
Data Decomposition for
Constrained Visual Learning

Calvin Murdock

April 2020
CMU-ML-20-106

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Simon Lucey (Chair)
Katerina Fragkiadaki

Deva Ramanan
James Hays (Georgia Institute of Technology)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2020 Calvin Murdock

This research was funded by the Department of Transportation award
number DTRT13GUTC26, National Science Foundation award numbers

IIS1116583, IIS1418523, IIS1526033, IIS1617953, IIS1925281, and a
contract from ARGO AI LLC.

Keywords: computer vision, representation learning, component analysis,
constrained optimization, deep neural networks, sparse approximation

For my parents

Abstract

With the increasing prevalence of large datasets of images, machine learning
has all but overtaken the field of computer vision. In place of specialized do-
main knowledge, many problems are now dominated by deep neural networks
that are trained end-to-end on collections of labeled examples. But can we trust
their predictions in real-world applications? Purely data-driven approaches can
be thwarted by high dimensionality, insufficient training data variability, intrin-
sic problem ambiguity, or adversarial vulnerability. In this thesis, we address
two strategies for encouraging more effective generalization: 1) integrating prior
knowledge through inference constraints 2) theoretically motivated model selec-
tion. While inherently challenging for feed-forward deep networks, they are preva-
lent in traditional techniques for data decomposition such as component analysis
and sparse coding. Building upon recent connections between deep learning and
sparse approximation theory, we develop new methods to bridge this gap between
deep and shallow learning.

We first introduce a formulation for data decomposition posed as approxi-
mate constraint satisfaction, which can accommodate richer instance-level prior
knowledge. We apply this framework in Semantic Component Analysis, a method
for weakly-supervised semantic segmentation with constraints that encourage in-
terpretability even in the absence of supervision. From its close relationship
to standard component analysis, we also derive Additive Component Analysis
for learning nonlinear manifold representations with roughness-penalized addi-
tive models.

Then, we propose Deep Component Analysis, an expressive model of con-
strained data decomposition that enforces hierarchical structure through multi-
ple layers of constrained latent variables. While it can again be approximated
by feed-forward deep networks, exact inference requires an iterative algorithm
for minimizing approximation error subject to constraints. This is implemented
using Alternating Direction Neural Networks, recurrent neural networks that can
be trained discriminatively with backpropagation. Generalization capacity is im-
proved by replacing nonlinear activation functions with constraints that are en-
forced by feedback connections. This is demonstrated experimentally through

i

applications to single-image depth prediction with sparse output constraints.
Finally, we propose a technique for deep model selection motivated by sparse

approximation theory. Specifically, we interpret the activations of feed-forward
deep networks with rectified linear units as algorithms for approximate inference
in structured nonnegative sparse coding models. These models are then compared
by their capacities for achieving low mutual coherence, which is theoretically tied
to the uniqueness and robustness of sparse representations. This provides a frame-
work for jointly quantifying the contributions of architectural hyperparameters
such as depth, width, and skip connections without requiring expensive valida-
tion on a specific dataset. Experimentally, we show correlation between a lower
bound on mutual coherence and validation error across a variety of common net-
work architectures including DenseNets and ResNets. More broadly, this suggests
promising new opportunities for understanding and designing deep learning ar-
chitectures based on connections to structured data decomposition.

ii

Contents

Abstract i

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Motivation . 3
1.2 Contributions . 6
1.3 Thesis Organization . 8

2 Background 11
2.1 Visual Representation Learning . 11

2.1.1 Data Decomposition and Component Analysis 12
2.1.2 Prior Knowledge, Constraints, and Regularizers 13
2.1.3 Nonlinear Dimensionality Reduction 15
2.1.4 Deep Neural Networks . 17

2.2 Theoretical Foundations . 19
2.2.1 Deep Network Generalization 20
2.2.2 Sparse Approximation Theory 21

3 Data Decomposition as Approximate Constraint Satisfaction 24
3.1 Instance-Level Data Decomposition 24

3.1.1 Alternating Optimization 26
3.1.2 Robustness via Trimmed Averaging 30

3.2 Semantic Component Analysis (SCA) 30
3.2.1 Semantic Constraints for Segmentation 33
3.2.2 Experimental Results . 36
3.2.3 Conclusion . 39

3.3 Additive Component Analysis (ACA) 41

iii

3.3.1 Curvilinear Smoothness Constraints 46
3.3.2 Approximate Stochastic Optimization 47
3.3.3 Deep Composition of Additive Models 48
3.3.4 Experimental Results . 51
3.3.5 Conclusion . 56

4 Deep Network Inference as Data Decomposition 58
4.1 Deep Component Analysis . 60

4.1.1 From Activation Functions to Constraints 62
4.1.2 Alternating Direction Neural Networks 63
4.1.3 Generalization of Feed-Forward Networks 66
4.1.4 Learning by Backpropagation 67
4.1.5 Sparse Measurements as Constraints for Depth Completion 67
4.1.6 Experimental Results . 69
4.1.7 Conclusion . 72

4.2 Model Selection with the Deep Frame Potential 74
4.2.1 Architecture-Induced Dictionary Structure 76
4.2.2 The Deep Frame Potential 80
4.2.3 Experimental Results . 84
4.2.4 Conclusion . 88

Bibliography 90

iv

List of Figures

1.1 Illustration of an interpretable image decomposition 2
1.2 Image understanding with weak supervision 3
1.3 Motivation for computer vision with constraints as prior knowledge . . 5

2.1 Spatial consistency constraints with superpixel similarity graphs . . . 14
2.2 Comparison between an orthogonal basis and an equiangular tight frame 21
2.3 Theoretical bounds for the uniqueness of sparse representations 22

3.1 Robustness to initialization of our alternating optimization algorithm 27
3.2 Instance-level decompositions compared to matrix factorization 28
3.3 Visualization of SCA optimization for image segmentation 29
3.4 Overview of Semantic Component Analysis (SCA) 32
3.5 The effect of spectral spatial consistency regularization 35
3.6 Qualitative SCA segmentation results on synthetic data 37
3.7 Example unsupervised SCA semantic segmentations 38
3.8 Weakly-supervised image segmentation with SCA 40
3.9 Overview of Additive Component Analysis (ACA) 42
3.10 Visualization of one iteration of ACA optimization 43
3.11 Visualization of ACA optimization on synthetic data 44
3.12 Nonlinear ACA basis functions for image data 45
3.13 Efficient variation diminishing spline approximations 48
3.14 Modeling image translation with shallow ACA 49
3.15 Synthetic demonstration of multi-layer deep ACA 50
3.16 Noisy dimensionality reduction with ACA on synthetic data 52
3.17 Robustness comparison of dimensionality reduction methods 53
3.18 Image invariance and denoising with ACA 54
3.19 Effect of smoothness on ACA image embeddings 55
3.20 Results of ACA on the MNIST dataset 57

4.1 Comparison between decomposition and feed-forward inference 59
4.2 Overview of Deep Component Analysis (DeepCA) 60
4.3 Visualization of ADNN iterations for constrained depth prediction . . 68

v

4.4 Activation sparsity with recurrent ADNNs 69
4.5 Performance of Alternating Direction Neural Networks (ADNN) . . . 69
4.6 Quantitative results of ADNNs on the NYU-Depth V2 dataset 70
4.7 Example depth predictions of constrained ADNNs. 71
4.8 Full-resolution ADNN architectures and depth map predictions 73
4.9 Induced dictionary structures of skip connections 75
4.10 Gram matrices induced by deep networks with skip connections 76
4.11 Correlation between minimum deep frame potential and validation error 77
4.12 Visualization of block-Toeplitz convolutional dictionaries 81
4.13 Minimum deep frame potential and validation error for fully-connected

chain networks . 85
4.14 Effects of depth on minimum deep frame potential and validation error 86
4.15 Comparisons of skip connections in residual networks 87
4.16 Improved scalability of network families with denser skip connections . 88

List of Tables

3.1 SCA segmentation results on synthetic data. 36
3.2 SCA segmentation results on the MSRC2 dataset. 39
3.3 SCA segmentation results on the Sift Flow dataset. 39

4.1 Quantitative ADNN results on the full-sized NYU dataset. 73

vi

1 Introduction

In the case of all things which have several parts and in which the totality
is not, as it were, a mere heap, but the whole is something beside the parts,
there is a cause; for even in bodies contact is the cause of unity in some
cases, and in others viscosity or some other such quality.

Aristotle, 350 B.C.E.

Understanding the composition of images is an essential task in many problems
within the field of computer vision. Examples include segmenting images into
semantically related regions like in Figure 1.1, interpreting contextual cues for
classifying the subjects of images, or recovering the three-dimensional structure
of scenes by separating shape from shading. This essentially amounts to extracting
specific patterns of information from collections of thousands, millions, or even
billions of visual features. While seemingly intractable, real-world visual data
are often rich with structure that limits their complexity and enables effective
learning. Even though the typical image resolution of a digital photograph is
large, the number of realistic natural images is extremely small relative to that
of all combinations of possible pixel values. For example, physical laws precisely
limit how light can travel throughout a scene, semantic meanings dictate how
object appearances correlate, and human biases affect how images–and questions
about images–are framed. One of the major goals in computer vision is to achieve
levels of performance comparable to human vision.

Since David Marr’s pioneering work on the computational foundations of vi-
sion [94], effectively leveraging prior knowledge has been an important challenge
in emulating vision. While the underlying task of extracting three-dimensional in-
formation from two-dimensional projections of a scene is fundamentally ill-posed,

1

CHAPTER 1. INTRODUCTION

𝑤1

highlighter buddha

+𝑤2 +𝑤3 +𝑤4

tablesunglasses

=

Figure 1.1: Many tasks within computer vision can be posed as decomposing an
image into its constituent parts. In the task of semantic segmentation, pixels are
grouped into non-overlapping parts that correspond to different objects within a
scene. Even without extensive supervision, prior knowledge such as object color
consistency can encourage more accurate segmentations.

humans leverage a multitude of subconscious cues to resolve ambiguities and con-
struct an accurate mental model of the world. For example, binocular disparity
allows for the triangulation of light projected onto our retinas, shading is used
to infer surface normals and integrate the geometric structure of objects, while
perspective and high-level semantic knowledge enable correlating image size with
relative distance [59].

Building upon the successes of human vision, there has been a long history of
introspective work within the computer vision community towards incorporating
prior cues for resolving visual ambiguities [122]. These approaches are typically
either derived from geometric constraints or learned from correlation patterns in
large datasets of labeled images. Despite their foundations in the physical prop-
erties of light within a scene, computational implementations for enforcing image
constraints often rely on simplifying approximations that can limit their effec-
tiveness. For example, many algorithms rely on unrealistic assumptions such as
rigidity [18], Lambertian reflectance [45], or surface smoothness [142]. In contrast,
learning-based techniques instead approach visual inference as a data-driven pre-
diction problem. Given enough representative examples, correlation patterns cor-
responding to visual structure can be learned instead of enforced explicitly. Fig-
ure 1.2 provides an intuitive example of how pixel-level image segmentations could
be found only through image-level supervision, prior constraints such as object
color consistency, and the co-occurrence of image features. In fact, deep neural
networks trained for the task of image classification have been found to automat-
ically learn object localization without any strong pixel-level annotations [113].

2

1.1. Motivation

sky

boat

water

sky

water

boat

water

sky

boat

water

Figure 1.2: Large collections of images can provide context that enables effective
visual inference using prior knowledge about the structure of images. In the task
of weakly supervised image segmentation, color consistency constraints alongside
co-occurrences of image features like the texture of water enable pixel-level object
labels to be inferred from image-level annotations of training data.

Due to limited model complexity and computational inefficiency, early learning-
based methods were restricted to simplified problems such as the co-segmentation
of subjects shared within small collections images [125]. However, recent advances
in deep neural networks have spawned a bevy of new methods for solving much
more complex problems by mining extensive datasets of images for predictive pat-
terns of correlation. Through multiple layers of parameterized nonlinear transfor-
mations, these models have a high capacity for learning functions that accurately
map input images to output predictions. When trained on sufficiently large sets of
example pairs of input and output data, the learned functions can then be applied
to predict unknown outputs from novel images not seen during training. Even
though they were originally designed for higher-level unstructured tasks such as
image classification [78], deep neural networks have since achieved unparalleled
performance in a wide variety of tasks. New datasets, loss functions, and net-
work configurations have quickly expanded their scope to include a much wider
range of structured applications that once required hard-coded assumptions or ex-
plicit geometric reasoning. Examples include predicting depth maps [42], surface
normals [150], and optical flow [41].

1.1 Motivation

Surprisingly, many state-of-the-art methods now use task-agnostic, “black-
box” models that do not consider any of the rich prior knowledge and structure
associated with these problems. As a result, they can fall victim to unpredictable
failure modes that prevent effective generalization. This behavior can occur when

3

CHAPTER 1. INTRODUCTION

image content is insufficient to resolve inherent ambiguities or when the distribu-
tion of the training data differs substantially from that of the testing data. But
even with sufficient training data, poor generalization has also been observed in
adversarial scenarios where small, imperceptible changes to the input can com-
pletely alter the output predictions [137]. Ideally, architectures should be selected
to reduce their sensitivity to these input perturbations for improving generaliza-
tion performance, but this is not yet possible due to a fundamental lack of theo-
retical understanding [157]. Instead, deep network architectures are still largely
designed through human ingenuity and ad-hoc experimentation.

Within computer vision, there has been significant progress in developing new
architectures that can learn effective image representations across a wide range of
different applications. This can be seen through the community’s quick adoption
of the newest state-of-the-art deep networks from AlexNet [73] to VGGNet [132],
ResNets [54], DenseNets [62], and so on. But this begs the question: why do some
deep network architectures work better than others? Despite years of ground-
breaking empirical results, an answer to this question still remains elusive.

The difficulty in comparing network architectures arises from the lack of a
theoretical foundation for characterizing their generalization capacities. Shal-
low machine learning techniques like support vector machines [31] were aided by
theoretical tools like the VC-dimension [146] for determining when their predic-
tions could be trusted to avoid overfitting. Deep neural networks, on the other
hand, have eschewed similar analyses due to their complexity. Theoretical explo-
rations of deep network generalization [108] are often disconnected from practical
applications and rarely provide actionable insight into how architectural hyper-
parameters contribute to performance.

For real-world applications like self-driving cars, interpretability and robust-
ness are key requirements for encouraging user trust in the output of computer
vision algorithms. Unfortunately, current deep neural network architectures lack
both the the theoretical tools to guarantee good generalization performance and
the ability to enforce agreement with prior knowledge. As such, classical tech-
niques for enforcing constraints and fusing multiple data sources like LiDAR still
play a key role in perception pipelines, as shown in Figure 1.3. This can be par-
tially attributed to the difficulty in enforcing prediction constraints that encode

4

1.1. Motivation

(a) Dense Image Data

FAR

NEAR

(b) Sparse LiDAR Constraints

Figure 1.3: Real-world applications of computer vision like self-driving cars re-
quire robust and interpretable machine learning algorithms. They also tend to
be rich with structure, prior domain knowledge, and multiple sources of com-
plementary data such as (a) high-resolution but ambiguous image data and (b)
sparse but accurate LiDAR measurements. We propose techniques inspired by
data decomposition to effectively model this rich structure through constraints.

prior structure with feed-forward computations wherein multiple outputs are con-
structed independently from one another. This differs from classical techniques for
data decomposition which can naturally enforce constraints during optimization
and are often also associated with strong theoretical performance guarantees.

The computational framework of data decomposition has seen numerous ap-
plications in the fields of computer and human vision alike. Founded on the
assumption that useful representations should be able to accurately reconstruct
input data, classical computational techniques like component analysis and ma-
trix factorization attempt to approximately decompose a set of data points xi for
i = 1, . . . , n into linear combinations of shared representative components bj with
individualized weights wij so that:

∀i = 1, . . . , n : xi ≈
k∑

j=1

wijbj , {wij , bj} ∈ C (1.1)

The representations wi and the model parameters bj are restricted by constraints
in the set C to enforce prior knowledge. For example, nonnegativity constraints
have demonstrated the ability to decompose images into more natural components

5

CHAPTER 1. INTRODUCTION

corresponding to localized parts [80]. Similarly, sparsity has been shown to give
rise to feature locality and frequency selectivity. The resulting learned features
are very similar those observed experimentally in the mammalian primary visual
cortex [112].

Learning an image decomposition amounts to finding parameters and repre-
sentations that minimize the average reconstruction error subject to these con-
straints, as formalized in Equation 1.2.

argmin
wij ,bj

n∑
i=1

∥∥∥xi −
k∑

j=1

wijbj

∥∥∥2
2

s.t. {wij , bj} ∈ C (1.2)

One important benefit of this framework is its generality; depending on the ap-
plication of interest, different features of the data can be emphasized simply by
modifying the constraints in C. Furthermore, certain constraints such as sparsity
give representations with theoretically advantageous properties such as unique-
ness, robustness, and generalization guarantees. However, despite these advan-
tages, classical techniques for shallow representation learning have greatly reduced
modeling capacity in comparison to deep alternatives.

1.2 Contributions

In this thesis, we propose new extensions that bridge the gap between classical
data decomposition techniques and modern deep learning.

First, we observe that because of image variability and differing spatial lay-
outs, some constraints would be inconsistent and impossible to enforce with tradi-
tional approaches based on matrix factorization. To broaden its scope, we derive
a novel formulation of data decomposition posed as approximate constraint sat-
isfaction that are able to handle richer prior knowledge. Instead of learning com-
ponents that minimize average reconstruction error, we minimize their proximity
to components that exactly reconstruct each training example. These auxiliary
decompositions correspond to affine equality constraints, which can be enriched
by other instance-level prior knowledge. We apply this new method to Semantic
Component Analysis (SCA) where semantic segmentations is directly posed as

6

1.2. Contributions

image decomposition [101]. Through informative constraints that encourage spa-
tially localized, non-overlapping regions, we achieve interpretable results on small
datasets even in the absence of pixel-level annotations.

Despite their ability to effectively incorporate a wide range of prior knowl-
edge, the assumption of linearity in classical data decomposition techniques has
also limited its applicability to more complex visual learning applications. While
it has been shown to be remarkably accurate for some data like aligned images
of Lambertian objects such as faces [7], even small perturbations can introduce
nonlinearities that bias the results. Kernel PCA handles nonlinear interactions
by performing data decomposition in an implicit higher-dimensional reproducing
kernel Hilbert space [129], but it is not optimized to effectively reconstruct the
input data. Alternatively, manifold learning assumes that meaningful represen-
tations should preserve the local geometry of input data [140, 9]. However, these
methods are often computationally expensive, difficult to interpret, and sensi-
tive to noise. To address these issues, we propose Additive Component Analysis
(ACA), a novel method for nonlinear component analysis that fits an unsupervised
additive model [20] to data [102]. We extend our constraint satisfaction frame-
work for data decomposition to explicitly optimize reconstruction error subject
to intuitive constraints that penalize the roughness of the learned manifold. This
framework can also be generalized to accommodate data restricted to known man-
ifolds, as demonstrated in Approximate Grassmannian Projections, a method for
subspace-valued data decomposition [103].

Despite advances in modeling nonlinearities, shallow data decomposition tech-
niques are still limited by their attainable model capacity. Recently, deep neural
networks have emerged as the preferred alternative to component analysis for rep-
resentation learning of visual data. Their ability to jointly learn multiple layers
of abstraction has been shown to allow for encoding increasingly complex features
such as textures and object parts [81]. Unfortunately, “black-box” deep learning
models are not yet well understood and do not share the same interpretability
enabled by the intuitive constraints of data decomposition. In order to bridge the
gap between these two techniques, we introduce the framework of Deep Compo-
nent Analysis (DeepCA), a multilayer sparse coding model that shares the same
practical advantages of deep learning [100]. Building upon theoretical connections

7

CHAPTER 1. INTRODUCTION

to multilayer convolutional sparse coding [117, 135], DeepCA allows deep neural
networks to encode prior knowledge through recurrent feedback connections that
explicitly enforce constraints.

In addition to broadening the applicability of data decomposition, this re-
lationship also provides a novel perspective for conceptualizing deep learning
techniques. Despite their unrivaled practical advantages, deep neural networks
still not well understood intuitively or theoretically [157]. By considering feed-
forward deep networks as approximate solutions to sparse coding problems [117],
we indirectly analyze complicated deep network architectures through the sparse
dictionary structures that they induce. Sparse approximation theory specifies
conditions that guarantee sparse representations to be uniquely identifiable and
robust to input perturbations [39, 40]. Though not necessary, these properties
are closely related to their ability to effectively memorize individual training ex-
amples and generalize to unseen validation data. We quantify deep networks
by their maximum capacity to achieve these properties using the minimum deep
frame potential, a bound on the induced dictionary structure. We propose to use
this architecture-dependent measure as a cue for dataless model selection that
does not require computationally expensive training and validation. Experimen-
tally, we show correlation with validation error across different state-of-the-art
families of architectures that are commonly used in computer vision applications.

1.3 Thesis Organization

In Chapter 2, we provide necessary background material. This includes an
overview of techniques for both shallow and deep representation learning, dif-
ferent constraints and regularizers, methods for enforcing this prior knowledge
with proximal optimization algorithms, theoretical challenges involved with char-
acterizing generalization capacity in deep neural networks, and the foundations
of sparse approximation theory.

In Chapter 3, we provide an interpretation of data decomposition as approxi-
mate constraint satisfaction. In Section 3.1 we present a novel formulation for data
decomposition that supports a wide range of rich data-dependent constraints and
propose a general optimization strategy for learning. In Section 3.2, we apply this

8

1.3. Thesis Organization

framework to the problem of weakly-supervised image segmentation. Through
instance-level constraints that explicitly encode the compositional structure of
individual images through non-overlapping consistency constraints, we achieve
semantically interpretable segmentations with few training examples and incom-
plete annotations. In Section 3.3, we use the same framework to relax the linearity
assumptions of standard data decomposition through Additive Component Anal-
ysis. Instead of learning linear subspaces that span fixed component vectors, we
learn smooth curvilinear manifolds constructed as linear combinations of nonlin-
ear smoothing splines. To increase representational power, we compose multi-
ple layers in a manner similar to deep learning. This allows for modeling more
complex nonlinear interactions like image translation that cannot be effectively
represented with curvilinear manifolds.

In Chapter 4, we describe theoretical and conceptual connections between deep
learning and sparse approximation. In Section 4, we propose Deep Component
Analysis, a novel framework for multi-layer data decomposition. Inference in these
models can be performed using Alternating Direction Neural Networks, recurrent
deep networks that implement an optimization algorithm for constrained opti-
mization. We apply these networks to the task of single-image depth prediction
with sparse output constraints and show that recurrent feedback connections ro-
bustly enforce prior knowledge for improved generalization performance. Finally,
in Section 4.2, we show that these connections allow different deep networks to
be quantified and compared indirectly using the minimum deep frame potential,
a data-independent measure of architecture-induced dictionary structure. Corre-
lations with validation error across a variety of practical densely connected and
residual networks demonstrate the promising potential for better understanding
deep learning through the lens of data decomposition.

9

CHAPTER 1. INTRODUCTION

This thesis is composed of material from the following publications:

[101] Calvin Murdock and Fernando De la Torre. Semantic component analysis.
In International Conference on Computer Vision (ICCV), 2015.

[102] Calvin Murdock and Fernando De la Torre. Additive component analysis.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[103] Calvin Murdock and Fernando De la Torre. Approximate grassmannian in-
tersections: Subspace-valued subspace learning. In International Conference
on Computer Vision (ICCV), 2017.

[100] Calvin Murdock, Ming-Fang Chang, and Simon Lucey. Deep component
analysis via alternating direction neural networks. In European Conference
on Computer Vision (ECCV), 2018.

[104] Calvin Murdock and Simon Lucey. Dataless model selection with the deep
frame potential. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

10

2 Background

Identifying the underlying structure of data is one of the most important tasks
in machine learning. As technological advancements facilitate the construction of
datasets with increasing size and dimensionality, data analysis is becoming more
challenging due to computational constraints and the curse of dimensionality.
In the field of computer vision especially, data often consist of thousands if not
millions of features, resulting in drastically increased training data requirements.
Thus, alternative representations are necessary for efficiently and robustly encod-
ing data for use in high-level applications such as recognition. In this chapter,
we provide an overview of different techniques for learning image representations
along with some theoretical tools for evaluating and predicting their effectiveness.

2.1 Visual Representation Learning

Despite their high dimensionality, real-world data often concentrate near man-
ifolds with lower intrinsic dimensionality [105]. For example, while the typical im-
age resolution of digital photographs is large, the space of natural images occupies
an extremely small volume in comparison to that of all possible pixel instanti-
ations. Because the geometric nature of data is typically unknown, a variety
of properties have been proposed for encouraging the extraction of meaningful
low-dimensional representations. Techniques for data decomposition are founded
on the implicit assumption that useful representations are those that can accu-
rately reconstruct input data. However, to enable effective generalization and
interpretability, modeling assumptions or regularization often must be employed.
Alternatively, manifold learning has acheived much success under the assump-

11

2. Background

tion that meaningful representations should preserve the local geometry of input
data. However, these methods are often computationally expensive, difficult to
interpret, and sensitive to noise.

2.1.1 Data Decomposition and Component Analysis

Component analysis methods play a key role in many computer vision ap-
plications due to its ability for linear and non-linear dimensionality reduction,
denoising, feature extraction and exploratory data analysis [34]. Principal Com-
ponent Analysis (PCA) fits a low dimensional subspace to data by finding di-
rections of maximal variance. Though successful in restricted settings, early ap-
plications such as Eigenfaces [144] were unable to produce interpretable com-
ponents. This was partially resolved through NMF, which demonstrated the
ability to decompose images into more natural components corresponding to lo-
calized parts [80]. Numerous extensions have since been proposed to improve
interpretability through localization constraints [84] or sparsity-inducing regular-
ization [60]. Other approaches have explicitly modeled the physical process of
occlusion by introducing additional latent variables that encode the ordering of
objects in the scene [57]. However, all of these methods still require that all
objects in different images be aligned, which is impractical for real images.

Data decomposition techniques that rely on matrix factorization approximate
a matrix X (with data instances xi as its columns) as the product of two matrices
W and B, i.e. as X ≈ BWᵀ. This factorization approximately decomposes data
x ∈ Rd into linear combinations of learned components in B ∈ Rd×k. In other
words, data points are represented as linear combinations of a shared set of basis
components, i.e. xi ≈ Bwi =

∑
j wijbj where bj are the columns of B and wi are

the columns of W. This is typically accomplished by minimizing reconstruction
error subject to constraints C on the coefficients that serve to resolve ambiguity or
incorporate prior knowledge such as low-rank structure or sparsity. Despite this,
matrix factorization approaches are limited in their ability to incorporate more
complicated priors. It is also unclear how they could be effectively applied to
structured tasks like image segmentation in which semantic regions are known to
be spatially localized in distinct, non-overlapping regions. Later in Section 3.2, we

12

2.1. Visual Representation Learning

develop a technique that addresses these issues by allowing for rich, instance-level
constraints that can depend on image content. This allows for the interpretable
decomposition of image data into semantic segmentations.

While the problem of learning both the components and coefficients is typi-
cally non-convex, its structure naturally suggests simple alternating minimization
strategies that are often guaranteed to converge [155]. However, these techniques
typically require careful initialization in order to avoid poor local minima. This
differs from backpropagation with stochastic gradient descent wherein random ini-
tializations are often sufficient. Alternatively, we consider a nested optimization
problem that separates learning from inference:

argmin
B

n∑
i=1

∥x(i) −Bf(x(i))∥22 s.t. f(x) = argmin
w∈C

∥x−Bw∥22 (2.1)

Here, the inference function f : Rd → Rk is a potentially nonlinear transformation
that maps data to their corresponding representations by solving an optimization
problem with fixed parameters. For unconstrained PCA with orthogonal compo-
nents, this inference problem has a simple closed-form solution given by the linear
transformation fPCA(x) = BTx. Substituting this into Equation 2.1 results in a
linear autoencoder with one hidden layer and tied weights, which has the same
unique global minimum but can be trained by backpropagation [5].

With general constraints, inference typically cannot be accomplished in closed
form but must instead rely on an iterative optimization algorithm. However, if this
algorithm is composed as a finite sequence of differentiable transformations, then
the model parameters can still be learned in the same way by backpropagating
gradients through the steps of the inference algorithm. Later in Section 4, we
extend this idea by representing an algorithm for inference as a recurrent neural
network unrolled to a fixed number of iterations. This allows for very efficient
learning for a general class of models with a wide variety of constraints and
regularizers.

2.1.2 Prior Knowledge, Constraints, and Regularizers

A variety of techniques have been proposed for integrating constraints for en-
forcing prior knowledge about image structure. An example is shown in Figure 2.1,

13

2. Background

(a) Original Image (b) Similarity Graph

Figure 2.1: The structure of images can be effectively represented though simi-
larity graphs of image regions. Inference over these graphs can be used to enforce
spatial consistency constraints for more accurate image segmentations with lim-
ited training data.

where similarities between the appearance of image regions are represented using
superpixel graphs. In Section 3.2, we show how inference over these graphs can
enforce spatial consistency constraints for image components resulting in inter-
pretable image decompositions into semantic regions.

Some other methods have attempted to explicitly address the need for repre-
sentations that are invariant to uninformative image variations. This is usually
accomplished by simultaneously aligning and decomposing the images in an alter-
nating manner. For example, [46] introduced discrete latent variables that select
from predefined linear image transformations. Similarly, [67] learned translation-
invariant appearance and occlusion models for videos. To be able to scale to higher
parametric models, [35] proposed parameterized component anlaysis. However,
these types of methods are typically restricted to small parametric classes of im-
age transformations (e.g. translation or rotation) and cannot account for multiple
objects or strong changes in pose.

Identifying and localizing the semantic classes within an image is an example
of a task for which invariances cannot be easily parametrized. In addition to
accounting for non-rigid transformations, large intra-class appearance variations
must also be considered. Thus, none of the techniques described above would be
able to give a semantically-meaningful separation into classes.

14

2.1. Visual Representation Learning

Without pixel-wise labeling of training images, simple discriminative models
are no longer viable. Some weakly-supervised approaches attempt to simultane-
ously learn discriminative classifiers alongside object locations through alternating
methods like multiple-instance learning [58, 30] or matrix completion [21]. Others
use graphical models that enforce consistency both within and across images to
ensure class similarity [147, 154, 159]. However, exact inference in these models
is typically intractable, so approximate methods must be used instead. Further-
more, all of these methods require large, non-convex optimization problems that
are sensitive to initialization and do not scale well to large data sets. Lever-
aging the recent work in the optimization of deep networks, approaches based
on CNNs have resulted in high-quality segmentations even without full supervi-
sion [121, 114, 128, 116, 120]. However, none of these approaches can be used for
the unsupervised clustering of images into semantically-meaningful regions.

Instead, most approaches to this problem incorporate prior knowledge about
class appearance and image composition to guide image segmentations or bound-
ing box localizations. If fully-supervised training data is available, the most ef-
fective method is to train discriminative models that can be used to directly
classify individual image regions. These local predictions are typically guided to-
wards global consistency using prior knowledge such as local similarity [23, 47, 68],
contextual geometric constraints [141], or agreement between multiple indepen-
dent segmentations [2, 65]. Unlike component analysis, most methods for visual
recognition are fully-supervised and make use of bounding boxes or pixel-wise
segmentations to locate objects of interest. However, this type of manual labeling
is time consuming, error-prone, and potentially suboptimal [109]. On the other
hand, the increasing prevalence of large image collections emphasizes the need for
fully- or partially-automated techniques for analyzing and archiving their content.

2.1.3 Nonlinear Dimensionality Reduction

Numerous attempts have been made to model more complex data by incorpo-
rating nonlinearities within a component analysis framework. The most promi-
nent example is kernel PCA [129], which handles nonlinear interactions implicitly
by performing PCA in a higher-dimensional reproducing kernel Hilbert space us-

15

2. Background

ing the kernel trick. However, it is not optimized to effectively reconstruct the
input data which limits its applicability. While out-of-sample inference is en-
abled via a representer theorem, there is no clear back-projection from the latent
space to the original input space due to the pre-image problem [76]. Furthermore,
the computational requirements of kernel PCA prevent its use on large datasets.
Similarly, Gaussian Process Latent Variable Models [77] provide a general prob-
abilistic interpretation of nonlinear PCA, but still suffer from many of the same
issues due to the kernelized covariance function. Recently, approximate kernel
methods have been proposed to improve computational efficiency. In [123], data
are explicitly mapped to a randomized feature space in which inner products ap-
proximate kernel function evaluations. Using this idea, random nonlinear features
have led to scalable algorithms for nonlinear PCA [90]. However, these approaches
all first transform the input data, preventing their effective application to data
reconstruction and denoising.

Methods for manifold learning find low-dimensional data representations by
minimizing local geometric distortions, e.g. [140, 9]. Most often formalized as
eigendecompositions, these algorithms do not learn explicit mappings to the la-
tent space and thus cannot support back-projection or out-of-sample extensions
directly [13]. Furthermore, these techniques tend to be topologically unstable,
relying on unintuitive hyper-parameters (e.g. neighborhood size) that require
careful tuning in order to avoid degenerate behavior like short circuiting [4].

Unlike parametric methods that have a fixed complexity, nonparametric meth-
ods can adapt to the data, allowing for the representation of a wide range of
nonlinearities. However, they are ineffective in high-dimensional settings due to
the large amount of training data required to effectively characterize full data
distributions [151]. To address this issue, additive models consider a smaller
class of nonparametric functions that decompose into sums of univariate func-
tions considering each input dimension independently [20] via smoothing splines,
piecewise polynomial functions with roughness penalties that encourage functions
with small second derivatives [151]. Other nonparametric methods have also gen-
eralized the notion of principal components as geometric objects passing through
the center of data [52, 115], but they cannot generally be used for dimensionality
reduction. The method that is most similar to ACA is [24], which also learns ex-

16

2.1. Visual Representation Learning

plicit nonparametric functions to minimize a least-squares objective, but requires
good initializations and is intractable for large datasets.

2.1.4 Deep Neural Networks

Deep neural networks have emerged as the preferred technique for represen-
tation learning of visual data. Their ability to jointly learn multiple layers of
abstraction has been shown to allow for encoding increasingly complex features
such as textures and object parts [81]. Unlike with component analysis, inference
is given in closed-form by design. Autoencoders are unsupervised deep networks
attempt to reconstruct data by learning explicit nonlinear mappings to and from
latent representations. While shown to be equivalent to PCA in the linear case [5],
nonlinear activation functions and stacking can enable a rich class of nonlinear
representations [149]. In fact, some deep learning models can be interpreted as
learning data manifolds [11] or lower-dimensional distributions [70].

Deep networks have had the most success in fully-supervised scenarios due to
the ability to train image representations jointly with objectives such as classifca-
tion or regression. Specifically, a representation is constructed by passing an im-
age x through the composition of alternating linear transformations with param-
eters Bj and bj and fixed nonlinear activation functions ϕj for layers j = 1, . . . , l

as follows:

fDNN(x) = ϕl

(
BT

l · · ·ϕ2(B
T
2 (ϕ1(B

T
1x− b1)− b2) · · · − bl

)
(2.2)

Then, learning is accomplished using first-order optimization techniques that min-
imize a loss function ℓ that measures discrepancy with training annotations. Up-
dates are made jointly with respect to the parameters in all layers via back-
propagation, an application of the chain rule for computing gradients of function
compositions. The general optimization problem with supervision y is:

argmin
{Bj ,bj}

n∑
i=1

ℓ(fDNN(x(i)), y(i)) (2.3)

Instead of considering the forward pass of a neural network as an arbitrary
nonlinear function, we interpret it as a method for approximate inference in

17

2. Background

an unsupervised generative model. This follows from previous work which has
shown it to be equivalent to bottom-up inference in a probabilistic graphical
model [119] or approximate inference in a multi-layer convolutional sparse coding
model [117, 135]. However, these approaches have limited practical applicability
due to their reliance on careful hyperparameter selection and specialized optimiza-
tion algorithms. While ADMM has been proposed as a gradient-free alternative
to backpropagation for parameter learning [139], we use it only for inference which
allows for simpler learning using backpropagation with arbitrary loss functions.

Recurrent feedback has been proposed to improve performance by iteratively
refining predictions, especially for applications such as human pose estimation or
image segmentation where outputs have complex correlation patterns [22, 8, 83].
While some methods also implement feedback by directly unrolling iterative al-
gorithms, they are often geared towards specific applications such as graphical
model inference [29, 61], solving under-determined inverse problems [50, 37, 136],
or image alignment [86]. Similar to [156], we provide in Section 4 a more general
mechanism for low-level feedback in arbitrary neural networks that is motivated
by the more interpretable goal of minimizing reconstruction error subject to con-
straints on network activations.

While these methods employ explicit nonlinear mappings for reconstructing
the original data, it is not yet clear how different regularization techniques and
model architectures affect the space of learnable nonlinear functions [157], so they
tend to require significant engineering effort and still often result in overfitting
and poor interpretability. Due to the vast space of possible deep network archi-
tectures and the computational difficulty in training them, deep model selection
is still largely been guided by ad-hoc engineering and human ingenuity. While
progress slowed in the years following early breakthroughs [78], recent interest
in deep learning architectures began anew due to empirical successes largely at-
tributed to computational advances like efficient training using GPUs and rectified
linear unit (ReLU) activation functions [73]. Since then, numerous architectural
changes have been proposed. For example, much deeper networks with residual
connections were shown to achieve consistently better performance with fewer
parameters [54]. Building upon this, densely connected convolutional networks
with skip connections between more layers yielded even better performance [62].

18

2.2. Theoretical Foundations

While theoretical explanations for these improvements were lacking, consistent ex-
perimentation on standardized benchmark datasets continued to drive empirical
success.

However, due to slowing progress and the need for increased accessibility of
deep learning techniques to a wider range of practitioners, more principled ap-
proaches to architecture search have recently gained traction. Motivated by ob-
servations of extreme redundancy in the parameters of trained networks [36],
techniques have been proposed to systematically reduce the number of parame-
ters without adversely affecting performance. Examples include sparsity-inducing
regularizers during training [1] or through post-processing to prune the param-
eters of trained networks [56]. Constructive approaches to model selection like
neural architecture search [44] instead attempt to compose architectures from
basic building blocks through tools like reinforcement learning. Efficient model
scaling has also been proposed to enable more effective grid search for selecting ar-
chitectures subject to resource constraints [138]. While automated techniques can
match or even surpass manually engineered alternatives, they require a validation
dataset and and rarely provide insights transferable to other settings.

2.2 Theoretical Foundations

We are motivated by theoretical connections between deep neural networks
and sparse approximation. Consider the feed-forward deep neural network from
Equation 2.3, which is constructed as the composition of linear transformations
with parameters Bj and nonlinear activation functions ϕj . Equivalently, it can
be represented as f(x) = wl where wj = BT

j wj−1 − bj for j = 1, . . . , l and
w0 = x. In many modern state-of-the-art networks, the ReLU activation function
has been adopted due to its effectiveness and computational efficiency. It can also
be interpreted as the nonnegative soft-thresholding proximal operator associated
with the function Φ in Equation 4.3, a nonnegativity constraint and a sparsity-
inducing ℓ1 penalty with a weight determined by the scalar bias parameter λ.

Φ(w) = I(w ≥ 0) + λ ∥w∥1 (2.4)

ϕ(x) = ReLU(x− λ1) = argmin
w

1
2 ∥w − x∥22 +Φ(w)

19

2. Background

Thus, the forward pass of a deep network is equivalent to a layered thresh-
olding pursuit algorithm for approximating the solution of a multi-layer sparse
coding model [117]. Results from shallow sparse approximation theory can then
be adapted to bound the accuracy of this approximation, which improves as mu-
tual coherence decreases, and indirectly analyze other theoretical properties of
deep networks like uniqueness and robustness.

2.2.1 Deep Network Generalization

To better understand the implicit benefits of different network architectures,
there have been adjacent theoretical explorations of deep network generalization.
These works are often motivated by the surprising observation that good perfor-
mance can still be achieved using highly over-parametrized models with degrees
of freedom that surpass the number of training data. This contradicts many
commonly accepted ideas about generalization, spurning new experimental ex-
plorations that have demonstrated properties unique to deep learning. Examples
include the ability of deep networks to express random data labels [158] with a
tendency towards learning simple patterns first [3]. While exact theoretical ex-
planations are lacking, empirical measurements of network sensitivity such as the
Jacobian norm have been shown to correlate with generalization [111]. Similarly,
Parseval regularization [98] encourages robustness by constraining the Lipschitz
constants of individual layers.

Due to the difficulty in analyzing deep networks directly, other approaches
have instead drawn connections to the rich field of sparse approximation theory.
The relationship between feed-forward neural networks and principal component
analysis has long been known for the case of linear activations [5]. More recently,
nonlinear deep networks with ReLU activations have been linked to multilayer
sparse coding to prove theoretical properties of deep representations [117]. This
connection has been used to motivate new recurrent architecture designs that
resist adversarial noise attacks [124], improve classification performance [134], or
enforce prior knowledge through output constraints [99].

20

2.2. Theoretical Foundations

(a) Orthogonal Basis (b) Equiangular Tight Frame

Figure 2.2: A comparison between (a) an orthogonal basis and (b) an overcom-
plete equiangular tight frame. Overcomplete representations allow for redun-
dantly representing data in higher dimensions. Low mutual coherence and spar-
sity constraints ensure representation efficiency, uniqueness, and robustness.

2.2.2 Sparse Approximation Theory

Sparse approximation theory considers representations of data vectors x ∈ Rd

as sparse linear combinations x ≈
∑

j wjbj = Bw of atoms from an over-complete
dictionary B ∈ Rd×k. The number of atoms k is greater than the dimensionality
d and the number of nonzero coefficients ∥w∥0 in the representation w ∈ Rk is
constrained to be small.

Through applications like compressed sensing [38], sparsity has been found
to exhibit theoretical properties that enable data representation with efficiency
far greater than what was previously thought possible. Central to these results
is the requirement that the dictionary be “well-behaved,” essentially ensuring
that its columns are not too similar. For undercomplete matrices with k ≤ d,
this is satisfied by enforcing orthogonality, but overcomplete dictionaries require
other conditions. Specifically, we focus our attention on mutual coherence µ of
the dictionary B, the maximum magnitude normalized inner product of all pairs
of dictionary atoms. Equivalently, it is the maximum magnitude off-diagonal
element in the Gram matrix G = B̃TB̃ where the columns of B̃ have unit norm:

µ = max
i ̸=j

|bTi bj |
∥bi∥ ∥bj∥

= max
i,j

|(G− I)ij | (2.5)

21

2. Background

20 40 60 80 100

Number of Components

10

20

30

40

50

60

70

80

90

100

D
im

e
n
s
io

n
a
lit

y

5

10

15

20

25

30

35

40

45

50

2

3

4

5

.

.

.

1

(a) Sparsity Level Bounds

0 1 2 3 4 5 6

Augmented Dimensionality ×104

0

50

100

150

200

S
p

a
rs

it
y
 U

p
p

e
r

B
o

u
n

d

Additional Doubling Layer

(b) Capacity with Increasing Depth

Figure 2.3: Visualizations of upper bounds on the number of nonzero elements
required for solutions of overdetermined linear systems to be unique (a). In a
DeepCA model, as additional layers are added to double the activation dimen-
sionality, the uniqueness capacity increases sublinearly with respect to the dimen-
sionality of the augmented shallow system (b).

Figure 2.2 shows an example comparing a complete orthogonal basis with an
overcomplete dictionary that has minimal mutual coherence.

We are primarily motivated by the observation that a model’s capacity for low
mutual coherence increases along with its capacity for both the memorization of
training data–through unique representations–and the generalization to validation
data–through robustness to input perturbations.

With an overcomplete dictionary, there is an infinite space of coefficients w

that can exactly reconstruct any data point as x = Bw, which would not sup-
port discriminative representation learning. However, if representations from a
mutually incoherent dictionary are sufficiently sparse, then they are necessarily
optimal and unique [39]. Specifically, if ∥w∥0 <

1
2(1+µ−1), then w is the unique,

sparsest representation for x. Furthermore, if ∥w∥0 < (
√
2− 0.5)µ−1, then it can

be found efficiently by convex optimization through ℓ1 regularization. Thus, min-
imizing the mutual coherence of a dictionary increases its capacity for uniquely
representing data points for improved memorization. Figure 2.3 demonstrates the
effect of dictionary size on the minimum achievable mutual coherence.

Sparse representations are also robust to input perturbations [40]. Specifically,

22

2.2. Theoretical Foundations

given a noisy datapoint x = x0 + z where x0 can be represented exactly as
x0 = Bw0 with ∥w0∥0 ≤ 1

4

(
1 + µ−1

)
and the noise z has bounded magnitude

∥z∥2 ≤ ϵ, then w0 can be approximated by solving the ℓ1-penalized LASSO
problem:

argmin
w

∥x−Bw∥22 + λ ∥w∥1 (2.6)

It’s solution is stable and the approximation error is bounded from above in
Equation 2.7, where δ(x, λ) is a constant.

∥w −w0∥22 ≤
(ϵ+ δ(x, λ))2

1− µ(B)(4 ∥w∥0 − 1)
(2.7)

Thus, minimizing the mutual coherence of a dictionary decreases the sensitivity of
its sparse representations for improved generalization. This is similar to evaluating
input sensitivity using the Jacobian norm [111]. However, instead of estimating
the average perturbation error over validation data, it bounds the worst-cast error
over all possible data.

23

3 Data Decomposition as
Approximate Constraint
Satisfaction

Despite their support for constrained inference, traditional matrix factoriza-
tion is often unable to incorporate more complicated priors. Specifically, since the
learned components bj are shared amongst all training examples, these techniques
have limited applicability to structured tasks that are naturally represented by
data-dependent constraints. For example, the task of image segmentation can
be described as decomposing each image into a unique set of semantic regions
that are spatially localized to distinct regions. This prior knowledge cannot be
effectively represented as a single constraint set C.

3.1 Instance-Level Data Decomposition

Instead of approximating data as combinations of shared parameters, we pro-
pose an exact data decomposition of each image feature vector into its own distinct
set of instance components hij , as shown in Equation 3.1.

xi ≈
k∑

j=1

wijbj =⇒ xi =
k∑

j=1

wijhij (3.1)

Exposing these latent components allows for easily incorporating instance-level
semantic constraints Ci related to a priori knowledge about individual data points
xi, such as the layout and composition of objects within images.

24

3.1. Instance-Level Data Decomposition

While learning m×n components from only n training examples may seem in-
tractable, we restrict the learning process by explicit enforcing similarity between
instance components with same index j, which could, for example, correspond
to different semantic classes. We formalize this intuition with the optimization
problem in Equation 3.2, which constrains the global image feature vector xi

to equal a linear combination of its constrained instance components hij while
minimizing the sum of weighted distances to exemplar components bj .

argmin
wij ,hij ,bj

n∑
i=1

k∑
j=1

w2
ij ∥hij − bj∥22 s.t.

k∑
j=1

wijhij = xi, {wij ,hij} ∈ Ci (3.2)

This formulation attempts to regularize the solution for hij by shrinking them
towards related instance components while adhering to the instance-level con-
straints in Ci that can vary across data points xi. Learning the shared model
parameters bj then amounts to finding a set of components that is closest to sat-
isfying all of the constraints, i.e. the approximate intersection of sets Ci for each
instance i in the training set. Unlike matrix factorization approaches, explicitly
decomposing a shared basis into separate instance components allows for richer
constraints that would otherwise not be possible.

Because it appears to be accomplishing a very different goal, it is natural to ask
how our approximate constraint satisfaction objective differs from the standard
reconstruction error minimization objective in Equation 1.2. Equation 3.3 below
shows an equivalent objective after substituting the auxiliary decomposition of xi

from Equation 3.1.

argmin
wij ,hij ,bj

n∑
i=1

∥∥∥ k∑
j=1

wij (hij − bj)
∥∥∥2
2

s.t.
k∑

j=1

wijhij = xi, {wij ,hij} ∈ Ci (3.3)

When expanded, the squared norm introduces additional cross terms in the form
of (hij −wijbj)

ᵀ(hik −wikfk) for k ̸= j that do not appear in our objective. De-
spite this, unconstrained versions of both formulations achieve exactly the same
solutions, justifying our interpretation of data decomposition as approximate con-
straint satisfaction.

To see why these two problems are equivalent, consider solving Equation 3.2
only for the auxiliary components hij with the shared parameters bj and latent

25

3. Data Decomposition as Approximate Constraint Satisfaction

representations wi fixed. This decomposes into independent subproblems for
each data instance i = 1, . . . , n. If we concatenate the variables so that Gi =

[wi1hi1, . . . , wikhik] and Fi = [wi1bi1, . . . , wikbik] The scaled instance components
in Gi can be found by solving the optimization problem in Equation 3.4, where
A = 1ᵀm ⊗ Id and ⊗ denotes the Kronecker product.

argmin
Gi

∥Gi − Fi∥2F s.t. Avec(Gi) = xi (3.4)

Note that this is simply the projection of the scaled shared components in Fi

onto the affine subspace defined by the equality constraint of the exact instance
decomposition. Thus, its solution is given in closed form in Equation 3.5, where
A+xi is a point on the affine subspace and the columns of N form an orthonormal
basis for the nullspace of A.

vec(Gi) = A+xi +NNᵀ (vec(Fi)−A+xi

)
(3.5)

Here, A+xi =
1
kxi ⊗ 1 and NNᵀ =

(
I− 1

k11
ᵀ) ⊗ I. After some simplification,

the instance components hij can be found from Equation 3.6:

wijhij = wijbij +
1
k (xi −Bwi) (3.6)

Intuitively, this can be interpreted as distributing the current approximation error
equally among the instance components hij so that they sum to xi. Plugging this
back into our problem in Equation 3.2 gives the original reconstruction error
minimization objective function from Equation 1.2 rescaled by k−1. Thus, both
problems have exactly the same solutions.

3.1.1 Alternating Optimization

Parameter learning for this problem naturally lends itself to an efficient alter-
nating minimization algorithm inspired by the problem of finding the approximate
intersection of convex sets. After initialization, we fix the shared components bj

26

3.1. Instance-Level Data Decomposition

0 500 1000 1500
94

96

98

100

102

Iteration Number

O
b

je
c
ti
v
e

 V
a

lu
e

SCA (Multiple Initializations)

(a) Objective Value

0 500 1000 1500

2300

2350

2400

2450

2500

Iteration Number

R
e
c
o
n
s
tr

u
c
ti
o
n
 E

rr
o
r

Optimal PCA Reconstruction

SCA (Multiple Initializations)

(b) Reconstruction Error

Figure 3.1: Our algorithm’s convergence without constraints on synthetic data
and 50 random initializations. Despite its alternating nature, our approach is
robust to initialization and typically converges very quickly in both objective
value (a) and reconstruction error from projection onto the exemplar components
(b).

and jointly solve for the latent representations wi and instance components hij .

argmin
wij ,h̃ij

k∑
j=1

h̃
T
ij

[
I −bj

−bᵀj bᵀjbj

]
h̃ij s.t. h̃ij =

[
wijhij

wij

]
,

k∑
j=1

[
Id 0

]
h̃ij = xi, {wij ,hij} ∈ Ci

(3.7)

Then, with these variables fixed, we solve for the shared components bj .

argmin
bj

n∑
i=1

w2
ij ∥hij − bj∥22 =

∑n
i=1w

2
ijhij∑n

i=1w
2
ij

(3.8)

This process is repeated until convergence. Despite the nonconvexity of our
problem, each of these subproblems is convex and the alternating optimization
procedure has been shown to converge consistently to good solutions for a variety
of applications. In Figure 3.1, we demonstrate empirically that our algorithm
converges quickly and is robust to initialization. Later in Section 3.2, we show
that this alternating strategy is also effective for the problem of weakly-supervised
semantic segmentation.

While a separate set of instance components are learned for each image, the
exemplar components bj can be represented simply as the weighted average of

27

3. Data Decomposition as Approximate Constraint Satisfaction

100 200 0 50 100 0 45 90 135 0 25 50 75 0 25 50 75 0 15 30 45

≈

.0344

+

.0292

+

.0179

+

.0178

+

.0140

(a) Nonnegative Matrix Factorization (NMF)

≈

.8883

+

.8185

+

.4423

+

.3744

+

.3226

(b) Approximation with Shared Components bj

=

.7931

+

.7321

+

.4538

+

.3956

+

.3747

(c) Decomposition with Instance Components hij

Figure 3.2: A comparison of the components found through instance decomposi-
tion with traditional nonnegative matrix factorization (NMF). The first column
in each row shows a reconstructed image while the next five columns show the
components used and the corresponding coefficients that minimize its reconstruc-
tion error. Row (i) uses the basis found through matrix factorization, (ii) the
shared exemplar components bj of SCA, and (iii) the instance components hij of
SCA that exactly reconstruct the image. The qualitative similarity between these
components and the comparable reconstruction performance suggests a close rela-
tionship between SCA and traditional matrix factorization, despite their different
objective functions.

28

3.1. Instance-Level Data Decomposition

0 1 2 3 4 5 6 7 8 9

Iteration Number

O
b
je

c
ti
v
e
 V

a
lu

e

(a) Objective Value

0 1 2 3 4 5 6 7 8 9
0.4

0.5

0.6

0.7

Iteration Number

T
ra

in
 A

c
c
u
ra

c
y

(b) Training Pixel Accuracy

(c) Image (d) Ground Truth (e) Initialization

(f) Iteration 1 (g) Iteration 2 (h) Iteration 3

Figure 3.3: Left: The convergence of our algorithm on the MSRC2 data set
with weak labels. Showing 20 random initializations, both the objective value
(a) and the training accuracy (b) consistently converge to the same values after
only around 3 iterations. Right: Example segmentations at different points in the
training process. After iteration 1, the large water and sky regions are successfully
found, while iterations 2 and 3 segment the smaller boats.

all instance components hij sharing the same index j. Importantly, unlike other
methods employing high-dimensional and over-complete bases, the many instance
components of SCA are not estimated independently; they are related through
the smaller set of exemplar components, which can be interpreted as a shared
basis representative of the training data.

Despite their seemingly unfamiliar construction, we empirically found that the
exemplar components of SCA share close connections between the bases learned
through traditional matrix factorization techniques. For comparison purposes,
we use the shared exemplar components as a basis that can approximately re-
construct data in the same manner as PCA or NMF. Without any additional se-
mantic constraints Ci, this basis consistently achieves reconstruction performance
comparable to that of PCA despite the different objective function. In addition,
by introducing nonnegativity constraints on both wij and hij , the resulting ex-
emplar components are qualitatively similar to the basis vectors found through
NMF. This is shown in Figure 3.2, which gives a visual comparison between our
method and NMF.

29

3. Data Decomposition as Approximate Constraint Satisfaction

3.1.2 Robustness via Trimmed Averaging

The Grassmann Average [53] (GA) is a recent method for scalable dimen-
sionality reduction that represents data points as one-dimensional subspaces and
constructs a leading component as their spherical average. This is very similar to
our method which also represents components as weighted averages.

Specifically, GA can be considered a special case of our problem for a single
component (m = 1) with the additional constraints wi = ±1 and ∥b∥2 = 1. After
incorporating these constraints, Equation 3.2 can be written as:

argmax
wi,b

n∑
i=1

wix
ᵀ
i b s.t. wi = ±1, ∥b∥2 = 1 (3.9)

Note that wi = 1 if and only if xᵀ
i b is positive. Thus, the objective can be

equivalently represented by replacing the multiplication of xᵀ
i b by wi with an

absolute value, resulting in exactly the same problem solved by GA.
One of the main benefits of GA is that robustness can be easily incorporated

simply by using the robust feature-wise trimmed average (in which the smallest
and largest P% of values are ignored) in place of the ordinary average, which is
highly sensitive to outliers. We apply this same idea to introduce robustness to
our algorithm as well, which was found to be particularly effective in cases when
supervision is minimal or altogether unavailable. However, while GA must rely
on greedy methods for acquiring more than just the leading component (which
could affect what is considered to be an outlier), our algorithm is able to estimate
multiple components simultaneously.

3.2 Semantic Component Analysis (SCA)

Real-world images are often composed of a number of distinct (but semantically-
related) regions. A natural aim of visual learning is to find these meaningful
regions in an unsupervised or weakly-supervised manner. For instance, consider
Figure 3.4(a): it is clear that there are four component objects that can explain
the given images. The question is how to recover these semantic components
with minimal supervision. Algorithms that approach this problem face many

30

3.2. Semantic Component Analysis (SCA)

challenges, primarily in dealing with large intra-class variability in appearance,
illumination, and pose.

A generative model for image formation can be considered as mixing a number
of semantic components: one for each class present within an image. While the
same local image features (e.g. quantized sift descriptors) may appear in instances
from different classes, the distributions of features within semantic regions are
often distinct across classes. If these global image features could be unmixed into
their semantic components–each representing consistent segmentations belonging
only to a single class–then recognition tasks could be simplified dramatically. This
problem motivates a component analysis (CA) approach to image understanding
in which an image is decomposed into semantic components.

Image decomposition is often accomplished through matrix factorization tech-
niques, such as Principal Component Analysis (PCA) [144], Non-negative Matrix
Factorization (NMF) [80], or Probabilistic Latent Semantic Analysis (pLSA) [133].
These methods approximate data as linear combinations of latent factors by min-
imizing total reconstruction error. While some variations of these approaches
can result in localized, semantically-meaningful, or parts-based image decompo-
sitions, they are generally unable to adhere to a key property of image formation:
objects are occlusive, i.e. image formation is nonlinear in pixel space because an
object occludes everything behind it. Thus, images tend to consist of contiguous
groups of pixels that belong only to a single object class. On the other hand,
matrix decompositions represent each pixel as a superposition of multiple com-
ponents. Since they rely on a shared basis that only approximates the original
data, modifying these methods to enforce semantically-meaningful components
by incorporating such nonlinear pixel-level constraints with real-word, unaligned
images is nontrivial.

In the last decade, image classification has become an incredibly active re-
search topic with widespread applications. Most methods for visual recognition
are fully-supervised and make use of bounding boxes or pixel-wise segmentations
to locate objects of interest. However, this type of manual labeling is time con-
suming, error-prone, and potentially suboptimal [109]. On the other hand, the
increasing prevalence of large image collections emphasizes the need for fully- or
partially-automated techniques for analyzing and archiving their content.

31

3. Data Decomposition as Approximate Constraint Satisfaction

a

b

c

d

Figure 3.4: An overview of Semantic Component Analysis (SCA) applied to the
task of unsupervised object discovery. (a) From a set of images containing mul-
tiple classes, (b) Bag-of-Words features are extracted pooling information from
the entire image. (c) SCA decomposes these global representations into compo-
nent histograms associated with meaningful component objects. The segments
corresponding to these object histograms are shown in (d).

To demonstrate its ability to incorporate richer prior knowledge, we apply our
novel formulation of instance-level data decomposition to the task of image seg-
mentation. We introduce Semantic Component Analysis (SCA), a novel method
for visual data decomposition that finds semantic factorizations of visual data.
Figure 3.4 illustrates SCA applied to Bag-of-Words (BoW) histograms extracted
from input images. Our algorithm decomposes these global image features into
class-specific histograms (Figure 3.4c) constructed from partitions of semantically-
related image segments (Figure 3.4d). While existing factorization methods use
a global basis common to all images, the key idea of SCA is the introduction of
instance-specific sets of components allowing for more complex image constraints
and priors. Specifically, we enforce that object partitions be spatially-consistent.
This type of coherence would not be not possible with a global basis because
instances of the same class vary in appearance and location across images.

Images are often composed of a number of distinct (but semantically-related)
regions. A natural aim of visual learning is to find these meaningful regions with
minimal supervision. While supervised approaches to image segmentation rely on

32

3.2. Semantic Component Analysis (SCA)

labeled training examples, acquiring this data can be time-consuming and error-
prone. Instead, we consider the process of image formation as mixing a number
of semantic components: one for each class present within an image. While the
same local image features may appear in instances from different classes, the
distributions of features within semantic regions are often distinct across classes.
If these global image features could be unmixed into their semantic components–
each representing consistent segmentations belonging only to a single class–then
recognition tasks could be simplified dramatically.

3.2.1 Semantic Constraints for Segmentation

Ideally, we seek a semantically-interpretable technique for CA that represents
each class as a single component. In order to encourage that this be the case in
the absence of pixel-level annotations, we must rely on priors and constraints that
summarize assumptions about how classes are represented in images. Specifically,
we note that images tend to be separated into spatially-consistent partitions of
object classes. However, because of intra-class variability and differing spatial
layouts across images, these constraints would be inconsistent and impossible to
enforce in traditional matrix factorization approaches.

Instead, we propose an exact data decomposition of each image feature xi into
it’s own distinct set of instance components Hi (with columns hij) in lieu of a
shared basis:

xi = Hiwi =
m∑
j=1

wijhij ∀i = 1, . . . , n. (3.10)

Here, n represents the size of the dataset and m represents the total number of
semantically-related groups of components (i.e. object classes) that we consider.
Observe that having a separate set of components for each image–where the basis
Hi depends on the image index i–differs from traditional CA methods which use
a global basis common to every image.

In order to encourage semantic in the absence of pixel-level annotations, we
must rely on priors and constraints that summarize assumptions about how classes
are represented in images. Specifically, we note that images tend to be sepa-
rated into spatially-consistent partitions of object classes. However, because of

33

3. Data Decomposition as Approximate Constraint Satisfaction

intra-class variability and differing spatial layouts across images, these constraints
would be inconsistent and impossible to enforce in traditional matrix factorization
approaches.

This formulation assumes additive image representations, meaning that an
image’s global feature vector xi can be expressed as the sum of its segment feature
vectors. Note that many shallow representations share this property, including
all average-pooled local features. We represent images using simple ℓ1-normalized
Bag-of-Words histograms over dense SIFT descriptors [91] quantized to d = 1024

dictionary elements. we begin with an over-segmentation of each image into pi

locally-consistent superpixel feature vectors of dimensionality d. Let Si ∈ Rd×pi

be a matrix with the ith image’s normalized superpixel features sik as its columns.
Let qik represent the proportion of the image taken up by the kth superpixel
and denote by qi the vector with these values as its elements. Thus, due to its
additivity, xi = Siqi. That is, the image histogram xi is a convex combination
of its superpixel histograms sik.

To account for object class occlusion in the image, we enforce that the instance
components hij come from non-overlapping partitions of superpixels by defining
indicator variables zijk ∈ {0, 1} that are 1 if the kth superpixel belongs only to
the jth class and 0 otherwise. Let zij be the column vector formed by stacking
the zijk for all k. Then, the weighted component histograms can be written
as wijhij = Sidiag(qi)zij , where wij represents the proportion of the ith image
belonging to the jth class. This also constrains the component by wij = qᵀi zij so
that 0 ≤ wij ≤ 1 and

∑m
j=1wij = 1.

While the over-segmentation of images into superpixels provides some local
spatial consistency, many superpixels could still make up a single object. Thus,
we incorporate an additional regularization term borrowed from the spectral clus-
tering and co-segmentation literature [68] that promotes smoothness between su-
perpixels. Specifically, we define a similarity matrix Wi that assigns each pair of
superpixels in an image a weight determined by their spatial proximity and color
similarity. Denote by Li the normalized graph Laplacian constructed from Wi.
Enforcing that the quantity zᵀ

ijLizij be small (less than a threshold parameter
ρ) encourages nearby superpixels with similar color to take on the same label.
Figure 3.5 shows an example of this.

34

3.2. Semantic Component Analysis (SCA)

(a) Image (b) Ground Truth (c) λ = 0.05 (d) λ = 0

Figure 3.5: A comparison of segmentation results both with (c) and without (d)
spatial consistency regularization, which encourages segmentations that better
adhere to object boundaries. By taking into account local similarities within
images, spurious errors can be avoided resulting in segmentations that better
match the ground truth (b).

Note that this set of constraints is non-convex since we enforce zijk to be
binary, which would make optimization difficult. Thus, we first relax this con-
straint by allowing zijk to take on values within the continuous interval [0, 1].
Since

∑m
j=1 zijk = 1, zijk can be interpreted as the degree to which the kth super-

pixel in the ith image belongs to the jth class. The solution can then be rounded
by selecting the class with the highest value in order to produce a discrete seg-
mentation.

These semantic instance constraints are summarized as follows in Equation 3.11:

Ci =
{
wij ,hij : wijhij = Sidiag(qi)zij , z

T
ijLizij ≤ ρ,

wij = qTi zij ,
k∑

j=1

zij = 1, 0 ≤ zij ≤ 1
} (3.11)

This constraint set is very general and can be easily adapted to include additional

35

3. Data Decomposition as Approximate Constraint Satisfaction

Table 3.1: SCA segmentation results on synthetic data.

ae
ro

pl
an

e

co
w

bu
ild

in
g

ca
r

sh
ee

p

tr
ee

gr
as

s

m
ar

bl
e

st
on

e

ba
rk

to
ta

l

1 2 3 4 5 6 7 8 9 10
Cluster (GT) 02 66 41 52 00 96 98 96 49 96 77

Cluster (Super) 00 29 96 32 03 39 52 29 31 28 36

SCA (None) 76 73 84 65 84 01 86 88 81 75 77
SCA (Weak) 80 81 90 74 86 53 81 83 82 88 82
SCA (Full) 77 78 85 74 78 55 86 88 88 92 85

image priors or modified to be applicable to tasks even beyond image segmen-
tation. Even so, these simple, intuitive constraints surprisingly still result in
semantically-meaningful decompositions. Furthermore, because this set is con-
vex, it allows for convenient optimization

The original objective function from Equation 3.2 can then be updated to
incorporate these constraints as shown in Equation 3.12.

argmin
wij ,zij ,bj

n∑
i=1

k∑
j=1

∥Sidiag(qi)zij − wijbj∥22 + λzT
ijLizij

s.t. wij = qTi zij ,
k∑

j=1

zij = 1, 0 ≤ zij ≤ 1

(3.12)

Note that the formulation described thus far does not require any training
labels, various levels of supervision can be easily incorporated by simply fixing
certain known elements during training. In particular, weak supervision can be
included by forcing the coefficients wij for all absent classes to be zero, which
effectively requires summing only over those classes present in an image.

3.2.2 Experimental Results

To demonstrate the effectiveness of our method, we evaluate it against a num-
ber of datasets with varying levels of superivsion.

First, we consider synthetic data with minimal controlled intra-class variation.
Specifically, we use 500 training images and 200 testing images generated by first

36

3.2. Semantic Component Analysis (SCA)

0.02

0.66

0.41

0.52

0.00

0.96

0.98

0.99

0.49

0.96

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.00

0.29

0.96

0.32

0.03

0.39

0.52

0.29

0.31

0.28

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.76

0.73

0.84

0.65

0.84

0.01

0.86

0.88

0.81

0.75

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.80

0.81

0.90

0.74

0.86

0.53

0.81

0.83

0.82

0.88

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0.77

0.78

0.85

0.74

0.78

0.55

0.86

0.88

0.88

0.92

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Ground Truth Cluster (GT) Cluster SCA (None) SCA (Weak) SCA (Full)

Figure 3.6: Top: Confusion matrices for the accuracies in Table 3.1. Bottom:
Example segmentations for the different methods. Increasing levels of supervision
improve segmentation consistency.

selecting one of three backgrounds from the Salzburg Texture Image Database [75]
and then randomly placing up to 7 rescaled objects segmented from the MSRC2
dataset [130], for a total of 10 classes. There is a maximum of 50% overlap with
other objects and the image edges (simulating occlusion), and there are 2.9 classes
per image on average.

Table 3.1 shows the segmentation performance of our algorithm with varying
levels of supervision using a BoW dictionary size of 1024 with smoothness regu-
larization parameter λ = 0.05 and using a robust trimmed average with P = 20%.
In the unsupervised setting, clusters were permuted and assigned to class labels in
order to maximize average training accuracy. As unsupervised baselines, we also
compare k-medians clustering of both ground-truth segments and independent
superpixels. Even though our method is based on superpixels, its performance
is very close to the clustering of ground-truth segments, even performing better
on smaller classes. This is likely due to the joint assignment of all classes within
an image according to the image formation constraints in Ci. Simply clustering
superpixels results in very poor performance because small regions do not contain
enough class-specific features.

While increasing the level of supervision improved accuracy somewhat (es-
pecially for “tree”, which is visually similar to the background classes such as
“grass”), our algorithm was generally able to cluster the image regions into the

37

3. Data Decomposition as Approximate Constraint Satisfaction

1 2 3 4 5 6 7 8 9 10

sheep

1 2 3 4 5 6 7 8 9 10

horse

1 2 3 4 5 6 7 8 9 10

sign

1 2 3 4 5 6 7 8 9 10

grass

1 2 3 4 5 6 7 8 9 10

car

1 2 3 4 5 6 7 8 9 10

aeroplane

1 2 3 4 5 6 7 8 9 10

bird

1 2 3 4 5 6 7 8 9 10

body

Figure 3.7: Example unsupervised segmentation results on the MSRC2 dataset.
The bar plots on top show the proportion of pixels associated with a given ground
truth class that were assigned to each of the 10 unsupervised clusters. Below
are example images and the resulting segmentations achieved by our algorithm,
showing clear separation into semantically-meaningful groups.

correct semantic classes even with minimal training. Class confusion matrices
and example segmentations are shown in Figure 3.6.

We also evaluated our algorithm on the MSRC2 dataset [130], which contains
591 images segmented into 21 ground truth classes. We first applied our method
in the unsupervised setting with m = 10 latent classes. Smoothness regularization
was used with λ = 2 along and exemplar components were computed using the
median, i.e. with P = 50%. Example qualitative results are shown in Figure 3.7.
Note that the resulting groups are semantically related and generally give a good
separation between classes. For example, nearly all “aeroplane” pixels were as-
signed to cluster 2, which also included pixels associated with other man-made
objects such as “car” and “boat”.

38

3.2. Semantic Component Analysis (SCA)

Table 3.2: SCA segmentation results on the MSRC2 dataset.
[147] [19] [89] SCA (None) SCA (Weak) SCA (Full)

Total Acc. 67 69 71 60 70 77

Table 3.3: SCA segmentation results on the Sift Flow dataset.
[147] [148] [154] SCA (None) SCA (Weak) SCA (Full)

Avg. Acc. 14 21 28 14 19 25

We tested our algorithm with weak labels provided at both training and testing
time. To provide context, we also show results of our method when training
without any labels and with full pixel-level annotations. We used the standard
method for separating the training and testing data [130]. Table 3.2 summarizes
our results in terms of total pixel accuracy in comparison to other methods.
Despite the simplicity of our algorithm, we achieve comparable performance to
many state-of-the-art systems specifically engineered for the task. Figure 3.8
shows some example successful and unsuccessful segmentations.

Finally, we evaluated performance on the challenging Sift Flow dataset [87],
which contains 2688 total images (200 of which are used only for testing) and 33
classes, with an average of 4.43 classes per image. Following [154], we predict
weak labels of testing images using linear SVMs trained on 4096-dimensional
features extracted from the last fully-convolutional layer (fc6) in the pre-trained
Caffe CNN [66]. Table 3.3 shows average class accuracy in comparison to other
methods. Results from unsupervised and fully-supervised training are also shown
for comparison. We again achieve comparable performance to other methods
that are designed specifically for weakly-supervised semantic segmentation and
use much richer feature sets (color, GIST, and superpixel locations) and priors
(e.g. objectness, ILP, and discriminative appearance models.)

3.2.3 Conclusion

We outlined a general framework for explicitly introducing interpretability
to component analysis. This was accomplished through an alternative objective
function (rather than the traditional least squares reconstruction error from ma-

39

3. Data Decomposition as Approximate Constraint Satisfaction

building grass tree cow sheep sky aeroplane water car road cat

(a) Successful Segmentations

(b) Failure Cases

Figure 3.8: Example weakly-supervised segmentations from the MSRC2 dataset
showing both (a) successful and (b) unsuccessful cases. Typical failure cases occur
because of confusion between visually similar classes that commonly co-occur (e.g.
sky and road) or when different classes have very similar color (e.g. the gray cat
on the road.)

trix factorization) that exposes instance components which can be constrained
using prior information. Specifically, we formalized an intuitive observation: im-
ages tend to be partitioned into spatially-consistent, non-overlapping regions that
belong only to a single class. Despite their simplicity, these constraints allow
for the semantically-meaningful clustering of image regions. Requiring only BoW
features and superpixel color similarities, our algorithm is easily-implementable,
efficient, and robust to initialization. Furthermore, varying levels of supervision
can be incorporated trivially.

Even without manual engineering, fine-tuning, or over-fitting to a particu-
lar dataset, we achieve competitive performance on standard weakly-supervised
semantic segmentation tasks. Our approach is general, allowing for the simple
inclusion of additional constraints and priors with the potential to improve these

40

3.3. Additive Component Analysis (ACA)

results even further. SCA could also be easily adapted to numerous other applica-
tions beyond semantic segmentation, including time series analysis, background
modeling in videos, etc.

3.3 Additive Component Analysis (ACA)

Despite the complexity of factors involved in determining the organization of
pixels in an image, one prominent hypothesis suggests that images concentrate
near manifolds with low intrinsic dimensionality determined by their underlying
degrees of freedom [105]. One of its earliest successes was found in the area of
face recognition through the Eigenfaces algorithm [144], a holistic data-driven
approach for representing data as linear combinations of learned components.

In addition to enabling richer constraints that better encode prior knowledge
in applications like image segmentation, instance-level data decomposition can
also be adapted to address the basic modeling restriction common to many com-
ponent analysis techniques: linearity. We propose Additive Component Analysis
(ACA), a novel method for nonlinear component analysis. The motivating hy-
pothesis underlying our approach is that reconstructed input data should vary
smoothly with respect to lower-dimensional representations, relaxing the strict
linearity assumption of PCA. Our approach can be interpreted as an unsuper-
vised additive model [20] constructed to predict training data from latent input
variables, effectively fitting a smooth manifold to data with complexity controlled
by an intuitive roughness penalty. An overview is shown in Figure 3.9, along with
comparisons to PCA.

We generalize Equation 1.2 by instead approximating data as the sum of
learned nonlinear basis functions f j evaluated at some latent variables wij , re-
sulting in approximations given by the additive model xi ≈ f(wi) =

∑
j f j(wij).

The resulting optimization problem is shown in Equation 3.13.

argmin
wij ,fj

n∑
i=1

∥∥∥xi −
k∑

j=1

f j(wij)
∥∥∥2
2
+ λ ∥wi∥22 s.t. f j ∈ F (3.13)

Here, we aim to learn both the basis functions f j and latent variables wi. We
constrain the basis functions to belong to the set F In addition, in order to

41

3. Data Decomposition as Approximate Constraint Satisfaction

𝒙𝑖 𝒇2

𝒇1

𝒙 𝑖

𝒙𝑖 = 𝒈𝑖1 + 𝒈𝑖2
𝒙 𝑖 = 𝒇1(𝑤𝑖1) + 𝒇2(𝑤𝑖2)

𝒘𝑖

𝒈𝑖1

𝑤1

𝒈𝑖1 ≈ 𝒇1(𝑤𝑖1)
𝒈1

(a) Additive Component Analysis (ACA)

𝒃2 𝒙𝑖

𝒙 𝑖

𝒙𝑖 = 𝒈𝑖1 + 𝒈𝑖2
𝒙 𝑖 = 𝑤𝑖1𝒃1 + 𝑤𝑖2𝒃2

𝒃1

𝒘𝑖

𝒈𝑖1 ≈ 𝑤𝑖1𝒃1

𝒈𝑖1

𝑤1

𝒈1

(b) Principal Component Analysis (PCA)

Figure 3.9: An overview of ACA (a) in comparison to PCA (b) on the task of fit-
ting a two-dimensional surface to three-dimensional data. Both methods minimize
the sum of squared distances between the data and their orthogonal projections.
However, ACA learns a nonlinear manifold resulting in reduced reconstruction
error. The key to our approach is the decomposition of each data point xi into
a sum of target components gij , which allows the basis functions to be learned
through simple, univariate regression.

compress the latent space and constrain the domains of the basis functions, we
enforce that the latent representations belong to a closed set W, implemented
using a small amount of ℓ2 regularization with a fixed hyperparameter of λ = 0.01.

This objective essentially minimizes the error in approximating data by pro-
jecting them onto an m-dimensional curvilinear manifold. Example learned ba-
sis functions can be found in Figure 3.11. In addition, Figure 3.12 visualizes
higher-dimensional basis functions for image data by evaluating them at different
intervals of the corresponding training latent variables.

Optimization for this problem presents an interesting challenge. A common
approach for similar constrained component analysis problems (e.g. non-negative
matrix factorization [14], dictionary learning [72], etc.) is alternating minimiza-
tion. With one set of variables fixed, the resulting problem is usually much sim-
pler. In our case, however, this is not so. With the latent representations wi fixed,
the optimization problem reduces to that of a supervised additive model, which
must be solved using an iterative backfitting algorithm, often requiring many it-
erations to converge [20]. To enable simpler optimization, we again introduce
additional auxiliary variables by decomposing xi into a sum of target compo-
nents gij , which we enforce with an affine equality constraint. Our optimization

42

3.3. Additive Component Analysis (ACA)

𝒍2

𝒍1

𝒘 𝑖

𝒙𝑖

(a) Find w̃i given lj .

𝒇1

𝒇(𝒘 𝑖)

𝒇2
′ (𝑤 𝑖2) 𝒙𝑖

𝒘𝑖
𝒇1
′ (𝑤 𝑖1)

(b) Find wi given w̃i, f j .

𝒙𝑖

𝒇1

𝒇(𝒘𝑖)

(c) Find f(wi).

𝒈𝑖1

𝑤𝑖1

𝒈𝑖2

𝒇2(𝑤𝑖2)

𝑤𝑖2

𝒙𝑖 = 𝒈𝑖1 + 𝒈𝑖2

𝒇1(𝑤𝑖1)

(d) Find gij given f(wi).

𝒈2

𝑤2

𝒈1

𝑤1

𝒈𝑖1 ≈ 𝒇1 𝑤𝑖1 𝒈𝑖2 ≈ 𝒇2 𝑤𝑖2

𝒇1

𝒇2

(e) Find f j given wij , gij .

𝒈2

𝑤2

𝒈1

𝑤1

𝒍1 𝒍2

𝒈𝑖1 ≈ 𝒍1 𝑤𝑖1 𝒈𝑖2 ≈ 𝒍2 𝑤𝑖2

(f) Find lj given wij , gij .

Figure 3.10: A visualization of one iteration of our alternating optimization pro-
cedure. (a) First, approximate latent variables w̃i are found by projecting each
data point xi onto the affine subspace defined by the linear basis function ap-
proximations lj , initialized using PCA. (b) Then, wi is updated by projecting xi

onto the tangent space at the point f(wi). This step is repeated multiple times
with smaller step sizes for increased accuracy. (c) The result is an approximate
orthogonal projection of xi onto the manifold. (d) The target components gij are
then found by equally redistributing the reconstruction error between them. (e,f)
Finally, the basis functions f j and their linear approximations lj are found using
simple univariate regression.

problem can then be equivalently written as follows:

argmin
wij ,gij ,fj

n∑
i=1

k∑
j=1

∥∥∥gij − f j(wij)
∥∥∥2
2

s.t.
k∑

j=1

gij = xi, f j ∈ F (3.14)

Unlike the original problem formulation in Equation 3.13, our formulation
based on instance-level data decompositions again admits an efficient alternating
minimization algorithm similar to the one described previously in Section 3.1.
With f j fixed, we first solve Equation 3.15, which essentially amounts to project-

43

3. Data Decomposition as Approximate Constraint Satisfaction

Initialization Iteration 20 Iteration 40 Iteration 56 Original
(a) Projections of data onto the ACA manifold throughout optimization

In
p

u
t

D
im

e
n

s
io

n
 1

Target Components

Basis Function

Linear Approximation

In
p

u
t

D
im

e
n

s
io

n
 2

Latent Dimension 1

In
p

u
t

D
im

e
n

s
io

n
 3

Latent Dimension 2

(b) PCA Initialization

In
p

u
t

D
im

e
n

s
io

n
 1

In
p

u
t

D
im

e
n

s
io

n
 2

Latent Dimension 1

In
p

u
t

D
im

e
n

s
io

n
 3

Latent Dimension 2

(c) ACA Solution

Figure 3.11: An example of our optimization procedure applied to a synthetic
dataset of a two dimensional surface embedded in three dimensions. Gaussian
noise and uniformly random outliers were also added. (a) The original data points
are shown on the right. On the left are their denoised projections using the learned
basis functions (shown in black) throughout optimization. Starting from a linear
subspace at initialization, the basis functions adapt to the nonlinear structure
of the data, resulting in a near perfect reconstruction of the true underlying
manifold. Also shown is a comparison between the basis vectors learned by (b)
PCA and the nonlinear basis functions learned by (c) ACA on the synthetic
dataset. The two latent dimensions vary along the horizontal axis while the three
input dimensions vary along the vertical axis. The values of the target component
dimensions are shown as colored points while their linear and smoothing spline
approximations are shown as dotted and solid black lines respectively. Observe
that ACA is able to find alternate decompositions of the data points in which the
resulting target components can be well approximated by smooth functions.

44

3.3. Additive Component Analysis (ACA)
f

1
(w

i1
)

f
2
(w

i2
)

µ− 2σ µ− σ wij=µ µ+ σ µ+ 2σ

f
1
(w

i1
)

f
2
(w

i2
)

µ− 2σ µ− σ wij=µ µ+ σ µ+ 2σ

f
1
(w

i1
)

f
2
(w

i2
)

f
3
(w

i3
)

f
4
(w

i4
)

µ− 2σ µ− σ wij=µ µ+ σ µ+ 2σ

(a) ρ = 0.0001

f
1
(w

i1
)

f
2
(w

i2
)

f
3
(w

i3
)

f
4
(w

i4
)

µ− 2σ µ− σ wij=µ µ+ σ µ+ 2σ

(b) ρ = 0.001

Figure 3.12: A visualization of the basis functions learned by ACA on both syn-
thetic and real image data for a variety of roughness parameters (a-b). The value
of the latent variable wij varies along the horizontal axis while the basis function
index j = 1, . . . ,m varies along the vertical axis.

ing xi onto the learned manifold.

argmin
wi∈W,gij

k∑
j=1

∥∥gij − uij − wijf
′
j(w̃ij)

∥∥2
2
+ λ ∥wi∥22 s.t.

k∑
j=1

gij = xi (3.15)

Solving this directly is difficult due to the nonlinear basis functions f j . However,
since we enforce that they be smooth with small second derivatives, they can be
effectively approximated by first-order Taylor expansions centered around some
approximate solutions w̃ij as f j(wij) ≈ uij + wijf

′
j(w̃ij) where uij = f j(w̃ij) −

w̃ijf
′
j(w̃ij). Here, the set of partial derivatives f ′

j(w̃ij) span the tangent space of
the manifold, reducing to the same linear least squares problem from Section 3.1.
The initial w̃ij can be found by projecting xi onto the affine subspace defined by

45

3. Data Decomposition as Approximate Constraint Satisfaction

linear approximations lj to the spline functions f j . This approximation can be
improved by repeatedly updating wi with decreasing step sizes.

Afterward, following a derivation similar to that of Equation 3.6, the target
components gij are given by the closed form solution in Equation 3.16.

gij = f j(wij) +
1
k

(
xi −

k∑
j=1

f j(wij)
)

(3.16)

With wi and gij fixed, we update the basis functions f j by solving Equa-
tion 3.17.

argmin
fj

n∑
i=1

∥∥gij − f j(wij)
∥∥2
2

s.t. f j ∈ F (3.17)

This is a standard univariate regression problem mapping the latent variables
wij to the target components gij .

3.3.1 Curvilinear Smoothness Constraints

We restrict the basis functions f j to be roughness-penalized smoothing splines [32]
due to their generality and efficient computation. Thus, they must belong to the
set F , which is defined as:

F =

{
f : R → Rd :

∫
(f ′′

p (x))
2dx ≤ γ, ∀p = 1, . . . , d

}
(3.18)

These constraints are implemented with a roughness penalty that balances ap-
proximation accuracy and complexity with a roughness hyperparameter ρ. The
solution to the problem in Equation 3.17 is a cubic spline with knots τi corre-
sponding to each of the training points xi, which can be expressed as a linear
combination of spline basis functions f j(x) =

∑nb
t=1 ctjbt(x) with coefficient vec-

tors ctj ∈ Rd [32]. In our implementation, we use B-spline basis functions because
they have bounded support resulting in sparse, banded matrices and linear-time
inverse computations [33]. Furthermore, their evaluation and derivatives can be
efficiently computed using a simple recursive formula [151].

The constraint set in Equation 3.18 can be equivalently expressed as:

F =
{
f(x) =

nb∑
t=1

ctbt(x) :

∫ nb∑
s=1

cTs

nb∑
t=1

ctb
′′
s(x)b

′′
t (x)dx ≤ γ

}
(3.19)

46

3.3. Additive Component Analysis (ACA)

where Bj(i, t) = btj(wij) and Ωj(s, t) =
∫
b′′sj(x)b

′′
tj(x)dx.

Thus, the infinite-dimensional problem in Equation 3.17 can be reduced to
the simple, regularized linear least-squares problem in Equation 3.20 from which
the optimal spline coefficients Cj may be found in closed-form, where Gj =[
g1j , . . . , gnj

]T and Cj = [c1j , . . . , cnbj].

argmin
Cj

∥Gj −BjCj∥22 + ρCT
j ΩjCj (3.20)

3.3.2 Approximate Stochastic Optimization

While the optimization procedure described in the previous section is memory
efficient due to the separability of the cost function into smaller subproblems,
solving for all latent variables at each iteration can be computationally expensive
(and possibly redundant) for extremely large datasets. Ideally, we would instead
prefer to take a stochastic approach that considers only a random subset of the
data at each iteration. The basis functions could then be updated with a certain
step size by taking a weighted average with the parameters from the previous
iteration. However, since the knot locations of the spline functions change at
each iteration, their corresponding parameters are not comparable.

To overcome this issue, we propose an approach that approximates the spline
functions from the previous iteration using the knots from the current itera-
tion so that their parameters can be averaged. Specifically, we use Schoen-
berg’s variation diminishing spline approximation [95, 92], a simple and efficient
method for function approximation that does not require solving a linear sys-
tem of equations as with the roughness-penalized spline approximation. To un-
derstand this method, first recall that spline functions can be interpreted geo-
metrically as smoothed versions of their control polygons, which are piecewise-
linear functions with vertices located at specific control points. For a cubic spline
f(w) =

∑
t ctbt(w) with a knot vector τ , these control points have coordinates

(τ∗t , ct) where τ∗t = 1
3(τt+1 + τt+2 + τt+3) are the knot averages of τ . Similarly,

for any function f , it’s variation diminishing cubic spline approximation is given
by (V f)(w) =

∑
t f(τ

∗
t)bt(w) where the coefficients are given directly as func-

tion evaluations at the knot averages. Thus, before updating the basis function

47

3. Data Decomposition as Approximate Constraint Satisfaction

-20 -10 0 10 20

Latent Dimension

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

In
p
u
t
D

im
e
n
s
io

n

Target Components

Basis Function

Knots

(a) Original Basis Function

-20 -10 0 10 20

Latent Dimension

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

In
p
u
t
D

im
e
n
s
io

n

Basis Function

Updated Basis Function

Updated Knots

(b) Updated Approximation

Figure 3.13: An example of the variation diminishing spline approximation used
in our stochastic optimization technique for parameter averaging of basis func-
tions with different knot locations. The original basis function (a) was fitted
to target components with knot locations denoted by dotted vertical lines while
the updated basis function (b) was approximated with different knot locations
without requiring expensive least-squares fitting.

parameters from the previous iteration, we take a variation diminishing spline
approximation of their control polygons evaluated at the new knot averages from
the current iteration, essentially resulting in a linear interpolation of the control
points. While this is only a rough approximation as shown in Figure 3.13, it leads
to effective learning with significantly reduced training time.

3.3.3 Deep Composition of Additive Models

Despite their generality, additive models can only represent a relatively small
set of possible multivariate functions due to the curvilinear assumption. Thus,
the space of manifolds that can be learned with ACA is also limited. Consider,
for example, a dataset of noisy images containing translated circles. Its intrinsic
dimensionality equals two because there are only two independent dimensions of
variation: horizontal and vertical location. However, the underlying nonlinearities
cannot be effectively modeled with ACA, resulting in poor latent separability and
reconstruction performance. This is demonstrated in Figure 3.14.

This fundamental limitation of component analysis is a result of the restricted
additive interactions allowed between latent variables. To address this, we pro-

48

3.3. Additive Component Analysis (ACA)
ρ
=

0
.0
0
0
1

Latent Dimension 1

-5 -4 -3 -2 -1 0 1 2

L
a

te
n

t
D

im
e

n
s
io

n
 2

-15

-10

-5

0

5

10

15

1

2

(1) ≈ = + +

(2) ≈ = + +

ρ
=

0
.0
0
3

Latent Dimension 1

-15 -10 -5 0 5 10 15 20

L
a

te
n

t
D

im
e

n
s
io

n
 2

-20

-15

-10

-5

0

5

10

15

20

1

2

(a) wi

(1) ≈ = + +

(2)

(b) xi

≈

(c) x̂i

=

(d) m

+

(e) f1

+

(f) f2

Figure 3.14: A synthetic example demonstrating the difficulty in modeling nonlin-
earities due to translation with additive components. For two different values of
the roughness parameter ρ (top and bottom), the latent space of two-dimensional
representations wi is shown (a) indicating two example images (b). ACA learns
an approximate reconstruction x̂i (c) equal to the sum of a mean image m (d) and
two component images (e,f) given as the evaluated basis functions f j(wij). Be-
cause the components are additive, reconstruction performance suffers even when
the basis function complexity is increased with a higher roughness parameter ρ.

pose a deep extension of our approach that stacks multiple ACA layers together,
increasing representational power by composing ℓ additive models fk constructed
as the sum of basis functions fk

j for j = 1, . . . ,mk where mk−1 < mk < d so that
f = f ℓ◦f ℓ−1◦· · ·◦f1. Similar approaches have seen much success within the area
of deep learning, partially due to the observation that increasing depth can allow
for comparable expressivity with exponentially fewer parameters [12]. Indeed, in
Figure 3.15, we show that deep ACA successfully models translation, resulting in
reduced reconstruction error and an interpretable two-dimensional representation
in which latent variables correspond to different spatial dimensions.

While function composition makes optimization more difficult, we use the an

49

3. Data Decomposition as Approximate Constraint Satisfaction

Latent Dimension 1

-5 -4 -3 -2 -1 0 1 2

L
a
te

n
t
D

im
e
n
s
io

n
 2

-15

-10

-5

0

5

10

15

1

2

(1) (2)

(a) One Layer
(m = 2)

Latent Dimension 1

-10 -5 0 5 10

L
a
te

n
t
D

im
e
n
s
io

n
 2

-10

-5

0

5

10

1

2

(1) (2)

(b) Two Layers (Greedy)
(m = [2, 4])

Latent Dimension 1

-4 -3 -2 -1 0 1 2 3 4

L
a
te

n
t
D

im
e
n
s
io

n
 2

-4

-3

-2

-1

0

1

2

3

4

1

2

(1) (2)

(c) Two Layers (Joint)
(m = [2, 4])

Figure 3.15: A demonstration of the increased representational power provided by
the composition of additive models, comparing ACA with one layer (a), with two
layers trained greedily layer by layer (b), and with two layers trained jointly (c).
The learned low-dimensional latent space (top) indicates two numbered example
points. The corresponding original images (middle) are compared alongside the
denoised reconstructions (bottom). Deep ACA results in better performance and
more interpretable representations by jointly learning richer interactions between
latent variables.

approach similar to the Method of Auxiliary Coordinates (MAC) [25] to learn the
parameters of all layers jointly using essentially the same procedure described in
Figure 3.10. This leads to a more interpretable latent space in comparison to a
greedy approach that learns the parameters of each layer independently, as shown
in Figure 3.15.

We now aim to infer a set of latent variables wk
i ∈ Rmk for k = 1, . . . , ℓ,

where w1
i is our low-dimensional representation and the others are constrained

to be intermediate layer outputs, i.e. wk+1
i = fk(wk

i) for k = 1, . . . , ℓ − 1. For
simpler notation, we fix wℓ+1

i = xi and denote fk↑ = f ℓ ◦ f ℓ−1 ◦ · · · ◦ fk, giving
the optimization problem in Equation 3.21. Our optimization procedure can then

50

3.3. Additive Component Analysis (ACA)

proceed as usual.

argmin
fk
j∈F ,

wi∈W

n∑
i=1

ℓ∑
k=1

∥∥∥xi−fk↑(wk
i)
∥∥∥2
2

s.t. wk+1
i =fk(wk

i) (3.21)

To enable effective learning of the intermediate layers, we ignore the equality
constraint when solving for the latent variables so that each fk↑(wk

i) optimally
reconstructs xi. (Note that this bears some similarity to deeply-supervised deep
neural networks, in which intermediate loss functions encourage the discriminabil-
ity of hidden layers [79].) In other words, deep ACA can be interpreted as learning
a sequence of manifolds with decreasing dimensionality so that wk

i can be found
by orthogonally projecting xi onto the mk-dimensional manifold defined by fk↑.

As before, we first approximate the latent variables by fixing the basis func-
tions and iteratively projecting xi onto the resulting manfiold’s tangent space,
which is constructed as the first-order Taylor expansion of fk↑(wk

i) around w̃k
i :

Dk
i = [fk′

1 (w̃
k
ij), . . . ,f

k′
mk

(w̃k
ij)], D

k↑
i = Dℓ

iD
ℓ−1
i · · ·Dk

i

fk↑(wk
i) ≈ Dk↑

i wk
i + uk

i , u
k
i = fk↑(w̃k

i)−Dk↑
i w̃k

i (3.22)

Analogous to Equation 3.15, the result can be solved in closed-form.
We again decompose each set of latent variables into target components so

that wk+1
ij =

∑mk
j=1 g

k
ij . After reintroducing the equality constraint, they can

then be given as:

gk
ij = f j(w

k
ij) +

1

mk

(
wk+1

i −
mk∑
j=1

f j(w
k
ij)
)

(3.23)

Finally, we can again fit the basis functions fk(wk
ij) to the target components

gk+1
ij using standard regression.

3.3.4 Experimental Results

In this section, we evaluate the effectiveness of our method through qualita-
tive and quantitative analyses on a variety of synthetic and real datasets. This is
intended to demonstrate the wide applicability of ACA and to encourage its use
as a simple alternative to PCA. Specifically, we demonstrate robustness to noise,

51

3. Data Decomposition as Approximate Constraint Satisfaction

(a)
O

rig
in

al
D

at
a

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

(b)

A
C

A
D

en
oi

se
d

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

σ = 0

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

σ = 0.2

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

σ = 0.5

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

σ = 1

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

σ = 2

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

σ = 4

Figure 3.16: A visualization of ACA applied to synthetic data with extreme
amounts of noise. In each column, different amounts of Gaussian noise are added
to points along the manifold from Figure 3.11 (shown in color) along with uni-
formly random outliers (shown in grey). Top views of the original noisy data (a)
are compared to the denoised reconstructions achieved by ACA (b). Even with
large amounts of noise, ACA recovers the underlying structure of the data very
well resulting in consistent low-dimensional representations.

improved denoising and reconstruction performance, and more interpretable rep-
resentations with better separation of semantic categories, including large-scale
experiments on the MNIST dataset.

Because ACA explicitly optimizes reconstruction accuracy, it is naturally very
robust to noise unlike most approaches to manifold learning that require estima-
tion of a neighborhood graph using pairwise distances. To demonstrate this, we
constructed a synthetic dataset consisting of 1000 points sampled along a curved
two-dimensional manifold embedded in three-dimensions. We then added various
amounts of Gaussian noise along with 50 uniformly random outliers. A visual-
ization of this data can be seen in Figure 3.16 and qualitative comparisons are
shown in Figure 3.17 with a variety of nonlinear dimensionality reduction tech-
niques. ACA consistently results in superior low-dimensional representations even
in the presence of extreme noise. Importantly, unlike the other compared nonlin-
ear methods, ACA trivially supports reconstruction of the underlying manifold
for visualization of denoised data.

In image data, “noise” can take a variety of forms, including sensor noise, cast
shadows, misalignment, occlusions, etc. Due to its ability to model complex non-
linear structure, ACA results in perceptually more accurate image reconstructions

52

3.3. Additive Component Analysis (ACA)

(a)

O
rig

in
al

D
at

a

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

Input Dimension 1

In
p
u
t
D

im
e
n
s
io

n
 2

(b)

A
C

A
La

te
nt

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

(c)

PC
A

La
te

nt

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1
L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

(d)

K
PC

A
[1

29
]

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

(e)

Is
om

ap
[1

40
]

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

(f)

La
pl

ac
ia

n
[9

]

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

(g)

LL
E

[1
26

]

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

(h)

LL
C

[1
27

]

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

(i)

t-
SN

E
[1

45
]

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

(j)

C
ha

rt
in

g
[1

7]

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

σ = 0

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

σ = 0.2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

σ = 0.5

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

σ = 1

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

σ = 2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

σ = 4

Figure 3.17: Qualitative comparisons showing our method’s superior robustness
to noise. (a) Different amounts of noise are added to points corresponding to
the columns of Figure 3.16. The corresponding low-dimensional latent spaces
of (b) ACA are compared to those of (c) PCA and a variety of other nonlinear
dimensionality reduction techniques (c-j).

53

3. Data Decomposition as Approximate Constraint Satisfaction

(a)

O
rig

in
al

D
at

a

(b)

A
C

A
m

=
4

(c)

K
PC

A
m

=
4

(d)

PC
A

m
=

2
0

Figure 3.18: A demonstration of the invariance and complex denoising capabilities
of ACA. Given images of faces under a variety of different lighting conditions (a),
dimensionality reduction was performed using ACA (b) and KPCA (c) with 4
components and PCA (d) with 20 components. Because it is able to learn rich
nonlinearities, ACA achieves more perceptually plausible denoised images that
retain more detail with fewer components.

that are invariant to many of these sources. This is demonstrated in Figure 3.18
on the Extended Yale Face Database B [82], which contains partially aligned im-
ages of faces under different lighting conditions. Dimensionality reduction was
performed on ZCA whitened images using ACA and PCA with 4 and 20 com-
ponents respectively, giving similar average mean-squared reconstruction error.
Example components are visualized in Figure 3.12. Also compared was Kernel
PCA with 4 components and a Gaussian kernel with parameter σ2 = 2. Since
KPCA does not directly enable back-projection, approximate pre-images were
found using fixed-point iterations [97]. The resulting de-whitened image recon-
structions for ACA are perceptually more plausible, resulting in better shadow
removal while preserving more details for improved identity preservation.

In addition to enabling accurate data reconstruction, ACA can also encode
complex invariances due to the underlying smoothness constraints. This results
in low-dimensional representations that are useful for high-level tasks such as
exploratory data analysis and clustering. This is demonstrated in Figure 3.19,
which shows how the parameter ρ affects class separability and data reconstruction

54

3.3. Additive Component Analysis (ACA)

PCA (ρ = 0) KPCA ρ = 0.0003 ρ = 0.003 ρ = 0.03

(a)

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

1

2

1

2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

1
2

1
2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

1
2
1

2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

1

2

1

2

Latent Dimension 1

L
a
te

n
t
D

im
e
n
s
io

n
 2

1

2

1

2

(b)

(c)

Figure 3.19: A visualization of how the roughness parameter ρ affects the per-
formance of ACA on novel testing data. Two-dimensional latent embeddings (a)
of images from the COIL-20 dataset are shown in columns for PCA, KPCA, and
ACA with different values of ρ. Two example images (b) are also shown, along
with their reconstructions (c). Increasing ρ can improve image reconstruction
performance and the separability of object classes (shown as different colors in
the latent space), but can also reduce performance due to overfitting.

performance on unseen testing data. In this experiment, approximately half of
the 1440 processed images from the COIL-20 dataset [107] were used as training
data for a two layer deep ACA model with m = [2, 4] and a varying roughness
parameter. The learned models were then applied to the remaining testing images
and the corresponding two-dimensional representations plotted alongside example
image reconstructions. Increasing ρ allows for rougher basis functions with higher
complexity, giving better separability of categories (shown as different colors)
in the latent space in comparison to PCA and KPCA with a Gaussian kernel
(σ2 = 7). However, it can also lead to overfitting and poor reconstruction accuracy
of test images.

Finally, we demonstrate large-scale results on the MNIST dataset [78] con-
taining 60k training images and 10k testing images, which is prohibitive for many
nonlinear dimensionality reduction implementations. In Figure 3.20, training er-
ror is shown against elapsed time using both batch and stochastic optimization
with a batch size of 1000. Stochastic optimization leads to much faster conver-
gence in less than 10 minutes with an unoptimized Matlab implementation. Also

55

3. Data Decomposition as Approximate Constraint Satisfaction

shown are the resulting two-dimensional latent representations and example re-
constructions of the testing images. While batch optimization leads to slightly
lower training error, the over-separated latent space indicates overfitting in com-
parison to stochastic optimization. Note that while some techniques designed
specifically for low-dimensional visualization (e.g. t-SNE [145]) may result in
better class separation, they cannot reconstruct the input or be applied to new
data, leading to limited applicability. In Figure 3.20, quantitative results are also
shown demonstrating reconstruction performance and nearest-neighbor classifica-
tion performance.

3.3.5 Conclusion

Additive Component Analysis combines the simplicity and broad applicability
of linear component analysis with the nonlinear representational power of man-
ifold learning. It produces robust and interpretable latent representations given
by memory-efficient models optimized for data reconstruction. This results in
significantly improved performance, especially in the presence of noise, enabling
the detailed analysis and visualization of large, real-world datasets. Furthermore,
the composition of multiple ACA layers can overcome the modeling limitations
of additive components, with parameters that can be learned jointly with the
same memory-efficient optimization procedure. We believe that this demonstrates
the encouraging potential for nonparametric deep learning using compositions of
additive models as an alternative to standard linear transformations with fixed
nonlinear activation functions. This could potentially lead to adaptive representa-
tional power with far fewer parameters, reduced overfitting due to the underlying
smoothness assumption, and superior robustness.

56

3.3. Additive Component Analysis (ACA)

0 1000 2000 3000 4000 5000 6000

Elapsed Time (Seconds)

2

2.5

3

3.5

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

×10
6

PCA

ρ = 10
-4

 (Batch)

ρ = 10
-4

 (Stochastic)

ρ = 10
-3

 (Batch)

ρ = 10
-3

 (Stochastic)

(a) Convergence Timing Comparison

Latent Dimension 1

L
a

te
n

t
D

im
e

n
s
io

n
 2

(b) ACA

Latent Dimension 1

L
a

te
n

t
D

im
e

n
s
io

n
 2

0

1

2

3

4

5

6

7

8

9

(c) PCA

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−120

25

30

35

40

45
Training Reconstruction Error

Roughess Parameter ρ

M
ea

n
S

qu
ar

ed
 E

rr
or

m=2
m=4
m=8

Color:
ACA
PCA

Line:

(d) Training Reconstruction

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−120

25

30

35

40

45
Testing Reconstruction Error

Roughess Parameter ρ

M
ea

n
S

qu
ar

ed
 E

rr
or

m=2
m=4
m=8

Color:
ACA
PCA

Line:

(e) Testing Reconstruction

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−10

0.2

0.4

0.6

Testing Prediction Error

Roughess Parameter ρ

P
re

di
ct

io
n

E
rr

or

m=2
m=4
m=8

Color:
ACA
PCA

Line:

(f) Testing Prediction

Figure 3.20: The effect of our approximate stochastic optimization scheme applied
to the MNIST dataset. Reconstruction error (a) is plotted throughout training
with stochastic optimization with solid dots shown every 20 iterations. The re-
sulting two-dimensional test data embeddings for ρ = 10−3 (b) are compared
against to those of PCA (c) alongside grids of reconstructed images from the re-
gions indicated by black squares. Also shown are results on the MNIST datset,
showing (a) reconstruction error of training images, (b) reconstruction error of
testing images, and (c) testing nearest-neighbor classification error. Performance
is compared between PCA and ACA for a variety of roughness parameters ρ and
numbers of components m.

57

4 Deep Network Inference as
Data Decomposition

Deep convolutional neural networks have achieved remarkable success in the
field of computer vision. While far from new [78], the increasing availability of ex-
tremely large, labeled datasets along with modern advances in computation with
specialized hardware have resulted in state-of-the-art performance in many prob-
lems, including essentially all visual learning tasks. Examples include image classi-
fication [62], object detection [63], and semantic segmentation [28]. Despite a rich
history of practical and theoretical insights about these problems, modern deep
learning techniques typically rely on task-agnostic models and poorly-understood
heuristics. However, recent work [86, 143, 16] has shown that specialized architec-
tures incorporating classical domain knowledge can increase parameter efficiency,
relax training data requirements, and improve performance.

Prior to the advent of modern deep learning, optimization-based methods like
component analysis and sparse coding dominated the field of representation learn-
ing. These techniques use structured matrix factorization to decompose data into
linear combinations of shared components. Latent representations are inferred
by minimizing reconstruction error subject to constraints that enforce properties
like uniqueness and interpretability. Importantly, unlike feed-forward alternatives
that construct representations in closed-form via independent feature detectors,
this iterative optimization-based approach naturally introduces conditional de-
pendence between features in order to best explain data, a useful phenomenon
commonly referred to as “explaining away” within the context of graphical mod-
els [11]. An example of this effect is shown in Figure 4.1, which compares sparse

58

0 200 400 600 800 1000

Feature Index

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
o
s
it
iv

e
 C

o
rr

e
la

ti
o
n

(a) Feed-Forward

0 200 400 600 800 1000

Feature Index

0

0.05

0.1

0.15

0.2

C
o
e
ff
ic

ie
n
t
V

a
lu

e

(b) Optimization

(c)

x .336

...

.122

...

.083

...

.039

...

.024

...

.001

(d)

x̂

=

.194

+

.164

+

.141

+

.066

+

.026

+

.009

Figure 4.1: An example of the “explaining away” conditional dependence pro-
vided by optimization-based inference. Sparse representations constructed by
feed-forward nonnegative soft thresholding (a) have many more non-zero elements
due to redundancy and spurious activations (c). On the other hand, sparse repre-
sentations found by ℓ1-penalized, nonnegative least-squares optimization (b) yield
a more parsimonious set of components (d) that optimally reconstruct approxi-
mations of the data.

representations constructed using feed-forward soft thresholding with those given
by optimization-based inference with an ℓ1 penalty. While many components in
an overcomplete set of features may have high-correlation with an image, con-
strained optimization introduces competition between components resulting in
more parsimonious representations.

Component analysis methods are also often guided by intuitive goals of in-
corporating prior knowledge into learned representations. For example, statis-
tical independence allows for the separation of signals into distinct generative
sources [69], non-negativity leads to parts-based decompositions of objects [80],
and sparsity gives rise to locality and frequency selectivity [112]. Due to the diffi-
culty of enforcing intuitive constraints like these with feed-forward computations,
deep learning architectures are instead often motivated by distantly-related bio-
logical systems [131] or poorly-understand internal mechanisms such as covariate
shift [64] and gradient flow [55]. Furthermore, while a theoretical understand-
ing of deep learning is fundamentally lacking [158], even non-convex formulations
of matrix factorization are often associated with guarantees of convergence [6],
generalization [88], uniqueness [48], and even global optimality [51].

59

4. Deep Network Inference as Data Decomposition

𝒙

𝒂1 ≔ 𝜙
1
(𝐁1

T𝒙)

𝒂2 ≔ 𝜙 2(𝐁2
T𝒂1)

𝒂3 ≔ 𝜙 3(𝐁3
T𝒂2)

ℓ(𝒂3, 𝒚)

(a) Feed-Forward

ℓ(𝒘3, 𝒚)

𝐁2𝒘2

𝒙 ≈ 𝐁1𝒘1

𝒘3 = argmin
𝒘3 ∈𝒞 3

𝐸(𝒘, 𝒙)

𝐁3𝒘3 𝒘2 ∈ 𝒞2

𝒘1 ∈ 𝒞1

≈

≈

(b) DeepCA

ℓ(𝒛3, 𝒚)

𝒘1

𝒙

𝒘2 𝒛2 ∈ 𝒞2

𝒛1 ∈ 𝒞1

𝒘3 𝒛3 ∈ 𝒞3

(c) Optimization

ℓ(𝒛3
[𝑇]

, 𝒚)

𝒛1
[1]

𝒙

𝒛2
[1]

𝒛3
[1]

𝒛1
[2]

𝒛2
[2]

𝒛3
[2]

𝒛1
[𝑇]

𝒛2
[𝑇]

𝒛3
[𝑇]

(d) Unrolled Optimization

Figure 4.2: A comparison between feed-forward neural networks and the pro-
posed deep component analysis (DeepCA) model. While standard deep networks
construct learned representations as feed-forward compositions of nonlinear func-
tions (a), DeepCA instead treats them as unknown latent variables to be inferred
by constrained optimization (b). To accomplish this, we propose a differentiable
inference algorithm that can be expressed as a recurrent generalization of feed-
forward networks (c) that can be unrolled to a fixed number of iterations for
learning via backpropagation (d).

4.1 Deep Component Analysis

In order to unify the intuitive and theoretical insights of component analysis
with the practical advances made possible through deep learning, we introduce
the framework of Deep Component Analysis (DeepCA). This novel model for-
mulation can be interpreted as a multilayer extension of traditional component
analysis in which multiple layers are learned jointly with intuitive constraints in-
tended to encode structure and prior knowledge. DeepCA can also be motivated
from the perspective of deep neural networks by relaxing the implicit assumption
that the input to a layer is constrained to be the output of the previous layer,
as shown in Equation 4.1 below. In a feed-forward network (left), the output
of layer j, denoted aj , is given in closed-form as a nonlinear function of aj−1.
DeepCA (right) instead takes a generative approach in which the latent variables
wj associated with layer j are inferred to optimally reconstruct wj−1 as a linear
combination of learned components subject to some constraints Cj .

Feed-Forward: aj = ϕ(BT
j aj−1) =⇒ DeepCA: Bjwj ≈ wj−1 s.t. wj ∈ Cj (4.1)

From this perspective, intermediate network “activations” cannot be found

60

4.1. Deep Component Analysis

in closed-form but instead require explicitly solving an optimization problem.
While a variety of different techniques could be used for performing this infer-
ence, we propose the Alternating Direction Method of Multipliers (ADMM) [15].
Importantly, we demonstrate that after proper initialization, a single iteration
of this algorithm is equivalent to a pass through an associated feed-forward neu-
ral network with nonlinear activation functions interpreted as proximal operators
corresponding to penalties or constraints on the coefficients. The full inference
procedure can thus be implemented using Alternating Direction Neural Networks
(ADNN), recurrent generalizations of feed-forward networks that allow for pa-
rameter learning using backpropagation. A comparison between standard neural
networks and DeepCA is shown in Figure 4.2. Experimentally, we demonstrate
that recurrent passes through convolutional neural networks enable better spar-
sity control resulting in consistent performance improvements in both supervised
and unsupervised tasks without introducing any additional parameters.

In addition to practical advantages, our model also provides a novel perspec-
tive for conceptualizing deep learning techniques. Specifically, rectified linear unit
(ReLU) activation functions [49], which are ubiquitous among many state-of-the-
art models in a variety of applications, are equivalent to ℓ1-penalized, sparse
projections onto non-negativity constraints. Alongside the interpretation of feed-
forward networks as single-iteration approximations of reconstruction objective
functions, this suggests new insights towards better understanding the effective-
ness of deep neural networks from the perspective of sparse approximation theory.

Deep Component Analysis generalizes inference in the original component
analysis model of Equation 3.2 by introducing additional layers j = 1, . . . , l with
parameters Bj ∈ Rpj−1×pj . Optimal DeepCA inference can then be accomplished
via Equation 4.2, where we use penalty function notation Φj : Rpj → R in place
of constraint sets.

f∗(x) = argmin
{wj}

l∑
j=1

1
2 ∥wj−1 −Bjwj∥22 +Φj(wj) s.t. w0 = x (4.2)

Note that hard constraints can still be represented by indicator functions I(wj ∈
Cj) that equal zero if wj ∈ Cj and infinity otherwise. While we use pre-multiplication
with a weight matrix Bj to simplify notation, our method also supports any linear

61

4. Deep Network Inference as Data Decomposition

transformation by replacing transposed weight matrix multiplication with its cor-
responding adjoint operator. For example, the adjoint of convolution is transposed
convolution, a popular approach to upsampling in convolutional networks [110].

If the penalty functions are convex, this problem is also convex and can be
solved using standard optimization methods. Instead of alternating optimization
for parameter learning, however, we use backpropagation like in standard feed-
forward networks by replacing the inference function in Equation 2.3 with an
optimization algorithm for solving Equation 4.2 unrolled to a fixed number of
iterations. This allows for arbitrary loss functions while still enforcing constraints
on the inferred outputs.

4.1.1 From Activation Functions to Constraints

Before introducing our inference algorithm, we first discuss the connection
between penalties and their nonlinear proximal operators, which forms the ba-
sis of the close relationship between DeepCA and traditional neural networks.
Ubiquitous within the field of convex optimization, proximal algorithms [118] are
methods for solving nonsmooth optimization problems. Essentially, these tech-
niques work by breaking a problem down into a sequence of smaller problems
that can often be solved in closed-form by proximal operators ϕ : Rd → Rd asso-
ciated with penalty functions Φ : Rd → R given by the solution to the following
optimization problem, which generalizes projection onto a constraint set:

ϕ(w) = argmin
w′

1
2

∥∥w −w′∥∥2
2
+Φ(w′) (4.3)

Within the framework of DeepCA, we interpret nonlinear activation functions
in deep networks as proximal operators associated with convex penalties on la-
tent coefficients in each layer. hile this connection cannot be used to generalize
all nonlinearities, many can naturally be interpreted as proximal operators. For
example, the sparsemax activation function is a projection onto the probability
simplex [96]. Similarly, the ReLU activation function is a projection onto the
nonnegative orthant. When used with a negative bias b, it is equivalent to non-
negative soft-thresholding S+

b , the proximal operator associated with nonnegative

62

4.1. Deep Component Analysis

ℓ1 regularization:

Φℓ+1 (w) = I(w ≥ 0)+
∑

pbp |wp| =⇒ ϕℓ+1 (w) = S+
b (w) = ReLU(w−b) (4.4)

While this equivalence has been noted previously as a means to theoretically ana-
lyze convolutional neural networks [117], DeepCA supports optimizing the bias b

as an ℓ1 penalty hyperparameter via backpropagation for adaptive regularization,
which results in better control of representation sparsity.

In addition to standard activation functions, DeepCA also allows for enforcing
additional constraints that encode prior knowledge if their corresponding proximal
operators can be computed efficiently. For our example of single-image depth
prediction with a sparse set of known outputs y provided as prior knowledge,
the penalty function on the final output wl is Φl(wl) = I(Swl = y) where
the selector matrix S extracts the indices corresponding to the known outputs
in y. The associated proximal operator ϕl projects onto this constraint set by
simply correcting the outputs that disagree with the known constraints. Note
that this would not be an effective output nonlinearity in a feed-forward network
because, while the constraints would be technically satisfied, there is nothing to
enforce that they be consistent with neighboring predictions leading to unrealistic
discontinuities. In contrast, DeepCA inference minimizes the reconstruction error
at each layer subject to these constraints by taking multiple iterations through
the network.

4.1.2 Alternating Direction Neural Networks

With the model parameters fixed, we solve our DeepCA inference problem
using the Alternating Direction Method of Multipliers (ADMM), a general opti-
mization technique that has been successfully used in a wide variety of applica-
tions [15]. To derive the algorithm applied to our problem, we first modify our
objective function by introducing auxiliary variables zj that we constrain to be
equal to the unknown coefficients wj , as shown in Equation 4.5 below.

argmin
{wj ,zj}

l∑
j=1

1
2 ∥zj−1−Bjwj∥22 +Φj(zj) s.t. w0 = x, ∀j : wj = zj (4.5)

63

4. Deep Network Inference as Data Decomposition

From this, we construct the augmented Lagrangian Lρ with dual variables λ

and a quadratic penalty hyperparameter ρ = 1:

Lρ =
l∑

j=1

1
2 ∥zj−1 −Bjwj∥22 +Φj(zj) + λT

j (wj − zj) +
ρ
2 ∥wj − zj∥22 (4.6)

The ADMM algorithm then proceeds by iteratively minimizing Lρ with re-
spect to each set of variables with the others fixed, breaking our full inference
problem into smaller pieces that can each be solved in closed form. Due to the
decoupling of layers in our DeepCA model, the latent activations can be updated
incrementally by stepping through each layer in succession, resulting in faster
convergence and computations that mirror the computational structure of deep
neural networks. With only one layer, our objective function is separable and
so this algorithm reduces to the classical two-block ADMM, which has extensive
convergence guarantees [15]. For multiple layers, however, our problem becomes
non-separable and so this algorithm can be seen as an instance of cyclical multi-
block ADMM with quadratic coupling terms. While our experiments have shown
this approach to be effective in our applications, theoretical analysis of its con-
vergence properties is still an active area of research [27].

A single iteration of our algorithm proceeds by taking the following steps for
all layers j = 1, . . . , l in succession:

1.) First, wj is updated by minimizing the Lagrangian after fixing the as-
sociated auxiliary variable zj from the previous iteration along with that of the
previous layer zj−1 from the current iteration:

w
[t+1]
j := argmin

wj

Lρ(wj , z
[t+1]
j−1 , z

[t]
j ,λ

[t]
j) (4.7)

=
(
BT

j Bj + ρI
)−1

(BT
j z

[t+1]
j−1 + ρz

[t]
j − λ

[t]
j)

This is an unconstrained linear least squares problem, so it’s solution is given by
solving a linear system of equations.

2.) Next, zj is updated by fixing the newly updated wj along with the next

64

4.1. Deep Component Analysis

layer’s coefficients wj+1 from the previous iteration:

z
[t+1]
j := argmin

zj

Lρ(w
[t+1]
j ,w

[t]
j+1, zj ,λ

[t]
j) (4.8)

= ϕj

(
1

ρ+1Bj+1w
[t]
j+1 +

ρ
ρ+1(w

[t+1]
j + 1

ρλ
[t]
j)
)

z
[t+1]
l := ϕj

(
w

[t+1]
j + 1

ρλ
[t]
j

)
This is the proximal minimization problem from Equation 4.3, so its solution is
given in closed form via the proximal operator ϕj associated with the penalty
function Φj . Note that for j ̸= l, its argument is a convex combination of the
current coefficients wj and feedback that enforces consistency with the next layer.

3.) Finally, the dual variables λj are updated with the constraint violations
scaled by the penalty parameter ρ.

λ
[t+1]
j := λ

[t]
j + ρ(w

[t+1]
j − z

[t+1]
j) (4.9)

This process is then repeated until convergence. Though not available as a
closed-form expression, in the next section we demonstrate how this algorithm
can be posed as a recurrent generalization of a feed-forward neural network.

Our inference algorithm essentially follows the same pattern as a deep neural
network: for each layer, a learned linear transformation is applied to the previous
output followed by a fixed nonlinear function. Building upon this observation, we
implement it using a recurrent network with standard layers, thus allowing the
model parameters to be learned using backpropagation.

Recall that the wj update in Equation 4.7 requires solving a linear system
of equations. While differentiable, this introduces additional computational com-
plexity not present in standard neural networks. To overcome this, we implicitly
assume that the parameters in over-complete layers are Parseval tight frames, i.e.
so that BjB

T
j = I. This property is theoretically advantageous in the field of

sparse approximation [26] and has been used as a constraint to encourage robust-
ness in deep neural networks [98]. However, in our experiments we found that it
was unnecessary to explicitly enforce this assumption during training; with ap-
propriate learning rates, backpropagating through our inference algorithm was
enough to ensure that repeated iterations did not result in diverging sequences
of variable updates. Thus, under this assumption, we can simplify the update in

65

4. Deep Network Inference as Data Decomposition

Algorithm 1: Feed-Forward

Input: x, {Bj , bj}
Output: {wj}, {zj}
Initialize: z0 = x

for j = 1, . . . , l do
Pre-activation:
wj := BT

j zj−1

Activation:
zj := ϕj(wj − bj)

end

Algorithm 2: Alternating Direction Neural Network

Input: x, {Bj , bj}
Output: {w[T]

j }, {z[T]
j }

Initialize: {λ[0]
j } = 0, {w[1]

j ,z
[1]
j } from Algorithm 1

for t = 1, . . . , T − 1 do
for j = 1, . . . , l do

Dual: Update λ
[t]
j (Eq. 4.9)

Pre-activation: Update w
[t+1]
j (Eq. 4.10)

Activation: Update z
[t+1]
j (Equ. 4.8)

end
end

Equation 4.7 using the Woodbury matrix identity as follows:

w
[t+1]
j := z̃

[t]
j + 1

ρ+1B
T
j

(
z
[t+1]
j−1 −Bj z̃

[t]
j

)
, z̃

[t]
j := z

[t]
j − 1

ρλ
[t]
j (4.10)

As this only involves simple linear transformations, our ADMM algorithm for
solving the optimization problem in our inference function f∗ can be expressed
as a recurrent neural network that repeatedly iterates until convergence. In prac-
tice, however, we unroll the network to a fixed number of iterations T for an
approximation of optimal inference so that f [T](x) ≈ f∗(x). Our full algorithm
is summarized in Algorithms 1 and 2.

4.1.3 Generalization of Feed-Forward Networks

Given proper initialization of the variables, a single iteration of this algorithm
is identical to a single pass through a feed-forward network. Specifically, if we
let λ

[0]
j = 0 and z

[0]
j = BT

j z
[1]
j−1, where we again denote z

[1]
0 = x, then w

[1]
j is

equivalent to the pre-activation of a neural network layer:

w
[1]
j := BT

j z
[1]
j−1 +

1
ρ+1B

T
j

(
z
[1]
j−1 −Bj(B

T
j z

[1]
j−1)

)
= BT

j z
[1]
j−1 (4.11)

Similarly, if we initialize w
[0]
j+1 = BT

j+1w
[1]
j , then z

[1]
j is equivalent to the

corresponding nonlinear activation using the proximal operator ϕj :

z
[1]
j := ϕj

(
1

ρ+1Bj+1(B
T
j+1w

[1]
j) + ρ

ρ+1w
[1]
j

)
= ϕj

(
w

[1]
j

)
(4.12)

66

4.1. Deep Component Analysis

Thus, one iteration of our inference algorithm is equivalent to the standard
feed-forward neural network given in Equation 2.2, i.e. f [1](x) = fDNN(x), where
nonlinear activation functions are interpreted as proximal operators correspond-
ing to the penalties of our DeepCA model. Additional iterations through the
network lead to more accurate inference approximations while explicitly satisfy-
ing constraints on the latent variables.

4.1.4 Learning by Backpropagation

With DeepCA inference approximated by differentiable ADNNs, the model
parameters can be learned in the same way as standard feed-forward networks.
Extending the nested component analysis optimization problem from Equation 2.1,
the inference function f [T] can be used as a generalization of feed-forward network
inference f [1] for backpropagation with arbitrary loss functions L that encourage
the output to be consistent with provided supervision y(i), as shown in Equa-
tion 4.13 below. Here, only the latent coefficients f

[T]
l (x(i)) from the last layer

are shown in the loss function, but other intermediate outputs j ̸= l could also
be included.

argmin
{Bj ,bj}

n∑
i=1

L
(
f
[T]
l (x(i)), y(i)

)
(4.13)

From an agnostic perspective, an ADNN can thus be seen as an end-to-end deep
network architecture with a particular sequence of linear and nonlinear trans-
formations and tied weights. More iterations (T > 1) result in networks with
greater effective depth, potentially allowing for the representation of more com-
plex nonlinearities. However, because the network architecture was derived from
an algorithm for inference in our DeepCA model instead of arbitrary composi-
tions of parameterized transformations, the greater depth requires no additional
parameters and serves the very specific purpose of satisfying constraints on the
latent variables while enforcing consistency with the model parameters.

4.1.5 Sparse Measurements as Constraints for Depth Completion

DeepCA also allows for other constraints that would be impossible to effec-
tively enforce with a single feed-forward pass through a network. As an example,

67

4. Deep Network Inference as Data Decomposition

Image Given Baseline T = 2 T = 3 T = 5 T = 10 T = 20 Truth

Figure 4.3: A demonstration of DeepCA applied to single-image depth predic-
tion using images concatenated with sparse sets of known depth values as input.
Baseline feed-forward networks are not guaranteed to produce outputs that are
consistent with the given depth values. In comparison, ADNNs with an increas-
ing number of iterations (T > 1) learn to satisfy the sparse output constraints,
resolving ambiguities for more accurate predictions without unrealistic disconti-
nuities.

we consider the task of single-image depth prediction, a difficult problem due to
the absence of three-dimensional information such as scale and perspective. In
many practical scenarios, however, sparse sets of known depth outputs are avail-
able for resolving these ambiguities to improve accuracy. This prior knowledge
can come from additional sensor modalities like LIDAR or from other 3D recon-
struction algorithms that provide sparse depths around textured image regions.
Feed-forward networks have been proposed for this problem by concatenating
known depth values as an additional input channel [93]. However, while this
provides useful context, predictions are not guaranteed to be consistent with the
given outputs leading to unrealistic discontinuities. In comparison, DeepCA en-
forces the constraints by treating predictions as unknown latent variables. Some
examples of how this behavior can resolve ambiguities are shown in Figure 4.3
where ADNNs with additional iterations learn to propagate information from the
given depth values to produce more accurate predictions.

68

4.1. Deep Component Analysis

0.001 0.003 0.01 0.03

Fixed Bias (Sparse Regularization Weight)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
e

c
o

n
s
tr

u
c
ti
o

n
 E

rr
o

r

Baseline

DeepCA

Learned Bias

(a) Decoder Error

0.001 0.003 0.01 0.03

Fixed Bias (Sparse Regularization Weight)

0

0.2

0.4

0.6

0.8

1

S
p

a
rs

it
y
 P

ro
p

o
rt

io
n

Baseline

DeepCA

Learned Bias

(b) Layer 1 Sparsity

0.001 0.003 0.01 0.03

Fixed Bias (Sparse Regularization Weight)

0

0.2

0.4

0.6

0.8

1

S
p

a
rs

it
y
 P

ro
p

o
rt

io
n

Baseline

DeepCA

Learned Bias

(c) Layer 2 Sparsity

0.001 0.003 0.01 0.03

Fixed Bias (Sparse Regularization Weight)

0

0.2

0.4

0.6

0.8

1

S
p

a
rs

it
y
 P

ro
p

o
rt

io
n

Baseline

DeepCA

Learned Bias

(d) Layer 3 Sparsity

Figure 4.4: A demonstration of the effects of fixed (solid lines) and learnable (dot-
ted lines) bias parameters on the reconstruction error (a) and activation sparsity
(b-d) comparing feed forward networks (blue) with DeepCA (red). All models
consist of three layers each with 512 components. Due to the conditional de-
pendence provided by recurrent feedback, DeepCA learns to better control the
sparsity level in order improve reconstruction error. As ℓ1 regularization weights,
the biases converge towards zero resulting in denser activations and higher net-
work capacity for reconstruction.

1 2 3 4 5 6

Model Size Multiplier

0

0.1

0.2

0.3

0.4

0.5

0.6

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

1 Iteration (Feed-Forward)

5 Iterations

10 Iterations

(a) Training Error

1 2 3 4 5 6

Model Size Multiplier

0.2

0.3

0.4

0.5

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

1 Iteration (Feed-Forward)

5 Iterations

10 Iterations

(b) Testing Error

0 50 100 150 200

Training Epoch

0.15

0.2

0.25

0.3

0.35

0.4

C
la

s
s
if
ic

a
ti
o
n
 E

rr
o
r

1 Iteration (Feed-Forward)

5 Iterations

10 Iterations

(c) Optimization

Figure 4.5: The effect of increasing model size on training (a) and testing (b)
classification error, demonstrating consistently improved performance of ADNNs
over feed-forward networks, especially in larger models. The base model consists
of two 3× 3, 2-strided convolutional layers followed by one fully-connected layer
with 4, 8, and 16 components respectively. Also shown are is the classification
error throughout training (c).

4.1.6 Experimental Results

In this section, we demonstrate some practical advantages of more accurate
inference approximations in our DeepCA model using recurrent ADNNs over feed-
forward networks. Even without additional prior knowledge, standard convo-
lutional networks with ReLU activation functions still benefit from additional
recurrent iterations as demonstrated by consistent improvements in both super-
vised and unsupervised tasks on the CIFAR-10 dataset [74]. Specifically, for an

69

4. Deep Network Inference as Data Decomposition

0 50 100 150 200

Training Epoch

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
ra

in
in

g
 E

rr
o

r

1 Iteration

2 Iterations

3 Iterations

5 Iterations

10 Iterations

20 Iterations

(a) Training

0 50 100 150 200

Training Epoch

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
e

s
ti
n

g
 E

rr
o

r

1 Iteration

2 Iterations

3 Iterations

5 Iterations

10 Iterations

20 Iterations

(b) Testing

1 2 3 5 10 20

Number of Iterations

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
ra

in
in

g
 E

rr
o
r

1 Residual Block

5 Residual Blocks

18 Residual Blocks

(c) Train Error

1 2 3 5 10 20

Number of Iterations

0.01

0.02

0.03

0.04

0.05

0.06

0.07

T
e
s
ti
n
g
 E

rr
o
r

1 Residual Block

5 Residual Blocks

18 Residual Blocks

(d) Test Error

Figure 4.6: Quantitative results on reduced-size images from the NYU-Depth
V2 dataset. The training (a) and testing (b) reconstruction errors throughout
optimization show that more iterations (T > 1) reduce convergence time and
give much lower error on held-out test data. With a sufficiently large number of
iterations, even lower-capacity models with encoders consisting of fewer residual
blocks all achieve nearly the same level of performance with small discrepancies
between training (c) and testing (d) errors.

unsupervised autoencoder with an ℓ2 reconstruction loss, Figure 4.4 shows that
the additional iterations of ADNNs allow for better sparsity control, resulting
in higher network capacity through denser activations and lower reconstruction
error. This suggests that recurrent feedback allows ADNNs to learn richer rep-
resentation spaces by explicitly penalizing activation sparsity. For supervised
classification with a cross-entropy loss, ADNNs also see improved accuracy as
shown in Figure 4.5, particularly for larger models with more parameters per
layer. Because we treat layer biases as learned hyperparameters that modulate
the relative weight of ℓ1 activation penalties, this improvement could again be at-
tributed to this adaptive sparsity encouraging more discriminative representations
across semantic categories.

While these experiments emphasize the importance of sparsity in deep net-
works and justify our DeepCA model formulation, the effectiveness of feed-forward
soft thresholding as an approximation of explicit ℓ1 regularization limits the
amount of additional capacity that can be achieved with more iterations. As
such, ADNNs provide much greater performance gains when prior knowledge is
available in the form of constraints that cannot be effectively approximated by
feed-forward nonlinearities. This is exemplified by our application of output-
constrained single-image depth prediction where simple feed-forward correction
of the known depth values results in inconsistent discontinuities. We demonstrate

70

4.1. Deep Component Analysis

(a)

In
pu

t
Im

ag
e

(b)

Ba
se

lin
e

(T
=

1
)

(c)

A
D

N
N

(T
=

2
0

)

(d)

G
ro

un
d

Tr
ut

h

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

(a)

In
pu

t
Im

ag
e

(b)

Ba
se

lin
e

(T
=

1
)

(c)

A
D

N
N

(T
=

2
0

)

(d)

G
ro

un
d

Tr
ut

h

(x) (xi) (xii) (xiii) (xiv) (xv) (xvi) (xvii) (xviii)

Figure 4.7: Qualitative depth prediction results given a single image (a) and a
sparse set of known depth values as input. Outputs of the baseline feed-forward
model (b) are inconsistent with the constraints as evidenced by unrealistic discon-
tinuities. An ADNN with T = 20 iterations (c) learns to enforce the constraints,
resolving ambiguities for more detailed predictions that better agree with ground
truth depth maps (d). Depending on the difficulty, additional iterations may
have little effect on the output (xvii) or be insufficient to consistently integrate
the known constraint values (xviii).

71

4. Deep Network Inference as Data Decomposition

this with the NYU-Depth V2 dataset [106], from which we sample 60k training
images and 500 testing images from held-out scenes. To enable clearer visual-
ization, we resize the images to 28 × 28 and then randomly sample 10% of the
ground truth depth values to simulate known measurements. Following [93], our
model architecture uses a ResNet encoder for feature extraction of the image con-
catenated with the known depth values as an additional input channel. This is
followed by an ADNN decoder composed of three transposed convolution upsam-
pling layers with biased ReLU nonlinearites in the first two layers and a constraint
correction proximal operator in the last layer. Figure 4.6 shows the mean absolute
prediction errors of this model with increasing numbers of iterations and different
encoder sizes. While all models have similar prediction error on training data,
ADNNs with more iterations achieve significantly improved generalization per-
formance, reducing the test error of the feed-forward baseline by over 72% from
0.054 to 0.015 with 20 iterations even with low-capacity encoders. Qualitative
visualizations in Figure 4.7 show that these improvements result from consistent
constraint satisfaction that serves to resolve depth ambiguities.

In Figure 4.8, we also show qualitative and quantitative results on the full-
sized images, an easier problem due to reduced ambiguities provided by higher-
resolution details. Quantitative metrics in Table 4.1 (following [93]) demonstrate
the effect of changing the ResNet encoder size on prediction performance. Despite
having far fewer learnable parameters, ADNNs perform comparably to a state-
of-the-art feed-forward model due to explicit enforcement of the sparse output
constraints. While feed-forward models have achieved good performance given
sufficient model capacity [93], they generalize poorly due to globally-biased pre-
diction errors causing disagreement with the known measurements. By explicitly
enforcing agreement with the sparse output constraints, ADNNs reduce outliers
and give improved test performance that is comparable with feed-forward net-
works requiring significantly more learnable parameters.

4.1.7 Conclusion

DeepCA is a novel deep model formulation that extends shallow component
analysis techniques to increase representational capacity. Unlike feed-forward

72

4.1. Deep Component Analysis
B

as
el

in
e

A
D

N
N

(a) Model Architectures

(b) Training Data (c) Baseline (d) ADNN (10
iterations)

Figure 4.8: Results on full-sized images from the NYU-Depth V2 dataset, com-
paring a feed-forward baseline and an ADNN architecture with 10 iterations (a).
Given input images, constraints, and ground truth depth maps (b) for both base-
line (c) and ADNN (d) architectures, example predictions and absolute error maps
are visualized.

Table 4.1: Quantitative ADNN results on the full-sized NYU dataset.
Method ResNet # Params RMSE Rel δ1 δ2 δ3

Baseline 18 1.5× 107 0.54 0.16 79.2 94.7 99.4
ADNN 18 1.2× 107 0.28 0.06 95.5 99.4 99.9
Baseline 10 8.8× 106 0.56 0.16 79.8 94.6 99.4
ADNN 10 6.5 × 106 0.24 0.05 97.3 99.6 99.9
[93] 50 3.4× 107 0.23 0.04 97.1 99.4 99.8

73

4. Deep Network Inference as Data Decomposition

networks, intermediate network activations are interpreted as latent variables to
be inferred using an iterative constrained optimization algorithm implemented
as a recurrent ADNN. This allows for learning with arbitrary loss functions and
provides a tool for consistently integrating prior knowledge in the form of con-
straints or regularization penalties. Due to its close relationship to feed-forward
networks, which are equivalent to one iteration of this algorithm with proximal
operators replacing nonlinear activation functions, DeepCA also provides a novel
perspective from which to interpret deep learning, suggesting possible new direc-
tions for the analysis and design of network architectures from the perspective of
sparse approximation theory.

4.2 Model Selection with the Deep Frame Potential

We propose to interpret feed-forward deep networks as a method for approx-
imate inference in related sparse coding problems. These problems aim to opti-
mally reconstruct zero-padded input images as sparse, nonnegative linear combi-
nations of atoms from architecture-dependent dictionaries, as shown in Figure 4.9.
We propose to indirectly analyze practical deep network architectures with com-
plicated skip connections, like residual networks (ResNets) [54] and densely con-
nected convolutional networks (DenseNets) [62], simply through the dictionary
structures that they induce.

To accomplish this, we introduce the deep frame potential for summarizing
the parameters of feed-forward deep networks. As a lower bound on mutual
coherence–the maximum magnitude of the normalized inner products between all
pairs of dictionary atoms [39]–it is theoretically tied to generalization properties of
the related sparse coding problems. However, its minimizers depend only on the
dictionary structures induced by the corresponding network architectures. This
enables dataless model comparison by jointly quantifying contributions of depth,
width, and connectivity.

Our approach is motivated by sparse approximation theory [43], a field that
encompasses properties like uniqueness and robustness of shallow, overcomplete
representations. In sparse coding, capacity is controlled by the number of dic-
tionary atoms used in sparse data reconstructions. While more parameters allow

74

4.2. Model Selection with the Deep Frame Potential

(a) Chain Network (b) ResNet (c) DenseNet

≈ ≈ ≈

(d) Induced Dictionary Structures for Sparse Approximation

Figure 4.9: Why are some deep neural network architectures better than others?
In comparison to (a) standard chain connections, skip connections like those in (b)
ResNets [54] and (c) DenseNets [62] have demonstrated significant improvements
in training effectiveness, parameter efficiency, and generalization performance.
(d) We provide one possible explanation for this phenomenon by approximating
network activations as solutions to sparse approximation problems with different
induced dictionary structures. To summarize these architecture-dependent differ-
ences, we propose the deep frame potential–a measure of coherence that is related
to representation stability–as a criterion for dataless model selection.

for more accurate representations, they may also increase input sensitivity for
worse generalization performance. Conceptually, this is comparable to overfit-
ting in nearest-neighbor classification, where representations are sparse, one-hot
indicator vectors corresponding to nearest training examples. As the number of
training data increases, the distance between them decreases, so they are more
likely to be confused with one another. Similarly, nearby dictionary atoms may
introduce instability that causes representations of similar data points to become
very far apart leading to poor generalization performance. Thus, the robustness
of shallow representations is fundamentally limited by the proximity of dictionary
atoms through similarity measures like mutual coherence.

However, deep representations have not shown this same correlation between
model size and sensitivity [158]. While adding more layers to a deep neural
network increases its capacity, it also simultaneously introduces implicit regu-
larization to reduce overfitting. This can be explained through the proposed

75

4. Deep Network Inference as Data Decomposition

=

(a) Chain Network Gram Matrix (b) ResNet (c) DenseNet

Figure 4.10: In comparison to (a) chain networks, skip connections in (b) residual
networks and (c) densely connected networks produce Gram matrix structures
with more nonzero elements.

connection to sparse coding, where additional layers increase both capacity and
effective input dimensionality. In a higher-dimensional space, dictionary atoms
can be spaced further apart for more robust representations. Furthermore, we
argue in Figure 4.10 that architectures with denser skip connections induce dic-
tionary structures with more nonzero elements, which provides additional freedom
to reduce mutual coherence with fewer parameters. In Figure 4.11, we show that
this correlates with improved generalization performance.

We propose to use the minimum deep frame potential as a cue for model
selection. Instead of requiring expensive validation on a specific dataset to ap-
proximate generalization performance, architectures are chosen based on how ef-
ficiently they can reduce the minimum achievable mutual coherence with respect
to the number of model parameters. In this paper, we provide an efficient frame
potential minimization method for a general class of convolutional networks with
skip connections, of which ResNets and DenseNets are shown to be special cases.
Furthermore, we derive an analytic expression for the minimum value in the case
of fully-connected chain networks. Experimentally, we demonstrate correlation
with validation error across a variety of network architectures.

4.2.1 Architecture-Induced Dictionary Structure

While deep representations can be analyzed by accumulating the effects of
approximating individual layers in a chain network as shallow sparse coding prob-
lems [117], this strategy cannot be easily adapted to account for more complicated
interactions between layers. Instead, we adapt the framework of Deep Compo-

76

4.2. Model Selection with the Deep Frame Potential

103 104 105 106 107

Number of Parameters (Log Scale)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
M

in
im

u
m

 F
ra

m
e

 P
o

te
n

ti
a

l Dense Network

Residual Network

Chain Network

(a) Minimum Deep Frame Potential

103 104 105 106 107

Number of Parameters (Log Scale)

0

0.1

0.2

0.3

0.4

0.5

V
a
lid

a
ti
o
n
 E

rr
o
r

Dense Network

Residual Network

Chain Network

(b) Validation Error

Figure 4.11: Parameter count is not a good indicator of generalization perfor-
mance for deep networks. Instead, we compare different network architectures
via the minimum deep frame potential, the average nonzero magnitude of in-
ner products between atoms of architecture-induced dictionaries. In comparison
to chain networks, skip connections in residual networks and densely connected
networks produce Gram matrix structures with more nonzero elements allowing
for (a) lower deep frame potentials across network sizes. This correlates with
improved parameter efficiency giving (b) lower validation error with fewer pa-
rameters.

nent Analysis [99], which jointly represents all layers in a neural network as a
single sparse coding problem. In Equation 4.14, the activations wj ∈ Rkj of
a feed-forward chain network approximate the solutions to a joint optimization
problem where w0 = x ∈ Rk0 and the regularization functions Φj are nonnegative
sparsity-inducing penalties as defined in Equation 2.4.

wj := ϕj(B
T
j wj−1) ∀j = 1, . . . , l (4.14)

≈ argmin
{wj}

l∑
j=1

∥Bjwj −wj−1∥22 +Φj(wj)

The compositional constraints between adjacent layers are relaxed and replaced
by reconstruction error penalty terms, resulting in a convex, nonnegative sparse
coding problem.

By combining the terms in the summation of Equation 4.14 together into a
single system, this problem can be equivalently represented as shown in Equa-
tion 4.15, where the latent variables wj are stacked together in the vector w,

77

4. Deep Network Inference as Data Decomposition

Φ(w) =
∑

j Φj(wj), and the input x is augmented with zeros.

argmin
w

∥∥∥∥∥∥∥∥∥∥∥∥

B︷ ︸︸ ︷
B1 0

−I B2
. . .

. 0

−I Bl

w︷ ︸︸ ︷
w1

w2

...
wl

−

x

0
...
0

∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+Φ(w) (4.15)

The layer parameters Bj ∈ Rkj−1×kj are blocks in the induced dictionary B, which
has

∑
j kj−1 rows and

∑
j kj columns. It has a lower block-triangular structure of

nonzero elements that summarizes the corresponding feed-forward deep network
architecture wherein the off-diagonal identity matrices connect adjacent layers.

Model capacity can be increased both by adding additional parameters to
a layer or by adding layers, which implicitly pads the input data x with more
zeros. This can actually reduce mutual coherence by increasing the system’s di-
mensionality. Depth allows model complexity to scale jointly alongside effective
input dimensionality so that the induced dictionary structures still have the ca-
pacity for low mutual coherence and improved capabilities for memorization and
generalization.

We extend this model formulation to incorporate more complicated network
architectures. Because mutual coherence is dependent on normalized dictionary
atoms, we observe that the magnitudes of their elements and their inner products
can both be reduced by increasing the number of nonzeros. In Equation 4.16, we
replace the identity connections of Equation 4.15 with blocks of nonzero param-
eters to allow for lower mutual coherence.

B =

B11 0

BT
21 B22

. . .
... 0

BT
l1 · · · BT

l(l−1) Bll

 (4.16)

This lower block triangular structure is induced by the feed-forward activations
in Equation 4.17, which again approximate the solutions to a nonnegative sparse

78

4.2. Model Selection with the Deep Frame Potential

coding problem.

wj := ϕj

(
−BT

jj

j−1∑
k=1

BT
jkwk

)
∀j = 1, . . . , l (4.17)

≈ argmin
{wj}

l∑
j=1

∥∥∥Bjjwj +

j−1∑
k=1

BT
jkwj

∥∥∥2
F
+Φj(wj)

In comparison to Equation 4.14, additional parameters introduce skip connections
between layers so that the activations wj of layer j now depend on those of all
previous layers k < j.

These connections are similar to the identity mappings in residual networks [54],
which introduce dependence between the activations of pairs of layers for even
j ∈ [1, l − 1]:

wj := ϕj(B
T
j wj−1), wj+1 := ϕj+1(wj−1+BT

j+1wj) (4.18)

In comparison to chain networks, no additional parameters are required; the only
difference is the addition of wj−1 in the argument of ϕj+1. As a special case
of our more general framework, we interpret the activations in Equation 4.18 as
approximate solutions to the optimization problem in Equation 4.19:

argmin
{wj}

∥x−B1w1∥22 +
l∑

j=1

Φj(wj) (4.19)

+
∑
even j

∥∥∥wj −BT
j wj−1

∥∥∥2
2
+
∥∥∥wj+1 −wj−1 −BT

j+1wj

∥∥∥2
2

This results in the induced dictionary structure of Equation 4.16 with Bjj = I

for j > 1, Bjk = 0 for j > k + 1, Bjk = 0 for j > k with odd k, and Bjk = I for
j > k with even k.

Building upon the empirical successes of residual networks, densely connected
convolution networks [62] incorporate skip connections between earlier layers as
well. This is shown in Equation 4.20 where the transformation Bj of concatenated
variables wk for k = 1, . . . , j−1 is equivalently written as the summation of smaller
transformations Bjk.

wj := ϕj

(
BT

j [wk]
j−1
k=1

)
= ϕj

(j−1∑
k=1

BT
jkwk

)
(4.20)

79

4. Deep Network Inference as Data Decomposition

These activations again provide approximate solutions to the problem in Equa-
tion 4.17 with the induced dictionary structure of Equation 4.16 where Bjj = I

for j > 1 and the lower blocks Bjk for j > k are filled with learned parameters.
Skip connections enable effective learning in much deeper networks than chain-

structured alternatives. While originally motivated from the perspective of mak-
ing optimization easier [54], adding more connections between layers also improves
generalization performance and parameter efficiency [62]. As compared in Fig-
ure 4.11, denser skip connections induce dictionary structures with denser Gram
matrices. This suggests that architectures can be quantified and compared based
on their capacities for inducing dictionaries with low mutual coherence.

4.2.2 The Deep Frame Potential

We propose to use a lower bound on the mutual coherence of the induced
structured dictionary as a means for data-independent comparison of architecture
capacities. However, directly optimizing mutual coherence from Equation 2.5 can
be difficult in practice due to its piecewise structure. A tight lower bound can be
found by replacing the maximum off-diagonal Gram matrix element of the Gram
matrix with the mean, as shown in Equation 4.21 where N(G) is the number of
nonzero off-diagonal elements in the Gram matrix G and TrG equals the number
of dictionary atoms.

µ2(B) ≥ F 2(B) =
∥G∥2F − TrG

N(G)
(4.21)

Equality is met in the case of equiangular tight frames when the normalized in-
ner products between all dictionary atoms are equivalent [71]. In practice, we
employ the averaged frame potential F 2(B) as a strongly-convex objective func-
tion because of its superior optimization properties [10]. Due to the block-sparse
structure of the induced dictionary matrices from Equation 4.16, we evaluate the
frame potential in terms of local blocks Gjj′ ∈ Rkj×kj′ that are nonzero only if
layer j is connected to layer j′. In the case of convolutional layers with localized
spatial support, there is also a repeated implicit structure of nonzero elements as
visualized in Figure 4.12.

80

4.2. Model Selection with the Deep Frame Potential

(a) Convolutional Dictionary (b) Permuted Dictionary

(c) Convolutional Gram Matrix (d) Permuted Gram Matrix

Figure 4.12: A visualization of a one-dimensional convolutional dictionary with
two input channels, five output channels, and a filter size of three. (a) The filters
are repeated over eight spatial dimensions resulting in a block-Toeplitz structure
that is revealed through (b) row and column permutations. (c) The corresponding
gram matrix can be efficiently computed by considering (d) repeated local filter
interactions. This structure allows for lower coherence than an equivalent fully-
connected layer with the same number of parameters.

To compute the Gram matrix, we first need to normalize the global induced
dictionary B from Equation 4.16. By stacking the column magnitudes of layer j

as the elements in the diagonal matrix Cj = diag(cj) ∈ Rkj×kj , the normalized
parameters can be represented as B̃ij = BijC

−1
j . Similarly, the squared norms

of the full set of columns in the global dictionary B are N2
j =

∑l
i=j C

2
ij . The

full normalized dictionary can then be found as B̃ = BN−1 where N is a block
diagonal matrix with Nj as its blocks. The blocks of the Gram matrix G = B̃TB̃

are then given as:

Gjj′ =
l∑

i=j′

N−1
j BT

ijBij′N
−1
j′ (4.22)

81

4. Deep Network Inference as Data Decomposition

For chain networks, Gjj′ ̸= 0 only when j′ = j + 1, representing the connection
between adjacent layers. In this case, the blocks can be simplified as:

Gjj = (C2
j + I)−

1
2 (BT

j Bj + I)(C2
j + I)−

1
2 (4.23)

Gj(j+1) = −(C2
j + I)−

1
2Bj+1(C

2
j+1 + I)−

1
2 (4.24)

Gll = BT
l Bl (4.25)

Because the diagonal is removed in the deep frame potential computation,
the contribution of Gjj is simply a rescaled version of the local frame potential
of layer j. The contribution of Gj(j+1), on the other hand, can essentially be in-
terpreted as rescaled ℓ2 weight decay where rows are weighted more heavily if the
corresponding columns of the previous layer parameters have higher magnitudes.
Furthermore, since the global frame potential is averaged over the total number
of nonzero elements in G, if a layer has more parameters, then it will be given
more weight in this computation. For more general networks with skip connec-
tions, however, the summation from Equation 4.22 introduces more complicated
interactions; it cannot be determined from local properties of individual layers.

Essentially, the deep frame potential summarizes the structural properties
of global dictionary B induced by the deep network architecture by balancing
interactions within each individual layer through local coherence properties and
between connecting layers.

While the deep frame potential is a function of parameter values, it’s minimum
value is determined only by the dictionary structure induced by the deep network
architecture. Furthermore, we know that it must be lower bounded by a nonzero
constant for overcomplete dictionaries. In this section, we theoretically derive this
lower bound for the special case of chain networks and provide intuition for why
skip connections increase the capacity for low mutual coherence.

First, observe that a lower bound for the norm of Gj(j+1) from Equation 4.24
cannot be readily attained because the rows and columns are rescaled indepen-
dently. This means that a lower bound for the norm of G must be found by
jointly considering the entire architecture-induced matrix structure, not simply
through summation of its components. To accomplish this, we instead consider

82

4.2. Model Selection with the Deep Frame Potential

the matrix H = B̃B̃T, which is full rank and has the same norm as G:

∥G∥2F = ∥H∥2F =

l∑
j=1

∥Hjj∥2F + 2

l−1∑
j=1

∥∥Hj(j+1)

∥∥2
F

(4.26)

We can then express the individual blocks of H as:

H11 = B1(C
2
1 + Ik1)

−1BT
1 (4.27)

Hjj = Bj(C
2
j + I)−1BT

j + (C2
j−1 + I)−1 (4.28)

Hj(j+1) = −Bj(C
2
j + I)−1 (4.29)

In contrast to Gj(j+1) in Equation 4.24, only the columns of Hj(j+1) in Equa-
tion 4.29 are rescaled. Since B̃j has normalized columns, its norm can be exactly
expressed as: ∥∥Hj(j+1)

∥∥2
F
=

kj∑
n=1

(
cjn

c2jn + 1

)2

(4.30)

For the other blocks, we find lower bounds for their norms through the same
technique used in deriving the Welch bound, which expresses the minimum mutual
coherence for unstructured shallow dictionaries [152]. Specifically, we apply the
Cauchy-Schwarz inequality giving ∥A∥2F ≥ r−1(TrA)2 for positive-semidefinite
matrices A with rank r. Since the rank of Hjj is at most kj−1, we can lower
bound the norms of the individual blocks as:

∥H11∥2F ≥ 1

k0

(
k1∑
n=1

c21n
c21n + 1

)2

(4.31)

∥Hjj∥2F ≥ 1

kj−1

(kj∑
n=1

c2jn
c2jn + 1

+

kj−1∑
p=1

1

c2(j−1)p + 1

)2

In this case of dense shallow dictionaries, the Welch bound depends only on the
data dimensionality and the number of dictionary atoms. However, due to the
structure of the architecture-induced dictionaries, the lower bound of the deep
frame potential depends on the data dimensionality, the number of layers, the
number of units in each layer, the connectivity between layers, and the relative
magnitudes between layers. Skip connections increase the number of nonzero

83

4. Deep Network Inference as Data Decomposition

elements in the Gram matrix over which to average and also enable off-diagonal
blocks to have lower norms.

For more general architectures that lack a simple theoretical lower bound, we
instead propose bounding the mutual coherence of the architecture-induced dic-
tionary through empirical minimization of the deep frame potential F 2(B) from
Equation 4.21. Frame potential minimization has been used previously to con-
struct finite normalized tight frames due to the lack of suboptimal local minima,
allowing for effective optimization using gradient descent [10]. We propose us-
ing the minimum deep frame potential of an architecture–which is independent
of data and individual parameter instantiations–as a means to compare different
architectures. In practice, model selection is performed by choosing the candidate
architecture with the lowest minimum frame potential subject to desired modeling
constraints such as limiting the total number of parameters.

4.2.3 Experimental Results

In this section, we demonstrate correlation between the minimum deep frame
potential and validation error on the CIFAR-10 dataset [74] across a wide variety
of fully-connected, convolutional, chain, residual, and densely connected network
architectures. Furthermore, we show that networks with skip connections can
have lower deep frame potentials with fewer learnable parameters, which is pre-
dictive of the parameter efficiency of trained networks.

In Figure 4.13, we visualize a scatter plot of trained fully-connected networks
with between three and five layers and between 16 and 4096 units in each layer.
The corresponding architectures are shown as a list of units per layer for a few
representative examples. The minimum frame potential of each architecture is
compared against its validation error after training, and the total parameter count
is indicated by color. In Figure 4.13a, some networks with many parameters–
indicated by warmer colors–have unusually high error due to the difficulty in
training very large networks. In Figure 4.13b, the addition of a deep frame po-
tential regularization term overcomes some of these optimization difficulties for
improved parameter efficiency. This results in high correlation between minimum
frame potential and validation error. Furthermore, it emphasizes the diminishing

84

4.2. Model Selection with the Deep Frame Potential

0 0.05 0.1 0.15 0.2 0.25

Minimum Deep Frame Potential

0.4

0.5

0.6

0.7

0.8

V
a
lid

a
ti
o
n
 E

rr
o
r

 (64,32,64)

 (8,16,32,64)

 (400,800,1600,3200)

 (128,256)

(a) No Regularization

0 0.05 0.1 0.15 0.2 0.25

Minimum Deep Frame Potential

0.4

0.5

0.6

0.7

0.8

V
a
lid

a
ti
o
n
 E

rr
o
r

 (64,32,64)

 (8,16,32,64)

 (128,256)

 (400,800,1600,3200)

(b) Frame Potential Regularization

Figure 4.13: A large-scale comparison of fully connected deep network architec-
tures with varying depths and widths, where warmer colors indicate more total
parameters. (a) Some very large networks cannot be trained effectively result-
ing in unusually high validation errors. (b) This can be remedied through frame
potential regularization, resulting in high correlation between minimum frame
potential and validation error.

returns of increasing the size of fully-connected chain networks; after a certain
point, adding more parameters does little to reduce both validation error and
minimum frame potential.

To evaluate the effects of residual connections [54], we adapt the simplified
CIFAR-10 ResNet architecture from [153], which consists of a single convolu-
tional layer followed by three groups of residual blocks with activations as in
Equation 4.18. Before the second and third groups, the number of filters is in-
creased by a factor of two and the spatial resolution is decreased by half through
average pooling. To compare networks with different sizes, we modify their depths
by changing the number of residual blocks in each group from between 2 and 10
and their widths by changing the base number of filters from between 4 and 32.
For our experiments with densely connected skip connections [62], we adapt the
simplified CIFAR-10 DenseNet architecture from [85]. Like the residual network,
it consists of a convolutional layer followed by three groups of of activations as
in Equation 4.20 with decreasing spatial resolutions and increasing numbers of
filters. Within each group, a dense block is the concatenation of smaller convolu-

85

4. Deep Network Inference as Data Decomposition

3 4 5 6 7 8 9 10

Blocks / Group

0.05

0.1

0.15

0.2

0.25

0.3

V
a

lid
a

ti
o

n
 E

rr
o

r

Residual Network, Base Width = 16

Residual Network, Base Width = 4

Chain Network, Base Width = 16

Chain Network, Base Width = 4

(a) Validation Error

3 4 5 6 7 8 9 10

Blocks / Group

0.005

0.01

0.015

0.02

0.025

0.03

0.035

M
in

im
u

m
 F

ra
m

e
 P

o
te

n
ti
a

l Residual Network, Base Width = 16

Residual Network, Base Width = 4

Chain Network, Base Width = 16

Chain Network, Base Width = 4

(b) Minimum Frame Potential

Figure 4.14: A visualization of the effect of increasing depth in chain networks
and residual networks. Validation error is compared against layer count for two
different network widths. (a) In comparison to chain networks, even very deep
residual networks can be trained effectively resulting in decreasing validation er-
ror. (b) Despite having the same number of total parameters, residual connections
also allow for lower minimum frame potentials.

tions that take all previous outputs as inputs with filter numbers equal to a fixed
growth rate. Network depth and width are modified by respectively increasing
the number of layers per group and the base growth rate from between 2 and 12.
Batch normalization [64] was also used in all experiments.

In Figure 4.14, we compare the validation errors and minimum frame poten-
tials of residual networks and comparable chain networks with residual connec-
tions removed. In Figure 4.14a, the validation error of chain networks increases
for deeper networks while that of residual networks is lower and consistently de-
creases. This emphasizes the difficulty in training very deep chain networks. In
Figure 4.14b, we show that residual connections enable lower minimum frame
potentials following a similar trend with respect to increasing model size, again
demonstrating correlation between validation error and minimum frame potential.

In Figure 4.15, we compare chain networks and residual networks with ex-
actly the same number of parameters, where color indicates the number of resid-
ual blocks per group and connected data points vary from a minimum width of

86

4.2. Model Selection with the Deep Frame Potential

0.05 0.1 0.15 0.2 0.25 0.3

Chain Network

0.05

0.1

0.15

0.2

0.25

0.3

R
e
s
id

u
a
l
N

e
tw

o
rk

3 Layers

4 Layers

5 Layers

8 Layers

10 Layers

Minimum Width

(a) Validation Error

0.005 0.01 0.015 0.02 0.025

Chain Network

0.005

0.01

0.015

0.02

0.025

R
e

s
id

u
a

l
N

e
tw

o
rk

3 Layers

4 Layers

5 Layers

8 Layers

10 Layers

Minimum Width

(b) Frame Potential

Figure 4.15: A comparison of (a) validation error and (b) minimum frame po-
tential between residual networks and chain networks. Colors indicate different
depths and datapoints are connected in order of increasing widths. The addition
of skip connections results in reduced error correlating with frame potential with
dense networks showing superior efficiency with increasing depth.

4 base filters to a maximum of 32. The addition of skip connections reduces
both validation error and minimum frame potential, as visualized by consistent
placement below the diagonal line indicating lower values for residual networks
than comparable chain networks. This effect becomes even more pronounced with
increasing depths and widths.

In Figure 4.16, we compare the parameter efficiency of chain networks, resid-
ual networks, and densely connected networks of different depths and widths.
We visualize both validation error and minimum frame potential as functions of
the number of parameters, demonstrating the improved scalability of networks
with skip connections. While chain networks demonstrate increasingly poor pa-
rameter efficiency with depth in Figure 4.16a, the skip connections of ResNets
and DenseNets allow for further reducing error with larger network sizes in Fig-
ures 4.16b,c. Considering all network families together as in Figure 4.11a, we
see that denser connections also allow for lower validation error with comparable
numbers of parameters. This trend is mirrored in the minimum frame potentials
of Figures 4.16d,e,f which are shown together in Figure 4.11b. Despite some fine
variations in behavior across different families of architectures, minimum frame

87

4. Deep Network Inference as Data Decomposition

103 104 105 106 107

Number of Parameters (Log Scale)

0

0.05

0.1

0.15

0.2

0.25

0.3

V
a

lid
a

ti
o

n
 E

rr
o

r

3 Blocks / Group

4 Blocks / Group

5 Blocks / Group

8 Blocks / Group

10 Blocks / Group

Minimum Width

(a) Chain Validation Error

103 104 105 106 107

Number of Parameters (Log Scale)

0

0.05

0.1

0.15

0.2

0.25

0.3

V
a

lid
a

ti
o

n
 E

rr
o

r

3 Blocks / Group

4 Blocks / Group

5 Blocks / Group

8 Blocks / Group

10 Blocks / Group

Minimum Width

(b) ResNet Validation Error

103 104 105 106 107

Number of Parameters (Log Scale)

0.05

0.1

0.15

0.2

0.25

0.3

V
a

lid
a

ti
o

n
 E

rr
o

r

2 Layers / Group

3 Layers / Group

4 Layers / Group

5 Layers / Group

12 Layers / Group

Minimum Width

(c) DenseNet Validation Error

103 104 105 106 107

Number of Parameters (Log Scale)

0

0.005

0.01

0.015

0.02

0.025

M
in

im
u

m
 F

ra
m

e
 P

o
te

n
ti
a

l

3 Blocks / Group

4 Blocks / Group

5 Blocks / Group

8 Blocks / Group

10 Blocks / Group

Minimum Width

(d) Chain Frame Potential

103 104 105 106 107

Number of Parameters (Log Scale)

0

0.005

0.01

0.015

0.02

0.025

M
in

im
u

m
 F

ra
m

e
 P

o
te

n
ti
a

l

3 Blocks / Group

4 Blocks / Group

5 Blocks / Group

8 Blocks / Group

10 Blocks / Group

Minimum Width

(e) ResNet Frame Potential

103 104 105 106 107

Number of Parameters (Log Scale)

0

0.005

0.01

0.015

0.02

0.025

M
in

im
u

m
 F

ra
m

e
 P

o
te

n
ti
a

l 2 Layers / Group

3 Layers / Group

4 Layers / Group

5 Layers / Group

12 Layers / Group

Minimum Width

(f) DenseNet Frame Potential

Figure 4.16: A demonstration of the improved scalability of networks with skip
connections, where line colors indicate different depths and data points are con-
nected showing increasing widths. (a) Chain networks with greater depths have
increasingly worse parameter efficiency in comparison to (b) the corresponding
networks with residual connections and (c) densely connected networks with sim-
ilar size, of which performance scales efficiently with parameter count. This could
potentially be attributed to correlated efficiency in reducing frame potential with
fewer parameters, which saturates much faster with (d) chain networks than (e)
residual networks or (f) densely connected networks.

potential is generally correlated with validation error across network sizes and
effectively predicts the increased generalization capacity provided by skip con-
nections.

4.2.4 Conclusion

In this paper, we proposed a technique for comparing deep network architec-
tures by approximately quantifying their implicit capacity for effective data rep-
resentations, allowing for model selection without requiring a validation dataset.
Based upon recent theoretical connections between sparse approximation and

88

4.2. Model Selection with the Deep Frame Potential

deep neural networks, we demonstrated how architectural hyper-parameters such
as convolution, depth, width, and skip connections induce different structural
properties of the dictionaries in corresponding sparse coding problems. We com-
pared these dictionary structures through lower bounds on their mutual coherence,
which is theoretically tied to their capacity for uniquely and robustly representing
data via sparse approximation. A theoretical lower bound was derived for chain
networks and the deep frame potential was proposed as an empirical optimiza-
tion objective for constructing bounds for more complicated architectures with
skip connections.

Experimentally, we observed a correlation between minimum deep frame po-
tential and validation error across different families of modern architectures with
skip connections, including residual networks and densely connected convolutional
networks. This suggests a promising direction for future research towards the the-
oretical analysis and practical construction of deep network architectures derived
from connections between deep learning and constrained data decomposition.

89

Bibliography

[1] Jose Alvarez and Mathieu Salzmann. Learning the number of neurons in
deep networks. In Advances in Neural Information Processing Systems
(NIPS), 2016.

[2] Pablo Arbeláez, Bharath Hariharan, Chunhui Gu, Saurabh Gupta, Lubomir
Bourdev, and Jitendra Malik. Semantic segmentation using regions and
parts. In Conference on Computer Vision and Pattern Recognition (CVPR),
2012.

[3] Devansh Arpit, Stanisław Jastrzebski, Nicolas Ballas, David Krueger, Em-
manuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron
Courville, Yoshua Bengio, and Simon Lacoste-Julien. A closer look at mem-
orization in deep networks. In International Conference on Machine Learn-
ing (ICML), pages 233–242, 2017.

[4] Mukund Balasubramanian and Eric L Schwartz. The Isomap algorithm and
topological stability. Science, 295(5552):7–7, 2002.

[5] Pierre Baldi and Kurt Hornik. Neural networks and principal component
analysis: Learning from examples without local minima. Neural networks,
2(1):53–58, 1989.

[6] Chenglong Bao, Hui Ji, Yuhui Quan, and Zuowei Shen. Dictionary learning
for sparse coding: Algorithms and convergence analysis. Pattern Analysis
and Machine Intelligence (PAMI), 38(7):1356–1369, 2016.

[7] Ronen Basri and David W Jacobs. Lambertian reflectance and linear sub-
spaces. Pattern Analysis and Machine Intelligence (PAMI), 25(2):218–233,
2003.

90

Bibliography

[8] Vasileios Belagiannis and Andrew Zisserman. Recurrent human pose estima-
tion. In International Conference on Automatic Face & Gesture Recognition
(FG), 2017.

[9] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation, 15(6):1373–1396,
2003.

[10] John Benedetto and Matthew Fickus. Finite normalized tight frames. Ad-
vances in Computational Mathematics, 18(2-4), 2003.

[11] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learn-
ing: A review and new perspectives. Pattern Analysis and Machine Intelli-
gence (PAMI), 35(8):1798–1828, 2013.

[12] Yoshua Bengio and Olivier Delalleau. On the expressive power of deep
architectures. In Algorithmic Learning Theory. Springer, 2011.

[13] Yoshua Bengio, Jean-François Paiement, Pascal Vincent, Olivier Delalleau,
Nicolas Le Roux, and Marie Ouimet. Out-of-sample extensions for LLE,
Isomap, MDS, Eigenmaps, and spectral clustering. In Advances in Neural
Information Processing Systems (NIPS), 2004.

[14] Michael W Berry, Murray Browne, Amy N Langville, V Paul Pauca, and
Robert J Plemmons. Algorithms and applications for approximate non-
negative matrix factorization. Computational Statistics & Data Analysis,
52(1):155–173, 2007.

[15] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eck-
stein. Distributed optimization and statistical learning via the alternat-
ing direction method of multipliers. Foundations and Trends® in Machine
Learning, 3(1), 2011.

[16] Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton,
Frank Michel, Stefan Gumhold, and Carsten Rother. Dsac-differentiable
ransac for camera localization. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[17] Matthew Brand. Charting a manifold. In Advances in Neural Information
Processing Systems (NIPS), 2002.

91

Bibliography

[18] Myron L Braunstein and George J Andersen. A counterexample to the
rigidity assumption in the visual perception of structure from motion. Per-
ception, 13(2):213–217, 1984.

[19] Forrest Briggs, Xiaoli Z. Fern, and Raviv Raich. Rank-loss support instance
machines for miml instance annotation. In Knowledge Discovery and Data
Mining (KDD), ACM SIGKDD International Conference on, pages 534–
542, 2012.

[20] Andreas Buja, Trevor Hastie, and Robert Tibshirani. Linear smoothers and
additive models. The Annals of Statistics, pages 453–510, 1989.

[21] R. Cabral, F. De La Torre, J. Costeira, and A. Bernardino. Matrix comple-
tion for weakly-supervised multi-label image classification. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, PP(99):1–1, 2014.

[22] Joao Carreira, Pulkit Agrawal, Katerina Fragkiadaki, and Jitendra Malik.
Human pose estimation with iterative error feedback. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[23] Joao Carreira, Rui Caseiro, Jorge Batista, and Cristian Sminchisescu. Se-
mantic segmentation with second-order pooling. In European Conference
on Computer Vision (ECCV), 2012.

[24] Miguel A Carreira-Perpiñán and Zhengdong Lu. Dimensionality reduction
by unsupervised regression. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2008.

[25] Miguel A Carreira-Perpiñán and Weiran Wang. Distributed optimization of
deeply nested systems. In International Conference on Artificial Intelligence
and Statistics (AISTATS), 2014.

[26] Peter G Casazza and Gitta Kutyniok. Finite frames: Theory and applica-
tions. Springer, 2012.

[27] Caihua Chen, Min Li, Xin Liu, and Yinyu Ye. Extended admm and bcd for
nonseparable convex minimization models with quadratic coupling terms:
convergence analysis and insights. Mathematical Programming, 2017.

[28] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L. Yuille. DeepLab: Semantic image segmentation with deep

92

Bibliography

convolutional nets, atrous convolution, and fully connected CRFs. Pattern
Analysis and Machine Intelligence (PAMI), PP(99), 2017.

[29] Liang-Chieh Chen, Alexander Schwing, Alan Yuille, and Raquel Urtasun.
Learning deep structured models. In International Conference on Machine
Learning (ICML), 2015.

[30] Ramazan Gokberk Cinbis, Jakob Verbeek, Cordelia Schmid, et al. Multi-
fold mil training for weakly supervised object localization. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2014.

[31] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3), 1995.

[32] Peter Craven and Grace Wahba. Smoothing noisy data with spline func-
tions. Numerische Mathematik, 31(4):377–403, 1978.

[33] Carl De Boor. A practical guide to splines, volume 27. Springer-Verlag New
York, 1978.

[34] Fernando De la Torre. A least-squares framework for component analysis.
IEEE Transactions Pattern Analysis and Machine Intelligence (PAMI),
34(6):1041–1055, 2012.

[35] F. De la Torre and M. J. Black. Robust parameterized component analysis:
Theory and applications to 2d facial appearance models. Computer Vision
and Image Understanding, 91:53–71, 2003.

[36] Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and
Nando De Freitas. Predicting parameters in deep learning. In Advances in
Neural Information Processing Systems (NIPS), 2013.

[37] Steven Diamond, Vincent Sitzmann, Felix Heide, and Gordon Wetzstein.
Unrolled optimization with deep priors. arXiv preprint arXiv:1705.08041,
2017.

[38] David L. Donoho. Compressed sensing. IEEE Transactions on Information
Theory, 52(4), 2006.

[39] David L Donoho and Michael Elad. Optimally sparse representation in
general (nonorthogonal) dictionaries via �1 minimization. Proceedings of
the National Academy of Sciences, 100(5):2197–2202, 2003.

93

Bibliography

[40] David L. Donoho, Michael Elad, and Vladimir N. Temlyakov. Stable recov-
ery of sparse overcomplete representations in the presence of noise. IEEE
Transactions on Information Theory, 52(1), 2005.

[41] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazir-
bas, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas
Brox. Flownet: Learning optical flow with convolutional networks. In In-
ternational Conference on Computer Vision (ICCV), 2015.

[42] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction
from a single image using a multi-scale deep network. In Advances in Neural
Information Processing Systems (NIPS), 2014.

[43] Michael Elad. Sparse and redundant representations: from theory to appli-
cations in signal and image processing. Springer Science & Business Media,
2010.

[44] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architec-
ture search: A survey. Journal of Machine Learning Research (JMLR),
20(55), 2019.

[45] Roland W Fleming, Ron O Dror, and Edward H Adelson. Real-world il-
lumination and the perception of surface reflectance properties. Journal of
vision, 3(5):3–3, 2003.

[46] Brendan J. Frey and Nebojsa Jojic. Transformed component analysis: Joint
estimation of spatial transformations and image components. In Conference
on Computer Vision and Pattern Recognition (CVPR), 1999.

[47] Ankit Gandhi, Karteek Alahari, and C.V. Jawahar. Decomposing bag
of words histograms. In International Conference on Computer Vision
(ICCV), pages 305–312. IEEE, 2013.

[48] Nicolas Gillis. Sparse and unique nonnegative matrix factorization through
data preprocessing. Journal of Machine Learning Research (JMLR),
13(November):3349–3386, 2012.

[49] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier
neural networks. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2011.

94

Bibliography

[50] Karol Gregor and Yann LeCun. Learning fast approximations of sparse
coding. In International Conference on Machine Learning (ICML), 2010.

[51] Benjamin Haeffele, Eric Young, and Rene Vidal. Structured low-rank matrix
factorization: Optimality, algorithm, and applications to image processing.
In International Conference on Machine Learning (ICML), 2014.

[52] Trevor Hastie and Werner Stuetzle. Principal curves. Journal of the Amer-
ican Statistical Association, 84(406):502–516, 1989.

[53] Soren Hauberg, Aasa Feragen, and Michael J. Black. Grassmann averages
for scalable robust pca. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2014.

[54] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[55] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity map-
pings in deep residual networks. In European Conference on Computer
Vision (ECCV), 2016.

[56] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating
very deep neural networks. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[57] Marc Henniges, Richard E. Turner, Maneesh Sahani, Julian Eggert, and
Jörg Lücke. Efficient occlusive components analysis. Journal of Machine
Learning Research, 15:2689–2722, 2014.

[58] Minh Hoai, Lorenzo Torresani, Fernando De la Torre, and Carsten Rother.
Learning discriminative localization from weakly labeled data. Pattern
Recognition, 47(3):1523–1534, 2014.

[59] Ian P Howard. Seeing in depth, Vol. 1: Basic mechanisms. University of
Toronto Press, 2002.

[60] Patrik O. Hoyer. Non-negative matrix factorization with sparseness con-
straints. The Journal of Machine Learning Research, 5:1457–1469, 2004.

95

Bibliography

[61] Peiyun Hu and Deva Ramanan. Bottom-up and top-down reasoning with
hierarchical rectified gaussians. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[62] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten.
Densely connected convolutional networks. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

[63] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Ko-
rattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio
Guadarrama, and Kevin Murphy. Speed/accuracy trade-offs for modern
convolutional object detectors. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[64] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Con-
ference on Machine Learning (ICML), pages 448–456, 2015.

[65] Adrian Ion, João Carreira, and Cristian Sminchisescu. Probabilistic joint
image segmentation and labeling by figure-ground composition. Interna-
tional Journal of Computer Vision (IJCV), 2014.

[66] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Con-
volutional architecture for fast feature embedding. In Proceedings of the
ACM International Conference on Multimedia, pages 675–678. ACM, 2014.

[67] Nebojsa Jojic and Brendan J. Frey. Learning flexible sprites in video layers.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2001.

[68] Armand Joulin, Francis Bach, and Jean Ponce. Discriminative clustering
for image co-segmentation. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2010.

[69] Christian Jutten and Jeanny Herault. Blind separation of sources, part i: An
adaptive algorithm based on neuromimetic architecture. Signal Processing,
24(1):1–10, 1991.

[70] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.
International Conference on Learning Representations (ICLR), 2014.

96

Bibliography

[71] Jelena Kovačević, Amina Chebira, et al. An introduction to frames. Foun-
dations and Trends in Signal Processing, 2(1), 2008.

[72] Kenneth Kreutz-Delgado, Joseph F Murray, Bhaskar D Rao, Kjersti Engan,
Tai Sing Lee, and Terrence J Sejnowski. Dictionary learning algorithms for
sparse representation. Neural Computation, 15(2):349–396, 2003.

[73] Alex Krizhevsky et al. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems
(NIPS), 2012.

[74] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Technical report, University of Toronto, 2009.

[75] Roland Kwitt and Peter Meerwald. Salzburg texture image database (STex).
http://wavelab.at/sources/STex/.

[76] James T. Kwok and Ivor W. Tsang. The pre-image problem in kernel meth-
ods. In International Conference on Machine Learning (ICML), pages 408–
415, 2003.

[77] Neil Lawrence. Probabilistic non-linear principal component analysis with
gaussian process latent variable models. Journal of Machine Learning Re-
search, 6:1783–1816, 2005.

[78] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[79] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and
Zhuowen Tu. Deeply-supervised nets. In International Conference on Arti-
ficial Intelligence and Statistics (AISTATS), 2015.

[80] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755), 1999.

[81] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Con-
volutional deep belief networks for scalable unsupervised learning of hier-
archical representations. In International Conference on Machine Learning
(ICML), 2009.

97

http://wavelab.at/sources/STex/

Bibliography

[82] Kuang-Chih Lee, Jeffrey Ho, and David J Kriegman. Acquiring linear sub-
spaces for face recognition under variable lighting. Pattern Analysis and
Machine Intelligence (PAMI), 27(5):684–698, 2005.

[83] Ke Li, Bharath Hariharan, and Jitendra Malik. Iterative instance segmenta-
tion. In Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[84] Stan Z Li, XinWen Hou, HongJiang Zhang, and QianSheng Cheng. Learning
spatially localized, parts-based representation. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2001.

[85] Yixuan Li. Tensorflow densenet. https://github.com/YixuanLi/
densenet-tensorflow, 2018.

[86] Chen-Hsuan Lin and Simon Lucey. Inverse compositional spatial trans-
former networks. Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[87] Ce Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label
transfer. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 33(12), Dec 2011.

[88] Tongliang Liu, Dacheng Tao, and Dong Xu. Dimensionality-dependent gen-
eralization bounds for k-dimensional coding schemes. Neural computation,
2016.

[89] Yang Liu, Jing Liu, Zechao Li, Jinhui Tang, and Hanqing Lu. Weakly-
supervised dual clustering for image semantic segmentation. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2013.

[90] David Lopez-Paz, Suvrit Sra, Alex Smola, Zoubin Ghahramani, and Bern-
hard Schölkopf. Randomized nonlinear component analysis. In International
Conference on Machine Learning (ICML), 2014.

[91] David G Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[92] Tom Lyche and Knut Mørken. Spline methods. Department of Mathematics,
University of Oslo, 2008.

98

https://github.com/YixuanLi/densenet-tensorflow
https://github.com/YixuanLi/densenet-tensorflow

Bibliography

[93] Fangchang Ma and Sertac Karaman. Sparse-to-dense: Depth prediction
from sparse depth samples and a single image. In International Conference
on Robotics and Automation (ICRA), 2018.

[94] David Marr and Herbert Keith Nishihara. Representation and recognition
of the spatial organization of three-dimensional shapes. Proceedings of the
Royal Society of London B, 200(1140):269–294, 1978.

[95] Martin Marsden and I. J. Schoenberg. On Variation Diminishing Spline
Approximation Methods, pages 247–268. Birkhäuser Boston, Boston, MA,
1988.

[96] Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse
model of attention and multi-label classification. In International Confer-
ence on Machine Learning (ICML), 2016.

[97] Sebastian Mika, Bernhard Schölkopf, Alexander J Smola, Klaus-Robert
Müller, Matthias Scholz, and Gunnar Rätsch. Kernel pca and de-noising
in feature spaces. In Advances in Neural Information Processing Systems
(NIPS), 1999.

[98] Cisse Moustapha, Bojanowski Piotr, Grave Edouard, Dauphin Yann, and
Usunier Nicolas. Parseval networks: Improving robustness to adversarial
examples. arXiv preprint arXiv:1704.08847, 2017.

[99] Calvin Murdock, MingFang Chang, and Simon Lucey. Deep component
analysis via alternating direction neural networks. In European Conference
on Computer Vision (ECCV), 2018.

[100] Calvin Murdock, Ming-Fang Chang, and Simon Lucey. Deep component
analysis via alternating direction neural networks. In European Conference
on Computer Vision (ECCV), 2018.

[101] Calvin Murdock and Fernando De la Torre. Semantic component analysis.
In International Conference on Computer Vision (ICCV), 2015.

[102] Calvin Murdock and Fernando De la Torre. Additive component analysis.
In Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

99

Bibliography

[103] Calvin Murdock and Fernando De la Torre. Approximate grassmannian
intersections: Subspace-valued subspace learning. In International Confer-
ence on Computer Vision (ICCV), 2017.

[104] Calvin Murdock and Simon Lucey. Dataless model selection with the deep
frame potential. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

[105] Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the
manifold hypothesis. In Advances in Neural Information Processing Systems
(NIPS), 2010.

[106] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor
segmentation and support inference from rgbd images. In European Con-
ference on Computer Vision (ECCV), 2012.

[107] Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al. Columbia object
image library (COIL-20). Technical report, Technical Report CUCS-005-96,
1996.

[108] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Sre-
bro. Exploring generalization in deep learning. In Advances in Neural In-
formation Processing Systems (NIPS), 2017.

[109] M. H. Nguyen, L. Torresani, F. De la Torre, and C. Rother. Weakly super-
vised discriminative localization and classification: a joint learning process.
In International Conference on Computer Vision (ICCV), 2009.

[110] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvo-
lution network for semantic segmentation. In International Conference on
Computer Vision (ICCV), 2015.

[111] Roman Novak et al. Sensitivity and generalization in neural networks: an
empirical study. In International Conference on Learning Representations
(ICLR), 2018.

[112] Bruno A Olshausen et al. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381(6583):607–609,
1996.

100

Bibliography

[113] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Is object lo-
calization for free? - weakly-supervised learning with convolutional neu-
ral networks. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[114] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for
free? – weakly-supervised learning with convolutional neural networks. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[115] Umut Ozertem and Deniz Erdogmus. Locally defined principal curves and
surfaces. Journal of Machine Learning Research (JMLR), 12:1249–1286,
2011.

[116] George Papandreou, Liang-Chieh Chen, Kevin Murphy, and Alan L Yuille.
Weakly-and semi-supervised learning of a dcnn for semantic image segmen-
tation. arXiv preprint arXiv:1502.02734, 2015.

[117] Vardan Papyan, Yaniv Romano, and Michael Elad. Convolutional neural
networks analyzed via convolutional sparse coding. Journal of Machine
Learning Research (JMLR), 18(83), 2017.

[118] Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and
Trends® in Optimization, 1(3), 2014.

[119] Ankit B Patel, Minh Tan Nguyen, and Richard Baraniuk. A probabilistic
framework for deep learning. In Advances in Neural Information Processing
Systems (NIPS), 2016.

[120] Deepak Pathak, Philipp Krahenbuhl, and Trevor Darrell. Constrained con-
volutional neural networks for weakly supervised segmentation. In Interna-
tional Conference on Computer Vision (ICCV), 2015.

[121] Pedro O Pinheiro and Ronan Collobert. From image-level to pixel-level
labeling with convolutional networks. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[122] Tomaso Poggio, Vincent Torre, and Christof Koch. Computational vision
and regularization theory. In Readings in Computer Vision, pages 638–643.
Elsevier, 1987.

101

Bibliography

[123] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel
machines. In Advances in Neural Information Processing Systems (NIPS),
2007.

[124] Yaniv Romano, Aviad Aberdam, Jeremias Sulam, and Michael Elad. Ad-
versarial noise attacks of deep learning architectures-stability analysis via
sparse modeled signals. Journal of Mathematical Imaging and Vision, 2018.

[125] Carsten Rother, Vladimir Kolmogorov, Tom Minka, and Andrew Blake.
Cosegmentation of image pairs by histogram matching – incorporating a
global constraint into MRFs. In Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2006.

[126] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction
by locally linear embedding. Science, 290(5500):2323–2326, 2000.

[127] Sam T Roweis, Lawrence K Saul, and Geoffrey E Hinton. Global coordi-
nation of local linear models. Advances in Neural Information Processing
Systems (NIPS), 2002.

[128] Olga Russakovsky, Amy L. Bearman, Vittorio Ferrari, and Li Fei-Fei.
What’s the point: Semantic segmentation with point supervision. ArXiv
preprint arXiv:1506.02106, 2015.

[129] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear
component analysis as a kernel eigenvalue problem. Neural computation,
10(5):1299–1319, 1998.

[130] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Tex-
tonboost: Joint appearance, shape and context modeling for multi-class ob-
ject recognition and segmentation. In European Conference on Computer
Vision (ECCV), 2006.

[131] Karen Simonyan and Andrew Zisserman. Two-stream convolutional net-
works for action recognition in videos. In Advances in Neural Information
Processing Systems (NIPS), 2014.

[132] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In International Conference on Learning
Representations (ICLR), 2015.

102

Bibliography

[133] Josef Sivic, Bryan C. Russell, Alexei A. Efros, Andrew Zisserman, and
William T. Freeman. Discovering objects and their location in images. In
International Conference on Computer Vision (ICCV), 2005.

[134] Jeremias Sulam, Aviad Aberdam, Amir Beck, and Michael Elad. On multi-
layer basis pursuit, efficient algorithms and convolutional neural networks.
Pattern Analysis and Machine Intelligence (PAMI), 2019.

[135] Jeremias Sulam, Vardan Papyan, Yaniv Romano, and Michael Elad. Multi-
layer convolutional sparse modeling: Pursuit and dictionary learning. arXiv
preprint arXiv:1708.08705, 2017.

[136] Jian Sun, Huibin Li, Zongben Xu, et al. Deep admm-net for compressive
sensing mri. In Advances in Neural Information Processing Systems (NIPS),
2016.

[137] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. In International Conference on Learning Representations (ICLR),
2014.

[138] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for
convolutional neural networks. In International Conference on Machine
Learning (ICML), 2019.

[139] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and
Tom Goldstein. Training neural networks without gradients: A scalable
admm approach. In International Conference on Machine Learning (ICML),
2016.

[140] Joshua B. Tenenbaum, Vin De Silva, and John C. Langford. A global
geometric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2323, 2000.

[141] Joseph Tighe and Svetlana Lazebnik. Superparsing: Scalable nonparamet-
ric image parsing with superpixels. In European Conference on Computer
Vision (ECCV), 2010.

103

Bibliography

[142] James T Todd and Francene D Reichel. Ordinal structure in the visual
perception and cognition of smoothly curved surfaces. Psychological Review,
96(4):643, 1989.

[143] Shubham Tulsiani, Tinghui Zhou, Alexei A Efros, and Jitendra Malik.
Multi-view supervision for single-view reconstruction via differentiable ray
consistency. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[144] Matthew A. Turk and Alex P. Pentland. Face recognition using eigenfaces.
In Conference on Computer Vision and Pattern Recognition (CVPR), 1991.

[145] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(2579-2605):85, 2008.

[146] Vladimir N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence
of relative frequencies of events to their probabilities. Theory of Probability
and Its Applications, XVI(2), 1971.

[147] A. Vezhnevets, V. Ferrari, and J.M. Buhmann. Weakly supervised semantic
segmentation with a multi-image model. In International Conference on
Computer Vision (ICCV), 2011.

[148] A. Vezhnevets, V. Ferrari, and J.M. Buhmann. Weakly supervised struc-
tured output learning for semantic segmentation. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012.

[149] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and
Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion. Journal
of Machine Learning Research (JMLR), 11:3371–3408, 2010.

[150] Xiaolong Wang, David Fouhey, and Abhinav Gupta. Designing deep net-
works for surface normal estimation. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

[151] Larry Wasserman. All of nonparametric statistics. Springer Science &
Business Media, 2006.

[152] Lloyd Welch. Lower bounds on the maximum cross correlation of signals.
IEEE Transactions on Information theory, 20(3), 1974.

104

Bibliography

[153] Yuxin Wu et al. Tensorpack. https://github.com/ppwwyyxx/
tensorpack/blob/master/examples/ResNet/cifar10-resnet.py, 2016.

[154] Jia Xu, Alexander G. Schwing, and Raquel Urtasun. Tell me what you see
and i will show you where it is. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.

[155] Yangyang Xu and Wotao Yin. A block coordinate descent method for reg-
ularized multiconvex optimization with applications to nonnegative ten-
sor factorization and completion. SIAM Journal on imaging sciences,
6(3):1758–1789, 2013.

[156] Amir R Zamir, Te-Lin Wu, Lin Sun, William Shen, Jitendra Malik, and
Silvio Savarese. Feedback networks. In Advances in Neural Information
Processing Systems (NIPS), 2017.

[157] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization. In
International Conference on Learning Representations (ICLR), 2017.

[158] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization. In
International Conference on Learning Representations (ICLR), 2017.

[159] Wei Zhang, Sheng Zeng, Dequan Wang, and Xiangyang Xue. Weakly super-
vised semantic segmentation for social images. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2015.

105

https://github.com/ppwwyyxx/tensorpack/blob/master/examples/ResNet/cifar10-resnet.py
https://github.com/ppwwyyxx/tensorpack/blob/master/examples/ResNet/cifar10-resnet.py

