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Abstract

One of the fundamental problems in machine learning and statistics is learn-
ing generative models of data. Explicit generative models, which model proba-
bility densities of data, have been intensively studied in numerous applications.
However, it is usually difficult to model complex data, such as natural im-
ages, by using combinations of simple parametric distributions. Implicit gen-
erative models (IGMs), which model transformations between known source
distributions and target distributions to simulate the sampling process without
specifying densities explicitly, regain its attention with explosion of interests.
With recent success of deep learning, IGMs have yielded impressive empirical
performance in different applications.

While there are new algorithms for learning IGMs, its theoretical properties
are weakly justified and their relationships with existing methods are underex-
plored. The first thrust of this thesis is to understand statistical guarantees of
learning IGMs. By connecting IGMs with two-sample test, we propose a new
generic algorithm that can be built on the top of many existing approaches
and bring performance improvement over the state-of-the-art. On the other
hand, from the perspective of statistical analysis, IGMs, which model trans-
formations, is fundamentally different from traditional explicit models, which
makes the existing results not directly applicable. We then study error bounds
and sample complexities of learning IGMs taking a step forward in building its
rigorous foundations.

In the second part, we shift our focus to different types of data that we are
interested in. We develop algorithms for learning IGMs on various data ranging
from images, text, to point clouds, by exploiting their underlying structures.
Instead of modeling IGM transformations blindly via powerful functions only,
such as deep neural networks, we propose to leverage human priors into algo-
rithm designs to reduce model sizes, save computational overhead, and achieve
interpretable results. In this thesis, we show an example of incorporating a
simple yet fairly representative renderer developed in computer graphics into
IGM transformations for generating realistic and highly structured body data,
which paves a new path of learning IGMs.

Finally, we study how IGMs can improve existing machine learning algo-
rithms. From its nature of modeling sampling processes, we propose learning
powerful kernels via Fourier analysis and IGM sampling. By thinking IGMs as
learning transformations, we extend IGMs to broader applications in different
domains. In the second example, we present how to learn proximal operators
as IGM transformations to solve important linear inverse problems in computer
vision. Lastly, we introduce a new way of using IGMs by treating them as aux-
iliary components to benefit non-generative tasks while the final output of the
interest is not the generative models. We present an application of optimizing
test power in anomaly detection by constructing a lower bound of test power
via auxiliary IGMs.
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Chapter 1

Introduction

In machine learning and statistics, the heart of unsupervised learning lies in learning gener-
ative models that describes probabilistic distributions of data. Learning generative models
has demonstrated success in various applications, including but not limited to image pro-
cessing (Isola et al., 2017; Ledig et al., 2017), science simulation (Louppe and Cranmer,
2019), chemical design (Kusner et al., 2017), anomaly detection (Chang et al., 2019) and
art creation (Elgammal et al., 2017). Learning good generative models also benefits other
major tasks in machine learning, for example, data augmentation in supervised and semi-
supervised learning (Salimans et al., 2016), data imputation in unsupervised learning (Yoon
et al., 2018), planning (Finn and Levine, 2017) in reinforcement learning.

There are two categories of generative models, prescribed (explicit) and implicit mod-
els (Diggle and Gratton, 1984). Explicit generative models explicitly model densities of
underlying distributions, which are widely studied in last decades. Take a coin-toss as an
example. The outcome could be modeled by a Bernoulli distribution. In Bayesian statis-
tics, graphical models (Bishop, 2006; Koller et al., 2009) are widely studied with different
mixture and hierarchical structures, where each building component is modeled by some
parametric distributions. However, using combinations of simple parametric distributions
to model densities, does not have much success in modeling complex, structured and high
dimensional data, such as natural images. In non-parametric statistics, kernel density esti-
mation (Tsybakov, 2009; Wasserman, 2013) only assumes limited smoothness for modeling
data density, but it usually suffers from the curse of dimensionality in practice.

In many applications, we are actually interested in sampling from the distribution
instead of measuring the density. The other category of generative model is implicit gen-
erative models (IGMs), which models the sampling process of underlying distributions. In
the coin-toss example, from physics, the outcome is determined by every initial conditions
(e.g. environments, impulse, angles). The randomness does not originate from the Bernoulli
distribution but from the randomness of those initializations (Diaconis et al., 2007; Keller,
1986). The physics system transforms these randomness into coin-toss outcomes by fol-
lowing the laws of physics. Inspired by the idea, IGMs simulate the sampling by using a
transformation to map a prior randomness into the data of interest. Those generative
models also have deep connections with other fields, including molecular biology (Pritchard
et al., 1999), statistical physics (Anelli et al., 2008), and ecology (Beaumont, 2010). Using
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neural networks to model those transformations for (implicit) generative models can be
dated back to Bishop et al. (1998); Diggle and Gratton (1984); MacKay (1995). It re-
gains attentions because of recent breakthroughs in deep learning (Goodfellow et al., 2014;
Kingma and Welling, 2013; Mohamed and Lakshminarayanan, 2016) and the successful
applications aforementioned.

1.1 Implicit Generative Model: Generative Models

using Transformations

In the aforementioned coin-toss example, we can treat the sampling process as a trans-
formation process which transforms the randomness of environments into the outcome.
Implicit Generative Models (IGMs) (MacKay, 1995; Mohamed and Lakshminarayanan,
2016) follow this idea to simulate the sampling process by modeling a deterministic func-
tion to transform an initial randomness such that the transformed samples follow the target
distribution.

Formally, assume we are given data {xi}ni=1, where xi ∈ X and xi ∼ PX , we are
interested in sampling from PX . Instead of estimating the density of PX , IGMs train a
generator gθ parameterized by θ to transform samples z ∼ PZ , where z ∈ Z is a base
distribution, into gθ(z) ∼ Qθ such that Qθ ≈ PX . The only requirement of PZ is we can
easily draw samples from. We can roughly categorize PZ into three types.
• The first choice of PZ is a known parametric distribution, such as Gaussian and

uniform distributions. In this case, we usually call PZ as noise or initial randomness.
The transformation gθ is mapping noise into data.

• In addition to using Gaussian distributions as PZ , we can use domain-specific priors
as base distributions to ease the difficulty of learning desirable transformations, which
can be treated as transforming priors into data.

• To draw samples from PZ , the density of PZ is not necessary required if we have
enough many samples from PZ . For example, in image translations, it only requires
the access to the source images instead of knowing the image distributions. In this
case, we learn a data to data transformation, which learns to adapt from one domain
to the other.

In this thesis, we study generative models using different transformations for different
source PZ and target PX pairs for various applications, by leveraging structures and priors
of data with mathematical analysis.

1.1.1 Example: Probability Integral Transformation

Assume X is a continuous univariate random variable following a distribution PX , where
its CDF FX is strictly increasing, we have F−1

X (Z) ∼ PX , where Z ∼ PZ and PZ is an
uniform distribution over [0, 1] (Casella and Berger, 2002). With continuous and invert-
ible assumptions on FX , F−1

X exists. Therefore, a general algorithm for sampling from a
distribution PX can be done by
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1. sampling from a uniform distribution Z and

2. applying the transformation F−1
X on the samples.

The above example can be treated as an IGM, where PZ is the base distribution and F−1
X

is the desired transformation function. Although the analytical form of F−1
X may not exist

(e.g. Gaussian distribution), we can use powerful functions to approximate it numerically,
such as neural networks (Zaheer et al., 2017b). We note that there are extensions of
the probability integral transformation on none-strictly increasing CDF and multivariate
random variables. We refer interested readers to Casella and Berger (2002); Genest and
Rivest (2001).

1.1.2 Connections with Explicit Generative Models

We remark that although the idea of IGMs is focusing on learning transformation functions
for sampling, IGMs are not conflict with modeling densities of distributions. In variational
auto-encoder (VAE), the probability is assigned via a smoothing function on each sam-
ple (Kingma and Welling, 2013; Rezende et al., 2014). In flow-based models (Dinh et al.,
2014, 2016; Kingma and Dhariwal, 2018), with an invertible transformation function, the
probability can be derived via the change of variable theorem.

1.2 Our Goals

Although generative models have been extensively studied in the era of explicit models, by
using powerful functions (e.g. deep neural networks) to model underlying transformations,
IGMs lead to new research questions:

• With different designs and mechanisms, what are the algorithms for IGMs and what
are the theoretical guarantees of learning sampling processes compared with tradi-
tional explicit models?

• With recent developments of neural networks, which provide powerful and expressive
transformations for IGMs, what are the new applications?

This thesis studies learning implicit generative models in a broad spectrum as a first
step toward solving new challenges. We focuses on advancing learning implicit generative
models in the following directions:

• Design via Mathematical Analysis: The first goal of this thesis focuses on ad-
vancing the understanding of learning sampling via an IGM transformation from a
statistical perspective to improve existing algorithms. In particular, we study the
connection between modern deep IGMs, two-sample test, and kernel learning. It
leads to a new generic IGM algorithm without much assumptions of data, MMD
GAN, with theoretical guarantees and opens a new research direction of IGMs. We
then dive deeper to study IGMs by conducting statistical analysis. We bound the
sample complexities and errors under different smoothness assumptions, which pro-
vide a rigorous foundation of learning IGMs.
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• Leverage Underlying Structures and Priors of Data: We study how to learn
IGMs from different types of data and how to learn transformations between different
modalities by leveraging our understanding of the structures of data, including the
Markov assumption of languages and permutation invariance of 3D point clouds. On
the other hand, in addition to taking structures in to account for algorithm designs,
we explore how to encode human prior knowledges into IGMs with an explicit way for
not only efficient and effective learning algorithms but also interpretable generative
models. We present a successful example of incorporating differentiable renders into
IGM transformations for generating highly-structured human body point clouds. The
proposed approach has rich connections with existing problems in computer graphics,
including pose estimation, corrective modeling and correspondence finding.

• Find the Properties of Applications: There are important yet straightforward
applications of generative models, from language models to image generations. We
explore new applications of using IGMs. In the first example, we revisit the random
Fourier features of kernels. We learn the sampling process of an implicit spectral
density, which leads to powerful kernels in different applications. In the second
example, we learn proximal operators as a transformation via IGMs for solving linear
inverse problems. In the last example, we propose to learn an auxiliary IGM to
construct a lower bound for optimizing test power of hypothesis test.

1.3 Thesis Overview

This thesis contains selections of my works on addressing aforementioned issues of learning
IGMs, which consists of three parts. Next, we give an overview of this thesis.

Part I: Learning Implicit Generative Models. The fundamental problem of learning
IGMs is to define proper distance between distributions. In the first part, we present
the study of probability distances for learning implicit generative models with limited
assumptions on the data. We propose practical data-agnostic algorithms and conduct
statistical analysis.

• In Chapter 2, we revisit classical two-sample test in statistics and introduce its con-
nection with learning IGMs. From this perspective, we propose a generic algorithm
MMD GAN (Li et al., 2017) without much assumptions of data, which can be built
on the top of most existing GAN algorithms with improvements brought by the tools
developed for two-sample test, maximum mean discrepancy (Gretton et al., 2012a).

• In Chapter 3, we generalize many widely used probability distances in learning IGMs
as adversarial loss (Singh et al., 2018). We study the sample complexities and error
bounds of nonparametric density estimation under a large class of adversarial loss
functions with different assumed smoothness of the underlying density. In the end, we
discuss how we can bring the analysis for adversarial density estimations to learning
IGMs.
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Part II: Implicit Generative Models by Leveraging Structures and Priors of
Data. In the second part, we study how to learn IGMs on different data types. We
answer three questions (1) how to design IGMs algorithms by leveraging our assumptions
into objective formulations (2) how to design IGM algorithms which satisfies the structures
of the data and (3) how to encode our knowledge of data as human priors into IGMs in an
explicit way for better quality of generations.

• In Chapter 4, we propose Sobolev IPM (Mroueh et al., 2018), an objective for learn-
ing IGMs. We show that Sobolev IPM encourages leave-one-out (LOO) conditional
distribution matching, which meets the standard assumption in language structures
and has advantage in text generation. We further draw the connection between the
proposed Sobolev IPM, transportation plan and Fokker-Planck Diffusion.

• In Chapter 5, we propose a framework by combining the hierarchical Bayesian mod-
eling and IGMs to learn a hierarchical and interpretable sampling process for point
clouds (Li et al., 2018). We further propose a sandwiching objective, which results
in a tighter Wasserstein distance estimator than the commonly used estimator based
on the dual of Wasserstein distance.

• In Chapter 6, we take a closer look at a special category of point clouds, body point
clouds, which is known to be highly structured because of complex human poses
and various body types. We demonstrate how to incorporate a linear-blend skinning
(LBS) into the transformation pipeline of IGMs as a powerful prior (Li et al., 2019b).
LBS encodes our knowledges of bodies via a body template describing the geome-
try and the hierarchy of skeletons which defines rigged transformations. With this
expressive and interpretable prior, leaning IGMs has strong connections with model
registrations and shape corrective compensations in computer graphics. The learned
IGM can simultaneously solve important problems, including pose estimations and
correspondence findings without external labeling. Thereby, the proposed IGM also
bridges generative models and deep geometry learning.

Part III: Improvements from Implicit Generative Models In the third part, in
addition to typical generation tasks for different types of data, we present different examples
of how IGM can boost existing algorithms in different applications. The first example
presents how to reduce problems into finite-sample estimations, which can be learned via
IGMs. The second example shows how to replace core component of existing algorithms
with IGMs to better adapt to the data. The third example, we demonstrate how to create
auxiliary components via IGMs to improve performance.

• In addition to using kernel methods to learn IGMs, IGMs can be used to improve
kernel learning (Li et al., 2019a) as well. Via standard random Fourier features, kernel
evaluations can estimated via finite samples from a certain spectral distribution. In
Chapter 7, we introduce powerful IGM kernels by modeling the sampling process of
the spectral distribution via IGMs to better accommodate to the data.

• The second example presented in Chapter 8 is using iterative algorithms (e.g. ADMM)
to solve linear inverse problems in computer vision. The heart of those algorithms is
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the proximal operation in every iteration. Instead of hand-crafting projection steps,
we learn the proximal operations via the transformation in IGMs (Chang et al.,
2017a). The data-driven transformation outperforms traditional human-designed
proximal operators.

• In Chapter 9, we study time-series change point detection. One commonly used
algorithm is hypothesis test with test power maximization. We show a perturbed
distribution learned via IGMs can be used to construct a power lower bound for
optimization, which leads to more effective hypothesis test (Chang et al., 2019).
Different from most of the existing algorithms, where the target of interest is the
generative model, we show a different use of IGM which learns auxiliary generative
models to benefit non-generative tasks.

Part IV: Conclusion Finally, we summarize this thesis in Chapter 10, and discuss the
open problems for future research.
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Part I

Learning Implicit Generative Models
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Chapter 2

MMD GAN: Implicit Generative
Models and Two-Sample Test

Modeling arbitrary density is a statistically challenging task (Wasserman, 2013). In many
applications, however, accurate density estimation is not necessary since we are only in-
terested in sampling from the approximated distribution. Rather than estimating the
density of PX , IGMs start from a base distribution PZ over Z (e.g. Gaussian distribution),
then trains a transformation function gθ such that Qθ ≈ PX , where Qθ is the underlying
distribution of gθ(z) and z ∼ PZ .

To learn a powerful transformation for sampling, the core problem is to define a distance
D(PX‖Qθ) between Qθ and PX if we can only access samples from these two distributions.
We then train gθ by optimizing the defined distance. Generative Adversarial Network
(GAN) (Goodfellow et al., 2014) trains an auxiliary network fφ to estimate the distance
between PX and Qθ. In GAN, fφ is a simple binary classifier. Therefore, fφ is usually
called as discriminator or critic in literature. The defined distance via a binary classi-
fier is the dual form of Jensen-Shannon divergence. Using auxiliary nerual networks to
estimate different distances for training GAN have been widely studied. The extension
of Goodfellow et al. (2014) is using f -divergence (Mao et al., 2017; Nowozin et al., 2016).
The counterpart of f -divergence, Integral probability metrics (IPM) (Müller, 1997) based
GANs, are also extensively studied, including total variation (Zhao et al., 2017) Wasser-
stain distance (Arjovsky and Bottou, 2017; Arjovsky et al., 2017; Gulrajani et al., 2017),
Cramer distance (Bellemare et al., 2017), and Fisher IPM (Mroueh and Sercu, 2017). The
aforementioned works are all based on the dual of either f -divergence or IPM. Since learn-
ing with dual loss usually results in a minmax objective, it is also called adversarial loss.
In addition the dual loss, learning IGMs in primal has also been proposed (Genevay et al.,
2018; Kingma and Welling, 2013; Makhzani et al., 2015; Tolstikhin et al., 2017a).

In this chapter, we focus on training IGMs by optimizing kernel maximum mean dis-
crepancy (MMD), which is also an IPM-based distance (Gretton et al., 2012a). The pre-
liminary works have been done by Dziugaite et al. (2015); Li et al. (2015b). In this thesis,
we extend Dziugaite et al. (2015); Li et al. (2015b) and draw a deeper connection between
IGMs, two-sample test, kernel learning and adversarial training. The presented results are
based on Li et al. (2017).
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2.1 IGM and Two-Sample Test

Assume we are given data {xi}ni=1, where xi ∈ X and xi ∼ PX . Generative Adversarial
Network (GAN) (Goodfellow et al., 2014) learns a generator gθ parameterized by θ to
transform samples z ∼ PZ , where z ∈ Z, into gθ(z) ∼ Qθ such that Qθ ≈ PX . To measure
the distance D(PX‖Qθ) between PX and Qθ via their samples {x}ni=1 and {gθ(zj)}nj=1 during
the training, GAN trains a discriminator fφ parameterized by φ, which is a binary classifier,
for help. During the training, fφ tries to distinguish xi and gθ(zj) as a proxy for measuring
the distance. If {xi} and {gθ(zj)} are easily distinguished by the classifier, the distance
D(PX‖Qθ) should be high, and vice versa. Therefore, the problem can be formulated by a
minmax optimization:

min
θ

max
φ

EPX [log fφ(x)] + EPZ [log(1− fφ(gθ(z)))], (2.1)

where the inner maximization is the maximum likelihood for binary classification and serves
as D(PX‖Qθ).

On the other hand, distinguishing two distributions by finite samples is known as Two-
Sample Test in statistics. One way to conduct two-sample test is via kernel maximum
mean discrepancy (MMD) (Gretton et al., 2012a). Given two distributions P and Q, and
a kernel k, the square of MMD distance is defined as

Mk(P,Q) = ‖µP − µQ‖2
H = EP,P[k(x, x′)]− 2EP,Q[k(x, y)] + EQ,Q[k(y, y′)].

Theorem 1. (Gretton et al., 2012a) Given a kernel k, if k is a characteristic kernel, then
Mk(P,Q) = 0 iff P = Q.

One example of characteristic kernel is Gaussian kernel k(x, x′) = exp(‖x−x′‖2). Based
on Theorem 1, Dziugaite et al. (2015); Li et al. (2015b) propose the Generative Moment-
Matching Network (GMMN), which uses Mk(PX ,Qθ) as D(PX‖Qθ) and trains gθ by

min
θ
Mk(PX ,Qθ), (2.2)

with a fixed Gaussian kernel k rather than training an additional discriminator f as GAN.
Although GMMN is easy to train without solving a minmax optimization as Eq. (2.1), the
empirical performance is not satisfactory as we show in Figure 2.1.

2.1.1 MMD with Kernel Learning

In practice we use finite samples from distributions to estimate MMD distance. Given
X = {x1, · · · , xn} ∼ P and Y = {y1, · · · , yn} ∼ Q, one estimator of Mk(P,Q) is

M̂k(X, Y ) =
1(
n
2

)
∑

i 6=i′
k(xi, x

′
i)−

2(
n
2

)
∑

i 6=j

k(xi, yj) +
1(
n
2

)
∑

j 6=j′
k(yj, y

′
j).

Because of the sampling variance, M̂(X, Y ) may not be zero even when P = Q. We then
conduct hypothesis test with null hypothesis H0 : P = Q. For a given allowable probability
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of false rejection α, we can only reject H0, which implies P 6= Q, if M̂(X, Y ) > cα for some
chosen threshold cα > 0. Otherwise, Q passes the test and Q is indistinguishable from P
under this test. Please refer to Gretton et al. (2012a) for more details.

Intuitively, if kernel k cannot result in high MMD distance Mk(P,Q) when P 6= Q,
M̂k(P,Q) has more chance to be smaller than cα. Then we are unlikely to reject the
null hypothesis H0 with finite samples, which implies Q is not distinguishable from P.
Therefore, instead of training gθ via Eq. (2.2) with a pre-specified kernel k as GMMN, we
consider training gθ via

min
θ

max
k∈K

Mk(PX ,Qθ), (2.3)

which takes different possible characteristic kernels k ∈ K into account. On the other
hand, we could also view Eq. (2.3) as replacing the fixed kernel k in Eq. (2.2) with the
adversarially learned kernel via kernel learning arg maxk∈KMk(PX ,Qθ) to have stronger
signals where PX 6= Qθ to train gθ. We refer interested readers to Fukumizu et al. (2009)
for more rigorous discussions about test power and increasing MMD distances.

However, it is difficult to optimize over all characteristic kernels when we solve Eq. (2.3).
By Gretton et al. (2012a,c) if f is a injective function and k is characteristic, then the
resulted kernel k ◦ f = k(f(x), f(x′)) is still characteristic. If we have a family of injective
functions parameterized by φ, which is denoted as fφ, we are able to change the objective
to be

min
θ

max
φ

Mk◦fφ(PX ,Qθ). (2.4)

An example parameterization is combining Gaussian kernels with injective functions fφ,
where kφ(x, x′) = exp(−‖fφ(x)−fφ(x)′‖2). If the function class of f is {fφ|fφ(x) = φx, φ >
0}, which is equivalent to the kernel bandwidth tuning. A more advanced realization
will be discussed in Section 2.2. Next, we abuse the notation Mφ(P,Q) to be the MMD
distance given the composition kernel of Gaussian kernel and fφ in the following. Note
that Gretton et al. (2012b) consider a linear combination of characteristic kernels, which
can also be incorporated into the discussed composition kernels. More general kernels are
studied by Wilson et al. (2016), and we leave the detailed discussion in Chapter 7.

2.1.2 Properties of MMD with Kernel Learning

Arjovsky et al. (2017) discuss different distances between distributions adopted by existing
deep learning algorithms, and show many of them are discontinuous, such as Jensen-
Shannon divergence (Goodfellow et al., 2014) and Total variation (Zhao et al., 2017),
except for Wasserstein distance. The discontinuity makes the gradient descent infeasible
for training. From Eq. (2.4), we train gθ via minimizing maxφMφ(PX ,Qθ), which can be
treated as a distance in a variational form. Next, we show maxφMφ(PX ,Qθ) also enjoys
several advantages under mild assumptions.

Assumption 2. g : Z×Rm → X is locally Lipschitz, where Z ⊆ Rd. We will denote gθ(z)
the evaluation on (z, θ) for convenience. Given Lipschitz fφ and a probability distribution
Pz over Z, g satisfies Assumption 2 if there are local Lipschitz constants L(θ, z) for fφ ◦ g,
which is independent of φ, such that Ez∼Pz [L(θ, z)] < +∞.
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Theorem 3. The generator function gθ parameterized by θ is under Assumption 2. Let PX
be a fixed distribution over X and Z be a random variable over the space Z. We denote
Qθ the distribution of gθ(Z), then maxφMφ(PX ,Qθ) is continuous everywhere and differ-
entiable almost everywhere in θ.

If gθ is parameterized by a feed-forward neural network, it satisfies Assumption 2 and
can be trained via gradient descent as well as propagation, since the objective is continuous
and differentiable followed by Theorem 3.

From integral probability metrics (IPM), the probability distance can be defined as

D(P‖Q) = sup
f∈F

Ex∼P[f(x)]− Ey∼Q[f(y)]. (2.5)

By changing the function class F , we can recover several distances, such as total variation,
Wasserstein distance and MMD distance. From Arjovsky et al. (2017), the discrimina-
tor fφ in different existing works of GAN can be explained to be used to solve different
probabilistic metrics based on Eq. (2.5). For MMD, the function class F is {‖f‖Hk ≤ 1},
where H is RKHS associated with kernel k. Different form many distances, such as total
variation and Wasserstein distance, there is an analytical representation (Gretton et al.,
2012a) as we show in Section 2.1, which is

Mk(P,Q) = sup
f∈Hk

Ex∼P[f(x)]− Ey∼Q[f(y)]

=
√

EP,P[k(x, x′)]− 2EP,Q[k(x, y)] + EQ,Q[k(y, y′)].
(2.6)

Because of the analytical representation of Eq. (2.6), GMMN does not need an additional
network fφ for estimating the distance. Here we provide an interpretation of the pro-
posed MMD with kernel learning under the IPM framework. The MMD distance with
adversarially learned kernels is represented as

max
k∈K

Mk(P,Q),

The corresponding IPM formulation is

max
k∈K

Mk(P,Q) = sup
f∈Hk1∪···∪Hkn

Ex∼P[f(x)]− Ey∼Q[f(y)],

where ki ∈ K,∀i. From this perspective, the proposed MMD distance with kernel learning
is still defined by IPM but with a larger function class. Next, we prove maxφMφ(PX ,Qθ)
is not only a valid probability distance, but also weak under Assumption 2.

Theorem 4. (weak∗ topology) Let {Pn} be a sequence of distributions. Considering n →
∞, under mild Assumption 2, maxφMφ(PX ,Pn) → 0 ⇐⇒ Pn

D−→ PX , where
D−→ means

converging in distribution (Wasserman, 2013).

Theorem 4 shows that maxφMφ(PX ,Pn) is a sensible cost function to the distance
between PX and Pn. The distance is decreasing when Pn is getting closer to PX , which
benefits the supervision of the improvement during the training. All proofs are omitted
to Section 2.5. In the next section, we introduce a practical realization of training gθ via
optimizing minθ maxφMφ(PX ,Qθ).
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Algorithm 1 MMD GAN

1: Input: α the learning rate, c the clipping parameter, B the batch size, nc the number
of iterations of discriminator per generator update.

2: while θ has not converged do
3: for t = 1, . . . , nc do
4: Sample a minibatches {xi}Bi=1 ∼ PX and {zj}Bj=1 ∼ P(Z)
5: gφ ← ∇φMfφ(PX ,Qθ)
6: φ← φ+ α · RMSProp(φ, gφ)
7: φ← clip(φ,−c, c)
8: end for
9: Sample a minibatch {xi}Bi=1 ∼ PX and {zj}Bj=1 ∼ PZ

10: gθ ← ∇θMfφ(PX ,Qθ)
11: θ ← θ − α · RMSProp(θ, gθ)
12: end while

2.2 MMD GAN

To approximate Eq. (2.4), we use neural networks to parameterized gθ and fφ with expres-
sive power. For gθ, the assumption is locally Lipschitz, where commonly used feed-forward
neural networks satisfy this constraint. The bounded gradient 5θ (maxφ fφ ◦ gθ) have been
studied by Arjovsky et al. (2017); Gulrajani et al. (2017).

The non-trivial part is fφ has to be injective. For an injective function f , there exists
an function f−1 such that f−1(f(x)) = x,∀x ∈ X and f−1(f(g(z))) = g(z), ∀z ∈ Z1, which
can be approximated by an autoencoder. Bińkowski et al. (2018) extend the analysis of
Theorem 4 to get rid of the injective constraint. Our empirical study suggests autoencoder
objective is not necessary to successful GAN training as we will show in Section 2.3, which
is consistent with Bińkowski et al. (2018).

The proposed algorithm is similar to GAN (Goodfellow et al., 2014), which aims to
optimize two neural networks gθ and fφ in a minmax formulation, while the meaning of
the objective is different. In GAN, fφ is a discriminator (binary) classifier to distinguish
two distributions. In the proposed algorithm, distinguishing two distribution is still done
by two-sample test via MMD, but with an adversarially learned kernel parametrized by
fφ. gθ is then trained to pass the hypothesis test. Because of the similarity of GAN,
we call the proposed algorithm MMD GAN. We present an implementation with weight
clipping (Arjovsky et al., 2017) in Algorithm 1. One can extend it to use other Lipschitz
approximations, such as Gulrajani et al. (2017).

2.2.1 Feasible Set Reduction

Theorem 5. For any fφ, there exists f ′φ such that Mφ(PX ,Qθ) = Mf ′φ
(PX ,Qθ) and

Ex[fφ(x)] � Ez[fφ′(gθ(z))].

1Note that injective is not necessary invertible.
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With Theorem 5, we could reduce the feasible set of φ during the optimization by
solving

minθ maxφMφ(PX ,Qθ) s.t. E[fφ(x)] � E[fφ(gθ(z))]

which the optimal solution is still equivalent to solving Eq. (2.3).
However, it is hard to solve the constrained optimization problem with backpropagation.

We relax the constraint by ordinal regression (Herbrich et al., 1999) to be

min
θ

max
φ

Mφ(PX ,Qθ) + λmin
(
E[fφ(x)]− E[fφ(gθ(z))], 0

)
,

which only penalizes the objective when the constraint is violated. In practice, we observe
that reducing the feasible set makes the training converge faster and stabler.

2.2.2 Encoding Perspectives and Connections with WGAN

Besides from using kernel learning to explain MMD GAN, the other way to interpret the
proposed MMD GAN is viewing fφ as a feature transformation function, and the kernel
two-sample test is performed on this transformed feature space or the learnt embeddings
(i.e., the code space of the autoencoder). The optimization is finding a manifold with
stronger signals for MMD two-sample test. From this perspective, Li et al. (2015b) is the
special case of MMD GAN if fφ is the identity mapping function. In such circumstance,
the kernel two-sample test is conducted in the original data space.

If we composite fφ with linear kernel instead of Gaussian kernel, and restricting the
output dimension h to be 1, we then have the objective

min
θ

max
φ
‖E[fφ(x)]− E[fφ(gθ(z))]‖2. (2.7)

Parameterizing fφ and gθ with neural networks and assuming ∃φ′ ∈ Φ such f ′φ = −fφ,∀Φ,
recovers Wasserstein GAN (WGAN) (Arjovsky et al., 2017) If we treat fφ(x) as the data
transform function, WGAN can be interpreted as first-order moment matching (linear
kernel) while MMD GAN aims to match infinite order of moments with Gaussian kernel
form Taylor expansion (Li et al., 2015b). Theoretically, Wasserstein distance has similar
theoretically guarantee as Theorem 1, 3 and 4. In practice, Arora et al. (2017) show
neural networks does not have enough capacity to approximate Wasserstein distance. In
Section 2.3, we demonstrate matching high-order moments benefits the results. Mroueh
et al. (2017) also propose McGAN that matches second order moment from the primal-dual
norm perspective, which can be treated as a middle-ground between MMD GAN (infinitely
many order moments matching) and WGAN (first-order moment matching).

2.3 Experiment

We train MMD GAN for image generation on the MNIST (LeCun et al., 1998), CIFAR-10
(Krizhevsky and Hinton, 2009), CelebA (Liu et al., 2015), and LSUN bedrooms (Yu et al.,
2015) datasets, where the size of training instances are 50K, 50K, 160K, 3M respectively.
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Network Architecture. In our experiments, we follow the architecture of DCGAN
(Radford et al., 2016) to design gθ by its generator and fφ by its discriminator except for
expanding the output layer of fφ to be h dimensions.

Kernel Designs. The loss function of MMD GAN is implicitly associated with a family
of characteristic kernels. Similar to the prior works (Dziugaite et al., 2015; Li et al., 2015b;
Sutherland et al., 2017), we consider a mixture of K RBF kernels k(x, x′) =

∑K
q=1 kσq(x, x

′)
where kσq is a Gaussian kernel with bandwidth parameter σq. Tuning kernel bandwidth
σq optimally still remains an open problem. In this works, we fixed K = 5 and σq to be
{1, 2, 4, 8, 16} and left the fφ to learn the kernel (feature representation) under these σq.

Hyper-parameters. We use RMSProp (Tieleman and Hinton, 2012) with learning rate
of 0.00005 for a fair comparison with WGAN as suggested in Arjovsky et al. (2017). We
ensure the boundedness of model parameters of discriminator by clipping the weights point-
wisely to the range [−0.01, 0.01] as required by Assumption 2. The dimensionality h of
the latent space is manually set according to the complexity of the dataset. We thus use
h = 16 for MNIST, h = 64 for CelebA, and h = 128 for CIFAR-10 and LSUN bedrooms.
The batch size is set to be B = 64 for all datasets.

2.3.1 Qualitative Analysis

We start with comparing MMD GAN with GMMN on two standard benchmarks, MNIST
and CIFAR-10. We consider two variants for GMMN. The first one is original GMMN,
which trains generators by minimizing the MMD distances on the original data space.
We call it as GMMN-D. To compare with MMD GAN, we also pretrain an autoencoder
for projecting data to a manifold, then fix the autoencoder as a feature transformation,
and train generators by minimizing the MMD distances in the code space. We call it as
GMMN-C. The results are shown in Figure 2.1. Both GMMN-D and GMMN-C are able
to generate meaningful digits on MNIST because of its simple structures. By a closer
look, nonetheless, the edges and silhouettes of the digits in Figure 2.1a and 2.1b are often
irregular and non-smooth. In contrast, the sample digits in Figure 2.1c are more natural
with better silhouettes and sharper edges. For CIFAR-10 dataset, both GMMN variants
fail to generate meaningful images, but results in low-level visual features. We observe
similar cases in other complex large-scale datasets such as CelebA and LSUN bedrooms,
thus those results are omitted. On the other hand, the proposed MMD GAN successfully
outputs natural images with sharp boundaries and high diversities. The results in Figure
2.1 confirm the success of the proposed kernel learning to enrich statistical test power for a
more discriminative distance, which is the key difference between GMMN and MMD GAN.

If we increase the batch size of GMMN to be 1024, the image quality shown in Figure 2.2
is improved. However, it is still not competitive to MMD GAN with B = 64. This
demonstrates that the proposed MMD GAN can be trained more efficiently than GMMN
with smaller batch sizes.

15



(a) GMMN-D MNIST (b) GMMN-C MNIST (c) MMD GAN MNIST

(d) GMMN-D CIFAR-10 (e) GMMN-C CIFAR-10 (f) MMD GAN CIFAR-10

Figure 2.1: Generated samples from GMMN-D (Dataspace), GMMN-C (Codespace) and
our MMD GAN with batch size B = 64.

Comparisons with GANs. There are several representative extensions of GANs. We
consider recent state-of-art WGAN (Arjovsky et al., 2017) based on DCGAN structure (Rad-
ford et al., 2016). The results are shown in Figure 2.3. For MNIST, the digits generated
from WGAN in Figure 2.3a are more unnatural with peculiar strikes. In contrary, the digits
from MMD GAN in Figure 2.3d enjoy smoother contour. Furthermore, both WGAN and
MMD GAN generate diversified digits, avoiding the mode-collapse problems appeared in
the literature of training GANs. For CelebA, we can see the difference of generated samples
from WGAN and MMD GAN. Specifically, we observe varied poses, expressions, genders,
skin colors and light exposure in Figure 2.3b and 2.3e. By a closer look (view on-screen
with zooming in), we observe that faces from WGAN have higher chances to be blurry and
twisted while faces from MMD GAN are more spontaneous with sharp and acute outline of
faces. For LSUN dataset, we could not distinguish salient differences between the samples
generated from MMD GAN and WGAN.
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(a) GMMN-D on MNIST (b) GMMN-C on MNIST

(c) GMMN-D on CIFAR-10 (d) GMMN-C CIFAR-10

Figure 2.2: Generated samples from GMMN-D and GMMN-C with large training batch
size B = 1024.

2.3.2 Quantitative Analysis

To quantitatively measure the quality and diversity of generated samples, we compute
the inception score (Salimans et al., 2016) on CIFAR-10 images. The inception score
is used for GANs to measure samples quality and diversity on the pretrained inception
model (Salimans et al., 2016). Models that generate collapsed samples have a relatively
low score. Table 2.1 lists the results for 50K samples generated by various unsupervised
generative models trained on CIFAR-10 dataset. The inception scores of Dumoulin et al.
(2017); Salimans et al. (2016) are directly derived from the corresponding references.

Although both WGAN and MMD GAN can generate sharp images as we show in
Section 2.3.1, our score is better than other GAN techniques. This seems to confirm
empirically that higher order of moment matching between the real data and fake sample
distribution benefits generating more diversified sample images.

2.3.3 Stability of MMD GAN

We further illustrate how the MMD distance with kernel learning correlates well with the
quality of the generated samples. Figure 2.5 plots the evolution of the distance during the
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(a) WGAN MNIST (b) WGAN CelebA (c) WGAN LSUN

(d) MMD GAN MNIST (e) MMD GAN CelebA (f) MMD GAN LSUN

Figure 2.3: Generated samples from WGAN and MMD GAN on MNIST, CelebA, and
LSUN bedroom datasets.

Method Scores ± std.

Real data 11.95± .20

ALI (Dumoulin et al., 2017) 5.34
Improved GANs (Salimans et al., 2016) 4.36

MMD GAN 6.17 ± .07
WGAN (Arjovsky et al., 2017) 5.88 ± .07

GMMN-C 3.94 ± .04
GMMN-D 3.47 ± .03

Table 2.1: Inception scores of different GAN algorithms.

MMD GAN training for MNIST, CelebA and LSUN datasets. We report the average of the
M̂fφ(PX ,Qθ) with moving average to smooth the graph to reduce the variance caused by
mini-batch stochastic training. We observe during the whole training, samples generated
from the same noise vector across iterations, remain similar in nature. (e.g., face identities
and bedroom styles are alike while details and backgrounds are evolving.) This qualitative
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Figure 2.4: Computational time for one generator update iteration with different batch
sizes.

(a) MNIST (b) CelebA (c) LSUN Bedrooms

Figure 2.5: Training curves and generative samples at different stages of training. We can
see a clear correlation between lower distance and better sample quality.

observation indicates valuable stabilities of the training process. The decreasing curve with
the improving quality of images supports the weak∗ topology in Theorem 4. Also, from the
plot, the model converges very quickly. In Figure 2.5b, for example, it converges shortly
after tens of thousands of generator iterations on CelebA dataset.

2.3.4 Computational Issue

We conduct time complexity analysis with respect to the batch size B. The time complexity
of each iteration is O(B) for WGAN and O(KB2) for our proposed MMD GAN with a
mixture of K RBF kernels. The quadratic complexity O(B2) of MMD GAN is introduced
by computing kernel matrix, which is sometimes criticized for being inapplicable with
large batch size in practice. However, we point out that several recent works, such as Zhao
et al. (2017), also match pairwise relations between samples in a batch, leading to O(B2)
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complexity as well.
Empirically, we find that under GPU environments, their highly parallelized matrix

operations tremendously alleviate the quadratic time to be almost the same as being linear
with modest B. Figure 2.4 compares the computational time per generator iterations
versus different B on Titan X. When B = 64, which is adapted for training MMD GAN
in our experiments setting, the time per iteration of WGAN and MMD GAN is 0.268
and 0.676 seconds, respectively. When B = 1024, which is used for training GMMN in
its references (Li et al., 2015b), the time per iteration becomes 4.431 and 8.565 seconds,
respectively. This result coheres our argument that the empirical computational time for
MMD GAN is not quadratically expensive compared to WGAN with powerful GPU parallel
computation.

2.3.5 Better Lipschitz Approximation and Necessity of Auto-
Encoder

We used weight-clipping for Lipschitz constraint in Assumption 2. Another approach for
obtaining a discriminator with the similar constraint that approximates a Wasserstein
distance is Gulrajani et al. (2017), where the gradient of the discriminator is constrained
to be 1 between the generated and data points. Inspired by Gulrajani et al. (2017), an
alternative approach is to apply the gradient constraint as a regularization of fφ. This
idea was firstly proposed by Bellemare et al. (2017) for the energy distance. Here we
undertake an investigation of this approach. We also drop the requirement in Algorithm
1 that fφ has to be injective by following Bińkowski et al. (2018), which we observe that
it is not necessary in practice. We show results of training MMD GAN with the gradient
penalty and without autoencoders in Figure 2.6. The study indicates that MMD GAN can
generate satisfactory results with other Lipschitz constraint approximation and without
autoencoders.

(a) Cifar10, Giter = 300K (b) CelebA, Giter = 300K

Figure 2.6: MMD GAN results using the gradient penalty (Gulrajani et al., 2017) and
without autoencoders during training.
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2.4 Discussion

We introduce a new generic algorithm for implicit generative models, MMD GAN, trained
via MMD with adversarially learned kernels. We further study its theoretical properties
and propose a practical realization MMD GAN, which can be trained with much smaller
batch size than using simple Gaussian kernel and has competitive performances with state-
of-the-art GANs. From the connection with state-of-the-art WGAN, which is using first-
order moment matching, MMD GAN can always bring performance gain over WGAN by
leveraging higher-order moment matching of learnt embeddings via MMD.

2.5 Technical Proof

2.5.1 Proof of Theorem 3

The proof is following the Lemma from Borisenko and Minchenko (1992).

Lemma 6. (Borisenko and Minchenko (1992)) Define τ(x) = max{f(x, u)|u ∈ U}. If f is
locally Lipschitz in x, U is compact and5f(x, u∗(x)) exists, where u∗(x) = arg maxu f(x, u),
then τ(x) is differentiable almost everywhere.

For simplifying notations, we define kφ := k ◦ fφ. We are going to show

max
φ

Mφ(PX ,Qθ) = Ex,x′ [kφ(x, x′)]− 2Ex,z[kφ(x, gθ(z))] + Ez,z′ [kφ(gθ(z
′), gθ(z))] (2.8)

is differentiable with respect to φ almost everywhere by using the auxiliary Lemma 6. We
first show Ez,z′ [kφ(gθ(z

′), gθ(z))] in (2.8) is locally Lipschitz in θ. By definition, kφ(x, x′) =
k(fφ(x)− fφ(x′)), therefore,

Ex,x′
[
kφ

(
gθ(z), gθ(z

′)
)
− kφ

(
gθ′(z), gθ′(z

′)
)]

=Ez,z′
[
k
(
fφ
(
gθ(z)

)
− fφ

(
gθ(z

′)
))]
− Ez,z′

[
k
(
fφ
(
gθ′(z)

)
− fφ

(
gθ′(z

′)
))]

≤Ez,z′
[
Lk

∥∥∥fφ
(
gθ(z)

)
− fφ

(
gθ(z

′)
)
− fφ

(
gθ′(z)

)
+ fφ

(
gθ′(z

′)
)∥∥∥
]

≤Ez,z′
[
LkL(θ, z)‖θ − θ′‖+ LkL(θ, z′)‖θ − θ′‖

]

=2LkEz
[
L(θ, z)

]
‖θ − θ′‖.

The first inequality is because Gaussian kernel k is Lipschitz (locally Lipschitz) in (x, x′),
with a upper bound Lk for Lipschitz constants. By Assumption 2, Ez

[
L(θ, z)

]
< ∞,

we prove Ez,z′
[
k
(
fφ(gθ(z)) − fφ(gθ(z

′))
)]

is locally Lipschitz. The similar argument is

applicable to other terms in (2.8); therefore, (2.8) is locally Lipschitz in θ.
Last, with the compactness assumption on Φ, and the differentiable assumption on

Mφ(PX ,Qθ), applying Lemma 6 proves Theorem 3.
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2.5.2 Proof of Theorem 4

Proof. We first show Pn
D−→ P then maxφMφ(P,Pn)→ 0. The results is based on Corollary

11.3.4 of Dudley (2018). Similar proof is shown in Arbel et al. (2018). With Dudley (2018),
the only thing we remain to show is proving ‖k(fφ(x), ·)− k(fφ(y), ·)‖HK is Lipschitz. By
definition, we know that ‖k(fφ(x), ·)− k(fφ(y), ·)‖HK = 2(1− k(fφ(x), fφ(y))). Also, since
Gaussian kernel k is Lipschitz, we have k(0)− k(x, x′) ≤ Lk‖0− (x− x′)‖. With k(0) = 1
for Gaussian kernel,

‖k(fφ(x), ·)− k(fφ(y), ·)‖HK ≤ 2Lk‖fφ(x)− fφ(y)‖ ≤ 2LkL‖x− y‖,

where the last inequality is since fφ is also a Lipschitz function with a Lipschitz constant
L.

The other direction, maxφMφ(P,Pn) → 0 then Pn
D−→ P, is relatively simple. Without

loss of generality, we assume there exists φ′ such that fφ is an identity function (up to
scaling), which recover the Gaussian kernel k. Therefore, maxφMφ(P,Pn) → 0 implies
Mφ(P,Pn) → 0, which completes the proof because MMD with any Gaussian kernel is
weak (Gretton et al., 2012a).

2.5.3 Proof of Theorem 5

Proof. The proof assumes fφ(x) is a scalar, but the vector case can be proved with the
same sketch. First, if E[fφ(x)] > E[fφ(gθ(z))], then φ = φ′. If E[fφ(x)] < E[fφ(gθ(z))],
we let f = −fφ, then E[f(x)] > E[f(gθ(z))] and flipping sign does not change the MMD
distance. If we parameterized fφ by a neural network, which has a linear output layer, φ′

can realized by flipping the sign of the weights of the last layer.
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Chapter 3

Learning with Adversarial Losses

Learning generative models, which models the distribution from which data are drawn,
is a central task in machine learning and statistics. Often, prior information is insuffi-
cient to guess the form of the data distribution. In statistics, generative modeling in these
settings is usually studied from the perspective of nonparametric density estimation, in
which histogram, kernel, orthogonal series, and nearest-neighbor methods are popular ap-
proaches with well-understood statistical properties (Biau and Devroye, 2015; Efromovich,
2010; Tsybakov, 2009; Wasserman, 2006). Recently, implicit generative models have made
significant empirical progress in generative modeling. Computationally, IGMs are quite
distinct from classical density estimators; it relies on powerful transformation functions,
such as neural networks, fit by black-box optimization, rather than a mathematically pre-
scribed smoothing operator, such as convolution with a kernel or projection onto a finite-
dimensional subspace.

Ignoring the implementation of these models, from the perspective of statistical analysis,
these recent methods have at least two main differences from classical density estimators.
First, they are implicit, rather than explicit generative models (Diggle and Gratton, 1984;
Mohamed and Lakshminarayanan, 2016); that is, they model the sampling process instead
of the probability of a set or the density at a point. Second, in many recent models,
loss (distance) is measured not with Lp distances (as is conventional in nonparametric
statistics (Tsybakov, 2009; Wasserman, 2006)), but rather with weaker losses, such as

dFD(P,Q) = sup
f∈FD

∣∣∣∣ E
X∼P

[f(X)]− E
X∼Q

[f(X)]

∣∣∣∣ , (3.1)

where FD is a discriminator class of bounded, Borel-measurable functions, and P and Q
lie in a generator class FG of Borel probability measures on a sample space X . Specifically,
IGMs (or GANs) often use a neural network, which is called discriminator, to approximate
(3.1).

This chapter is based on the results in Singh et al. (2018). We attempt to bridge the
gap between traditional nonparametric statistics and recent advances of IGMs by studying
these two differences from a statistical minimax perspective. Specifically, under traditional
statistical smoothness assumptions, Singh et al. (2018) identify minimax convergence rates
for density estimation under several losses of the form (3.1) that have been used in IGMs,
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including 1-Wasserstein distance (Arjovsky et al., 2017; Gulrajani et al., 2017), MMD (Li
et al., 2017), Sobolev distances (Mroueh et al., 2018), and the Dudley metric (Abbasne-
jad et al., 2018). Given the generality of Singh et al. (2018), it relates to many prior
works on distribution estimation, including classical work in nonparametric statistics and
empirical process theory, as well as more recent work studying Wasserstein distances and
MMD (Gretton et al., 2012a; Lei, 2018; Liang, 2017; Singh and Póczos, 2018; Tolstikhin
et al., 2017b; Tsybakov, 2009; Wasserman, 2006; Weed and Bach, 2017). In this chap-
ter, we discuss some consequences from minimax analysis for particular neural network
implementations of IGMs based on these losses. Finally, we study connections between
minimax rates for explicit and implicit generative models, under a plausible notion of risk
for implicit generative models.

3.1 Adversarial Losses

The quantity (3.1) has been extensively studied, in the case that FD is a reproducing
kernel Hilbert space under the name maximum mean discrepancy (Gretton et al., 2012a;
Tolstikhin et al., 2017b), and, in a wider context under the name integral probability metric
(IPM) (Bottou et al., 2017; Müller, 1997; Sriperumbudur et al., 2010, 2012). Arora et al.
(2017) also called Eq. (3.1) the FD-distance, or, when FD is a family of functions that
can be implemented by a neural network, the neural network distance. We settled on the
name “adversarial loss” because, without assuming any structure on FD, this matches the
intuition of Eq. (3.1), namely that of an adversary selecting the most distinguishing linear
projection f ∈ FD between densities P and Q (e.g., by the discriminator network in a
GAN).

One can check that dFD : FG × FG → [0,∞] is a pseudometric (i.e., it is non-
negative and satisfies the triangle inequality, and dFD(P,Q) > 0 ⇒ P 6= Q, although
dFD(P,Q) = 0 6⇒ P = Q unless FD is sufficiently rich). Many popular (pseudo) met-
rics between probability distributions, including Lp (Tsybakov, 2009; Wasserman, 2006),
Sobolev (Leoni, 2017; Mroueh et al., 2018), MMD (Tolstikhin et al., 2017b)), energy
distance (Ramdas et al., 2017; Székely et al., 2007), total variation (Villani, 2008), (1-
)Wasserstein/Kantorovich-Rubinstein (Kantorovich and Rubinstein, 1958; Villani, 2008),
Kolmogorov-Smirnov (Kolmogorov, 1933; Smirnov, 1948), and Dudley (Abbasnejad et al.,
2018; Dudley, 1972) metrics can be written in this form, for appropriate choices of FD.

Formal Problem Statement: Let P ∈ FG be an unknown probability measure on

a sample space X , from which we observe n IID samples X1:n = X1, ..., Xn
IID∼ P. In this

chapter, we are interested in using the samples X1:n to estimate the measure P, with error
measured using the adversarial loss dFD . Specifically, for various choices of spaces FD and
FG, we seek to bound the minimax rate

M(FD,FG) := inf
P̂

sup
P∈FG

E
X1:n

[
dFD

(
P, P̂(X1:n)

)]

of estimating distributions assumed to lie in a class FG, where the infimum is taken over
all estimators P̂ (i.e., all (potentially randomized) functions P̂ : X n → FG).
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3.1.1 Notation

For a non-negative integer n, we use [n] := {1, 2, ..., n} to denote the set of positive integers
at most n. For sequences {an}n∈N and {bn}n∈N of non-negative reals, an . bn and, similarly
bn & an, indicate the existence of a constant C > 0 such that lim supn→∞

an
bn
≤ C. an � bn

indicates an . bn . an. For functions f : Rd → R, we write

lim
‖z‖→∞

f(z) := sup
{zn}n∈N:‖zn‖→∞

lim
n→∞

f(zn),

where the supremum is taken over all diverging Rd-valued sequences. Note that, by equiv-
alence of finite-dimensional norms, the exact choice of the norm ‖ · ‖ does not matter here.
We will also require summations of the form

∑
z∈Z f(z) in cases where Z is a (potentially

infinite) countable index set and {f(z)}z∈Z is summable but not necessarily absolutely
summable. Therefore, to ensure that the summation is well-defined, the order of summa-
tion will need to be specified, depending on the application (as in, e.g., Section 3.1.3).

Fix the sample space X = [0, 1]d to be the d-dimensional unit cube, over which λ
denotes the usual Lebesgue measure. Given a measurable function f : X → R, let, for any
Borel measure µ on X , p ∈ [1,∞], and L > 0,

‖f‖Lpµ :=

(∫

X
|f |p dµ

)1/p

and Lpµ(L) :=
{
f : X → R

∣∣ ‖f‖Lpµ < L
}

(taking the appropriate limit if p = ∞) denote the Lebesgue norm and ball of radius L,
respectively.

Fix an orthonormal basis B = {φz}z∈Z of L2
λ indexed by a countable family Z. To

allow probability measures P without densities (i.e., P 6� µ), we assume each basis element

φz : X → R is a bounded function, so that P̃z := EX∼P [φz(X)] is well-defined. For
constants L > 0 and p ≥ 1 and real-valued net {az}z∈Z , our results pertain to generalized
ellipses of the form

Hp,a(L) =



f ∈ L

1(X ) :

(∑

z∈Z

apz|f̃z|p
)1/p

≤ L



 .

(where f̃z :=
∫
X fφz dµ is the zth coefficient of f in the basis B). We sometimes omit de-

pendence on L (e.g., Hp,a = Hp,a(L)) when its value does not matter (e.g., when discussing
rates of convergence).

A particular case of interest is the scale of the Sobolev spaces defined for s, L ≥ 0 and
p ≥ 1 by

Ws,p(L) =



f ∈ L

1(X ) :

(∑

z∈Z

|z|sp|f̃z|p
)1/p

≤ L



 .

For example, when B is the standard Fourier basis and s is an integer, for a constant factor
c depending only on s and the dimension d,

Ws,p(cL) :=
{
f ∈ Lpλ

∣∣∣
∥∥f (s)

∥∥
Lpλ
< L

}
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corresponds to the natural standard smoothness class of Lpλ functions having sth-order
(weak) derivatives f (s) in Lpλ(L) (Leoni, 2017).

3.1.2 Upper Bound and Minimax Lower Bound

For any finite set Z ⊆ Z, let P̂Z be the truncated series estimate

P̂Z :=
∑

z∈Z

P̂zφz, where, for any z ∈ Z, P̂z :=
1

n

n∑

i=1

φz(Xi). (3.2)

Z is a tuning parameter that typically corresponds to a smoothing parameter; for example,
when B is the Fourier basis and Z = {z ∈ Zd : ‖z‖∞ ≤ ζ} for some ζ > 0, P̂Z is equivalent

to a kernel density estimator using a sinc product kernel Kh(x) =
∏d

j=1
2
h

sin(2πx/h)
2πx/h

with

bandwidth h = 1/ζ (Owen, 2007).
We present the upper bound on the minimax rate of density estimation under adver-

sarial losses proven by Singh et al. (2018). The upper bound is given by the orthogonal
series estimator given in Eq. (3.2), but we expect kernels and other standard linear density
estimators to converge at the same rate.

Theorem 7 (Upper Bound (Singh et al., 2018)). Suppose that µ(X ) <∞ and there exist
constants LD, LG > 0, real-valued nets {az}z∈Z , {bz}z∈Z such that FD = Hp,a(X , LD) and
FG = Hq,b(X , LG), where p, q ≥ 1. Let p′ = p

p−1
denote the Hölder conjugate of p. Then,

for any P ∈ FG,

E
X1:n

[
dFD

(
P, P̂

)]
≤ LD

cp′√
n

∥∥∥∥∥

{
‖φz‖L∞P
az

}

z∈Z

∥∥∥∥∥
p′

+ LDLG

∥∥∥∥∥

{
1

azbz

}

z∈Z\Z

∥∥∥∥∥
1

1−1/p−1/q

(3.3)

The two terms in the bound Eq. (3.3) demonstrate a bias-variance tradeoff, in which
the first term (variance) increases with the truncation set Z and is typically independent
of the class FG of distributions, while the second term (bias) decreases with Z at a rate
depending on the complexity of FG.

Corollary 8 (Sufficient Conditions for Parametric Rate). Consider the setting of Theo-
rem 7. If

A :=
∑

z∈Z

‖φz‖2
L∞P

a2
z

<∞ and max {az, bz} → ∞.

whenever ‖z‖ → ∞, then, the minimax rate is parametric; specifically, M(FD,FG) ≤
LD
√
A/n. In particular, letting cz := supx∈X |φz(x)| for each z ∈ Z, this occurs whenever∑

z∈Z
c2z
a2z
<∞.

In many contexts (e.g., if P � λ and λ � P), the simpler condition
∑

z∈Z
c2z
a2z
< ∞

suffices. The first, and slightly weaker condition in terms of ‖φz‖2
L∞P

is useful when we
restrict FG; e.g., if B is the wavelet basis and FG contains only discrete distributions
supported on at most k points, then ‖φi,j‖2

L∞P
= 0 for all but k values of j ∈ [2i], at
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each resolution i ∈ N. The assumption max
{

lim‖z‖→∞ az, lim‖z‖→∞ bz
}

=∞ is quite mild;
for example, the Riemann-Lebesgue lemma and the assumption that FD is bounded in
L∞λ ⊆ L1

λ together imply that this condition always holds if B is the Fourier basis.
Singh et al. (2018) also lower bound the minimax risk M(FD,FG) of distribution esti-

mation under dFD loss over FG, for the case when FD = Hp,a and FG := Hq,b are generalized
ellipses.

Theorem 9 (Minimax Lower Bound (Singh et al., 2018)). Fix X = [0, 1]d, and let p0 denote
the uniform density (with respect to Lebesgue measure) on X . Suppose {p0}∪{φz}z∈Z is an
orthonormal basis in L2

µ, and {az}z∈Z and {bz}z∈Z are two real-valued nets. Let LD, LG ≥ 0
and p, q ≥ 2. For any Z ⊆ Z, let

AZ := |Z|1/2 sup
z∈Z

az and BZ := |Z|1/2 sup
z∈Z

bz.

Then, for FD = Hp,a(LD) and FG := Hq,b(LG), for any Z ⊆ Z satisfying

BZ ≥ 16LG

√
n

log 2
and 2

LG
BZ

∑

z∈Z

‖φz‖L∞µ ≤ 1, (3.4)

we have M(FD,FG) ≥ LGLD|Z|
64AZBZ

=
LGLD

64 (supz∈Z az) (supz∈Z bz)
.

3.1.3 Examples on Different Loss Functions

In this section, we apply the above upper and lower bounds to compute concrete minimax
convergence rates for different examples choices of FD and FG, We show reproducing kernel
Hilbert spaces to connect discussions in Chapter 2 and Sobolev spaces for later discussions
in Chapter 4. We suppose that X = [0, 2π]d, Z = Zd, and, for each z ∈ Z, φz is the zth

standard Fourier basis element given by φz(x) = ei〈z,x〉 for all x ∈ X . In this case, we will
always choose the truncation set Z to be of the form Z := {z ∈ Z : ‖z‖∞ ≤ ζ}, for some
ζ > 0, so that |Z| ≤ ζd. Moreover, for every z ∈ Z, ‖φz‖L∞µ = 1, and hence CZ ≤ 1.

Example 1 (Reproducing Kernel Hilbert Space/MMD Loss). Suppose Hk is a reproducing
kernel Hilbert space (RKHS) with reproducing kernel k : X × X → R (Aronszajn, 1950;
Berlinet and Thomas-Agnan, 2011). If k is translation invariant (i.e., there exists κ ∈ L2

µ

such that, for all x, y ∈ X , k(x, y) = κ(x−y)), then Bochner’s theorem (see, e.g., Theorem
6.6 of (Wendland, 2004)) implies that, up to constant factors,

Hk(L) := {f ∈ Hk : ‖f‖Hk ≤ L} =

{
f ∈ Hk :

∑

z∈Z

|κ̃z|2|f̃z|2 < L2

}
.

Thus, in the setting of Theorem 7, we have Hk = H2,a, where az = |κ̃z| satisfies
∑

z∈Z a
−2
z =

‖κ‖2
L2µ

< ∞. Corollary 8 then gives M(Hk(LD),FG) ≤ LD‖κ‖L2µn−1/2 for any class

FG. It is well-known known that MMD can always be estimated at the parametric rate
n−1/2 (Gretton et al., 2012a); however, to the best of our knowledge, only recently has it
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(a) Parametric Regime (b) Nonparametric Regime

Figure 3.1: Simple synthetic experiment to showcase the tightness of the bound.

been shown that any probability distribution can be estimated at the rate n−1/2 under MMD
loss(Sriperumbudur et al., 2016), emphasizing the fact that MMD is a very weak metric.
This has important implications for applications such as two-sample testing (Ramdas et al.,
2015).

Example 2 (Sobolev Spaces). Suppose that, for some s, t ≥ 0, az = ‖z‖s∞ and bz = ‖z‖t∞.

Then, setting ζ = n
1

2t+d in Theorems 7 and 9 gives that there exist constants C > c > 0
such that

cn−min{ 1
2
, s+t
2t+d} ≤M

(
Ws,2,W t,2

)
≤ Cn−min{ 1

2
, s+t
2t+d}. (3.5)

Combining the observation that the s-Hölder space Ws,∞ ⊆ Ws,2 with the lower bound
(over Ws,∞) in Theorem 3.1 of (Liang, 2017), we have that Eq. (3.5) also holds when Ws,2

is replaced withWs,p for any p ∈ [2,∞] (e.g., in the case of the Wasserstein metric dW1,∞).

3.1.4 Experiments

Here we present some empirical results in Figure 3.1 supporting the theoretical bounds
above. First, we consider an example with a finite basis, which should yield the parametric
n−1/2 rate. In particular, we construct the true distribution P to consist of 6 randomly
chosen basis functions in the Fourier basis. We employ the truncated series estimator P̂ of
Eq. (3.2) in the same basis using different number of samples n and compute the distance

dFD

(
P, P̂

)
. Under this setting, the maximization problem of Eq. (3.1) needed to evaluate

this distance can be solved in closed form. The risk empirically appears to closely follow
our derived minimax rate of n−1/2, as shown in Figure 3.1a. Next, we consider a non-
parametric case, in which the number of active basis elements increases as the function of
n, weighted such that Eq. (3.5) predicts a rate of n−1/3. As expected, the estimated risk,
shown in Figure 3.1b, closely resembles the rate of n−1/3.
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3.1.5 Adversarial Density Estimation with Neural Networks

This section discusses implications of our minimax bounds for GANs. Neural networks in
this section are assumed to be fully-connected, with rectified linear unit (ReLU) activations.
Key ingredients are an oracle inequality proven in Liang (2017), an upper bound such as
Theorem 7 and bounds of Yarotsky (2017) on the size of a neural network needed to
approximate functions in a Sobolev class. We note that the adversarial density estimation
with neural networks discussed here is different from IGM settings in Chapter 1. The
generator network here is used to approximate density functions, which is still an explicit
generative model. The detailed connection between adversarial density estimation (explicit
generative models) and IGM will be discussed next.

In the following, FD denotes the set of functions that can be encoded by the dis-
criminator network and FG denotes the set of distributions that can be encoded by the
generator network. Pn := 1

n

∑n
i=1 1{Xi} denotes the empirical distribution of the observed

data X1:n
IID∼ P.

Theorem 10 (Improvement of Theorem 3.1 in Liang (2017)). Let s, t > 0, and fix a desired
approximation accuracy ε > 0. Then, there exists a GAN architecture, in which

1. the discriminator FD has at most O(log(1/ε)) layers and O(ε−d/s log(1/ε)) parame-
ters,

2. and the generator FG has at most O(log(1/ε)) layers and O(ε−d/t log(1/ε)) parame-
ters,

such that, if P̂∗(X1:n) := argmin
P̂∈FG

dFD

(
Pn, P̂

)
, is the optimized GAN estimate of P,

then sup
P∈Wt,2

E
X1:n

[
dWs,2

(
P, P̂∗(X1:n)

)]
≤ C

(
ε+ n−min{ 1

2
, s+t
2t+d}

)
.

The discriminator and generator in the above theorem can be implemented as described
in Yarotsky (2017). The assumption that the GAN is perfectly optimized may be strong;
see Liang and Stokes (2018); Nagarajan and Kolter (2017) for discussion of this.

3.2 Minimax Comparison of Explicit and Implicit Gen-

erative Models

In this section, we draw formal connections between adversarial density estimation (explicit
generative modeling) and learning IGMs under an appropriate measure of risk. In the
sequel, we fix a class FG of probability measures on a sample space X and a loss function
` : FG×FG → [0,∞] measuring the distance of an estimate P̂ from the true distribution P.
` need not be an adversarial loss dFD , but our discussion does apply to all ` of this form.
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3.2.1 A Minimax Framework for Implicit Generative Models

Thus far, we have discussed the minimax risk of density estimation in Section 3.1, namely

MD(FG, `, n) = inf
P̂

sup
P∈FG

RD(P, P̂), where RD(P, P̂) =E
X1:n

IID∼ P

[
`(P, P̂(X1:n))

]
(3.6)

denotes the density estimation risk of P̂ at P and the infimum is taken over all estimators
(i.e., (potentially randomized) functions P̂ : X n → FG). Whereas density estimation
is a classical statistical problem to which we have already contributed novel results, our
motivations for studying this problem arose from a desire to better understand recent work
on IGMs.

IGMs address the problem of sampling as we discussed in Chapter 1, in which we seek
to construct a generator (transformation function) that produces novel samples from the
distribution P (Mohamed and Lakshminarayanan, 2016). In our context, a generator is a

function X̂ : X n×Z → X that takes in n IID samples X1:n ∼ P and a source of randomness
Z ∼ PZ with known distribution PZ (independent of X1:n) on a space Z, and returns a

novel sample X̂(X1:n, Z) ∈ X .
The evaluating the performance of implicit generative models, both in theory and in

practice, is difficult, with solutions continuing to be proposed (Bińkowski et al., 2018;
Lucic et al., 2018; Salimans et al., 2016; Sutherland et al., 2017), some of which have
proven controversial. Some of this controversy stems from the fact that many of the most
straightforward evaluation objectives are optimized by a trivial generator that ‘memorizes’
the training data (e.g., X̂(X1:n, Z) = XZ , where Z is uniformly distributed on [n]). One
objective that can avoid this problem is as follows. For simplicity, fix the distribution PZ
of the source randomness Z ∼ PZ (e.g., PZ = N (0, I)). For a fixed training set X1:n

IID∼ P
and base distribution Z ∼ PZ , we define the implicit distribution of a generator X̂ as the
conditional distribution PX̂(X1:n,Z)|X1:n

over X of the random variable X̂(X1:n, Z) given the

training data. Then, for any P ∈ FG, we define the implicit risk of X̂ at P by

RI(P, X̂) := E
X1:n∼P

[
`(P,PX̂(X1:n,Z)|X1:n

)
]
.

We can then study the minimax risk of sampling, MI(FG, `, n) := infX̂ supP∈FG RI(P, X̂).

Second, since the risk RI(P, X̂) depends on the unknown true distribution P, we cannot

calculate it in practice. Third, for the same reason (because RP(P, X̂) depends directly on
P rather than particular data X1:n), it detect lack-of-diversity issues such as mode collapse.

3.2.2 Comparison of Explicit and Implicit Generative Models

Algorithmically, sampling is a very distinct problem from density estimation; for exam-
ple, many computationally efficient Monte Carlo samplers rely on the fact that a function
proportional to the density of interest can be computed much more quickly than the ex-
act (normalized) density function (Chib and Greenberg, 1995). In this section, we show
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that, given unlimited computational resources, the problems of density estimation and
sampling are equivalent in a minimax statistical sense. Since exactly minimax estimators
(argminP̂ supP∈FG RD(P, P̂)) often need not exist, the following weaker notion is useful for
stating our results:

Definition 11 (Nearly Minimax Sequence). A sequence {P̂k}k∈N of density estimators

(resp., {X̂k}k∈N of generators) is called nearly minimax over FG if

lim
k→∞

sup
P∈FG

RP,D(P̂k) = MD(FG, `, n)

(resp., limk→∞ supP∈FG RP,I(X̂k) = MI(FG, `, n)).

The following theorem identifies sufficient conditions under which, in the statistical
minimax framework described above, density estimation is no harder than sampling. The
idea behind the proof is as follows: If we have a good sampler X̂ (i.e., with RI(X̂) small),

then we can draw m ‘fake’ samples from X̂. We can use these ‘fake’ samples to con-
struct a density estimate P̂ of the implicit distribution of X̂ such that, under the technical
assumptions below, RD(P̂)−RI(X̂)→ 0 as m→∞.

Theorem 12 (Conditions under which Density Estimation is Statistically no harder than
Sampling). Let FG be a family of probability distributions on a sample space X . Suppose

(A1) ` : P × P → [0,∞] is non-negative, and there exists C4 > 0 such that, for all
P1,P2,P3 ∈ FG, `(P1,P3) ≤ C4 (`(P1,P2) + `(P2,P3)).

(A2) MD(FG, `,m)→ 0 as m→∞.

(A3) For all m ∈ N, we can draw m IID samples Z1, ..., Zm
IID∼ PZ of the latent variable

Z.

(A4) there exists a nearly minimax sequence of samplers X̂k : X n ×Z → X such that, for
each k ∈ N, almost surely over X1:n, PX̂k(X1:n,Z)|X1:n

∈ FG.

Then, MD(FG, `, n) ≤ C4MI(FG, `, n).

Assumption (A1) is a generalization of the triangle inequality (and reduces to the
triangle inequality when C4 = 1). This weaker assumption applies, for example, when `
is the Jensen-Shannon divergence (with C4 = 2) used in the original GAN formulation of
Goodfellow et al. (2014), even though this does not satisfy the triangle inequality (Endres
and Schindelin, 2003)). Assumption (A2) is equivalent to the existence of a uniformly `-
risk-consistent estimator over FG, a standard property of most distribution classes FG over
which density estimation is studied (e.g., our Theorem 7). Assumption (A3) is a natural
design criterion of IGMs; usually, PZ is a simple parametric distribution such as a standard
normal.

Finally, Assumption (A4) is the most mysterious, because, currently, little is known
about the minimax theory of samplers when FG is a large space. On one hand, since
MI(FG, `, n) is an infimum over X̂, Theorem 12 continues to hold if we restrict the class
of samplers (e.g., to those satisfying Assumption (A4) or those we can compute). On the

other hand, even without restricting X̂, this assumption may not be too restrictive, because
nearly minimax samplers are necessarily close to P ∈ FG. For example, if FG contains only
smooth distributions but X̂ is the trivial empirical sampler described above, then `(P,PX̂)

should be large and X̂ is unlikely to be minimax optimal.
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Finally, in practice, we often do not know estimators that are nearly minimax for finite
samples, but may have estimators that are rate-optimal (e.g., as given by Theorem 7), i.e.,
that satisfy

C := lim sup
n→∞

supP∈FG RI(P, X̂)

MI(FG, `, n)
<∞.

Under this weaker assumption, it is straightforward to modify our proof to conclude that

lim sup
n→∞

MD(FG, `, n)

MI(FG, `, n)
≤ C4C.

The converse result (MD(FG, `, n) ≥ MI(FG, `, n)) is simple to prove in many cases,
and is related to the well-studied problem of Monte Carlo sampling (Robert, 2004).

Theorem 13 (Conditions under which Sampling is Statistically no harder than Density

Estimation). Suppose that, there exists as nearly minimax sequence {P̂k}k∈N such that, for

any k ∈ N, we can draw a random sample X̂ from P̂k(X1:n). Then,

MD(FG, `, n) ≥MI(FG, `, n).

The assumption above that we can draw samples from a nearly minimax sequence of
estimators if not particularly insightful, but techniques for drawing such samples have
been widely studied in the vast literature of Monte Carlo sampling (Robert, 2004). As an

example, if P̂ is a kernel density estimator with kernel K, then, recalling that K is itself
a probability density, of which P̂ is a mixture, we can sample from P̂ simply by choosing
a sample uniformly from X1:n and adding noise ε ∼ K. Alternatively, if P̂ is bounded and
has bounded support, then one can perform rejection sampling.

Proof. Since, by definition of the implicit distribution of X̂,

PX̂(X1:n,Z)|X1:n
= P̂(X1:n)

is precisely the implicit distribution of X̂, we trivially have

MI(FG, `, n) ≤ sup
P∈FG

E
X1:n

IID∼ P

[
`
(
P,PX̂(X1:n,Z)|X1:n

)]

3.3 Summary

Given the recent popularity of IGMs in many applications, it is important to theoretically
understand why these models appear to outperform classical methods for similar problems.
We review new minimax bounds for density estimation under adversarial losses, both with
and without adaptivity to smoothness, and gave applications, including both traditional
statistical settings and perfectly optimized GANs. We also gave simple conditions under
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which minimax bounds for density estimation imply bounds for the problem of implicit
generative modeling, suggesting that sampling is typically not statistically easier than
density estimation. Thus, for example, the strong curse of dimensionality that is known
to afflict to nonparametric density estimation (Wasserman, 2006) should also limit the
performance of implicit generative models such as GANs. One possible avenues for further
investigation is if the curse of dimensionality can be avoided when data lie on a low-
dimensional manifold.

3.4 Appendix: Proof of Theorem 12

Here, we prove Theorem 12 from the main text, provide some discussion of when the
converse direction MI(P , `, n) ≤MD(P , `, n) holds.

The assumption (A2) implies that there exists a sequence {P̂m}m∈N of density estimators

P̂m : Xm → P that is uniformly consistent in ` over P ; that is,

lim
m→∞

sup
P∈P

E
Y1:m

IID∼ P

[
`
(
P, P̂m(Y1:m)

)]
. (3.7)

For brevity, we use the abbreviation PX̂k = PX̂k(X1:n,Z)|X1:n
in the rest of this proof to

denote the conditional distribution of the ‘fake data’ generated by X̂k given the true data.
Recalling that the minimax risk is at most the risk of any particular sampler, we have

MD(P , `, n) := inf
P̂

sup
P∈P

E
X1:n

IID∼ P
Z1:m

IID∼ QZ

[
`
(
P, P̂(X1:n)

)]

≤ sup
P∈P

E
X1:n

IID∼ P
Z1:m

IID∼ QZ

[
`
(
P, P̂m(Xn+1:n+m)

)]
.
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Taking limm→∞ gives, by Tonelli’s theorem and non-negativity of `,

MD(P , `, n)

≤ lim
m→∞

sup
P∈P

E
X1:n

IID∼ P
Z1:m

IID∼ QZ

[
`
(
P, P̂m(Xn+1:n+m)

)]

≤ C4 lim
m→∞

sup
P∈P

E
X1:n

IID∼ P
Z1:m

IID∼ QZ

[
`
(
P,PX̂k

)
+ `
(
PX̂k , P̂m(Xn+1:n+m)

)]

≤ C4 lim
m→∞

sup
P∈P

E
X1:n

IID∼ P
Z1:m

IID∼ QZ

[
`
(
P,PX̂k

)
+ `
(
PX̂k , P̂m(Xn+1:n+m)

)]

≤ C4 sup
P∈P

E
X1:n

IID∼ P

[
`
(
P,PX̂k

)]
(3.8)

+ C4 lim
m→∞

sup
P∈P

E
X1:n

IID∼ P
Z1:m

IID∼ QZ

[
`
(
PX̂k , P̂m(Xn+1:n+m)

)]
. (3.9)

In the above, we upper bounded MD(P , `, n) by the sum of two terms, (3.8) and (3.9).

Since the sequence {X̂k}k∈N is nearly minimax, if we were to take an infimum over k ∈ N
on both sides, the term (3.8) would become precisely C4MI(P , `, n). Therefore, it suffices
to observe that the second term (3.9) is 0. Indeed, by the assumption that PX̂k ∈ P for all
X1:n ∈ X and the uniform consistency assumption (3.7),

lim
m→∞

sup
P∈P

E
X1:n

IID∼ P
Z1:m

IID∼ QZ

[
`
(
PX̂k , P̂m(Xn+1:n+m)

)]

≤ lim
m→∞

sup
P∈P,X1:n

IID∼ P
E

Z1:m
IID∼ QZ

[
`
(
PX̂k , P̂m(Xn+1:n+m)

)]

≤ lim
m→∞

sup
P′∈P

E
Xn+1:n+m

IID∼ P′

[
`
(
P, P̂m(Xn+1:n+m)

)]
= 0.
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Chapter 4

Text Generation with Sobolev IPM

In order to learn implicit generative models, it is now well established that the generator
should mimic the distribution of real data, in the sense of a certain discrepancy measure.
Discrepancies between distributions that measure the goodness of the fit of the neural gen-
erator to the real data distribution has been the subject of many recent studies (Arjovsky
and Bottou, 2017; Arjovsky et al., 2017; Goodfellow et al., 2014; Gulrajani et al., 2017;
Kaae Sønderby et al., 2017; Li et al., 2017; Mao et al., 2017; Mroueh and Sercu, 2017;
Mroueh et al., 2017; Nowozin et al., 2016), most of which focus on training stability.

In terms of data modalities, most success was booked in plausible natural image gen-
eration after Radford et al. (2016). This success is not only due to advances in training
generative adversarial networks in terms of loss functions (Arjovsky et al., 2017) and stable
algorithms, but also to the representation power of convolutional neural networks in mod-
eling images and in finding sufficient statistics that capture the continuous density function
of natural images. When moving to neural generators of discrete sequences, compared with
extensively studied MLE training (Sutskever et al., 2014), theory and practice of IGMs are
still not very well understood. Maximum likelihood pre-training or augmentation, in con-
junction with the use of reinforcement learning techniques were proposed in many recent
works for training GANs for discrete sequences generation (Che et al., 2017; Hjelm et al.,
2018; Rajeswar et al., 2017; Yu et al., 2017). Other methods included using the Gumbel
Softmax trick (Kusner and Hernández-Lobato, 2016) and the use of autoencoders to gen-
erate adversarially discrete sequences from a continuous space (Zhao et al., 2017). End
to end training of IGMs (GANs) for discrete sequence generation is still an open problem
(Press et al., 2017). Empirical successes of end to end training have been reported within
the framework of WGAN-GP (Gulrajani et al., 2017), using a proxy for the Wasserstein
distance via a point-wise gradient penalty on the critic. Inspired by this success, we pro-
pose in this chapter a new Integral Probability Metric (IPM) between distributions that we
coin Sobolev IPM. Intuitively an IPM (Müller, 1997) between two probability distributions
looks for a witness function f , called critic, that maximally discriminates between samples
coming from the two distributions:

sup
f∈F

Ex∼Pf(x)− Ex∼Qf(x).

Traditionally, the function f is defined over a function class F that is independent to the
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distributions at hand (Sriperumbudur et al., 2012). The Wasserstein-1 distance corresponds
for instance to an IPM where the witness functions are defined over the space of Lipschitz
functions; The MMD distance (Gretton et al., 2012a) corresponds to witness functions
defined over a ball in a Reproducing Kernel Hilbert Space (RKHS). Detailed discussions
of IPM are in Chapter 3.

We will firstly revisit Fisher IPM defined in Mroueh and Sercu (2017), which extends
the IPM definition to function classes defined with norms that depend on the distributions.
Fisher IPM can be seen as restricting the critic to a Lebsegue ball defined with respect to
a dominant measure µ. The Lebsegue norm is defined as follows:

∫

X
f 2(x)µ(x)dx.

where µ is a dominant measure of P and Q.
In Chapter 2, we propose an MMD extension for learning IGMs without leveraging

properties of data. In this chapter, we design a new probability distance for matching
discrete sequences. We extend the IPM framework to critics bounded in from the Lebsegue
norm to the Sobolev norm: ∫

X
‖∇xf(x)‖2

2 µ(x)dx,

In contrast to Fisher IPM, which compares joint probability density functions of all co-
ordinates between two distributions, we will show that Sobolev IPM compares weighted
(coordinate-wise) conditional Cumulative Distribution Functions for all coordinates on a
leave on out basis. Matching conditional dependencies between coordinates is crucial for
sequence modeling. We note that, in Chapter 3, we analyze the case when the critic
functions are in Sobolev space, which focuses on the smoothness assumption of function
spaces and the sample complexity only.

Our analysis and empirical verification show that modeling the conditional dependencies
can be built in to the metric used to learn IGMs as in Sobolev IPM. For instance, this
gives an advantage to Sobolev IPM in comparing sequences over Fisher IPM. Nevertheless,
in sequence modeling when we parametrize the critic and the generator with a neural
network, we find an interesting tradeoff between the metric used and the architectures
used to parametrize the critic and the generator as well as the conditioning used in the
generator. The burden of modeling the conditional long term dependencies can be handled
by the IPM loss function as in Sobolev IPM (more accurately the choice of the data
dependent function class of the critic) or by a simpler metric such as Fisher IPM together
with a powerful architecture for the critic that models conditional long term dependencies
such as LSTM or GRUs in conjunction with a curriculum conditioning of the generator as
done in Press et al. (2017). Highlighting those interesting tradeoffs between metrics, data
dependent functions classes for the critic (Fisher or Sobolev) and architectures is crucial
to advance sequence modeling and more broadly structured data generation using GANs.

On the other hand, Sobolev norms have been widely used in manifold regularization in
the so called Laplacian framework for semi-supervised learning (SSL) (Belkin et al., 2006).
GANs have shown success in semi-supervised learning (Dai et al., 2017; Dumoulin et al.,
2017; Kumar et al., 2017; Salimans et al., 2016). Nevertheless, many normalizations and
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additional tricks were needed. We show in the end of this chapter that a variant of Sobolev
GAN achieves strong results in semi-supervised learning on CIFAR-10, without the need
of any activation normalization in the critic.

4.1 Notations

In what follows, we consider probability measures with a positive weakly differentiable
probability density functions (PDF). Let P and Q be two probability measures. Let FP
and FQ be the Cumulative Distribution Functions (CDF) of P and Q respectively:

FP(x) =

∫ x1

−∞
· · ·
∫ xd

−∞
P(x1, . . . xd)dx.

The score function of a density function is defined as: sP(x) = ∇x log(P(x)) ∈ Rd.

4.2 Review Fisher IPM: PDF Comparison

Imposing data-independent constraints on the function class in the IPM framework, such
as the Lipschitz constraint in the Wasserstein distance is computationally challenging and
intractable for the general case. In this section, we generalize the Fisher IPM introduced in
Mroueh and Sercu (2017), where the function class is relaxed to a tractable data dependent
constraint on the second order moment of the critic, in other words the critic is constrained
to be in a Lebsegue ball.
Fisher IPM. Let X ⊂ Rd and P(X ) be the space of distributions defined on X . Let
P,Q ∈ P(X ), and µ be a dominant measure of P and Q, in the sense that

µ(x) = 0 =⇒ P(x) = 0 and Q(x) = 0.

We assume µ to be also a distribution in P(X ), and assume µ(x) > 0, ∀x ∈ X . Let
L2(X , µ) be the space of µ-measurable functions. For f, g ∈ L2(X , µ), we define the
following dot product and its corresponding norm:

〈f, g〉L2(X ,µ) =

∫

X
f(x)g(x)µ(x)dx, ‖f‖L2(X ,µ) =

√∫

X
f 2(x)µ(x)dx.

Note that L2(X , µ), can be formally defined as follows:

L2(X , µ) = {f : X → R s.t ‖f‖L2(X ,µ) <∞}.

We define the unit Lebesgue ball as follows:

B2(X , µ) = {f ∈ L2(X , µ), ‖f‖L2(X ,µ) ≤ 1}.

Fisher IPM defined in Mroueh and Sercu (2017), searches for the critic function in the
Lebesgue Ball B2(X , µ) that maximizes the mean discrepancy between P and Q. Fisher
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Figure 4.1: An example of Fisher ball constraints.

GAN (Mroueh and Sercu, 2017) was originally formulated specifically for µ = 1
2
(P + Q).

We consider here a general µ as long as it dominates P and Q. We define Generalized
Fisher IPM as follows:

Fµ(P,Q) = sup
f∈B2(X ,µ)

Ex∼Pf(x)− Ex∼Qf(x) (4.1)

Note that:

Ex∼Pf(x)− Ex∼Qf(x) =

〈
f,

P−Q
µ

〉

L2(X ,µ)

.

Hence Fisher IPM can be written as follows:

Fµ(P,Q) = sup
f∈B2(X ,µ)

〈
f,

P−Q
µ

〉

L2(X ,µ)

(4.2)

We have the following result:

Theorem 14 (Generalized Fisher IPM). The Fisher distance and the optimal critic are
as follows:

1. The Fisher distance is given by:

Fµ(P,Q) =

∥∥∥∥
P−Q
µ

∥∥∥∥
L2(X ,µ)

=

√
Ex∼µ

(
P(x)−Q(x)

µ(x)

)2

.

2. The optimal fχ achieving the Fisher distance Fµ(P,Q) is:

fχ =
1

F(P,Q)

P−Q
µ

,µ almost surely.

Proof of Theorem 14. From Eq. (4.2), the optimal fχ belong to the intersection of the
hyperplane that has normal n = P−Q

µ
, and the ball B2(X , µ), hence fχ = n

‖n‖L2(X ,µ)
. Hence

F(P,Q) = ‖n‖L2(X ,µ). An example is shown in Figure 4.1.
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We see from Theorem 14 the role of the dominant measure µ: the optimal critic is defined
with respect to this measure and the overall Fisher distance can be seen as an average
weighted distance between probability density functions, where the average is taken on
points sampled from µ. We give here some choices of µ:

1. For µ = 1
2
(P+Q), we obtain the symmetric chi-squared distance as defined in Mroueh

and Sercu (2017).

2. µGP , the implicit distribution defined by the interpolation lines between P and Q as
in Gulrajani et al. (2017).

3. When µ does not dominate P, and Q, we obtain a non symmetric divergence. For

example for µ = P, F2
P(P,Q) =

∫
X

(P(x)−Q(x))2

P(x)
dx. We see here that for this particular

choice we obtain the Pearson divergence.

4.3 Sobolev IPM

In this section, we introduce the Sobolev IPM. In a nutshell, the Sobolev IPM constrains
the critic function to belong to a ball in the restricted Sobolev space. In other words we
constrain the norm of the gradient of the critic ∇xf(x). We will show that by moving from
a Lebesgue constraint as in Fisher IPM to a Sobolev constraint as in Sobolev IPM, the
metric changes from a joint PDF matching to weighted (ccordinate-wise) conditional CDFs
matching. The intrinsic conditioning built in to the Sobolev IPM and the comparison of
cumulative distributions makes Sobolev IPM suitable for comparing discrete sequences.

4.3.1 Definition and Expression of Sobolev IPM in terms of Co-
ordinate Conditional CDFs

We will start by recalling some definitions on Sobolev spaces. We assume in the following
that X is compact and consider functions in the Sobolev space W1,2(X , µ):

W1,2(X , µ) =

{
f : X → R,

∫

X
‖∇xf(x)‖2 µ(x)dx <∞

}
,

We restrict ourselves to functions in W1,2(X , µ) vanishing at the boundary, and note this
space W1,2

0 (X , µ). Note that in this case:

‖f‖W1,2
0 (X ,µ) =

√∫

X
‖∇xf(x)‖2 µ(x)dx

defines a semi-norm. We can similarly define a dot product in W1,2
0 (X , µ), for f, g ∈

W1,2
0 (X , µ):

〈f, g〉W1,2
0 (X ,µ) =

∫

X
〈∇xf(x),∇xg(x)〉Rd µ(x)dx.
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Hence we define the following Sobolev IPM, by restricting the critic of the mean discrepancy
to the Sobolev unit ball :

Sµ(P,Q) = sup
f∈W1,2

0 ,‖f‖
W1,2

0 (X ,µ)
≤1

{
Ex∼Pf(x)− Ex∼Qf(x)

}
. (4.3)

When compared to the Wasserstein distance, the Sobolev IPM given in Eq. (4.3) uses a
data dependent gradient constraint (depends on µ) rather than a data independent Lipchitz
constraint. Let FP and FQ be the cumulative distribution functions of P and Q respectively.
We have:

P(x) =
∂d

∂x1 . . . ∂xd
FP(x), (4.4)

and we define

D−i =
∂d−1

∂x1 . . . ∂xi−1∂xi+1 . . . ∂xd
, for i = 1 . . . d.

D−i computes the (d− 1) high-order partial derivative excluding the variable i. Our main
result is presented in Theorem 15.

Theorem 15 (Sobolev IPM). Assume that FP, and FQ and its d derivatives exist and are
continuous: FP and FQ ∈ Cd(X ). Define the differential operator D− :

D− = (D−1, . . . D−d).

For x = (x1, . . . xi−1, xi, xi+1, . . . xd), let x−i = (x1, . . . xi−1, xi+1, . . . xd).
The Sobolev IPM given in Eq. (4.3) has the following equivalent forms:

1. Sobolev IPM as comparison of high order partial derivatives of CDFs. The Sobolev
IPM has the following form:

Sµ(P,Q) =
1

d

√∫

X

∑d
i=1(D−iFP(x)−D−iFQ(x))2

µ(x)
dx.

2. Sobolev IPM as comparison of weighted (coordinate-wise) conditional CDFs. The
Sobolev IPM can be written in the following equivalent form:

S2
µ(P,Q) =

1

d2
Ex∼µ

d∑

i=1

(
PX−i(x−i)FP[Xi|X−i=x−i]

(xi)−QX−i(x
−i)FQ[Xi|X−i=x−i]

(xi)

µ(x)

)2

.

(4.5)

3. The optimal critic f ∗ satisfies the following identity:

∇xf
∗(x) =

1

dSµ(P,Q)

D−FQ(x)−D−FP(x)

µ(x)
,µ− almost surely. (4.6)

We make the following remarks on Theorem 15:

1. From Theorem 15, we see that the Sobolev IPM compares d higher order partial
derivatives of the cumulative distributions FP and FQ, while Fisher IPM compares
the probability density functions.
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2. The dominant measure µ plays a similar role to Fisher:

S2
µ(P,Q) =

1

d2

d∑

i=1

Ex∼µ
(
D−iFP(x)−D−iFQ(x)

µ(x)

)2

,

the average distance is defined with respect to points sampled from µ.

3. Comparison of coordinate-wise Conditional CDFs. We note in the following
x−i = (x1, . . . xi−1, xi+1, . . . xd). Note that we have:

D−iFP(x) =
∂d−1

∂x1 . . . ∂xi−1∂xi+1 . . . ∂xd

∫ x1

−∞
· · ·
∫ xd

−∞
P(u1 . . . ud)du1 . . . dud

=

∫ xi

−∞
P(x1, . . . , xi−1, u, xi+1, . . . , xd)du

= PX−i(x1, . . . , xi−1, xi+1, . . . xd)

∫ xi

−∞
P[Xi|X−i=x−i](u|x1, . . . , xi−1, xi+1, . . . xd)du

(Using Bayes rule)

= PX−i(x−i)FP[Xi|X−i=x−i]
(xi),

Note that for each i, D−iFP(x) is the cumulative distribution of the variable Xi given
the other variables X−i = x−i, weighted by the density function of X−i at x−i. This
leads us to the form given in Eq. (4.5).

We see that the Sobolev IPM compares for each dimension i the conditional cumula-
tive distribution of each variable given the other variables, weighted by their density
function. We refer to this as comparison of coordinate-wise CDFs on a leave one out
basis. From this we see that we are comparing CDFs, which are better behaved on
discrete distributions. Moreover, the conditioning built in to this metric will play a
crucial role in comparing sequences as the conditioning is important in this context
(See Section 4.6.1).

4.3.2 Sobolev IPM Approximation

Learning in the whole Sobolev space W1,2
0 is challenging hence we need to restrict our

function class to a hypothesis class H, such as neural networks. We assume in the following
that functions in H vanish on the boundary of X , and restrict the optimization to the
function space H. H can be a Reproducing Kernel Hilbert Space as in the MMD case or
parametrized by a neural network. Define the Sobolev IPM approximation in H:

SH,µ(P,Q) = sup
f∈H,‖f‖

W1,2
0
≤1

{
Ex∼Pf(x)− Ex∼Qf(x)

}
(4.7)

The following Lemma shows that the Sobolev IPM approximation in H is proportional to
Sobolev IPM. The tightness of the approximation of the Sobolev IPM is governed by the
tightness of the approximation of the optimal Sobolev Critic f ∗ in H. This approximation
is measured in the Sobolev sense, using the Sobolev dot product.
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(a) Smoothed discrete densities: PDF versus CDF of smoothed discrete densities with non over-
lapping supports.
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(b) Smoothed Discrete and Continuous densities: PDF versus CDF of a smoothed discrete density
and a continuous density with non overlapping supports.

Figure 4.2: In the GAN context for example in text generation, we have to match a
(smoothed) discrete real distribution and a continuous generator. In this case, the CDF
matching enabled by Sobolev IPM gives non zero discrepancy between a (smoothed) dis-
crete and a continuous density even if the densities have disjoint supports. This ensures
non vanishing gradients of the critic.

Lemma 16 (Sobolev IPM Approximation in a Hypothesis Class). Let H be a function
space with functions vanishing at the boundary. For any f ∈ H and for f ∗ the optimal
critic in W1,2

0 , we have:

SH,µ(P,Q) = Sµ(P,Q) sup
f∈H,‖f‖

W1,2
0 (X ,µ)≤1

∫

X
〈∇xf(x),∇xf

∗(x)〉Rd µ(x)dx.

Note that Lemma 16 means that the Sobolev IPM is well approximated if the space
H has an enough representation power to express ∇xf

∗(x). This is parallel to the Fisher
IPM approximation (Mroueh and Sercu, 2017) where it is shown that the Fisher IPM
approximation error is proportional to the critic approximation in the Lebesgue sense.
Having in mind that the gradient of the critic is the information that is passed on to the
generator, we see that this convergence in the Sobolev sense to the optimal critic is an
important property for GAN training.
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4.4 Sobolev IPM and Other Discrepancies

In this section, we present the theoretical properties of Sobolev IPM and how it relates to
distributions transport theory and other known metrics between distributions.

4.4.1 Sobolev IPM / Cramér Distance and Wasserstein-1 in One
Dimension

In one dimension, Sobolev IPM is the Cramér Distance (for µ uniform on X , we note this
µ := 1). While Sobolev IPM in one dimension measures the discrepancy between CDFs, the
one dimensional Wasserstein-p distance measures the discrepancy between inverse CDFs:

S2
µ:=1(P,Q) =

∫

X
(FP(x)− FQ(x))2dx versus Wp

p (P,Q) =

∫ 1

0

|F−1
P (u)− F−1

Q (u)|pdu,

Recall also that the Fisher IPM for uniform µ is given by :

F2
µ:=1(P,Q) =

∫

X
(P(x)−Q(x))2dx.

Consider for instance two point masses P = δa1 and Q = δa2 with a1, a2 ∈ R. The rationale
behind using Wasserstein distance for GAN training is that since it is a weak metric, for
far distributions Wasserstein distance provides some signal (Arjovsky et al., 2017). In this
case, it is easy to see that W1

1 (P,Q) = S2
µ:=1 = |a1 − a2|, while F2

µ:=1(P,Q) = 2. As we
see from this simple example, CDF comparison is more suitable than PDF for comparing
distributions on discrete spaces. See Figure 4.2, for a further discussion of this effect in the
GAN context.

4.4.2 Distribution Transport Perspective on Sobolev IPM

We characterize the optimal critic of the Sobolev IPM as a solution of a non linear PDE.
The solution of the variational problem of the Sobolev IPM satisfies a non linear PDE
that can be derived using standard tools from calculus of variations (Alaoui et al., 2016;
Ekeland and Turnbull, 1983).

Theorem 17 (PDE satisfied by the Sobolev Critic). The optimal critic of Sobolev IPM
f ∗ satisfies the following PDE:

∆f ∗(x) + 〈∇x log µ(x),∇xf
∗(x)〉+

P(x)−Q(x)

Sµ(P,Q)µ(x)
= 0. (4.8)

Define the Stein Operator: T (µ)~g(x) = 1
2

(
〈∇x log(µ(x)), ~g(x)〉+ div(~g(x))

)
. Hence we

have the following Transport Equation of P to Q:

Q(x) = P(x) + 2Sµ(P,Q)µ(x)T (µ)∇xf
∗(x).

Recall the definition of Stein Discrepancy :

S(Q, µ) = sup
~g

|Ex∼Q [T (µ)~g(x)]| , ~g : X → Rd.
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Theorem 18 (Sobolev and Stein Discrepanices). The following inequality holds true:

∣∣∣∣Ex∼Q
[
Q(x)− P(x)

µ(x)

]∣∣∣∣ ≤ 2 S(Q, µ)︸ ︷︷ ︸
Stein Good fitness of the model Q w.r.t to µ

Sµ(P,Q)︸ ︷︷ ︸
Sobolev Distance

(4.9)

Consider for example µ = P, and sequence Qn. If the Sobolev distance goes SP(P,Qn)→
0, the ratio rn(x) = Qn(x)

P(x)
converges in expectation (w.r.t to Q) to 1. The speed of the

convergence is given by the Stein Discrepancy S(Qn,P).

4.4.3 Relation to Fokker-Planck Diffusion Equation and Particles
Dynamics

Note that PDE satisifed by the Sobolev critic given in Eq. (4.8) can be equivalently written:

P−Q
Sµ(P,Q)

= −div(µ(x)∇xf
∗(x)), (4.10)

written in this form, we draw a connection with the Fokker-Planck Equation for the evo-
lution of a density function qt that is the density of particles Xt ∈ Rd evolving with a drift
(a velocity field) V (x, t) : X × [0,∞[→ Rd:

dXt = V (Xt, t)dt,where the density of X0 is given by q0(x) = Q(x),

The Fokker-Planck Equation states that the evolution of the particles density qt satisfies:

dqt
dt

(x) = −div(qt(x)V (x, t)) (4.11)

Comparing Eq. (4.10) and Eq. (4.11), we identify then the gradient of Sobolev critic as
a drift. This suggests that one can define “Sobolev descent” as the evolution of particles
along the gradient flow:

dXt = ∇xf
∗
t (Xt)dt,where the density of X0 is given by q0(x) = Q(x),

where f ∗t is the Sobolev critic between qt and P. One can show that the limit distribution
of the particles is P. The analysis of “Sobolev descent” and its relation to Stein Descent
(Liu, 2017; Liu and Wang, 2016; Mroueh et al., 2019) is beyond the scope of this thesis.
Hence we see that the gradient of the Sobolev critic defines a transportation plan to move
particles whose distribution is Q to particles whose distribution is P (See Figure 4.3). This
highlights the role of the gradient of the critic in the context of GAN training in term of
transporting the distribution of the generator to the real distribution.

Example: Sobolev IPM between two 2D Gaussians. We consider P and Q to be
two dimensional Gaussians with means µ1 and µ2 and covariances Σ1 and Σ2. Let (x, y) be
the coordinates in 2D. We note FP and FQ the CDFs of P and Q respectively. We consider
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(a) Numerical solution of the PDE satisfied
by the optimal Sobolev critic.

(b) Optimal Sobolev Transport Vector Field
∇xf∗(x) (arrows are the vector field ∇xf∗(x)
evaluated on the 2D grid. Magnitude of ar-
rows was rescaled for visualization.)

Figure 4.3: Numerical solution of the PDE satisfied by the optimal Sobolev critic and
the transportation plan induced by the gradient of Sobolev critic. The gradient of the
critic (wrt to the input), defines on the support of µ = P+Q

2
a transportation plan for

moving the distribution mass from Q to P, which is an example for showing our analysis
of transportation plan and its relation to Fokker-Planck diffusion.

in this example µ = P+Q
2

. We know from Theorem 15 that the gradient of the Sobolev
optimal critic is proportional to the following vector field:

∇f ∗(x, y) α
1

µ(x, y)

[
∂
∂y

(FQ(x, y)− FP(x, y))
∂
∂x

(FQ(x, y)− FP(x, y))

]
(4.12)

In Figure 4.3 we consider µ1 = [1, 0],Σ1 =

[
1.9 0.8
0.8 1.3

]
µ2 = [1,−2],Σ2 =

[
1.9 −0.8
−0.8 1.3

]
.

In Figure 4.3a we plot the numerical solution of the PDE satisfied by the optimal Sobolev
critic given in Eq. (4.10), using Matlab solver for elliptic PDEs (more accurately we
solve −div(µ(x)∇xf(x)) = P(x) − Q(x), hence we obtain the solution of Eq. (4.10) up
to a normalization constant ( 1

Sµ(P,Q)
)). We numerically solve the PDE on a rectangle

with zero boundary conditions. We see that the optimal Sobolev critic separates the two
distributions well. In Figure 4.3b we then numerically compute the gradient of the optimal
Sobolev critic on a 2D grid as given in Eq. (4.12) (using numerical evaluation of the CDF
and finite difference for the evaluation of the partial derivatives). We plot in Figure 4.3b
the density functions of P and Q as well as the vector field of the gradient of the optimal
Sobolev critic. As discussed above, we see that the gradient of the critic (wrt to the input),
defines on the support of µ = P+Q

2
a transportation plan for moving the distribution mass

from Q to P.
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4.4.4 Comparison with Other Discrepancies

In Table 4.1, we give a comparison of different discrepancies ∆ and function spaces F
used in the literature for IGM training together with our proposed Sobolev IPM. We see
from Table 4.1 that Sobolev IPM, compared to Wasserstein Distance, imposes a tractable
smoothness constraint on the critic on points sampled from a distribution µ, rather then
imposing a Lipschitz constraint on all points in the space X . We also see that Sobolev
IPM is the natural generalization of the Cramér Von-Mises Distance from one dimension
to high dimensions as we discussed above. We note that the Energy Distance, a form
of Maximum Mean Discrepancy for a special kernel, was used in Bellemare et al. (2017)
as a generalization of the Cramér distance in GAN training but still needed a gradient
penalty in its algorithmic counterpart leading to a mis-specified distance between distribu-
tions. We note that the Stein metric (Liu, 2017; Liu et al., 2016) uses the score function
to match distributions and we have shown that how Sobolev IPM relates to the Stein
discrepancy. Finally, Fisher IPM compares joint PDF of the distributions, Sobolev IPM
compares weighted (coordinate-wise) conditional CDFs.

4.5 Sobolev GAN: IGM with Sobolev IPM

Now we turn to the problem of learning IGMs with Sobolev IPM. Given the “real distri-
bution” PX ∈ P(X ), our goal is to learn a generator gθ : Z ⊂ Rnz → X , such that for
z ∼ pz, the distribution of gθ(z) is close to the real data distribution PX , where pz is a
fixed distribution on Z (for instance z ∼ N (0, Inz)). We note Qθ for the “fake distribu-
tion” of gθ(z), z ∼ pz. Consider {xi, i = 1 . . . N} ∼ PX , {zi, i = 1 . . . N} ∼ N (0, Inz), and
{x̃i, i = 1 . . . N} ∼ µ. We consider these choices for µ:

1. µ = PX+Qθ
2

i.e x̃ ∼ PX or x̃ = gθ(z), z ∼ PZ with equal probability 1
2
.

2. µGP is the implicit distribution defined by the interpolation lines between PX and Qθ

as in Gulrajani et al. (2017) i.e : x̃ = ux + (1 − u)y, x ∼ PX , y = gθ(z), z ∼ pz and
u ∼ Unif[0, 1].

Sobolev GAN can be written as follows:

min
θ

sup
φ, 1
N

∑N
i=1‖∇xfφ(x̃i)‖2=1

Ê(fφ, gθ) =
1

N

N∑

i=1

fφ(xi)−
1

N

N∑

i=1

fφ(gθ(zi))

For any choice of the parametric function class Hφ , note the constraint by Ω̂S(fφ, gθ) =
1
N

∑N
i=1 ‖∇xfφ(x̃i)‖2 . For example if µ = PX+Qθ

2
, Ω̂S(fφ, gθ) = 1

2N

∑N
i=1 ‖∇xfφ(xi)‖2 +

1
2N

∑N
i=1 ‖∇xfφ(gθ(zi))‖2. Note that, since the optimal theoretical critic is achieved on the

sphere, we impose a sphere constraint rather than a ball constraint. Similar to Mroueh
and Sercu (2017) we define the Augmented Lagrangian corresponding to Sobolev GAN
objective and constraint

LS(p, θ, λ) = Ê(fφ, gθ) + λ(1− Ω̂S(fφ, gθ))−
ρ

2
(Ω̂S(fφ, gθ)− 1)2 (4.13)

where λ is the Lagrange multiplier and ρ > 0 is the quadratic penalty weight. We alternate
between optimizing the critic and the generator. We impose the constraint when training
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∆(f ;P,Q) F dF(P,Q)
Function class Closed Form

f -Divergence Ex∼Pf(x)− Ex∼Qϕ∗(f(x))
{
f : X → R, f ∈ domϕ∗

}
Ex∼Q

[
ϕ( P(x)

Q(x)
)
]

(Goodfellow et al., 2014)

(Nowozin et al., 2016) ϕ∗ Fenchel Conjugate

Wasserstein -1 Ex∼Pf(x)− Ex∼Qf(x)
{
f : X → R, ‖f‖lip ≤ 1

}
infπ∈Π(P,Q)

∫
X ‖x− y‖1 dπ(x, y)

(Arjovsky et al., 2017) Sinkhorn Divergence
(Gulrajani et al., 2017) (Genevay et al., 2018)

MMD Ex∼Pf(x)− Ex∼Qf(x)
{
f : X → R, ‖f‖Hk ≤ 1

}
‖Ex∼Pkx − Ex∼Qkx‖Hk

(Li et al., 2017)

(Li et al., 2015b)

(Dziugaite et al., 2015)

Stein Ex∼Q [T (P)f(x)]
{
f : X → Rd NA in general

Discrepancy T (P) = (∇x log(P(x))> +∇x. f smooth with zero has a closed form

(Wang and Liu, 2016) boundary condition
}

in RKHS

Cramér Ex∼Pf(x)− Ex∼Qf(x)
{
f : X → R,Ex∼P(df(x)

dx
)2 ≤ 1,

√
Ex∼P

(
FP(x)−FQ(x)

P(x)

)2

for d = 1 f smooth with zero x ∈ R
(Bellemare et al., 2017) boundary condition

}

µ-Fisher Ex∼Pf(x)− Ex∼Qf(x)
{
f : X → R, f ∈ L2(X , µ),

√
Ex∼µ

(
P(x)−Q(x)

µ(x)

)2

IPM Ex∼µf 2(x) ≤ 1
}

(Mroueh and Sercu, 2017)

µ-Sobolev Ex∼Pf(x)− Ex∼Qf(x)
{
f : X → R, f ∈ W1,2

0 (X , µ), 1
d

√
Ex∼µ

∑d
i=1

(
φi(P)−φi(Q)

µ(x)

)2

IPM Ex∼µ ‖∇xf(x)‖2 ≤ 1,

(This work) with zero boundary condition
}

where φi(P) =

PX−i(x−i)FP[Xi|X−i=x−i]
(xi)

x−i = (x1, . . . xi−1, xi+1, . . . xd)

Table 4.1: Comparison of different metrics between distributions used for GAN training.
References are for papers using those metrics for GAN training.

the critic only. Given θ, we solve maxφ minλ LS(φ, θ, λ), for training the critic. Then given
the critic parameters φ we optimize the generator weights θ to minimize the objective
minθ Ê(fφ, gθ). See Algorithm 2.

Remark 19. Note that in Algorithm 2, we obtain a biased estimate since we are using
same samples for the cost function and the constraint, but the incurred bias can be shown
to be small and vanishing as the number of samples increases as shown and justified in
Shivaswamy and Jebara (2010).
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Algorithm 2 Sobolev GAN

Input: ρ penalty weight, η Learning rate, nc number of iterations for training the critic,
N batch size
Initialize p, θ, λ = 0
repeat

for j = 1 to nc do
Sample a minibatch xi, i = 1 . . . N, xi ∼ PX
Sample a minibatch zi, i = 1 . . . N, zi ∼ PZ
(gφ, gλ)← (∇φLS,∇λLS)(p, θ, λ)
p← φ+ η ADAM (p, gφ)

λ← λ− ρgλ . SGD rule on λ with learning rate ρ
end for
Sample zi, i = 1 . . . N, zi ∼ PZ
dθ ← ∇θÊ(fφ, gθ) = −∇θ

1
N

∑N
i=1 fφ(gθ(zi))

θ ← θ − η ADAM (θ, dθ)
until θ converges

Relation to WGAN-GP. WGAN-GP can be written as follows:

min
θ

sup
φ,‖∇xfφ(x̃i)‖=1,x̃i∼µGP

Ê(fφ, gθ) =
1

N

N∑

i=1

fφ(xi)−
1

N

N∑

i=1

fφ(gθ(zi))

The main difference between WGAN-GP and our setting, is that WGAN-GP enforces
pointwise constraints on points drawn from µ = µGP via a point-wise quadratic penalty
(Ê(fφ, gθ) − λ

∑N
i=1(1 − ‖∇xf(x̃i)‖)2) while we enforce that constraint on average as a

Sobolev norm, allowing us the coordinate weighted conditional CDF interpretation of the
IPM.

4.6 Experiments

Sobolev IPM has two important properties; The first stems from the conditioning built
in to the metric through the weighted conditional CDF interpretation. The second stems
from the diffusion properties that the critic of Sobolev IPM satisfies that has theoretical
and practical ties to the Laplacian regularizer and diffusion on manifolds used in semi-
supervised learning (Belkin et al., 2006).

In this section, we exploit those two important properties in two applications of Sobolev
GAN: text generation and semi-supervised learning. First in text generation, which can
be seen as a discrete sequence generation, Sobolev GAN (and WGAN-GP) enable training
GANs without need to do explicit brute-force conditioning. We attribute this to the built-
in conditioning in Sobolev IPM (for the sequence aspect) and to the CDF matching (for the
discrete aspect). Secondly using GANs in semi-supervised learning is a promising avenue
for learning using unlabeled data. We show that a variant of Sobolev GAN can achieve
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(a) Comparing Sobolev with µGP and
WGAN-GP. The JS-4 are 0.3363 and 0.3302
respectively.
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Figure 4.4: Result of Sobolev GAN for various dominating measure µ, for resnets as
architectures of the critic and the generator.

strong SSL results on the CIFAR-10 dataset, without the need of any form of activation
normalization in the networks or any extra ad hoc tricks.

4.6.1 Text Generation with Sobolev GAN

In this Section, we present an empirical study of Sobolev GAN in character level text
generation. Our empirical study on end to end training of character-level GAN for text
generation is articulated on four dimensions (loss, critic, generator, µ). (1) the loss
used (GP: WGAN-GP (Gulrajani et al., 2017), S: Sobolev or F: Fisher) (2) the architecture
of the critic (Resnets or RNN) (3) the architecture of the generator (Resnets or RNN or
RNN with curriculum learning) (4) the sampling distribution µ in the constraint.
Text Generation Experiments. We train a character-level GAN on Google Billion
Word dataset and follow the same experimental setup used in Gulrajani et al. (2017). The
generated sequence length is 32 and the evaluation is based on Jensen-Shannon divergence
on empirical 4-gram probabilities (JS-4) of validation data and generated data. JS-4 may
not be an ideal evaluation criteria, but it is a reasonable metric for current character-level
GAN results, which is still far from generating meaningful sentences.
Annealed Smoothing of discrete PX in the constraint µ. Since the generator dis-
tribution will always be defined on a continuous space, we can replace the discrete “real”
distribution PX with a smoothed version (Gaussian kernel smoothing) PX ?N (0, σ2Id). This
corresponds to doing the following sampling for PX : x + ξ, x ∼ PX , and ξ ∼ N (0, σ2Id).
Note that we only inject noise to the “real” distribution with the goal of smoothing the
support of the discrete distribution, as opposed to instance noise on both “real” and “fake”
to stabilize the training, as introduced in Arjovsky and Bottou (2017); Kaae Sønderby et al.
(2017). As it is common in optimization by continuation (Mobahi and III, 2015), we also
anneal the noise level σ as the training progresses on a linear schedule.
Sobolev GAN versus WGAN-GP with Resnets. In this setting, we compare
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Figure 4.5: Comparison of annealed versus non annealed smoothing of PX in Sobolev GAN.
We see that annealed smoothing outperforms the non annealed smoothing experiments.

(WGAN-GP,G=Resnet,D=Resnet,µ = µGP ) to (Sobolev,G=Resnet,D=Resnet,µ) where

µ is one of: (1) µGP , (2) the noise smoothed µs(σ) = PX ?N (0,σ2Id)+Qθ
2

or (3) noise smoothed
with annealing µas(σ0) with σ0 the initial noise level. We use the same architectures of
Resnet with 1D convolution for the critic and the generator as in Gulrajani et al. (2017).
In order to implement the noise smoothing we transform the data into one-hot vectors.
Each one hot vector x is transformed to a probability vector p with 0.9 replacing the one
and 0.1/(dictsize − 1) replacing the zero. We then sample ε from a Gaussian distribution
N (0, σ2), and use softmax to normalize log p + ε. We use Algorithm 2 for Sobolev GAN
and fix the learning rate to 10−4 and ρ to 10−5. The noise level σ was annealed following
a linear schedule starting from an initial noise level σ0 (at iteration i, σi = σ0(1− i

Maxiter
),

Maxiter=30K). Results are given in Figure 4.4a for the JS-4 evaluation of both WGAN-GP
and Sobolev GAN for µ = µGP . In Figure 4.4b we show the JS-4 evaluation of Sobolev
GAN with the annealed noise smoothing µas(σ0), for various values of the initial noise level
σ0. We see that the training succeeds in both cases. Sobolev GAN achieves slightly better
results than WGAN-GP for the annealing that starts with high noise level σ0 = 1.5. We
note that without smoothing and annealing i.e using µ = PX+Qθ

2
, Sobolev GAN is behind.

Annealed smoothing of PX , helps the training as the real distribution is slowly going from
a continuous distribution to a discrete distribution. Figure 4.5 gives a comparison between
annealed and non annealed smoothing.
Fisher GAN Curriculum Conditioning versus Sobolev GAN: Explicit versus
Implicit conditioning. We analyze how Fisher GAN behaves under different architec-
tures of generators and critics. We first fix the generator to be ResNet. We study 3
different architectures of critics: ResNet, GRU (we follow the experimental setup from
Press et al. (2017)), and hybrid ResNet+GRU (Reed et al., 2016). We notice that RNN is
unstable, we need to clip the gradient values of critics in [−0.5, 0.5], and the gradient of the
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Figure 4.6: Fisher GAN with different architectures for critics: (a-c) We see that for µ =
µGP and G = Resnet for various critic architectures, Fisher GAN fails at the task of text
generation. We notice small improvements for RNN critics (b-c) due to the conditioning
and factoring of the distribution. (d) Fisher GAN with recurrent generator and critic,
trained on a curriculum conditioning for increasing lengths `, increments indicated by
gridlines. In this curriculum conditioning setup, with recurrent critics and generators, the
training of Fisher GAN succeeds and reaches similar levels of Sobolev GAN (and WGAN-
GP). It is important to note that by doing this explicit curriculum conditioning for Fisher
GAN, we highlight the implicit conditioning induced by Sobolev GAN, via the gradient
regularizer.

Lagrange multiplier λF to [−104, 104]. We fix ρF = 10−7 and we use µ = µGP . We search
the value for the learning rate in [10−5, 10−4]. We see that for µ = µGP and G = Resnet
for various critic architectures, Fisher GAN fails at the task of text generation (Figure 4.6
a-c). Nevertheless, when using RNN critics (Fig 4.6 b, c) a marginal improvement happens
over the fully collapsed state when using a resnet critic (Fig 4.6 a). We hypothesize that
RNN critics enable some conditioning and factoring of the distribution, which is lacking in
Fisher IPM.

Finally Figure 4.6 (d) shows the result of training with recurrent generator and critic.
We follow Press et al. (2017) in terms of GRU architecture, but differ by using Fisher GAN
rather than WGAN-GP. We use µ = PX+Qθ

2
i.e. without annealed noise smoothing. We

train (F, D=RNN,G=RNN,PX+Qθ
2

) using curriculum conditioning of the generator for all
lengths ` as done in Press et al. (2017): the generator is conditioned on 32− ` characters
and predicts the ` remaining characters. We increment ` = 1 to 32 on a regular schedule
(every 15k updates). JS-4 is only computed when ` > 4. We see in Figure 4.6 that
under curriculum conditioning with recurrent critics and generators, the training of Fisher
GAN succeeds and reaches similar levels of Sobolev GAN (and WGAN-GP). Note that
the need of this explicit brute force conditioning for Fisher GAN, highlights the implicit
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Figure 4.7: Result of WGAN-GP and Sobolev with RNNs.

conditioning induced by Sobolev GAN via the gradient regularizer, without the need for
curriculum conditioning.
Sobolev GAN versus WGAN-GP with RNN. We fix the generator architecture to
Resnets. The experiments of using RNN (GRU) as the critic architecture for WGAN-GP
and Sobolev is shown in Figure 4.7 where we used µ = µGP for both cases. We only apply
gradient clipping to stabilize the performance without other tricks. We can observe that
using RNN degrades the performance. We think that this is due to an optimization issue
and a difficulty in training RNN under the GAN objective without any pre-training or
conditioning. Finally, we show generated examples in Figure 4.8.
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Figure 4.8: Text samples from various GANs considered in this paper.
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4.6.2 Semi-Supervised Learning with Sobolev GAN

A proper and promising framework for evaluating GANs consists in using it as a regularizer
in the semi-supervised learning setting (Dumoulin et al., 2017; Kumar et al., 2017; Salimans
et al., 2016). As mentioned before, the Sobolev norm as a regularizer for the Sobolev IPM
draws connections with the Laplacian regularization in manifold learning (Belkin et al.,
2006). In the Laplacian framework of semi-supervised learning, the classifier satisfies a
smoothness constraint imposed by controlling its Sobolev norm:

∫
X ‖∇xf(x)‖2 µ2(x)dx

(Alaoui et al., 2016). In this Section, we present a variant of Sobolev GAN that achieves
competitive performance in semi-supervised learning on the CIFAR-10 dataset (Krizhevsky
and Hinton, 2009) without using any internal activation normalization in the critic, such as
batch normalization (BN) (Ioffe and Szegedy, 2015), layer normalization (LN) (Ba et al.,
2016), or weight normalization (Salimans and Kingma, 2016).

In this setting, a convolutional neural network Φω : X → Rm is shared between the
cross entropy (CE) training of a K-class classifier (S ∈ RK×m) and the critic of GAN (See
Figure 4.9). We have the following training equations for the (critic + classifer) and the
generator:

Critic + Classifier: max
S,Φω ,f

LD = LGAN
alm (f, gθ)− λCE

∑

(x,y)∈lab

CE(p(y|x), y) (4.14)

Generator: max
θ
LG = Ê(f, gθ) (4.15)

where the main IPM objective withN samples: Ê(f, gθ) = 1
N

(∑
x∈unl f(x)−∑z∼pz f(gθ(z))

)
.

Following Mroueh and Sercu (2017), we use the following “K + 1 parametrization” for
the critic (See Figure 4.9) :

f(x) =
K∑

y=1

p(y|x) 〈Sy,Φω(x)〉
︸ ︷︷ ︸

f+: “real” critic

− 〈v,Φω(x)〉︸ ︷︷ ︸
f−:“fake” critic

Note that p(y|x) = Softmax(〈S,Φω(x)〉)y appears both in the critic formulation and in the
Cross-Entropy term in Eq. (4.14). Intuitively this critic uses the K class directions of the
classifier Sy to define the “real” direction, which competes with another K+1th direction
v that indicates fake samples. This parametrization adapts the idea of Salimans et al.
(2016), which was formulated specifically for the classic KL / JSD based GANs, to IPM-
based GANs. We saw consistently better results with the K+1 formulation over the regular
formulation where the classification layer S doesn’t interact with the critic direction v. We
also note that when applying a gradient penalty based constraint (either WGAN-GP or
Sobolev) on the full critic f = f+ − f−, it is impossible for the network to fit even the
small labeled training set (underfitting), causing bad SSL performance. This leads us to
the formulation below, where we apply the Sobolev constraint only on f−. Throughout
this Section we fix µ = PX+Qθ

2
.
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�!
CNN

K

x

Softmax(hS,�!(x)i)y
p(y|x) =

hv,�!(x)i

f+(x) =
PK

y=1 p(y|x) hSy,�!(x)i

f�(x) = hv,�!(x)i

“real” critic

“fake” critic GAN critic

f(x) = f+(x)� f�(x)

Figure 4.9: “K+1” parametrization of the critic for semi-supervised learning.

We propose the following two schemes for constraining the K+1 critic f(x) = f+(x)−
f−(x):

1) Fisher constraint on the critic: We restrict the critic to the following set:

f ∈
{
f = f+ − f−, Ω̂F (f, gθ) =

1

2N

(∑

x∈unl

f 2(x) +
∑

z∼pz

f 2(gθ(z))

)
= 1

}
.

This constraint translates to the following ALM objective in Eq. (4.14):

LGAN
alm (f, gθ) = Ê(f, gθ) + λF (1− Ω̂F (f, gθ))−

ρF
2

(Ω̂F (f, gθ)− 1)2,

where the Fisher constraint ensures the stability of the training through an implicit whitened
mean matching (Mroueh and Sercu, 2017).

2) Fisher+Sobolev constraint: We impose 2 constraints on the critic: Fisher on f
& Sobolev on f−

f ∈
{
f = f+ − f−, Ω̂F (f, gθ) = 1 and Ω̂S(f−, gθ) = 1

}
,

where Ω̂S(f−, gθ) = 1
2N

(∑
x∈unl ‖∇xf−(x)‖2 +

∑
z∼pz ‖∇xf−(gθ(z))‖2

)
.

This constraint translates to the following ALM in Eq. (4.14):

LGAN
alm (f, gθ) = Ê(f, gθ) + λF (1− Ω̂F (f, gθ)) + λS(1− Ω̂S(f−, gθ))

− ρF
2

(Ω̂F (f, gθ)− 1)2 − ρS
2

(Ω̂S(f−, gθ)− 1)2.

Note that the fisher constraint on f ensures the stability of the training, and the Sobolev
constraints on the “fake” critic f− enforces smoothness of the “fake” critic and thus
the shared CNN Φω(x). This is related to the classic Laplacian regularization in semi-
supervised learning (Belkin et al., 2006).

Table 4.2 shows results of SSL on CIFAR-10 comparing the two proposed formulations.
Similar to the standard procedure in other GAN papers, we do hyperparameter and model
selection on the validation set. We present baselines with a similar model architecture
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and leave out results with significantly larger convnets. Φω is similar to Dumoulin et al.
(2017); Mroueh and Sercu (2017); Salimans et al. (2016) in architecture, but note that
we do not use any batch, layer, or weight normalization yet obtain strong competitive
accuracies. We hypothesize that we do not need any normalization in the critic, because of
the implicit whitening of the feature maps introduced by the Fisher and Sobolev constraints
as explained in Mroueh and Sercu (2017).

Table 4.2: CIFAR-10 error rates for varying number of labeled samples in the training set.
Mean and standard deviation computed over 5 runs. We only use the K+1 formulation of
the critic. Note that we achieve strong SSL performance without any additional tricks, and
even though the critic does not have any batch, layer or weight normalization. Baselines
with * use either additional models like PixelCNN, or do data augmentation (translations
and flips), or use a much larger model, either of which gives an advantage over our plain
simple training method. † is the result we achieved in our experimental setup under the
same conditions but without “K+1” critic, since Gulrajani et al. (2017) do not have SSL
results.

Number of labeled examples 1000 2000 4000 8000
Model Misclassification rate

CatGAN (Springenberg, 2015) 19.58
FM (Salimans et al., 2016) 21.83± 2.01 19.61± 2.09 18.63± 2.32 17.72± 1.82
ALI (Dumoulin et al., 2017) 19.98± 0.3 19.09± 0.15 17.99± 0.54 17.05± 0.50
Tangents Reg (Kumar et al., 2017) 20.06± 0.5 16.78± 0.6
Π-model (Laine and Aila, 2016) * 16.55± 0.29
VAT (Miyato et al., 2017) 14.87
Bad Gan (Dai et al., 2017) * 14.41± 0.30
VAT+EntMin+Large (Miyato et al., 2017) * 13.15
Sajjadi (Sajjadi et al., 2016) * 11.29

WGAN-GP (Gulrajani et al., 2017) † 44.85± 0.28 37.62± 0.56 32.66± 0.48 30.38± 0.22

Fisher, layer norm (Mroueh and Sercu, 2017) 19.74± 0.21 17.87± 0.38 16.13± 0.53 14.81± 0.16
Fisher, no norm (Mroueh and Sercu, 2017) 21.49± 0.18 19.20± 0.46 17.30± 0.30 15.57± 0.33

Sobolev + Fisher, no norm (This Work) 20.14± 0.21 17.38± 0.10 15.77± 0.19 14.20± 0.08

4.7 Summary

We introduce the Sobolev IPM and showe that it amounts to a comparison between
weighted (coordinate-wise) CDFs. The intrinsic conditioning implied by the Sobolev IPM
explains the success of gradient regularization in Sobolev GAN and WGAN-GP on discrete
sequence data, and particularly in text generation. We highlighted the important tradeoffs
between the implicit conditioning introduced by the gradient regularizer in Sobolev IPM,
and the explicit conditioning of Fisher IPM via recurrent critics and generators in conjunc-
tion with the curriculum conditioning. Both approaches succeed in text generation. We
showed that Sobolev GAN achieves competitive semi-supervised learning results without
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the need of any normalization, thanks to the smoothness induced by the gradient regular-
izer. We think the Sobolev IPM point of view will open the door for designing new regular-
izers that induce different types of conditioning for general structured/discrete/graph data
beyond sequences. Lastly, we remark that although Sobolev IPM encourages conditioning
matching for sequence modeling, the performance is still not competitive with MLE train-
ing (Sutskever et al., 2014). A better IGM algorithm for sequence/text generation is still
an open problem.

4.8 Appendix: Proofs

Proof of Theorem 15. Let FP and FQ, be the cumulative distribution functions of P and Q
respectively. We have:

P(x) =
∂d

∂x1 . . . ∂xd
FP(x), (4.16)

We note D = ∂d

∂x1...∂xd
, and D−i = ∂d−1

∂x1...∂xi−1∂xi+1...∂xd
, for i = 1 . . . d.

D−i computes the d− 1 partial derivative excluding the variable i.
In the following we assume that FP, and FQ and its d derivatives exist and are continuous
meaning that FP and FQ ∈ Cd(X ). The objective function in Eq. (4.3) can be written as
follows:

Ex∼Pf(x)− Ex∼Qf(x) =

∫

X
f(x)D

(
FP(x)− FQ(x)

)
dx

=

∫

X
f(x)

∂

∂xi
D−i(FP(x)− FQ(x))dx

(for any i, since FP and FQ ∈ Cd(X ))

= −
∫

X

∂f

∂xi
D−i(FP(x)− FQ(x))dx

(f vanishes at the boundary in W1,2
0 (X , µ) )

Let D− = (D−1, . . . , D−d) it follows that:

Ex∼Pf(x)− Ex∼Qf(x) =
1

d

d∑

i=1

∫

X

∂f

∂xi
D−i(FQ(x)− FP(x))dx

=
1

d

∫

X

〈
∇xf(x), D−(FQ(x)− FP(x))

〉
Rd dx (4.17)

Let us define L2(X , µ)⊗d the space of measurable functions from X → Rd. For g, h ∈
L2(X , µ)⊗d the dot product is defined as follows:

〈g, h〉L2(X ,µ)⊗d =

∫

X
〈g(x), h(x)〉Rd µ(x)dx
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and the norm is given :

‖g‖L2(X ,µ)⊗d =

∫

X

‖g‖2
Rd µ(x)dx.

We can write the objective in Eq. (4.17) in term of the dot product in L2(X , µ)⊗d :

Ex∼Pf(x)− Ex∼Qf(x) =
1

d

〈
∇xf,

D−(FQ − FP)

µ

〉

L2(X ,µ)⊗d
. (4.18)

On the other hand the constraint in Eq. (4.3) can be written in terms of the norm in
L2(X , µ)⊗d:

‖f‖W1,2
0 (X ,µ) = ‖∇xf‖L2(X ,µ)⊗d (4.19)

Replacing the objective and constraint given in Eq. (4.18) and (4.19) in Eq. (4.3), we
obtain:

S(P,Q) =
1

d
sup

f,‖∇xf‖L2(X ,µ)⊗d≤1

〈
∇xf,

D−(FQ − FP)

µ

〉

L2(X ,µ)⊗d

=
1

d
sup

g∈L2(X ,µ)⊗d,‖g‖L2(X ,µ)⊗d≤1

〈
g,
D−(FQ − FP)

µ

〉

L2(X ,µ)⊗d

=
1

d

∥∥∥∥
D−(FQ − FP)

µ

∥∥∥∥
L2(X ,µ)⊗d

By definition of ‖.‖L2(X ,µ)⊗d , g
∗ =

D−FQ(x)−D−FP(x)

µ(x)

1∥∥∥D−(FQ−FP)

µ

∥∥∥
L2(X ,µ)⊗d




=
1

d

√∫

X

‖D−FQ(x)−D−FP(x)‖2

µ(x)
dx.

Hence we find also that the optimal critic f ∗ satisfies:

∇xf
∗(x) =

D−FQ(x)−D−FP(x)

µ(x)

1∥∥∥D−(FQ−FP)

µ

∥∥∥
L2(X ,µ)⊗d

.

Proof of Lemma 16.

Ex∼Pf(x)− Ex∼Qf(x) =
1

d

∫

X

〈
∇xf(x), D−(FQ(x)− FP(x))

〉
Rd dx

= Sµ(P,Q)

∫

X

〈
∇xf(x),

D−(FQ(x)− FP(x))

µ(x)dSµ(P,Q)

〉

Rd
µ(x)dx

= Sµ(P,Q)

∫

X
〈∇xf(x),∇xf

∗(x)〉µ(x)dx

= Sµ(P,Q) 〈f, f ∗〉W1,2
0
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Hence we have:

sup
f∈H,‖f‖

W1,2
0
≤1

Ex∼Pf(x)− Ex∼Qf(x) = Sµ(P,Q) sup
f∈H,‖f‖

W1,2
0
≤1

〈f, f ∗〉W1,2
0
,

It follows therefore that:

SH(P,Q) = Sµ(P,Q) sup
f∈H,‖f‖

W1,2
0
≤1

〈f, f ∗〉W1,2
0

We conclude that the Sobolev IPM can be approximated in arbitrary space as long as
it has enough capacity to approximate the optimal critic. Interestingly the approximation
error is measured now with the Sobolev semi-norm, while in Fisher it was measured with
the Lebesgue norm. Approximations with Sobolev Semi-norms are stronger then Lebesgue
norms as given by the Poincare inequality (||f ||L2 ≤ C ‖f‖W1,2

0
), meaning if the error goes

to zero in Sobolev sense it also goes to zero in the Lebesgue sense , but the converse is not
true.

Proof of Theorem 17. The proof follows similar arguments in the proofs of the analysis of
Laplacian regularization in semi-supervised learning studied by Alaoui et al. (2016).

Sµ(P,Q) = supf∈W1,2
0

{
Ex∼P [f(x)]− Ex∼Q [f(x)]

}

s.t. Ex∼µ‖∇f(x)‖2
2 ≤ 1, (4.20)

Note that this problem is convex in f (Ekeland and Turnbull, 1983). Writing the
lagrangian for Eq. (4.20) we get :

L(f, λ) = Ex∼P [f(x)]− Ex∼Q [f(x)] +
λ

2

(
1− Ex∼µ‖∇xf(x)‖2

2

)

=

∫

X
f(x)

(
P(x)−Q(x)

)
dx+

λ

2

(
1−

∫

X
‖∇xf(x)‖2

2µ(x)dx
)

=

∫

X
f(x) µ1(x) dx+

λ

2

(
1−

∫

X
‖∇xf(x)‖2

2 µ(x) dx
)

We denote
(
P(x)−Q(x)

)
as µ1(x).To get the optimal f , we need to apply KKT conditions

on the above equation.

L(f, λ) =

∫

X
f(x) µ1(x) dx+

λ

2

(
1−

∫

X
‖∇xf(x)‖2

2 µ(x) dx
)
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From the calculus of variations:

L(f + εh, λ) =

∫

X
(f + εh)(x) µ1(x) dx+

λ

2

(
1−

∫

X
‖∇x

(
f + εh

)
(x)‖2

2 µ(x) dx
)

=

∫

X
(f(x) + εh(x)) µ1(x) dx+

λ

2

(
1−

∫

X

〈
∇x

(
f + εh

)
(x),∇x

(
f + εh

)
(x)
〉
µ(x) dx

)

=

∫

X
(f(x) + εh(x)) µ1(x) dx

+
λ

2

(
1−

∫

X

[
‖∇xf(x)‖2

2 + 2ε〈∇xf(x),∇xh(x)〉+O(ε2)
]
µ(x)dx

)

= L(f, λ) + ε

∫

X
h(x) µ1(x) dx− λε

∫

X
〈∇xf(x),∇xh(x)〉 µ(x) dx+O(ε2)

= L(f, λ) + ε
[ ∫

X
h(x) µ1(x) dx− λ

∫

X
〈∇xf(x),∇xh(x)〉 µ(x) dx

]
+O(ε2)

Now we apply integration by part and set h to be zero at boundary as in Alaoui et al.
(2016). We get :

∫

X
〈∇xf(x),∇xh(x)〉 µ(x) dx =

∫

X
〈∇xf(x) µ(x),∇xh(x)〉 dx

=

∮

∂X

h(x)µ(x)∇xf(x).n(x)dS(x) −
∫

X
div
(
µ(x)∇xf(x)

)
h(x) dx

= −
∫

X
div
(
µ(x)∇xf(x)

)
h(x) dx

Hence,

L(f + εh, λ) = L(f, λ) + ε
[ ∫

X
µ1(x) h(x) dx+ λ

∫

X
div
(
µ(x)∇xf(x)

)
h(x) dx

]
+O(ε2)

= L(f, λ) + ε

∫

X

(
µ1(x) + λ div

(
µ(x)∇xf(x)

))
h(x) dx +O(ε2)

The functional derivative of L(f, λ), at any test function h vanishing on the boundary:
∫

X

∂L(f, λ)

∂f
(x)h(x)dx = lim

ε→0

L(f + εh, λ)− L(f, λ)

ε

=

∫

X

(
µ1(x) + λ div

(
µ(x)∇xf(x)

))
h(x) dx

Hence we have:
∂L(f, λ)

∂f
(x) = µ1(x) + λ div

(
µ(x)∇xf(x)

)

For the optimal f ∗, λ∗ first order optimality condition gives us:

µ1(x) + λ∗ div
(
µ(x)∇xf

∗(x)
)

= 0 (4.21)
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and
∫

X
‖∇xf

∗(x)‖2 µ(x)dx = 1 (4.22)

Note that (See Alaoui et al. (2016)) :

div
(
µ(x)∇xf

∗(x)
)

= µ(x)∆2f
∗(x) + 〈∇xµ(x),∇xf

∗(x)〉,

since div(∇xf
∗(x)) = ∆2f

∗(x). Hence from Eq. (4.21)

µ1(x) + λ∗ div
(
µ(x)∇xf

∗(x)
)

= 0

⇒ µ1(x) + λ∗
(
µ(x)∆2f

∗(x) + 〈∇xµ(x),∇xf
∗(x)〉

)
= 0

⇒ µ1(x) + λ∗ µ(x)∆2f
∗(x) + λ∗〈∇xµ(x),∇xf

∗(x)〉 = 0

⇒ ∆2f
∗(x) +

〈∇xµ(x)

µ(x)
,∇xf

∗(x)

〉
+

µ1(x)

λ∗µ(x)
= 0

⇒ ∆2f
∗(x) + 〈∇x log µ(x),∇xf

∗(x)〉+
P(x)−Q(x)

λ∗µ(x)
= 0

(4.23)

Hence f ∗, λ∗ satisfies :

∆2f
∗(x) + 〈∇x log µ(x),∇xf

∗(x)〉+
P(x)−Q(x)

λ∗µ(x)
= 0 (4.24)

and ∫

X
‖∇xf

∗(x)‖2 µ(x)dx = 1. (4.25)

Let us verify that the optimal critic as found in the geometric definition (Theorem 15) of
Sobolev IPM that satisfies:

∇if
∗(x) =

∂f ∗(X)

∂xi
=
D−iFQ(x)−D−iFP(x)

λ∗d µ(x)
∀ i ∈ [d], (4.26)

satisfies indeed the PDE.
From Eq. (4.26), we want to compute ∂2f(x)

∂x2i
for all i:

∂2f(x)

∂x2
i

=
1

λ∗d

[
µ(x)

[
∂
∂xi

(D−iFQ(x)−D−iFP(x))
]
−
[
D−iFQ(x)−D−iFP(x)

]
∇iµ(X)

µ2(x)

]

=
1

λ∗d

[
µ(x)

[
Q(x)− P(x)

]
−
[
D−iFQ(x)−D−iFP(x)

]
∇iµ(X)

µ2(x)

]

=
Q(x)− P(x)

λ∗d µ(x)
− ∇iµ(x)

µ(x)
∇if

∗(x)
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Hence,

∂2f(x)

∂x2
i

+
∇iµ(x)

µ(x)
∇if(x) +

(
P(x)−Q(x)

)

λ∗d µ(x)
= 0 (4.27)

Adding Eq. (4.27) for all i ∈ [d], we get :

d∑

i=1

(
∂2f(x)

∂x2
i

+
∇iµ(x)

µ(x)
∇if(x) +

(
P(x)−Q(x)

)

λ∗d µ(x)

)
= 0

As a result, the solution f ∗ of the partial differential equation given in Eq. (4.24)
satisfies the following :

∂f ∗(x)

∂xi
=
D−iFQ(x)−D−iFP(x)

λ∗d µ(x)
∀ i ∈ [d]

Using the constraint in (4.25) we can get the value of λ∗ :

∫
‖∇f ∗(x)‖2 µ(x) dx = 1

⇒
∫ d∑

i=1

(∂f ∗(x)

∂xi

)2

µ(x) dx = 1

⇒λ∗ =
1

d

√√√√
d∑

i=1

∫ (
D−iFQ(x)−D−iFP(x)

)2

µ(x)
dx = Sµ(P,Q).

Proof of Theorem 18. Define the Stein operator (Oates et al., 2017):

T (µ)[∇xf(x)] =
1

2
〈∇xf(x),∇x log µ(x)〉+

1

2
〈∇x,∇xf(x)〉

=
1

2
〈∇xf(x),∇x log µ(x)〉+

1

2
∆2f(x).

This operator was later used in defining the Stein discrepancy (Chwialkowski et al., 2016;
Gorham and Mackey, 2015; Liu, 2017; Liu et al., 2016).

Recall that Barbour generator theory provides us a way of constructing such operators
that produce mean zero function under µ. It is easy to verify that:

Ex∼µT (µ)∇xf(x) = 0.

Recall that this operator arises from the overdamped Langevin diffusion, defined by
the stochastic differential equation:

dxt =
1

2
∇x log µ(xt) + dWt
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where (Wt)t≥0 is a Wiener process. This is related to plug and play networks for generating
samples if the distribution is known, using the stochastic differential equation.

From Theorem 17, it is easy to see that the PDE the Sobolev Critic (f ∗, λ∗ = Sµ(P,Q))
can be written in term of Stein Operator as follows:

T (µ)[∇xf
∗](x) =

1

2λ∗
Q(x)− P(x)

µ(x)

Taking absolute values and the expectation with respect to Q:

|Ex∼Q [T (µ)∇xf
∗(x)]| = 1

2Sµ(P,Q)

∣∣∣∣Ex∼Q
[
Q(x)− P(x)

µ(x)

]∣∣∣∣

Recall that the definition of Stein Discrepancy :

S(Q, µ) = sup
~g∈L2(X ,µ)⊗d

|Ex∼Q [T (µ)~g(x)]|

It follows that Sobolev IPM critic satisfies:

|Ex∼Q [T (µ)∇xf
∗(x)]| ≤ S(Q, µ),

Hence we have the following inequality:

1

2Sµ(P,Q)

∣∣∣∣Ex∼Q
[
Q(x)− P(x)

µ(x)

]∣∣∣∣ ≤ S(Q, µ)

This is equivalent to:
∣∣∣∣Ex∼Q

[
Q(x)− P(x)

µ(x)

]∣∣∣∣ ≤ 2 S(Q, µ)︸ ︷︷ ︸
Stein Good fitness of the model Q w.r.t to µ

Sµ(P,Q)︸ ︷︷ ︸
Sobolev Distance

Similarly we obtain:
∣∣∣∣Ex∼P

[
Q(x)− P(x)

µ(x)

]∣∣∣∣ ≤ 2 S(P, µ)︸ ︷︷ ︸
Stein Good fitness of µ w.r.t to P

Sµ(P,Q)︸ ︷︷ ︸
Sobolev Distance

For instance consider µ = P, we have therefore:

1

2

∣∣∣∣Ex∼Q
[
Q(x)

P(x)

]
− 1

∣∣∣∣ ≤ S(Q,P)SP(P,Q).

Note that the left hand side of the inequality is not the total variation distance.
Hence for a sequence Qn if the Sobolev distance goes SP(P,Qn)→ 0, the ratio rn(x) = Qn(x)

P(x)

converges in expectation (w.r.t to Q) to 1. The speed of the convergence is given by the
Stein Discrepancy S(Qn,P).

One important observation here is that convergence of PDF ratio is weaker than the
conditional CDF as given by the Sobolev distance and of the good fitness of score function
as given by Stein discrepancy.
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4.9 Appendix: Hyperparameters for SSL

We use Adam with learning rate η = 2e−4, β1 = 0.5 and β2 = 0.999, both for critic f
(without BN) and Generator (with BN). We selected λCE = 1.5 from [0.8, 1.5, 3.0, 5.0].
We train all models for 350 epochs. We used some L2 weight decay: 1e−6 on ω, S (i.e.
all layers except last) and 1e−3 weight decay on the last layer v. For formulation 1
(Fisher only) we have ρF = 1e−7, modified critic learning rate ηD = 1e−4, critic iters
nc = 2. For formulation 2 (Sobolev + Fisher) we have ρF = 5e−8, ρS = 2e−8, critic iters
nc = 1. For the WGAN-GP (Gulrajani et al., 2017) baseline SSL experiment we followed
the original paper with critic iters nc = 5, ηG = ηD = 1e−4, Adam β2=0.9 and GP weight
λGP = 10.0. Architectures are as below. We determined λCE = 0.3 to be optimal from
[0.03, 0.1, 0.3, 1.0, 3.0]. As mentioned in Section 4.6.2, the K+1 critic formulation is not
able to fit the training set with the GP constraint, so we fall back to the plain critic
formulation where the critic 〈v,Φω(x)〉 does not interact with the classifier 〈S,Φω(x)〉.
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Chapter 5

Point Cloud Generation with IGMs

A fundamental problem in machine learning is that given a data set, learn a generative
model that can efficiently generate arbitrary many new sample points from the domain of
the underlying distribution (Bishop, 2006). Recently, capturing 3D information is garner-
ing attention. There are many different data types for 3D information, such as CAD, 3D
meshes, and point clouds. 3D point clouds are getting popular since these store more infor-
mation than 2D images and sensors capable of collecting point clouds have become more
accessible. These include Lidar on self-driving cars, Kinect for Xbox, and face identifica-
tion sensor on phones. Compared to other formats, point clouds can be easily represented
as a set of points, which has several advantages, such as permutation invariance of the set
members. The algorithms which can effectively learn from this type of data is an emerging
field (Fan et al., 2017; Kalogerakis et al., 2017; Qi et al., 2017a,b; Zaheer et al., 2017a).
However, compared to supervised learning, unsupervised generative models for 3D data
are still underexplored (Achlioptas et al., 2018; Oliva et al., 2018).

In this chapter, we we propose an implicit generative model with a hierarchical sampling
and an inference network for point clouds. The proposed algorithm learns a stochastic pro-
cedure which can generate new point clouds and draw samples from the generated point
clouds without explicitly modeling the underlying density function. The proposed algo-
rithm, PC-GAN, is a generic framework which can incorporate many existing IGM variants,
such as GANs. The algorithm can also be treated as an autoencoder extension with an
IGM decoder. By utilizing the low dimensionality of point clouds, we further propose a
sandwiching objective by considering both upper and lower bound estimators of Wasser-
stein distance, which can lead to tighter approximation. Evaluation on ModelNet40 shows
excellent generalization capability of PC-GAN. We first demonstrate that we can sample
from the learned model to generate new point clouds and the latent representations learned
by the inference network provide meaningful interpolations between point clouds. Then we
show the conditional generation results on unseen classes of objects, which demonstrates
the superior generalization ability of PC-GAN.
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(a) The graphical model
diagram of generating
point clouds, where z is
the latent variable indi-
cating which point cloud
to be generated.

(b) The implementation of PC-GAN, which is an extension of the
autoencoder. The inference network q can be treated as an encoder,
while the point cloud generator is an IGM decoder, which allows to
generate (sample) arbitrarily many points.

Figure 5.1: Overview of PC-GAN.

5.1 Learning to Generate Point Clouds

A point cloud for an object z is a set of n low dimensional vectors X = {x1, ..., xn} with
xi ∈ Rd, where d is usually 3 and n can be infinite. M different objects can be described
as a collection of point clouds X(1), ..., X(M). The difficulties of modeling point clouds are

1. the points in a point cloud are orderless (permutation invariant), which are different
from pixels in images, and

2. the number of points in each point clouds can be different.

To model point clouds by taking these two difficulties into account, the key assumption
is treating each point cloud as finite samples from a 3-dimensional distribution. Based on
the De-Finetti theorem, we could factor the probability with some suitably defined z, such
as object representation of point clouds, as p(X) =

∫
z

∏n
i=1 p(xi|z)p(z)dz.

Given z, learning a 3-dimensional distribution p(x|z) is an easier task. Instead of
learning explicit densities (Eckart et al., 2015; Jian and Vemuri, 2005; Strom et al., 2010)
to model this 3-dimensional distribution, we are interested in implicit generative models
with an IGM, where we can generate point clouds via sampling from the learned IGM.

Formally, given z, we train an IGM by modeling a transformation function g(z, u) such
that x = g(z, u), where u ∼ Pu is an initial randomness. The generator g(z, z) follows QX

by optimizing a probabilistic divergence D(PX‖QX) between p(x|z), which is denoted as
PX , and the distribution QX of g(z, u). We can adopt any probability distance or divergence
for modeling D(PX‖QX), such as the distances defined for training GANs as we discussed

in the previous chapters. The full objective can be written as EX
[

min
g
D(PX‖QX)

]
.
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Inference Since z is an unobserved latent variable for modeling different objects, we
need to infer z during training. The proposed algorithm has to concurrently learn the
inference network q(X) ≈ z while we learn p(x|z).

Hierarchical Sampling The overview of proposed algorithm for point cloud generation
(PC-GAN) is shown in Figure 5.1. The sampling process can be better illustrated via a
graphical diagram as shown in Figure 5.1a. We first sample the unobserved latent variable
z ∼ Pz, then sample the points of X given z. In Figure 5.1b, we show the implementation
of the proposed algorithm. To sample z in the generation process, during the training, we
have to enforce Pz to be closed to a prior distribution (Kingma and Welling, 2013), or learn
to sample from Pz via the other IGM (Tomczak and Welling, 2017; Zhao et al., 2017).

5.1.1 Auto-Encoding Perspective

The proposed PC-GAN can be viewed as an auto-encoding-based generative algorithm for
distributions of distributions (point clouds). The inference network q(X) encode the object
into the latent representation, which can be treated as encoders or recognition networks in
the existing literature (Kingma and Welling, 2013; Salakhutdinov and Hinton, 2009). The
generator g is an “IGM decoder”, which is an extension of typical decoders or generation
networks. Instead of generating a single points (Kingma and Welling, 2013), g models a
sampling process to sample a point cloud. The hierarchical sampling follows the ideas of
matching or learning priors (Makhzani et al., 2015; Tolstikhin et al., 2017a; Tomczak and
Welling, 2017; Zhao et al., 2017).

Achlioptas et al. (2018) is a similar work, which also explore an AAE variant (Makhzani
et al., 2015; Tolstikhin et al., 2017a) for point cloud. They use a specially-designed encoder
network (Qi et al., 2017a) for learning a compressed representation for point clouds before
training GAN on the latent space. However, their decoder is restricted to be an MLP
which generates m fixed number of points, where m has to be pre-defined. That is, the
output of their decoder is fixed to be 3m for 3D point clouds, while the output of the
proposed g is only 3 dimensional and g can generate arbitrarily many points by sampling
different random noise z as input. Groueix et al. (2018b); Yang et al. (2018) propose
similar decoders to g with fixed grids to break the limitation of Achlioptas et al. (2018)
aforementioned, but they use heuristic Chamfer distance and do not exploit generative
models for point clouds.

5.1.2 Different Discrepancies for Matching Point Clouds

To train the generator g using a GAN-like objective as reconstruction loss in autoencoder
for point clouds, we need a discriminator f(·) to distinguishes generated samples and
true samples conditioned on z. Combining with the inference network q(X) discussed
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aforementioned, the objecitve with IPM-based GANs can be written as

Ez∼Pz
[

min
g,q

max
f∈F

Ex∼p(X|z) [f(x)]− EX∼p(X|z) [f(g(q(X), u))]

︸ ︷︷ ︸
D(PX‖QX)

]
, (5.1)

where F is the constraint for different probabilistic distances, such as 1-Lipschitz (Arjovsky
et al., 2017), L2 ball (Mroueh and Sercu, 2017) or Sobolev ball (Mroueh et al., 2018).

5.1.3 Tighter Solutions via Sandwiching

We begin by noting that the popular Wasserstein GAN (Arjovsky et al., 2017), aims to
optimize g by minw(PX ,QX), where w(PX ,QX) is the Wasserstein distance between the
truth PX and the generated distribution QX of g. Many GAN works (e.g. Arjovsky et al.
(2017)) approximate w(PX ,QX) in dual (a maximization problem), such as (5.1), by neural
networks. The resulting estimator WL(PX ,QX) is a lower bound of the true Wasserstein
distance, as neural networks can only recover a subset of 1-Lipschitz functions (Arora
et al., 2017). However, finding a lower bound WL(PX ,QX) for w(PX ,QX) may not be
an ideal surrogate for solving a minimization problem minw(PX ,QX). In optimal trans-
port literature, Wassertein distance is usually estimated by approximating matching cost,
WU(PX ,QX), which gives us an upper bound of the true Wasserstein distance.

We propose to combine, in general, a lower bound WL and upper bound estimator WU

by sandwiching the solution between the two, i.e. we solve the following minimization
problem:

min
G

WU(PX ,QX) s.t. WU(PX ,QX)−WL(PX ,QX) < λ (5.2)

The problem can be simplified and solved using method of lagrange multipliers as follows:

min
G
Ws(PX ,QX) := (1− s)WU(PX ,QX) + sWL(PX ,QX) (5.3)

By solving the new sandwiched problem (5.3), we show that under certain conditions we
obtain a better estimator of Wasserstein distance in the following lemma:

Lemma 20. Suppose we have two approximators to Wasserstein distance: an upper bound
WU and a lower WL, such that ∀PX ,QX : (1 + ε1)w(PX ,QX) ≤ WU(PX ,QX) ≤ (1 +
ε2)w(PX ,QX) and ∀P,G : (1− ε2)w(PX ,QX) ≤ WL(PX ,QX) ≤ (1− ε1)w(PX ,QX) respec-
tively, for some ε2 > ε1 > 0 and ε1 > ε2/3. Then, using the sandwiched estimator Ws from
(5.3), we can achieve a tighter estimator of the Wasserstein distance than using either one
estimator, i.e.

∃s : |Ws(PX ,QX)−w(PX ,QX)| < min{|WU(PX ,QX)−w(PX ,QX)|, |WL(PX ,QX)−w(PX ,QX)|}
(5.4)

Proof. We prove the claim by show that LHS is at most ε1, which is the lower bound for

70



RHS.

|Ws(PX ,QX)− w(PX ,QX)|
= |(1− s)WU(PX ,QX) + sWL(PX ,QX)− w(PX ,QX)|
= |(1− s)(WU(PX ,QX)− w(PX ,QX))− s(w(PX ,QX)−WL(PX ,QX))|
≤ max{(1− s) (WU(PX ,QX)− w(PX ,QX))︸ ︷︷ ︸

≤ε2

, s (w(PX ,QX)−WL(PX ,QX))︸ ︷︷ ︸
≤ε2

}

−min{(1− s) (WU(PX ,QX)− w(PX ,QX))︸ ︷︷ ︸
≥ε1

, s (w(PX ,QX)−WL(PX ,QX))︸ ︷︷ ︸
≥ε1

}

≤ max{(1− s), s}ε2 −min{(1− s), s}ε1
(5.5)

Without loss of generality we can assume λ < 0.5, which brings us to

|Ws(PX ,QX)− w(PX ,QX)| ≤ (1− λ)ε2 − λε1 (5.6)

Now if we chose ε2−ε1
ε2+ε1

< λ < 0.5, then |Ws(PX ,QX)− w(PX ,QX)| < ε1 as desired.

Upper Bound Implementation The primal of Wasserstein distance is defined as

w(PX ,QX) = inf
γ∈Γ(PX ,QX)

∫
‖x− y‖1dγ(x, y),

where Γ is the coupling of PX and QX . The Wasserstein distance is also known as optimal
transport (OT) or earth moving distance (EMD). As the name suggests, when w(PX ,QX)
is estimated with finite number of samples X = x1, . . . , xn and Y = y1, . . . , yn, we find the
one-to-one matching between X and Y such that the total pairwise distance is minimal.
The resulting minimal total (average) pairwise distance is w(X, Y ). In practice, finding the
exact matching efficiently is non-trivial and still an open research problem (Peyré et al.,
2019). Instead, we consider an approximation provided by Bertsekas (1985). One can
show that algorithm terminates with a valid matching and the resulting matching cost
WU(X, Y ) is an ε-approximation of w(X, Y ). Thus, the estimator can serve as an upper
bound, i.e.

w(X, Y ) ≤ WU(X, Y ) ≤ (1 + ε)w(X, Y ),

We remark estimating Wasserstein distance w(PX ,QX) with finite sample in primal is
only favorable in low dimensional data, such as point clouds. The error between w(PX ,QX)
and w(X, Y ) is O(1/n1/d), where d is the dimension of data (Weed and Bach, 2017). There-
fore, for high dimensional data, such as images, we cannot accurately estimate Wasserstein
distance in primal as well as its upper bound with a small minibatch. A modified primal
with low sample complexity is still an open research problem (Cuturi, 2013; Genevay et al.,
2018).

Lower Bound Implementation The dual of Wasserstein distance is defined as

w(PX ,QX) = sup
f∈L1

Ex∼PXf(x)− Ex∼QXf(x), (5.7)
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where Lk is the set of k-Lipschitz functions whose Lipschitz constant is no larger than k.
In practice, deep neural networks parameterized by φ with constraints fφ ∈ Ωφ (Arjovsky
et al., 2017), result in a distance approximation

WL(PX ,QX) = max
fφ∈Ωφ

Ex∼PXfφ(x)− Ex∼QXfφ(x). (5.8)

If there exists k such that Ωf ⊆ Lk, then WL(PX ,QX)/k ≤ w(PX ,QX) ∀PX ,QX is
a lower bound. To enforce Ωφ ⊆ Lk, Arjovsky et al. (2017) propose a weight clipping
constraint Ωc, which constrains every weight to be in [−c, c] for some c.

5.2 Experiments

In this section we demonstrate the point cloud generation capabilities of PC-GAN. As
discussed in Section 5.1, we refer Achlioptas et al. (2018) as AAE-Fix as it could be treated
as an AAE extension with fix number of output points. The sandwiching objective Ws for
PC-GAN combines WL and WU with the mixture 1:20 without tunning for all experiments.
WL is a GAN loss by combining Arjovsky et al. (2017) and Mroueh and Sercu (2017) and
we adopt Bertsekas (1985) for WU . We parametrize q in PC-GAN by Zaheer et al. (2017a).

5.2.1 Synthetic Datasets

We generate 2D circle point clouds. The center of circles follows a mixture of Gaussians
N ({±16} × {±16}, 16I) with equal mixture weights. The radius of the circles was drawn
from a uniform distribution Unif(1.6, 6.4). One sampled circle is shown in Figure 5.2a.

The output size of the AAE-Fix decoder is 500× 2 for 500 points, and the output size
of its encoder (latent code) is 20. The total number of parameters are 24K. For PC-GAN,
the inference network (encoder) output size is 15. The total nuumber of parameters of PC-
GAN is only 12K. We evaluated the conditional distributions on the 10, 000 testing circles.
We measured the empirical distributions of the centers and the radius of the reconstructed
circles of the testing data as shown in Figure 5.2. From Figure 5.2, both AAE-Fix and
PC-GAN can successfully recover the center distribution, but AAE-Fix does not learn the
radius distribution well even with larger latent code (20) and more parameters (24K). The
gap of memory usage could be larger if we configure AAE-Fix to generate more points,
while the model size required for PC-GAN is independent of the number of points. The
reason is an MLP decoder adopted by Achlioptas et al. (2018) wastes parameters for nearby
points.

5.2.2 Study on ModelNet40

We consider ModelNet40 (Wu et al., 2015) benchmark, which contains 40 classes of objects.
There are 9, 843 training and 2, 468 testing instances. We follow Achlioptas et al. (2018)
to consider two settings. One is training on single class of objects. The other is training
on all 9, 843 objects in the training set. Achlioptas et al. (2018) set the latent code size of
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Figure 5.2: (a) (top) the true center distribution and (bottom) one example of a circle
point cloud. (b-d) are the reconstructed center and radius distributions.

AAE-Fix to be 128 and 256 for these two settings, with the total number of parameters to
be 15M and 15.2M , respectively. Similarly, we set the output dimension of q in PC-GAN
to be 128 and 256 for single-class and all-classes. The total number of parameters are 1M
and 3M , respectively.

Metrics for Quantitative Comparison Firstly, we are interested in whether the
learned g and q can model the distribution of unseen test data. For each test point cloud,
we infer the latent variable q(X), then use g to generate points. We then compare the
distribution between the input point cloud and the conditionally generated point clouds.

There are many finite sample estimators for f -divergence and IPM can be used for
evaluation. However, those estimators with finite samples are either biased or with high
variance (Peyré et al., 2019; Póczos et al., 2012; Wang et al., 2009; Weed and Bach, 2017).
Also, it is usually computationally infeasible to use these estimators with infinitely many
samples if they are accessible.

Figure 5.3: Sample mesh of
ModelNet40

For ModelNet40, the meshes of each object are avail-
able. In many statistically guaranteed distance estimates,
the adopted statistics are commonly based on distance be-
tween nearest neighbors (Póczos et al., 2012; Wang et al.,
2009). Therefore, we propose to measure the performance
with the following criteria. Given a point cloud {xi}ni=1 and
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Table 5.1: Quantitative results of different models trained on different subsets of Model-
Net40 and evaluated on the corresponding test set. ModelNet10 is a subset containing 10
classes of objects, while ModelNet40 is a full training set. AAE-Fix is trained using the
code from Achlioptas et al. (2018). The PC-GAN variants are trained via upper bound
WU , lower bound WL and sandwiching loss Ws.

Data
Distance to Face (D2F ↓) Coverage (↑)

PC-GAN (Ws) AAE-Fix PC-GAN (WU ) PC-GAN (WL) PC-GAN (Ws) AAE-Fix PC-GAN (WU ) PC-GAN (WL)

Aeroplanes 1.89E+01 1.99E+01 1.53E+01 2.49E+01 1.95E-01 2.99E-02 1.73E-01 1.88E-01

Benches 1.09E+01 1.41E+01 1.05E+01 2.46E+01 4.44E-01 2.35E-01 2.58E-01 3.83E-01

Cars 4.39E+01 6.23E+01 4.25E+01 6.68E+01 2.35E-01 4.98E-02 1.78E-01 2.35E-01

Chairs 1.01E+01 1.08E+01 1.06E+01 1.08E+01 3.90E-01 1.82E-01 3.57E-01 3.95E-01

Cups 1.44E+03 1.79E+03 1.28E+03 3.01E+03 6.31E-01 3.31E-01 4.32E-01 5.68E-01

Guitars 2.16E+02 1.93E+02 1.97E+02 1.81E+02 2.25E-01 7.98E-02 2.11E-01 2.27E-01

Lamps 1.47E+03 1.60E+03 1.64E+03 2.77E+03 3.89E-01 2.33E-01 3.79E-01 3.66E-01

Laptops 2.43E+00 3.73E+00 2.65E+00 2.58E+00 4.31E-01 2.56E-01 3.93E-01 4.55E-01

Sofa 1.71E+01 1.64E+01 1.45E+01 2.76E+01 3.65E-01 1.62E-01 2.94E-01 3.47E-01

Tables 2.79E+00 2.96E+00 2.44E+00 3.69E+00 3.82E-01 2.59E-01 3.20E-01 3.53E-01

ModelNet10 5.77E+00 6.89E+00 6.03E+00 9.19E+00 3.47E-01 1.90E-01 3.36E-01 3.67E-01

ModelNet40 4.84E+01 5.86E+01 5.24E+01 7.96E+01 3.80E-01 1.85E-01 3.65E-01 3.71E-01

a mesh, which is a collection of faces {Fj}mj=1, we measure
the distance to face (D2F) as

D2F
(
{xi}ni=1, {Fj}mj=1

)
=

1

n

n∑

i=1

min
j
D(xi, Fj),

where D(xi, Fj) is the Euclidean distance from xi to the
face Fj. This distance is similar to Chamfer distance,
which is commonly used for measuring images and point
clouds (Achlioptas et al., 2018; Fan et al., 2017), with in-
finitely samples from true distributions (meshes).

Nevertheless, the algorithm can have low or zero D2F
by only focusing a small portion of the point clouds (mode
collapse). Therefore, we are also interested in whether the generated points recover enough
supports of the distribution. We compute the Coverage ratio as follows. For each point, we
find the its nearest face, we then treat this face is covered1. We then compute the ratio of
number of faces of a mesh is covered. A sampled mesh is showed in Figure 5.3, where the
details have more faces (non-uniform). Thus, it is difficult to get high coverage for AAE-
Fix or PC-GAN trained by limited number of sampled points. However, the coverage ratio,
on the other hand, serve as an indicator about how much details the model recovers. The
idea of the proposed metrics, D2F and Convergae, is simultaneously proposed by Lucic
et al. (2018) for general IGM performance evaluation, while they call these as precision
and recall, respectively.

The results are reported in Table 5.1. We compare four different algorithm, AAE-Fix

1We should do thresholding to ignore outlier points. In our experiments, we observe that without
excluding outliers does not change conclusion for comparison.
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(a) Data (b) PC-GAN (Ws) (c) AAE-Fix (d) PC-GAN (WU ) (e) PC-GAN (WL)

Figure 5.4: Example reconstruction (conditional generation) on test objects. PC-GAN
with sandwiching (Ws) is better in capturing fine details like wheels of aeroplane or proper
chair legs.

and PC-GAN with three objectives, including upper bound WU (ε approximated Wasser-
stein distance), lower bound WL (GAN with L2 ball constraints and weight clipping), and
the sandwiching loss Ws as discussed in Section 5.1.3, The study with WU and WL also
serves as the ablation test of Ws.

Comparison between Upper bound, Lower bound and Sandwiching Since WU

directly optimizes point-wise distance between training and generated point clouds, WU

usually results in smaller D2F than WL in Table 5.1. Although WL only recovers lower
bound estimates of Wasserstein distance, its discriminator is known to focus on learning
support of the distribution (Bengio, 2018), which results in better coverage (support) than
WU .

Theoretically, the proposed sandwiching Ws results in a tighter Wasserstein distance
estimation than WU and WL (Lemma 20). Based on above discussion, it can also be under-
stood as balancing both D2F and coverage by combining both WU and WL to get a desirable
middle ground. Empirically, we even observe that Ws results in better coverage than WL,
and competitive D2F with WU . The intuition is that some discriminative tasks are off to
WU objective, so the discriminator can focus more on learning distribution supports. We
argue that this difference is crucial for capturing the object details. Some reconstructed
point clouds of testing data are shown in Figure 5.4. For aeroplane examples, WU are
failed to capture aeroplane tires while Ws has better tire than WL. For Chair example,
Ws recovers better legs than WU and better seat cushion than WL. Lastly, we highlight
Ws outperforms others more significantly when training data is larger (ModelNet10 and
ModelNet40) in Table 5.1.

Comparison between PC-GAN and AAE-Fix In most cases, PC-GAN with Ws

has lower D2F in Table 5.1 with less number of parameters aforementioned. Similar to
the argument in Section 5.2.1, although AAE-Fix use larger networks, its decoder wastes
parameters for nearby points. AAE-Fix only outperforms PC-GAN (Ws) in Guitar and
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Figure 5.5: Randomly sampled objects and corresponding point cloud from the hierarchical
sampling Even if there are some defects, the objects are smooth, symmetric and structured.

Sofa in terms of D2F, since the variety of these two classes are low. It is easier for MLP
to learn the shared template (basis) of the point clouds. On the other hand, due to the
limitation of the fixed number of output points and Chamfer distance objective, AAE-Fix
has worse coverage than PC-GAN as in Figure 5.4, where AAE-Fix is also failed to recover
aeroplane tire.

Hierarchical Sampling In Section 5.1, we propose a hierarchical sampling process for
sampling point clouds. The randomly sampled results without given any data as input are
shown in Figure 5.5. The point clouds are all smooth, structured and almost symmetric.
It shows PC-GAN captures inherent symmetries and patterns in all the randomly sampled
objects, even if overall object is not perfectly formed. This highlights that learning point-
wise generation scheme encourages learning basic building blocks of objects.

Interpolation of Learned Manifold We study whether the interpolation between two
objects on the latent space results in smooth change. We interpolate the inferred repre-
sentations of two objects by q, and use the generator g to sample points based on the
interpolation. The inter-class result is shown in Figure 5.6.

Figure 5.6: Interpolating between latent representations q(X) of a table and a chair point
clouds.

Generalization on Unseen Classes In above, we studied the reconstruction of unseen
testing objects, while PC-GAN still saw the point clouds from the same class during train-
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ing. Here we study the more challenging task. We train PC-GAN on first 30 (Alphabetic
order) class, and test on the other fully unseen 10 classes. Some reconstructed (condi-
tionally generated) point clouds are shown in Figure 5.7. For the object from the unseen
classes, the conditionally generated point clouds still recovers main shape and reasonable
geometry structure, which confirms the advantage of the proposed PC-GAN: by enforc-
ing the point-wise transformation, the model is forced to learn the underlying geometry
structure and the shared building blocks, instead of naively copying the input from the
conditioning. The rsulted D2F and coverage are 57.4 and 0.36, which are only slightly
worse than 48.4 and 0.38 by training on whole 40 classes in Table 5.1 (ModelNet40), which
supports the claims of the good generalization ability of PC-GAN.

(a) Sofa (b) Stool (c) Table

(d) Toilet (e) TV Stand (f) Vase

Figure 5.7: The reconstructed objects from unseen classes (even in training). In each plot,
LHS is true data while RHS is PC-GAN. PC-GAN generalizes well as it can match patterns
and symmetries from classes seen in the past to new unseen classes.

5.2.3 Classification Results

We evaluate the quality of the representations from the learned inference network q. We
train the inference network q and the generator g on the training split of ModelNet40
with data augmentation as mentioned above for learning generative models without label
information. We then extract the latent representation q(X) for each point clouds and
train linear SVM on the that with its label by following Achlioptas et al. (2018).

We only sample 1000 as input for our inference network q. Benefited by the Deep Sets
architecture for the inference network, which is invariant to number of points. Therefore,
we are allowed to sample different number of points as input to the trained inference
network for evaluation. Because of the randomness of sampling points for extracting latent
representation, we repeat the experiments 20 times and report the average accuracy and
standard deviation on the testing split in Table 5.2. By using 1000 points, we are already
better than Achlioptas et al. (2018) with 2048 points, and competitive with the supervised
learning algorithm Deep Sets.
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Method # points Accuracy
PC-GAN 1000 87.5± .6%
PC-GAN 2048 87.8± .2%

AAE-Fix (Achlioptas et al., 2018) 2048 85.5± .3%
Deep Sets (Zaheer et al., 2017a) 1000 87± 1%
Deep Sets (Zaheer et al., 2017a) 5000 90± .3%

Table 5.2: Classification accuracy results.

5.3 Summary

In this chapter, we propose PC-GAN for learning to generate point clouds. The design
is inspired by standard hierarchical samplings with latent variables in graphical models.
Previously, every node is modeled by parametric distributions (explicit models) (Koller
et al., 2009). We, instead, show how to incorporate IGMs into those frameworks to directly
model samplings of nodes with a learned inference. In the next chapter, we will extend
this framework further by showing how to encode priors into the model design to generate
more specific and highly-structured point clouds.
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Chapter 6

Generate Structured Point Clouds
with Human Priors

In Chapter 5, we propose an auto-encoding framework, PC-GAN, for learning to generate
point clouds with an IGM autoencoder. Although we demonstrate successful examples
on toy point clouds (e.g. aeroplanes, chairs, tables), it is challenging to generate highly-
structured point clouds, such as human body scans. PC-GAN uses an IGM decoder to
transform a zero-prior (e.g. Gaussian (Li et al., 2018) or uniform distributions (Groueix
et al., 2018b; Yang et al., 2018)) into the target point clouds. However, we could leverage
our prior of target point clouds to replace the object-agnostic zero priors. For example,
we could use a uniform distribution over a body template, which defines the geometry of
the shape, as the input randomness of the IGM decoder for body point clouds (Groueix
et al., 2018a). In computer graphics, many advanced models have been extensively studied
(e.g. Anguelov et al. (2005); Bogo et al. (2016)), which encode strong human knowledges
of different 3D data. In this chapter, we study how to incorporate an expressive yet simple
graphics model into IGM designs, which serve as human priors, to learn to generate point
clouds of rigged objects. We use real body scan point clouds as examples, and achieve
state-of-the-art performance on standard benchmarks.

Model Fitting and Registration. Using a graphics model as prior into IGM decoder to
reconstruct input point clouds can also be treated as controlling graphics model to register
(fit) input clouds, which has been extensively studied in past decades in computer vision
and computer graphics. Works in this area can be coarsely grouped together based on how
much prior knowledge and supervision is incorporated into the fitting method. On one
end of the spectrum, there are entirely unsupervised and object-agnostic models, such as
Groueix et al. (2018b); Yang et al. (2018) and PC-GAN in Chapter 5. These methods learn
to deform a zero-prior to match the target geometry, while making no assumptions about
the objects. Adding slightly more prior knowledge, 3D-CODED (Groueix et al., 2018a)
uses a template mesh (e.g. hand or body) with a topology better suited to the object
of interest. On the other end of the spectrum are highly specialized models for specific
objects, such as hands and bodies, including SCAPE (Anguelov et al., 2005), Dyna (Pons-
Moll et al., 2015), SMPL (Loper et al., 2015), and MANO (Romero et al., 2017). These
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models are built using high-resolution 3D scans with correspondence and human curation.
They model correctives for different poses and modalities (e.g. body types) and can be used
as high-quality generative models of geometry. A number of works learn to manipulate
these models to fit data based on different sources of supervision, such as key points (Bogo
et al., 2016; Joo et al., 2018; Lassner et al., 2017; Mehta et al., 2017; Tung et al., 2017)
and/or prior distributions of model parameters (Kanazawa et al., 2018a,b).

In this chapter, we present an unsupervised/self-supervised algorithm, LBS Autoen-
coder (LBS-AE), to fit such articulated mesh models to point cloud data, which improves
the core auto-encoding components of PC-GAN in Chapter 5. The proposed algorithm is
a middle ground of the two ends of spectrum discussed above in two senses.

First, we assume an articulated template model of the object class is available as a
prior, but not the statistics of its articulation of data nor the specific shape of the object
instance. We argue that this prior information is widely available for many common objects
of interest in the form of “rigged” or “skinned” mesh models, which are typically created by
artists for use in animation. In addition to a template mesh describing the geometric shape,
these prior models have two more components: (1) a kinematic hierarchy of transforms
describing the degrees of freedom, and (2) a skinning function that defines how transforms
in the hierarchy influence each of the mesh vertices. This enables registration to data
by manipulating the transforms in the model. One common example is Linear Blending
Skinning (LBS). Therefore, instead of relying on deep networks to learn the full deformation
process from a single template (Groueix et al., 2018a), we leverage LBS as the prior of IGM
decoders to model coarse joint deformations. Different from hand-crafted models such
as SMPL (Loper et al., 2015), LBS by itself does not model pose-dependent correctives
between the template and data, nor does it model the space of non-articulated shape
variation (e.g. body shape). Instead, we use the transformations learned via IGM decoders
to model those correctives.

Second, for fitting models to data during the training, existing works either rely on
explicit supervision (e.g. correspondence (Groueix et al., 2018a) and key points (Joo et al.,
2018)) or unsupervised nearest neighbors search (e.g. Yang et al. (2018)) to find point
correspondence between the model and data for measuring reconstruction loss. A detailed
discussion of point clouds matching loss can be found in Chapter 5. Rather than using
external supervision, we introduce a “Structured Chamfer Distance” (SCD), which is a
probability pseudometric. It improves the blind nearest neighbor based Chamfer distance
by inferring coarse correspondences before find matchings. The proposed SCD can also be
treated as dividing distribution matching into couples of conditional distribution matchings
which conditions on meaningful geometry segmentations. The challenge is we do not
assume external supervision to be available for the input point clouds. Instead, we utilize
the learned LBS-AE to generate self-supervision to learn the segmentation inference from
scratch simultaneously under a joint training framework.

In this work, we show that the prior from artist-defined rigs may already be sufficiently
constrained and informative to learn effective transformations to generate realistic and
highly-structured data without any additional labeling. In addition to learning powerful
generative models, such a model-fitting pipeline without additional supervision has the
potential to simplify geometric registration tasks by requiring less human labeling effort.
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(a) Template mesh U . (b) LBS deformation
M(θ, U) of the template
using joint angles θ.

(c) A deformed template
Ud.

Figure 6.1: The example of LBS and template deformations.

6.1 LBS Autoencoder for Point Clouds

We propose to learn an autoencoder that takes as input an unstructured point cloud
X={x}ni=1, where each xi is a 3D point and n is a variable number, and produces as out-
put a fixed number m of corresponded vertices V={vi}mi=1. The vertices V form a mesh
with fixed topology whose geometry should closely match that of the input. We note that
although we assume the inputs are point clouds, they could also be the vertices of a mesh
without using any topology information. Rather than allowing the autoencoder to be any
arbitrary deformation produced by a deep neural network (as in Groueix et al. (2018b);
Yang et al. (2018)), we force the output to be produced by Linear Blending Skinning (LBS)
to explicitly encode the motion of joints. We allow additional non-linear deformations (also
given by a neural network) to model deviations from the LBS approximation. However,
an important difference with respect to similar models, such as SMPL (Loper et al., 2015)
or MANO (Romero et al., 2017), is that we do not pre-learn the space of non-LBS defor-
mations on a curated set (and then fix them) but rather learn these simultaneously on the
data that is to be aligned, without additional supervision.

Linear Blending Skinning (LBS) We start by briefly introducing LBS (Magnenat-
Thalmann et al., 1988), which is the core building component of the proposed work. LBS
models deformation of a mesh from a rest pose as a weighted sum of the skeleton bone
transformations applied to each vertex. We follow the notation outlined in Loper et al.
(2015), which is a strong influence on our model. An LBS model with J joints can be
defined as follows

V = M(θ, U), (6.1)

with V the vertices of the deformed shape after LBS. The LBS function M takes two
parameters, one is the vertices U = {ui}mi=1 of a base mesh (template), and the other are
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the relative joint rotation angles θ ∈ RJ×3 for each joint j with respect to its parents. If
θ = 0, then M(0, U) = U . Two additional parameters, the skinning weights w and the
joint hierarchy K, are required by LBS. We will consider them fixed by the artist-defined
rig. In particular, w ∈ Rm×J defines the weights of each vertex contributing to joint j and∑

j wi,j = 1 for all i. K is the joint hierarchy. Each vertex vi ∈ V can then be written as

vi = (I3,0) ·
J∑

j=1

wi,jTj(θ,K)

(
ui
1

)
,

where Tj(θ,K) ∈ SE(3) is a transformation matrix for each joint j, which encodes the
transformation from the rest pose to the posed mesh in world coordinate, constructed by
traversing the hierarchy K from the root to j. Since each vi is constructed by a sequence of
linear operations, the LBS M(θ, U) is differentiable respect to θ and U . A simple example
constructed from the LBS component in SMPL (Loper et al., 2015) is shown in Figure 6.1a
and 6.1b.

In this work, both the joint angles and the template mesh used in the LBS function are
produced by deep networks from the input point cloud data,

V = M(qθ(X), g(X,U)), (6.2)

where we identify a joint angle inference network qθ, and a template deformation network
g which we describe below.

Joint Angle (Pose) Inference Given an LBS model defined in Eq. (6.1), the goal is to
regress joint angles based on input X via a function f : X → θ such that M(qθ(X), U) ≈ X.
We use a deep neural network, which takes set data (e.g. point cloud) as input (Qi et al.,
2017a; Zaheer et al., 2017a) to qθ, but we must also specify how to compare X and V
from M(·). In Chapter 5, we discussed several probability (pseudo) distances (e.g. optimal
transport) to match two point clouds. After finding matchings or correpsondences, we
learn qθ by back-propagating this point-wise loss through the differentiable LBS V =
M(qθ(X), U). Also note that we only sample a subset of points for estimating Eq. (6.3)
under SGD training schemes. In the following, we will refer matching in optimal transport
as correspondence, which is commonly used in registration literature.

However, finding optimal correspondences in optimal transport is usually costly. Also,
optimal transport is less robust to missing data, which is usally the case for real-world
point cloud data. Instead, Chamfer distance (CD) (Yang et al., 2018), which finds the
matching grreedily via nearest neighbors, is defined as Lc(X, V ) =

1

n

n∑

i=1

‖xi −NV (xi)‖2 +
1

m

m∑

j=1

‖vj −NX(vj)‖2, (6.3)

where NV (xi) = arg minvj∈V ‖xi − vj‖ is the nearest neighbor of xi in V . This is also
called Iterative Closest Point (ICP) in the registration literature (Besl and McKay, 1992).
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Although CD is a probability pseudometric, it is fast to compute. Later, we will discuss
how to improve CD to resolve drawbacks of its greedy correspondence finding.

In practice, we observe that it takes many iterations for PointNet (Qi et al., 2017a) or
DeepSet (Zaheer et al., 2017a) architectures to improve if the target loss is CD instead of
corresponded supervision. Similar behaviors were observed in Li et al. (2018); Yang et al.
(2018), where the algorithms may take millions of iterations to converge. To alleviate
this problem, we utilize LBS to generate data based on a given θ′ for self-supervision by
optimizing

min
f
Lθ = ‖qθ(M(θ′, U))− θ′‖2.

It is similar to the loop-back loss (Genova et al., 2018) that ensures qθ can correctly reinter-
pret the model’s own output from M . Different from Genova et al. (2018); Kanazawa et al.
(2018a), we do not assume a prior pose distribution is available. Our θ′ comes from two
sources of randomness. One is uniform distributions within the given joint angle ranges
(specified by the artist-defined rig) and the second is we uniformly perturb the inferred
angles from input samples with a small uniform noise on the fly, which can gradually adapt
to the training data distribution when the estimation is improved as training progresses
(see Section 6.2 and Figure 6.5).

Template Deformation Although LBS can represent large pose deformations, due to
limitations of LBS as well as differences between the artist modeled mesh and the real
data, there will be a large residual in the fitting. We refer to this residual as a modality
gap between the model and reality, and alleviate this difference by using neural networks
to produce the template mesh to be posed by LBS. The deformation network g(qz(X), ui)
takes two sources as input, where ui is each vertex in the template mesh U , and qz(X) are
latent variables, which contains style information (e.g. body type) about X. This yields a
deformed template Ud = {g(qz(X), ui)}mi=1. One example is shown in Figure 6.1c. After
LBS, we denote the deformed and posed mesh as V d = M(qθ(X), Ud), and denote by
V = M(qθ(X), U) the posed original template.

If qz is high-capacity, qθ(X) can learn to generate all-zero joint angles for the LBS
component (ignoring the input X), and explain all deformations instead with qz. That
is, M(qθ(X), Ud) = M(0, Ud) = Ud ≈ X, which reduces to the unsupervised version
of Groueix et al. (2018a). Instead of using explicit regularization to constrain qz (e.g.
‖g(qz(X), UB)‖), we propose a composition of two Chamfer distances as

Lc2,λ = Lc
(
X, V d

)
+ λLc (X, V ) . (6.4)

The second term in Eq. (6.4) enforces qθ(X) to learn correct joint angles even without
template deformation.

Lastly, we follow Groueix et al. (2018a); Kanazawa et al. (2018b) and apply Laplacian
regularization Llap = ‖LV d‖ to encourage smoothness of the deformed template, where L
is the discrete Laplace-Beltrami operator constructed from mesh U and its faces.
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(a) The graphical diagram
of LBS-AE, where z is the
style latent code and θ is
unobserved joint angles.

(b) Given a point cloud X of a input shape, we encode X into a
latent code qz(X) and the inferred joint angles qθ(X). The decoder
contains a deformation network g to deform the template U into Ud,
then uses a LBS to pose Ud into V d as the reconstruction.

Figure 6.2: Overview of LBS Autoencoder (LBS-AE).

6.1.1 Autoencoding Interpretation

We present the proposed algorithm by following Loper et al. (2015) from a model con-
struction perspective. Here we connect the proposed algorithm with the encoder-decoder
scheme under the PC-GAN framework. The inference network q(X) consists of two com-
ponents, including qθ(X) for interpretable joint angle inference and qx(X) for style code
inference. The IGM decoder, different from using zero-prior as presented in Chapter 5, is a
pipeline constructed by combining a human designed LBS function and a style deformation
(transformation) network g. The transformation network g only models the transformation
of styles (correctives) by a neural network, while the initial randomness Pu is an uniform
distribution over the template U . The extended graphical diagram is shown in Figure 6.2a.
In Chapter 5, we only have one latent variable z, which contains the identity information
of the object. In Figure 6.2a, on the other hand, z is the style latent variable inferred by
qz(X). We introduce one more interpretable latent variable θ, which is required by LBS.
We call the proposed algorithm LBS-AE as shown in Figure 6.2b.

6.2 Structured Chamfer Distance

To train an autoencoder, we have to define proper reconstruction errors match input and
reconstructed point clouds (distributions). In LBS-AE, the objective that provides in-
formation about input point clouds can be any distribution matching distance such as
CD (6.3). In Chapter 5, we study different probability distance which outperforms CD,
but CD enjoys the advantage of being easily and fast computed. In this section, we have
a deeper investigation of undesirable local optima, which hinders the algorithm from im-
proving. We then propose an improved modification, Structured Chamfer Distance (SCD),
which leverage the prior from LBS model to have a stronger discriminative power but it is
still efficient in computation.
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(a) Input (b) Estimate

(c) The Chamfer distance between the input and
the target when we move the middle finger.

Figure 6.3: When we try to move the middle finger of the current estimate (b) toward the
target (a), the Chamfer distance increases before decreasing, showing a local optimum that
is difficult to overcome.

A local optimum example of CD is shown in Figure 6.3. To move the middle finger from
the current estimate towards the index finger to fit the input, the Chamfer distance must
increase before decreasing. This local optimum is caused by incorrect correspondences
found by nearest neighbor search (the nearest neighbor of the middle finger of the current
estimate is the ring finger of the input).

6.2.1 High-Level Correspondence

Given a pair of sets (V,X), for each v ∈ V , we want to find its correspondence CX(v) in
X. In CD, we use the nearest neighbor NX(v) to approximate CX(v), which can be wrong,
as shown in Figure 6.3. Instead of searching for nearest neighbors NX(v) over the entire
set X, we propose to search within a subset X ′ ⊂ X, where CX(v) ∈ X ′, by eliminating
irrelevant points in X. Following this idea, we partition X into k subsets, X1 . . . Xk, where
we use s(x;X) ∈ {1, . . . , k} to denote which subset x belongs to. A desirable partition
should ensure s(v;V ) = s(CX(v);X); then, to find the nearest neighbor of v, we need
only consider Xs(v) ⊂ X. We then define the Structured Chamfer Distance (SCD) as
Ls(X, V ) =

1

n

n∑

i=1

‖xi −NV s(xi)(xi)‖2 +
1

m

m∑

j=1

‖vj −NXs(vj)(vj)‖2, (6.5)

where we ease the notation of s(x,X) and s(v, V ) to be s(x) and s(v). Compared with
CD, which finds nearest neighbors from all to all, SCD uses region to region based on the
high-level correspondence by leveraging the structure of data. Similar to Eq. (6.4), we
define

Ls2,λ = Ls
(
X, V d

)
+ λLs (X, V ) . (6.6)

We propose to partition the vertices based on the underlying geometry which is by LBS
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(a) Extended graphical diagram of
LBS-AE with the partition latent
variable for each point.

(b) Example partitions of human hand and body shapes
defined by joints.

Figure 6.4: LBE-AE with partition inference.

skinning weights at a chosen granularity. Example partitions of hand and body data are
shown in Figure 6.4b, which use the structure and our prior knowledge of the human body.
These satisfy the property that the true correspondence is within the same partition. If we
are able infer the partition properly, SCD provides better discriminative power to resolve
the local optimum in Figure 6.3. Finally, SCD can also be treated as Es[D(PX|s‖QX|s)],
which dividesD(PX‖QX) into many probability distances between conditional distributions
given each partition s.

6.2.2 Segmentation Inference

We extend the model as shown in Figure 6.4a by introducing one more latent variable
s, which denotes the partition of each point x. For the deformed mesh V , we can easily
infer the partition s(v;V ), because the mapping between vertices and joints is defined by
the LBS skinning weights w. We directly use argmaxj wi,j as labels. Without additional
labeling or keypoint information, the difficulty is to infer s(x;X) for x ∈ X, which is a
point cloud segmentation task (Qi et al., 2017a). However, without labels for X, we are not
able to train a segmentation inference on X directly. Instead, similar to the self-supervision
technique used for training the joint angle regressor, we propose to train a segmentation
network s with the data (V d, Y ) generated by LBS, where Y are the labels for w defined
in LBS and V = M(θ, Ud). Note that θ follows the same distribution as before, which
contains uniform sampling for exploration and perturbation of the inferred angles qθ(X),
as shown in Figure 6.5. Instead of using the base template U only, we use the inferred
deformed template Ud to adapt to the real data modality, which improves performance
(see Section 6.3.1).
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Figure 6.5: The mixture distribution of self-supervision data from the LBS at iteration t.
We sample from (1) the perturbed distribution centered at the qθ(Xi) and (2) a uniform
distribution.

The final objective for training the shape deformation pipeline including qθ and qz is1

L = Lc2,0.5 + λsLs2,0.5 + λlapLlap + λθLθ, (6.7)

and we use standard cross-entropy for training s. In practice, since s is noisy in the first
iterations, we pretrain it for 50K iterations with poses from uniform distributions over joint
angles. Note that, for pretraining, we can only use the base template U to synthesize data.
After that, we then learn every component jointly by updating each network alternatively.
The final algorithm, LBS-AE with SCD as reconstruction loss, is shown in Algorithm 3.

Algorithm 3 LBS-AE with SCD

Inputs: • Point Clouds: {X}
• LBS: M(;w,K,U) and angle ranges (Rl, Ru)

Pretrain s on uniformly sampled poses from LBS
while qθ, qz, and g have not converged:

1. Sample minibatch {Xi}Bi=1, {X ′i}Bi=1

2. θ′ = {qθ(Xi) + εi}Bi=1 ∪ θr ∼ Unif(Rl, Ru)
3. Generate (V d, Y ) based on θ′ to update s
4. Infer segmentation labels {s(X ′i)}Bi=1

5. Update qθ, qz and g based on Eq. (6.7)

6.2.3 IGM Losses with Auxiliary Neural Networks

Using auxiliary neural networks to define objectives for training targeted models is also
broadly studied in IGM literature (e.g. Arjovsky et al. (2017); Goodfellow et al. (2014);
Gulrajani et al. (2017); Li et al. (2017); Mao et al. (2017); Mroueh and Sercu (2017);

1We use λ = 0.5, λlap = 0.005, λθ = 0.5 in all experiments.
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Figure 6.6: Examples of the captured hands.

Nowozin et al. (2016)) as we have discussed extensively in previous chapters. In most of
the existing literature, they approximate a probability distance or divergence via neural
networks with theoretical guarantees. Although the proposed SCD is a pseudometric,
by leveraging prior knowledge, the auxiliary inference network adopted by SCD is an
interpretable segmentation network which can be trained without adversarial training and
results in superior performance.

6.3 Experiment

Datasets We consider hand and body data. For body data, we test on the FAUST
benchmark (Bogo et al., 2014), which captures real human body with correspondence la-
beling. For hand data, we use a multi-view capture system to captured 1, 524 poses from
three people, which have missing area and different densities of points across areas. The
examples of reconstructed meshes are shown in Figure 6.6. For numerical evaluation, in ad-
dition to FAUST, we also consider synthetic data since we do not have labeling information
on the hand data (e.g. key points, poses, correspondence). To generate synthetic hands,
we first estimate pose parameters of the captured data under LBS. To model the modality
gap, we prepare different base templates with various thickness and length of palms and
fingers. We then generate data with LBS based on those templates and the inferred pose
parameters. We also generate synthetic human body shapes using SMPL (Bogo et al.,
2016). We sample 20, 000 parameter configurations estimated by SURREAL (Varol et al.,
2017) and 3, 000 samples of bent shapes from Groueix et al. (2018a). For both synthetic
hand and body data, the scale of each shape is in [−1, 1]3 and we generate 2, 300 and 300
examples as holdout testing sets.

Architectures The architecture of qθ follows Chapter 5 to use Zaheer et al. (2017a),
which shows competitive performance with PointNet (Qi et al., 2017a) with half the number
of parameters. The output is set to be J × 3 dimensions, where J is the number of joints.
We use the previous layer’s activations as qz(X) for g. We use a three layer MLP to model
g, where the input is the concatenation of v, qθ(X) and qz(X), and the hidden layer sizes
are 256 and 128. For the segmentation inference network s, we use Qi et al. (2017a) because
of better performance. For hand data, we use an artist-created LBS, while we use the LBS
part from SMPL (Loper et al., 2015) for body data.
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(a) LBS-AECD (b) Modality Gap (c) LBS-AE

Figure 6.7: Ablation study of the proposed LBS-AE. For each block, the left column is the
inferred segmentations of input shapes while the right column is the reconstruction.

6.3.1 Study on Segmentation Inference

One goal of the proposed LBS-AE is to leverage geometry structures of the shape, by learn-
ing segmentation inference jointly to improve correspondence finding via nearest neighbor
searching when measuring the distance between two distributions of point clouds (shapes).
Different from previous works (e.g. Wei et al. (2016)), we do not rely on any human labels.
We study how the segmentation inference with self-supervision interacts with the model
fitting to data. We train different variants of LBS-AE to fit the captured hands data. The
first is learning LBS-AE with CD only (LBS-AECD). The objective is Eq. (6.7) without
Ls2,0.5. We then train the segmentation network s for SCD with hand poses sampled from
uniform distributions based on U instead of Ud. Note that there is no interaction between
learning s and the other networks qθ and g. The segmentation and reconstructed results
are shown in Figure 6.7a. We observe that the segmentation network trained on randomly
sampled poses from a uniform distribution can only segment easy poses correctly and fail
on challenging cases, such as feast poses, because of the difference between true pose distri-
butions and the uniform distribution used as well as the modality gaps between real hands
and synthetic hands from LBS. On the other hand, LBS-AECD is stuck at different local
optimums. For example, it recovers to stretch the ring finger instead of the little finger for
the third pose.

Secondly, we study the importance of adapting to different modalities. In Figure 6.7b,
we train segmentation and LBS fitting jointly with SCD. However, when we augment the
data for training segmentation, we only adapt to pose distributions via qθ(X), instead of
using the deformed Ud. Therefore, the training data for s for this case has a modality gap
between it and the true data. Compared with Figure 6.7a, the joint training benefits the
performance, for example, on the feast pose. It suggests how good segmentation learning
benefits reconstruction. Nevertheless, it still fails on the third pose. By training LBS-AE
and the segmentation inference jointly with inferred modalities and poses, we could fit
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the poses better as shown in Figure 6.7c. This difference demonstrates the importance of
training segmentation inference adapting to the pose distributions and different modalities.
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Figure 6.8: Segmentation accuracy on the holdout testing sets.

Numerical Results We also quantitatively investigate the learned segmentation infer-
ence when the ground truth is available. We train s with (1) randomly sampled shapes from
uniform distributions over joint angle ranges (Random) and (2) the proposed joint training
(Joint). We use pretraining as initialization as describing in Section 6.2. We then train
these two algorithms on the synthetic hand and body data and evaluate segmentation ac-
curacy on the testing sets. The results are shown in Figure 6.8. Random is exactly the same
as pretraining. After pretraining, Random is almost converged. On the other hand, Joint
improves the segmentation accuracy in both cases by gradually adapting to the true pose
distribution when the joint angle regressor qθ is improved. It justifies the effectiveness of
the proposed joint training where we can infer the segmentation in a self-supervised man-
ner. For hand data, as we show in Figure 6.7, there are many touching-skin poses where
fingers are touched to each other. For those poses, there are strong correlations between
joints in each pose, which are hard to be sampled by a simple uniform distribution and
results in a significant performance gap in Figure 6.8a. For body data, many poses from
SURREAL are with separate limbs, which Random can generalize surprisingly well. Al-
though it seems Joint only leads to incremental improvement over Random, we argue this
gap is substantial, especially for resolving challenging touching-skin cases as we will show
in Section 6.3.3.

6.3.2 Qualitative Study

We compare the proposed LBS-AE with the unsupervised variant of 3D-CODED (Groueix
et al., 2018a), which learns the deformation by entirely relying on neural networks to
transform a template prior without LBS. Their objective is similar to Eq. (6.7), but using
CD and Laplacian regularization only. For fair comparison, we also generate synthetic data
on the fly with randomly sampled poses and correspondence for 3D-CODED, which boosts
its performance. We also compare with the simplified version of the proposed algorithm
by using CD instead of SCD, which is denoted as LBS-AECD as above.
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We fit and reconstruct the hand and body data as shown in Figure 6.9. For the thumb-
up pose, due to wrong correspondences from nearest neighbor search, both 3D-CODED
and LBS-AECD reconstruct wrong poses. The wrong correspondence causes problems to
3D-CODED. Since the deformation from templates to targeted shapes fully relies on a deep
neural network, when the correspondence is wrong and the network is powerful, it learns
distorted deformation even with a Laplacian regularization. On the other hand, since LBS-
AECD still utilizes LBS, the deformation network g is easier to be regularized, which results
in better finger reconstructions. We note that 3D-CODED learns proper deformation if
the correspondence can be found correctly, such as the third row in Figure 6.9. In both
cases, the proposed LBS-AE can learn segmentation well and recover the poses better.

Lastly, we consider fitting FAUST, with only 200 samples, as shown in Figure 6.10.
With limited and diverse poses, we have less hint of how the poses deform (Wei et al.,
2016), a nearest neighbor search is easily trapped in bad local optimums as we mentioned
in Figure 6.3. The proposed LBS-AE still results in reasonable reconstructions and seg-
mentations, though the right arm in the second row suffers from the local optimum issues
within the segmentation. A fix is to learn more fine-grained segmentation, but it brings
the trade-off between task difficulties and model capacities as well as the as statistical
challenges with limited samples.

6.3.3 Quantitative Study

We conduct quantitative analysis on reconstruction, pose estimation, and correspondence
on synthetic hand and body data. We use

√
CD as the proxy to reconstructions. Pose

estimation compares the average `2 distance between true joint positions and inferred ones
while correspondence also measures the average `2 between found and true correspon-
dences. We randomly generate 4000 testing pairs from the testing data for correspondence
comparison. Given two shapes, we fit the shapes via the trained models. Since we know
the correspondence of the reconstructions, we project the data onto the reconstructions to
find the correspondence. For more details, we refer readers to Groueix et al. (2018a).

We compare three variants of 3D-CODED, including the supervised version with full
correspondence, and the unsupervised version with and without synthetic data augmen-
tation aforementioned. For LBS-AE, we also consider three variants, including a simple
CD baseline (LBS-AECD), a segmentation network s trained on poses from uniform dis-
tributions LBS-AERAND and joint training version (LBS-AE). The results are shown in
Table 6.1.

For LBS-AE variants, the jointly trained LBS-AE is better than LBS-AECD and LBS-
AERAND. It supports the hypothesis in Section 6.3.1, that joint training facilitates im-
proving model fitting and segmentation. Also, as shown in Section 6.3.1, the pretrained
segmentation network still has reasonable testing accuracy and brings an improvement
over using CD loss only. On the other hand, the supervised 3D-CODED trained with full
correspondence is worse than the proposed unsupervised LBS-AE due to generalization
ability. For correspondence on the SMPL training set, supervised Groueix et al. (2018a)
achieves 0.065 while LBS-AE achieve 0.069. If we increase the training data size three
times, supervised 3D-CODED improves its correspondence result to be 0.095. For hand
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(a) Input (b) Segment (c) Groueix et al.
(2018a)

(d) CD (e) LBS-AE

Figure 6.9: Qualitative comparisons on captures hands and SURREAL (SMPL). Given
point clouds sampled from the surfaces of input shapes (a), (c-e) are the reconstructions
from different algorithms. (b) is the inferred segmentation of LBS-AE on the input shape.
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(a) Input (b) Segment (c) Groueix et al.
(2018a)

(d) CD (e) LBS-AE

Figure 6.10: Qualitative Comparison on FAUST.

data, supervised 3D-CODED generalizes even worse with only 1500 training examples. It
suggests that leveraging LBS models into the model can not only use smaller networks but
also generalize better than relying on an unconstrained deformation from a deep network.

Deformation Network We also investigate the ability of the deformation in LBS-AE.
For data generated via SMPL, we know the ground truth of deformed templates U gt of
each shape. The average `2 distance between corresponding points from U gt and Ud is
0.02, while the average distance between U gt and U is 0.03.

Real-World Benchmark. One representative real-world benchmark is FAUST (Bogo
et al., 2014). We follow the protocol used in Groueix et al. (2018a) for comparison, where
they train on SMPL with SURREAL parameters and then fine-tune on FAUST. In Groueix
et al. (2018a), they use a different number of data from SMPL with SURREAL param-
eters, while we only use 23K. The numerical results are shown in Table 6.2. With only
23K SMPL data and self-supervision, we are better than unsupervised 3D-CODED with
50K data, supervised 3D-CODED with 10K data, and the supervised learning algorithm
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SMPL Synthetic Hand

Algorithm Recon Pose Corre. Recon Pose Corre.

Unsupervised 3D-CODED 0.076 0.082 0.136 0.099 0.035 0.176
Unsupervised 3D-CODED + Augmentation 0.081 0.081 0.132 0.069 0.049 0.140

Supervised 3D-CODED 0.073 0.071 0.104 0.062 0.047 0.135

LBS-AECD 0.051 0.152 0.147 0.082 0.069 0.168
LBS-AERAND 0.041 0.058 0.100 0.069 0.050 0.137

LBS-AE 0.037 0.048 0.091 0.053 0.035 0.111

Table 6.1: Quantitative results on synthetic data.

Algorithm Inter-Subject error (cm) Intra-Subject error (cm)
FMNet (Litany et al., 2017) 4.826 2.44

Unsupervised 3D-CODED (230K) 4.88 -
Supervised 3D-CODED (10K) 4.70 -
Supervised 3D-CODED (230K) 3.26 1.985

LBS-AE (23K) 4.08 2.161

Table 6.2: Correspondence results on FAUST testing set.

FMNet (Litany et al., 2017). We show some visualization of the inferred correspondence
in Figure 6.11.

6.4 Related Works

Finally, since the model fitting and registration is an extensively studied topic, we only
briefly review and compare the proposed LBS-AE with existing works.

LBS Extensions Various extensions have been proposed to fix some of the shortcomings
of LBS (Bailey et al., 2018; Joshi et al., 2007; Kavan et al., 2008; Kavan and Žára, 2005; Le
and Deng, 2012; Lewis et al., 2000; Loper et al., 2015; Rhee et al., 2006; Sloan et al., 2001;
Wang and Phillips, 2002; Zuffi and Black, 2015), where we only name afew here. The
proposed template deformation follows the idea of Kurihara and Miyata (2004); Loper
et al. (2015); Rhee et al. (2006); Zuffi and Black (2015) to model the modalities and
corrections of LBS on the base template rest pose. Loper et al. (2015); Zuffi and Black
(2015) use PCA-like algorithms to model modalities via a weighted sum of learned shape
basis. Instead, our approach is similar to Bailey et al. (2018) by learning modalities via
a deformation network. The main difference between LBS-AE and Bailey et al. (2018);
Loper et al. (2015); Zuffi and Black (2015) is we do not rely on correspondence information
to learn the template deformation d a priori. We simultaneously learn d and infer pose
parameters without external labeling.

Deep Learning for 3D Data Many deep learning techniques have been developed for
different types of 3D information, such as 3D voxels (Girdhar et al., 2016; Wu et al.,
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(a) (b) (c) (d)

Figure 6.11: Inferred correspondence of FAUST testing data.

2016, 2015), geometry images (Sinha et al., 2016, 2017), meshes (Bronstein et al., 2017),
depth maps (Wang et al., 2016) and point clouds (Qi et al., 2017a,b; Zaheer et al., 2017a).
Autoencoders for point clouds are explored by Achlioptas et al. (2018); Groueix et al.
(2018b); Li et al. (2018); Yang et al. (2018).

Model Fitting with Different Knowledge Different works have studied to registra-
tion via fitting a mesh model by leveraging different levels of information about the data.
Kanazawa et al. (2018a) use SMPL (Loper et al., 2015) to reconstruct meshes from images
by using key points and prior knowledge of distributions of pose parameters. Kanazawa
et al. (2018b) explore using a template instead of a controllable model to reconstruct the
mesh with key points. Bogo et al. (2016); Joo et al. (2018) also adopt pretrained key point
detectors from other sources of data as supervision. Simultaneous training to improve
model fitting and key point detection are explored by Lassner et al. (2017); Mehta et al.
(2017). The main difference from the proposed joint training in LBS-AE is we do not rely
on an additional source of real-world data to pretrain networks, as needed to train these
key point detectors. Wei et al. (2016) share a similar idea of using segmentation for nearest
neighbor search, but they trained the segmentation from labeled examples. Genova et al.
(2018) propose to control morphable models instead of rig models for modeling faces. They
also utilize prior knowledge of the 3DMM parameter distributions for real faces. We note
that most of the works discussed above aim to recover 3D models from images. Groueix
et al. (2018a) is the most related work to the proposed LBS-AE, but doesn’t use LBS-based
deformation. They use a base template and learn the full deformation process with a neu-
ral network trained by correspondences provided a priori or from nearest neighbor search.
More comparison between Groueix et al. (2018a) and LBS-AE is studied in Section 6.3.
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Lastly, learning body segmentation via SMPL is studied by Varol et al. (2017), but with
a focus on learning a segmentation using SMPL with parameters inferred from real-world
data to synthesize training examples.

6.5 Summary

We propose an autoencoding algorithm, LBS-AE, which can be used as a building com-
ponent of PC-GAN, to align articulated mesh models to point clouds. The IGM decoder
leverages an artist-defined mesh rig with LBS and only use neural networks to model the
template deformation, instead of the full transformation. We constrain the encoder to infer
interpretable joint angles. We also propose the structured Chamfer distance for training
LBS-AE, defined by inferring a meaningful segmentation of the target data to improve the
correspondence finding via nearest neighbor search in the original Chamfer distance. We
pave a new way of research in both generative models and computer graphics. In IGM,
we show an successful example on how to encode human prior into generators to gener-
ate not only structured but also interpretable (e.g. joint angle inference) samples. SCD
demonstrate how to define a specialized and powerful probability distance with priors and
the learned inference. In graphics, the learned transformation serves as a learning-based
corrective modeling while the proposed SCD is a successful example showing how to find
correspondences via self-supervision without external labeling.
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Part III

Applications of Implicit Generative
Models
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Chapter 7

Implicit Kernel Learning

Kernel methods are among the essential foundations in machine learning and have been
extensively studied in the past decades. In supervised learning, kernel methods allow us to
learn non-linear hypothesis. They also play a crucial role in statistics. Kernel maximum
mean discrepancy (MMD) (Gretton et al., 2012a) is a powerful two-sample test, which
is based on a statistics computed via kernel functions. Even though there is a surge of
deep learning in the past years, several successes have been shown by kernel methods and
deep feature extraction. Wilson et al. (2016) demonstrate performance improvement by
incorporating deep learning, kernel and Gaussian process. In Chapter 2, we show MMD
GAN reaches the state-of-the-art performance on generating complex data.

In practice, however, kernel selection is always an important step. Instead of choos-
ing by a heuristic, several works have studied kernel learning. Multiple kernel learning
(MKL) (Bach, 2009; Bach et al., 2004; Duvenaud et al., 2013; Gönen and Alpaydın, 2011;
Lanckriet et al., 2004) is the pioneering framework to combine predefined kernels. One
recent kernel learning development is to learn kernels via learning spectral distributions
(Fourier transform of the kernel). Wilson and Adams (2013) model spectral distributions
via a mixture of Gaussians. Oliva et al. (2016) extend it to Bayesian non-parametric
models. In addition to model spectral distribution with explicit density models aforemen-
tioned, many works optimize the sampled random features or its weights (e.g. Băzăvan
et al. (2012); Bullins et al. (2018); Chang et al. (2017b); Sinha and Duchi (2016); Yang
et al. (2015)). The other orthogonal approach to modeling spectral distributions is learning
feature maps for standard kernels (e.g. Gaussian). Feature maps learned by deep learning
lead to state-of-the-art performance on different tasks (Hinton and Salakhutdinov, 2008;
Li et al., 2017; Wilson et al., 2016).

In addition to learning effective features, implicit generative models via deep learning
also lead to promising performance in learning distributions of complex data as we have
discussed in previous chapters. Inspired by its recent success, we propose to model kernel
spectral distributions with IGMs in a data-driven fashion, which we call Implicit Kernel
Learning (IKL). IKL provides a new route to modeling spectral distributions by learning
sampling processes of the spectral densities, which is under explored by previous works
aforementioned.

In this chapter, we start from studying the generic problem formulation of IKL, and
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propose an easily implemented, trained and evaluated neural network parameterization
which satisfies Bochner’s theorem (Section 7.1). We then extend MMD GAN in Chapter 2
with IKL on learning to generate images and text (Section 7.2). In addition to IGMs,
the proposed IKL can be applied to standard two-staged supervised learning task with
Random Kitchen Sinks (Sinha and Duchi, 2016) (Section 7.4). The conditions required
for training IKL and its theoretical guarantees are also studied. In both tasks, we show
that IKL leads to competitive or better performance than heuristic kernel selections and
existing approaches modeling kernel spectral densities. It demonstrates the potentials of
applying IGMs to different machine learning tasks.

7.1 Kernel Learning

Kernels have been used in several applications with success, including supervised learning,
unsupervised learning, and hypothesis test. They have also been combined with deep
learning in different applications (Dziugaite et al., 2015; Li et al., 2015b; Mairal, 2016;
Mairal et al., 2014; Wilson et al., 2016). Given data x ∈ Rd, kernel methods compute the
inner product of the feature transformation ϕ(x) in a high-dimensional Hilbert space H via
a kernel function k : X ×X → R, which is defined as k(x, x′) = 〈ϕ(x), ϕ(x′)〉H , where ϕ(x)
is usually high or even infinitely dimensional. If k is shift invariant (i.e. k(x, y) = k(x−y)),
we can represent k as an expectation with respect to a spectral distribution Pk(ω).

Bochner’s theorem (Rudin, 2011) A continuous, real valued, symmetric and shift-
invariant function k on Rd is a positive definite kernel if and only if there is a positive finite
measure Pk(ω) such that

k(x− x′) =

∫

Rd
eiω
>(x−x′)dPk(ω) = Eω∼Pk

[
eiω
>(x−x′)

]
.

7.1.1 Implicit Kernel Learning

We restrict ourselves to learning shift invariant kernels. According to that, learning kernels
is equivalent to learning a spectral distribution by optimizing

arg max
k∈K

∑

i=1

Ex∼Pi,x′∼Qi [Fi(x, x
′)k(x, x′)] =

arg max
k∈K

∑

i=1

Ex∼Pi,x′∼Qi
[
Fi(x, x

′)Eω∼Pk
[
eiω
>(x−x′)

]]
,

(7.1)

where F is a task-specific objective function and K is a set of kernels. Eq. (7.1) covers many
popular objectives, such as kernel alignment (Gönen and Alpaydın, 2011) and MMD dis-
tance (Gretton et al., 2012a). Existing works (Oliva et al., 2016; Wilson and Adams, 2013)
learn the spectral density Pk(ω) with explicit forms via parametric or non-parametric mod-
els. When we learn kernels via Eq. (7.1), the access of spectral density functions Pk(ω) is not
necessary as long as we are able to estimate kernel evaluations k(x−x′) = Eω[eiω

>(x−x′)] via
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sampling from Pk(ω) (Rahimi and Recht, 2007). Alternatively, implicit probabilistic (gen-
erative) models define a stochastic procedure that can generate (sample) data from Pk(ω)
without modeling Pk(ω). Recently, neural implicit generative models (MacKay, 1995) re-
gained attentions with promising results (Goodfellow et al., 2014) and simple sampling
procedures. We first sample ν from a base distribution P(ν) which is known (e.g. Gaussian
distribution), then use a deterministic function hψ parametrized by ψ, to transform ν into
ω = hψ(ν), where ω follows the complex target distribution Pk(ω). Inspired by the success
of implicit generative models, we propose an Implicit Kernel Learning (IKL) method by
modeling Pk(ω) via an implicit generative model hψ(ν), where ν ∼ P(ν), which results in

kψ(x, x′) = Eν
[
eihψ(ν)>(x−x′)

]
, (7.2)

and reducing Eq. (7.1) to solve

argmax
ψ

∑

i=1

Ex∼Pi,x′∼Qi
[
Fi(x, x

′)Eν
(
eihψ(ν)>(x−x′)

)]
. (7.3)

The gradient of Eq. (7.3) can be represented as

∑

i=1

Ex∼Pi,x′∼QiEν
[
∇ψFi(x, x

′)eihψ(ν)>(x−x′)
]
.

Thus, Eq. (7.3) can be optimized via sampling x, x′ from data and ν from the base dis-
tribution to estimate gradient as shown above (SGD) in every iteration. Next, we discuss
the parametrization of hψ to satisfy Bochner’s Theorem, and describe how to evaluate IKL
kernels in practice.

Symmetric Pk(ω) To result in real valued kernels, the spectral density has to be sym-

metric, where Pk(ω) = Pk(−ω). Thus, we parametrize hψ(ν) = sign(ν) ◦ h̃ψ(abs(ν)),

where ◦ is the Hadamard product and h̃ψ can be any unconstrained function if the base
distribution P(ν) is symmetric (i.e. P(ν) = P(−ν)), such as standard normal distributions.

Kernel Evaluation Although there is usually no closed form for the kernel evaluation
kψ(x, x′) in Eq. (7.2) with fairly complicated hψ, we can evaluate (approximate) kψ(x, x′)

via sampling finite number of random Fourier features k̂ψ(x, x′) = ϕ̂hψ(x)>ϕ̂hψ(x′), where
ϕ̂hψ(x)> = [ϕ(x;hψ(ν1)), . . . , ϕ(x;hψ(νm))], and ϕ(x;ω) is the evaluation on ω of the
Fourier transformation ϕ(x) (Rahimi and Recht, 2007).

Next, we demonstrate two applications covered by Eq. (7.3) as examples, where we can
apply IKL, including maximum mean discrepancy (MMD) and kernel alignment.

7.2 MMD GAN with IKL

Given {xi}ni=1 ∼ PX , instead of estimating the density PX , implicit generative models
learns a generative network gθ (generator), which transforms a base distribution PZ over
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Z into an implicit distribution Qθ to approximate PX . During the training, IGMs have
to alternatively estimate a distance D(PX‖Qθ) between PX and Qθ, and updates gθ by
minimizing D(PX‖Qθ). Different probability metrics have been studied (Arbel et al., 2018;
Arjovsky et al., 2017; Dziugaite et al., 2015; Goodfellow et al., 2014; Gulrajani et al., 2017;
Li et al., 2017, 2015b; Mroueh et al., 2018; Mroueh and Sercu, 2017; Mroueh et al., 2017;
Nowozin et al., 2016). Kernel maximum mean discrepancy (MMD) is a probability metric,
which is commonly used in two-sample-test to distinguish two distributions with finite
samples (Gretton et al., 2012a). Given a kernel k, recall that MMD is defined as

Mk(P,Q) = ‖µP − µQ‖2
H = EP,P[k(x, x′)]− 2EP,Q[k(x, y)] + EQ,Q[k(y, y′)].

Dziugaite et al. (2015); Li et al. (2015b) train the generator gθ by optimizing minθMk(PX ,Qθ)
with a Gaussian kernel k. In Chapter 2, we consider the MMD Mφ(PX ,Qθ) with a com-
position kernel

kφ(x, x′) = exp(−‖fφ(x)− fφ(x)′‖2), (7.4)

which combines Gaussian kernel k and a neural network fφ. The proposed MMD GAN
learns gθ via solving minθ maxφMφ(PX ,Qθ). The inner maximization maxφMφ(PX ,Qθ)
can be interpret as a new distance defined by a variational form or a MMD with kernel
learning. Please refer to Chapter 2 for more detailed discussions.

7.2.1 Training MMD GAN with IKL

Although the composition kernel with a learned feature embedding fφ is powerful, choosing
a good base kernel k is still crucial in practice (Bińkowski et al., 2018). Different base
kernels for MMD GAN, such as rational quadratic kernel (Bińkowski et al., 2018) and
distance kernel (Bellemare et al., 2017), have been studied. Instead of choosing it by hands,
we propose to learn the base kernel by IKL, which extend Eq. (7.4) to be kψ,φ = kψ ◦ fφ
with the form

kψ,φ(x, x′) = Eν
[
eihψ(ν)>(fφ(x)−fφ(x′))

]
. (7.5)

We then extend the MMD GAN objective to be

min
θ

max
ψ,φ

Mψ,φ(PX ,Qθ), (7.6)

where Mψ,φ is the MMD distance with the IKL kernel (7.5). Clearly, for a given φ, the
maximization over ψ in Eq. (7.6) can be represented as Eq. (7.1) by letting F1(x, x′) = 1,
F2(x, y) = −2 and F3(y, y′) = 1. In what follows, we will use for convenience kψ,φ, kψ and
kφ to denote kernels defined in Eq. (7.5), (7.2) and Eq. (7.4) respectively.

7.2.2 Property of MMD GAN with IKL

As proven by Arjovsky and Bottou (2017), some probability distances adopted by existing

works (e.g. Goodfellow et al. (2014)) are not weak (i.e. Pn
D−→ P then D(Pn‖P)→ 0), which

cannot provide better signal to train gθ. Also, they usually suffer from discontinuity, hence
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Algorithm 4 MMD GAN with IKL

Input: η the learning rate, B the batch size, nc number of f, h updates per g update, m
the number of basis, λGP the coefficient of gradient penalty, λh the coefficient of variance
constraint.
Initial parameter θ for g, φ for f , ψ for h
Define L(ψ, φ) = Mψ,φ(PX ,Qθ)− λGP (‖∇x̂fφ(x̂)‖2 − 1)2 − λh(Eν [‖hψ(ν)‖2]− u)2

while θ has not converged do
for t = 1, . . . , nc do

Sample {xi}Bi=1 ∼ P(X ), {zj}Bj=1 ∼ P(Z), {νk}mk=1 ∼ P(ν)
(ψ, φ)← φ+ ηAdam ((ψ, φ),∇ψ,φL(ψ, φ))

end for
Sample {xi}Bi=1 ∼ P(X ), {zj}Bj=1 ∼ P(Z), {νk}mk=1 ∼ P(ν)
θ ← θ − ηAdam(θ,∇θMψ,φ(PX ,Qθ))

end while

it cannot be trained via gradient descent at certain points. We extend Theorem 3 and
Theorem 4 to prove that maxψ,φMψ,φ(PX ,Qθ) is a continuous and differentiable objective
in θ and weak under an extended mild assumptions based on Assumption 21.

Assumption 21. gθ(z) is locally Lipschitz and differentiable in θ; fφ(x) is Lipschitz in x
and φ ∈ Φ is compact. fφ◦gθ(z) is differentiable in θ and there are local Lipschitz constants,
which is independent of φ, such that Ez∼Pz [L(θ, z)] < +∞. The above assumptions are
adopted by Arjovsky et al. (2017). Lastly, assume given any ψ ∈ Ψ, where Ψ is compact,

kψ(x, x′) = Eν
[
eihψ(ν)>(x−x′)

]
and |kψ(x, x′)| < ∞ is differentiable and Lipschitz in (x, x′)

which has an upper bound Lk for Lipschitz constant of (x, x′) given different ψ.

Theorem 22. Assume function gθ and kernel kψ,φ satisfy Assumption 21, maxψ,φMψ,φ

is weak, that is, maxψ,φMψ,φ(PX ,Pn) → 0 ⇐⇒ Pn
D−→ PX . Also, maxψ,φMψ,φ(PX ,Qθ) is

continuous everywhere and differentiable almost everywhere in θ.

Lemma 23. Assume X is bounded. Let x, x′ ∈ X , kψ(x, x′) = Eν
[
eihψ(ν)>(x−x′)

]
is Lips-

chitz in (x, x′) if Eν [‖hψ(ν)‖2] <∞.

We note that Eν [‖hψ(ν)‖2] is variance since Eν [hψ(ν)] = 0. We penalize λh(Eν [‖hψ(ν)‖2]−
u)2 as an approximation of Lemma 23 in practice to ensure that assumptions in Theorem 22
are satisfied. The algorithm with IKL and gradient penalty (Bińkowski et al., 2018) is
shown in Algorithm 4.

7.3 Empirical Study of GAN with IKL

We consider image and text generation tasks for quantitative evaluation. For image gener-
ation, we evaluate the inception score (Salimans et al., 2016) and FID score (Heusel et al.,
2017) on CIFAR-10 (Krizhevsky and Hinton, 2009). We use DCGAN (Radford et al.,
2016) and expands the output of fφ to be 16-dimensional as Bińkowski et al. (2018). For
text generation, we consider a length-32 character-level generation task on Google Billion
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Words dataset as Chapter 4. The evaluation is based on Jensen-Shannon divergence be-
tween empirical 4-gram probabilities (JS-4) of the generated sequence and the validation
data (Gulrajani et al., 2017; Heusel et al., 2017; Mroueh et al., 2018). The model architec-
ture follows Gulrajani et al. (2017) in using ResNet with 1D convolutions. We train every
algorithm 10, 000 iterations for comparison.

For MMD GAN with fixed base kernels, we consider the mixture of Gaussian kernels

k(x, x′) =
∑

q exp(−‖x−x′‖2
2σ2
q

) as in Chapter 2 and the mixture of RQ kernels k(x, x′) =
∑

q(1+ ‖x−x′‖2
2αq

)−αq (Bińkowski et al., 2018). We tuned hyperparameters σq and αq for each

kernel as reported in Section 7.6.4.
Lastly, for learning base kernels, we compare IKL with SM kernel (Wilson and Adams,

2013) fφ, which learns mixture of Gaussians to model kernel spectral density. It can be
treated as the explicit generative model counter part of the proposed IKL.

In both tasks, P(ν), the base distribution of IKL, is a standard normal distribution and
hψ is a 3-layer MLP with 32 hidden units for each layer. Similar to the aforementioned
mixture kernels, we consider the mixture of IKL kernels with the variance constraints
E[‖hψ(ν)‖2] = 1/σq, where σq is the bandwidths for the mixture of Gaussian kernels. Note
that if hψ is an identity map, we recover the mixture of Gaussian kernels. We fix λh to be
10 and resample m = 1024 random features for IKL in every iteration. For other settings,
we follow Bińkowski et al. (2018) and the hyperparameters can be found in Section 7.6.4.

7.3.1 Quantitative and Qualitative Results

We compare MMD GAN with the proposed IKL and different fixed kernels. We repeat the
experiments 10 times and report the average result with standard error in Table 7.1. Note
that for inception score the larger the better; while FID and JS-4 the smaller the better.
We also report WGAN-GP results as a reference. Sampled images on larger datasets are
shown in Figure 7.1. Before the discussion, we note that the difference in FID is less
significant than inception score and JS-4, but FID score is a biased evaluation metric as
discussed in Bińkowski et al. (2018).

Method Inception Scores (↑) FID Scores (↓) JS-4 (↓)
Gaussian 6.726± 0.021 32.50± 0.07 0.381± 0.003

RQ 6.785± 0.031 32.20± 0.09 0.463± 0.005
SM 6.746± 0.031 32.43± 0.08 0.378± 0.003
IKL 6.876± 0.018 31.98± 0.05 0.372± 0.002

WGAN-GP 6.539± 0.034 36.413± 0.05 0.379± 0.002

Table 7.1: Inception scores, FID scores, and JS-4 divergece results.

Pre-defined Kernels Bińkowski et al. (2018) show RQ kernels outperform Gaussian and
energy distance kernels on image generation. Our empirical results agree with such finding:

104



Figure 7.1: Samples generated by MMD GAN-IKL on CIFAR-10, CELEBA and LSUN
dataset.

RQ kernels achieve 6.785 inception score while for Gaussian kernel it is 6.726, as shown in
the left column of Table 7.1. In text generation, nonetheless, RQ kernels only achieve 0.463
JS-4 score1 and are not on par with 0.381 acquired by Gaussian kernels, even though it is
still slightly worse than WGAN-GP. These results imply kernel selection is task-specific.
On the other hand, the proposed IKL learns kernels in a data-driven way, which results in
the best performance in both tasks. In CIFAR-10, although Gaussian kernel is worse than
RQ, IKL is still able to transforms P(ν), which is Gaussian, into a powerful kernel, and
outperforms RQ on inception scores (6.876 v.s. 6.785). For text generation, from Table 7.1
and Figure 7.2, we observe that IKL can further boost Gaussian into better kernels with
substantial improvement. Also, we note that the difference between IKL and pre-defined
kernels in Table 7.1 is significant based on the t-test at 95% confidence level.

0 2000 4000 6000 8000 10000
g  iterations
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0.42
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-4
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IKL

Figure 7.2: Convergence of MMD GANs with different kernels on text generation.

1For RQ kernels, we searched 10 possible hyperparameter settings to ensure the unsatisfactory perfor-
mance is not caused by the improper parameters.
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Learned Kernels The SM kernel (Wilson and Adams, 2013), which learns the spectral
density via mixture of Gaussians, does not significantly outperforms Gaussian kernel as
shown in Table 7.1, since Li et al. (2017) already uses equal-weighted mixture of Gaussian
formulation. It suggests that proposed IKL can learn more complicated and effective
spectral distributions than simple mixture models.

7.3.2 Study of Variance Constraints

In Lemma 23, we prove bounding variance E[‖hψ(ν)‖2] guarantees kψ to be Lipschitz as
required in Theorem 22. We investigate the importance of this constraint. In Figure 7.3,
we show the training objective (MMD), E[‖hψ(ν)‖2] and the JS-4 divergence for training
MMD GAN (IKL) without variance constraint, i.e. λh = 0. We could observe the variance
keeps going up without constraints, which leads exploded MMD values. Also, when the
exploration is getting severe, the JS-4 divergence starts increasing, which implies MMD
cannot provide meaningful signal to gθ. The study justifies the validity of Theorem 22 and
Lemma 23.
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Figure 7.3: Learning MMD GAN (IKL) without the variance constraint on Google Billion
Words datasets for text generation.

In Section 7.2, we propose to constrain variance via λh(Eν [‖hψ(ν)‖2]− u)2. There are
other alternatives, such as using Lagrangian. In practice, we do not observe significant
difference. Last, we remark that the proposed constraint is a sufficient condition. For
CIFAR-10, without the constraint, we observe that the variance is still bouncing between
1 and 2 without explosion as Figure 7.3. Therefore, the training leads to a satisfactory
result with 6.731 ± 0.034 inception score, but it is slightly worse than IKL in Table 7.1.
The necessary or weaker sufficient conditions are worth further studying as a future work.

7.3.3 Computational Time

One concern of the proposed IKL is the computational overhead introduced by sampling
random features as well as using more parameters to model hψ.
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Figure 7.4: Computational time for one generator update iteration with different batch
sizes.

Model Capacity For fφ, the number of parameters for DCGAN is around 0.8 million
for size 32 × 32 images and 3 millions for size 64 × 64 images. The ResNet architecture
used in Gulrajani et al. (2017) has around 10 millions parameters. In contrast, in all
experiments, we use simple three layer MLP as hψ for IKL, where the input and output
dimensions are 16, and hidden layer size is 32. The total parameters are just around 2,000.
Compared with fφ, the additional number of parameters used for hψ is almost negligible.

The other concern of IKL is sampling random features for each examples. In our
experiments, we use m = 1024 random features for each iteration. We measure the time
per iteration of updating critic iterations (f for WGAN-GP and MMD GAN with Gaussian
kernel; f and h for IKL) with different batch sizes under Titan X as shown in 7.4. The
difference between WGAN-GP, MMD GAN and IKL are not significant. The reason is
computing MMD and random feature is highly parallelizable, and other computation,
such as evaluating fφ and its gradient penalty, dominates the cost because fφ has much
more parameters as aforementioned. Therefore, we believe the proposed IKL is still cost
effective in practice.

7.3.4 IKL with and without Neural Networks on GAN training

Instead of learning a transformation function hψ for spectral distributions as we proposed
in Section 7.1 (IKL-NN), the other realization of IKL is to keep a pool of a finite number of

learned random features Ω = {ω̂i}mi=1, and approximate the kernel evaluation by k̂Ω(x, x′) =
ϕ̂Ω(x)>ϕ̂Ω(x′), where ϕ̂Ω(x)> = [ϕ(x; ω̂1), . . . , ϕ(x; ω̂m)]. During the learning, it directly
optimize ω̂i. Many existing works study this idea for supervised learning, such as Băzăvan
et al. (2012); Bullins et al. (2018); Chang et al. (2017b); Sinha and Duchi (2016); Yang
et al. (2015). We call the latter realization as IKL-RFF. Next, we discuss and compare the
difference between IKL-NN and IKL-RFF.

The crucial difference between IKL-NN and IKL-RFF is, IKL-NN can sample arbitrary
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Figure 7.5: The comparison between IKL-NN and IKL-RFF on CIFAR-10 under different
number of random features.

number of random features by first sampling ν ∼ P(ν) and transforming it via hψ(ν), while
IKL-RFF is restricted by the pool size m. If the application needs more random features,
IKL-RFF will be memory inefficient. Specifically, we compare IKL-NN and IKL-RFF with
different number of random features in Figure 7.5. With the same number of parameters
(i.e., |hψ| = m×dim(ν))2 , IKL-NN outperforms IKL-RFF of m = 128 on inception scores
(6.876 versus 6.801). For IKL-RFF to achieve the same or better Inception scores of IKL-
NN, the number of random features m needs increasing to 4096, which is less memory
efficient than the IKL-NN realization. In particular, hψ of IKL-NN is a three-layers MLP
with 2048 number of parameters (16×32+32×32+32×16), while IKL-RFF has 2048, 65536
number of parameters, for m = 128, 4096, respectively.

Algorithm JS-4

IKL-NN 0.372± 0.002
IKL-RFF 0.383± 0.002

IKL-RFF (+2) 0.380± 0.002
IKL-RFF (+4) 0.377± 0.002
IKL-RFF (+8) 0.375± 0.002

Table 7.2: The comparison between IKL-NN and IKL-RFF on Google Billion Word.

On the other hand, using large m for IKL-RFF not only increases the number of
parameters, but might also enhance the optimization difficulty. Zhang et al. (2017) discuss
the difficulty of optimizing RFF directly on different tasks. Here we compare IKL-NN and
IKL-RFF on challenging Google Billion Word dataset. We train IKL-RFF with the same

2|hψ| denotes number of parameters in hψ, m is number of random features and dim(ν) is the dimension
of the ν.
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setting as Section 7.6.4, where we set the pool size m to be 1024 and the updating schedule
between critic and generator to be 10 : 1, but we tune the Adam optimization parameter
for IKL-RFF for fair comparison. As discussed above, please note that the number of
parameters for hψ is 2048 while IKL-RFF uses 16384 when m = 1024. The results are
shown in Table 7.2. Even IKL-RFF is using more parameters, the performance 0.383 is
not competitive as IKL-NN, which achieves 0.372.

In Algorithm 4, we update fφ and h in each iteration with nc times, where we use
nc = 10 here. We keep the number of updating fφ to be 10, but increase the number
of update for {ω̂i}1024

i=1 to be 12, 14, 18 in each iteration. The result is shown in Table 7.2
with symbols +2, +4 and +8 respectively. Clearly, we see IKL-RFF need more number of
updates to achieve competitive performance with IKL-NN. The results might implies IKL-
RFF is a more difficult optimization problem with more parameters than IKL-NN. It also
confirms the effectiveness of learning IGMs with deep neural networks, but the underlying
theory is still an open research question. A better optimization algorithm (Zhang et al.,
2017) may improve the performance gap between IKL-NN and IKL-RFF, which worth
more study as future work.

7.4 Random Kitchen Sinks with IKL

In addition to improving learning IGMs, IKL also benefits non-generative tasks in machine
learning. Rahimi and Recht (2009) propose Random Kitchen Sinks (RKS) as follows. We
sample ωi ∼ Pk(ω) and transform x ∈ Rd into

ϕ̂(x) = [ϕ(x;ω1), . . . , ϕ(x;ωM)], where sup
x,ω
|ϕ(x;ω)| < 1.

We then learn a classifier on the transformed features ϕ̂(x;ω). Kernel methods with random
features (Rahimi and Recht, 2007) is an example of RKS, where Pk(ω) is the spectral
distribution of the kernel and ϕ(x;ω) =

[
cos(ω>x), sin(ω>x)

]
. We usually learn a model

w by solving

argmin
w

λ

2
‖w‖2 +

1

n

n∑

i=1

`
(
w>ϕ̂(xi)

)
. (7.7)

If ` is a convex loss function, the objective (7.7) can be solved efficiently to global optimum.
Spectral distributions Pk are usually set as a parameterized form, such as Gaussian

distributions, but the selection of Pk is important in practice. If we consider RKS as kernel
methods with random features, then selecting P is equivalent to the well-known kernel
selection (learning) problem for supervised learning (Gönen and Alpaydın, 2011).

Two-Stage Approach We follows Sinha and Duchi (2016) to consider kernel learning
for RKS with a two-stage approach. In stage 1, we consider kernel alignment (Cristianini
et al., 2002) of the form, argmaxk∈K E(x,y),(x′,y′)

∑
i 6=j yy

′k(x, x′). By parameterizing k via
the implicit generative model hψ as in Section 7.1, we have the following problem:

argmax
ψ

E(x,y),(x′,y′)yy
′Eν
[
eihψ(ν)>(x−x′)

]
, (7.8)
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Algorithm 5 Random Kitchen Sinks with IKL

Stage 1: Kernel Learning
Input: X = {(xi, yi)}ni=1, the batch size B for data and m for random feature, learning
rate η
Initial parameter ψ for h
while ψ has not converged or reach maximum iters do

Sample {(xi, yi)}Bi=1 ⊆ X. Fresh sample {νj}mj=1 ∼ P(ν)

gψ ← ∇ψ
1

B(B−1)

∑
i 6=i′ yiyi′

1
m

∑m
j=1 e

ihψ(νj)
>(xi−xi′ ))

ψ ← ψ − ηAdam(ψ, gψ)
end while
Stage 2: Random Kitchen Sinks
Sample {νi}Mi=1 ∼ P(ν), note that M is not necessarily equal to m

Transform X into ϕ(X) via hψ and {νi}Mi=1

Learn a linear classifier on (ϕ(X), Y )

which can be treated as Eq. (7.1) with F1(x, x′) = yy′. After solving Eq. (7.8), we learn
a sampler hψ where we can easily sample from. In stage 2, we thus have the advan-
tage of solving a convex problem Eq. (7.7) in RKS with IKL. The algorithm is shown in
Algorithm 5.

Note that in stage 1, we resample {νj}mj=1 in every iteration to train an implicit gen-
erative model hψ. The advantage of Algorithm 5 is the random features used in kernel
learning and RKS can be different, which allows us to use less random features in kernel
learning (stage 1), and sample more features for RKS (stage 2).

One can also jointly train both feature mapping ω and the model parameters w, such
as neural networks. We remark that our intent is not to show state-of-the-art results on
supervised learning, on which deep neural networks dominate (He et al., 2016; Krizhevsky
et al., 2012). We use RKS as a protocol to study kernel learning and the proposed IKL,
which still has competitive performance with neural networks on some tasks (Rahimi and
Recht, 2009; Sinha and Duchi, 2016). Also, the simple procedure of RKL with IKL allows
us to provide some theoretical guarantees of the performance, which is sill challenging of
deep learning models.

Comparison with Existing Works Sinha and Duchi (2016) learn non-uniform weights
for M random features via kernel alignments in stage 1 then using these optimized features
in RKS in the stage 2. Note that the random features used in stage 1 has to be the same
as the ones in stage 2. A joint training of feature mapping and classifier can be treated
as a 2-layer neural networks (Alber et al., 2017; Băzăvan et al., 2012; Bullins et al., 2018).
Learning kernels with aforementioned works will be more costly if we want to use a large
number of random features for training classifiers. In contrast to IGMs, Oliva et al. (2016)
learn an explicit Bayesian nonparametric generative model for spectral distributions, which
requires specifically designed inference algorithms. Learning kernels for Eq. (7.7) in dual
form without random features has also been proposed. It usually require costly steps, such
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as eigendecomposition of the Gram matrix (Gönen and Alpaydın, 2011).

7.4.1 Consistency and Generalization

The simple two-stages approach, IKL with RKS, allows us to provide the consistency
and generalization guarantees. For consistency, it guarantees the solution of finite sample
approximations of Eq. (7.8) approach to the optimum of Eq. (7.8) (population optimum),
when we increase the number of training data and the number of random features. We
firstly define necessary symbols and state the theorem.

Let s(xi, xj) = yiyj be a label similarity function, where |yi| ≤ 1. We use sij to denote
s(xi, xj) interchangeably. Given a kernel k, we define the true and empirical alignment
functions as,

T (k) = E [s(x, x′)k(x, x′)]

T̂ (k) = 1
n(n−1)

∑
i 6=j sijk(xi, xj).

In the following, we abuse the notation kψ to be kh for ease of illustration. Recall

the definitions of kh(x, x
′) = 〈ϕh(x), ϕh(x

′)〉 and k̂h(x, x
′) = ϕ̂h(x)>ϕ̂h(x

′). We define two
hypothesis sets

FH = {f(x) = 〈w,ϕh(x)〉H |h ∈ H, 〈w,w〉 ≤ 1}
F̂mH = {f(x) = w>ϕ̂h(x)|h ∈ H, ‖w‖ ≤ 1, w ∈ Rm}.

Definition 24. (Rademacher’s Complexity) Given a hypothesis set F , where f : X ×X →
R if f ∈ F , and a fixed sample X = {x1, . . . , xn}, the empirical Rademacher’s complexity
of F is defined as

Rn
X(F) =

1

n
Eσ

[
sup
f∈F

n∑

i=1

σif(xi)

]
,

where σ are n i.i.d. Rademacher random variables.

We then have the following theorems showing that the consistency guarantee depends
on the complexity of the function class induced by IKL as well as the number of random
features. The proof can be found in Section 7.6.3.

Theorem 25. (Consistency) Let ĥ = arg maxh∈H T̂ (k̂h), with i.i.d, samples {νi}mi=1 drawn

from P(ν). With probability at least 1− 3δ, we have |T (k̂ĥ)− suph∈H T (kh)| ≤

2EX
[
Rn−1
X (FH) + Rn−1

X (F̂mH )
]

+

√
8 log 1

δ

n
+

√
2 log 4

δ

m
.

Applying Cortes et al. (2010), We also have a generalization bound, which depends on
the number of training data n, the number of random features m and the Rademacher
complexity of IKL kernel, as shown below.

Theorem 26. (Generalization (Cortes et al., 2010)) Define the true and empirical misclas-

sification for a classifier f as R(f) = P(Y f(X) < 0) and R̂γ(h) = 1
n

∑n
i=1 min {1, [1− yf(xi)/γ]+}.
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Figure 7.6: Left figure is training examples when d = 2. Right figure is the classification
error v.s. data dimension.

Then

sup
f∈F̂H
{R(f)− R̂γ(f)} ≤ 2

γ
Rn
X(F̂H) + 3

√
log 2

δ

2n

with probability at least 1− δ.
The Rademacher complexity Rn

X(FH), for example, can be 1/
√
n or even 1/n for kernels

with different bounding conditions (Cortes et al., 2013). We would expect worse rates for
more powerful kernels. It suggests the trade-off between consistency/generalization and
using powerful kernels parametrized by neural networks.

7.4.2 Empirical Study

We evaluate the proposed IKL on both synthetic and benchmark binary classification tasks.
For IKL, P(ν) is standard Normal and hψ is a 3-layer MLP for all experiments. The number
of random features m to train hψ in Algorithm 5 is fixed to be 64. Other experiment details
are described in Section 7.6.5.

Kernel learning with a poor choice of Pk(ω) We generate {xi}ni=1 ∼ N (0, Id) with
yi = sign(‖x‖2−

√
d), where d is the data dimension. A two dimensional example is shown

in Figure 7.6. Competitive baselines include random features (RFF) (Rahimi and Recht,
2007) as well as OPT-KL (Sinha and Duchi, 2016). In the experiments, we fix M = 256
in RKS for all algorithms. Since Gaussian kernels with a bandwidth σ = 1 is known to be
ill-suited for this task (Sinha and Duchi, 2016), we directly use random features from it
for RFF and OPT-KL. Similarly, we set P(ν) to be standard normal distribution as well.
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The test error for different data dimension d = {2, 4, . . . , 18, 20} is shown in Figure
7.6. Note that RFF is competitive with OPT-KL and IKL when d is small (d ≤ 6), while
its performance degrades rapidly as d increases, which is consistent with the observation
in Sinha and Duchi (2016). More discussion of the reason of failure can be referred to Sinha
and Duchi (2016). On the other hand, although using standard normal distributions as
spectral distributions is ill-suited for this task, both OPT-KL and IKL can adapt with
data and learn to transform it into effective kernels and result in slower degradation with
d.

Note that OPT-KL learns the sparse weights on the sampled random features (M =
256). However, the sampled random features can fail to contain informative ones, especially
in high dimension (Bullins et al., 2018). Thus, when using limited amount of random
features, OPT-IKL may result in worse performance than IKL in the high dimensional
regime in Figure 7.6.

Performance on benchmark datasets Next, we evaluate our IKL framework on stan-
dard benchmark binary classification tasks. Challenging label pairs are chosen from MNIST
(LeCun et al., 1998) and CIFAR-10 (Krizhevsky and Hinton, 2009) datasets; each task con-
sists of 10000 training and 2000 test examples. For all datasets, raw pixels are used as the
feature representation. We set the bandwidth of RBF kernel by the median heuristic. We
also compare with Wilson and Adams (2013), the spectral mixture (SM) kernel, which uses
Gaussian mixture to learn spectral density and can be seen as an explicit generative model
counterpart of IKL. Also, SM kernel is a MKL variant with linear combination (Gönen
and Alpaydın, 2011). In addition, we consider the joint training of random features and
model parameters, which can be treated as a two-layer neural network (NN) and serve as
the lower bound of error for comparing different kernel learning algorithms.

The test error versus different M = {26, 27, . . . , 213} in the second stage is shown in
Figure 7.7. First, in light of computation efficiency, SM and the proposed IKL only sample
m = 64 random features in each iteration in the first stage, and draws a different number of
basis M from the learned hψ(ν) for the second stage. OPT-KL, on the contrary, the random
features used in training and testing should be the same. Therefore, OPT-IKL needs to
deal with M random features in the training. It brings computation concern when M is
large. In addition, IKL demonstrates improvement over the representative kernel learning
method OPT-KL, especially significant on the challenging datasets such as CIFAR-10.
In some cases, IKL almost reaches the performance of NN, such as MNIST, while OPT-
KL degrades to RFF except for a small number of basis (M = 26). This illustrates the
effectiveness of learning kernel spectral distribution via the implicit generative model hψ.
Also, IKL outperforms SM, which is consistent with the finding in Section 7.2 that IKL
can learn more complicated spectral distributions than simple mixture models (SM).

7.5 Summary

We propose a generic kernel learning algorithm, IKL, which learns sampling processes of
kernel spectral distributions via IGMs. An immediate application is using the improved
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(a) MNIST (4-9) (b) MNIST (5-6)

(c) CIFAR-10 (auto-truck) (d) CIFAR-10 (plane-bird)

Figure 7.7: Test error rate versus number of basis in second stage on benchmark binary
classification tasks. We report mean and standard deviation over five runs. Our method
(IKL) is compared with RFF (Rahimi and Recht, 2009), OPT-KL (Sinha and Duchi, 2016),
SM (Wilson and Adams, 2013) and the end-to-end training MLP (NN).

kernel via IGMs to help learning IGMs. We also demonstrate broader usages of IKL on
traditional supervised learning tasks with Random Kitchen Sinks (RKS). For these two
tasks, the conditions and guarantees of IKL are studied. Empirical studies show IKL is
better than or competitive with the state-of-the-art kernel learning algorithms. It proves
IKL can learn to transform P(ν) into effective kernels even if P(ν) is less favorable to the
task.

We note that the preliminary idea of IKL is mentioned in Băzăvan et al. (2012), but
they ended up with a algorithm that directly optimizes sampled random features (RF),
which has many follow-up works (e.g. Bullins et al. (2018); Sinha and Duchi (2016)). The
major difference is, by learning the transformation function hψ, the RF used in training and
evaluation can be different. This flexibility allows a simple training algorithm (SGD) and
does not require to keep learned features. In our studies on GAN and RKS, we show using
a simple MLP can already achieve better or competitive performance with those works,
which suggest IKL can be a new direction for kernel learning and worth more studies.

We highlight that IKL is not conflict with existing works but can be combined with
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them. In Section 7.2, we show combining IKL with kernel learning via embedding (Wilson
et al., 2016) and mixture of spectral distributions (Wilson and Adams, 2013). Therefore,
in addition to the examples shown in Section 7.2 and Section 7.4, IKL is directly applicable
to many existing works with kernel learning via embedding (e.g. Al-Shedivat et al. (2017);
Arbel et al. (2018); Chang et al. (2019); Dai et al. (2014); Jean et al. (2018); Li and
Póczos (2016); Wilson et al. (2016)). A possible extension is combining with Bayesian
inference (Oliva et al., 2016) under the framework similar to Saatchi and Wilson (2017).
The learned sampler from IKL can possibly provide an easier way to do Bayesian inference
via sampling.

7.6 Appendix

7.6.1 Proof of Theorem 22

The proof is the straightforward extension of Section 2.5.1 and 2.5.2. We still include the
full proof for completeness.

First, we prove ‖kψ(fφ(x), ·)− kψ(fφ(y), ·)‖HK is Lipschitz. By definition of RKHS, we
know that ‖kψ(fφ(x), ·)− kψ(fφ(y), ·)‖HK = 2(1− kψ(fφ(x), fφ(y))). Also, since kψ(0) = 1
and kψ(0)− kψ(x, x′) ≤ Lk‖0− (x− x′)‖ (Lipschtiz assumption of kψ), we have

‖kψ(fφ(x), ·)− kψ(fφ(y), ·)‖HK ≤ 2Lk‖fφ(x)− fφ(y)‖ ≤ 2LkL‖x− y‖,

where the last inequality is since fφ is also a Lipschitz function with Lipschitz constant L.

The other direction, maxψ,φMψ,φ(P,Pn)→ 0 then Pn
D−→ P, is by assuming there exists

ψ′ and φ′ such that hψ and fφ are identity functions. Then all the remaining claims follows
Section 2.5.2.

Next, we show the proof of continuity. We are going to show

max
ψ,φ

Mψ,φ(PX ,Qθ) = Ex,x′ [kψ,φ(x, x′)]−2Ex,z[kψ,φ(x, gθ(z))]+Ez,z′ [kψ,φ(gθ(z
′), gθ(z))] (7.9)

is differentiable with respect to φ almost everywhere by using Lemma 6. We fist show
Ez,z′ [kψ,φ(gθ(z

′), gθ(z))] in (7.9) is locally Lipschitz in θ. By definition, kψ,φ(x, x′) =
kψ(fφ(x)− fφ(x′)), therefore,

Ex,x′
[
kψ,φ

(
gθ(z), gθ(z

′)
)
− kψ,φ

(
gθ′(z), gθ′(z

′)
)]

=Ez,z′
[
kψ

(
fφ
(
gθ(z)

)
− fφ

(
gθ(z

′)
))]
− Ez,z′

[
kψ

(
fφ
(
gθ′(z)

)
− fφ

(
gθ′(z

′)
))]

≤Ez,z′
[
Lk

∥∥∥fφ
(
gθ(z)

)
− fφ

(
gθ(z

′)
)
− fφ

(
gθ′(z)

)
+ fφ

(
gθ′(z

′)
)∥∥∥
]

≤Ez,z′
[
LkL(θ, z)‖θ − θ′‖+ LkL(θ, z′)‖θ − θ′‖

]

=2LkEz
[
L(θ, z)

]
‖θ − θ′‖.
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The first inequality is followed by the assumption that k is locally Lipschitz in (x, x′), with
a upper bound Lk for Lipschitz constants. By Assumption 21, Ez

[
L(θ, z)

]
<∞, we prove

Ez,z′
[
kψ
(
fφ(gθ(z)) − fφ(gθ(z

′))
)]

is locally Lipschitz. The similar argument is applicable

to other terms in (7.9); therefore, (7.9) is locally Lipschitz in θ.
Last, with the compactness assumption on Φ and Ψ, and differentiable assumption on

Mψ,φ(PX ,Qθ), applying Lemma 6 proves Theorem 22.

7.6.2 Proof of Lemma 23

Without loss of the generality, we can rewrite the kernel function as kψ(t) = Eν
[

cos
(
hψ(ν)>t

)]
,

where t is bounded. We then have

‖∇tkψ(t)‖ =
∥∥∥Eν

[
sin
(
hψ(ν)>t

)
hψ(ν)

]∥∥∥
≤ Eν

[∣∣ sin(hψ(ν)>t)
∣∣× ‖hψ(ν)‖

]

≤ Eν
[
‖t‖‖hψ(ν)‖2

]

The last inequality follows by | sin(x)| < |x|. Since t is bounded, if Eν [‖hψ(ν)‖2] < ∞,
there exist a constant L such that ‖∇tkψ(t)‖ < L,∀t.

By mean value theorem, for any t and t′, there exists s = αt+(1−α)t′, where α ∈ [0, 1],
such that

kψ(t)− kψ(t′) = ∇skψ(s)>(t− t′).
Combining with ‖∇tkψ(t)‖ < L,∀t, we prove

kψ(t)− kψ(t′) ≤ L‖t− t′‖.

7.6.3 Proof of Theorem 25

We first prove two Lemmas.

Lemma 27. (Consistency with respect to data) With probability at least 1− δ, we have

sup
h∈H
|T̂ (kh)− T (kh)| ≤ 2EX

[
Rn−1
X (FH)

]
+

√
2

n
log

1

δ

Proof. Define
ρ(x1, . . . , xn) = sup

h∈H
|T̂ (kh)− T (kh)|,

since |kh(x, x′)| ≤ 1, it is clearly

sup
x1,...,xi,x′i,...,xn

|ρ(x1, . . . , xi, . . . xn)−

ρ(x1, . . . , x
′
i, . . . xn)| ≤ 2

n
.

Applying McDiarmids Inequality, we get

P (ρ(x1, . . . , xn)− E[ρ(x1, . . . , xn)] ≥ ε) ≤ exp

(−nε2
2

)
.

116



By Lemma 28, we can bound

E[ρ(x1, . . . , xn)] ≤ 2EX
[
Rn−1
X (FH)

]

and finish the proof.

Lemma 28. Given X = {x1, . . . , xn}, define

ρ(x1, . . . , xn) = sup
h∈H
|T̂ (kh)− T (kh)|,

we have

E
[
ρ(x1, . . . , xn)

]
≤ 2EX

[
Rn−1
X (FH)

]
,

Proof. The proof is closely followed by Dziugaite et al. (2015). Given h, we first define
th(x, x

′) = s(x, x′)kh(x, x
′) as a new kernel function to simplify the notations. We are then

able to write

E
[
ρ(x1, . . . , xn)

]

= EX
[

sup
h∈H

∣∣∣∣∣E
[
th(z, z

′)

]
− 1

n(n− 1)

∑

i 6=j

th(xi, xj)

∣∣∣∣∣

]

≤ EX,Z
[

sup
h∈H

∣∣∣∣∣
1

n(n− 1)

∑

i 6=j

(th(zi, zj)− th(xi, xj))
∣∣∣∣∣

]

by using Jensen’s inequality. Utilizing the conditional expectation and introducing the
Rademacher random variables {σi}n−1

i=1 , we can write the above bound to be

1

n

∑

i

EX−i,Z−iExi,zi
[

sup
h∈H

∣∣∣∣
∑

i 6=j th(zi, zj)− th(xi, xj)
n− 1

∣∣∣∣
]

= EX,ZEX′,Z′,σ
[

sup
h∈H

∣∣∣∣∣
1

n− 1

n−1∑

i=1

σi(th(z
′, zn)− th(x′, xn))

∣∣∣∣∣

]
(7.10)

The equality follows by X − X ′ and −(X − X ′) has the same distributions if X and X ′

are independent samples from the same distribution. Last, we can bound it by

≤ EXEσ,X′
[

sup
h∈H

∣∣∣∣∣
2

n− 1

n−1∑

i=1

σith(x
′, xi)

∣∣∣∣∣

]

≤ EXEσ
[

sup
f∈FkH

∣∣∣∣∣
2

n− 1

n−1∑

i=1

σif(xi)

∣∣∣∣∣

]

= 2EX [Rn−1
X (FH)]

The second inequality follows by s(x, x′)ϕ(x′) ∈ F since |s(x, x′)| ≤ 1.
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Lemma 29. (Consistency with respect to sampling random features) With probability 1−δ,
we have

| sup
h∈H

T̂ (kh)− sup
h∈H

T̂ (k̂h)| ≤

√
2 log 4

δ

m

Proof. Let the optimal solutions be

h∗ = arg maxh∈H T̂ (kh)

ĥ = arg maxh∈H T̂ (k̂h),

By definition,

T̂ (k̂h)

=
1

n(n− 1)

∑

i 6=j

sij

(
1

m

m∑

k=1

cos(h(νk)
>(xi − xj))

)

=
1

m

m∑

k=1

(
1

n(n− 1)
sij cos(h(νk)

>(xi − xj))
)

It is true that | 1
n(n−1)

sij cos(h(νk)
>(xi − xj)| ≤ 1 since |sij| < 1 and | cos(x)| < 1. we then

have
P(| suph∈H T̂ (kh)− suph∈H T̂ (k̂h)| > ε)

≤ P(|T̂ (kh∗)− T̂ (k̂h∗)| > ε) + P(|T̂ (kĥ)− T̂ (k̂ĥ)| > ε)

≤ 4 exp

(
−mε

2

2

)
,

where the last inequality follows from the Hoeffding’s inequality.

With Lemma 27 and Lemma 29, we are ready to prove Theorem 25. We can decompose

|T (k̂ĥ)− sup
h∈H

T (kh)|

≤ | sup
h∈H

T (kh)− sup
h∈H

T̂ (kh)|+ | sup
h∈H

T̂ (kh)− T̂ (k̂ĥ)|+ |T̂ (k̂ĥ)− T (k̂ĥ)|

≤ sup
h∈H
|T (kh)− T̂ (kh)|+ | sup

h∈H
T̂ (kh)− T̂ (k̂ĥ)|+ sup

h∈H
|T̂ (k̂h)− T (k̂h)|

We then bound the first and third terms by Lemma 27 and the second term by Lemma 29.
Last, using a union bound completes the proof.

7.6.4 Hyperparameters of GAN Studies

For Gaussian kernels, we use σq = {1, 2, 4, 8, 16} for images and σq = {0.5, 1, 2, 4, 8} for
text; for RQ kernels, we use αq = {0.2, 0.5, 1, 2, 5} for images and αq = {0.04, 0.1, 0.2, 0.4, 1}
for text. We used Adam as optimizer. The learning rate for training both fφ and gθ is
0.0005 and 0.0001 for image and text experiments, respectively. The batch size B is 64.
We set hyperparameter nc for updating critic to be nc = 5 and nc = 10 for CIFAR10 and
Google Billion Word datasets. The learning rate of of hψ for Adam is 10−6.
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7.6.5 Hyperparameters of Random Kitchen Sinks Studies

For OPT-KL, we use the code provided by Sinha and Duchi (2016)3. We tune the hy-
perparameter ρ = {1.25, 1.5, 2, 4, 16, 64} on the validation set. For RFF, OPT-KL, and
IKL, the linear classifier is Logistic Regression Fan et al. (2008)4, as to make reasonable
comparison with MLP. We use 3-fold cross validation to select the best C on training set
and present the error rate on test set. For CIFAR-10 and MNIST, we normalize data to
be zero mean and one standard deviation in each feature dimension. The learning rate for
Adam is 10−6. We follow Bullins et al. (2018) to use early stopping when performance on
validation set does not gain.

3https://github.com/amansinha/learning-kernels
4https://github.com/cjlin1/liblinear
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Chapter 8

Learning Proximal Operators for
Solving Linear Inverse Problems

At the heart of many image processing tasks is a linear inverse problem, where the goal is
to reconstruct an image x ∈ Rd from a set of measurements y ∈ Rm of the form y = Ax+ε,
where A ∈ Rm×d is the measurement operator and ε ∈ Rm is the noise. For example, in
image inpainting, A is the linear operation of applying a pixelwise mask to the image x.
In super-resolution, A downsamples high-resolution images. In compressive sensing, A is a
short-fat matrix with fewer rows than columns and is typically a random sub-Gaussian or
a sub-sampled orthonormal matrix. Linear inverse problems are often underdetermined,
i.e., they involve fewer measurements than unknowns. Such underdetermined systems are
difficult to solve since the operator A has a non-trivial null space and there are an infinite
number of feasible solutions; however, only a few of the feasible solutions are valid natural
images. There are two broad approaches for solving linear underdetermined problems,
including hand-crafted regularizations with our priors and learning-based methods.

Hand-Designed Signal Regularizations The first approach regularizes the inverse
problem with signal regularizations, which encode our prior knowledges of true solutions
from the infinite set of feasible solutions (Chan et al., 2006; Dong et al., 2011; Donoho,
1995; Mairal et al., 2008; Portilla et al., 2003). It is usually in the form

min
x

1

2
‖y − Ax‖2

2 + λh(x), (8.1)

where h : Rd → R is the signal regularization and λ is the non-negative weighting term.
Signal regularizations constraining the sparsity of x in some transformation domain have
been widely used in literature. For example, since images are usually sparse after wavelet
transformation or after taking gradient operations, a signal prior h can be formulated
as h(x) = ‖Wx‖1, where W is a operator representing either wavelet transform, taking
image gradient, or other hand-designed linear operation that produces sparse features
from images (Donoho et al., 1998). Using signal regularizations of `1-norms provides two
advantages. First, it forms a convex optimization problem and provides global optimality.
The optimization problem can be solved efficiently with a variety of algorithms for convex
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optimization. Second, `1 regularizations enjoy many theoretical guarantees, thanks to
results in compressive sensing (Candes et al., 2006). For example, if the linear operator A
satisfies conditions like the restricted isometry property and Wx is sufficiently sparse, the
optimization problem (8.1) provides the sparsest solution. Despite their algorithmic and
theoretical benefits, hand-designed regularizations are often too generic to constrain the
solution set of the inverse problem (8.1) to be natural images — we can easily generate
noise-like signals that have sparse wavelet coefficients or gradients.

Learning-based Method. The second approach learns a direct mapping from the lin-
ear measurement y to the solution x, with the help of large training datasets and deep
neural networks. Such methods have achieved promising performance in many challenging
image inverse problems like super-resolution (Dong et al., 2014; Ledig et al., 2017), inpaint-
ing (Pathak et al., 2016), compressive sensing (Kulkarni et al., 2016; Mousavi and Baraniuk,
2017; Mousavi et al., 2015), and image debluring (Xu et al., 2014). Recently, state-of-the-
art performance in many challenging problems (Ledig et al., 2017; Pathak et al., 2016) are
acquired via modeling conditional distributions P(x|y) via deep IGMs. Despite their supe-
rior performance, these methods are designed for specific problems and usually cannot solve
other problems without retraining the transformation function — even when the problems
are similar. For example, a 4×-super-resolution network cannot be easily readapted to
solve 2× super-resolution problems; a compressive sensing network for Gaussian random
measurements is not applicable to sub-sampled Hadamard measurements. Training a new
network for every single measurement operator is a wasteful proposition.

One network to solve them all. In comparison, traditional methods using hand-
designed signal regularizations can solve any linear inverse problems but they often have
poorer performance on an individual problem. Clearly, a middle ground between these two
classes of methods is needed. We ask the following question:

if we have a large dataset of natural images, can we learn from the dataset a
signal priors that can deal with any linear inverse problem involving images?

Intuitively, the ideal prior should be the distribution of the given image data PX . The
corresponding signal regularization can significantly lower the cost to incorporate inverse
algorithms into consumer products, for example, via the form of specialized hardware de-
sign. To answer this question, we observe that in optimization algorithms for solving linear
inverse problems, signal regularizations usually appear in the form of proximal operators.
Geometrically, the proximal operator projects the current estimate closer to the feasible
sets (natural images) constrained by the signal regularization; statistically, the proximal
operator transforms the current estimate into the support of PX . Thus, we propose to
learn an IGM proximal operator such that the transformed (projected) images follow the
prior distribution of data. Once learned, the same network can be integrated into many
standard optimization frameworks for solving arbitrary linear inverse problems of natural
images.
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8.1 One Network to Solve Them All

Signal priors play an important role in constraining underdetermined inverse problems.
As mentioned earlier, traditional priors constraining the sparsity of signals in gradient or
wavelet bases are often too generic, in that we can easily create non-image signals satisfying
these priors. Instead of using traditional priors of images, we propose to learn a prior from
a large image dataset. Since the prior is learned directly from the dataset, it is tailored to
the statistics of images in the dataset and, in principle, provide stronger regularization to
the inverse problem. In addition, similar to traditional signal regularizations, the learned
image priors can be used to solve any linear inverse problems pertaining to images.

8.1.1 Problem formulation

The proposed framework is motivated by the optimization technique, alternating direction
method of multipliers (ADMM) (Boyd et al., 2011), that is widely used to solve linear
inverse problems as defined in Eq. (8.1). A typical first step in ADMM is to separate a
complicated objective into several simpler ones by variable splitting, i.e., introducing an
additional variable z that is constrained to be equal to x. This gives us the following
optimization problem:

min
x,z

1

2
‖y − Az‖2

2 + λh(x) s.t. x = z, (8.2)

that is equivalent to the original problem (8.1). The scaled form of the augmented La-
grangian of Eq. (8.2) can be written as

L(x, z, u) =
1

2
‖y − Az‖2

2 + λh(x) +
ρ

2
‖x− z + u‖2

2 ,

where ρ > 0 is the penalty parameter of the constraint x = z, and u represents the dual
variables divided by ρ. By alternately optimizing L(x, z, u) over x, z, and u, ADMM is
composed of the following steps:

x(k+1) ← argmin
x

ρ

2

∥∥x− z(k) + u(k)
∥∥2

2
+ λh(x) (8.3)

z(k+1) ← argmin
z

1

2
‖y − Az‖2

2 +
ρ

2

∥∥x(k+1)−z+u(k)
∥∥2

2
(8.4)

u(k+1) ← u(k) + x(k+1) − z(k+1).

The update of z in Eq. (8.4) is a least squares problem which can be solved efficiently via
conjugate gradient descent. The update of x in (8.3) is the proximal operator of the signal
regularization h with penalty ρ

λ
, denoted as proxh, ρ

λ
(b), where b=z(k)−u(k). When the

signal regularization uses `1-norm, the proximal operator is simply a soft-thresholding on
b. Notice that the ADMM algorithm separates the signal regularization h from the linear
operator A. This enables us to learn an implicit prior that can be used with any linear
operator.
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Figure 8.1: Given a large image dataset, the proposed framework learns a classifier fφ that
fits the support of the natural image set. Based on fφ, the transformation, which is an
IGM projection network gθ: Rd→Rd, is trained to fit the proximal operator of fφ, which
enables one to solve a variety of linear inverse problems using ADMM.

8.1.2 Proximal Operations as Transformations via IGMs

Since the regularization (prior) only appears in the form of proximal operators in ADMM,
instead of explicitly learning a signal prior PX , defining the corresponding h, and solving the
proximal operator in each step of ADMM, we propose to directly learn a proximal operator
gθ, which is parametrized by θ. Let X represent the set of data images which follow the
distribution PX . The desired proximal operator gθ has to project b into the support of
PX . In general, gθ should be able to deal with any signal in Rd as b for Eq. (8.3), which
is challenging. However, we can initialize the scaled dual variables u with zeros and z(0)

with the pseudo-inverse of the least-square term. Since we initialize u0 = 0, the input to
the proximal operator b(k)=z(k)−u(k) = z(k) +

∑k
i=1

(
x(i) − z(i)

)
≈ z(k) resembles an image.

Thereby, even though it is in general difficult to fit a projection function from any signal in
Rd to the natural image space, we expect that the desired projection function only needs
to deal with inputs that are close to images, and we train the projection function with
slightly perturbed images x̃ = x + ε from the dataset, where x ∼ PX . Therefore, we solve
gθ via

min
θ
D(PX‖Qθ),

where D is a probability distances, and Qθ is the distribution of gθ(x̃). The process can be
viewed as learning an IGM for conditional generation. Given x̃, the generator gθ transforms
x̃ into gθ(x̃) ∼ Qθ such that PX ≈ Qθ. Therefore, we call gθ as an IGM projection network.
We are then able to use a neural network fφ to define powerful D(PX‖Qθ) for distribution
matching to train a transformation network as the projection operator.

Geometric Perspective. In addition to the conditional generation viewpoint, we can
explain the proposed algorithm from a geometric perspective. The best signal regular-
ization is the indicator function of X , denoted as IX (·), and its corresponding proximal
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operator proxIX ,ρ(b) is a projection operator that projects b onto X from the geometric
perspective— or equivalently, finding a x ∈ X such that ‖x− b‖ is minimized. However,
we do not have the oracle indicator function IX (·) in practice, so we cannot evaluate
proxIX ,ρ(b) to solve the projection operation. Instead, we can approximate it by a classi-
fier fφ with a large dataset whose decision function approximates IX or we can treat fφ as
learning the support of PX . GANs (Bengio, 2018). Based on the learned classifier fφ, we
can learn a projection function gθ that maps a signal b to the set defined by the classifier.
The learned projection function gθ can then replace the proximal operator (8.3), and we
simply update x via

x(k+1) ← gθ(z
(k) − u(k)). (8.5)

An illustration of the idea is shown in Figure 8.1.
There are some caveats for this approach. When the support of PX or the decision

function of the classifier fφ is non-convex, the overall optimization becomes non-convex.
For solving general non-convex optimization problems, the convergence result is not guar-
anteed. Based on the theorems for the convergence of non-convex ADMM (Wang et al.,
2015), we provide the following theorem to the proposed ADMM framework.

Theorem 30. Assume that the function gθ solves the proximal operator (8.3). If the
gradient of h(x) is Lipschitz continuous and with large enough ρ, the ADMM algorithm is
guaranteed to attain a stationary point.

The proof follows directly from Wang et al. (2015) and we omit the details here. Al-
though Theorem 30 only guarantees convergence to stationary points instead of the optimal
solution as other non-convex formulations, it ensures that the algorithm will not diverge af-
ter several iterations. On the other hand, constraining generators via Lipschitz constraints
is also shown to lead to stable behaviors (Odena et al., 2018). The iterative update of
ADMM can also be treated as a recurrent process as recurrent neural networks, where the
projector is the RNN cell. Stabling RNN training via constraining Lipschitz constants of
RNN cells is also extensively studied (e.g. Arjovsky et al. (2016)).

Lastly, we remark that techniques like denoising autoencoders learn projection-like op-
erators and, in principle, can be used in place of a proximal operator; however, our empirical
findings suggest that ignoring the projection cost ‖b− gθ(b)‖2 and simply minimizing the
reconstruction loss ‖x0−gθ(b)‖2, where b is a perturbed image from x0, leads to instability
in the ADMM iterations.

8.1.3 Implementation details

Choice of activation function. According to Theorem 30, we need the gradient of φ
to be Lipschitz continuous. Thus, we simply truncate the weights of the network after each
iteration as Arjovsky et al. (2017) to bound the gradients of D w.r.t. x, and choose the
smooth exponential linear unit (Clevert et al., 2016) as its activation function instead of
rectified linear units.

Image perturbation. While adding Gaussian noise may be the simplest way to perturb
an image, we found that the projection network will easily overfit the Gaussian noise and
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become a dedicated Gaussian denoiser. Since during the ADMM process, the inputs to the
projection network, z(k)−u(k), do not usually follow a Gaussian distribution, an overfitted
projection network may fail to project the general signals produced by the ADMM process.
To avoid overfitting, we generate perturbed images with two methods — adding Gaussian
noise with spatially-varying standard deviations and smoothing the input images.

8.1.4 Relationship to other techniques

Many recent works solve linear inverse problems by unrolling the optimization process into
the network architecture (Adler and Öktem, 2017; Borgerding and Schniter, 2016; Gregor
and LeCun, 2010; Jin et al., 2017). Since the linear operator A is incorporated in the
architecture, these networks are problem-specific. The proposed method is also similar
to the denoising-based approximate message passing algorithm (Metzler et al., 2016) and
plug-and-play priors (Venkatakrishnan et al., 2013), which replace the proximal operator
with an image denoiser. Compared to denoising autoencoder, the projection network gθ is
encouraged to project perturbed images x0 + ε to the closest x in X , instead of the original
image x0. In our empirical experience, the difference helps stabilize the ADMM process.

Other related methods. Many concurrent works also propose to solve generic linear
inverse problems by learning proximal operators (Meinhardt et al., 2017; Xiao et al., 2017).
Meinhardt et al. (2017) replace the proximal operator with a denoising network. Xiao et al.
(2017) use a modified multi-stage non-linear diffusion process (Chen et al., 2015) to learn
the proximal operator.

Dave et al. (2017) and Bora et al. (2017) learn explicit generative models of natural
images and solve linear inverse problems by performing maximum a posteriori inference.
Their algorithms need to compute the gradient of the networks in each iteration, which
can be computationally expensive when the networks are very deep and complex. In
contrast, the proposed method directly provides the solution to the x-update (8.5) and is
thus computationally efficient.

8.1.5 Limitations

Unlike traditional signal regularizations whose weights λ can be adjusted at the time of
solving the optimization problem (8.1), the prior weight of the proposed framework is fixed
once the projection network is trained. While an ideal projection operator should not be
affected by the value of the prior weights, sometimes, it may be preferable to control the
effect of the signal regularization to the solution. In our experiments, we find that adjusting
ρ sometimes has similar effects as adjusting λ.

The convergence analysis of ADMM in Theorem 30 is based on the assumption that
the projection network can provide global optimum of Eq. (8.3). However, in practice the
optimality is not guaranteed. While there are convergence analyses with inexact proximal
operators, the general properties are too complicated to analyze for deep neural networks.
In practice, we find that for problems like pixelwise inpainting, compressive sensing, 2×
super-resolution and scattered inpainting the proposed framework converges gracefully, as
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Figure 8.2: Results on MNIST dataset. Since the input of compressive sensing cannot be
visualized, we show the ground truth instead. Compressive sensing 1 uses m

d
= 0.3 and

compressive sensing 2 uses m
d

= 0.03. Pixelwise inpaint 1 drops 50% of the pixels, and
pixelwise inpaint 2 drops 70% of the pixels and adds Gaussian noise with σ = 0.3. We use
ρ = 0.1 for pixelwise inpainting and ρ = 0.05 for blockwise inpainting.

shown in Figure 8.6. For more challenging problems like image inpainting with large blocks
and 4×-super-resolution on ImageNet dataset, we sometimes need to stop the ADMM
procedure early (by monitoring the residual ‖x(k) − z(k)‖).

8.2 Experiments

We evaluate the proposed framework on the MNIST (Loosli et al., 2007), MS-Celeb-
1M (Guo et al., 2016), ImageNet (Russakovsky et al., 2015), and LabelMe (Russell et al.,
2008). For each of the datasets, we perform the following tasks:

(i) Compressive sensing. We usem×d random Gaussian matrices of different compression
(m
d

) as the linear operator A. The images are vectorized into d-dimensional vectors x
and multiplied with the random Gaussian matrices to form y.

(ii) Pixelwise inpainting and denoising. We randomly drop pixels (independent of chan-
nels) by filling zeros and add Gaussian noise with different standard deviations.

(iii) Scattered inpainting. We randomly drop 10 small blocks by filling zeros. Each block
is of 10% width and height of the input.

(iv) Blockwise inpainting. We fill the center 30% region of the input images with zeros.

(v) Super resolution. We downsample the images into 50% and 25% of the original width
and height using box-averaging algorithm.
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Figure 8.3: Results on MS-Celeb-1M dataset. The PSNR values are shown in the lower-
right corner of each image. For compressive sensing, we test on m

d
= 0.1. For pixelwise

inpainting, we drop 50% of the pixels and add Gaussian noise with σ = 0.1. We use ρ = 1.0
on both super resolution tasks.

Configurations of specially-trained networks. For each task (except for 4×-super
resolution and for scattered inpainting), we train a neural network using context en-
coder (Pathak et al., 2016) with adversarial training. For compressive sensing, we design
the network based on Mousavi and Baraniuk (2017), which applies A> to the linear mea-
surements and resize it into the image size to operate in image space. The measurement
matrix A is a random Gaussian matrix and is fixed. For pixelwise inpainting and denoise,
we randomly drop 50% of the pixels and add Gaussian noise with σ = 0.5 for each training
instances. For blockwise inpainting, we drop a block with 30% size of the images at a ran-
dom location in the images. For 2×-super resolution, we follow Dong et al. (2014) which
first upsamples the low-resolution images to the target resolution using bicubic interpola-
tion. We do not train a network for 4×-super resolution and for scattered inpainting —
to demonstrate that the specially-trained networks do not generalize well to similar tasks.
Since the inputs to the 2×-super resolution network are bicubic-upsampled images, we also
apply the upsampling to 1

4
-resolution images and feed them to the same network. We also

feed scattered inpainting inputs to the blockwise inpainting network.

Configurations of wavelet sparsity prior. We compare the proposed framework with
the traditional signal regularization using `1-norm of wavelet coefficients. We tune the
weight of the `1 norm, λ, based on the dataset.

Results. For each of the experiments, we use ρ = 0.3 if not mentioned. The results
on MNIST, MS-Celeb-1M, and ImageNet datasets are shown in Figures 8.2, 8.3, and 8.4,
respectively. We also apply the same IGM projection network trained on ImageNet dataset
on the test set of LabelMe dataset. We list the statistics of peak-to-noise ratio (PSNR)
values of the reconstruction outputs in Table 8.1. In addition, we use the same IGM
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Figure 8.4: Results on ImageNet dataset. The PSNR values are shown in the lower-right
corner of each image. Compressive sensing uses m

d
= 0.1. For pixelwise inpainting, we drop

50% of the pixels and add Gaussian noise with σ = 0.1. We use ρ = 0.05 on scattered
inpainting and ρ = 0.5 on super resolution.

projection network on the image shown in Figure 8.51. To deal with the 384× 512 image,
when solving the projection operation (8.3), we apply the IGM projection network on
64×64 patches and stitch the results. The reconstruction outputs are shown in Figure 8.5,
and their statistics of each iteration of ADMM are shown in Figure 8.6.

Figure 8.5: The same IGM projection network is used to solve the following tasks: com-
pressive sensing problem with 10× compression, pixelwise random inpainting with 80%
dropping rate, scattered inpainting, and 2×-super-resolution. Note that even though the
nature and input dimensions of the problems are very different, the proposed framework
is able to use a single network to solve them all without retraining.

1https://flic.kr/p/mGjhs7
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task `1 prior proposed specially-trained

compressive sensing (10×) 13.01 (±2.75) 25.43 (±3.74) 25.18 (±2.82)
pixelwise inpaint, denoise 20.68 (±1.65) 26.29 (±1.98) 30.13 (±1.66)
2× super-resolution 27.30 (±2.50) 27.11 (±3.21) 22.59 (±2.89)
scattered inpaint 27.85 (±2.58) 25.69 (±3.45) 18.30 (±2.55)

(a) ImageNet

task `1 prior proposed specially-trained

compressive sensing (10×) 13.79 (±3.67) 27.34 (±5.15) 27.49 (±4.16)
pixelwise inpaint, denoise 21.72 (±2.17) 27.71 (±3.05) 30.93 (±1.96)
2× super-resolution 29.00 (±4.08) 28.52 (±4.64) 20.79 (±4.08)
scattered inpaint 30.17 (±3.96) 28.71 (±5.26) 18.65 (±3.12)

(b) LabelMe

Table 8.1: Average and standard deviation of PSNR values on 100k randomly chosen test
images from ImageNet and the whole LabelMe test dataset. Note that we apply the same
projection network trained with ImageNet on LabelMe. The similarity in the performance
across the two datasets shows the robustness of the projection network.
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Figure 8.6: Convergence of the ADMM algorithms for compressive sensing (left) and scat-
tered inpainting (right) of Figure 8.5.

As can be seen from the results, using the proposed projection operator/network learn-
ing from datasets enables us to solve more challenging problems than using the traditional
wavelet sparsity prior. In Figures 8.2 and 8.3, while the traditional `1-prior of wavelet
coefficients is able to reconstruct images from compressive measurements with m

d
= 0.3,

it fails to handle larger compression ratios like m
d

= 0.1 and 0.03. Similar observations
can be seen on pixelwise inpainting of different dropping probabilities and scattered and
blockwise inpainting. In contrast, since the proposed IGM projection network is tailored to
the images in the datasets, it enables the ADMM algorithm to solve challenging problems
like compressive sensing with small m

d
and blockwise inpainting on MS-Celeb dataset.
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Figure 8.7: Comparison on the robustness to the linear operator A and noise on compressive
sensing. The results of the specially-trained network and the proposed method are shown
at the top and bottom row, respectively, along with their PSNR values. We use ρ = 0.5
for σ = 0.2, ρ = 0.7 for σ = 0.3, ρ = 1.0 for σ = 0.4, ρ = 1.1 for σ = 0.5, and ρ = 0.3 for
all other cases.

Robustness to changes in linear operator and to noise. Even though the specially-
trained networks are able to generate state-of-the-art results on their designing tasks, they
are unable to deal with similar problems, even with a slight change of the linear operator
A. For example, as shown in Figure 8.3, the blockwise inpainting network is able to deal
with much larger vacant regions; however, it overfits the problem and fails to fill contents
to smaller blocks in scattered inpainting problems. The 2×-super resolution network also
fails to reconstruct higher resolution images for 4×-super resolution tasks, even though
both inputs are upsampled using bicubic algorithm beforehand. We extend this argument
with a compressive sensing example. We start from the random Gaussian matrix A0 used
to train the compressive sensing network, and we progressively resample elements in A0

from the same distribution constructing A0. As shown in Figure 8.7, once the portion of
resampled elements increases, the specially-trained network fails to reconstruct the inputs,
even though the new matrices are still Gaussian. The network also shows lower tolerance
to Gaussian noise added to the clean linear measurements y = A0x0. In comparison, the
proposed projector network is robust to changes of linear operators and noise.

Failure cases. The proposed IGM projection network can fail to solve very challenging
problems like the blockwise inpainting on ImageNet dataset, which has higher varieties
in image contents than the other two datasets we test on. As shown in Figure 8.4, the
proposed IGM projection network tries to fill in random edges in the missing regions. In
these cases, the IGM projection network fails to project inputs to the natural image set, and
thereby, violates our assumption in Theorem 30 and affects the overall ADMM framework.
Even though increasing ρ can improve the convergence, it may produce low-quality, overly
smoothed outputs.
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8.3 Summary

In this chapter, we propose a general framework to implicitly learn a signal prior for solv-
ing generic linear inverse problems. The application can be explained in two views. From
the statistical perspective, the problem is learning conditional distributions via IGMs such
that conditional generation follow the data distribution. From the geometric perspective,
we follow the projection property of proximal operations and connect the traditional op-
timization procedures with a learning based method. This application demonstrates the
versatility of IGMs that we can replace core hand-crafted component of existing algo-
rithms via IGMs. Therefore, we envision to apply IGMs to improve building components
of existing algorithms for a variety of applications.
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Chapter 9

Change-Point Detection with
Auxiliary Implicit Generative Models

So far we have seen different applications of IGMs from image, text to point cloud gener-
ations. In Chapter 8, we show how to use IGM to replace a hand-crafted component and
improve the performance of existing machine learning algorithms. In most of the appli-
cations, the task can be formulated as a generative task and the output of the algorithm
is the learnt sampler of target distributions or the generator network. In this chapter, we
present a different usage of IGMs in non-generative problems by constrcuting auxiliary
distributions to benefit non-generative machine learning algorithms. As an example, we
show how IGM can be used to benefit change point detection, which is a variant of anomaly
detection, by resolving the issue of data insufficiency.

Change Point Detection. Detecting changes in the temporal evolution of a system
(biological, physical, mechanical, etc.) in time series analysis has attracted considerable
attention in machine learning and data mining for decades (Basseville et al., 1993; Brod-
sky and Darkhovsky, 2013). This task, commonly referred to as change-point detection
(CPD) or anomaly detection in the literature, aims to predict significant changing points
in a temporal sequence of observations. CPD has a broad range of real-world applica-
tions such as medical diagnostics (Gardner et al., 2006), industrial quality control (Basu
and Meckesheimer, 2007), financial market analysis (Pepelyshev and Polunchenko, 2015)
and more. As shown in Figure 9.1, we focus on the retrospective CPD (Li et al., 2015a;
Takeuchi and Yamanishi, 2006), which allows a flexible time window to react on the change-
points. Retrospective CPD not only enjoys more robust detection (Chandola et al., 2009)
but embraces many applications such as climate change detection (Reeves et al., 2007),
genetic sequence analysis (Wang et al., 2011), networks intrusion detection (Yamanishi
et al., 2004), to name just a few. Various methods have been developed (Gustafsson
and Gustafsson, 2000), and many of them are parametric with strong assumptions on the
distributions (Basseville et al., 1993; Gustafsson, 1996), including auto-regressive mod-
els (Yamanishi and Takeuchi, 2002) and state-space models (Kawahara et al., 2007) for
tracking changes in the mean, the variance, and the spectrum.

Ideally, the detection algorithm should be free of distributional assumptions to have

133



Figure 9.1: A Three-variables time series of Bee-dance dataset with changing points marked
by red vertical bars and a sliding window over the time series input with two intervals: the
past and the current, where wl, wr are the size of the past and current interval, respectively.
X(l), X(r) consists of the data in the past and current interval, respectively.

robust performance as neither true data distributions nor anomaly types are known a
priori. Thus the parametric assumptions in many works are unavoidably a limiting factor in
practice. As an alternative, nonparametric and kernel approaches are free of distributional
assumptions and hence enjoy the advantage of producing more robust performance over a
broader class of data distributions.

Kernel two-sample test has been applied to time series CPD with some success. For
example, Harchaoui et al. (2009) present a test statistic based upon the maximum kernel
fisher discriminant ratio for hypothesis testing and Li et al. (2015a) propose a computa-
tionally efficient test statistic based on maximum mean discrepancy with block sampling
techniques. The performance of kernel methods, nevertheless, relies heavily on the choice
of kernels. Gretton et al. (2007, 2012a) conduct kernel selection for RBF kernel band-
widths via median heuristic without guarantees of optimality regarding to the statistical
test power of hypothesis testing. Gretton et al. (2012b) show explicitly optimizing the test
power leads to better kernel choice for hypothesis testing under mild conditions. Kernel
selection by optimizing the test power, however, is not directly applicable for time series
CPD due to insufficient samples of anomalies.

In this chapter, we show how to use a learned generative model to resolve the problem
of insufficient data, which leads to effective kernel learning, KL-CPD, for maximizing
testing power. We start from showing the inaptness of existing kernel learning approaches
in a simulated example. We then propose to optimize a lower bound of the test power
via an auxiliary generative model, which is parametrized via an IGM to serve as a surro-
gate of the abnormal events. For hypothesis test with kernels, we present a deep kernel
parametrization of our framework, which endows a data-driven kernel for the kernel two-
sample test. KL-CPD induces composition kernels by combining RNNs and RBF kernels
that are suitable for the time series applications. Finally, we conduct extensive benchmark
evaluation showing the outstanding performance of KL-CPD in real-world CPD applica-
tions. With simulation-based analysis, in addition, the proposed algorithm not only boosts
the test power but also evades the performance degradation as data dimensionality of time
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series increases.

9.1 Problem Formulation

Given a sequence of d-dimensional observations {x1, . . . , xt, . . .}, xi ∈ Rd, our goal is to
detect the existence of a change-point, such that before the change-point, samples are
i.i.d from a distribution P, while after the change-point, samples are i.i.d from a different
distribution Q. Suppose at current time t and the window size w, denote the past window
segment X(l) = {xt−w, . . . , xt−1} and the current window segment X(r) = {xt, . . . , xt+w−1},
We compute the maximum mean discrepancy (MMD) between X(l) and X(r), and use it as
the plausibility of change-points: The higher the distribution discrepancy, the more likely
the point is a change-point.

9.1.1 MMD and Test Power

We review maximum mean discrepancy (MMD) and its use to two-sample test, which
are two cornerstones in this work. Let k be the kernel of a reproducing kernel Hilbert
space (RKHS) Hk of functions on a set X . We assume that k is measurable and bounded,
supx∈X k(x, x) < ∞. MMD is a nonparametric probabilistic distance commonly used in
two-sample-test (Gretton et al., 2007, 2012a) as we have seen in Chapter 2 for learning
powerful IGM. Given a kernel k, the MMD distance between two distributions P and Q is
defined as

Mk(P,Q) := ‖µP − µQ‖2
Hk = EP[k(x, x′)]− 2EP,Q[k(x, y)] + EQ[k(y, y′)],

where µP = Ex∼P[k(x, ·))] and µQ = Ey∼Q[k(y, ·))] are the kernel mean embeddings for P
and Q, respectively. In practice we use finite samples from distributions to estimate MMD
distance. Given X = {x1, . . . , xm} ∼ P and Y = {y1, . . . , ym} ∼ Q, one unbiased estimator
of Mk(P,Q) is

M̂k(X, Y ) :=
1(
m
2

)
∑

i 6=i′
k(xi, xi′)−

2

m2

∑

i,j

k(xi, yj) +
1(
m
2

)
∑

j 6=j′
k(yj, yj′).

which has nearly minimal variance among unbiased estimators (Gretton et al., 2012a,
Lemma 6).

In Chapter 2, we focus on extending MMD to define a valid probability distance. In
this chapter, we focus on the test power with finite samples. For any characteristic kernel
k, Mk(P,Q) is non-negative and in particular Mk(P,Q) = 0 iff P = Q. However, the

estimator M̂k(X,X
′) may not be 0 even though X,X ′ ∼ P due to finite sample size.

Hypothesis test instead offers thorough statistical guarantees of whether two finite sample
sets are the same distribution. Following Gretton et al. (2012a), the hypothesis test is
defined by the null hypothesis H0 : P = Q and alternative H1 : P 6= Q, using test statistic
mM̂k(X, Y ). For a given allowable false rejection probability α (i.e., false positive rate or

Type I error), we choose a test threshold cα and reject H0 if mM̂k(X, Y ) > cα.
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We now describe the objective to choose the kernel k for maximizing the test power (Gret-
ton et al., 2012b; Sutherland et al., 2017). First, note that, under the alternative H1 : P 6=
Q, M̂k is asymptotically normal,

M̂k(X, Y )−Mk(P,Q)√
Vm(P,Q)

D−→ N (0, 1), (9.1)

where Vm(P,Q) denotes the asymptotic variance of the M̂k estimator. The test power is
then

Pr
(
mM̂k(X, Y ) > cα

)
−→ Φ

( Mk(P,Q)√
Vm(P,Q)

− cα

m
√
Vm(P,Q)

)
(9.2)

where Φ is the CDF of the standard normal distribution. Given a set of kernels K, We aim
to choose a kernel k ∈ K to maximize the test power, which is equivalent to maximizing
the argument of Φ.

9.2 Optimizing Test Power for Change-Point Detec-

tion

In time series CPD, we denote P as the distribution of usual events and Q as the distribution
for the event when change-points happen. The difficulty of choosing kernels via optimizing
test power in Eq. (9.2) is that we have very limited samples from the abnormal distribution
Q. Kernel learning in this case can easily overfit, which leads to sub-optimal performance
in time series CPD.

9.2.1 Difficulties of Optimizing Kernels for CPD

To demonstrate how limited samples of Q would affect optimizing test power, we consider
kernel selection for Gaussian RBF kernels on the Blobs dataset (Gretton et al., 2012b;
Sutherland et al., 2017), which is considered hard for kernel two-sample test. P is a 5× 5
grid of two-dimensional standard normals, with spacing 15 between the centers. Q is laid
out identically, but with covariance εq−1

εq+1
between the coordinates (so the ratio of eigenvalues

in the variance is εq). Left panel of Fig. 9.2 shows X ∼ P (red samples), Y ∼ Q (blue

dense samples), Ỹ ∼ Q (blue sparse samples) with εq = 6. Note that when εq = 1, P = Q.

For εq ∈ {4, 6, 8, 10, 12, 14}, we take 10000 samples for X, Y and 200 samples for Ỹ . We
consider two objectives for choosing kernels:

i median heuristic

ii max-ratio ηk∗(X, Y ) = arg maxk M̂k(X, Y )/
√
Vm(X, Y )

among 20 kernel bandwidths. We repeat this process 1000 times and report the test power
under false rejection rate α = 0.05. As shown in the right panel of Fig. 9.2, optimizing
kernels using limited samples Ỹ significantly decreases the test power compared to Y (blue
curve down to the cyan curve). This result not only verifies our claim on the inaptness of
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existing kernel learning objectives for CPD task, but also stimulates us with the following
question,

How to optimize kernels with very limited samples from Q, even none in an
extreme?

9.2.2 A Practical Lower Bound on Optimizing Test Power

We first assume there exist a surrogate distribution G that we can easily draw samples
from (Z ∼ G, |Z| � |Ỹ |), and also satisfies the following property:

Mk(P,P) < Mk(P,G) < Mk(P,Q),∀k ∈ K, (9.3)

Besides, we assume dealing with non trivial case of P and Q where a lower bound 1
m
vl ≤

Vm,k(P,Q),∀k exists. Since Mk(P,Q) is bounded, there exists an upper bound vu. With
bounded variance vl

m
≤ Vm,k(P,Q) ≤ vu

m
condition, we derive an lower bound γk∗(P,G) of

the test power

max
k∈K

Mk(P,Q)√
Vm(P,Q)

− cα/m√
Vm(P,Q)

≥ max
k∈K

Mk(P,Q)√
vu/m

− cα√
mvl

≥ max
k∈K

Mk(P,G)√
vu/m

− cα√
mvl

= γk∗(P,G).

(9.4)

Just for now in the blob toy experiment, we artifact this distribution G by mimicking
Q with the covariance εg = εq − 2. We defer the discussion on how to find G in Section
9.2.3. Choosing kernels via γk∗(X,Z) using surrogate samples Z ∼ G, as represented by

the green curve in Fig. 9.2, substantially boosts the test power compared to ηk∗(X, Ỹ ) with

sparse samples Ỹ ∼ Q.

Test Threshold Approximation Under H0 : P = Q, mM̂k(X, Y ) converges asymptot-
ically to a distribution that depends on the unknown data distribution P (Gretton et al.,
2012a, Theorem 12); we thus cannot evaluate the test threshold cα in closed form. Common
ways of estimating threshold includes the permutation test and a estimated null distribu-
tion based on approximating the eigenspectrum of the kernel. Nonetheless, both are still
computational demanding in practice. Even with the estimated threshold, it is difficult to
optimize cα because it is a function of k and P.

For X,X ′ ∼ P, we know that cα is a function of the empirical estimator M̂k(X,X
′) that

controls the Type I error. Bounding M̂k(X,X
′) could be an approximation of bounding

cα. Therefore, we propose the following objective that maximizing a lower bound of test
power

argmax
k∈K

Mk(P,G)− λM̂k(X,X
′), (9.5)

where λ is a hyper-parameter to control the trade-off between Type-I and Type-II errors,
as well as absorbing the constants m, vl, vu in variance approximation. Note that in ex-
periment, the optimization of Eq. (9.5) is solved using the unbiased estimator of Mk(P,G)
with empirical samples.
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Figure 9.2: Left: 5 × 5 Gaussian grid, samples from P, Q and G. We discuss two cases
of Q, one of sufficient samples, the other of insufficient samples. Right: Test power of
kernel selection versus εq. Choosing kernels by γk∗(X,Z) using a surrogate distribution G
is advantageous when we do not have sufficient samples from Q, which is typically the case
in time series CPD task.

9.2.3 Learning Surrogate Distributions with IGMs

The remaining question is how to construct the surrogate distribution G without any
sample from Q. Although injecting random noise to P is a simple way to construct G, it
may result in a sub-optimal G because of sensitivity to the level of injected random noise.
Without prior knowledge of Q, to ensure (9.3) hold for any possible Q (e.g. Q 6= P but
Q ≈ P), intuitively, we have to make G as closed to P as possible. We propose to learn an
auxiliary IGM Gθ parameterized by θ such that

M̂k(X,X
′) < Mk(P,Gθ) < Mk(P,Q),∀k ∈ K.

To ensure the first inequality hold, we adopt early stopping when solving Gθ in prac-
tice. Also, if P is sophisticate, which is common in time series cases, limited capacity of
parametrization of Gθ with finite size model (e.g. neural networks) (Arora et al., 2017)
and finite samples of P also hinder us to fully recover P. Therefore, we result in a min-max
formulation to consider all possible k ∈ K when we learn G,

min
θ

max
k∈K

Mk(P,Gθ)− λM̂k(X,X
′), (9.6)

and solve the kernel for the hypothesis test in the mean time. In experiment, we use simple
alternative (stochastic) gradient descent to solve each other.

9.2.4 Comparison with MMD GAN

We remark that although the resulted objective (9.6) is similar to MMD GAN in Chapter 2,
the motivation and explanation are different.
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The first difference is the interpretation of inner maximization problem maxkMk(P,G).
MMD GANs (Bińkowski et al., 2018; Li et al., 2017) treat whole maximization problem
maxkMk(P,G) as a new probabilistic distance, which can also be viewed as an extension of
integral probability metric (IPM). The properties of the distance is also studied in Arbel
et al. (2018); Li et al. (2017). However, the maximization problem (9.4) of this paper
defines the lower bound of the test power, which also takes the variance of the empirical
estimate into account, instead of the distance.

Regarding the goals, MMD GAN aims to learn a generative model that approximates
the underlying data distribution P of interests. All the works (Arbel et al., 2018; Bińkowski
et al., 2018; Dziugaite et al., 2015; Li et al., 2017, 2015b; Sutherland et al., 2017) use MMD
or maxkMk(P,G) to define distance, then try to optimize G to be as closed to P as possible.
However, that is not the goal of this paper, where G is just an auxiliary distribution which
needs to satisfies Eq. (9.3). Instead, we aim to find the most powerful k for conducting
hypothesis test. In practice, we still optimize G toward P because we usually have no prior
knowledge (sufficient samples) about Q, and we want to ensure the lower bound still hold
for many possible Q (e.g. Q can be also similar to P). However, even with this reason, we
still adopt early stopping to prevent the auxiliary G from being exactly the same as P.

9.3 KLCPD: Realization for Time Series Applications

In this section, we present a practical realization of the kernel learning framework for time
series CPD with an auxiliary IGM for learning surrogate distributions.

Compositional Kernels. To have a more expressive kernel for complex time series,
we consider compositional kernels k̃ = k ◦ f that combines RBF kernels k with injective
functions fφ:

K =
{
k̃ | k̃(x, x′) = exp(−‖fφ(x)− fφ(x)′‖2)

}
. (9.7)

The resulted kernel k̃ is still characteristic if f is an injective function and k is characteristic
(Gretton et al., 2012a). This ensures the MMD endowed by k̃ is still a valid probabilistic
distance. One example function class is {fφ|fφ(x) = φx, φ > 0}, equivalent to the kernel
bandwidth tuning. Inspired by the recent success of combining deep neural networks into
kernels (Al-Shedivat et al., 2017; Li et al., 2017; Wilson et al., 2016), we parameterize
the injective functions fφ by recurrent neural networks (RNNs) to capture the temporal
dynamics of time series.

For an injective function f , there exists a function F such that F (f(x)) = x,∀x ∈ X ,
which can be approximated by an auto-encoder via sequence-to-sequence architecture for
time series. One practical realization of f would be a RNN encoder parametrized by φ while
the function F is a RNN decoder parametrized by ψ trained to minimize the reconstruction
loss. Thus, our final objective is

min
θ

max
φ

Mφ

(
P,Gθ

)
− λ · M̂fφ

(
X,X ′

)
− β · Eν∈P∪Gθ‖ν − Fψ

(
fφ(ν)

)
‖2

2. (9.8)
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Practical Implementation. In practice, we consider two consecutive windows in mini-
batch to estimate M̂fφ

(
X,X ′

)
in an online fashion for the sake of efficiency. Specifically,

the sample X ∼ P is divided into the left window segment X(l) = {xt−w, . . . , xt−1} and the
right window segment X(r) = {xt, . . . , xt+w−1} such that X = {X(l), X(r)}. We now reveal
implementation details of the auxiliary generative model and the deep kernel.

Generator gθ. Instead of modeling the explicit density of Gθ, we model an IGM gen-
erator gθ where we can draw samples from. The goal of gθ is to generate plausibly coun-
terfeit but natural samples based on historical X ∼ P, which is similar to the condi-
tional GANs (Isola et al., 2017; Mirza and Osindero, 2014). We use sequence-to-sequence
(Seq2Seq) architectures (Sutskever et al., 2014) where gθ encodes time series into hidden
states, and gθd decodes it with the distributional autoregressive process to approximate the
surrogate sample Z:

H = gθ
(
X(l),0

)
, h̃ = ht−1 + ω, Z = gθd

(
X

(r)
�1, h̃

)
.

where ω ∼ P(W ) is a dh-dimensional random noise sampled from a base distribution P(W )
(e.g., uniform, Gaussian). H = [ht−w, . . . , ht−1] ∈ Rdh×w is a sequence of hidden states

of the generator’s encoder. X
(r)
�1 = {0, xt, xt+1, . . . , xt+w−2} denotes right shift one unit

operator over X(r).

Deep Kernel Parametrization. We aim to maximize a lower bound of test power via
back-propagation on φ using the deep kernel form k̃ = k ◦ fφ. On the other hand, we can
also view the deep kernel parametrization as an embedding learning on the injective
function fφ(x) that can be distinguished by MMD. Similar to the design of generator, the
deep kernel is a Seq2Seq framework with one GRU layer of the follow form:

Hν = fφ
(
ν
)
, ν̂ = Fψ

(
Hν

)
.

where ν ∼ P ∪ Gθ are from either the time series data X or the generated sample Z ∼
gθ(ω|X).

We present an realization of KL-CPD in Algorithm 6 with the weight-clipping tech-
nique. The stopping condition is based on a maximum number of epochs or the detecting
power of kernel MMD Mφ

(
P,Gθ) ≤ ε. This ensure the surrogate Gθ is not too close to P,

as motivated in Sec. 9.2.2.

9.4 Evaluation on Real-world Data

The section presents a comparative evaluation of the proposed KL-CPD and seven repre-
sentative baselines on benchmark datasets from real-world applications of CPD, including
the domains of biology, environmental science, human activity sensing, and network traffic
loads. Detailed descriptions of all real-world datasets are itemized as follows.
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Algorithm 6 KL-CPD, Learning Kernel with Auxiliary IGM

1: Input:α the learning rate, c the clipping parameter, w the window size, nc the number
of iterations of deep kernels training per generator update.

2: while Mφ(P,Gθ) > ε do
3: for t = 1, . . . , nc do
4: Sample a minibatch Xt ∼ P, denote Xt = {X(l)

t , X
(r)
t }, and ω ∼ P(Ω)

5: gradient(φ)← ∇φMφ

(
P,Gθ

)
− λM̂φ

(
X

(l)
t , X

(r)
t

)
− βEν∼P∪Gθ‖ν − Fψ

(
fφ(ν)

)
‖2

2

6: φ← φ+ α · RMSProp(φ, gradient(φ))
7: φ← clip(φ,−c, c)
8:

9: end for
10: Sample a minibatch Xt′ ∼ P, denote Xt′ = {X(l)

t′ , X
(r)
t′ }, and ω ∼ P(Ω)

11: gradient(θ)← ∇θMφ

(
P,Gθ

)

12: θ ← θ − α · Adam(θ, gradient(θ))
13: end while

• Bee-Dance1 records the pixel locations in x and y dimensions and angle differences
of bee movements. Ethologists are interested in the three-stages bee waggle dance
and aim at identifying the change point from one stage to another, where different
stages serve as the communication with other honey bees about the location of pollen
and water.

• Fishkiller2 records water level from a dam in Canada. When the dam do not function
normally, the water level oscillates quickly in a particular pattern, causing trouble
for the fish. The beginning and end of every water oscillation (fish kills) are treated
as change points.

• HASC3 is a subset of the Human Activity Sensing Consortium (HASC) challenge
2011 dataset, which provides human activity information collected by portable three-
axis accelerometers. The task of change point detection is to segment the time series
data according to the 6 behaviors: stay, walk, jog, skip, stair up, and stair down.

• Yahoo4 contains time series representing the metrics of various Yahoo services (e.g.
CPU utilization, memory, network traffic, etc) with manually labeled anomalies. We
select 15 out of 68 representative time series sequences after removing some sequences
with duplicate patterns in anomalies.

The data statistics are summarized in Table 9.1. We pre-process all dataset by normalizing
each dimension in the range of [0, 1].

Following Lai et al. (2018); Liu et al. (2013); Saatçi et al. (2010), the datasets are split
into the training set (60%), validation set (20%) and test set (20%) in chronological order.
Note that training is fully unsupervised for all methods while labels in the validation set

1http://www.cc.gatech.edu/~borg/ijcv_psslds/
2http://mldata.org/repository/data/viewslug/fish_killer/
3http://hasc.jp/hc2011
4https://webscope.sandbox.yahoo.com/catalog.php?datatype=s
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Dataset T #sequences domain #labels

Bee-Dance 826.66 6 R3 19.5
Fishkiller 45175 1 R+ 899

HASC 39397 1 R3 65
Yahoo 1432.13 15 R+ 36.06

Table 9.1: Dataset. T is length of time series, #labels is average number of labeled change
points.

are used for hyperparameters tuning.

For quantitative evaluation, we consider receiver operating characteristic (ROC) curves
of anomaly detection results, and measure the area-under-the-curve (AUC) as the evalua-
tion metric. AUC is commonly used in CPD literature (Li et al., 2015a; Liu et al., 2013;
Xu et al., 2017).

We compare KL-CPD with following algorithms
• Autoregressive Moving Average (ARMA) (Box, 2013) is the classic statistical model

that predicts the future time series based on an Autoregressive (AR) and a moving
average (MA), where AR involves linear regression, while MA models the error term
as a linear combination of errors in the past.

• Autoregressive Gaussian Process (ARGP) (Candela et al., 2003) is a Gaussian Pro-
cess for time series forecasting. In an ARGP of order p, xt−p:t−1 are taken as the GP
input while the output is xt. ARGP can be viewed as a non-linear version of AR
model.

• Recurrent Neural Networks (RNN) (Cho et al., 2014) are powerful neural networks
for learning non-linear temporal dynamical systems. We consider gated recurrent
units (GRU) in our implementation.

• LSTNet (Lai et al., 2018) is a recent state-of-the-art deep neural network fore time
series forecasting. LSTNet combines different architectures including CNN, RNN,
residual networks, and highway networks.

• ARGP-BOCPD (Saatçi et al., 2010) is an extension of the Bayesian online change
point detection (BOCPD) which uses ARGP instead of AR in underlying predictive
models of BOCPD framework.

• RDR-KCPD (Liu et al., 2013) considers f -divergence as the dissimilarity measure.
The f -divergence is estimated by relative density ratio technique, which involves
solving an unconstrained least-squares importance fitting problem.

• Mstats-KCPD (Li et al., 2015a) consider kernel maximum mean discrepancy (MMD)
on data space as dissimilarity measure. Specifically, It samples B block of segments
from the past time series, and computes B times MMD distance between the past
block with the current segment and takes the average as the dissimilarity measure.

which can be categorized as real-time CPD methods (ARMA, ARGP, RNN,LSTNet)
and retrospective CPD methods (ARGP-BOCPD, RDR-KCPD, Mstats-KCPD).
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Note that OPT-MMD is a deep kernel learning baseline which optimizes MMD by treat-
ing past samples as P and the current window as Q (insufficient samples).

Hyperparameter Settings For hyper-parameter tuning in ARMA, the time lag p, q
are chosen from {1, 2, 3, 4, 5}. For ARGP and ARGP-BOCPD the time lag order p is
set to the same as ARMA and the hyperparameter of kernel is learned by maximizing the
marginalized likelihood. For RDR-KCPD, the window size w are chosen from {25, 50},
sub-dim k = 5, α = {0.01, 0.1, 1}. For Mstats-KCPD and KL-CPD, the window size
w = 25, and we use RBF kernel with median heuristic setting the kernel bandwidth. The
hidden dimension of GRU is dh = 10 for MMD-codespace, MMD-negsample and KL-
CPD. For KL-CPD, λ is chosen from {0.1, 1, 10} and β is chosen from {10−3, 10−1, 1, 10}.

9.4.1 Main Results

In Table 9.2, the first four rows present the real-time CPD methods, followed by three
retrospective-CPD models, and the last is our proposed method. KL-CPD shows signif-
icant improvement over the other methods on all the datasets, except being in a second
place on the Yahoo dataset, with 2% lower AUC compared to the leading ARGP. This
confirms the importance of data-driven kernel selection and effectiveness of our kernel
learning framework via an auxiliary IGM. Notice that OPT-MMD does not perform well
compared with KL-CPD, which again verifies our simulated example in Sec. 9.2 that di-
rectly applying existing kernel learning approaches with insufficient samples may not be
suitable for real-world CPD task.

Method Bee-Dance Fishkiller HASC Yahoo

ARMA (Box, 2013) 0.5368 0.8794 0.5863 0.8615
ARGP (Candela et al., 2003) 0.5833 0.8813 0.6448 0.9318

RNN (Cho et al., 2014) 0.5827 0.8872 0.6128 0.8508
LSTNet (Lai et al., 2018) 0.6168 0.9127 0.5077 0.8863

ARGP-BOCPD (Saatçi et al., 2010) 0.5089 0.8333 0.6421 0.9130
RDR-KCPD (Liu et al., 2013) 0.5197 0.4942 0.4217 0.6029

Mstats-KCPD (Li et al., 2015a) 0.5616 0.6392 0.5199 0.6961

OPT-MMD 0.5262 0.7517 0.6176 0.8193
KL-CPD (Proposed method) 0.6767 0.9596 0.6490 0.9146

Table 9.2: AUC on four real-world datasets. KL-CPD has the best AUC on three out of
four datasets.

Distribution matching approaches like RDR-KCPD and Mstats-KCPD are not as
competitive as KL-CPD, and often inferior to real-time CPD methods. One explanation is
both RDR-KCPD and Mstats-KCPD measure the distribution distance in the original
data space with simple kernel selection using the median heuristic. The change-points may
be hard to detect without the latent embedding learned by neural networks.
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KL-CPD, instead, leverages RNN to extract useful contexts and encodes time series
in a discriminative embedding (latent space) on which kernel two-sample test is used to
detection changing points. This also explains the inferior performance of Mstats-KCPD
which uses kernel MMD with a fix RBF kernel. That is, using a fixed kernel to detect
versatile types of change points is likely to fail.

Figure 9.3: Ablation test of KL-CPD.
Figure 9.4: AUC vs. different window
size wr on Bee-Dance.

9.4.2 Ablation Test on Learning Kernels with Different Encoders

We further examine how different encoders fφ affects KL-CPD. For MMD-dataspace,
fφ is an identity map, equivalent to kernel selection with median heuristic in data space.
For MMD-codespace, {fφ, Fψ} is a Seq2Seq autoencoder minimizing reconstruction loss
without optimizing test power. For MMD-negsample, the same objective as KL-CPD
except for replacing the auxiliary generator with injecting Gaussian noise to P.

The results are shown in Figure 9.3. We first notice the mild improvement of MMD-
codespace over MMD-dataspace, showing that using MMD on the induced latent space
is effective for discovering beneficial kernels for time series CPD. Next, we see MMD-
negsample outperforms MMD-codespace, showing the advantages of injecting a ran-
dom perturbation to the current interval to approximate gθ(z|X(l)). This also justify the
validity of the proposed lower bound approach by optimizing Mk(P,G), which is effective
even if we adopt simple perturbed P as G. Finally, KL-CPD models the G with an aux-
iliary generator gθ to obtain conditional samples that are more complex and subtle than
the perturbed samples in MMD-negsample, resulting in even better performance.

In Figure 9.4, we also demonstrate how the tolerance of delay wr influences the perfor-
mance. Due to space limit, results other than Bee-Dance dataset are omitted, given they
share similar trends. KL-CPD shows competitive AUC mostly, only slightly decreases
when wr = 5. MMD-dataspace and MMD-codespace, in contrast, AUC degradation
is much severe under low tolerance of delay (wr = {5, 10}). The conditional generated
samples from KL-CPD can be found in Figure 9.5.
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Figure 9.5: Conditionally generated samples by KL-CPD and system-predicted CPD
scores on Bee-Dance (Left) and HASC (Right) datasets. In the first three subplots are
ground truth signals (blue line), 10 conditional generated samples (green lines) and change
points (red vertical line). The last subplot is MMD scores, which peaks around ground
truth change points mostly.

9.5 In-depth Analysis on Simulated Data

To further explore the performance of KL-CPD with controlled experiments, we follow
other time series CPD works (Liu et al., 2013; Matteson and James, 2014; Takeuchi and
Yamanishi, 2006) to create three simulated datasets each with a representative change-point
characteristic: jumping mean, scaling variance, and alternating between two mixtures of
Gaussian (Gaussian-Mixtures).

• Jumping-Mean: Consider the 1-dimensional auto-regressive model to generate 5000
samples y(t) = 0.6y(t− 1)− 0.5y(t− 2) + εt, where y(1) = y(2) = 0, εt ∼ N (µ, 1.5) is
a Gaussian noise with mean µ and standard deviation 1.5. A change point is inserted
at every 100 + τ time stamps by setting the noise mean µ at time t as

µn =

{
0 n = 1,

µn−1 + n
16

n = 2, . . . , 49,

where τ ∼ N (0, 10) and n is a natural number such that 100(n− 1) + 1 ≤ t ≤ 100n.

• Scaling-Variance: Same auto-regressive generative model as Jumping-Mean, but
a change point is inserted at every 100 + τ time stamps by setting the noise standard
deviation of εt at time t as

σn =

{
1 n = 1, 3, . . . , 49,

ln(e+ n
4
) n = 2, 4, . . . , 48,

where τ ∼ N (0, 10) and n is a natural number such that 100(n− 1) + 1 ≤ t ≤ 100n.

• Gaussian-Mixtures: Time series data are sampled alternatively between two mix-
tures of Gaussian 0.5N (−1, 0.52) + 0.5N (1, 0.52) and 0.8N (−1, 1.02) + 0.2N (1, 0.12)
for every 100 time stamps, which is defined as the change points.
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9.5.1 Main Results on Simulated data

The results are summarized in Table 9.3. KL-CPD achieves the best in all cases. In-
terestingly, retrospective-CPD (ARGP-BOCPD, RDR-KCPD, Mstats-KCPD) have
better results compared to real-time CPD (ARMA, ARGP, RNN,LSTNet), which is
not the case in real-world datasets. This suggests low reconstruction error does not neces-
sarily lead to good CPD accuracies.

As for why Mstats-KCPD does not have comparable performance as KL-CPD, given
that both of them use MMD as distribution distance? Notice that Mstats-KCPD assumes
the reference time series (training data) follows the same distribution as the current interval.
However, if the reference time series is highly non-stationary, it is more accurate to compute
the distribution distance between the latest past window and the current window, which
is the essence of KL-CPD.

Method Jumping-Mean Scaling-Variance Gaussian-Mixtures

ARMA 0.7731 (0.06) 0.4801 (0.07) 0.5035 (0.08)
ARGP 0.4770 (0.03) 0.4910 (0.07) 0.5027 (0.08)
RNN 0.5053 (0.03) 0.5177 (0.08) 0.5053 (0.08)

LSTNet 0.7694 (0.09) 0.4906 (0.07) 0.4985 (0.07)

ARGP-BOCPD 0.7983 (0.06) 0.4767 (0.08) 0.5027 (0.08)
RDR-KCPD 0.6484 (0.11) 0.7574 (0.06) 0.6022 (0.11)

Mstats-KCPD 0.7309 (0.05) 0.7534 (0.04) 0.6026 (0.08)

KL-CPD 0.9454 (0.02) 0.8823 (0.03) 0.6782 (0.05)

Table 9.3: AUC on three artificial datasets. Mean and standard deviation under 10 random
seeds.

9.5.2 MMD versus Dimensionality of Data

We study how different encoders fφ would affect the power of MMD versus the dimen-
sionality of data. We generate an simulated time series dataset by sampling between two
multivariate Gaussian N (0, σ2

1Id) and N (0, σ2
2Id) where the dimension d = {2, 4, 6, . . . , 20}

and σ1 = 0.75, σ2 = 1.25.
Figure 9.6 plots the one-dimension data and AUC results. We see that all methods

remain equally strong in low dimensions (d ≤ 10), while MMD-dataspace decreases
significantly as data dimensionality increases (d ≥ 12). An explanation is non-parametric
statistical models require the sample size to grow exponentially with the dimensionality of
data, which limits the performance of MMD-dataspace because of the fixed sample size.
On the other hand, MMD-codespace and KL-CPD are conducting kernel two-sample
test on a learned low dimension codespace, which moderately alleviates this issue. Also,
KL-CPD finds a better kernel (embedding) than MMD-codespace by optimizing the
lower bound of the test power.
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Figure 9.6: MMD with different encoder fφ versus data dimension, under 10 random seeds.

9.6 Summary

In Chapter 8, we use IGMs to replace a non-learning-based building component of existing
algorithms, which results in a hybrid approach with better performance. In this chap-
ter, we push the ability of IGMs to the boundary by creating an auxiliary additive via
IGMs to boost performance. We propose KL-CPD, a new kernel learning framework for
two-sample test by optimizing a lower bound of test power defined by an auxiliary IGM
generator, to resolve the issue of insufficient samples in change-points detection. The deep
kernel parametrization of KL-CPD combines the latent space of RNNs with RBF kernels
that effectively detect a variety of change-points from different real-world applications. Ex-
tensive evaluation of our new approach along with strong baseline methods on benchmark
datasets shows the outstanding performance of the proposed method in retrospective CPD.
We expect more new algorithms to be studied by adding IGMs as new ingredients.
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Part IV

Conclusion
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Chapter 10

Conclusion

Learning generative models for capturing distributions of data is a huge topic and has
been studied in machine learning and statistics for decades. Implicit generative models
(IGMs) do not get attentions in machine learning until the surge of recent deep learning
progress. Although there are lots of successful examples of deep IGMs, many developments
are weakly justified with mathematical analysis; although IGMs look new in the filed, its
essence, learning transformations, has rich connections with several algorithms in other
fields and has the potentials for applications underexplored in machine learning before.
In this thesis, we focus on these two issues via studying its statistical groundings, and
bridging the gaps between modern IGMs and different communities.

We begin from connecting two-sample test, kernel learning and IGMs, which leads to
a state-of-the-art generic IGM algorithm MMD GAN. We then shift our focus to analyze
sample complexities of learning IGMs from a standard non-parametric point of view. Those
studies make a step forward to establishing theoretical foundations of IGMs.

Although we have generic algorithms for learning generative models, different types of
data usually require specialized designs by leveraging underlying structures to achieve sat-
isfactory performance. We demonstrate the examples on learning to generate sequence and
point clouds (set) data. On the other hand, the essence of IGMs, which models samplings
via a transformation function, help us push generative models to different applications
and connect with existing algorithms in other fields in a more intuitive way. We learn
projections as IGM transformations in proximal methods and we learn deformations as
IGM transformations in 3D model registrations. In addition to casting existing processes
as transformations, we also introduce new usages of IGMs for non-generative tasks by
equipping an auxiliary IGMs as powerful building components.

To summarize, in this thesis, we advance learning implicit generative models via un-
derstanding its statistical properties and designing practical algorithms with and without
leveraging structures of data. We study different transformations for different generative
models, including noise to data, prior to data and data to data transformations, which
lead to various applications. We demonstrate the versatilities of IGMs: from natural lan-
guage and image generations to point clouds generations, from learning kernels to learning
proximal operators, and from generative to non-generative tasks.
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10.1 Open Problems

Arguably, learning implicit generative models is a growing topic in machine learning and
statistics. We discuss some important problems as an avenue for future research.

Evaluation Although there are numerous advancement of IGM algorithms, it is still chal-
lenging to evaluate the performance especially on high-dimensional real-world datasets.
Although several metrics have be proposed (Bińkowski et al., 2018; Heusel et al., 2017;
Salimans et al., 2016), contradictory, there is no conclusive result after tunning hyperpa-
rameters (Lucic et al., 2018). One direction is studying synthetic yet fairly complicated
datasets, which we have the ground truth for comparison. For high-dimensional real-world
data, downstream tasks might be the direction to pursue.

Optimization GAN-based IGM algorithms come with a minmax objective function,
which is challenging to optimize. However, most of recent progress of GANs is focusing
either statistical properties or neural network architectures. Simple alternative SGD is
known to suffer from several drawbacks (Mescheder et al., 2017). Some better algorithms
are proposed (Daskalakis et al., 2017; Mescheder et al., 2018, 2017; Nagarajan and Kolter,
2017; Roth et al., 2017), but the analysis is still limited to simple scenarios, such as bilinear
games, even though they still bring empirical improvements on complex GAN dynamics.
Better algorithms with deeper analysis on more complex systems are desirable.

Connection with Explicit Models Although IGMs focus on learning sampling, it
is not conflict with explicit models. In variational Bayes (Kingma and Welling, 2013)
and flow models (Kingma and Dhariwal, 2018) with neural networks, the final model is
still a transformation function with different constraints. The interesting questions then
arise: what is the proper constraints or regularizations for the transformation function for
generative models, and which is the ideal objective (adversarial loss v.s. likelihood) of
learning generative models.

Structured Data Generation One common and highly structured data is the discrete
sequence, such as text. So far, IGMs do not have success of learning on natural languages
without relying on MLE pre-training. The important direction is pushing learning IGMs to
generate natural languages or proving if MLE is a better objective to optimize than other
probability metrics. In addition to text, there are other structured data underexplored for
IGMs, such as graphs and 3D meshes.

Human Priors In this thesis, we explore using a differentiable render as priors to model
body point clouds. There are more matured renderers developed in computer graphics but
they may not be differentiable. A possible route is using REINFROCE (Williams, 1992)
or ABC (Louppe and Cranmer, 2019) to get gradient information and studying principal
probabilistic frameworks by taking all the components into account.
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10.2 Other Publications

In addition to the works covered by this thesis, I have also worked on different topics during
my PhD study as listed below.

• Bayesian optimization (Li et al., 2016)

• Random features of kernels (Chang et al., 2017b; Li and Póczos, 2016)

• Polynomial optimization (Wang et al., 2017)

• Video anomaly detection (Liu et al., 2018)

• Adversarial examples (Liu et al., 2019)

• Machine learning in cosmology (Lanusse et al., 2017)
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