for these methods. Finally, we show empirical results on heavy-tailed
and sparsity priors in Bayesian generalized linear models, and relational priors over
components in mixture and topic models.

7.3 methodology

Suppose we have a dataset of n vectors xn = {x1, . . . , xn}, xi ∈ Rp, and we have
chosen a family of models with the likelihood function L(θ|xn) = p(xn|θ), parame-
terized by θ ∈ Rd. Suppose we have a prior distribution over the space of model
parameters θ, with probability density function (PDF) π(θ). The likelihood and prior
define a joint model with PDF p(θ, xn) = π(θ)L(θ|xn). In Bayesian inference, we are
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interested in computing the posterior (conditional) distribution of this joint model,
with PDF

p(θ|xn) =
π(θ)L(θ|xn)∫
π(θ)L(θ|xn) dθ

. (67)

Suppose we’ve chosen a different prior distribution πf(θ), which we refer to as a false
prior (while we refer to π(θ) as the target prior). We can now define a new posterior

pf(θ|x
n) =

πf(θ)L(θ|x
n)∫

πf(θ)L(θ)|xn) dθ
(68)

which we refer to as a false posterior.
We are interested in the following task: given a false posterior inference result

(i.e. samples from pf(θ|x
n), or some exact or approximate PDF), choose an arbitrary

target prior π(θ) and efficiently sample from the associated target posterior p(θ|xn)—
or, more generally, compute an expectation µh = Ep [h(θ)] for some test function
h(θ) with respect to the target posterior.

7.3.1 Importance Sampling and Prior Sensitivity

We begin by describing an initial strategy, and existing work in a related task known
as prior sensitivity analysis.

Suppose we have T false posterior samples {θ̃t}
T
t=1 ∼ pf(θ|x

n). In importance
sampling (IS), samples from an importance distribution are used to estimate the
expectation of a test function with respect to a target distribution. A straightforward
idea is to use the false posterior as an importance distribution, and compute the IS
estimate

µ̂IS
h =

T∑
t=1

w(θ̃t)h(θ̃t) (69)

where the weight function w(θ) ∝ p(θ|xn)
pf(θ|xn)

∝ π(θ)
πf(θ)

, and the T weights are normal-
ized to sum to one.

IS-based methods have been developed for the task of prior sensitivity analysis
(PSA). In PSA, the goal is to determine how the posterior varies over a sequence
of priors (e.g. over a parameterized family of priors π(θ;γi), i = 0, 1, . . .). Existing
work has proposed inferring a single posterior under prior π(θ;γ0), and then using
IS methods to infer further posteriors in the sequence [19, 30, 79].

This strategy is effective when subsequent priors are similar enough, but breaks
down when two priors are sufficiently dissimilar, or are from ill-matched parametric
families, which we illustrate in an example below.

Note that, in general for IS, as T → ∞, µ̂IS
h → µh almost surely. However, IS

estimates can still fail in practice if µ̂IS
h has high or infinite variance. If so, the variance
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of the weightsw(θ̃t) will be large (a problem often referred to as weight degeneracy),
which can lead to inaccurate estimates. In our case, the variance of µ̂IS

h is only finite
if

Epf

[
h(θ)2

π(θ)2

πf(θ)2

]
∝ Ep

[
h(θ)2

π(θ)

πf(θ)

]
<∞. (70)

For a broad class of h, this is satisfied if there exists M ∈ R such that π(θ)
πf(θ)

< M,∀θ
[71]. Given some pre-inferred pf(θ|x

n) with false prior πf(θ), the accuracy of IS
thus depends on the target prior of interest. For example, if π(θ) has heavier tails
than πf(θ), the variance of µ̂IS

h will be infinite for many h. Intuitively, we expect the
variance to be higher for π that are more dissimilar to πf.
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Figure 32: Importance sampling with false posterior samples. As the number of samples T
grows, the difference between the IS estimate µ̂IS

h and the true value µh decreases
increasingly slowly. The difference remains large even when T = 108. See text for
analysis.

We show a concrete example of this in Fig. 32. Consider a normal model for data
xn ∼ N(θ, 1), with a standard normal false prior πf(θ) = N(θ|0, 1). This yields a
closed-form false posterior (due to the conjugate πf), which is also normal. Suppose
we’d like to estimate the posterior expectation under a Laplace target prior, with
mean 10 and variance 1, for test function h(θ) = θ (i.e. an estimate of the target
posterior mean). We draw T false posterior samples {θ̃t}

T
t=1 ∼ pf(θ|x

n), compute
weights w(θ̃t) and IS estimate µ̂IS

h , and compare it with the true expectation µh.
We see in Fig. 32 that |µh − µ̂IS

h | slows significantly as T increases, and maintains
a high error even as T is made very large. We can analyze this issue theoretically.
Suppose we want |µh− µ̂IS

h | < δ. Since we know pf(θ|x
n) is normal, we can compute

a lower bound on the number of false posterior samples T that would be needed
for the expected estimate to be within δ of µh. Namely, if pf(θ|xn) = N(θ|m, s2), in
order for |µh − Epf [µ̂

IS
h ]| < δ, we’d need

T > exp
{
1

2s2
(|µh −m|− δ)2

}
.

In the example in Fig. 32, we have m = 1, s2 = 0.25, and µh = 7.9892. Hence,
for |µh − Epf [µ̂

IS
h ]| < 1, we’d need T > 1031 samples (see Sec. 7.6 for full details of

this analysis). Note that this bound actually has nothing to do with the parametric
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form of π(θ)—it is based solely on the normal false posterior, and its distance to the
target posterior mean µh. However, even if this distance was small, the importance
estimate would still have infinite variance due to the Laplace target prior. Further,
note that the situation can significantly worsen in higher dimensions, or if the false
posterior has a lower variance.

7.3.2 Prior Swapping

We’d like a method that will work well even when false and target priors πf(θ)
and π(θ) are significantly different, or are from different parametric families, with
performance that does not worsen (in accuracy nor computational complexity) as
the priors are made more dissimilar.

Redoing inference for each new target posterior can be very costly, especially
when the data size n is large, because the per-iteration cost of most standard in-
ference algorithms scales with n, and many iterations may be needed for accurate
inference. This includes both MCMC and sequential monte carlo (SMC) algorithms
(i.e. repeated-IS-methods that infer a sequence of distributions). In SMC, the per-
iteration cost still scales with n, and the variance estimates can still be infinite if
subsequent distributions are ill-matched.

Instead, we aim to leverage the inferred false posterior to more-efficiently compute
any future target posterior. We begin by defining a prior swap density ps(θ). Suppose
for now that a false posterior inference algorithm has returned a density function
p̃f(θ) (we will give more details on p̃f later; assume for now that it is either equal to
pf(θ|x

n) or approximates it). We then define the prior swap density as

ps(θ) ∝
p̃f(θ)π(θ)

πf(θ)
. (71)
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Figure 33: Using prior swapping to compute estimate µ̂PS
h by drawing samples {θt}

T
t=1 ∼

ps(θ).

Note that if p̃f(θ) = pf(θ|x
n), then ps(θ) = p(θ|xn). However, depending on

how we represent p̃f(θ), ps(θ) can have a much simpler analytic representation than
p(θ|xn), which is typically defined via a likelihood function (i.e. a function of the
data) and causes inference algorithms to have costs that scale with the data size n.
Specifically, we will only use low-complexity p̃f(θ) that can be evaluated in constant
time with respect to the data size n.
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Our general strategy is to use ps(θ) as a surrogate for p(θ|xn) in standard MCMC
or optimization procedures, to yield data-independent algorithms with constant
cost per iteration. Intuitively, the likelihood information is captured by the false
posterior—we make use of this instead of the likelihood function, which is costly to
evaluate.

More concretely, at each iteration in standard inference algorithms, we must eval-
uate a data-dependent function associated with the posterior density. For example,
we evaluate a function proportional to p(θ|xn) in Metropolis-Hastings (MH) [125],
and ∇θ logp(θ|xn) in gradient-based MCMC methods (such as Langevin dynamics
(LD) [158] and Hamiltonian Monte Carlo (HMC) [134]) and in optimization proce-
dures that yield a MAP point estimate. In prior swapping, we instead evaluate ps(θ)
in MH, or∇θ logps(θ) in LD, HMC, or gradient optimization to a MAP estimate (see
Sec. 7.7 for algorithm pseudocode). Here, each iteration only requires evaluating a
few simple analytic expressions, and thus has O(1) complexity with respect to data
size.

We demonstrate prior swapping on our previous example (using a normal false
prior and Laplace target prior) in Fig. 33, where we have a closed-form (normal PDF)
p̃f(θ). To do prior swapping, we run a Metropolis-Hastings algorithm on the target
density ps(θ). Note that drawing each sample in this Markov chain does not involve
the data xn, and can be done in constant time with respect to n (which we can see by
viewing the wall time for different T ). In Fig. 33, we draw T samples {θt}

T
t=1 ∼ ps(θ),

compute a sample estimate µ̂PS
h = 1

T

∑T
t=1 θt, and compare it with the true value µh.

We see that µ̂PS
h converges to µh after a relatively small number of samples T.

7.3.3 Prior Swapping with False Posterior Samples

The previous method is only applicable if our false posterior inference result is a
PDF p̃f(θ) (such as in closed-form inference or variational approximations). Here,
we develop prior swapping methods for the setting where we only have access to
samples {θ̃t}

Tf
t=1 ∼ pf(θ|x

n). We propose the following procedure:
1. Use {θ̃t}

Tf
t=1 to form an estimate p̃f(θ) ≈ pf(θ|xn).

2. Sample from ps(θ) ∝ π(θ)p̃f(θ)
πf(θ)

with prior swapping, as before.
Note that, in general, ps(θ) only approximates p(θ|xn). As a final step, after sam-
pling from ps(θ), we can:

3. Apply a correction to samples from ps(θ).
We will describe two methods for applying a correction to ps samples—one in-

volving importance sampling, and one involving semiparametric density estimation.
Additionally, we will discuss forms for p̃f(θ), guarantees about these forms, and
how to optimize the choice of p̃f(θ). In particular, we will argue why (in constrast
to the initial IS strategy) these methods do not fail when p(θ|xn) and pf(θ|xn) are
very dissimilar or have ill-matching parametric forms.
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prior swap importance sampling . Our first proposal for applying a correc-
tion to prior swap samples involves IS: after estimating some p̃f(θ), and sampling
{θt}

T
t=1 ∼ ps(θ), we can treat {θt}

T
t=1 as importance samples, and compute the IS

estimate

µ̂PSis
h =

T∑
t=1

w(θt)h(θt) (72)

where the weight function is now

w(θ) ∝ p(θ|x
n)

ps(θ)
∝ pf(θ|x

n)

p̃f(θ)
(73)

and the weights are normalized so that
∑T
t=1w(θt) = 1.

The key difference between this and the previous IS strategy is the weight function.
Recall that, previously, an accurate estimate depended on the similarity between
π(θ) and πf(θ); both the distance to and parametric form of π(θ) could produce
high or infinite variance estimates. This was an issue because we wanted the pro-
cedure to work well for any π(θ). Now, however, the performance depends on the
similarity between p̃f(θ) and pf(θ|x

n)—and by using the false posterior samples,
we can estimate a p̃f(θ) that well approximates pf(θ|xn). Additionally, we can prove
that certain choices of p̃f(θ) guarantee a finite variance IS estimate. Note that the
variance of µ̂PSis

h is only finite if

Epf

[
h(θ)2

pf(θ|x
n)2

p̃f(θ)2

]
∝ Ep

[
h(θ)2

pf(θ|x
n)

p̃f(θ)

]
<∞.

To bound this, it is sufficient to show that there exists M ∈ R such that pf(θ|x
n)

p̃f(θ)
< M

for all θ (assuming a test function h(θ) with finite variance) [71]. To satisfy this
condition, we will propose a certain parametric family p̃αf (θ). Note that, to maintain
a prior swapping procedure with O(1) cost, we want a p̃αf (θ) that can be evaluated
in constant time. In general, a p̃αf (θ) with fewer terms will yield a faster procedure.
With these in mind, we propose the following family of densities.

Definition. For a parameter α = (α1, . . . ,αk), αj ∈ Rp, k > 0, let density p̃αf (θ)
satisfy

p̃αf (θ) ∝ πf(θ)
k∏
j=1

p(αj|θ)
n/k (74)

where p(αj|θ) denotes the model conditional PDF.
The number of terms in p̃αf (θ) (and cost to evaluate) is determined by the parame-

ter k. Note that this family is inspired by the true form of the false posterior pf(θ|xn).
However, p̃αf (θ) has constant-time evaluation, and we can estimate its parameter α
using samples {θ̃t}

Tf
t=1 ∼ pf(θ|x

n). Furthermore, we have the following guarantees.
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Theorem 7.3.1. For any α = (α1, . . . ,αk) ⊂ Rp and k > 0 let p̃αf (θ) be defined as in
Eq. (74). Then, there exists M > 0 such that pf(θ|x

n)
p̃αf (θ)

< M, for all θ ∈ Rd.

Corollary 7.3.1.1. For {θt}Tt=1 ∼ p
α
s (θ) ∝

p̃αf (θ)π(θ)
πf(θ)

,w(θt) =
pf(θt|x

n)
p̃αf (θt)

(∑T
r=1

pf(θr|x
n)

p̃αf (θr)

)−1
,

and test function that satisfies Varp [h(θ)] < ∞, the variance of IS estimate µ̂PSis
h =∑T

t=1 h(θt)w(θt) is finite.

Proofs for these theorems are given in Sec. 7.8.
Note that we do not know the normalization constant for p̃αf (θ). This is not an

issue for its use in prior swapping, since we only need access to a function propor-
tional to pαs (θ) ∝ p̃αf (θ)π(θ)πf(θ)−1 in most MCMC algorithms. However, we still
need to estimate α, which is an issue because the unknown normalization constant is
a function of α. Fortunately, we can use the method of score matching [93] to estimate
α given a density such as p̃αf (θ) with unknown normalization constant.

Once we have found an optimal parameter α∗, we draw samples from pα
∗
s (θ) ∝

p̃α
∗
f (θ)π(θ)πf(θ)

−1, compute weights for these samples (Eq. (73)), and compute the
IS estimate µ̂PSis

h . We give pseudocode for the full prior swap importance sampling
procedure in Alg. 9.

Algorithmus 9 : Prior Swap Importance Sampling from Neiswanger et al.
[145]

Input : False posterior samples {θ̃t}
Tf
t=1 ∼ pf(θ|x

n).
Output : IS estimate µ̂PSis

h .
1 Score matching: estimate α∗ using {θ̃t}

Tf
t=1.

2 Prior swapping: sample {θt}
T
t=1 ∼ p

α∗
s (θ) ∝ p̃α

∗
f (θ)π(θ)
πf(θ)

.

3 Importance sampling: compute µ̂PSis
h =

∑T
t=1 h(θt)w(θt).

semiparametric prior swapping . In the previous method, we chose a para-
metric form for p̃αf (θ); in general, even the optimal α will yield an inexact approxi-
mation to pf(θ|xn). Here, we aim to incorporate methods that return an increasingly
exact estimate p̃f(θ) when given more false posterior samples {θ̃t}

Tf
t=1.

One idea is to use a nonparametric kernel density estimate p̃npf (θ) and plug this
into pnps (θ) ∝ p̃npf (θ)π(θ)πf(θ)

−1. However, nonparametric density estimates can
yield inaccurate density tails and fare badly in high dimensions. To help mitigate
these problems, we turn to a semiparametric estimate, which begins with a paramet-
ric estimate, and adjusts it as samples are generated. In particular, we use a density
estimate that can be viewed as the product of a parametric density estimate and
a nonparametric correction function [83]. This density estimate is consistent as the
number of samples Tf →∞. Instead of (or in addition to) correcting prior swap sam-
ples with importance sampling, we can correct them by updating the nonparametric
correction function as we continue to generate false posterior samples.
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Given Tf samples {θ̃t}
Tf
t=1 ∼ pf(θ|x

n), we write the semiparametric false posterior
estimate as

p̃
sp
f (θ) =

1

Tf

Tf∑
t=1

[
1

bd
K

(
‖θ− θ̃t‖

b

)
p̃αf (θ)

p̃αf (θ̃t)

]
, (75)

where K denotes a probability density kernel, with bandwidth b, where b → 0 as
Tf → ∞ (see [196] for details on probability density kernels and bandwidth selec-
tion). The semiparametric prior swap density is then

psps (θ) ∝
p̃
sp
f (θ)π(θ)

πf(θ)
=
1

Tf

Tf∑
t=1

K
(
‖θ−θ̃t‖
b

)
p̃αf (θ)π(θ)

p̃αf (θ̃t)πf(θ)b
d

∝ [pαs (θ)]

 1
Tf

Tf∑
t=1

K
(
‖θ−θ̃t‖
b

)
p̃αf (θ̃t)

 . (76)

Hence, the prior swap density psps (θ) is proportional to the product of two densi-
ties: the parametric prior swap density pαs (θ), and a correction density. To estimate
expectations with respect to psps (θ), we can follow Alg. 9 as before, but replace the
weight function in the final IS estimate with

w(θ) ∝ p
sp
s (θ)

pαs (θ)
∝ 1

Tf

Tf∑
t=1

K
(
‖θ−θ̃t‖
b

)
p̃αf (θ̃t)

. (77)

One advantage of this strategy is that computing the weights doesn’t require the
data—it thus has constant cost with respect to data size n (though its cost does
increase with the number of false posterior samples Tf). Additionally, as in impor-
tance sampling, we can prove that this procedure yields an exact estimate of E[h(θ)],
asymptotically, as Tf → ∞ (and we can provide an explicit bound on the rate at
which psps (θ) converges to p(θ|xn)). We do this by showing that psps (θ) is consistent
for p(θ|xn).

Theorem 7.3.2. Given false posterior samples {θ̃t}Tft=1 ∼ pf(θ|x
n) and b � T−1/(4+d)f , the

estimator psps is consistent for p(θ|xn), i.e. its mean-squared error satisfies

sup
p(θ|xn)

E

[∫
(psps (θ) − p(θ|xn))2 dθ

]
<

c

T
4/(4+d)
f

for some c > 0 and 0 < b 6 1.

The proof for this theorem is given in Sec. 7.8.
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7.4 empirical results

We show empirical results on Bayesian generalized linear models (including linear
and logistic regression) with sparsity and heavy tailed priors, and on latent factor
models (including mixture models and topic models) with relational priors over fac-
tors (e.g. diversity-encouraging, agglomerate-encouraging, etc.). We aim to demon-
strate empirically that prior swapping efficiently yields correct samples and, in some
cases, allows us to apply certain inference algorithms to more-complex models than
was previously possible. In the following experiments, we will refer to the following
procedures:

• Target posterior inference: some standard inference algorithm (e.g. MCMC)
run on p(θ|xn).

• False posterior inference: some standard inference algorithm run on pf(θ|xn).

• False posterior IS: IS using samples from pf(θ|x
n).

• Prior swap exact: prior swapping with closed-form p̃f(θ) = pf(θ|x
n).

• Prior swap parametric: prior swapping with parametric p̃αf (θ) given by Eq. (74).

• Prior swap IS: correcting samples from p̃αf (θ) with IS.

• Prior swap semiparametric: correcting samples from p̃αf (θ) with the semipara-
metric estimate IS procedure.

To assess performance, we choose a test function h(θ), and compute the Euclidean
distance between µh = Ep[h(θ)] and some estimate µ̂h returned by a procedure. We
denote this performance metric by posterior error = ‖µh − µ̂h‖2. Since µh is typically
not available analytically, we run a single chain of MCMC on the target posterior for
one million steps, and use these samples as ground truth to compute µh. For timing
plots, to assess error of a method at a given time point, we collect samples drawn
before this time point, remove the first quarter as burn in, and add the time it takes
to compute any of the corrections.

7.4.1 Sparsity Inducing and Heavy Tailed Priors in Bayesian Generalized Linear Models

Sparsity-encouraging regularizers have gained a high level of popularity over the
past decade due to their ability to produce models with greater interpretability and
parsimony. For example, the L1 norm has been used to induce sparsity with great ef-
fect [183], and has been shown to be equivalent to a mean-zero independent Laplace
prior [165, 183]. In a Bayesian setting, inference given a sparsity prior can be diffi-
cult, and often requires a computationally intensive method (such as MH or HMC)
or posterior approximations (e.g. expectation propagation [126]) that make factoriza-
tion or parametric assumptions [70, 165]. We propose a cheap yet accurate solution:
first get an inference result with a more-tractable prior (such as a normal prior),
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and then use prior swapping to quickly convert the result to the posterior given a
sparsity prior.

Our first set of experiments are on Bayesian linear regression models, which
we can write as yi = Xiθ + ε, ε ∼ N(0,σ2), θ ∼ π, i = 1,...,n. For π, we com-
pute results on Laplace, Student’s t, and VerySparse (with PDF VerySparse(σ) =∏d
i=1

1
2σ exp{−|θi|

0.4/σ} [165]) priors. Here, a normal πf is conjugate and allows
for exact false posterior inference. Our second set of experiments are on Bayesian
logistic regression models, which we write as yi ∼ Bern(pi), pi = logistic(Xiθ), θ ∼

π, i = 1,...,n. which we will pair with both heavy tailed priors and a hierarchical
target prior π = N(0,α−1I), α ∼ Gamma(γ, 1). For these experiments, we also use a
normal πf. However, this false prior is no longer conjugate, and so we use MCMC
to sample from pf(θ|x

n).
For linear regression, we use the YearPredictionMSD data set1, (n = 515345, d =

90), in which regression is used to predict the year associated with a a song, and
for logistic regression we use the MiniBooNE particle identification data set2, (n =

130065, d = 50), in which binary classification is used to distinguish particles.
In Fig. 34, we compare prior swapping and IS methods, in order to show that the

prior swapping procedures yield accurate posterior estimates, and to compare their
speeds of convergence. We plot posterior error vs. wall time for each method’s esti-
mate of the posterior mean Ep[h(θ)] = Ep[θ] for two sparsity target priors (Laplace
and VerySparse), for both linear and logistic regression. In linear regression (only),
since the normal conjugate πf allows us to compute a closed form pf(θ|x

n), we can
run the prior swap exact method, where p̃f(θ) = pf(θ|x

n). However, we can also
sample from pf(θ|x

n) to compute p̃α
∗
f (θ), and therefore compare methods such as

prior swap parametric and the two correction methods. In logistic regression, we do
not have a closed form pf(θ|x

n); here, we only compare the methods that make use
of samples from pf(θ|x

n). In Fig. 34, we see that the prior swapping methods (par-
ticularly prior swap IS) quickly converge to nearly zero posterior error. Additionally,
in linear regression, we see that prior swap parametric, using p̃f(θ) = p̃α

∗
f (θ), yields

similar posterior error as prior swap exact, which uses p̃f(θ) = p(θ|xn).
In Fig. 35, we show how prior swapping can be used for fast inference in Bayesian

linear models with sparsity or heavy-tailed priors. We plot the time needed to first
compute the false posterior (via exact inference) and then run prior swapping (via
the MH procedure) on some target posterior, and compare this with the MH algo-
rithm run directly on the target posterior. In (a) and (b) we show convergence plots
and see that prior swapping performs faster inference (by a few orders of magni-
tude) than direct MH. In plot (b) we reduce the variance of the target prior; while
this hurts the accuracy of false posterior IS, prior swapping still quickly converges
to zero error. In (c) we show 1-d density marginals as we increase the prior sparsity,
and in (d) we show prior swapping results for various sparsity priors.

1 https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD

2 https://archive.ics.uci.edu/ml/datasets/MiniBooNE+particle+identification

https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
https://archive.ics.uci.edu/ml/datasets/MiniBooNE+particle+identification
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Figure 34: Comparison of prior swapping and IS methods for Bayesian linear and logis-
tic regression under Laplace and VerySparse target priors. The prior swapping
methods (particularly prior swap exact and prior swap IS) quickly converge to
low posterior errors.
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Figure 35: Prior swapping for fast inference in Bayesian linear models with sparsity and
heavy-tailed priors: (a-b) Convergence plots showing that prior swapping per-
forms accurate inference faster than the comparison methods and is robust to
changing π. (c) Inferred 1-d density marginals when prior sparsity is increased.
(d) Prior swapping results for a variety of different sparsity priors.

In Sec. 7.5, we also include results on logistic regression with the hierarchical
target prior, as well as results for synthetic data where we are able to compare
timing and posterior error as we tune n and d.

7.4.2 Priors over Factors in Latent Variable Models

Many latent variable models in machine learning—such as mixture models, topic
models, probabilistic matrix factorization, and others—involve a set of latent factors
(e.g. components or topics). Often, we’d like to use priors that encourage interesting
behaviors among the factors. For example, we might want dissimilar factors through
a diversity-promoting prior [107, 205] or for the factors to show some sort of sparsity
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Figure 36: Latent factor models: (a) Prior swapping results for relational target priors (de-
fined in (b)) over components in a mixture model. (c) Prior swapping with
a diversity-promoting target prior on an LDA topic model (Simple English
Wikipedia corpus) to separate redundant topic clusters; the top 6 words per topic
are shown. In (a, c) we show wall times for the initial inference and prior swap-
ping.

pattern [101, 122]. Inference in such models is often computationally expensive or
designed on a case-by-case basis [101, 205].

However, when conjugate priors are placed over the factor parameters, collapsed
Gibbs sampling can be applied. In this method, the factor parameters are integrated
out, leaving only a subset of variables; on these, the conditional distributions can be
computed analytically, which allows for Gibbs sampling over these variables. After-
wards, samples of the collapsed factor parameters can be computed. Hence, we pro-
pose the following strategy: first, assign a prior for the factor parameters that allows
for collapsed Gibbs sampling; afterwards, reconstruct the factor samples and apply
prior swapping for more complex relational priors over the factors. We can thus
perform convenient inference in the collapsed model, yet apply more-sophisticated
priors to variables in the uncollapsed model.

We first show results on a Gaussian mixture model (GMM), written xi ∼ N(µzi ,Σzi), zi ∼
Dir(α), {µm}Mm=1 ∼ π, i = 1,...,n. Using a normal πf over {µm}Mm=1 allows for col-
lapsed Gibbs sampling. We also show results on a topic model (latent Dirichlet
allocation (LDA) [28]) for text data (for the form of this model, see [28, 191]). Here,
using a Dirichlet πf over topics allows for collapsed Gibbs sampling. For mixture
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models, we generate synthetic data from the above model (n=10,000, d=2, M=9),
and for topic models, we use the Simple English Wikipedia3 corpus (n=27,443 docu-
ments, vocab=10,192 words), and set M=400 topics.

In Fig. 36, we show results for mixture and topic models. In (a) we show inferred
posteriors over GMM components for a number of relational target priors, which we
define in (b). In (c), we apply the diversity-promoting target prior to LDA, to sepa-
rate redundant topics. Here, we show two topic clusters (“geography” and “family”)
in pf(θ|xn), which are separated into distinct, yet thematically-similar, topics after
prior swapping. In (a) and (c) we also show wall times of the inference methods.

7.5 further empirical results

Here we show further empirical results on a logistic regression model with hierar-
chical target prior given by π = N(0,α−1I), α ∼ Gamma(γ, 1). We use synthetic data
so that we are able to compare the timing and posterior error of different methods
as we tune n and d.
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Figure 37: Bayesian hierarchical logistic regression: (a-b) Wall time and test error com-
parisons for varying data size n. As n is increased, wall time remains con-
stant for prior swapping but grows for standard inference methods. (c-d) Wall
time and test error comparisons for varying model dimensionality d. (e-g) Wall
time and test error comparisons for inferences on a set of prior hyperparameters
γ ∈ [1, 1.05]. Here, a single false posterior p̃f(θ) (computed at γ = 1.025) is used
for prior swapping on all other hyperparameters.

In this experiment, we assume that we are given samples from a false posterior
pf(θ|x

n), and we want to most-efficiently compute the target posterior under prior
π(θ). In addition to the prior swapping methods, we can run standard iterative infer-
ence algorithms, such as MCMC or variational inference (VI), on the target posterior
(initializing them, for example, at the false posterior mode) as comparisons. The

3 https://simple.wikipedia.org/

https://simple.wikipedia.org/
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following experiments aim to show that, once the data size n grows large enough,
prior swapping methods become more efficient than standard inference algorithms.
They also aim to show that the held-out test error of prior swapping matches that of
these standard inference algorithms. In these experiments, we also add a prior swap
method called prior swapping VI; this method involves making a VI approximation
to pf(θ|xn), and using it for p̃f(θ). Prior swapping VI allows us to see whether the
test error is similar to standard VI inference algorithms, which compute some ap-
proximation to the posterior. Finally, we show results over a range of target prior
hyperparameter values γ to show that prior swapping maintains accuracy (i.e. has
a similar error as standard inference algorithms) over the full range.

We show results in Fig. 37. In (a) and (b) we vary the number of observations
(n=10-120,000) and see that prior swapping has a constant wall time while the wall
times of both MCMC and VI increase with n. In (b) we see that the prior swapping
methods achieve the same test error as the standard inference methods. In (c) and
(d) we vary the number of dimensions (d=1-40). In this case, all methods have
increasing wall time, and again the test errors match. In (e), (f), and (g), we vary the
prior hyperparameter (γ=1-1.05). For prior swapping, we infer a single p̃f(θ) (using
γ = 1.025) with both MCMC and VI applied to pf(θ|xn), and compute all other
hyperparameter results using this p̃f(θ). This demonstrates that prior swapping
can quickly infer correct results over a range of hyperparameters. Here, the prior
swapping semiparametric method matches the test error of MCMC slightly better
than the parametric method.

7.6 details on the is example

Here we provide details on the IS example (for a normal πf and Laplace π) given in
Sec. 7.3.1.

We made the following statement: if pf(θ|xn) = N(θ|m, s2), in order for |µh −

Epf [µ̂
IS
h ]| < δ, we need

T > exp
{
1

2s2
(|µh −m|− δ)2

}
.

To show this, we first give an upper bound on the expected value of the maximum
of T zero-mean s2-variance Gaussian random variables. Let {θ̃t}

T
t=1 ∼ g, where

g(θ) = N(θ|0, s2), and let Z = maxt{θ̃t}Tt=1. Then, for some b > 0,

exp{bEg[Z]} 6 Eg[exp{bZ}] = Eg

[
max
t

{
exp{bθ̃t}

}T
t=1

]
6

T∑
t=1

Eg
[
exp{bθ̃t}

]
= T exp{b2s2/2},

where the first inequality is due to Jensen’s inequality, and the final equality is due
to the definition of a Gaussian moment generating function. The above implies that

Eg[Z] 6
log T
b

+
bs2

2
.
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Setting b =
√
2
s2

log T , we have that

Eg

[
max
t

{θ̃t}
T
t=1

]
= Eg[Z] 6 s

√
2 log T .

However, note that for all {θ̃t}Tt=1, and weights {w(θ̃t)}Tt=1 (such that
∑T
t=1w(θ̃t) =

1), the IS estimate µ̂IS
h for h(θ) = θ must be less than or equal to maxt{θ̃t}Tt=1 (since

the weighted average of {θ̃t}
T
t=1 cannot be larger than the maximum of this set).

Therefore,

Eg
[
µ̂IS
h

]
6 Eg

[
max
t

{θ̃t}
T
t=1

]
6 s
√
2 log T ,

and equivalently

T > exp
{
1

2s2
Eg
[
µ̂IS
h

]2}
.

In our example, we wanted the expected estimate to be within δ of µh, i.e. we
wanted |µh − Eg[µ̂

IS
h ]| < δ ⇐⇒ δ− µh 6 Eg[µ̂

IS
h ] 6 µh + δ, and therefore,

T > exp
{
1

2s2
Eg
[
µ̂IS
h

]2}
> exp

{
1

2s2
(δ− µh)

2

}
.

Finally, notice that the original statement involved samples {θ̃t}
T
t=1 ∼ pf(θ|x

n) =

N(m, s2) (instead of from g = N(0, s2)). But this is equivalent to setting pf(θ|xn) =
g(θ), and shifting our goal so that we want δ− |µh −m| 6 Epf [µ̂

IS
h ] 6 |µh −m|+ δ.

This gives us the desired bound:

T > exp
{
1

2s2
Epf

[
µ̂IS
h

]2}
> exp

{
1

2s2
(δ− |µh −m|)2

}
.

7.7 prior swapping pseudocode (for a false posterior pdf in-
ference result p̃f(θ))

Here we give pseudocode for the prior swapping procedure, given some false poste-
rior PDF inference result p̃f(θ), using the prior swap functions ps(θ) ∝ p̃f(θ)π(θ)

πf(θ)
and

∇θ logps(θ) ∝ ∇θ log p̃f(θ) +∇θ logπ(θ) −∇θ logπf(θ), as described in Sec. 7.3.2.
In Alg. 10, we show prior swapping via the Metropolis-Hastings algorithm, which

makes repeated use of ps(θ). In Alg. 11 we show prior swapping via Hamiltonian
Monte Carlo, which makes repeated use of ∇θ logps(θ). A special case of Alg. 11,
which occurs when we set the number of simulation steps to L = 1 (in line 6), is
prior swapping via Langevin dynamics.
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Algorithmus 10 : Prior swapping via Metropolis-Hastings from Neiswanger
et al. [145]
Input : Prior swap function ps(θ), and proposal q.
Output : Samples {θt}

T
t=1 ∼ ps(θ) as T →∞.

1 Initialize θ0. . Initialize Markov chain.
2 for t = 1, . . . , T do
3 Draw θs ∼ q(θs | θt−1). . Propose new sample.
4 Draw u ∼ Unif([0, 1]).

5 if u < min
{
1, ps(θs)q(θt|θs)ps(θt)q(θs|θt)

}
then

6 Set θt ← θs. . Accept proposed sample.

7 else
8 Set θt ← θt−1. . Reject proposed sample.

Algorithmus 11 : Prior swapping via Hamiltonian Monte Carlo from
Neiswanger et al. [145]
Input : Prior swap function ps(θ), its gradient-log ∇θ logps(θ), and step-size

ε.
Output : Samples {θt}

T
t=1 ∼ ps(θ) as T →∞.

1 Initialize θ0. . Initialize Markov chain.
2 for t = 1, . . . , T do
3 Draw rt ∼ N(0, I).
4 Set (θ̃0, r̃0)← (θt−1, rt−1)
5 Set r̃0 ← r̃0 +

ε
2∇θ logps(θ̃0) . . Propose new sample (next 4 lines).

6 for l = 1, . . . ,L do
7 Set θ̃l ← θ̃l−1 + εr̃l−1.
8 Set r̃l ← r̃l−1 + ε∇θ logps(θ̃l).

9 Set r̃L ← r̃L +
ε
2∇θ logps(θ̃L) .

10 Draw u ∼ Unif([0, 1]).

11 if u < min
{
1, ps(θ̃L)r̃

>
L r̃L

ps(θt−1)r
>
t−1rt−1

}
then

12 Set θt ← θ̂L. . Accept proposed sample.

13 else
14 Set θt ← θt−1. . Reject proposed sample.

7.8 proofs of theoretical guarantees

Here, we prove the theorems stated in Sec. 7.3.3.
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Throughout this analysis, we assume that we have T samples {θ̃t}
Tf
t=1 ⊂ X ⊂ Rd

from the false-posterior pf(θ|xn), and that b ∈ R+ denotes the bandwidth of our
semiparametric false-posterior density estimator p̃spf (θ). Let Hölder class Σ(2,L) on
X be defined as the set of all ` = b2c times differentiable functions f : X→ R whose
derivative f(l) satisfies

|f(`)(θ) − f(`)(θ ′)| 6 L
∣∣θ− θ ′∣∣2−` for all θ, θ ′ ∈ X.

Let the class of densities P(2,L) be

P(2,L) =
{
f ∈ Σ(2,L)

∣∣∣ f > 0, ∫ f(θ)dθ = 1

}
.

Let data xn = {x1, . . . , xn} ⊂ Y ⊂ Rp, let Z ⊂ Y be any set such that xn ⊂ Z, and
let FZ(L) denote the set of densities p : Y→ R that satisfy

| logp(x) − logp(x ′)| 6 L|x− x ′|, for all x, x ′ ∈ Z.

In the following theorems, we assume that the false-posterior density pf(θ|xn) is
bounded, i.e. that there exists some B > 0 such that pf(θ|xn) 6 B for all θ ∈ Rd; that
the prior swap density ps(θ) ∈ P(2,L); and that the model family p(xn|θ) ∈ FZ(L)

for some Z.

Theorem 2.1. For any α = (α1, . . . ,αk) ⊂ Rp and k > 0 let p̃αf (θ) be defined as in
Eq. (74). Then, there exists M > 0 such that pf(θ|x

n)
p̃αf (θ)

< M, for all θ ∈ Rd.

Proof. To prove that there exists M > 0 such that pf(θ|x
n)

p̃αf (θ)
< M, note that the false

posterior can be written

pf(θ|x
n) =

1

Z1
πf(θ)

n∏
i=1

L(θ|xi) =
1

Z1
πf(θ)

n∏
i=1

p(xi|θ),

and the parametric estimate p̃αf (θ) is defined to be

p̃αf (θ) =
1

Z2
πf(θ)

k∏
j=1

p(αj|θ)
n/k.

Let d = maxi,j |xi −αj|. For any i ∈ {1, . . . ,n}, j ∈ {1, . . . ,k},

| logp(xi|θ) − logp(αj|θ)| 6 Ld =⇒
∣∣∣∣log

p(xi|θ)

p(αj|θ)

∣∣∣∣ 6 Ld,

and

exp
{

log
p(xi|θ)

p(αj|θ)

}
6 exp

{∣∣∣∣log
p(xi|θ)

p(αj|θ)

∣∣∣∣} 6 exp{Ld} =⇒ p(xi|θ)

p(αj|θ)
6 exp{Ld}.
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Therefore

pf(θ|x
n)

p̃αf (θ)
6
Z2
Z1

∏n
i=1 p(xi|θ)∏k

j=1 p(αj|θ)
n/k

6
Z2
Z1

exp{nLd} =M.

Corollary 2.1.1. For {θt}Tt=1 ∼ p
α
s (θ) ∝

p̃αf (θ)π(θ)
πf(θ)

,w(θt) =
pf(θt|x

n)
p̃αf (θt)

(∑T
r=1

pf(θr|x
n)

p̃αf (θr)

)−1
,

and test function that satisfies Varp [h(θ)] < ∞, the variance of IS estimate µ̂PSis
h =∑T

t=1 h(θt)w(θt) is finite.

Proof. This follows directly from the sufficient conditions for finite variance IS esti-
mates given by [71], which we have proved are satisfied for µ̂PSis

h in Theorem 2.1.

Theorem 2.2. Given false posterior samples {θ̃t}
Tf
t=1 ∼ pf(θ|x

n) and b � T−1/(4+d)f , the
estimator psps is consistent for p(θ|xn), i.e. its mean-squared error satisfies

sup
p(θ|xn)∈P(2,L)

E

[∫
(psps (θ) − p(θ|xn))2 dθ

]
<

c

T
4/(4+d)
f

for some c > 0 and 0 < b 6 1.

Proof. To prove mean-square consistency of our semiparametric prior swap density
estimator psps , we give a bound on the mean-squared error (MSE), and show that it
tends to zero as we increase the number of samples Tf drawn from the false-posterior.
To prove this, we bound the bias and variance of the estimator, and use this to bound
the MSE. In the following, to avoid cluttering notation, we will drop the subscript
pf in Epf [·].

We first bound the bias of our semiparametric prior swap estimator. For any
p(θ|xn) ∈ P(2,L), we can write the bias as

|E [psps (θ)] − p(θ|xn)| = c1

∣∣∣∣E [p̃spf (θ)
π(θ)

πf(θ)

]
− pf(θ|x

n)
π(θ)

πf(θ)

∣∣∣∣
= c2

∣∣∣∣ π(θ)πf(θ)
E
[
p̃
sp
f (θ)

]
− pf(θ|x

n)

∣∣∣∣
= c3

∣∣E [p̃spf (θ)
]
− pf(θ|x

n)
∣∣

6 ch2

for some c > 0, where we have used the fact that
∣∣E [p̃spf (θ)

]
− pf(θ|x

n)
∣∣ 6 c̃h2 for

some c̃ > 0 (given in [83, 196]).
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We next bound the variance of our semiparametric prior swap estimator. For any
p(θ|xn) ∈ P(2,L), we can write the variance of our estimator as

Var [psps (θ)] = c1Var
[
p̃
sp
f (θ)

π(θ)

πf(θ)

]
=
π(θ)2

πf(θ)2
Var

[
p̃
sp
f (θ)

]
6

c

Tfhd

for some c > 0, where we have used the facts that Var
[
p̃
sp
f (θ)

]
6 c

Thd
for some

c > 0 and E
[
p̃
sp
f (θ)

]2
6 c̃ for some c̃ > 0 (given in [83, 196]). Next, we will use

these two results to bound the mean-squared error of our semiparametric prior swap
estimator, which shows that it is mean-square consistent.

We can write the mean-squared error as the sum of the variance and the bias-
squared, and therefore,

E

[∫
(psps (θ) − p(θ|xn))2 dθ

]
6 c1h

2 +
c2
Thd

=
c

T
4/(4+d)
f

for some c > 0, using the fact that h � T−1/(4+d)f .

7.9 prior swapping and embarrassingly parallel inference

Embarassingly parallel inference methods (Chapters 4-6) are post-inference meth-
ods that allow for partial inference results to be computed on subsets of data and
afterwards efficiently combined to yield full inference results for the full data. In
this section, we discuss cases where prior swapping can be used to improve algo-
rithms for embarrassingly parallel inference. Specifically, prior swapping allows for
the number of partitions to be unknown at inference time when performing dis-
tributed inference with embarrassingly parallel methods, and allows these methods
to be used for sequential inference in online or streaming data settings (such as in
model-based sequential decision making and optimization).

7.9.1 Prior Swapping for Embarrassingly Parallel Inference with an Unknown Number of
Partitions

Recall that the goal of embarrassingly parallel inference is to compute a local poste-
rior on each machine m, given a subset of data xnm . Previously, we described how
to compute a subposterior density pm(θ) ∝ p(θ) 1Mp(xnm |θ), and then compute (or
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sample from) an estimate of the product of all M subposterior densities, which is
proportional to the full data posterior density.

In the settings for embarrassingly parallel MCMC (chapter 4) and VI (chapter 5),
we assumed that we know the number of data partitions M before subposterior
inference was carried out on each partition. This allowed for the prior to appropri-
ately underweighted during inference on each subposterior, so that the combination
procedures could yield a valid posterior result. However, this comes with a few
disadvantages:

• One needs to know or decide the number of partitions of the data in advance
of inference.

• It is not possible to add new data (such as unexpected additional observations)
without redoing subposterior inferences.

• In practice, too many data partitions could lead to computational issues if the
prior becomes too underweighted.

There is another, more subtle, disadvantage of requiring us to know the number of
partitions M in advance. When we carry out subposterior inference, we are comput-
ing a quantity on each machine that doesn’t represent something meaningful, such
as the local posterior uncertainty given the subset of data xnm , and is dependent
on the total number of machines M. It would be advantageous if this intermedi-
ate computed quantity instead had some intrinsic meaning or use—for example, if
it provided some information about the uncertainty on the local subset of data—
and wasn’t just a temporary quantity used only to compute uncertainty for the full
dataset. Furthermore, as a consequence of this, we must combine all M machines to
compute the full posterior, and cannot compute some meaningful quantity on any
subset of machines.

Here’s the major issue: suppose we did infer the correct local posterior (meaning
the actual posterior given the local subset of data) on each machine,

p(θ|xnm) ∝ π(θ)p(xnm |θ). (78)

Taking the product of an arbitrary number of these local posteriors yields a com-
bined posterior with too much prior weight; for example, combining all M of these
local posteriors would yield

M∏
m=1

p(θ|xnm) ∝ π(θ)Mp(xn|θ). (79)

To allow for correct local posteriors to be computed, and yet still apply the product
density combination methods developed earlier, we need to find a way to mitigate
this overweighted prior. One potential option is to apply methods from prior swap-
ping to swap out the overweighted prior and swap in the correct prior for the full
posterior (or for any abitrary subset of machines).
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For example, suppose we computed the (correct) local posterior p(θ|xnm) on M
machines and performed combination procedures from Chapters 4-5 to yield sam-
ples from the density with PDF proportional to π(θ)Mp(xn|θ). We can consider this
the false posterior density p̃f(θ), where we’ve assumed an implicit false prior

πf(θ) ∝ π(θ)M. (80)

We can then take π(θ) to be the target prior density, and perform prior swapping
to “divide out” the extra π(θ)M−1 prior mass incurred when we performed embar-
rassingly parallel inference. This would entail running an inference algorithm on
the prior swap PDF

ps(θ) ∝
p̃f(θ)π(θ)

πf(θ)
∝ p̃f(θ)

π(θ)M−1
. (81)

The combination of embarrassingly parallel inference and prior swapping allows
us to compute the correct local posterior on a given subset of data, and then use
these inference results in embarrassingly parallel inference procedures to compute
the correct full data posterior distribution.

We can also use prior swapping to help in other ways. For example, we can do
local inference with computationally convenient priors (such as priors that allow
for easier, analytic, or more precise inferences), run methods from embarrassingly
parallel inference to combine these local posteriors, and then use prior swapping to
convert the final combined posterior into the correct result (under the desired prior).

7.9.2 Prior Swapping for Embarrassingly Parallel Inference in a Sequential Setting

In a sequential setting, we assume that we have a sequence of time steps t = 1, . . . , T ,
where we begin with dataset x0 and then append new data xt to this set at each time
step. At each time step t, let x̃t be the full set of data, i.e. x̃t = x̃t−1 ∪ xt. The goal is
to compute the posterior distribution given the data set at or before step t, for each
t = 1, . . . , T . This involves computing

p(θ|x̃t) = p(θ|x̃t−1 ∪ xt) ∝ π(θ)p(x̃t−1|θ)p(xt|θ), (82)

where we’ve assumed independent observations given parameter θ.
Suppose we have computed the posterior at time t− 1 given all data up to this

point, written p(θ|x̃t−1). Suppose that at time step t we now encounter the new
dataset xt, and compute the local posterior

p(θ|xt) ∝ π(θ)p(xt|θ). (83)

We’d like to be able to use the previous time step’s full posterior, p(θ|x̃t−1), along
with the current time step’s local posterior p(θ|xt) to compute the current time step’s
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full posterior, p(θ|x̃t). At each time step, we would thus only need to spend com-
putation on the local posterior (which is cheaper, due to the small amount of data),
and reuse the full inference result from the previous time step.

However, combining the previous time step’s full posterior p(θ|x̃t−1) with the cur-
rent time step’s local posterior p(θ|xt) naively via embarrassingly parallel inference
yields

p(θ|x̃t−1)p(θ|xt) ∝ π(θ)2p(x̃t|θ). (84)

This is proportional to the current time step’s full posterior with an overweighted
prior. We could therefore apply prior swapping here to remove the extra π(θ) prior
mass, where we take the false posterior to be p̃f(θ) ∝ p(θ|x̃t−1)p(θ|xt). The prior
swap density would therefore be

ps(θ) ∝
p̃f(θ)π(θ)

πf(θ)
∝ p(θ|x̃t−1)p(θ|xt)

π(θ)
. (85)

In practice, at each time step of sequential inference, we could first apply embarrass-
ingly parallel inference methods to infer (e.g. approximate the PDF of or generate
samples from) p̃f(θ) ∝ p(θ|x̃t−1)p(θ|xt), and then run a second (cheap) inference
algorithm on the prior swap density ps(θ), to compute the time step’s full posterior
p(θ|x̃t).

7.10 conclusion

Given some false posterior inference result, and an arbitrary target prior, we have
studied methods to accurately compute the associated target posterior (or expecta-
tions with respect to it), and to do this efficiently by leveraging the pre-inferred
result. We have argued and shown empirically that this strategy is effective even
when the false and target posteriors are quite dissimilar. We believe that prior swap-
ping methods show promise to allow a wider range of (and possibly less-costly)
inference alorithms to be applied to certain models, and to allow updated or new
prior information to be more-easily incorporated into models without re-incurring
the full costs of standard inference algorithms. We have also shown how prior swap-
ping can be used to aid in embarrassingly parallel inference: it can both allow for
distributed inference given an unknown number of partitions M, and sequential
inference that iteratively reuses previous inference results.
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P R O B O : V E R S AT I L E B AY E S I A N O P T I M I Z AT I O N U S I N G
A N Y P R O B A B I L I S T I C P R O G R A M M I N G L A N G U A G E

8.1 chapter summary

Optimizing an expensive-to-query function is a common task in science and engi-
neering, where it is beneficial to keep the number of queries to a minimum. A
popular strategy is Bayesian optimization (BO), which leverages probabilistic mod-
els for this task. Most BO today uses Gaussian processes (GPs), or a few other
surrogate models. However, there is a broad set of Bayesian modeling techniques
that could be used to capture complex systems and reduce the number of queries
in BO. Probabilistic programming languages (PPLs) are modern tools that allow for
flexible model definition, prior specification, model composition, and automatic in-
ference. In this chapter, we develop ProBO, a BO procedure that uses only standard
operations common to most PPLs. This allows a user to drop in a model built with
an arbitrary PPL and use it directly in BO. We describe acquisition functions for
ProBO, and strategies for efficiently optimizing these functions given complex mod-
els or costly inference procedures. Using existing PPLs, we implement new models
to aid in a few challenging optimization settings, and demonstrate these on model
hyperparameter and architecture search tasks.

8.2 introduction

Bayesian optimization (BO) is a popular method for zeroth-order optimization of an
unknown (“black box”) system. A BO procedure iteratively queries the system to
yield a set of input/output data points, computes the posterior of a Bayesian model
given these data, and optimizes an acquisition function defined on this posterior in
order to determine the next point to query.

BO involves performing inference and optimization to choose each point to query,
which can incur a greater computational cost than simpler stategies, but may be
ultimately beneficial in settings where queries are expensive. Specifically, if BO can
reach a good optimization objective in fewer iterations than simpler methods, it may
be effective in cases where the expense of queries far outweighs the extra cost of
BO. Some examples of this are in science and engineering, where a query could
involve synthesizing and measuring the properties of a material, collecting metrics
from an industrial process, or training a large machine learning model, which can
be expensive in cost, time, or human labor.
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The most common model used in BO is the Gaussian process (GP), for which we
can compute many popular acquisition functions. There has also been some work
deriving BO procedures for other flexible models including random forests [92] and
neural networks [175]. In this chapter, we argue that more-sophisticated models
that better capture the details of a system can help reduce the number of iterations
needed in BO, and allow for BO to be effectively used in custom and complex set-
tings. For example, systems may have complex noise [96, 166], yield multiple types
of observations [60], depend on covariates [105], have interrelated subsystems [180],
and more. To accurately capture these systems, we may want to design custom mod-
els using a broader library of Bayesian tools and techniques. For example, we may
want to compose models—such as GPs, latent factor (e.g. mixture) models, deep
Bayesian networks, hierarchical regression models—in various ways, and use them
in BO.

Probabilistic programming languages (PPLs) are modern tools for specifying Bayesian
models and performing inference. They allow for easy incorporation of prior knowl-
edge and model structure, composition of models, quick deployment, and automatic
inference, often in the form of samples from or variational approximations to a pos-
terior distribution. PPLs may be used to specify and run inference in a variety of
models, such as graphical models, GPs, deep Bayesian models, hierarchical models,
and implicit (simulator-based) models, to name a few [7, 21, 38, 50, 117, 121, 127,
161, 186, 202].

We would like to be able to build an arbitrary model with any PPL and then auto-
matically carry out BO with this model. However, this comes with a few challenges.
In BO with GPs, we have the posterior in closed-form, and use this when computing
and optimizing acquisition functions. PPLs, however, use a variety of approximate
inference procedures, which can be costly to run and yield different posterior rep-
resentations (e.g. samples [38, 202], variational approximations [21, 186], implicit
models [91, 187], or amortized distributions [112, 155]). We need a method that
can compute and optimize acquisition functions automatically, given the variety of
representations, and efficiently, making judicious use of PPL procedures.

Towards this end, we develop ProBO, a BO system for PPL models, which com-
putes and optimizes acquisition functions via operations that can be implemented in
a broad variety of PPLs. This system comprises algorithms that cache and use these
operations efficiently, which allows it to be used in practice given complex models
and expensive inference procedures. The overall goal of ProBO is to allow a custom
model written in an arbitrary PPL to be “dropped in” and immediately used in BO.

This chapter has two main contributions: (1) We present ProBO, a system for versa-
tile Bayesian optimization using models from any PPL. (2) We describe optimization
settings that are difficult for standard BO methods and models, and then use PPLs to
implement new models for these settings, which are dropped into ProBO and show
good optimization performance. Our open source release of ProBO is available at
https://github.com/willieneis/ProBO.

https://github.com/willieneis/ProBO
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8.3 related work

A few prior works make connections between PPLs and BO. BOPP [152] describes a
BO method for marginal maximum a posteriori (MMAP) estimates of latent variables
in a probabilistic program. This work relates BO and PPLs, but differs from us in
that the goal of BOPP is to use BO (with GP models) to help estimate latent variables
in a given PPL, while we focus on using PPLs to build new surrogate models for BO.

BOAT [45] provides a custom PPL involving composed Gaussian process models
with parametric mean functions, for use in BO. For these models, exact inference
can be performed and the expected improvement acquisition directly used. This
work has similar goals as us, though we instead aim to provide a system that can
be applied to models from any existing PPL (not constrained to a certain family of
GP models), and specifically with PPLs that use approximate inference algorithms
where we cannot compute acquisition functions in standard ways.

8.4 probo

We first describe a general abstraction for PPLs, and use this abstraction to define
ProBO and present algorithms for computing a few acquisition functions. We then
show how to efficiently optimize these acquisition functions.

8.4.1 Abstraction for Probabilistic Programs

Suppose we are modeling a system which, given an input x ∈ X, yields observations
y ∈ Y, written y ∼ s(x). Let f : Y→ R be an objective function that maps observations
y to real values. Observing the system n times at different inputs yields a dataset
Dn = {(xi,yi)}ni=1. Suppose we have a Bayesian model for Dn, with likelihood
p(Dn|z) =

∏n
i=1 p(yi|z; xi), where z ∈ Z are latent variables. We define the joint

model PDF to be p(Dn, z) = p(z)p(Dn|z), where p(z) is the PDF of the prior on z.
The posterior PDF is then p(z|Dn) = p(Dn, z)/

∫
p(Dn, z)dz.

Our abstraction assumes three basic PPL operations:

1. inf(D): given data D, this runs an inference algorithm and returns an object
post, which is a PPL-dependent representation of the posterior distribution.

2. post(s): given a seed s ∈ Z+, this returns a sample from the posterior distri-
bution.

3. gen(x, z, s): given an input x ∈ X, a latent variable z ∈ Z, and a seed s ∈ Z+,
this returns a sample from the generative distribution p(y|z; x).

Note that post and gen are deterministic, i.e. for a fixed seed s, post/gen produce
the same output each time they are called.
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Figure 38: Visualizations of PPL acquisition functions a(x) given in Algs. 13-16 for use in
ProBO. In each plot, the data and posterior predictive distribution are shown, and
a(x) is given for two fidelities: M = 50 (solid color line) and M = 500 (dashed
black line).

Scope.

This abstraction applies to a number of PPLs, which use a variety of inference strate-
gies and compute different representations for the posterior. For example, in PPLs
using Markov chain Monte Carlo (MCMC) or sequential Monte Carlo (SMC) al-
gorithms [38, 161, 202], inf computes a set of posterior samples and post draws
uniformly from this set. For PPLs using variational inference (VI), implicit models,
or exact inference methods [21, 77, 186], inf computes the parameters of a distri-
bution, and post draws a sample from this distribution. In amortized or compiled
inference methods [100, 112, 155], inf trains or calls a pretrained model that maps
observations to a posterior or proposal distribution, and post samples from this.

8.4.2 Main Procedure

Recall that we use PPLs to model a system s, which yields observations y ∼ s(x)

given a query x, and where f(y) : Y → R denotes the objective value that we want
to optimize. The goal of ProBO is to return x∗ = arg minx∈X Ey∼s(x) [f(y)]. We give
ProBO in Alg. 12. Each iteration consists of four steps: call an inference procedure
inf, select an input x by optimizing an acquisition function a that calls post and
gen, observe the system at x, and add new observations to the dataset.
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Algorithmus 12 : ProBO(D0, inf, gen) from Neiswanger et al. [139]
Input : Inputs listed here.
Output : Outputs listed here.

1 for n = 1, . . . ,N do
2 post← inf(Dn−1) . Run inference algorithm to compute post

3 xn ← arg minx∈X a(x, post, gen) . Optimize acquisition using post and
gen

4 yn ∼ s(xn) . Observe system at xn
5 Dn ← Dn−1 ∪ (xn,yn) . Add new observations to dataset

6 Return DN.

Note that acquisition optimization (line 3) involves only post and gen, while inf

is called separately beforehand. We discuss the computational benefits of this, and
the cost of ProBO, in more detail in Sec. 8.4.4. Also note that many systems can have
extra observations y ∈ Y, in addition to the objective value, that provide information
which aids optimization [11, 180, 204]. For this reason, our formalism explicitly
separates system observations y from their objective values f(y). We show examples
of models that take advantage of extra observations in Sec. 8.5.

In the following sections, we develop algorithms for computing acquisition func-
tions a(x) automatically using only post and gen operations, without requiring any
model specific derivation. We refer to these as PPL acquisition functions.

8.4.3 PPL Acquisition Functions via post and gen

In ProBO (Alg. 12), we denote the PPL acquisition function with a(x, post, gen). Each
PPL acquisition algorithm includes a parameter M, which represents the fidelity of
the approximation quality of a. We will describe an adaptive method for choosing
M during acquisition optimization in Sec. 8.4.5. Below, we will make use of the pos-
terior predictive distribution, which is defined to be p(y|Dn; x) = Ep(z|Dn) [p(y|z; x)].

There are a number of popular acquisition functions used commonly in Bayesian
optimization, such as expected improvement (EI) [129], probability of improvement
(PI) [106], GP upper confidence bound (UCB) [176], and Thompson sampling (TS)
[182]. Here, we propose a few simple acquisition estimates that can be computed
with post and gen. Specifically, we give algorithms for EI (Alg. 13), PI (Alg. 14), UCB
(Alg. 15), and TS (Alg. 16) acquistion strategies, though similar algorithms could be
used for other acquisitions involving expectations or statistics of either p(y|Dn; x) or
p(y|z; x).

We now describe the PPL acquisition functions given in Alg. 13-16 in more detail,
and discuss the approximations given by each. Namely, we show that these yield
versions of exact acquisition functions as M → ∞. These algorithms are related to
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Monte Carlo acquisition function estimates for GP models [80, 81, 174], which have
been developed for specific acquisition functions.

Expected Improvement (EI), Alg. 13

Let D be the data at a given iteration of ProBO. In our setting, the expected improve-
ment (EI) acquisition function will return the expected improvement that querying
the system at x ∈ X will have over the minimal observed objective value, fmin =

miny∈D f(y). We can write the exact EI acquisition function as

a∗EI(x) =

∫
1 {f(y) 6 fmin} (fmin − f(y))p (y|D; x)dy. (86)

In Alg. 13, for a sequence of steps m = 1, . . . ,M, we draw zm ∼ p(z|D) and ym ∼

p(y|zm; x) via post and gen, and then compute λ(y1:M) =
∑M
m=1 1 [f(ym) 6 fmin] (fmin −

f(ym)). Marginally, ym is drawn from the posterior predictive distribution, i.e. ym
∼ Ep(z|D) [p(y|z; x)] = p(y|D; x). Therefore, as the number of calls M to post and gen

grows, aEI(x)→ a∗EI(x) (up to a multiplicative constant) at a rate of O(
√
M).

Algorithmus 13 : PPL EI acquisition, aEI (x, post, gen) from Neiswanger et al.
[139]
Input : Inputs listed here.
Output : Outputs listed here.

1 for m = 1, . . . ,M do
2 zm ← post(sm)

3 ym ← gen(x, zm, sm)

4 fmin ← miny∈D f(y)
5 Return

∑M
m=1 1 [f(ym) 6 fmin] (fmin − f(ym))

Algorithmus 14 : PPL PI acquisition, aPI (x, post, gen) from Neiswanger et al.
[139]
Input : Inputs listed here.
Output : Outputs listed here.

1 for m = 1, . . . ,M do
2 zm ← post(sm)

3 ym ← gen(x, zm, sm)

4 fmin ← miny∈D f(y)
5 Return

∑M
m=1 1 [f(ym) 6 fmin]

Probability of Improvement (PI), Alg. 14

In our setting, the probability of improvement (PI) acquisition function will return
the probability that observing the system at query x ∈ X will improve upon the



8.4 probo 143

Algorithmus 15 : PPL UCB acquisition, aUCB (x, post, gen) from Neiswanger
et al. [139]
Input : Inputs listed here.
Output : Outputs listed here.

1 for m = 1, . . . ,M do
2 zm ← post(sm)

3 ym ← gen(x, zm, sm)

4 Return L̂CB
(
f(ym)Mm=1

)
. See text for details

Algorithmus 16 : PPL TS acquisition, aTS (x, post, gen) from Neiswanger et al.
[139]
Input : Inputs listed here.
Output : Outputs listed here.

1 z← post(s1)

2 for m = 1, . . . ,M do
3 ym ← gen(x, z, sm)

4 Return
∑M
m=1 f(ym)

minimally observed objective value, fmin = miny∈D f(y). We can write the exact PI
acquisition function as

a∗PI(x) =

∫
1 {f(y) 6 fmin}p (y|D; x)dy. (87)

In Alg. 14, for a sequence of steps m = 1, . . . ,M, we draw zm ∼ p(z|D), ym ∼

p(y|zm; x) via post and gen, and then compute λ(y1:M) =
∑M
m=1 1 [f(ym) 6 fmin].

As before, ym is drawn (marginally) from the posterior predictive distribution. There-
fore, as the number of calls M to post and gen grows, aPI(x) → a∗PI(x) (up to a
multiplicative constant) at a rate of O(

√
M).

Upper Confident Bound (UCB), Alg. 15

We propose an algorithm based on the principle of optimization under uncertainty
(OUU), which aims to compute a lower confidence bound for p(f(y)|D; x), which we
denote by LCB [p(f(y)|Dn; x)]. In Alg. 15, we use an estimate of this, L̂CB(f(ym)Mm=1).
Note that we use a lower confidence bound since we are performing minimization,
though we denote our acquisition function with the more commonly used title UCB.
Two simples strategies for estimating this LCB are

1. Empirical quantiles: Order f(ym)Mm=1 into f(1) 6 . . . 6 f(M), and return f(b) if
b ∈ Z, or else return 1

2(f(bbc) + f(bbc+1)), where b ∈ [0,M+ 1] is a tradeoff
parameter.
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2. Parametric assumption: As an example, if we model p(f(y)|Dn; x) =N(f(y)|µ,σ2),
we can compute µ̂ = 1

M

∑M
m=1 f(ym) and σ̂2 = 1

M−1

∑M
m=1(f(ym) − µ̂)2, and

return µ̂−βσ̂2, where β > 0 is a trade-off parameter.

The first proposed estimate (empirical quantiles) is a consistent estimator, though
may yield worse performance in practice than the second proposed estimate in cases
where we can approximate p(f(ym)|D; x) with some parametric form.

Thompson Sampling (TS), Alg. 16

Thompson sampling (TS) proposes proxy values for unknown model variables by
drawing a posterior sample, and then performs optimization as if this sample were
the true model variables, and returns the result. In Alg. 16, we provide an acquisi-
tion function to carry out a TS strategy in ProBO , using post and gen. At one given
iteration of BO, a specified seed is used so that each call to aTS(x) produces the
same posterior latent variable sample z̃ ∼ p(z|D) via post. After, gen is called repeat-
edly to produce ym ∼ p(y|z̃; x) for m = 1, . . . ,M, and the objective values of these
are averaged to yield λ(y1:M) =

∑M
m=1 f(ym). Here, each f(ym) ∼ Ep(y|z̃;x) [f(y)].

Optimizing this acquisition function serves as a proxy for optimizing our model
given the true model variables, using posterior sample z̃ in place of unknown model
variables.

In Summary

As M→∞, for constants c1, c2, c3, and c4,

aEI(x, post, gen)→ c1

∫
1

{
f(y) 6 min

y ′∈D
f(y ′)

}(
min
y ′∈D

f(y ′) − f(y)

)
p(y|D; x)dy

(88)

aPI(x, post, gen)→ c2

∫
1

{
f(y) 6 min

y ′∈D
f(y ′)

}
p(y|D; x)dy (89)

aUCB(x, post, gen)→ c3 LCB [p(f(y)|D; x)] (90)

aTS(x, post, gen)→ c4

∫
f(y) p(y|z̃; x)dy, for z̃ ∼ p(z|D), (91)

We visualize Alg. 13-16 in Fig. 38 (a)-(d), showing M ∈ {50, 500}.

8.4.4 Computational Considerations

In ProBO, we run a PPL’s inference procedure when we call inf, which has a cost
dependent on the underlying inference algorithm. For example, most MCMC meth-
ods have complexity O(n) per iteration [14]. However, ProBO only runs inf once
per query; acquisition optimization, which may be run hundreds of times per query,
instead uses only post and gen. For many PPL models, post and gen can be imple-
mented cheaply. For example, post often involves drawing from a pool of samples
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or from a known distribution, and gen often involves sampling from a fixed-length
sequence of known distributions and transformations, both of which typically have
O(1) complexity. However, for some models, gen can involve running a more costly
simulation. For these cases, we provide acquisition optimization algorithms that use
post and gen efficiently in Sec. 8.4.5.

8.4.5 Efficient Optimization of PPL Acquisition Functions

In ProBO, we must optimize over the acquisition algorithms defined in the previous
section, i.e. compute xn = arg minx∈X a(x, post, gen). Note that post and gen are
not in general analytically differentiable, so in contrast with [201], we cannot opti-
mize a(x) with gradient-based methods. We therefore explore strategies for efficient
zeroth-order optimization.

In Alg. 13-16, M denotes the number of times post and gen are called in an eval-
uation of a(x). As seen in Fig. 38, a small M will return a noisy estimate of a(x),
while a large M will return a more-accurate estimate. However, for some PPLs, the
post and/or gen operations can be costly (e.g. if gen involves a complex simulation
[120, 185]), and we’d like to minimize the number of times they are called.

This is a special case of a multi-fidelty optimization problem [58], with fidelity
parameterM. Unlike typical multi-fidelity settings, our goal is to reduce the number
of calls to post and gen for a single x only, via modifying the acquisition function
a(x, post, gen). This way, we can drop in any off-the-shelf optimizer that makes calls
to a. Suppose we have F fidelities ranging from a small number of samples Mmin

to a large number Mmax, i.e. Mmin = M1 < . . . < MF = Mmax. Intuitively, when
calling a(x, post, gen) on a given x, we’d like to use a small M if a(x) is far from the
minimal value a(x∗), and a larger M if a(x) is close to a(x∗).

We propose the following procedure: Suppose amin is the minimum value of a
seen so far during optimization (for any x). For a given fidelity Mf (starting with
f=1), we compute a lower confidence bound (LCB) for the sampling distribution
of a(x, post, gen) with Mf calls to post and gen. We can do this via the bootstrap
method [54] along with the LCB estimates described in Sec. 8.4.3. If this LCB is
below amin, it remains plausible that the acquisition function minimum is at x, and
we repeat these steps at fidelity Mf+1. After reaching a fidelity f∗ where the LCB
is above amin (or upon reaching the highest fidelity f∗ = F), we return the estimate
a(x, post, gen) with Mf∗ calls. We give this procedure in Alg. 17.

In Alg. 18 we use notation λ(y1:M) to denote the final operation (last line) in
one of Algs. 13-16 (e.g. λa(y1:M) =

∑M
m=1 1[f(ym) 6 fmin] in the case of PI). As a

simple example, we could run a two-fidelity algorithm, with M ∈ {M1,M2}, where
M1 �M2. For a given x, aMF would first call post and genM1 times, and compute
the LCB with the bootstrap. If the LCB is greater than amin, it would return an
a(x, post, gen) with the M1 calls; if not, it would return it with M2 calls. Near
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Algorithmus 17 : Multi-fidelity a, aMF (x, post, gen) from Neiswanger et al.
[139]
Input : Inputs listed here.
Output : Outputs listed here.

1 amin ← Min value of a seen so far
2 ` = −∞, f = 1
3 while ` 6 amin do
4 `← LCB-bootstrap (post, gen,Mf)

5 f← f+ 1

6 Return a(x, post, gen) using M =Mf

Algorithmus 18 : LCB-bootstrap(post, gen,Mf) from Neiswanger et al. [139]
Input : Inputs listed here.
Output : Outputs listed here.

1 y1:Mf
← Call post and genMf times

2 for j = 1, . . . ,B do
3 ỹ1:Mf

← Resample(y1:Mf
)

4 aj ← λ(ỹ1:Mf
) . See text for details

5 Return LCB (a1:B)

optima, this will make M1 +M2 calls to post and gen, and will make M1 calls
otherwise.

One can apply any derivative-free (zeroth-order) global optimization procedure
that iteratively calls aMF. In general, we can replace the optimization step in ProBO
(Alg. 12, line 3) with xn ← arg minx∈X aMF(x), for each of the PPL acquisition func-
tions described in Sec. 8.4.3. In Sec. 8.5.4, we provide experimental results for this
method, showing favorable performance relative to high fidelity acquisition func-
tions, as well as reduced calls to post and gen.

8.5 examples and experiments

We provide examples of models to aid in complex optimization scenarios, imple-
ment these models with PPLs, and show empirical results. Our main goals are to
demonstrate that we can plug models built with various PPLs into ProBO, and use
these to improve BO performance (i.e. reduce the number of iterations) when com-
pared with standard methods and models. We also aim to verify that our acquisition
functions and extensions (e.g. multi-fidelity aMF) perform well in practice.
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PPL Implementations:

We implement models with Stan [38] and Edward [186], which (respectively) make
use of the No U-Turn Sampler [87] (a form of Hamiltonian Monte Carlo) and black
box variational inference [153]. We also use George [7] and GPy [77] for GP compar-
isons.

8.5.1 BO with State Observations

Setting:

Some systems exhibit unique behavior in different regions of the input space X based
on some underlying state. We often do not know these state regions apriori, but can
observe the state of an x when it is queried. Two examples of this, for computational
systems, are:

• Timeouts or failures: there may be regions where queries fail or time out. We
can observe if a query has a “pass” or “fail” state [60, 63, 108].

• Resource usage regions: queries can have distinct resource usage patterns. We
can observe this pattern for a query, and use it to assign a state [6, 45].

Assume that for each query x ∈ X, s(x) returns a y ∈ Y = R×Z+, with two types of
information: an objective value y0 and an state observation y1 indicating the region
assignment. We take the objective function to be f(y) = y0.

Model:

Instead of using a single black box model for the entire input space X we provide
a model that infers the distinct regions and learns a model for each. For the case
of two states, we can write the generative model for this as: c ∼ Bernoulli(·|C(x)),
y ∼ cM1(·|x) + (1− c)M2(·|x), where M1 and M2 are models for y|x (e.g. GP regres-
sion models) and C is a classification model (e.g. a Bayesian NN) that models the
probability of M1. We refer to this model as a switching model. This model could be
extended to more states. We show inference in this model in Fig. 39 (d). Compar-
ing this with a a GP (Fig. 39 (c)), we see that GP hyperparameter estimates can be
negatively impacted due to the nonsmooth landscape around region boundaries.

Empirical Results:

We demonstrate the switching model on the task of neural network architecture
and hyperparameter search [97, 212] with timeouts, where in each query we train a
network and return accuracy on a held out validation set. However, training must
finish within a given time threshold, or it times out, and instead returns a preset (low
accuracy) value. We optimize over multi-layer perceptron (MLP) neural networks,
where we represent each query as a vector x ∈ R4, where x = (number of layers,
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layer width, learning rate, and batch size). We train and validate each network
on the Pima Indians Diabetes Dataset [171]. Whenever training has not converged
within 60 seconds, the system times out and returns a fixed accuracy value of 30%.
We use a GP regression model for M1, and a Gaussian model (with mean and
variance latent variables) for M2. We compare ProBO with this switching model
against standard BO using GPs, plotting the maximum validation accuracy found
vs iteration n, averaged over 10 trials, in Fig. 39 (e)-(f).

8.5.2 Robust Models for Contaminated BO

Setting:

We may want to optimize a system that periodically yields “contaminated observa-
tions,” i.e. outliers drawn from a second noise distribution. Examples of this are
queries involving unstable simulations [116], or faulty computer systems [163]. This
is similar to the setting of Huber’s ε-contamination model [90], and we refer to this
as contaminated BO. The contaminating distribution may have some dependence on
input X (e.g. may be more prevalent in a window around the optimum value x∗).
Note that this differs from Sec. 8.5.1 because we do not have access to state obser-
vations, and the noise distributions are not in exclusive regions of X. To perform
accurate BO in this setting, we need models that are robust to the contamination
noise.

Model:

We develop a denoising model, which infers (and ignores) contaminated data points.
Given a system model Ms and contamination model Mc we write our denoising
model as y ∼ wsMs(·|zs; x) +wcMc(·|zc; x), where zs, zc ∼ Prior(·), and ws,wc ∼

Prior(·|x) (and where Prior denotes some appropriate prior density). This is a mix-
ture where weights (ws,wc) can depend on input x. We show inference in this
model in Fig. 40 (c)-(d).

Empirical Results:

We show experimental results for ProBO on a synthetic optimization task. This
allows us to know the true optimal value x∗ and objective f(s(x∗)), which may be
difficult to judge in real settings (given the contaminations), and to show results
under different contamination levels. For an x ∈ Rd, with probability 1 − p we
query the function f(x) = ‖x‖2 − 1

d

∑d
i=1 cos(xi), which has a minimum value of

f(x∗) = −1 at x∗ = 0d, and with probability p, we receive a contaminated value with
distribution f(x) ∼ Unif([fmax/10, fmax]), where fmax is maxx∈X f(x). We compare
ProBO using a denoising GP model with standard BO using GPs. We show results
for both a low contamination setting (p = .01) and a high contamination setting
(p = .33), in Fig. 40 (e)-(h), where we plot the minimal found value (under the
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BO with State Observations

(a) Data and true system mean (b) GP (on state 1 data only)
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Figure 39: BO with state observations (Sec. 8.5.1). We show (a) the true system, and inference
results on (b) a GP model fit on state 1 data only, (c) the same GP model fit on all
data, where hyperparameter estimates are badly influenced, and (d) our switch-
ing model fit on all data. In (e)-(f) we show results on the task of neural network
architecture and hyperparameter search with timeouts, comparing ProBO using
a switching model to BO using GPs. Curves are averaged over 10 trials, and error
bars represent one standard error.
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Contaminated BO

(a) GP (n = 20) (b) GP (n = 50)
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Figure 40: Contaminated BO (Sec. 8.5.2). We show (a) inference in a GP with n = 20 and (b)
n = 50, and (c) inference in a denoising GP with n = 20 and (d) n = 50.

noncontaminated model) fmin = mint6n f(yt) vs iteration n, averaged over 10 trials.
In the low contamination setting, both models converge to a near-optimal value and
perform similarly, while in the high contamination setting, ProBO with denoising
GP converges to a near optimal value while standard BO with GPs does not.

8.5.3 BO with Prior Structure on the Objective Function

Setting:

In some cases, we have prior knowledge about properties of the objective function,
such as trends with respect to x ∈ X. For example, consider the task of tuning
hyperparameters of a machine learning model, where the hyperparameters corre-
spond with model complexity. For datasets of moderate size, there are often two
distinct phases as model complexity grows: a phase where the model underfits,
where increasing modeling complexity reduces error on a held-out validation set;
and a phase where the model overfits, where validation error increases with respect
to model complexity. We can design a model that leverages trends such as these.
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Contaminated BO

(a) EI and UCB (p = .01) (b) PI and TS (p = .01)
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(c) EI and UCB (p = .33) (d) PI and TS (p = .33)
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Figure 41: Contaminated BO (Sec. 8.5.2). We show (e)-(f), for low corruption (p = .01), ProBO
using denoising GPs is competitive with standard BO using GP models. In (g)-
(h), for higher corruption (p = .33), ProBO converges to the optimal value while
standard BO does not, even as n grows. Curves are averaged over 10 trials, and
error bars represent one standard error.

Model:

We design a model for tuning model complexity, which we refer to as a basin model.
Let y ∼ N(R(x− µ;a,b) + c,σ2) where R(x;a,b) = aTReLU(x) + bTReLU(−x), with
priors on parameters µ ∈ Rd, a,b ∈ R+

d , c ∈ R, and σ2 > 0. This model captures
the inflection point with variable µ, and uses variables a and b to model the slope
of the optimization landscape above and below (respectively) µ. We give a one
dimensional view of validation error data from an example where x corresponds to
neural network layer width, and show inference with a basin model for this data in
Fig. 42 (b).

Empirical Results:

In this experiment, we optimize over the number of units (i.e. layer width) of the
hidden layers in a four layer MLP trained on the Wisconsin Breast Cancer Diagnosis
dataset [23]. We compare ProBO using a basin model, with standard BO using a GP.
We see in Fig 42 (c)-(d) that ProBO with the basin model can significantly outperform
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BO with Prior Structure on the Objective Function

(a) GP (b) Basin model
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Figure 42: Basin model for overfitting (Sec. 8.5.3). We plot validation accuracy vs layer width
for a small dataset, and show inference in (a) a GP and (b) our basin model. In
(c-d) we show results of model complexity hyperparameter tuning experiments,
comparing ProBO using a basin model with BO using GPs. Curves are averaged
over 10 trials, and error bars represent one standard error.

standard BO with GPs. In this optimization task, the landscape around the inflection
point (of under to over fitting) can be very steep, which may hurt the performance of
GP models. In contrast, the basin model can capture this shape and quickly identify
the inflection point via inferences about µ.

8.5.4 Multi-fidelity Acquisition Optimization

We empirically assess our multi-fidelity acquisition function optimization algorithm
(Sec. 8.4.5). Our goal is to demonstrate that increasing the fidelity M in black box ac-
quisitions can yield better performance in ProBO, and that our multi-fidelity method
(Alg. 17) maintains the performance of the high-fidelity acquisitions while reducing
the number of calls to post and gen. We perform an experiment in a two-fidelity set-
ting, where M ∈ {10, 1000}, and we apply aMF to EI and UCB, using a GP model and
the (non-corrupted) synthetic system described in Sec. 8.5.2. Results are shown in
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Multi-fidelity Acquisition Functions
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Figure 43: Results on aMF experiments (Sec. 8.5.4), showing (a)-(b) ProBO using aMF (Alg. 17)
vs using a fixed high-fidelity a (M = 1000) and a fixed low-fidelity a (M =

10). Here, aMF performs competitively with the high-fidelity a, while low fidelity
a performs worse. In (c) we show the average number of post/gen calls per
evaluation of a. We see that the aMF reduces the number of calls. Curves are
averaged over 10 trials, and error bars represent one standard error.

Fig. 43 (a)-(c), where we compare high-fidelity a (M = 1000), low-fidelity a (M = 10),
and multi-fidelity aMF, for EI and UCB acquisitions. For both, the high-fidelity
and multi-fidelity methods show comparable performance, while the low-fidelity
method performs worse. We also see in Fig. 43 (c) that the multi-fidelity method
reduces the number of calls to post/gen by a factor of 3, on average, relative to the
high fidelity method.

8.5.5 Structured Models for Multi-task and Contextual BO, and Model Ensembles

We may want to optimize multiple systems jointly, where there is some known rela-
tion between the systems. In some instances, we have a finite set of systems (multi-
task BO) and in some cases systems are each indexed by a context vector c ∈ Rd

(contextual BO). We develop a model that can incorporate prior structure about
the relationship among these systems. Our model warps a latent model based on
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Figure 44: Structured multi-task BO (Sec. 8.5.5). We show (a) independent GPs and (b) our
warp model, in a two-task setting (task one on top, task two on bottom). In (c) we
show results for structured multi-task BO on a neural network hyperparameter
search problem (details in Sec. 8.6). Curves are averaged over 10 trials, and error
bars represent one standard error.

context/task-specific parameters, so we call this a warp model. We show inference in
this model in Fig. 44 (b). In Sec. 8.6 we define this model, and describe experimental
results shown in Fig. 44 (c).

Alternatively, we may have multiple models that capture different aspects of a
system, or we may want to incorporate information given by, for instance, a para-
metric model (e.g. a model with a specific trend, shape, or specialty for a subset
of the data) into a nonparametric model (e.g. a GP, which is highly flexible, but
has fewer assumptions). To incorporate multiple sources of information or bring in
side information, we want a valid way to create ensembles of multiple PPL models.
We develop strategies to combine the posterior predictive densities of multiple PPL
models, using only our three PPL operations. We describe this in Sec. 8.7.
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8.6 structured models for multi-task and contextual bo

In this section we provide details about our models for multi-task and contextual
BO, described in Sec. 8.5.5 and shown in Fig. 44. Many prior methods have been
proposed for for multi-task BO [180] and contextual BO [105], though these often
focus on new acquisition strategies for GP models. Here we propose a model for
the case where we have some structured prior information about the relation be-
tween systems, or some parametric relationship that we want to incorporate into
our model.

We first consider the multi-task setting and then extend this to the contextual set-
ting. Suppose that we have T tasks (i.e. subsystems to optimize) with data subsets D
= {D1, . . . ,DT }, where Dt has data {xt,i,yt,i}

nt
i=1, and where nt denotes the number

of observations in the tth task. For each (xt,i,yt,i) pair within D, we have a latent
variable zt,i ∈ Z. Additionally, for each task t, we have task-specific latent “warp”
variables, denoted wt.

Given these, we define our warp model to be

1. For t = 1, . . . , T :

a) wt ∼ Prior(w)

b) For i = 1, . . . ,nt:
i. zt,i ∼ p(z|xt,i)

ii. yt,i ∼ p(y|zt,i, xt,i,wt)

We call p(z|xt,i) our latent model, and p(y|zt,i, xt,i,wt) our warp model, which is
parameterized by warp variables wt. Intuitively, we can think of the variables zt,i
as latent “unwarped” versions of observations yt,i, all in a single task. Likewise, we
can intuitively think of observed variables yt,i as “warped versions of zt,i”, where
wt dictates the warping for each subset of data Dt.

Task 1 (n1 = 7) Task 2 (n2 = 5)
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Figure 45: Warp model inference on tasks one (left) and two (right), where n1 = 7 and
n2 = 5. This warp model assumes a linear warp with respect to both the la-
tent variables z and inputs x. Posterior mean, posterior samples, and posterior
predictive distribution are shown.
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Task 1 (n1 = 7) Task 2 (n2 = 3)
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Figure 46: Warp model inference on tasks one (left) and two (right), where n1 = 7 and
n2 is reduced to n2 = 3. This warp model assumes a linear warp with respect
to both the latent variables z and inputs x. Posterior mean, posterior samples,
and posterior predictive distribution are shown. Here, we see more uncertainty
around the two removed points in task two, relative to Fig. 45.

We now give a concrete instantiation of this model. Let the latent model be
p(z|xt,i) = GP (µ(x),k(x, x ′)), i.e. we put a Gaussian process prior on the latent
variables z. For a given task, let the warping model for y be a linear function of both
z and x (with some added noise), where warping parameters w are parameters of
this linear model, i.e. yt,i ∼ w0 +w1xt,i +w2zt,i + ε.

Intuitively, this model assumes that there is a latent GP, which is warped via a
linear model of both the GP output z and input x to yield observations y for a given
task (and that there is a separate warp for each task). We illustrate this model in
Fig. 45 and 46 (where n1 = 7 in both, n2 = 5 in the former, and n2 = 3 in the
latter). As we remove points x in task two, we see more uncertainty in the posterior
predictive distribution at these points.

We can also extend this warp model for use in a contextual optimization setting,
where we want to jointly optimize over a set of systems each indexed by a context
vector c ∈ Rd. In practice, we observe the context ci for input xi ∈ X, and therefore
perform inference on a dataset Dn = {xi, ci,yi}ni=1.

To allow for this, we simply let our warp model also depend on c, i.e. let the
warp model be p(y|zt,i, xt,i,wt, ct,i). Intuitively, this model assumes that there is a
single latent system, which is warped by various factors (e.g. the context variables)
to produce observations.

8.6.1 Empirical Results

Here we describe the empirical results shown in Fig. 44 (c). We aim to perform
the neural architecture and hyperparameter search task from Sec. 8.5.1, but for two
different settings, each with a unique preset batch size. Based on prior observations,
we believe that the validation accuracy of both systems at a given query x can be
accurately modeled as a linear transformation of some common latent system, and
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we apply the warp model described above. We compare ProBO using this warp
model with a single GP model over the full space of tasks and inputs. We show
results in Fig. 44 (c), where we plot the best validation accuracy found over both tasks
vs iteration n. Both methods use the EI acquisition function, and we compare these
against a baseline that chooses queries uniformly at random. Here, ProBO with
the warp model is able to find a query with a better maximum validation accuracy,
relative to standard BO with GP model.

8.7 ensembles of ppl models within probo

We may have multiple models that capture different aspects of a system, or we may
want to incorporate information given by, for instance, a parametric PPL model (e.g.
a model with a specific trend, shape, or specialty for a subset of the data) into a
nonparametric PPL model (e.g. a GP, which is flexible, but has fewer assumptions).

To incorporate multiple sources of information or bring in side information, we
want a valid way to create ensembles of multiple models. Here, we develop a
method to combine the posterior predictive densities of multiple PPL models, us-
ing only our three PPL operations. Our procedure constructs a model similar to a
product of experts model [82], and we call our strategy a Bayesian product of experts
(BPoE). This model can then be used in our ProBO framework.

As an example, we show an ensemble of two models, M1 and M2, though this
could be extended to an arbitrarily large group of models. Assume M1 and M2 are
both plausible models for a dataset Dn = {(xi,yi)}ni=1.

Let M1 have likelihood p1(Dn|z1) =
∏n
i=1 p1(yi|z1; xi), where z1 ∈ Z1 are latent

variables with prior p1(z1). We define the joint model PDF for M1 to be p1(Dn, z1)
= p1(z1)

∏n
i=1 p1(yi|z1; xi). The posterior (conditional) PDF for M1 can then be

written p1(z1|Dn) = p1(Dn, z1)/p1(Dn). We can write the posterior predictive PDF
for M1 as

p1(y|Dn; x) = Ep1(z1|Dn) [p1(y|z1; x)] . (92)

Similarly, let M2 have likelihood p2(Dn|z2) =
∏n
i=1 p2(yi|z2; xi), where z2 ∈ Z2

are latent variables with prior PDF p2(z2). We define the joint model PDF for M2

to be p2(Dn, z2) = p2(z2)
∏n
i=1 p2(yi|z2; xi), the posterior (conditional) PDF to be

p2(z2|Dn) = p2(Dn, z2)/p2(Dn), and the posterior predictive PDF to be

p2(y|Dn; x) = Ep2(z2|Dn) [p2(y|z2; x)] . (93)

Note that z1 ∈ Z1 and z2 ∈ Z2 need not be in the same space nor related.
Given models M1 and M2, we define the Bayesian Product of Experts (BPoE)

ensemble model, Me, with latent variables z = (z1, z2) ∈ Z1 × Z2, to be the model
with posterior predictive density

p(y|Dn; x) ∝ p1(y|Dn; x)p2(y|Dn; x). (94)
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The posterior predictive PDF for the BPoE ensemble model Me is proportional to
the product of the posterior predictive PDFs of the constituent models M1 and M2.
Note that this uses the product of expert assumption [82] on y, which intuitively
means that p(y|Dn; x) is high where both p1(y|Dn; x) and p2(y|Dn; x) agree (i.e. an
“and” operation). Intuitively, this model gives a stronger posterior belief over y in
regions where both models have consensus, and weaker posterior belief over y in
regions given by only one (or neither) of the models.

Given this model, we need an algorithm for computing and using the posterior
predictive for Me within the ProBO framework. In our acquisition algorithms, we
use gen to generate samples from predictive distributions. We can integrate these
with combination algorithms from the embarrassingly parallel MCMC literature
[142, 145, 194] to develop an algorithm that generates samples from the posterior
predictive of the ensemble model Me and uses these in a new acquisition algorithm.
We give this procedure in Alg. 19, which introduces the ensemble operation. Note
that ensemble takes as input two operations gen1 and gen2 (assumed to be from two
PPL models), as well as two sets of M posterior samples zM1 and zM2 (assumed to
come from calls to post1 and post2 from the two PPL models). Also note that in
Alg. 19 we’ve used Combine(y1,y2) to denote a combination algorithm, which we
detail in Sec. 8.7.2.

We can now swap the ensemble operation in for the gen operation in Algs. 13-16.
Note that the BPoE allows us to easily ensemble models written in different PPLs.
For example, a hierarchical regression model written in Stan [38] using Hamiltonian
Monte Carlo for inference could be combined with a deep Bayesian neural network
written in Pyro [21] using variational inference and with a GP written in GPy [77]
using exact inference.

Algorithmus 19 : PPL model ensemble with BPoE, ensemble(x, gen1,
gen2, zM1 , zM2 ) from Neiswanger et al. [139]
Input : Inputs listed here.
Output : Outputs listed here.

1 for m = 1, . . . ,M do
2 s1, s2 ∼ Unif ({1, . . . ,M})

3 ỹ1,m ← gen1(x, z1,s1 , s1)
4 ỹ2,m ← gen2(x, z2,s2 , s2)

5 y1:M ← Combine(ỹ1,M, ỹ2,M)

6 Return y1:M.

8.7.1 Example: Combining Phase-Shift and GP Models.

We describe an example and illustrate it in Fig. 47. Suppose we expect a few phase
shifts in our input space X, which partition X into regions with uniform output. We
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can model this system with y ∼ N(y|
∑K
k=1 logistic(x;mk, sk,µk) + bk,σ2), where

latent variablesm1:K, s1:K, µ1:K, and b1:K are assigned appropriate priors, and where
logistic(x;m, s,µ) = m

1+exp(−s(x−µ)) . This model may accurately describe general
trends in the system, but it may be ultimately misspecified, and underfit as the
number of observations n grows.

Alternatively, we could model this system as a black box using a Gaussian process.
The GP posterior predictive may converge to the correct landscape given enough
data, but it is nonparametric, and does not encode our assumptions.

We can use the BPoE model to combine both the phase shift and GP models. We
see in Fig. 47 that when n = 2 (first row), the BPoE model resembles the phase shift
model, but when n = 50 (second row), it more closely resembles the true landscape
modeled by the GP.

Bayesian Product of Experts (BPoE) Ensemble Model
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Figure 47: Visualization of the Bayesian product of experts (BPoE) ensemble model (column
three) of a phase shift (PS) model (column one), defined in Sec. 8.7.1, and a GP
(column two). In the first row (n = 2), when n is small, the BPoE ensemble more
closely resembles the PS model. In the second row (n = 50), when n is larger,
the BPoE ensemble more closely resembles the GP model, and both accurately
reflect the true landscape (red dashed line). In all figures, the posterior predictive
is shown in gray.

8.7.2 Combination Algorithms for the ensemble Operation (Alg. 19)

We make use of combination algorithms from the embarrassingly parallel MCMC lit-
erature [142, 145, 194], to define the ensemble operation (Alg. 19) for use in applying
the ProBO framework to a BPoE model. We describe these combination algorithms
here in more detail.

For convenience, we describe these methods for two Bayesian models, M1 and
M2, though these methods apply similarly to an abitrarily large set of models.

The goal of these combination methods is to combine a set of M samples y1,1:M ∼

p1(y|Dn; x) from the posterior predictive distribution of a model M1, with a disjoint
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set of M samples y2,1:M ∼ p2(y|Dn; x) from the posterior predictive distribution of
a model M2, to produce samples

y3,1:M ∼ p(y|Dn; x) ∝ p1(y|Dn; x)p2(y|Dn; x), (95)

where p(y|Dn; x) denotes the posterior predictive distribution of a BPoE ensemble
model Me, with constituent models M1 and M2.

We use the notation Combine(y1,1:M,y2,1:M) to denote a combination algorithm.
We give a combination algorithm in Alg. 20 for our setting based on a combination
algorithm presented in [142].

Algorithmus 20 : Combine sample sets, Combine(y1,1:M,y2,1:M)) from
Neiswanger et al. [139]
Input : Inputs listed here.
Output : Outputs listed here.

1 t1, t2
iid
∼ Unif ({1, . . . ,M})

2 for i = 1, . . . ,M do

3 c1, c2
iid
∼ Unif ({1, . . . ,M})

4 u ∼ Unif ([0, 1])
5 if u >

w(c1 ,c2)

w(t1 ,t2)
then

6 t1 ← c1
7 t2 ← c2

8 y3,i ∼ N
(
ȳ(t1,t2),

i−1/2

2

)
9 Return y3,1:M.

We must define a couple of terms used in Alg. 20. The mean output ȳ(t1,t2), for
indices t1, t2 ∈ {1, . . . ,M}, is defined to be

ȳ(t1,t2) =
1

2
(y1,t1 + y2,t2) , (96)

and weights w(t1,t2) (alternatively, w(c1,c2)), for indices t1, t2 ∈ {1, . . . ,M}, are de-
fined to be

w(t1,t2) = N
(
y1,t1 |ȳ(t1,t2), i

−1/2
)
N
(
y2,t2 |ȳ(t1,t2), i

−1/2
)

. (97)

Note that this Combine(y1,1:M,y2,1:M) algorithm (Alg. 20) holds for sample sets
from two arbitrary posterior predictive distributions p1(y|Dn; x) and p2(y|Dn; x),
without any parametric assumptions such as Gaussianity.

8.8 conclusion

In this chapter we presented ProBO, a system for performing Bayesian optimization
using models from any probabilistic programming language. We developed algo-
rithms to compute acquisition functions using common PPL operations (without
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requiring model-specific derivations), and showed how to efficiently optimize these
functions. We presented a few models for challenging optimization scenarios, and
we demonstrated promising empirical results on the tasks of BO with state obser-
vations, contaminated BO, BO with prior structure on the objective function, and
structured multi-task BO, where we were able to drop-in models from existing PPL
implementations.
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C O N C L U S I O N

9.1 summary

In this thesis, we began by summarizing advantages and relevant use cases for proba-
bilistic modeling, discussed a few broad classes of models and inference algorithms,
and introduced new probabilistic models for text, network, and visual data. We
then described post-inference methods for scalable computation in distributed and
sequential data settings, efficient incorporation of and inference with complex prior
information, and automated use of diverse inference results in downstream applica-
tions, where we focused on the task of model-based sequential decision making and
optimization.

When developing methods in this thesis, we aimed to target the following challenges
and problem settings.

• Big data. Large datasets can increase the cost of many common approximate
inference procedures, such as Markov chain Monte Carlo (MCMC) and vari-
ational inference (VI), and may increase the time needed to produce a valid
posterior approximation in probabilistic models.

• Distributed data. Data may be collected, processed, or stored by a collection
of agents. For example, data might be split onto multiple machines due to its
large size, or kept separate due to privacy concerns. In addition to distributed
data, we may also work in a streaming data setting, where data is processed
by multiple machines but never stored.

• Multiple inferences. We may wish to carry out multiple related inferences in
an efficient manner. An example of this is sequential inference, where we wish
to perform inference over multiple time steps, where data is added at each
time step. Another example is the task of prior sensitivity analysis, where we
wish to carry out multiple inferences to see how results change under different
prior assumptions.

• Incorporating structure. It may be challenging to incorporate complex struc-
ture into probabilistic modeling and inference procedures. For example, it may
be more costly to perform inference in models with complex prior structure (or
restrict the types of inference algorithms that can be applied), and it may be
difficult to use structured models with complex posterior representations in
downstream applications.

165
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• Automating procedures. We would like to have procedures or software frame-
works that allow for efficient and automatic inference in the above problem
settings, in a wide range of probabilistic models, and that allow for a wide
range of inference algorithms. We also would like to be able to automatically
use the variety of possible inference results effectively in downstream applica-
tions.

In Part 1 of this thesis, we developed probabilistic models for text, network, and
video data, and derived approximate sampling-based inference algorithms for these
models. In Chapter 2, we introduced the latent random offset (LRO) model for
link prediction in citation networks, and described an optimization strategy to learn
MAP point estimates for latent variables in this model. In Chapter 3, we intro-
duced the dependent Dirichlet process mixture of objects (DDPMO) for unsuper-
vised detection-free tracking and object modeling in videos, and described online
inference algorithms for this model using sequential Monte Carlo (SMC) and parti-
cle Markov chain Monte Carlo (PMCMC) strategies.

In Part 2, we presented algorithms for scalable approximate inference on big data
and in data distributed settings. In Chapter 4, we introduced methods for embar-
rassingly parallel Markov chain Monte Carlo (EP-MCMC), and described algorithms
for performing parallel inference using nonparametric and semiparametric density
estimation. In Chapter 5, we introduced methods for embarrassingly parallel varia-
tional inference (EP-VI), and for low-communication black box variational inference
(BBVI). In Chapter 6, we described methods for embarrassingly parallel inference
in quasi-ergodic settings, where parallel MCMC chains might only explore a single
mode of the posterior, and in dependent models or models with local latent vari-
ables.

In Part 3, we focused on methods that allow for the incorporation of structure:
either prior structure in models, or model structure in model-based sequential deci-
sion making and optimization procedures. In Chapter 7, we introduced methods for
prior swapping that aim to allow for efficient incorporation of potentially complex
prior information. These methods also allow for efficient prior sensitivity analy-
sis, where we can more-quickly assess how our inference results change given a
set of different prior assumptions, and provide benefits to help improve embarrass-
ingly parallel inference when the number of data partitions is unknown and for use
in a sequential inference setting. In Chapter 8, we introduced methods to help al-
low arbitrary probabilistic models, defined via probabilistic programming languages
(PPLs), to be used in Bayesian optimization and other sequential decision making
procedures, and developed a system (ProBO) to carry this out in a more automated
fashion.
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9.2 future research directions

In this section, we describe a few extensions to the work performed in this thesis,
which may make for interesting future research directions.

9.2.1 Embarrassingly Parallel Inference for Additional Latent Variable Types

Embarrassingly parallel inference methods involve applying combination algorithms
to the results of inference procedures, such as MCMC or VI algorithms. The combi-
nation algorithms presented in this thesis focused on continuous, unbounded latent
variables, such as those in Rd space. One potential future direction is to extend
these parallel inference strategies to latent variables in discrete, integral, constrained
continuous, and other spaces. For example, in some popular latent variable models,
we infer posterior distributions that are defined over some d-dimensional simplex.
We’d like to develop procedures that allow us to use embarrassingly parallel infer-
ence methods in these model settings.

9.2.2 Randomized Algorithms for Minimizing Combination Communication in Embarrass-
ingly Parallel Inference

While many of the embarrassingly parallel inference methods discussed in this the-
sis provide strategies to combine the local posterior approximations, there has been
little focus on developing efficient methods for disseminating these local representa-
tions throughout a collection of machines or distributed agents. In the future, we’d
like to use tools from randomized information dissemination (e.g. network cod-
ing gossip) protocols to spread the local inference results throughout a collection of
machines in a scalable manner as the number of machines in the collection grows.
We also hope to integrate the different combination algorithms into this dissemina-
tion procedure. Overall, we hope that this strategy can reduce both the amount
of information that must be communicated to perform the combination step in em-
barrassingly parallel inference, as well as the amount of total computation needed
for the combinations, all while making the combination procedure more robust to
machine or communication failures.

9.2.3 Incorporating Test Functions of Interest into Embarrassingly Parallel Inference

A chief goal of sample-based inference is to compute an approximation of the poste-
rior expectation of a test function h, i.e. Ep(θ|xn) [h(θ)], using a Monte Carlo estimate.
If we know, in advance of inference, information about the test function of interest,
we can incorporate this information into our embarrassingly parallel inference meth-
ods in order to improve the quality of these methods for the given test function. For
example, one possible strategy is to use importance sampling methods to compute
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weights for each sample from the combined full data posterior estimate, which al-
lows for weighted-sample-based estimates of expectations with respect to this full
posterior. We hope to also take this into account during the subposterior inference
phase, and develop procedures that more quickly converge to accurate estimates for
a given test function.

9.2.4 Local Posterior Revisions

We have many procedures that make or leverage approximations to either the full
posterior or some local posterior. The performances of many of the post-inference
methods described in this thesis are determined by the quality of these posterior
approximations. There are many cases where a posterior inference algorithm will
return some approximate posterior, and it may be beneficial to develop methods
that can characterize, and then improve, the quality of these returned posterior in-
ference results. For example, these methods could aim to improve the quality of
the posterior approximation in some local region of the parameter space. In some
cases, improving the posterior approximation in certain local regions can yield large
improvements on the performance of the post-inference methods. One instance of
this is in embarrassingly parallel inference methods, where improving the approxi-
mation accuracy for each subposterior in the region where the subposterior product
has high mass can greatly increase the accuracy of the subsequent combination pro-
cedure. Furthermore, we aim to develop these methods with a focus on scalable
computation, developing procedures that can be run in parallel, and with minimal
communication in a distributed environment.

9.2.5 VI-Specific Prior Swapping

In this thesis, we have described how to run prior swapping procedures (from Chap-
ter 7) on any false posterior PDF, which can include a false posterior approximation
computed via variational inference. In this case, the false posterior approximation
is a member of a variational family that minimizes the KL divergence to the false
posterior PDF. Suppose we run our prior swapping procedure on this false posterior
approximation, which yields some target posterior approximation. We would like
to guarantee that, given this procedure, the resulting approximate target posterior
also minimizes some distance (ideally, the KL divergence as is typically used in vari-
ational inference) between the prior swapping approximate posterior result and the
target posterior.

9.2.6 Simulator-based Models in Sequential Decision Making and Optimization

Universal probabilistic programming languages [112, 121, 202] allow for the devel-
opment of models defined by arbitrary forward simulators, and aim to provide auto-
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matic inference for these models. They comprise a very broad class of models, and
have the potential to incorporate sophisticated custom-built simulations of a broad
array of systems. We think there may be the potential for running ProBO [138]
(Chapter 8) with models involving complex simulators of real world phenomena,
and that this simulation-guided Bayesian optimization is an interesting avenue for
future work.

9.2.7 Implementation and Software Release

probabilistic programming implementation We plan to implement post-
inference methods for efficient and scalable inference, such as embarrassingly paral-
lel inference and prior swapping, in probabilistic programming frameworks. These
frameworks aim to allow for Bayesian inference in an automatic fashion, with very
little derivation on the part of the user. Examples of frameworks that allow for auto-
mated Bayesian inference include Stan [38], Edward [186], PyMC3 [161], and many
others. Typically, the user must only specify the form of the model and the type of
inference algorithm they wish to use. Many of these frameworks have predefined
routines for MCMC and VI (and stochastic gradient versions of these algorithms).
We aim to implement our post-inference methods in these probabilistic program-
ming frameworks, using the predefined and black box inference routines, to allow
for automatic deployment of our methods.

embarrassingly parallel bayes We are developing a package for embar-
rassingly parallel inference and prior swapping as open source software, and it will
be available at https://github.com/willieneis/embarrassingly-parallel-bayes.

probo We are developing ProBO as open source software, and it will be available
at https://github.com/willieneis/ProBO.

https://github.com/willieneis/embarrassingly-parallel-bayes
https://github.com/willieneis/ProBO
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