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Meta Reinforcement Learning through Memory
Thesis

Emilio Parisotto

Abstract

Modern deep reinforcement learning (RL) algorithms, despite being at the forefront of artificial
intelligence capabilities, typically require a prohibitive amount of training samples to reach a
human-equivalent level of performance. This severe data inefficiency is the major obstruction
to deep RL’s practical application: it is often near impossible to apply deep RL to any domain
without at least a simulator available. Motivated to address this critical data inefficiency, in this
thesis we work towards the design of meta-learning agents that are capable of rapidly adapting
to new environments. In contrast to standard reinforcement learning, meta-learning learns over
distributions of environments, from which specific tasks are sampled and with which the meta-learner
is directly optimized to improve the speed of policy improvement on. By exploiting a distribution
of tasks which share common substructure with the tasks of interest, the meta-learner can adjust
its own inductive biases to enable rapid adaptation at test time.

This thesis focuses on the design of meta-learning algorithms which exploit memory as the
main mechanism driving rapid adaptation in novel environments. Meta-learning with inter-episodic
memories are a class of meta-learning methods that leverage a memory architecture conditioned
on the entire interaction history of a particular environment to produce a policy. The learning
dynamics driving policy improvement in a particular task are thus subsumed by the computational
process of the sequence model, essentially offloading the design of the learning algorithm to the
architecture. While conceptually straightforward, meta-learning using inter-episodic memory is
highly effective and remains a state-of-the-art method.

We present and discuss several techniques for meta-learning through memory. The first part
of the thesis focuses on the “embodied” class of environments, where an agent has a physical
manifestation in an environment resembling the natural world. We exploit this highly structured set
of environments to work towards the design of a monolithic embodied agent architecture that has the
capabilities of rapid memorization, planning and state inference. In the second part of the thesis, we
move to focus on methods that apply in general environments without strong common substructure.
First, we re-examine the modes of interaction a meta-learning agent has with the environment:
proposing to replace the typically sequential processing of interaction history with a concurrent
execution framework where multiple agents act in the environment in parallel. Next, we discuss the
use of a general and powerful sequence model for inter-episodic memory, the gated transformer,
demonstrating large improvements in performance and data efficiency. Finally, we develop a
method that significantly reduces the training cost and acting latency of transformer models in
(meta-)reinforcement learning settings, with the aim to both (1) make their use more widespread
within the research community, and, (2) unlock their use in real-time and latency-constrained
applications, such as in robotics.
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Chapter 1

Introduction

Humans and other animals can rapidly integrate information to perform tasks within only a
handful of interactions. The ability of natural learning systems to generalize to novel situations
is, however, in astounding contrast to what current artificial systems are capable of. Despite
being at the forefront of artificial intelligence capabilities, modern deep reinforcement learning
algorithms can take in excess of hundreds of thousands of trials to learn even a single task [137] [135].
Naively leveraging a multitasking objective does not remedy this situation, and only introduces
further complexities into the proper functioning of the algorithm such as difficult optimization and
the tendency for the agent to forget and/or overemphasize certain tasks [I48]. The inability of
reinforcement learning agents to rapidly generalize to new situations therefore presents itself as a
critical obstruction to the application of Al to real-world domains.

Rapid generalization within novel environments can be facilitated by equipping the agent with
the proper inductive biases. These biases can be the fixed architectural components of the agent’s
model, i.e. the use of convolutions for image data or LSTMs for sequence data, or they can
be obtained themselves through data-driven processes. The data-driven approach is especially
promising as it can enable an agent to tailor it’s own inductive biases to different environments in
an online fashion, as it is interacting with them. One of the earliest methodologies [205][168][181]
that has recently gained increasing empirical success [14][210][49][161][56] is to have the agent’s own
learning process be data-driven, i.e. having the agent learn-to-learn, or meta-learn [I80]. In contrast
to the generality of reinforcement learning algorithms defined over broad classes of environments
(i.e. all Markov Decision Processes), meta-learning allows the agent to adjust its learning process to
specialize to a more narrow distribution of environments with an underlying exploitable structure;
sacrificing complete generality for rapid adaptation to a set of target environments.

Meta-learning processes can generally be described under the framework of an agent having
separate outer-loop (slow) and inner-loop (fast) learning systems [16]. The fast learning system
represents the agent’s learning process that occurs during interaction with a particular instance of
an environment, determining the agent’s online behavior. This learning system is the one which is
adapted specifically to the types of environments the agent designer is targeting for rapid adaptation.
At the opposite end of the spectrum of temporal horizons, the slow learning system represents
the complementary part of the agent taking experiences aggregated across many different trials in
order to tailor the fast learning system’s inductive biases to the distribution of target environments.
This slow system is typically driven by standard reinforcement learning [49][210][I61][56] or self-
supervised objectives [14], albeit at much longer horizons than usual as meta-episodes last a multiple
of the individual horizons of environment instances.

One straightforward but particularly effective meta-learning approach is to endow the agent
with an inter-episodic memory [49][210][14][I61], or a memory that lasts across an agent’s learning
interactions within a particular environment. Here, the fast learning system is a sequential model, the
exact form and architecture of which can vary widely, and the slow learning system is an algorithm
optimizing an RL or self-supervised objective that adapts the parameters of the sequential model
across many different environment instances. This inter-episodic memory framework transforms
the meta-learning problem into one of finding effective and powerful sequential model architectures.
While straightforward to conceptualize, the choice of memory architecture is not a trivial decision
and, as will be demonstrated in this thesis, can have a profound impact on the learning performance
of the meta-learning agent.



There exist a wide distribution of techniques involving meta-learning using an inter-episodic
memory, with each varying in the form of memory and in ways the memory influences behavior during
learning. Episodic control, a form of non-parametric inter-episodic memory first described in the
cognitive sciences literature [50][120], is a memory architecture that largely exploits Markov Decision
Process structure to enable fast and data-efficient learning [120][79][I4][161][169]. Methods for
episodic control essentially utilize an associative memory where, given a new observation, the closest
observations in past experience are recalled along with the reward statistics of that past experience,
i.e. the return obtained last time the agent was in a similar state. This non-parametric memory
enables very fast instance-based learning where, when interacting with relatively deterministic
dynamics, a handful of similar past experiences can be adequate to acquire a reasonable assessment
of obtainable future reward. Recently this concept has been scaled to the high-dimensional
environments typical of deep reinforcement learning applications, with the episodic memory being
implemented either as a k-Nearest-Neighbor model (kNN) using fixed random projections of
observations as features [I4], or a soft-kNN where kNN features are trained alongside the policy
using RL objectives [I61]. In this setting, the kNN memory look-up functions as re-acquiring stored
MDP statistics, i.e. estimates of return statistics for different actions, and the majority of learning
the system undertakes is mainly to improve observation featurization so as to enable accurate,
generalizable recall. In psychology and cognitive sciences, episodic memories have emerged as an
accurate model of certain animal learning behaviours, suggesting a potential implementation of a
similar mechanism in natural systems [169][16].

An alternative parametric approach to inter-episodic memories involves recurrent neural networks
whose recurrent state does not reset at episode boundaries [49][210]. These parametric approaches
are in a sense more general because they (1) do not restrain the recalled information to be reward-
based statistics, and (2) can in theory learn any algorithm, including the standard RL ones episodic
memory leverages (assuming the particular recurrent network model is Turing-complete [184]).
The previously described approaches are not necessarily mutually exclusive: Parametric and non-
parametric inter-episodic memories have also recently been combined, where non-parametric recall
is used to reinstate the activations of a recurrent policy, based on the closeness of the current
observation history to past experiences [170].

A notable counterpart to inter-episodic memory utilizes gradient descent itself as an inductive
bias for the meta-learning update rule of the system [128][5][56][144][175][59]. These optimization-
based meta-learners differentiate through the optimization process, typically stochastic gradient
descent or a historically-averaged variant, to obtain a descent direction on the inter-trial learning
dynamics. Variants of this approach use the meta-gradient in different ways: optimizing the
initial weight matrix to achieve optimal performance in as few steps as possible in a variety of
environments [56], doing the same but using a more computationally efficient approximation to the
second-order derivatives [I44][59], optimizing a lower dimensional embedding vector that structurally
parameterizes the full initial weight matrix of the network [I75], optimizing all parameters of the
learning process [5]. While these methods have emerged as a distinct branch of meta-learning,
they are not directly competing with episodic memory approaches, and there is evidence that
both approaches can be combined [59]. In this thesis, we do not focus on this approach and we
believe that both methods can be developed independently as they each have separate strengths
and disadvantages.

1.1 Notation

A Markov Decision Process (MDP) [163, [196] is a tuple M = (S, A, T,v,R, p, H) where:

e S is a finite set of states.
e A is a finite set of actions.

o 7 :8 x A — II(S) defines the transition dynamics, e.g. T (s'|s,a) for states s, s’, action a
defines the probability of ending up in state s’ when executing a in state s.

v € [0,1] is a discount factor.

R:S x A— Ris areward function which an agent tries to maximize.

p: S — II(S) is the initial state distribution, defining where in the state-space the agent
begins an episode.



e 7 € N is the time horizon of the MDP, after which an episode ends. For non-episodic
environments, H = co.

where II(-) defines a probability distribution over its input set. MDPs are Markovian as knowing
the current state is sufficient to know the distribution of next states, i.e. the path that was taken
to the current state is irrelevant to decision making.

A stationary policy is a mapping from states to probabilities over actions 7 : S — II(A). We
define the value of a policy V™ (s;) as the accumulated discounted expected future reward when
starting at a state s; and executing m onward:

o

k
E YV St+k
k=0

We can additionally define a similar “action-value” function:

VW(St) =E

Ak ~ T(+St4k), (L.1)
St4k4+1 ™ T('|5t+lmat+k)

St+k+1 T('|5t+ka at+k)

QT((St, at) = E lz ’Yk8t+k
k=0

Atgk+1 N7T('|5t+k+1)a 1 (1.2)

The goal of reinforcement learning algorithms is to find the policy 7* that maximizes value over
all states s: Vs, 7* = argmax, V™ (s). It is guaranteed that 7* always exists [196]. The value and
action-value functions can be decomposed into recursive forms called the Bellman Equations:

a ~ 7([s¢),
Sea1 ~ T (|5, at):| (1.3)

St4+1 ™~ T('|5t’at)v:| (14)

agyr ~ 7([se41)

V™(s) =E {r(st, at) + YV™(8t41)

Q" (st,ar) =E {T(St, at) + YQ" (St41, Gr1)

The optimal policy satisfies another recursive form called the Bellman Optimality Equation:

(o) — . n| o ar ~m(lse),
Vi(st) =E |:’f'(5t,(lt) +ymaxQ*(sp1,a) See1 ~ T(-|st,at)] (1.5)
Q" (s1,01) = B [ (s, a0) +ymax Q@ (e, @) [t ~ T(lse,ar)| (1.6)

where V* = V7™, Q* = Q™ .
A Partially-Observable Markov Decision Process (POMDP) [97] is a tuple (S, A, T,~v, R, p, H,Q, O)
where:

o (S, A, T,v,R,p,H) is an MDP.
e () is a finite set of observations.

e 0:8x A — II(Q) defines an observation function where O(s’,a,0) is the probability of
observing o after executing action a and ending up in state s’.

The key distinction of POMDP from MDP is that, in POMDPs, the agent is unable to observe
the current state, typically only having access to a sampled observation. Therefore in order to act
optimally, an agent must try to infer its state using the full history of observations and actions
taken, or a sufficient statistic of this history.

1.1.1 Meta-Learning

The class of meta-learning environments is primarily concerned with learning in resource constrained
applications. This covers a wide variety of natural applications where environment interaction is
expeunsive, due to the high cost of sensors or actuators (a robot costing several hundred thousand
dollars), or where time is constrained (i.e. agent execution is occurring in real-time and therefore
sampling millions of states is prohibitive). This can reduce the amount of data available for learning
in a particular environment by orders of magnitude compared to the number of samples typically
required to train deep reinforcement learning agents.

More formally, Meta Reinforcement Learning is concerned with the case where we are given a
distribution p : M — [0, 1] over tasks M7 = {Mj,..., My} and we want to learn how to act in



any environment sampled from this distribution as quickly as possible. By learning to focus on only
the variations between the environments in M7, meta learning algorithms can exploit structure
in the class of tasks to, in the most extreme case, learn a new M; ~ p in only 1-10 interaction
episodes. Adopting similar conventions to [56, [190], we can frame meta reinforcement learning as a
solution to the following objective function:

ngnZEﬂ'A(e) ['CMq] (1'7)
M,

where A(6) represents a few-shot update method which collects a limited amount of experience
from each M; to update 6. In this thesis, we focus on techniques where the few-shot update method
A(0) is a sequence model processing an inter-episodic observation, action and reward history.

We formalize the terms for meta-learning with inter-episodic memory below:

e An environment domain or class M7 is the set of tasks we want to meta-learn on.
e An environment /task instance is a single (PO)MDP in the environment domain, M; € MT.

e An interaction, episode or sub-episode all represent an H-length sequence of actions
taken by the meta-learning policy in a single environment instance.

o A meta-episode refers to the total sequence of interactions with an environment instance.

Additionally, in the sequel, as the focus is on temporally-extended decision-making, i.e. the RL
setting, we will not make an explicit distinction between “Meta-Learning” (often used to refer
specifically to supervised learning domains) and “Meta-Reinforcement-Learning”, and these two
terms will be used interchangably.

Meta-learning settings can be formalized as POMDPs with a special structure: an agent is
exposed to a collection of instance MDPs (or, more generally, POMDPs) which each have an
independent task id, or context, associated with them. The goal of meta-learning is for the agent
to accurately discover this context through interaction with the environment instance it’s currently
acting in, while potentially being limited in

1. the amount of interaction it has with each environment instance,

2. the total number of environment instances it can interact with during training.

Given that meta-learning is a specific type of POMDP, techniques developed for solving general
POMDPs, such as belief-space algorithms [122, [123], 222| [I58] or recurrent networks [80], can
therefore be applied to the meta-learning setting with few changes. Additionally, recent work [68]
has made more explicit use of this connection between POMDP and meta-learning generalization,
defining an “Epistemic POMDP” corresponding to the data-limited meta-learning setting where only
a few environment instances are accessible during training, and leveraging Bayesian RL approaches,
originally used for belief-space planning in more general POMDPs, to motivate novel meta-learning
algorithms.

1.1.2 Embodied Environments

In this thesis, a particular class of POMDPs we are interested in will be “embodied environments”.
In embodied environments, agents have a physical manifestation in an environment with dynamics
resembling the real world. This environment domain covers a large number of real-world robotics
applications, where the standard setting is an agent controlling a robot’s actuators given observations
obtained from on-board sensors. Partial-observability is inherent within this class of environments
due to occlusion and changing environment conditions, potentially due to other actors within the
environment. As this class of environments is situated within the natural world (or an approximation
of it), there is available a large amount of prior knowledge to make use of in the design of agent
architectures. For examples of shared structure, the transition dynamics follow the laws of classical
mechanics, and the state and observation spaces have underlying euclidean geometric structure.

1.2 Overview of Completed Work

We partition the chapters in this thesis into two parts: the first which focuses solely on methods for
meta-learning with inter-episodic memory in embodied environments, and the second which focuses
on general (PO)MDP environment classes. In this section, we describe the contributions of this
thesis within these two parts.



1.2.1 Part 1 - Meta Reinforcement Learning in Embodied Domains

In the first part of this thesis, we focus on meta-learning within the class of embodied agent
environments, where there exist several strong priors we can exploit in the structure of the
observation and state spaces. As will be demonstrated, leveraging knowledge about the geometric
and physical structure of the natural world can enable the design of meta-learning agents that
achieve rapid and efficient learning in embodied environments. In this section, we present several
methods covering various capabilities that work towards an end-to-end monolithic agent architecture
for few-shot learning in embodied environments.

1. A memory architecture, the Neural Map [152], that accomplishes end-to-end learning of
structured environment representations where features are organized spatially; features close
together on this spatial metric represent observations obtained at positions close together
in the environment. We demonstrate that this architecture functions as a highly effective
inter-episodic memory for meta-learning in embodied environments and will serve as the basis
of the proposed monolithic architecture.

2. A state inference architecture, Active Neural Localization [25], that chooses actions that
disambiguate an agent’s location (equivalently the agent’s state in embodied environments)
given a map. This architecture also enables the agent to be trained to take actions which
reduce entropy on the current location. Results demonstrate that the proposed architecture sig-
nificantly outperforms previous methods in terms of performance and required computational
cost.

3. A planning architecture, the Gated Path Planning Network [119] (GPPN), that is able to
do planning on feature maps and location estimates produced by deep learning architectures
such as the proposed Neural Map and Active Neural Localization. Through an extensive
set of experimental evaluations, we show the GPPN reaches state-of-the-art performance for
differentiable planning in embodied environments.

4. An end-to-end architecture trained to do simultaneous localization and mapping, the Neural
Graph Optimizer [I54]. The Neural Graph Optimizer’s ability to produce locations without
any map knowledge a priori is the last remaining component necessary for a self-contained
agent architecture, as location estimates are required for the Neural Map. We show that the
architecture achieves significant performance gains over previous baselines on an environment
domain with high levels of perceptual aliasing.

Combined, these methods contain the components necessary to build a monolithic agent architecture
capable of actively and simultaneously memorizing, planning and performing state inference in
embodied environments. We now describe each of these completed chapters in more detail.

Chapter [2| - Neural Map: Structured Inter-Episodic Memory [152]

Mapping is the process of building a representation of the environment that could later be used
for localization (i.e. state disambiguation) and planning. For embodied environments, an obvious
choice of representation is the geometric structure of the environment. Traditionally, a large amount
of work has gone into the development of methods to construct geometric maps from image and
depth sensors [140][I39][111][52][214]. These methods typically use mathematical models of light
transport to register pixel or feature observations in 3D space [140][139][52].

While the traditional fully geometric methods can achieve a high degree of reconstruction
accuracy within real-world environments, transforming 3D geometric information into behaviours
for accomplishing tasks can require a substantial amount of hand-engineering. Alternatively,
we design an architecture that leverages the spatial structure of the environment while making
the representation stored learnable end-to-end alongside the task behavior. The Neural Map
accomplishes this through registering feature observations obtained at a time step t with the
agent’s current location in the environment. By storing the features within a spatial metric, the
agent gains the ability to reason about the spatial relationships between observations directly and
more efficiently, i.e. convolutional networks can be used to process features organized spatially.
We demonstrate that this spatial-map organization of feature information largely improves agent
performance compared to more unstructured latent representations such as LSTM, while still
enabling learning directly from reward signal.



Chapter - Planning & State Inference in Embodied Inter-Episodic Memories[119] 25|

In this chapter, we present results that can augment the Neural Map memory described in the
previous chapter with two additional core competencies: planning and state inference. We propose
two submodules with these capabilities, the Gated Path Planning Network and Active Neural
Localization, able to perform planning and state inference, respectively. We evaluate each submodule
in isolation in order to ablate their performance against previous baselines directly. All submodules
are evaluated within the same environment domains to demonstrate that their potential combination
is simply a matter of composing them within a single end-to-end agent architecture.

Planning [119]: The act of planning in embodied environments reduces itself to the more
specific subset of problems known as path planning, that is: given a goal location, what is the fastest
route to achieve that target location. Given an estimate on the agent’s location (potentially provided
by the Active Neural Localizer) and an approximate map of the environment (potentially provided
by the Neural Map), several traditional algorithms can be chosen to do action selection such as
value iteration, but these are insufficient because they (1) require domain-specific knowledge (e.g.
knowledge of the MDP transition dynamics), and (2) because they are non-differentiable, meaning
the map representation is not provided a signal to adjust itself to be amenable to the planning
submodule’s computations, and vice versa. Our goal of a monolithic agent architecture therefore
motivates us to seek out differentiable planning architectures capable of learning how to integrate
map and location information automatically, even when given distributed representations for the
map and location estimate. This can enable a planning mechanism tailored to the task at hand as
the reward signal influences its operation, and further removes the requirement that intermediate
representations in our agent architecture be interpretable, reducing the domain knowledge necessary
for agent design.

The Gated Path Planning Network (GPPN) was developed specifically to tackle this challenge
of planning with differentiable representations. The GPPN is based off the Value Iteration
Network [I98|, an architecture that represents grid-based path planning using a differentiable neural
network by assuming a local (i.e. Moore-neighbourhood) transition model. The VIN does planning
by utilizing a weight-tied convolutional network on a spatially-organized grid to iteratively produce
single-dimension feature maps that approximate value functions. The proposed GPPN replaces the
hand-designed update equations with powerful gating mechanisms, resulting in an architecture that
is far more reliable in optimization and performance than the VIN. We demonstrate that the GPPN
largely outperforms the VIN on planning tasks in grid-world and complex 3D vision domains.

State Inference [25]: Localization, equivalently state inference in embodied domains, is the
process of acquiring the agent’s coordinates in the world given a map of the environment. Classical
localization algorithms are based on Kalman Filters [I00][I87] or geometry-based methods [145][140].
Recently work has been done to leverage deep learning to produce robust and effective feature
representations for use in localization methods [34][211][33]. Despite the use of end-to-end archi-
tectures in modern localization algorithms, a notably absent characteristic from recent work is
the combination of action and localization, or active localization. An agent having the capability
to choose actions to disambiguate its own location estimate can result in a potentially far more
accurate localization than an agent purely choosing actions myopically.

To tackle the issue of simultaneously acting and localizing we propose Active Neural Local-
ization [25], which does state estimation using an algorithm similar in conception to traditional
approximate POMDP solvers. The key difference is that the Active Neural Localization replaces
several components (such as the environment map, transition and observation model and policy),
with differentiable sub-modules that allows learning directly from environment data, and thus
enables composition in a monolithic end-to-end architecture. Active Neural Localization can learn
to localize in environments where the POMDP parameters are inaccessible, and reduces agent
designer involvement as approximations to these parameters can be learnt directly from reward
signal. Furthermore, we design objectives which increase the amount of information-seeking actions
the agent produces.

Chapter (4] - Towards End-to-End Simultaneous Localization and Mapping [154]

The inter-episodic memory at the basis of our proposed embodied agent architecture for meta-
learning, the Neural Map, crucially relies on having a location estimate. As a location estimate
depends on having a map and vice versa, we require some method capable of both localizing and
mapping at the same time, solutions to which are termed Simultaneous Localization and Mapping
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(SLAM) algorithms. SLAM is made difficult because mapping and localizing are highly intertwined:
without an estimate of the camera’s location, a map cannot be built, while simultaneously, without
a map, localization cannot be performed. Furthermore, models which rely solely on local infor-
mation [34][211] (i.e. ego-motion between temporally-contiguous frames) are susceptible to drift
(the accumulation of small errors over time) and perceptual aliasing (the inability to disambiguate
highly redundant scenes, i.e. every floor having an identical hallway). The difficulty and importance
of SLAM algorithms has made it a highly active research field spanning decades [23], although the
majority of this work has focused on hand-engineered pipelines that are non-differentiable.

While we can use any existing available SLAM solver [62][140][I39] as an input to the Neural
Map, there are several reasons why it is preferable to design a novel one: (1) because many of
the traditional SLAM algorithms rely on hand-specified feature detectors, they can be brittle
when scene statistics change (lighting, changes due to weather, etc.), and (2) the vast majority of
these SLAM algorithms are non-differentiable, an obstruction to our stated goal of an end-to-end
agent architecture. Therefore in this chapter, we design a differentiable submodule based off the
graph-optimization-based class of SLAM algorithms [140][23][I39]. Graph optimization SLAM
algorithms construct a pose-graph where vertices are video frames and edge values are functions
connecting and determining the strength of correspondences between frames, i.e. frame pairs with a
high amount of similar features get high edge values. The pose graph is passed through an iterative
optimization algorithm [ITI] that produces pose estimates that maximize the edge function values.
The Neural Graph Optimizer replaces the pose graph construction and iterative optimization with a
self-attention-based architecture, which is applied recurrently to produce a final refined estimate. By
leveraging far longer-horizon temporal information than previous architectures [34][211], the Neural
Graph Optimizer was shown to learn how to estimate locations more accurately than comparable
end-to-end odometry and sequence-based methods.

1.2.2 Part 2 - Meta Reinforcement Learning through Memory

In the second part of the thesis, we move to the general meta-learning setting where there are
no further assumptions on the types of (PO)MDPs the agent will encounter. This will require
leveraging more universal structure in the methods we devise, for example how sequences are
processed or even the method in which the agent interacts with its environment.

Chapter [5|- Concurrent Episodic Meta-Reinforcement Learning [150]

Meta-learning methods using inter-episodic memories typically process the sequence of interaction
history with a particular environment instance into a conditional policy that predicts the next
action [2I0][49][56]. While the sequential processing of interaction episodes within a single environ-
ment instance optimally uses the totality of information from that environment in deciding the next
action, it is not always advantageous or viable to obtain a long history of episodes sequentially. For
example in robotics, interacting with a robot is time-constrained as environment processing cannot
occur faster than real-time. Processing data in parallel is a common workaround to applications
where data collection is expensive: having multiple robots can enable a linear reduction in the
time required to obtain a fixed number of samples. While this can come at the cost of modeling
capacity (as each parallelized meta-policy may not have a complete observation history of the other
meta-policies), parallelizing can often be a more cost-effective and practical solution.

Following along this type of reasoning, we present CEMRL [I50], a meta-learning framework
that parallelizes episode execution by formulating meta-learning as a multi-agent communication
problem. In this framework, each episode of interaction with an environment instance is executed
by a separate agent in parallel. Rapid meta-learning is achieved not purely through conditioning
on observation history as typically done, but through the agents being interconnected through a
differentiable communication architecture that enables the sharing of features from distinct episodes.
In addition to being a more cost-effective solution for time-critical applications, parallelization
additionally affords several advantages: it enables the design of reward sharing schemes that are
well-suited to high-risk environments and auxiliary losses that encourage a diversity of behavior
amongst the parallel policies. In a variety of challenging partially-observable environments, we
evaluate several architectures in our paralellized meta-learning framework and demonstrate a
consistent improvement over the more commonly used episodic sequence processing methods.
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Chapter [6] - Transformers for Meta RL [155]

As described in previous sections, the specialized design of architectures suited to certain environment
domains can enable an improved performance and data efficiency by exploiting structural biases in
the class of environments. But environment class specialization has the drawback that the designed
methods are most often not as tested as more general architectures which, owing to their widespread
use and associated tuning, can often work out-of-the-box with much less implementation effort than
an equivalent structured model. Currently, the most common type of architecture used in deep
reinforcement learning for POMDPs is recurrent neural networks (RNNs) [135][53][102], typically
the gated Long Short-Term Memory (LSTM) [89] variant which has far more stable optimization
properties. Through a recurrent update mechanism, RNNs allow the efficient processing of sequential
information into a fixed-length distributed vector that learns to represent summary statistics of the
agent’s history. This architecture’s ubiquitous use is largely due to its generality as any sequence of
input data can be processed by an RNN, and a large variety of open-source implementations of RL
algorithms use an LSTM model as a default.

As an alternative to recurrent networks, a recent breakthrough development in deep sequence
modeling is self-attention-based models [45] 164, 218, [207]. Self-attention bypasses several of
the limitations of recurrent networks: enabling arbitrary indexing over time and no exploding /
vanishing gradients [IT][I56]. The transformer [207], a particularly scalable and successful self-
attention model, has become the de-facto state-of-the-art architecture for a large variety of natural
language processing tasks [40, 164, 218, 207, 51| 126], 42], 218 [45] 164, 218, [42]. In this chapter, we
propose a novel transformer architecture, the Gated Transformer-XL (GTrXL) [I55], that remains
as general as the LSTM in the types of RL domains it can be applied to. Extensive experimental
validation demonstrates that our architectural variant of the transformer has improved optimization
properties which allow it to (1) largely surpass LSTM’s performance in difficult partially-observable
and multitask meta-learning environments, (2) match or surpass LSTM’s optimization stability.
Our results are rigourously validated in a variety of challenging meta-learning domains including
environments with hybrid action spaces (i.e. both discrete and continuous) and demonstrate its
capability to perform meta-learning in a multitask setting, being performant even with a wide
distribution of distinct environment classes.

Chapter [7] - Efficient Transformers in Reinforcement Learning using Actor-Learner
Distillation [153]

As demonstrated in the previous chapter, the use of powerful and scalable general sequence models
like transformers for reinforcement learning can potentially unlock a new level of artificial agent
capabilities. However, training these sequence models require significant computational resources,
even in supervised learning domains [83] [I9]. These resource demands are further compounded
when using reinforcement learning objectives, where data must be collected by stepping the policy
observation-by-observation to collect new trajectories of experience to drive learning. Additionally,
certain environments provide hard constraints on power and compute that limit the viable model
complexity of Reinforcement Learning (RL) agents.
To work towards:

1. democratizing the use of transformer sequence models within the research community by
reducing the computational cost of training such models, and,

2. unlocking the use of large model capacity while still operating within potential latency limits
imposed by real systems during acting (e.g. robotic platforms),

in this chapter we develop the “Actor-Learner Distillation” (ALD) procedure. ALD leverages a
continual form of distillation that transfers learning progress from a large capacity learner model to a
small capacity actor model, considerably reducing computational cost by removing the requirement
that the learner model has to be executed during environment interaction / data collection. With
gated transformer models as the learner and LSTMs as the actor, we demonstrate in challenging
memory and meta-learning environments that using Actor-Learner Distillation recovers the clear
sample-efficiency gains of the gated transformer learner model, while still maintaining the fast
inference and reduced total training time of the LSTM actor model.
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1.3 Summary

In this thesis, we work towards the rapid generalization of artificial agents through the design of
effective episodic memories. The contributions of this thesis are the following:

e In the first part of this thesis (covering Chapters [2] - , as an initial step towards effective,
general meta-learners, we define an important class of environments, “Embodied Environments”,
and limit our focus to inter-episodic memories for meta-learning within this class. Embodied
environments have agents with a physical manifestation in the environment resembling the
natural world and represent an important class of environments for real-world applications, as
most robotics applications are encompassed under this category. Furthermore, restricting our
focus to these environments affords our algorithms a large amount of exploitable structure
in state and observation spaces. We work towards the components that would construct a
monolithic, end-to-end agent architecture for rapid adaptation in this environment class. The
goal is an agent having the core competencies of memorization, planning and state inference.

— In Chapter[2] we define the Neural Map, an inter-episodic memory that exploits geometric
structure in embodied state spaces to efficiently map the physical world the agent
inhabits into a spatially-organized feature map. Within a set of challenging embodied
environments, we demonstrate significant improvements over more unstructured inter-
episodic memories such as standard LSTMs.

— In Chapter [3] we define architectural submodules that can be combined with and augment
the basic capabilities of the Neural Map — namely, (1) a localization module that enables
a rapid reduction in ambiguity over where the agent is located in an environment, given
observations and a representation of a map of that environment, and (2) a planning
module that allows rapid and generalizable path planning in map representations. We
validate the performance of each submodule in isolation against related methods, and
in both cases demonstrate a significant advancement in performance over previous
techniques.

— In Chapter [4 to address the missing capability of localization without a map, inspired
by the traditional Simultaneous Localization and Mapping (SLAM) techniques, we
describe a graph-based self-attention architecture that accomplishes both localization
and mapping simultaneously. We present results demonstrating that such a model
provides more accurate estimates of agent location compared to alternatives such as
deep recurrent models and traditional SLAM implementations, even when tested in
environments with significant amounts of perceptual aliasing.

e In the second part of the thesis, we move past our previous focus on embodied environments
and present more general meta reinforcement learning methods which work across a target
distribution of tasks encompassing any set of (PO)MDPs.

— In Chapter [5] we describe a novel concurrent execution framework for meta-learning with
inter-episodic memories. In previous work, an agent sequentially interacts with a target
environment and performs fast adaptation conditioning on the sum total of past experience
with that environment. This chapter describes an alternative execution paradigm, where
multiple agents are executed in separate instances of the same environment in parallel and
allowed to communicate to each other through a memory-based channel. The concurrent
setting is especially important for applications where interaction is time-constrained, i.e.
robotics or any environment which executes in real-time.

— In Chapter [6] motivated by the substantial amount of success self-attention architectures
have recently achieved in supervised learning, we present a gated transformer architecture
designed specifically for improved optimization stability and performance in reinforcement
learning tasks. The gated transformer is extensively validated across a challenging set
of meta-learning environments, including a multitask setting. We show consistent and
considerable gains over previous recurrent models, particularly whenever memory is a
significant aspect of competancy in the environment.

— In Chapter [7] we investigate the critical issue of computational cost for training trans-
former models in the (meta-)reinforcement learning setting. While an issue in supervised
learning, inference speed greatly limits the amount of model capacity available for use
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in reinforcement learning applications due to data collection requiring the step-wise
execution of the transformer model. Large transformer models can take in excess of
seconds to process states, especially on the un-accelerated hardware that distributed
learning is typically performed on, meaning that in order to be feasibly trained, either (1)
training would require an extreme number of parallel actors, or (2) the model’s capacity
must be inordinately constrained, hindering our ability to exploit the transformers
impressive scaling properties. In this chapter, we propose Actor-Learner Distillation,
a solution aiming to reduce the total computational cost of training transformers and
democratizing their more widespread use. ALD is an online asymmetric distillation
procedure that enables the transformer model to be only executed in a batched setting
on accelerated hardware, while acting is done by more light-weight models better suited
for fast inference.

e Finally, in Chapter [§ we conclude by summarizing the achievements of this thesis and discuss
promising future avenues for meta-learining through inter-episodic memories.
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Part 1

Meta Reinforcement Learning in
Embodied Environments
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Chapter 2

Neural Map: Structured
Inter-Episodic Memory

In the first half of this thesis, we present methods for meta-learning with inter-episodic memory
that focus on a more specific class of meta-learning environments where the agent has a physical
embodiment in its domain. These “embodied” environments have state, observation and dynamics
structure that closely resemble that of the natural world, and for this reason they represent
an important application area of meta-learning. In particular, within the class of embodied
environments the common substructure manifests itself as (1) the laws of classical mechanics specify
the transition dynamics, and (2) there exists latent 3d geometric structure inherent in all embodied
observation- and state-spaces, regardless of the particular sensor modality. The majority of robotics
applications can be encompassed under this category, and therefore methods effective here can be
applied to wide areas of practical interest.

The strong regularities within embodied environments afford us substantial structure to make
use of in the design of inter-episodic memories. Using this structure, in this chapter we present
a memory map architecture that is spatially organized, intended to exploit the underlying 3D
geometric composition of embodied environments. The “Neural Map” constructs a top-down
representation of the 3D environment the agent is situated in in a particular meta-episode, endowing
the agent with few-shot navigational capabilities by allowing it to quickly memorize the arrangement
of novel surroundings. In more detail, the Neural Map is a 2-dimensional feature map where pixel
positions in the map correspond to quantized positions in the environment. As an agent explores its
3D environment, the Neural Map writes the observation features to the nearest quantized position
in the feature map corresponding to the agents real-world location. The agent policy then reads
spatially local and global information from the stored map representation to plan its next action.
To demonstrate the effectiveness of the Neural Map, we run it on a variety of challenging navigation-
based meta-learning tasks in partially-observable environments with high-dimensional observations.
We provide comparisons against more unstructured LSTM- and Memory Network-based models,
and in all cases show a significant improvement over previous baselines.

2.1 Background & Related Work

Other than the straightforward architectures of combining an LSTM with Deep Reinforcement
Learning (DRL) [I35] [80], there has also been work on using more advanced external memory
systems with DRL agents to handle partial observability. [I46] used a memory network (MemNN)
to solve maze-based environments similar to the ones presented in this paper. MemNN keeps the
last M states in memory and encodes them into (key, value) feature pairs. It then queries this
memory using a soft attention mechanism similar to the context operation of the Neural Map,
except in the Neural Map the key/value features were written by the agent and aren’t just a stored
representation of the last M frames seen. [146] tested a few variants of this basic model, including
ones which combined both LSTM and memory-network style memories.

In contrast to memory networks, another research direction is to design recurrent architectures
that mimic computer memory systems. These architectures explicitly separate computation and
memory in a way anagolous to a modern digital computer, in which some neural controller (akin to
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a CPU) interacts with an external memory (RAM). One recent model is similar to the Neural Map,
called the Differentiable Neural Computer (DNC) [71], which combines a recurrent controller with
an external memory system that allows several types of read/write access. In addition to defining
an unconstrained write operator (in contrast to the neural map’s write location being fixed), the
DNC has a selective read operation that reads out the memory either by content or in the order
that it was written. While the DNC is more specialized to solving algorithmic problems, the Neural
Map can be seen as an extension of this Neural Computer framework to 3D environments, with
a specific inductive bias on its write operator that allows sparse writes. Recently work has also
been done toward sparsifying the read and write operations of the DNC [I65]. This work was not
focused on 3D environments and did not make any use of task-specific biases like agent location,
but instead used more general biases like “Least-Recently-Used” memory addresses to force sparsity.
More recently, the DNC, in conjunction with a VIN planning network [198], has been applied to
the task of navigating partially-observable environments [107] although it still relied on supervised
learning in order to train the complete system.

Contemporary to this work, [74] designed a similar 2D map structured memory to the Neural
Map but which lacked a context addressing operation and used DAGGER [I71], an imitation
learning algorithm, to train their agent. Comparatively to their grid-like environments, Doom
actions affect translational/rotational accelerations so training using imitation learning is more
difficult since a search algorithm cannot be used directly as supervision. An interesting addition
they made was the use of a multi-scale map representation and a Value Iteration network [I98] to
do better path planning. Later work expanded upon spatial-memory architectures, with the Neural
SLAM architecture [221] extending spatial memories to settings where localization/odometry is not
provided a priori, but instead has to be computed in tandem with the mapping of the environment.
The MapNet [84] was an allocentric spatial memory that added a novel feature projection operator
that mapped features to the points in the map that they are located in based on agent position and
camera depth estimates. This is in contrast to the Neural Map, which maps all current observation
features to the location they were observed at rather than their external environment position. They
report better localization accuracy than traditional- and deep-learning-based baseline models on
supervised learning datasets including a synthetic one based on Doom.

2.2 Neural Map

In this section, we will describe the details of the neural map. The neural map is the agent’s internal
memory storage that can be read from and written to during interaction with its environment,
but where the write operator is selectively limited to affect only the part of the neural map that
represents the area where the agent is currently located. For this paper, we assume for simplicity
that we are dealing with a 2-dimensional feature map representation. This can easily be extended
to 3-dimensional or even higher-dimensional maps (i.e. a 4D map with a 3D sub-map for each
cardinal direction the agent can face).

Let the agent’s position be (z,y) with z € R and y € R and let the neural map M be a
C x H x W feature block, where C' is the feature dimension, H is the vertical extent of the map
and W is the horizontal extent. Assume there exists some coordinate normalization function
¥ (z,y) such that every unique (z,y) can be mapped into (z’,y’), where ' € {0,..., W — 1} and
y' €{0,...,H — 1}. For ease of notation, suppose in the sequel that all coordinates have been
normalized by 1) into neural map space.

Let s; be the current state embedding, M; be the current neural map, and (x4, y;) be the current
position of the agent. The Neural Map is defined by the following set of equations:

ry = read(My),
¢t = context(My, ¢, 1),

(zt,yt)

Wyypp = write(sq, vy, cp, M),
My = update(Mt,wt(fl’yt))) (2.1)
o0 = e i, wZ5),
mt(als) = Softmax(f (o)),
where ngtvyf) represents the feature at position (xy,y;) at time ¢, [z1,..., 2] represents a con-

catenation operation, and o; is the output of the neural map at time ¢ which is then processed by
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another deep network f to get the policy outputs m;(a|s). We will now separately describe each of
the above operations in more detail:

Global Read Operation

The read operation passes the current neural map M; through a deep convolutional network and
produces a C-dimensional feature vector r,. The global read vector r; summarizes information
about the entire map.

Context Read Operation:

The context operation performs context-based addressing to check whether certain features are
stored in the map. It takes as input the current state embedding s; and the current global read
vector 7y and first produces a query vector ¢;. The inner product of the query vector and each

feature Mt(w’y) in the neural map is then taken to get scores aﬁ‘”’) at all positions (x,y). The scores

are then normalized to get a probability distribution agm’y) over every position in the map, also

known as “soft attention” [9]. This probability distribution is used to compute a weighted average
¢ over all features Mt(z’y). To summarize:

qt = W[St,’f‘t],
agmvy) =q; - Mt(x’y)’
eagwwy)
) — _— (2.2)

2w,z €

¢ = Z Oégmy)Mt(:c,y),
(z,y)

where W is a weight matrix. The context read operation allows the neural map to operate as an
associative memory: the agent provides some possibly incomplete memory (the query vector ¢;) and
the operation will return the completed memory that most closely matches g;. So, for example, the
agent can query whether it has seen something similar to a particular landmark that is currently
within its view.

Local Write Operation:

Given the agent’s current position (z¢,y:) at time ¢, the write operation takes as input the current

state embedding s;, the global read output r;, the context read vector ¢; and the current feature at

position (z¢, ;) in the neural map M **¥")

. . T
C-dimensional vector wg +t1’y”)

and produces, using a deep neural network f,,, a new
. This vector functions as the new local write candidate vector at the

current position (x¢, yt): wg”l’y‘) = fw([st,rt,ct,Mt(x“y”)})

GRU-based Local Write Operation

As previously defined, the write operation simply replaces the vector at the agent’s current position
with a new feature produced by a deep network. Instead of this hard rewrite of the current position’s
feature vector, we can use a gated write operation based on the recurrent update equations of the
Gated Recurrent Unit (GRU) [30]. Gated write operations have a long history in unstructured
recurrent networks and they have shown a superior ability to maintain information over long time
lags versus ungated networks. The GRU-based write operation is defined as:

i = o (Wils, e, e, ME))
wﬁqyt) = tanh(W; [s¢, re, ¢f] + U;L(rgfl’yt) ©® Mt(zt’yt)))
255" = o (Wl ma, e, M)

wgitl,yt) — (1 _ Zlgf-tfyt)) ® Mt(ft,yt) + Zt(j—tl,yt) ® wt(j-tiyt)7

(2.3)

where z ® y is the Hadamard product between vectors x and y, o(-) is the sigmoid activation

function and W, and U, are weight matrices. Using GRU terminology, rt(fl’y") is the reset gate,
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ﬁ)gfl’y") is the candidate activation and zt(fl’yt) is the update gate. By making use of the reset and

update gates, the GRU-based update can modulate how much the new write vector should differ
from the currently stored feature.

Map Update Operation:

The update operation creates the neural map for the next time step. The new neural map My, 1 is

equal to the old neural map M;, except at the current agent position (x¢,y:), where the current

write candidate vector wt(ffl"yt) is stored:

Mt(a’lb) — wgitl’zt)a for (av b) = (‘Tt’yt) (24)
* Mt(a’ )7 for (0/, b) 7& (xta yt)

2.3 Ego-centric Neural Map

A major disadvantage of the neural map as previously described is that it requires some oracle to
provide the current (z,y) position of the agent. This is a difficult problem in and of itself, and,
despite being well studied, it is far from solved. The alternative to using absolute positions within
the map is to use relative positions. That is, whenever the agent moves between time steps with
some velocity (u,v), the map is counter-transformed by (—u, —v), i.e. each feature in the map is
shifted in the H and W dimensions. This will mean that the map will be ego-centric, i.e. the
agent’s position will stay stationary in the center of the neural map while the world as defined by
the map moves around them. Therefore in this setup we only need some way of extracting the
agent’s velocity, which is typically a simpler task in real environments (for example, animals have
inner ears and robots have accelerometers). Here we assume that there is some function &(u’,v")
that discretizes the agent velocities (u',v’) so that they represent valid velocities within the neural
map (u,v). In the sequel, we assume that all velocies have been properly normalized by £ into
neural map space.

Let (pw,ph) be the center position of the neural map. The updated ego-centric neural map
operations are shown below:

M = CounterTransform(My, (us,v¢))
ry = read(M ;)

¢y = context(My, s¢,7¢)

. —_— ,ph
wt(ilf’ph) = write(sg, T, ¢ty Mgpw P )) (2.5)
M1 = egoupdate(M, wgﬁyf’ph))
,ph
o = [Ttvctawt(ﬂ)'p )]

T = SOftmaX(f(Ot))

Where M, is the current neural map M; reverse transformed by the current velocity (ug,v¢) so that
the agents map position remains in the center (pw, ph).

Counter Transform Operation: The CounterTransform operation transforms the current
neural map M; by the inverse of the agent’s current velocity (uy, v;). Written formally:

—(a,b) MO8 o ()1 WA (=) E{1L,..., H}
M = t ’ ’ 2.6
K { 0, else (2:6)

While here we only deal with reverse translation, it is possible to handle rotations as well if the
agent can measure it’s angular velocity.

Map Egoupdate Operation: The egoupdate operation is functionally equivalent to the
update operation except only the center position (pw,ph) is ever written to:

M(a7b) —

t4+1 (2.7)

w7(a,b)

w | for (a,b) = (pw, ph)
M, for (a,b) # (pw, ph)
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(¢) Green Torch — Green Tower

>

(d) Red Torch — Red Tower

(b) Observation

(a) 2D Maze

Figure 2.1: Left: Images showing the 2D maze environment. The left side (Fig. represents the fully
observable maze while the right side (Fig. represents the agent observations. The agent is represented
by the yellow pixel with its orientation indicated by the black arrow within the yellow block. The starting
position is always the topmost position of the maze. The red bounding box represents the area of the maze
that is subsampled for the agent observation. In “Goal-Search”, the goal of the agent is to find a certain
color block (either red or teal), where the correct color is provided by an indicator (either green or blue).
This indicator has a fixed position near the start position of the agent. Right: State observations from the
“Indicator” Doom maze environment. The agent starts in the middle of a maze looking in the direction of a
torch indicator. The torch can be either green (top-left image) or red (bottom-left image) and indicates
which of the goals to search for. The goals are two towers which are randomly located within the maze and
match the indicator color. The episode ends whenever the agent touches a tower, whereupon it receives a
positive reward if it reached the correct tower, while a negative reward otherwise.

2.4 Controller (Ego-)Neural Map

Here we describe the modification to the Neural Map we utilized for the 3D maze tasks. We include
an extra state h that represents the hidden and cell state of an LSTM. The Neural Map equations
are therefore:

ry = read(My),

hy = LSTM(St7 TeyCt—1, Me—1),

¢t = context(My, hy),

’lUt(itfyt) = write(s¢, 1, ct, Mt(m’yt)), (2.8)

Mt+1 = update(Mt, wgitfyt)),

[ (z¢ ,yt)}

Ot = [T't, Ct, Wy q

m(als) = Softmax(f (o)),

2.5 Experiments

To demonstrate the effectiveness of the Neural Map, we run it on 2D and 3D maze-based meta-
learning environments where memory is crucial to optimal behaviour. These meta-learning tasks
differ in the semantics of objects between episodes and the maze layout, meaning each meta-episode
interacts with a unique POMDP. We compare to previous memory-based deep RL agents, namely
a LSTM-based agent as well as the Memory-Network-based MemNN [I46] agents.

2.5.1 2D Goal-Search Environment

The “Goal-Search” environment is adapted from [I46]. Here the agent starts in a fixed starting
position within some randomly generated maze with two randomly positioned goal states. It then
observes an indicator at a fixed position near the starting state (i.e. the green tile at the top of
the maze in Fig. [2.1a)). This indicator will tell the agent which of the two goals it needs to go
to (blue indicator—teal goal, green indicator—red goal). If the agent goes to the correct goal, it
gains a positive reward while if it goes to the incorrect goal it gains a negative reward. Therefore
the agent needs to remember the indicator as it searches for the correct goal state. The mazes
during training are generated using a random generator. A held-out set of 1000 random mazes
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2D Goal-Search

Agent Train Test
7-11 13-15 Total 7-11 13-15 Total
Random 41.9% 25.7% 38.1% 46.0% 29.6% 38.8%
LSTM 84.7% T41% 874% 96.3% 83.4% 91.4%
MQN-32 80.2% 64.4% 83.3% 95.9% T4.6% 87.4%
MQN-64 83.2% 69.6% 858% 96.5% 76.7% 88.3%
Neural Map (15x15) 92.4% 80.5% 89.2% 93.5% 87.9% 91.7%
Neural Map + GRU (15x15) 97.0% 89.2% 94.9% 97.7% 94.0% 96.4%
Neural Map + GRU (8x8) 94.9% 90.7% 95.6% 98.0% 95.8% 97.3%
Neural Map + GRU -+ Pos (8x8) 95.0% 91.0% 95.9% 98.3% 94.3% 96.5%
Neural Map + GRU + Pos (6x6) 90.9% 83.2% 91.8% 97.1% 90.5% 94.0%
Ego Neural Map + GRU (15x15) 94.6% 91.1% 954% 97.7% 92.1% 95.5%

Ego Neural Map + GRU + Pos (15x15) 74.6% 63.9% 78.6% 87.8% 73.2% 82.7%

Table 2.1: Results of several different agent architectures on the “Goal-Search” environment. The “train”
columns represents the number of mazes solved (in %) when sampling from the same distribution as used
during training. The “test” columns represents the number of mazes solved when run on a set of held-out
maze samples which are guaranteed not to have been sampled during training.

is kept for testing. This test set therefore represents maze geometries that have never been seen
during training, and measure the agent’s ability to generalize to new environments. While this 2D
benchmark is not of practical significance due to its simplicity, it enables more direct comparison to
previously published results and also provides additional evidence of the Neural Map’s effectiveness
at few-shot navigation in novel environments.

The first baseline agent we evaluate is a recurrent network with 128 LSTM units. The other
baseline is the MQN, a previously published memory-network-based architecture that performs
attention over the past K states it has seen [I146]. Both LSTM and MQN models receive a one-hot
encoding of the agent’s current location, previous velocity, and current orientation at each time
step, in order to make the comparison to the fixed-frame Neural Map fair. We test these baselines
against several Neural Map architectures, with each architecture having a different design choice.

The results are reported in Table 2.1} During testing, we extend the maximum episode length
from 100 to 500 steps so that the agent is given more time to solve the maze. The parentheses next
to the model name represent the Neural Map dimensions of that particular model. From the results
we can see that the Neural Map architectures solve the most mazes in both the training and test
distributions compared to both LSTM and MQN baselines.

The results also demonstrate the effect of certain design decisions. One thing that can be
observed is that using GRU updates adds several percentage points to the success rate (“Neural
Map (15x15)” v.s. “Neural Map + GRU (15x15)”). We also tried downsampled Neural Maps, such
that a pixel in the memory map represents several discrete locations in the environment. The
Neural Map seems quite robust to this downsampling, with a downsampling of around 3 (6x6 v.s.
15x15) doing just a few percentage points worse, and still beating all baseline models. The 6x6
model has approximately the same number of memory cells as “MQN-32”, but its performance is
much better, showing the benefit of having learnable write operations. For the egocentric model, in
order to cover the entire map we set the pixels to be 2x smaller in each direction, so each pixel
is only a quarter of a pixel in the fixed-frame map. Even with this coarser representation, the
egocentric model did similarly to the fixed frame one. We demonstrate an example of what the
Neural Map learned to address using its context operator in Section [2.5.5

Finally, we tried adding the one-hot position encoding as a state input to the Neural Map, as is
done for the baselines. We can see that there is a small improvement, but it is largely marginal,
with the Neural Map doing a decent job of learning how to represent its own position without
needing to be told explicitly. One interesting thing that we observed is that having the one-hot
position encoding as an input to the egocentric map decreased performance, perhaps because it is
difficult for the network to learn a mapping between fixed and egocentric frames.

Note that sometimes the percentage results are lower for the training distribution. This is
mainly because the training set encompases almost all random mazes except the fixed 1000 of the
test set, thus making it likely that the agent sees each training map only once.

Beyond train/test splits, the results are further separated by maze size. This information reveals
that the memory networks are hardest hit by increasing maze size with sometimes a 20% drop in
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(a) Indicator (b) Repeating (c¢) Minotaur

Figure 2.2: Top-down views showing succesful episodes in each of the 3 Doom maze tasks. The red lines
indicate the path traveled by the agent. Indicator is shown in Fig. [2:2a] where the agent receives positive
reward when entering the corresponding tower that matches the torch color it saw at the start of the
episode and a negative reward otherwise. The episode terminates once the agent has reached a tower.
Repeating, shown in Fig. has the same underlying mechanics except (1) the episode persists for T'
time steps regardless of towers entered and (2) the torch indicator is removed from the maze after the agent
has reached a tower once. Therefore the agent needs to find the correct tower and then optimize its path to
that tower. Minotaur shown in Fig. requires the agent to reach the red goal and then return to the
green goal that is at its starting position. Here the torch does not have any function. This fully-observable
top-down view was not made available to the agent and is only used for visualization.

success on 13-15 v.s. 7-11. This is perhaps unsurprising given the inherent fixed time horizon of
memory netwoks, and further reveals the benefit of using write-based memories.

2.5.2 3D Doom Environment Description

To demonstrate that our method can work in much more complicated 3D meta-learning environments
with longer time horizons and high-dimensional image observations, we implemented three 3D maze
environments using the ViZDoom [105] API and a random maze generator. Examples of all three
environments are given in Figure

Indicator Maze

The first environment is a recreation of the 2D indicator maze task, where an indicator is positioned
in view of the player’s starting state which is either a torch of red or green color. The goals are
corresponding red/green towers that are randomly positioned throughout the maze that the player
must locate.

Repeating Maze

The second environment is a variant of this indicator maze but whenever the player enters a goal
state, it is teleported back to the beginning of the maze without terminating the episode (i.e. it
retains its memory of the current maze). It gains a positive reward if it reaches the correct goal
and a negative reward if it reaches the incorrect goal. After the first goal is reached, the correct
indicator color is no longer displayed within the maze and a red indicator is displayed afterwards
instead (regardless if the correct goal is green). An episode ends after a predetermined number of
steps which depends on the maze size. The goal is therefore to find a path to the correct goal, and
then optimize that path so that it can reach it as many times as possible.

Minotaur Maze

The third environment has the agent start in a fixed starting position next to the green tower,
while the red tower is randomly placed somewhere in the maze. The agent receives a small positive
reward if it reaches the red tower, and a larger positive reward if after reaching the red tower it
returns to the green tower. Therefore the agent must efficiently navigate to the red goal while
accurately remembering its entire path it so that it can backtrack to the start.
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Agent Indicator Repeating Minotaur

Maze Size 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8
LSTM Acc | 95.7 87.5 81.1 714 60.3 - - - - - 90.0 71.5 48.0 342 294
Rew | - - - - - 726 7.58 6.06 5.32 498|135 1.07 0.72 0.51 0.44
FRMQN Acc | 87.3 829 780 72.0 59.8 - - - - - 727 54.5 38.8 288 237
Rew | - - - - - 1.45 165 1.51 1.37 1.09 | 1.09 0.82 0.58 0.43 0.36
Controller Acc [95.8 90.3 81.8 80.4 70.3 - - - - - 199.7 92.2 67.5 379 302
NMap Rew | - - - - - |17.4 17.1 12.0 11.4 12.3|1.50 1.38 1.01 0.57 0.45
Controller Acc | 94.6 91.0 87.6 85.8 72.2| - - - - - 98.6 90.0 65.2 44.7 33.8
Ego-NMap Rew | - - - - - 128 14.1 11.0 104 9.72 | 148 135 0.98 0.67 0.51

Table 2.2: Doom results on mazes not observed during training for the three tasks: Indicator, Repeating
and Minotaur. Acc stands for Accuracy and Rew for Reward. Accuracy for Indicator means % of correct
goals reached, while for Minotaur it means % of episodes where the agent successfully reached the goal
and then backtracked to the beginning. Reward for Repeating is number of times correct goal was visited
within the allotted time steps (+1 for correct goal, -1 for incorrect goal). Reward for Minotaur is +0.5 for
reaching the goal and then +1.0 for backtracking to start after reaching goal (max episode reward is +1.5).
We tested on maze sizes between [4,8] with 10 test mazes for each size. For each of the 50 total test mazes
we ran 100 episodes with random goal locations and averaged the result.

2.5.3 3D Doom Model Description

All three environments used a RGB+D image of size 100x60 as input. We generate maze geometries
randomly at train time but make sure to exclude a test set of 10 mazes for each size [4, 5, 6, 7, §]
(50 total). For these environments, we tested out four architectures:

Neural Map with Controller LSTM: Standard Neural Map with fixed frame addressing
and GRU updates. We combine the neural map design with an LSTM that aggregates past state,
read and context vectors and produces the query vector for the next time step’s context read
operation. See Section for the modified Neural Map equations.

Ego Neural Map with Controller LSTM: Same as previous but with ego-centric addressing.
The other difference is that the Ego Neural Map does not receive any positional input unlike the
other 3 models, only receiving frame-by-frame ego-motion (quantized to a coarse grid).

LSTM: Single pre-output 256-dimensional LSTM layer.

FRMQN [146]: Memory network with LSTM feedback. This design uses an LSTM to make
recurrent context queries to the memory network database. In addition, for the memory network
baselines we did not set a fixed k but instead let it access any state from its entire episode. This
means no information is lost to the memory network, it only needs to process its history.

The results are shown in Table [2:2] We can see that the Neural Map architectures work better
than the baseline models, even though the memory network has access to its entire episode history
at every time step. The ego-centric Neural Map beats the fixed frame map at Indicator, and gets
similar performance on both Repeating and Minotaur environments, showing the ability of the
Neural Map to function effectively even without global position information. It is possible that
having a fixed frame makes path optimization easier, which would explain the larger rewards that
the fixed-frame model got in the Repeating task. In the next section, we also investigated whether
the neural map is robust to localization noise, which would be the case in a real world setting where
we do not have access to a localization oracle and must instead rely on an error-prone odometry or
SLAM-type algorithm to do localization.

For the baselines, we can see that FRMQN has difficulty learning on Repeating, only reaching
the goal on average once. This could be because the indicator is only shown before the first goal is
reached and so afterwards it needs to remember increasingly longer time horizons. Furthermore,
because the red indicator is always shown after the first goal is reached, it might be difficult for
the model to learn to do retrieval since the original correct indicator must be indexed by time and
not image similarity. The FRMQN also has difficulty on Minotaur, probably due to needing to
remember and organize a lot of spatial information (i.e. what actions were taken along the path).
For Indicator, the FRMQN does similarly to the LSTM. We can see that the spatial structure of
the Neural Map aids in optimizing the path in Repeating, averaging 12 goal reaches even in the
largest maze size.
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Agent Indicator Repeating Minotaur
Maze Size 4 5 6 4 5 6 4 5 6
c=0 Acc | 88.4 844 79.3 - - - 97.3 89.0 62.0
Rew - - - 9.47 991 591 | 146 1.34 0.93
o =001 Acc | 924 919 84.3 - - - 96.7 86.2 66.1
Rew - - - 12.4 129 109 | 145 1.29 0.99

Table 2.3: Results on the three 3D Doom maze tasks for the fixed-frame Neural Map with Controller
LSTM. We can see that adding small compounding error does not largely affect the ability of the
Neural Map to learn memory tasks and even has a beneficial effect for some tasks. Hyperparameters
and architectures used were the same as presented in the main results.

2.5.4 Robustness to Odometric Noise

We present an experiment that featured drift noise to simulate the effects of the agent using a local
visual odometry model that had small error in predicting each frame-by-frame transformation. This
is meant to represent a more realistic scenario (e.g. robotic navigation) where perfect localization is
not feasible but a relatively accurate estimate can be provided, demonstrating the robustness of
the architecture to noise. For example, we could assume the Neural Map is run in parallel with a
SLAM algorithm which provides an estimate of the agent’s current position.

To model this noise, we add a zero-mean gaussian random variable to the oracle position with a
variance that depends on the current time-step. In more detail, the noise-corrupted positions (&, §)
in an W x W size map provided to the Neural Map are:

(Z,9) = (max{min{|z + €, |, W — 1}, 0}, max{min{|y + ¢, |, W — 1},0}),
€z, €y ~ N(0, 0215)

This simulates the effect of an odometry algorithm which has independent zero-mean gaussian
error with equal variance. This error compounds over time causing the variance to grow with the
time step. We evaluate the Neural Map with noise ¢ = 1/100 on smaller versions of the 3D Doom
maze tasks (maze sizes [4, 5, 6]) and compare it to the version with perfect odometry. We train
for 1500 steps of 100 episodes each step. Results are shown in Table We can see that adding
a small amount of error at each time step does not largely affect the results of the memory and
can even benefit it, with some noticeable improvements on Indicator and Repeating tasks. It’s
possible that the noise acts as a regularizer to speed up learning. For the Minotaur task, since
positional information is important because the agent must remember the entire path taken, adding
noise causes a slight decrease in reward in mazes of size 4 and 5, but otherwise performance is very
similar. These results provide evidence that the Neural Map is likely to work in the case where a
localization oracle is not available and instead only error-prone odometry is.

We also plot some example trajectories to compare the effect of noise. We can see that the
noise causes some slight aliasing in the position, which increases as time passes. The positions are
quantized to a 15x15 grid.

2.5.5 Samples of Context Read Distribution
2D Environment

To provide some insight into what the Neural Map learns, we show samples of the probability
distribution given by the context read operation in a 2D maze example. We ran it on an example
maze shown in Figure 2.4] In this figure, the top row of images are the agent observations, the
center row are the fully observable mazes and the bottom row are the probability distributions over
locations from the context operation, e.g. the aEW) values defined by Eq. In this maze, the
indicator is blue, which indicates that the teal goal should be visited. We can see that once the
agent sees the incorrect red goal, the context distribution faintly focuses on the map location where
the agent had observed the indicator. On the other hand, when the agent first observes the correct
teal goal, the location where the agent observed the indicator lights up brightly. This means that
the agent is using its context retrieval operation to keep track of the landmark (the indicator) that
it has previously seen.
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Figure 2.3: Top: Noisy v.s. Groundtruth Position trajectory (quantized to a 15x15 grid). As time
progresses, the colors get lighter. Center: Neural Map cells addressed by the write operator under
the noisy positions. Bottom: Neural Map cells that would have been written to under perfect
position estimates.

3D Environment

We draw some examples of the context addressing probability distribution in the 3D Doom
environment in Figure for the allocentric Neural Map We can see that the Neural Map learns to
use its context addressing operator to retrieve the indicator torch identity, until it sees the correct
corresponding tower. Once it sees the correct tower there is a shift in how the agent uses the map
and the probability map seems to invert, addressing the parts of the map that were unexplored.
This effect was found to be consistent in both allocentric and egocentric variants. This might be
because the Neural Map variant used on Doom had an internal LSTM which could enable it to
remember the indicator identity for the short amount of time it took to walk up to the goal.

2.5.6 Backtracking

We also explored whether the allocentric and egocentric Neural Maps were capable of using their
memories in order to do backtracking, i.e. re-visiting unexplored areas of the maze. To measure
this, we developed a variant of the Indicator Maze where the goal states were removed. We want
to measure how much of the maze is explored by the agent under this setting where there are no
terminal states. To measure how much of the maze was explored, we quantized the 50 test mazes
into 11 discrete positions and counted how many of the quantized positions the agent visited. We
report results below in Table

2.6 Discussion

Navigation is a core competency for all embodied applications, as being able to remember and
revisit parts of the environment is crucial for any successful behaviour. In this chapter we described
an inter-episodic memory architecture, the Neural Map, which accomplishes few-shot navigation
by organizing its memory into the spatial structure of a 2D map (generalizable to 3D and higher
dimensions). The map structure enables sparse writes to the memory, where the address of the
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Figure 2.4: A few sampled states from an example episode demonstrating how the agent learns to use the
context addressing operation of the Neural Map. The top row of images is the observations made by the
agent, the center is the fully observable mazes and the bottom image is the probability distributions over
locations induced by the context operation at that step.

Agent Visitation Score
Controller NMap 71.6%
Controller Ego-NMap 77.6%
LSTM 68.5%

Table 2.4: Visitation scores of the Neural Map models which measure how much of a maze is explored
within a set time limit. We can see that the egocentric neural map explores more of the mazes
than the allocentric model, exploring on average 77.6% of the test mazes. The allocentric neural
map explores 71.6% of the test mazes. The LSTM is reported to provide a point of comparison.

write is in a correspondence to the agent’s current position in the environment. We showed the
Neural Map’s ability to learn, directly using reinforcement learning objectives, how to behave within
challenging 2D and 3D few-shot navigation tasks that required storing, accessing and composing
information over long time horizons. The results demonstrated that our architecture surpassed
baseline memories used in previous work by significant margins. Additionally, we ablated the benefit
of certain design decisions made in our architecture: using GRU updates instead of hard writes,
demonstrating that the ego-centric viewpoint does not diminish performance, that the Neural Map
is robust to downsampling its memory and that it is robust to odometric noise. To show that our
method can scale up to difficult 3D environments, we implemented several new maze environments
in Doom and demonstrated that a hybrid Neural Map + LSTM model solves the scenarios at a
performance higher than previous DRL memory-based architectures.

Beyond the Neural Map’s ability to rapidly memorize an environment, there exist other core
competancies in embodied environments that can improve the adaptation speed of meta-learning
agents. These other competencies include planning, which enables the agent to look ahead into
potential futures to decide a more optimal sequence of actions, and state inference, which can help
an agent disambiguate its state given a map of its environments. In the next chapter, towards our
goal of a monolithic agent architecture we visit these other capabilities and, by exploiting the biases
inherent to embodied environments, we design submodules which can augment the Neural Map to
perform efficient and effective planning and state inference. We validate each of these methods in
isolation against previous baselines and demonstrate large improvements, reaching state-of-the-art
performance.
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Figure 2.5: Three example episodes of the (allocentric) context addressing operator on Doom mazes.

The top images of each row are the RGB 1nputs the agent sees, the center images are a top-down

z,y)

representation of the maze, and the bottom images are the oy of the context operation.
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Chapter 3

Planning and State Inference in
Embodied Inter-Episodic Memories

In the previous chapter, we defined a spatially-structured inter-episodic memory designed specifically
for few-shot navigation in embodied environments. By exploiting the geometric composition of the
environment, the Neural Map enabled faster memorization of the unique environments seen in each
meta-episode and, correspondingly, faster adaptation within the task instance. Despite the Neural
Map’s capacity for rapid memorization in embodied environments, there is yet still more structure
that can be exploited beyond just the agent recalling specifics about previous observations. In
particular, by providing priors through architecture on the computation being performed on the
memory map representation, we can extend the Neural Map to be competent on two additional,
important capabilities: namely, planning and state inference.

All planning in embodied environments is a form of “path planning” where, given a goal location,
an agent desires a shortest path through the environment to get to that location. Our first
augmentation to the memory map representation previously described is that of an architecture
designed to do efficient, generalizable and effective path-planning, the Gated Path Planning Network
(GPPN). The GPPN builds off previous work [199] which designed a differentiable sub-module
that performs path-finding as directed by the agent in some inner loop. These Value Iteration
Network (VIN) modules mimic the application of Value Iteration on a 2D grid world, but without a
pre-specified model or reward function. VINs were shown to be capable of computing near-optimal
paths in 2D mazes and 3D landscapes where the transition model P(s'|s,a) was not provided a
priori and had to be learned. In this chapter, we will show that VINs are often plagued by training
instability, oscillating between high and low performance between epochs; random seed sensitivity,
often converging to different performances depending on the random seed that was used; and
hyperparameter sensitivity, where relatively small changes in hyperparameters can cause diverging
behaviour. Owing to these optimization difficulties, we reframe the VIN as a recurrent-convolutional
network, which enables us to replace the unconventional recurrent VIN update (convolution &
max-pooling) with well-established gated recurrent operators such as the LSTM update [89]. This
results in the Gated Path Planning Networks (GPPNs), a more general model that relaxes the
architectural inductive bias of VINs. The resultant architecture is thus no longer constrained to
perform a computation resembling value-iteration.

An equally important capability in embodied environments, state inference, consits of finding
an agents location given a map representation of the current surroundings and a stream of agent
observations. Localization, the ability to localize under uncertainty, is required by autonomous
agents to perform various downstream tasks such as planning, exploration and target-navigation,
and is required when our agents revisit environments that were already previously mapped. In
this chapter, we propose another architecture, the Active Neural Localizer, suited to tackle the
global localization problem where the initial position of the agent is unknown. Localization remains
an open problem, and there are not many methods developed which can be learnt from data in
an end-to-end manner, an aspect that is required when using memory maps where the particular
semantics of stored feature representations are opaque to the agent designer. Instead, previous
traditional localization methods relied on lengthy hand-tuning and feature selection by domain
experts. Additionally, the vast majority of previous localization approaches were passive, meaning
that they passively estimate the position of the agent from the stream of incoming observations,
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and do not have the ability to decide the actions taken by the agent. The ability to decide the
actions can result in faster as well as more accurate localization as the agent can learn to navigate
quickly to unambiguous locations in the environment. Unlike previous methods, the proposed
Active Neural Localizer is both (1) end-to-end differentiable, enabling the combination of such an
architecture with Neural-Map-like memories, and (2) active, choosing actions to reduce uncertainty
as quickly as possible. Based on the Bayesian filtering algorithm for localization [65], the Active
Neural Localizer contains a perceptual model to estimate the likelihood of the agent’s observations,
a structured component for representing the belief, multiplicative interactions to propagate the
belief based on observations and a policy model over the current belief to localize accurately while
minimizing the number of steps required for localization.

In order to ablate against confounding effects, which could be introduced in the case of a
monolithic architecture, the chapter presents empirical results that test each sub-module, the
GPPN and the Active Neural Localizer, in isolation against previous baselines but on the exact
same set of environment domains. For GPPNs, we first empirically establish that they perform
better or equal to the performance of VINs on a wide variety of 2D maze experiments, including
different transition models, maze sizes and different training dataset sizes. We further demonstrate
that GPNNs exhibit fewer optimization issues than VINs, including reducing random seed and
hyperparameter sensitivity and increasing training stability. GPPNs are also shown to work with
larger kernel sizes, often outperforming VINs with significantly fewer recurrent iterations, and also
learn faster on average and generalize better given less training samples. Finally, we present results
for both VIN and GPPN on challenging 3D ViZDoom environments [I05], where the planner is
only provided with first-person RGB images instead of the top-down 2D maze design. Additionally,
we present results that demonstrate the Active Neural Localizer is capable of rapid localization,
can capably choose actions to reduce uncertainty and, finally, can generalize not only to unseen
test maps in the same class of environments but also across completely separate domains.

3.1 Background & Related Work

There is a rapidly emerging literature surrounding differentiable submodules that can perform
either state inference or planning due to its highly desirable practical ability to avoid lengthy and
expensive model specification by an agent-designer, instead learning MDP parameters necessary
for planning directly through data. For planning, [T03] looked at extending differentiable planning
towards being able to plan in partially observable environments. In their setting, the agent is not
provided a-priori with its position within the environment and thus needs to maintain a belief
state over where it actually is. Similar to VIN’s differentiable extension of VI, the QMDP-Net
architecture was based on creating a differentiable analogue of the QMDP algorithm [123], an
algorithm designed to approximate belief space planning in POMDPs. The architecture itself
consisted of a filter module, which maintained the beliefs over which states the agent currently
was in, and a planning module, which determined what action to take next. The planning module
was essentially using a VIN to enable it to make more informed decisions on which parts of the
environment to explore.

In recent work there has been a variety of deep reinforcement learning models that have examined
combining an internal planning process with model-free methods. The Predictron [I86] was a
value function approximator which predicted a policy’s value by internally rolling out an LSTM
forward predictive model of the agent’s future rewards, discounts and values. These future rewards,
values and discounts were then accumulated together, with the idea that this would predict a
more accurate value by forcing the architecture to model a multi-step rollout. A later extension,
Value Predictive Networks [147], learnt a forward model that is used to predict the future rewards
and values of executing a multi-step rollout. Although similar to the Predictron, they considered
the control setting, where not only a value function had to be learnt but a policy as well. They
demonstrated that their model, trained using model-free methods, was able to outperform existing
methods on a 2D goal navigation task and outperformed DQN on Atari games.

Recent work has also made progress towards end-to-end localization using deep learning models.
[133] showed that a stacked LSTM can do reasonably well at self-localization. The model consisted
of a deep convolutional network which took in at each time step state observations, reward, agent
velocity and previous actions. To improve performance, the model also used several auxiliary
objectives such as depth prediction and loop closure detection. The agent was successful at
navigation tasks within complex 3D mazes. Additionally, the hidden states learned by the models
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were shown to be quite accurate at predicting agent position, even though the LSTM was not
explicitly trained to do so. Other works have looked at doing end-to-end relocalization more
explicitly. One such method, called PoseNet [106], used a deep convolutional network to implicitly
represent the scene, mapping a single monocular image to a 3D pose (position and orientation). This
method is limited by the fact that it requires a new PoseNet trained on each scene since the map
is represented implicitly by the convnet weights, and is unable to transfer to scenes not observed
during training. An extension to PoseNet, called VidLoc [33], utilized temporal information to make
more accurate estimates of the poses by passing a Bidirectional LSTM over each monocular image
in a sequence, enabling a trainable smoothing filter over the pose estimates. Both these methods
lack a straightforward method to utilize past map data to do localization in a new environment.
In contrast, we demonstrate our method is capable of generalizing to new maps that were not
previously seen during training time.

Localization in general has been an active field of research since more than two decades. In the
context of mobile autonomous agents, localization can refer to two broad classes of problems: Local
localization and Global localization. Local localization methods assume that the initial position of
the agent is known and they aim to track the position as it moves. A large number of localization
methods tackle only the problem of local localization. These include classical methods based
on Kalman Filters [100, [I87] geometry-based visual odometry methods [145] and most recently,
learning-based visual odometry methods which learn to predict motion between consecutive frames
using recurrent convolutional neural networks [34] 2T1]. Local localization techniques often make
restrictive assumptions about the agent’s location. Kalman filters assume Gaussian distributed
initial uncertainty, while the visual odometry-based methods only predict the relative motion
between consecutive frames or with respect to the initial frame using camera images. Consequently,
they are unable to tackle the global localization problem where the initial position of the agent is
unknown. This also results in their inability to handle localization failures, which consequently
leads to the requirement of constant human monitoring and intervention [21].

Global localization is more challenging than the local localization problem and is also considered
as the basic precondition for truly autonomous agents by [2I]. Among the methods for global
localization, the proposed method in this chapter is closest to Markov Localization [63]. In contrast
to local localization approaches, Markov Localization computes a probability distribution over all
the possible locations in the environment. This probability distribution, also known as the belief, is
represented using piecewise constant functions (or histograms) over the state space and propagated
using the Markov assumption. Other methods for global localization include Multi-hypothesis
Kalman filters [37, [I72] which use a mixture of Gaussians to represent the belief and Monte Carlo
Localization [203] which use a set of samples (or particles) to represent the belief.

All the above localization methods are passive, meaning that they aren’t capable of deciding
the actions to localize more accurately and efficiently. There has been very little research on
active localization approaches. Active Markov Localization [64] is the active variant of Markov
Localization where the agent chooses actions greedily to maximize the reduction in the entropy of
the belief. [06] presented the active variant of Multi-hypothesis Kalman filters where actions are
chosen to optimise the information gathering for localization. Both of these methods do not learn
from data and have very high computational complexity. In contrast, we demonstrate that the
proposed method is several order of magnitudes faster while being more accurate and is capable of
learning from data and generalizing well to unseen environments.

3.2 Environments and Maze Transition Types

We test both Gated Path Planning Networks, Active Neural Localizer and baselines on 2D maze
environments and 3D ViZDoom environments. For the experiments, we vary the datasets along a
variety of axes such as training dataset size, maze size and maze transition kernel. Additionally for
Active Neural Localizer, we use a high-fidelity office environment based on the Unreal3D engine to
demonstrate the transferability of the localizer submodule, which achieves high zero-shot localization
accuracy on the Unreal3D environment. even when trained only on 3D ViZDoom mazes. We next
describe each of the MDP classes in more detail.

We describe notation used in the sequel here. Let ¢ be the current episode step. Let y; be a
random variable denoting the state, or location, of the agent, represented as a tuple A,, A, where
Az, A, denote the agent’s x-coordinate, y-coordinate and orientation respectively. Let M x N be
the map size. Then, A, € [1,M], A, € [1,N].
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Figure 3.1: The map design, agent’s observation and the corresponding likelihood maps in different
domains. In 2D domains, agent’s observation is the pixels in front of the agent until the first obstacle. In
the 3D domain, the agent’s observation is the image showing the first-person view of the world as seen by
the agent.

Maze3D

Unreal3D

3.2.1 Domain Descriptions

2D Mazes

The 2D maze environment is created with a maze generation process that uses either Kruskal’s
algorithm or Depth-First Search with the Recursive Backtracker algorithm [129] to construct the
maze tree, always resulting in fully connected mazes. For each maze, we sample a probability d
uniformly from [0,1]. Then for each wall, we delete the wall with probability d. 2D maze MDPs are
represented by a binary matrix, where 0 denotes an obstacle and 1 denotes free space. This binary
matrix, referred to as the “Map Design”, is available as input to both localization and planning
submodules (see Figure top-left, for an example of the maze design).

For localization, we simulate partial-observability by constructing the agent’s observation as the
series of pixels in front of the agent. For a map size of M x N, the agent’s observation is an array of
size max(M, N) containing the pixel values in front of the agent. The view of the agent is obscured
by obstacles, so all pixel values behind the first obstacle are treated as 0. The top row in Figure [3.1
shows examples of map design and agent observation in this environment. The experiments in the
2D environments are designed to evaluate and quantify the effectiveness of the submodules in ideal
conditions, without observation or motion noise, and the size of the 2D environments can also be
easily varied to test scalability. This environment also provides a benchmark similar to previous
published results, such as in [198] and [104].

3D ViZDoom Mazes

We use the Doom Game Engine and the ViZDoom API [105] to create mazes in a simulated 3D
environment. The maze design for the 3D mazes are generated in exactly the same manner as the
2D mazes, using either Kruskal’s algorithm or Depth-First Search with the Recursive Backtracker
algorithm followed by wall pruning with a uniformly sampled probability d. To construct the
map design for each Doom maze, we take RGB screenshots showing the first-person view of the
environment at each position on a regularly-spaced grid and the 4 cardinal orientations (North,
East, West, South). A sample 3D Doom maze and example screenshot images are shown in the
second row of Figure 3.1} For an M x N maze and with the 4 orientations, the map design consists
of a total of 4M N images. In the 3D ViZDoom experiments, the map images obtained on the
grid are given as input to the model (instead of the 2D map design). These images are featurized
and resemble the distributed representations potentially produced by the Neural Map or a related
memory map architecture.
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Unreal3D Office

Unreal3D is a photo-realistic simulation environment built using the Unreal Game Engine. We use
the AirSim API [I83] to interact with the game engine. The environment consists of a modern
office space as shown in the third row of Figure obtained from the Unreal Engine Marketplaceﬂ
This environment was only used to demonstrate the transferability of the Active Neural Localizer.

3.2.2 Transition Types

We define here different maze transition kernels: In NEWS, the agent can move North, East, West,
or South; in Differential Drive, the agent can move forward along its current orientation, or
turn left /right by 90 degrees; in Moore, the agent can move to any of the eight cells in its Moore
neighborhood. When defining a goal for the planning sub-module to plan towards, the dimension of
the goal map given as input to the model is 1 x M x N for NEWS and Moore, and 4 x M x N for
Differential Drive (which has an cardinally oriented goal location). For localization tasks, we only
consider the oriented “Differential Drive” transition kernel due to its more realistic field-of-view,
which more closely resembles the field-of-view in real-world sensor modalities.

3.3 Gated Path Planning Networks

Given a Markov decision process (MDP) consisting of states s, actions a, a reward function R, and
state transition kernels P(s’ | s,a), we recall here that Value Iteration is a method of computing
an optimal policy 7 and its value V™ (s) = E™ [Y_,2 7' R(s¢, at, st+1) | so = s, where v € [0,1] is
a discount factor and R(s¢, at, s¢+1) is a reward function. More specifically, value iteration starts
with an arbitrary function V(®) and iteratively computes:

QW (s,a) = 3 P(s' | 5,0) (R(s,0,8) + V().
V) (s) = max Q¥ (s, a).

[199] introduced the Value Iteration Network (VIN), capable of learning MDP parameters in grid-
based environments from data automatically. The VIN reformulates value iteration as a recursive
process of applying convolutions and max-pooling over the feature channels:

ngfj => (Wtﬁi,jRi'*i’j'*j + ngi,j‘/f:,;)uj) ;
ij

V) = max QL) , (3.1)
where the indices i, j € [m] correspond to cells in the m x m maze, R, Q,V is the VIN estimated
reward, action-value and value functions, respectively, @ is the action index of the @ feature map,
and W, WV are the convolutional weights for the reward function and value function, respectively.
In the following iteration, the previous value V is stacked with R for the convolution step. While
constrained to MDPs with grid-based structure, this covers the embodied environments we consider
in this part of the thesis. [I99] showed that VINs have much greater success at path planning than
baseline CNN and feedforward architectures in a variety of 2D and graph-based navigation tasks.
The demonstrated success of VIN has made it an important component of models designed to solve
downstream tasks where navigation is crucial [I03, [75] [77].

We now describe the Gated Path Planning Network and then comprehensively evaluate its
performance compared to the previous state-of-the-art methods for differentiable path planning.
The design of the GPPN is motivated by asking whether the inductive biases provided by the
original differentiable path planning algorithm, the VIN, are even necessary: is it possible that
using alternative, more general architectures might work better than those of the VIN? We can
view the VIN update within the perspective of a convolutional-recurrent network, updating a

Uhttps://www.unrealengine.com/marketplace/small-office-prop-pack
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k)

recurrent state Vzg , at every spatial position (¢, ') in each iteration:

Vlskj)’ = max Z W(’fi,jéi’—i,j'—j +wy vkl
()

a,i,j i’ —i,5'—j

= Hl(_ilX (W(—LRR[I‘/,]‘/73] + Wg/‘/[g’k,j_/,lg]> 5 (32)
where X,/ j: ) denotes the image patch centered at position (i, ") with kernel size F'. From ,
it can be seen that VIN follows the standard recurrent neural network (RNN) update where the
recurrent state is updated by taking a linear combination of the input R and the previous recurrent
state V(=1 and passing their sum through a nonlinearity maxz. The main differences from a
standard RNN are the following: the unconventional nonlinearity (channel-wise max-pooling) used
in VIN; the hidden dimension of the recurrent network, which is essentially one; the sparse weight
matrices, where the non-zero values of the weight matrices represent neighboring inputs and units
which are local in space; and the restriction of kernel sizes to 3.

Under this perspective, it is easy to question whether the adherence to these strict architectural
biases is even necessary, given the long history of demonstrations that standard non-gated recurrent
operators are difficult to optimize due to effects such as vanishing and exploding gradients [I56].

We can easily replace the recurrent VIN update in with the well-established LSTM
update [89], whose gated update alleviates many of the problems with standard recurrent networks:

® 0 R hp k1) ) (k1)
hisse), = LSTM <Z (Wit Rir oy + WD) o607, > : (3.3)

a

where F' is the convolution kernel size. This recurrent update still maintains the convolu-
tional properties of the input and recurrent weight matrix as in VIN. It involves taking as input
the F' x F convolution of the input vector R and previous hidden states h(*~1) and the previous
cell state cg,k ;,1) of the LSTM at the central position (¢/,;"). We call path planning modules which
use these gated updates Gated Path Planning Networks (GPPNs). The GPPN is an LSTM which
uses convolution of previous spatially-contiguous hidden states for its input.

3.3.1 Planning Experiments

We now empirically compare VIN and GPPN using two metrics: %Optimal (%Opt) is the
percentage of states whose predicted paths under the policy estimated by the model has optimal
length, and %Success (%Suc) is the percentage of states whose predicted paths under the policy
estimated by the model reach the goal state. The reported performance is on a held-out test split.
In contrast with the metrics reported in [199], we do not stochastically sample rollouts but instead
evaluate and train the output policy of the models directly on all states simultaneously. This
reduces optimization noise and makes it easier to tell whether difficulties with training are due to
sampling noise or model architecture/capacity.

All analyses are based on 2D maze results, except in Section [3.3.1] where we discuss 3D ViZDoom
results. In order to make comparison fair, we utilized a hidden dimension of 150 for GPPN and 600
for VIN, owing to the approximately 4x increase in parameters a GPPN contains due to the 4 gates
it computes. Unless otherwise noted, the results were obtained by doing a hyperparameter sweep
of (K, F) over K € {5,10,15,20,30} and F € {3,5,7,9,11}, and using a 25k/5k/5k train-val-test
split. Other experimental details are deferred to the Appendix.

Varying Kernel Size F

One question that can be asked of the architectural choices of the VIN is whether the kernel size
needs to be the same dimension as the true underlying transition model. The kernel size used in
VIN was set to 3 x 3 with a stride of 1, which is sufficient to represent the true transition model
when the agent can move anywhere in the Moore neighborhood, but it limits the rate at which
information propagates spatially with each iteration. With a kernel size of 3 x 3 and stride of 1, the
receptive field of a unit in the last iteration’s feature map increases with rate (3 + 2K) x (3 + 2K)
where K is the iteration count, meaning that the maximum path length information travels scales
directly with iteration count k. Therefore for long-term planning in larger environments, [199]
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Table 3.1: Test performance on 2D mazes of size 15 x 15 with varying kernel sizes F' and best
K setting for each F'. Bold indicates best result across all F' for each model and transition kernel.
VIN performs worse with larger F', while GPPN is more robust when F' is varied and actually works
better with larger F'.

NEWS Moore Diff. Drive
Model F | %Opt %Suc | %Opt %Suc | %Opt %Suc
VIN 3] 934 935 | 90.5 91.3 | 98.4 99.1
VIN 5193.9 94.1 | 96.3 96.6 | 96.4 98.6
VIN 71 927 93.0 | 95.1 956 | 92.2 96.2
VIN 9| 8.8 87.8 92.0 93.0 91.2 95.2
VIN 11| 87.6 883 | 92.7 93.8 | 87.9 93.8
GPPN 3| 97.6 983 | 96.8 976 | 96.4 98.1
GPPN 5| 986 99.0 | 98.4 99.1 | 98.7 99.5
GPPN 7 ] 99.0 99.3 | 98.8 99.3 | 99.1 99.7
GPPN 9 | 99.0 99.4 | 98.8 99.3 | 99.3 99.7
GPPN 11| 99.2 99.5| 98.6 99.2 | 99.2 99.6

Table 3.2: Test performance on 2D mazes of size 15 x 15 with varying kernel sizes F' and
iteration counts K. “-’ indicates the training diverged. GPPN outperforms VIN under best
settings of (K, F'), indicated in bold. By utilizing a larger F';, GPPN can learn to more effectively
propagate information spatially in a smaller number of iterations (K < 10) than VIN can.

%Opt for NEWS %Opt for Moore %O0Opt for Differential Drive
Model K|F=3 F=5 F=7TF=9 F=11|\F=3 F=5F=7F=9 F=11|{F=3F=5F=7F=9 F=11

VIN 5| 55.6 87.7 846 863 86.6 | 750 86.7 889 920 923 | 748 919 915 91.2 879
VIN 10| 79.0 83.3 922 86.8 86.7 |90.5 914 951 894 927 | 924 96.1 922 84.0 64.4
VIN 15| 91.3 929 927 854 876 | 8.7 89.6 924 90.0 910 | 96.7 964 90.1 652 230
VIN 20| 934 93.9 914 86.3 855 | 809 928 90.7 89.1 904 | 97.7 948 89.0 40.0 223
VIN 30| 71.2 92.8 845 86.5 86.4 | 805 96.3 925 91.7 89.1 |98.4 959 89.5 - -

GPPN 5| 66.2 86.5 90.8 924 93.0 | 759 904 934 939 941 | 624 823 886 90.1 91.2
GPPN 10| 91.2 96.1 97.1 97.6 97.7 | 933 96.5 974 976 974 | 87.7 954 96.1 97.0 974
GPPN 15| 95.3 98.1 985 983 988 |96.1 97.7 981 981 983 | 93.5 971 978 97.7 99.0
GPPN 20| 974 984 99.0 99.0 99.2 | 96.8 984 985 987 986 | 958 979 984 984 98.9
GPPN 30| 97.6 98.6 99.0 98.6 98.8 | 98.0 984 98.8 98.8 984 | 964 98.7 99.1 99.3 99.2

designed a multi-scale variant called the Hierarchical VIN. Hierarchical VINs rely on downsampling
the maps into multi-scale hierarchies, and then doing VIN planning and up-scaling, progressively
growing the map until it regains its original, un-downsampled size.

Another potential method to do long-range planning without requiring a multi-scale hierarchy
is to instead increase the kernel size. An increased kernel size would cause the receptive field to
grow more rapidly, potentially allowing the models to require fewer iterations K before reaching
well-performing policies. In this section, we sought to test out the feasibility of increasing the
kernel size of VINs and GPPNs. These results are summarized in Table [3.1l All the models were
trained with the best K setting for each F' and transition kernel. From the results, we can clearly
see that GPPN can handle training with larger F' values, and moreover, GPPN often performs
better than VIN with larger values of F'. In contrast, we can observe that VIN’s performance drops
significantly after its kernel size is increased more than 5, with its best performing settings being
either 3 or 5 depending on the true transition model. These results show that GPPN can learn
planning approximations that work with F > 3 much more stably than VIN, and could further
suggest that GPPN can work as well as VIN with less iterations.

Varying Iteration Count K

Following the above results showing that GPPN benefits from increased F’, we further evaluated the
effect of varying both iteration count K and kernel size F' on the VIN and GPPN models. Table [3:2]
shows %Optimal and %Success results of VIN and GPPN on 15x15 2D mazes for different values
of F and K. We can see from NEWS column in the table that GPPN with F' > 7 can get results
on par with the best VIN model with only K = 5 iterations. This shows that GPPN can learn to
more effectively propagate information spatially in a smaller number of iterations than VIN can,
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Table 3.3: Test performance on 2D mazes of size 15 x 15 with varying iteration counts K and
best F setting for each K. Bold indicates best result across all K for each model and transition
kernel. Generally, increasing K improves performance.

NEWS Moore Diff. Drive
Model K | %Opt %Suc | %Opt %Suc | %Opt %Suc

VIN 5| 877 884 | 923 933 | 91.9 958
VIN 10| 92.2 925 | 951 956 | 96.1 979
VIN 15| 929 93.0 | 924 939 | 96.7 98.3
VIN 20| 93.9 94.1 | 928 94.0 | 97.7 98.8
VIN 30| 928 93.2 | 96.3 96.6 | 98.4 99.1

GPPN 5| 93.0 943 | 941 96.1 | 91.2 95.6
GPPN 10| 97.7 984 | 976 984 | 974 98.8
GPPN 15| 98.8 99.2 | 983 989 | 99.0 99.6
GPPN 20| 99.2 99.5 | 98.7 99.2 | 989 99.5
GPPN 30| 99.0 99.3 | 98.8 99.3 | 99.3 99.7

Table 3.4: Test performance on 2D mazes of size 15 x 15 with varying dataset sizes N under
best settings of (K, F') for each model. Both models improve with more training data (larger N).
GPPN performs relatively better than VIN with less data, suggesting that the VIN architectural
biases do not help generalization performance.

NEWS Moore Diff. Drive
N  Model | %Opt %Suc | %Opt %Suc | %Opt %Suc

10k VIN | 90.3 90.6 | 88.1 90.5 | 97.5 984
10k GPPN | 97.8 98.6 | 97.6 98.4 | 98.0 99.4

25k  VIN 939 941 | 96.3 96.6 | 984 99.1
25k GPPN| 99.2 99.5 | 98.8 99.3 | 99.3 99.7

100k VIN 973 973 | 97.1 975 | 989 994
100k GPPN| 99.9 99.9 | 99.7 99.8 | 99.9 99.9

and outperforms VIN even when VIN is given a much larger number of iterations. Additionally, we
can see that VIN has significant trouble learning when both K and F are large in the differential
drive mazes and to a lesser extent in the NEWS mazes.

Table [3.3] shows the results of VIN and GPPN with varying iteration counts K and the best
F setting for each K. Owing to the larger kernel size, GPPN with smaller number of iterations
K < 10 can get results on par with the best VIN model. Generally, both models benefit from a
larger K (assuming the best I setting is used).

Different Maze Transition Kernels

From Tables and [3.3] we can observe the performance of VIN and GPPN across a variety of
different underlying groundtruth transition kernels (NEWS, Moore, and Differential Drive). From
these results, we can see that GPPN consistently outperforms VIN on all the transition kernel types.
An interesting observation is that VIN does very well at Differential Drive, consistently obtaining
high results, although GPPN still does better than or on par with VIN. The reasons why VIN is so
well suited to Differential Drive are not clear, and a preliminary analysis of VIN’s feature weights
and reward vectors did not reveal any intuition on why this is the case.

Effect of Dataset Size

A potential benefit of the stronger architectural biases of VIN might be that they can enable better
generalization given less training data. In this section, we designed experiments that set out to
test this hypothesis. We trained VINs and GPPNs on datasets with varying number of training
samples for all three maze transition kernels, and the results are given in Table [3:4] We can see
that GPPN consistently outperforms VIN across all dataset sizes and maze models. Interestingly,
we can observe that the performance gap between VIN and GPPN is larger the less data there
is, demonstrating the opposite effect to our hypothesis. This could suggest that the architectural
biases do not in fact aid generalization performance, or that there is another problem, such as
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Table 3.5: Mean and standard deviation %Opt after 30 epochs, taken over 3 runs, on 2D mazes
of size 15 x 15. Bold indicates best result across all K for each model and transition kernel. The
results were obtained using the best setting of F' for each K and dataset size 100k. GPPN exhibits
lower variance between runs.

NEWS %Opt Diff. Drive %Opt
Train Val. Train Val.
Model K |mean std mean std |mean std mean std

VIN 5(90.1 01 901 15|84 10 954 1.1
VIN 10| 928 06 927 14 |923 05 939 0.2
VIN 15| 934 12 942 06 |95.8 0.5 97.0 0.3
VIN 20(93.1 1.5 94.3 0.8 |94 02 968 1.1

GPPN 5| 955 0.2 952 <0.1|938 02 934 <0.1
GPPN 10| 99.1 0.1 99.0 <0.1|98.7 0.1 982 0.2
GPPN 15| 99.6 <0.1 99.6 <0.1]994 0.1 993 0.1
GPPN 20| 99.7 <0.1 99.7 0.1 |99.8 <0.1 99.7 0.1
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Figure 3.2: The y-axis is the average Test %Opt (or %Suc) of the top-n hyperparameter settings
(K,F) over K € {5,10,15,20,30} and F € {3,5,7,9,11}. The results are on 2D mazes of size
15 x 15. These plots measure how stable the performance of each model is to hyperparameter
changes as we increase the number of hyperparameter settings considered. GPPN exhibits less
hyperparameter sentivitiy.

perhaps the difficulty of optimizing VIN, that overshadows the benefit that the inductive bias could
potentially provide.

Random Seed and Hyperparameter Sensitivity

The hypothesis this section sought to verify was whether the particular recurrent-convolutional
form of the VIN did indeed negatively affect its optimization, as many ungated recurrent updates
suffer from optimization problems including training instability and higher sensitivity to weight
initialization and hyperparameters due to gradient scaling problems [156].

We test each architecture’s sensitivity to random seeds by running several experiments with
the same hyperparameters but different random seeds, and measuring the variance in their final
performance. These results are reported in Table[3:5] The results show that GPPN gets consistently
lower variance than VIN over different random seed initializations, supporting the hypothesis that
the LSTM update enables more training stability and easier optimization than the ungated recurrent
update in VIN.

We additionally test hyperparameter sensitivity in Figure [3.2] We take all the results obtained
on a hyperparameter sweep over settings (K, F') where K was varied over K € {5,10,15,20,30}
and F' was varied over F' € {3,5,7,9,11}. We then rank these results, and the x-axis is the
top-z ranked hyperparameter settings and the corresponding y-axis is the average %Opt/%Suc
of those z settings. This plot thus measures how stable the performance of the architecture is to
hyperparameter changes as the number of hyperparameter settings we consider grows. Therefore,
architectures whose average top-z ranked performance remains high and relatively flat demonstrates
that good performance with the architecture can be obtained with many different hyperparameter
settings. This suggests that these models are both easier to optimize and consistently better than
alternatives, and higher performance was not due to a single lucky hyperparameter setting. We can
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Figure 3.3: Performance on 2D mazes of size 15 x 15 with varying iteration counts K and kernel
sizes F . All models are trained using dataset size 25k. VIN exhibits higher training instability, its
performance often oscillating between epochs.

see from the figures that the performance of GPPN is clearly both higher and more stable over
hyperparameter settings than VIN.

In Figure [3.3] we plot the learning curves for VIN and GPPN on 2D mazes with varying K
and F. These plots show that VIN’s performance often oscillates between epochs (especially for
larger kernel sizes F' > 3), while GPPN is much more stable. Learning curves for other experiments
showing a similar result are included in the Appendix. The training stability of GPPN provides
more evidence to the hypothesis that GPPNs are simpler to optimize than VINs and consistently
outperform them.

Learning Speed

In this section, we examine whether VINs or GPPNs learn faster. To do this, we measure the
number of training epochs (passes over the entire dataset) that it takes for each model to reach a
specific %Opt for the first time. These results are reported in Table We can see from this table
that GPPN learns significantly faster, often reaching 95% within 5-6 epochs. Comparatively, VIN
sometimes never reaches 95%, as is the case for the NEWS mazes, or it takes 2-5 times as many
epochs. This is the case even on the Differential Drive mazes, where VIN takes 2-3 times longer to
train despite also getting high final performance.

Larger Maze Size

To test whether the improved performance GPPN has persists even on larger, more challenging
mazes, we evaluated the models on a dataset of mazes of size 28 x 28, and varied K € {14, 28,56}
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Table 3.6: The number of epochs it takes for each model to attain a certain %Opt (50%, 75%,
90%, 95%) on the validation set under best settings of (K, F'). The results are on 2D mazes of size
15 x 15. GPPN learns faster.

NEWS Moore Diff. Drive
Model |50 75 90 95|50 75 90 95|50 75 90 95
VIN |1 6 17 — |1 1 11 23|2 3 5 14
GPPN|I1 1 3 5|1 1 3 5|1 2 3 6

Table 3.7: Test performance on 2D mazes with varying maze sizes m x m under best settings
of (K, F) for each model. For the larger 28 x 28 maze, we train for 100 epochs and sweep over
K € {14,28,56} to account for longer trajectories required to solve some mazes. GPPN performs
better.

NEWS Moore Diff. Drive
m  Model | %Opt %Suc | %Opt %Suc | %Opt  %Suc
15 VIN 939 94.1 | 96.3 96.6 | 98.4 99.1
15 GPPN| 99.2 99.5 | 98.8 99.3 | 99.3 99.7
28 VIN 93.0 93.2 | 95.0 95.8 | 93.8 96.8
28 GPPN | 98.3 98.9 | 97.8 98.7 | 99.0 99.6

(Table . We used a training dataset size of 25k. GPPN outperformed VIN by a significant
margin (3-6% for %Opt and %Suc) for all cases except Diff. Drive 15 x 15, where the gap was
closer (GPPN 99.3 vs. VIN 98.3 for %Opt).

3D ViZDoom Experiments

In the 3D ViZDoom experiments, the state vector consists of RGB images showing the first-person
view of the environment at each position and orientation, instead of the top-down 2D maze design
(represented by a binary m x m matrix) as in the 2D maze experiments. To process the map images,
we use a Convolutional Neural Network [I17] consisting of two convolutional layers: first layer
with 32 filters of size 8 x 8 and a stride of 4, and second layer with 64 filters of size 4 x 4 with a
stride 2 x 2, followed by a linear layer of size 256E| The 256-dimensional representation for all the 4
orientations at each location is concatenated to create a 1024-dimensional representation. These
representations of each location are then stacked at the corresponding x-y coordinate to create a
map representation of size 1024 X m x m. The map representation is then passed through two more
convolutional layers (first layer with 64 filters and the second layer with 1 filter, both of size 3 x 3
and a stride of 1) to predict a maze design matrix of size 1 x m X m, which is trained using an
auxillary binary cross-entropy loss. The predicted maze design is then stacked with the goal map
and passed to the VIN or GPPN module in the same way as the 2D experiments.

The 3D ViZDoom results are summarized in Table %Acc is the accuracy for predicting the
top-down 2D maze design from first-person RGB images. Learning to plan in the 3D environments
is more challenging due to the difficulty of simultaneously optimizing both the original planner
loss and the auxiliary maze prediction loss. We can see that when %Acc is low, i.e., the planner
module must rely on a noisy maze design, then the planner metrics %Opt and %Suc also suffer.
We observe that VIN is more prone to overfitting on the training dataset: its validation %Acc is
low (< 91%) for all three transition kernels, whereas GPPN achieves higher validation %Acc on
NEWS and Moore. However, GPPN also overfits on the Differential Drive.

3.4 Active Neural Localizer

Bayesian filters [65] are used to probabilistically estimate a dynamic system’s state using observations
from the environment and actions taken by the agent. Let y; be the random variable representing
the state at time t. Let s; be the observation received by the agent and a; be the action taken by
the agent at time step t. At any point in time, the probability distribution over y; conditioned

2This architecture was adapted from a previous work which is shown to perform well at playing deathmatches
in Doom [IT4].
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Table 3.8: Performance on 3D ViZDoom mazes. %Acc is accuracy for predicting the top-down
2D magze design from first-person RGB maze images. When %Acc is low, then the model must
use a noisy maze design from which to plan, so %Opt and %Suc suffer as well. The results were
obtained using K = 30, the best setting of F' for each transition kernel, a smaller dataset size 10k
(due to memory and time constraints), a smaller learning rate 5e-4, and 100 training epochs. VIN
is more prone to overfitting: its validation %Acc is low for all three transition kernels, while GPPN
achieves higher validation %Acc on NEWS and Moore.

Train Val Test
Kernel Model |%Acc %Opt %Suc|%Acc %Opt %Suc|%Opt %Suc

NEWS VIN 999 823 83.0|815 808 81.5|79.0 79.7
NEWS GPPN|99.9 994 99.7|94.9 93.2 949|941 959

Moore VIN [ 99.6 86.5 889 |89.1 86.7 89.1 | 84.6 87.6
Moore GPPN| 99.6 98.1 99.4|97.4 953 97.4|94.5 97.2

Diff. Drive VIN [100.0 99.4 99.7|90.5 89.0 90.5| 96.9 97.9
Diff. Drive GPPN| 99.8 99.5 100.0| 85.0 81.0 85.0 | 91.4 96.0
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¥¢: Random variable denoting location of the agent at time ¢ Bel(y,): Belief of the location of the agent at time t before observing s,

s¢: Agent’s observation at time t Bel(y,): Belief of the location of the agent at time t after observing s,

a,: Action taken by the agent attime t Lik(s,): Likelihood of observing s, in each state y,

M: Information given about the Map n(a,|Bel(y,)): Policy learnt by the agent, probability of taking action a, given Bel(y,)
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Figure 3.4: The architecture of the proposed model. The perceptual model computes the likelihood of the
current observation in all possible locations. The belief of agent’s location is propagated through time by
taking element-wise dot-product with the likelihood. The policy model learns a policy to localize accurately
while minimizing the number of steps required for localization. See text for more details.

over past observations s1.:—1 and actions aq.;—; is called the belief, Bel(y:) = p(yt|$1.t—1,a1:4-1)
The goal of Bayesian filtering is to estimate the belief sequentially. For the task of localization, y;
represents the location of the agent, although in general it can represent the state of any object(s)
in the environment. Under the Markov assumption, the belief can be recursively computed using
the following equations:

_ 1
Bel(y)) = > p(ylye-1,ai-1)Bel(yr—1), Bel(y) = - Lik(st)Bel(y),

Yt—1

where Lik(st) = p(st|yt) is the likelihood of observing s; given the location of the agent is
yt, and Z = X, Lik(s;)Bel(y;) is the normalization constant. The likelihood of the observation,
Lik(s;) is given by the perceptual model and p(y¢|yi—1,a:—1), i.e. the probability of landing in a
state y; from y,;_; based on the action, a;_1, taken by the agent is specified by a state transition
function, f;. The belief at time ¢t = 0, Bel(yo), also known as the prior, can be specified based on
prior knowledge about the location of the agent. For global localization, prior belief is typically
uniform over all possible locations of the agent as the agent position is completely unknown.

We now first define the Active Neural Localizer architecture and then present experiments
validating its performance against previous baselines. The Active Neural Localizer utilizes a belief
state represented as an O x M x N tensor, where (i, 7, k)!" element denotes the belief of the agent
being in the corresponding state, Bel(y; = 14, j, k). This kind of grid-based representation of belief is
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popular among localization methods as it offers several advantages over topological representations
[22, [65]. Let Lik(s:) = p(st|y:) be the likelihood of observing s; given the location of the agent is
y;. The likelihood of an observation in a certain state is also represented by an O x M X N tensor,
where (i, 7, k)!" element denotes the likelihood of the current observation, s;, given that the agent’s
state is y; = i, j, k. We refer to these tensors as Belief Map and Likelihood Map in the rest of the
chapter.

3.4.1 Model Architecture

The overall architecture of the Active Neural Localizer is shown in Figure 3.4 It has two main
components: the perceptual model and the policy model. At each timestep t, the perceptual
model takes in the agent’s observation, s; and outputs the Likelihood Map Lik(s;). The belief
is propagated through time by taking an element-wise dot product with the Likelihood Map at
each timestep. Let Bel(y;) be the Belief Map at time ¢ before observing s;. Then the belief, after
observing s;, denoted by Bel(y;), is calculated as follows:

1 — .
Bel(y:) = EBel(yt) ©® Lik(s:)

where © denotes the Hadamard product, Z =3_ Lik(s;)Bel(y;) is the normalization constant.

The Belief Map, after observing s, is passed through the policy model to obtain the probability
of taking any action, w(a;|Bel(y;)). The agent takes an action a; sampled from this policy. The
Belief Map at time ¢+ 1 is calculated using the transition function (fr), which updates the belief at
each location according to the action taken by the agent, i.e. p(y:+1|yt,ar). The transition function
here is the “Differential Drive” kernel described in Section [3:2:2] For ‘turn left’ and ‘turn right’
actions, the transition model swaps the belief in each orientation, where for the ‘move forward’
action, the belief values are shifted one unit according to the orientation. If the next unit is an
obstacle, then the value doesn’t shift, indicating a collison.

3.4.2 Model Components

Perceptual Model The perceptual model computes the feature representation from the agent’s
observation and the states given in the map information. The likelihood of each state in the map
information is calculated by taking the cosine similarity of the feature representation of the agent’s
observation with the feature representation of the state. Cosine similarity is commonly used for
computing the similarity of representations [I41), [0T] and has also been used in this context in
localization [24]. The benefits of using cosine similarity over the dot-product operation have been
highlighted by [32].

In the 2D environments, the observation is used to compute a one-hot vector of the same
dimension representing the depth which is used as the feature representation directly. This resultant
Likelihood map has uniform non-zero probabilities for all locations having the observed depth
and zero probabilities everywhere else. For the 3D environments, the feature representation of
each observation is obtained using a trainable deep convolutional network [116]. Figure shows
examples of the agent observation and the corresponding Likelihood Map computed in both 2D
and 3D environments.

Policy Model The policy model gives the probablity of the next action given the current belief
of the agent. It is trained using reinforcement learning, specifically Asynchronous Advantage
Actor-Critic (A3C) [136] algorithm. The belief map is stacked with the map design matrix and
passed through 2 convolutional layers followed by a fully-connected layer to predict the policy as
well as the value function. The policy and value losses are computed using the rewards observed by
the agent and backpropagated through the entire model.

3.4.3 Baselines

Markov Localization [63] is a passive probabilistic approach based on Bayesian filtering. We use
a geometric variant of Markov localization where the state space is represented by a fine-grained,
regularly spaced grid, called position probability grids [22], similar to the state space in the proposed
model. Grid-based state space representations are known to offer several advantages over topological
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Table 3.9: Results on the 2D Environments. ‘Time’ refers to the number of seconds required to evaluate
1000 episodes with the corresponding method and ‘Acc’ stands for accuracy over 1000 episodes.

Env 2D Mazes All
Map Size <7 15x15 21x21

Episode Length 15 30 20 40 30 60

Markov Time 12 15 29 31 49 51 31.2
Localization Acc 0.334 0.529 0.351 0.606 0.414 0.661 0.483
Active Markov Time 29 53 72 165 159 303 130.2
Localization (Fast) Acc 0.436 0.619 0.468 0.657 0.512 0.735 0.571
Active Markov Time 1698 3066 3791 8649 8409 13554 6527.8
Localization (Slow)  Acc 0.854 0.938 0.846  0.984 0.845 0.958 0.904
Active Neural Time 22 34 44 66 82 124 62.0
Localization Acc 0.936 0.939 0.905 0.939 0.899 0.984 0.934

representations [22], [65]. In the passive localization approaches, actions taken by the agent are
random.

Active Markov Localization (AML) [64] is the active variant of Markov Localization where
the actions taken by the agent are chosen to maximize the ratio of the ‘utility’ of the action to
the ‘cost’ of the action. The ‘utility’ of an action a at time ¢ is defined as the expected reduction
in the uncertainity of the agent state after taking the action a at time ¢ and making the next
observation at time ¢ + 1: Uy(a) = H(y;) — Eq[H (y141)], where H(y) denotes the entropy of the
belief: H(y) = —>_, Bel(y)log Bel(y), and E,[H (y:+1)] denotes the expected entropy of the agent
after taking the action a and observing y:41. The ‘cost’ of an action refers to the time needed
to perform the action. In our environment, each action takes a single time step, thus the cost is
constant.

We define a generalized version of the AML algorithm. The utility can be maximized over a
sequence of actions rather than just a single action. Let a* € A™ be the action sequence of length
n; that maximizes the utility at time ¢, a* = arg max, U;(a) (where A denotes the action space).
After computing a*, the agent need not take all the actions in a* before maximizing the utility
again. This is because new observations made while taking the actions in a* might affect the utility
of remaining actions. Let n, € {1,2,...,n;} be the number of actions taken by the agent, denoting
the greediness of the algorithm. Due to the high computational complexity of calculating utility,
the agent performs random actions until the belief is concentrated on n,, states (ignoring beliefs
under a certain threshold). The complexity of the generalized AML is O(n,, (n; — ng)|A|™). Given
sufficient computational power, the optimal sequence of actions can be calculated with n; equal to
the length of the episode, ny = 1, and n,, equal to the size of the state space.

In the original AML algorithm, the utility was maximized over single actions, i.e. n; = 1 which
also makes n, = 1. The value of n,,, used in their experiments is not reported, however they show
an example with n,, = 6. We run AML with all possible combination of values of n; € {1, 5,10, 15},
ng € {1,n;} and n,, = {5,10} and define two versions: (1) Active Markov Localization (Fast):
Generalized AML algorithm using the values of n;, ng4, ny, that maximize the performance while
keeping the runtime comparable to Active Neural Localization, and (2) Active Markov Localization
(Slow): Generalized AML algorithm using the values of n;, ng, n,, which maximize the performance
while keeping the runtime for 1000 episodes below 24hrs (which is the training time of the proposed
model) in each environment.

The perceptual model for both Markov Localization and Active Markov Localization needs to be
specified separately. For the 2D environments, the perceptual model uses 1-hot vector representation
of depth. For the 3D Environments, the perceptual model uses a pretrained Resnet-18 [81] model
to calculate the feature representations for the agent observations and the memory images.

3.4.4 Results

2D Environments For the 2D maze domain, we run all models on mazes having size 7x 7, 15x 15
and 21 x 21 with varying episode lengths. We train all the models on random Kruskal-generated
mazes and test on a fixed set of 1000 mazes (different from the mazes used in training). The results
on the 2D mazes are shown in Table As seen in the table, the proposed model, Active Neural
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Figure 3.5: Different experiments in the 3D Environments. Refer to the text for more details.
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Table 3.10: Results on the 3D environments. ‘Time’ refers to the number of seconds required to evaluate
1000 episodes with the corresponding method and ‘Acc’ stands for accuracy over 1000 episodes.

. Unreal3D Domain

Env ViZDoom Mazes with lights All adaptation
Evaluation Setti Unseen Mazes Unseen mazes With  Without ViZDoom to

vatuation etting Seen Textures Unseen textures lights lights Unreal3D
No. of landmarks 10 5 0 10 5 0
Markov Localization Time 2415 2470 2358 2580 2509 2489 2513 2541 2484.4 -
(Resnet) Acc 0.716 0.657 0.641 0.702 0.669 0.652 0.517 0.249 0.600 -
Active Markov Time 14231 12409 11662 15738 12098 11761 11878 5511 11911.0 -
Localization (Fast) Acc 0.741 0.701 0.669 0.745 0.687 0.689 0.546 0.279 0.632 -
Active Markov Time 48291 47424 43096 48910 44500 44234 47962 11205 41952.8 -
Localization (Slow)  Acc 0.759 0.749 0.694 0.787 0.730 0.720 0.577 0.302 0.665 -
Active Neural Time 297 300 300 300 300 301 2750 2699 905.9 2756
Localization Acc 0.889 0.859 0.852 0.858 0.839 0.871 0.934 0.505 0.826 0.921

Localization, outperforms all the baselines on average. The proposed method achieves a higher
overall accuracy than AML (Slow) while being 100 times faster. Note that the runtime of AML for
1000 episodes is comparable to the total training time of the proposed model. The long runtime of
AML (Slow) makes it infeasible to be used in real-time in many cases. When AML has comparable
runtime, its performance drops by about 37% (AML (Fast)). We also observe that the difference in
the performance of Active Neural Localization and baselines is higher for smaller episode lengths.
This indicates that Active Neural Localization is more efficient (meaning it requires fewer actions
to localize) in addition to being more accurate.

3D Environments All the mazes in the 3D ViZDoom domain are of size 70x70 while the office
environment environment is of size 70x50. The agent location is a continuous value in this range.
Each cell roughly corresponds to an area of 40cmmx40cm in the real world. The set of memory
images correspond to only about 6% of the total states. Likelihood of rest of the states are obtained
by bilinear smoothing. All episodes have a fixed length of 30 actions. Although the size of the
Office Map is 7T0x50, we represent Likelihood and Belief by a 70x70 in order to transfer the model
between both the 3D environments for domain adaptation. We also add a Gaussian noise of 5%
standard deviation to all translations in 3D environments.

In the ViZDoom domain, we vary the difficulty of the environment by varying the number of
landmarks in the environment. Landmarks are defined to be walls with a unique texture. Each
landmark is present only on a single wall in a single cell in the maze grid. All the other walls have
a common texture making the map very ambiguous. We expect landmarks to make localization
easier as the likelihood maps should have a lower entropy when the agent visits a landmark, which
consequently should reduce the entropy of the Belief Map. We run experiments with 10, 5 and 0
landmarks. The textures of the landmarks are randomized during training. This technique of domain
randomization has shown to be effective in generalizing to unknown maps within the simulation
environment [IT3] and transferring from simulation to real-world [204]. In each experiment, the
agent is trained on a set of 40 mazes and evaluated in two settings: (1) Unseen mazes with seen
textures: the textures of each wall in the test set mazes have been seen in the training set, however
the map design of the test set mazes are unseen and (2) Unseen mazes with unseen textures: both
the textures and the map design are unseen. We test on a set of 20 mazes for each evaluation
setting. Figure shows examples for both the settings.

In the Unreal3D environment, we test the effectiveness of the model in adapting to dynamic
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lightning changes. We modified the the Office environment using the Unreal Game Engine Editor
to create two scenarios: (1) Lights: where all the office lights are switched on; (2) NoLights: where
all the office lights are switched off. Figure shows sample agent observations with and without
lights at the same locations. To test the model’s ability to adapt to dynamic lighting changes, we
train the model on the Office map with lights and test it on same map without lights. The memory
images provided to the agent are taken while lights are switched on. Note that this is different as
compared to the experiments on unseen mazes in ViZDoom environments, where the agent is given
memory images of the unseen environments.

The results for the 3D environments are shown in Table and an example of the policy
execution is shown in Figure[3.6F] The proposed model significantly outperforms all baseline models
in all evaluation settings with the lowest runtime. We see similar trends of runtime and accuracy
trade-off between the two versions of AML as seen in the 2D results. The absolute performance of
AML (Slow) is rather poor in the 3D environments as compared to 2D mazes. This is likely due to
the decrease in value of look-ahead parameter, n;, to 3 and the increase in value of the greediness
hyper-parameter, n, to 3, as compared to n; = 5,74 = 1 in Maze 2D, in order to ensure runtimes
under 24hrs.

The Active Neural Localization model performs better on the realistic Unreal environment as
compared to the ViZDoom environment, as most scenes in the Unreal environment consists of
unique landmarks while ViZDoom environments consists of random mazes with the same texture
except those of the landmarks. In the ViZDoom domain, the model is able to generalize well to not
only unseen map design but also to unseen textures. However, the model doesn’t generalize well
to dynamic lighting changes in the Unreal3D environment. This highlights a current limitation
of RGB image-based localization approaches as compared to depth-based approaches, as depth
sensors are invariant to lighting changes.

Domain Adaptation We also test the ability of the proposed model to adapt between different
simulation environments. The model trained on the ViZDoom domain is directly tested on the
Unreal3D Office Map without any fine-tuning. The results in Table [3.10] show that the model is
able to generalize well to the Unreal environment from the Doom environment. We believe that
the policy model generalizes well because (1) the representation of belief and map design is learnt
jointly in many randomized environments and (2) the policy model is based only on the belief
and the map design. Similarly the perceptual model generalizes well because it was trained on
environments with random textures.

3.5 Discussion

To conclude, in this chapter we proposed two differentiable submodules capable of enhancing the
Neural Map inter-episodic memory described in the previous chapter with two core capabilities:
the first is the Gated Path Planning Network, a planning module capable of doing efficient model-
based planning and search, and the second is Active Neural Localization, a state inference module
(equivalently, localizer in the setting of embodied environment) that not only disambiguates agent
state quickly but chooses actions to actively reduce uncertainty. The GPPN motivated itself by
re-formulating VIN as a convolutional-recurrent network, replacing the unconventional recurrent
value-iteration-like update with a well-established gated LSTM recurrent operator. The Active
Neural Localizer uses structured components for Bayes filter-like belief propagation and learns
a policy based on the belief to localize accurately and efficiently. This allows the policy and
observation models to be trained jointly using reinforcement learning. We showed the effectiveness
of the proposed model on a variety of challenging 2D and 3D environments including a realistic
map in the Unreal environment. Both of these submodules enabled learning initially unknown
MDP parameters directly from data, allowing the learning of model-based planning directly from
data, without needing a large amount of hand-crafted domain-specific knowledge typically provided
by an agent designer. We presented experimental results comparing GPPN and Active Neural
Localization on challenging 2D and 3D maze tasks, isolating the evaluation of each component
so that they can be ablated against previous baselines directly. The results demonstrate that
(1) the GPPN learns faster, generalizes better with less data, and achieves improved and more
consistent results when compared to VIN and (2) that Active Neural Localization consistently

3Policy execution videos can be seen at https://tinyurl.com/y8gp3mkh
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Figure 3.6: An example of the policy execution and belief propagation in the ViZDoom domain. The rows
shows consecutive time steps in a episode. The columns show Agent’s observation, the belief of its location
before and after making the observation, the map design and agent’s perspective of the world. Agent’s
true location is also marked in the map design (not visible to the agent). Belief maps show the probability
of being at a particular location. Darker shades imply higher probability. The belief of its orientation
and agent’s true orientation are also highlighted by colors. For example, the Red belief map shows the
probability of agent facing east direction at each x-y coordinate. Note that map design is not a part of
the Belief Maps, it is overlayed on the Belief Maps for better visualization. At all time steps, all locations
which look similar to agent’s perspective have high probabilities in the belief map. The example shows
the importance deciding actions while localizing. At ¢ = 3, the agent is uncertain about its location as
there are 4 positions with identical perspectives. The agent executes the optimal set of action to reduce its
uncertainity, i.e. move forward and turn left, and successfully localizes.
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outperforms the baseline models while being order of magnitudes faster, and is also capable of
proficient zero-shot transfer to new domains when trained using random textures. In conclusion, we
have successfully designed planning and localization submodules siginificantly outperforming the
previous state-of-the-art while capable of being integrated directly with the inter-episodic Neural
Map. This works towards our goal of a monolithic agent architecture for meta-learning embodied
environments, capable of memorization, planning and state inference all in an end-to-end manner,
requiring a minimal amount of domain-knowledge for the agent designer.

We now work towards addressing the outstanding missing capability of our potential monolithic
architecture: the ability for the agent to localize successfully without a map. This ability is distinct
from the localization described in this chapter, which relied on pre-specified map information. In
this new setting, termed Simultaneous Localization and Mapping (SLAM), the agent both needs
to answer how to perform its own localization as well as how the observations it has seen can be
composed into a map. While algorithms to accomplish the seemingly competing SLAM objectives
have been developed extensively [52][140][139], a completely end-to-end differentiable architecture
was notably absent. Therefore in the next chapter, inspired by traditional graph-optimization
methods from the literature [I11], we design a differentiable architecture to perform SLAM, the
Neural Graph Optimizer, and demonstrate that it outperforms traditional and deep-learning-based
approaches to localization on embodied environments.
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Chapter 4

Towards End-to-End Simultaneous
Localization and Mapping

In the previous two chapters we first described an inter-episodic memory designed specifically for
embodied applications and then designed submodules that achieve state-of-the-art differentiable
planning and state inference capabilities. The defined memory, planning and state inference
architectural components could potentially be combined into a full, monolithic agent architecture
specialized for few-shot meta-learning in any embodied environment, but such an architecture
would currently lack one outstanding core component: localization without a map, a critical
prerequisite to the original Neural Map inter-episodic memory presented in the first chapter which
had relied on an oracle to provide location or ego-motion estimates. While we can use any extant
off-the-shell localization method, these are often optimization-based [IT1I] and are not in general
easily differentiable, if at all. Having a completely differentiable agent architecture is appealing as
it enables the least amount of domain knowledge required, meaning the distributed representations
can (1) be learnt directly from task and (2) learn cohesive representations such that they are
adapted to the computational processes that are performed on them, e.g. observations features can
potentially be learnt in such in a way that the GPPN requires fewer iterations to compute a plan.
Therefore in this chapter, we move towards a completely differentiable submodule capable of doing
localization without any map provided.

The stand-alone ability for an agent to localize itself within an environment is a crucial
prerequisite for many real-world applications, such as household robots [202], autonomous drones
[61], and augmented and virtual reality applications. In most cases, the main challenge for an agent
localizing itself is that: the agent is not provided with a map of the environment and therefore the
agent must simultaneously map the environment and localize itself within the incomplete map it has
produced. Owing to its large practical importance, a wide variety of algorithms to solve Simultaneous
Localization and Mapping (SLAM) task have been developed over a long history [202, 23], with
modern methods achieving impressive accuracy and real-time performance [I38|, [T11], 140} [52].
These methods still have several shortcomings, owing mainly to the hand-engineered features,
dense matching, and heuristics used in the design of these algorithms. For example, most methods
are brittle in certain scenarios, such as varying lighting conditions (e.g. changing time of day),
different weather conditions or seasons [I79], repetitive structures, textureless objects, extremely
large viewpoint changes, dynamic elements within the environment, and faulty sensor calibration
[23]. Because these situations are common in real-world scenarios, robust applications of those
systems are difficult. The brittleness and reduced generalization of current methods can be viewed
as a potential consequence of the non-differentiability of these methods, as the features must be
hand-designed and tested by domain experts.

In this chapter we work towards a fully differentiable SLAM, developing a method which can be
made more robust to the common situations where previous SLAM algorithms typically degrade.
To do this, we formulate a novel neural network architecture called “Neural Graph Optimizer”. The
Neural Graph Optimizer consists of differentiable analogues of the common types of subsystems
used in modern SLAM algorithms, such as a local pose estimation model, a pose selection module
(key frame selection, essential graph), and a graph optimization process. Because each component
in the system is differentiable, the entire architecture can be trained in an end-to-end fashion,
enabling the network to learn invariances to the types of scenarios observed during training, as
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Figure 4.1: Components of the proposed model along with sample input, output and ground truth. The
Local Pose Estimation model predicts the relative pose change between consecutive observations and Neural
Graph Optimization model jointly optimizes the predictions of the Local Pose Estimation model to predict
global pose changes. The local pose estimates, global pose estimates, and ground truth trajectory are
shown in green, orange and blue, respectively.

well as enabling seamless composition with the rest of the submodules defined in previous chapters.
To demonstrate the ability of our method to learn pose estimation, we use trajectories sampled
from several simulated environments. The first environment is a 2D maze where the agent has a
single-pixel row-scan as input. We then scale the model up to 3D mazes based on the ViZDoom
environment [105], where the agent receives an image of the first-person view of the world as input.

4.1 Background & Related Work

SLAM is a process in which an agent needs to localize itself in an unknown environment and build a
map of this environment at the same time, with uncertainties in both its motions and observations.
SLAM has evolved from filter-based to graph-based (optimization-based) approaches. Some EKF-
based systems have demonstrated state-of-the-art performance, such as the Multi-State Constraint
Kalman Filter [I38], the VIN [I08], and the system of Hesch et al. [85]. Those methods, even
though efficient, heavily depend on linearization and Gaussian assumptions, and thus under-perform
their optimization-based counterparts, such as OK-VIS [121], ORB-SLAM [140], and LSD-SLAM

Graph-based SLAM typically includes two main components: the front-end and the back-end.
The front-end extracts relevant information (e.g. salient features) from the sensor data and associates
each measurement to a specific map feature, while the back-end performs graph optimization on a
graph of abstracted data produced by the front-end.

Graph-based SLAM can be categorized either as feature-based or direct methods depending
on the type of front-end. Feature-based methods rely on local features (e.g. SIFT, SURF, FAST,
ORB, etc.) for pose estimation. For example, ORB-SLAM [I40] performs data association and
camera relocalization with ORB features and DBoW2 [67]. RANSAC [58] is commonly used
for geometric verification and outlier rejection, and there are also prioritized feature matching
approaches [I78]. However, hand-engineered feature detector and descriptors are not robust to
motion blur, illumination changes, or strong viewpoint changes, any of which can cause localization
to fail.

To avoid some of the aforementioned drawbacks of feature-based approaches, direct methods,
such as LSD-SLAM [52], utilize extensive photometric information from the images to determine
the pose, by minimizing the photometric error between corresponding pixels. This approach is in
contrast to feature-based methods, which minimize the reprojection error. However, such methods
are usually not applicable to wide baseline settings [23] during large viewpoint changes. Recent work
in [61] [62] combines feature and direct methods by minimizing the photometric error of features
lying on intensity corners and edges. Some methods focus on dense recontruction of the scene,
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for instance [214] builds dense globally consistent surfel-based maps of room scale environments
explored using an RGB-D camera, without pose graph optimisation, while KinectFusion [143]
obtains depth measurements directly using active sensors and fuse them over time to recover
high-quality surface maps. These approaches still suffer from strict calibration and synchronization
requirements, and the data association modules require extensive parameter tuning in order to
work correctly for a given scenario.

In light of the limitations of feature-based and direct approaches, deep networks are proposed
to learn suitable feature representations that are robust against motion blur, occlusions, dynamic
scenes, illumination, texture, and viewpoint changes. They have been successfully applied to several
related multiview vision problems, including learning optical flow [57], depth [124], homography
between frame pairs [44], and localization [26] and re-localization problems.

Recent work includes re-formulating the localization problem as a classification task [213], a
regression task [I06] [209], end-to-end trainable filtering [78|, and differentiable RANSAC [I§].
More specifically, PlaNet [2I3] formulates localization as a classification problem, predicting the
corresponding tile from a set of tiles subdividing Earth surface for a given image, thus providing
the approximate position from which a photo was taken. PoseNet [106] formulates 6-DoF pose
estimation as a regression problem. One drawback of the PoseNet approach is its relative inaccuracy,
compared to state-of-the-art SIFT methods. Similarly, [131] fine-tunes a pretrained classification
network to estimate the relative pose between two cameras. To improve its performance, [209]
added Long-Short Term Memory (LSTM) units to the fully-connected layers output, to perform
structured dimensionality reduction, choosing the most useful feature correlations for the task of
pose estimation. From a different angle, DSAC [I8] proposes a differentiable RANSAC so that a
matching function that optimizes pose quality can be learned. These approaches are not robust to
repeated structure or similar looking scenes, as they ignore the sequential and graphical nature of the
problem. Addressing this limitation, work in [34] fused additional sequential inertial measurement
with visual odometry. SemanticFusion [I30] combines convolutional neural networks (CNNs) and
a dense ElasticFusion [214]. However, classic feature-based methods still outperform CNN-based
methods published to date in terms of accuracies.

Recently, there has been an increasing interest in combining navigation and plannning in an
end-to-end deep reinforcement learning (DRL) framework. The efforts to date can be divided
into two categories depending on the presence of external memory in the architecture or not.
Target-driven visual navigation takes a visual observation and an image of the target [223] or range
findings [197] as input, and plans goal seeking actions in a 3D indoor simulated environment as the
output.

In simulated environments, [133] uses stacked LSTM in a goal-driven RL problem with auxilary
tasks of depth prediction and loop-closure classification, while [220] added successor features to
ease transfer from previously mastered navigation tasks to new ones. Work in [13] augmented DRL
with Faster-RCNN for object detection and SLAM (ORB-SLAM2) for pose estimation; observing
images and depth from VizDoom, they built semantic maps with 3D reconstruction and bounding
boxes as 