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Meta Reinforcement Learning through Memory

Thesis

Emilio Parisotto

Abstract

Modern deep reinforcement learning (RL) algorithms, despite being at the forefront of artificial
intelligence capabilities, typically require a prohibitive amount of training samples to reach a
human-equivalent level of performance. This severe data inefficiency is the major obstruction
to deep RL’s practical application: it is often near impossible to apply deep RL to any domain
without at least a simulator available. Motivated to address this critical data inefficiency, in this
thesis we work towards the design of meta-learning agents that are capable of rapidly adapting
to new environments. In contrast to standard reinforcement learning, meta-learning learns over
distributions of environments, from which specific tasks are sampled and with which the meta-learner
is directly optimized to improve the speed of policy improvement on. By exploiting a distribution
of tasks which share common substructure with the tasks of interest, the meta-learner can adjust
its own inductive biases to enable rapid adaptation at test time.

This thesis focuses on the design of meta-learning algorithms which exploit memory as the
main mechanism driving rapid adaptation in novel environments. Meta-learning with inter-episodic
memories are a class of meta-learning methods that leverage a memory architecture conditioned
on the entire interaction history of a particular environment to produce a policy. The learning
dynamics driving policy improvement in a particular task are thus subsumed by the computational
process of the sequence model, essentially offloading the design of the learning algorithm to the
architecture. While conceptually straightforward, meta-learning using inter-episodic memory is
highly effective and remains a state-of-the-art method.

We present and discuss several techniques for meta-learning through memory. The first part
of the thesis focuses on the “embodied” class of environments, where an agent has a physical
manifestation in an environment resembling the natural world. We exploit this highly structured set
of environments to work towards the design of a monolithic embodied agent architecture that has the
capabilities of rapid memorization, planning and state inference. In the second part of the thesis, we
move to focus on methods that apply in general environments without strong common substructure.
First, we re-examine the modes of interaction a meta-learning agent has with the environment:
proposing to replace the typically sequential processing of interaction history with a concurrent
execution framework where multiple agents act in the environment in parallel. Next, we discuss the
use of a general and powerful sequence model for inter-episodic memory, the gated transformer,
demonstrating large improvements in performance and data efficiency. Finally, we develop a
method that significantly reduces the training cost and acting latency of transformer models in
(meta-)reinforcement learning settings, with the aim to both (1) make their use more widespread
within the research community, and, (2) unlock their use in real-time and latency-constrained
applications, such as in robotics.
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Chapter 1

Introduction

Humans and other animals can rapidly integrate information to perform tasks within only a
handful of interactions. The ability of natural learning systems to generalize to novel situations
is, however, in astounding contrast to what current artificial systems are capable of. Despite
being at the forefront of artificial intelligence capabilities, modern deep reinforcement learning
algorithms can take in excess of hundreds of thousands of trials to learn even a single task [137] [135].
Naively leveraging a multitasking objective does not remedy this situation, and only introduces
further complexities into the proper functioning of the algorithm such as difficult optimization and
the tendency for the agent to forget and/or overemphasize certain tasks [148]. The inability of
reinforcement learning agents to rapidly generalize to new situations therefore presents itself as a
critical obstruction to the application of AI to real-world domains.

Rapid generalization within novel environments can be facilitated by equipping the agent with
the proper inductive biases. These biases can be the fixed architectural components of the agent’s
model, i.e. the use of convolutions for image data or LSTMs for sequence data, or they can
be obtained themselves through data-driven processes. The data-driven approach is especially
promising as it can enable an agent to tailor it’s own inductive biases to different environments in
an online fashion, as it is interacting with them. One of the earliest methodologies [205][168][181]
that has recently gained increasing empirical success [14][210][49][161][56] is to have the agent’s own
learning process be data-driven, i.e. having the agent learn-to-learn, or meta-learn [180]. In contrast
to the generality of reinforcement learning algorithms defined over broad classes of environments
(i.e. all Markov Decision Processes), meta-learning allows the agent to adjust its learning process to
specialize to a more narrow distribution of environments with an underlying exploitable structure;
sacrificing complete generality for rapid adaptation to a set of target environments.

Meta-learning processes can generally be described under the framework of an agent having
separate outer-loop (slow) and inner-loop (fast) learning systems [16]. The fast learning system
represents the agent’s learning process that occurs during interaction with a particular instance of
an environment, determining the agent’s online behavior. This learning system is the one which is
adapted specifically to the types of environments the agent designer is targeting for rapid adaptation.
At the opposite end of the spectrum of temporal horizons, the slow learning system represents
the complementary part of the agent taking experiences aggregated across many different trials in
order to tailor the fast learning system’s inductive biases to the distribution of target environments.
This slow system is typically driven by standard reinforcement learning [49][210][161][56] or self-
supervised objectives [14], albeit at much longer horizons than usual as meta-episodes last a multiple
of the individual horizons of environment instances.

One straightforward but particularly effective meta-learning approach is to endow the agent
with an inter-episodic memory [49][210][14][161], or a memory that lasts across an agent’s learning
interactions within a particular environment. Here, the fast learning system is a sequential model, the
exact form and architecture of which can vary widely, and the slow learning system is an algorithm
optimizing an RL or self-supervised objective that adapts the parameters of the sequential model
across many different environment instances. This inter-episodic memory framework transforms
the meta-learning problem into one of finding effective and powerful sequential model architectures.
While straightforward to conceptualize, the choice of memory architecture is not a trivial decision
and, as will be demonstrated in this thesis, can have a profound impact on the learning performance
of the meta-learning agent.
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There exist a wide distribution of techniques involving meta-learning using an inter-episodic
memory, with each varying in the form of memory and in ways the memory influences behavior during
learning. Episodic control, a form of non-parametric inter-episodic memory first described in the
cognitive sciences literature [50][120], is a memory architecture that largely exploits Markov Decision
Process structure to enable fast and data-efficient learning [120][79][14][161][169]. Methods for
episodic control essentially utilize an associative memory where, given a new observation, the closest
observations in past experience are recalled along with the reward statistics of that past experience,
i.e. the return obtained last time the agent was in a similar state. This non-parametric memory
enables very fast instance-based learning where, when interacting with relatively deterministic
dynamics, a handful of similar past experiences can be adequate to acquire a reasonable assessment
of obtainable future reward. Recently this concept has been scaled to the high-dimensional
environments typical of deep reinforcement learning applications, with the episodic memory being
implemented either as a k-Nearest-Neighbor model (kNN) using fixed random projections of
observations as features [14], or a soft-kNN where kNN features are trained alongside the policy
using RL objectives [161]. In this setting, the kNN memory look-up functions as re-acquiring stored
MDP statistics, i.e. estimates of return statistics for different actions, and the majority of learning
the system undertakes is mainly to improve observation featurization so as to enable accurate,
generalizable recall. In psychology and cognitive sciences, episodic memories have emerged as an
accurate model of certain animal learning behaviours, suggesting a potential implementation of a
similar mechanism in natural systems [169][16].

An alternative parametric approach to inter-episodic memories involves recurrent neural networks
whose recurrent state does not reset at episode boundaries [49][210]. These parametric approaches
are in a sense more general because they (1) do not restrain the recalled information to be reward-
based statistics, and (2) can in theory learn any algorithm, including the standard RL ones episodic
memory leverages (assuming the particular recurrent network model is Turing-complete [184]).
The previously described approaches are not necessarily mutually exclusive: Parametric and non-
parametric inter-episodic memories have also recently been combined, where non-parametric recall
is used to reinstate the activations of a recurrent policy, based on the closeness of the current
observation history to past experiences [170].

A notable counterpart to inter-episodic memory utilizes gradient descent itself as an inductive
bias for the meta-learning update rule of the system [128][5][56][144][175][59]. These optimization-
based meta-learners differentiate through the optimization process, typically stochastic gradient
descent or a historically-averaged variant, to obtain a descent direction on the inter-trial learning
dynamics. Variants of this approach use the meta-gradient in different ways: optimizing the
initial weight matrix to achieve optimal performance in as few steps as possible in a variety of
environments [56], doing the same but using a more computationally efficient approximation to the
second-order derivatives [144][59], optimizing a lower dimensional embedding vector that structurally
parameterizes the full initial weight matrix of the network [175], optimizing all parameters of the
learning process [5]. While these methods have emerged as a distinct branch of meta-learning,
they are not directly competing with episodic memory approaches, and there is evidence that
both approaches can be combined [59]. In this thesis, we do not focus on this approach and we
believe that both methods can be developed independently as they each have separate strengths
and disadvantages.

1.1 Notation
A Markov Decision Process (MDP) [163, 196] is a tupleM = (S,A, T , γ,R, ρ,H) where:

• S is a finite set of states.

• A is a finite set of actions.

• T : S × A → Π(S) defines the transition dynamics, e.g. T (s′|s, a) for states s, s′, action a
defines the probability of ending up in state s′ when executing a in state s.

• γ ∈ [0, 1] is a discount factor.

• R : S ×A → R is a reward function which an agent tries to maximize.

• ρ : S → Π(S) is the initial state distribution, defining where in the state-space the agent
begins an episode.
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• H ∈ N is the time horizon of the MDP, after which an episode ends. For non-episodic
environments, H =∞.

where Π(·) defines a probability distribution over its input set. MDPs are Markovian as knowing
the current state is sufficient to know the distribution of next states, i.e. the path that was taken
to the current state is irrelevant to decision making.

A stationary policy is a mapping from states to probabilities over actions π : S → Π(A). We
define the value of a policy V π(st) as the accumulated discounted expected future reward when
starting at a state st and executing π onward:

V π(st) = E

[ ∞∑
k=0

γkst+k

∣∣∣∣∣ at+k ∼ π(·|st+k),
st+k+1 ∼ T (·|st+k, at+k)

]
(1.1)

We can additionally define a similar “action-value” function:

Qπ(st, at) = E

[ ∞∑
k=0

γkst+k

∣∣∣∣∣ at+k+1 ∼ π(·|st+k+1),
st+k+1 ∼ T (·|st+k, at+k)

]
(1.2)

The goal of reinforcement learning algorithms is to find the policy π∗ that maximizes value over
all states s: ∀s, π∗ = arg maxπ V

π(s). It is guaranteed that π∗ always exists [196]. The value and
action-value functions can be decomposed into recursive forms called the Bellman Equations:

V π(st) = E
[
r(st, at) + γV π(st+1)

∣∣∣∣ at ∼ π(·|st),
st+1 ∼ T (·|st, at)

]
(1.3)

Qπ(st, at) = E
[
r(st, at) + γQπ(st+1, at+1)

∣∣∣∣st+1 ∼ T (·|st, at),
at+1 ∼ π(·|st+1)

]
(1.4)

The optimal policy satisfies another recursive form called the Bellman Optimality Equation:

V ∗(st) = E
[
r(st, at) + γmax

a′
Q∗(st+1, a

′)

∣∣∣∣ at ∼ π(·|st),
st+1 ∼ T (·|st, at)

]
(1.5)

Q∗(st, at) = E
[
r(st, at) + γmax

a′
Q∗(st+1, a

′)
∣∣∣st+1 ∼ T (·|st, at)

]
(1.6)

where V ∗ = V π
∗
, Q∗ = Qπ

∗
.

A Partially-Observable Markov Decision Process (POMDP) [97] is a tuple (S,A, T , γ,R, ρ,H,Ω,O)
where:

• (S,A, T , γ,R, ρ,H) is an MDP.

• Ω is a finite set of observations.

• O : S × A → Π(Ω) defines an observation function where O(s′, a, o) is the probability of
observing o after executing action a and ending up in state s′.

The key distinction of POMDP from MDP is that, in POMDPs, the agent is unable to observe
the current state, typically only having access to a sampled observation. Therefore in order to act
optimally, an agent must try to infer its state using the full history of observations and actions
taken, or a sufficient statistic of this history.

1.1.1 Meta-Learning
The class of meta-learning environments is primarily concerned with learning in resource constrained
applications. This covers a wide variety of natural applications where environment interaction is
expensive, due to the high cost of sensors or actuators (a robot costing several hundred thousand
dollars), or where time is constrained (i.e. agent execution is occurring in real-time and therefore
sampling millions of states is prohibitive). This can reduce the amount of data available for learning
in a particular environment by orders of magnitude compared to the number of samples typically
required to train deep reinforcement learning agents.

More formally, Meta Reinforcement Learning is concerned with the case where we are given a
distribution p :M→ [0, 1] over tasksMT = {M1, . . . ,MN} and we want to learn how to act in
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any environment sampled from this distribution as quickly as possible. By learning to focus on only
the variations between the environments inMT , meta learning algorithms can exploit structure
in the class of tasks to, in the most extreme case, learn a new Mi ∼ p in only 1-10 interaction
episodes. Adopting similar conventions to [56, 190], we can frame meta reinforcement learning as a
solution to the following objective function:

min
θ

∑
Mi

Eπ∆(θ)
[LMi

] (1.7)

where ∆(θ) represents a few-shot update method which collects a limited amount of experience
from eachMi to update θ. In this thesis, we focus on techniques where the few-shot update method
∆(θ) is a sequence model processing an inter-episodic observation, action and reward history.

We formalize the terms for meta-learning with inter-episodic memory below:

• An environment domain or classMT is the set of tasks we want to meta-learn on.
• An environment/task instance is a single (PO)MDP in the environment domain,Mi ∈MT .
• An interaction, episode or sub-episode all represent an H-length sequence of actions

taken by the meta-learning policy in a single environment instance.
• A meta-episode refers to the total sequence of interactions with an environment instance.

Additionally, in the sequel, as the focus is on temporally-extended decision-making, i.e. the RL
setting, we will not make an explicit distinction between “Meta-Learning” (often used to refer
specifically to supervised learning domains) and “Meta-Reinforcement-Learning”, and these two
terms will be used interchangably.

Meta-learning settings can be formalized as POMDPs with a special structure: an agent is
exposed to a collection of instance MDPs (or, more generally, POMDPs) which each have an
independent task id, or context, associated with them. The goal of meta-learning is for the agent
to accurately discover this context through interaction with the environment instance it’s currently
acting in, while potentially being limited in

1. the amount of interaction it has with each environment instance,

2. the total number of environment instances it can interact with during training.

Given that meta-learning is a specific type of POMDP, techniques developed for solving general
POMDPs, such as belief-space algorithms [122, 123, 222, 158] or recurrent networks [80], can
therefore be applied to the meta-learning setting with few changes. Additionally, recent work [68]
has made more explicit use of this connection between POMDP and meta-learning generalization,
defining an “Epistemic POMDP” corresponding to the data-limited meta-learning setting where only
a few environment instances are accessible during training, and leveraging Bayesian RL approaches,
originally used for belief-space planning in more general POMDPs, to motivate novel meta-learning
algorithms.

1.1.2 Embodied Environments
In this thesis, a particular class of POMDPs we are interested in will be “embodied environments”.
In embodied environments, agents have a physical manifestation in an environment with dynamics
resembling the real world. This environment domain covers a large number of real-world robotics
applications, where the standard setting is an agent controlling a robot’s actuators given observations
obtained from on-board sensors. Partial-observability is inherent within this class of environments
due to occlusion and changing environment conditions, potentially due to other actors within the
environment. As this class of environments is situated within the natural world (or an approximation
of it), there is available a large amount of prior knowledge to make use of in the design of agent
architectures. For examples of shared structure, the transition dynamics follow the laws of classical
mechanics, and the state and observation spaces have underlying euclidean geometric structure.

1.2 Overview of Completed Work
We partition the chapters in this thesis into two parts: the first which focuses solely on methods for
meta-learning with inter-episodic memory in embodied environments, and the second which focuses
on general (PO)MDP environment classes. In this section, we describe the contributions of this
thesis within these two parts.
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1.2.1 Part 1 - Meta Reinforcement Learning in Embodied Domains
In the first part of this thesis, we focus on meta-learning within the class of embodied agent
environments, where there exist several strong priors we can exploit in the structure of the
observation and state spaces. As will be demonstrated, leveraging knowledge about the geometric
and physical structure of the natural world can enable the design of meta-learning agents that
achieve rapid and efficient learning in embodied environments. In this section, we present several
methods covering various capabilities that work towards an end-to-end monolithic agent architecture
for few-shot learning in embodied environments.

1. A memory architecture, the Neural Map [152], that accomplishes end-to-end learning of
structured environment representations where features are organized spatially; features close
together on this spatial metric represent observations obtained at positions close together
in the environment. We demonstrate that this architecture functions as a highly effective
inter-episodic memory for meta-learning in embodied environments and will serve as the basis
of the proposed monolithic architecture.

2. A state inference architecture, Active Neural Localization [25], that chooses actions that
disambiguate an agent’s location (equivalently the agent’s state in embodied environments)
given a map. This architecture also enables the agent to be trained to take actions which
reduce entropy on the current location. Results demonstrate that the proposed architecture sig-
nificantly outperforms previous methods in terms of performance and required computational
cost.

3. A planning architecture, the Gated Path Planning Network [119] (GPPN), that is able to
do planning on feature maps and location estimates produced by deep learning architectures
such as the proposed Neural Map and Active Neural Localization. Through an extensive
set of experimental evaluations, we show the GPPN reaches state-of-the-art performance for
differentiable planning in embodied environments.

4. An end-to-end architecture trained to do simultaneous localization and mapping, the Neural
Graph Optimizer [154]. The Neural Graph Optimizer’s ability to produce locations without
any map knowledge a priori is the last remaining component necessary for a self-contained
agent architecture, as location estimates are required for the Neural Map. We show that the
architecture achieves significant performance gains over previous baselines on an environment
domain with high levels of perceptual aliasing.

Combined, these methods contain the components necessary to build a monolithic agent architecture
capable of actively and simultaneously memorizing, planning and performing state inference in
embodied environments. We now describe each of these completed chapters in more detail.

Chapter 2 - Neural Map: Structured Inter-Episodic Memory [152]

Mapping is the process of building a representation of the environment that could later be used
for localization (i.e. state disambiguation) and planning. For embodied environments, an obvious
choice of representation is the geometric structure of the environment. Traditionally, a large amount
of work has gone into the development of methods to construct geometric maps from image and
depth sensors [140][139][111][52][214]. These methods typically use mathematical models of light
transport to register pixel or feature observations in 3D space [140][139][52].

While the traditional fully geometric methods can achieve a high degree of reconstruction
accuracy within real-world environments, transforming 3D geometric information into behaviours
for accomplishing tasks can require a substantial amount of hand-engineering. Alternatively,
we design an architecture that leverages the spatial structure of the environment while making
the representation stored learnable end-to-end alongside the task behavior. The Neural Map
accomplishes this through registering feature observations obtained at a time step t with the
agent’s current location in the environment. By storing the features within a spatial metric, the
agent gains the ability to reason about the spatial relationships between observations directly and
more efficiently, i.e. convolutional networks can be used to process features organized spatially.
We demonstrate that this spatial-map organization of feature information largely improves agent
performance compared to more unstructured latent representations such as LSTM, while still
enabling learning directly from reward signal.
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Chapter 3 - Planning & State Inference in Embodied Inter-Episodic Memories[119, 25]

In this chapter, we present results that can augment the Neural Map memory described in the
previous chapter with two additional core competencies: planning and state inference. We propose
two submodules with these capabilities, the Gated Path Planning Network and Active Neural
Localization, able to perform planning and state inference, respectively. We evaluate each submodule
in isolation in order to ablate their performance against previous baselines directly. All submodules
are evaluated within the same environment domains to demonstrate that their potential combination
is simply a matter of composing them within a single end-to-end agent architecture.

Planning [119]: The act of planning in embodied environments reduces itself to the more
specific subset of problems known as path planning, that is: given a goal location, what is the fastest
route to achieve that target location. Given an estimate on the agent’s location (potentially provided
by the Active Neural Localizer) and an approximate map of the environment (potentially provided
by the Neural Map), several traditional algorithms can be chosen to do action selection such as
value iteration, but these are insufficient because they (1) require domain-specific knowledge (e.g.
knowledge of the MDP transition dynamics), and (2) because they are non-differentiable, meaning
the map representation is not provided a signal to adjust itself to be amenable to the planning
submodule’s computations, and vice versa. Our goal of a monolithic agent architecture therefore
motivates us to seek out differentiable planning architectures capable of learning how to integrate
map and location information automatically, even when given distributed representations for the
map and location estimate. This can enable a planning mechanism tailored to the task at hand as
the reward signal influences its operation, and further removes the requirement that intermediate
representations in our agent architecture be interpretable, reducing the domain knowledge necessary
for agent design.

The Gated Path Planning Network (GPPN) was developed specifically to tackle this challenge
of planning with differentiable representations. The GPPN is based off the Value Iteration
Network [198], an architecture that represents grid-based path planning using a differentiable neural
network by assuming a local (i.e. Moore-neighbourhood) transition model. The VIN does planning
by utilizing a weight-tied convolutional network on a spatially-organized grid to iteratively produce
single-dimension feature maps that approximate value functions. The proposed GPPN replaces the
hand-designed update equations with powerful gating mechanisms, resulting in an architecture that
is far more reliable in optimization and performance than the VIN. We demonstrate that the GPPN
largely outperforms the VIN on planning tasks in grid-world and complex 3D vision domains.

State Inference [25]: Localization, equivalently state inference in embodied domains, is the
process of acquiring the agent’s coordinates in the world given a map of the environment. Classical
localization algorithms are based on Kalman Filters [100][187] or geometry-based methods [145][140].
Recently work has been done to leverage deep learning to produce robust and effective feature
representations for use in localization methods [34][211][33]. Despite the use of end-to-end archi-
tectures in modern localization algorithms, a notably absent characteristic from recent work is
the combination of action and localization, or active localization. An agent having the capability
to choose actions to disambiguate its own location estimate can result in a potentially far more
accurate localization than an agent purely choosing actions myopically.

To tackle the issue of simultaneously acting and localizing we propose Active Neural Local-
ization [25], which does state estimation using an algorithm similar in conception to traditional
approximate POMDP solvers. The key difference is that the Active Neural Localization replaces
several components (such as the environment map, transition and observation model and policy),
with differentiable sub-modules that allows learning directly from environment data, and thus
enables composition in a monolithic end-to-end architecture. Active Neural Localization can learn
to localize in environments where the POMDP parameters are inaccessible, and reduces agent
designer involvement as approximations to these parameters can be learnt directly from reward
signal. Furthermore, we design objectives which increase the amount of information-seeking actions
the agent produces.

Chapter 4 - Towards End-to-End Simultaneous Localization and Mapping [154]

The inter-episodic memory at the basis of our proposed embodied agent architecture for meta-
learning, the Neural Map, crucially relies on having a location estimate. As a location estimate
depends on having a map and vice versa, we require some method capable of both localizing and
mapping at the same time, solutions to which are termed Simultaneous Localization and Mapping

10



(SLAM) algorithms. SLAM is made difficult because mapping and localizing are highly intertwined:
without an estimate of the camera’s location, a map cannot be built, while simultaneously, without
a map, localization cannot be performed. Furthermore, models which rely solely on local infor-
mation [34][211] (i.e. ego-motion between temporally-contiguous frames) are susceptible to drift
(the accumulation of small errors over time) and perceptual aliasing (the inability to disambiguate
highly redundant scenes, i.e. every floor having an identical hallway). The difficulty and importance
of SLAM algorithms has made it a highly active research field spanning decades [23], although the
majority of this work has focused on hand-engineered pipelines that are non-differentiable.

While we can use any existing available SLAM solver [52][140][139] as an input to the Neural
Map, there are several reasons why it is preferable to design a novel one: (1) because many of
the traditional SLAM algorithms rely on hand-specified feature detectors, they can be brittle
when scene statistics change (lighting, changes due to weather, etc.), and (2) the vast majority of
these SLAM algorithms are non-differentiable, an obstruction to our stated goal of an end-to-end
agent architecture. Therefore in this chapter, we design a differentiable submodule based off the
graph-optimization-based class of SLAM algorithms [140][23][139]. Graph optimization SLAM
algorithms construct a pose-graph where vertices are video frames and edge values are functions
connecting and determining the strength of correspondences between frames, i.e. frame pairs with a
high amount of similar features get high edge values. The pose graph is passed through an iterative
optimization algorithm [111] that produces pose estimates that maximize the edge function values.
The Neural Graph Optimizer replaces the pose graph construction and iterative optimization with a
self-attention-based architecture, which is applied recurrently to produce a final refined estimate. By
leveraging far longer-horizon temporal information than previous architectures [34][211], the Neural
Graph Optimizer was shown to learn how to estimate locations more accurately than comparable
end-to-end odometry and sequence-based methods.

1.2.2 Part 2 - Meta Reinforcement Learning through Memory
In the second part of the thesis, we move to the general meta-learning setting where there are
no further assumptions on the types of (PO)MDPs the agent will encounter. This will require
leveraging more universal structure in the methods we devise, for example how sequences are
processed or even the method in which the agent interacts with its environment.

Chapter 5 - Concurrent Episodic Meta-Reinforcement Learning [150]

Meta-learning methods using inter-episodic memories typically process the sequence of interaction
history with a particular environment instance into a conditional policy that predicts the next
action [210][49][56]. While the sequential processing of interaction episodes within a single environ-
ment instance optimally uses the totality of information from that environment in deciding the next
action, it is not always advantageous or viable to obtain a long history of episodes sequentially. For
example in robotics, interacting with a robot is time-constrained as environment processing cannot
occur faster than real-time. Processing data in parallel is a common workaround to applications
where data collection is expensive: having multiple robots can enable a linear reduction in the
time required to obtain a fixed number of samples. While this can come at the cost of modeling
capacity (as each parallelized meta-policy may not have a complete observation history of the other
meta-policies), parallelizing can often be a more cost-effective and practical solution.

Following along this type of reasoning, we present CEMRL [150], a meta-learning framework
that parallelizes episode execution by formulating meta-learning as a multi-agent communication
problem. In this framework, each episode of interaction with an environment instance is executed
by a separate agent in parallel. Rapid meta-learning is achieved not purely through conditioning
on observation history as typically done, but through the agents being interconnected through a
differentiable communication architecture that enables the sharing of features from distinct episodes.
In addition to being a more cost-effective solution for time-critical applications, parallelization
additionally affords several advantages: it enables the design of reward sharing schemes that are
well-suited to high-risk environments and auxiliary losses that encourage a diversity of behavior
amongst the parallel policies. In a variety of challenging partially-observable environments, we
evaluate several architectures in our paralellized meta-learning framework and demonstrate a
consistent improvement over the more commonly used episodic sequence processing methods.
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Chapter 6 - Transformers for Meta RL [155]

As described in previous sections, the specialized design of architectures suited to certain environment
domains can enable an improved performance and data efficiency by exploiting structural biases in
the class of environments. But environment class specialization has the drawback that the designed
methods are most often not as tested as more general architectures which, owing to their widespread
use and associated tuning, can often work out-of-the-box with much less implementation effort than
an equivalent structured model. Currently, the most common type of architecture used in deep
reinforcement learning for POMDPs is recurrent neural networks (RNNs) [135][53][102], typically
the gated Long Short-Term Memory (LSTM) [89] variant which has far more stable optimization
properties. Through a recurrent update mechanism, RNNs allow the efficient processing of sequential
information into a fixed-length distributed vector that learns to represent summary statistics of the
agent’s history. This architecture’s ubiquitous use is largely due to its generality as any sequence of
input data can be processed by an RNN, and a large variety of open-source implementations of RL
algorithms use an LSTM model as a default.

As an alternative to recurrent networks, a recent breakthrough development in deep sequence
modeling is self-attention-based models [45, 164, 218, 207]. Self-attention bypasses several of
the limitations of recurrent networks: enabling arbitrary indexing over time and no exploding /
vanishing gradients [11][156]. The transformer [207], a particularly scalable and successful self-
attention model, has become the de-facto state-of-the-art architecture for a large variety of natural
language processing tasks [40, 164, 218, 207, 51, 126, 42, 218, 45, 164, 218, 42]. In this chapter, we
propose a novel transformer architecture, the Gated Transformer-XL (GTrXL) [155], that remains
as general as the LSTM in the types of RL domains it can be applied to. Extensive experimental
validation demonstrates that our architectural variant of the transformer has improved optimization
properties which allow it to (1) largely surpass LSTM’s performance in difficult partially-observable
and multitask meta-learning environments, (2) match or surpass LSTM’s optimization stability.
Our results are rigourously validated in a variety of challenging meta-learning domains including
environments with hybrid action spaces (i.e. both discrete and continuous) and demonstrate its
capability to perform meta-learning in a multitask setting, being performant even with a wide
distribution of distinct environment classes.

Chapter 7 - Efficient Transformers in Reinforcement Learning using Actor-Learner
Distillation [153]

As demonstrated in the previous chapter, the use of powerful and scalable general sequence models
like transformers for reinforcement learning can potentially unlock a new level of artificial agent
capabilities. However, training these sequence models require significant computational resources,
even in supervised learning domains [83, 19]. These resource demands are further compounded
when using reinforcement learning objectives, where data must be collected by stepping the policy
observation-by-observation to collect new trajectories of experience to drive learning. Additionally,
certain environments provide hard constraints on power and compute that limit the viable model
complexity of Reinforcement Learning (RL) agents.

To work towards:

1. democratizing the use of transformer sequence models within the research community by
reducing the computational cost of training such models, and,

2. unlocking the use of large model capacity while still operating within potential latency limits
imposed by real systems during acting (e.g. robotic platforms),

in this chapter we develop the “Actor-Learner Distillation” (ALD) procedure. ALD leverages a
continual form of distillation that transfers learning progress from a large capacity learner model to a
small capacity actor model, considerably reducing computational cost by removing the requirement
that the learner model has to be executed during environment interaction / data collection. With
gated transformer models as the learner and LSTMs as the actor, we demonstrate in challenging
memory and meta-learning environments that using Actor-Learner Distillation recovers the clear
sample-efficiency gains of the gated transformer learner model, while still maintaining the fast
inference and reduced total training time of the LSTM actor model.
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1.3 Summary
In this thesis, we work towards the rapid generalization of artificial agents through the design of
effective episodic memories. The contributions of this thesis are the following:

• In the first part of this thesis (covering Chapters 2 - 4), as an initial step towards effective,
general meta-learners, we define an important class of environments, “Embodied Environments”,
and limit our focus to inter-episodic memories for meta-learning within this class. Embodied
environments have agents with a physical manifestation in the environment resembling the
natural world and represent an important class of environments for real-world applications, as
most robotics applications are encompassed under this category. Furthermore, restricting our
focus to these environments affords our algorithms a large amount of exploitable structure
in state and observation spaces. We work towards the components that would construct a
monolithic, end-to-end agent architecture for rapid adaptation in this environment class. The
goal is an agent having the core competencies of memorization, planning and state inference.

– In Chapter 2, we define the Neural Map, an inter-episodic memory that exploits geometric
structure in embodied state spaces to efficiently map the physical world the agent
inhabits into a spatially-organized feature map. Within a set of challenging embodied
environments, we demonstrate significant improvements over more unstructured inter-
episodic memories such as standard LSTMs.

– In Chapter 3, we define architectural submodules that can be combined with and augment
the basic capabilities of the Neural Map – namely, (1) a localization module that enables
a rapid reduction in ambiguity over where the agent is located in an environment, given
observations and a representation of a map of that environment, and (2) a planning
module that allows rapid and generalizable path planning in map representations. We
validate the performance of each submodule in isolation against related methods, and
in both cases demonstrate a significant advancement in performance over previous
techniques.

– In Chapter 4, to address the missing capability of localization without a map, inspired
by the traditional Simultaneous Localization and Mapping (SLAM) techniques, we
describe a graph-based self-attention architecture that accomplishes both localization
and mapping simultaneously. We present results demonstrating that such a model
provides more accurate estimates of agent location compared to alternatives such as
deep recurrent models and traditional SLAM implementations, even when tested in
environments with significant amounts of perceptual aliasing.

• In the second part of the thesis, we move past our previous focus on embodied environments
and present more general meta reinforcement learning methods which work across a target
distribution of tasks encompassing any set of (PO)MDPs.

– In Chapter 5, we describe a novel concurrent execution framework for meta-learning with
inter-episodic memories. In previous work, an agent sequentially interacts with a target
environment and performs fast adaptation conditioning on the sum total of past experience
with that environment. This chapter describes an alternative execution paradigm, where
multiple agents are executed in separate instances of the same environment in parallel and
allowed to communicate to each other through a memory-based channel. The concurrent
setting is especially important for applications where interaction is time-constrained, i.e.
robotics or any environment which executes in real-time.

– In Chapter 6, motivated by the substantial amount of success self-attention architectures
have recently achieved in supervised learning, we present a gated transformer architecture
designed specifically for improved optimization stability and performance in reinforcement
learning tasks. The gated transformer is extensively validated across a challenging set
of meta-learning environments, including a multitask setting. We show consistent and
considerable gains over previous recurrent models, particularly whenever memory is a
significant aspect of competancy in the environment.

– In Chapter 7, we investigate the critical issue of computational cost for training trans-
former models in the (meta-)reinforcement learning setting. While an issue in supervised
learning, inference speed greatly limits the amount of model capacity available for use
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in reinforcement learning applications due to data collection requiring the step-wise
execution of the transformer model. Large transformer models can take in excess of
seconds to process states, especially on the un-accelerated hardware that distributed
learning is typically performed on, meaning that in order to be feasibly trained, either (1)
training would require an extreme number of parallel actors, or (2) the model’s capacity
must be inordinately constrained, hindering our ability to exploit the transformers
impressive scaling properties. In this chapter, we propose Actor-Learner Distillation,
a solution aiming to reduce the total computational cost of training transformers and
democratizing their more widespread use. ALD is an online asymmetric distillation
procedure that enables the transformer model to be only executed in a batched setting
on accelerated hardware, while acting is done by more light-weight models better suited
for fast inference.

• Finally, in Chapter 8 we conclude by summarizing the achievements of this thesis and discuss
promising future avenues for meta-learining through inter-episodic memories.
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Part I

Meta Reinforcement Learning in
Embodied Environments
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Chapter 2

Neural Map: Structured
Inter-Episodic Memory

In the first half of this thesis, we present methods for meta-learning with inter-episodic memory
that focus on a more specific class of meta-learning environments where the agent has a physical
embodiment in its domain. These “embodied” environments have state, observation and dynamics
structure that closely resemble that of the natural world, and for this reason they represent
an important application area of meta-learning. In particular, within the class of embodied
environments the common substructure manifests itself as (1) the laws of classical mechanics specify
the transition dynamics, and (2) there exists latent 3d geometric structure inherent in all embodied
observation- and state-spaces, regardless of the particular sensor modality. The majority of robotics
applications can be encompassed under this category, and therefore methods effective here can be
applied to wide areas of practical interest.

The strong regularities within embodied environments afford us substantial structure to make
use of in the design of inter-episodic memories. Using this structure, in this chapter we present
a memory map architecture that is spatially organized, intended to exploit the underlying 3D
geometric composition of embodied environments. The “Neural Map” constructs a top-down
representation of the 3D environment the agent is situated in in a particular meta-episode, endowing
the agent with few-shot navigational capabilities by allowing it to quickly memorize the arrangement
of novel surroundings. In more detail, the Neural Map is a 2-dimensional feature map where pixel
positions in the map correspond to quantized positions in the environment. As an agent explores its
3D environment, the Neural Map writes the observation features to the nearest quantized position
in the feature map corresponding to the agents real-world location. The agent policy then reads
spatially local and global information from the stored map representation to plan its next action.
To demonstrate the effectiveness of the Neural Map, we run it on a variety of challenging navigation-
based meta-learning tasks in partially-observable environments with high-dimensional observations.
We provide comparisons against more unstructured LSTM- and Memory Network-based models,
and in all cases show a significant improvement over previous baselines.

2.1 Background & Related Work
Other than the straightforward architectures of combining an LSTM with Deep Reinforcement
Learning (DRL) [135, 80], there has also been work on using more advanced external memory
systems with DRL agents to handle partial observability. [146] used a memory network (MemNN)
to solve maze-based environments similar to the ones presented in this paper. MemNN keeps the
last M states in memory and encodes them into (key, value) feature pairs. It then queries this
memory using a soft attention mechanism similar to the context operation of the Neural Map,
except in the Neural Map the key/value features were written by the agent and aren’t just a stored
representation of the last M frames seen. [146] tested a few variants of this basic model, including
ones which combined both LSTM and memory-network style memories.

In contrast to memory networks, another research direction is to design recurrent architectures
that mimic computer memory systems. These architectures explicitly separate computation and
memory in a way anagolous to a modern digital computer, in which some neural controller (akin to
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a CPU) interacts with an external memory (RAM). One recent model is similar to the Neural Map,
called the Differentiable Neural Computer (DNC) [71], which combines a recurrent controller with
an external memory system that allows several types of read/write access. In addition to defining
an unconstrained write operator (in contrast to the neural map’s write location being fixed), the
DNC has a selective read operation that reads out the memory either by content or in the order
that it was written. While the DNC is more specialized to solving algorithmic problems, the Neural
Map can be seen as an extension of this Neural Computer framework to 3D environments, with
a specific inductive bias on its write operator that allows sparse writes. Recently work has also
been done toward sparsifying the read and write operations of the DNC [165]. This work was not
focused on 3D environments and did not make any use of task-specific biases like agent location,
but instead used more general biases like “Least-Recently-Used” memory addresses to force sparsity.
More recently, the DNC, in conjunction with a VIN planning network [198], has been applied to
the task of navigating partially-observable environments [107] although it still relied on supervised
learning in order to train the complete system.

Contemporary to this work, [74] designed a similar 2D map structured memory to the Neural
Map but which lacked a context addressing operation and used DAGGER [171], an imitation
learning algorithm, to train their agent. Comparatively to their grid-like environments, Doom
actions affect translational/rotational accelerations so training using imitation learning is more
difficult since a search algorithm cannot be used directly as supervision. An interesting addition
they made was the use of a multi-scale map representation and a Value Iteration network [198] to
do better path planning. Later work expanded upon spatial-memory architectures, with the Neural
SLAM architecture [221] extending spatial memories to settings where localization/odometry is not
provided a priori, but instead has to be computed in tandem with the mapping of the environment.
The MapNet [84] was an allocentric spatial memory that added a novel feature projection operator
that mapped features to the points in the map that they are located in based on agent position and
camera depth estimates. This is in contrast to the Neural Map, which maps all current observation
features to the location they were observed at rather than their external environment position. They
report better localization accuracy than traditional- and deep-learning-based baseline models on
supervised learning datasets including a synthetic one based on Doom.

2.2 Neural Map
In this section, we will describe the details of the neural map. The neural map is the agent’s internal
memory storage that can be read from and written to during interaction with its environment,
but where the write operator is selectively limited to affect only the part of the neural map that
represents the area where the agent is currently located. For this paper, we assume for simplicity
that we are dealing with a 2-dimensional feature map representation. This can easily be extended
to 3-dimensional or even higher-dimensional maps (i.e. a 4D map with a 3D sub-map for each
cardinal direction the agent can face).

Let the agent’s position be (x, y) with x ∈ R and y ∈ R and let the neural map M be a
C ×H ×W feature block, where C is the feature dimension, H is the vertical extent of the map
and W is the horizontal extent. Assume there exists some coordinate normalization function
ψ(x, y) such that every unique (x, y) can be mapped into (x′, y′), where x′ ∈ {0, . . . ,W − 1} and
y′ ∈ {0, . . . ,H − 1}. For ease of notation, suppose in the sequel that all coordinates have been
normalized by ψ into neural map space.

Let st be the current state embedding, Mt be the current neural map, and (xt, yt) be the current
position of the agent. The Neural Map is defined by the following set of equations:

rt = read(Mt),

ct = context(Mt, st, rt),

w
(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t ),

Mt+1 = update(Mt, w
(xt,yt)
t+1 ),

ot = [rt, ct, w
(xt,yt)
t+1 ],

πt(a|s) = Softmax(f(ot)),

(2.1)

where w(xt,yt)
t represents the feature at position (xt, yt) at time t, [x1, . . . , xk] represents a con-

catenation operation, and ot is the output of the neural map at time t which is then processed by
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another deep network f to get the policy outputs πt(a|s). We will now separately describe each of
the above operations in more detail:

Global Read Operation

The read operation passes the current neural map Mt through a deep convolutional network and
produces a C-dimensional feature vector rt. The global read vector rt summarizes information
about the entire map.

Context Read Operation:

The context operation performs context-based addressing to check whether certain features are
stored in the map. It takes as input the current state embedding st and the current global read
vector rt and first produces a query vector qt. The inner product of the query vector and each
feature M (x,y)

t in the neural map is then taken to get scores a(x,y)
t at all positions (x, y). The scores

are then normalized to get a probability distribution α(x,y)
t over every position in the map, also

known as “soft attention” [9]. This probability distribution is used to compute a weighted average
ct over all features M

(x,y)
t . To summarize:

qt = W [st, rt],

a
(x,y)
t = qt ·M (x,y)

t ,

α
(x,y)
t =

ea
(x,y)
t∑

(w,z) e
a

(w,z)
t

,

ct =
∑
(x,y)

α
(x,y)
t M

(x,y)
t ,

(2.2)

where W is a weight matrix. The context read operation allows the neural map to operate as an
associative memory: the agent provides some possibly incomplete memory (the query vector qt) and
the operation will return the completed memory that most closely matches qt. So, for example, the
agent can query whether it has seen something similar to a particular landmark that is currently
within its view.

Local Write Operation:

Given the agent’s current position (xt, yt) at time t, the write operation takes as input the current
state embedding st, the global read output rt, the context read vector ct and the current feature at
position (xt, yt) in the neural map M (xt,yt)

t and produces, using a deep neural network fw, a new
C-dimensional vector w(xt,yt)

t+1 . This vector functions as the new local write candidate vector at the
current position (xt, yt): w

(xt,yt)
t+1 = fw([st, rt, ct,M

(xt,yt)
t ])

GRU-based Local Write Operation

As previously defined, the write operation simply replaces the vector at the agent’s current position
with a new feature produced by a deep network. Instead of this hard rewrite of the current position’s
feature vector, we can use a gated write operation based on the recurrent update equations of the
Gated Recurrent Unit (GRU) [30]. Gated write operations have a long history in unstructured
recurrent networks and they have shown a superior ability to maintain information over long time
lags versus ungated networks. The GRU-based write operation is defined as:

r
(xt,yt)
t+1 = σ(Wr[st, rt, ct,M

(xt,yt)
t ])

ŵ
(xt,yt)
t+1 = tanh(Wĥ[st, rt, ct] + Uĥ(r

(xt,yt)
t+1 �M (xt,yt)

t ))

z
(xt,yt)
t+1 = σ(Wz[st, rt, ct,M

(xt,yt)
t ])

w
(xt,yt)
t+1 = (1− z(xt,yt)

t+1 )�M (xt,yt)
t + z

(xt,yt)
t+1 � ŵ(xt,yt)

t+1 ,

(2.3)

where x � y is the Hadamard product between vectors x and y, σ(·) is the sigmoid activation
function and W∗ and U∗ are weight matrices. Using GRU terminology, r(xt,yt)

t+1 is the reset gate,
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ŵ
(xt,yt)
t+1 is the candidate activation and z(xt,yt)

t+1 is the update gate. By making use of the reset and
update gates, the GRU-based update can modulate how much the new write vector should differ
from the currently stored feature.

Map Update Operation:

The update operation creates the neural map for the next time step. The new neural map Mt+1 is
equal to the old neural map Mt, except at the current agent position (xt, yt), where the current
write candidate vector w(xt,yt)

t+1 is stored:

M
(a,b)
t+1 =

{
w

(xt,yt)
t+1 , for (a, b) = (xt, yt)

M
(a,b)
t , for (a, b) 6= (xt, yt)

(2.4)

2.3 Ego-centric Neural Map
A major disadvantage of the neural map as previously described is that it requires some oracle to
provide the current (x, y) position of the agent. This is a difficult problem in and of itself, and,
despite being well studied, it is far from solved. The alternative to using absolute positions within
the map is to use relative positions. That is, whenever the agent moves between time steps with
some velocity (u, v), the map is counter-transformed by (−u,−v), i.e. each feature in the map is
shifted in the H and W dimensions. This will mean that the map will be ego-centric, i.e. the
agent’s position will stay stationary in the center of the neural map while the world as defined by
the map moves around them. Therefore in this setup we only need some way of extracting the
agent’s velocity, which is typically a simpler task in real environments (for example, animals have
inner ears and robots have accelerometers). Here we assume that there is some function ξ(u′, v′)
that discretizes the agent velocities (u′, v′) so that they represent valid velocities within the neural
map (u, v). In the sequel, we assume that all velocies have been properly normalized by ξ into
neural map space.

Let (pw, ph) be the center position of the neural map. The updated ego-centric neural map
operations are shown below:

M t = CounterTransform(Mt, (ut, vt))

rt = read(M t)

ct = context(M t, st, rt)

w
(pw,ph)
t+1 = write(st, rt, ct,M

(pw,ph)

t )

Mt+1 = egoupdate(M t, w
(pw,ph)
t+1 )

ot = [rt, ct, w
(pw,ph)
t+1 ]

πt = Softmax(f(ot))

(2.5)

Where M t is the current neural map Mt reverse transformed by the current velocity (ut, vt) so that
the agents map position remains in the center (pw, ph).

Counter Transform Operation: The CounterTransform operation transforms the current
neural map Mt by the inverse of the agent’s current velocity (ut, vt). Written formally:

M
(a,b)

t =

{
M

(a−u,b−v)
t , for (a−u)∈{1,...,W}∧(b−v)∈{1,...,H}

0, else
(2.6)

While here we only deal with reverse translation, it is possible to handle rotations as well if the
agent can measure it’s angular velocity.

Map Egoupdate Operation: The egoupdate operation is functionally equivalent to the
update operation except only the center position (pw, ph) is ever written to:

M
(a,b)
t+1 =

{
w

(pw,ph)
t+1 , for (a, b) = (pw, ph)

M
(a,b)

t , for (a, b) 6= (pw, ph)
(2.7)
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(a) 2D Maze

(b) Observation

	
(c) Green Torch → Green Tower

	
(d) Red Torch → Red Tower

Figure 2.1: Left: Images showing the 2D maze environment. The left side (Fig. 2.1a) represents the fully
observable maze while the right side (Fig. 2.1b) represents the agent observations. The agent is represented
by the yellow pixel with its orientation indicated by the black arrow within the yellow block. The starting
position is always the topmost position of the maze. The red bounding box represents the area of the maze
that is subsampled for the agent observation. In “Goal-Search”, the goal of the agent is to find a certain
color block (either red or teal), where the correct color is provided by an indicator (either green or blue).
This indicator has a fixed position near the start position of the agent. Right: State observations from the
“Indicator” Doom maze environment. The agent starts in the middle of a maze looking in the direction of a
torch indicator. The torch can be either green (top-left image) or red (bottom-left image) and indicates
which of the goals to search for. The goals are two towers which are randomly located within the maze and
match the indicator color. The episode ends whenever the agent touches a tower, whereupon it receives a
positive reward if it reached the correct tower, while a negative reward otherwise.

2.4 Controller (Ego-)Neural Map
Here we describe the modification to the Neural Map we utilized for the 3D maze tasks. We include
an extra state h that represents the hidden and cell state of an LSTM. The Neural Map equations
are therefore:

rt = read(Mt),

ht = LSTM(st, rt, ct−1, ht−1),

ct = context(Mt, ht),

w
(xt,yt)
t+1 = write(st, rt, ct,M

(xt,yt)
t ),

Mt+1 = update(Mt, w
(xt,yt)
t+1 ),

ot = [rt, ct, w
(xt,yt)
t+1 ],

πt(a|s) = Softmax(f(ot)),

(2.8)

2.5 Experiments
To demonstrate the effectiveness of the Neural Map, we run it on 2D and 3D maze-based meta-
learning environments where memory is crucial to optimal behaviour. These meta-learning tasks
differ in the semantics of objects between episodes and the maze layout, meaning each meta-episode
interacts with a unique POMDP. We compare to previous memory-based deep RL agents, namely
a LSTM-based agent as well as the Memory-Network-based MemNN [146] agents.

2.5.1 2D Goal-Search Environment
The “Goal-Search” environment is adapted from [146]. Here the agent starts in a fixed starting
position within some randomly generated maze with two randomly positioned goal states. It then
observes an indicator at a fixed position near the starting state (i.e. the green tile at the top of
the maze in Fig. 2.1a). This indicator will tell the agent which of the two goals it needs to go
to (blue indicator→teal goal, green indicator→red goal). If the agent goes to the correct goal, it
gains a positive reward while if it goes to the incorrect goal it gains a negative reward. Therefore
the agent needs to remember the indicator as it searches for the correct goal state. The mazes
during training are generated using a random generator. A held-out set of 1000 random mazes
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Agent

2D Goal-Search
Train Test

7-11 13-15 Total 7-11 13-15 Total
Random 41.9% 25.7% 38.1% 46.0% 29.6% 38.8%
LSTM 84.7% 74.1% 87.4% 96.3% 83.4% 91.4%
MQN-32 80.2% 64.4% 83.3% 95.9% 74.6% 87.4%
MQN-64 83.2% 69.6% 85.8% 96.5% 76.7% 88.3%

Neural Map (15x15) 92.4% 80.5% 89.2% 93.5% 87.9% 91.7%
Neural Map + GRU (15x15) 97.0% 89.2% 94.9% 97.7% 94.0% 96.4%
Neural Map + GRU (8x8) 94.9% 90.7% 95.6% 98.0% 95.8% 97.3%

Neural Map + GRU + Pos (8x8) 95.0% 91.0% 95.9% 98.3% 94.3% 96.5%
Neural Map + GRU + Pos (6x6) 90.9% 83.2% 91.8% 97.1% 90.5% 94.0%
Ego Neural Map + GRU (15x15) 94.6% 91.1% 95.4% 97.7% 92.1% 95.5%

Ego Neural Map + GRU + Pos (15x15) 74.6% 63.9% 78.6% 87.8% 73.2% 82.7%

Table 2.1: Results of several different agent architectures on the “Goal-Search” environment. The “train”
columns represents the number of mazes solved (in %) when sampling from the same distribution as used
during training. The “test” columns represents the number of mazes solved when run on a set of held-out
maze samples which are guaranteed not to have been sampled during training.

is kept for testing. This test set therefore represents maze geometries that have never been seen
during training, and measure the agent’s ability to generalize to new environments. While this 2D
benchmark is not of practical significance due to its simplicity, it enables more direct comparison to
previously published results and also provides additional evidence of the Neural Map’s effectiveness
at few-shot navigation in novel environments.

The first baseline agent we evaluate is a recurrent network with 128 LSTM units. The other
baseline is the MQN, a previously published memory-network-based architecture that performs
attention over the past K states it has seen [146]. Both LSTM and MQN models receive a one-hot
encoding of the agent’s current location, previous velocity, and current orientation at each time
step, in order to make the comparison to the fixed-frame Neural Map fair. We test these baselines
against several Neural Map architectures, with each architecture having a different design choice.

The results are reported in Table 2.1. During testing, we extend the maximum episode length
from 100 to 500 steps so that the agent is given more time to solve the maze. The parentheses next
to the model name represent the Neural Map dimensions of that particular model. From the results
we can see that the Neural Map architectures solve the most mazes in both the training and test
distributions compared to both LSTM and MQN baselines.

The results also demonstrate the effect of certain design decisions. One thing that can be
observed is that using GRU updates adds several percentage points to the success rate (“Neural
Map (15x15)” v.s. “Neural Map + GRU (15x15)”). We also tried downsampled Neural Maps, such
that a pixel in the memory map represents several discrete locations in the environment. The
Neural Map seems quite robust to this downsampling, with a downsampling of around 3 (6x6 v.s.
15x15) doing just a few percentage points worse, and still beating all baseline models. The 6x6
model has approximately the same number of memory cells as “MQN-32”, but its performance is
much better, showing the benefit of having learnable write operations. For the egocentric model, in
order to cover the entire map we set the pixels to be 2x smaller in each direction, so each pixel
is only a quarter of a pixel in the fixed-frame map. Even with this coarser representation, the
egocentric model did similarly to the fixed frame one. We demonstrate an example of what the
Neural Map learned to address using its context operator in Section 2.5.5.

Finally, we tried adding the one-hot position encoding as a state input to the Neural Map, as is
done for the baselines. We can see that there is a small improvement, but it is largely marginal,
with the Neural Map doing a decent job of learning how to represent its own position without
needing to be told explicitly. One interesting thing that we observed is that having the one-hot
position encoding as an input to the egocentric map decreased performance, perhaps because it is
difficult for the network to learn a mapping between fixed and egocentric frames.

Note that sometimes the percentage results are lower for the training distribution. This is
mainly because the training set encompases almost all random mazes except the fixed 1000 of the
test set, thus making it likely that the agent sees each training map only once.

Beyond train/test splits, the results are further separated by maze size. This information reveals
that the memory networks are hardest hit by increasing maze size with sometimes a 20% drop in
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(a) Indicator (b) Repeating (c) Minotaur

Figure 2.2: Top-down views showing succesful episodes in each of the 3 Doom maze tasks. The red lines
indicate the path traveled by the agent. Indicator is shown in Fig. 2.2a, where the agent receives positive
reward when entering the corresponding tower that matches the torch color it saw at the start of the
episode and a negative reward otherwise. The episode terminates once the agent has reached a tower.
Repeating, shown in Fig. 2.2b, has the same underlying mechanics except (1) the episode persists for T
time steps regardless of towers entered and (2) the torch indicator is removed from the maze after the agent
has reached a tower once. Therefore the agent needs to find the correct tower and then optimize its path to
that tower. Minotaur shown in Fig. 2.2c requires the agent to reach the red goal and then return to the
green goal that is at its starting position. Here the torch does not have any function. This fully-observable
top-down view was not made available to the agent and is only used for visualization.

success on 13-15 v.s. 7-11. This is perhaps unsurprising given the inherent fixed time horizon of
memory netwoks, and further reveals the benefit of using write-based memories.

2.5.2 3D Doom Environment Description
To demonstrate that our method can work in much more complicated 3D meta-learning environments
with longer time horizons and high-dimensional image observations, we implemented three 3D maze
environments using the ViZDoom [105] API and a random maze generator. Examples of all three
environments are given in Figure 2.2.

Indicator Maze

The first environment is a recreation of the 2D indicator maze task, where an indicator is positioned
in view of the player’s starting state which is either a torch of red or green color. The goals are
corresponding red/green towers that are randomly positioned throughout the maze that the player
must locate.

Repeating Maze

The second environment is a variant of this indicator maze but whenever the player enters a goal
state, it is teleported back to the beginning of the maze without terminating the episode (i.e. it
retains its memory of the current maze). It gains a positive reward if it reaches the correct goal
and a negative reward if it reaches the incorrect goal. After the first goal is reached, the correct
indicator color is no longer displayed within the maze and a red indicator is displayed afterwards
instead (regardless if the correct goal is green). An episode ends after a predetermined number of
steps which depends on the maze size. The goal is therefore to find a path to the correct goal, and
then optimize that path so that it can reach it as many times as possible.

Minotaur Maze

The third environment has the agent start in a fixed starting position next to the green tower,
while the red tower is randomly placed somewhere in the maze. The agent receives a small positive
reward if it reaches the red tower, and a larger positive reward if after reaching the red tower it
returns to the green tower. Therefore the agent must efficiently navigate to the red goal while
accurately remembering its entire path it so that it can backtrack to the start.
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Agent Indicator Repeating Minotaur
Maze Size 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8

LSTM Acc 95.7 87.5 81.1 71.4 60.3 - - - - - 90.0 71.5 48.0 34.2 29.4
Rew - - - - - 7.26 7.58 6.06 5.32 4.98 1.35 1.07 0.72 0.51 0.44

FRMQN Acc 87.3 82.9 78.0 72.0 59.8 - - - - - 72.7 54.5 38.8 28.8 23.7
Rew - - - - - 1.45 1.65 1.51 1.37 1.09 1.09 0.82 0.58 0.43 0.36

Controller
NMap

Acc 95.8 90.3 81.8 80.4 70.3 - - - - - 99.7 92.2 67.5 37.9 30.2
Rew - - - - - 17.4 17.1 12.0 11.4 12.3 1.50 1.38 1.01 0.57 0.45

Controller
Ego-NMap

Acc 94.6 91.0 87.6 85.8 72.2 - - - - - 98.6 90.0 65.2 44.7 33.8
Rew - - - - - 12.8 14.1 11.0 10.4 9.72 1.48 1.35 0.98 0.67 0.51

Table 2.2: Doom results on mazes not observed during training for the three tasks: Indicator, Repeating
and Minotaur. Acc stands for Accuracy and Rew for Reward. Accuracy for Indicator means % of correct
goals reached, while for Minotaur it means % of episodes where the agent successfully reached the goal
and then backtracked to the beginning. Reward for Repeating is number of times correct goal was visited
within the allotted time steps (+1 for correct goal, -1 for incorrect goal). Reward for Minotaur is +0.5 for
reaching the goal and then +1.0 for backtracking to start after reaching goal (max episode reward is +1.5).
We tested on maze sizes between [4,8] with 10 test mazes for each size. For each of the 50 total test mazes
we ran 100 episodes with random goal locations and averaged the result.

2.5.3 3D Doom Model Description
All three environments used a RGB+D image of size 100x60 as input. We generate maze geometries
randomly at train time but make sure to exclude a test set of 10 mazes for each size [4, 5, 6, 7, 8]
(50 total). For these environments, we tested out four architectures:

Neural Map with Controller LSTM: Standard Neural Map with fixed frame addressing
and GRU updates. We combine the neural map design with an LSTM that aggregates past state,
read and context vectors and produces the query vector for the next time step’s context read
operation. See Section 2.4 for the modified Neural Map equations.

Ego Neural Map with Controller LSTM: Same as previous but with ego-centric addressing.
The other difference is that the Ego Neural Map does not receive any positional input unlike the
other 3 models, only receiving frame-by-frame ego-motion (quantized to a coarse grid).

LSTM: Single pre-output 256-dimensional LSTM layer.
FRMQN [146]: Memory network with LSTM feedback. This design uses an LSTM to make

recurrent context queries to the memory network database. In addition, for the memory network
baselines we did not set a fixed k but instead let it access any state from its entire episode. This
means no information is lost to the memory network, it only needs to process its history.

The results are shown in Table 2.2. We can see that the Neural Map architectures work better
than the baseline models, even though the memory network has access to its entire episode history
at every time step. The ego-centric Neural Map beats the fixed frame map at Indicator, and gets
similar performance on both Repeating and Minotaur environments, showing the ability of the
Neural Map to function effectively even without global position information. It is possible that
having a fixed frame makes path optimization easier, which would explain the larger rewards that
the fixed-frame model got in the Repeating task. In the next section, we also investigated whether
the neural map is robust to localization noise, which would be the case in a real world setting where
we do not have access to a localization oracle and must instead rely on an error-prone odometry or
SLAM-type algorithm to do localization.

For the baselines, we can see that FRMQN has difficulty learning on Repeating, only reaching
the goal on average once. This could be because the indicator is only shown before the first goal is
reached and so afterwards it needs to remember increasingly longer time horizons. Furthermore,
because the red indicator is always shown after the first goal is reached, it might be difficult for
the model to learn to do retrieval since the original correct indicator must be indexed by time and
not image similarity. The FRMQN also has difficulty on Minotaur, probably due to needing to
remember and organize a lot of spatial information (i.e. what actions were taken along the path).
For Indicator, the FRMQN does similarly to the LSTM. We can see that the spatial structure of
the Neural Map aids in optimizing the path in Repeating, averaging 12 goal reaches even in the
largest maze size.
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Agent Indicator Repeating Minotaur
Maze Size 4 5 6 4 5 6 4 5 6

σ = 0
Acc 88.4 84.4 79.3 - - - 97.3 89.0 62.0
Rew - - - 9.47 9.91 5.91 1.46 1.34 0.93

σ = 0.01
Acc 92.4 91.9 84.3 - - - 96.7 86.2 66.1
Rew - - - 12.4 12.9 10.9 1.45 1.29 0.99

Table 2.3: Results on the three 3D Doom maze tasks for the fixed-frame Neural Map with Controller
LSTM. We can see that adding small compounding error does not largely affect the ability of the
Neural Map to learn memory tasks and even has a beneficial effect for some tasks. Hyperparameters
and architectures used were the same as presented in the main results.

2.5.4 Robustness to Odometric Noise
We present an experiment that featured drift noise to simulate the effects of the agent using a local
visual odometry model that had small error in predicting each frame-by-frame transformation. This
is meant to represent a more realistic scenario (e.g. robotic navigation) where perfect localization is
not feasible but a relatively accurate estimate can be provided, demonstrating the robustness of
the architecture to noise. For example, we could assume the Neural Map is run in parallel with a
SLAM algorithm which provides an estimate of the agent’s current position.

To model this noise, we add a zero-mean gaussian random variable to the oracle position with a
variance that depends on the current time-step. In more detail, the noise-corrupted positions (x̂, ŷ)
in an W ×W size map provided to the Neural Map are:

(x̂, ŷ) = (max{min{bx+ εxc,W − 1}, 0},max{min{by + εyc,W − 1}, 0}),
εx, εy ∼ N (0, σ2t)

This simulates the effect of an odometry algorithm which has independent zero-mean gaussian
error with equal variance. This error compounds over time causing the variance to grow with the
time step. We evaluate the Neural Map with noise σ = 1/100 on smaller versions of the 3D Doom
maze tasks (maze sizes [4, 5, 6]) and compare it to the version with perfect odometry. We train
for 1500 steps of 100 episodes each step. Results are shown in Table 2.3. We can see that adding
a small amount of error at each time step does not largely affect the results of the memory and
can even benefit it, with some noticeable improvements on Indicator and Repeating tasks. It’s
possible that the noise acts as a regularizer to speed up learning. For the Minotaur task, since
positional information is important because the agent must remember the entire path taken, adding
noise causes a slight decrease in reward in mazes of size 4 and 5, but otherwise performance is very
similar. These results provide evidence that the Neural Map is likely to work in the case where a
localization oracle is not available and instead only error-prone odometry is.

We also plot some example trajectories to compare the effect of noise. We can see that the
noise causes some slight aliasing in the position, which increases as time passes. The positions are
quantized to a 15×15 grid.

2.5.5 Samples of Context Read Distribution
2D Environment

To provide some insight into what the Neural Map learns, we show samples of the probability
distribution given by the context read operation in a 2D maze example. We ran it on an example
maze shown in Figure 2.4. In this figure, the top row of images are the agent observations, the
center row are the fully observable mazes and the bottom row are the probability distributions over
locations from the context operation, e.g. the α(x,y)

t values defined by Eq. 2.2. In this maze, the
indicator is blue, which indicates that the teal goal should be visited. We can see that once the
agent sees the incorrect red goal, the context distribution faintly focuses on the map location where
the agent had observed the indicator. On the other hand, when the agent first observes the correct
teal goal, the location where the agent observed the indicator lights up brightly. This means that
the agent is using its context retrieval operation to keep track of the landmark (the indicator) that
it has previously seen.
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Figure 2.3: Top: Noisy v.s. Groundtruth Position trajectory (quantized to a 15×15 grid). As time
progresses, the colors get lighter. Center: Neural Map cells addressed by the write operator under
the noisy positions. Bottom: Neural Map cells that would have been written to under perfect
position estimates.

3D Environment

We draw some examples of the context addressing probability distribution in the 3D Doom
environment in Figure 2.5 for the allocentric Neural Map We can see that the Neural Map learns to
use its context addressing operator to retrieve the indicator torch identity, until it sees the correct
corresponding tower. Once it sees the correct tower there is a shift in how the agent uses the map
and the probability map seems to invert, addressing the parts of the map that were unexplored.
This effect was found to be consistent in both allocentric and egocentric variants. This might be
because the Neural Map variant used on Doom had an internal LSTM which could enable it to
remember the indicator identity for the short amount of time it took to walk up to the goal.

2.5.6 Backtracking
We also explored whether the allocentric and egocentric Neural Maps were capable of using their
memories in order to do backtracking, i.e. re-visiting unexplored areas of the maze. To measure
this, we developed a variant of the Indicator Maze where the goal states were removed. We want
to measure how much of the maze is explored by the agent under this setting where there are no
terminal states. To measure how much of the maze was explored, we quantized the 50 test mazes
into 11 discrete positions and counted how many of the quantized positions the agent visited. We
report results below in Table 2.4

2.6 Discussion
Navigation is a core competency for all embodied applications, as being able to remember and
revisit parts of the environment is crucial for any successful behaviour. In this chapter we described
an inter-episodic memory architecture, the Neural Map, which accomplishes few-shot navigation
by organizing its memory into the spatial structure of a 2D map (generalizable to 3D and higher
dimensions). The map structure enables sparse writes to the memory, where the address of the
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Figure 2.4: A few sampled states from an example episode demonstrating how the agent learns to use the
context addressing operation of the Neural Map. The top row of images is the observations made by the
agent, the center is the fully observable mazes and the bottom image is the probability distributions over
locations induced by the context operation at that step.

Agent Visitation Score
Controller NMap 71.6%

Controller Ego-NMap 77.6%
LSTM 68.5%

Table 2.4: Visitation scores of the Neural Map models which measure how much of a maze is explored
within a set time limit. We can see that the egocentric neural map explores more of the mazes
than the allocentric model, exploring on average 77.6% of the test mazes. The allocentric neural
map explores 71.6% of the test mazes. The LSTM is reported to provide a point of comparison.

write is in a correspondence to the agent’s current position in the environment. We showed the
Neural Map’s ability to learn, directly using reinforcement learning objectives, how to behave within
challenging 2D and 3D few-shot navigation tasks that required storing, accessing and composing
information over long time horizons. The results demonstrated that our architecture surpassed
baseline memories used in previous work by significant margins. Additionally, we ablated the benefit
of certain design decisions made in our architecture: using GRU updates instead of hard writes,
demonstrating that the ego-centric viewpoint does not diminish performance, that the Neural Map
is robust to downsampling its memory and that it is robust to odometric noise. To show that our
method can scale up to difficult 3D environments, we implemented several new maze environments
in Doom and demonstrated that a hybrid Neural Map + LSTM model solves the scenarios at a
performance higher than previous DRL memory-based architectures.

Beyond the Neural Map’s ability to rapidly memorize an environment, there exist other core
competancies in embodied environments that can improve the adaptation speed of meta-learning
agents. These other competencies include planning, which enables the agent to look ahead into
potential futures to decide a more optimal sequence of actions, and state inference, which can help
an agent disambiguate its state given a map of its environments. In the next chapter, towards our
goal of a monolithic agent architecture we visit these other capabilities and, by exploiting the biases
inherent to embodied environments, we design submodules which can augment the Neural Map to
perform efficient and effective planning and state inference. We validate each of these methods in
isolation against previous baselines and demonstrate large improvements, reaching state-of-the-art
performance.
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Figure 2.5: Three example episodes of the (allocentric) context addressing operator on Doom mazes.
The top images of each row are the RGB inputs the agent sees, the center images are a top-down
representation of the maze, and the bottom images are the α(x,y)

t of the context operation.
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Chapter 3

Planning and State Inference in
Embodied Inter-Episodic Memories

In the previous chapter, we defined a spatially-structured inter-episodic memory designed specifically
for few-shot navigation in embodied environments. By exploiting the geometric composition of the
environment, the Neural Map enabled faster memorization of the unique environments seen in each
meta-episode and, correspondingly, faster adaptation within the task instance. Despite the Neural
Map’s capacity for rapid memorization in embodied environments, there is yet still more structure
that can be exploited beyond just the agent recalling specifics about previous observations. In
particular, by providing priors through architecture on the computation being performed on the
memory map representation, we can extend the Neural Map to be competent on two additional,
important capabilities: namely, planning and state inference.

All planning in embodied environments is a form of “path planning” where, given a goal location,
an agent desires a shortest path through the environment to get to that location. Our first
augmentation to the memory map representation previously described is that of an architecture
designed to do efficient, generalizable and effective path-planning, the Gated Path Planning Network
(GPPN). The GPPN builds off previous work [199] which designed a differentiable sub-module
that performs path-finding as directed by the agent in some inner loop. These Value Iteration
Network (VIN) modules mimic the application of Value Iteration on a 2D grid world, but without a
pre-specified model or reward function. VINs were shown to be capable of computing near-optimal
paths in 2D mazes and 3D landscapes where the transition model P (s′|s, a) was not provided a
priori and had to be learned. In this chapter, we will show that VINs are often plagued by training
instability, oscillating between high and low performance between epochs; random seed sensitivity,
often converging to different performances depending on the random seed that was used; and
hyperparameter sensitivity, where relatively small changes in hyperparameters can cause diverging
behaviour. Owing to these optimization difficulties, we reframe the VIN as a recurrent-convolutional
network, which enables us to replace the unconventional recurrent VIN update (convolution &
max-pooling) with well-established gated recurrent operators such as the LSTM update [89]. This
results in the Gated Path Planning Networks (GPPNs), a more general model that relaxes the
architectural inductive bias of VINs. The resultant architecture is thus no longer constrained to
perform a computation resembling value-iteration.

An equally important capability in embodied environments, state inference, consits of finding
an agents location given a map representation of the current surroundings and a stream of agent
observations. Localization, the ability to localize under uncertainty, is required by autonomous
agents to perform various downstream tasks such as planning, exploration and target-navigation,
and is required when our agents revisit environments that were already previously mapped. In
this chapter, we propose another architecture, the Active Neural Localizer, suited to tackle the
global localization problem where the initial position of the agent is unknown. Localization remains
an open problem, and there are not many methods developed which can be learnt from data in
an end-to-end manner, an aspect that is required when using memory maps where the particular
semantics of stored feature representations are opaque to the agent designer. Instead, previous
traditional localization methods relied on lengthy hand-tuning and feature selection by domain
experts. Additionally, the vast majority of previous localization approaches were passive, meaning
that they passively estimate the position of the agent from the stream of incoming observations,
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and do not have the ability to decide the actions taken by the agent. The ability to decide the
actions can result in faster as well as more accurate localization as the agent can learn to navigate
quickly to unambiguous locations in the environment. Unlike previous methods, the proposed
Active Neural Localizer is both (1) end-to-end differentiable, enabling the combination of such an
architecture with Neural-Map-like memories, and (2) active, choosing actions to reduce uncertainty
as quickly as possible. Based on the Bayesian filtering algorithm for localization [65], the Active
Neural Localizer contains a perceptual model to estimate the likelihood of the agent’s observations,
a structured component for representing the belief, multiplicative interactions to propagate the
belief based on observations and a policy model over the current belief to localize accurately while
minimizing the number of steps required for localization.

In order to ablate against confounding effects, which could be introduced in the case of a
monolithic architecture, the chapter presents empirical results that test each sub-module, the
GPPN and the Active Neural Localizer, in isolation against previous baselines but on the exact
same set of environment domains. For GPPNs, we first empirically establish that they perform
better or equal to the performance of VINs on a wide variety of 2D maze experiments, including
different transition models, maze sizes and different training dataset sizes. We further demonstrate
that GPNNs exhibit fewer optimization issues than VINs, including reducing random seed and
hyperparameter sensitivity and increasing training stability. GPPNs are also shown to work with
larger kernel sizes, often outperforming VINs with significantly fewer recurrent iterations, and also
learn faster on average and generalize better given less training samples. Finally, we present results
for both VIN and GPPN on challenging 3D ViZDoom environments [105], where the planner is
only provided with first-person RGB images instead of the top-down 2D maze design. Additionally,
we present results that demonstrate the Active Neural Localizer is capable of rapid localization,
can capably choose actions to reduce uncertainty and, finally, can generalize not only to unseen
test maps in the same class of environments but also across completely separate domains.

3.1 Background & Related Work
There is a rapidly emerging literature surrounding differentiable submodules that can perform
either state inference or planning due to its highly desirable practical ability to avoid lengthy and
expensive model specification by an agent-designer, instead learning MDP parameters necessary
for planning directly through data. For planning, [103] looked at extending differentiable planning
towards being able to plan in partially observable environments. In their setting, the agent is not
provided a-priori with its position within the environment and thus needs to maintain a belief
state over where it actually is. Similar to VIN’s differentiable extension of VI, the QMDP-Net
architecture was based on creating a differentiable analogue of the QMDP algorithm [123], an
algorithm designed to approximate belief space planning in POMDPs. The architecture itself
consisted of a filter module, which maintained the beliefs over which states the agent currently
was in, and a planning module, which determined what action to take next. The planning module
was essentially using a VIN to enable it to make more informed decisions on which parts of the
environment to explore.

In recent work there has been a variety of deep reinforcement learning models that have examined
combining an internal planning process with model-free methods. The Predictron [186] was a
value function approximator which predicted a policy’s value by internally rolling out an LSTM
forward predictive model of the agent’s future rewards, discounts and values. These future rewards,
values and discounts were then accumulated together, with the idea that this would predict a
more accurate value by forcing the architecture to model a multi-step rollout. A later extension,
Value Predictive Networks [147], learnt a forward model that is used to predict the future rewards
and values of executing a multi-step rollout. Although similar to the Predictron, they considered
the control setting, where not only a value function had to be learnt but a policy as well. They
demonstrated that their model, trained using model-free methods, was able to outperform existing
methods on a 2D goal navigation task and outperformed DQN on Atari games.

Recent work has also made progress towards end-to-end localization using deep learning models.
[133] showed that a stacked LSTM can do reasonably well at self-localization. The model consisted
of a deep convolutional network which took in at each time step state observations, reward, agent
velocity and previous actions. To improve performance, the model also used several auxiliary
objectives such as depth prediction and loop closure detection. The agent was successful at
navigation tasks within complex 3D mazes. Additionally, the hidden states learned by the models
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were shown to be quite accurate at predicting agent position, even though the LSTM was not
explicitly trained to do so. Other works have looked at doing end-to-end relocalization more
explicitly. One such method, called PoseNet [106], used a deep convolutional network to implicitly
represent the scene, mapping a single monocular image to a 3D pose (position and orientation). This
method is limited by the fact that it requires a new PoseNet trained on each scene since the map
is represented implicitly by the convnet weights, and is unable to transfer to scenes not observed
during training. An extension to PoseNet, called VidLoc [33], utilized temporal information to make
more accurate estimates of the poses by passing a Bidirectional LSTM over each monocular image
in a sequence, enabling a trainable smoothing filter over the pose estimates. Both these methods
lack a straightforward method to utilize past map data to do localization in a new environment.
In contrast, we demonstrate our method is capable of generalizing to new maps that were not
previously seen during training time.

Localization in general has been an active field of research since more than two decades. In the
context of mobile autonomous agents, localization can refer to two broad classes of problems: Local
localization and Global localization. Local localization methods assume that the initial position of
the agent is known and they aim to track the position as it moves. A large number of localization
methods tackle only the problem of local localization. These include classical methods based
on Kalman Filters [100, 187] geometry-based visual odometry methods [145] and most recently,
learning-based visual odometry methods which learn to predict motion between consecutive frames
using recurrent convolutional neural networks [34, 211]. Local localization techniques often make
restrictive assumptions about the agent’s location. Kalman filters assume Gaussian distributed
initial uncertainty, while the visual odometry-based methods only predict the relative motion
between consecutive frames or with respect to the initial frame using camera images. Consequently,
they are unable to tackle the global localization problem where the initial position of the agent is
unknown. This also results in their inability to handle localization failures, which consequently
leads to the requirement of constant human monitoring and intervention [21].

Global localization is more challenging than the local localization problem and is also considered
as the basic precondition for truly autonomous agents by [21]. Among the methods for global
localization, the proposed method in this chapter is closest to Markov Localization [63]. In contrast
to local localization approaches, Markov Localization computes a probability distribution over all
the possible locations in the environment. This probability distribution, also known as the belief, is
represented using piecewise constant functions (or histograms) over the state space and propagated
using the Markov assumption. Other methods for global localization include Multi-hypothesis
Kalman filters [37, 172] which use a mixture of Gaussians to represent the belief and Monte Carlo
Localization [203] which use a set of samples (or particles) to represent the belief.

All the above localization methods are passive, meaning that they aren’t capable of deciding
the actions to localize more accurately and efficiently. There has been very little research on
active localization approaches. Active Markov Localization [64] is the active variant of Markov
Localization where the agent chooses actions greedily to maximize the reduction in the entropy of
the belief. [96] presented the active variant of Multi-hypothesis Kalman filters where actions are
chosen to optimise the information gathering for localization. Both of these methods do not learn
from data and have very high computational complexity. In contrast, we demonstrate that the
proposed method is several order of magnitudes faster while being more accurate and is capable of
learning from data and generalizing well to unseen environments.

3.2 Environments and Maze Transition Types
We test both Gated Path Planning Networks, Active Neural Localizer and baselines on 2D maze
environments and 3D ViZDoom environments. For the experiments, we vary the datasets along a
variety of axes such as training dataset size, maze size and maze transition kernel. Additionally for
Active Neural Localizer, we use a high-fidelity office environment based on the Unreal3D engine to
demonstrate the transferability of the localizer submodule, which achieves high zero-shot localization
accuracy on the Unreal3D environment. even when trained only on 3D ViZDoom mazes. We next
describe each of the MDP classes in more detail.

We describe notation used in the sequel here. Let t be the current episode step. Let yt be a
random variable denoting the state, or location, of the agent, represented as a tuple Ax, Ay where
Ax,Ay denote the agent’s x-coordinate, y-coordinate and orientation respectively. Let M ×N be
the map size. Then, Ax ∈ [1,M ], Ay ∈ [1, N ].
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Figure 3.1: The map design, agent’s observation and the corresponding likelihood maps in different
domains. In 2D domains, agent’s observation is the pixels in front of the agent until the first obstacle. In
the 3D domain, the agent’s observation is the image showing the first-person view of the world as seen by
the agent.

3.2.1 Domain Descriptions
2D Mazes

The 2D maze environment is created with a maze generation process that uses either Kruskal’s
algorithm or Depth-First Search with the Recursive Backtracker algorithm [129] to construct the
maze tree, always resulting in fully connected mazes. For each maze, we sample a probability d
uniformly from [0,1]. Then for each wall, we delete the wall with probability d. 2D maze MDPs are
represented by a binary matrix, where 0 denotes an obstacle and 1 denotes free space. This binary
matrix, referred to as the “Map Design”, is available as input to both localization and planning
submodules (see Figure 3.1, top-left, for an example of the maze design).

For localization, we simulate partial-observability by constructing the agent’s observation as the
series of pixels in front of the agent. For a map size of M ×N , the agent’s observation is an array of
size max(M,N) containing the pixel values in front of the agent. The view of the agent is obscured
by obstacles, so all pixel values behind the first obstacle are treated as 0. The top row in Figure 3.1
shows examples of map design and agent observation in this environment. The experiments in the
2D environments are designed to evaluate and quantify the effectiveness of the submodules in ideal
conditions, without observation or motion noise, and the size of the 2D environments can also be
easily varied to test scalability. This environment also provides a benchmark similar to previous
published results, such as in [198] and [104].

3D ViZDoom Mazes

We use the Doom Game Engine and the ViZDoom API [105] to create mazes in a simulated 3D
environment. The maze design for the 3D mazes are generated in exactly the same manner as the
2D mazes, using either Kruskal’s algorithm or Depth-First Search with the Recursive Backtracker
algorithm followed by wall pruning with a uniformly sampled probability d. To construct the
map design for each Doom maze, we take RGB screenshots showing the first-person view of the
environment at each position on a regularly-spaced grid and the 4 cardinal orientations (North,
East, West, South). A sample 3D Doom maze and example screenshot images are shown in the
second row of Figure 3.1. For an M ×N maze and with the 4 orientations, the map design consists
of a total of 4MN images. In the 3D ViZDoom experiments, the map images obtained on the
grid are given as input to the model (instead of the 2D map design). These images are featurized
and resemble the distributed representations potentially produced by the Neural Map or a related
memory map architecture.

31



Unreal3D Office

Unreal3D is a photo-realistic simulation environment built using the Unreal Game Engine. We use
the AirSim API [183] to interact with the game engine. The environment consists of a modern
office space as shown in the third row of Figure 3.1 obtained from the Unreal Engine Marketplace1.
This environment was only used to demonstrate the transferability of the Active Neural Localizer.

3.2.2 Transition Types
We define here different maze transition kernels: In NEWS, the agent can move North, East, West,
or South; in Differential Drive, the agent can move forward along its current orientation, or
turn left/right by 90 degrees; in Moore, the agent can move to any of the eight cells in its Moore
neighborhood. When defining a goal for the planning sub-module to plan towards, the dimension of
the goal map given as input to the model is 1×M ×N for NEWS and Moore, and 4×M ×N for
Differential Drive (which has an cardinally oriented goal location). For localization tasks, we only
consider the oriented “Differential Drive” transition kernel due to its more realistic field-of-view,
which more closely resembles the field-of-view in real-world sensor modalities.

3.3 Gated Path Planning Networks
Given a Markov decision process (MDP) consisting of states s, actions a, a reward function R, and
state transition kernels P (s′ | s, a), we recall here that Value Iteration is a method of computing
an optimal policy π and its value V π(s) = Eπ [

∑∞
t=0 γ

tR(st, at, st+1) | s0 = s], where γ ∈ [0, 1] is
a discount factor and R(st, at, st+1) is a reward function. More specifically, value iteration starts
with an arbitrary function V (0) and iteratively computes:

Q(k)(s, a) =
∑
s′

P (s′ | s, a)
(
R(s, a, s′) + γV (k−1)(s′)

)
,

V (k)(s) = max
a

Q(k)(s, a).

[199] introduced the Value Iteration Network (VIN), capable of learning MDP parameters in grid-
based environments from data automatically. The VIN reformulates value iteration as a recursive
process of applying convolutions and max-pooling over the feature channels:

Q̄
(k)
ā,i′,j′ =

∑
i,j

(
WR
ā,i,jR̄i′−i,j′−j +WV

ā,i,j V̄
(k−1)
i′−i,j′−j

)
,

V̄
(k)
i,j = max

ā
Q̄

(k)
ā,i,j , (3.1)

where the indices i, j ∈ [m] correspond to cells in the m×m maze, R̄, Q̄, V̄ is the VIN estimated
reward, action-value and value functions, respectively, ā is the action index of the Q̄ feature map,
and WR,WV are the convolutional weights for the reward function and value function, respectively.
In the following iteration, the previous value V̄ is stacked with R̄ for the convolution step. While
constrained to MDPs with grid-based structure, this covers the embodied environments we consider
in this part of the thesis. [199] showed that VINs have much greater success at path planning than
baseline CNN and feedforward architectures in a variety of 2D and graph-based navigation tasks.
The demonstrated success of VIN has made it an important component of models designed to solve
downstream tasks where navigation is crucial [103, 75, 77].

We now describe the Gated Path Planning Network and then comprehensively evaluate its
performance compared to the previous state-of-the-art methods for differentiable path planning.
The design of the GPPN is motivated by asking whether the inductive biases provided by the
original differentiable path planning algorithm, the VIN, are even necessary: is it possible that
using alternative, more general architectures might work better than those of the VIN? We can
view the VIN update (3.1) within the perspective of a convolutional-recurrent network, updating a

1https://www.unrealengine.com/marketplace/small-office-prop-pack
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recurrent state V (k)
i′,j′ at every spatial position (i′, j′) in each iteration:

V̄
(k)
i′,j′ = max

ā

∑
i,j

WR
ā,i,jR̄i′−i,j′−j +WV

ā,i,j V̄
(k−1)
i′−i,j′−j


= max

ā

(
WR
ā R̄[i′,j′,3] +WV

ā V̄
(k−1)
[i′,j′,3]

)
, (3.2)

where X[i′,j′,F ] denotes the image patch centered at position (i′, j′) with kernel size F . From (3.2),
it can be seen that VIN follows the standard recurrent neural network (RNN) update where the
recurrent state is updated by taking a linear combination of the input R̄ and the previous recurrent
state V̄ (k−1), and passing their sum through a nonlinearity maxā. The main differences from a
standard RNN are the following: the unconventional nonlinearity (channel-wise max-pooling) used
in VIN; the hidden dimension of the recurrent network, which is essentially one; the sparse weight
matrices, where the non-zero values of the weight matrices represent neighboring inputs and units
which are local in space; and the restriction of kernel sizes to 3.

Under this perspective, it is easy to question whether the adherence to these strict architectural
biases is even necessary, given the long history of demonstrations that standard non-gated recurrent
operators are difficult to optimize due to effects such as vanishing and exploding gradients [156].

We can easily replace the recurrent VIN update in (3.2) with the well-established LSTM
update [89], whose gated update alleviates many of the problems with standard recurrent networks:

h
(k)
i′,j′ , c

(k)
i′,j′ = LSTM

(∑
ā

(
WR

ā R̄[i′,j′,F ] + Wh
ā h

(k−1)
[i′,j′,F ]

)
, c

(k−1)
i′,j′

)
, (3.3)

where F is the convolution kernel size. This recurrent update (3.3) still maintains the convolu-
tional properties of the input and recurrent weight matrix as in VIN. It involves taking as input
the F × F convolution of the input vector R̄ and previous hidden states h(k−1), and the previous
cell state c(k−1)

i′,j′ of the LSTM at the central position (i′, j′). We call path planning modules which
use these gated updates Gated Path Planning Networks (GPPNs). The GPPN is an LSTM which
uses convolution of previous spatially-contiguous hidden states for its input.

3.3.1 Planning Experiments
We now empirically compare VIN and GPPN using two metrics: %Optimal (%Opt) is the
percentage of states whose predicted paths under the policy estimated by the model has optimal
length, and %Success (%Suc) is the percentage of states whose predicted paths under the policy
estimated by the model reach the goal state. The reported performance is on a held-out test split.
In contrast with the metrics reported in [199], we do not stochastically sample rollouts but instead
evaluate and train the output policy of the models directly on all states simultaneously. This
reduces optimization noise and makes it easier to tell whether difficulties with training are due to
sampling noise or model architecture/capacity.

All analyses are based on 2D maze results, except in Section 3.3.1 where we discuss 3D ViZDoom
results. In order to make comparison fair, we utilized a hidden dimension of 150 for GPPN and 600
for VIN, owing to the approximately 4× increase in parameters a GPPN contains due to the 4 gates
it computes. Unless otherwise noted, the results were obtained by doing a hyperparameter sweep
of (K,F ) over K ∈ {5, 10, 15, 20, 30} and F ∈ {3, 5, 7, 9, 11}, and using a 25k/5k/5k train-val-test
split. Other experimental details are deferred to the Appendix.

Varying Kernel Size F

One question that can be asked of the architectural choices of the VIN is whether the kernel size
needs to be the same dimension as the true underlying transition model. The kernel size used in
VIN was set to 3× 3 with a stride of 1, which is sufficient to represent the true transition model
when the agent can move anywhere in the Moore neighborhood, but it limits the rate at which
information propagates spatially with each iteration. With a kernel size of 3× 3 and stride of 1, the
receptive field of a unit in the last iteration’s feature map increases with rate (3 + 2K)× (3 + 2K)
where K is the iteration count, meaning that the maximum path length information travels scales
directly with iteration count k. Therefore for long-term planning in larger environments, [199]
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Table 3.1: Test performance on 2D mazes of size 15× 15 with varying kernel sizes F and best
K setting for each F . Bold indicates best result across all F for each model and transition kernel.
VIN performs worse with larger F , while GPPN is more robust when F is varied and actually works
better with larger F .

NEWS Moore Diff. Drive
Model F %Opt %Suc %Opt %Suc %Opt %Suc

VIN 3 93.4 93.5 90.5 91.3 98.4 99.1
VIN 5 93.9 94.1 96.3 96.6 96.4 98.6
VIN 7 92.7 93.0 95.1 95.6 92.2 96.2
VIN 9 86.8 87.8 92.0 93.0 91.2 95.2
VIN 11 87.6 88.3 92.7 93.8 87.9 93.8

GPPN 3 97.6 98.3 96.8 97.6 96.4 98.1
GPPN 5 98.6 99.0 98.4 99.1 98.7 99.5
GPPN 7 99.0 99.3 98.8 99.3 99.1 99.7
GPPN 9 99.0 99.4 98.8 99.3 99.3 99.7
GPPN 11 99.2 99.5 98.6 99.2 99.2 99.6

Table 3.2: Test performance on 2D mazes of size 15 × 15 with varying kernel sizes F and
iteration counts K. “–” indicates the training diverged. GPPN outperforms VIN under best
settings of (K,F ), indicated in bold. By utilizing a larger F , GPPN can learn to more effectively
propagate information spatially in a smaller number of iterations (K ≤ 10) than VIN can.

%Opt for NEWS %Opt for Moore %Opt for Differential Drive
Model K F = 3 F = 5 F = 7 F = 9 F = 11 F = 3 F = 5 F = 7 F = 9 F = 11 F = 3 F = 5 F = 7 F = 9 F = 11

VIN 5 55.6 87.7 84.6 86.3 86.6 75.0 86.7 88.9 92.0 92.3 74.8 91.9 91.5 91.2 87.9
VIN 10 79.0 83.3 92.2 86.8 86.7 90.5 91.4 95.1 89.4 92.7 92.4 96.1 92.2 84.0 64.4
VIN 15 91.3 92.9 92.7 85.4 87.6 88.7 89.6 92.4 90.0 91.0 96.7 96.4 90.1 65.2 23.0
VIN 20 93.4 93.9 91.4 86.3 85.5 80.9 92.8 90.7 89.1 90.4 97.7 94.8 89.0 40.0 22.3
VIN 30 71.2 92.8 84.5 86.5 86.4 80.5 96.3 92.5 91.7 89.1 98.4 95.9 89.5 – –

GPPN 5 66.2 86.5 90.8 92.4 93.0 75.9 90.4 93.4 93.9 94.1 62.4 82.3 88.6 90.1 91.2
GPPN 10 91.2 96.1 97.1 97.6 97.7 93.3 96.5 97.4 97.6 97.4 87.7 95.4 96.1 97.0 97.4
GPPN 15 95.3 98.1 98.5 98.3 98.8 96.1 97.7 98.1 98.1 98.3 93.5 97.1 97.8 97.7 99.0
GPPN 20 97.4 98.4 99.0 99.0 99.2 96.8 98.4 98.5 98.7 98.6 95.8 97.9 98.4 98.4 98.9
GPPN 30 97.6 98.6 99.0 98.6 98.8 98.0 98.4 98.8 98.8 98.4 96.4 98.7 99.1 99.3 99.2

designed a multi-scale variant called the Hierarchical VIN. Hierarchical VINs rely on downsampling
the maps into multi-scale hierarchies, and then doing VIN planning and up-scaling, progressively
growing the map until it regains its original, un-downsampled size.

Another potential method to do long-range planning without requiring a multi-scale hierarchy
is to instead increase the kernel size. An increased kernel size would cause the receptive field to
grow more rapidly, potentially allowing the models to require fewer iterations K before reaching
well-performing policies. In this section, we sought to test out the feasibility of increasing the
kernel size of VINs and GPPNs. These results are summarized in Table 3.1. All the models were
trained with the best K setting for each F and transition kernel. From the results, we can clearly
see that GPPN can handle training with larger F values, and moreover, GPPN often performs
better than VIN with larger values of F . In contrast, we can observe that VIN’s performance drops
significantly after its kernel size is increased more than 5, with its best performing settings being
either 3 or 5 depending on the true transition model. These results show that GPPN can learn
planning approximations that work with F > 3 much more stably than VIN, and could further
suggest that GPPN can work as well as VIN with less iterations.

Varying Iteration Count K

Following the above results showing that GPPN benefits from increased F , we further evaluated the
effect of varying both iteration count K and kernel size F on the VIN and GPPN models. Table 3.2
shows %Optimal and %Success results of VIN and GPPN on 15×15 2D mazes for different values
of F and K. We can see from NEWS column in the table that GPPN with F > 7 can get results
on par with the best VIN model with only K = 5 iterations. This shows that GPPN can learn to
more effectively propagate information spatially in a smaller number of iterations than VIN can,
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Table 3.3: Test performance on 2D mazes of size 15× 15 with varying iteration counts K and
best F setting for each K. Bold indicates best result across all K for each model and transition
kernel. Generally, increasing K improves performance.

NEWS Moore Diff. Drive
Model K %Opt %Suc %Opt %Suc %Opt %Suc

VIN 5 87.7 88.4 92.3 93.3 91.9 95.8
VIN 10 92.2 92.5 95.1 95.6 96.1 97.9
VIN 15 92.9 93.0 92.4 93.9 96.7 98.3
VIN 20 93.9 94.1 92.8 94.0 97.7 98.8
VIN 30 92.8 93.2 96.3 96.6 98.4 99.1

GPPN 5 93.0 94.3 94.1 96.1 91.2 95.6
GPPN 10 97.7 98.4 97.6 98.4 97.4 98.8
GPPN 15 98.8 99.2 98.3 98.9 99.0 99.6
GPPN 20 99.2 99.5 98.7 99.2 98.9 99.5
GPPN 30 99.0 99.3 98.8 99.3 99.3 99.7

Table 3.4: Test performance on 2D mazes of size 15× 15 with varying dataset sizes N under
best settings of (K,F ) for each model. Both models improve with more training data (larger N).
GPPN performs relatively better than VIN with less data, suggesting that the VIN architectural
biases do not help generalization performance.

NEWS Moore Diff. Drive
N Model %Opt %Suc %Opt %Suc %Opt %Suc

10k VIN 90.3 90.6 88.1 90.5 97.5 98.4
10k GPPN 97.8 98.6 97.6 98.4 98.0 99.4

25k VIN 93.9 94.1 96.3 96.6 98.4 99.1
25k GPPN 99.2 99.5 98.8 99.3 99.3 99.7

100k VIN 97.3 97.3 97.1 97.5 98.9 99.4
100k GPPN 99.9 99.9 99.7 99.8 99.9 99.9

and outperforms VIN even when VIN is given a much larger number of iterations. Additionally, we
can see that VIN has significant trouble learning when both K and F are large in the differential
drive mazes and to a lesser extent in the NEWS mazes.

Table 3.3 shows the results of VIN and GPPN with varying iteration counts K and the best
F setting for each K. Owing to the larger kernel size, GPPN with smaller number of iterations
K ≤ 10 can get results on par with the best VIN model. Generally, both models benefit from a
larger K (assuming the best F setting is used).

Different Maze Transition Kernels

From Tables 3.1 and 3.3, we can observe the performance of VIN and GPPN across a variety of
different underlying groundtruth transition kernels (NEWS, Moore, and Differential Drive). From
these results, we can see that GPPN consistently outperforms VIN on all the transition kernel types.
An interesting observation is that VIN does very well at Differential Drive, consistently obtaining
high results, although GPPN still does better than or on par with VIN. The reasons why VIN is so
well suited to Differential Drive are not clear, and a preliminary analysis of VIN’s feature weights
and reward vectors did not reveal any intuition on why this is the case.

Effect of Dataset Size

A potential benefit of the stronger architectural biases of VIN might be that they can enable better
generalization given less training data. In this section, we designed experiments that set out to
test this hypothesis. We trained VINs and GPPNs on datasets with varying number of training
samples for all three maze transition kernels, and the results are given in Table 3.4. We can see
that GPPN consistently outperforms VIN across all dataset sizes and maze models. Interestingly,
we can observe that the performance gap between VIN and GPPN is larger the less data there
is, demonstrating the opposite effect to our hypothesis. This could suggest that the architectural
biases do not in fact aid generalization performance, or that there is another problem, such as
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Table 3.5: Mean and standard deviation %Opt after 30 epochs, taken over 3 runs, on 2D mazes
of size 15× 15. Bold indicates best result across all K for each model and transition kernel. The
results were obtained using the best setting of F for each K and dataset size 100k. GPPN exhibits
lower variance between runs.

NEWS %Opt Diff. Drive %Opt
Train Val. Train Val.

Model K mean std mean std mean std mean std

VIN 5 90.1 0.1 90.1 1.5 88.4 1.0 95.4 1.1
VIN 10 92.8 0.6 92.7 1.4 92.3 0.5 93.9 0.2
VIN 15 93.4 1.2 94.2 0.6 95.8 0.5 97.0 0.3
VIN 20 93.1 1.5 94.3 0.8 96.4 0.2 96.8 1.1

GPPN 5 95.5 0.2 95.2 <0.1 93.8 0.2 93.4 <0.1
GPPN 10 99.1 0.1 99.0 <0.1 98.7 0.1 98.2 0.2
GPPN 15 99.6 <0.1 99.6 <0.1 99.4 0.1 99.3 0.1
GPPN 20 99.7 <0.1 99.7 0.1 99.8 <0.1 99.7 0.1
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Figure 3.2: The y-axis is the average Test %Opt (or %Suc) of the top-n hyperparameter settings
(K,F ) over K ∈ {5, 10, 15, 20, 30} and F ∈ {3, 5, 7, 9, 11}. The results are on 2D mazes of size
15 × 15. These plots measure how stable the performance of each model is to hyperparameter
changes as we increase the number of hyperparameter settings considered. GPPN exhibits less
hyperparameter sentivitiy.

perhaps the difficulty of optimizing VIN, that overshadows the benefit that the inductive bias could
potentially provide.

Random Seed and Hyperparameter Sensitivity

The hypothesis this section sought to verify was whether the particular recurrent-convolutional
form of the VIN did indeed negatively affect its optimization, as many ungated recurrent updates
suffer from optimization problems including training instability and higher sensitivity to weight
initialization and hyperparameters due to gradient scaling problems [156].

We test each architecture’s sensitivity to random seeds by running several experiments with
the same hyperparameters but different random seeds, and measuring the variance in their final
performance. These results are reported in Table 3.5. The results show that GPPN gets consistently
lower variance than VIN over different random seed initializations, supporting the hypothesis that
the LSTM update enables more training stability and easier optimization than the ungated recurrent
update in VIN.

We additionally test hyperparameter sensitivity in Figure 3.2. We take all the results obtained
on a hyperparameter sweep over settings (K,F ) where K was varied over K ∈ {5, 10, 15, 20, 30}
and F was varied over F ∈ {3, 5, 7, 9, 11}. We then rank these results, and the x-axis is the
top-x ranked hyperparameter settings and the corresponding y-axis is the average %Opt/%Suc
of those x settings. This plot thus measures how stable the performance of the architecture is to
hyperparameter changes as the number of hyperparameter settings we consider grows. Therefore,
architectures whose average top-x ranked performance remains high and relatively flat demonstrates
that good performance with the architecture can be obtained with many different hyperparameter
settings. This suggests that these models are both easier to optimize and consistently better than
alternatives, and higher performance was not due to a single lucky hyperparameter setting. We can
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Figure 3.3: Performance on 2D mazes of size 15× 15 with varying iteration counts K and kernel
sizes F . All models are trained using dataset size 25k. VIN exhibits higher training instability, its
performance often oscillating between epochs.

see from the figures that the performance of GPPN is clearly both higher and more stable over
hyperparameter settings than VIN.

In Figure 3.3, we plot the learning curves for VIN and GPPN on 2D mazes with varying K
and F . These plots show that VIN’s performance often oscillates between epochs (especially for
larger kernel sizes F > 3), while GPPN is much more stable. Learning curves for other experiments
showing a similar result are included in the Appendix. The training stability of GPPN provides
more evidence to the hypothesis that GPPNs are simpler to optimize than VINs and consistently
outperform them.

Learning Speed

In this section, we examine whether VINs or GPPNs learn faster. To do this, we measure the
number of training epochs (passes over the entire dataset) that it takes for each model to reach a
specific %Opt for the first time. These results are reported in Table 3.6. We can see from this table
that GPPN learns significantly faster, often reaching 95% within 5-6 epochs. Comparatively, VIN
sometimes never reaches 95%, as is the case for the NEWS mazes, or it takes 2-5 times as many
epochs. This is the case even on the Differential Drive mazes, where VIN takes 2-3 times longer to
train despite also getting high final performance.

Larger Maze Size

To test whether the improved performance GPPN has persists even on larger, more challenging
mazes, we evaluated the models on a dataset of mazes of size 28× 28, and varied K ∈ {14, 28, 56}
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Table 3.6: The number of epochs it takes for each model to attain a certain %Opt (50%, 75%,
90%, 95%) on the validation set under best settings of (K,F ). The results are on 2D mazes of size
15× 15. GPPN learns faster.

NEWS Moore Diff. Drive
Model 50 75 90 95 50 75 90 95 50 75 90 95

VIN 1 6 17 – 1 1 11 23 2 3 5 14
GPPN 1 1 3 5 1 1 3 5 1 2 3 6

Table 3.7: Test performance on 2D mazes with varying maze sizes m×m under best settings
of (K,F ) for each model. For the larger 28 × 28 maze, we train for 100 epochs and sweep over
K ∈ {14, 28, 56} to account for longer trajectories required to solve some mazes. GPPN performs
better.

NEWS Moore Diff. Drive
m Model %Opt %Suc %Opt %Suc %Opt %Suc

15 VIN 93.9 94.1 96.3 96.6 98.4 99.1
15 GPPN 99.2 99.5 98.8 99.3 99.3 99.7

28 VIN 93.0 93.2 95.0 95.8 93.8 96.8
28 GPPN 98.3 98.9 97.8 98.7 99.0 99.6

(Table 3.7). We used a training dataset size of 25k. GPPN outperformed VIN by a significant
margin (3-6% for %Opt and %Suc) for all cases except Diff. Drive 15 × 15, where the gap was
closer (GPPN 99.3 vs. VIN 98.3 for %Opt).

3D ViZDoom Experiments

In the 3D ViZDoom experiments, the state vector consists of RGB images showing the first-person
view of the environment at each position and orientation, instead of the top-down 2D maze design
(represented by a binary m×m matrix) as in the 2D maze experiments. To process the map images,
we use a Convolutional Neural Network [117] consisting of two convolutional layers: first layer
with 32 filters of size 8× 8 and a stride of 4, and second layer with 64 filters of size 4× 4 with a
stride 2× 2, followed by a linear layer of size 256.2 The 256-dimensional representation for all the 4
orientations at each location is concatenated to create a 1024-dimensional representation. These
representations of each location are then stacked at the corresponding x-y coordinate to create a
map representation of size 1024×m×m. The map representation is then passed through two more
convolutional layers (first layer with 64 filters and the second layer with 1 filter, both of size 3× 3
and a stride of 1) to predict a maze design matrix of size 1 ×m ×m, which is trained using an
auxillary binary cross-entropy loss. The predicted maze design is then stacked with the goal map
and passed to the VIN or GPPN module in the same way as the 2D experiments.

The 3D ViZDoom results are summarized in Table 3.8. %Acc is the accuracy for predicting the
top-down 2D maze design from first-person RGB images. Learning to plan in the 3D environments
is more challenging due to the difficulty of simultaneously optimizing both the original planner
loss and the auxiliary maze prediction loss. We can see that when %Acc is low, i.e., the planner
module must rely on a noisy maze design, then the planner metrics %Opt and %Suc also suffer.
We observe that VIN is more prone to overfitting on the training dataset: its validation %Acc is
low (< 91%) for all three transition kernels, whereas GPPN achieves higher validation %Acc on
NEWS and Moore. However, GPPN also overfits on the Differential Drive.

3.4 Active Neural Localizer
Bayesian filters [65] are used to probabilistically estimate a dynamic system’s state using observations
from the environment and actions taken by the agent. Let yt be the random variable representing
the state at time t. Let st be the observation received by the agent and at be the action taken by
the agent at time step t. At any point in time, the probability distribution over yt conditioned

2This architecture was adapted from a previous work which is shown to perform well at playing deathmatches
in Doom [114].
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Table 3.8: Performance on 3D ViZDoom mazes. %Acc is accuracy for predicting the top-down
2D maze design from first-person RGB maze images. When %Acc is low, then the model must
use a noisy maze design from which to plan, so %Opt and %Suc suffer as well. The results were
obtained using K = 30, the best setting of F for each transition kernel, a smaller dataset size 10k
(due to memory and time constraints), a smaller learning rate 5e-4, and 100 training epochs. VIN
is more prone to overfitting: its validation %Acc is low for all three transition kernels, while GPPN
achieves higher validation %Acc on NEWS and Moore.

Train Val Test
Kernel Model %Acc %Opt %Suc %Acc %Opt %Suc %Opt %Suc

NEWS VIN 99.9 82.3 83.0 81.5 80.8 81.5 79.0 79.7
NEWS GPPN 99.9 99.4 99.7 94.9 93.2 94.9 94.1 95.9

Moore VIN 99.6 86.5 88.9 89.1 86.7 89.1 84.6 87.6
Moore GPPN 99.6 98.1 99.4 97.4 95.3 97.4 94.5 97.2

Diff. Drive VIN 100.0 99.4 99.7 90.5 89.0 90.5 96.9 97.9
Diff. Drive GPPN 99.8 99.5 100.0 85.0 81.0 85.0 91.4 96.0

Figure 3.4: The architecture of the proposed model. The perceptual model computes the likelihood of the
current observation in all possible locations. The belief of agent’s location is propagated through time by
taking element-wise dot-product with the likelihood. The policy model learns a policy to localize accurately
while minimizing the number of steps required for localization. See text for more details.

over past observations s1:t−1 and actions a1:t−1 is called the belief, Bel(yt) = p(yt|s1:t−1, a1:t−1)
The goal of Bayesian filtering is to estimate the belief sequentially. For the task of localization, yt
represents the location of the agent, although in general it can represent the state of any object(s)
in the environment. Under the Markov assumption, the belief can be recursively computed using
the following equations:

Bel(yt) =
∑
yt−1

p(yt|yt−1, at−1)Bel(yt−1), Bel(yt) =
1

Z
Lik(st)Bel(yt),

where Lik(st) = p(st|yt) is the likelihood of observing st given the location of the agent is
yt, and Z = ΣytLik(st)Bel(yt) is the normalization constant. The likelihood of the observation,
Lik(st) is given by the perceptual model and p(yt|yt−1, at−1), i.e. the probability of landing in a
state yt from yt−1 based on the action, at−1, taken by the agent is specified by a state transition
function, ft. The belief at time t = 0, Bel(y0), also known as the prior, can be specified based on
prior knowledge about the location of the agent. For global localization, prior belief is typically
uniform over all possible locations of the agent as the agent position is completely unknown.

We now first define the Active Neural Localizer architecture and then present experiments
validating its performance against previous baselines. The Active Neural Localizer utilizes a belief
state represented as an O ×M ×N tensor, where (i, j, k)th element denotes the belief of the agent
being in the corresponding state, Bel(yt = i, j, k). This kind of grid-based representation of belief is
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popular among localization methods as it offers several advantages over topological representations
[22, 65]. Let Lik(st) = p(st|yt) be the likelihood of observing st given the location of the agent is
yt. The likelihood of an observation in a certain state is also represented by an O ×M ×N tensor,
where (i, j, k)th element denotes the likelihood of the current observation, st, given that the agent’s
state is yt = i, j, k. We refer to these tensors as Belief Map and Likelihood Map in the rest of the
chapter.

3.4.1 Model Architecture
The overall architecture of the Active Neural Localizer is shown in Figure 3.4. It has two main
components: the perceptual model and the policy model. At each timestep t, the perceptual
model takes in the agent’s observation, st and outputs the Likelihood Map Lik(st). The belief
is propagated through time by taking an element-wise dot product with the Likelihood Map at
each timestep. Let Bel(yt) be the Belief Map at time t before observing st. Then the belief, after
observing st, denoted by Bel(yt), is calculated as follows:

Bel(yt) =
1

Z
Bel(yt)� Lik(st)

where � denotes the Hadamard product, Z =
∑
yt
Lik(st)Bel(yt) is the normalization constant.

The Belief Map, after observing st, is passed through the policy model to obtain the probability
of taking any action, π(at|Bel(yt)). The agent takes an action at sampled from this policy. The
Belief Map at time t+ 1 is calculated using the transition function (fT ), which updates the belief at
each location according to the action taken by the agent, i.e. p(yt+1|yt, at). The transition function
here is the “Differential Drive” kernel described in Section 3.2.2. For ‘turn left’ and ‘turn right’
actions, the transition model swaps the belief in each orientation, where for the ‘move forward’
action, the belief values are shifted one unit according to the orientation. If the next unit is an
obstacle, then the value doesn’t shift, indicating a collison.

3.4.2 Model Components
Perceptual Model The perceptual model computes the feature representation from the agent’s
observation and the states given in the map information. The likelihood of each state in the map
information is calculated by taking the cosine similarity of the feature representation of the agent’s
observation with the feature representation of the state. Cosine similarity is commonly used for
computing the similarity of representations [141, 91] and has also been used in this context in
localization [24]. The benefits of using cosine similarity over the dot-product operation have been
highlighted by [32].

In the 2D environments, the observation is used to compute a one-hot vector of the same
dimension representing the depth which is used as the feature representation directly. This resultant
Likelihood map has uniform non-zero probabilities for all locations having the observed depth
and zero probabilities everywhere else. For the 3D environments, the feature representation of
each observation is obtained using a trainable deep convolutional network [116]. Figure 3.1 shows
examples of the agent observation and the corresponding Likelihood Map computed in both 2D
and 3D environments.

Policy Model The policy model gives the probablity of the next action given the current belief
of the agent. It is trained using reinforcement learning, specifically Asynchronous Advantage
Actor-Critic (A3C) [136] algorithm. The belief map is stacked with the map design matrix and
passed through 2 convolutional layers followed by a fully-connected layer to predict the policy as
well as the value function. The policy and value losses are computed using the rewards observed by
the agent and backpropagated through the entire model.

3.4.3 Baselines
Markov Localization [63] is a passive probabilistic approach based on Bayesian filtering. We use
a geometric variant of Markov localization where the state space is represented by a fine-grained,
regularly spaced grid, called position probability grids [22], similar to the state space in the proposed
model. Grid-based state space representations are known to offer several advantages over topological
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Table 3.9: Results on the 2D Environments. ‘Time’ refers to the number of seconds required to evaluate
1000 episodes with the corresponding method and ‘Acc’ stands for accuracy over 1000 episodes.

Env 2D Mazes All

Map Size 7x7 15x15 21x21

Episode Length 15 30 20 40 30 60

Markov
Localization

Time 12 15 29 31 49 51 31.2
Acc 0.334 0.529 0.351 0.606 0.414 0.661 0.483

Active Markov
Localization (Fast)

Time 29 53 72 165 159 303 130.2
Acc 0.436 0.619 0.468 0.657 0.512 0.735 0.571

Active Markov
Localization (Slow)

Time 1698 3066 3791 8649 8409 13554 6527.8
Acc 0.854 0.938 0.846 0.984 0.845 0.958 0.904

Active Neural
Localization

Time 22 34 44 66 82 124 62.0
Acc 0.936 0.939 0.905 0.939 0.899 0.984 0.934

representations [22, 65]. In the passive localization approaches, actions taken by the agent are
random.

Active Markov Localization (AML) [64] is the active variant of Markov Localization where
the actions taken by the agent are chosen to maximize the ratio of the ‘utility’ of the action to
the ‘cost’ of the action. The ‘utility’ of an action a at time t is defined as the expected reduction
in the uncertainity of the agent state after taking the action a at time t and making the next
observation at time t+ 1: Ut(a) = H(yt)− Ea[H(yt+1)], where H(y) denotes the entropy of the
belief: H(y) = −

∑
y Bel(y) logBel(y), and Ea[H(yt+1)] denotes the expected entropy of the agent

after taking the action a and observing yt+1. The ‘cost’ of an action refers to the time needed
to perform the action. In our environment, each action takes a single time step, thus the cost is
constant.

We define a generalized version of the AML algorithm. The utility can be maximized over a
sequence of actions rather than just a single action. Let a∗ ∈ Anl be the action sequence of length
nl that maximizes the utility at time t, a∗ = arg maxa Ut(a) (where A denotes the action space).
After computing a∗, the agent need not take all the actions in a∗ before maximizing the utility
again. This is because new observations made while taking the actions in a∗ might affect the utility
of remaining actions. Let ng ∈ {1, 2, ..., nl} be the number of actions taken by the agent, denoting
the greediness of the algorithm. Due to the high computational complexity of calculating utility,
the agent performs random actions until the belief is concentrated on nm states (ignoring beliefs
under a certain threshold). The complexity of the generalized AML is O(nm(nl − ng)|A|nl). Given
sufficient computational power, the optimal sequence of actions can be calculated with nl equal to
the length of the episode, ng = 1, and nm equal to the size of the state space.

In the original AML algorithm, the utility was maximized over single actions, i.e. nl = 1 which
also makes ng = 1. The value of nm used in their experiments is not reported, however they show
an example with nm = 6. We run AML with all possible combination of values of nl ∈ {1, 5, 10, 15},
ng ∈ {1, nl} and nm = {5, 10} and define two versions: (1) Active Markov Localization (Fast):
Generalized AML algorithm using the values of nl, ng, nm that maximize the performance while
keeping the runtime comparable to Active Neural Localization, and (2) Active Markov Localization
(Slow): Generalized AML algorithm using the values of nl, ng, nm which maximize the performance
while keeping the runtime for 1000 episodes below 24hrs (which is the training time of the proposed
model) in each environment.

The perceptual model for both Markov Localization and Active Markov Localization needs to be
specified separately. For the 2D environments, the perceptual model uses 1-hot vector representation
of depth. For the 3D Environments, the perceptual model uses a pretrained Resnet-18 [81] model
to calculate the feature representations for the agent observations and the memory images.

3.4.4 Results
2D Environments For the 2D maze domain, we run all models on mazes having size 7×7, 15×15
and 21× 21 with varying episode lengths. We train all the models on random Kruskal-generated
mazes and test on a fixed set of 1000 mazes (different from the mazes used in training). The results
on the 2D mazes are shown in Table 3.9. As seen in the table, the proposed model, Active Neural
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Figure 3.5: Different experiments in the 3D Environments. Refer to the text for more details.

Table 3.10: Results on the 3D environments. ‘Time’ refers to the number of seconds required to evaluate
1000 episodes with the corresponding method and ‘Acc’ stands for accuracy over 1000 episodes.

Env ViZDoom Mazes Unreal3D
with lights All Domain

adaptation

Evaluation Setting Unseen Mazes
Seen Textures

Unseen mazes
Unseen textures

With
lights

Without
lights

ViZDoom to
Unreal3D

No. of landmarks 10 5 0 10 5 0

Markov Localization
(Resnet)

Time 2415 2470 2358 2580 2509 2489 2513 2541 2484.4 -
Acc 0.716 0.657 0.641 0.702 0.669 0.652 0.517 0.249 0.600 -

Active Markov
Localization (Fast)

Time 14231 12409 11662 15738 12098 11761 11878 5511 11911.0 -
Acc 0.741 0.701 0.669 0.745 0.687 0.689 0.546 0.279 0.632 -

Active Markov
Localization (Slow)

Time 48291 47424 43096 48910 44500 44234 47962 11205 41952.8 -
Acc 0.759 0.749 0.694 0.787 0.730 0.720 0.577 0.302 0.665 -

Active Neural
Localization

Time 297 300 300 300 300 301 2750 2699 905.9 2756
Acc 0.889 0.859 0.852 0.858 0.839 0.871 0.934 0.505 0.826 0.921

Localization, outperforms all the baselines on average. The proposed method achieves a higher
overall accuracy than AML (Slow) while being 100 times faster. Note that the runtime of AML for
1000 episodes is comparable to the total training time of the proposed model. The long runtime of
AML (Slow) makes it infeasible to be used in real-time in many cases. When AML has comparable
runtime, its performance drops by about 37% (AML (Fast)). We also observe that the difference in
the performance of Active Neural Localization and baselines is higher for smaller episode lengths.
This indicates that Active Neural Localization is more efficient (meaning it requires fewer actions
to localize) in addition to being more accurate.

3D Environments All the mazes in the 3D ViZDoom domain are of size 70×70 while the office
environment environment is of size 70×50. The agent location is a continuous value in this range.
Each cell roughly corresponds to an area of 40cm×40cm in the real world. The set of memory
images correspond to only about 6% of the total states. Likelihood of rest of the states are obtained
by bilinear smoothing. All episodes have a fixed length of 30 actions. Although the size of the
Office Map is 70×50, we represent Likelihood and Belief by a 70×70 in order to transfer the model
between both the 3D environments for domain adaptation. We also add a Gaussian noise of 5%
standard deviation to all translations in 3D environments.

In the ViZDoom domain, we vary the difficulty of the environment by varying the number of
landmarks in the environment. Landmarks are defined to be walls with a unique texture. Each
landmark is present only on a single wall in a single cell in the maze grid. All the other walls have
a common texture making the map very ambiguous. We expect landmarks to make localization
easier as the likelihood maps should have a lower entropy when the agent visits a landmark, which
consequently should reduce the entropy of the Belief Map. We run experiments with 10, 5 and 0
landmarks. The textures of the landmarks are randomized during training. This technique of domain
randomization has shown to be effective in generalizing to unknown maps within the simulation
environment [113] and transferring from simulation to real-world [204]. In each experiment, the
agent is trained on a set of 40 mazes and evaluated in two settings: (1) Unseen mazes with seen
textures: the textures of each wall in the test set mazes have been seen in the training set, however
the map design of the test set mazes are unseen and (2) Unseen mazes with unseen textures: both
the textures and the map design are unseen. We test on a set of 20 mazes for each evaluation
setting. Figure 3.5 shows examples for both the settings.

In the Unreal3D environment, we test the effectiveness of the model in adapting to dynamic
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lightning changes. We modified the the Office environment using the Unreal Game Engine Editor
to create two scenarios: (1) Lights: where all the office lights are switched on; (2) NoLights: where
all the office lights are switched off. Figure 3.5 shows sample agent observations with and without
lights at the same locations. To test the model’s ability to adapt to dynamic lighting changes, we
train the model on the Office map with lights and test it on same map without lights. The memory
images provided to the agent are taken while lights are switched on. Note that this is different as
compared to the experiments on unseen mazes in ViZDoom environments, where the agent is given
memory images of the unseen environments.

The results for the 3D environments are shown in Table 3.10 and an example of the policy
execution is shown in Figure 3.63. The proposed model significantly outperforms all baseline models
in all evaluation settings with the lowest runtime. We see similar trends of runtime and accuracy
trade-off between the two versions of AML as seen in the 2D results. The absolute performance of
AML (Slow) is rather poor in the 3D environments as compared to 2D mazes. This is likely due to
the decrease in value of look-ahead parameter, nl, to 3 and the increase in value of the greediness
hyper-parameter, ng to 3, as compared to nl = 5, ng = 1 in Maze 2D, in order to ensure runtimes
under 24hrs.

The Active Neural Localization model performs better on the realistic Unreal environment as
compared to the ViZDoom environment, as most scenes in the Unreal environment consists of
unique landmarks while ViZDoom environments consists of random mazes with the same texture
except those of the landmarks. In the ViZDoom domain, the model is able to generalize well to not
only unseen map design but also to unseen textures. However, the model doesn’t generalize well
to dynamic lighting changes in the Unreal3D environment. This highlights a current limitation
of RGB image-based localization approaches as compared to depth-based approaches, as depth
sensors are invariant to lighting changes.

Domain Adaptation We also test the ability of the proposed model to adapt between different
simulation environments. The model trained on the ViZDoom domain is directly tested on the
Unreal3D Office Map without any fine-tuning. The results in Table 3.10 show that the model is
able to generalize well to the Unreal environment from the Doom environment. We believe that
the policy model generalizes well because (1) the representation of belief and map design is learnt
jointly in many randomized environments and (2) the policy model is based only on the belief
and the map design. Similarly the perceptual model generalizes well because it was trained on
environments with random textures.

3.5 Discussion
To conclude, in this chapter we proposed two differentiable submodules capable of enhancing the
Neural Map inter-episodic memory described in the previous chapter with two core capabilities:
the first is the Gated Path Planning Network, a planning module capable of doing efficient model-
based planning and search, and the second is Active Neural Localization, a state inference module
(equivalently, localizer in the setting of embodied environment) that not only disambiguates agent
state quickly but chooses actions to actively reduce uncertainty. The GPPN motivated itself by
re-formulating VIN as a convolutional-recurrent network, replacing the unconventional recurrent
value-iteration-like update with a well-established gated LSTM recurrent operator. The Active
Neural Localizer uses structured components for Bayes filter-like belief propagation and learns
a policy based on the belief to localize accurately and efficiently. This allows the policy and
observation models to be trained jointly using reinforcement learning. We showed the effectiveness
of the proposed model on a variety of challenging 2D and 3D environments including a realistic
map in the Unreal environment. Both of these submodules enabled learning initially unknown
MDP parameters directly from data, allowing the learning of model-based planning directly from
data, without needing a large amount of hand-crafted domain-specific knowledge typically provided
by an agent designer. We presented experimental results comparing GPPN and Active Neural
Localization on challenging 2D and 3D maze tasks, isolating the evaluation of each component
so that they can be ablated against previous baselines directly. The results demonstrate that
(1) the GPPN learns faster, generalizes better with less data, and achieves improved and more
consistent results when compared to VIN and (2) that Active Neural Localization consistently

3Policy execution videos can be seen at https://tinyurl.com/y8gp3mkh
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Figure 3.6: An example of the policy execution and belief propagation in the ViZDoom domain. The rows
shows consecutive time steps in a episode. The columns show Agent’s observation, the belief of its location
before and after making the observation, the map design and agent’s perspective of the world. Agent’s
true location is also marked in the map design (not visible to the agent). Belief maps show the probability
of being at a particular location. Darker shades imply higher probability. The belief of its orientation
and agent’s true orientation are also highlighted by colors. For example, the Red belief map shows the
probability of agent facing east direction at each x-y coordinate. Note that map design is not a part of
the Belief Maps, it is overlayed on the Belief Maps for better visualization. At all time steps, all locations
which look similar to agent’s perspective have high probabilities in the belief map. The example shows
the importance deciding actions while localizing. At t = 3, the agent is uncertain about its location as
there are 4 positions with identical perspectives. The agent executes the optimal set of action to reduce its
uncertainity, i.e. move forward and turn left, and successfully localizes.
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outperforms the baseline models while being order of magnitudes faster, and is also capable of
proficient zero-shot transfer to new domains when trained using random textures. In conclusion, we
have successfully designed planning and localization submodules siginificantly outperforming the
previous state-of-the-art while capable of being integrated directly with the inter-episodic Neural
Map. This works towards our goal of a monolithic agent architecture for meta-learning embodied
environments, capable of memorization, planning and state inference all in an end-to-end manner,
requiring a minimal amount of domain-knowledge for the agent designer.

We now work towards addressing the outstanding missing capability of our potential monolithic
architecture: the ability for the agent to localize successfully without a map. This ability is distinct
from the localization described in this chapter, which relied on pre-specified map information. In
this new setting, termed Simultaneous Localization and Mapping (SLAM), the agent both needs
to answer how to perform its own localization as well as how the observations it has seen can be
composed into a map. While algorithms to accomplish the seemingly competing SLAM objectives
have been developed extensively [52][140][139], a completely end-to-end differentiable architecture
was notably absent. Therefore in the next chapter, inspired by traditional graph-optimization
methods from the literature [111], we design a differentiable architecture to perform SLAM, the
Neural Graph Optimizer, and demonstrate that it outperforms traditional and deep-learning-based
approaches to localization on embodied environments.
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Chapter 4

Towards End-to-End Simultaneous
Localization and Mapping

In the previous two chapters we first described an inter-episodic memory designed specifically for
embodied applications and then designed submodules that achieve state-of-the-art differentiable
planning and state inference capabilities. The defined memory, planning and state inference
architectural components could potentially be combined into a full, monolithic agent architecture
specialized for few-shot meta-learning in any embodied environment, but such an architecture
would currently lack one outstanding core component: localization without a map, a critical
prerequisite to the original Neural Map inter-episodic memory presented in the first chapter which
had relied on an oracle to provide location or ego-motion estimates. While we can use any extant
off-the-shell localization method, these are often optimization-based [111] and are not in general
easily differentiable, if at all. Having a completely differentiable agent architecture is appealing as
it enables the least amount of domain knowledge required, meaning the distributed representations
can (1) be learnt directly from task and (2) learn cohesive representations such that they are
adapted to the computational processes that are performed on them, e.g. observations features can
potentially be learnt in such in a way that the GPPN requires fewer iterations to compute a plan.
Therefore in this chapter, we move towards a completely differentiable submodule capable of doing
localization without any map provided.

The stand-alone ability for an agent to localize itself within an environment is a crucial
prerequisite for many real-world applications, such as household robots [202], autonomous drones
[61], and augmented and virtual reality applications. In most cases, the main challenge for an agent
localizing itself is that: the agent is not provided with a map of the environment and therefore the
agent must simultaneously map the environment and localize itself within the incomplete map it has
produced. Owing to its large practical importance, a wide variety of algorithms to solve Simultaneous
Localization and Mapping (SLAM) task have been developed over a long history [202, 23], with
modern methods achieving impressive accuracy and real-time performance [138, 111, 140, 52].
These methods still have several shortcomings, owing mainly to the hand-engineered features,
dense matching, and heuristics used in the design of these algorithms. For example, most methods
are brittle in certain scenarios, such as varying lighting conditions (e.g. changing time of day),
different weather conditions or seasons [179], repetitive structures, textureless objects, extremely
large viewpoint changes, dynamic elements within the environment, and faulty sensor calibration
[23]. Because these situations are common in real-world scenarios, robust applications of those
systems are difficult. The brittleness and reduced generalization of current methods can be viewed
as a potential consequence of the non-differentiability of these methods, as the features must be
hand-designed and tested by domain experts.

In this chapter we work towards a fully differentiable SLAM, developing a method which can be
made more robust to the common situations where previous SLAM algorithms typically degrade.
To do this, we formulate a novel neural network architecture called “Neural Graph Optimizer”. The
Neural Graph Optimizer consists of differentiable analogues of the common types of subsystems
used in modern SLAM algorithms, such as a local pose estimation model, a pose selection module
(key frame selection, essential graph), and a graph optimization process. Because each component
in the system is differentiable, the entire architecture can be trained in an end-to-end fashion,
enabling the network to learn invariances to the types of scenarios observed during training, as

46



Figure 4.1: Components of the proposed model along with sample input, output and ground truth. The
Local Pose Estimation model predicts the relative pose change between consecutive observations and Neural
Graph Optimization model jointly optimizes the predictions of the Local Pose Estimation model to predict
global pose changes. The local pose estimates, global pose estimates, and ground truth trajectory are
shown in green, orange and blue, respectively.

well as enabling seamless composition with the rest of the submodules defined in previous chapters.
To demonstrate the ability of our method to learn pose estimation, we use trajectories sampled
from several simulated environments. The first environment is a 2D maze where the agent has a
single-pixel row-scan as input. We then scale the model up to 3D mazes based on the ViZDoom
environment [105], where the agent receives an image of the first-person view of the world as input.

4.1 Background & Related Work
SLAM is a process in which an agent needs to localize itself in an unknown environment and build a
map of this environment at the same time, with uncertainties in both its motions and observations.
SLAM has evolved from filter-based to graph-based (optimization-based) approaches. Some EKF-
based systems have demonstrated state-of-the-art performance, such as the Multi-State Constraint
Kalman Filter [138], the VIN [108], and the system of Hesch et al. [85]. Those methods, even
though efficient, heavily depend on linearization and Gaussian assumptions, and thus under-perform
their optimization-based counterparts, such as OK-VIS [121], ORB-SLAM [140], and LSD-SLAM
[52].

Graph-based SLAM typically includes two main components: the front-end and the back-end.
The front-end extracts relevant information (e.g. salient features) from the sensor data and associates
each measurement to a specific map feature, while the back-end performs graph optimization on a
graph of abstracted data produced by the front-end.

Graph-based SLAM can be categorized either as feature-based or direct methods depending
on the type of front-end. Feature-based methods rely on local features (e.g. SIFT, SURF, FAST,
ORB, etc.) for pose estimation. For example, ORB-SLAM [140] performs data association and
camera relocalization with ORB features and DBoW2 [67]. RANSAC [58] is commonly used
for geometric verification and outlier rejection, and there are also prioritized feature matching
approaches [178]. However, hand-engineered feature detector and descriptors are not robust to
motion blur, illumination changes, or strong viewpoint changes, any of which can cause localization
to fail.

To avoid some of the aforementioned drawbacks of feature-based approaches, direct methods,
such as LSD-SLAM [52], utilize extensive photometric information from the images to determine
the pose, by minimizing the photometric error between corresponding pixels. This approach is in
contrast to feature-based methods, which minimize the reprojection error. However, such methods
are usually not applicable to wide baseline settings [23] during large viewpoint changes. Recent work
in [61] [62] combines feature and direct methods by minimizing the photometric error of features
lying on intensity corners and edges. Some methods focus on dense recontruction of the scene,
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for instance [214] builds dense globally consistent surfel-based maps of room scale environments
explored using an RGB-D camera, without pose graph optimisation, while KinectFusion [143]
obtains depth measurements directly using active sensors and fuse them over time to recover
high-quality surface maps. These approaches still suffer from strict calibration and synchronization
requirements, and the data association modules require extensive parameter tuning in order to
work correctly for a given scenario.

In light of the limitations of feature-based and direct approaches, deep networks are proposed
to learn suitable feature representations that are robust against motion blur, occlusions, dynamic
scenes, illumination, texture, and viewpoint changes. They have been successfully applied to several
related multiview vision problems, including learning optical flow [57], depth [124], homography
between frame pairs [44], and localization [26] and re-localization problems.

Recent work includes re-formulating the localization problem as a classification task [213], a
regression task [106] [209], end-to-end trainable filtering [78], and differentiable RANSAC [18].
More specifically, PlaNet [213] formulates localization as a classification problem, predicting the
corresponding tile from a set of tiles subdividing Earth surface for a given image, thus providing
the approximate position from which a photo was taken. PoseNet [106] formulates 6-DoF pose
estimation as a regression problem. One drawback of the PoseNet approach is its relative inaccuracy,
compared to state-of-the-art SIFT methods. Similarly, [131] fine-tunes a pretrained classification
network to estimate the relative pose between two cameras. To improve its performance, [209]
added Long-Short Term Memory (LSTM) units to the fully-connected layers output, to perform
structured dimensionality reduction, choosing the most useful feature correlations for the task of
pose estimation. From a different angle, DSAC [18] proposes a differentiable RANSAC so that a
matching function that optimizes pose quality can be learned. These approaches are not robust to
repeated structure or similar looking scenes, as they ignore the sequential and graphical nature of the
problem. Addressing this limitation, work in [34] fused additional sequential inertial measurement
with visual odometry. SemanticFusion [130] combines convolutional neural networks (CNNs) and
a dense ElasticFusion [214]. However, classic feature-based methods still outperform CNN-based
methods published to date in terms of accuracies.

Recently, there has been an increasing interest in combining navigation and plannning in an
end-to-end deep reinforcement learning (DRL) framework. The efforts to date can be divided
into two categories depending on the presence of external memory in the architecture or not.
Target-driven visual navigation takes a visual observation and an image of the target [223] or range
findings [197] as input, and plans goal seeking actions in a 3D indoor simulated environment as the
output.

In simulated environments, [133] uses stacked LSTM in a goal-driven RL problem with auxilary
tasks of depth prediction and loop-closure classification, while [220] added successor features to
ease transfer from previously mastered navigation tasks to new ones. Work in [13] augmented DRL
with Faster-RCNN for object detection and SLAM (ORB-SLAM2) for pose estimation; observing
images and depth from VizDoom, they built semantic maps with 3D reconstruction and bounding
boxes as input to a RL policy.

To deal with the limited memory of standard recurrent architures (such as LSTM) more
structured external memories have been developed to take the spatial relations of memories into
account. [76] assumes known ego-motion and constructs a metric egocentric multi-scale belief map
(top-down-view latent representation of free space) of the world with a 2D spatial memory, upon
which RL plans a sequence of actions towards goals in the environment with a value iteration
network. Neural Map in [151] is a writable structured 2D external memory map for an agent to
learn to navigate within 2D and 3D maze environments. These works all assume precise egomotion
and thus perfect localization, a prerequisite that can rarely be met in real-world scenarios. Relaxing
this assumption and resembling traditional occupancy grid SLAM, Neural SLAM [221] uses an
occupancy-grid-like memory map, assuming only an initial pose is provided, and updates the pose
beliefs and grid map using end-to-end DRL.

One of key ingredient for the success of graph-based SLAM is the back-end optimization. The
back-end builds the pose graph, in which two pose nodes share an edge if an odometry measurement
is available between them, while a landmark and a robot-pose node share an edge if the landmark
was observed from the corresponding robot pose. In pose graph optimization, the variables to be
estimated are poses sampled along the trajectory of the robot, and each factor imposes a constraint
on a pair of poses. Modern SLAM solvers exploit the sparse nature of the underlying factor
graph and apply iterative linearization and optimization methods (e.g. nonlinear least squares
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via the Gauss-Newton or Levenberg-Marquardt algorithm). Several such solvers achieve excellent
performance, for example, g2o [111], TSAM [43], Ceres, iSAM [98], SLAM++ [176], and recently
[17] for optimization with semantic data association. The SLAM back-end offers a natural defense
against data association and perceptual aliasing errors from the front-end, where similarly looking
scenes, corresponding to distinct locations in the environment, would deceive place recognition.
However, they depend heavily on linearization of the sensing and motion models, and require good
initial guesses. Current systems can be easily induced to fail when either the motion of the robot
or the environment are too challenging (e.g. fast robot dynamics or highly dynamic environments)
[23].

In this work we formulate a complete end-to-end trainable solution to the graph-based SLAM
problem. We present a novel architecture that combines a CNN-based local front-end and an
attention-based differentiable back-end. We learn effective features automatically and perform
implicit loop closure by designing an additional differentiable Neural Graph Optimizer to perform
global optimization over entire pose trajectories and correct errors accumulated by the local
estimation model.

4.2 Neural Graph Optimizer
The Neural Graph Optimizer architecture is split into distinct differentiable components. Similar to
many of the previous SLAM methods, we split the process into local adjustments between temporally
adjacent frames combined with a global optimization procedure which distributes error over the
entire observed trajectory. As will be shown in the experiments, the global graph optimization
procedure is critical to removing drift (the accumulation of small errors over long trajectories).
The graph optimization procedure does this by learning to do loop closures, recognizing when the
agent has revisted the same location, and enforcing a constraint that those poses should be nearly
equal. The local model is crucial for providing a good starting point for the global optimization.
It does this by estimating relative transformations between two temporally adjacent frames. By
accumulating transformations from the start of the trajectory to the end, we can use this model to
get the initial pose estimate within the global frame.

The complete model architecture is shown in Fig. 4.3. We will describe relative poses as
∆P = (∆p1, . . . ,∆pT ) with the first pose set as the origin, i.e. ∆p1 is the transformation from
origin to pose 1, ∆p2 is the transformation from pose 1 to pose 2, and so on. These relative poses
can be transformed into a global frame of reference by accumulating the relative pose changes along
the trajectory, i.e. p1 = ∆p1I, p2 = ∆p2∆p1I, and so on. These global poses will be refered to as
P = (p1, . . . , pT ). There exists a differential function r2g = g2r−1 such that P = r2g(∆P ) and
∆P = g2r(P ). Each component is described in more detail in the next sections.

4.2.1 Local Pose Estimation Network
The Local Pose Estimation network learns to predict the relative pose change between two consecutive
frames. From two consecutive observations, where each observation is, for example, an RGB frame,
this component predicts the x-coordinate, y-coordinate, and orientation (∆x, ∆y and ∆θ) of the
second frame with respect to the first frame. It can also optionally take in side information, such
as the action taken by the agent between the two frames. The architecture of the Local Pose
Estimation network is shown in Fig. 4.2. Both frames are stacked and passed through a series
of convolutional layers. The output of the convolutional layers is flattened and passed to two
fully-connected layers that predict the translational and rotational pose change respectively.

Some of the recent work showed that optical flow is useful in predicting frame-to-frame ego-
motion [36]. The architecture of the Local Pose Estimation network is inspired by the architecture
of Flownet [57] which predicts the optical flow between two frames. The convolutional layers in the
Local Pose Estimation network are identical to the convolutional layers in Flownet. Prior work on
visual odometry and visual inertial odometry has also used the convolutional layer architecture of
Flownet [34, 211].

4.2.2 Pose Aggregation
The next step of the architecture is a Pose Aggregation network which takes in a large number
of low-level poses and pose features (up to 2000 for 2D, 1000 for 3D VizDoom environment) and
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Figure 4.2: The architecture of the Local Pose Estimation network. The architecture of the
convolutional layers is adapted from the architecture of the Flownet [57].

reduces them into a smaller number of more temporally distant “meta-poses” and “meta-pose
features” (around 250 for 2D, 125 for 3D VizDoom). These resulting meta-poses and meta-pose
features are then passed to the Neural Graph Optimization procedure.

For pose feature aggregation, we utilize a deep temporal convolutional network with several
alternating layers of (kernel size 3, stride 1, padding 1) dimension-preserving convolutions and
(kernel size 2, stride 2, padding 0) dimension-reducing max pooling (where each max pooling
operation halves the sequence size). The number of times we halve the sequence length is a
hyperparameter. Instead of temporal convolutions, we could have utilized recurrent networks, but
we decided to focus on convolutions for computational and memory-efficiency reasons.

In addition to the pose features being aggregated into meta-pose features by the temporal
convolution, we also compose all the local pose transformations that were predicted by the Local
Pose Estimation model. This composition gives us an initial global pose estimate for each of the
meta-poses. The combined meta-features and meta-poses are then passed onto the Neural Graph
Optimization layer for the final global pose adjustments, as shown in Fig. 4.3.

4.2.3 Neural Graph Optimization
The final component of our system is the “Neural Graph Optimizer”. This submodule aggregates
information over the entire pose trajectory with the goal of redistributing error to minimize drift.
The Neural Graph Optimizer model is a neural analogue of the global optimization procedures
commonly used in traditional state-of-the-art SLAM packages, such the g2o framework [111]. We
define the Neural Graph Optimizer as a recurrent network submodule which takes as input sequential
pose features and outputs a refined estimate of these poses.

In more detail, the Neural Graph Optimizer takes as input some initial T relative pose estimates
(i.e. the aggregated output of the local pose estimation network) ∆P(0) =

(
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(0)
1 , . . . ,∆p

(0)
T

)
and

produces two outputs for each pose:
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New pose estimates are then constructed by performing an iterative update:
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The Neural Graph Optimizer procedure can then be rerun on the new pose estimates ∆P(1) =

(∆p
(1)
1 , . . . ,∆p

(1)
T ) to produce ∆P(2) = (∆p

(2)
1 , . . . ,∆p

(2)
T ), and so on. The process is repeated until

some pre-specified number of iterations M has taken place. We then transform the refined relative
pose estimates into the final global output: P(M) = r2g(∆P(M)).

The specific architecture of the Neural Graph Optimizer is based on two priors that are intuitively
useful for pose optimization. The first prior is the notion that poses that are temporally adjacent
should have similar outputs, while the second prior is that visually similar but temporally disparate
poses should also have similar outputs since this provides a hint that a place has been revisited,
thereby potentially enabling a loop closure-like correction of drift. We express these priors by using
two architectural systems in the Neural Graph Optimizer. The first is a Transformer-like [207]
attention phase where information is propagated over the entire sequence, and the second is a
convolutional phase where local temporal information is aggregated.
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Attention Phase

Suppose there is a meta-pose sequence of T steps, processed by the pose aggregation network into an
initial set of features at each time step: F(0) = (f

(0)
1 , . . . , f

(0)
T ). The attention phase computes, for

each pose, a soft-attention operation over the entire trajectory. This attention operation allows each
pose to query information over long time spans. The attention phase takes as input the pose feature
sequence (f

(i−1)
1 , . . . , f

(i−1)
T ) and produces for each time step a query vector: (q

(i−1)
1 , . . . , q

(i−1)
T )

using a fully-connected layer. Then, for each query vector q(i−1)
t , a soft-attention operation is

carried out to produce an attention vector a(i−1)
t as follows:

Ctu = 〈qt, fu〉,

αtu =
Ctu∑T
v=1 Ctv

,

at =

T∑
v=1

αtu � fu,

where the superscripts (i− 1) were omitted for clarity of notation. This produces a sequence of
attention vectors (a
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1 , . . . , a

(i−1)
T ), which are passed along with (f
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T ) to the next

“Optimization” phase.

Optimization

The optimization phase aggregates local temporal information by passing the pose features
through several temporal convolutions and is responsible for producing the iterative adjustments:
{∇p(i)

1 , . . . ,∇p(i)
T } and {β(i)

1 , . . . , β
(i)
T }. The optimization phase proceeds as follows: First, the

attention and feature vectors are concatenated into a new sequence of features:([
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These features are then passed through several layers of 1D convolutions hl and activations σl: F(i)
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to produce the current iteration’s adjustments (∇P(i) and βββ(i)) as well as the feature layer for the
next iteration of the process (F(i)).

For our experiments, we use 9 layers of convolutions with filter size 3 and ReLU activations.
While temporal convolutions have a limited receptive field which provides a hard upper limit on
how far they can transmit information across time, we found that in practice they worked better
than using a bidirectional LSTMs.

Induced Attention Graph

We now provide some intuition on why the attention phase enables higher performance than only
using the optimization phase, or running all pose features through bidirectional LSTMs. We can
see that during the attention phase, some similarity graph C is constructed such that each element
Ctu is the inner product between the query vector qt and the pose feature vector fu. Therefore C
represents a similarity matrix between the queries and pose features, and those with very similar
features will thus have high information bandwidth through the attention operator because the
attention weight αtu will be near 1 for highly similar query and pose features, and near 0 otherwise.
The attention operation is thus inducing a connectivity graph between poses with highly similar
features. This therefore resembles a soft, differentiable analogue of the pose graph constructed in
SLAM algorithms such as ORB-SLAM [140].
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Figure 4.3: The architecture of the proposed model, showing the Local Pose Estimation, the Pose
Aggregation, and the Neural Graph Optimization modules.

Figure 4.4: Left: A screenshot of the 2D environment based on Box2D. Right: A bird’s eye view
of the 3D environment based on the Doom game engine.

Results on the 2D Environment
Model RMSE

Only Local Estimation 17.80
Global Estimation - 1 Attend-Opt iteration 10.21
Global Estimation - 5 Attend-Opt iterations 3.16

Table 4.1: Results for different Neural Graph Optimizer architectures and hyperparameters, in
terms of test set Global RMSE. We can see that the addition of the global optimization procedure
reduces the loss by more than 80% as compared to solely using the local pose model.
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Figure 4.5: Images visually demonstrating the effect on pose estimates of adding the Neural Graph
Optimizer module on top of the local pose estimation model in the 2D environment. We can see
that the global optimization procedure greatly reduces drift. These figures were generated with the
5 iteration Neural Graph Optimization model.

4.3 Experiments
We use two simulation environments for our experiments, a 2D environment based on Box2D and a
3D environment based on the Doom game engine. To train the system, we pretrained the local
pose estimation model and then trained the global optimizer with the local pose model held fixed.
This was mainly due to the large sequence lengths we were required to process (on the order of
1000 time steps). This limited the amount of sequences we could process due to the large memory
requirements. Training the system in stages enabled us to preprocess the sequence images into a
far more memory-efficient compressed representation.

4.3.1 2D Environment
For the 2D Environment, random maze designs are generated using Prim’s algorithm [160], and
the environment is created using Box2D (box2d.org). The agent projects 241 rays uniformly in
front of itself with an effective field of view of 300◦. The observation of the agent includes the
RGB values as well as the depth of the points where these rays hit a wall. An example of the

Results on the 3D Doom Environment
Model Seen Unseen

% Err. Trans. % Err. Rot. % Err. Trans. % Err. Rot.
Only Local Estimation 1.65 0.117 1.62 0.122
Global Estimation

- 1 Attend-Opt iteration 1.42 0.071 1.16 0.071
- 5 Attend-Opt iterations 1.25 0.057 1.04 0.056

DeepVO [211] 1.78 0.079 2.39 0.091

Table 4.2: Results for different Neural Graph Optimizer architectures and hyperparameters, in
terms of % translation and rotation error on maps either seen or unseen during training time. We
can see that the addition of the global optimization procedure reduces error significantly compared
to using only the local pose model. In addition, increasing the number of attention iterations
provides an increase in performance.
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2D environment is shown in Fig. 4.4. Each cell in the maze has a random color. The agent can
take one of three discrete actions at every time step: move-forward, turn-left, or turn-right. These
actions result in translational acceleration if the action is move-forward or angular acceleration if
the action is turn-left or turn-right. Data is collected by visiting four different corners on the maze
using Dijkstra’s algorithm [46].

For this environment, the training data is generated by worker threads in parallel with the
model training and each training datapoint is used only once. A test set is fixed and common for
all experiments. Each epoch of training consists of 200, 000 datapoints. The error metric is Root
Mean Squared Error (RMSE) in pose estimation.

To improve upon the results produced by the local pose estimation model, we train a Neural
Graph Optimizer on the pose outputs of a pretrained Local Pose Estimation model. For the 2D
environment, as shown in Table 4.1, we observed over 80% improvement in the correction of drift
compared to using only the local pose estimation model, as measured by the root mean squared
error loss. We can see that increasing the number of iterations (applying the attention operator and
then the temporal aggregation operator) improved results from 1 to 5 iterations. We show some
sample trajectories in Fig. 4.5 before and after the Neural Graph Optimizer procedure.

4.3.2 3D Environment
For the 3D Environment, random maze designs are generated using the Kruskal’s algorithm [110],
and the environment is created using the ViZDoom API [105]. The agent observes the environment
in a first-person view with a field-of-view of 108◦. An example of the 3D environment design is
shown in Fig. 4.4. Similr to the 2D environment, the pose predictions are 3-dimensional tuples (x,
y, angle) and the agent can take one of three discrete actions at every time step: move-forward,
turn-left, or turn-right, which results in translational or angular acceleration. For collecting data in
this environment, a navigation network [114] is trained to maximize the distance travelled by the
agent using the Asynchronous Advantage Actor-Critic algorithm [136]. The data is collected by
using the policy learned by the navigation network.

Like the 2D environment, the training data is generated by worker threads in parallel with the
model training, and each training datapoint is used only once. We additionally sample two test
sets, one containing 39 trajectories sampled from maze geometries that were seen during training
and one containing 39 trajectories sampled from novel maze geometries that the agent had not
encountered during training.

Results

Results are shown in Table 4.2. Here we report % Error in Translation and Rotation for seen/unseen
mazes, where the accumulated drift error is divided by the entire distance traveled in each trajectory.
Observe that the local model is significantly improved by using global optimization and performance
of the global model improves as we increase the number of Attend-Opt iterations from 1 to 5. The
global model outperforms the DeepVO [211] baseline on both the test sets. Additionally, we can
clearly see that the model itself does not overfit to the training environments it experienced, and
gets similar or even lower error on unseen test mazes. Learning curves are shown in Fig 4.6. We
can see that performance plateaus decrease significantly early on and then progress is much slower
after around 2000 updates.

The baseline DeepVO [211] is one of the state-of-the-art methods using deep neural nets for
monocular visual odometry. It stacks 2 consecutive frames and passes them through 9 convolutional
layers followed by 2 LSTM layers to estimate the pose changes. As compared to the proposed
Local Pose Estimation model which observes only the last 2 frames at the time, the DeepVO
model can potentially utilize information from all the prior frames using the LSTM layer. However,
the DeepVO model does not correct its previous predictions as it observes new information. The
Neural Graph Optimizer has the ability to correct its predictions using the Attention operation
and consequently leads to improved performance.

Analysis

We next plot the total rotational and translational errors as a function of number of steps in the
trajectory in Figures 4.7 (for unseen mazes) and 4.8 (for seen mazes). The global model reduces
the slope of the rate of increase of both translational and rotation errors as compared to the local
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Figure 4.6: Training curves for Doom over 13, 000 updates for the 5 iteration Attend-Opt model.
We show the performance on both seen and unseen test sets as training progress. The dotted
line represents the estimate provided by using only the local model. We can see there is a large
reduction in error when making use of the global optimizer.

Figure 4.7: Translational (Left) and Rotational (Right) RMSE as a function of number of images
in the trajectory in unseen mazes.

estimates. Figures 4.9 and 4.10 display the ratio of the translational (left) and rotational (right)
drift error over distance traveled. We can see from these plots that the trend is negative, meaning
that drift accumulates much slower than the distance being traveled. This indicates that the model
is likely to generalize well to arbitrarily long trajectories. Additionally, in all plots, we can see a
clear ordering of the performance of the models, where the local model performs worst, one iteration
of Attend-Opt increases model performance significantly, and increasing the number of Attend-Opt
iterations to 5 further increases model performance.

The plots in Figures 4.7 and 4.8 as well as the numbers in Table 4.2 show that the improvement
in rotational errors due to the neural optimization is higher than the improvement in translation
errors. Fig 4.11 shows sample trajectories with estimates of both global and local pose estimates.
As seen in the figure, the neural graph optimizer considerably improves the rotation estimates,
consequently leading to significant improvements in the drift reduction.

4.4 Discussion
In this chapter, we designed a novel attention-based architecture to perform an end-to-end trainable
global pose estimation. Compared to the previous work on using deep networks to do pose
estimation, our method uses an attention operation to re-estimate its trajectory at each time step
and therefore enables iterative refinement of the quality of its estimates as more data is available.
We demonstrate the benefit of the model on two simulators, the first is a top-down 2D maze world
and the second is a 3D random maze environment running the Doom engine. Our results show that
our method has an increased performance compared to models which used only temporally local
information.

With the localization method designed and tested, in this final chapter of this part of the thesis
we have now assembled all the components necessary for a monolithic agent architecture capable of
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Figure 4.8: Translational (Left) and Rotational (Right) RMSE as a function of number of images
in the trajectory in seen mazes.

Figure 4.9: Ratio of the Translational (Left) and Rotational (Right) RMSE to the distance travelled
as a function of number of images in the trajectory in unseeen mazes.

rapid adaptation in embodied environments:

• The Neural Map, an inter-episodic memory that leverages geometric structure to spatially
organize observed feature representations into a “map” representation. We demonstrated
that this map enabled learning few-shot navigation policies more rapidly than less structured
baselines like LSTMs and memory networks.

• The Gated Path Planning Network (GPPN), a differentiable submodule capable of state-of-the-
art path planning for embodied environments. The GPPN does not require any pre-specified
MDP model information and can do planning with any distributed map representation,
including those produced by the Neural Map. We demonstrated that the GPPN achieves
superior performance, stability and learning speed compared to the previous state-of-the-art.

• Active Neural Localization, a differentiable submodule capable of re-localization in an envi-
ronment given a map, enabling the agent to rapidly disambiguate its location. The Active
Neural Localization submodule works with any distributed map, including those produced by
the Neural Map. Furthermore, we defined an auxiliary reward objective that encouraged the
agent to choose information-seeking actions, reducing its uncertainty even more rapidly.

• The Neural Graph Optimizer presented in this chapter, a differentiable submodule enabling
localization without any map or location estimate available a priori. The Neural Graph
Optimizer can plug in as the submodule providing allocentric location or egomotion estimate
to the Neural Map.

Combined, these submodules can create an agent that would have the capabilities of state-of-the-art
differentiable memorization, planning, and state inference, and which can perform all methods
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Figure 4.10: Ratio of the Translational (Left) and Rotational (Right) RMSE to the distance travelled
as a function of number of images in the trajectory in seen mazes.
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Figure 4.11: Images visually demonstrating the effect on pose estimates of adding the Neural
Graph Optimizer module on top of the local pose estimation model in the 3D environment. We can
see that the global optimization procedure greatly reduces drift. These figures were generated with
the 5 iteration Neural Graph Optimization model. The agent always starts at the origin (0, 0).
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simultaneously. In the next part of the thesis, we move on to focus on meta-learning through inter-
episodic memory in general environments, a less structured setting requiring less domain-specific
inductive biases. To start, in the next chapter we will question one of the most central facets of the
meta-learning methods considered so far: how the agent interacts with an environment.
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Meta Reinforcement Learning
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Chapter 5

Concurrent Episodic Meta
Reinforcement Learning

In the previous part of this thesis we focused on meta-learning in embodied environments, working
towards the subcomponents necessary to build a monolithic embodied agent architecture that
could be capable of simultaneously performing memorization, planning, and state inference. The
components we designed relied heavily on making use of biases present in the environment class:
that the state-space possessed underlying euclidean geometric structure, that the agent actions
caused only local movement, that observations were projections of 3D objects located in the scene,
etc. While an important domain, many applications do not fall under this category of environments
and would not benefit from the use of the components we designed. Therefore in this second part of
the thesis we now focus on meta-learning through inter-episodic memory in general environments,
with no constraints on the MDPs we consider for rapid adaptation. This means less structure
is available and accordingly more general priors will need to be exploited that make use of less
domain-specific knowledge.

In this chapter, we specifically re-examine how a meta-learning agent interacts with its envi-
ronment. Typically in the context of meta-learning with inter-episodic memory, a single agent
continuously interacts with a particular environment instance: meta-episodes comprised of a se-
quence of interaction episodes with the same environment instance, and the next action is chosen
by the agent through conditioning on the inter-episodic memory comprising statistics from the
sum total of the interaction history with that instance. A negative side-effect of this sequential
execution paradigm is that, as the environment becomes more challenging, and thus requiring
more interaction episodes, it needs the agent to reason over longer time-scales. These methods
also intrinsically suffer from risk-aversion or reward sparsity due to their learning objectives, as
will be evidenced in this chapter. To combat these difficulties we propose an alternative parallel
framework, which we name “Concurrent Episodic Meta-Reinforcement Learning” (CEMRL), that
transforms the temporal credit assignment problem into a multi-agent one. In CEMRL, a set of
parallel agents are executed in separate, identical task instances, with each agent given the means
to communicate with any other. The goal of the communication is to coordinate, in a collaborative
manner, the most efficient exploration of the shared task instance.

This coordination therefore represents the meta-learning aspect of the framework, as each agent
can be assigned or assign itself a particular section of the current task’s state space. This transforms
the setting of a single agent reading and writing from a single memory, into one of multiple agents
reading from and writing into a single shared memory. The shared memory, acting as a stateful
communication channel, replaces the inter-episodic memory as the main mechanism driving rapid
adaptation. CEMRL stands in contrast to standard RL methods that assume that each parallel
rollout occurs independently, which can potentially waste computation if many of the rollouts end
up sampling the same part of the state space. Furthermore, the parallel setting enables us to define
several reward sharing functions and auxiliary losses that are non-trivial to apply in the sequential
setting. We demonstrate the effectiveness of our proposed CEMRL at improving over sequential
methods in a variety of sparse, high-risk tasks.
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Figure 5.1: Our proposed parallel CEMRL framework (right) and the sequential RL2 setting (left).

5.1 Background & Related Work
In this section, we standardize the episodic meta-learning algorithms within a common framework.
We assume in the environments we test on that there are K episodes in a meta-episode, and we
further explicitly sub-divide these episodes into two types of categories. The first type is the explore
episodes, of which there are Kexplore. The second type is the exploit episodes, which there are
Kexploit. We have that K = Kexplore +Kexploit. In this chapter, we will only consider settings in
which Kexploit = 1.

In contrast to previous work on inter-episodic memory, in this chapter we use separate RNN
weights and policy outputs between explore and exploit sub-episodes. This makes RL2 more closely
resemble a sequence-to-sequence model [195], as it first encodes exploratory sub-episodes into a
vector and then uses that code vector as the initial state of an exploitative recurrent policy. While
a minor change, the separation of explore and exploit policy parameters can enable an easier
optimization for the meta-learner to learn to produce different behaviour between explore and
exploit sub-episodes.

Concurrent Reinforcement Learning: A related work in the non-meta-learning setting is
that of Concurrent Reinforcement Learning (CRL) [185]. The CRL setting is defined as the case
where episodic interactions occur in parallel, and [185] designed and analyzed a temporal difference
update to handle learning in this setting. More recent work [48, 47] in the concurrent setting applied
techniques from the Posterior Sampling for Reinforcement Learning (PSRL) literature [192].

5.2 Concurrent Episodic Meta Reinforcement Learning
Episodic Meta-RL algorithms process episodes in a sequential manner, conditioning on all past
history to influence the behaviour within the next interaction episode. While the sequential
processing of episodes has been shown to be effective [49, 210], it has several drawbacks including
long meta-horizons complicating optimization, and risk-adverseness / reward sparsity. As a concrete
example highlighting these latter drawbacks, consider a class of MDPs with 1 initial state and 4
absorbing states (Fig. 5.3). The initial state can transition to any absorbing state: transitioning
to three of the four absorbing states provides a reward (termed goal states), the other provides
no reward (termed NOOP). Suppose that within this class of MDPs (which we call Monty-Hall),
each MDP is defined as having a randomly chosen goal such that moving to it from the initial state
results in a reward of +0.1, and transitioning to any other goal results in a reward of -1.

In this environment, RL2 [49, 210] will try to naively maximize its cumulative reward over
every sub-episode within a meta-episode, eventually learning not to enter any goal. This is because
entering an incorrect goal incurs a large negative reward of -1, a loss from which RL2 will not recover
by finding out which goal has +0.1 reward, whereas transitioning to the NOOP state has value 0.
RL2 is thus not capable of producing optimal behaviour within certain classes of MDPs, especially
ones where exploration has a significant risk of negative reward. ERL2 [190] addressed some of
these concerns by splitting the meta-episode into clearly delineated exploratory and exploitative
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Algorithm 1 Concurrent Episodic Meta-RL
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Figure 5.2: Left: Pseudo-code for CEMRL. Environment steps are processed in parallel. There are
distinct per-rollout hidden states (processing single-agent trajectories) and meta hidden states (aggregating
information from all rollouts). The meta hidden state is used as a conditioning vector for an exploit policy,
which is trained to maximize reward. Top-Right: Central-LSTM is a monolithic LSTM that treats the
problem as a single agent task with a factored output distribution, concatenating all information into one
combinatorial input space. Bottom-Right: Meta-LSTM is a structured memory-based communication
architecture where each rollout has a separate LSTM (with weights shared between rollouts). The rollouts
communicate through the Meta-LSTM.

sub-episodes, and trained the policy output using only the external reward accumulated on exploit
sub-episodes. This enables high-risk exploration but comes at the cost of an even more difficult
temporal credit assignment problem as the external reward signal is sparsified when dealing with a
large number of interactions.

To combat the aforementioned issues that sequential meta reinforcement learning methods
suffer from, we propose a parallel framework termed “Concurrent Episodic Meta Reinforcement
Learning” (CEMRL). CEMRL transforms the step-by-step processing of interaction episodes into a
parallel processing of all episodes concurrently, reducing the meta-horizon to the time horizon of
the environment. These parallel rollouts are executed by separate agents capable of communication
with each other, enabling the coordinated assignment of specific agents to particular sections of
the state space for efficient exploration. The communication protocol between rollouts therefore
represents the meta-learning process, where agents transmit information about rewards, dynamics
or states to each other and aggregate this information to present to the exploitation sub-episode
policies in order for them to act optimally. Fig. 5.1 visually demonstrates the main differences
between RL2 and CEMRL.

By this conversion of the temporal credit assignment problem into a multi-agent communication
learning problem, we are afforded other advantages beyond a reduced time horizon that no longer
scales with the number of interactions. The first is the use of specialized reward sharing schemes,
which can be used to re-distribute risk among the exploratory rollout policies in a way not
straightforwardly possible within the sequential setting. Additionally, we can define divergence
losses between rollout policies to encourage exploration and diversity of agent behaviours.

We present the general algorithmic description of our CEMRL framework in Algorithm 1.
Environments are processed in parallel, step by step, by a two-level hierarchy. The lower-level
per-rollout representations h(k) are responsible for processing information from a single rollout. The
high-level meta representation hm aggregates all the per-rollout hidden states at every time step.

62



R = 0

R = -1

R = -1

R = 0.1

a0

a1

a2

a3

S0

G1 G2 G3

R=-1 R=-1 R=0.1

0.0 0.0 0.0

G0 R=0
a0

a1
a2 a3

0.0

Figure 5.3: An example illustration (Left) and its MDP (Right) of a particular instance environment
of the Monty-Hall class of MDPs. From the starting state s0, the agent is given a choice of 4 actions.
The first action is a NOOP and the action ends the episode without reward. The other actions
open one of the 3 doors, where 2 of the doors lead to large negative rewards (illustrated with a
cartoon bomb) and one door leads to a positive reward (represented by the gold bars).

Meta-learning is achieved through the conditioning of the per-rollout networks f (k) on the previous
time-step’s hm, and the aggregation of all per-rollout hidden states h(k) into hm. We now discuss
the particular architectures of per-rollout update f (k) and meta update g we used for experiments.

5.2.1 Communication Architecture
The meta-learning component of the algorithm is enabled by the communication protocol between
rollout agents, and therefore the design of this protocol’s architecture is critical to the meta-
learner’s performance. Recent work has seen a large variety of architectures developed to enable
communication between agents in the setting of deep multiagent reinforcement learning [193, 60, 90].
These various methods allow communication between agents using either discrete protocols [60] or
continuous ones [193, 60], and they have been shown to be effective at solving multiagent tasks.
While CEMRL does not prescribe a particular method of inter-rollout communication, we describe
the architectures utilized in the experiments below, with a visual depiction given in Fig. 5.2.

Central-LSTM: The first communication architecture is an LSTM which aggregates all rollout
information (states, rewards, etc.) into a single monolithic input. The Central-LSTM thus processes
the multiagent data as if it were from a single-agent task with a combinatorial input space and a
factored output distribution. Specifically, we define:
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Meta-LSTM: The second communication architecture considered has more structure suited to
the particular application of CEMRL. In this architecture, each rollout has a separate “Rollout-
LSTM” with shared recurrent and input weights. Communication occurs through a stateful
communication channel represented by a centralized “Meta-LSTM” that aggregates information
from all the separate Rollout-LSTMs, and then sends its features on the next time-step to each
Rollout-LSTM. Formally:
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Figure 5.4: Top Left: An example of a 3-Color-Choice environment with 3 different colored goals.
The blue rectangle represents the agent’s current field of view (pixels used as its state). The goal of
the environment is to navigate the room, and determine which of the colored goals contains the
positive reward. Bottom Left: An example of the 3-Reacher environment, with three different
target end-effector positions shown as colored spheres. The agent does not know which position
has the positive reward beforehand and must query the goal states during its exploration phase.
Top Right: Example RGB observation of the 3-Doom-Choice environment. Bottom Right:
Top-down view of the state of the observation above it, rendered to show the 3 objects that the
agent can collect in the room. For visualization purposes, the agent only has access to RGBD
images. Distances not to scale in top-down view.

5.2.2 Reward Sharing Schemes
Parallel rollouts allow the use of a variety of reward sharing schemes. An effective reward sharing
scheme is one which can redistribute risk amongst the rollouts but still allow external signals
to shape the training of the policy during exploration sub-episodes. This is in contrast to the
scheme used in ERL2 which completely disregards exploratory rewards during policy optimization,
sparsifying the reward signal. CEMRL affords more flexibility in the design of these schemes than
the sequential framework, because in the sequential case there is a significant asymmetry in the
exploratory sub-episodes (sub-episode 3 is conditioned on more information than 1 and 2, etc.).

Max-Until-Exploit: Given Kexplore rollouts executing in parallel, the Max-Until-Exploit
scheme takes as return the maximum over all rollout returns during explore sub-episodes, summed
with the return of the exploit sub-episode. Thus during the parallel exploration sub-episodes, the
Max-Until-Exploit scheme will cause agents to try to maximize at least one rollout’s return, while
the other rollouts are free to execute high-risk exploratory behaviours. This has the benefit of
ERL2’s risk-robustness while enabling an external signal on the performance of the exploration
sub-episodes. The return used to train the explore policies is:

RMax =

T∑
t=1

rt + max
(k)

T∑
t=1

r
(k)
t

StDev-Until-Exploit: The Standard Deviation(StDev)-Until-Exploit scheme takes as return the
standard deviation of per-rollout returns during explore sub-episodes, summed with the return of
the exploit sub-episode. The StDev-Until-Exploit scheme therefore gets higher reward when all
agents produce behaviours which result in a variety of returns. While this reward sharing scheme
will not be aligned to every task’s objective, we found it to provide some useful learning signal in
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Figure 5.5: Learning curves of the models on the four environments. Top: success rate of the
model over epochs. Bottom: average unique goal visitation frequency during explore sub-episodes.
3-Doom-Choice data points averaged over 160 meta-episodes & 2 seeds. All other environment data
points are averaged over 1280 meta-episodes & 3 seeds per model.

very high-risk environments. More specifically, the return is:
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5.2.3 Divergence Losses
Beyond reward sharing schemes, we develop several auxiliary losses which can help produce varied
behaviours in the population of agents. The goal of these auxiliary losses is to drive agents into
different partitions of the state space, encouraging exploration to new areas of the environments.
Given that we potentially want to deal with partially-observable environments, we develop a
framework that calculates divergences while still maintaining the proper memory states of each
rollout. First, let:
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Which runs rollout (i)’s architecture on rollout (j)’s trajectory and the meta architecture on some
permutation ρ of the trajectories such that ρ(i) = j holds. Then the divergence loss LD(i, j) is
equal to:∑H−1
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This loss encourages different rollout policies to output distinct action probabilities on the same
state history input, thereby achieving more diverse behaviours. Given the combinatorial number of
permutations, we implement this efficiently in the following manner. We first cache the values of
π(i)(·|s(i)

t−1, h
(i)
t−1, h

m
t−1) obtained during the policy rollout, then sample a permutation ρ and rollout

all K agents simultaneously on the permuted trajectories to calculate the sum over i of LD(i, ρ(i)).
To further improve efficiency, we restrict the permutations we sample to derangements (where no
element appears in its original position). We consider two forms of symmetric divergences: the
symmetric KL Divergence and the JS Divergence.

5.3 Experiments
We validate CEMRL on four environmentsN -Monty-Hall, N -Color-Choice, N -Reacher andN -Doom-
Choice, comparing against the baseline algorithms RL2 and ERL2. Results for the environments are
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10-Monty-Hall

Model AuC Final Perf. Updates until Success Rate Visited Goals25% 50% 75% 95% 100%
RL2 19.83 0.00 ± 0.0% - - - - - 0.00 ± 0.0
ERL2 2939.17 59.5 ± 0.1% 7500 9250 - - - 6.42 ± 0.0
Max-Until-Exploit 9575.42 100 ± 0.0% 1250 2750 3750 4500 5000 9.00 ± 0.0
StDev-Until-Exploit 9501.67 99.7 ± 0.5% 1250 2500 3750 5000 6500 9.00 ± 0.0

3-Color-Choice

Model AuC Final Perf. Updates until Success Rate Visited Goals10% 20% 40% 100%
RL2 3408.67 8.0 ± 1.0% 0 - - - 0.00 ± 0.0
ERL2 6811.58 22.0 ± 1.0% 2750 23750 - - 1.49 ± 0.1
Max-Until-Exploit 10374.25 43.7 ± 5.0% 5000 15750 30750 - 2.13 ± 0.2
StDev-Until-Exploit 11436.83 43.9 ± 7.5% 0 14500 28000 - 2.14 ± 0.3

3-Reacher
RL2 2500.25 26.0 ± 5.0% 7500 16250 - - 0.87 ± 0.09
ERL2 3521.38 29.4 ± 10.5 % 0 11250 - - 1.16 ± 0.12
Max-Until-Exploit 9399.12 61.4 ± 2.0% 1250 1750 4000 - 1.70 ± 0.02
StDev-Until-Exploit 9626.29 58.9 ± 1.5% 0 1500 4000 - 1.70 ± 0.01

3-DoomChoice
RL2 3989.45 0.1375 ± 2.5% 0 8000 - - 0.97 ± 0.02
ERL2 2076.17 0.1219 ± 2.8% 0 - - - 1.03 ± 0.06
Max-Until-Exploit 5259.38 0.6687 ± 4.4% 0 4500 7250 - 2.02 ± 0.01

Table 5.1: Results for the four environments. Area-under-Curve (AuC) integrates the learning
curves for a measure of learning speed. Final Perf. is the final checkpoint performance. Updates
until Success Rate is the number of gradient steps before a certain success rate is reached. Visited
Goals is the average number of unique goals visited during exploration sub-episodes. 3-Doom-Choice
results averaged over 2 seeds and 160 meta-episodes per data point. All other results averaged over
3 seeds and 1280 meta-episodes per data point.

presented in Tab. 5.1 and learning curves in Fig. 5.5. In-depth experimental details are described
in Appendix A.

N-Monty-Hall: The “Monty-Hall” environment (see Fig. 5.3) is the class of MDPs described
in Section 5.2. Each episode in the environment consists of an agent choosing from a set of N+1
actions. The first action is a NOOP, where the agent does not receive reward. The other N actions
choose from a set of doors, behind which is an unobservable reward not known a-priori to the agent.
For a given MDP from this class, only one fixed door will always give a small positive reward of +0.1
while all others give large negative rewards of -1. Succesful exploration in this environment therefore
needs the agent to accumulate large negative reward in order to eventually find the positive goal.
This setting clearly demonstrates RL2’s risk-adverseness, and ERL2’s difficulties due to reward
sparsity.

N-Color-Choice: N -Color-Choice (see Fig. 5.4, top left) is a navigation environment, with N
target absorbing goals {Gi}Ni=1 randomly spawned within a grid. An agent starts within the grid
facing a random orientation sampled from {North, East, West, South}. There are 3 possible actions
the agent can take: move forward to a neighboring un-occupied grid cell along its orientation, or
turn left or right to change orientation. Each goal Gi is assigned a hidden reward r(Gi) ∈ {−1, 1}
which is externally un-observable by the observation sensors within an episode, meaning there is no
possibility to determine r(Gi) using the observation history within a single episode. The rewards
are set such that only one unique goal has positive reward +1.

N-Reacher: N -Reacher (Fig. 5.4, bottom left) is built off the benchmark environment “Reacher-
v2” [182], extending that setting to multiple target positions and discrete torque actions of {−1, 0, 1}
N -Reacher has a 2-joint arm that must position its end-effector near a target position. The episode
ends whenever the agent gets below a distance threshold to the target. There are N targets where
only one of the targets has +1 and the others have -1. Each MDP in the class has target positions
varying within the [−1, 1]× [−1, 1]-sized area and random reward functions.

N-Doom-Choice: An implementation of the N -Color-Choice environment using the ViZ-
Doom [216] engine. An agent starts in a room with a collection of N objects randomly scattered
(Fig. 5.4, right). The agent must then learn which of the objects it should collect in order to
gain a positive reward, with all other objects providing a negative reward if collected. The agent
can only collect a single object in an episode. While similar to N -Color-Choice in semantics, this
environment is much more challenging to learn, requiring longer time horizons meant to test the
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Figure 5.6: Exploration capability of CEMRL v.s. ERL2 in 3-Color-Choice (Top) and 3-Reacher
(Bottom). Number of times CEMRL/ERL2 explored (x, y) position given that the goal was at (x, y),
over 40000 random meta-episodes. Brighter is better. Continuous 3-Reacher goals are quantized in
the visualizations. Left: CEMRL visitation frequency. Right: ERL2 visitation frequency.

scalability of the proposed CEMRL framework.
10-Monty-Hall Results: We can see a significant difference between CEMRL and the baselines

in learning speed, final performance, and meta-learner exploration. As expected, RL2 fails at this
environment, with the policy rapidly collapsing to the NOOP action as demonstrated by the learning
curves in Fig. 5.5, converging to 0 success rate and 0 unique goals entered during exploration. In
contrast, ERL2 performs better due to having no pressure to avoid entering the negative goals
during explore sub-episodes, so it sustains an average of 6 goals entered. The difficulty is that it
does not have incentive to explore, and the return of the exploit episode has to propagate backwards
over a long time horizon to provide a signal to exploratory behaviour. The unique goals entered by
ERL2 is slightly increasing, reaching 6.42 from an initial 6 after training for 12K update steps.

3-Color-Choice Results: For RL2, we can see a rapid collapse to no goal entries during
exploration sub-episodes due to the high-risk involved. ERL2 is capable of learning but does so at
a much slower pace than CEMRL. During exploration, ERL2 only learns to enter about half of
the available goals. Despite the 1.5/3 average goals entered during exploration sub-episodes, ERL2
still has trouble making the connection between reward of goals entered and optimal exploit policy,
only reaching average 0.2 exploit return, perhaps due to the longer time horizons making credit
assignment more challenging. CEMRL learns faster and at a higher performance than baselines.

3-Reacher Results: CEMRL shows a substantial improvement in learning speed and final
performance over RL2 and ERL2. RL2, in contrast to its performance in previous environments,
actually demonstrated learning on this environment. The reward scales in 3-Color-Choice and
3-Reacher are high-risk but do not preclude RL2 from solving them like 10-Monty-Hall, only having
a strong local minima for the NOOP policy which is then difficult to exit. For 3-Reacher, RL2
exited this local optimum after reaching it, as seen by the goal visitation curve dipping to 0 very
early on in training and then recovering afterwards at a rate much higher than ERL2.

CEMRL Does Better Exploration: A measure of exploration optimality within the en-
vironments tested is the number of unique goals visited during exploration sub-episodes, which
for N goals should be > N -2. We can see on the far-right column of Tab. 5.1 that only CEMRL
achieves optimal exploration in 10-Monty-Hall (9/10), and 1.5-2x more unique goals in Color-Choice,
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Model AuC Final Perf. Updates until Success Rate Visited
Goals

25% 50% 75% 95% 100%
CEMRL
Max-Until-Exploit 9575.96 100 ± 0.0% 1250 2750 3750 4500 5000 9.00
StDev-Until-Exploit 9501.67 99.7 ± 0.5% 1250 2500 3750 5000 6500 9.00
Mixing Schemes
Max+StDev-Until-Exploit 9448.75 99.0 ± 0.8% 1250 2750 4000 5000 6500 9.00
No Reward Scheme
Zero-Until-Exploit 9417.92 92.0 ± 11% 750 1750 3000 - - 8.67
No Divergence
Max-Until-Exploit 51.67 4.67 ± 6.6% - - - - - 9.00
StDev-Until-Exploit 45.83 0.0 ± 0.0% - - - - - 4.64
Zero-Until-Exploit 40.83 0.0 ± 0.0% - - - - - 6.15

Table 5.2: CEMRL ablation results for 10-Monty-Hall. We examined the contribution of mixing
reward schemes, using no reward scheme, and removing the divergence auxiliary objectives. We
can see that mixing reward schemes gives around the same performance as either Max- or StDev-
Until-Exploit. Using no reward scheme and divergence losses does much better than baselines
in final performance and learning speed, but ends up with a lower final performance than the
full CEMRL. Removing the divergence loss reduces learning capability in 10-Monty-Hall but
interestingly Max-Until-Exploit still learns an optimal exploration policy.

Reacher and Doom-Choice.
State Coverage of CEMRL: To examine the variety of exploration behaviours of CEMRL

and ERL2 after training in 3-Color-Choice and 3-Reacher, we sample 40000 meta-episodes for
each environment and keep track of where the goals were sampled and whether the agent reached
the goal, giving us an idea of the variety of states visited by the meta-learner during exploration.
Fig. 5.6 shows this heatmap for both CEMRL and ERL2 in the left and right columns, respectively.
CEMRL gets a much higher coverage of goal locations, meaning it not only improves over ERL2 on
the number of unique goals visited during exploration sub-episodes, but the variety of such goals as
well.

Ablation of CEMRL on 10-Monty-Hall: We carried out an ablation on 10-Monty-Hall
to try to extract out the contribution of each component of our proposed CEMRL with results
shown in Table 5.2. The first component we adjusted was the reward scheme. Given that the
reward scheme adds an extra hyperparameter, we wanted to examine whether it was possible to mix
together a variety of reward schemes and get similar results, to avoid an additional hyperparameter
to tune. This was the row labeled “Max+StDev-Until-Exploit”, a scheme which simply sums the
Max- and StDev-Until-Exploit reward schemes together during exporation sub-episodes. The result
demonstrates that we can nearly recover the performance of either reward scheme using this mixture,
demonstrating the robustness of the hyperparameter and suggesting that it can reasonably be set to
a mixture of reward schemes. The next component we changed was examining what happens when
we remove all reward schemes, making CEMRL rely only on external exploit returns as ERL2 does.
In this case, we can still see a substantial improvement over ERL2, which is (as explained later)
mainly due to divergence auxiliary objective that encourages exploration. Despite the improvement
over ERL2, Zero-Until-Exploit CEMRL still performs worse and with higher variance than if we
had used a reward-sharing scheme. Finally, we examined what happens to CEMRL without the
divergence auxiliary loss. In this case, we see a substantial decrease in exploit performance, with
final performance near 0. Interestingly, the Max-Until-Exploit CEMRL eventually achieves an
optimal explore policy despite the poor exploit performance. This suggests that higher exploit
performance is likely achievable with a finer tuning of the entropy scale parameter used in A2C, to
prevent the exploit sub-episode policy from collapsing “too early”, i.e. before the explore sub-policy
policies learn to enter goals. The other reward schemes do not seem successful at this challenging
task without the divergence auxiliary loss.

Scaling up CEMRL: In order to test whether CEMRL can scale to more complex tasks, we
report results on a 3D navigation environment [216]. From Fig. 5.5 and Tab. 5.1, we can see the
clear advantage of the CEMRL Max-Until-Exploit model over the RL2 and ERL2 baselines. The
baselines fail to learn above their initial random performance, perhaps owing to the increased
timescales necessary in this more challenging environment (150 time steps total). These results
provide evidence that the CEMRL framework, and the particular architectures presented here, can
easily scale to more complex 3D navigation domains with high-dimensional image observations.
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5.4 Discussion
Towards our goal of effective, general meta reinforcement learning agents using memory, in this
chapter we presented an alternative concurrent framework for inter-episodic-memory-based meta
reinforcement learning in general environments. Within this framework, interactions are processed
in parallel using separate agents, with the meta-learning mechanism now driven by a stateful
communication protocol between the separate rollout agents instead of an inter-episodic memory.
Beyond the reduction of the meta horizon to the time horizon of the environment, the multi-agent
setting also affords us the design and use of several specialized reward sharing schemes to induce
risk-robustness, and divergence losses to encourage diverse agent behaviours. We demonstrated
the effectiveness of our framework on a set of challenging environments, with concurrent meta
architectures outperforming those in the sequential setting.

In the next chapter, we move on to describing a new inter-episodic memory architecture which
is adapted from the highly-successful self-attention Transformer-XL architecture [40]. The proposed
Gated Transformer-XL (GTrXL) is shown in comprehensive experiments to be highly effective
in fully- and partially-observable meta-learning domains. Furthermore the GTrXL is shown to
learn in a multitask meta-learning domain setting, where the same policy can learn state-of-the-art
behaviour in a very disparate set of meta learning domains simultaneously and with the same model
parameters.
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Chapter 6

Transformers for Meta RL

It has been argued that self-attention architectures [207] deal better with longer temporal horizons
than recurrent neural networks (RNNs): by construction, they avoid compressing the whole past into
a fixed-size hidden state and they do not suffer from vanishing or exploding gradients in the same
way as RNNs. Recent work has empirically validated these claims, demonstrating that self-attention
architectures can provide significant gains in performance over the more traditional recurrent
architectures such as the LSTM [40, 164, 45, 218]. In particular, the Transformer architecture [207]
has had breakthrough success in a wide variety of domains: language modeling [40, 164, 218], machine
translation [207, 51], summarization [126], question answering [42, 218], multi-task representation
learning for NLP [45, 164, 218], and algorithmic tasks [42].

The repeated success of the transformer architecture in domains where sequential information
processing is critical to performance makes it an ideal candidate for meta RL problems, where
episodes can extend to thousands of steps and the critical observations for any decision often
span the entire episode. Yet, the RL literature is dominated by the use of LSTMs as the main
mechanism for providing memory to the agent [53, 102, 136]. Despite progress at designing more
expressive memory architectures [73, 212, 177] that perform better than LSTMs in meta-learning
and memory-based tasks and partially-observable environments, they have not seen widespread
adoption in RL agents perhaps due to their complex implementation, with the LSTM being seen as
the go-to solution for environments where memory is required. In contrast to these other memory
architectures, the transformer is well-tested in many challenging domains and has seen several
open-source implementations in a variety of frameworks 1.

Motivated by the transformer’s superior performance over LSTMs and the widespread availability
of implementations, in this chapter we investigate the transformer architecture in the RL setting. In
particular, we find that the canonical transformer is significantly difficult to optimize, often resulting
in performance comparable to a random policy. This difficulty in training transformers exists in
the supervised case as well. Typically a complex learning rate schedule is required (e.g., linear
warmup or cosine decay) in order to train [207, 40], or specialized weight initialization schemes are
used to improve performance [164]. These measures do not seem to be sufficient for RL. In [134],
for example, transformers could not solve even simple bandit tasks and tabular Markov Decision
Processes (MDPs), leading the authors to hypothesize that the transformer architecture was not
suitable for processing sequential information. Our experiments have also verified this observed
critical instability in the original transformer model.

However in this chapter we succeed in stabilizing training with a reordering of the layer nor-
malization coupled with the addition of a new gating mechanism to key points in the submodules
of the transformer. Our novel gated architecture, the Gated Transformer-XL (GTrXL) (shown in
Figure 6.1, Right), is able to learn much faster and more reliably and exhibit significantly better
final performance than the canonical transformer. We further demonstrate that the GTrXL achieves
state-of-the-art results when compared to the external memory architecture MERLIN [212] on the
multitask meta-learning “DMLab-30” suite [10]. Additionally, we surpass LSTMs significantly on
more partially-observable DMLab-30 levels while matching performance on the more reactive set
of levels, as well as significantly outperforming LSTMs on memory-based continuous control and
navigation environments. We perform extensive ablations on the GTrXL in challenging environments
with both continuous actions and high-dimensional observations, testing the final performance of

1www.github.com/tensorflow/tensor2tensor
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Figure 6.1: Transformer variants, showing just a single layer block (there are L layers total). Left:
Canonical Transformer(-XL) block with multi-head attention and position-wise MLP submodules
and the standard layer normalization [7] placement with respect to the residual connection [81].
Center: TrXL-I moves the layer normalization to the input stream of the submodules. Coupled
with the residual connections, there is a gradient path that flows from output to input without any
transformations. Right: The GTrXL block, which additionally adds a gating layer in place of the
residual connection of the TrXL-I.

the various components as well as the GTrXL’s robustness to seed and hyperparameter sensitivity
compared to LSTMs and the canonical transformer. We demonstrate a consistent superior perfor-
mance while matching the stability of LSTMs, providing evidence that the GTrXL architecture can
function as a drop-in replacement to the LSTM networks ubiquitously used in RL and meta RL.

6.1 Background & Related Work
Gating has been shown to be effective to address the vanishing gradient problem and thus improve
the learnability of recurrent models. LSTM networks [89, 72] rely on an input, forget and output
gate that protect the update of the cell. GRU [31, 29] is another popular gated recurrent architecture
that simplifies the LSTM cell, reducing the number of gates to two. Finding an optimal gating
mechanism remains an active area of research, with other existing proposals [109, 99, 215], as
well as works trying to discover optimal gating by neural architecture search [225] More generally,
gating and multiplicative interactions have a long history [173]. Gating has been investigated
previously for improving the representational power of feedforward and recurrent models [206, 41],
as well as learnability [189, 224]. Initialization has played a crucial role in making deep models
trainable [118, 69, 194].

There has been a wide variety of work looking at improving memory in reinforcement learning
agents. External memory approaches typically have a regular feedforward or recurrent policy
interact with a memory database through read and write operations. Priors are induced through the
design of the specific read/write operations, such as those resembling a digital computer [212, 73]
or an environment map [151, 76]. An alternative non-parametric perspective to memory stores an
entire replay buffer of the agent’s past observations, which is made available for the agent to itself
reason over either through fixed rules [15] or an attention operation [162]. Others have looked at
improving performance of LSTM agents by extending the architecture with stacked hierarchical
connections / multiple temporal scales and auxiliary losses [94, 191] or allowing an inner-loop update
to the RNN weights [132]. Other work has examined self-attention in the context of exploiting
relational structure within the input-space [219] or within recurrent memories [177].
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6.1.1 Transformer Architecture and Variants
The transformer network consists of several stacked blocks that repeatedly apply self-attention to
the input sequence. The transformer layer block itself has remained relatively constant since its
original introduction [207, 125, 164]. Each layer consists of two submodules: an attention operation
followed by a position-wise multi-layer network (see Figure 6.1 (left)). The input to the transformer
block is an embedding from the previous layer E(l−1) ∈ RT×D, where T is the number of time
steps, D is the hidden dimension, and l ∈ [0, L] is the layer index with L being the total number of
layers. We assume E(0) is an arbitrarily-obtained input embedding of dimension [T,D], e.g. a word
embedding in the case of language modeling or a visual embedding of the per-timestep observations
in an RL environment.

Multi-Head Attention

The Multi-Head Attention (MHA) submodule computes in parallel H soft-attention operations for
every time step, producing an output tensor Y (l) ∈ RT×D. MHA operates by first calculating the
query Q(l) ∈ RH×T×d, keys K(l) ∈ RH×T×d, and values V (l) ∈ RH×T×d (where d = D/H) through
trainable linear projections W (l)

Q , W (l)
K , and W (l)

V , respectively, and then using the combined Q, K,
V , tensors to compute the soft attention. A residual connection [81] to the resulting embedding
E(l) is then applied and finally layer normalization [7].

MHA(E(l−1)):

Q(l),K(l), V (l) = W
(l)
Q E(l−1),W

(l)
K E(l−1),W

(l)
V E(l−1)

α
(l)
htm = QhtdKhmd

W
(l)
htm = MaskedSoftmax(α(l), axis=m)

Y
(l)

htd = W
(l)
htmV

(l)
hmd

Ŷ (l) = E(l−1) + Linear(Y
(l)

)

Y (l) = LN(Ŷ (l))

where we used Einstein summation notation to denote the tensor multiplications, MaskedSoftmax
is a causally-masked softmax to prevent addressing future information, Linear is a linear layer
applied per time-step and we omit reshaping operations for simplicity.

Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) submodule applies a 1× 1 temporal convolutional network f (l)

(i.e., kernel size 1, stride 1) over every step in the sequence, producing a new embedding tensor
E(l) ∈ RT×D. As in [40], the network output does not include an activation function. After the
MLP, there is a residual update followed by layer normalization:

E(l) = LN(Y (l) + f (l)(Y (l))) (6.1)

Relative Position Encodings

The basic MHA operation does not take sequence order into account explicitly because it is
permutation invariant, so positional encodings are a widely used solution in domains like language
where order is an important semantic cue, appearing in the original transformer architecture [207].
To enable a much larger contextual horizon than would otherwise be possible, we use the relative
position encodings and memory scheme described in [40]. In this setting, there is an additional
T -step memory tensor M (l) ∈ RT ×D, which is treated as constant during weight updates.
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RMHA(M (l−1), E(l−1)):

Ẽ(l−1) = [M (l−1), E(l−1)]

Q(l),K(l), V (l) = W
(l)
Q E(l−1),W

(l)
K Ẽ(l−1),W

(l)
V Ẽ(l−1)

R = W
(l)
R Φ

α
(l)
htm = QhtdKhmd +QhtdRhmd

+ uh∗dKhtm + vh∗dRhmd

W
(l)
htm = MaskedSoftmax(α(l), axis=m)

Y
(l)

htd = W
(l)
htmV

(l)
hmd

Ŷ (l) = E(l−1) + Linear(Y
(l)

)

Y (l) = LN(Ŷ (l))

where Φ is the standard sinusoid encoding matrix, u(l), v(l) ∈ RH×d are trainable parameters, the
∗ represents the broadcast operation, and WR is a linear projection used to produce the relative
location-based keys (see [40] for a detailed derivation).

For shorthand, we write the relative position multi-head attention as:

Y (l) = LN(E(l−1) + RMHA(SG(M (l−1)), E(l−1))) (6.2)

6.2 Gated Transformer Architectures
While the transformer architecture has achieved breakthrough results in modeling sequences
for supervised learning tasks [207, 125, 40], a demonstration of the transformer as a useful RL
memory has been notably absent. Previous work has highlighted training difficulties and poor
performance [134]. When transformers have not been used for temporal memory but instead as a
mechanism for attention over the input space, they have had success—notably in the challenging
multi-agent Starcraft 2 environment [208]. Here, the transformer was applied solely across Starcraft
units and not over time.

In order to alleviate these difficulties, we propose the introduction of powerful gating mechanisms
in place of the residual connections within the transformer block, coupled with changes to the order
of layer normalization in the submodules. Our gated architecture is motivated by multiplicative
interactions having been successful at stabilizing learning across a wide variety of architectures [89,
189, 29], and we empirically see these same improvements in our proposed gated transformer.

Additionally, we propose that the key benefit of the “Identity Map Reordering”, where layer
normalization is moved onto the "skip" stream of the residual connection, is that it enables an
identity map from the input of the transformer at the first layer to the output of the transformer
after the last layer. This is in contrast to the canonical transformer, where there are a series of layer
normalization operations that non-linearly transform the state encoding. One hypothesis as to why
the Identity Map Reordering improves results is, assuming that the submodules at initialization
produce values that are in expectation near zero, the state encoding is passed un-transformed to the
policy and value heads, enabling the agent to learn a Markovian policy at the start of training (i.e.,
the network is initialized such that π(·|st, ... , s1) ≈ π(·|st) and V π(st|st−1, ... , s1) ≈ V π(st|st−1)).
The original positioning of the layer normalization, on the other hand, would scale down at each
layer the information flowing through the skip connection, forcing the model to rely on the residual
path. In many environments, reactive behaviours need to be learned before memory-based ones can
be effectively utilized, i.e., an agent needs to learn how to walk before it can learn how to remember
where it has walked.

6.2.1 Identity Map Reordering
Our first change is to place the layer normalization on only the input stream of the submodules,
a modification described in several previous works [82, 164, 8]. The model using this Identity
Map Reordering is termed TrXL-I in the following, and is depicted visually in Figure 6.1 (center).
Because the layer norm reordering causes a path where two linear layers are applied in sequence,
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we apply a ReLU activation to each sub-module output before the residual connection. The TrXL-I
already exhibits a large improvement in stability and performance over TrXL (see Section 6.4.3).

In more detail, the Identity Map Reordering modifies the standard transformer formulation as
follows: the layer norm operations are applied only to the input of the sub-module and a non-linear
ReLU activation is applied to the output stream.

Y
(l)

= RMHA(LN([SG(M (l−1)), E(l−1)])) (6.3)

Y (l) = E(l−1) + ReLU(Y
(l)

) (6.4)

E
(l)

= f (l)(LN(Y (l))) (6.5)

E(l) = Y (l) + ReLU(E
(l)

) (6.6)

See Figure 6.1 (Center) for a visual depiction of the TrXL-I.

6.2.2 Gating Layers
We further improve performance and optimization stability by replacing the residual connections in
Equations 6.2 and 6.1 with gating layers. We call the gated architecture with the identity map
reordering the Gated Transformer(-XL) (GTrXL). The final GTrXL layer block is written below:

Y
(l)

= RMHA( LN([SG(M (l−1)), E(l−1)]))

Y (l) = g
(l)
MHA(E(l−1),ReLU(Y

(l)
))

E
(l)

= f (l)(LN(Y (l)))

E(l) = g
(l)
MLP(Y (l),ReLU(E

(l)
))

where g is a gating layer function. A visualization of our final architecture is shown in Figure 6.1
(right), with the modifications from the canonical transformer highlighted in red. In our experiments
we ablate a variety of gating layers with increasing expressivity:

Input: The gated input connection has a sigmoid modulation on the input stream, similar to
the short-cut-only gating from [82]:

g(l)(x, y) = σ(W (l)
g x)� x+ y

Output: The gated output connection has a sigmoid modulation on the output stream:

g(l)(x, y) = x+ σ(W (l)
g x− b(l)g )� y

Highway: The highway connection [189] modulates both streams with a sigmoid:

g(l)(x, y) = σ(W (l)
g x+ b(l)g )� x+ (1− σ(W (l)

g x+ b(l)g ))� y

Sigmoid-Tanh: The sigmoid-tanh (SigTanh) gate [206] is similar to the Output gate but with an
additional tanh activation on the output stream:

g(l)(x, y) = x+ σ(W (l)
g y − b)� tanh(U (l)

g y)

Gated-Recurrent-Unit-type gating: The Gated Recurrent Unit (GRU) [31] is a recurrent
network that performs similarly to an LSTM [89] but has fewer parameters. We adapt its powerful
gating mechanism as an untied activation function in depth:

r = σ(W (l)
r y + U (l)

r x), z = σ(W (l)
z y + U (l)

z x− b(l)g )

ĥ = tanh(W (l)
g y + U (l)

g (r � x))

g(l)(x, y) = (1− z)� x+ z � ĥ.

Gated Identity Initialization: We have claimed that the Identity Map Reordering aids policy
optimization because it initializes the agent close to a Markovian policy / value function. If this is
indeed the cause of improved stability, we can explicitly initialize the various gating mechanisms to
be close to the identity map. This is the purpose of the bias b(l)g in the applicable gating layers. We
later demonstrate in an ablation that initially setting b(l)g > 0 can greatly improve learning speed.

74



Figure 6.2: Left: The Numpad environment, showing the controllable “sphere” robot and a full
3x3 pad. Pads are activated when the robot collides with their center. The robot can move on the
plane as well as jump to avoid pressing numbers. Right: Top down view of “Memory Maze”: (1)
Central chamber, (2) blocks among which the apple is placed, (3) landmarks the agent can use to
locate the apple, (4) one of the possible location of the apple.

Figure 6.3: A set of example observations taken from DMLab-30 levels.

6.2.3 Motivating the Gated Transformer-XL Architecture
To provide a more detailed background on the two key architectural changes we have introduced into
the canonical transformer, in this section we discuss the related work which served as the motivation
behind these changes. The first change suggested is the movement of the layer normalization
to the input of the residual module. The transformer canonically places the layer normalization
after residual recombination, which causes an effective non-linearity on the path from input to
output embedding. The move to change the layer normalization placement was primarily motivated
by the results of GPT-2 at language modeling [164], which demonstrated effective learning using
this same “pre-norm” placement, and also the ResNet-v2 architecture [82], which showed that
maintaining an approximate identity map from input to output at initialization was important
for improved performance and stability. Beyond the work done in this chapter, in concurrent
work [217] the canonical “post-norm” placement was shown both theoretically and experimentally
to cause optimization difficulties due to exploding gradients, and the same “pre-norm” placement as
suggested by this chapter was shown to have improved stability and ease-of-optimization.

The gating layers added to the gated transformer were similarly motivated by the idea of
improving optimization stability on the path from inputs to output embedding. In early experiments,
we often observed high-magnitude gradients when training transformer policies with reinforcement
learning objectives. High-magnitude gradients are a well-known problem in recurrent network
design, where repeated summations can cause gradient magnitudes to explode [156] so, while
distinct from the recurrent setting by notably lacking any recurrent weight matrix shared across
depth, we were motivated to at least empirically test that recurrent gating layers [89][30] could
provide an improvement to optimization stability and reduce the impact of, or even remove,
high-magnitude gradients during training. Beyond improving recurrent optimization, previous
work also demonstrated that gating layers help improve performance in completely feedforward
architectures [41] [189] [206], which provided further motivation to empirically test this set of
architectural changes to the transformer.
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6.3 Methodology

6.3.1 Environment Details
Numpad Details

In Numpad [92], a robotic agent is situated on a platform resembling the 3x3 number pad of a
telephone (generalizable to N ×N pads). The agent can interact with the pads by colliding with
them, causing them to be activated (visualized in the environment state as the number pad glowing).
The goal of the agent is to activate a specific sequence of up to N2 numbers, but without knowing
this sequence a priori. The only feedback the agent gets is by activating numbers: if the pad is the
next one in the sequence, the agent gains a reward of +1, otherwise all activated pads are cleared
and the agent must restart the sequence. Each correct number in the sequence only provides reward
once, i.e. each subsequent activation of that number will no longer provide rewards. Therefore
the agent must explicitly develop a search strategy to determine the correct pad sequence. Once
the agent completes the full sequence, all pads are reset and the agent gets a chance to repeat the
sequence again for more reward. This means higher reward directly translates into how well the
pad sequence has been memorized. An image of the scenario is provided in Figure 6.2. There is the
restriction that contiguous pads in the sequence must be contiguous in space, i.e. the next pad in
the sequence can only be in the Moore neighborhood of the previous pad. No pad can be pressed
twice in the sequence.

Numpad (Fig. 6.2, left) has three actions, two of which move the sphere towards some direction
in the x,y plane and the third allows the agent to jump in order to get over a pad faster. The
observation consists of a variety of proprioceptive information (e.g. position, velocity, acceleration)
as well as which pads in the sequence have been correctly activated (these will shut off if an incorrect
pad is later hit), and the previous action and reward. Episodes last a fixed 500 steps and the agent
can repeat the correct sequence any number of times to receive reward. Observations were processed
using a simple 2-layer MLP with tanh activations to produce the transformer’s input embedding.

DMLab-30 Details

DMLab-30 [10] (shown in Fig. 6.3) is a large-scale, multitask meta RL benchmark comprising 30
first-person 3D environments with image observations and has been widely used as a benchmark
for architectural and algorithmic improvements [212, 53, 102, 86]. The levels test a wide range of
agent competencies such as language comprehension, navigation, handling of partial observability,
memory, planning, and other forms of long horizon reasoning, with episodes lasting over 4000
environment steps.

Example image observations are shown in Fig. 6.3. Ignoring the “jump” and “crouch” actions
which we do not use, an action in the native DMLab action space consists of 5 integers whose
meaning and allowed values are given in Table 6.1. Following previous work on DMLab [86], we
used the reduced action set given in Table 6.2 with an action repeat of 4. Observations are 72× 96
RGB images. Some levels require a language input, and for that all models use an additional
64-dimension LSTM to process the sentence.

Below is the complete list of DMLab-30 level names we use in our “Memory” and “Reactive”
partitions for reproducibility.
Memory:

rooms_select_nonmatching_object, rooms_watermaze, explore_obstructed_goals_small,
explore_goal_locations_small, explore_object_rewards_few, explore_obstructed_goals_large,
explore_goal_locations_large, explore_object_rewards_many,

Reactive:
rooms_collect_good_objects_train, rooms_exploit_deferred_effects_train,
rooms_keys_doors_puzzle, language_select_described_object, language_select_located_object,
language_execute_random_task, language_answer_quantitative_question,
lasertag_one_opponent_large, lasertag_three_opponents_large, lasertag_one_opponent_small,
lasertag_three_opponents_small, natlab_fixed_large_map, natlab_varying_map_regrowth,
natlab_varying_map_randomized, skymaze_irreversible_path_hard,
skymaze_irreversible_path_varied, psychlab_arbitrary_visuomotor_mapping,
psychlab_continuous_recognition, psychlab_sequential_comparison, psychlab_visual_search,
explore_object_locations_small, explore_object_locations_large
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Figure 6.4: The 25 hyperparameter settings sampled for the sensitivity ablation (Sec. 6.4.3). X-axis
is in log scale and values are sampled from the corresponding ranges given in Table 6.5.

Memory Maze Details

The “Memory Maze” environment (Fig.6.2) is a memory-based navigation task in which the agent
must discover the location of an apple randomly placed in a maze. The agent receives a positive
reward for collecting the apple and is then teleported to a random location in the maze, with the
apple’s position held fixed. The agent can make use of landmarks situated around the room to
return as quickly as possible to the apple for subsequent rewards. Therefore, an effective mapping
of the environment results in more frequent returns to the apple and higher reward.

An action in the native Memory Maze action space consists of 8 continuous actions and a single
discrete action whose meaning and allowed values are given in Table 6.4. Unlike for DMLab, we
used a hybrid continuous-discrete distribution [142] to directly output policies in the game’s native
action space. Observations are 72× 96 RGB images. A visual description of the environment is
shown in Fig. 6.2.

6.3.2 Agent Details
For all transformer architectures except when otherwise stated, we train relatively deep 12-layer
networks with embedding size 256 and memory size 512. These networks are comparable to the
state-of-the-art networks in use for small language modeling datasets (see enwik8 results in [40]).
We chose to train deep networks in order to demonstrate that our results do not necessarily sacrifice
complexity for stability, i.e. we are not making transformers stable for RL simply by making them
shallow. Our networks have receptive fields that can potentially span any episode in the environments
tested, with an upper bound on the receptive field of 6144 (12 layers× 512 memory [40]). Future
work will look at scaling transformers in RL even further, e.g. towards the 52-layer network in [164].

For all experiments, we used V-MPO [188], an on-policy adaptation of Maximum a Posteriori
Policy Optimization (MPO) [1, 2] that performs approximate policy iteration based on a learned
state-value function V (s) instead of the state-action value function used in MPO. Rather than
directly updating the parameters in the direction of the policy gradient, V-MPO uses the estimated
advantages to first construct a target distribution for the policy update subject to a sample-based
KL constraint, then calculates the gradient that partially moves the parameters toward that target,
again subject to a KL constraint. V-MPO was shown to achieve state-of-the-art results for LSTM-
based agents on multi-task DMLab-30. As we want to focus on architectural improvements, we do
not alter or tune the V-MPO algorithm differently than the settings originally presented in that
paper for the LSTM architecture, which included hyperparameters sampled from a wide range.

Beyond sampling independent random seeds, each run also has V-MPO hyperparameters sampled
from a distribution (see Table 6.5). The sampled hyperparameters are kept fixed across all models
for a specific experiment, meaning that if one of the εα sampled is 0.002, then all models will have
1 run with εα = 0.002 and so on for the rest of the samples. The exception is for the DMLab-30
LSTM, where a more constrained range was found to perform better in preliminary experiments.
Each model had 8 seeds started, but not all runs ran to completion due to compute issues. These
hyperparameter settings were dropped randomly and not due to poor environment performance.
We report how many seeds ran to completion for all models. At least 6 seeds finished for every
model tested. We list architecture details by section below. All LSTM models have residual skip
connections in depth.

All experiments in this work were carried out in an actor-learner framework [53] that utilizes TF-
Replicator [20] for distributed training on TPUs in the 16-core configuration [70]. “Actors” running
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on CPUs performed network inference and interactions with the environment, and transmitted the
resulting trajectories to the centralised “learner“.

Image Encoder

For DMLab-30 and Memory Maze, we used the image encoder architecture [188]. The ResNet was
adapted from [86] and each of its layer blocks consists of a (3× 3, stride 1) convolution, followed by
(3× 3, stride 2) max-pooling, followed by 2 3× 3 residual blocks with ReLU non-linearities.

Agent Output

As in [188], in all cases we use a 256-unit MLP with a linear output to get the policy logits
(for discrete actions), Gaussian distribution parameters (for continuous actions) or value function
estimates.
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Action name Range

LOOK_LEFT_RIGHT_PIXELS_PER_FRAME [-512, 512]
LOOK_DOWN_UP_PIXELS_PER_FRAME [-512, 512]
STRAFE_LEFT_RIGHT [-1, 1]
MOVE_BACK_FORWARD [-1, 1]
FIRE [0, 1]

Table 6.1: Native action space for DMLab. See https://github.com/deepmind/lab/blob/
master/docs/users/actions.md for more details.

Action Native DMLab action

Forward (FW) [ 0, 0, 0, 1, 0]
Backward (BW) [ 0, 0, 0, -1, 0]

Strafe left [ 0, 0, -1, 0, 0]
Strafe right [ 0, 0, 1, 0, 0]

Small look left (LL) [-10, 0, 0, 0, 0]
Small look right (LR) [ 10, 0, 0, 0, 0]
Large look left (LL ) [-60, 0, 0, 0, 0]
Large look right (LR) [ 60, 0, 0, 0, 0]

Look down [ 0, 10, 0, 0, 0]
Look up [ 0, -10, 0, 0, 0]

FW + small LL [-10, 0, 0, 1, 0]
FW + small LR [ 10, 0, 0, 1, 0]
FW + large LL [-60, 0, 0, 1, 0]
FW + large LR [ 60, 0, 0, 1, 0]

Fire [ 0, 0, 0, 0, 1]

Table 6.2: Simplified action set for DMLab from [86].

Action Native DMLab action

Small look left (LL) [-10, 0, 0, 0, 0]
Small look right (LR) [ 10, 0, 0, 0, 0]

Look down [ 0, 10, 0, 0, 0]
Look up [ 0, -10, 0, 0, 0]

No-op [ 0, 0, 0, 0, 0]

Table 6.3: Simplified action set for DMLab Arbitrary Visuomotor Mapping (AVM). This action
set is the same as the one used for AVM in [212] but with an additional no-op, which may also be
replaced with the Fire action.
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Action name Range

LOOK_LEFT_RIGHT [-1.0, 1.0]
LOOK_DOWN_UP [-1.0, 1.0]
STRAFE_LEFT_RIGHT [-1.0, 1.0]
MOVE_BACK_FORWARD [-1.0, 1.0]
HAND_ROTATE_AROUND_RIGHT [-1.0, 1.0]
HAND_ROTATE_AROUND_UP [-1.0, 1.0]
HAND_ROTATE_AROUND_FORWARD [-1.0, 1.0]
HAND_PUSH_PULL [-10.0, 10.0]
HAND_GRIP {0, 1}

Table 6.4: Hybrid action set for Memory Maze, consisting of 8 continuous actions and a single
discrete action.

Hyperparameter Environment
DMLab-30 Numpad Memory Maze

Batch Size 128 128 128
Unroll Length 95 95 95

Discount 0.99 0.99 0.99
Action Repeat 4 1 4

Pixel Control Cost 2× 10−3 - -
Target Update Period 10 10 10

Initial η 1.0 10.0 1.0
Initial α 5.0 - 5.0
Initial αµ - 1.0 1.0
Initial αΣ - 1.0 1.0

εη 0.1 0.1 0.1

εα (log-uniform) LSTM [0.001, 0.025)
TrXL [0.001, 0.1) - [0.001, 0.1)

εαµ (log-uniform) - [0.005, 0.01) [0.005,0.01)
εαΣ (log-uniform) - [5e-6, 4e-4) [5e-6, 4e-5)

Table 6.5: V-MPO hyperparameters per environment.

Model # Layers Head
Dim. # Heads Hidden

Dim.
Memory
Size

Runs
Completed

LSTM 3 - - 256 - 8
Large LSTM 12 - - 512 - 6

TrXL 12 64 8 512 512 6
TrXL-I 12 64 8 512 512 6

GTrXL (GRU) 12 64 8 512 512 8
GTrXL (Input) 12 64 8 512 512 6
GTrXL (Output) 12 64 8 512 512 7
GTrXL (Highway) 12 64 8 512 512 7
GTrXL (SigTanh) 12 64 8 512 512 6

Thin GTrXL (GRU) 12 64 4 256 512 8

Table 6.6: DMLab-30 Ablation Architecture Details. We report the number of runs per model
that ran to completion (i.e. 10 billion environment steps). We follow the standard convention that
the hidden/embedding dimension of transformers is equal to the head dimension multiplied by the
number of heads. (Sec. 6.4.1 & Sec. 6.4.3).

Model # Layers Head
Dim. # Heads Hidden

Dim.
Memory
Size

Runs
Completed

LSTM 3 - - 256 - 5
GTrXL (GRU) 12 64 8 256 512 5

Table 6.7: Numpad Architecture Details. (Sec. 6.4.2).
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Model # Layers Head
Dim. # Heads Hidden

Dim.
Memory
Size

LSTM 3 - - 256 -
TrXL 12 64 8 256 512
TrXL-I 12 64 8 256 512

GTrXL (GRU) 12 64 8 256 512
GTrXL (Output) 12 64 8 256 512

Table 6.8: Sensitivity ablation architecture details (Sec. 6.4.3).

Model # Layers Head
Dim. # Heads Hidden

Dim.
Memory
Size

Runs
Completed

GTrXL (GRU) 4 64 4 256 512 8

Table 6.9: Gated identity initialization ablation architecture details (Sec. 6.4.3).

Model Mean HNR Mean HNR,
100-capped

LSTM 99.3 ± 1.0 84.0 ± 0.4
TrXL 5.0 ± 0.2 5.0 ± 0.2
TrXL-I 107.0 ± 1.2 87.4 ± 0.3

MERLIN@100B 115.2 89.4
GTrXL (GRU) 117.6 ± 0.3 89.1 ± 0.2
GTrXL (Input) 51.2 ± 13.2 47.6 ± 12.1
GTrXL (Output) 112.8 ± 0.8 87.8 ± 0.3
GTrXL (Highway) 90.9 ± 12.9 75.2 ± 10.4
GTrXL (SigTanh) 101.0 ± 1.3 83.9 ± 0.7

Table 6.10: Final human-normalized return (HNR) averaged across all 30 DMLab levels for baselines
and GTrXL variants. We also include the 100-capped score where the per-level mean score is
clipped at 100, providing a metric that is proportional to the percentage of levels that the agent is
superhuman. We see that the GTrXL (GRU) surpasses LSTM by a significant gap and exceeds the
performance of MERLIN [212] trained for 100 billion environment steps. The GTrXL (Output) and
the proposed reordered TrXL-I also surpass LSTM but perform slightly worse than MERLIN and
are not as robust as GTrXL (GRU) (see Sec. 6.4.3). We sample 6-8 hyperparameters per model.
We include standard error over runs.

6.4 Experiments
In this section, we provide experiments on a variety of challenging single and multi-task meta RL
domains: DMLab-30 [10], Numpad and Memory Maze (see Fig. 6.2 and 6.3). These environments
are meta-learning domains because they have randomized parameters each episode, and the
solution to the current instance relies on discovering the latent parameters (what maze geometry
the agent is within, where objects are located, what object it should recall in its past, etc.).
Crucially we demonstrate that the proposed Gated Transformer-XL (GTrXL) not only shows
substantial improvements over LSTMs on the partially-observable meta RL environments, but
suffers no degradation of performance on more reactive environments. The GTrXL also exceeds
MERLIN [212], an external memory architecture which used a Differentiable Neural Computer [73]
coupled with auxiliary losses, surpassing its performance on both memory and reactive tasks.

6.4.1 Transformer as Effective RL Memory Architecture
We first present results of the best performing GTrXL variant, the GRU-type gating, against a
competitive LSTM baseline, demonstrating a substantial improvement on the DMLab-30 domain [10].
Figure 6.5 shows mean return over all levels as training progresses, where the return is human
normalized as done in previous work (meaning a human has a per-level mean score of 100 and a
random policy has a score of 0), while Table 6.10 has the final performance at 10 billion environment
steps. The GTrXL has a significant gap over a 3-layer LSTM baseline trained using the same
V-MPO algorithm. Furthermore, we included the final results of a previously-published external
memory architecture, MERLIN [212]. Because MERLIN was trained for 100 billion environment
steps with a different algorithm, IMPALA [53], and also involved an auxiliary loss critical for the
memory component to function, the learning curves are not directly comparable and we only report
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Figure 6.5: Average return on DMLab-30, re-scaled such that a human has mean 100 score on each
level and a random policy has 0. Left: Results averaged over the full DMLab-30 suite. Right:
DMLab-30 partitioned into a “Memory” and “Reactive” split (described in Table 6.3.1). The GTrXL
has a substantial gain over LSTM in memory-based environments, while even slightly surpassing
performance on the reactive set. We plot 6-8 hyperparameter settings per architecture. MERLIN
scores obtained from personal communication with the authors.

the final performance of the architecture as a dotted line. Despite the differences, our results
demonstrate that the GTrXL can match the previous state-of-the-art on DMLab-30. An informative
split between a set of memory-based levels and more reactive ones (listed in Section 6.3.1) reveals
that our model specifically has large improvements in environments where memory plays a critical
role. Meanwhile, GTrXL also shows improvement over LSTMs on the set of reactive levels, as
memory can still be used in some of these levels.

Furthermore, in [212], the DMLab Arbitrary Visuomotor Mapping task was specifically used to
highlight the MERLIN architecture’s ability to utilize memory. In Figure 6.6 we show that, given a
similarly reduced action set as used in [212], see Table 6.3, the GTrXL architecture can also reliably
attain human-level performance on this task.

Figure 6.6: Learning curves for the DMLab Arbitrary Visuomotor Mapping task using a reduced
action set.

6.4.2 Scaling with Memory Horizon
We next demonstrate that the GTrXL scales better compared to an LSTM when an environment’s
temporal horizon is increased, using the “Numpad” continuous meta RL task of [92] which allows
an easy combinatorial increase in the temporal horizon. We present two results in this environment
in Figure 6.9. The first measures the final performance of the trained models as a function of the
pad size. We can see that LSTM performs badly on all 3 pad sizes, and performs worse as the
pad size increases from 2 to 4. The GTrXL performs much better, and almost instantly solves the
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Figure 6.7: Learning curves for the gating mechanisms, along with MERLIN score at 100 billion
frames as a reference point. We can see that the GRU performs as well as any other gating
mechanism on the reactive set of tasks. On the memory environments, the GRU gating has a
significant gain in learning speed and attains the highest final performance at the fastest rate. We
plot both mean (bold) and the individual 6-8 hyperparameter samples per model (light).

Figure 6.8: Learning curves comparing a thinner GTrXL (GRU) with half the embedding dimension
of the other presented gated variants and TrXL baselines. The Thin GTrXL (GRU) has fewer
parameters than any other model presented but still matches the performance of the best performing
counterpart, the GTrXL (Output), which has over 10 million more parameters. We plot both mean
(bold) and 6-8 hyperparameter settings (light) per model.

environment with its much more expressive memory. On the center and right images, we provide
learning curves for the 2× 2 and 4× 4 Numpad environments, and show that even when the LSTM
is trained twice as long it does not reach GTrXL’s performance.

6.4.3 Gating Variants + Identity Map Reordering
We demonstrated that the GRU-type-gated GTrXL can achieve state-of-the-art results on DMLab-
30, surpassing both a deep LSTM and an external memory architecture, and also that the GTrXL
has a memory which scales better with the memory horizon of the environment. However, the
question remains whether the expressive gating mechanisms of the GRU could be replaced by
simpler alternatives. In this section, we perform extensive ablations on the gating variants described
in Section 6.2.2, and show that the GTrXL (GRU) has improvements in learning speed, final
performance and optimization stability over all other models, even when controlling for the number
of parameters.

Performance Ablation

We first report the performance of the gating variants in DMLab-30. Table 6.10 and Figure 6.7
show the final performance and training curves of the various gating types in both the memory /
reactive split, respectively. The canonical TrXL completely fails to learn, while the TrXL-I improves
over the LSTM. Of the gating varieties, the GTrXL (Output) can recover a large amount of the
performance of the GTrXL (GRU), especially in the reactive set, but as shown in Sec. 6.4.3 is
generally far less stable. The GTrXL (Input) performs worse than even the TrXL-I, reinforcing
the identity map path hypothesis. Finally, the GTrXL (Highway) and GTrXL (SigTanh) are more
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Model Mean Human
Norm. Score

# Param.
Millions

LSTM 99.3 ± 1.0 9.25M
Large LSTM 103.5 ± 0.9 51.3M

TrXL 5.0 ± 0.2 28.6M
TrXL-I 107.0 ± 1.2 28.6M

Thin GTrXL (GRU) 111.5 ± 0.6 22.4M
GTrXL (GRU) 117.6 ± 0.3 66.4M
GTrXL (Input) 51.2 ± 13.2 34.9M

GTrXL (Output) 112.8 ± 0.8 34.9M
GTrXL (Highway) 90.9 ± 12.9 34.9M
GTrXL (SigTanh) 101.0 ± 1.3 41.2M

Table 6.11: Parameter-controlled ablation. We report standard error of the means of 6-8 runs per
model.

Model % Diverged
LSTM 0%
TrXL 0%

TrXL-I 16%
GTrXL (GRU) 0%

GTrXL (Output) 12%

Table 6.12: Percentage of the 25 parameter settings where the training loss diverged within 2 billion
env. steps. We do not report numbers for GTrXL gating types that were unstable in DMLab-30.
For diverged runs we plot the returns in Figure 6.10 as 0 afterwards.

sensitive to the hyperparameter settings compared to the alternatives, with some settings doing
worse than TrXL-I.

Hyperparameter and Seed Sensitivity

Beyond improved performance, we next demonstrate a significant reduction in hyperparameter and
seed sensitivity for the GTrXL (GRU) compared to baselines and other GTrXL variants, using the
“Memory Maze” environment (Fig.6.2) as a testbed. We chose to perform the sensitivity ablation
on Memory Maze because (1) it requires the use of long-range memory to be effective and (2)
it includes both continuous and discrete action sets which makes optimization more difficult. In
Figure 6.10, we sample 25 independent V-MPO hyperparameter settings from a wide range of
values and train the networks to 2 billion environment steps. Then, at various points in training
(0.5B, 1.0B and 2.0B), we rank all runs by their mean return and plot this ranking. Models with
curves which are both higher and flatter are thus more robust to hyperparameters and random
seeds. Our results demonstrate that (1) the GTrXL (GRU) can learn this challenging memory
environment in much fewer environment steps than LSTM, and (2) that GTrXL (GRU) beats the
other gating variants in stability by a large margin, thereby offering a substantial reduction in
necessary hyperparameter tuning. The values in Table 6.12 list what percentage of the 25 runs
per model had losses that diverged to infinity. The only model reaching human performance in 2
billion environment steps is the GTrXL (GRU), with 10 runs having a mean score > 8.

Parameter-Count-Controlled Comparisons

For the final gating ablation, we compare transformer variants while tracking their total parameter
count to control for the increase in capacity caused by the introduction of additional parameters in
the gating mechanisms. To demonstrate that the advantages of the GTrXL (GRU) are not solely
due to an increase in parameter count, we halve the number of attention heads (which also effectively
halves the embedding dimension due to the convention that the embedding size is the number
of heads multiplied by the attention head dimension). The effect is a substantial reduction in
parameter count, resulting in less parameters than even the canonical TrXL. Fig. 6.8 and Tab. 6.11
compare the different models to the “Thin” GTrXL (GRU), with Tab. 6.11 listing the parameter
counts. We include a parameter-matched LSTM model with 12 layers and 512 hidden size. The
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Figure 6.9: Numpad results demonstrating that the GTrXL has much better memory scaling
properties than LSTM. Left: As the Numpad environment’s memory requirement increases
(because of larger pad size), the GTrXL suffers much less than LSTM. However, because of the
combinatorial nature of Numpad, the GTrXL eventually also starts dropping in performance at 4x4.
We plot mean and standard error of the last 200 episodes after training each model for 0.15B, 1.0B
and 2.0B environment steps for Numpad size 2, 3 and 4, respectively. Center, Right: Learning
curves for the GTrXL on 2× 2 and 4× 4 Numpad. Even when the LSTM is trained for twice as
long, the GTrXL still has a substantial improvement over it. We plot 5 hyperparameter settings
per model for learning curves.

Figure 6.10: Sensitivity analysis of GTrXL variants versus TrXL and LSTM baselines. We sample
25 different hyperparameter sets and seeds and plot the ranked average return at 3 points during
training (0.5B, 1.0B and 2.0B environment steps). Higher and flatter lines indicate more robust
architectures. The same hyperparameter sampling distributions were used across models. We plot
human performance as a dotted line.

Thin GTrXL (GRU) surpasses every other model except the GTrXL (GRU), even surpassing the
next best-performing model, the GTrXL (Output), with over 10 million less parameters.

Gated Identity Initialization Ablation

All applicable gating variants in the main text were trained with the gated identity initialization.
We observed in initial Memory Maze results that the gated identity initialization significantly
improved optimization stability and learning speed. Figure 6.11 compares an otherwise identical
4-layer GTrXL (GRU) trained with and without the gated identity initialization. Similarly to
the previous sensitivity plots, we plot the ranked mean return of 10 runs at various times during
training. As can be seen from Fig. 6.11, there is a significant gap caused by the bias initialization,
suggesting that preconditioning the transformer to be close to Markovian results in large learning
speed gains.

6.4.4 Atari-57 Results
In this section, we run the GTrXL on the multitask Atari-57 benchmark (see Fig. 6.12 and Tab. 6.13).
Although Atari-57 was not designed specifically to test an agent’s memory capabilities, we include
these results here to demonstrate that we suffer no performance regression on a popular environment
suite, providing further evidence that GTrXL can be used as an architectural replacement to the
LSTM.

The LSTM and GTrXL are matched in width at 256 dimensions. The GTrXL is 12 layers deep
to show our model’s learning stability even at large capacity. The LSTM architecture matches the
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Figure 6.11: Ablation of the gated identity initialization on Memory Maze by comparing 10 runs of a
model run with the bias initialization and 10 runs of a model without. Every run has independently
sampled hyperparameters from a distribution. We plot the ranked mean return of the 10 runs of
each model at 1, 2, and 4 billion environment steps. Each mean return is the average of the past
200 episodes at the point of the model snapshot. We plot human performance as a dotted line.

Figure 6.12: Median human-normalized returns as training progresses for both GTrXL and LSTM
models. We run 8 hyperparameter settings per model.

one reported in [188]. We train for 11.4 billion environment steps, equivalent to 200 million per
environment. We run 8 hyperparameter settings per model.

6.4.5 Motivating the Identity Map Re-ordering
In this section, we present further evidence corroborating the hypothesis that the identity map
re-odering of the layer normalization operation can enable an initial reactive policy compared to
other placements of the layer norm.

To show this, we sampled a randomly-initialized deep residual network. For simplicity, we used
a single fully-connected layer in each residual stream in place of the MLP or MHA sub-module in
the transformer blocks. Each layer is randomly initialized using the PyTorch [157] “torch.nn.Linear”
default initializer and is not using an activation function. Let x be the input to a residual block,
f(x) the residual module, and y the output of the residual block. We consider 4 different placements
of layer normalization within these randomly-initialized networks.

1. nonorm (y = x+ f(x)): represents a standard residual network without any normalization
operations.

Model Median HNR
LSTM 136.6 ± 3.4
GTrXL 137.1 ± 5.0

Table 6.13: Final human-normalized median return across all 57 Atari levels for LSTM and GTrXL
at 11.4 billion environment steps (equivalent to 200 million per individual game). Both models are
256 dimensions in width. We include standard error over runs.
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Figure 6.13: Alignment between embedding (network input) and layer features for a randomly-
initialized deep linear residual network. We can see that the only layer norm placement which
maintains high alignment is the identity map re-ordering (prenorm for short in the legend). Averaged
over 1000 random 256-dimensional embeddings sampled from a standard Gaussian. Shaded regions
represents standard error.

2. prenorm (y = x + f(LN(x))): is shorthand for the identity map re-ordering, where layer
normalization is applied only before input to the residual stream fully-connected layer.

3. postnorm (y = LN(x+ f(x))): is the original transformer layer norm placement, applied
after residual recombination.

4. bothnorm (y = LN(x+ f(LN(x))): combines prenorm and postnorm, i.e. applies 2 layer
norms per residual block: one applied on the input to the residual stream, and the other
applied after residual recombination.

We design an experiment to measure how easily an input state embedding will pass unchanged
to the policy output layer for each layer norm placement described above. To do this, we sample
1000 256-dimensional embeddings from a standard Gaussian and pass it through a 24-layer linear
residual network, constructed as described earlier. We then evaluate the cosine alignment of the
input embedding to each layer’s feature embedding, to see how much noise is injected as the
embedding progresses through the residual blocks. We show in Fig. 6.13 that the only layer norm
placement that maintains high alignment to the input embedding as a function of depth is the
prenorm placement, or identity map re-ordering. In particular, we can see that the postnorm,
bothnorm and to a lesser extent nonorm placements exhibit a very rapid decay of initial feature
alignment, meaning by the 12th layer extracting information directly from the state becomes much
more difficult. In contrast, prenorm is almost always aligned to the initial embedding, with barely
any degradation throughout the entire 24-layers.

6.5 Discussion
To summarize, in this chapter we provided evidence that confirms previous observations in the
literature that standard transformer models are unstable to train in the RL setting and often fail
to learn completely [134]. We presented a new architectural variant of the transformer model, the
GTrXL, which has increased performance, more stable optimization, and greater robustness to initial
seed and hyperparameters than the canonical architecture. The key contributions of the GTrXL are
reordered layer normalization modules and a gating layer instead of the standard residual connection.
We performed extensive ablation experiments in meta RL domains testing the robustness, ease
of optimization and final performance of the gating layer variations, as well as the effect of the
reordered layer normalization. These results empirically demonstrate that the GRU-type gating
performs best across all metrics, exhibiting comparable robustness to hyperparameters and random
seeds as an LSTM while still maintaining a performance improvement. Furthermore, the GTrXL
(GRU) learns faster, more stably and achieves higher final performance (even when controlled for
parameters) than the other gating variants on the challenging multitask DMLab-30 benchmark
suite. Having demonstrated substantial and consistent improvement in DMLab-30, Numpad and
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Memory Maze over the ubiquitous LSTM architectures currently in use, the GTrXL makes the case
for wider adoption of transformers in RL and meta learning.

However, a major obstacle not directly addressed in this chapter is the significant computational
resources required to train even moderate-scale transformer models. While also an issue in training
transformers using standard supervised learning, this cost is compounded when training using
(non-offline) reinforcement learning due to the fact that the learning policy (or a policy close to it)
must be used for acting. With a forward pass of the transformer thus necessary for each environment
step taken during training, substantial computational resources are required to produce enough
data in a reasonable amount of time. In this chapter, we sidestepped this obstacle through running
a large number of distributed CPU actors in parallel; however, these resources are not typically
available except at large industry labs or when using university supercomputers. Therefore, in
order to democratize the use of transformers in (meta-)reinforcement learning and unlock their
potential for more researchers, in the next chapter we work towards one solution to efficiently
training transformers with reinforcement learning, Actor-Learner Distillation.
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Chapter 7

Efficient Transformers for Meta RL

In Chapter 6, we demonstrated that large-scale transformers were capable of reaching new state-
of-the-art performance on challenging multi-task meta-learning benchmarks. However, many
real-world applications such as robotics provide hard constraints on power and compute that
limit the viable model complexity of agents. Similarly, in many distributed RL settings, acting
is done on un-accelerated hardware such as CPUs, which likewise restricts model size to prevent
intractable experiment run times or the requirement of substantial computational resources, as was
the case of Chapter 6. These “actor-latency” constrained settings present a major obstruction to the
further scaling up of model complexity that has recently been extremely successful in supervised
learning [19].

To be able to utilize large model capacity while still operating within the limits imposed
by the system during acting, in this chapter we develop an “Actor-Learner Distillation” (ALD)
procedure that leverages a continual form of distillation that transfers learning progress from a
large capacity learner model to a small capacity actor model. We then apply this ALD procedure
to significantly reduce the computational cost of training gated transformers in partially-observed
meta-reinforcement learning domains. With gated transformer models as the learner and LSTMs
as the actor, we demonstrate in challenging memory and meta-learning environments that using
Actor-Learner Distillation recovers the clear sample-efficiency gains of the gated transformer learner
model, while still maintaining the fast inference and reduced total training time of the LSTM actor
model.

Compared to standard supervised learning domains, reinforcement learning presents unique
challenges in that the agent must act while it is learning. In certain actor-latency-constrained
application areas, there exists maximum latency constraints on the acting policy which limit its
model size. These constraints on latency preclude typical solutions to reducing the computational
cost of high capacity models, such as model compression or off-policy reinforcement learning, as
it strictly requires a low computational-complexity model to be acting during learning. Here,
the major constraint is that the acting policy model must execute a single inference step within
a fixed budget of time, which we denote by Tactor – the amount of compute or resources used
during learning is in contrast not highly constrained. This setting is ubiquitous within real-world
application areas: for example, in the context of learning policies for robotic platforms, because of
inherent limitations in compute ability due to power and weight considerations it is unlikely a large
model could run fast enough to provide actions at the control frequency of the robot’s motors.

However, for many of these strictly actor-latency constrained settings there are orthogonal
challenges involved which prevent ease of experimentation, such as the requirement to own and
maintenance real robot hardware. In order to develop a solution to actor-latency constrained
settings without needing to deal with substantial externalities, we focus on the related area of
distributed on-policy reinforcement learning [136, 182, 54]. Here a central learner process receives
data from a series of parallel actor processes interacting with the environment. The actor processes
run step-wise policy inference to collect trajectories of interaction to provide to the learner, and they
can be situated adjacent to the accelerator or distributed on different machines. With a large model
capacity, the bottleneck in experiment run-times for distributed learning quickly becomes actor
inference, as actors are commonly run on CPUs or devices without significant hardware acceleration
available. The simplest solution to this constraint is to increase the number of parallel actors, often
resulting in excessive CPU resource usage and limiting the total number of experiments that can
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be run on a compute cluster. Therefore, while not a hard constraint, experiment run-time in this
setting is largely dominated by actor inference speed. The distributed RL setting therefore presents
itself as a accessible test-bed for solutions to actor-latency constrained reinforcement learning.

Within the domain of distributed RL, an area where reduced actor-latency during learning could
make a significant impact is in the use of large Transformers [207] to solve partially-observable
environments [155]. Transformers [207] have rapidly emerged as the state-of-the-art architecture
across a wide variety of sequence modeling tasks [19, 164, 45] owing to their ability to arbitrarily
and instantly access information across time as well as their superior scaling properties compared to
recurrent architectures. As shown in Chapter 6, their application to reinforcement learning domains
has shown results surpassing previous state-of-the-art architectures while matching standard LSTMs
in robustness to hyperparameter settings [155]. However, a downside to the Transformer compared
to LSTM models is its significant computational cost.

In this chapter, we present a solution to actor-latency constrained settings, “Actor-Learner
Distillation” (ALD), which leverages a continual form of Policy Distillation [174, 149] to compress,
online, a larger “learner model” towards a tractable “actor model”. In particular, we focus on the
distributed RL setting applied to partially-observable and meta-reinforcement-learning environments,
where we aim to be able to exploit the transformer model’s superior sample-efficiency while still
having parity with the LSTM model’s computational-efficiency during acting. On challenging
memory environments where the transformer has a clear advantage over the LSTM, we demonstrate
our Actor-Learner Distillation procedure provides substantially improved sample efficiency while
still having experiment run-time comparable to the smaller LSTM.

7.1 Background & Related Work
A Markov Decision Process (MDP) [196] is a tuple of (S,A, T , γ,R) where S is a finite set of states,
A is a finite action space, T (s′|s, a) is the transition model, γ ∈ [0, 1] is a discount factor and R is
the reward function. A stochastic policy π ∈ Π is a mapping from states to a probability distribution
over actions. The value function V π(s) of a policy π for a particular state s is defined as the expected
future discounted return of starting at state s and executing π: V π(s) =

∑∞
t=0 γ

trt. The optimal
policy π∗ is defined as the policy with the maximum value at every state, i.e. ∀s ∈ S, π ∈ Π we have
V π
∗
(s) > V π(s). The optimal policy is guaranteed to exist [196]. In this chapter’s experiments, we

focus on Partially-Observable MDPs (POMDPs) which define environments which cannot observe
the state directly and instead must reason over observations. POMDPs require the agent to reason
over histories of observations in order to make an informed decision over which action to choose.
This is what motivates our use of memory models such as LSTMs [89] or gated transformers
(Chapter 6).

In this chapter, similar to the previous one, we use V-MPO [188] as the main reinforcement
learning algorithm. V-MPO, an on-policy value-based extension of the Maximum a Posteriori Policy
Optimisation algorithm [3], used an EM-style policy optimization update along with regularizing
KL constraints to obtain state-of-the-art results across a wide variety of environments. Similar
to [188], we use the IMPALA [54] distributed RL framework to parallelize acting and learning.
Actor processes step through the environment and collect trajectories of data to send to the learner
process, which batches actor trajectories and optimizes reinforcement learning objectives to update
the policy parameters. The updated parameters are then communicated back to actor processes in
order to maintain on-policyness.

In the following, we first refer to a single observation and associated statistics (reward, etc.) as
a step. We refer to an environment step as the acquisition of a step from the environment after
an action is taken. The total number of environment steps is a measure of the sample complexity
of an RL algorithm. We refer to a step processed by an RL algorithm as an agent step. The total
number of agent steps is a measure of the computational complexity of the RL algorithm. We use
steps per second (SPS) to measure the speed of an algorithm. We refer to Learner SPS as the
total number of agent steps processed by the learning algorithm per second. We refer to Actor
SPS as the total number of environment steps acquired by a single actor per second.

Related to this chapter’s presented Actor-Learner Distillation (ALD) method, whether a deep
neural network could be compressed into a simpler form was examined shortly after deep networks
were shown to have widespread success [6, 88]. Distillation objectives revealed that not only could
high-capacity teacher networks be transferred to low-capacity student networks [6], but that training
using these imitation objectives produced a superior low-capacity model compared to training from
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scratch [88], with this effect generalizing to the case where student and teacher share equivalent
capacity [66]. Similar to this chapter’s desired goal to leverage the rapid memorization capabilities
of transformers while training an LSTM, other work showed that distillation between different
architecture classes could enable the transfer of inductive biases [112, 4]. Within RL, distillation
has most often been used as a method for stabilizing multitask learning [174, 149, 201, 12].

The method most closely related to ALD in the literature is Mix&Match [38], where an ensemble
of policies is defined such that each successive model in the ensemble has increasing capacity. All
models in the ensemble are distilled between each other, and a mixture of the ensemble is used for
sampling trajectories, with the mixture coefficients learnt through population-based training [95].
There are however significant difference from ALD: the distillation procedure was meant to transfer
simple, quick-learning skills from a low-capacity model to a high-capacity model (the opposite
intended direction of the benefit of distillation in ALD) and a mixture policy was used to sample
trajectories which did not consider actor-latency constraints (and preferred sampling from the
larger model if it performed better).

Similar to ALD, various works have looked at exploiting asymmetries between acting and
learning in reinforcement learning [159, 93]. In [159], since the value function is ultimately not
needed during deployment, it was given privileged access to state information during training
(whereas the policy must operate directly from pixels). Our baseline Asymm. AC was derived
from this insight that value networks are solely needed during learning, but our variant had a
value function that utilized privileged compute resources instead of state access during training.
Another closely related method is the training paradigm of [93], where a belief network was trained
to predict hidden state information in partially-observable meta-learning environments. The hidden
representations from the belief network were then used as an auxiliary input to an agent network
trained to solve the task, enabling representation learning to use privileged information during
training.

As an alternative to model compression, architecture development can reduce the computational
cost of certain model classes. Transformers in particular have had a large amount of attention
towards designing more efficient alternatives [200], as gains from increased model scale have yet
to saturate [19]. This architectural development has taken many forms: sparsified attention [28],
compressed attention [166, 39], use of kNN instead of soft-attention [115], etc. (See [200] for a
comprehensive review). However, architectural development is largely orthogonal to the ALD
procedure, as it means we can further scale actor and learner models by a corresponding degree.

7.2 Actor-Learner Distillation
Within the setting of distributed RL, a major challenge in applying transformers to reinforcement
learning is their significant computational cost owing to their high actor latency. As an example,
in Fig. 7.1 we present some results comparing a transformer to an LSTM on the I-Maze memory
environment (see Sec. 7.5.1). In Fig. 7.1, Left, a 4-layer Gated Transformer-XL (GTrXL) [155] agent
significantly surpasses a 32-dim. LSTM in terms of data efficiency, with the x-axis as environment
steps. However, in the right diagram, when the x-axis is switched to wall-clock time the LSTM
becomes the clearly more efficient model.

In order to work towards an ideal model with both high sample efficiency and low experiment
run time, we analyzed which parts of the distributed actor-critic system led to the transformer’s
main computational bottlenecks. As shown in the table on the bottom of Fig. 7.1, we found the
percentage of time that the asynchronous learner process was spending waiting for new trajectory
data was substantially higher for the transformer than for the LSTM. Further looking at actor SPS
between models revealed that the cause of this idling is mainly due to the transformer’s actor SPS
being over 15 times slower than the LSTM. This substantial decrease in SPS could even render
the transformer not viable in actor-latency-constrained settings, e.g. robotic control environments,
which entails a hard constraint on actor inference speed.

These findings suggest that considerable improvements in training speed could be attainable if
the actors produced data faster. While de-coupling actor and learner speeds using an off-policy RL
algorithm could be a suitable solution for many applications, we desired a solution that respected
strict constraints on actor latency, which precludes ever running a large model during inference. As
an alternative solution which respected this constraint, we designed a model compression procedure
termed “Actor-Learner Distillation” (ALD) which continually performs distillation between a large-
capacity “Learner” model, which is trained using RL but never run directly in the environment, and
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Model % Idle
for Traj.

Actor
SPS

LSTM 34% 1053
GTrXL 84% 70

Figure 7.1: Left: On the I-Maze environment (see Sec. 7.5.1), there is a clear sample efficiency
advantage of the Gated Transformer-XL (GTrXL) [155], which rapidly reaches 100% success rate
compared to the LSTM. Center: When the x-axis is changed to wall-clock time, the LSTM becomes
the more efficient model. Right: Table showing, for both 32-dim. LSTM and 4-layer GTrXL, (1)
percentage of time the learner spends waiting for new on-policy trajectory data from distributed
actor processes, (2) how many environment steps are processed per second (SPS) on a single actor
process. We can see that for the much more computationally expensive transformer, the learner
is spending a majority of its time idling and this is due to the order-of-magnitudes slower actor
inference. Plots averaged over 3 seeds, all run using reference machine A (Appendix 7.4.3).

a fast “Actor” model, which is trained using distillation from the learner and is used to collect data.
As we use an actor-critic training paradigm in this work, each of these models effectively comprises

two functions, the policy and value function. We denote the actor model byMA = (πA, V
π
A ) and

learner model byML = (πL, V
π
L ). The actor model is chosen with the appropriate model capacity

to compute an inference step on the target hardware as fast as possible, i.e. within time Tactor. In
contrast, there are far fewer constraints on learner modelML, as it is typically running on a central
process with accelerated hardware. While there are no restrictions besides latency concerns on the
model class of actor and learner in the context of ALD, in this work we choose to focus on the case
of the actor model being an LSTM and the learner model being a transformer. As there is a clear
data efficiency advantage to the transformer and a clear computational advantage to the LSTM,
the success of ALD at extracting the benefits of both models can be more clearly recognized.

Actor-Learner Distillation proceeds with the learner modelML being trained using a standard
reinforcement learning algorithm, with the exception of the environment data being generated by
the actor model. The actor model is trained using a policy distillation loss:

LπALD = Es∼πA [DKL(πA(·|s)||πL(·|s))] = Es∼πA

[∑
a∈A

πA(a|s) log
πA(a|s)
πL(a|s)

]
(7.1)

Similar to previous distillation work in the multitask setting [201], we employ this loss bidirectionally:
the actor is trained towards the learner policy and the learner policy is regularized towards the
actor policy. This regularization loss on the learner was seen to enable smoother optimization. As
actor and learner policy will naturally be different at some points during training, an off-policy RL
algorithm for the learner could be thought to be required if the divergence is large enough. We
found leveraging off-policy data to be effective for the actor, and sampled trajectory data from a
replay buffer when computing Eq. 7.1 during actor model optimization.

Beyond a distillation loss, we experimented with a value distillation loss:

LVALD = Es∼πA
[

1

2
(V πL (s)− V πA (s))2

]
(7.2)

This loss functions to encourage actor model representations to model task reward structure. The
use of value distillation in order to improve representations in a policy network has also been
explored in concurrent work [35]. Unlike the policy distillation loss, this loss is only used to train
the actor model. The final Actor-Learner Distillation loss is:

LALD = απL
π
ALD + αV L

V
ALD (7.3)

where απ and αV are mixing coefficients to control the contribution of each loss.
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Figure 7.2: Top: An overview of distributed Actor-Learner Distillation, showing the processes as
boxes and communication as arrows (data flow shown as blue arrows, parameter flow as orange).

7.3 Distributed Actor-Learner Distillation
In order to make more efficient use of computational resources, we develop a distributed system for
Actor-Learner Distillation based on IMPALA [54]. An overview of this system is shown in Fig. 7.2,
and we detail the function of each distinct process below, in the order of data flow:

Actor: There are NA parallel actors, each executing on single-threaded processes with only
CPU resources available. Each Actor process steps through environment steps sequentially until a
trajectory of TU time steps is gathered. Actions are sampled from a local copy of the actor policy
πA. Once a completed trajectory is acquired, it is communicated to a Queue process.

Queue: The Queue process receives trajectories asynchronously across actors and accumulates
them into batches. The batched trajectories are then passed to the Learner Runner.

Learner Runner: The Learner Runner process runsML in inference mode on the incoming
batches of data using a hardware accelerator. This is done to provide (1) learning targets to
the Distill processes downstream and (2) to make sure learner model initial memory states are
updated for the Learner. Specifically when ML is a transformer model, we additionally batch
over the time dimension to process data even more rapidly. The Learner Runner then passes the
batched trajectories it received along with computed learner model outputs to two separate parallel
processing streams, the Learner process and the Replay process.

Learner: The Learner process receives batched trajectories from the Learner Runner and
computes, using a hardware accelerator, all relevant RL objectives (V-MPO in our case [188]),
along with the loss in Eq. 7.1 to regularize the learner model towards the actor model. In the
Learner process, only the learner model parameters are updated. Similarly to recent work on deep
actor-critic algorithms [188, 127], we use a “target network” where we only communicate updated
learner parameters to the Learner Runner every KL optimization steps. Although not used here,
the Learner process can additionally receive data from the Replay process.

Replay: The Replay process manages a replay buffer containing a large store of previously
collected batched trajectories. Incoming batches of trajectories from the Learner Runner are
archived in a large first-in-first-out queue. The Learner and Distill processes can then request
batches of trajectories which are uniformly sampled from this queue.

Distill: Distill processes request data from the Replay buffer and use the retrieved trajectories
to compute the distillation loss in Eq. 7.3, which is then used to update the actor model parameters.
Similar to the Learner process, we utilize a target network scheme which updates model parameters
on the Actor processes every KA optimization steps.

7.3.1 Improving Distill / RL Step Ratio
An observation found early in the development of ALD was the significance of the "distillation
steps per RL steps" (DpRL) ratio. The DpRL ratio measures how many agent steps are taken per
second on the actor model (which takes "distillation steps") comparatively with the learner model’s
agent steps per second (which takes "reinforcement learning steps"). This is exemplified in the
left side of Fig. 7.3, where in the Meta-Fetch environment with 3 objects (see Sec. 7.5.2), we ran
ALD but set a fixed number of Actor agent steps for every Learner agent step. The graph shows a
greatly enhanced sample efficiency when the number of actor agent steps is increased in relation to
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Figure 7.3: Left: On the Meta-Fetch environment with 3 objects, we evaluated the importance of
the "Distillation steps per RL step" ratio. Shown on the left, as we increased this ratio we clearly
observed an improved sample efficiency in the Actor-Learner Distillation procedure, until saturation
at a ratio of 10. However, higher ratios came at the cost of substantial increase in wall-clock time, as
the high number of distillation steps quickly becomes the bottleneck of the system’s speed. Right:
Parallelizing the distill processes using HOGWILD! improved the DpRL ratio without causing a
slowdown in system speed. enabling an increase in data efficiency without a decrease in system
speed, as shown in this result on 9x9 I-Maze.

learner agent steps, until saturating at around 10 actor agent steps per learner agent step. Out of
all hyperparameters we tested, we found that a high DpRL ratio was consistently the most critical
parameter in increasing the sample efficiency of ALD. However, increasing the DpRL ratio naturally
increased the total run time of the system, as now the distillation process became the main system
bottleneck, and this encouraged investigation into parallelized ways of improving actor agent steps.

To avoid a complete system slowdown while maintaining a high DpRL ratio, we leveraged the
parallelized training procedure HOGWILD! [167] as a replacement to the single-Distill-process
system originally tested. HOGWILD! enables lock-free stochastic gradient optimization to be
performed by several parallel learning processes. Each process has shared access to the parameter
vector of the learning model, and can update it without requiring a mutually-exclusive lock. This
allows parameter updates to occur in parallel as soon as they are available, but potentially leads to
race conditions where the parameter vector is read during it being updated by a different process.
This means a fraction of the parameter vector can be stale when a learning process calculates the
parameter gradients. However, while this parallel overwriting of the parameter vector introduces
noise via this staleness, it usually does not significantly inhibit performance and is typically faster
than alternatives which use explicit locking to prevent race conditions.

In the HOGWILD! ALD setting, there are now ND parallel Distill processes, all of which
asynchronously sample batched trajectories from the replay buffer to update actor model parameters.
As there are typically more than 1 available accelerators on a single machine (see e.g. reference
machines 7.4.3), the parallel Distill processes can be evenly distributed between available accelerators
to make the best use of the resources at hand. In the right side of Figure 7.3, the HOGWILD!
Actor-Learner Distillation variant consistently achieved better sample complexity with equivalent
time complexity, across a wide sweep of hyper-parameter settings.

7.4 Methodology

7.4.1 Algorithm Details
For experiments, we use the V-MPO algorithm [188] as the RL algorithm underlying each of the
procedures we test. For ALD, we use V-MPO with V-trace corrections [54] which worked slightly
better in preliminary experiments. For baseline models V-MPO without V-trace worked better, as
in [188]. For all experiments, we use a single-layer LSTM of varying dimension depending on the
environment as the actor model. For transformers, we use the Gated Transformer-XL [155], which we
initially observed had better sample efficiency and optimization stability than standard transformers.
We vary the number of transformer layers dependent on the difficulty of the environment.
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Figure 7.4: Results on the 9 × 9 I-Maze environment for all models. Left: x-axis as number of
environment steps. Right: x-axis as wallclock time. All curves have 3 seeds. Obtained on reference
machine A (Sec. 7.4.3).

Figure 7.5: Results on the Meta-Fetch environment with 4 objects. Left: y-axis as environment
returns (objects fetched correctly per episode). Right: y-axis as success rate (all 4 objects fetched
correctly at least once in an episode). All curves have 3 seeds. Obtained on reference machine B
(Section 7.4.3).

7.4.2 Baselines
For each environment, we individually run the actor and learner model architectures used in ALD as
baselines. As an additional baseline besides the learner and actor models in isolation, we introduce
a model which maintains a distinct policy and value network. Here the policy network has the
same architecture as the actor model in ALD (i.e. a small LSTM) and the value network has the
same architecture as the learner model (i.e. a transformer). As the value function does not need to
be run on actor processes, only the policy, this baseline achieves similar run time as ALD without
requiring any extra insights. This baseline is an instance of Asymmetric Actor-Critic (Asymm.
AC) [159], but where instead of the value function having privileged access to state information it
has privileged access to computational resources. Comparison of ALD to Asymm. AC will reveal
whether the introduction of distillation losses has any positive effect over the simpler method of
creating independent policy/value functions.

7.4.3 Compute Details
Reference Machine A: Reference Machine A has a 36-thread Intel(R) Core(TM) i9-7980XE
CPU @ 2.60GHz, 64GB of RAM, and 2 GPUs: a GeForce GTX 1080 Ti and a TITAN V.

Reference Machine B: Reference Machine B has a 40-thread Intel(R) Xeon(R) CPU E5-2630
v4 @ 2.20GHz, 256GB of RAM and 2 GPUs: a Tesla P40 and a Tesla V100-PCIE-16GB.

7.4.4 Common Experimental Details
For all models, we sweep over the V-MPO target network update frequency KL ∈ {1, 10, 100}.
In initial experiments, we also sweeped the “Initial α” setting over values {0.1, 0.5, 1.0, 5.0}. All
experiment runs have 3 unique seeds. For each model, we choose the hyperparameter setting that
achieved highest mean return over all seeds. Additionally we use PopArt [87] for the value output.
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Hyperparameter Value

Optimizer Adam
Learning Rate 0.0001
NA 30
ND 8
Batch Size 64
TU 20
Discount Factor (γ) 0.99
Grad. Norm. Clipping Disabled
Initial η 1.0
Initial α {0.1, 0.5, 1.0, 5.0}
εη 0.1
εα 0.004
KL {1, 10, 100}
PopArt Decay 0.0003

Table 7.1: Common hyperparameters across experiments.

7.5 Experiments

7.5.1 I-Maze
The I-Maze environment has the agent start at the top-left corner of a grid-world with the shape of
an “I” (Fig. 7.6, Left). The agent must travel from the top-left corner to one of the bottom corners
of the I, where the episode is ended and the agent receives reward. The particular corner the agent
must travel to is revealed in the top-right corner of the I, which contains an “indicator” tile that
is either 0 or 1 depending on whether the left or right bottom corner contains the reward. If the
agent does not enter a terminating corner state in H time steps, the episode ends without a reward.
The agent entering the correct bottom corner goal based on the indicator receives a reward of 1.
Entering the incorrect corner results in the episode terminating with no reward. As memory is the
main concern of these results instead of exploration, for larger maze results (i.e. a maze of width
15), we add a shaping reward of 0.01 whenever the agent visits a state along the main corridor of
the “I”. Once the agent has traversed a particular state, it cannot gain another shaping reward
for returning there until the next episode. The agent has an orientation and observes every pixel
directly in front of it until it reaches an occluding wall.

Observations, Actions and Metrics

Observations in I-Maze are the single row of pixels starting at the agent’s current position and
extending in the direction the agent is facing. The row of pixels extends as far as the maze dimension.
If the agent has a wall in its field of view (represented as black pixels in Fig. 7.6), pixels further
away from that point are occluded. For the 9 × 9 maze, a reward is only given when the agent
enters the correct goal as decided by the indicator. For the 15× 15 maze, it is the same but there
is an additional shaping reward where whenever the agent enters one of the states along the central
column of the “I” for the first time within its current episode, it receives a small reward of 0.01.
This reward is meant to encourage exploration and prevent the very large number of environment
steps otherwise necessary for the agent to end up at a goal when taking actions randomly. The
agent has 4 actions, move forward, turn left, turn right and do nothing. Moving forward into a wall
causes no change in state. 9× 9 I-Maze episodes last for a horizon of 150 time steps while 15× 15
I-Maze episodes last for 350 steps. Observations have 3 channel dimensions, one for whether the
pixel is free space or a wall, one for the green goal indicator and one for the red goal indicator.

Architecture Details

LSTM: We use a single-layer LSTM with a hidden dimension of 32 for all experiments in this
domain.
GTrXL: We use a 2-layer GTrXL for the experiments in 9 × 9 and a 4-layer GTrXL for the
experiments in 9× 9. We use an embedding size of 256, 8 attention heads, a head dimension of 32,

96



Figure 7.6: Left: Example of the 15× 15-size I-Maze environment, with the indicator in this case
being red. Center: An example of the agent observation, which is a 3-pixel-wide egocentric beam
starting in the direction of the agent’s orientation. The agent cannot see behind itself or through
walls. Right: Example of the Meta-Fetch environment with 4 randomly located objects shown in
brown. The agent is shown in orange with its orientation indicated by the direction of the arrow.

a gated initialization bias of 2 and a memory length of 64. Other details were followed from [155].
ALD:We use the corresponding LSTMs and GTrXL described above depending on the environment.
During hyperparameter sweeps, we tested KA ∈ {1, 10, 100}. We set απ = 1 and sweep αV ∈
{0, 0.1, 1}.
Asymm. AC: We use the corresponding LSTMs and GTrXL described above depending on the
environment.

Discussion of Empirical Results

The environment provides a clear test on an agent’s ability to remember events over long horizons,
as the only way to reliably terminate an episode successfully is by remembering the indicator
observed near the start of the maze. In Figure 7.4, we provide complete reward curves for a
maze of dimension 9× 9. We plot curves with two different x-axes: environment steps, measuring
sample complexity, and wall-clock time. All curves were obtained on Reference Machine A (see
Section 7.4.3) under identical operating conditions, meaning wall-clock time is a fair comparison.
We can first observe the clear sample efficiency gains of the transformer over the LSTM as well
as its poorer performance when considering wall-clock time. Furthermore, we can observe that
Actor-Learner Distillation achieves significantly improved sample complexity over the stand-alone
LSTM. This confirms the ability of ALD to recover the sample-efficiency gains of the learner model.
In terms of wall-clock time, the Actor-Learner Distillation procedure is unmatched by any other
procedure, demonstrating its clear practical advantage.

In contrast to Actor-Learner Distillation, the Asymm. AC baseline does not seem to perform
as well despite equivalent model complexity and equivalent time complexity, as it contains both
identical actor and learner models. To gain insight into this result, we plotted the per-seed curves
of Actor-Learner Distillation and Asymm. AC on the 15× 15 I-Maze task in Figure 7.7. We can
clearly see an underlying pattern to the seed curves, all models have a local optimum at around 0.5
success where each model class spends a varying amount of time. A return of 0.5 suggests that
the model has learnt to enter a goal, but not yet learnt to use the indicator to correctly determine
which goal contains the positive reward. We measured how many environment steps each model
class spent in this local minima out of the 10 million total, and found that the LSTM and Asymm.
AC spend a majority of their time there. While it can be expected that the transformer can easily
exit this optima due to its ability to directly look back in time, interestingly ALD seems to recover
the same efficiency at escaping this minima as the stand-alone transformer. This suggests that ALD
can successfully impart the learner model’s inductive biases to the actor model during learning in a
way that is substantially more effective than just using the transformer as a value function (Asymm.
AC). Finally, in the left-hand-side of Fig. 7.7 we ran an ablation on 9 × 9 I-Maze to determine
whether the value distillation loss provided benefit to learning. We performed a hyperparameter
sweep for each setting of value distillation enabled or disabled. The results demonstrated that using
value distillation provides a slight but significant improvement.

7.5.2 Meta-Fetch
The “Meta-Fetch” meta-reinforcement learning environment, shown in Figure 7.6, requires an agent
to fetch a number of objects distributed randomly on an empty gridworld, with each object required
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Figure 7.7: Left: Value distillation consistently provides a slight improvement to results. Results
here were taken over a hyperparameter sweep with either value distillation enabled or disabled,
and the best performing curves were chosen from each setting. Center, Right: Plotting per-seed
curves (Center) of results in 15× 15 I-Maze reveals that the Asymm. AC and LSTM baseline spend
a significant amount of time achieving a mean success rate around 0.5 (quantified in the right-hand
bar plot). A success of 0.5 suggests both models have learnt to enter a goal but are not yet able to
use their memory to make the inference between goal entered and indicator identity. In contrast
ALD and GTrXL rapidly learn to reach a perfect return of 1 and do not spend much time near 0.5.

to be fetched in a particular hidden sequence. Crucially, in Meta-Fetch (1) the agent can not sense
the unique identity of each object, meaning each object looks the same to the agent, (2) the agent
does not know beforehand the sequence of objects it must obtain, and (3) observations consist
of local views of pixels in front of the agent’s current orientation (see Fig. 7.6). When the agent
collects an object, it can either receive a positive reward if this object is the next correct one in the
sequence, or receive no reward and the sequence of objects is reset. To prevent cheating (i.e. the
agent obtaining a reward and then immediately resetting the sequence, and repeating), the agent
receives a positive reward only on the first instance of it collecting the next correct object in the
sequence. Once all objects in the sequence have been fetched, the objects and rewards are reset
and the environment proceeds as it did at the start of the episode (except the agent is now in the
position of the last object fetched). Meta-Fetch presents a highly challenging problem for memory
architectures because the agent must simultaneously learn the identity of objects by mapping their
spatial relations using only local egocentric views, as well as learn a discrete search strategy to
memorize the correct sequence of objects to hit. Meta-Fetch was inspired by the meta-learning
environment “Number Pad” used in previous work [93, 155] and in Chapter 6.

Observations, Actions and Metrics

In Meta-Fetch, an agent acts in an empty 2D gridworld of size 7× 7 given only local observations.
At each step the agent can choose to either move forward or turn left or right. Observations are
the 15 pixels in front of the agent pointing in it’s orientation, along with the 2 pixels on either side
of this ray, for a complete observation size of C × 15× 3 pixels (see Fig. 7.6). Each observation
has C channels which determine whether that pixel represents free space, a wall, an object, or a
collected object. Every episode has the agent located in a new configuration of object locations.
We set a maximum episode length of 300 steps for Meta-Fetch.

The goal of the agent in Meta-Fetch is to collect, by colliding with, each of the randomly located
objects in a specific sequence. This sequence is not known beforehand and is randomized each
episode. The only clue to discovering this sequence is that when the agent hits the next right
object in the sequence, it gains a reward of 1 and the object is sensed as “collected”. Otherwise,
if it hit the wrong object in the sequence, then all previously collected objects are reset and the
agent must restart the fetch sequence from the beginning once again. Once all objects are collected,
they are all reset and the agent can restart the same sequence to once again gain reward for each
collected reward. Objects which have been reset before the complete fetch sequence is achieved do
not give further reward upon re-collection, to prevent the agent from falling into an local optimum
of repeatedly collecting a correct object and then immediately collecting an incorrect object to
reset the correct object.

Architecture Details

LSTM: We use a single-layer LSTM with a hidden dimension of 128.
GTrXL: We use a 4-layer GTrXL, an embedding size of 256, 8 attention heads, a head dimension
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of 32, a gated initialization bias of 2 and a memory length of 64. Other details were followed
from [155].
ALD:We use the corresponding LSTMs and GTrXL described above depending on the environment.
During hyperparameter sweeps, we tested KA ∈ {10, 100}. We set απ = 1 and sweep αV ∈
{0, 0.1, 1}.
Asymm. AC: We use the corresponding LSTMs and GTrXL described above depending on the
environment.

Discussion of Empirical Results

Results are reported in Fig. 7.5 for a Meta-Fetch environment with 4 randomly located objects. We
present plots of average return using both environment steps and wall-clock time as x-axes (left
plots), along with an additional plot which measures “success” (right plots). Success in Meta-Fetch
is defined as the agent completing at least 1 full object fetch sequence (agents can accomplish
multiple full fetch sequences for additional reward). As in I-Maze, we reconfirm the observation
that transformers achieve a superior sample efficiency over LSTMs, while at the cost of a much
slower wall-clock performance. Unlike I-Maze where Asymm. AC had a more positive effect on
sample efficiency, there is a less substantial difference between LSTM and Asymm. AC.

However, we can see a major difference between the baselines and Actor-Learner Distillation,
which early on achieves close to the transformer’s sample efficiency with a much smaller model. In
this much more challenging environment, which requires both memory and compositional reasoning,
the LSTM actor model in ALD suffers in performance later on when the GTrXL achieves a higher
rate of increase in reward. Examining the success rate reveals an interesting trend where the
ALD-trained LSTM achieves better generalization than the LSTM and Asymm. AC models. In
particular, we can see that although the LSTM and Asymm. AC have average return that is
increasing, their success rate is relatively stagnant (Asymm. AC) or even decreasing (LSTM). This
suggests the increase in return these baselines are observing mainly stem from them learning how to
search through a fraction of possible object layouts more efficiently. In contrast, the ALD-trained
LSTM’s success rate is correlated with its return, suggesting it is learning to succeed in a larger
variety of object layouts.

7.6 Discussion
To conclude this chapter, towards the development of efficient learning methods in actor-latency-
constrained settings, we developed the Actor-Learner Distillation (ALD) procedure, which leverages
a continual form of model compression between separate actor and learner models. In the context
of learning in partially-observable and meta-learning environments using a distributed actor-critic
system, ALD successfully demonstrated the ability to largely capture the sample efficiency gains
of a larger transformer learner model while still maintaining the reduced computational cost and
lower experiment run time of the LSTM actor model. As supervised learning demonstrates ever
increasing gains in performance from increasing model capacity, we believe the development of
effective methods of model compression for RL will become a more prominent area of study in
the future. Beyond increased scale, we hope that the reduced computational costs of training
transformers using ALD can unlock the use of transformers more widely.

With the close of this chapter and, further, this thesis section, we have described a methodology
which leverages powerful, scalable and general sequence models in order to accomplish few-shot
learning in reinforcement learning domains. Additionally, we have detailed novel parallelized
execution settings for meta-learning agents as well as a distributed reinforcement learning system
that uses distillation to significantly reduce the computational resources required to train these
models, with the goal of democratizing their more widespread use within the research community
as well as allowing them to be applied to latency-constrained environments. In the next chapter,
we will conclude this thesis by first re-iterating the goals we set out in the introduction, and then
summarizing the main achievements towards these goals accomplished within the chapters. Finally,
connections to on-going and future work will be highlighted and discussed.
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Chapter 8

Conclusion

While reinforcement learning has demonstrated increasingly more impactful capabilities in many
domains, its applicability to many real-world settings remains impeded by the high sample complexity
of the learning algorithms, which can require millions of interactions with a system in order to
gain competency. While there are numerous reasons underpinning the data inefficiency of these
algorithms, such as inefficient exploration algorithms, this poor sample complexity is in major
part owed to the generality of environment types these algorithms can be applied to, essentially
covering any setting that can be formulated as a Markov Decision Process. Specializing the domain
of environments an algorithm is applied to can enable more efficient learning by exposing novel
inductive biases that leverage statistical structure within the target task distribution. However,
hand-designing such inductive biases for each class of tasks of interest could require substantial
domain-knowledge and experimentation, making the cost of such specialization prohibitive.

The promise of meta-learning, or learning how to learn, is to automatically specialize a learning
algorithm to a set of environment domains, by the learning process itself using a nested set of
learning algorihms. More specifically, meta-learning algorithms are structured into a slow outer-loop
and a fast, efficient inner-loop of learning: the inner-loop of learning is meant to be specialized to a
set of related target tasks, which ideally share some underlying structure that can be exploited, while
the outer-loop of learning adapts some set of inner-loop optimizable parameters to the target task
distribution. The outer-loop learning algorithm is typically a more general, i.e. unspecialized, one,
such as a reinforcement learning or self-supervised learning algorithm. The outer-loop adjusts the
parameters of the inner-loop over a set of training tasks sampled from the target task distribution,
enabling the inner-loop learning algorithm to adapt its own inductive biases to quickly learn any new
task sampled from this task distribution. Meta-learning therefore amortizes the data inefficiency
of training the inner-loop over the entire target task distribution, promising a tuned inner-loop
learning algorithm that can solve any new tasks from the same distribution with much fewer data.

In this thesis, we focused on the development of meta-learning techniques which used parame-
terized deep sequence models as the inner-loop learning algorithm. In this setting, an agent has a
memory architecture whose temporal receptive field spans across multiple episodes of interaction of
the agent with a particular task or distribution of tasks. By being fed in as input the actions and
rewards in addition to the states, the sequence model is able to act as its own learning algorithm,
adjusting its internal representations to effectively decide to e.g. target new areas of the state space
to explore or to maximize its return on the next episode of interaction. By relying on a sequence
model to perform rapid adaptation to new tasks drawn from the target distribution, this method
functionally reduces the design of meta-learning algorithms into one of architecture design.

We presented several methods for meta-learning through memory. Section 1 exploited the
structural regularities available in embodied environments, an important setting which encompasses
robotics, in the design of novel memory models. Within the three chapters of this first section,
we built out the individual components of a monolithic embodied agent architecture: first, in
Chapter 2, a map-structured memory for the agent to rapidly retain semantic information about its
surroundings; second, in Chapter 3, architectures designed for enabling planning and state-inference
capabilities in the agent; and, finally, in Chapter 4, an architecture capable of simultaneously
mapping its environment and localizing itself with its partially-built map.

Section 2 then moved onto more general settings which did not make strong assumptions
about the particular environment structure. Chapter 5 introduced a novel parallelized execution
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strategy for meta-learning through memory agents, which stands in contrast to the sequential
episode processing typically used. Parallelized execution strategies are particularly important when
environment interaction is slow but can be parallelized, as it can increase the total experience
throughput of the meta-learning agent. In Chapter 6, by leveraging recent advancements in attention-
based sequence models we developed the gated transformer, a modified transformer architecture
with improved optimization stability that demonstrated state-of-the-art performance on DMLab-30.
Finally, in Chapter 7, we presented Actor-Learner Distillation, a distributed reinforcement learning
system that used an online form of distillation to significantly reduce the substantial computational
resources required for training transformer-style models, with the goal of democratizing these models
for the wider community as well as unlocking their application to latency-constrained settings, such
as deployment onboard a robotic platform.

8.1 Future Directions
There are many possible future avenues for research within the space of memory-based meta-
reinforcement learning. Here we note a few of them of particular interest, especially those which
are logical extensions of the work presented in this thesis.

8.1.1 Scaling Meta-Learning through Memory: Model Capacity
There has recently been a consistent demonstration across many different domains that, as trans-
formers are scaled in model capacity and as datasets grow increasingly larger, a significant and
profound ability to generalize to new tasks within the domain emerges [101, 83, 19]. In this setting,
a massive transformer is pretrained on vast amounts of data using simple self-supervised losses and
is then applied to new domains that have some similarity to data seen during pretraining. Given
only a few examples, which are used to either finetune the weights of the model or condition the
transformer using its attention context, the pretrained model can then often achieve state-of-the-art
performance on the downstream task [19]. Notably this ability to generalize continues to improve
as both the pretraining dataset size and model scale are increased, even when the model is scaled
to use entire datacenters worth of hardware accelerators [101, 83].

Therefore by amortizing the cost of pretraining a very large model over vast amounts of cheaply
available data, these models then gain a significant data-efficiency at downstream tasks where larger
amounts of data are likely unavailable. Given that the generalization ability of this process has
been validated in a variety of domains [19, 27, 83], it remains highly plausible that a similar sort of
generalization can emerge in control. One could imagine a single large transformer, e.g. on the
parameter scale of the GPT-2 language model [164], trained on an extremely large set of tasks, and
potentially demonstrating the ability to control disparate embodiments (e.g. different manipulation
or locomotion robots) or separate environment domains (e.g. different video games). It is also
possible that such a model could then be further finetuned to control novel embodiments or tasks
than the ones seen during training. If such a model could retain the data efficiency gains seen
by pretraining in other domains, it could result in a completely new approach to solving control
problems, and could open up the application of reinforcement learning agents to completely new
fields where data is extremely sparse or expensive to collect.

8.1.2 Scaling Meta-Learning through Memory: Context Length
Beyond the ability of large transformers to generalize to new tasks given small amounts of training
data, it has also been observed that, when given enough model capacity, large language models can
solve tasks simply by being conditioned on the type of behaviour that is desired [19]. For example,
given a dataset in the form of N {(xi, yi)}Ni=1 pairs and a prediction input x̂, one could feed in the
data directly as a string such as “(x1, y1), ... , (xN , yN ), (x̂,” and then sample from the model to get
the continuation of the string (and therefore the desired ŷ prediction). Through this process of
“prompting” the model, a surprising amount of knowledge can be successfully extracted from these
large models without any changes to their weights.

The connections between prompting and the multi-episode meta-learning that was the focus of
this thesis are clear, as the prompts can be seen to constitute a hand-constructed multi-episode
supervised learning task. Therefore the ability of the large-scale language models to be able to
perform prompt conditioning without being explicitly trained to do so, and to further generalize
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to types of prompts not seen explicitly in the training data, provides a significant motivation to
explore a similar mechanism for control domains. In this setting, a transformer could conceivably
be conditioned on a large store of interaction experience with a particular environment instance,
essentially a small replay buffer of experience, and then produce an optimal behaviour conditioned
on that data.

There are many possibilities on how to formulate this conditioning mechanism: is the data being
conditioned on obtained from random policies? Or from optimal policies, i.e. demonstrations? Or
is it from the transformer itself interacting with the environment, i.e. RLˆ2 [49]? Furthermore,
there are many avenues to explore to find learning objectives from which successful prompting
behaviour in the control setting could emerge – would simple objectives like reinforcement learning
with long enough context windows enable this kind of generalization? Alternatively, it could be that
prompting must be folded more directly into the training methodology, for example by sampling
plausible prompts during pretraining. Given the large differences in compositionality between
language and control, it is plausible that more speciailized losses or training procedures could be
required. Although there are many unanswered questions, this type of conditional prompt-based
generalization would represent the pinnacle achievement of the meta-learning through memory
paradigm and would have revolutionary impact on practical domains, as such a model could be
feasibly applied to few-shot learning scenarios.

8.1.3 Improved Efficiency for Large-Scale Transformers
As discussed in Chapter 7 , related to the research direction of scaling meta-learning models, an
important aspect of applying transformers to reinforcement learning is inference speed. As agent
model scale increases to the multi-billion parameter models seen in supervised domains like language
modeling [164, 19], inference will be increasingly the main computational bottleneck as environment
interaction will require a complete forward pass of the network for every action taken. Furthermore,
unlike in supervised settings, in reinforcement learning model compression cannot be performed
effectively offline and requires the learning model to interact with the environment in some capacity.

Therefore when pre-training the types of large-scale transformers as discussed in the previous
sections, the issue of policy inference will likely come to the forefront in a way it has not been
previously in reinforcement learning, which has typically used smaller models compared to supervised
domains. The question of how to do efficient data collection while maintaining a certain degree
of on-policyness will become a core issue, and while Actor-Learner Distillation as described in
Chapter 7 is one possible solution, it has not been comprehensively validated at larger scale, which
can present new and unforeseen issues that were not readily apparent at smaller scale. Even if
pretraining methods for control could somehow be done completely offline, e.g. using some form of
offline reinforcement learning, the issues relating to data collection with an expensive model are
thus only pushed downstream: after pretraining, some type of data collection will likely need to
occur on the target task in order for finetuning to be possible.

Research into efficient policy inference is also not constrained to the more narrow setting of
large pretrained transformer models and is likely to have wider impact on the general field of
reinforcement learning. As agent architectures scale to larger sizes due to increasing environment
complexity, more attention will need to be paid on how data collection and policy inference can
occur without incurring excessive experiment runtimes or computational cost. Additionally in
actor-latency constrained domains, where acting is under hard constraints on action sampling
latency, achievable model capacity is directly linked with policy inference speed as acting is usually
done on limited or unaccelerated hardware, e.g. onboard a mobile robotic platform.

8.1.4 General Sequence Models for Embodied Environments
In the first half of this thesis, we presented a path towards a monolithic architecture for meta-
learning in embodied environments. This agent architecture consisted of several subcomponents
which mimic the traditional elements typically seen in Simultaneous Localization and Mapping
(SLAM) systems [140, 139], i.e. a map, a (re-)localizer module, a path planner, and a graph-based
optimizer. Each of these subcomponent architectures significantly benefited in their design from
an existing understanding of the structure present in embodied environments, and while they are
arguably less intensive in their requirement of domain expertise compared to traditional methods,
they are still derived from a large amount of prior knowledge. In contrast, a fully end-to-end
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trainable system would minimize the amount of domain knowledge required, and with enough
available training data the more general models could feasibly achieve better performance.

Motivated by this, Section 2 of this thesis switched focus to research the application of powerful
and more general sequence models to the domain of meta-reinforcement learning through memory.
However, there is missing a more concentrated examination of the general sequence models described
in Section 2, like the gated transformer, to embodied environment tasks and benchmarks. A future
direction of work is then to determine whether the weaker domain-specific inductive biases of the
transformer-based models can achieve better performance than the more hand-crafted architectures
that are currently used in these environments. Given the results of Chapter 6 in DMLab-30’s
navigation levels as well as recent contemporary work [55], there is an emerging body of evidence
that is showing support to the hypothesis that the newer general sequence models like transformers
could be more effective in embodied domains than the alternatives.
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