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Abstract

Machine learning (ML) algorithms have shown great promise on a variety of

healthcare-related tasks. However, as these algorithms transition from research

to deployment, they enter a constantly evolving environment rife with changes

in clinical practices, record-keeping policies, patient populations, and diseases

themselves. Models that performed well in the past are liable to fail in the future,

and especially in such high-stakes settings as healthcare, complacency can have

negative consequences. This thesis explores the application and development of

machine learning algorithms for dynamic healthcare settings. First, we present case

studies which characterize how common ML techniques fare on several medical

datasets over time, and discuss types of distribution shifts that can occur in healthcare

data. In the second part we dive into learning from underreported data and how

to adapt to shifting levels of underreporting, motivated by challenges which arose

when developing a model for predicting severe COVID-19. Moving from prediction

over time to decision-making over time, we study two scenarios, one in which

decisions are cheap, frequent, and directly tied to forecasts, and another in which the

interaction dynamics are modeled off of those between a doctor and patient, where

interactions have some cost. Finally, we reflect more broadly on the development of

reliable machine learning algorithms in healthcare over time.
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Chapter 1
Introduction

Machine learning (ML) is better-positioned to transform healthcare than ever before. Over

the last 15 years, a wave of digitalization and adoption of electronic medical records (Figure

1.1, left) has led to the creation of large repositories of rich healthcare data. Empowered by

advancements in data and computational resources, researchers have developed ML algorithms

for assisting with tasks such as diagnosis and early detection (Lipton et al., 2016a; Gulshan

et al., 2016; Kanjilal et al., 2020), monitoring and forecasting trends in public health (Reinhart

et al., 2021), and modeling disease progression (Wang et al., 2014; Severson et al., 2021). In

addition to research publications, deployments in ML for healthcare have also been accelerating

(Figure 1.1). The U.S. Food and Drug Administration has authorized hundreds of AI/ML-based

software as medical devices (FDA, 2021), hospitals have deployed ML-powered sepsis alert

systems (Sendak et al., 2020), and millions of smart watch consumers have atrial fibrillation

detection ML algorithms running on their wrists (Perez et al., 2019).

As ML models born at the research bench become integrated into products ripe for de-

ployment, it is critical to understand how such models might fare in the tumultuous reality

where healthcare problems, practices, and systems are ever-changing. New diseases emerge

and mutate, new treatments are developed, clinical standards and government policies change

over time, and the way healthcare data is collected and stored is also transforming. In a world

where ML models influence medical practice, reliance on fickle or unrepresentative data can

pose real downstream risk. In the University of Michigan hospital system, for example, a widely

used sepsis-alerting model developed by Epic Systems had to be decomissioned due to shifts in

patient characteristics associated with the onset of the coronavirus disease 2019 (COVID-19)

pandemic (Finlayson et al., 2021). This thesis centers around the driving question:

How can we develop machine learning systems suitable for dynamic healthcare settings?

Interest in ML for dynamic settings has grown substantially over the last several years. One

popular paradigm for dynamic interaction and decision-making is reinforcement learning (RL),

where an agent learns to optimize a reward function by interacting with an environment (Sutton

and Barto, 2018). The distribution of collected experience (i.e. data on states visited, actions
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Figure 1.1: Adoption of electronic medical records in vs. year (top), and publications and FDA-

approved medical devices in artificial intelligence and machine learning for healthcare over time

(bottom).

taken, and rewards received) changes depending on the agent’s policy, and the agent continually

updates its policy based on the data it collects. While these methods have been successful in

simulated or closed-loop settings (Yu et al., 2021) where actions, observations, and learning

can be tightly integrated, it should be noted that in several real-world healthcare settings,

experience is expensive to collect and doctors are not acting in a closed-loop environment.

Researchers have proposed using RL for optimizing the choice of medications, drug dosing, and

for targeting personalized laboratory values (Liu et al., 2020), however, reliable evaluation of

how such algorithms would perform in the real world remains challenging (Gottesman et al.,

2018; Gottesman et al., 2019), and examples of these algorithms being deployed in hospitals

remain scarce.

Instead, ML applications deployed in healthcare have largely focused on prediction, where

a model is trained on data to detect or diagnose some condition (Topol, 2019). However, the

dynamic nature of healthcare still poses a challenge for typical prediction tasks. As companies

and researchers have begun deploying ML models in the real world, concerns over robustness

to distribution shift have become more prominent. D’Amour et al. (2022a) note that ML systems

frequently exhibit unexpectedly poor behavior upon deployment in real-world domains, and

suggest that models be selected after they are stress-tested along practically important dimensions,

such as testing an opthamological model on images taken from a different camera, and stratifying

performance of a dermatological model by skin type. In the healthcare domain, Finlayson et al.

(2021) name dataset shift as a major driver of AI system malfunction, and present common

causes of dataset shift including technological changes (e.g. software vendors), population and

setting changes (e.g. demographics), and behavioral changes (e.g. reimbursement incentives).

Researchers in ML have also formalized various notions of distribution shift, working on settings

such as covariate shift (Shimodaira, 2000a; Zadrozny, 2004; Sugiyama et al., 2007a; Gretton et al.,

2009), where the distribution of covariates p(x) changes but p(y|x) remains the same, as well as

label shift (Storkey et al., 2009; Zhang et al., 2013; Lipton et al., 2018; Garg et al., 2020), where

the distribution of labels p(y) changes but p(y|x) remains the same. However, there is limited

work on understanding how these notions of shift manifest in real healthcare data over time,

and to what degree these shifts affect model performance over time.
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1.1 Thesis Statement and Overview

This thesis dives into the realities and challenges of applying ML to dynamic healthcare settings.

We will explore case studies from experiments on open-access medical datasets, describe findings

from collaborations with regional healthcare providers, and discuss idealized simplifications of

healthcare settings more amenable to a formal analysis of the dynamics at play.

Thesis Statement. Building reliable and practically useful machine learning systems suitable
for deployment in dynamic healthcare settings requires us to:

(S1) understand the types of shifts that occur in healthcare data over time,

(S2) develop models and algorithms that are robust to these shifts, and

(S3) take decision-making processes into account.

From the Oxford Languages dictionary, reliable is defined as “consistently good in quality or

performance; able to be trusted,” and dynamic is defined as “characterized by constant change,

activity, or progress.” To achieve consistently good performance in the face of constant change,

it is critical to understand the types of changes that might occur to thwart good performance

(S1). Upon characterization of these types of changes, it is possible to develop models and

algorithms that might proactively account for them (S2). Finally, since healthcare delivery

happens through the translation of medical insights into practical actions taken in order to

improve patient well-being, it is important to move beyond pure prediction and to also take

decision-making processes and dynamics into account (S3).

The thesis is organized into three main parts, each exploring a facet of the thesis statement.

Part I: Real-World Distribution Shifts in Healthcare Over Time

In the first part of the thesis, we characterize some of the distribution shifts that occur in real-

world healthcare data over time. We start with a case study of the emergence of COVID-19 in

the United States, a time of high uncertainty and constant change (Chapter 2). At the same

time, it was a period of unprecedented data collection and collaboration, testing the limits of

the healthcare system and the capabilities of policy-makers to react quickly and effectively. We

examine areas where ML models could be useful given the data available at various points in

time, and discuss the myriad of factors that were constantly shifting and potentially confounding

popularly reported statistics. Zooming out, we then perform a large scale empirical analysis on

several open-access medical datasets (Chapter 3), providing a framework and code package for

evaluating how models would have performed if they had been deployed at various points in

the past. This type of analysis allows practitioners to detect distribution shifts that might have

occured in the past, and thus gives them the opportunity to prepare for similar types of shifts in

the future.
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Part II: Underreporting in Healthcare Data and Missingness Shift

In the second part of the thesis, we expand upon some of the challenges that arose from predicting

severe COVID-19 using real-world healthcare data provided by our clinical collaborators. In

particular, we noticed that the raw medical data was very sparse, and several concepts were

underreported (Chapter 4). For example, instead of having a single flag for whether a patient

had received a COVID-19 vaccine, the Moderna, Pfizer, or Johnson & Johnson vaccines were all

coded separately, as were the different boosters. Even after combining all such columns into a

single vaccination feature, the rate of COVID-19 vaccinations recorded in the hospital database

was dramatically lower than the actual rate of vaccination. Taking into account the issue of

underreporting, we propose and implement a technique for learning clinical concepts relevant

to the prediction task at hand, and find that this technique maintains better performance over

time than directly using raw features. Motivated by the problem of underreporting, we also

formulate the problem of domain adaptation under missingness shift (Chapter 5), where in this

setup one has access to labeled data in a source domain and unlabeled data in a target domain,

rates of missing data very between source and target. The goal of domain adaptation is then to a

learn a predictor that performs well in the target domain. We provide a theoretical analysis of

this setting, propose techniques for estimation of the optimal target predictor under various

assumptions, and discuss extensions that help bridge the gap between theory and practice.

Part III: Decision-Making in Dynamic Healthcare Settings

Transitioning from prediction to decision-making, we consider a problem in healthcare oper-

ations: inventory management (Chapter 6). This is an environment where algorithms might

be deployed not only to make predictions, but also make decisions based on those predictions.

In this setting where decisions might be directly and straightforwardly tied forecasts of future

demand, we argue that forecasting models should not necessarily optimize for generic objectives

such as mean squared error, but objectives that take downstream desiderata into account (e.g.

cost, customer satisfaction, etc.). At the same time, there are several settings in healthcare where

this framework falls short. For example, when a doctor sees a patient, they typically must pre-

scribe a course of treatment (e.g. 500 mg of Metformin twice a day), and decide when to next see

the patient. Furthermore, each appointment has some cost, so constant observations or medical

interventions may not be feasible. We formalize this interaction dynamic in a reinforcement

learning setup, and study how one might learn to time their actions (Chapter 7).
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Part I

Characterizing Real-World Distribution Shifts

in Healthcare Over Time

“Pure logical thinking cannot yield us any knowledge of the empirical world; all
knowledge of reality starts from experience and ends in it.”

- Albert Einstein, Ideas and Opinions

This part of the thesis covers empirical works that observe naturally-occurring distribution

shifts over time in medical data. It begins with a case study of coronavirus disease (COVID-19)

in the United States, and then remarks upon trends more broadly observed in several medical

datasets.
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Chapter 2
COVID-19 in the United States

The emergence of coronavirus disease COVID-19 tested the limits of medicine and the capabilities

of policy-makers to react quickly and effectively. As the virus circulated throughout different

pockets of the U.S. population, hospital resources were stretched thin, COVID-19 tests saw

ramp-ups and shortages, new potential treatments were introduced (or debunked), and the

disease itself mutated over time (Figure 2.1). As our understanding of the virus evolved, so did

the systems for monitoring, treating, and recording COVID-19.

When COVID-19 first emerged the U.S., there was limited historical data reflected in hospital

medical records, and reporting efforts had yet to be consolidated. Yet, there was already a rapidly

growing need for data-driven tools to help doctors assess and treat patients. When a new disease

emerges, how can we develop ML tools that are useful before we have to wait for the data

to catch up? In this chapter, we start by delving into a case study on the development of a

risk prediction tool to assist clinicians with COVID-19 extracorporeal membrane oxygenation

(ECMO) planning (Section 2.1). Respiratory complications due to coronavirus claimed hundreds

of thousands of lives in 2020. ECMO is a life-sustaining oxygenation and ventilation therapy that

may be used when mechanical ventilation is insufficient. The ECMO machine acts as an artifical

lung, and works by pumping and oxygenating blood outside of the body, before warming it

to body temperature and pumping it back into the body. While early planning and surgical

cannulation for ECMO can increase survival, clinicians report the lack of a risk score hinders

these efforts. In this work, we develop the PEER risk score to highlight critically ill patients with

viral or unspecified pneumonia at high risk of mortality in a subpopulation eligible for ECMO.

Next, we take a population-level view of COVID-19, characterizing the state of the disease’s

spread and severity in the U.S. population over the course of its first year (Section 2.2). To carefully

decompose several of the claims put forth about the state of the pandemic by both academics and

news outlets at the time, we critically analyze data from the U.S. Centers for Disease Control and

Prevention (CDC) and state departments of health, characterizing and controlling for various

simultaneously shifting factors over time, and obtaining adjusted estimates of a population-level

quantity (Cheng et al., 2021). We conclude with broader reflections on how the changes observed

in this case study motivate interesting challenges in machine learning research.
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Figure 2.1: Timeline of the first year after the emergence of COVID-19, with a focus on U.S.

events, synthesized from the U.S. Centers for Disease Control and Prevention (CDC, 2023). Green

corresponds to COVID-19 vaccine-related events, blue corresponds to events related to other

treatments, and red corresponds to other events.

2.1 Risk Prediction for COVID-19 ECMO Planning

Introduction

Respiratory complications due to coronavirus claimed hundreds of thousands of lives in 2020.

Many COVID-19 cases progress from Severe Acute Respiratory Syndrome (SARS-CoV-2) with

viral pneumonia to acute respiratory distress syndrome (ARDS) to death. Extracorporeal mem-

brane oxygenation (ECMO) can temporarily sustain patients with severe ARDS when mechanical

ventilation fails to facilitate with oxygenation via lungs. However, ECMO is costly and applicable

only for patients healthy enough to recover and return to a high functional status.

While ECMO is more effective when planned in advance (Combes et al., 2018), applicable

risk scores remain unavailable (Liang et al., 2020a; American College of Cardiology, 2020). This

work introduces the Viral or Unspecified Pneumonia ECMO-Eligible Risk (PEER) Score, using

measurements from the time of would-be planning—early in the critical care stay. In contrast

to prior pneumonia risk scores (Fine et al., 1997; Marti et al., 2012; Charles et al., 2008; Lim

et al., 2003), the PEER score targets those with viral or unspecified pneumonia in the critical

care setting, for a cohort potentially eligible for ECMO. Unspecified pneumonia is included since

the infectious etiology of pneumonia often cannot be determined, and it broadens the study

population.
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Though limited by geographic availability, ECMO usage has increased 4-fold in the last

decade (Ramanathan et al., 2020). COVID-19 guidelines suggest ECMO as a late option in

escalation of care for severe ARDS secondary to SARS-CoV-2 infection (Liang et al., 2020a;

Alhazzani et al., 2020). Early epidemiological studies of coronavirus (Wang et al., 2020; Yang

et al., 2020; Zhou et al., 2020a) had yet to establish ECMO’s utility. A pooled analysis of four

studies (Henry, 2020) showed mortality rates of 95% with ECMO vs. 70% without, but the number

of ECMO recipients was small, and no studies described a protocol specifying indications for

ECMO. A later pooled analysis of 331 cases found mortality rates of 46% with ECMO and 59-71%

without ECMO (Melhuish et al., 2020).

To better understand the role of ECMO as a rescue for ventilation non-responsive, SARS-

CoV-2 ARDS, we study its broader use in ARDS. Treatment guidelines suggest ECMO use

in severe ARDS alongside other advanced ventilation strategies (Matthay et al., 2020; World

Health Organization et al., 2020), with the World Health Organization citing effectiveness

for ARDS and reducing mortality of the Middle East Respiratory Syndrome (MERS). Despite

these recommendations and allocated ECMO resources (Ramanathan et al., 2020), risk scores

tailored to ECMO consideration are lacking. Our study addresses this by drawing from viral and

source unidentified cases of pneumonia that escalate to critical care admissions, guided by the

intuition that ARDS from these pneumonia are expected to better resemble COVID-19 ARDS

than all-comer ARDS.

Related Work

There are a number of pneumonia (W et al., 2003; Fine et al., 1997; Charles et al., 2008; Lim

et al., 2003; Guo et al., 2019), COVID-19 (Gong et al., 2020b; Jiang et al., 2020; Gong et al.,

2020a), hospitalization mortality (Zimmerman et al., 2006), and ECMO risk scores (Schmidt et al.,

2015), but none center on the time of risk evaluation for ECMO candidacy. The pneumonia and

COVID-19 risk scores are assessed on populations with lower acuity, while APACHE is not

focused on respiratory illness. Our risk score is meant for use in ECMO planning rather than

predicting outcomes among patients already receiving ECMO. Registry-based studies have also

compared SARS-CoV-2 outcomes to that of other viral infections, including MERS, H1N1 flu,

and seasonal flu. One MERS-related ARDS study of critically ill patients demonstrated higher

mortality than those in studies on COVID-related ARDS, but may be attributed to sicker patients

at enrollment (Arabi et al., 2017). A similar H1N1 study reported lower mortality (12-17%), albeit

considering a younger population (average age 40) (Aokage et al., 2015).

Physiologic concerns have also been raised about the use of ECMO for SARS-CoV-2. One

argues that while ECMO is primarily beneficial for respiratory recovery, a spike in all-cause

death but not ARDS-related death could indicate a limited role of ECMO(Henry and Lippi,

2020). Others point out that COVID-associated lymphopenia might be exacerbated by ECMO-

induced lymphopenia which could mechanistically affect a healthy immune response to infection.

Inflammatory cytokines and specifically interleukin 6 elevation is associated with COVID-19

mortality and rises with the use of ECMO (Henry, 2020; Bizzarro et al., 2011). These expert

voices do not argue for the avoidance of ECMO, but rather call for additional study.
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Data

The eICU Collaborative Research Database (Pollard et al., 2018b) contains 200,859 admissions to

intensive care units (ICU) across multiple centers in the United States between 2014 and 2015.

The MIMIC-III clinical database (Johnson et al., 2016) consists of data from 46,476 patients who

stayed in critical care units of the Beth Israel Deaconess Medical Center between 2001 and 2012.

Model development and in-domain validation primarily use data from eICU, and out-of-domain

validation uses MIMIC-III.

Cohort Selection Inclusion criteria for the study cohort are delineated in Figure 2.2. The popu-

lation of interest is among patients with viral or otherwise unspecified non-bacterial, non-fungal,

non-parasitic, and non-genetic pneumonia. While there are no absolute contraindications of

ECMO, the therapy is reserved for patients likely to have functional recovery. Patients over 70

years old would not be good candidates for ECMO, and SARS-CoV-2 pneumonia progressing to

hypoxic respiratory failure is exceedingly rare in patients under 18. Other relative contraindica-

tions to ECMO are also listed in Figure 2.2. We select the first ICU stay within each patient’s

hospital stay, and exclude patients who died or were discharged within the first 48 hours of being

admitted. This is done to focus on the stage of critical care after initial entry when lower-risk

oxygen supplementation strategies (e.g., ventilation) are being performed, and, methodologically,

to provide a richer set of features for prediction. Table 2.1 and Appendix Table A.1 summarize

characteristics of the cohorts.

Data Extraction The study cohorts are extracted using string matching on diagnosis codes

and subsequent clinician review. Features are merged through a process of visualization, query,

and physician review. This includes harmonizing feature units, removing impossible values, and

merging redundant data fields. Additional details are in Appendix A. All features are combined

into a fixed-length vector, using the most recent value prior to 48 hours after ICU admission.

Before imputation, approximately half of the features had missingness below 5%, and 80% of

the features had missingness below 30%, however multiple variables had high missingness

(Appendix A). Missing values are imputed using MissForest (Stekhoven and Bühlmann, 2011),

which we find PEER is insensitive to (Appendix A).

Features Features are extracted from demographics, comorbidities, vitals, physical exams,

and lab findings routinely collected in critical care settings. Numerical features are normalized,

and categorical features are converted with dummy variables. All variables in Tables 2.1 and A.1

are provided to the model.

Outcomes Our primary outcome of interest is in-ICU mortality. Secondary outcomes indicat-

ing decompensation are vasopressor use and mechanical ventilation use. For each outcome, we

define the time to event as the time to first outcome or censorship, where censorship corresponds

to discharge from the ICU.
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Viral/	unspecified	
pneumonia	patients	

(n=17,390)

Included	(n=9,500)

Excluded	(n=7,890)
patients	over	70,	

under	18,	or	not	reported

Excluded	(n=2,882)
patients	with	surgery,	stroke,
intracranial	hemorrhage,
cancer,	liver	disease,	renal

failure,	congestive	heart	failureIncluded	(n=6,618)

ICU	stays	from	
eICU	database	
(n=200,859) Excluded	(n=183,469)

non-pneumonia	and
bacterial	pneumonia	visits

Excluded	(n=530)
ICU	stays	after	the	
patient's	first	one

Cohort	used	in	study
(n=3,617)

Excluded	(n=2,471)
patients	discharged	
in	the	first	48	hours

Included	(n=6,088)

(a) eICU cohort selection

Viral/	unspecified	
pneumonia	patients

(n=4,572)

Included	(n=2,348)

Excluded	(n=2,224)
patients	over	70	
or	age	not	reported

Excluded	(n=945)
patients	with	surgery,	stroke,
intracranial	hemorrhage,
disseminated	intravascular

coagulation,	liver	disease,	renal
failure,	congestive	heart	failureIncluded	(n=1,403)

ICU	stays	from	
MIMIC	database	

(n=46,476)

Included	(n=967)

Excluded	(n=41,904)
non-pneumonia	and

bacterial	pneumonia	visits

Excluded	(n=436)
ICU	stays	after	the	patient's	

first	one	and	patients
discharged	in	the	first	48	hours

Cohort	used	in	study
(n=937)

Excluded	(n=30)
patients	under	18

(b) MIMIC-III cohort selection

Figure 2.2: Inclusion and exclusion criteria for cohorts extracted from eICU and MIMIC. Dissem-

inated intravascular coagulation was highly missing from eICU.

Methods

Lasso-Cox To predict patient survival, we use the Cox proportional hazards model with L1

regularization, referred to as Lasso-Cox (Simon et al., 2011). Lasso-Cox is chosen for its ease

of interpretation and calculation, owing to its selection of sparse models.
1

For a patient with

covariates x ∈ Rd
, the predicted log hazard is β⊤x, (higher hazard implies shorter survival time),

where β ∈ Rd
are coefficients that can be interpreted as log hazard ratios. L1 regularization

λ
∑d

j=1 |βj| is used to encourage sparsity in β, where λ > 0 is a user-specified hyperparameter.

EvaluationMetrics To evaluate model performance, we consider concordance and calibration.

Concordance (c-index) is a common measure of goodness-of-fit in survival models (Harrell and al.,

1982), defined as the fraction of pairs of subjects whose survival times are correctly ordered by a

prediction algorithm, among all pairs that can be ordered. Confidence intervals are computed

using 1000 bootstrapped samples. We evaluate calibration by plotting the Kaplan-Meier observed

survival probability versus the predicted survival probability. We construct our calibration plots

(Figure 2.4) (Xiao et al., 2016) with 1000 bootstrap resamplings for internal calibration. Both

internal and external calibrations use 5 groups for 7 days.
2

1
We also tried the Cox model with elastic-net regularization (combined L1 and L2 regularization) but found

little to no gain in cross-validation concordance.

2
We plot at day 7 instead of 30 because censorship level is too high beyond a week.
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Table 2.1: Demographics and outcomes of patients with viral or unspecified pneumonia in eICU

and MIMIC-III cohorts. Data are median (Q1-Q3) or count (% out of n).

Variable eICU (n = 3617) MIMIC (n = 937)

D
e
m

o
g
r
a
p

h
i
c
s

Age, years 58.0 (48.0-64.0) 54.5 (44.1-62.7)

18-30 225 (6.2%) 83 (8.9%)

30-39 277 (7.7%) 94 (10.0%)

40-49 500 (13.8%) 159 (17.0%)

50-59 1064 (29.4%) 281 (30.0%)

60-70 1546 (42.7%) 320 (34.2%)

Male 1949 (53.9%) 542 (57.8%)

Female 1663 (46.0%) 395 (42.2%)

O
u

t
.

Deceased 270 (7.5%) 94 (10.0%)

Vasopressors administered 589 (16.3%) 389 (41.5%)

Ventilator used 1835 (50.7%) 758 (80.9%)

Experimental Setup The eICU cohort is divided into a training set (70% of the data, n=2537)

and test set (30%, n=1080). The eICU training set is used for model development, whereas the

eICU test set and entirety of the MIMIC cohort are used for model evaluation. Throughout our

evaluation, we compare our risk score (PEER) to three pneumonia risk scores: CURB-65 (W et al.,

2003), PSI/PORT (Fine et al., 1997), and SMART-COP (Charles et al., 2008); and one COVID-19

risk score: GOQ (Gong et al., 2020b).

Model selection We select λ via 10-fold cross validation and grid search on the eICU training

set to maximize concordance subject to sufficient sparsity. We observe that λ = 0.01 gives

the best trade-off between concordance (0.73) and number of features selected (18), as a 0.01
increase in concordance corresponds to 10 additional non-zero features. To check the stability

of this hyperparameter choice, we impute our data using ten random seeds and run 10-fold

cross validation on the resulting datasets. Across all runs, λ = 0.01 achieves concordance

of approximately 0.73 and selects similar features and coefficients. Additional details about

grid search, the concordance and sparsity tradeoff, and robust selection of coefficients can

be found in Appendix A. Code for data extraction and all model results is available at https:

//github.com/hlzhou/peer-score.

Results

The hazard ratios from Lasso-Cox with λ = 0.01 are displayed in Table 2.2. For easy calculation

of the PEER score, we also provide a nomogram (Figure 2.3)
3
.

3
To compute risk, look up a patient’s values in the nomogram, match it to points listed across the top, add them

up, and look up the total in the scale across the bottom.
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The PEER score achieves concordance greater than or comparable to that of existing risk

scores on all datasets (Table 2.3). On the eICU test set, PEER achieves the highest concordance

among the risk scores, 0.77. On MIMIC, the maximum concordance degrades to 0.66, achieved

by PEER and SMART-COP. The PEER calibration curves (Figure 2.4) show one high risk group

separate from low risk groups. While predicted survival of the high risk group is overestimated

in the training set, it is within confidence intervals in both test sets.

We define low and high risk subpopulations by thresholding our model’s predicted risks on

the training set at the 90th percentile. Each group’s Kaplan-Meier survival curves are plotted

over a 30-day period (Figure 2.5). For the first week, the low and high risk curves are clearly

distinct (Figure 2.5), with respective survival proportions 0.68 and 0.95 on eICU test, and 0.75
and 0.95 on MIMIC. Beyond the first week, censorship grows quickly and there is less data,

resulting in increased uncertainty. Compared to low and high risk curves derived from related

risk scores, those of the PEER score are the most separated (Appendix A). Secondary indicators

of decompensation (i.e. ventilator and vasopressor use) are also more common in the high risk

group than the low risk group (Figure 2.6).

Table 2.2: Hazard ratios (HR) for the Lasso-Cox model, i.e. the PEER score. HR and 95% confidence

intervals (CI) are reported on normalized data. Means and standard deviations used for scaling

are included for reference.

Feature HR (95% CI) mean std. dev.

Age (years) 1.22 (1.04 – 1.43) 54.5 12.5

Heart rate (beats per minute) 1.13 (0.984 – 1.3) 89.4 17.8

Systolic blood pressure (mmHg) 0.928 (0.755 – 1.14) 122 22

Diastolic blood pressure (mmHg) 0.996 (0.745 – 1.33) 67.7 15.1

Mean arterial pressure (mmHg) 0.926 (0.673 – 1.27) 83.7 17.9

Glasgow Coma Scale 0.93 (0.803 – 1.08) 11.3 3.26

White blood cells (thousands/µL) 0.984 (0.871 – 1.11) 12.9 8.91

Platelets (thousands/µL) 0.924 (0.79 – 1.08) 208 108

Red blood cell dist. width (%) 1.24 (1.08 – 1.43) 15.8 2.47

Neutrophils (%) 0.972 (0.853 – 1.11) 79.1 13

Blood urea nitrogen (mg/dL) 1.07 (0.937 – 1.23) 25.1 19.5

Aspartate aminotransferase (units/L) 1.12 (1.06 – 1.18) 143 774

Direct bilirubin (mg/L) 1.03 (0.935 – 1.13) 0.385 0.816

Albumin (g/dL) 0.954 (0.82 – 1.11) 2.65 0.636

Troponin (ng/mL) 1.06 (0.985 – 1.14) 1.07 3.85

Prothrombin time (sec) 1.05 (0.909 – 1.2) 16.6 6.75

pH 0.856 (0.75 – 0.977) 7.38 0.0713

Arterial oxygen saturation (mmHg) 0.787 (0.723 – 0.856) 95.8 4.12
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Table 2.3: Concordances (and 95% confidence intervals) of the PEER score, CURB-65, PSI/PORT,

SMART-COP, and GOQ.

Score Train eICU Test eICU MIMIC

PEER (ours) 0.77 (0.72 - 0.81) 0.77 (0.69 - 0.83) 0.66 (0.57 - 0.74)
CURB-65 (W et al., 2003) 0.66 (0.61 - 0.70) 0.62 (0.55 - 0.69) 0.59 (0.52 - 0.66)

PSI/PORT (Fine et al., 1997) 0.71 (0.66 - 0.76) 0.71 (0.63 - 0.78) 0.62 (0.55 - 0.69)

SMART-COP (Charles et al., 2008) 0.69 (0.64 - 0.73) 0.73 (0.67 - 0.80) 0.66 (0.59 - 0.72)
GOQ (Gong et al., 2020b) 0.67 (0.63 - 0.71) 0.62 (0.54 - 0.70) 0.58 (0.50 - 0.66)

Points
0 10 20 30 40 50 60 70 80 90 100

WBCs
30Platelets
900 700 500 300 100RDW
10 12 14 16 18 20 22 24 26 28 30 32 34 36Neutrophils
100 40 0BUN

0 40 80 120 160pH_minus_7
0.65 0.55 0.45 0.35 0.25 0.15 0.05DBili

0 2 4 6 8 12 16 20Albumin
5 4 3 2 1PT
0 20 40 60 80 100 120AST
0 1000 2500 4000Troponin
0 10 20 30 40 50 60 70 80 90Age

15 25 35 45 55 65HR
40 60 80 100 120 140 160 180 200SaO2
100 95 90 85 80 75 70 65 60 55GCS
15 10 6sBP
200 160 120 80 40dBP
180MAP
200 160 120 80 40 0Total Points

0 50 100 150 200 250 300Linear Predictor
−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.530 days Overall Survival Probability

0.050.20.40.60.70.80.9

Figure 2.3: Nomogram for manual calculation of the PEER score.

14



(a) Train eICU (b) Test eICU (c) MIMIC

Figure 2.4: Calibration plots with 95% confidence intervals.

Figure 2.5: Kaplan-Meier survival curves of high vs. low risk groups in train eICU, test eICU,

and MIMIC. Shaded regions are the 95% confidence intervals.

(a) vasopressor (b) ventilator

Figure 2.6: Proportion of each subgroup that received vasopressors or ventilators.

15



Discussion

The PEER score achieves greater or comparable concordance to baselines on the eICU (in-

domain) and MIMIC (out-of-domain) test sets. Lasso-Cox selects 18 features, making for easy

computation. Qualitatively, the score is consistent with clinical intuition. SaO2, associated with

poorer oxygenation status, is predictive of decompensation. Old age is predictive of death. Red

blood cell distribution width, associated with expanded release of immature red blood cells in

response to insufficient oxygen delivery to tissues, is also a strong risk factor for death with

COVID-19 (Gong et al., 2020a). However, the hazard ratios themselves should be interpreted

with caution as three variables (pH, prothrombin time, and age) violate the proportional hazards

assumption, and L1 regularization shrinks coefficients towards 0.

Stratifying each cohort into high and low risk subpopulations based the PEER score, we

observe a clear separation in their survival curves (Figure 2.5) across all three datasets. Addi-

tionally, secondary indicators of decompensation (e.g. vasopressor and ventilator use) are more

prevalent in the high risk group (Figure 2.6). Calibration plots for PEER also show a high risk

group separated from the rest (Figure 2.4). While the survival probability of the high risk group

is overestimated on the eICU training set, it is within error bars on all test sets.

For ECMO allocation, practically, accurate ranking of risk, as measured by concordance, may

be more important than the precise probabilities predicted. The PEER score outperforms other

risk scores on the eICU test set, but there is a decline in performance on the MIMIC test set,

and the performance of PEER becomes comparable to that of SMART-COP. One possible reason

for this decline is that in MIMIC, an important feature for PEER, the arterial oxygen saturation

(SaO2), has 72.6% missingness. In contrast, it has 1.5% missingness in eICU. This demonstrates

the importance of thinking critically about how our risk score, which was trained on the eICU

cohort and depends on 18 specific features, generalizes to the population to which the score is

being applied.

Limitations and Future Work Importantly our cohort is defined not by COVID-19 positive

pneumonia patients but instead by viral or unspecified pneumonia patients who are ECMO-

eligible. While our risk score demonstrates good discriminative ability and is interpretable,

there are several additional decision-making considerations beyond the scope of this paper.

Clinicians interested in applying the risk score to COVID-19 pneumonia should consider how

representative this population is of their own. Because ECMO is a constrained resource, there

are also ethical questions about who should get treatment. This risk score does not attempt

to address these questions, but simply provides relevant information to those making such

decisions. More broadly, we hope to provide this risk score as a potential resource for future

SARS-like diseases that require ECMO consideration.
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2.2 Unpacking U.S. COVID-19 Fatality Rates in 2020

Introduction

In this work, we consider the tumultuous first year of the COVID-19 pandemic, focusing in

particular on the time range from April 2020 to December 2020. At this time, infections were

spreading rapidly throughout the United States, but COVID-19 vaccines were not yet available

to the general public. This was a time of high uncertainty and constant change, with disease

outbreaks expanding and contracting; social distancing mandates tightening and loosening;

testing capacity (mostly) increasing (Wu, 2020); and treatments protocols evolving. Public

officials, clinicians, and business leaders tried to grasp the the rapidly unfolding situation, often

looking to publicly reported aggregate data to inform decisions about lockdown measures,

allocation of hospital resources, and corporate policies.

Consider the two most widely reported statistics, cases and deaths. Cases peak for the first

time in April 2020 (nearly 32, 000 daily cases), peak again with more than twice as many cases

in a second wave in July 2020 (nearly 67, 000), and yet again in a much larger third wave in

December 2020 (nearly 230, 000) (Figure 2.7, left panel). However, reported deaths appear to

tell a contradictory story concerning the relative severity of the three waves (Figure 2.7, middle

panel), with the second wave being the smallest. Dividing deaths by cases, the reported case
fatality rate (CFR) fell dramatically after the first wave, from nearly 7.9% at the height of the first

wave in mid-April to the 0.7%–2.3% range since July. (Figure 2.7, right panel).
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Figure 2.7: Trailing 7-day averages of cases, deaths, and case fatality rate from April 1st to

December 1st, using national data available via USAFacts in the COVIDcast API (Project, 2020).

In a White House briefing on July 27th, 2020, President Trump attributed this drop in CFR to

treatment improvements, stating: “Due to the medical advances we’ve already achieved and our

increased knowledge in how to treat the virus, the mortality rate for patients over the age of

18 is 85 percent lower than it was in April” (Trump, 2020). While this would be an impressive

statistic, as we show, this estimate is heavily confounded by factors unrelated to treatment

improvements. So, what explains the movement (and apparent overall decline) in case fatality rate
over the course of the pandemic? Several plausible explanations have been floated, with academic

and public discourse centering around the following hypotheses:

(H1) The age distribution of infected patients shifted, heavily altering CFR due to higher risk
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among the elderly (Thompson, 2020; Whet, 2020; Horwitz et al., 2020; Dennis et al., 2020).

(H2) Increases in testing capacity have driven down the CFR due to a rising number of tests

catching milder cases (Fan et al., 2020; Madrigal and Moser, 2020; Spychalski et al., 2020).

(H3) Apparent shifts in CFR are artifacts due to the delay between detection and fatality (Thomp-

son, 2020; Madrigal, 2020; Spychalski et al., 2020).

(H4) Treatment has improved with growing doctor experience and new therapeutics (Levy,

2020; Horwitz et al., 2020; Beigel et al., 2020; Group, 2020; Self et al., 2020).

(H5) The disease itself is mutating, leading to changes in the actual infection fatality rate over

time (Pachetti et al., 2020; Fan et al., 2020).

(H6) Social distancing has reduced the viral load that individuals are exposed to, resulting in

milder infections (Zein et al., 2020; Pachetti et al., 2020; Piubelli et al., 2020).

Note that H1–H3 can be misleading if not sufficiently accounted for. If there are large

differences in fatality between different age groups, if the age distribution shifts (H1), it is

even possible to observe an overall decrease in CFR despite increasing CFRs in every age group

(Simpson’s paradox). Additionally, testing ramp-up (H2) and delays between detection and

fatality (H3) can cause the behavior of case fatality rate to diverge substantially from the behavior

of the true infection fatality rate. Thus, CFR can be a poor proxy for actual infection fatality rate.

On the other hand, the last three phenomena—improved treatments, disease mutation, and

changing viral load—correspond to actual reductions in mortality and could be grounds for

policy changes. This work demonstrates how given accurate, sufficiently granular data, H1–H3
(“artifacts”) can be accounted for to attempt to quantify true improvements in treatment (H4). We

note, however, that without additional data, H5 and H6 cannot be separated from H4.

In particular, we argue that complete and accurate age-stratified, line-level hospitalization
data is pivotal for distinguishing true improvements from artifacts. Age stratification allows

us to adjust for H1, and line-level data allows us to match lagged outcomes such as death with

the corresponding case it originated from, thus avoiding H3. Hospitalizations should be less

influenced by testing capacity than cases (allowing us to bypass H2), and compared to the general

population, testing among the inpatient population was relatively thorough throughout the

course of the pandemic. While there may have been changes in admitting criteria at the very

worst moments (Phua et al., 2020; Cohen et al., 2020) (e.g., when New York hospital demand

exceeded capacity in late March), for the most part, criteria for inpatient hospitalization is

relatively consistent across time periods. Additionally, in the study time period (April 2020 to

December 2020), treatment improvements mostly targeted hospitalized COVID-19 patients.

Our analysis yields several important observations: (i) large increases in testing do occur

between the waves but do not explain them away; (ii) since age distributions shifted substantially

between the first and second waves (and have fluctuated since), age must be accounted for in

order to separate out the effects of treatment from age shift; (iii) between the first and second

waves age-stratified HFRs improved substantially in the national data (with HFR decreasing

by as little as 27% in the 80+ age group and as much as 37% in the 30-39 age group), but were

relatively unchanged in Florida (with a slight increase in HFR by as little as 2.9% in the 80+
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age group and as much as 13% in the 60-69 age group); (iv) by December 1st, both Florida and

national data suggest significant decreases in HFR since April 1st—at least 17% in Florida and at

least 55% nationally in every age group; and (v) comprehensive age-stratified hospitalization

data is of central importance to providing situational awareness during the COVID-19 pandemic.

As far as we are aware, this is the largest national-scale (588,126 hospitalizations, 10.3 million

cases) data-driven analysis to quantify and account for all three artifacts (age distribution shift,

increased testing, and detection-to-fatality delay) when estimating treatment improvements.

To allow users to apply our analyses to time ranges, states, and demographics of interest, we

release an interactive web application at acmi-lab.org/unpack cfr.

Related Work

Several COVID-19 treatments were developed over the study time range (April 1st to December

1st), each underwent randomized controlled trials testing for its individual efficacy. Dexam-

ethosone resulted in a lower 28-day mortality among COVID-19 inpatients receiving respiratory

support (Group, 2020). Remedisivir was associated with shortened recovery time among adults

hospitalized with lower respiratory tract infection (Beigel et al., 2020; Madsen et al., 2020). Clini-

cal trials for hydroxychloroquine (Self et al., 2020; Horby et al., 2020) and convalescent plasma

(Agarwal et al., 2020b) found no positive results in prevention of disease progression or mortality.

In November, monoclonal antibody treatments bamlanivimab and the combination therapy

casirivimab and imdevimab were approved for emergency use authorization (U.S. FDA, 2020).

These therapies, unlike dexamethosone and remdesivir, are not recommended for inpatients

(Dyer, 2020), but were shown to have great benefits in outpatients likely to progress to severe

COVID-19 (for bamlanivimab) (Chen et al., 2021), and in patients who have not yet mounted

their own immune response or have high viral load (for casirivimab and imdevimab) (Regeneron,

2020). Note that monoclonal antibodies were only approved for emergency use within the last

month of our study time range, before therapeutic distribution had ramped up (HHS, 2021).

More recently in December (outside of our study time range), the first coronavirus vaccines

from Pfizer-BioNTech (Food and (FDA), 2021b) and Moderna (Food and (FDA), 2021a) were

approved for emergency use, with the Pfizer-BioNTech vaccine clinically proven to achieve 95%

efficacy (Polack et al., 2020) and the Moderna vaccine, 94.1% efficacy (Baden et al., 2020). While

these clinical trials have evaluated the effects of specific treatments in their identified target

populations, our work studies the broader impacts of treatment improvements over time at a

larger national scale.

To get a holistic sense of improvements over time several studies have examined CFRs. In a

study of 53 countries, all but ten were found to have lower CFRs in the second wave compared

to the first (Fan et al., 2020). However, as delineated in our introduction, confounding factors

such as shifting age distribution (H1), testing capacity (H2), and detection-to-death lags (H3) can

lead to misleading interpretations of the CFR (Whet, 2020; Horwitz et al., 2020; Fan et al., 2020;

Madrigal and Moser, 2020; Thompson, 2020; Dennis et al., 2020; Madrigal, 2020; Spychalski et al.,

2020). For example, when comparing CFR by age group in Italy and China, Onder et al. (2020)

suggested variation in testing strategies as a possible explanation for discrepancies. In study of
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COVID-19 cases in Germany, Stafford attributed an apparent discrepancy between cases and

deaths to shifting age distribution, testing capacity, or true effectiveness of government-issued

directives. While these country-level studies identify the three “artifacts” (H1-H3) as limitations

of interpreting the CFR, none explicitly account for them.

To account for changes in testing capacity, we examine hospitalization data. While (as far as

we are aware) no nation-wide studies in the U.S. account for all three artifacts, some hospital

systems have controlled for them by conducting age-stratified cohort studies. Among 5,121

hospitalized COVID-19 patients in a single New York health system, Horwitz et. al. demonstrated

that after adjusting for age, sex, ethnicity, and other clinical factors, HFR between March 1st and

June 20th decreased but not as much as observed before adjusting for these factors (Horwitz

et al., 2020). In another New York hospital system, Mehta et. al. demonstrated that cancer and

older age were associated with increased risk of case fatality, finding no significant associations

between race and mortality or gender and mortality (Mehta et al., 2020). In a study conducted

among 21,082 COVID-19 patients admitted to 108 English critical care units between March 1st

and June 27th, mortality risk in mid-April and May was found markedly lower than earlier in

the pandemic even after adjusting for age, sex, ethnicity, comorbidities, and geographic region

(Dennis et al., 2020). While these studies provide thorough estimates of mortality for their

respective regions during their specific time periods, we analyze data over a longer time range

and larger scale (588,126 hospitalizations, 10.3 million cases) that purportedly captures all of

Florida and most of the United States.

Our data does not contain information about viral mutations and viral loads (H5 and H6).

However, a few studies have begun to investigate their impact. The B.1.1.7 and B.1.351 variants

of COVID-19 were first reported in the U.S. at the end of December 2020 and January 2021,

respectively (CDC, 2021). While it is unclear how these variants will ultimately impact HFRs,

recent studies indicate that vaccines may be more effective against B.1.1.7 than B.1.351 (Liu

et al., n.d.; Wu et al., 2021). Regarding social distancing precautions reducing viral load, in a

study across seven countries, declining CFR was found to be correlated with strict lockdown

policies and widespread PCR testing (Pachetti et al., 2020). At a hospital system in northern

Italy, Piubelli et. al. found that among patients diagnosed with COVID-19 in their emergency

room, the proportion of patients requiring intensive care decreased over time, also having lower

viral load (Piubelli et al., 2020). Our analysis does not attempt to separate out the effects of viral

mutations (H5) and changing viral loads (H6), but we note that these are factors that can affect

the true infection fatality rate, and therefore can be reflected in our estimates as well.

Methodologically, prior studies on the COVID-19 fatality have employed logistic regression

(Horwitz et al., 2020), Cox proportional hazards (Dennis et al., 2020), and propensity matching

(Mehta et al., 2020) to adjust for age and other comorbidities. While logistic regression and

propensity matching can quantify risk of death averaged over their study time period, we are

interested in the evolution of fatality risk over time. While the standard Cox proportional

hazards does model risk over time, it assumes a simple linear form between the covariates and

the log hazard. Without making this assumption, we leverage techniques in time series literature

to reduce noise in the raw signal, and compute uncertainty around the estimates at any given

time. Assuming smoothness in the true underlying trend, the moving average can obtain a
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Table 2.4: Demographics and outcomes of the Florida and national cohorts. Data are provided

as counts (percentage). For Hospitalized and Died, the recoded “No” category is merged from

the original “No”, “Unknown”, and “Missing” categories. Unknown corresponds to checking an

“unknown” box in the reporting form, and missing corresponds to leaving the question empty.

Florida National

D
e
m

o
g
r
a
p

h
i
c
s

COVID-19 Cases 1,004,818 10,332,725

Age

0-9 37,153 (3.7%) 388,867 (3.8%)

10-19 91,887 (9.1%) 1,045,408 (10.1%)

20-29 192,790 (19.2%) 2,021,007 (19.6%)

30-39 172,027 (17.1%) 1,699,260 (16.4%)

40-49 153,717 (15.3%) 1,546,212 (15.0%)

50-59 149,530 (14.9%) 1,485,318 (14.4%)

60-69 102,477 (10.2%) 1,043,294 (10.1%)

70-79 61,436 (6.1%) 583,837 (5.7%)

80+ 42,696 (4.2%) 453,229 (4.4%)

Unknown 1,105 (0.1%) 66,293 (0.6%)

Gender

Female 517,640 (51.5%) 5,297,936 (51.3%)

Male 482,227 (48.0%) 4,861,508 (47.0%)

Missing 0 (0.0%) 17,071 (0.2%)

Unknown 4,951 (0.5%) 80,093 (0.8%)

Florida National

O
u

t
c
o

m
e

Hospitalized

Yes 56,673 (5.6%) 588,126 (5.7%)

No (recoded) 948,145 (94.4%) 9,744,599 (94.3%)

No 538,428 (53.6%) 3,989,850 (38.6%)

Unknown 402,616 (40.1%) 1,593,887 (15.4%)

Missing 7,101 (0.7%) 4,160,862 (40.3%)

Died

Yes 21,028 (2.1%) 199,677 (1.9%)

No (recoded) 983,790 (97.9%) 10,133,048 (98.1%)

No 0 (0.0%) 4,847,491 (46.9%)

Unknown 0 (0.0%) 1,185,926 (11.5%)

Missing 983,790 (97.9%) 4,099,631 (39.7%)

better estimate of the trend than the raw signal (Eshel, 2012). To quantify uncertainty in time

series, the moving block bootstrap technique was developed in lieu of standard bootstrapping

targeting independent and identically distributed observations. In this technique, the time series

is chunked into blocks to reduce dependence among them. This reduced dependence is hard to

ensure, however, thereby suggesting a strategy between model-based and block resampling. To

reduce much of the dependence between original observations, one can “pre-whiten” the data by

fitting a model to the data, and computing the residuals. Instead of block resampling the original

dependent series, the residuals can be resampled, and added back to the model estimates. This

intermediate solution, termed post-blackening, has been shown to work more consistently in

practice (Davison and Hinkley, 1997).

Methods

Data Description We center our analysis on (1) state-level COVID-19 Case Line Data made

available by the Florida Department of Health (FDOH)(Florida Department of Health, 2020)

and (2) national-level COVID-19 Case Surveillance Data made available by the United States

Centers for Disease Control and Prevention (CDC) (CDC, COVID-19 Response, 2020). Both

datasets are line-level, including date of detection, demographics (including age and gender), and

indicators of eventual outcomes for each case (Table 2.4). In our defined cohorts, all COVID-19

cases are confirmed with a positive PCR lab result. Each FDOH case is marked with the date it

was confirmed, and each CDC case is marked with the date it was reported. Overall, there are

1,004,818 confirmed cases in the FDOH data, and 10,332,725 in the CDC data.
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Signal Smoothing For each date, we compute the 7-day lagged averages for COVID-19

cases, hospitalizations, and deaths. From this point in the paper on, whenever we discuss these

quantities or calculate CFR and HFR based on them, unless otherwise stated, we are referring to

the smoothed signal. Thus, in both the FDOH and CDC data, we collect data extending back to

March 26th in order to conduct our analyses on the April 1st to December 1st time range.

Separating Artifacts from True Improvements We argue that three main phenomena fuel

an “artificial” decrease in CFR: increased testing capacity (H1), shifting age distributions (H2),

and delays between detection and fatality (H3).

Since testing (H1) is not included in the FDOH or CDC data, we pull in data from The COVID

Tracking Project (Meyer and Madrigal, 2020) to quantify increased testing capacity in Florida

and nationally. We plot 7-day lagged averages of tests administered and the positive test rates.

To avoid artifacts from increased testing, we examine changes in HFRs rather than CFRs.

To establish and account for shifting age distributions (H2), we examine cases, hospitaliza-

tions, and deaths stratified by age groups: 0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, and

80+. Naturally, age stratification reduces the amount of data for each estimate, so we omit HFR

estimates that are based on fewer than two deaths.

Finally, to account for delays between detection and fatality (H3), we take advantage of

the line-level nature of the data in order to perform a cohort-based analysis. For each date,

we extract the cohort of individuals confirmed positive on that date, as well as whether those

individuals eventually died or were hospitalized. By contrast, publicly reported case fatality rates

are typically not cohort-based (Thompson, 2020; Madrigal, 2020; Spychalski et al., 2020)—the

patients whose deaths are reported in the numerator are not in general the same patients whose

confirmed infections show up in the denominator. Because case confirmation tends to precede

reported deaths, these signals tend to be misaligned and are subject to fluctuation, even if the

actual case fatality rate were fixed (so long as incidence does change). Line-level data enables us

to circumvent this problem.

Taking the above three adjustments into account, our primary quantity of interest for

treatment improvements is the age-stratified HFR. For the rest of the paper, we define CFR and

HFR at day t as follows:

CFRt =
cases at day t that eventually die

cases at day t

HFRt =
cases at day t that eventually get hospitalized and die

cases at day t that eventually get hospitalized

Quantifying True Improvements Thus far, news and academic sources have highlighted

three main “true improvements”: improvements in treatment (H4), disease mutations (H5), and

reduced viral loads due to social distancing (H6). We seek to quantify treatment improvements

(H4) by computing the drop in HFR.
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(a) Web tool with dropdowns for choosing gender, race/ethnicity, and state.

(b) Web tool with date range selector for estimating HFR drop, i.e. treatment improvement.

Figure 2.8: Interactive choices on the webapp for cohort selection to produce visualization and

treatment improvement estimation.

Estimation using Block-Bootstrap and Cubic Splines We use a cubic spline to fit the

trend of the 7-day lagged average HFRs, and use a moving block-bootstrapping technique with

post-blackening (Davison and Hinkley, 1997) to estimate uncertainty around this trend. As

described in the related work, 7-day lagged averages provide better estimate of trend by assuming

smoothness rather than a specific functional form. Block-bootstrapping with post-blackening

enables us to estimate uncertainty around this trend, with a weaker assumption than the standard

i.i.d. assumption. We use a 7-day block size, based on the length of the time series (Shalizi, 2013)

and our observations that reporting follows a weekly cadence. After block-bootstrap resampling

the residuals, the residuals are added back to the cubic spline, creating the replicates needed

for estimating HFR with uncertainty. A visual walkthrough of this procedure is in the “HFR

estimation” section of our web tool.

Visualization Tool We publish an interactive web tool, available at acmilab.org/unpack cfr,

for dynamically applying our analyses to any demographic or date range of interest. On both

FDOH data and CDC data, it displays plots for aggregate and age-stratified cases, hospitalizations,

and deaths over time (Figure 2.10); plots for age distributions of cases, hospitalizations, and

deaths over time (Figure 2.11); and estimates of age-stratified HFR as well as the change between

two user-provided dates (Table 2.5 and 2.6). For a cohort of interest, the user can select gender,

race/ethnicity, and state from dropdown menus in the web interface (Figure 2.8a). For HFR

estimates, the user can use a date selector to obtain new estimates for their date range of interest

(Figure 2.8b).
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Results

In both the FDOH and the CDC data, one can discern three waves of COVID-19 cases, peaking

in (1) mid-April, (2) mid-July, and (3) towards December (Figure 2.10).

Increased Testing Between April 1st and December 1st, testing increases significantly, by

approximately 964% in Florida and 1080% nationally (Figure 2.9, left and middle panel). Florida

observes a spike in testing near the second peak, whereas national testing rises more smoothly.

However, we note that these increases in testing cannot fully account for the peaks. Despite

increased testing inflating the number of cases, we still observe two peaks in positive test rates

in April and July (Figure 2.9, right panel), and a surge in positive test rates towards December.

Cases Across all age strata, as measured by cases, Florida’s second wave is the most severe

(Figure 2.10a, left panel) out of the three waves. In aggregate, it has approximately 1153% more

cases than in the first peak and 46% more cases than in the ongoing third wave (Figure 2.10a,

left panel). In contrast, nationally the third wave has substantially more cases than the first

two peaks—392% more than the first peak and 150% more than the second peak (Figure 2.10b,

left panel). Also, note that the relative jump in cases between the first two peaks is 96%, much

less than the 1153% jump seen in Florida. This could be due to a combination of the spike in

Florida’s testing in the second peak, as well as variation in the trajectories of different states (e.g.

the populous state of New York was particularly hard-hit in the first wave).

Hospitalizations and Deaths Overall, hospitalizations and deaths corroborate the story told

by positive test rate (Figure 2.10a, center and right panels). In Florida, hospitalizations and

deaths indicate a more severe second peak than first peak, though the contrast in peak size is

not as dramatic as in the plot of cases. By contrast, in the national data, the second peak is

smaller than the first peak, which is opposite to the trend seen in Florida cases. Much of the

discrepancies of trends seen in cases versus in hospitalizations and deaths are likely attributable

to increases in testing (Figure 2.9). Towards the third wave in December, Florida hospitalizations

and deaths are at similar levels to that of the first wave. Nationally, the ongoing third wave

appears to be worse than in the second wave.
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Figure 2.9: COVID-19 positive test rates (right) and tests (left and middle) for Florida and the

United States, calculated using 7-day trailing averages, based on the COVID Tracking Project

(Meyer and Madrigal, 2020). Positive test rate is calculated by dividing new positives by total

new tests on each day. Data outside the April 1st to December 1st study period is grayed out.
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Figure 2.10: Age-stratified cases, (eventual) deaths, and (eventual) hospitalizations in Florida

and in the U.S., by the date of first positive test result (Florida) and date of report to the CDC

(U.S.). Note that the x axis is not the date of death or date of hospitalization.
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Figure 2.11: Age distributions among Florida and national cases, (eventual) hospitalizations, and

(eventual) deaths, by the date of first positive test result (Florida) and date of report to the CDC

(U.S.), respectively.

25



Age Between the first two peaks, the age distribution of cases shifts substantially, with the

median age in Florida falling from 51 to 40, and the median national age group falling from

50-59 to 30-39. After the second peak, the age distributions of cases, hospitalizations, and deaths

continue to fluctuate. In September, younger cases increase, possibly related to the start of the

school year (Figure 2.11, left panel). By December 1st, the Florida median age remains at 40 but

the national median age group rises to 40-49. Older individuals comprise a disproportionate

share of the hospitalization and death counts (Figure 2.11, middle and right panel).

Gender The gender ratios in each age group’s cases, hospitalizations, and deaths appear

relatively flat over time. Thus, in this paper we choose not to stratify by gender due to the

reasonably small shift in the gender distribution over time, and practically to have more support

in each group. However, we do provide this option in our web tool. Consistent with prior

literature (Mehta et al., 2020), we find that as the age group increases so does the corresponding

HFR (Tables 2.5 and 2.6). Measuring treatment improvements by HFR drop (computed as

HFRnew −HFRold

HFRold
), we observe larger treatment improvements between April and December to be

correlated with younger age (Table 2.6). Note, however, that the younger groups have small HFRs

to begin with, so the opposite trend might appear when considering absolute rather than relative
improvements. Additionally, the confidence intervals for HFR drops are wider for younger age

groups.

Between the first two peaks (Table 2.5), the national age-stratified HFR estimates from block

bootstrapping decrease by as little as 27% in the 80+ age group, and as much as 37% in the

30-39 age group. On the other hand, in Florida the age-stratified HFR actually increases in each

age group by as little as 2.9% in the 80+ age group, and as much as 13% in the 60-69 age group.

Note that the HFR changes between peak dates in Florida are an example of Simpson’s paradox,

where in each age group the HFR increase, but the aggregate HFR actually decreases by 2.3%.

Compared to peak-to-peak changes, across the entire time range (Table 2.6) we observe a

more dramatic decrease in HFR. In Florida, the HFR drops by as little as 17% in the 80+ age

range, and as much as 42% in the 60-69 age range. Nationally, the HFR drops by as little as 55%
in the 80+ age groups, and as much as 73% in the 20-29 age group.

While this paper presents estimates at the two peaks and the endpoints of the study time

range, we can easily read off similar estimates with uncertainty for all dates between April 1st

and December 1st. This type of interactive functionality is available in our web tool. In our web

tool, when stratifying by gender in addition to age, the conclusions surrounding drops in HFR

are similar to those when just stratifying by age.
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Table 2.5: Estimates of HFR and drop in HFR on peak dates. Median and 95% confidence intervals

(CI) are computed using block bootstrapping. Results with inadequate support are omitted.

Florida National
Age group 2020-04-15 2020-07-15 04-15 to 07-15 2020-04-15 2020-07-15 04-15 to 07-15

aggregate 0.23 (0.21, 0.26) 0.23 (0.21, 0.24) -0.023 (-0.14, 0.13) 0.29 (0.28, 0.3) 0.17 (0.17, 0.18) -0.41 (-0.44, -0.37)

20-29 - - - 0.021 (0.018, 0.025) 0.014 (0.012, 0.016) -0.34 (-0.48, -0.16)

30-39 - - - 0.044 (0.041, 0.047) 0.027 (0.025, 0.03) -0.37 (-0.44, -0.3)

40-49 - - - 0.079 (0.074, 0.084) 0.056 (0.053, 0.059) -0.29 (-0.35, -0.22)

50-59 0.092 (0.078, 0.11) 0.1 (0.093, 0.11) 0.12 (-0.085, 0.38) 0.15 (0.14, 0.15) 0.1 (0.096, 0.1) -0.31 (-0.35, -0.27)

60-69 0.18 (0.15, 0.21) 0.21 (0.19, 0.22) 0.13 (-0.045, 0.38) 0.26 (0.25, 0.27) 0.18 (0.18, 0.19) -0.3 (-0.33, -0.26)

70-79 0.31 (0.28, 0.34) 0.33 (0.31, 0.34) 0.034 (-0.078, 0.18) 0.4 (0.39, 0.42) 0.27 (0.26, 0.27) -0.34 (-0.37, -0.31)

80+ 0.46 (0.43, 0.49) 0.48 (0.46, 0.49) 0.029 (-0.055, 0.12) 0.57 (0.55, 0.59) 0.41 (0.4, 0.42) -0.27 (-0.3, -0.24)

Table 2.6: Estimates of HFR and drop in HFR between April 1st and December 1st. Median and

95% CI are computed using block bootstrapping. Results with inadequate support are omitted.

Florida National
Age group 2020-04-01 2020-12-01 04-01 to 12-01 2020-04-01 2020-12-01 04-01 to 12-01

aggregate 0.23 (0.2, 0.27) 0.16 (0.12, 0.19) -0.33 (-0.52, -0.094) 0.34 (0.32, 0.35) 0.13 (0.11, 0.15) -0.61 (-0.67, -0.56)

20-29 - - - 0.025 (0.019, 0.03) 0.0066 (0.0014, 0.012) -0.73 (-0.95, -0.43)

30-39 - - - 0.049 (0.045, 0.054) 0.019 (0.014, 0.025) -0.61 (-0.72, -0.48)

40-49 - - - 0.087 (0.08, 0.095) 0.031 (0.024, 0.038) -0.65 (-0.74, -0.54)

50-59 - - - 0.16 (0.15, 0.17) 0.06 (0.05, 0.07) -0.63 (-0.69, -0.55)

60-69 0.18 (0.14, 0.22) 0.1 (0.06, 0.14) -0.42 (-0.69, -0.096) 0.28 (0.27, 0.3) 0.11 (0.097, 0.13) -0.61 (-0.66, -0.55)

70-79 0.31 (0.26, 0.35) 0.19 (0.14, 0.23) -0.38 (-0.57, -0.17) 0.45 (0.43, 0.47) 0.18 (0.16, 0.2) -0.6 (-0.65, -0.54)

80+ 0.44 (0.39, 0.49) 0.37 (0.32, 0.41) -0.17 (-0.32, -0.0038) 0.62 (0.59, 0.64) 0.28 (0.25, 0.31) -0.55 (-0.59, -0.49)

Discussion

We unpack the drop in CFR to quantify improvements reasonably attributable to advances

in treatment, accounting for shifting age distributions (H1) by age-stratifying, increased test-

ing capacity (H2) by focusing on the hospitalized, and the detection-to-fatality delay (H3) by

conducting a cohort-based analysis. We find that increased testing does not explain away the

three waves due to corresponding peaks in hospitalizations, deaths, and positive test rates. We

visualize the shifting age distributions, and quantify the decrease in age-stratified HFRs between

the first two peaks and across the entire study time range. Combining all these analyses, we

arrive at the following narrative:

At the beginning of April, testing was relatively sparse (Figure 2.9). Cases, hospitalizations,

and deaths were rising, and reached peak levels circa April 15th (Figure 2.10). Roughly one in

every ten tests came back positive in Florida, and one in every five tests, nationally. In Florida,

the aggregate HFR was approximately 23%, with age-stratified HFRs ranging between 9.2% for

the 50-59 age group to 46% for the 80+ age group (Table 2.5). Nationally, the aggregate HFR was

approximately 29%, with the age-stratified HFRs ranging between 2.1% for the 20-29 age group

and 57% for the 80+ age group (Table 2.5). In each age group, the national HFR was higher than
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the Florida HFR, possibly due to overwhelmed hospital systems in states hit hard during the

first wave. In fact, our web tool indicates that 34.5% of national CDC cases between April 1st

and April 15th were recorded in New York alone.

Over the next three months, the proportion of younger individuals with COVID-19 grew

steadily (Figure 2.11). Testing continued to rise nationally, and spiked in Florida as it approached

a heavier second peak around July 15, with positive test rates also at an all-time high (Figure 2.9).

Florida experienced record hospitalizations and deaths, and the age-stratified HFRs were at least

as high as in the first wave (Table 2.5). While Bill Gates had publicly attributed “a factor-of-two

improvement in hospital outcomes” to dexamethosone and remdesivir (Levy, 2020), this did

not yet appear to be true in Florida. (Alternatively, treatment improvements might have been

counterbalanced by strain on the hospital system.) On the other hand, cases in New York had

diminished (shown in our web tool) and were starting to surge in other states, forming a smaller

second peak nationally (as measured by hospitalizations and deaths). Between the first two peaks,

the national HFR had dropped by 41% in aggregate, with age-stratified HFRs dropping as much

as 37% in the 30-39 age group and as little as 27% in the 80+ age group. The different stories

told here by Florida and the national aggregate data underscore the importance of state-level

rather than national analysis.

Finally, come December 1st, a third wave is underway. Approximately 31% of all national

cases since April were confirmed in the last month alone (Figure 2.10b). In terms of hospitaliza-

tions, deaths, and positive test rate, this third wave has already surpassed the nation’s second

wave. For Florida, the third wave is already at least as severe as the first wave. Fortunately,

however, age-stratified HFRs in both Florida and the national aggregate data appear to have

dropped significantly since the start of the pandemic, likely indicating treatment improvements

(though possibly confounded by disease mutations (H5) and reduced viral loads (H6)). Since

April 1st, the age-stratified HFR in Florida has decreased by as much as 42% in the 60-69 age

group and as little as 17% in the 80+ age group. Nationally, the age-stratified HFR has decreased

by as much as 73% in the 20-29 age group and as little as 55% in the 80+ group. Regarding

the CFR, on July 27, former President Donald Trump stated in a press briefing that “Due to the

medical advances we’ve already achieved and our increased knowledge in how to treat the virus,

the mortality rate for patients over the age of 18 is 85 percent lower than it was in April.” (Trump,

2020) Note, however, that none of our estimates of improvements attributable to treatment are

as large as the 85% touted by Trump. In summary, CFR can be misleading if age distribution

shift, increased testing, and delays between detection and fatality are unaccounted for.

Limitations We aim to quantify treatment improvements (H4) in Florida and the U.S. by

estimating changes in the age-stratified HFR, but H4 could also be influenced by disease mutation

(H5) and changing viral loads (H6). To distinguish their effects in future work, we need additional

data. Furthermore, while we listed the six hypotheses we found in literature review, possible

alternative explanations may arise in the future as pandemic evolves.

We assume that treatment improvements will be reflected in the HFR because over our

study’s time range, major treatment improvements (e.g., dexamethosone and remdesivir) targeted

hospitalized patients. While the first U.S. vaccination was administered outside of our study
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time range, vaccines take effects before hospitalization, and so their treatment improvements

may not be reflected in the HFR for future studies. While our method could still quantify

post-hospitalization treatment improvements, we note that vaccination roll-out criteria (e.g.

occupation, age) and other characteristics (e.g. socioeconomic background) could influence who

gets hospitalized in the first place.

Other limitations arise from data quality issues. In both the FDOH data and CDC data,

missingness for hospitalization and death are high (Table 2.4), potentially introducing bias in the

estimates for HFR if the data are not missing at random. Stratifying the national data by state,

it appears that that each state may have different patterns of reporting their data to the CDC

(as can be seen in our web tool, when any state is filtered for). First, the reported CDC cases

appear to be incomplete for several states. For instance, in the subset of CDC data reported from

Florida, the cases only account for 67% of the cases provided by the FDOH, they appear to be

reported sporadically even after 7-day smoothing, and no death data is reported since October.

Cross-referencing with the COVIDcast API, we find that in the subset of CDC data from Texas,

only 4.9% of the cases and only 0.01% of the deaths are accounted for (Project, 2020), and only

14 hospitalizations were recorded across the entire studied time range. Thus, in our national

analysis, we are making the assumption that in aggregate the signal will outweigh the noise.

Despite the data limitations, the CDC data appears to be the best available source of line-level

cases needed for cohort-based analysis across the United States. We note that in the Florida

FDOH data, on the other hand, we use the positive test confirmed date which is not missing at

all in this data, making the Florida HFR estimates more reliable than those from the national

data.
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Chapter 3
Evaluating Models on Medical Datasets Over

Time (EMDOT)

Machine learning (ML) models deployed in healthcare systems must face data drawn from

continually evolving environments. However, researchers proposing such models typically

evaluate them in a time-agnostic manner, splitting datasets according to patients sampled

randomly throughout the entire study time period. This work proposes the Evaluation on

Medical Datasets Over Time (EMDOT) framework, which evaluates the performance of a model

class across time. Inspired by the concept of backtesting, EMDOT simulates possible training

procedures that practitioners might have been able to execute at each point in time and evaluates

the resulting models on all future time points. Evaluating both linear and more complex models

on six distinct medical data sources (tabular and imaging), we show how depending on the

dataset, using all historical data may be ideal in many cases, whereas using a window of the

most recent data could be advantageous in others. In datasets where models suffer from sudden

degradations in performance, we investigate plausible explanations for these shocks. We release

the EMDOT package to help facilitate further works in deployment-oriented evaluation over

time.

We use the following data six sources of data: (1) the Surveillance, Epidemiology, and

End Results (SEER) cancer dataset (National Cancer Institute, 2020), (2) the COVID-19 Case

Surveillance Detailed Data provided by the CDC (CDC, COVID-19 Response, 2020), (3) the

Southwestern Pennsylvania (SWPA) COVID-19 dataset, (4) the MIMIC-IV intensive care database

(Johnson et al., 2021), (5) the Organ Procurement and Transplantation Network (OPTN) database

for liver transplant candidates (Organ Procurement and Transplantation Network, 2020), and (6)

the MIMIC-CXR-JPG database of chest radiographs (Johnson et al., 2019a; Johnson et al., 2019b).

MIMIC-IV and MIMIC-CXR-JPG (referred to as MIMIC-CXR in this paper) are available on the

PhysioNet repository (Goldberger et al., 2000). Except for the SWPA dataset, all are publicly

accessible (after accepting a data usage agreement). Details for accessing each dataset are in

Appendices C.3–C.7. The code is publicly available on GitHub.
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3.1 Introduction

As medical practices, healthcare systems, and community environments evolve over time, so

does the distribution of collected data. Features are deprecated as new ones are introduced, data

collection may fluctuate along with hospital policies, and the underlying patient and disease

populations may shift. Amidst this ever-changing environment, models that perform well on

one time period cannot be assumed to perform well in perpetuity. In the MIMIC-III critical care

dataset, Nestor et al. (2019) found that a change to the electronic health record (EHR) system

in 2008 coincided with sudden degradations in AUROC for mortality prediction. In COVID-19

data from the Centers for Disease Control and Prevention (CDC), Cheng et al. (2021) noted that

the age distribution among cases shifted continually throughout the pandemic, and that these

continual shifts confounded estimates of improvements in mortality rate.

We propose an evaluation framework to characterize model performance over time by

simulating training procedures that practitioners could have executed up to each time point, and

subsequently deployed in future time points. We argue that standard time-agnostic evaluation

is insufficient for selecting deployment-ready models, showing across several datasets that it

over-estimates deployment performance. Instead, we propose EMDOT as a worthwhile pre-

deployment step to help practitioners gain confidence in the robustness of their models to

distribution shifts that have occurred in the past and may to some extent repeat in the future.

There is a large body of work that addresses adaptation under various structured forms of

distribution shift, including covariate shift (Shimodaira, 2000b; Zadrozny, 2004; Huang et al.,

2006; Sugiyama et al., 2007b; Gretton et al., 2009), label shift (Saerens et al., 2002; Storkey et al.,

2009; Zhang et al., 2013; Lipton et al., 2018; Garg et al., 2020), missingness shift (Zhou et al.,

2022a), and concept drift (Tsymbal, 2004; Gama et al., 2014). However, in the real-world medical

datasets we analyze, none of these structural assumptions can be guaranteed, and distributional

changes in covariates, labels, missingness, etc. could even occur simultaneously. This motivates

our empirical work, as it is unclear across a variety of model classes and medical datasets, how

existing models might degrade due to naturally occurring changes over time, and whether

different training practices might impact on robustness over time.

However intuitive it might seem, evaluation of models over time remains uncommon in

standard machine learning for healthcare (ML4H) research. In the proceedings of the Conference

on Health, Inference, and Learning (CHIL) 2022, for example, none of the 23 papers performed

evaluations which took time into account (see Appendix C.1 for similar statistics from CHIL

2021 and the Radiology medical journal). One possible reason for this is lack of access—as

noted by Nestor et al. (2019), it is common practice to remove timestamps when de-identifying

medical datasets for public use. In this work, we identify six sources of medical data containing

varying granularities of temporal information per-record, five of which are publicly available. We

profile the performance of various training strategies and model classes across time, and identify

possible sources of distribution shifts within each dataset. Finally, we release the Evaluation

on Medical Datasets Over Time (EMDOT) Python package (details in Appendix C.2) to allow

researchers to apply EMDOT to their own datasets and test techniques for handling distribution

shifts over time.
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3.2 Related work

The promise of ML for improving healthcare has been explored in several domains, including

cancer survival prediction (Hegselmann et al., 2018), diabetic retinopathy detection (Gulshan et

al., 2016), antimicrobial stewardship (Kanjilal et al., 2020; Boominathan et al., 2020), recognizing

diagnoses from electronic health record data (Lipton et al., 2016a), and mortality prediction

in liver transplant candidates (Bertsimas et al., 2019; Byrd et al., 2021). Typically, these ML

models are evaluated on randomly held out patients, and sometimes externally validated on

other hospitals or newly collected data. Even with cross-site validations, we cannot be sure how

models will perform in the future.

For decades, the medical community has had a history of utilizing (mostly) fixed, simple

risk scores to inform patient care (Hermansson and Kahan, 2018; Kamath et al., 2001; Wilson

et al., 1998; Wells et al., 1995). Risk scores often prioritize ease-of-use, are computed from few

variables, verified by domain experts for clear causal connections to outcomes of interest, and

validated through use over time and across hospitals. Together, these factors give clinicians

confidence that the model will perform reliably for years to come. With increasingly complex

models, however, trust and adoption may be hindered by a lack of confidence in robustness to

changing environments.

As noted by D’Amour et al. (2022b), ML models often exhibit unexpectedly poor behavior

when deployed in real-world domains. A key reason for these failures, they argue, is under-
specification, where ML pipelines yield many predictors with equivalently strong held-out

performance in the training domain, but such predictors can behave very differently in de-

ployment. By testing performance across a variety of distribution shifts that have previously

occurred over time, EMDOT could serve as a stress test to help combat under-specification.

Although evaluation over time is far from standard in ML4H literature, changes in perfor-

mance over time have been noted in prior work. To predict wound-healing, Jung and Shah (2015)

found that when data were split by cutoff time instead of patients, benefits of model averaging

and stacking disappeared. Pianykh et al. (2020) found degradation in performance of a model for

wait times dependent on how much historical data was trained on. To predict severe COVID-19,

Zhou et al. (2022c) found that learned clinical concept features performed more robustly over

time than raw features. Closest to our work is Nestor et al. (2019), which evaluated AUROC in

MIMIC-III critical care data from 2003–2012, comparing training on just 2001–2002; the prior

year; and the full history. Using the full history and curated clinical concepts, they bridged a big

drop in performance due to changing EHR systems. Whereas Nestor et al. (2019) considers three

models per test year, EMDOT simulates model deployment every year and evaluates across all
future years.

While we do not consider time series models in this work (instead considering those which

treat data as i.i.d.), there are similarities between how training sets are defined in EMDOT

and in techniques for evaluating time-series forecasts (Bergmeir and Benı́tez, 2012; Cerqueira

et al., 2020). These techniques often roll forward in time, taking either a window of recent data

or all historical data as training sets, and evaluate test performance on the next time point.
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Table 3.1: Summary of datasets used for analysis. For more details, see Appendices C.3–C.7.

Dataset name Outcome Time Range (time point unit) # samples # positives

SEER (Breast) 5-year Survival 1975–2013 (year) 462,023 378,758

SEER (Colon) 5-year Survival 1975–2013 (year) 254,112 135,065

SEER (Lung) 5-year Survival 1975–2013 (year) 457,695 49,997

CDC COVID-19 Mortality Mar 2020–May 2022 (month) 941,140 190,786

SWPA COVID-19 90-day Mortality Mar 2020–Feb 2022 (month) 35,293 1,516

MIMIC-IV In-ICU Mortality 2009–2020 (year) 53,050 3,334

OPTN (Liver) 180-day Mortality 2005–2017 (year) 143,709 4,635

MIMIC-CXR 14 diagnostic labels 2010–2018 (year) 376,204 209,088

Performance from each time point is then averaged to summarize performance. This type of

back-testing technique is common in rapidly evolving, non-stationary applications like finance

(Chauhan et al., 2020; Alberg and Lipton, 2017), where time series models are constantly updated.

In the healthcare domain, however, models may not be so easily updated, with risk scores

developed several years ago still being used to this day (Six et al., 2008; Kamath et al., 2001;

Wilson et al., 1998; Wells et al., 1995). Thus, we track performance not only the immediate year

after the training set, but all subsequent years in the dataset. Additionally, instead of collapsing

performance from models trained at different time points into summary statistics, which could

conceal distribution shifts over time, our framework tracks these granular fluctuations over time,

and creates tools to help provide insight into the nature and potential causes of such changes.

3.3 Data

We sought medical datasets that had: (1) a timestamp for each record, (2) interesting prediction

task(s), and (3) enough distinct time points to evaluate over. Six data sources satisfied these

criteria: SEER cancer data, national CDC COVID-19 data, COVID-19 data from a healthcare

provider in Southwestern Pennsylvania (SWPA), MIMIC-IV critical care data, OPTN data from

liver transplant candidates, and MIMIC-CXR chest radiographs. All datasets are tabular except

for MIMIC-CXR (medical imaging data). All but SWPA are publicly accessible.

Table 3.1 summarizes the dataset outcomes, time ranges, and number of samples. Figure

3.1 visualizes data quantity over time. Appendices C.3–C.8 include cohort selection diagrams,

cohort characteristics, features, heat maps of missingness, preprocessing steps, and additional

details. Categorical variables are converged to dummies, and numerical variables are normalized

and centered at 0. Missing values in categorical variables are treated as another category, and in

numerical variables they are imputed with the mean. In all datasets except MIMIC-CXR (where

each sample is a distinct radiograph), each sample corresponds to a distinct patient.
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Figure 3.1: Number of samples and positive
1
outcomes per time point.

3.3.1 SEER Cancer Data

The Surveillance, Epidemiology, and End Results (SEER) Program collects cancer incidence data

from registries throughout the U.S. Each case includes demographics, primary tumor site, tumor

morphology, stage, diagnosis, first course of treatment, and survival outcomes (collected with

follow-up) (National Cancer Institute, 2020). We use the SEER
∗
Stat software (Program, 2015)

to define three cohorts of interest: (1) breast cancer, (2) colon cancer, and (3) lung cancer. The

outcome is 5-year survival, i.e. whether the patient was confirmed alive five years after the year

of diagnosis. The amount of data has mostly increased each year (Figure 3.1). Performance over

time is evaluated yearly. See Appendix C.3 for more details.

3.3.2 National CDC COVID-19 Data

The COVID-19 Case Surveillance Detailed Data (CDC, COVID-19 Response, 2020) is a national

dataset provided by the CDC. It has the largest number of samples among the datasets considered,

and contains 33 elements, with patient-level data including symptoms, demographics, and state

of residence. The cohort consists of all lab-confirmed positive COVID-19 cases that were

hospitalized, so the quantity of samples over time has a seasonality reflecting surges in COVID-

19 (Figure 3.1). The outcome of interest is mortality, defined by “death yn” = “Yes” in the dataset.

Performance over time is evaluated on a monthly basis. See Appendix C.4 for more details.

3.3.3 SWPA COVID-19 Data

The Southwestern Pennsylvania (SWPA) COVID-19 dataset consists of EHR data from patients

tested for COVID-19. It is the smallest dataset considered in this work, and was collected by

1
In MIMIC-CXR, all labels except “No Finding” are considered positive in Figure 3.1 and Table 3.1.
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a major healthcare provider in SWPA. Features include patient demographics, labs, problem

histories, medications, inpatient vs. outpatient status, and other information collected in the

patient encounter. The cohort consists of COVID-19 patients testing positive for the first time,

and not already in the ICU or mechanically ventilated. Similar to the CDC COVID-19 dataset,

there is a seasonality to the monthly number of samples that reflects surges in COVID-19 (Figure

3.1). The outcome of interest is 90-day mortality, derived by comparing the death date and test

date. Performance over time is evaluated on a monthly basis. See Appendix C.5 for more details.

3.3.4 MIMIC-IV Critical Care Data

The Medical Information Mart for Intensive Care (MIMIC)-IV (Johnson et al., 2021) database

contains EHR data from patients admitted to critical care units from 2008–2019. MIMIC-IV is an

update to MIMIC-III, adding time annotations placing each sample into a three-year time range,

and removing elements from the old CareVue EHR system (before 2008). We approximate the

year of each sample by taking the midpoint of its time range, but note that this causes certain

years (2009, 2012, 2015, 2018) to have substantially more samples than others (Figure 3.1). The

cohort is selected by taking the first encounter of all patients in the “icustays” table, and the

outcome of interest is in-ICU mortality. Performance over time is evaluated on a yearly basis.

See Appendix C.6 for more details.

3.3.5 OPTN Liver Transplant Data

The Organ Procurement and Transplantation Network (OPTN) database tracks organ donation

and transplant events in the U.S. The selected cohort consists of liver transplant candidates on

the waiting list. The same pipeline as Byrd et al. (2021) is used to extract the data, except that

the first record is selected for each patient. The outcome of interest is 180-day mortality from

when the patient was added to the list. The performance over time is evaluated on a yearly basis.

More details are in Appendix C.7.

3.3.6 MIMIC-CXR

The MIMIC Chest X-ray (MIMIC-CXR) JPG dataset (Johnson et al., 2019b) contains chest radio-

graphs in JPG format. Similar to MIMIC-IV, we approximate the year by taking the midpoint

of its three-year time range. The selected cohort consists of all radiographs from 2010 to 2018.

The outcomes of interest are 14 diagnostic labels: Atelectasis, Cardiomegaly, Consolidation,

Edema, Enlarged Cardiomediastinum, Fracture, Lung Lesion, Lung Opacity, Pleural Effusion,

Pneumonia, Pneumothorax, Pleural Other, Support Devices, and No Finding. Performance over

time is evaluated on a yearly basis. More details are in Appendix C.8.
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3.4 Methods

We tackle the following guiding questions:

1. On each dataset, what would the reported performance of a model be if it were trained

using standard time-agnostic splits (all-period)?

2. Simulating how a practitioner might have trained and deployed models in the past, how

would performance have varied over time?

3. When might it be better to train on a recent window of data versus all historical data?

4. What is the comparative performance of different classes of models over time?

5. To what extent might we be able to diagnose possible reasons for changes in model

performance?

3.4.1 All-period Training

We mimic common practice in evaluation by using time-agnostic data splits which randomly

place patients from the entire study time range into train, validation, and test sets (details in

Appendix C.12), and reporting the test set performance. We refer to training with this type of

split as all-period training.

3.4.2 EMDOT Evaluation

For more realistic simulation of how practitioners train models and subsequently deploy them

on future data, we define the Evaluation on Medical Datasets Over Time (EMDOT) framework. At

each time point t (termed simulated deployment date), an in-period subset of data from times ≤ t
is available for model development. After training a model on this in-period data, one might be

interested in both recent in-period performance (at time t) and future out-of-period performance

(at times > t).

In-period data is split into train, validation, and test sets (split ratios in Appendix C.12). For

MIMIC-CXR, where one patient could have multiple radiographs, the data is split such that

there are no overlapping patients between splits. Recent in-period performance is evaluated

on held-out test data from the most recent time point. Out-of-period performance is evaluated

on all data from each future time point. For example, a model trained up to time 6 is tested

on data from 6, 7, 8, etc. (Figure 3.2). At time 8, the model is considered two time points stale.

Although this procedure can take O(T ) times more computation than all-period training for T
time points, we argue that this procedure yields a more realistic view of the type of performance

that one might expect models to have over time.

Additionally, practitioners face a tradeoff between using recent data perhaps most reflective

of the present and using all available historical data for a larger sample size. Intuitively, the

former may be appealing in modern applications with massive datasets, whereas the latter may
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Figure 3.2: EMDOT training regimes, with a simulated deployment date of t = 6.

be necessary in data-scarce applications. We explore these two training regimes, with different

definitions of in-period data (Figure 3.2):

1. Sliding window: The last W time points are considered in-period. In this paper, we use

window size W = 4 for sufficient positive examples.

2. All-historical: Any data prior to the current time point is considered in-period.

To decouple the effect of sample size from that of shifts in the data distribution, comparisons

are also performed with all-historical data that is sub-sampled to be the same size as the

corresponding training set under the sliding window training regime.

To summarize more formally, let Dt refer to the set of all data points occurring at time

t ∈ {1, ..., T}, where T is the number of time points that the dataset spans. Each Dt can

be partitioned by splitting patients at random into disjoint train, validation, and test sets:

Dt = Dtrain

t ∪ Dval

t ∪ Dtest

t . For simulated deployment dates t∗ ∈ {W,W + 1, ..., T}, training,

validation, and test sets are defined for the sliding window training regime as follows:

• training:

⋃t∗

k=t∗−W+1 D
train

k

• validation:

⋃t∗

k=t∗−W+1D
val

k

• in-period test: Dtest

t∗

• out-of-period test: Dk for k = t∗ + 1, ..., T

Training, validation, and test sets are defined for the all-historical training regime as follows:

• training:

⋃t∗

k=1 D
train

k

• validation:

⋃t∗

k=1D
val

k

• in-period test: Dtest

t∗

• out-of-period test: Dk for k = t∗ + 1, ..., T

At each simulated deployment date t∗, models are trained using the training set, validated

using the validation set, and tested on the in-period test set as well as all out-of-period test sets.

If a model with simulated deployment date t∗ is being evaluated on an out of period test set

Dt∗+j , then the model is j time points stale.
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3.4.3 Evaluation Metrics

All binary classification tasks are evaluated by AUROC. For multi-label prediction in MIMIC-

CXR, each of the 14 diagnostic labels is treated as a separate binary classification task, and a

weighted sum of AUROCs is computed, where the weight for a particular label is given by the

proportional prevalence of that label among all positive labels. That is, for some class a, its

weight is pa/
∑

x px, where px is the number of positives with label x. Samples are treated in an

i.i.d. manner for training.

3.4.4 Models

Logistic regression (LR), gradient boosted decision trees (GBDT) and feedforward neural net-

works (MLP) are trained on the tabular datasets. DenseNet-121 is trained on the MIMIC-CXR

imaging dataset. Hyperparameters are selected based on in-period validation performance, and

the hyperparameter grids are in Appendix C.13.

3.4.5 Detecting Sources of Change

To better understand possible reasons for changing performance, we create diagnostic plots
to track model performance alongside changes in the data distribution over time. In tabular

datasets, we plot feature importances and average values of the most important features over time.

Generating these plots for logistic regression, we define feature importance by the magnitudes

of the coefficients, but note that other feature importance techniques could be used for more

complex model classes. To avoid overcrowding the plots, we take the union of the top k most

important features from each time point is taken, where k is tuned depending on the dataset. We

additionally highlight (using a thicker line) categorical features with consistently high prevalence

or which experience a large change in prevalence across one time point, and numerical features

with high average rank (see Appendix C.10 for thresholds for each dataset). For the imaging

dataset, where feature importance is less straightforward, we plot the distribution of pixel

intensities over time, along with proportions of each of the 14 diagnostic labels. By highlighting

sudden changes in model performance and the corresponding time periods in all other plots,

diagnostic plots can help bring attention to shifts in the distribution of data that coincide with

changing model performance.

3.4.6 EMDOT Python Package

We release the EMDOT python package
2

to help practitioners move from standard model

evaluation to EMDOT evaluation. See Appendix C.2 for a schematic of the EMDOT workflow,

and see the GitHub repository for a step-by-step tutorial.

2
https://github.com/acmi-lab/EvaluationOverTime
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Table 3.2: Test AUROC from all-period training and time-agnostic evaluation.

Model SEER

(Breast)

SEER

(Colon)

SEER

(Lung)

CDC

COVID-19

SWPA

COVID-19

MIMIC-

IV

OPTN

(Liver)

MIMIC-

CXR

LR 0.888 0.863 0.894 0.837 0.928 0.935 0.846 -

GBDT 0.891 0.868 0.894 0.851 0.930 0.931 0.854 -

MLP 0.891 0.869 0.898 0.852 0.928 0.898 0.847 -

DensetNet - - - - - - - 0.860
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Figure 3.3: Average test AUROC of logistic regression vs. time. Each solid line gives the

performance of a model trained up to a simulated deployment time (marked by a dot), evaluated

across future time points. Error bars are± standard deviation computed over 5 random splits. Red

dotted line gives per-timepoint test performance of a model from all-period training (infeasible

in reality, as it would involve training on data after the simulated deployment date).

3.5 Results

3.5.1 All-period Training

In standard time-agnostic evaluation, GBDT and MLP achieve the highest average test AUROC

on all tabular datasets except MIMIC-IV (Table 3.2). Note however that LR often has comparable

or only slightly lower AUROC than the more complex models. The top 10 coefficients of each LR

with all-period training are in Appendices C.3–C.7, and the per-label AUROC of MIMIC-CXR

is in Appendix Table C.9. To form a baseline for comparison across time, we also evaluate the

all-period models on subsets of the all-period test data that belong to each year (red dotted line

in Figure 3.3), but note that this type of training (on future data) is not feasible in deployment.
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3.5.2 EMDOT Evaluation

Figure 3.3 plots the AUROC of LR for all tabular datasets (and DenseNet-121 for MIMIC-CXR)

over time when using the all-historical training regime. Plots for GBDT and MLP are in Appendix

C.11, along with plots for AUPRC. We mainly discuss AUROC, but note that AUPRC observes

similar trends as in AUROC. One difference however is that the baseline AUPRC performance is

given by the label prevalence (rather than a constant 0.5, as in AUROC), and so observed trends

in label prevalence over time appear to influence trends in AUPRC (Appendix Figure C.39).

For both AUROC and AUPRC, the reported test performance of a model from standard

all-period training (red dotted line) mostly sits above the performance of any model that could

have realistically been deployed by that date. Thus, all-period training tends to provide an

over-optimistic estimate of performance upon deployment.

Across the datasets, a variety of trajectories of model performance are observed over time.

In the SEER datasets, the AUROC of freshly trained models increases dramatically near 1988, but

several of these models experience a large drop in AUROC around 2003 (Figure 3.3). Additionally,

in-period test AUROCs tend to increase over time. By contrast, in CDC data, in-sample test

AUROCs fluctuate up and down, and model performance over time varies more smoothly,

appearing to loosely follow the in-sample performance. Models trained after December 2020

have a slight boost in AUROC, coinciding with a surge in cases (and hence sample size, Figure

3.1), however by January 2022 the in-sample AUROC decreases. In SWPA COVID-19, there

is more variation and uncertainty in AUROC early in the pandemic, where sample sizes are

small. In December 2020, sample sizes increase, and models seem to become more robust to

changes over time. Finally, in the MIMIC-IV, MIMIC-CXR, and OPTN datasets, AUROC appears

relatively stable across time.

3.5.3 Training Regime Comparison

As the staleness of training data increases (i.e. as test date strays from simulated deployment

date), the training regimes fare differently depending on the dataset (Figure 3.4, left).

In SEER (Breast) and SEER (Lung), sliding window is initially comparable to all-historical on

fresh (low-staleness) data, but significantly underperforms both all-historical and all-historical

(subsampled) when data are 8 to 22 years stale. At larger stalenesses, all training regimes start

to become comparable. In CDC COVID-19, sliding window outperforms all-historical regardless

of how stale the data is. By contrast, in SWPA COVID-19, which has the least amount of data

(Table 3.1), both sliding window and all-historical (subsampled) underperform all-historical. In

SEER (Colon), performance is relatively stable regardless of training regime. In MIMIC-IV, OPTN

(Liver), and MIMIC-CXR, sliding window is on average comparable or slightly outperforms

all-historical when staleness is 0, but at nonzero stalenesses all-historical outperforms both

sliding window and all-historical subsampled.

3
Note: at the largest stalenesses, there are fewer simulated deployment dates being averaged over, and they

must be early in the dataset. Here, the sliding window and all-historical can be expected to perform similarly
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3
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of LR)

(especially when the sliding window is not much larger than or even matches the history). Since this is an artifact

of finite time ranges, we gray out stalenesses where at least half of the all-historical data is the first sliding window
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3.5.4 Model Comparison

In SEER (Breast) and OPTN, GBDT outperforms both LR and MLP across the entire time range

(Figure 3.4, right). In SEER (Colon), SEER (Lung), and CDC COVID-19, both GBDT and MLP

initially outperform LR when staleness of the training data is less than 4 years, 4 years, and 7

months, respectively, however both eventually underperform LR as staleness increases further.

While there is an uptick in GBDT performance on CDC COVID-19 towards 21-month staleness,

we note this data point is derived from less data than other points on the line because the data

time range is finite. In the SWPA COVID-19 dataset, LR, MLP, and GBDT appear to perform

comparably over time. In the MIMIC-IV dataset, LR performed best to begin with and remained

the best.

3.5.5 Detecting Possible Sources of Change

Diagnostic plots for all datasets are in Appendix C.10. Here, we discuss SEER (Lung) (Figure 3.5)

in detail as it has several interesting changes in model performance over time. In 1983, as EOD 4
features from the extent of disease coding schema are introduced (Figure 3.5, bottom right),

a sudden jump in AUROC occurs (Figure 3.5, top and middle left). However, models trained

at this time later experience a large AUROC drop (Figure 3.5, bottom left). By 1988, EOD 4 is

phased out, and EOD 10 features are introduced. This coincides with another jump in AUROC,

sustained until 2003 when the EOD 10 features are removed. In this dataset, the all-historical

training regime seems more robust to changes over time, as all-historical models trained after

1988 avoid the drop that sliding window models undergo once their window excludes pre-1988

data (Figure 3.5, bottom left).

3.6 Discussion

Reported model performance from standard all-period training tends to be over-optimistic

(Figure 3.3) as models are evaluated on time points already seen in their training set (unrealistic

in deployment settings). Thus, AUROCs reported from all-period training do not capture

degradation that would have occurred in deployment.

Comparing model classes, in all datasets except MIMIC-IV, GBDT and MLP slightly outper-

form LR under standard time-agnostic evaluation (Appendix Table 3.2). However, evaluated

across time, LR is often comparable and even outperforms more complex models once enough

time passes after the simulated deployment date. For example, MLP achieves the best AUROCs

in SEER Breast, Colon, and Lung in standard time-agnostic evaluation (Table 3.2). However, in

evaluation over time, LR had superior performance once some amount of time (30, 5, 4 years

respectively) had passed (Figure 3.4, right). In most datasets GBDT appears more robust over

time than MLP, however as the training data becomes more stale it tends to become comparable

of data.
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(low-left), absolute feature coefficients for LR models from sliding window (top-right) and all-

historical subsampled (mid-right) and prevalences of important features over time (low-right).

to LR (in all datasets except OPTN Liver and SEER Breast, GBDT dipped below the performance

of LR for several stalenesses). Thus, although complex model classes may appear to outperform

simpler linear model classes in standard time-agnostic evaluation, one should consider perfor-

mance over time when selecting a model class for deployment. As demonstrated by the different

relative performances of model classes when evaluated over time versus in a time-agnostic

manner, EMDOT can serve as a helpful stress-test to combat under-specification.

Regarding training regimes, we find that with increasing stalenesses, all-historical appears

more reliable than sliding window across all datasets except for CDC COVID-19 (Figure 3.4, left).

In SWPA COVID-19, MIMIC-IV, OPTN (Liver), and MIMIC-CXR, the benefit of all-historical data

likely comes from the increased sample size, as subsampling all-historical data to be the same size

as the corresponding sliding window resulted in comparable performance to sliding window. In

the SEER datasets, the effect of sample size is less pronounced, as sliding window and subsampled

all-historical are frequently comparable to all-historical. There are certain stalenesses for which

sliding window underperforms all-historical, which may be due to the addition and removal

of features. If the sliding window model learns to rely on recently added features which are
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later removed, this could result in drops in performance whereas an all-historical model which

had learned to predict without the presence of such features would be more robust to such

changes. On the other hand, in CDC COVID-19 (the setting with the most data and fewest

features), subsampled all-historical performs comparably to all-historical, and sliding window

outperforms both across all stalenesses (Figure 3.4, left). This suggests that the performance of

LR may have been saturated even when a sub-sample of all-historical data was used, and the

benefit of using more recent data outweighs the larger sample size afforded by all-historical.

More broadly, in rapidly evolving environments with simple models, few features, and large

quantities of data, the sliding window training regime could be advantageous.

The SEER datasets had dramatic changes in data distribution in both 1988 and 2003, when

important features were added and/or removed (Figure 3.5). One possible reason for the robust-

ness of all-historical models in this dataset is that after 2003, when features like EOD 10 were

removed, the model could still rely on features that were introduced prior to the use of EOD 10

in 1988. More broadly, we hypothesize that if a model was trained on a mixture of distributions

that occurred throughout the past, it may be better equipped to handle shifts to settings similar

to those distributions in the future.

While the SEER datasets and COVID-19 datasets displayed several changes in model perfor-

mance over time, the OPTN and MIMIC datasets had relatively stable behavior. One possible

reason for this is that the outcomes or diseases of interest were relatively stable in nature,

we did not observe any substantial changes in the distribution of data. Another is that in the

MIMIC datasets, a three-year range was given for each sample rather than a specific date. This

uncertainty around the date, along with the limited number of date ranges, could result in a

smoothing effect on the resulting estimates of performance.

In conclusion, EMDOT yields insights into the suitability of different model classes or training

regimes for deployment, and also helps one detect distribution shifts that occurred in the past.

Understanding such shifts may help practitioners be prepared for shifts of a similar nature in

the future. Although the EMDOT framework requires more computation time than standard

time-agnostic evaluation, we argue that the insights gained from this procedure can be vital

before deployment in high-stakes settings.

Limitations and Future Work One possible reservation that users might have about using

EMDOT is that it could involve training up to T times as many models as would normally be

required (where T is number of timepoints). To help alleviate this concern, in future work we plan

to implement parallelization in EMDOT. For noisier estimates of model performance in less time,

one could also subsample the dataset. Another interesting extension is exploring performance

over time in other data modalities (e.g. time series, natural language, etc.). Depending on

the complexity of models used in these modalities, this may require additional computational

resources. More broadly, we hope that others may also build upon EMDOT to shine new light

on how models and methodologies fare when evaluated with an eye towards deployment.
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Part II

Underreporting in Healthcare Data and

Missingness Shift

“…all models are wrong, but some are useful.”

- George E. P. Box, Empirical Model-Building and Response Surfaces

Missing data was a common problem in the datasets studied in Part I. As states updated

their COVID-19 reporting policies over time, we saw artificial jumps in the number of cases

and deaths reported. Other features recorded in medical records data were also at lower rates

than expected. In this part of the thesis, we start with an empirical work which models and

adjusts for underreporting in electronic medical records data from COVID-19 patients. Then, we

formalize the intuition from fluctuating reporting policies by defining the problem of domain

adaptation under missingness shift.
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Chapter 4
Learning Clinical Concepts for Predicting

Progression to Severe COVID-19

4.1 Introduction

As COVID-19 becomes endemic, communities are learning what it means for them to “live

with” COVID-19. An important component of living with COVID-19 is understanding when

individuals who contract the disease are likely to progress to a severe condition. Our work

studies the risk of severe COVID-19 progression, using data collected by a major healthcare

provider in Southwestern Pennsylvania from January 2020 to January 2022. We define severe
COVID-19 as a COVID-19 case involving mechanical ventilation, admission to an intensive care

unit (ICU), or death.

Healthcare providers often have different systems for collecting and storing patient data. To

utilize this data for prediction, researchers usually leverage domain expertise to manually extract

a large initial set of potentially relevant features, and subsequently use automatic feature selection

techniques to eliminate all but the most significant. Clinicians can then consider these features

when determining a patient’s care plan, and hospitals could potentially extract these features to

calculate risk. While expert-guided curation of features can help reduce the model search space,

it can also limit performance due to imperfect feature extraction and inadvertent removal of

informative features. Automatic feature selection may yield features that are predictive of the

outcome, but these features may actually be serving as proxies for higher-level concepts that

cause the outcome (e.g. insulin medication may be predictive, but diabetes is the underlying

risk factor), especially when the higher-level concepts are underreported. While reliably recorded

proxies can be effective predictors, they can also yield misleading interpretations. Additionally,

it is unclear whether these proxies will be equally effective when applied to new settings such

as different time periods or different hospitals. As a result, doctors may favor smaller models

with features whose relevance is intuitive even if these models suffer some loss in performance

owing, in part, to underreporting of the features.
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To strike a balance between incorporating domain knowledge, model simplicity, transparency,

and performance, we propose to learn clinical concepts anchored to intuitive expert-selected

features, and to use these concepts to predict severe COVID-19 progression. Motivated by

high levels of missingness in our data, clinical concepts are learned by treating the presence

of an expert-selected feature (e.g. diabetes ICD code) as a positive label, treating its absence as

unlabeled, and applying positive and unlabeled learning algorithms to learn the probability of

the concept given the other covariates. We find that learned concepts (LC) for an expert-selected

subset of features provide a boost in performance over the features (C-index 0.858 vs. 0.844),

and that this boost places the LC model approximately halfway between the selected features

model (C-index 0.844) and the model trained on all available features (All Features) or LC + All

Features combined (both C-index 0.872). While there is some loss of performance going from the

All Features model to the LC model, this gap seems to close quickly on subsequent time periods,

suggesting that there may be some reason why the LC model is favored over time. Qualitatively,

we find that some of the features important to the All Features model are incorporated into

the learned concept classifiers, possibly indicating that they serve as proxies for the concepts.

Finally, we publish an interactive web visualization tool at acmilab.org/severe covid for users to

explore the learned concepts, original features, and how both are utilized in our models.

4.2 Related Work

Several works have identified predictive factors for severe COVID-19, where the population

studied and the definition of severity vary. Docherty et al. (2020) performed a prospective obser-

vational study on COVID-19 hospitalizations in the UK and identified risk factors for mortality

including old age, male, and chronic comorbidities such as obesity. Henry et al. (2020) performed

a meta-analysis of 21 studies and identified white blood cell count, lymphocytes, platelets, IL-6

and serum ferritin as inpatient biomarkers for progression to severe or fatal illness. The VACO

Index (King Jr et al., 2020) uses three pre-COVID-19 health status variables, demographics,

pre-existing medical conditions, and Charlson Comorbidity Index, in a mortality score. To

identify severe COVID-19 patients in need of limited ventilation resources, some works(Xu et al.,

2021; Zhou et al., 2020c) have predicted patient risk of developing acute respiratory distress

syndrome (ARDS) using labs, demographics, and other clinical data.

Covichem(Bats et al., 2021) is an admission risk score predicting severity as defined by

a composite of lab values, ARDS, or ICU admission. After stepwise model selection on the

Akaike Information Criterion, Covichem identified risk factors including: obesity, cardiovascular

conditions, plasma sodium, albumin, ferritin, lactate, and creatinine. COVID-GRAM(Liang et al.,

2020b) predicts risk of ICU admission, invasive ventilation, or mortality for inpatients using

ten predictors: chest radiography abnormality, age, hemoptysis, dyspnea, unconsciousness,

comorbidity count, cancer history, neutrophil-to-lymphocyte ratio, lactate dehydrogenase, and

direct bilirubin, chosen via LASSO regression. Galloway et. al.(Galloway et al., 2020) created a

simple count-based risk score for predicting ICU admission or mortality, using twelve features:

age, male, ethnicity, oxygen saturation, radiological severity score, neutrophils, C-reactive

protein, albumin, creatinine, diabetes mellitus, hypertension, and chronic lung disease. Other

47

acmilab.org/severe_covid


works(Salaffi et al., 2020; Li et al., 2020) have used chest CTs to score severity.

Several works have used deep learning to extract embeddings of medical concepts from

EHRs(Choi et al., 2018; Rasmy et al., 2021). While useful for various downstream tasks, these

embeddings usually suffer a lack of transparency. As an alternative, Halpern et. al. proposed

an “anchor-and-learn” framework in which expert-defined binary medical concepts are learned

by treating certain informative features as positive labels for those concepts, and applying

algorithms from positive and unlabeled learning (Elkan and Noto, 2008a; Halpern et al., 2016;

Bekker and Davis, 2020a). An advantage of this method is the interpretable coefficients of

classifiers used for learning the concepts.

4.3 Data

Cohort Description. We use retrospective observational data collected by a major healthcare

provider in Southwestern Pennsylvania from January 1st, 2020 to January 12th, 2022. Out of

171,009 patients who were tested for COVID-19, we extract the 40,190 who tested positive. Of

those, we remove individuals who were already mechanically ventilated or admitted to the ICU

within 30 days prior to the time t0 of testing positive for the first time. This leaves a cohort

of 31,336 individuals (Table 4.1). Note that this study seeks to predict the risk of progressing

to severe COVID-19 upon testing positive for the first time, and so features and outcomes are

defined relative to time t0.

Features. Features are extracted no later than the date of each patient’s first covid positive

test. These include testing location (inpatient/outpatient), demographics, labs, medications,

vaccines, symptoms, and problem history. The most recent value of each feature is extracted,

and symptoms are limited to a one-day window around t0. Since there are tens of thousands of

distinct medications, labs, diagnoses, vaccines, etc. in our data, the feature pool is limited to the

top 20 of each data type except for labs (top 50). Upon clinician review, 45 more features are

extracted. After removing low-variance features, converting categorical values to indicators,

and normalizing continuous values, this yields a fixed-length 139-dimensional feature vector

(see acmilab.org/severe covid) for patient information known at t0.

Outcome. Since patients are right-censored upon leaving the hospital system, the outcome

of interest is a time-to-event, where the time is computed as the time elapsed between t0 and

severe COVID-19 (mechanical ventilation, ICU admission, or death) or censorship (when the

patient was last seen in hospital records), whichever is first.
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Table 4.1: Cohort characteristics (n = 31,336). Demographics, inpatient vs. outpatient status,

outcomes.

Characteristic Count (%)

Gender
Female 17,874 (57.0%)

Male 13,455 (42.9%)

Age
Under 20 2,836 (9.1%)

20 – 30 3,987 (12.7%)

30 – 40 4,134 (13.2%)

40 – 50 4,155 (13.3%)

50 – 60 5,444 (17.4%)

60 – 70 5,017 (16.0%)

70 or above 5,763 (18.4%)

Characteristic Count (%)

Location of Test
Inpatient 13,246 (42.3%)

Outpatient 15,868 (50.6%)

Unknown 2,222 (7.1%)

Outcomes
Severe COVID-19 5,272 (16.8%)

ICU Admission 4,811 (15.4%)

Death 1,554 (5.0%)

Mechanical ventilation 1,096 (3.5%)

4.4 Learning Clinical Concepts

Different types of data often provide partial information about higher-level concepts. For example,

a saline IV bolus is typically administered inpatient, and is highly predictive of inpatient status

even if inpatient status is unavailable. Certain labs could further confirm inpatient status.

While one could methodically create rules for every concept of interest, it is difficult to do

so comprehensively. As a result, learned models may end up using proxies that indirectly

encode important risk factors (e.g. IV bolus encoding inpatient status), possibly leading to

misinterpretation. Thus, we learn clinical concepts corresponding to major risk factors, and use

these for downstream risk prediction.

PU Algorithm for Learning Concepts. To learn these concepts, we use the “anchor-and-

learn” framework (Halpern et al., 2016). For each concept of interest, we identify some key

informative observations (“positive anchors”) relating to that concept. In this work, we only

consider binary-valued concepts (present vs. not present). An observation is an anchor for a

concept if it is conditionally independent of all other observations conditioned on the concept.

When the presence of an anchor almost certainly implies the presence of the concept, this is

known as a positive anchor.

Consider a patient with covariates x ∈ Rd
. Suppose we want to extract a concept c with

positive anchor xc ∈ {0, 1} (e.g. extracting a diabetes concept with a diabetes diagnosis code

as a positive anchor). Let yc ∈ {0, 1} be the true binary label for whether concept c is present.

Note that in most observational health data, we observe the presence of a clinical condition,

but not the absence of it. For example, when extracting the diabetes concept, we can be fairly

confident that a patient marked as diabetic does indeed have diabetes, but patients unmarked do

not necessarily not have diabetes. Said differently, we have positive and unlabeled (PU) data
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rather than positive and negative data. Since only positive examples are labeled, yc = 1 is certain

when xc = 1, but when xc = 0, then yc could be either 0 or 1.

Thus, we leverage algorithms designed to learn from positive and unlabeled data, or “PU

learning” algorithms. Let xc̄ refer to all covariates except for xc. Since anchors are conditionally

independent of all other observations conditioned on the concept, we have that p(xc|yc = 1) =
p(xc|yc = 1, xc̄). Now, consider p(xc = 1|xc̄). We have that:

p(xc = 1|xc̄) = p(xc = 1 ∧ yc = 1|xc̄)

= p(yc = 1|xc̄)p(xc = 1|yc = 1, xc̄)

= p(yc = 1|xc̄)p(xc = 1|yc = 1)

=⇒ p(yc = 1|xc̄) = p(xc = 1|xc̄)/δc

where δc = p(xc = 1|yc = 1). The first equality follows from the fact that yc = 1 is certain

when xc = 1, and the second equality follows from Bayes rule. In words, the expression indicates

that true probability of the concept being present is proportional to the probability of the positive
anchor being present by a factor of δc. Thus, if we can train a PU classifier g(xc̄) = p(xc = 1|xc̄)
that learns the probability that a positive anchor is present given the remaining covariates,

we need only scale the probability by δc in order to get the probability of the underlying

concept being present. As noted in Elkan and Noto (Elkan and Noto, 2008a), for the set P
of positive labeled examples, one can construct an empirical estimate of the constant δc as

δ̂c =
1
n

∑
xc̄∈P g(xc̄) , due to the observation that g(xc̄) = δc for xc̄ ∈ P :

g(xc̄) = p(xc = 1|xc̄)

= p(xc = 1|xc̄, yc = 1)p(yc = 1|xc̄) + p(xc = 1|xc̄, yc = 0)p(yc = 0|xc̄)

= p(xc = 1|xc̄, yc = 1) · 1 + 0 · 0 since xc̄ ∈ P

= p(xc = 1|yc = 1)

= δc.

Finally, this yields the following procedure for learning clinical concepts:

1. Identify clinical concepts of interest, and corresponding positive anchors.

2. Learn a positive vs. unlabeled classifier. Use logistic regression to learn a classifier

g(xc̄) that outputs the probability of the positive anchor given the other covariates.

3. Estimate the scaling constant. On a validation set, estimate δ̂c by averaging the output

of g(xc̄) on all positive labeled examples (i.e. examples with the positive anchor).

4. Scale predictions from the PU classifier by the estimated scaling constant to get the

probability that the underlying concept is present. That is, compute p(yc = 1|xc̄) =
g(xc̄)/δ̂c for all examples where the positive anchor is not present. If the positive anchor

is present, leave the probability as 1.

This procedure is also used in Halpern et al. (2016), except instead of drawing the concept from a

Bernoulli distribution parameterized by p(yc = 1|xc̄), we directly use the computed probability

p(yc = 1|xc̄) since it can provide more granular information. The scikit-learn (Pedregosa et al.,

2011) python package was utilized for its logistic regression implementation.
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Identifying Concepts of Interest. In order to define clinical concepts of interest, we surveyed

several clinicians in the healthcare provider network about the main concepts they would

look for when assessing risk of severe COVID-19. The survey yielded 21 concepts: old age,

inpatient, outpatient, diabetes, shortness of breath, fever, cough, fatigue, COVID-19 vaccination,

flu vaccination, obesity, hypertension, immunocompromised, COPD, congestive heart failure,

chronic kidney disease, hyperglycemia, transplant, cancer, lung disease, and myalgia. We identify

positive anchors for these concepts (precise definitions at acmilab.org/severe covid) and apply

the PU algorithm to extract a more complete representation of the concepts. Learning Severe

COVID-19 Risk Using the lifelines python package (Davidson-Pilon, 2019), a Cox proportional

hazards model with L1 regularization (Lasso-Cox) is used to model risk of progression to severe

COVID-19. For a patient with covariates X , their hazard h at time t is given by:

h(t) = h0(t) exp(Xβ)

where h0 is a baseline hazard function, and β are learned coefficients. The regularization penalty

is given by λ||β||1, where regularization strength λ is selected using 5-fold cross validation and

grid search over penalties between 0 and 0.2, with a step size of 0.001 between each penalty. For

stability of training, features with variance < 0.01 are removed.

4.5 Experimental Setup

Feature Sets. To explore the marginal effect of incorporating learned concepts vs. the original

set of 139 features, we evaluate Lasso-Cox models learned from five different feature sets:

1. Raw positive anchors: only the positive anchors identified in the data, without learning

the corresponding clinical concepts (e.g. mention of ”diabetes” in a note, ICD code, etc.)

2. Learned concepts (LC): only the learned clinical concepts (e.g. the diabetes concept)

3. LC + Numeric: the learned concepts and numerical features (e.g. diabetes concept, labs)

4. LC + All Features: the learned concepts, as well as all of the original 139 features

5. All Features: all 139 original features, no learned concepts.

Back-testing and Data Splits. In real-world settings, hospital systems may want to use

updated data to revise their models. To emulate this process, we re-train models (including

PU concept classifiers) up to the end of each 3-month season (spring, summer, fall, winter),

and evaluate their performance on subsequent seasons. Spring is March 20th until June 21st,

followed by summer until September 22nd, followed by fall until December 21st, followed by

winter until March 20th of the following year. For each 3-month period, a 70-30 split designates

train and test sets, where test data is never included in any model training. To keep the risk

score interpretation simple, for each time period a grid search on the Lasso-Cox penalty is done

to choose a model with approximately ten features. We additionally train models on the entire

study time range, with train and test sets that aggregate the respective 3-month datasets.
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4.6 Evaluation

Clinical Concept Evaluation. Since the concepts are only positively labeled or unlabeled,

it is not possible to compute precision of the concept classifiers (Bekker and Davis, 2020a).

However, we can compute recall as the proportion of known positives recovered by the classifiers.

Additionally, we examine the number of previously unlabeled samples predicted to be positive.

Model Interpretation. The Lasso-Cox model coefficients are in terms of original features as

well as learned concepts. In addition to listing the Lasso-Cox coefficients, we create an interactive

Sankey diagram to visualize how raw features translate into concepts, and how the resulting

models pull from both. This gives the user a birds-eye view of how each concept is defined, the

strength and sign of the coefficients, and which concepts are used in different models.

Survival Model Evaluation Metrics. The concordance, or C-index, is used to evaluate the

model’s discriminative ability. To evaluate calibration, both one-calibration at 14 days and

D-calibration are used (Haider et al., 2020). Additionally, low, medium, and high-risk strata are

defined and their 14-day Kaplan-Meier survival curves are inspected.

Baselines. We compare our model performance to that of the Covichem(Bats et al., 2021)

and Galloway(Galloway et al., 2020) risk scores. For Covichem, in order to conduct a fairer

comparison than directly applying their logistic regression coefficients learned on a different

population, we extract the same features and re-train logistic regression on our own training

data. For Galloway, we extract all but one of their twelve features (radiological severity is not

available in our data), and compare performance against two versions of their model: (1) directly

applying their proposed count-based risk score (Galloway count), and (2) re-training a logistic

regression model using the twelve variables (Galloway reweighted).

4.7 Results

The PU learning algorithm yields concepts ranging from those with high recall, e.g. 0.974 for

inpatient status, to low recall, e.g., 0.381 for immunocompromised (Table 4.2). Some concepts

have substantially more new positives (obesity, with 2,157 new positives). Concept classifier

coefficients are available at acmilab.org/severe covid.

The model trained on learned concepts (LC) achieves a higher aggregate concordance than

the original features corresponding to those concepts (0.858 vs. 0.844, Table 4.3). The model

learned from all original features (All Features) and LCs (C-index 0.872) performs comparably

to All Features alone (C-index 0.872). The addition of numerical features to the LCs does not

significantly improve performance (C-index of both are 0.858). In all models except for the ones

trained on All Features or All Features + LCs, the aggregate C-index is higher than the C-indices

on the inpatient and outpatient subpopulations.

In the models using all features, medications such as dexamethasone, acetaminophen, and
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Table 4.2: The number of new positives extracted by PU learning in the test set, the number

of clinical concepts originally in the test set (determined solely by the presence of positive

anchors), and the recall of the PU classifier among known positives in the test set. Concepts

with prevalence < 1.5% are omitted.

Learned Concept New Positives Original Positives Recall Among Original
(LC) (% of Test Set) (% of Test Set) Positives (count)

Old age 147 (1.6%) 3,158 (33.7%) 0.956 (3,019)

Inpatient 227 (2.4%) 3,914 (41.8%) 0.974 (3,813)

Outpatient 207 (2.2%) 4,811 (51.3%) 0.961 (4,623)

Diabetes 594 (6.3%) 834 (8.9%) 0.553 (461)

Fever 4,171 (44.5%) 1,021 (10.9%) 0.826 (843)

Shortness of breath 1,518 (16.2%) 1,005 (10.7%) 0.767 (771)

COVID-19 vaccination 2,128 (22.7%) 1,884 (20.1%) 0.739 (1,392)

Flu vaccine 2,326 (24.8%) 4,191 (44.7%) 0.864 (3,619)

Obesity 2,157 (23.0%) 433 (4.6%) 0.610 (264)

Immunocompromised 909 (9.7%) 168 (1.8%) 0.381 (64)

COPD 575 (6.1%) 220 (2.3%) 0.623 (137)

Hyperglycemia 496 (5.3%) 171 (1.8%) 0.737 (126)

Cough 4,023 (42.9%) 1,862 (19.9%) 0.815 (1,517)

Fatigue 2,947 (31.4%) 602 (6.4%) 0.694 (418)

intravenous saline are selected (Table 4.4). Across all models, the inpatient status is the feature

with the greatest hazard ratio. Blood urea nitrogen is used by both the LC + All Features and All

Features models. Figure 4.1 is a screenshot of an interactive Sankey diagram which allows users

to explore the coefficients for both the underlying clinical concepts and the classifiers built on top

of the features and concepts. The interactive web tool is available at acmilab.org/severe covid.

When evaluated over time, the models with learned concepts achieve higher concordance

several months after the model was initially trained, whereas the All Features model achieves

higher concordance in the immediate term. For example, in Spring 2020, the concordance of the

All Features model trained up until the end of Spring 2020 is 0.842, compared to 0.797 in the

LC only model. By Fall and Winter 2021, however, the All Features model degrades to 0.808 or

stays around 0.845, whereas the LC only model actually increases concordance to 0.83 and 0.904.

Reading the table from left to right, the performance of any model fluctuates no more than 0.121

over all seasons. Reading the table from top to bottom, several columns shown an increase in

performance as models are trained on more recent data.

The Kaplan-Meier curves corresponding to the low, medium, and high risk groups derived

from the LC + All Features model and LC only model predictions are shown in Figure 4.2. There

is a clear separation between the survival trajectories of the different risk groups. The LC + all

features model appears to slightly under-estimate the risk of the high-risk groups, whereas the

LC only model appears to be better calibrated at 14 days (Figure 4.3). The LC only model also

appears to have better d-calibration across all time points (Figures 4.4).
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Table 4.3: Median Test C-index of models and baselines, with 95% CI are reported from boot-

strapping the test set with 1000 replicates. Bold highlights the two models with highest C-index.

Model Aggregate Inpatient Outpatient

Covichem 0.598 (0.580 – 0.616) 0.584 (0.569 – 0.600) 0.546 (0.509 – 0.581)

Galloway count 0.745 (0.734 – 0.757) 0.647 (0.633 – 0.662) 0.714 (0.677 – 0.750)

Galloway reweighted 0.810 (0.803 – 0.824) 0.699 (0.673–0.703) 0.764 (0.728–0.709)

Raw positive anchors 0.844 (0.836 – 0.851) 0.665 (0.650 – 0.680) 0.756 (0.709 – 0.796)

Learned concepts (LC) only 0.858 (0.851 – 0.865) 0.699 (0.685 – 0.713) 0.798 (0.757 – 0.834)

LC + numerical features 0.858 (0.851 – 0.865) 0.695 (0.681 – 0.71) 0.814 (0.777 – 0.849)

LC + all features 0.872 (0.865 – 0.877) 0.715 (0.702 – 0.728) 0.879 (0.858 – 0.901)

All features (no LC) 0.872 (0.866 – 0.878) 0.717 (0.703 – 0.730) 0.880 (0.860 – 0.901)

Table 4.4: Hazard ratios (HR) of LC + All Features, LC, and All Features models. Abbrevia-

tions: Med = Medication, loc. = location, Dex. = Dexamethasone sodium phosphate, APAP =

acetaminophen, SOB = Shortness of breath, BUN = blood urea nitrogen, NEUT = neutrophils,

Immunocomp. = immunocompromised, vax = vaccine, OP = outpatient.

All Features + LCs Learned Concepts (LC) Only All Features Only
Features HR (95% CI) Features HR (95% CI) Features HR (95% CI)

(LC) Inpatient 2.31 (2.09 – 2.56) (LC) Inpatient 7.23 (5.43 – 9.62)

(Test Location)

Inpatient

3.62 (3.31 – 3.97)

(LC) SOB 1.72 (1.58 – 1.88) (LC) Old age 2.54 (2.33 – 2.77)

(Med) Dex.

4mg/mL

injection sol.

1.91 (1.77 – 2.06)

(Med) Dex.

4mg/mL

injection sol.

1.54 (1.42 – 1.68) (LC) SOB 2.31 (2.14 – 2.49)

(Med) APAP

325mg tablet

1.67 (1.51 – 1.85)

(Med) APAP

325 mg tablet

1.47 (1.34 – 1.62) (LC) Diabetes 1.28 (1.16 – 1.41) Age 70+ 1.60 (1.49 – 1.72)

(LC) Old age 1.34 (1.25 – 1.44) (LC) COPD 1.22 (1.13 – 1.32)

(Med) NaCl

0.9% IV sol.

1.35 (1.24 – 1.46)

(Med) NaCl

0.9 % IV sol.

1.33 (1.23 – 1.44) (LC) Obesity 1.22 (1.14 – 1.3) (OP ICD) SOB 1.10 (1.01 – 1.19)

(Lab) BUN 1.05 (1.01 – 1.1)

(LC) Immuno-

compromised

1.10 (1.04 – 1.16) (Lab) BUN 1.10 (1.05 – 1.14)

(LC) Fatigue 1.08 (1.02 – 1.15)

(Med) Pantopra-

zole 40 mg tablet

1.05 (0.97 – 1.12)

(LC) Outpatient 1.06 (0.80 – 1.42)

(Lab) NEUT

relative %

1.04 (0.99 – 1.09)

(LC) Hyper-

glycemia

0.90 (0.81 – 1.00)

(Med) NaCl

0.9% IV Bolus

1.04 (0.96 – 1.13)

(LC) COVID-19

vax

0.87 (0.78 – 0.97) (Lab) Albumin 0.98 (0.93 – 1.02)

(LC) Fever 0.82 (0.75 – 0.90)

(LC) Flu vax 0.74 (0.66 – 0.83)

(LC) Cough 0.58 (0.53 – 0.65)
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Figure 4.1: Screenshot of interactive Sankey diagram showing how raw features (first column)

translate into clinical concepts (second column), and how both are ultimately used in each model

(third column). Magnitude of coefficients correspond to flow thickness, positive log HRs are

blue, and negative log HRs are red. Black flows indicate positive anchors for the corresponding

concept. Visit acmilab.org/severe covid to interact with the full diagram.

Figure 4.2: Kaplan Meier survival curves for the high (top 10%), medium (top 10-25%), and low

(bottom 75%) risk groups using predictions from the LC + All Features model (left) and the LC

only model (right). Counts at the bottom show the number of individuals who are at risk, are

censored, or experienced the severe COVID-19 event across time.
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Table 4.5: Back-testing performance of All Features, LC + All Features, and LC only over 3-month

seasons. Spring (SP) is March 20th until June 21st, followed by summer (SU) until September

22nd, followed by fall (F) until December 21st, followed by winter (W) until March 20th.

All Features only,
trained up to:

Test C-index evaluated on:
SP 2020 SU 2020 F 2020 W 2020 SP 2021 SU 2021 F 2021 W 2021

End of spring 2020 0.842 0.903 0.855 0.839 0.804 0.841 0.808 0.845

End of summer 2020 - 0.713 0.694 0.697 0.622 0.699 0.667 0.711

End of fall 2020 - - 0.882 0.868 0.813 0.855 0.84 0.907

End of winter 2020 - - - 0.749 0.646 0.718 0.718 0.735

End of spring 2021 - - - - 0.818 0.856 0.844 0.908

End of summer 2021 - - - - - 0.859 0.847 0.91

End of fall 2021 - - - - - - 0.850 0.911

1/12/2022 (study end) - - - - - - - 0.912

All Features + LCs,
trained up to:

Test C-index evaluated on:
SP 2020 SU 2020 F 2020 W 2020 SP 2021 SU 2021 F 2021 W 2021

End of spring 2020 0.791 0.840 0.852 0.837 0.774 0.814 0.805 0.876

End of summer 2020 - 0.847 0.852 0.845 0.775 0.806 0.818 0.891

End of fall 2020 - - 0.852 0.845 0.781 0.812 0.822 0.896

End of winter 2020 - - - 0.846 0.778 0.811 0.823 0.896

End of spring 2021 - - - - 0.778 0.813 0.827 0.899

End of summer 2021 - - - - - 0.812 0.826 0.899

End of fall 2021 - - - - - - 0.827 0.900

1/12/2022 (study end) - - - - - - - 0.900

LCs only,
trained up to:

Test C-index evaluated on:
SP 2020 SU 2020 F 2020 W 2020 SP 2021 SU 2021 F 2021 W 2021

End of spring 2020 0.797 0.863 0.869 0.850 0.795 0.833 0.83 0.904

End of summer 2020 - 0.857 0.863 0.842 0.785 0.819 0.822 0.904

End of fall 2020 - - 0.867 0.850 0.800 0.828 0.831 0.909

End of winter 2020 - - - 0.854 0.801 0.826 0.834 0.911

End of spring 2021 - - - - 0.803 0.828 0.834 0.911

End of summer 2021 - - - - - 0.829 0.833 0.910

End of fall 2021 - - - - - - 0.837 0.914

1/12/2022 (study end) - - - - - - - 0.913
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Figure 4.3: One-calibration of the LC + All Features model (left) and LC model (right) at 14 days,

binned into ten groups. Red dotted line corresponds to perfect calibration.

Figure 4.4: D-calibration histogram of LC + All Features model (left) and LC model (right), binned

into ten groups. In perfect D-calibration (Haider et al., 2020), all bars should be at 0.10.

4.8 Discussion

Learned Concept Classifiers. The strongest coefficients for each concept classifier are often

not features that immediately come to mind, but nevertheless match clinical intuition. High

PF flu vaccine has a large coefficient (3.31) for the old age concept, and is a vaccine only given

to patients 65 and older. Shortness of breath (SOB) during outpatient visit (3.23) is the second

highest coefficient for the inpatient concept, possibly indicating that outpatients with the SOB

symptom are at high risk of becoming an inpatient. The SOB concept depends on dexamethasone

(0.75) which relieves inflammation, and albuterol sulfate (0.67), prescribed for lung conditions.

For the obesity concept, sleep apnea (often caused by excess weight) has largest coefficient (0.96).

However, learned concepts are an imperfect representation of the underlying concept. None

of the concept classifiers perfectly recover the original positives, with recall ranging from 0.381

to 0.974 (Table 4.2). This could be due to insufficient signal in the remaining covariates or

underfitting of the simple model class. Additionally, some concepts learn substantially more

positives than were available in the original data. For example, obesity originally has 433

positives in the data but the concept classifier marks 2,157 patients as having obesity with

probability greater than 0.5. It is difficult to verify the faithfulness of the concept classifiers to

the true concepts without manual review, but it is possible that the concepts classifiers may

mark patients as “obesity-like” based on their other covariates rather than learning whether they

truly have obesity. Additionally, while learned concepts are amenable to interpretation through

the coefficients of the concept classifier, they still require domain expertise to manually define
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positive anchor variables. Finally, the conditional independence assumptions of the selected

anchors may not hold in practice, and these assumptions are difficult to verify.

Learned Survival Models. The coefficients for the survival models trained on LCs, All

Features, and LC + All Features are mostly consistent with clinical intuition. Inpatients are more

likely to experience adverse outcomes than those not hospitalized, old age is well-documented

to be associated with higher COVID-19 death rates (Docherty et al., 2020; Liang et al., 2020b;

Galloway et al., 2020), shortness of breath indicates respiratory involvement, and medications

such as dexamethasone, acetaminophen, and intravenous saline are given to hospitalized patients.

Higher BUN indicates worse liver and kidney function, and COVID-19 vaccines are designed

to protect against severe COVID-19. While it is surprising that some of the learned concepts

for fever and cough symptoms have negative HRs, upon inspection we find that these are most

reliably recorded for outpatients and may encode some additional information about outpatient

status. From exploring the interactive visualization, some of the features selected by the All

Features model are used by LCs in the LC + All Features model, possibly indicating that they

serve as proxies for higher level concepts. For example, the saline IV bolus, present only in the

All Features model, is used in the inpatient concept classifier with a positive coefficient. We also

note that the coefficients are likely shrunken towards zero due to the Lasso penalty, and the

non-informative or independent censoring assumption of the Cox proportional hazards model

may not hold since censoring occurs upon discharge.

Our Lasso-Cox models all outperform the baselines (Covichem, Galloway count, Galloway

reweighted) in terms of aggregate, inpatient, and outpatient concordance (Table 4.3). As measured

by aggregate concordance, we observe that the learned concepts provide a boost in performance

over the raw positive anchors (C-index 0.858 vs. 0.844). This boost in performance places the LC

model approximately halfway between the performance of the raw positive anchors and the

LC + All Features and All Features models, which both achieve a C-index of 0.872. For LC + All

Features and All Features models, the C-index on the outpatient subpopulation (0.879 and 0.880)

is higher than that on the entire cohort, whereas the C-index on the inpatient subpopulation

(0.715 and 0.717) is lower. For all remaining models, the performance on the inpatient and

outpatient subpopulations is lower than in aggregate, possibly indicating that it is easy to order

the relative risks of inpatients versus outpatients. The LC model appears slightly better calibrated

than the LC + All Features model, but when used to stratify patients into high, medium, and

low-risk strata, both models yield groups with clear separation between their survival curves.

Finally, while there is some loss of discriminative performance going from the All Features

models to the LC only model, when tested under the back-testing framework this gap seems

to close quickly on subsequent time periods and the LC model even eventually surpasses the

performance of the All Features model. Thus, models with LCs might be more resilient over

time than models learned only from All Features. If the set of important high-level concepts

themselves change over time, however, new concepts may need to be learned accordingly.

Future Work. We plan to integrate our models with the healthcare system, and continue to

monitor the performance of the models over time. It would be insightful to further study how

high-level clinical concepts perform across different settings, and as COVID-19 continues to

evolve over time, investigation of new concepts will be important as well.
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Chapter 5
Domain Adaptation under Missingness Shift

Rates of missing data often depend on record-keeping policies and thus may change across times

and locations, even when the underlying features are comparatively stable. In this paper, we

introduce the problem of Domain Adaptation under Missingness Shift (DAMS). Here, (labeled)

source data and (unlabeled) target data would be exchangeable but for different missing data

mechanisms. We show that if missing data indicators are available, DAMS reduces to covariate

shift. Addressing cases where such indicators are absent, we establish the following theoretical

results for underreporting completely at random: (i) covariate shift is violated (adaptation is

required); (ii) the optimal linear source predictor can perform arbitrarily worse on the target

domain than always predicting the mean; (iii) the optimal target predictor can be identified,

even when the missingness rates themselves are not; and (iv) for linear models, a simple analytic

adjustment yields consistent estimates of the optimal target parameters. In experiments on syn-

thetic and semi-synthetic data, we demonstrate the promise of our methods when assumptions

hold. Finally, we discuss a rich family of future extensions.

5.1 Introduction

As of October 2021, following extensive awareness campaigns and mass distribution efforts

promoting COVID-19 vaccines, approximately 79.2% of the U.S. population over age 18 had

received at least one dose (CDC, 2022). And yet, when collaborating with a regional healthcare

provider, we found only 40.5% of 121,329 adults tested for COVID-19 were tagged indicating

positive vaccination status in the electronic medical record (EMR). This was not a regional

anomaly—cross referencing with vaccination data from the CDC, between 75.7% and 90.3% of

the adult population in the region had actually received at least one dose. A more plausible

explanation is that many patients were vaccinated outside of the hospital system (e.g., at a

pharmacy or football stadium) but that this information was never reported to the hospital

system and thus never captured in the EMR.

Now suppose that our collaborator decided to update their intake form to include a question
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about vaccination status. Overnight, the rate of patients being tagged in the EMR as vaccinated

would increase dramatically. Absent any shift in the actual health status of patients, the distri-

bution of observed data would still shift, owing to this sudden change in clerical practices. In

real-world healthcare settings, such changes in missingness rates are common. Furthermore, as

in our vaccination example, indicators disambiguating which features are genuinely negative (vs.

missing) cannot be taken for granted. Faced with data from different time periods or locations,

each characterized by different patterns of missing data, how should machine learning (ML)

practitioners leverage the available data to get the best possible predictor on a target domain?

While missing data and formal models of distribution shift are both salient concerns of the ML

community, no work to date provides guidance on how to adjust a predictor under such shocks.

In this work, we introduce missingness shift, where distributional shocks arise due to changes

in the pattern of missingness (Figure 5.1). In this setup, all domains share a fixed underlying

distribution P (X, Y ), and observed covariates X̃ are produced by stochastically zeroing out

a subset of the underlying clean covariates, i.e., each X̃ = X ⊙ ξ for some ξ ∈ {0, 1}d. We

propose the Domain Adaptation under Missingness Shift problem, where the learner aspires

to recover the optimal target predictor given labeled data from the source distribution P s(X̃, Y ),

and unlabeled data from the target (deployment) distribution P t(X̃).

We focus primarily on a special DAMS setting where the components of ξ’s (one per feature)

are drawn from independent Bernoullis with unknown constant probabilities. First, we show

that when missingness indicators (1 − ξ) are available, missingness shift is an instance of

covariate shift. However, absent indicators, missingness shift constitutes neither covariate shift

nor label shift. Thus, adaptation is required. We demonstrate that under DAMS, the optimal

source predictor may even exhibit arbitrarily higher MSE than just guessing the label mean E[Y ].
One natural strategy might be to relate the source and target distributions to the underlying

clean distribution, which we show is identified when missingness rates are known. However,

we show that the missingness rates are not, in general, identifiable. Fortunately, as we prove, the

target distribution (and thus optimal target predictor) is nevertheless identifiable, requiring only

that we estimate the (observable) relative proportions of nonzero values for each covariate across

domains. Using these relative proportions, we derive a simple adjustment formula that yields

the optimal linear predictor on the target domain. Additionally, we provide a non-parametric,

model-agnostic procedure which attempts to transform source data into labeled data i.i.d. to the

target distribution. Finally, we confirm the validity of our approach and demonstrate empirical

gains in settings where our assumptions hold through synthetic and semi-synthetic experiments.

5.2 Related Work

There is a rich history of learning under various missing data mechanisms when missing data

indicators are available (Rubin, 1976; Robins et al., 1994; Little and Rubin, 2019; Gelman et

al., 2020). Common practices for handling missing data include discarding all samples with

missingness (complete-case analysis) (Little and Rubin, 2019), imputing with mean or last value

carried forward, combining inferences from multiple imputations (Rubin, 1996; Van Buuren
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and Groothuis-Oudshoorn, 2011), matching-based algorithms, iterative regression imputation

(Stekhoven and Bühlmann, 2012; Le Morvan et al., 2021), building missingness indicators into

model architecture (Le Morvan et al., 2020a), and including missingness indicators as features

(Groenwold et al., 2012; Lipton et al., 2016b; Little and Rubin, 2019). However, these techniques

require indicators for whether each covariate is missing in the first place.

In single cell RNA sequencing, missing data indicators are often absent in count data due

to dropout, where a tiny proportion of the transcripts in each cell are sequenced, so expressed

transcripts can go undetected and are instead assigned a zero value. This is often dealt with

by leveraging domain-specific knowledge to inform probabilistic models, such as assuming a

zero-inflated negative binomial distribution of counts (Risso et al., 2018), using a mixture model

to identify likely missing values before imputing with nonnegative least squares regression (Li

and Li, 2018), adopting a Bayesian approach to estimate a posterior distribution of gene expres-

sions (Huang et al., 2018), or graph-based methods on a lower dimensional manifold derived

from principal component analysis (Van Dijk et al., 2018).

In survey data, underreporting (i.e. missingness without indicators) arises in binary data

when respondents give false negative responses to questions. As noted in Sechidis et al. (2017),

this can be viewed as a form of misclassification bias. In its simplest form, an underreported

variable has specificity p(x̃ = 0|x = 0) = 1 and sensitivity p(x̃ = 1|x = 1) < 1 (one minus

the rate of missingness). If sensitivity is independent of outcome Y , this is referred to as non-
differential misclassification, which often, but not always biases measures of association towards

zero (Dosemeci et al., 1990; Brenner and Loomis, 1994). Given knowledge of the specificities and

sensitivities, prior work has derived adjusted estimators for the log-odds ratio (Chu et al., 2006)

and relative-risk (Rahardja and Young, 2021) under non-differential exposure misclassification.

Recent work has also provided conditions under which the joint distribution p(y, ã|x) (outcome

y, single binary underreported exposure ã, and fully observed covariates x) is identifiable (Adams

et al., 2019).

In our setting, for binary covariates, estimating the missingness rates takes the form of

learning from positive and unlabeled data (Elkan and Noto, 2008b; Bekker and Davis, 2020b).

Here, identification of the missingness rates hinges on the existence of a separable positive

subdomain (Garg et al., 2021), which may not hold in problems of interest. Many canonical

distribution shift problems address adaptation under different forms of structure, including

covariate shift (Shimodaira, 2000b; Zadrozny, 2004; Huang et al., 2006; Sugiyama et al., 2007b;

Gretton et al., 2009), label shift (Saerens et al., 2002; Storkey et al., 2009; Zhang et al., 2013; Lipton

et al., 2018; Garg et al., 2020), and concept drift (Tsymbal, 2004; Gama et al., 2014). We show that

missingness shift with missing data indicators can often be reinterpreted as a form of covariate

shift, but to our knowledge, missingness shift without indicators does not fit neatly into any

previous setting.
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Figure 5.1: DAMS with UCAR. The source and target data are drawn from the same P (X, Y ), but

differ in how ξ (and hence X̃) takes its value. Shaded nodes are observed. Observed covariates

are generated as X̃ = X ⊙ ξ. The undirected edge between X and Y indicates that they can have

an arbitrary bidirectional relationship.

5.3 DAMS Problem Setup

First, we define notation for (1) missing data; (2) missingness shift; and (3) the DAMS problem.

Then, motivated by the medical setting, we focus on a specific form of DAMS (Figure 5.1) for the

remainder of the paper.

Let us denote clean covariates X ∈ Rd
and labels Y ∈ R. Let Xj denote the jth covariate,

for j ∈ {1, 2, ..., d}.

Missing Data In every environment e with missing data, we do not directly observe X , but

instead observe corrupted covariates:

X̃ = X ⊙ ξ,

where ξ ∈ {0, 1}d and (X, Y, ξ) ∼ P e
for distribution P e

. Note that mask ξ is the complement

of missing data indicators (1− ξ). In this paper, we assume no missingness in Y in labeled data.

An important assumption of missing data problems is how ξ takes its value, e.g. independent

of other covariates, dependent on other covariates, etc. Furthermore, ξ may or may not be

observed.

Definition 1 (Missingness Shift). Consider a source domain s and target domain t in which X
and Y are drawn from the same underlying distribution, i.e. P (X, Y ) = P s(X, Y ) = P t(X, Y ).
Missingness shift occurs when the missing data mechanism differs between s and t, i.e. P s(ξ|·) ̸=
P t(ξ|·).

Domain Adaptation under Missingness Shift Suppose missingness shift occurs between

source domain s and target domain t. Given observations of corrupted labeled source data

{(X̃s,i, Y s,i)}ns
i=1 where (X̃s,i, Y s,i) ∼ P s(X̃, Y ), as well as corrupted unlabeled target data

{X̃ t,i}nt
i=1 where X̃ t,i ∼ P t(X̃), the goal of DAMS is to learn an optimal predictor on the

corrupted target domain data. In this paper, we focus on regression-type tasks, where optimality

is measured by the squared error on the corrupted target domain data, and we seek the optimal

predictor E(X̃t,Y )∼P t [Y |X̃ t].
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As we will show (in Section 5.4), DAMS is particularly challenging when missing data

indicators are not available. This setting without observing ξ is trickiest when there are a

substantial number of true 0 values that now become indistinguishable from missing values.

Without knowledge of which data are missing versus true 0s, conventional techniques for

imputing missing entries do not apply. To make this difficult setting tractable, we define the

DAMS with underreporting completely at random (UCAR) setting, which we focus on in this

paper.

DAMSwithUCAR Assume that ξ (unobserved) is drawn independently of other variables, and

parameterized by constant (but unknown) missingness rates ms ∈ [0, 1]d in source andmt ∈ [0, 1]d

in target. That is, ∀j ∈ {1, 2, ..., d}, we have independently drawn ξsj ∼ Bernoulli(1−ms
j) and

ξtj ∼ Bernoulli(1−mt
j), abbreviated as:

ξs ∼ Bernoulli(1−ms)

ξt ∼ Bernoulli(1−mt).

For binary data, this setting without missingness indicators is known as underreporting. We thus

refer to this setting as underreporting completely at random, but note our results are not limited

to binary data.

5.4 Cost of Non-Adaptivity

Here, we provide intuition on the cost of not adapting the source predictor to the target domain

in DAMS with UCAR. Let us start with a simple motivating example. Define the risk of an

estimator ĥ to be r(ĥ) = E[(Y − ĥ(X))2].

Example 1 (Redundant Features). Let ms = [1 − ϵ, ϵ] and mt = [ϵ, 1 − ϵ]. Consider the data
generating process:

Z = uZ

X1 = Z

X2 = Z

Y = Z + uY

uZ ∼ N (0, σ2
z)

uY ∼ N (0, σ2
y)

where σz is a positive constant, Z is a latent variable, X1 and X2 are observed, and Y is the outcome
of interest.
Remark 1. In Example 1, as ϵ→ 0, the optimal linear source and target predictors have coefficients
βs
∗ → [0, 1] and βt

∗ → [1, 0]. The risk on target data rt(βs
∗)→ Var(Y ).

That is, failing to adapt to the target levels of missingness results in performance no better

than simply guessing the label mean (proof in Appendix D.1). Now, let us consider a slightly

more complex example.
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Example 2 (Confounded Features). Now, suppose that ms = [0, 0] and mt = [1, 0]. For some
constants a, b, c consider the following data generating process:

X1 = ν1

X2 = aX1 + ν2

Y = bX1 + cX2 + νY

ν1 ∼ N (0, 1)

ν2 ∼ N (0, 1)

νY ∼ N (0, 1)

Remark 2. In Example 2, the optimal source and target predictors are βs
∗ = [b, c] and βt

∗ =
[0, ab

a2+1
+ c]. By setting a = − b

c
, we can show that for any τ > 1, there exists values of a, b, c such

that rt(βs
∗) > τVar(Y ).

Here, failing to adapt to target levels of missingness can result in performance arbitrarily

worse than predicting the constant label mean (proof in Appendix D.1).

Observing ξ, Reduction to Covariate Shift In DAMS with UCAR, missing data indicators

are absent. By contrast, suppose we observed missingness indicators (1− ξ) (and hence ξ). Then,

we show that missingness shift is an instance of covariate shift, where the optimal predictor

does not change across domains. This result holds not only when ξ is drawn independently of

other covariates, but also when it is dependent on other completely observed covariates (proof

in Appendix D.2). Here, when ξ is “drawn independently of other covariates,” as described in the

DAMS with UCAR setup (Section 5.3), we have that ξ ∼ Bernoulli(1−m) for some constant

vector of missingness rates m ∈ [0, 1]d. When ξ is drawn depending only on other completely

observed covariates, we have that some subset of covariates Xc ⊆ X is completely observed

(i.e. no missingness), and the missingness of the other covariates Xm = X \Xc depends on Xc.

That is, ξ ∼ Bernoulli(f(Xc)) for some function f : R|Xc| → [0, 1]|Xm|
. Mohan and Pearl (2021)

classifies these missingness mechanisms as MCAR (missing completely at random) and v-MAR

(variant of the missingness at random described by Rubin (1976)), respectively.

Proposition 1 (Reduction to Covariate Shift). Assume we observe ξ. Consider augmented co-
variates x̃′ = (x̃, ξ). When ξ is drawn independently of other covariates or depending only on
other completely observed covariates, missingness shift satisfies the covariate shift assumption, i.e,
P s(Y |X̃ ′ = x̃′) = P t(Y |X̃ ′ = x̃′).

Covariate shift problems are well-studied (Shimodaira, 2000b; Zadrozny, 2004; Huang et

al., 2006; Sugiyama et al., 2007b; Gretton et al., 2009). When source and target distributions

have shared support, covariate shift only requires adaptation under model misspecification

(Shimodaira, 2000b), where the most common approach is to re-weight examples according

to pt(x)/ps(x), rendering the (re-weighted) training and target data exchangeable. However,

even given missingness indicators, DAMS may still require some care. For example, in the

augmented covariate space (with missing data indicators), one might need more complex models

than in the original covariate space. When re-weighting is necessary, the structure of the DAMS

problem might be leveraged to estimate importance weights more efficiently, or to identify the

optimal target predictor in certain cases where missingness introduces non-overlapping support.

However, because our work is primarily motivated by underreporting in the medical setting, we

focus our attention on the case where missingness indicators are absent.
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UCAR as Regularization While the optimal predictor does not change across domains

when ξ are observed (as the covariate shift assumption holds), it is less obvious how missingness
without indicators impacts the optimal predictor. To build intuition on the effect of underreporting

completely at random, we note that applying mask ξ, which zeros out covariates with some

probability, resembles the mechanism of dropout in neural networks. Using similar theoretical

arguments as in how dropout acts as a form of regularization (Wager et al., 2013), we show that

for linear models, the phenomenon of UCAR in data with constant missingness rate m translates

into a form of regularization on the resulting predictor (proof in Appendix D.3). First, we show

that for generalized linear models, UCAR results in a regularization effect. Here, generalized

linear models are defined as pβ(y|x) = h(y) exp{yx · β − A(x · β)}, where h(y) is a quantity

independent of x and β, and A(·) is the log partition function, and the negative log likelihood

objective is lx,y(β) = − log pβ(y|x). Then, considering linear regression, we show that the

regularization penalty can be viewed as a form of L2 regularization.

Theorem 5.4.1. Under UCAR with missingness rates m ∈ [0, 1)d, the minimizer β̂ of the negative
log likelihood of the corrupted training data X̃ scaled by 1

1−m
is given by:

β̂ = arg min
β∈Rd

n∑
i=1

Eξ[lx̃(i),y(i)(β)]

= arg min
β∈Rd

n∑
i=1

lx(i),y(i)(β) +R(β),

where lx̃(i),y(i)(β) and lx(i),y(i)(β) are the negative log likelihoods of a corrupted sample and the
corresponding clean sample (respectively). For linear regression, the regularization term R(β) is
given by:

R(β) =
1

2

(
β∆̃diag

)⊤ (
β∆̃diag

)
,

where we define ∆̃diag = diag
(√

m
1−m

)
diag(I)1/2, where diag

(√
m

1−m

)
refers to a diagonal

matrix with
√

mj

1−mj
on the diagonal, and diag(I)1/2 refers to the square root of the diagonal of the

Fisher information matrix.

Thus, for linear regression, applying missingness rates m to data scaled by
1

1−m
can be viewed

as a form of L2 regularization of β scaled by ∆̃diag.

5.5 Identification Results

This section shows that in DAMS with UCAR, the clean joint distribution p is identifiable from

the corrupted joint distribution p̃ with missingness rates m ∈ [0, 1)d when m is known (Lemma

5.5.1). However, m is not in general identifiable directly from the observed corrupted data

(Remark 4). Instead, we identify relative rates of non-missingness from the corrupted data across

domains (Remark 5), which can in turn be used to identify the labeled target distribution p̃t from

the labeled source distribution p̃s (Theorem 5.5.2).
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First, we define some notation useful for our identification results. Consider vectors a ∈ Rd

and b ∈ Rd
. Let a ≺ b denote that ∀j ∈ {1, 2, ..., d}, we have aj < bj . Similarly, let a ⪰ b denote

that ∀j ∈ {1, 2, ..., d}, aj ≥ bj .

To help clarify the relationship between corrupted and clean distributions, we define the

notion of m-reachability.

Definition 2 (m-reachable). We say b is m-reachable from a (denoted a ⇝ b) if ∃ξ ∈ {0, 1}d
such that b = a⊙ ξ.
Remark 3 (Characteristics of m-reachability). If a⇝ b, then the dimensions of a that are 0 must
be a subset of the ones that are 0 in b. Additionally, any dimensions that are nonzero in both a and
b must match in value.

For example, if we observe a data point b = [1, 1, 1], the only data point a for which a⇝ b
is a = [1, 1, 1]. If b = [1, 1, 0], then possible values of a are a = [1, 1, c] for any value of c ∈ R.

In binary data, a⇝ b ⇐⇒ a ⪰ b.

Let px,y = P (X = x, Y = y) denote the probability of some set of covariates x ∈ Rd
and

label y ∈ R in the clean distribution, and let p̃x,y = P (X̃ = x, Y = y) denote the same in the

corrupted distribution. Throughout the paper we use notation for discrete X , but note that it

is straightforward to extend the results to continuous X (e.g. by replacing summations with

integrals, etc.). Summing over all possible values of z ∈ Rd
from which x is m-reachable, p̃ can

be expressed in terms of p and m:

p̃x,y =
∑
z:z⇝x

pz,y ·
d∏

j=1

(1−mj)
[xj ]̸=0m

[zj ]̸=0−[xj ]̸=0

j (5.1)

where [x] ̸=0
∆
= 1[x ̸= 0] is an indicator function for nonzero values. While it is obvious that one

can obtain p̃ from p, we show, surprisingly, that the above system is in fact invertible.

Lemma 5.5.1. Given m, where m ≺ 1, the clean distribution p is identifiable from the corrupted
distribution p̃.

Roughly, the proof of Lemma 5.5.1 (in Appendix D.4) rearranges equation (5.1) and uses

Remark 3 to observe that any entry p(x,y) can be expressed in terms of p̃, m, and entries of p
with fewer zeros. Using proof by induction on the number of zeros (0 to d), one can show that p
is identifiable from p̃.

Returning to the DAMS problem, given ms and mt
, one could in theory identify p from p̃s

thru Lemma 5.5.1, and then use equation (5.1) to derive p̃t. Unfortunately, however, missingness
rates are not in general identifiable from the observed corrupted data.

Remark 4. Missingness rates are not in general identifiable directly from corrupted data. To
see this, consider the following simple counterexample. Consider two distinct possible source
distributions A ∼ Bernoulli(0.5) and B ∼ Bernoulli(0.25). Application of missingness with rates
mA = 0.5 to A and mB = 0 to B yields identical corrupted distributions Ã ∼ Bernoulli(0.25) and
B̃ ∼ Bernoulli(0.25). Thus, the rates are not identifiable.

While missingness rates are not in general identified given corrupted data from a single

domain, one might hope to nevertheless relate the missingness rates between source and target
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domains. For this, we leverage nonzero values. Whereas observed zeros are a mixture of zeroed-

out values and true zeros, all observed nonzeros were nonzero in the clean data. Thus, the

relative proportions of nonzeros are informative of relative non-missingness rates 1−m. For a

covariate Xj , where j ∈ {1, ..., d}, denote the true proportion of nonzeros in the underlying

data as qj = P (Xj ̸= 0). Then, the proportion of observed nonzeros in the corrupted data is

P (X̃j ̸= 0) = (1−mj)qj . Vectorized, P (X̃ ̸= 0) = (1−m)⊙ q.

Remark 5. The ratio between non-missingness rates 1−mt and 1−ms is given by:

1−mt

1−ms
=

(1−mt)⊙ q

(1−ms)⊙ q
=

P t(X̃ ̸= 0)

P s(X̃ ̸= 0)
≜ 1− rs→t, (5.2)

where the divisions are element-wise. Note that the second-to-last expression is estimable from
observed data.

We refer to rs→t = 1 − 1−mt

1−ms = mt−ms

1−ms as the relative missingness rates between s and t.
Interestingly, while identification of the clean distribution from a corrupted distribution (Lemma

5.5.1) may be difficult due to unidentifiability of ms
and mt

in general (Remark 4), we leverage

identifiability of rs→t
to show that adapting from one corrupted distribution to another corrupted

distribution does not require identification of the clean distribution.

Theorem 5.5.2. For source and target distributions p̃s and p̃t with unknown missingness rates ms

and mt (respectively), where ms ≺ 1, p̃t is identifiable from p̃s given rs→t:

p̃tx,y =
∑
z:z⇝x

p̃sz,y ·
d∏

j=1

(1− rs→t
j )[xj ] ̸=0(rs→t

j )[zj ]̸=0−[xj ]̸=0 . (5.3)

That is, while the precise missingness rates ms
and mt

may be unidentifiable in general

from corrupted data, one can identify relative missingness rates rs→t
(Remark 5) and use them

to directly identify p̃t from p̃s (proof in Appendix D.5), rather than explicitly using the clean

distribution as an intermediate step. Note that the form of (5.3) matches that of (5.1), with

missingness rates set to m = rs→t
.
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5.6 Estimation Results

We discuss estimation of optimal target predictors from labeled source data {(X̃s,i, Y s,i)}ns
i=1,

drawn from P s(X̃, Y ) and unlabeled target data {X̃ t,i}nt
i=1, drawn from P t(X̃).

Non-parametric adjustment procedure for nonnegative relative missingness The

parallels between equations (5.3) and (5.1) suggest an intuitive non-parametric procedure when

ms ⪯ mt
, so that rs→t ⪰ 0 (Algorithm 1). To obtain data distributed identically to X̃ t

, one can

sample masks ξs→t
with missingness rates rs→t

and apply them to X̃s
. Let us define a missingness

filter applied to each datapoint x ∈ Rd
as νs→t(x) = x⊙ξs→t

, where ξs→t ∼ Bernoulli(1−rs→t).
When a missingness filter is applied to a dataset, ξs→t

is independently drawn for every data

point. A proof showing that labeled data {(νs→t(X̃
s,i), Y s,i)}ns

i=1 are drawn i.i.d. to P t(X̃, Y ) is

in Appendix D.7. For any desired model class, we can now train a predictor on this labeled data.

When ms ⪯ mt
, we call this adjustment a proper adjustment as it yields a predictor trained on

data i.i.d. to labeled target data.

When ms ⪯̸ mt
, i.e. rs→t ⪰̸ 0, it is less obvious what the proper non-parametric adjustment

procedure implied by Theorem 5.5.2 might be. As a stopgap measure, we experiment with using

a missingness filter of rate max{rs→t, 0} (Algorithm 1), but call this an improper adjustment as

it does not create data i.i.d to the target distribution.

Algorithm 1 Non-parametric adjustment procedure

(proper adjustment when ms ⪯ mt
)

1: Compute q̂tj =
count(x̃t

j ̸=0)
nt

, q̂sj =
count(x̃s

j ̸=0)
ns

, and r̂s→t = 1− q̂t

q̂s
.

2: Compute r̃s→t = max{r̂s→t, 0} (element-wise max). Note that if r̂s→t ⪰ 0, then r̂s→t = r̃s→t
.

3: Apply a missingness filter with rate r̃s→t
to source data to get {(ν̃s→t(X̃

s,i), Y s,i)}ns
i=1.

4: Fit a predictor on data {(ν̃s→t(X̃
s,i), Y s,i)}ns

i=1.

Step 1 of Algorithm 1 estimates the relative missingness rs→t
from data. Using Hoeffding’s

inequality, we show that with high probability, the estimated r̂s→t
is close to rs→t

(proof in

Appendix D.6).

Theorem 5.6.1. With probability at least 1− δ,

∣∣r̂s→t − rs→t
∣∣ ≤ 1

q̂s

√ log(4/δ)

2nt
+ (1− rs→t)

√
log(4/δ)

2ns

 .

A proper non-parametric adjustment requires rs→t ⪰ 0. Next, we derive a closed-form

expression for the optimal linear target predictor for any given relative missingness.
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Closed-Form Solution for Optimal Linear Predictor Define the optimal predictor as the

one that minimizes mean squared error. Given observations of source covariates X̃s
and their

corresponding labels Y s
, as well unlabeled target covariates X̃ t

, we seek the optimal linear

predictor f t
∗(x

t) = βt
∗x

t
for the target domain. Indeed, βt

∗ can be expressed in terms of quantities

estimable from data (proof in Appendix D.8.1).

Proposition 2. The optimal linear target predictor is given by:

βt
∗ = E[X̃ t⊤X̃ t]−1

(
(1− rs→t)⊙ E[X̃s⊤Y s]

)
. (5.4)

Thus, without knowing the levels of missingness, as long as ms ≺ 1, the optimal linear

predictor for the target domain is nevertheless estimable, using target unlabeled data to derive

the covariance E[X̃ t⊤X̃ t]. As we show in Appendix D.8, it is also possible to compute the entries

of E[X̃ t⊤X̃ t] using only source data and relative missingness.

Proposition 3. For i ̸= j, where i ∈ {1, 2, .., d}, j ∈ {1, 2, .., d}, we have

E[X̃ t⊤X̃ t]ij = (1− rs→t
i )(1− rs→t

j )E[X̃s⊤X̃s]ij (5.5)

E[X̃ t⊤X̃ t]ii = (1− rs→t
i )E[X̃s⊤X̃s]ii. (5.6)

Although E[X̃ t⊤X̃ t] could be estimated from either source or target covariates, in practice

with finite samples it might be beneficial to utilize both. For example, to adjust for sample

size of the source and target datasets, one could take a weighted average of the estimates of

E[X̃ t⊤X̃ t], where the weights of the source-derived and target-derived estimates are αs =
ns

ns+nt

and αt =
nt

ns+nt
, respectively. This attempts to adjust for the variance of estimation error due

to the different sample sizes, however it does not account for estimation error in the relative

missingness rate. We leave further exploration of these weightings to future work. Algorithm 2

describes the estimation procedure for linear models adjusted for the target domain.

Algorithm 2 Adjusted linear model learning procedure

1: Compute q̂tj =
count(x̃t

j ̸=0)
nt

, q̂sj =
count(x̃s

j ̸=0)
ns

, and r̂s→t = 1− q̂t

q̂s
for all j ∈ {1, 2, .., d}.

2: Estimate target-based M̂ t = Ê[X̃ t⊤X̃ t] from unlabeled target samples.

3: Estimate source-based M̂ s = Ê[X̃ t⊤X̃ t] by computing for all i ̸= j, where i ∈ {1, 2, .., d},
j ∈ {1, 2, .., d}:

M̂ s
ij = (1− r̂s→t

i )(1− r̂s→t
j )Ê[X̃s⊤X̃s]ij

M̂ s
ii = (1− r̂s→t

i )Ê[X̃s⊤X̃s]ii

4: Construct a combined weighted estimate of Ê[X̃ t⊤X̃ t]: M̂ = αsM̂
s + αtM̂

t

5: Estimate Ê[X̃s⊤Y s] from source samples, and compute

β̂t = M̂−1
(
(1− r̂s→t)⊙ Ê[X̃s⊤Y s]

)
.
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5.7 Experiments

We apply Algorithms 1 and 2 to synthetic, semi-synthetic, and real data settings. We compare the

performance of four variations of predictors: (1) the oracle predictor (Oracle), trained with target

labeled data and tested on a held-out target test set; (2) the source predictor (Source), trained on

source labeled data without any adjustments; (3) the closed-form adjustment (Closed-form Adj.)

for linear predictors, given by Algorithm 2; and (4) the non-parametric adjustment (Non-param.

Adj.), given by Algorithm 1. We also do MissForest imputation of both source and target data,

treating all zeros as missing values, and train a source predictor to evaluate on target (Imputed).

In synthetic and semi-synthetic experiments, the data is split 4:1:4:1 to create source training,

source test, target training, and target test sets. Different levels of missingness are applied

completely at random to source and target datasets. Code is provided at https://github.com/acmi-

lab/Missingness-Shift.

Synthetic data experiments We draw 10,000 samples from two simple data-generating

processes:

Scenario 1: “Redundant Features”

uy ∼ N (0, 1)

Z ∼ Bernoulli(0.5)

X1 = Z

X2 = Z

Y = Z + uy

Scenario 2: “Confounded Features”

ux2 ∼ N (0, 1)

uy ∼ N (0, 1)

X1 ∼ Bernoulli(0.5)

X2 = expit(2X1 + ux2)

Y = X1 −X2 + uy

In both, we apply missingness with rates ms = [1− ϵ, ϵ] and mt = [ϵ, 1− ϵ] for varying ϵ
between 0.05 and 0.95 in increments of 0.05, with 20 runs for each ϵ, and evaluate the performance

of linear predictors (Figure 5.2a). At ϵ = 0.5, the source and target domains are identically

distributed, so Oracle, Source, Closed-form Adj., and Non-param. Adj. all attain the same mean

squared error scaled by variance of the label (MSE/Var(Y)). As ϵ approaches 0 or 1, however, the

error in the Source predictor grows rapidly whereas the Oracle and Closed-form Adj. errors

decrease. Sincems ⪯̸ mt
, as expected, Non-param. Adj. cannot fully match the target distribution,

and has intermediate performance.

For ϵ = 0.1, we compare linear regression, XGBoost, and MLP (Table 5.1). In both Scenario 1

and 2, the linear closed-form adjustment dramatically outperforms the source linear predictor.

However, in Scenario 1, source XGBoost and MLP almost match the performance of their

respective oracles, and source XGBoost outperforms the linear oracle. On the other hand, in

Scenario 2, the linear closed-form adjustment outperforms source XGBoost and MLP.

Semi-synthetic data experiments Using the adult (n = 48842), bank (n = 48188), and

thyroid binding protein (n = 2800) UCI datasets (Dua and Graff, 2017), which contain a mixture

of categorical and numerical variables, we construct semi-synthetic datasets by borrowing the

covariates, but replacing the labels with synthetically generated labels that are linear functions of

the clean covariates. That is, we train using new labels ynew = βX , for randomly sampled βj ∼
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Table 5.1: Target domain MSE/Var(Y ), averaged across various missingness levels on synthetic

and semi-synthetic data. Confidence intervals are provided in Appendix D.9. The first two

columns are synthetic datasets (Redundant Features and Confounded Features), and the last

three columns are semi-synthetic UCI datasets.

Rednd. Confnd. Adult Bank Thyroid

ms
? mt ms

? mt ms ⪯ mt ms
? mt ms ⪯ mt ms

? mt ms ⪯ mt ms
? mt

Linear Regression Models

Oracle 0.178 0.206 0.420 0.362 0.338 0.433 0.298 0.251

Source 1.259 1.103 0.437 0.380 0.371 0.480 0.350 0.320

Imputed 1.002 0.918 0.490 0.483 0.501 0.592 0.306 0.358

Closed-form 0.186 0.209 0.422 0.363 0.339 0.442 0.316 0.291
Non-param. 0.473 0.492 0.420 0.373 0.338 0.459 0.293 0.291

XGBoost Models

Oracle 0.166 0.200 0.398 0.354 0.287 0.453 0.316 0.274

Source 0.166 0.475 0.399 0.379 0.305 0.500 0.310 0.352
Imputed 1.002 1.157 0.512 0.521 0.492 0.708 0.355 0.441

Non-param. 0.425 0.473 0.399 0.392 0.287 0.503 0.310 0.381

MLP Models

Oracle 0.166 0.201 0.389 0.343 0.295 0.458 0.279 0.230

Source 0.184 0.321 0.399 0.357 0.322 0.499 0.320 0.303

Imputed 1.003 0.924 0.480 0.468 0.484 0.668 0.304 0.345

Non-param. 0.436 0.470 0.389 0.355 0.294 0.487 0.278 0.272
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Figure 5.2: MSE/Var(Y ) of linear models on (a) synthetic and (b) semisynthetic data across

varying ms
and mt

.

Table 5.2: Target domain performance of linear models on eICU 48-hour mortality prediction,

where source s and target t can be Hospital 1 (H1) or Hospital 2 (H2). Here, underreporting

occurs naturally in the data. Since all features are binary, imputation of all zeros behaves poorly,

leading to baseline performance. AUPRC refers to average precision.

Model Class s t MSE AUROC AUPRC

Oracle H1 H1 0.103 (0.088 – 0.117) 0.713 (0.652 – 0.775) 0.236 (0.156 – 0.317)

Source H2 H1 0.143 (0.135 – 0.151) 0.593 (0.563 – 0.623) 0.146 (0.122 – 0.170)
Imputed H2 H1 0.089 (0.081 – 0.097) 0.500 (0.500 – 0.500) 0.097 (0.088 – 0.106))

Closed-form Adj. H2 H1 0.439 (0.223 – 0.655) 0.540 (0.509 – 0.571) 0.123 (0.103 – 0.143)

Non-param. Adj. H2 H1 0.142 (0.133 – 0.150) 0.555 (0.537 – 0.573) 0.126 (0.108 – 0.144)

Oracle H2 H2 0.121 (0.100 – 0.142) 0.601 (0.528 – 0.675) 0.167 (0.103 – 0.230)

Source H1 H2 0.122 (0.113 – 0.131) 0.576 (0.545 – 0.608) 0.144 (0.120 – 0.169)
Imputed H1 H2 0.090 (0.082 – 0.098) 0.500 (0.500 – 0.500) 0.099 (0.089 – 0.109)

Closed-form Adj. H1 H2 0.373 (0.327 – 0.420) 0.556 (0.523 – 0.588) 0.122 (0.104 – 0.141)

Non-param. Adj. H1 H2 0.196 (0.182 – 0.210) 0.511 (0.503 – 0.520) 0.109 (0.095 – 0.123)

Uniform(0, 10),∀j ∈ {1, 2, ..., d}, and original covariatesX . Source and target missingness rates

are sampled under two regimes: (1) To test the proper non-parametric adjustment, where ms ⪯
mt

, we sample ms
j ∼ Uniform(0, 0.5) and mt

j ∼ ms
j + (1 −ms

j)ϵ, where ϵ ∼ Uniform(0, 0.5).
(2) To simulate a more general form of missingness shift, we sample ms

j ,m
t
j ∼ Uniform(0, 0.9),

abbreviated as ms
? mt

. Additional experiment and data preprocessing details in Appendix D.9.
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Overall, where adjusted models are applicable/proper, they perform at least as well as (and

often better than) source unadjusted models when compared within each model class (Table 5.1).

Among linear models, the closed-form and non-parametric adjustments consistently outperform

the source predictors. In nonlinear models, only the non-parametric adjustment applies, and

this adjustment is only proper if ms ⪯ mt
. Among nonlinear models, if ms ⪯ mt

, either Non-

param. and Source tie, or Non-param. performs best. When ms
? mt

, Non-param. (improper

adjustment) often has the second-best or best performance (especially when no other adjustments

apply). Ignoring model class, the best-performing model for each semi-synthetic dataset is an

adjusted model. Plotting the line of best fit for MSE/Var(Y) of the linear models versus the

L2 distance between ms
and mt

, we note that the Source predictor tends to have the stronger

positive slope than the Oracle, Closed-form Adj., or Non-parametric Adj. models (Figure 5.2b).

Real data experiments To explore the applicability of our methods to naturally-occurring

missingness shifts, we use the FIDDLE data pre-processing pipeline (Tang et al., 2020) on the

eICU Collaborative Research Database (Pollard et al., 2018a), which contains data from critical

care units across several hospitals. FIDDLE extracts binary feature vectors capturing several

patient characteristics, including demographics, physiological measurements, labs, medications,

etc. We extract the binary 48-hour mortality outcome for patients in two of the hospitals with

the most data (n1 = 3006, n2 = 2663), and verify that the prevalences of the covariates are

different across these two hospitals. Additional data and experiment details are provided in

Appendix D.9.

We train linear models to predict mortality, and evaluate MSE, AUROC, and AUPRC. Since

the preprocessed data only contains binary features, MissForest imputation of all zeros results in

a dataset consisting entirely of ones, and the linear model learns to simply predict the label mean

and only achieves baseline performance. Estimated relative missingness indicates that ms ⪯̸ mt

(Appendix D.9), so the non-parametric estimation procedure is not expected to produce labeled

data i.i.d. to the target distribution. The source predictor achieves highest AUROC and AUPRC.

Note, however, that beyond missingness levels, there are also several other aspects of the data

distribution that likely differ between these two hospitals. Different hospitals likely have different

underlying P (X, Y ), and in practice, missingness could be dependent on other covariates (e.g. a

doctor may choose not to perform a test based on patient state). Thus, fundamental assumptions

of our adaptation methods are likely violated in this dataset.

5.8 Discussion

This work introduces the domain adaptation under missingness shift (DAMS) problem, and

explores DAMS under the underreporting completely at random (UCAR) assumption. Our syn-

thetic and semi-synthetic experiments demonstrate that when assumptions hold, the proposed

methods (when applicable/proper), tend to outperform or perform at least as well as unadjusted

source predictors in the same model class (Table 5.1). In linear models, our proposed adjustments

(linear closed-form and non-param. adj.) consistently outperform the source predictors, and

sometimes, the benefits of adaptation can even outweigh the bias incurred by restricting to
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linear models. For example, in the Confounded Features, Bank ms
? mt

, and Thyroid datasets,

linear adjusted models outperform all Source models, regardless of model class. Note that even

if the underlying relationship between clean unobserved covariates X and label Y is linear, after

X is corrupted by missingness to create observed corrupted covariates X̃ , the new relationship

between X̃ and Y is often nonlinear (a phenomenon which has also been noted by Le Morvan

et al. (2020b)). Correspondingly, the best MLP and XGBoost models tend to outperform the best

linear models (Table 5.1).

The best-performing model(s) in each of the synthetic and semi-synthetic datasets, except

for the synthetic Redundant Features dataset, use a proposed adjustment (Table 5.1). Although

the adjustments perform best in the synthetic Redundant Features dataset when restricted to

the linear model class, the best-performing model in this dataset overall is a source XGBoost

model, which matches the performance of the oracle. In addition to the flexibility of the XGBoost

model, which improves the oracle XGBoost over the oracle linear model, a likely reason for

improvement of Source XGBoost over Non-param. Adj. can be found in the particular setup

of this scenario. Here, X1 = X2 = Z , and Y = Z + uy, where uy ∼ N (0, 1), and so given

knowledge of eitherX1 orX2, prediction of Y is straightforward. The only applicable adjustment,

Non-param. Adj. (improper, since ms ⪯̸ mt
), would zero out much of the data to bring the

missingness rate in X1 from 0.9 to 0.1, thus making prediction harder. There are also multiple

settings in which Source XGBoost performs similarly to Non-param. Adj. XGBoost (Confounded

Features, Adult ms ⪯ mt
, Bank ms

? mt
, and Thyroid ms

? mt
). On the other hand, for the

MLP model class, the non-parametric adjustment outperforms all source predictors in the semi-

synthetic datasets. Thus, depending on the model class, non-parametric adjustment may not

always have a consistent effect on performance.

The generally worse performance of imputation in synthetic and semi-synthetic experiments

(Table 5.1) helps highlight the difficulty of not having missing data indicators. Learning without

missing data indicators is fundamentally more difficult than learning with them, and methods

which might make sense when missing data indicators are present (e.g. imputation) can be

ill-defined when the indicators are absent. In the eICU dataset, for example, all covariates

were binary, and so imputing all 0’s only left 1’s to train on. As a result, MissForest learned to

predict 1 for everything, rendering these binary features useless. Nevertheless, we included

a comparison with imputation of all zeros in the other datasets, as it could still be useful for

continuous variables.

The experiments with real eICU data also help demonstrate that it is important to clarify

assumptions on whether one is truly in a DAMS with UCAR setting, as failure to do so could

result in predictors that perform worse than if no adaptation had been done in the first place

(Table 5.2). Ideally, in real-world data, DAMS with UCAR might be useful around a sudden

change in clerical practices where the underlying P (X, Y ) is similar before and after the

change, and underreporting is completely at random (e.g. determined based a blanket policy

independent of covariates). In the absence of such data, however, we instead included synthetic

and semisynthetic data where the missingness shift with UCAR assumptions hold, and also

included a real critical care (eICU) dataset containing multiple hospitals for thoroughness. While

our proposed techniques for DAMS with UCAR do not work particularly well on real eICU data,
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we also note that we have no particular reason to believe that missingness shift is especially

prominent between the hospitals compared to factors such as selection bias (very different

cohort), label shift, or changes in prevalences of disease, among others. Finding appropriate

real world empirical testbeds and analyzing sensitivity to assumption violations are important

directions for future work.

Beyond the UCAR setting, there are several open avenues for further research in domain

adaptation under missingness shift. Allowing underreporting to depend on other covariates

would significantly broaden the set of applicable real-world cases, as doctors often take certain

measurements as needed in their diagnostic process. Moreover, future works could explore other

variations of graphical model structures (Figure 5.1) for expressing models of missingness shift.
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Part III

Decision-Making in Dynamic Healthcare

Settings

“We look for medicine to be an orderly field of knowledge and procedure. But it is not.
It is an imperfect science, an enterprise of constantly changing knowledge, uncertain
information, fallible individuals, and at the same time lives on the line. There is science
in what we do, yes, but also habit, intuition, and sometimes plain old guessing.”

- Atul Gawande, Complications

Now, we move beyond prediction and into decision-making. Doctors, nurses, administrators,

and other healthcare professionals make countless decisions every day, all of which add up to

an operation where patients are ideally able to receive treatment when needed and check up on

when necessary. In this part, we study two scenarios where decisions are made over time. In the

first, we consider a setting where decisions are cheap, frequent, and directly tied to forecasts. In

the second, we consider a common scenario where there is a cost to seeing a patient in order to

prescribe a treatment, and observations are not made in the interim.

76



Chapter 6
Business Metric-Aware Forecasting: A Case

Study in Inventory

Suppose that a hospital would like to order supplies on some recurring basis. Inventory manage-

ment relies on forecasts to decide how many orders to place at any given time. There are several

simple ordering policies, for example ordering enough to maintain an inventory such that with

95% probability, there will be no stockouts. Typically, forecasts optimize for business-agnostic

metrics such as mean squared error or mean absolute percentage error. In this work, we create

an end-to-end system that adjusts forecasts at each time step so that given a simple ordering

policy, the forecasts optimize for downstream business objectives.

Time-series forecasts play a critical role in business planning. However, forecasters typi-

cally optimize objectives that are agnostic to downstream business goals and thus can produce

forecasts misaligned with business preferences. In this work, we demonstrate that optimization

of conventional forecasting metrics can often lead to sub-optimal downstream business perfor-

mance. Focusing on the inventory management setting, we derive an efficient procedure for

computing and optimizing proxies of common downstream business metrics in an end-to-end

differentiable manner. We explore a wide range of plausible cost trade-off scenarios, and empir-

ically demonstrate that end-to-end optimization often outperforms optimization of standard

business-agnostic forecasting metrics (by up to 45.7% for a simple scaling model, and up to 54.0%

for an LSTM encoder-decoder model). Finally, we discuss how our findings could benefit other

business contexts.

6.1 Introduction

Time-series forecasting is an essential component of decision-making and planning. In industries

ranging from healthcare (Jones et al., 2009; Reich et al., 2019; Cheng et al., 2021), to finance

(Thomas, 2000; Elliott and Timmermann, 2016), to energy (Ahmed et al., 2020; Donti and

Kolter, 2021), businesses leverage forecasts of future demand in order to adjust their behavior
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accordingly.

One common business problem reliant on time-series forecasts is inventory management
(Chopra et al., 2007; Syntetos et al., 2009). Here, businesses must decide how much inventory

to order on a recurring basis, balancing considerations such as customer satisfaction, costs

of holding surplus inventory (holding cost), opportunity costs of out-of-stock items (stockout
cost), and keeping the supply chain running smoothly. For example, grocery stores track their

inventory, anticipating demand and placing orders such that when customers demand e.g. toilet

paper, they have enough stock to avoid lost sales and keep customers happy, while not having

too much stock such that stale items are taking valuable shelf or warehouse space.

Since forecasts are used to decide how much inventory to order, the quality of forecasts can

greatly influence downstream measures of business performance. Typically, forecasters optimize

and evaluate generic metrics agnostic to the downstream application, such as mean squared

error (MSE) or mean absolute percentage error (MAPE). Assuming that these upstream forecasts

are accurate, downstream decisions are subsequently treated as a separate step (Figure 6.1).

However, these generic metrics can be misaligned with downstream business performance.

For example, the business costs of over-forecasting and under-forecasting are often imbalanced

(e.g. opportunity cost of lost sales could outweigh cost of holding extra inventory). Additionally,

conventional forecasting metrics typically aim for a mean, median, or quantile of the distribution,

without regard to the magnitude of fluctuations in predictions. Fluctuations in predictions can

translate into fluctuations in orders, and as orders are passed upstream through the supply chain,

uncertainties in forecasts can compound to create the bullwhip effect, an unstable and wildly

oscillating demand (Lee et al., 1997; Wang and Disney, 2016).

One reason for the widespread use of generic accuracy metrics such as MSE and MAPE is

that downstream business metrics may be difficult to quantify or attribute to specific parts of

the supply chain. Customer satisfaction, for example, might have a convoluted data generating

process that is difficult to optimize directly. However, as we show, optimization of generic metrics

does not necessarily translate into improvements on downstream performance indicators.

In this work, we propose a novel method for business metric-aware forecasting for inventory

management systems. Our contributions include:

1. Demonstrating that optimizing conventional metrics often translates into sub-optimal

downstream performance.

2. Deriving an efficient end-to-end differentiable procedure for optimizing forecasts for

downstream inventory performance, compatible with any differentiable forecaster.

3. Noting that downstream metrics are often at odds with one another, and proposing

alternative combined objectives which trade off these metrics in different ways.

4. Empirically demonstrating the benefit of business metric-aware forecasting in univariate

and multivariate datasets, under a variety of plausible downstream scenarios.

5. Since time series datasets measuring demand are popular in the forecasting community,
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Figure 6.1: Typical separated estimation and optimization approach, where the learned forecaster

(blue) is agnostic to business decision-making (green). Solid lines represent direct optimization.

This work solidifies the dotted green lines.

we release code
1

for others to evaluate the downstream utility of their forecasts.

6.2 Related Work

Forecasting + Inventory Optimization Inventory management involves estimating future

demand (forecasting) and deciding how many orders to place to minimize costs and meet

customer needs (inventory optimization). Some works simply forecast the mean demand and

treat it as the inventory optimization solution (Yu et al., 2013; Ali and Yaman, 2013). However,

this approach fails to account for imbalanced costs of over- and under-forecasting. Thus, in

practice, it is common to take a separated estimation and optimization approach (Turken et al.,

2012; Oroojlooyjadid et al., 2020), which involves first (1) forecasting demand and then (2)

plugging the estimates into inventory optimization (Figure 6.1). However, in this approach,

errors in forecasting and inventory optimization can compound.

One widely studied inventory model is the newsvendor problem, which involves determining

the optimal order quantity for perishable or seasonal products to balance holding cost and

stockout cost. In this setup, the optimal solution to the inventory optimization problem is a

particular quantile of the demand distribution (Petruzzi and Dada, 1999). Thus, some works

forecast various quantiles of the demand distribution (Böse et al., 2017; Bertsimas and Thiele,

2005; Taylor, 2000). Others use feed-forward neural networks, kernel regression, and linear

models to directly optimize these two costs (Ban and Rudin, 2019; Oroojlooyjadid et al., 2017).

We also optimize downstream inventory metrics directly, but allow more general cost objectives

to be computed over the inventory system variables through use of differentiable simulation,

making our approach applicable beyond newsvendor.

1
link excluded for anonymity
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Demand Forecasting Demand forecasting is of interest in several businesses, including retail

(Fildes et al., 2022), power grids (Ghalehkhondabi et al., 2017; Suganthi and Samuel, 2012),

emergency care (Jones et al., 2009), and municipal water (Donkor et al., 2014). Techniques for

forecasting include both classical statistical and modern deep learning approaches. Traditional

time-series forecasting methods include autoregressive (AR) models (Box et al., 2015; Makridakis

and Hibon, 1997), exponential smoothing (Gardner Jr, 1985; Winters, 1960), and the Theta

model (Assimakopoulos and Nikolopoulos, 2000; Hyndman and Billah, 2003). Deep learning

architectures for time-series forecasting include convolutional neural networks (Bai et al., 2018;

Oord et al., 2016), recurrent neural networks (Hochreiter and Schmidhuber, 1997; Salinas et al.,

2020; Rangapuram et al., 2018), and attention-based methods (Fan et al., 2019; Li et al., 2019; Lim

et al., 2021), among others (Oreshkin et al., 2019; Challu et al., 2022). However, these works all

optimize business-agnostic metrics.

Inventory Optimization Given demand forecasts, the decision of how many orders to place

could be treated as a constrained optimization problem (Dai et al., 2021), a supervised deep

learning problem (Qi et al., 2023), or a reinforcement learning problem (Oroojlooyjadid et al.,

2017). There are also several common practices for placing orders (Eilon and Elmaleh, 1968).

For example, the (T, S) policy places orders every T days, and orders up to an inventory level S.

Petropoulos et al. (2019) explored the inventory performance of several traditional forecasting

models when a fixed periodic order-up-to (T, S) policy is used, finding that methods based

on combinations had superior inventory performance. We use the same order-up-to policy

in this work, but instead of taking a separated estimation and optimization approach, we use

differentiable simulation to optimize downstream business performance end-to-end.

Forecasting Competitions Forecasting competitions such as the M-Competitions (Makri-

dakis and Hibon, 2000a; Makridakis et al., 2020; Makridakis et al., 2022) and the Favorita

Competition (Favorita, 2017) have become popular benchmarks for development of modern

time-series forecasting methods. While a substantial portion of this data is industry time-series,

evaluation of model performance is largely conducted using generic error metrics which ignore

downstream business performance. For example, the M3 competition measured performance

using versions of symmetric mean/ median absolute percentage error (sMAPE) and median

relative absolute error. Submissions to the Favorita competition were evaluated using the nor-

malized weighted root mean squared logarithmic error. By releasing inventory performance

code, would like to further challenge researchers to make high-utility predictions on this data.

Inventory PerformanceMetrics Across several inventory optimization applications, ranging

from auto parts suppliers (Qi et al., 2023), to online fashion retailers (Ferreira et al., 2016), to drug

inventories (Dhond et al., 2000), the common objectives of interest are typically a function of

stockout cost and holding cost. These costs may be computed across various lead times, different

parts of the supply chain, or simply based on historical data. High variance of orders has also

been identified as an undesirable phenomenon due to the bullwhip effect in supply chains

(Lee et al., 1997; Petropoulos et al., 2019), in which fluctuations in downstream demand can
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cause exaggerated order swings upstream in the supply chain that result in customer-upsetting

stockouts and wasteful excesses.

6.3 Inventory Management

This section formalizes the quantities used and tracked in an inventory management system

(Figure 6.2), and defines business-aware and business-agnostic metrics of interest.

6.3.1 Formulation

For each time-series, we apply a rolling simulation approach in order to simulate an inventory

system as it steps through each time point. Consider a time-series of the true demand dt at every

time point t = 1, 2, ..., T . At each t, orders ot are placed with the expectation that they will take

lead-time L to come in. Using the order-up-to policy for inventory replenishment (Gilbert, 2005;

Petropoulos et al., 2019), orders are given by:

ot = D̂L
t + sst − ipt (6.1)

where D̂L
t is the forecasted lead-time demand over the next L timesteps, sst is safety stock that

adds a buffer to ensure that the orders placed cover the demand, and ipt is the inventory position.

The true lead-time demand DL
t and the forecasted lead-time demand D̂L

t are given by:

DL
t =

L∑
k=1

dt+k, D̂L
t =

L∑
k=1

d̂t,t+k (6.2)

where d̂t,t+k is the forecast of demand for time t + k given data up to time t. Safety stock is

computed as follows:

sst = Φ−1(αs)σe, (6.3)

where σe is the standard deviation of the forecast errors, and Φ−1(αs) is the inverse CDF of the

normal distribution evaluated at some target service level αs. Assuming normally-distributed

errors, with αs probability, the safety stock plus lead time demand forecast should cover the

actual demand.

Inventory position ipt is obtained by taking the previous inventory position, adding the orders

ot−1 from the previous timestep, and subtracting the current demand dt:

ipt = ipt−1 + ot−1 − dt. (6.4)

We assume ip0 = 0 and o0 = 0. Since orders take lead time L to arrive, the inventory position

can be decomposed into a sum of (a) how much inventory is actually on hand, termed net
inventory level it, and (b) how much inventory is on the way, termed work-in-progress level wt:
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• Inventory position: ipt = it + wt

• Net inventory: it = it−1 + ot−L − dt

• Work-in-progress: wt = wt−1 + ot−1 − ot−L

In summary, at each time t, orders ot are placed based on forecasted lead-time demand D̂L
t

and the current inventory position ipt. The orders and current demand then adjust the inventory

position ipt+1, and this process repeats for the entire length T of the time-series.

6.3.2 Evaluation Metrics

We evaluate and optimize both downstream business performance and conventional generic

forecasting metrics.

Downstream Inventory Performance

One straightforward way to balance excess inventory, lost sales, and stability of orders is to

frame everything in terms of cost. Thus we introduce a total cost metric, measured in units of

money. We also introduce a unitless metric, relative root-mean-square, which compares the

performance versus a simple baseline.

Total cost (TC) is defined as a combination of the cost of holding excess inventory (holding cost

Ch), the opportunity cost of running out of stock (stockout cost Cs), and the cost of fluctuations

in the supply chain (order variance cost Cv):

Ch = ch · Et[max(0, it)]

Cs = cs · Et[max(0,−it)]
Cv = cv · Vart(ot)

TC = Ch + Cs + Cv,

where expectations are taken over all time points t, and ch, cs, cv ≥ 0 are constants. Specifically,

ch is the unit holding cost, cs is the unit stockout cost, and cv is the unit order variance cost. If

this information is available in a given problem setting, one can directly plug it in. Otherwise,

practitioners can choose how to balance these different factors based on their domain expertise.

For example, one might have the intuition that sales lost are more expensive per unit than

the cost of holding an extra unit of inventory. If the different components of a supply chain

are well-integrated so that the compounded uncertainty is not a major concern, the unit order

variance cost may not need to be large.

For settings in which the cost tradeoffs may be unknown, we introduce the relative root-
mean-square (RRMS) metric:

RRMS =
√

rel(Ch)2 + rel(Cs)2 + rel(Cv)2,
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inventory system 
state variables

true demand & 
demand forecasts

Figure 6.2: Inventory management systems keep track of state variables such as the current

inventory position ip and orders placed o. Inventory position is decreased based on observed

demand d, and replenished by orders o which are placed based on demand forecasts d̂ and the

current ip.

where relative performance to a naive baseline is defined as

rel(x) = σ

(
x− xnaive

xnaive

)
,

where σ is a sigmoid function. The naive baseline we use in our experiments is a model which

simply outputs the previous observation from one period ago. Note that the rel(x) is a unitless

quantity, as the unit costs cancel out in the numerator and denominator.

Generic Forecasting Metrics

We also evaluate and optimize generic forecasting metrics to understand the extent to which

they might indirectly optimize for downstream performance. Mean squared error (MSE) is given

by averaging the squared error over time points 1 to T and forecasting horizons 1 to H :

MSE =
1

TH

T∑
t=1

H∑
k=1

(
dt+k − d̂t,t+k

)2
.

Symmetric mean absolute percentage error (sMAPE) is:

sMAPE =
1

TH

T∑
t=1

H∑
k=1

|dt+k − d̂t,t+k|
|dt+k|+ |d̂t,t+k|

× 2.
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6.4 Methods

Several challenges arise in optimization of downstream business metrics. Here, we describe how

persistent state variables can be computed differentiably, how to optimize for objectives that

are computed over the entire time-series of these state variables rather than point-wise, how

to provide additional supervision for univariate time series, and how to simulate how models

would be updated over time as new data points are observed. Additionally, we describe the

models, datasets, and experiment setup.

6.4.1 Differentiable Computation of Metrics

For typical forecasting metrics (e.g. MSE, sMAPE, etc.), differentiable computation is relatively

straightforward. These metrics can usually be decomposed such that at each time point, some

differentiable quantity (e.g. squared difference of prediction and actual value) is computed,

and an average over time points is taken. Computing inventory performance (e.g. total cost,

RRMS), however, is less straightforward as there are persistent inventory state variables (e.g. net

inventory level, orders) that must be tracked over time. Although inventory performance is not

in general a differentiable quantity, we derive a series of computations which can simulate the

inventory management system and order-up-to policy described by (6.1)–(6.4) in a differentiable

manner. Composing this system with the outputs of a differentiable forecaster, we create an

end-to-end differentiable system.

Naively, one could iterate over each time point, and apply the recursive inventory state

update equations (6.1)–(6.4). However, for long time-series this would be computationally

infeasible, due to the instability of backpropagation through a long chain of dependent states

(Pascanu et al., 2013). Instead, assuming all quantities at time t < 0 are 0, we show by expanding

out the recursion (derivations in Appendix) that the orders at any time t can be written in closed

form:

ot = (D̂L
t − D̂L

t−1) + Φ−1(αs) · (σe,t − σe,t−1) + dt (6.5)

and the net inventory at time t can be written as:

it = D̂L
t−L + Φ−1(αs) · σe,t−L −

t∑
a=t−L+1

da. (6.6)

These closed form equations are much more efficient to implement in terms of tensor

operations than the original recursive equations, and they allow us to simultaneously compute

the net inventory levels and orders at all times given a tensor of demand forecasts at all times

(detailed walkthrough in the Appendix).

Given the inventory state variables ot and it for all t, it is now feasible to compute metrics

on top of these variables. Holding and stockout costs can be computed by applying a ReLU

activation over it and−it, and computing the average over timepoints. Variance of orders can be
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computed by averaging the squared difference between orders and the average number of orders.

Finally, combinations or simple differentiable functions of these quantities can straightforwardly

computed to yield both total cost (TC) and the relative root-mean-square metric (RRMS) (details

in Appendix).

6.4.2 Double-Rollout Supervision

Another challenge of optimizing downstream inventory performance is that some aspects must

be computed holistically across multiple time points (e.g. order variance). For univariate time-

series where a local model is trained on only one time-series, this is especially challenging due

to limited supervision. To provide more supervision, we use a custom training method where

at each time point, an inventory system simulation is rolled out over the next H time points,

where forecasting horizon H > L. By simulating the inventory system several times using

different starting points in the univariate time-series, one can obtain several evaluations of TC

and RRMS to serve as supervision from just one time-series (see Appendix for diagram). For

multivariate time-series, instead of forecasting for a horizon H > L and then unrolling lead-time

demands across that horizon, only forecasts of the requisite lead time L are made since the other

time-series can provide supervision, and double-rollouts are more computationally expensive.

6.4.3 Roll-Forward Evaluation

In real-world settings, as new data are collected, forecasting models are updated and decisions

are made accordingly. To simulate this process, we employ a training procedure which rolls

forward in time. For each time point from t = 1 to t = T , the model is trained with data up

to t using double-rollout supervision for univariate time-series, and single-rollout supervision

for multivariate time-series. Then, the model forecasts the next L timesteps after t, i.e. d̂t,t+k

for all k ∈ {1, 2, ..., L}. After all T timesteps have been trained on and forecasted from, giving

a N × T × L tensor, inventory performance is computed over the T timepoints. For each

dataset we designate training, validation, and test time ranges, where validation data is used for

hyperparameter tuning, and test data is used for reporting final performance.

6.4.4 Models

We explore two differentiable models for forecasting: (1) a seasonal scaling model, and (2)

an LSTM encoder-decoder model. For univariate time-series, one local model is trained per

time-series, and for multivariate time-series, one global model is trained across all time-series.

Hyperparameter and model training details are in the Appendix.

Naive Seasonal Scaling Model This model has one learnable parameter β ∈ R, the amount

to scale observations from one period P ago. That is, d̂t,seasonal scaler = β · dt−P . This model is
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valuable from an interpretability perspective, as β > 1 could indicate a preference towards

over-forecasting versus the previous period of data, and β < 1 could indicate a preference

towards under-forecasting.

LSTM Encoder-Decoder This model has an LSTM encoder which sequentially encodes a

window of inputs, and an LSTM decoder which sequentially decodes to yield predictions across

a forecasting horizon. For multivariate time-series, the covariates are embedded before being

fed into the encoder, and a linear layer is used on top of the outputs of the decoder to yield the

forecasts. See the Appendix for a diagram of the model architecture.

6.4.5 Data

M3 Monthly Industry Subset (Univariate)

The monthly industry subset of the M3 competition data Makridakis and Hibon, 2000b consists

of 334 univariate time-series with up to 144 time points, where time points occur on a monthly

basis. As described by Petropoulos et al. (2019), this subset can serve as a proxy for demand on a

monthly basis. These time-series are not aligned by start date, have varying lengths, and are not

directly related to each other. Hence, each time-series in this dataset is treated separately as a

univariate time-series for modeling purposes.

Favorita Grocery Sales (Multivariate)

The Corporación Favorita Grocery Sales Forecasting dataset Favorita, 2017 consists of sales data

across several stores and products. The dataset includes covariates such as oil prices, location,

day of week, month, and holidays. We use a similar preprocessing pipeline as in Lim et al. (2021)

to yield 90,193 distinct time-series with up to 396 time points, where time points occur on a daily

basis from 2015 to 2016. As grocery replenishment often occurs on a daily basis, the inventory

system is updated daily. These time-series are aligned to start at the same time in the real world,

missing values are imputed with zeros, and the time-series are likely correlated with each other

since they are all associated with sales in Corporación Favorita. Thus, this dataset is treated as a

multivariate time-series dataset, and one global model is learned.

6.4.6 Experiment Setup

The models are optimized using the mean squared error (MSE), relative root mean square (RRMS),

and total cost (TC) objectives across several settings of unit costs.

For M3, a separate local model is trained with double-rollout supervision and roll-forward

evaluation for each of the 334 univariate time-series. Since each time point corresponds to

one month, a periodicity of P = 12 is used for seasonal models. An encoding window of 24
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months is used as input to the model, allowing the model to learn use the previous two periods

of history for its predictions. Predictions are made for a forecasting horizon of 12 months, so

that the double-rollout can compute inventory performance over multiple time points. A lead

time of L = 6 months is used. Out of 144 months, forecasting models are initially trained with

72 months, then validated until 108 months, and then tested until 144 months. Since the safety

stock discouraged forecasting errors, whereas a high or low unit holding cost could encourage

over- or under-forecasting, we choose to have αs = 0.5, so sst = 0 for all t, to avoid unstable

interactions between unit costs and safety stocks. For the TC objective, models are trained

on every combination of unit holding costs ch ∈ {1, 2, 10}, unit stockout costs cs ∈ {1, 2, 10},
and unit order variance costs cv ∈ {1e−6, 1e−5} (chosen based on the order of magnitude of

demand).

For Favorita, one global model is trained with single-rollout supervision and roll-forward

evaluation for all 90,193 multivariate time-series. A global model is used because all time-series

are aligned and correlated with one another, and training a separate model for each series would

be computationally expensive. Each time point corresponds to one day, so a periodicity of P = 7
is used. An encoding window of 90 days is input to the model, which forecasts the next 30

days. A lead time of L = 7 days is used. Out of 396 days, the training cutoff is at day 334, the

validation cutoff is day 364, and the remainder is used for testing. Again, we set αs = 0.5. For

the TC objective, due to more expensive training, a subset of N = 10, 000 samples are extracted

to test all combinations of unit holding costs ch ∈ {1, 2, 10}, unit stockout costs cs ∈ {1, 2, 10},
and unit order variance costs cv ∈ {1e−3, 1e−2}.

6.5 Results

Unit Cost-Agnostic Performance Tables 6.1 and 6.2 characterize the performance of several

forecasters trained on the full M3 and Favorita datasets when evaluated on typical forecasting

metrics, MSE and sMAPE, and an inventory performance metric, RRMS. All of the models in

these tables are trained and evaluated on objectives that are agnostic to unit costs ch, cs, and cv .

In both M3 and Favorita, the Seasonal Scaler and LSTM models trained with MSE objective

perform competitively with classical models on MSE and sMAPE, either performing better than

or within the range of performance spanned by the ARIMA, Exponential Smoothing, and Theta

models. In the M3 dataset, the model with best RRMS is the seasonal scaler trained on RRMS—

abbreviated as Seasonal Scaler (RRMS). However, it achieves worse MSE (22.10×105) than the

Seasonal Scaler (MSE), LSTM (MSE), Exponential Smoothing, and Theta models (MSEs ranging

13.82×105 to 20.89×105). In the Favorita dataset, the Seasonal Scaler (MSE) and the Seasonal

Scaler (RRMS) outperform all other models on RRMS, despite having worse MSE (1.23×102 and

1.25×102) than the LSTM (MSE), ARIMA, and Theta models (0.88×102 to 1.12×102). On the M3

dataset, the LSTM (MSE) achieves the best MSE (13.82×105), yet has the second to worst RRMS

(1.23). On Favorita, the LSTM (MSE) objective again achieves the best MSE (0.88×102), yet has

the worst RRMS (1.17). Overall, performance on typical forecasting metrics (MSE and sMAPE)

appears misaligned with relative inventory performance (RRMS), and optimizing for one does
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Table 6.1: M3 test performance of models that are agnostic to unit costs. Note that the best-

performing models on MSE are misaligned with the best-performing models on RRMS.

Model (Objective) MSE sMAPE RRMS

(×10−5
)

Seasonal Scaler (MSE) 20.89 0.27 1.27

Seasonal Scaler (RRMS) 22.10 0.28 0.74
LSTM (MSE) 13.82 0.24 1.23

LSTM (RRMS) 226.49 1.25 1.02

ARIMA 25.78 0.34 1.12

Exponential Smoothing 15.21 0.24 1.12

Theta 14.00 0.22 1.09

Table 6.2: Favorita test performance of models that are agnostic to unit costs. Note the best-

performing models on MSE are misaligned with the best-performing models on RRMS.

Model (Objective) MSE sMAPE RRMS

(×10−2
)

Seasonal Scaler (MSE) 1.23 1.51 0.85
Seasonal Scaler (RRMS) 1.25 1.73 0.94

LSTM (MSE) 0.88 1.77 1.17

LSTM (RRMS) 3.42 2.84 1.10

ARIMA 1.12 1.76 1.06

Exponential Smoothing 1.36 1.80 1.10

Theta 1.08 1.81 1.09

not inherently seem to optimize for the other.

Performance Across Several Unit Cost Tradeoffs Tables 6.3 and 6.4 contain the test total

cost across various unit cost settings. While Seasonal Scaler observes some benefit from training

using the RRMS objective, it appears to cause unstable performance for the LSTM. On the other

hand, using the TC objective almost always improves the total cost of the Seasonal Scaler and LSTM

models, except for the LSTM on the M3 dataset, where a more consistent benefit is observed

for imbalanced ch and cs (Figure 6.3 and Appendix Figure E.7). The greater the imbalance in

ch and cs, the greater the improvement from using TC objective. For example, on Favorita,

the Seasonal Scaler trained on TC achieves a 45.7% improvement over that trained by MSE

when (ch, cs, cv) = (1, 10, 10−3), and the LSTM encoder-decoder trained on TC achieves a 54.0%

improvement over that trained by MSE when (ch, cs, cv) = (10, 1, 10−3).

Leveraging the interpretability of the Seasonal Scaler model, we graph the relationship

between the learned βs and the tradeoffs between ch and cs (Figure 6.4). In both M3 and Favorita,

with larger ch/cs ratios and increasing cv, the learned β scaling factor decreases.

Another benefit of end-to-end optimization of forecasts is interpretability that the forecasts
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Table 6.3: M3 test total cost across several unit cost settings (ch, cs, cv).

Model (Objective) (1, 1, 1e-5) (1, 1, 1e-6) (1, 10, 1e-5) (1, 10, 1e-6) (10, 1, 1e-5) (10, 1, 1e-6)

LSTM (MSE) 5,826 5,435 39,519 39,128 20,660 20,269

LSTM (RRMS) 17,188 17,102 170,738 170,652 17,474 17,388

LSTM (TC) 6,390 5,997 36,086 35,805 10,146 10,400
Seasonal Scaler (MSE) 5,680 5,372 43,791 43,483 15,610 15,302

Seasonal Scaler (RRMS) 5,771 5,476 45,216 44,920 15,314 15,018

Seasonal Scaler (TC) 5,185 4,884 35,268 34,918 12,178 11,996

Table 6.4: Favorita test total cost across several unit cost settings (ch, cs, cv).

Model (Objective) (1, 1, 1e-2) (1, 1, 1e-3) (1, 10, 1e-2) (1, 10, 1e-3) (10, 1, 1e-2) (10, 1, 1e-3)

LSTM (MSE) 26.94 20.30 158.65 152.01 71.25 64.61

LSTM (RRMS) 94.51 72.08 162.55 140.12 652.76 630.33

LSTM (TC) 24.69 18.39 115.72 116.40 35.96 29.72
Seasonal Scaler (MSE) 24.52 21.22 200.51 197.22 36.25 32.96

Seasonal Scaler (RRMS) 23.40 18.69 158.51 153.80 51.84 47.13

Seasonal Scaler (TC) 23.52 18.51 118.48 107.03 32.68 30.18
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Figure 6.3: Average relative percentage improvement in test total cost from using the TC objective

over the MSE objective and RRMS objective across various ch/cs ratios. 95% CI are computed

across different cv values.
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Figure 6.4: Learned scaling factors for the naive seasonal scaler on the M3 (left) and Favorita

(right) datasets, across several unit cost tradeoffs. Dotted line corresponds to β = 1.

themselves provide. Appendix Figure E.6 plots the forecasted and true lead demands, averaged

over all series in each dataset, for various cost objectives. When trained on MSE, the LSTM

model tends to slightly over-forecast the true demand in aggregate, whereas the Seasonal Scaler

model appears to match or slightly under-forecast. When trained on the TC objective, both

models tend to under-forecast when the ch/cs ratio is high, and over-forecast when the ratio

is low. The LSTM predictions on M3 are smoother than that of the Seasonal Scaler, perhaps

because the LSTM is more flexible and able to reduce the variance of its predictions in order to

help reduce order variance, whereas the Seasonal Scaler can only scale the previous period by

some constant (but note that due to roll-forward evaluation, where the model is updated each

time point, this constant can change over time). The LSTM predictions on Favorita are more

variable, perhaps due to the small order variance penalty.

6.6 Discussion

We demonstrate the limitations of using standard forecasting metrics that are agnostic to

downstream business metrics, and propose a method for augmenting models with business

metric-aware objectives. Common forecasting metrics such as MSE and sMAPE can be misaligned

with downstream inventory performance, and optimizing for such metrics does not inherently

optimize for inventory performance metrics (Tables 6.1 and 6.2). We derive a differentiable

procedure for computing inventory performance, and demonstrate that especially when costs are

imbalanced, utilizing a business metric-aware total cost objective often significantly improves

downstream costs (Tables 6.3 and 6.4, Figures 6.3 and E.7).

When deployed in a roll-forward evaluation framework, we observe that the Seasonal Scaler

can be surprisingly effective (Table 6.1 and 6.2) in some cases despite only having one learned

parameter. One possible explanation is that the learned constant can vary over time and adapt
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to new data each timestep as it is observed. In contrast to standard evaluation in which one

assumes that the model is learned on data from a fixed time period and evaluated on a fixed

test time period, this form of evaluation could be more realistic for the inventory management

setting, where forecasts are constantly updated to inform daily, weekly, or monthly decisions.

At the same time, the Seasonal Scaler must have an output proportional to the previous period

which restricts the flexibility of this model class even if the proportion can change over time.

The more flexible LSTM model performs best in MSE and in several of the cost tradeoff settings.

There are also some practical benefits of end-to-end optimization with business metric-aware

objectives. When demand forecasting and inventory optimization are treated separately (as is

typical), errors in each component are likely to compound. While some have proposed searching

over conventional forecasting methods for models which happen to achieve better downstream

inventory performance (Petropoulos et al., 2019), this is computationally expensive as several

models must be trained, each of which have their own hyperparameters to be tuned. By directly

optimizing end-to-end, this can save computation. Additionally, our methods for optimizing

inventory performance are compatible with any differentiable forecaster.

More broadly, business metric-aware forecasting could be useful beyond inventory manage-

ment, for other business problems that rely on forecasts. Through our case study in inventory, we

have shown how to tackle some common challenges that might arise from attempting to simulate

downstream decision-making processes and systems, including: (1) differentiable computation

of persistent state variables, (2) optimization of objectives that must be computed over the entire

time-series rather than point-wise, (3) providing additional supervision with limited time series,

and (4) simulating how models would be updated over time as new data points are observed.

Business decisions that rely on forecasts may inherently prefer error distributions that are biased

in certain ways, and we encourage others to explore business metric-aware forecasting in their

own business problems.

Limitations and Future Work While TC outperforms MSE when costs are imbalanced,

when costs balance each other out, the MSE objective can perform comparably or even slightly

better than the TC objective (Figure 6.3a, bottom). The TC objective, while differentiable, is more

complex than MSE, and can be sensitive to hyperparameter tuning. Similarly, while RRMS is a

convenient unitless objective, it can also be difficult to optimize. While in this work we decided

to purely compare inventory vs. generic objectives, future work might explore pre-training with

MSE and fine-tuning with TC or RRMS.

Finally, there are several possible avenues for further exploration. Future work could use the

lens of business metric-aware forecasting to consider other differentiable model architectures,

time series datasets, downstream objectives, and downstream business problems.

91



Chapter 7
Timing as an Action: Learning when to

Observe and Act

In standard reinforcement learning setups, the agent receives observations and performs actions

at evenly spaced intervals. However, in many real-world settings, observations are expensive,

forcing agents to commit to courses of action for designated periods of time. Consider that

doctors, after each visit, typically set not only a treatment plan but also a follow-up date at which

that plan might be revised. In this work, we formalize the setup of timing-as-an-action. Through

theoretical analysis in the tabular setting, we show that while the choice of delay intervals could

be naively folded in as part of a composite action, these actions have a special structure and

handling them intelligently yields statistical advantages. Taking a model-based perspective,

these gains owe to the fact that delay actions do not add any parameters to the underlying

model. For model estimation, we provide provable sample-efficiency improvements, and our

experiments demonstrate empirical improvements in both healthcare simulators and classical

reinforcement learning environments.

7.1 Introduction

In the real-world, decisions are often spread across irregular intervals of time. After each visit,

doctors must commit to not only a course of treatment but also to a follow up plan. Each office

visit offers an opportunity to gain fresh information and course correct if the current treatment

regime is unsuccessful. On the other hand, excessive visits are expensive, consuming hospital

resources and consuming time that could be spent on patients in greater need. Thus doctors

must trade off the value of information gained the cost of more frequent opportunities to observe

and intervene. Similarly, research advisors must decide not only how to advise students in each

meeting, but also how frequently to schedule these touchpoints. Economists have considered

related scenarios where firms incur a cost for observing market state and must set pricing

policies that will hold in between observations (Mankiw and Reis, 2002; Stokey, 2008). When the
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state is fully unobserved between actions, agents must anticipate both the state and the speed at

which their information of the state will go stale in order to choose both action and time to next

observation.

Several works in disease progression modeling have applied multi-state models, which

assign probabilities or intensities to transitions between different discrete states, to capture state

transitions across periods of non-observation (Jackson, 2011; Young et al., 2020; Lorenzi et al.,

2019; Cheung et al., 2022). For cardiovascular disease, Lindbohm et al. (2019) utilized multi-state

Markov models to estimate rates of progression, for different risk groups, demonstrating how

different screening intervals can lead to different tradeoffs between cost and quality-adjusted life

years. Breast cancer screening has been the subject of substantial controversy (Esserman, 2017;

Marmot et al., 2013), with different organizations recommending different screening policies

(Ren et al., 2022). However, the prior literature leaves open the question of how a reinforcement

learner ought to go about learning a joint policy over actions and observation intervals.

In this chapter, we explore how one might learn policies in an action space augmented by

the choice of when to observe and take the next action. We show that this setting is amenable

to standard model-free and model-based reinforcement learning algorithms in this augmented

action space, but also propose a new timing-aware model-based approach which can leverage the

temporal nature of the timing action. We prove theoretically that the timing-aware algorithm has

improved sample efficiency compared to the aforementioned standard approaches, which arises

from more efficient model estimation, and empirically characterize the estimation error rates of

timing-aware, timing-naive, and model-free strategies under various quantities of samples and

exploration policies, showing that the timing-aware strategy is able to consistently achieve the

lowest estimation error with fewer samples. In the disease progression, windy gridworld, and

glucose reinforcement learning environments, we demonstrate empirically that timing-aware

learning consistently achieves the lowest estimation error the quickest, and is also able to

achieve the highest average cumulative reward. At the same time, we empirically find that

low estimation error is not always necessary for good performance as measured by average

cumulative reward. Finally, we release our timing-as-an-action simulators to encourage further

model and algorithmic development in this setting.

7.2 Timing-as-an-Action

Consider the motivating setting where a patient with a chronic illness visits a doctor, who

prescribes them a daily medication and schedules a follow-up appointment. We design the

timing-as-an-action problem setting to mimic this interaction dynamic, where importantly, (1)

the doctor must choose not only which treatment (action) to recommend but also how long

(delay) to recommend it for, (2) the doctor does not observe the patient’s intermediate state or

the benefit of the medication until the next appointment (no observations of state or reward

until after the delay), (3) there is some cost to each appointment (observation and action cost).

With these characteristics in mind, we define the timing-as-an-action Markov decision process

(MDP) and reinforcement learning (RL) setup.
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Timing-as-an-action MDP The timing-as-an-action Markov decision process is an infinite-

horizon MDP defined by the tuple M = (S,A,K, P, R, γ, C, s0), with state space S , action

space A, and delay space K = {1, 2, ..., K}, where K ∈ N. The delay space K represents the set

of numbers of timesteps for which an action can be repeated, and a policy in the timing-as-an-

action MDP must make decisions over both actions and how long to take them for (the delay),

i.e., π : S → ∆(A× K), where ∆ indicates the probability simplex. Note that with different

choices of k, the resulting sequence of observations will be unevenly spaced in terms of the

underlying timestep, which we will refer to as the primitive timestep. The underlying one-step

reward function, or primitive reward function R : S ×A → [0, 1], is assumed to be deterministic

and in a bounded nonnegative interval. Additionally, there is a discount factor γ ∈ [0, 1); a fixed,

known interaction cost C ∈ R≥0; and a deterministic starting state s0. The k-step transition

probabilities are given by P : S × A × K → ∆(S), where ∆ is the probability simplex, and

P (s′|s, a, k) denotes the probability of transitioning to a next state s′ after taking action a for k
timesteps from a state s.

Importantly, the true transition probabilities P have the structure that the k-step transitions

are induced by the 1-step transitions. Before formalizing this property we introduce some

additional notation. For any valid transition P ′
, let P ′

a,k(s
′|s) := P ′(s′|s, a, k) for short, and let

the bolded version P′
denote the corresponding A×K × S × S matrix, where indexing into

the matrix is denoted as P′[a, k, s, s′] := P ′(s′|s, a, k), and we also denote P′
a,k := P′[a, k, :, :]

and P′
a,k(s

′|s) := P′
a,k[s, s

′]. In the timing-as-an-action MDP, we have Pa,k = Pk
a,1 for all

(a, k) ∈ A×K, which refers to the one-step transition probability matrix multiplied by itself k
times.

Timing-as-an-action RL setup In the timing-as-an-action RL setup, the agent alternately

observes a state s, chooses an action a to commit to, as well as a delay k, that corresponds to

the number of timesteps the action a is played for. The agent then observes state s′ as well as

the aggregated k-step reward g,

g = −C +
∑k−1

j=0 γ
jrj, (7.1)

that is the discounted sum of the (unobserved) one-step rewards encountered along the k steps

of taking action a, from which C , the cost of interaction, is subtracted. For clarity, one step of an

agent’s interaction with the environment env = M , i.e. calling s’, g = env.step(a,k),

is summarized below (ignoring termination conditions and done’s for simplicity):

Timing-as-an-action env.step(a,k)

Given: env = M , current state s.

Initialize s0 = s. For j = 0, . . . , k − 1:

1. Sample rj ∼ R(sj, a)

2. Transition to sj+1 ∼ P (·|sj, a, 1)

Out: aggregate reward g = −C +
∑k−1

j=0 γ
jrj ; next state s′ = sk
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Crucially, the intermediate states (s1, . . . , sk−1) and intermediate one-step rewards (r1, . . . , rk−1)
are not observed—only sk and the aggregate rewards g (defined above) are. This captures the

challenges of learning when to observe, core to healthcare applications as discussed previously,

and distinguishes our problem setting from the “standard” RL setup.

Value functions We call G : S×A×K → ∆([−C, 1
1−γ
−C]) the distribution over aggregated

rewards induced by R and P , i.e., g ∼ G(s, a, k), with expected value

E[G(s, a, k)] = −C +
∑k−1

j=0 γ
jE[R(sj, a)|s, a].

When a policy π interacts continuously withM , it observes a trajectory (s0, a0, g0, s1, a1, g1, . . .),
and its state-action value function of policy π is the expectation of its total discounted return

over the infinite horizon of interaction:

Qπ(s, a, k) = E

[
∞∑
τ=0

γ(
∑τ−1

τ ′=0
kτ ′)gτ |π, s0 = s, a0 = a, k0 = k

]
and its state value function is V π(s) = Ea,k∼π(·|s)[Q

π(s, a)]. Lastly, the goal of the timing-as-an-
action reinforcement learning problem is to find the optimal policyπ∗ = argmaxπ:S→∆(A×K) V

π(s0)
that learns which actions and delays to take in order to maximize its total discounted return.

We define the optimal value function Q∗ := Qπ∗
, and same for V ∗

.

7.3 Related Work

The timing-as-an-action framework is most closely related to the options and hierarchical

RL literatures, but there are key differences, described shortly, that make them very different

learning problems. Broadly, an option is a pre-defined, temporally extended sequence of actions.

An MDP endowed with a set of options is called a semi-MDP, and the agent’s policy chooses

options to take. The options framework has been commonly used for reasoning at different levels

of temporal abstraction (Sutton et al., 1998; Sutton et al., 1999; Bacon et al., 2017; Machado et al.,

2023). Options belong to a class of reinforcement learning (RL) approaches called hierarchical

RL, which involves decomposing a task into subtasks at varying levels of granularity (Barto and

Mahadevan, 2003; Dietterich, 2000; Vezhnevets et al., 2017; Co-Reyes et al., 2018; Eysenbach

et al., 2019; Hafner et al., 2022).

The key difference between the timing-as-an-action framework and semi-MDPs or hierarchi-

cal RL is that the latter frameworks generally assume that per-step observations and rewards

are available to the learner, and subtasks are often accomplished with a combination of different

granular actions. In contrast, this work utilizes repeated actions (to reflect, e.g., a patient fol-

lowing a treatment plan), and does not assume access to per-step observations or rewards, but

rather the aggregated reward and final observation after the chosen duration for the action has

passed (e.g. when the patient comes back for a follow-up visit). Semi-MDP methods which rely

on per-step rewards and observations are thus not applicable.
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Model-based RL has offered a sample-efficient approach for settings where interactions may

be expensive to collect (Kaelbling et al., 1996; Deisenroth et al., 2011; Sutton and Barto, 2018).

Motivated by human cognition, Ha and Schmidhuber (2018) proposed a model-based framework

that learns an autoencoder vision network and recurrent neural memory network to represent

the environment dynamics. In a “dream” world simulated by these learned networks, a small

controller network is trained. For continuous-time domains with irregularly observed data, Du

et al. (2020) use neural ordinary differential equations for model-based reinforcement learning in

semi-Markov decision processes. However, as far as we are aware, none of these setups assign a

cost to observing and acting, and proactively jointly optimize for the next choice of delay and

action.

Repetition of actions has been found to be useful for improving exploration in simple

classical RL environments (Dabney et al., 2020) as well as gaming environments such as Atari

(Braylan et al., 2015) and VizDoom (Khan et al., 2019), where skipping frames can lead to

improvements in learning speed and final performance. Prior work on learning action repetitions

has used a Q-network with multiple output heads per action for different repetition lengths

(Lakshminarayanan et al., 2017), a framework that jointly learns an action policy and a second

policy that decides how often to repeat (Sharma et al., 2017), and using all pairs of intermediate

observations to learn the values of multi-step actions (Biedenkapp et al., 2021). However, these

works assume access to intermediate observations and rewards.

7.4 Methods

7.4.1 Timing-as-an-action Bellman Backup

To facilitate planning in the timing-as-an-action MDP, we begin with defining the following

timing-as-an-action Bellman optimality equation, that recursively relates the value function to

itself. For any (s, a, k),

Q(s, a, k) = E[G(s, a, k)] + γkEs′∼P (·|s,a,k)[max
a′,k′

Q(s′, a′, k′)] (7.2)

Such recursive equations are the backbone of value-based RL methods (Agarwal et al., 2019),

that optimize policies from learned value functions. (see Appendix F.1.1 for proof). In particular,

finding a value function that satisfies (7.2) for all (s, a, k) implies that we have obtained the

optimal value function Q∗
.

Lemma 7.4.1. The timing-as-an-action Bellman optimality equation (7.2) has a unique fixed point
for Q∗.

As Lemma 7.4.1 is analogous to well-established results for value-based learning in standard

MDPs, the immediate implication is that one could solve the timing-as-an-action RL problem by

applying standard value-based RL algorithms (e.g., Q-learning), with an expanded action space

equal to the cross product of actions and delays A′ = A×K. Indeed, we will show that this is

the case in Section 7.4.2.
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However, it should also be immediately clear that such methods will be sample-inefficient

because they do not leverage the structure of the timing-as-an-action MDP, namely, that observ-

ing k-step transitions also provides information about the dynamics for k′ ̸= k. In general, the

sample complexity of RL algorithms depends on the size of the action space (Azar et al., 2012;

Agarwal et al., 2019), here |A′| = |A||K|. This can grow rapidly depending on the choice of delay

space K, which, in general, we expect to be relatively large as it represents discretized time. For

example, if one chose delays up to one day with one-minute intervals between them, the action

space would be 1,440 times as large as the single-timestep action space. Ideally, leveraging the

temporal nature of the timing action should result in more efficient learning.

7.4.2 Learning Algorithms

We define three value-based RL algorithms based on the timing-as-an-action Bellman backup

(7.2). Two approaches, one model-free and one model-based, give a naive treatment of the delay

by treating it as any other action, and can be viewed as standard RL algorithms translated directly

to the timing-as-an-action setup. The third approach is also model-based, but leverages the

temporal nature of the delay, i.e, that Pa,k = Pk
a,1, to share information between different values

of delays. As an extreme example, obtaining perfect 1-step transitions automatically translates

to perfect estimation of Pa,k for all k ∈ K ; more generally, observations of any delay allows for

reasoning about the transitions for other delays. Because the delay structure is embedded in the

transitions, model-based methods are a natural choice for leveraging this structure (which is not

encoded in the Q-values).

Model-free

After taking action a for k steps from state s, the environment returns an aggregated reward

g and the next state s′. The model-free approach updates the action-values using the standard

Q-learning update (Watkins and Dayan, 1992):

Q̂(s, a, k)← g + γk max
a′,k′

Q̂(s′, a′, k′). (7.3)

Here the action space is simply the cross product of all actions and delays (a, k) ∈ A×K, and a

sample of experience with delay k does not inform the values associated with k−1, k+1, etc. To

help improve sample efficiency, we add experience replay, iterating through tuples (s, a, k, g, s′)
and updating using (7.3) (details in Algorithm 3). To further improve sample efficiency, we

consider model-based methods.

Model-based

In the model-based approaches, we learn models of the transition probabilities P̂ and one-step

rewards R̂ using a dataset of the form {(si, ai, ki, gi, s′i)}Ni=1, which are then used to obtain the

Q-value estimates Q̂.
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Algorithm 3 Model-free learning procedure

1: Input: MDP M , environment env to interact with M , policy transformation πQ : Q →
∆(A×K)S

2: Initialize replay buffer B = ∅ and Q-values Q̂(s, a, k) = 0 ∀s, a, k ∈ S ×A×K.

3: for each episode do
4: s, done = env.reset(), False

5: while not done do
6: a, k ∼ πQ̂(·, ·|s)
7: s′, g, done = env.step(a, k)
8: Append B ← B ∪ {(s, a, k, s′, g)}
9: for (s, a, k, g, s′) ∈ B do

10: Update Q̂ via (7.3):

Q̂(s, a, k)← g + γk max
a′,k′

Q̂(s′, a′, k′).

11: end for
12: end while
13: end for

For the timing-naive model-based approach, the transitions are learned through maximum

likelihood estimation from the function class P :

P̂ = argmax
p∈P

N∑
i=1

log pai,ki(s
′
i|si), (7.4)

where P = {P : S ×A×K → ∆(S)} is the set of all valid transitions (involving actions and

delays). For the timing-aware model-based approach,

P̂ = argmax
p∈P1

n∑
i=1

log
(
pkiai,1(s

′
i|si)

)
. (7.5)

where P1 = {p : pa,k(·|s) = [pa,1]
k(·|s),∀(s, a, k) ∈ S ×A×K}, recalling that p is the tensor

version of p thus [pa,1]
k

is the S × S one-step transition probability matrix multiplied by itself

k times. Note that P1 ⊆ P from (7.4), and the true transitions P ∈ P1 given the structure the

environment.

Then, given an estimate of the transition probabilities P̂ (from either (7.4) or (7.5)), estimates

of the one-step reward function R̂ are obtained as follows:

R̂ = argmin
R′∈R

1

N

N∑
i=1

(GR′,P̂ (si, ai, ki)− gi)
2, (7.6)

whereR is a one-step reward function class and G is a deterministic mapping from a one-step

reward function R′
and transition P ′

to the corresponding expected aggregated multi-step
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Algorithm 4 Model-based learning procedure

1: Given: MDP M , policy transformation πQ : Q→ ∆(A×K)S , P ′ = P in the timing-naive

approach and P ′ = P1} in the timing-naive approach.

2: Initialize replay buffer B = ∅, Q-values Q̂ = 0, transitions P̂ , and one-step rewards r̂.

3: for each episode do
4: s, done = env.reset(), False

5: while not done do
6: a, k ∼ πQ(·, ·|s)
7: s′, g, done = env.step(a, k)
8: Append B ← B ∪ {(s, a, k, s′, g)}
9: for (s, a, k, g, s′) ∈ B do

10: Update P̂ using (7.4) (timing-naive):

P̂ = argmax
p∈P

n∑
i=1

log pai,ki(s
′
i|si)

or (7.5) (timing-aware):

P̂ = argmax
p∈P

n∑
i=1

log
(
pkiai,1(s

′
i|si)

)
.

11: Update R̂ using (7.6). GR′,P ′ is defined in (7.7):

R̂ = argmin
R′∈R

1

N

N∑
i=1

(GR′,P̂ (si, ai, ki)− gi)
2.

12: Update Q̂← value iteration(P̂ ,GR̂,P̂ ).
13: end for
14: end while
15: end for

reward,

GR′,P ′(s, a, k) = − C +
k−1∑
τ=0

γτEs′∼P ′
a,k(·|s)[R

′(s′, a)]. (7.7)

Note that by plugging in the true R and P , we have GR,P (s, a, k) = E[G(s, a, k)]. The P̂ and

corresponding R̂ are then used to learn the Q-value functions via value iteration, i.e., by finding

Q̂ that is the fixed point of the Bellman equation involving the estimated GR̂,P̂ and P̂ below:

Q̂(s, a, k) = GR̂,P̂ (s, a, k) + γkEs′∼P̂a,k(·|s)[max
a′,k′

Q̂(s′, a′, k′)]. (7.8)
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7.4.3 Analysis

To highlight the sample complexity improvements in model learning achieved by (7.5), we

provide our guarantees in the generative setting, which isolates the estimation problem from

the challenges of exploration in RL (Azar et al., 2012; Agarwal et al., 2019):

Definition 3 (Generative Setting). A generative model takes as input (s, a, k) and outputs s′ ∼
P (·|s, a, k). In the generative setting, we obtain n samples of s′ from each (s, a, k) ∈ S ×A×K
using the generative model, i.e. Ds,a,k = {(s, a, k, s′i)}ni=1.

Proofs for the below are provided in Appendix F.1.2, in addition to the more general versions

for the non-generative setting:

Lemma 7.4.2. In the generative setting (Definition 3), for P̂ from (7.4), with probability ≥ 1− δ,

max
s,a,k
∥P̂a,k(·|s)− Pa,k(·|s)∥1 ≲ S

√
AK log(1/δ)

n
.

Lemma 7.4.3. In the generative setting (Definition 3), for P̂ from (7.5), with probability ≥ 1− δ,

max
s,a,k
∥P̂a,k(·|s)− Pa,k(·|s)∥1 ≲ S

√
A log(K/δ)

n
.

Comparison of the above transition estimation results reveals the sample complexity gains

from (7.5) are obtained by leveraging the delay structure, as evidenced by their respective

dependencies on K . While the timing-naive estimate has

√
K in its upper bound (Lemma 7.4.2),

the timing-smart estimation obtains logK (Lemma 7.4.3), and this is because learning just the

1-step transitions from all samples is more efficient, while still being sufficient to express all

k-step transitions.

Lemma 7.4.4. Fix P̂ and let εP̂ = maxs,a,k

∥∥∥P̂ (·|s, a, k)− P (·|s, a, k)
∥∥∥2
1
. Then in the generative

setting (Definition 3), with probability ≥ 1− δ we have∥∥∥GR̂,P̂ − GR,P

∥∥∥
∞
≲

1

(1− γ)

(
SAKεP̂

)1/2
+

(
G2

maxS
2A2K

n

)1/2

+

(
1

(1− γ)2
G2

maxS
2A2K

n
εP̂

)1/4

,

where Gmax = max{C, | 1
1−γ
− C|}.

Lemma 7.4.4 demonstrates that the error of aggregated reward estimation is directly related to

the error of transition estimation through εP̂ ; better transition estimation (smaller εP̂ ) translates

to faster reward convergence. For P̂ used in the timing-aware or timing-naive model updates,

εP̂ is given by the bounds in Lemma 7.4.3 and Lemma 7.4.2, respectively, which is n−1
, giving

the RHS of the bound in Lemma 7.4.4 a fast n−1/2
rate of estimation, with GR̂,P̂ → GR,P as

n → ∞. Thus, the sample complexity gains in timing-aware model estimation translate to

reward estimation as well.

As Q̂ is formed directly from P̂ and GR̂,P̂ in the model-based update (7.8), the Q-value

estimate directly inherits the quality of the P̂ and GR̂,P̂ estimates, which is a version of the

classic simulation lemma below:
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Figure 7.1: Est. error maxa,s ∥Pa,k(·|s)− P̂a,k(·|s)∥1 (with 95% CI) for P̂a,1, P̂a,5, and P̂a,10 vs. N ,

the # of samples generated from three sampling regimes: (a) the generative setting of Definition

3, (b) only sampling k = min(K), and (c) only sampling k = max(K).

Proposition 4. For any P̂ and GR̂,P̂ , let Q̂ satisfy (7.8). Then

∥∥∥Q∗ − Q̂
∥∥∥
∞
≤ 1

1− γ

∥∥∥GR,P − GR̂,P̂

∥∥∥
∞
+

γK

2(1− γ)2
max
s,a,k

∥∥∥P (·|s, a, k)− P̂ (·|s, a, k)
∥∥∥
1
.

7.5 Experiments

Our experiments investigate the model estimation problem (Section 7.5.1) separately from the

policy learning problem (Section 7.5.2).

Implementation Details All models are implemented using PyTorch, with transition

probabilities P̂ initialized uniformly, and single-step reward estimates R̂ initialized to −1.

For the timing-aware model, the estimate of the one-step transition matrix for action a is

P̂a,1 = softmax(T[a, :, :]), where T is an unconstrained A× S × S parameter tensor initialized

with ones, and the softmax is over the last dimension. For the timing-naive model, the estimate

of the k-step transition matrix for action a is P̂a,k = softmax(T′[a, k, :, :]), where T′
is an

unconstrained A×K×S×S parameter tensor initialized with ones, and the softmax is over the

last dimension. The single-step rewards R̂ are initialized as an A×S tensor, and estimates of the

expected aggregate reward are computed using ĝ = GR̂,P̂ (s, a, k), defined in (7.7). Additional

optimization details are in Appendix F.2.
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  states:
  healthy   unhealthy   dead

  actions:
      treat            don’t treat

Disease Progression 

  states: 
  blood glucose
     70ー80 mg/dL, 
     80ー90, …, 
     340ー350, out of range
  actions:
   insulin amount
      0, 10, 20, 30, 40

Glucose

  states:

  actions:

Windy Grid

Figure 7.2: Summary of disease, glucose, and windy grid environments. Details in Appendix F.3.

Table 7.1: Final average cumulative reward after 200 episodes. Values are written in the hundreds.

Disease Progression Windy Grid Glucose

Timing-Aware 4.26 (4.00–4.53) 81.5 (80.3–82.6) 0.420 (0.287–0.554)
Timing-Naive 4.24 (4.00–4.47) 76.9 (75.0–78.8) 0.334 (0.224–0.443)

Model-Free 3.47 (3.28–3.65) 3.96 (1.83–6.10) 0.270 (0.183–0.356)

7.5.1 Transition Model Estimation

As the likelihood objective in the timing-aware model-based approach (7.5) may be non-convex

in the one-step parameters pa,1, we first verify empirically that standard gradient-based opti-

mization methods can learn P̂ ≈ P in Figure 7.3. To better compare the rates of learning the

transition probabilities in the timing-aware and timing-naive approaches, we examine the L1

error curves for three sampling regimes: (a) drawing samples in the generative setting (Defini-

tion 3), (b) drawing an equivalent number of samples selecting actions uniformly with just the

minimum delay, and (c) drawing an equivalent number of samples selecting actions uniformly

with just the maximum delay. For (a), we draw n = [1, 2, 5, 10, 20, 50, 100] per-(s, a, k) samples

∀(s, a, k) ∈ S ×A×K, giving N = nSAK = [60, 120, ..., 6000] samples to estimate P̂ . For (b)

and (c) which sample just one value of k, we draw ten times as many per-(s, a, k) samples to

obtain the same number of samples N . True transition probabilities P come from the disease

progression environment, where S = 3, A = 2, and K = 10. We also sanity-check against the

estimate of P from empirically counting transitions to each state given each state and action.

Results are averaged over 30 trials.

When all delays are sampled, the timing-aware model-based approach achieves lower es-

timation error faster than the timing-naive model-based approach and empirical counts. In

the generative setting (Definition 3), for example, it only takes the timing-aware approach

n = 20 draws of all (s, a, k) ∈ S ×A×K to achieve a maximum L1 error less than 0.1 in the

estimate of the one-step transition probabilities, whereas it takes timing-naive approach more

than n = 100 per-(s, a, k) draws to achieve the same. While in the timing-naive approach each
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sample only contributes information towards the corresponding entry with the same delay, in

the timing-aware approach each sample contributes to the estimates of transition probabilities

of all other delays. This is further demonstrated in the second and third columns of Figure 7.3,

where when only one delay is sampled, the timing-naive approach only improves its estimate

with samples of the same delay, and the estimates for the other delays remain unchanged.

7.5.2 Reinforcement Learning Setting

For πQ̂, we use an ϵ-greedy policy with ϵ = 0.1, where with probability 1 − ϵ the delay and

action are argmaxa′,k′ Q̂(s, a′, k′), and otherwise the delay is k = 1 and the action is drawn

uniformly from A. Each experiment has 200 episodes (limited to mimic real-world situations

with limited data), and 50 trials of each experiment are run. We explore three environments of

increasing complexity: (1) a three-state disease progression simulator, (2) a glucose simulator,

and (3) a windygrid environment (Figure 7.2). We implement an augmented version of all three

simulators which accepts both the action a and delay k, and returns the aggregated rewards

g and state s′ after having taken k steps with action a (see box in Section 7.2). Code for these

simulators is in the supplement.

Progression Environment This simulator is an environment with three states (healthy,

unhealthy, dead) and two actions (treat and do not treat). We consider delays of up to ten

timesteps, k ∈ K = [1, 2, ..., 10]. The simulator is based on models commonly used in disease

progression modeling, such as multi-state Markov models used in breast cancer progression

modeling (Yen et al., 2003; Olsen et al., 2006; Chen et al., 1996; Duffy et al., 1995). The true

transition probabilities P are included in Appendix F.3. The healthy state has a reward of 25, the

unhealthy state has a reward of 5, and the dead state terminates the episode and has as reward

of 0. The action cost is C = 5, and γ = 0.99.

Glucose Environment We implement an augmented version of the SimGlucose simulator

(Xie, 2018), with 29 states corresponding to ranges of blood glucose measurements, and five

actions corresponding to different insulin amounts. We consider delays K = [1, 2, 3, 4]. The

reward and transition probabilities are not defined explicitly, but rather according to dynamics

in Clarke and Kovatchev (2009), Xie (2018), and Man et al. (2014). The action cost is C = 0.5,

and γ = 0.99.

Windy Grid Environment The windy grid simulator is a classic RL environment (Sutton

and Barto, 2018), consisting of a 7×10 grid with 70 states, and four actions (up, down, left, right).

We consider a delay space K = [1, 2, ..., 10]. The agent starts at (3, 0), and the goal state is at (3,

7). With probability 0.5, wind (columns 4–6 and 9) pushes the agent up one space, and strong

wind (columns 7 and 8) pushes the agent up two spaces. Except for states with wind, the actions

produce the expected transition to adjacent states with probability 1. In row 3, columns 5 and 6

have hazards which have a negative reward, -5. The goal state has a reward of 10,000, and the

remaining states have a reward of -1. Upon reaching the goal state, the episode terminates. The

action cost is C = 1, and γ = 0.99.

RL Results Across episodes, the timing-aware approach achieves the highest cumulative
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Figure 7.3: Average cumulative reward and mean L1 error (∥P̂a,k(·|s) − Pa,k(·|s)∥1 averaged

over all s, a, k) across 50 trials, smoothed with a running average over 20 episodes. Shaded

regions are the standard errors.
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Figure 7.4: Avg. cumulative reward and mean L1 error for timing-aware with/without exploration

phase.

reward in all environments (Table 7.1 and Figure 7.2, top). In the disease progression environment

it only achieves slightly higher cumulative reward than the timing-naive approach, but in the

windy grid and glucose environments it significantly outperforms the timing-naive approach.

In all cases, the model-based approaches outperform the model-free approach. In the disease

progression and windy grid environments (where we have access to the true P for evaluation

purposes), the timing-aware approach is able to obtain significantly lower estimation error

maxs,a,k ∥Pa,k(·|s)− P̂a,k(·|s)∥1 than the timing-naive approach (Figure 7.2, bottom).

We also experiment with adding an exploration phase of 50 episodes, where actions are

taken uniformly at random in the exploration phase before reverting to the ϵ-greedy policy. This

approach does decrease the estimation error more quickly (Figure 7.4), however depending on

the environment, it has an inconsistent effect on the resulting cumulative reward.

In the disease simulator, all methods execute the “don’t treat” action more frequently (assigns

higher probabilities to staying in the same state) rather than the “treat” action (encourages
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switching between states) (Appendix Figure F.2). Once the agent is in a healthy state, it is

incentivized to remain there as long as possible. The timing-aware method often takes the

largest delay (10 timesteps), whereas the timing-naive method executes intermediate delays

more frequently, and the model-free methods execute much shorter delays.

In the glucose simulator, timing-aware most frequently administers the second lowest amount

of insulin for the largest delay (4 timesteps) (Appendix Figure F.2). By contrast, the timing-naive

method administers a greater variety of quantities of insulin, and does so for an intermediate

number of timesteps, most frequently administering for two timesteps. The model-free method

utilizes all actions and delays more uniformly.

In the windy grid simulator, all methods tend to utilize shorter delays closer to the goal state,

where wind pushes the agent up one or two squares with probability 0.5 (Appendix Figure F.3).

Along the first and last rows (rows 0 and 9) of the grid, the timing-aware policy learns to repeat

the move right action just long enough to get in the vicinity of the goal. Since there is wind

pushing the agent upward in columns 7 and 8, along the top half of the grid the agent learns

to go to column 9 first (where there is no wind), and then walk downward to the same row as

the goal state before walking left. The optimal policy more closely resembles the timing-aware

approach than the timing-naive approach.

7.6 Discussion

The timing-as-an-action problem setting poses interesting theoretical and practical challenges

for bringing reinforcement learning into real-world settings where opportunities to observe and

act can be costly. We demonstrate that the timing-aware model-based method leverages the

structure of the timing-as-an-action environment to obtain sample complexity advantages over

either model-free (corresponding to standard value-based RL methods translated to our setting)

or the timing-naive model-based method. This aligns with intuition, as the timing-naive method

must learn SAK parameters for P̂ whereas the timing-aware method only needs to learn SA

parameters for P̂ .

We demonstrate empirically that estimation using the timing-aware approach is more sample-

efficient than the timing-naive approach (Figure 7.3). Additionally, the timing-aware approach

updates its estimates for transition probabilities of delay actions other than those which were

sampled (middle and right columns of Figure 7.3), whereas the timing-naive approach does not.

In all RL experiments, the timing-aware approach achieves the highest or ties for the highest

average cumulative reward (Table 7.1). We note that these results are after 200 episodes, and it is

likely that with more episodes the other methods would eventually do as well as the timing-aware

approach. In the disease progression and windy grid RL settings, timing-naive has substantially

higher estimation error than timing-aware, however the resulting policy is still able substantially

outperform the model-free approach and obtain performance comparable or almost comparable

to timing-aware, indicating that the learned policy can still perform well even if P̂ is inaccurate

(Figure 7.2). Similarly, although an exploration phase helps improve the estimation error (Figure

105



7.4), the cumulative reward may not necessarily improve. Although our results use the same

exploration strategy across all settings, future works may find it beneficial in some settings to

have an exploration phase for the first few episodes in order to quickly learn P̂ .
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Part IV

Conclusion
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Chapter 8
Conclusion

Rapid progress in machine learning has led to a proliferation of ML models being deployed

in healthcare applications. As machine learning prototypes transition from research labs into

real-world healthcare systems, they enter dynamic environments different from those iterated

upon in in ML model development. This thesis is driven by the question:

How can we develop machine learning systems suitable for dynamic healthcare settings?

We posit that building reliable and practical ML systems for healthcare requires us to (S1)

understand the types of shifts that occur in healthcare data over time, (S2) develop models and

algorithms that are robust to these shifts, and (S3) take decision-making processes into account.

Chapters 2 and 3 highlight several axes along which changes in the real-world environment can

thwart model performance. One such issue in healthcare data is the problem of underreporting

or missing data. In Chapters 4 and 5, we discuss possible techniques for learning despite

underreporting, and formalize the problem domain adaptation under missingness shift. Finally,

in Chapters 6 and 7, we consider the broader decision-making context in which ML models

are utilized, and propose a framework for decision-making in the context of doctor-patient

interaction dynamics.

To draw an analogy betewen ML model development and drug development and testing,

many works at the intersection of ML and healthcare are in a pre-clinical laboratory study phase,

where researchers are developing and testing new ideas in a controlled environment before

testing on humans in clinical trials. Pre-clinical studies include in-vitro studies, which look

for effects of the new treatment on cells grown in a lab dish or test tube, as well as in-vivo
studies, which test the promising treatments on live animals in order to test their safety for

living creatures ACS, 2020. In the context of ML models for healthcare applications, in-vitro

studies might correspond to using synthetic, semi-synthetic, or carefully curated datasets where

challenging realities of healthcare data (e.g. missing data, label imbalance, noisy features, latent

confounding, distribution shifts over time, etc.) are meticulously cleaned or simplified in some

manner. In-vivo studies might correspond to more realistic datasets, where there are greater

uncertainties in the data generating process, but the set of data has already been collected

and the model is evaluated on a fixed test set. Some of the “in-vitro” works in this thesis are
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Chapter 5, Chapter 6, and Chapter 7, which propose and explore new problem formulations

and algorithms motivated by dynamics and challenges present in healthcare settings, but where

experiments are not conducted on true retrospective healthcare data. The translation of these

works from “in-vitro” to “in-vivo” would be fruitful directions for future work. Chapter 2,

Chapter 3, and Chapter 4 might be considered “in-vivo” works, as they develop and evaluate on

actual retrospective healthcare data. These works elucidate some of the challenges that arise

when applying ML methods to real-world healthcare settings, provide recommendations for

how to evaluate ML models before deployment, and also motivate interesting new directions

where existing ML methods fall short. For example, while model efficacy is typically evaluated

on a single held out test set, a prudent pre-deployment stress test would be to evaluate using the

framework described in Chapter 3. This type of evaluation retrospectively simulates would-be

performance upon deployment, and could help practitioners understand the volatility of the

environment in which the model will be deployed. Knowledge of possible distribution shifts

could then help with proactive preparation for such shifts in the future.

Future Open Directions There are several open directions for future work in ML for dynamic

healthcare settings. In addition to the future work mentioned at the end of each chapter, here

we draw some broader connections between the chapters and highlight some open questions.

As seen in Chapters 2 and 3, missing data is a common limitation in healthcare data that can

greatly impact performance of ML models. Underreporting may be driven by factors relating to

inequity of access to healthcare, for example, if a patient is unable to afford a test, or if there

is a language barrier resulting in inaccurate reporting of symptoms. While our methods in

4 and 5 are able to learn despite underreporting, it would be valuable to approach the issue

of underreporting from a fairness perspective, characterizing how the proposed approaches

might impact different subgroups, and whether there might be approaches that one could take

to remedy disparate treatments or impacts.

How to regulate ML models in healthcare is a timely and important open challenge. If an

ML model performs “well” in a trial period, does it give us enough confidence to approve it for

use on patients, and for how long should this approval be extended? What axes of performance

are most important to consider? How do we assess the relative benefits and harms of the ML

model compared to the status quo? Are there any longer-lasting effects of reliance on ML

models to clinical decision-making? What would give us confidence that all patients are getting

the best care possible, and that no avoidable harm is being done? Are benefits and harms

distributed equitably across different subgroups of patients? Given the wide variety of possible

ways to integrate ML into healthcare processes and decisions, numerous subjective tradeoffs of

potential benefit and potential risk, and varying degrees of volatility in different deployment

environments, the question of how to regulate such models often may not be a one size fits all

solution, but require careful weighing of several factors.

Due to the reliance of ML models on historical data, and the dynamic nature of our world,

it is also important to have numerous sanity checks constantly running on the model so that

model failures do not go undetected. In addition to the proactive modeling approaches described

in this thesis, it is also important to have reactive approaches that can detect when a model

is failing, and to have a plan for how to respond to such failures. After taking any immediate
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steps to mitigate harm, it is important to understand the root cause of the failure, and to once

again take proactive steps to prevent such failures in the future. Depending on the downstream

application of the model and feasibility given limited resources, it may be valuable to have a

human in the loop as well.
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Appendix A
Risk Score for COVID-19 ECMO Planning

Extended Version Additional details can be found at https://arxiv.org/abs/2006.01898.

Table A.1: Summary characteristics per cohort, with median (Q1-Q3) or count (% of n).

Variable eICU (n = 3617) MIMIC (n = 937)

P
h

y
s
i
c
a
l

e
x
a
m

fi
n

d
i
n

g
s

Orientation: oriented 1121 (31.0%) 411 (43.9%)

Orientation: confused 1287 (35.6%) 76 (8.1%)

Temperature (
◦
C) 36.9 (36.6-37.3) 37.2 (36.6-37.7)

Heart rate (beats per minute) 89.0 (77.0-101.0) 90.0 (78.0-104.0)

Respiratory rate (breaths per minute) 20.0 (17.0-25.0) 20.0 (16.0-25.0)

Systolic blood pressure (mmHg) 120.0 (106.0-136.0) 118.0 (104.0-134.0)

Diastolic blood pressure (mmHg) 66.0 (57.0-76.0) 63.0 (54.0-72.0)

Mean arterial pressure (mmHg) 81.0 (72.0-93.0) 79.0 (71.0-90.0)

Glasgow Coma Scale 14.0 (10.0-15.0) 14.0 (9.0-15.0)
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d
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.)

H
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m

o
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o

l
o

g
y

Red blood cells (millions/µL) 3.5 (3.0-4.0) 3.4 (3.0-3.8)

White blood cells (thousands/µL) 11.0 (7.9-15.6) 11.0 (8.0-15.1)

Platelets (thousands/µL) 193.0 (136.0-261.0) 199.0 (128.8-276.0)

Hematocrit (%) 31.1 (27.2-35.6) 30.2 (27.0-33.6)

Red blood cell dist. width (%) 15.2 (14.0-16.8) 14.8 (13.8-16.4)

Mean corpuscular volume (fL) 90.4 (86.0-95.0) 89.0 (85.0-93.0)

Mean corpuscular hemoglobin/ MCH (pg) 29.7 (27.9-31.2) 30.2 (28.7-31.6)

MCH concentration (g/dL) 32.7 (31.7-33.6) 33.8 (32.8-34.8)

Neutrophils (%) 82.0 (73.3-89.0) 82.3 (73.8-88.5)

Lymphocytes (%) 8.4 (5.0-14.0) 9.5 (5.8-15.7)

Monocytes (%) 6.0 (3.7-8.6) 4.0 (2.7-5.9)

Eosinophils (%) 0.1 (0.0-1.0) 0.4 (0.0-1.2)

Basophils (%) 0.0 (0.0-0.3) 0.1 (0.0-0.3)

Band cells (%) 8.0 (3.0-17.0) 0.0 (0.0-5.0)

C
h

e
m

i
s
t
r
y

Sodium (mmol/L) 139.0 (136.0-142.0) 139.0 (136.0-142.0)

Potassium (mmol/L) 3.9 (3.6-4.3) 3.9 (3.6-4.3)

Chloride (mmol/L) 105.0 (101.0-109.0) 105.0 (101.0-109.0)

Bicarbonate (mmol/L) 25.0 (22.0-28.0) 26.0 (23.0-29.0)

Blood urea nitrogen (mg/dL) 19.0 (12.0-33.0) 17.0 (11.0-28.0)

Creatinine (mg/dL) 0.8 (0.6-1.4) 0.8 (0.6-1.3)

Glucose (mg/dL) 131.0 (105.0-165.0) 124.0 (104.5-151.5)

Aspartate aminotransferase (units/L) 30.0 (19.0-57.0) 37.0 (22.0-70.0)

Alanine aminotransferase (units/L) 27.0 (16.0-47.0) 28.0 (18.0-52.0)

Alkaline phosphatase (units/L) 84.0 (62.0-117.0) 85.0 (62.0-121.0)

Direct bilirubin (mg/L) 0.2 (0.1-0.5) 0.6 (0.2-2.2)

Total bilirubin (mg/L) 0.5 (0.3-0.8) 0.6 (0.4-1.1)

Total protein (g/dL) 6.0 (5.3-6.7) 6.1 (5.3-7.0)

Calcium (mg/dL) 8.2 (7.7-8.6) 8.2 (7.8-8.6)

Albumin (g/dL) 2.6 (2.2-3.1) 3.0 (2.6-3.5)

Troponin (ng/mL) 0.1 (0.0-0.2) 0.0 (0.0-0.3)

C
o

a
g
.

Prothrombin time (sec) 14.5 (12.7-16.7) 13.9 (13.0-15.3)

Partial thromboplastin time (sec) 33.0 (28.5-41.0) 30.2 (26.6-36.9)

B
.G

.

pH 7.39 (7.33-7.43) 7.41 (7.36-7.45)

Partial pressure of oxygen (mmHg) 83.0 (68.0-111.0) 97.0 (73.5-127.5)

Arterial oxygen saturation (mmHg) 96.0 (94.0-99.0) 97.0 (95.0-98.0)

111

https://arxiv.org/abs/2006.01898


Appendix B
Unpacking the Case Fatality Rate

B.1 Aggregate plots

The Florida data from FDOH (Figure B.1a) is more complete than subset of the United States

CDC data from Florida (Figure B.1b). The latter has fewer counts of cases, hospitalization, and

deaths, spikes in cases on a few days, and almost no deaths after October.
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(a) Florida FDOH data. The x axis is the date of positive test confirmation.
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(b) Subset of United States CDC data in which state identifier is Florida. The positive specimen

date for Florida rows is 99.99% missing, so we must compare using the CDC report date.

Figure B.1: Aggregate cases, (eventual) hospitalizations, and (eventual) deaths.
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In both the FDOH and the CDC datasets, one can discern three waves of COVID-19 cases.

The first wave peaks around mid-April, the second wave peaks around mid-July, and the surge

of cases leading up to December indicates an ongoing third wave (Figures B.1a and B.2).
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Figure B.2: Aggregate cases, (eventual) hospitalizations, and (eventual) deaths in country by the

date of report to the CDC (U.S.).

B.2 Additional age-stratified plots

The gender ratios in each age group’s cases, hospitalizations, and deaths appear relatively flat

over time (Figure B.3).
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(a) Florida FDOH data
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(b) United States CDC data

Figure B.3: Female fraction of Florida and national cases, (eventual) hospitalizations, and (even-

tual) deaths vs. date of first positive test result (Florida) and date of report to the CDC (U.S.).

Dates with fewer than five cases, hospitalizations, or deaths in the denominator are excluded.
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B.3 State-wise plots

The daily cases based on CDC report date have spikes at certain days for several states (e.g. FL,

GA, etc.), which might be indicative of the reporting agency submitting several cases to CDC on

the same day rather than reporting daily (Figure B.4).
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Figure B.4: Daily lab-confirmed COVID-19 cases in top twelve states with most COVID-19 cases

from United States CDC data, by date of report to the CDC. Note we graph daily cases instead

of the 7-day average over cases in order to demonstrate the nature of the raw data.
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Between April 1st and April 15th, 34.5% of national CDC cases were recorded in New York

alone (Figure B.5). From April 15th to the second peak, cases in New York had diminished (Figure

B.5) and were starting to surge in other states.
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Figure B.5: State-wise distribution of cases, (eventual) hospitalizations, and (eventual) deaths for

top five states CA, IL, NY, FL and OH (and the rest) with most COVID-19 cases from United States

CDC data, by date of report to the CDC (U.S.). Note that in the CDC data the high missingness

for data from FL and TX causes the order of the top five states here different from the order of

those from the USAFacts data (CA, TX, FL, IL, NY).

B.4 Age-stratified drops in HFR by gender

Between the first two peaks, the national age-stratified HFR estimates for the female and the

male populations decreased whereas for Florida both the female and the male HFRs slightly

increased (Table B.1 and Table B.2). Between April 1st and December 1st, both the national and

Florida estimates for the female and male populations decreased (Table B.3 and Table B.4). For

both genders, in the age groups where we have enough support to get an estimate here (Table

B.1, Table B.2, Table B.3, and Table B.4), the increased and decreased values are similar to those

for the whole population in the main paper (Table 2.5 and Table 2.6).

Table B.1: Estimates of HFR and its drop between peak dates and among females. Median and

95% confidence intervals are computed using block bootstrapping.

Florida National
Age group 2020-04-15 2020-07-15 04-15 to 07-15 2020-04-15 2020-07-15 04-15 to 07-15

aggregate 0.21 (0.19, 0.24) 0.21 (0.19, 0.22) -0.027 (-0.16, 0.13) 0.28 (0.26, 0.29) 0.15 (0.14, 0.16) -0.46 (-0.49, -0.42)

20-29 - - - - - -

30-39 - - - 0.027 (0.022, 0.03) 0.02 (0.017, 0.022) -0.25 (-0.39, -0.054)

40-49 - - - 0.061 (0.056, 0.066) 0.042 (0.038, 0.045) -0.32 (-0.41, -0.22)

50-59 - - - 0.12 (0.11, 0.12) 0.08 (0.076, 0.083) -0.32 (-0.37, -0.26)

60-69 0.17 (0.13, 0.2) 0.17 (0.15, 0.19) 0.055 (-0.17, 0.36) 0.23 (0.22, 0.23) 0.15 (0.15, 0.16) -0.32 (-0.35, -0.28)

70-79 0.27 (0.23, 0.3) 0.28 (0.26, 0.3) 0.051 (-0.11, 0.26) 0.37 (0.35, 0.38) 0.23 (0.23, 0.24) -0.36 (-0.39, -0.33)

80+ 0.41 (0.38, 0.44) 0.44 (0.42, 0.46) 0.062 (-0.036, 0.19) 0.54 (0.52, 0.55) 0.38 (0.37, 0.39) -0.3 (-0.33, -0.26)
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Table B.2: Estimates of HFR and its drop between peak dates and among males. Median and

95% confidence intervals are computed using block bootstrapping.

Florida National
Age group 2020-04-15 2020-07-15 04-15 to 07-15 2020-04-15 2020-07-15 04-15 to 07-15

aggregate 0.25 (0.23, 0.28) 0.25 (0.23, 0.27) -0.01 (-0.13, 0.14) 0.3 (0.29, 0.32) 0.19 (0.19, 0.2) -0.36 (-0.4, -0.33)

20-29 - - - - - -

30-39 - - - 0.06 (0.054, 0.066) 0.036 (0.032, 0.039) -0.4 (-0.48, -0.31)

40-49 - - - 0.092 (0.086, 0.099) 0.069 (0.065, 0.073) -0.25 (-0.32, -0.17)

50-59 0.12 (0.099, 0.14) 0.13 (0.11, 0.14) 0.064 (-0.13, 0.3) 0.17 (0.16, 0.17) 0.12 (0.11, 0.12) -0.3 (-0.34, -0.25)

60-69 0.2 (0.17, 0.22) 0.23 (0.21, 0.25) 0.18 (0.014, 0.44) 0.28 (0.27, 0.3) 0.21 (0.2, 0.21) -0.28 (-0.32, -0.23)

70-79 0.35 (0.32, 0.39) 0.37 (0.35, 0.38) 0.035 (-0.071, 0.16) 0.44 (0.42, 0.45) 0.3 (0.29, 0.31) -0.32 (-0.35, -0.28)

80+ 0.52 (0.49, 0.56) 0.52 (0.5, 0.55) 0.0047 (-0.082, 0.095) 0.62 (0.6, 0.63) 0.46 (0.45, 0.47) -0.25 (-0.28, -0.22)

Table B.3: Estimates of HFR and its drop between April 1st and December 1st and among females.

Median and 95% confidence intervals are computed using block bootstrapping.

Florida National
Age group 2020-04-01 2020-12-01 04-01 to 12-01 2020-04-01 2020-12-01 04-01 to 12-01

aggregate 0.21 (0.17, 0.24) 0.13 (0.097, 0.17) -0.36 (-0.57, -0.097) 0.32 (0.3, 0.34) 0.11 (0.093, 0.12) -0.66 (-0.72, -0.6)

20-29 - - - - - -

30-39 - - - - - -

40-49 - - - 0.069 (0.06, 0.077) 0.029 (0.021, 0.037) -0.58 (-0.71, -0.44)

50-59 - - - 0.13 (0.12, 0.14) 0.05 (0.04, 0.059) -0.62 (-0.7, -0.53)

60-69 - - - 0.25 (0.24, 0.26) 0.094 (0.082, 0.11) -0.63 (-0.68, -0.56)

70-79 0.26 (0.2, 0.31) 0.15 (0.097, 0.2) -0.43 (-0.65, -0.13) 0.4 (0.39, 0.42) 0.16 (0.14, 0.17) -0.62 (-0.66, -0.57)

80+ 0.37 (0.32, 0.42) 0.33 (0.27, 0.38) -0.12 (-0.31, 0.11) 0.59 (0.56, 0.61) 0.24 (0.21, 0.27) -0.59 (-0.64, -0.54)

Table B.4: Estimates of HFR and its drop between April 1st and December 1st and among males.

Median and 95% confidence intervals are computed using block bootstrapping.

Florida National
Age group 2020-04-01 2020-12-01 04-01 to 12-01 2020-04-01 2020-12-01 04-01 to 12-01

aggregate 0.26 (0.22, 0.3) 0.18 (0.14, 0.22) -0.32 (-0.5, -0.074) 0.35 (0.33, 0.37) 0.15 (0.13, 0.16) -0.58 (-0.63, -0.52)

20-29 - - - - - -

30-39 - - - 0.069 (0.06, 0.078) 0.024 (0.014, 0.033) -0.66 (-0.81, -0.5)

40-49 - - - 0.099 (0.089, 0.11) 0.033 (0.023, 0.043) -0.67 (-0.77, -0.54)

50-59 - - - 0.18 (0.17, 0.19) 0.067 (0.056, 0.08) -0.63 (-0.7, -0.55)

60-69 0.19 (0.15, 0.23) 0.12 (0.069, 0.16) -0.39 (-0.67, -0.032) 0.31 (0.29, 0.33) 0.13 (0.11, 0.15) -0.59 (-0.66, -0.51)

70-79 0.35 (0.3, 0.4) 0.22 (0.17, 0.27) -0.37 (-0.54, -0.17) 0.48 (0.45, 0.51) 0.2 (0.17, 0.23) -0.58 (-0.65, -0.52)

80+ 0.51 (0.46, 0.57) 0.39 (0.34, 0.45) -0.24 (-0.37, -0.065) 0.66 (0.63, 0.68) 0.32 (0.3, 0.35) -0.51 (-0.55, -0.46)
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Appendix C
Evaluation on Medical Datasets over Time

C.1 Snapshot into the State of ML4H Model Evaluation

To get a snapshot of the current standards for model evaluation in machine learning for healthcare

research, we manually reviewed all of the papers from the CHIL 2022 proceedings, the first 20

papers in the CHIL 2021 proceedings, and the first 20 papers that came up in the Radiology

medical journal when searching for the keyword “machine learning” and filtering for papers

from 2022 to 2023 (see README.md in https://github.com/acmi-lab/EvaluationOverTime). Out

of 23 papers in the CHIL 2022 proceedings, 21 did not take time into account in their data split,

and two were unclear about how they split data, but it is unlikely that they split by time. Out

of the 20 papers reviewed at CHIL 2021, only one paper split by time. Out of the 20 papers

reviewed from Radiology, 6 did not train or evaluate any machine learning models, but out of

the remaining 14 papers, 13 did not take time into account in their data split, and one did not

specify how data was split.
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C.2 EMDOT Python Package

Figure C.1 illustrates the workflow of the EMDOT Python package.

EotDataset 

EotEvaluator

EotModel

Experiment Configs 
(e.g. sliding window, etc.)

EotExperiment

pass as argument

pass as 
argument

request data 
for simulated 
deployment 

time

return 
requested splits 

of data

 Model Test time AUROC AUPRC . . .

Table of Experiment Results

Pre-processed 
Dataset

Visualizations

outputs

visualization 
scripts

Figure C.1: EMDOT Python package workflow diagram. The primary touchpoint of the EMDOT

package is the EotExperiment object. Users provide a dataframe for their (mostly) preprocessed

dataset (EMDOT takes care of normalization based on the relevant training set), their desired

experiment configuration (e.g. sliding window), and model class (which should subclass the

simple EotModel abstract class) in order to create an EotExperiment object. Running the

run experiment() function of the EotExperiment returns a dataframe of experiment results that

can then be visualized. The diagram also provides insight into some of the internals of the

EotExperiment object – there is an EotDataset object that handles data splits, and an EotEvaluator

object that executes the main evaluation loop.

C.3 Additional SEER Data Details

The Surveillance, Epidemiology, and End Results (SEER) Program collects cancer incidence data

from registries throughout the U.S. This data has been used to study survival in several forms of

cancer (Choi et al., 2008; Fuller et al., 2007; Taioli et al., 2015; Hegselmann et al., 2018). Each

case includes demographics, primary tumor site, tumor morphology, stage and diagnosis, first

course of treatment, and survival outcomes (collected with follow-up) (National Cancer Institute,

2020). The performance over time is evaluated on a yearly basis. We use the November 2020

version of the SEER database with nine registries (SEER 9), which covers about 9.4% of the U.S.

population. While there are SEER databases that aggregate over more registries and hence cover

a greater proportion of the U.S. population, we choose SEER 9 due to the large time range it

covers (1975–2018).

• Data access: After filling out a Data Use Agreement and Best Practices Agreement, indi-
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viduals can easily request access to the SEER dataset.

• Cohort selection: Using the SEER
∗
Stat software (Program, 2015), we define three cohorts

of interest: (1) breast cancer, (2) colon cancer, and (3) lung cancer. We primarily follow the

cohort selection procedure from (Hegselmann et al., 2018), but we use SEER 9 instead of

SEER 18, and use data from all available years instead of limiting to 2004–2009. Cohort

selection diagrams are given in Figures C.2, C.3, and C.4. If there are multiple samples per

patient, we filter to the first entry per patient, which corresponds to when a patient first

enters the dataset. This corresponds to a particular interpretation of the prediction: when

a patient is first added to a cancer registry, given what we know about that patient, what

is their estimated 5-year survival probability?

• Cohort characteristics: Summaries of the SEER (Breast), SEER (Colon), and SEER (Lung)

cohort characteristics are in Tables C.1, C.2, and C.3.

• Outcome definition: 5-year survival is defined by a confirmation that the patient is alive

five years after the year of diagnosis.

• Features: We list the features used in the SEER breast, colon, and lung cancer datasets in

Section C.3.2. For all datasets, categorical variables are converted into dummy features, and

numerical variables are standard scaled (subtract mean and divide by standard deviation).

• Missingness heat maps: are given in Figures C.5, C.6, C.7, C.8, C.9, and C.10.

C.3.1 Cohort Selection and Cohort Characteristics

All entries in SEER where 
site = Breast 
 (n=754,651)

Included (n=702,723)

Exclude (n=51,928) entries to select the first entry 
for each patient ID (earliest diagnosis yr.)

Included (n=467,700)

Exclude (n=235,023) entries with unclear mortality reasons 
(survival month = -1, death classiΞcation = N/A not seq 0-59, 

death classiΞcation = dead with missing/unknown COD)

SEER (Breast) Cohort  
(n=462,023)

Exclude (n=5,677) entries with diagnosis year > 2013

Figure C.2: Cohort selection diagram - SEER (Breast)
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All entries in SEER where 
site = Colon excluding Rectum 

(n=393,633)

Included (n=376,999)

Exclude (n=16,634) entries to select the first entry 
for each patient ID (earliest diagnosis yr.)

Included (n=263,741)

Exclude (n=113,258) entries with unclear mortality reasons 
(survival month = -1, death classiΞcation = N/A not seq 0-59, 

death classiΞcation = dead with missing/unknown COD)

SEER (Colon) Cohort  
(n=254,112)

Exclude (n=9,629) entries with diagnosis year > 2013

Figure C.3: Cohort selection diagram - SEER (Colon)

All entries in SEER where 
site = Lung and Bronchus

 (n=664,069)

Included (n=645,682)

Exclude (n=18,387) entries to select the first entry 
for each patient ID (earliest diagnosis yr.)

Included (n=499,064)

Exclude (n=146,618) entries with unclear mortality reasons 
(survival month = -1, death classiΞcation = N/A not seq 0-59, 

death classiΞcation = dead with missing/unknown COD)

SEER (Lung) Cohort 
(n=457,695)

Exclude (n=41,369) entries with diagnosis year > 2013

Figure C.4: Cohort selection diagram - SEER (Lung)

120



Table C.1: SEER (Breast) cohort characteristics, with count (%) or median (Q1 – Q3).

Characteristic Missingness Type

Sex
Female 459,184 (99.4%) – categorical

Male 2,839 (0.6%) – categorical

Age recode with single ages and 85+ 60 (50-71) 0.0% continuous

Race/ethnicity
White 387,247 (83.8%) – categorical

Black 40,217 (8.7%) – categorical

Other 34,559 (7.5%) – categorical

Laterality
Right - origin of primary 224,777 (48.7%) – categorical

Left - origin of primary 233,549 (50.5%) – categorical

Other 3,697 (0.8%) – categorical

Regional nodes positive (1988+) 0 (0-3) 21.0% continuous

T value - based on AJCC 3rd (1988-2003) 10 (10-20) 56.2% categorical

Derived AJCC T, 7th ed (2010-2015) 13 (13-20) 85.3% categorical

CS site-specific factor 3 (2004-2017 varying by schema) 0 (0-2) 64.8% categorical

Regional nodes examined (1988+) 8 (2-15) 21.0% continuous

Coding system-EOD (1973-2003)
Four-digit EOD (1983-1987) 44,066 (9.5%) – categorical

Ten-digit EOD (1988-2003) 202,450 (43.8%) – categorical

Thirteen-digit (expanded) site specific EOD (1973-1982) 52,742 (11.4%) – categorical

Blank(s) 162,765 (35.2%) – categorical

CS version input original (2004-2015) 10,401 (10,300-20,302) 64.8% categorical

CS version input current (2004-2015) 20,520 (20,510-20,540) 64.8% categorical

EOD 10 - extent (1988-2003) 10 (10-13) 56.2% categorical

Grade (thru 2017)
Unknown 130,713 (28.3%) – categorical

Moderately differentiated; Grade II 135,970 (29.4%) – categorical

Poorly differentiated; Grade III 119,900 (26.0%) – categorical

Undifferentiated; anaplastic; Grade IV 8,081 (1.7%) – categorical

Well differentiated; Grade I 67,359 (14.6%) – categorical

SEER historic stage A (1973-2015)

Regional 136,207 (29.5%) – categorical

Localized 286,927 (62.1%) – categorical

Unstaged 9,242 (2.0%) – categorical

Distant 29,647 (6.4%) – categorical

IHS Link
Record sent for linkage, no IHS match 409,058 (88.5%) – categorical

Record sent for linkage, IHS match 1,505 (0.3%) – categorical

Blank(s) 51,460 (11.1%) – categorical

Histologic Type ICD-O-3 8,500 (8,500-8,500) 0.0% categorical

EOD 10 - size (1988-2003) 18 (10-30) 56.2% categorical

Type of Reporting Source
Hospital inpatient/outpatient or clinic 450,801 (97.6%) – categorical

Other 11,222 (2.4%) – categorical

SEER cause-specific death classification
Alive or dead of other cause 378,758 (82.0%) – categorical

Dead (attributable to this cancer dx) 83,265 (18.0%) – categorical

Survival months 135 (74-220) 0.0% categorical

5-year survival
1 378,758 (82.0%) – categorical

0 83,265 (18.0%) – categorical
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Table C.2: SEER (Colon) cohort characteristics, with count (%) or median (Q1–Q3).

Characteristic Missingness Type

Sex
Female 133,661 (52.6%) – categorical

Male 120,451 (47.4%) – categorical

Age recode with single ages and 85+ 70 (61-79) 0.0% continuous

Race recode (White, Black, Other)
White 212,265 (83.5%) – categorical

Black 24,041 (9.5%) – categorical

Other 17,806 (7.0%) – categorical

CS version input current (2004-2015) 20,510 (20,510-20,540) 72.8% categorical

Derived AJCC T, 6th ed (2004-2015) 30 (20-40) 73.3% categorical

Histology ICD-O-2 8,140 (8,140-8,210) 0.0% categorical

IHS Link
Record sent for linkage, no IHS match 208,802 (82.2%) – categorical

Record sent for linkage, IHS match 744 (0.3%) – categorical

Blank(s) 44,566 (17.5%) – categorical

Histology recode - broad groupings
8140-8389: adenomas and adenocarcinomas 213,193 (83.9%) – categorical

8440-8499: cystic, mucinous and serous neoplasms 28,257 (11.1%) – categorical

8010-8049: epithelial neoplasms, NOS 8,797 (3.5%) – categorical

Other 3,865 (1.5%) – categorical

Regional nodes positive (1988+) 1 (0-10) 29.8% continuous

CS mets at dx (2004-2015) 0 (0-22) 72.8% continuous

Reason no cancer-directed surgery
Surgery performed 223,929 (88.1%) – categorical

Not recommended 13,003 (5.1%) – categorical

Other 17,180 (6.8%) – categorical

Derived AJCC T, 6th ed (2004-2015) 30 (20-40) 73.3% categorical

CS version input original (2004-2015) 10,401 (10,300-20,302) 72.8% categorical

Primary Site 184 (182-187) 0.0% categorical

Diagnostic Confirmation
Positive histology 244,616 (96.3%) – categorical

Radiography without microscopic confirm 4,822 (1.9%) – categorical

Other 4,674 (1.8%) – categorical

EOD 10 - extent (1988-2003) 45 (40-85) 57.0% categorical

Histologic Type ICD-O-3 8,140 (8,140-8,210) 0.0% categorical

EOD 10 - size (1988-2003) 55 (35-999) 57.0% categorical

CS lymph nodes (2004-2015) 0 (0-210) 72.8% categorical

SEER cause-specific death classification
Dead (attributable to this cancer dx) 119,047 (46.8%) – categorical

Alive or dead of other cause 135,065 (53.2%) – categorical

Survival months 68 (12-151) 0.0% categorical

5-year survival
1 135,065 (53.2%) – categorical

0 119,047 (46.8%) – categorical
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Table C.3: SEER (Lung) cohort characteristics, with count (%) or median (Q1 – Q3).

Characteristic Missingness Type

Sex
Female 187,967 (41.1%) – categorical

Male 269,728 (58.9%) – categorical

Age recode with single ages and 85+ 68 (60-76) 0.0% continuous

Race recode (White, Black, Other)
White 384,184 (83.9%) – categorical

Black 47,237 (10.3%) – categorical

Other 26,274 (5.7%) – categorical

Histologic Type ICD-O-3 8,070 (8,041-8,140) 0.0% categorical

Laterality
Left - origin of primary 178,661 (39.0%) – categorical

Right - origin of primary 245,321 (53.6%) – categorical

Paired site, but no information concerning laterality 23,196 (5.1%) – categorical

Other 10,517 (2.3%) – categorical

EOD 10 - nodes (1988-2003) 2 (1-9) 56.3% categorical

EOD 4 - nodes (1983-1987) 3 (0-9) 88.4% categorical

Type of Reporting Source
Hospital inpatient/outpatient or clinic 445,606 (97.4%) – categorical

Other 12,089 (2.6%) – categorical

SEER historic stage A (1973-2015)
Regional 79,409 (17.3%) – categorical

Distant 182,467 (39.9%) – categorical

Blank(s) 123,161 (26.9%) – categorical

Localized 50,375 (11.0%) – categorical

Unstaged 22,283 (4.9%) – categorical

CS version input current (2004-2015) 20,520 (20,510-20,540) 70.6% categorical

CS mets at dx (2004-2015) 23 (0-40) 70.6% continuous

CS version input original (2004-2015) 10,401 (10,300-20,302) 70.6% categorical

CS tumor size (2004-2015) 50 (29-999) 70.6% categorical

EOD 10 - size (1988-2003) 80 (35-999) 56.3% categorical

CS lymph nodes (2004-2015) 200 (0-200) 70.6% categorical

Histology recode - broad groupings
8140-8389: adenomas and adenocarcinomas 147,127 (32.1%) – categorical

8010-8049: epithelial neoplasms, NOS 179,848 (39.3%) – categorical

8440-8499: cystic, mucinous and serous neoplasms 6,266 (1.4%) – categorical

Other 124,454 (27.2%) – categorical

EOD 10 - extent (1988-2003) 78 (40-85) 56.3% categorical

SEER cause-specific death classification
Alive or dead of other cause 49,997 (10.9%) – categorical

Dead (attributable to this cancer dx) 407,698 (89.1%) – categorical

Survival months 7 (2-19) 0.0% categorical

5-year survival
1 49,997 (10.9%) – categorical

0 407,698 (89.1%) – categorical
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C.3.2 Features

SEER (Breast): AJCC stage 3rd edition (1988-2003), AYA site recode/WHO 2008, Age recode with single

ages and 85+, Behavior code ICD-O-2, Behavior code ICD-O-3, Behavior recode for analysis, Breast -

Adjusted AJCC 6th M (1988-2015), Breast - Adjusted AJCC 6th N (1988-2015), Breast - Adjusted AJCC

6th Stage (1988-2015), Breast - Adjusted AJCC 6th T (1988-2015), Breast Subtype (2010+), CS Schema

- AJCC 6th Edition, CS extension (2004-2015), CS lymph nodes (2004-2015), CS mets at dx (2004-2015),

CS site-specific factor 1 (2004-2017 varying by schema), CS site-specific factor 15 (2004-2017 varying by

schema), CS site-specific factor 2 (2004-2017 varying by schema), CS site-specific factor 25 (2004-2017

varying by schema), CS site-specific factor 3 (2004-2017 varying by schema), CS site-specific factor 4

(2004-2017 varying by schema), CS site-specific factor 5 (2004-2017 varying by schema), CS site-specific

factor 6 (2004-2017 varying by schema), CS site-specific factor 7 (2004-2017 varying by schema), CS tumor

size (2004-2015), CS version derived (2004-2015), CS version input current (2004-2015), CS version input

original (2004-2015), Coding system-EOD (1973-2003), Derived AJCC M, 6th ed (2004-2015), Derived

AJCC M, 7th ed (2010-2015), Derived AJCC N, 6th ed (2004-2015), Derived AJCC N, 7th ed (2010-2015),

Derived AJCC Stage Group, 6th ed (2004-2015), Derived AJCC Stage Group, 7th ed (2010-2015), Derived

AJCC T, 6th ed (2004-2015), Derived AJCC T, 7th ed (2010-2015), Derived HER2 Recode (2010+), EOD

10 - extent (1988-2003), EOD 10 - nodes (1988-2003), EOD 10 - size (1988-2003), ER Status Recode Breast

Cancer (1990+), First malignant primary indicator, Grade (thru 2017), Histologic Type ICD-O-3, Histology

recode - Brain groupings, Histology recode - broad groupings, ICCC site rec extended ICD-O-3/WHO

2008, IHS Link, Laterality, Lymphoma subtype recode/WHO 2008 (thru 2017), M value - based on AJCC

3rd (1988-2003), N value - based on AJCC 3rd (1988-2003), Origin recode NHIA (Hispanic, Non-Hisp), PR

Status Recode Breast Cancer (1990+), Primary Site, Primary by international rules, Race recode (W, B,

AI, API), Race recode (White, Black, Other), Race/ethnicity, Regional nodes examined (1988+), Regional

nodes positive (1988+), SEER historic stage A (1973-2015), SEER modified AJCC stage 3rd (1988-2003), Sex,

Site recode ICD-O-3/WHO 2008, T value - based on AJCC 3rd (1988-2003), Tumor marker 1 (1990-2003),

Tumor marker 2 (1990-2003), Tumor marker 3 (1998-2003), Type of Reporting Source

SEER (Colon): Age recode with less than 1 year olds, Age recode with single ages and 85+, Behavior

code ICD-O-2, Behavior code ICD-O-3, CS extension (2004-2015), CS lymph nodes (2004-2015), CS mets

at dx (2004-2015), CS site-specific factor 1 (2004-2017 varying by schema), CS tumor size (2004-2015),

CS version input current (2004-2015), CS version input original (2004-2015), Derived AJCC M, 6th ed

(2004-2015), Derived AJCC M, 7th ed (2010-2015), Derived AJCC N, 6th ed (2004-2015), Derived AJCC

N, 7th ed (2010-2015), Derived AJCC Stage Group, 6th ed (2004-2015), Derived AJCC Stage Group, 7th

ed (2010-2015), Derived AJCC T, 6th ed (2004-2015), Derived AJCC T, 7th ed (2010-2015), Diagnostic

Confirmation, EOD 10 - extent (1988-2003), EOD 10 - nodes (1988-2003), EOD 10 - size (1988-2003),

Histologic Type ICD-O-3, Histology ICD-O-2, Histology recode - broad groupings, IHS Link, Origin

recode NHIA (Hispanic, Non-Hisp), Primary Site, Primary by international rules, RX Summ–Surg Prim

Site (1998+), Race recode (White, Black, Other), Reason no cancer-directed surgery, Regional nodes

positive (1988+), SEER modified AJCC stage 3rd (1988-2003), Sex

SEER (Lung): AYA site recode/WHO 2008, Age recode with less than 1 year olds, Age recode with

single ages and 85+, Behavior code ICD-O-2, Behavior code ICD-O-3, CS extension (2004-2015), CS lymph

nodes (2004-2015), CS mets at dx (2004-2015), CS site-specific factor 1 (2004-2017 varying by schema),

CS tumor size (2004-2015), CS version input current (2004-2015), CS version input original (2004-2015),
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Derived AJCC M, 6th ed (2004-2015), Derived AJCC M, 7th ed (2010-2015), Derived AJCC N, 6th ed

(2004-2015), Derived AJCC N, 7th ed (2010-2015), Derived AJCC Stage Group, 6th ed (2004-2015), Derived

AJCC T, 6th ed (2004-2015), Derived AJCC T, 7th ed (2010-2015), EOD 10 - extent (1988-2003), EOD

10 - nodes (1988-2003), EOD 10 - size (1988-2003), EOD 4 - nodes (1983-1987), First malignant primary

indicator, Grade (thru 2017), Histologic Type ICD-O-3, Histology recode - broad groupings, ICCC site

recode 3rd edition/IARC 2017, ICCC site recode extended 3rd edition/IARC 2017, IHS Link, Laterality,

Origin recode NHIA (Hispanic, Non-Hisp), Primary by international rules, Race recode (White, Black,

Other), SEER historic stage A (1973-2015), Sex, Type of Reporting Source

C.3.3 Missingness heatmaps

Below are missingness heatmaps of categorical and numerical features in each SEER dataset

over time. Darker color means larger proportion of missing data.
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Figure C.5: Missingness of categorical features in SEER (Breast).
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Figure C.6: Missingness of numerical features in SEER (Breast).
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Figure C.7: Missingness of categorical features in SEER (Colon).
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Figure C.8: Missingness of numerical features in SEER (Colon).
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Figure C.9: Missingness of categorical features in SEER (Lung).
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Figure C.10: Missingness of numerical features in SEER (Lung).
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C.4 Additional CDC COVID-19 Data Details

The COVID-19 Case Surveillance Detailed Data (CDC, COVID-19 Response, 2020) is a national,

publicly available dataset provided by the CDC. It contains 33 elements, with patient-level

data including symptoms, demographics, and state of residence. The performance over time is

evaluated on a monthly basis. We use the version the released on June 6th, 2022. Disclaimer:

“The CDC does not take responsibility for the scientific validity or accuracy of methodology,

results, statistical analyses, or conclusions presented.”

• Data access: To access the data, users must complete a registration information and data

use restrictions agreement (RIDURA).

• Cohort selection: The cohort consists of all patients who were lab-confirmed positive for

COVID-19, had a non-null positive specimen date, and were hospitalized (“hosp yn” =

“Yes”). Cohort selection diagrams are given in Figures C.11

• Cohort characteristics: Cohort characteristics are given in Table C.4.

• Outcome definition: mortality, defined by “death yn” = “Yes”

• Features: We list the features used in the CDC COVID-19 datasets in Section C.4.2. Cate-

gorical variables are converted into dummy features, and numerical are standard scaled.

• Missingness heat map: is given in Figure C.12.

• Figure C.13a and C.13b show how the distribution of ages and states shifts over time.

C.4.1 Cohort Selection and Cohort Characteristics

Entries in CDC COVID-19 
Case Surveillance Dataset 

(n=74,849,225)

Included (n=29,692,289)

Exclude (n=45,156,936) entries that did not test positive

Included (n=24,655,999)

Exclude (n=5,036,290) entries that are not lab-confirmed

CDC COVID-19 Cohort 
(n=941,140)

Exclude (n=23,713,704) entries that are not hospitalized

Included (n=942,295)

Exclude (n=1,155) entries with earliest test date < March 2020 

Figure C.11: Cohort selection diagram - CDC COVID-19
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Table C.4: CDC COVID-19 cohort characteristics, with count (%) or median (Q1–Q3).

Characteristic Missingness Type

Sex
Female 455,376 (48.4%) – categorical

Male 475,223 (50.5%) – categorical

Unknown/Missing 10,541 (1.1%) – categorical

Age Group
0 - 9 16,373 (1.7%) – categorical

10 - 19 17,252 (1.8%) – categorical

20 - 29 48,505 (5.2%) – categorical

30 - 39 71,776 (7.6%) – categorical

40 - 49 88,531 (9.4%) – categorical

50 - 59 141,805 (15.1%) – categorical

60 - 69 189,354 (20.1%) – categorical

70 - 79 189,018 (20.1%) – categorical

80+ 177,765 (18.9%) – categorical

Missing 761 (0.1%) – categorical

Race
White 544,199 (57.8%) – categorical

Black 173,847 (18.5%) – categorical

Other 205,547 (21.8%) – categorical

State of Residence
NY 189,684 (20.2%) – categorical

OH 70,097 (7.4%) – categorical

FL 35,679 (3.8%) – categorical

WA 58,854 (6.3%) – categorical

MA 31,441 (3.3%) – categorical

Other 555,353 (59.0%) – categorical

Mechanical Ventilation
Yes 38,009 (4.0%) – categorical

No 138,331 (14.7%) – categorical

Unknown/Missing 764,800 (81.2%) – categorical

Mortality
1 190,786 (20.3%) – categorical

0 750,354 (79.7%) – categorical
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C.4.2 Features

abdom yn, abxchest yn, acuterespdistress yn, age group, chills yn, cough yn, diarrhea yn, ethnicity,

fever yn, hc work yn, headache yn, hosp yn, icu yn, mechvent yn, medcond yn, month, myalgia yn,

nauseavomit yn, pna yn, race, relative month, res county, res state, runnose yn, sex, sfever yn, sob yn,

sthroat yn

C.4.3 Missingness heatmaps
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Figure C.12: Missingness over time for features in CDC COVID-19 dataset after cohort selection.

The darker the color, the larger the proportion of missing data.
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Figure C.13: Proportion of deaths over time for each age group and state of residence.
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C.5 Additional SWPA COVID-19 Data Details

The Southwestern Pennsylvania (SWPA) COVID-19 dataset consists of EHR data from patients

tested for COVID-19. It was collected by a major healthcare provider in SWPA, and includes

patient demographics, labs, problem histories, medications, inpatient vs. outpatient status, and

other encounter information. The performance over time is evaluated on a monthly basis.

• Data access: This is a private dataset.

• Cohort selection: The cohort consists of patients who tested positive for COVID-19 and

were not already in the ICU or mechanically ventilated. We filter for the first positive

test, and define features and outcomes relative to that time. Cohort selection diagrams are

given in Figures C.14. If there are multiple samples per patient, we filter to the first entry

per patient, which corresponds to when a patient first enters the dataset. This corresponds

to a particular interpretation of the prediction: when a patient is first tests positive, given

what we know about that patient, what is their estimated risk of 90-day mortality?

• Cohort characteristics: Cohort characteristics are given in Table C.5.

• Outcome definition: 90-day mortality by comparing the death date and test date

• Features: We list the features in Section C.5.2. We convert all categorical variables into

dummy features, and apply standard scaling to numerical variables (subtract mean and

divide by standard deviation). To create a fixed length feature vector, where applicable we

take the most recent value of each feature (e.g. most recent lab values).

• Missingness heat maps: are given in Figures C.15, C.16, C.17, and C.18,

C.5.1 Cohort Selection and Cohort Characteristics

Total patients in 
SWPA tested for COVID-19 

(n=193,583)

Included (n=45,882) 
Ξrst positive tests

Exclude (n=147,701) patients that did not test positive

Included (n=35,376)

Exclude (n=10,506) patients already in severe condition at time 
of Ξrst positive test (mech. vent. or ICU stay in prior 30 days)

SWPA COVID-19 Cohort 
(n=35,293)

Exclude (n=83) cases after March 2022

Figure C.14: Cohort selection diagram for SWPA COVID-19.
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Table C.5: SWPA COVID-19 cohort characteristics, with count (%) or median (Q1–Q3).

Characteristic Missingness Type

Gender
Female 20,283 (57.5%) – categorical

Male 15,003 (42.5%) – categorical

Unknown 7 (0.0%) – categorical

Age
Under 20 3,210 (9.1%) – categorical

20 – 30 4,349 (12.3%) – categorical

30 – 40 4,667 (13.2%) – categorical

40 – 50 4,653 (13.2%) – categorical

50 – 60 6,111 (17.3%) – categorical

60 – 70 5,700 (16.2%) – categorical

70+ 6,603 (18.7%) – categorical

Location of test
Inpatient 14,911 (42.2%) – categorical

Outpatient 17,661 (50.0%) – categorical

Unknown 2,721 (7.7%) – categorical

90-day mortality
True 1,516 (4.3%) – categorical

False 33,777 (95.7%) – categorical

C.5.2 Features

Asthma, CAD, CHF, CKD, COPD, CRP, CVtest ICD Acute pharyngitis, unspecified, CVtest ICD Acute

upper respiratory infection, unspecified, CVtest ICD Anosmia, CVtest ICD Contact with and (suspected)

exposure to other viral communicable diseases, CVtest ICD Encounter for general adult medical examina-

tion without abnormal findings, CVtest ICD Encounter for screening for other viral diseases, CVtest ICD

Encounter for screening for respiratory disorder NEC, CVtest ICD Nasal congestion, CVtest ICD Other

general symptoms and signs, CVtest ICD Other specified symptoms and signs involving the circulatory

and respiratory systems, CVtest ICD Pain, unspecified, CVtest ICD Parageusia, CVtest ICD R05.9, CVtest

ICD R51.9, CVtest ICD U07.1, CVtest ICD Viral infection, unspecified, CVtest ICD Z20.822, ESLD, Hyper-

tension, IP ICD z20.828, Immunocompromised, Interstitial Lung disease, OP ICD Abdominal Pain, OP ICD

Chest Pain, OP ICD Chills, OP ICD Coronavirus Concerns, OP ICD Covid Infection, OP ICD Exposure To

Covid-19, OP ICD Generalized Body Aches, OP ICD Headache, OP ICD Labs Only, OP ICD Medication

Refill, OP ICD Nasal Congestion, OP ICD Nausea, OP ICD Other, OP ICD Results, OP ICD Shortness of

Breath, OP ICD Sore Throat, OP ICD URI, age bin (20, 30], age bin (30, 40], age bin (40, 50], age bin (50,

60], age bin (60, 70], age bin (70, 200], bmi, cancer, cough, covid vaccination given, diabetes, fatigue, fever,

gender, hyperglycemia, lab ANION GAP, lab ATRIAL RATE, lab BASOPHILS ABSOLUTE COUNT, lab

BASOPHILS RELATIVE PERCENT, lab BLOOD UREA NITROGEN, lab CALCIUM, lab CALCUALTED

T AXIS, lab CALCULATED R AXIS, lab CHLORIDE, lab CO2, lab CREATININE, lab EOSINOPHILS

ABSOLUTE COUNT, lab EOSINOPHILS RELATIVE PERCENT, lab GFR MDRD AF AMER, lab GFR MDRD
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NON AF AMER, lab GLUCOSE, lab IMMATURE GRANULOCYTES RELATIVE PERCENT, lab LYMPHO-

CYTES ABSOLUTE COUNT, lab LYMPHOCYTES RELATIVE PERCENT, lab MEAN CORPUSCULAR

HEMOGLOBIN, lab MEAN CORPUSCULAR HEMOGLOBIN CONC, lab MEAN PLATELET VOLUME,

lab MONOCYTES ABSOLUTE COUNT, lab MONOCYTES RELATIVE PERCENT, lab NEUTROPHILS

RELATIVE PERCENT, lab NUCLEATED RED BLOOD CELLS, lab POTASSIUM, lab PROTEIN TOTAL,

lab Q-T INTERVAL, lab QRS DURATION, lab QTC CALCULATION, lab RED CELL DISTRIBUTION

WIDTH, lab SODIUM, lab VENTRICULAR RATE, lab merged CRP, lab merged albumin, lab merged

alkalinePhosphatase, lab merged alt, lab merged ast, lab merged bnp, lab merged ddimer, lab merged

directBilirubin, lab merged ggt, lab merged hct, lab merged hgb, lab merged indirectBilirubin, lab merged

lactate, lab merged ldh, lab merged mcv, lab merged neutrophil, lab merged platelets, lab merged pt, lab

merged rbc, lab merged sao2, lab merged totalBilirubin, lab merged totalProtein, lab merged troponin,

lab merged wbc, labs ICD Acute pharyngitis, unspecified, labs ICD Acute upper respiratory infection,

unspecified, labs ICD Chest pain, unspecified, labs ICD Contact with and (suspected) exposure to other

viral communicable diseases, labs ICD Dyspnea, unspecified, labs ICD Encounter for other preprocedural

examination, labs ICD Essential (primary) hypertension, labs ICD Fever, unspecified, labs ICD Heart

failure, unspecified, labs ICD Other general symptoms and signs, labs ICD Other pulmonary embolism

without acute cor pulmonale, labs ICD Other specified abnormalities of plasma proteins, labs ICD R05.9,

labs ICD Shortness of breath, labs ICD Syncope and collapse, labs ICD U07.1, labs ICD Unspecified atrial

fibrillation, labs ICD Viral infection, unspecified, labs ICD Z20.822, liver disease, location covidtest ordered

Inpatient, location covidtest ordered Outpatient, lung disease, med dx Acquired hypothyroidism, med dx

Anxiety, med dx COVID-19, med dx Encounter for antineoplastic chemotherapy, med dx Encounter for

antineoplastic chemotherapy and immunotherapy, med dx Encounter for antineoplastic immunotherapy,

med dx Encounter for immunization, med dx Gastroesophageal reflux disease without esophagitis, med dx

Gastroesophageal reflux disease, esophagitis presence not specified, med dx Generalized anxiety disorder,

med dx Hyperlipidemia, unspecified hyperlipidemia type, med dx Hypomagnesemia, med dx Hypothy-

roidism, unspecified type, med dx Iron deficiency anemia, unspecified iron deficiency anemia type, med

dx Mixed hyperlipidemia, med dx Primary osteoarthritis of right knee, medication ACETAMINOPHEN

325 MG TABLET, medication ALBUTEROL SULFATE 2.5 MG/3 ML (0.083 %) SOLUTION FOR NEBULIZA-

TION, medication ALBUTEROL SULFATE HFA 90 MCG/ACTUATION AEROSOL INHALER, medication

ASPIRIN 81 MG TABLET,DELAYED RELEASE, medication DEXAMETHASONE SODIUM PHOSPHATE 4

MG/ML INJECTION SOLUTION, medication DIPHENHYDRAMINE 50 MG/ML INJECTION (WRAPPER),

medication EPINEPHRINE 0.3 MG/0.3 ML INJECTION, AUTO-INJECTOR, medication FENTANYL (PF)

50 MCG/ML INJECTION SOLUTION, medication HYDROCODONE 5 MG-ACETAMINOPHEN 325 MG

TABLET, medication HYDROCORTISONE SOD SUCCINATE (PF) 100 MG/2 ML SOLUTION FOR IN-

JECTION, medication IOPAMIDOL 76 % INTRAVENOUS SOLUTION, medication LACTATED RINGERS

INTRAVENOUS SOLUTION, medication MIDAZOLAM 1 MG/ML INJECTION SOLUTION, medication

NALOXONE 0.4 MG/ML INJECTION SOLUTION, medication ONDANSETRON HCL (PF) 4 MG/2 ML

INJECTION SOLUTION, medication OXYCODONE 5 MG TABLET, medication PANTOPRAZOLE 40

MG TABLET,DELAYED RELEASE, medication PROPOFOL 10 MG/ML INTRAVENOUS BOLUS (20 ML),

medication SODIUM CHLORIDE 0.9 % INTRAVENOUS SOLUTION, medication SODIUM CHLORIDE

0.9 % IV BOLUS, myalgia, obesity, past7Dprobhx ICD Acute kidney failure, unspecified, past7Dprobhx

ICD Anemia, unspecified, past7Dprobhx ICD Anxiety disorder, unspecified, past7Dprobhx ICD Chest

pain, unspecified, past7Dprobhx ICD Dizziness and giddiness, past7Dprobhx ICD Encounter for general

adult medical examination without abnormal findings, past7Dprobhx ICD Encounter for immunization,
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past7Dprobhx ICD Encounter for screening for malignant neoplasm of colon, past7Dprobhx ICD F32.A,

past7Dprobhx ICD Gastro-esophageal reflux disease without esophagitis, past7Dprobhx ICD Hyperlipi-

demia, unspecified, past7Dprobhx ICD Hypokalemia, past7Dprobhx ICD Hypothyroidism, unspecified,

past7Dprobhx ICD Mixed hyperlipidemia, past7Dprobhx ICD Obstructive sleep apnea (adult) (pediatric),

past7Dprobhx ICD Syncope and collapse, past7Dprobhx ICD Type 2 diabetes mellitus without complica-

tions, past7Dprobhx ICD Unspecified atrial fibrillation, probhx ICD Acute kidney failure, unspecified,

probhx ICD Anemia, unspecified, probhx ICD Anxiety disorder, unspecified, probhx ICD Chest pain,

unspecified, probhx ICD Dizziness and giddiness, probhx ICD Encounter for general adult medical ex-

amination without abnormal findings, probhx ICD Encounter for immunization, probhx ICD Encounter

for screening for malignant neoplasm of colon, probhx ICD F32.A, probhx ICD Gastro-esophageal reflux

disease without esophagitis, probhx ICD Hyperlipidemia, unspecified, probhx ICD Hypokalemia, probhx

ICD Hypothyroidism, unspecified, probhx ICD Mixed hyperlipidemia, probhx ICD Obstructive sleep apnea

(adult) (pediatric), probhx ICD Syncope and collapse, probhx ICD Type 2 diabetes mellitus without com-

plications, probhx ICD Unspecified atrial fibrillation, transplant, troponin, vaccine COVID-19 RS-AD26

(PF) Vaccine (Janssen), vaccine COVID-19 Vaccine, Unspecified, vaccine COVID-19 mRNA (PF) Vaccine

(Moderna), vaccine COVID-19 mRNA (PF) Vaccine (Pfizer), vaccine Flu Whole, vaccine INFLUENZA,

CCIV4, vaccine Influenza, vaccine Influenza High PF, vaccine Influenza ID PF, vaccine Influenza PF,

vaccine Influenza Vaccine, Quadrivalent, Adjuvanted, vaccine Influenza, High-dose, Quadrivalent, vaccine

Influenza, Quadrivalent, vaccine Influenza, Recombinant (RIV4), vaccine Influenza, Recombinant (Riv3),

vaccine Influenza, Trivalent, Adjuvanted, vaccine LAIV3, vaccine Pneumococcal, vaccine Pneumococcal

Conjugate 13-valent, vaccine Pneumococcal Polysaccharide, vaccine TIVA
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C.5.3 Missingness heatmaps

This section plots missingness heatmaps of categorical and numerical features over time. Darker

color means larger proportion of missing data.

Jun-2020 Dec-2020 Jun-2021 Dec-2021
Time (year)

gender
age_bin_(20, 30]
age_bin_(30, 40]
age_bin_(40, 50]
age_bin_(50, 60]
age_bin_(60, 70]

age_bin_(70, 200]
CVtest_ICD_Acute pharyngitis, unspecified

CVtest_ICD_Acute upper respiratory infection, unspecified
CVtest_ICD_Anosmia

CVtest_ICD_Contact with and (suspected) exposure to other viral communicable diseases
CVtest_ICD_Encounter for general adult medical examination without abnormal findings

CVtest_ICD_Encounter for screening for other viral diseases
CVtest_ICD_Encounter for screening for respiratory disorder NEC

CVtest_ICD_Nasal congestion
CVtest_ICD_Other general symptoms and signs

CVtest_ICD_Other specified symptoms and signs involving the circulatory and respiratory systems
CVtest_ICD_Pain, unspecified

CVtest_ICD_Parageusia
CVtest_ICD_R05.9
CVtest_ICD_R51.9
CVtest_ICD_U07.1

CVtest_ICD_Viral infection, unspecified
CVtest_ICD_Z20.822

location_covidtest_ordered_Inpatient
location_covidtest_ordered_Outpatient

OP_ICD_Abdominal Pain
OP_ICD_Chest Pain

OP_ICD_Chills
OP_ICD_Coronavirus Concerns

OP_ICD_Covid Infection
OP_ICD_Exposure To Covid-19

OP_ICD_Generalized Body Aches
OP_ICD_Headache
OP_ICD_Labs Only

OP_ICD_Medication Refill
OP_ICD_Nasal Congestion

OP_ICD_Nausea
OP_ICD_Other

OP_ICD_Results
OP_ICD_Shortness of Breath

OP_ICD_Sore Throat
OP_ICD_URI

IP_ICD_z20.828
probhx_ICD_Acute kidney failure, unspecified

probhx_ICD_Anemia, unspecified
probhx_ICD_Anxiety disorder, unspecified

probhx_ICD_Chest pain, unspecified
probhx_ICD_Dizziness and giddiness

probhx_ICD_Encounter for general adult medical examination without abnormal findings
probhx_ICD_Encounter for immunization

probhx_ICD_Encounter for screening for malignant neoplasm of colon
probhx_ICD_F32.A

probhx_ICD_Gastro-esophageal reflux disease without esophagitis
probhx_ICD_Hyperlipidemia, unspecified

probhx_ICD_Hypokalemia
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Figure C.15: Missingness of categorical features in SWPA COVID-19 dataset (part 1).
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Jun-2020 Dec-2020 Jun-2021 Dec-2021
Time (year)

gender
age_bin_(20, 30]
age_bin_(30, 40]
age_bin_(40, 50]
age_bin_(50, 60]
age_bin_(60, 70]

age_bin_(70, 200]
CVtest_ICD_Acute pharyngitis, unspecified

CVtest_ICD_Acute upper respiratory infection, unspecified
CVtest_ICD_Anosmia

CVtest_ICD_Contact with and (suspected) exposure to other viral communicable diseases
CVtest_ICD_Encounter for general adult medical examination without abnormal findings

CVtest_ICD_Encounter for screening for other viral diseases
CVtest_ICD_Encounter for screening for respiratory disorder NEC

CVtest_ICD_Nasal congestion
CVtest_ICD_Other general symptoms and signs

CVtest_ICD_Other specified symptoms and signs involving the circulatory and respiratory systems
CVtest_ICD_Pain, unspecified

CVtest_ICD_Parageusia
CVtest_ICD_R05.9
CVtest_ICD_R51.9
CVtest_ICD_U07.1

CVtest_ICD_Viral infection, unspecified
CVtest_ICD_Z20.822

location_covidtest_ordered_Inpatient
location_covidtest_ordered_Outpatient

OP_ICD_Abdominal Pain
OP_ICD_Chest Pain

OP_ICD_Chills
OP_ICD_Coronavirus Concerns

OP_ICD_Covid Infection
OP_ICD_Exposure To Covid-19

OP_ICD_Generalized Body Aches
OP_ICD_Headache
OP_ICD_Labs Only

OP_ICD_Medication Refill
OP_ICD_Nasal Congestion

OP_ICD_Nausea
OP_ICD_Other

OP_ICD_Results
OP_ICD_Shortness of Breath

OP_ICD_Sore Throat
OP_ICD_URI

IP_ICD_z20.828
probhx_ICD_Acute kidney failure, unspecified

probhx_ICD_Anemia, unspecified
probhx_ICD_Anxiety disorder, unspecified

probhx_ICD_Chest pain, unspecified
probhx_ICD_Dizziness and giddiness

probhx_ICD_Encounter for general adult medical examination without abnormal findings
probhx_ICD_Encounter for immunization

probhx_ICD_Encounter for screening for malignant neoplasm of colon
probhx_ICD_F32.A

probhx_ICD_Gastro-esophageal reflux disease without esophagitis
probhx_ICD_Hyperlipidemia, unspecified

probhx_ICD_Hypokalemia
probhx_ICD_Hypothyroidism, unspecified

probhx_ICD_Mixed hyperlipidemia
probhx_ICD_Obstructive sleep apnea (adult) (pediatric)

probhx_ICD_Syncope and collapse
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Figure C.16: Missingness of categorical features in SWPA COVID-19 dataset (part 2).
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Jun-2020 Dec-2020 Jun-2021 Dec-2021
Time (year)

gender
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age_bin_(40, 50]
age_bin_(50, 60]
age_bin_(60, 70]
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CVtest_ICD_Acute pharyngitis, unspecified

CVtest_ICD_Acute upper respiratory infection, unspecified
CVtest_ICD_Anosmia

CVtest_ICD_Contact with and (suspected) exposure to other viral communicable diseases
CVtest_ICD_Encounter for general adult medical examination without abnormal findings

CVtest_ICD_Encounter for screening for other viral diseases
CVtest_ICD_Encounter for screening for respiratory disorder NEC

CVtest_ICD_Nasal congestion
CVtest_ICD_Other general symptoms and signs

CVtest_ICD_Other specified symptoms and signs involving the circulatory and respiratory systems
CVtest_ICD_Pain, unspecified

CVtest_ICD_Parageusia
CVtest_ICD_R05.9
CVtest_ICD_R51.9
CVtest_ICD_U07.1

CVtest_ICD_Viral infection, unspecified
CVtest_ICD_Z20.822

location_covidtest_ordered_Inpatient
location_covidtest_ordered_Outpatient

OP_ICD_Abdominal Pain
OP_ICD_Chest Pain

OP_ICD_Chills
OP_ICD_Coronavirus Concerns

OP_ICD_Covid Infection
OP_ICD_Exposure To Covid-19

OP_ICD_Generalized Body Aches
OP_ICD_Headache
OP_ICD_Labs Only

OP_ICD_Medication Refill
OP_ICD_Nasal Congestion

OP_ICD_Nausea
OP_ICD_Other

OP_ICD_Results
OP_ICD_Shortness of Breath

OP_ICD_Sore Throat
OP_ICD_URI

IP_ICD_z20.828
probhx_ICD_Acute kidney failure, unspecified

probhx_ICD_Anemia, unspecified
probhx_ICD_Anxiety disorder, unspecified

probhx_ICD_Chest pain, unspecified
probhx_ICD_Dizziness and giddiness

probhx_ICD_Encounter for general adult medical examination without abnormal findings
probhx_ICD_Encounter for immunization

probhx_ICD_Encounter for screening for malignant neoplasm of colon
probhx_ICD_F32.A

probhx_ICD_Gastro-esophageal reflux disease without esophagitis
probhx_ICD_Hyperlipidemia, unspecified

probhx_ICD_Hypokalemia
probhx_ICD_Hypothyroidism, unspecified

probhx_ICD_Mixed hyperlipidemia
probhx_ICD_Obstructive sleep apnea (adult) (pediatric)

probhx_ICD_Syncope and collapse
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Figure C.17: Missingness of categorical features in SWPA COVID-19 dataset (part 3).
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Jun-2020 Dec-2020 Jun-2021 Dec-2021
Time (month)

lab_ANION GAP
lab_ATRIAL RATE

lab_BASOPHILS ABSOLUTE COUNT
lab_BASOPHILS RELATIVE PERCENT

lab_BLOOD UREA NITROGEN
lab_CALCIUM

lab_CALCUALTED T AXIS
lab_CALCULATED R AXIS

lab_CHLORIDE
lab_CO2

lab_CREATININE
lab_EOSINOPHILS ABSOLUTE COUNT

lab_EOSINOPHILS RELATIVE PERCENT
lab_GFR MDRD AF AMER

lab_GFR MDRD NON AF AMER
lab_GLUCOSE

lab_IMMATURE GRANULOCYTES RELATIVE PERCENT
lab_LYMPHOCYTES ABSOLUTE COUNT

lab_LYMPHOCYTES RELATIVE PERCENT
lab_MEAN CORPUSCULAR HEMOGLOBIN

lab_MEAN CORPUSCULAR HEMOGLOBIN CONC
lab_MEAN PLATELET VOLUME

lab_MONOCYTES ABSOLUTE COUNT
lab_MONOCYTES RELATIVE PERCENT

lab_NEUTROPHILS RELATIVE PERCENT
lab_NUCLEATED RED BLOOD CELLS

lab_POTASSIUM
lab_PROTEIN TOTAL

lab_Q-T INTERVAL
lab_QRS DURATION

lab_QTC CALCULATION
lab_RED CELL DISTRIBUTION WIDTH

lab_SODIUM
lab_VENTRICULAR RATE

lab_merged_CRP
lab_merged_lactate
lab_merged_ddimer

lab_merged_troponin
lab_merged_alt
lab_merged_ast

lab_merged_alkalinePhosphatase
lab_merged_albumin

lab_merged_totalProtein
lab_merged_totalBilirubin

lab_merged_directBilirubin
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Figure C.18: Missingness of numerical features in SWPA COVID-19.
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C.6 Additional MIMIC-IV Data Details

The Medical Information Mart for Intensive Care (MIMIC)-IV (Johnson et al., 2021) database

contains EHR data from patients admitted to critical care units from 2008–2019. MIMIC-IV is an

update to MIMIC-III, adding time annotations placing each sample into a three-year time range,

and removing elements from the old CareVue EHR system (before 2008). Each patient has an

anchor_year_group, anchor_year and intime. For each patient, we first calculated

an offset as the difference between intime and anchor_year. Then, we approximated the

admit time as the midpoint of anchor_year_group after applying the computed offset.

The performance over time is evaluated on a yearly basis. Our study uses MIMIC-IV-1.0.

• Data access: Credentialed Physionet account and signing a data use agreement.

• Cohort selection: From the icustays table, a feature vector is defined for each patient

only using information available in the first 24 hrs of their first encounter. (Selection

diagram in Figure C.19). If there are multiple samples per patient, we filter to the first

entry per patient, which corresponds to when a patient first enters the dataset. When

a patient first visits the ICU, given what we know about that patient, we would like to

predict their risk of in-ICU mortality?

• Outcome definition: The outcome of interest is in-ICU mortality, defined by comparing

the outtime of the patient’s ICU visit with the patient’s dod (date of death, in the

patients table). Out-of-hospital mortality is not recorded.

• Cohort characteristics: Cohort characteristics are given in Table C.6.

• Features: MIMIC-IV dataset features are listed in Section C.6.2. Categorical variables

are converted to dummies and numerical variables are standard scaled. To create a fixed

length feature vector, we take the most recent value of any patient history data available.

• Missingness heat maps: are given in Figures C.20, C.21, C.22, C.23.

C.6.1 Cohort Selection and Cohort Characteristics

Total entries in 
MIMIC-IV icustays table 

(n=76,540)

Exclude (n=18,387) entries to select the first entry 
for each subject_id (earliest intime)

Included (n=53,150)

MIMIC-IV Cohort
(n=53,050)

Exclude (n=100) entries 
admitted or transferred to the ICU after 2020

Figure C.19: Cohort selection diagram - MIMIC-IV
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Table C.6: MIMIC-IV cohort characteristics, with count (%) or median (Q1–Q3).

Characteristic Missingness Type

Gender
Female 23,313 (43.9%) – categorical

Male 29,737 (56.1%) – categorical

Age at Admission 66 (54-78) 0.0% continuous

O2 Delivery Device(s)
Use device 33,359 (62.9%) – categorical

None 18,549 (35.0%) – categorical

Missing 1,142 (2.2%) – categorical

Pupil Response R
Brisk 39,708 (74.9%) – categorical

Sluggish 4,603 (8.7%) – categorical

Non-reactive 1,812 (3.4%) – categorical

Missing 6,927 (13.1%) – categorical

first careunit
Medical Intensive Care Unit (MICU) 10,213 (19.3%) – categorical

Surgical Intensive Care Unit (SICU) 8,241 (15.5%) – categorical

Medical/Surgical Intensive Care Unit (MICU/S… 8,808 (16.6%) – categorical

Cardiac Vascular Intensive Care Unit (CVICU) 9,437 (17.8%) – categorical

Coronary Care Unit (CCU) 6,098 (11.5%) – categorical

Trauma SICU (TSICU) 6,947 (13.1%) – categorical

Other 3,306 (6.2%) – categorical

Anion Gap 13 (11-16) 0.5% continuous

Heart Rhythm
SR (Sinus Rhythm) 34,004 (64.1%) – categorical

Abnormal heart rhythm 18,657 (35.2%) – categorical

Missing 389 (0.7%) – categorical

Glucose FS (range 70 -100) 131 (110-164) 32.7% continuous

Eye Opening
Spontaneously 39,216 (73.9%) – categorical

To Speech 7,387 (13.9%) – categorical

None 4,538 (8.6%) – categorical

To Pain 1,702 (3.2%) – categorical

Missing 207 (0.4%) – categorical

Lactate 2 (1-2) 22.0% continuous

Motor Response
Obeys Commands 44,409 (83.7%) – categorical

Localizes Pain 3,419 (6.4%) – categorical

Flex-withdraws 1,673 (3.2%) – categorical

No response 2,930 (5.5%) – categorical

Abnormal extension 157 (0.3%) – categorical

Abnormal Flexion 238 (0.4%) – categorical

Missing 224 (0.4%) – categorical

Respiratory Pattern
Regular 29,373 (55.4%) – categorical

Not regular 1,739 (3.3%) – categorical

Missing 21,938 (41.4%) – categorical

Richmond-RAS Scale 0 (-1-0) 15.4% categorical

in-icu mortality
0 49,716 (93.7%) – categorical

1 3,334 (6.3%) – categorical
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C.6.2 Features

18 Gauge Dressing Occlusive, 18 Gauge placed in outside facility, 20 Gauge Dressing Occlusive, 20 Gauge

placed in outside facility, 20 Gauge placed in the field, Abdominal Assessment, Activity, Activity Tolerance,

Admission Weight (Kg), Admission Weight (lbs.), Alanine Aminotransferase (ALT), Alarms On, Albumin,

Alkaline Phosphatase, All Medications Tolerated, Ambulatory aid, Anion Gap, Anion gap, Anti Embolic

Device, Anti Embolic Device Status, Asparate Aminotransferase (AST), Assistance, BUN, Balance, Base Ex-

cess, Basophils, Bath, Bicarbonate, Bilirubin, Total, Bowel Sounds, Braden Activity, Braden Friction/Shear,

Braden Mobility, Braden Moisture, Braden Nutrition, Braden Sensory Perception, CAM-ICU MS Change,

Calcium non-ionized, Calcium, Total, Calculated Total CO2, Capillary Refill L, Capillary Refill R, Chloride,

Chloride (serum), Commands, Commands Response, Cough Effort, Cough Type, Creatinine, Creatinine

(serum), Currently experiencing pain, Daily Wake Up, Delirium assessment, Dialysis patient, Diet Type,

Difficulty swallowing, Dorsal PedPulse L, Dorsal PedPulse R, ETOH, Ectopy Type 1, Edema Amount,

Edema Location, Education Barrier, Education Existing Knowledge, Education Learner, Education Method,

Education Readiness/Motivation, Education Response, Education Topic, Eosinophils, Epithelial Cells, Eye

Opening, Family Communication, Flatus, GU Catheter Size, Gait/Transferring, Glucose (serum), Glucose

FS (range 70 -100), Goal Richmond-RAS Scale, HCO3 (serum), HOB, HR, HR Alarm - High, HR Alarm

- Low, Heart Rhythm, Height, Height (cm), Hematocrit, Hematocrit (serum), Hemoglobin, History of

falling (within 3 mnths)*, History of slips / falls, Home TF, INR, INR(PT), IV/Saline lock, Insulin pump,

Intravenous / IV access prior to admission, Judgement, LLE Color, LLE Temp, LLL Lung Sounds, LUE

Color, LUE Temp, LUL Lung Sounds, Lactate, Lactic Acid, Living situation, Lymphocytes, MCH, MCHC,

MCV, Magnesium, Mental status, Monocytes, Motor Response, NBP Alarm - High, NBP Alarm - Low,

NBP Alarm Source, NBPd, NBPm, NBPs, Nares L, Nares R, Neutrophils, O2 Delivery Device(s), Oral

Care, Oral Cavity, Orientation, PT, PTT, Pain Assessment Method, Pain Cause, Pain Level, Pain Level

Acceptable, Pain Level Response, Pain Location, Pain Management, Pain Present, Pain Type, Parameters

Checked, Phosphate, Phosphorous, Platelet Count, Position, PostTib Pulses L, PostTib Pulses R, Potassium,

Potassium (serum), Potassium, Whole Blood, Pressure Reducing Device, Pressure Ulcer Present, Pupil

Response L, Pupil Response R, Pupil Size Left, Pupil Size Right, RBC, RDW, RLE Color, RLE Temp, RLL

Lung Sounds, RR, RUE Color, RUE Temp, RUL Lung Sounds, Radial Pulse L, Radial Pulse R, Red Blood

Cells, Resp Alarm - High, Resp Alarm - Low, Respiratory Effort, Respiratory Pattern, Richmond-RAS

Scale, ST Segment Monitoring On, Safety Measures, Secondary diagnosis, Self ADL, Side Rails, Skin Color,

Skin Condition, Skin Integrity, Skin Temp, Sodium, Sodium (serum), SpO2, SpO2 Alarm - High, SpO2

Alarm - Low, SpO2 Desat Limit, Specific Gravity, Specimen Type, Speech, Strength L Arm, Strength L Leg,

Strength R Arm, Strength R Leg, Support Systems, Temp Site, Temperature F, Therapeutic Bed, Tobacco

Use History, Turn, Untoward Effect, Urea Nitrogen, Urine Source, Verbal Response, Visual / hearing

deficit, WBC, White Blood Cells, Yeast, admit age, gender, pCO2, pH, pO2
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C.6.3 Missingness heatmaps

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Time (year)

Alanine Aminotransferase (ALT)
Alkaline Phosphatase

Anion Gap
Asparate Aminotransferase (AST)

Base Excess
Basophils

Bicarbonate
Bilirubin, Total
Calcium, Total

Calculated Total CO2
Chloride

Creatinine
Eosinophils

Epithelial Cells
Hematocrit

INR(PT)
Lactate

Lymphocytes
MCH

MCHC
MCV

Monocytes
pCO2

pH
Phosphate

pO2
Potassium

Potassium, Whole Blood
RBC
RDW

Red Blood Cells
Sodium

Specific Gravity
Urea Nitrogen

White Blood Cells
Hemoglobin

WBC
Magnesium

Albumin
Platelet Count

PT
PTT

Neutrophils
Specimen Type

Yeast

Fe
at

ur
es

0.0

0.2

0.4

0.6

0.8

1.0

Figure C.20: Missingness over time for labevents features in MIMIC-IV dataset after cohort

selection. The darker the color, the larger the proportion of missing data.
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Time (year)

Admission Weight (lbs.)
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O2 Delivery Device(s)

Anion gap
Pupil Response R

NBP Alarm Source
Pupil Response L

History of falling (within 3 mnths)*
Secondary diagnosis

Ambulatory aid
IV/Saline lock

Gait/Transferring
Mental status

18 Gauge Dressing Occlusive
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HCO3 (serum)

Albumin
Platelet Count

PT
PTT
INR

Tobacco Use History
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All Medications Tolerated
Safety Measures

Richmond-RAS Scale
20 Gauge placed in the field

Insulin pump
Daily Wake Up

Goal Richmond-RAS Scale
ST Segment Monitoring On

Delirium assessment
Bath

Commands Response
Commands

Strength L Arm
Strength L Leg
Strength R Leg
Strength R Arm

Speech
Home TF
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Figure C.21: Missingness over time for chartevents features in MIMIC-IV dataset after cohort

selection. The darker the color, the larger the proportion of missing data. (part 1)
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Figure C.22: Missingness over time for chartevents features in MIMIC-IV dataset after cohort

selection. The darker the color, the larger the proportion of missing data. (part 2)
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Figure C.23: Missingness over time for chartevents features in MIMIC-IV dataset after cohort

selection. The darker the color, the larger the proportion of missing data. (part 3)
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C.7 Additional OPTN (Liver) Data Details

The OPTN database (Organ Procurement and Transplantation Network, 2020) tracks organ

donation and transplant events in the U.S. Our study uses data from candidates on the liver

transplant wait list. The performance over time is evaluated on a yearly basis. First, we provide

the disclaimer: “The data reported here have been supplied by the United Network for Organ

Sharing as the contractor for the Organ Procurement and transplantation Network. The inter-

pretation and reporting of these data are the responsibility of the author(s) and in no way should

be seen as an official policy of or interpretation by the OPTN or the U.S. Government”.

• Data access: After signing the Data Use Agreement - I from Organ Procedurement And

Transplantation network, users can access the OPTN (Liver) dataset.

• Cohort selection: The cohort consists of liver transplant candidates on the waiting list

(2005-2017). We follow the same pipeline as Byrd et al. (2021) to extract the data, except

that we select the first record for each patient. Cohort selection diagrams are given in

Figures C.24. When a patient is first added to the transplant list, given what we know

about that patient, we woudl like to estimate their 180-day risk of mortality.

• Outcome definition: 180-day mortality from when the patient was first added to the list

• Cohort characteristics: Cohort characteristics are given in Table C.7.

• Features: We list the features used in the OPTN liver dataset in Section C.7.2. Categorical

variables are converted into dummies, and numerical variables are standard scaled.

• Missingness heat maps: are given in Figures C.25 and C.26.

C.7.1 Cohort Selection and Cohort Characteristics

Total entries in 
initial OPTN liver dataset

(n=1,993,706)

Exclude (n=1,841,194) entries to select the first entry 
for each WL_ID_CODE (earliest visit for each patient)

Included (n=152,512)

OPTN (Liver) Cohort 
(n=143,709)

Exclude (n=8,803) entries 
with visits outside of 2005 – 2017

Figure C.24: Cohort selection diagram - OPTN (Liver)
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Table C.7: OPTN (Liver) cohort characteristics, with count (%) or median (Q1 – Q3).

Feature name (value) Empty (ratio) Type

Gender
Male 92,560 (64.4%) – categorical

Female 51,149 (35.6%) – categorical

INIT AGE 56 (49-62) 0.0% continuous

FUNC STAT TCR 2,070 (2,050-2,080) 0.0% categorical

INIT OPO CTR CODE 11,036 (3,782-19,282) 0.0% categorical

ALBUMIN 3 (3-4) 0.0% continuous

HCC DIAGNOSIS TCR
No 31,390 (21.8%) – categorical

Yes 11,312 (7.9%) – categorical

Missing 101,007 (70.3%) – categorical

PERM STATE
CA 19,645 (13.7%) – categorical

TX 14,692 (10.2%) – categorical

NY 9,976 (6.9%) – categorical

GA 4,052 (2.8%) – categorical

MD 4,050 (2.8%) – categorical

FL 7,602 (5.3%) – categorical

PA 8,013 (5.6%) – categorical

MI 3,989 (2.8%) – categorical

Other 71,007 (49.4%) – categorical

EDUCATION 4 (3-5) 0.0% categorical

ASCITES 2 (1-2) 0.0% categorical

MORTALITY 180D
1 4,635 (3.2%) – categorical

0 139,074 (96.8%) – categorical

C.7.2 Features

ABO, BACT PERIT TCR, CITIZENSHIP, DGN TCR, DGN2 TCR, DIAB, EDUCATION, FUNC STAT TCR,

GENDER, LIFE SUP TCR, MALIG TCR, OTH LIFE SUP TCR, PERM STATE, PORTAL VEIN TCR, PREV

AB SURG TCR, PRI PAYMENT TCR, REGION, TIPSS TCR, VENTILATOR TCR, WORK INCOME TCR,

ETHCAT, HCC DIAGNOSIS TCR, MUSCLE WAST TCR, INIT OPO CTR CODE, WLHR, WLIN, WLKI,

WLLU, WLPA, INACTIVE, ASCITES, ENCEPH, DIALYSIS PRIOR WEEK, INIT HGT CM, INIT WGT

KG, INIT BMI CALC, INIT AGE, UNOS CAND STAT CD, BILIRUBIN, SERUM CREAT, INR, SERUM

SODIUM, ALBUMIN, BILIRUBIN DELTA, SERUM CREAT DELTA, INR DELTA, SERUM SODIUM DELTA,

ALBUMIN DELTA
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C.7.3 Missingness heatmaps
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Figure C.25: Missingness over time for categorical features in OPTN (Liver) dataset after cohort

selection. The darker the color, the larger the proportion of missing data.
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Figure C.26: Missingness over time for numerical features in OPTN (Liver) dataset after cohort

selection. The darker the color, the larger the proportion of missing data. (Near-zero missingness

here.)
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C.8 Additional MIMIC-CXR Data Details

The MIMIC Chest X-ray (MIMIC-CXR-JPG) (Johnson et al., 2019b) is a publicly available dataset

containing chest radiographs in JPG format from 2009–2018. Similar to MIMIC-IV, MIMIC-

CXR add time annotations placing each sample into a three-year time range. We approxi-

mate the year of each sample by taking the midpoint of its time range. Each patient has an

anchor_year_group, anchor_year and StudyDate. For each patient, we first calcu-

lated an offset as the difference between StudyDate and anchor_year. Then, we approxi-

mated the admit time as the midpoint of anchor_year_group after applying the computed

offset. The performance over time is evaluated on a yearly basis. Our study uses MIMIC-IV-JPG-

2.0. A similar training setup to that in Seyyed-Kalantari et al. (2020) was used (learning rate,

architecture, data augmentation, stopping criteria, etc.).

• Data access: Users must create a Physionet account, become credentialed, and sign a data

use agreement (DUA).

• Cohort selection: We removed the records from 2009 due to the tiny sample size. (Selection

diagram in Figure C.27). We keep all records for each patients and split the data based on

patient subject id.

• Outcome definition: There are 13 abnormal outcomes and 1 normal outcome: Atelectasis,

Cardiomegaly, Consolidation, Edema, Enlarged Cardiomediastinum, Fracture, Lung Lesion,

Lung Opacity, Pleural Effusion, Pneumonia, Pneumothorax, Pleural Other, Support Devices,

No Finding

• Cohort characteristics: Cohort characteristics are given in Table C.8.

C.8.1 Cohort Selection and Cohort Characteristics

Total entries in 
initial MIMIC-CXR dataset

(n=376,206)

MIMIC-CXR Cohort 
(n=376,204)

Exclude (n=2) entries 
with visits outside of 2010 – 2018

Figure C.27: Cohort selection diagram - MIMIC-CXR
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Table C.8: MIMIC-CXR cohort characteristics, with count (%) or median (Q1–Q3).

Feature name (value) Summary statistic Empty (ratio) Status

Gender
F 179,765 (47.8%) – categorical

M 196,439 (52.2%) – categorical

Age 64 (51-76) 0.0% continuous

Diseases
Atelectasis 65,390 (17.4%) – categorical

Cardiomegaly 56,404 (15.0%) – categorical

Consolidation 14,394 (3.8%) – categorical

Edema 36,026 (9.6%) – categorical

Enlarged Cardiomediastinum 9,821 (2.6%) – categorical

Fracture 6,314 (1.7%) – categorical

Lung Lesion 10,574 (2.8%) – categorical

Lung Opacity 76,074 (20.2%) – categorical

Pleural Effusion 75,526 (20.1%) – categorical

Pleural Other 3,432 (0.9%) – categorical

Pneumonia 25,065 (6.7%) – categorical

Pneumothorax 12,828 (3.4%) – categorical

Support Devices 69,148 (18.4%) – categorical

No Finding 167,116 (44.4%) – categorical

C.8.2 Label level AUROC over time for MIMIC-CXR
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Figure C.28: Absolute AUROC over time of each label in MIMIC-CXR
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Figure C.29: Weighted test AUROC vs. year for the DenseNet architecture on MIMIC-CXR.

Table C.9: MIMIC-CXR label-level AUROC from time-agnostic evaluation of all-period training.

The format is mean (±std. dev. across splits)

Label AUROC Label AUROC

Atelectasis 0.826 (±0.003) Cardiomegaly 0.837 (±0.002)

Consolidation 0.841 (±0.003) Edema 0.904 (±0.002)

Enlarged Cardiomediastinum 0.759 (±0.005) Fracture 0.745 (±0.006)

Lung Lesion 0.784 (±0.003) Lung Opacity 0.770 (±0.002)

Pleural Effusion 0.929 (±0.001) Pleural Other 0.844 (±0.009)

Pneumonia 0.755 (±0.004) Pneumothorax 0.918 (±0.006)

Support Devices 0.928 (±0.001) No Finding 0.876 (±0.002)
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C.9 Coefficients from Splitting by Patient

To help with intuition in important features for the predictive task on each dataset, here we

have the coefficients of logistic regression models trained from splitting by patient.

C.9.1 SEER (Breast)

Table C.10: SEER (Breast) top 10 important features for LR models, all-period training.

Feature Coefficient

SEER historic stage A (1973-2015) Distant -2.113944

SEER historic stage A (1973-2015) Localized 1.676493

Regional nodes examined (1988+) 95.0 -1.167844

CS lymph nodes (2004-2015) 750 1.100824

CS lymph nodes (2004-2015) 755 1.023753

Histologic Type ICD-O-3 8530 -0.913494

Histologic Type ICD-O-3 8543 0.902798

Breast - Adjusted AJCC 6th T (1988-2015) T4d 0.899491

Histologic Type ICD-O-3 8211 0.877848

EOD 10 - extent (1988-2003) 85 -0.791136

Table C.11: SEER (Colon) top 10 important features for LR models, all-period training.

Feature Coefficient

Reason no cancer-directed surgery Surgery performed 2.360161

Regional nodes positive (1988+) 00 1.897706

Regional nodes positive (1988+) 01 1.872008

modified AJCC stage 3rd (1988-2003) 40 -1.787481

EOD 10 - extent (1988-2003) 13 1.766066

Reason no cancer-directed surgery Not recommended, -1.752474

contraindicated due to other cond; autopsy only (1973-2002)

EOD 10 - extent (1988-2003) 85 -1.732619

EOD 10 - extent (1988-2003) 70 -1.704333

CS mets at dx (2004-2015) 99 1.619905

CS mets at dx (2004-2015) 00 1.609454
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Table C.12: SEER (Lung) top 10 important features for LR models, all-period training.

Feature Coefficient

Histologic Type ICD-O-3 8240 2.514539

EOD 4 - nodes (1983-1987) 0 2.074730

EOD 4 - nodes (1983-1987) 7 -1.777530

EOD 10 - size (1988-2003) 140 -1.587893

Histologic Type ICD-O-3 8141 -1.546566

CS tumor size (2004-2015) 998.0 -1.515856

EOD 4 - nodes (1983-1987) 6 -1.497022

Type of Reporting Source Nursing/convalescent home/hospice -1.338998

CS mets at dx (2004-2015) 51 -1.326595

EOD 10 - size (1988-2003) 150 -1.326196

Table C.13: CDC COVID-19 top 10 important features for LR models, all-period training.

Feature Coefficient

res state DE 2.202055

age group 0 - 9 Years -2.114818

age group 80+ Years 1.965279

age group 10 - 19 Years -1.681099

res state GA 1.391469

age group 70 - 79 Years 1.379589

res county WICHITA 1.290644

age group 20 - 29 Years -1.189734

res county SUMNER -1.135073

mechvent yn Yes 1.117372

Table C.14: SWPA COVID-19 top 10 important features for LR models according to experiments

splitting by patient.

Feature Coefficient

age bin (70, 200] 0 -0.781337

age bin (70, 200] 1 0.780673

medication FENTANYL (PF) 50 MCG/ML INJECTION SOLUTION 0.0 0.651419

medication EPINEPHRINE 0.3 MG/0.3 ML INJECTION, AUTO-INJECTOR nan -0.627565

medication HYDROCORTISONE SOD SUCCINATE (PF) 100 MG/2 ML SOLUTION FOR INJECTION 0.0 0.544222

medication HYDROCODONE 5 MG-ACETAMINOPHEN 325 MG TABLET nan -0.520368

medication DEXAMETHASONE SODIUM PHOSPHATE 4 MG/ML INJECTION SOLUTION 0.0 0.502954

medication ASPIRIN 81 MG TABLET,DELAYED RELEASE nan -0.479100

bmi nan -0.427569

age bin (60, 70] 0 -0.380688
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Table C.15: MIMIC-IV top 10 important features for LR models, all-period training.

Feature Coefficient

O2 Delivery Device(s) None -0.307334

Eye Opening None 0.301737

admit age 0.299712

O2 Delivery Device(s) Nasal cannula -0.248463

Motor Response Obeys Commands -0.230931

Pupil Response L Non-reactive 0.223776

Richmond-RAS Scale 0 Alert and calm -0.205476

Temp Site Blood -0.204514

HR 0.0 0.197299

Diet Type NPO 0.195156

Table C.16: OPTN (Liver) top 10 important features for LR models, all-period training.

Feature Coefficient

SERUM CREAT DELTA 0.660589

FUNC STAT TCR 2020.0 0.241507

FUNC STAT TCR 2080.0 -0.236288

DGNC 4110.0 -0.234680

REGION 5.0 0.223940

EDUCATION 998.0 0.218549

ASCITES 3.0 0.218329

ASCITES 1.0 -0.214076

INIT OPO CTR CODE 1054 -0.209265

INIT OPO CTR CODE 4743 -0.207778

C.10 Diagnostic plots

We took the union of the top k most important features from each time point to be included in

the diagnostic plots, where k was tuned depending on the dataset so that the resulting plots

would not be overcrowded. For categorical features, we additionally highlighted (using a thicker

line) features that had consistently high prevalence (≥ p) or experienced a large change in

prevalence across one time point (≥ ∆). The specific parameters of each dataset are defined in

each subsection. For numerical features, we highlighted features whose average ranking across

all time points was ≤ 3 (also chosen to avoid overcrowding).
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C.10.1 SEER (Breast)

For SEER (Breast) diagnostic plots, important features were selected using k = 5, p = 0.4,∆ =
0.2.
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Figure C.30: Diagnostic plot of SEER (Breast) dataset. The important features are selected as

the union of the top 5 features that have the highest absolute value model coefficients. The left

column includes AUROC versus time for both sliding window and all-historical subsampled,

and the maximum AUROC drop for each trained model. The right column provides the absolute

coefficients of each trained model from both regimes, and positive proportion of the significant

features over time. As shown in the gray highlighted region, there are jumps in performance

around 1988 and 2003, which coincides with the introducing and removal of several features (e.g.

T value - based on AJCC 3rd (1988-2003) T1). The latency of jumps in coefficients are caused by

length of sliding window.
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C.10.2 SEER (Colon)

For SEER (Colon) diagnostic plots, important features were selected using k = 3, p = 0.4,∆ =
0.2.
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Figure C.31: Diagnostic plot of SEER (Colon) dataset. The important features are selected as

the union of the top 3 features that have the highest absolute model coefficients. The left

column includes AUROC versus time for both sliding window and all-historical subsampled,

and the maximum AUROC drop for each trained model. The right column provides the absolute

coefficients of each trained model from both regimes, and positive proportion of the significant

features over time. As shown in the gray highlighted region, there are jumps in performance

around 1988 and 2003, which coincides with the introducing and removal of several features

(e.g. SEER modified AJCC stage 3rd (1988-2003) 40). The latency of jumps in coefficients are

caused by length of sliding window.
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C.10.3 SEER (Lung)

For SEER (Lung) diagnostic plots, important features were selected using k = 5, p = 0.2,∆ =
0.2.
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Figure C.32: Diagnostic plot of SEER (Lung) dataset. The important features are selected as

the union of the top 5 features that have the highest absolute model coefficients. The left

column includes AUROC versus time for both sliding window and all-historical subsampled,

and the maximum AUROC drop for each trained model. The right column provides the absolute

coefficients of each trained model from both regimes, and positive proportion of the significant

features over time. As shown in the gray highlighted region, there are jumps in performance

around 1988 and 2003, which coincides with the introducing and removal of several features

(e.g. EOD 10 - nodes (1988-2013) 0 & EOD 10 - extent (1988-2003) 85). The latency of jumps in

coefficients are caused by length of sliding window.
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C.10.4 CDC COVID-19

For CDC COVID-19 diagnostic plots, important features were selected using k = 5, p =
0.15,∆ = 0.15.
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Figure C.33: Diagnostic plot of CDC COVID-19. The important features are selected as the union

of the top 5 features that have the highest absolute model coefficients. The left column includes

AUROC versus time for both sliding window and all-historical subsampled, and the maximum

AUROC drop for each trained model. The right column provides the absolute coefficients of each

trained model from both regimes, and positive proportion of the significant features over time.

As shown in the gray highlighted region, the models trained around June 2021 suffer the largest

maximum AUROC drop, coinciding with a shift in distribution of ages (Figure C.13a) and states

(Figure C.13b). The latency of jumps in coefficients are caused by length of sliding window.
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C.10.5 SWPA COVID-19

For SWPA COVID-19 diagnostic plots, important features were selected using k = 3, p =
0.4,∆ = 0.2.
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Figure C.34: Diagnostic plot of SWPA COVID-19. The important features are selected as the union

of the top 3 features that have the highest absolute model coefficients. The left column includes

AUROC versus time for both sliding window and all-historical subsampled, and the maximum

AUROC drop for each trained model. The right column provides the absolute coefficients of

each trained model from both regimes, and positive proportion of the significant features over

time. One of the hypotheses for relatively large uncertainty is smaller sample size.
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C.10.6 MIMIC-IV

For MIMIC-IV diagnostic plots, important features were selected using k = 3, p = 0.4,∆ = 0.2.
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Figure C.35: Diagnostic plot of MIMIC-IV. The important features are selected as the union of

the top 3 features that have the highest absolute model coefficients. The left column includes

AUROC versus time for both sliding window and all-historical subsampled, and the maximum

AUROC drop for each trained model. The right column provides the absolute coefficients of

each trained model from both regimes, and positive proportion of the significant features over

time. The model performance is relatively stable, coinciding with relatively stable distributions

of a majority of important features.
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C.10.7 OPTN (Liver)

OPTN (Liver) diagnostic plots, with important features selected using k = 3, p = 0.4,∆ = 0.2.
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Figure C.36: Diagnostic plot of OPTN (Liver). The important features are selected as the union

of the top 3 features that have the highest absolute model coefficients. The left column includes

AUROC versus time for both sliding window and all-historical subsampled, and the maximum

AUROC drop for each trained model. The right column provides the absolute coefficients of each

trained model from both regimes, and positive proportion of the significant features over time.

Although the HCC DIAGNOSIS TCR binary features change in positive proportion over time,

these features were not always important, and the other important features (faded) maintain

relatively stable proportions across time. Overall, model performance is quite stable over time.
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C.10.8 MIMIC-CXR
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Figure C.37: Diagnostic plot of MIMIC-CXR. The top and mid left includes AUROC versus time

for both sliding window and all-historical subsampled. The top right is the maximum AUROC

drop for each trained model. The mid-right provides the label proportions over time. The bottom

shows pixel intensities for images in each year. The histogram of pixel intensity is stable over

time, which is consistent with the small variation in model performance over time
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C.11 Model performance over time from three models

All plots in this section are for the all-historical training regime.
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Figure C.38: AUROC versus test timepoints from three model classes on all datasets.
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Figure C.39: AUPRC versus test timepoints from three model classes on all datasets. Label

prevalance refers to the ratio of accumulated positive labels over time.
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C.12 Data Split Details

Table C.17: Split ratio for each dataset for training, validation and testing (both for time-agnostic

splits and in-period splits).

Dataset Split ratio

SEER (Breast) 0.8-0.1-0.1

SEER (Colon) 0.8-0.1-0.1

SEER (Lung) 0.8-0.1-0.1

CDC COVID-19 0.8-0.1-0.1

SWPA COVID-19 0.5-0.25-0.25

MIMIC-IV 0.5-0.25-0.25

OPTN (Liver) 0.5-0.25-0.25

MIMIC-CXR 0.5-0.25-0.25

C.13 Hyperparameter Grids

Table C.18: Hyperparameter grids for model training.

Parameter Values Considered

LR
C 0.01, 0.1, 1, 10, 102, 103, 104, 105

GBDT
n estimators 50, 100

max depth 3, 5

learning rate 0.01, 0.1

MLP
hidden layer sizes 3, 5

learning rate init 10−4
, 10−3

, 0.01
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C.14 AUROC from full-period training

Table C.19: AUROC report from full-period training, the results are in format mean (±std. dev.

across splits)

Dataset Model Full-period AUROC

LR 0.888 (±0.002)

SEER (Breast) GBDT 0.891 (±0.002)

MLP 0.891 (±0.002)

LR 0.863 (±0.003)

SEER (Colon) GBDT 0.868 (±0.002)

MLP 0.869 (±0.003)

LR 0.894 (±0.002)

SEER (Lung) GBDT 0.894 (±0.002)

MLP 0.898 (±0.002)

LR 0.837 (±0.001)

CDC COVID-19 GBDT 0.851 (±0.001)

MLP 0.852 (±0.002)

LR 0.928 (±0.005)

SWPA COVID-19 GBDT 0.930 (±0.004)

MLP 0.928 (±0.006)

LR 0.935 (±0.003)

MIMIC-IV GBDT 0.931 (±0.002)

MLP 0.898 (±0.008)

LR 0.846 (±0.005)

OPTN (Liver) GBDT 0.854 (±0.005)

MLP 0.847 (±0.006)

MIMIC-CXR DenseNet 0.860 (±0.001)
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Appendix D
Domain Adaptation under Missingness Shift

D.1 Motivating Examples

Example 1 (Redundant Features)

Let ms = [1− ϵ, ϵ] and mt = [ϵ, 1− ϵ]. Consider the following data generating process:

Z = uZ

X1 = Z

X2 = Z

Y = Z + uY

uZ ∼ N (0, σ2
Z)

uY ∼ N (0, σ2
Y )

where Z is a latent variable, X1 and X2 are observed covariates, and Y is the label we wish

to predict.

We start by summarizing the findings, and then provide the full algebraic justification. The

optimal (risk-minimizing) linear predictor on the source data is given by:

βs
∗ =

[
ϵ

1− ϵ+ ϵ2
,

1− ϵ

1− ϵ+ ϵ2

]
And for the target data:

βt
∗ =

[
1− ϵ

1− ϵ+ ϵ2
,

ϵ

1− ϵ+ ϵ2

]
The excess risk of the source predictor on the target data is given by:

rt(βs
∗)− rt(βt

∗) = (βs
∗ − βt

∗)
⊤E[X̃ t⊤X̃ t](βs

∗ − βt
∗)

= σ2
Z ·

(1− 2ϵ)2(1− 2ϵ+ 2ϵ2)

(1− ϵ+ ϵ2)2
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As ϵ→ 0, we have:

βs
∗ → [0, 1]

βt
∗ → [1, 0]

rt(βs
∗)− rt(βt

∗)→ σ2
Z

rt([0, 0])− rt(βt
∗)→ σ2

Z

that is, the source classifier performs no better than simply predicting 0 (the mean of Y ). Thus,

rt(βs
∗)→ σ2

Z + σ2
Y = Var(Y )

Proof. In the example, we have:

E[XTX] =

[
σ2
Z σ2

Z

σ2
Z σ2

Z

]
E[XTY ] =

[
σ2
Z

σ2
Z

]
We apply the expressions for E[X̃T X̃] and E[X̃⊤Y ] derived in Appendix D.8:

E[X̃⊤X̃] = (1−m)(1−m)⊤ ⊙ E
[
X⊤X

]
+ diag

(
m(1−m⊤)

)
diag

(
E
[
X⊤X

])
=

[
1−m1 (1−m1)(1−m2)

(1−m1)(1−m2) 1−m2

]
⊙ E

[
X⊤X

]
E[X̃⊤Y ] = (1−m)⊙ E[X⊤Y ]

to get:

E[X̃ t⊤X̃ t] =

[
1− ϵ ϵ(1− ϵ)

ϵ(1− ϵ) ϵ

]
· σ2

Z

E[X̃ t⊤X̃ t]−1 =
1

σ2
Zϵ(1− ϵ)(1− ϵ+ ϵ2)

[
ϵ −ϵ(1− ϵ)

−ϵ(1− ϵ) 1− ϵ

]
E[X̃ t⊤Y ] = σ2

Z

[
1− ϵ
ϵ

]
βt
∗ = E[X̃ t⊤X̃ t]−1E[X̃ t⊤Y ]

=
1

ϵ(1− ϵ)(1− ϵ+ ϵ2)

[
ϵ(1− ϵ) +−ϵ2(1− ϵ)
−ϵ(1− ϵ)2 + ϵ(1− ϵ)

]
=

1

ϵ(1− ϵ)(1− ϵ+ ϵ2)

[
ϵ(1− ϵ)(1− ϵ)

ϵ(1− ϵ)(−(1− ϵ) + 1)

]
=

1

1− ϵ+ ϵ2

[
1− ϵ
ϵ

]
.

Similarly,

βs
∗ =

1

1− ϵ+ ϵ2

[
ϵ

1− ϵ

]
,
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so we can compute

βs
∗ − βt

∗ =
1

1− ϵ+ ϵ2

[
2ϵ− 1
−2ϵ+ 1

]
=

1− 2ϵ

1− ϵ+ ϵ2

[
−1
1

]
Now, excess risk is computed as follows:

rt(βs
∗)− rt(βt

∗) = (βs
∗ − βt

∗)
⊤E[X̃ t⊤X̃ t](βs

∗ − βt
∗)

=
(1− 2ϵ)2

(1− ϵ+ ϵ2)2

[
−1
1

]⊤ [
1− ϵ ϵ(1− ϵ)

ϵ(1− ϵ) ϵ

]
· σ2

Z ·
[
−1
1

]
=

σ2
Z(1− 2ϵ)2(1− 2ϵ+ 2ϵ2)

(1− ϵ+ ϵ2)2

As ϵ→ 0, we can see that rt(βs
∗)− rt(βt

∗)→ σ2
Z .

Additionally, we can compute the excess risk of the constant zero classifier:

rt([0, 0])− rt(βt
∗) = βt⊤

∗ E[X̃ t⊤X̃ t]βt
∗

=
1

(1− ϵ+ ϵ2)2

[
1− ϵ
ϵ

]⊤ [
1− ϵ ϵ(1− ϵ)

ϵ(1− ϵ) ϵ

]
· σ2

Z ·
[
1− ϵ
ϵ

]
=

σ2
Z

(1− ϵ+ ϵ2)2

[
(1− ϵ)2 + ϵ2(1− ϵ)

ϵ(1− ϵ)2 + ϵ2

]⊤ [
1− ϵ
ϵ

]
=

σ2
Z(1− ϵ+ ϵ2)

(1− ϵ+ ϵ2)2

[
(1− ϵ)

ϵ

]⊤ [
1− ϵ
ϵ

]
=

σ2
Z(1− ϵ+ ϵ2)

(1− ϵ+ ϵ2)2
[
(1− ϵ)2 + ϵ2

]
=

σ2
Z(1− 2ϵ+ 2ϵ2)

1− ϵ+ ϵ2

As ϵ→ 0, we can see that rt([0, 0])− rt(βt
∗)→ σ2

Z .
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Example 2 (Confounded Features)

Now, suppose that ms = [0, 0] and mt = [1, 0]. For some constants a, b, c consider the

following data generating process:

X1 = ν1

X2 = aX1 + ν2

Y = bX1 + cX2 + νY

ν1 ∼ N (0, 1)

ν2 ∼ N (0, 1)

νY ∼ N (0, 1).

We will show that the optimal source and target predictors are βs
∗ = [b, c] and βt

∗ = [0, ab
a2+1

+ c].

By setting a = − b
c
, we will show that for any τ > 1, there exists values of a, b, c such that

rt(βs
∗) > τVar(Y ).

Proof. First, we compute βs
∗ (where ms = [0, 0]):

E[X̃s⊤X̃s] = E
[
X⊤X

]
=

[
1 a
a a2 + 1

]
E[X̃s⊤X̃s]−1 =

[
a2 + 1 −a
−a 1

]
E[X̃s⊤Y ] = E[X⊤Y ]

=

[
b+ ac

ab+ a2c+ c

]
βs
∗ = E[X̃s⊤X̃s]−1E[X̃s⊤Y ]

=

[
a2 + 1 −a
−a 1

]
·
[

b+ ac
ab+ a2c+ c

]
=

[
b
c

]
.

Thus, βs
∗ = [b, c].

Now, let us compute βt
∗ (where mt = [1, 0]). Since X1 is entirely missing and X2 is completely

observed, we only regress on X2:

E[X̃ t⊤
2 X̃ t

2] = E[X⊤
2 X2]

= (a2 + 1)

E[X̃ t⊤
2 X̃ t

2]
−1 =

1

a2 + 1

E[X̃ t⊤
2 Y ] = ab+ a2c+ c

E[X̃ t⊤
2 X̃ t

2]
−1E[X̃ t⊤

2 Y ] =
ab+ a2c+ c

a2 + 1

=
ab

a2 + 1
+ c.
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Thus, βt
∗ =

[
0, ab

a2+1
+ c
]
.

Now, let us compute Var(Y ). Note that E[Y ] = 0, so Var(Y ) = E[Y 2]. Also, note that

ν1, ν2, νY are independent:

Var(Y ) = Var(bX1 + cX2 + νY )

= E[(bν1 + c(aν1 + ν2) + νY )
2]

= (b+ ac)2 + c2 + 1

= b2 + 2abc+ a2c2 + c2 + 1.

Thus, Var(Y ) = b2 + 2abc+ a2c2 + c2 + 1.

Now, let us compute rt(βs
∗). Let [βs

∗]2 denote the second dimension of βs
∗ . We have:

rt(βs
∗) = E[(Y − X̃ t

2[β
s
∗]2)

2]

= E[Y 2]− 2E[X̃ t
2[β

s
∗]2Y ] + E[(X̃ t

2[β
s
∗]2)

2]

= Var[Y 2]− 2E[X2[β
s
∗]2Y ] + E[(X2[β

s
∗]2)

2]

= Var[Y 2]− 2E[(aν1 + ν2)c(bν1 + c(aν1 + ν2) + νY )] + E[((aν1 + ν2)c)
2]

= b2 + 2abc+ a2c2 + c2 + 1− 2[ac(b+ ac) + c2] + [a2c2 + c2]

= b2 + 1.

Thus, we have
rt(βs

∗)
Var(Y )

= b2+1
b2+2abc+a2c2+c2+1

. If we set a = − b
c
, then we have:

rt(βs
∗)

Var(Y )
=

b2 + 1

b2 + 2abc+ a2c2 + c2 + 1

=
b2 + 1

b2 − 2b2 + b2 + c2 + 1

=
b2 + 1

c2 + 1
.

Now suppose that for some τ > 1, we would like rt(βs
∗) > τVar(Y ). Then, it is easy to see

that we can simply choose b large enough, c small enough, and a = − b
c
, such that

b2+1
c2+1

> τ .
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D.2 DAMS with Indicators as an Instance of Covariate Shift

This section contains a proof of Proposition 1: Assume we observe ξ. Let us consider an

augmented set of covariates x̃′ = (x̃, ξ). When ξ is drawn independently of other covariates or

depending only on other completely observed covariates, we will show that missingness shift

satisfies the covariate shift assumption, i.e, P s(Y |X̃ ′ = x̃′) = P t(Y |X̃ ′ = x̃′).

First, let us formalize what it means for ξ to be drawn independently of other covariates or

depending only on other completely observed covariates:

(a) Independent of other covariates When ξ is drawn independently of other covariates, as

described in the DAMS with UCAR setup (Section 5.3), we have that ξ ∼ Bernoulli(1−m)
for some constant vector of missingness rates m ∈ [0, 1]d.

(b) Depending only on other completely observed covariates Now, suppose that some

subset of covariates Xc ⊆ X is completely observed (i.e. no missingness), and the missing-

ness of the other covariates Xm = X \Xc depends on Xc. That is, ξ ∼ Bernoulli(f(Xc))
for some function f : R|Xc| → [0, 1]|Xm|

.

Since (b) is more general than (a), we adopt notation from (b) throughout our proof, and

then argue why it also holds for (a).

Proof. Consider some augmented set of covariates taking values x̃′ = (x̃m, ξ, xc). To prove that

the covariate shift assumption holds, let us start by considering the left-hand side of the equation.

Applying Bayes’ Rule, we have:

P s(Y |X̃ ′ = x̃′) = P s(Y |X̃s
m = x̃m, ξ

s = ξ,Xc = xc) =
P s(Y, X̃s

m = x̃m, ξ
s = ξ,Xc = xc)∑

y P
s(Y = y, X̃s

m = x̃m, ξs = ξ,Xc = xc)

We can rewrite the numerator as follows:

P s(Y, X̃s
m = x̃m, ξ

s = ξ,Xc = xc) =
∑

xm:xm⊙ξ=x̃m

P (Y, X̃s
m = x̃m, ξ

s = ξ,Xm = xm, Xc = xc)

=
∑

xm:xm⊙ξ=x̃m

P (Y, ξs = ξ,Xm = xm, Xc = xc)

=
∑

xm:xm⊙ξ=x̃m

P (ξs = ξ|Y,Xm = xm, Xc = xc) · P (Y,Xm = xm, Xc = xc)

=
∑

xm:xm⊙ξ=x̃m

P (ξs = ξ|Xc = xc) · P (Y,Xm = xm, Xc = xc)

= P (ξs = ξ|Xc = xc)
∑

xm:xm⊙ξ=x̃m

P (Y,Xm = xm, Xc = xc),

where the first line follows from marginalizing over all possible values of Xm, the second line

comes from the fact that x̃m is determined given xm and ξ, the third line comes from Bayes’
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Rule, the fourth line comes the fact that ξ only depends on Xc, and the last line comes from

pulling the first term out of the summation.

Plugging back into the expression for P s(Y |X̃ ′ = x̃′), we have:

P s(Y |X̃ ′ = x̃′) =
P s(Y, X̃s

m = x̃m, ξ
s = ξ,Xc = xc)∑

y P
s(Y = y, X̃s

m = x̃m, ξs = ξ,Xc = xc)

=
P (ξs = ξ|Xc = xc)

∑
xm:xm⊙ξ=x̃m

P (Y,Xm = xm, Xc = xc)∑
y P (ξs = ξ|Xc = xc)

∑
xm:xm⊙ξ=x̃m

P (Y = y,Xm = xm, Xc = xc)

=

∑
xm:xm⊙ξ=x̃m

P (Y,Xm = xm, Xc = xc)∑
xm:xm⊙ξ=x̃m

P (Y = y,Xm = xm, Xc = xc)
,

which does not contain source-specific quantities (everything is in terms of the underlying

distribution). By the same logic,

P t(Y |X̃ ′ = x̃′) =

∑
xm:xm⊙ξ=x̃m

P (Y,Xm = xm, Xc = xc)∑
xm:xm⊙ξ=x̃m

P (Y = y,Xm = xm, Xc = xc)
.

Thus, P s(Y |X̃ ′ = x̃′) = P t(Y |X̃ ′ = x̃′) as desired. When ξ is instead drawn independently

of other covariates, as in (a) above, we note that all of the steps of the proof follow through

simply by removing Xc. Additionally, while all of the above expressions apply to discrete X ,

extension to continuous X is straightforward (e.g. replace summations with integrals, and

constants with sets or intervals).

D.3 Constant Missingness as L2 Regularization

This section contains a proof of Theorem 5.4.1. This proof is based off of that presented in Wager

et al. (2013)’s work showing dropout to be a form of adaptive regularization. Instead of assuming

a single constant dropout rate across all covariates, however, our proof extends to varying rates

of missingness (i.e. different constant dropout rates) for different covariates.

Proof. Assume we know the constant missingness rates m. For mathematical convenience, we

preprocess x̃ by multiplying each dimension by the corresponding
1

1−mj
. For the remainder of

this derivation, this preprocessed data is referred to as x̃.

Similar to Wager et al. (2013), we start with an analysis of generalized linear models and

then consider the case of linear regression. Minimizing the expected negative log likelihood

lx̃(i),y(i)(β) of a generalized linear model pβ(y|x) = h(y) exp{yx · β − A(x · β)}, we have:

β̂ = arg min
β∈Rd

n∑
i=1

Eξ[lx̃(i),y(i)(β)]
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n∑
i=1

Eξ[lx̃(i),y(i)(β)] =
n∑

i=1

Eξ[− log pβ(y
(i)|x̃(i))]

=
n∑

i=1

Eξ[−(log h(y(i)) + y(i)x̃(i)β − A(x̃(i) · β))]

=
n∑

i=1

− log h(y(i))− y(i)Eξ[x̃
(i)]β + Eξ[A(x̃

(i) · β)]

=
n∑

i=1

− log h(y(i))− y(i)
(
x(i) ⊙ 1−m

1−m

)
β + Eξ[A(x̃

(i) · β)]

=
n∑

i=1

−(log h(y(i)) + y(i)x(i)β − A(x(i)β))− A(x(i)β) + Eξ[A(x̃
(i) · β)]

=
n∑

i=1

lx(i),y(i)(β) + Eξ[A(x̃
(i) · β)]− A(x(i)β)

=
n∑

i=1

lx(i),y(i)(β) +R(β)

where R(β) ≜
∑n

i=1 Eξ[A(x̃
(i) · β)]− A(x(i)β). How do we interpret R(β)?

First, we do a second order Taylor expansion of A around xβ. Note that linear regression

has a second order log partition function. Thus, for linear regression this expansion is exact:

A(y) ≈ A(xβ) + A′(xβ)(y − xβ) +
1

2
A′′(xβ)(y − xβ)2

A(x̃β) ≈ A(xβ) + A′(xβ)(x̃β − xβ) +
1

2
A′′(xβ)(x̃β − xβ)2

= A(xβ) + A′(xβ)(x̃− x)β +
1

2
A′′(xβ)(x̃β − xβ)2

Now, we can compute the first term of R(β):

Eξ[A(x̃ · β)] ≈ Eξ[A(xβ)] + Eξ[A
′(xβ)(x̃− x)β] + Eξ[

1

2
A′′(xβ)(x̃β − xβ)2]

= A(xβ) + 0 +
1

2
A′′(xβ)Eξ[(x̃β − xβ)2]

= A(xβ) +
1

2
A′′(xβ)Varξ(x̃β)

where the second step follows because Eξ[x̃] = x. Thus, R(β) is given by:

R(β) =
n∑

i=1

Eξ[A(x̃
(i) · β)]− A(x(i)β)

≈
n∑

i=1

A(x(i)β) +
1

2
A′′(x(i)β)Varξ(x̃

(i)β)− A(x(i)β)
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=
n∑

i=1

1

2
A′′(x(i)β)Varξ(x̃

(i)β)

≜ Rq(β).

Note that the first term corresponds to variance of y(i), and the second term corresponds to

the variance of the estimated GLM parameter due to noising, or in the linear case, Var(y(i)).
Additionally, note that for linear regression R(β) = Rq(β) since the approximate equality comes

from the Taylor series approximation.

Analyzing Varξ(x̃
(i)β),

Varξ(x̃
(i)β) =

d∑
j=1

Varξ(x̃
(i)
j βj)

=
d∑

j=1

Varξ

(
x
(i)
j

1−mj

· bj · βj

)

=
d∑

j=1

(
x
(i)
j

1−mj

)2

β2
j (1−mj)(mj)

=
d∑

j=1

mj

1−mj

(
x
(i)
j

)2
β2
j

where bj ∼ Bernoulli(1−mj). Thus, Rq(β) is given by:

Rq(β) =
1

2

n∑
i=1

A′′(x(i)β)
d∑

j=1

mj

1−mj

(
x
(i)
j

)2
β2
j .

Let V (β) ∈ Rn×n
be diagonal with entries A′′(x(i)β), and X ∈ Rn×d

be the design matrix with

rows x(i)
. For linear regression, V (β) is given by the identity matrix. Then, we can rewrite

Rq(β) as:

Rq(β) =
1

2

(
β ⊙

√
m

1−m

)⊤

diag(X⊤V (β)X)

(
β ⊙

√
m

1−m

)
Rq(β) =

1

2

(
β ⊙ m

1−m

)⊤

diag(I)

(
β ⊙ m

1−m

)
=

1

2

(
diag(I)1/2β ⊙ m

1−m

)⊤(
diag(I)1/2β ⊙ m

1−m

)
=

1

2

(
β∆̃diag

)⊤ (
β∆̃diag

)
where ∆̃diag = diag

(√
m

1−m

)
diag(I)1/2, where diag

(√
m

1−m

)
refers to a diagonal matrix with

the vector quantities on the diagonal, and diag(I)1/2 refers to the square root of the diagonal of
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the Fisher information matrix. Thus, for linear regression, applying missingness rates m ∈ [0, 1]d

to data scaled by
1

1−m
can be viewed as an attempt to apply L2 regularization of β scaled by

∆̃diag.

D.4 Identification of Clean Distribution from Corrupted
Distribution

This section proves Lemma 5.5.1, which states that the clean distribution p is identified from the

corrupted distribution p̃ given missingness rates m, and m ≺ 1.

Proof. LetAk
denote the set of possible values of x where at most k of the dimensions of x are 0.

We would like to show that ∀k ∈ {0, 1, ..., d}, ∀a ∈ Ak
, the clean distribution pa,y is identifiable

(and hence px,y is identifiable) for all values of x and y. We proceed with a proof by induction

on k.

• Base case (k = 0):

Consider A0
, the set of possible values of x where none of the dimensions of x are 0. For

any subset a ⊆ A0
, we can write:

p̃a,y =
d∏

j=1

(1−mj)pa,y

which can be rearranged to recover pa from p̃a and m, which are both known:

pa,y =
d∏

j=1

1

1−mj

p̃a,y.

Thus pa,y is identified for a ⊆ A0
.

• Inductive Step: Assume pa,y is identified for a ⊆ Ak
. Consider some a′ ⊆ Ak+1

. Using

equation (5.1), we have:

p̃a′,y =
∑
b:b⇝a′

pb,y ·
d∏

j=1

(1−mj)
[a′j ] ̸=0m

[bj ]̸=0−[a′j ]̸=0

j

= pa′,y ·
d∏

j=1

(1−mj)
[a′j ]̸=0 +

∑
b:b⇝a′,
b̸=a′

pb,y ·
d∏

j=1

(1−mj)
[a′j ]̸=0m

[bj ]̸=0−[a′j ]̸=0

j

Recall from Remark 3 that if b⇝ a′, then the dimensions of b that are 0 must be a subset

of the ones that are 0 in a′. Additionally, any dimensions that are nonzero in both b and
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a′ must match in value. This implies that if there are the same number of zeros in b and

a′, then b = a′. The remaining b where b ⇝ a′ have at least one less zero than a′. Thus,

the set of {b : b⇝ a′, b ̸= a′} ∈ Ak
, and by our inductive hypothesis, pb,y are identified

when b ∈ Ak
. As a result, we can identify the second term in the equation above (the

summation over b’s), and rearranging the equation, we can identify pa′,y as p̃ and m are

known.

Thus, by the principle of mathematical induction, pa is identified for a ∈ Ak
, ∀k ∈ {0, 1, ..., d}.

Therefore, given m, we have identified the clean distribution from the corrupted distribution.

Additionally, while all of the above expressions apply to discrete X , extension to continuous X
is straightforward (e.g. replace summations with integrals, and constants with sets or intervals).

D.5 Identification of Labeled Target Distribution from the
Labeled Source Distribution

Here we prove Theorem 5.5.2, which states that:

p̃tx,y =
∑
z:z⇝x

p̃sz,y ·
d∏

j=1

(1− rs→t
j )[xj ] ̸=0(rs→t

j )[zj ]̸=0−[xj ]̸=0

Proof. Applying equation (5.1), the corrupted source and target distributions can be written as:

p̃sa,y =
∑
b:b⇝a

pb,y ·
d∏

j=1

(1−msj)
[aj ] ̸=0m

[bj ]̸=0−[aj ]̸=0

sj

p̃ta,y =
∑
c:c⇝a

pc,y ·
d∏

j=1

(1−mtj)
[aj ]̸=0m

[cj ]̸=0−[aj ]̸=0

tj

We apply relative missingness r = rs→t = mt−ms

1−ms
to source distribution p̃s, denoting this

new distribution as p̃s→t
:

p̃s→t
a,y =

∑
b:b⇝a

p̃sb,y ·
d∏

j=1

(1− rj)
[aj ] ̸=0r

[bj ]̸=0−[aj ]̸=0

j

=
∑
b:b⇝a

∑
c:c⇝b

pc,y ·
d∏

j=1

(1−msj)
[bj ]̸=0m

[cj ]̸=0−[bj ] ̸=0

sj ·
d∏

j=1

(1− rj)
[aj ]̸=0r

[bj ]̸=0−[aj ]̸=0

j

=
∑
c:c⇝b

pc,y
∑
b:b⇝a

·
d∏

j=1

(1−msj)
[bj ] ̸=0m

[cj ] ̸=0−[bj ]̸=0

sj ·
d∏

j=1

(1− rj)
[aj ]̸=0r

[bj ] ̸=0−[aj ]̸=0

j
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=
∑
c:c⇝b

pc,y
∑
b:b⇝a

·
d∏

j=1

(1−msj)
[bj ]̸=0m

[cj ] ̸=0−[bj ]̸=0

sj ·
d∏

j=1

(
1−mtj

1−msj

)[aj ] ̸=0
(
mtj −msj

1−msj

)[bj ]̸=0−[aj ]̸=0

=
∑
c:c⇝b

pc,y
∑
b:b⇝a

d∏
j=1

(1−msj)
1{[cj ]̸=0=[bj ] ̸=0=1,[aj ]̸=0=0}+1{[cj ] ̸=0=[bj ]̸=0=[aj ]̸=0=1}

·m1{[cj ] ̸=0=1,[bj ]̸=0=[aj ]̸=0=0}
sj

·
(
1−mtj

1−msj

)
1{[cj ] ̸=0=[bj ]̸=0=[aj ]̸=0=1}

·
(
mtj −msj

1−msj

)
1{[cj ]̸=0=[bj ] ̸=0=1,[aj ]̸=0=0}

=
∑
c:c⇝b

pc,y
∑
b:b⇝a

d∏
j=1

m
1{[cj ] ̸=0=1,[bj ]̸=0=[aj ]̸=0=0}
sj

· (1−mtj)
1{[cj ]̸=0=[bj ]̸=0=[aj ]̸=0=1}

· (mtj −msj)
1{[cj ] ̸=0=[bj ]̸=0=1,[aj ]̸=0=0}

=
∑
c:c⇝a

pc,y ·

 ∏
j:[cj ] ̸=0=[aj ] ̸=0=1

1−mtj

 ·
 ∏

j:[cj ]̸=0=[aj ]̸=0=0

1


·
∑
b:b⇝a

 ∏
j:[cj ] ̸=0=1,[aj ] ̸=0=0

m
1−[bj ]̸=0

sj (mtj −msj)
[bj ]̸=0


=
∑
c:c⇝a

pc,y ·

 ∏
j:[cj ] ̸=0=[aj ] ̸=0=1

1−mtj

 ·
 ∏

j:[cj ]̸=0=[aj ]̸=0=0

1


·

∑
[b] ̸=0∈{0,1}d

 ∏
j:[cj ] ̸=0=1,[aj ] ̸=0=0

m
1−[bj ]̸=0

sj (mtj −msj)
[bj ]̸=0


=
∑
c:c⇝a

pc,y ·

 ∏
j:[cj ] ̸=0=[aj ] ̸=0=1

1−mtj

 ·
 ∏

j:[cj ]̸=0=[aj ]̸=0=0

1

 ·
 ∏

j:[cj ] ̸=0=1,[aj ]̸=0=0

mtj


=
∑
c:c⇝a

pc,y

d∏
j=1

(1−mtj)
[aj ] ̸=0m

[cj ]̸=0−[aj ]̸=0

tj

= p̃ta,y

as desired. The steps are explained in words below:

• Plug in equation for corrupted source distribution.

• Switch summation order and factor out pc,y.
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• Plug in for r.

• Note that [cj] ̸=0 − [bj ]̸=0 = 1 only if [cj ]̸=0 = 1 and [bj ]̸=0 = 0. Use similar reasoning for

the remaining, keeping in mind that [c] ̸=0 ⪰ [b] ̸=0 ⪰ [a]̸=0. Simplify.

• Since all elements of the sum have 1{[c]̸=0 ⪰ [b] ̸=0 ⪰ [a] ̸=0}, it is also true that 1{[c] ̸=0 ⪰
[a]̸=0}.

• If [ai] ̸=0 = [ci] ̸=0 = 1, then [bi] ̸=0 = 1 necessarily.

• Note that if c ⇝ b ⇝ a and [ci] ̸=0 = 1, [ai ]̸=0 = 0, then ∀i, bi ∈ {0, ci}. We can then

perform a change of variables in the summation, now summing over [b]̸=0 ∈ {0, 1}d
instead.

• We use the following identity for arbitrary d-dimensional vectors a and b:∑
u∈{0,1}d

∏
j

a
uj

j b
1−uj

j =
∏
j

(aj + bj)

To gain intuition for why this is the case, let’s start with d = 2:

LHS =
∑

u∈{0,1}d

∏
j

a
uj

j b
1−uj

j

=
∑

u∈{0,1}2
au1
1 b1−u1

1 au2
2 b

(1−u2)
2

=
∑

u∈[(1,1),(1,0),(0,1),(0,0)]

au1
1 b1−u1

1 au2
2 b

(1−u2)
2

= a1a2 + a1b2 + b1a2 + b1b2

RHS =
∏
j

(aj + bj)

= (a1 + b1)(a2 + b2)

= a1a2 + a1b2 + b1a2 + b1b2

Notice that the right-hand side is a product of sums (aj + bj), of which there are d terms.

When expanding this product of sums into a sum of products, each term in the sum of

products will include either aj or bj for all j ∈ 1, 2, ..., d. Summing over all possible

choices of either aj or bj for all j is then equivalent to summing over all possible values of

a binary d-dimensional vector u. Thus, we get the left-hand side of the identity.

• The remaining steps are straightforward simplifications to get a form matching equation

(5.3).

• Note that while all of the above expressions apply to discrete X , extension to continuous

X is straightforward (e.g. replace summations with integrals, and constants with sets or

intervals).
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D.6 Error Bound for Estimating Non-Missing Proportions

This is a proof of Theorem 5.6.1. To estimate the non-missingness proportion q = P (X̃ = 1)
within ϵ of the true non-missingness proportion with probability at least 1−δ, we use Hoeffding’s

bound to show:

P (|q̂ − q| ≥ ϵ) ≤ 2 exp(−2ne2) = δ

=⇒ −2nϵ2 = log(δ/2)

=⇒ n =
log(2/δ)

2ϵ2

=⇒ |q̂ − q| =
√

log(2/δ)

2n
.

Now, we show that with high probability, the estimate for 1−rs→t = qt
qs

is close to the true value.

This part of the derivation is similar to that used in Garg et al., 2021. Using triangle inequality,∣∣∣∣ q̂tq̂s − qt
qs

∣∣∣∣ = ∣∣∣∣qsq̂t − q̂sqt
q̂sqs

∣∣∣∣
=

1

q̂sqs
|qsq̂t − qsqt + qsqt − q̂sqt|

≤ 1

q̂sqs
|qsq̂t − qsqt|+

1

q̂sqs
|qsqt − q̂sqt|

≤ 1

q̂s
|q̂t − qt|+

qt
q̂sqs
|qs − q̂s| .

On the right hand side, we use the union bound and plug in δ/2 for δ in Hoeffding’s bound.

Plugging in, we then have that with probability at least 1− δ,

∣∣∣∣ q̂tq̂s − qt
qs

∣∣∣∣ ≤ 1

q̂s

√ log(4/δ)

2nt

+
qt
qs

√
log(4/δ)

2ns


=⇒

∣∣r̂s→t − rs→t
∣∣ ≤ 1

P̂ s(x̃ = 1)

√ log(4/δ)

2nt

+ (1− rs→t)

√
log(4/δ)

2ns

 .
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D.7 Justification for the Non-parametric Procedure with
Non-Negative Relative Missingness

Simple Justification Since (5.3) matches the form of (5.1) except with m = rs→t
, applying

missingness with rate rs→t
to the source distribution will yield samples independent and iden-

tically distributed to the target distribution. That is, plugging in p̃s for p and rs→t
for m, we

have:

p̃x,y =
∑
z:z⇝x

pz,y ·
d∏

j=1

(1−mj)
[xj ]̸=0m

[zj ]̸=0−[xj ]̸=0

j

=
∑
z:z⇝x

p̃sz,y ·
d∏

j=1

(1− rs→t
j )[xj ] ̸=0(rs→t

j )[zj ]̸=0−[xj ]̸=0

= p̃tx,y

where the first line is (5.1) and the third line follows from (5.3).

Alternative Justification Suppose that mt ⪰ ms
, where ⪰ denotes whether all elements

of mt
are greater than or equal to all corresponding elements of ms

, that is, mt
j ≥ ms

j for

j = 1, 2, ..., d. Below, we show that the data generating process for the target data is equivalent

to applying a missingness filter with relative missingness rate rs→t
applied to the source data. To

draw a point from the source, target, and transformed distribution, respectively, one first draws

a clean data point (x, y) ∼ P (X, Y ), where x ∈ Rd, y ∈ R, and then applies the respective

missingness filter to the clean covariates:

x̃s = νs(x) = x⊙ ξs

x̃t = νt(x) = x⊙ ξt

x̃s→t = νs→t(νs(x)) = x⊙ ξs ⊙ ξs→t

where ξt ∼ Bernoulli(1 − mt), ξs ∼ Bernoulli(1 − ms), and ξs→t ∼ Bernoulli(1 − rs→t).
Combining Bernoullis, we have:

ξs ⊙ ξs→t =

{
1 w.p.

(
1− mt−ms

1−ms

)
· (1−ms)

0 otherwise

=

{
1 w.p. (1−mt)
0 otherwise

= ξt

Thus, for true relative missing rates rs→t
, we have νt(x) = νs→t(νs(x)). Since the data

generating process after applying νs→t to source data is now identical to the data generating

process of the target dataset, we have {(νs→t(X̃
s,i), Y s,i)}ns

i=1 drawn independent and identically

distributed to P t(X̃, Y ).
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D.8 Optimal Linear Predictors

D.8.1 Optimal linear target predictor, derived from target covariances

For each dimension j, the covariance between corrupted data X̃j with missingness rate m and

its labels Y is Cov(X̃j, Y ) = Cov(Xj · ξj, Y ) = (1−mj)Cov (Xj, Y ). Thus,

Cov(X, Y ) =
1

1−m
⊙ Cov(X̃, Y )

E[X⊤Y ] = Cov (X, Y ) + E[X]⊤E[Y ]

=
1

1−m
⊙ Cov

(
X̃, Y

)
+

1

1−m
⊙ E[X̃]⊤E[Y ]

=
1

1−m
⊙ E[X̃⊤Y ].

Plugging into the ordinary least squares regression solution,

βt
∗ = E[X̃ t⊤X̃ t]−1E[X̃ t⊤Y t]

= E[X̃ t⊤X̃ t]−1
(
(1−mt)⊙ E[X⊤Y ]

)
= E[X̃ t⊤X̃ t]−1

(
1−mt

1−ms

⊙ E[X̃s⊤Y s]

)
= E[X̃ t⊤X̃ t]−1

(
rs→t ⊙ E[X̃s⊤Y s]

)
.

The remainder of this section derives the optimal linear target predictor, where the corrupted

target covariance is derived from the corrupted source covariance.

D.8.2 Means, Variances, and Covariances

This section begins by deriving the relationships between the means, covariances, and variances

of the corrupted and clean data. Then, it derives the relationships between corrupted and clean

E[X⊤X]. Finally, the derived first and second moments are summarized in Table D.1.

Recall that for any covariate xj , we have:

x̃j =

{
0 w.p. mj

xj w.p. 1−mj

= bjxj

where bj ∼ Bernoulli(1−mj). The mean of the corrupted data is given by:

E[X̃] = (1−m)⊙ E [X]
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To derive the covariance matrix of the corrupted data, consider the covariance between two

arbitrary distinct covariate dimensions x̃1 and x̃2. Let A = b1, B = x1, C = b2, and D = x2.

Note that A and C are independent of all other variables. Thus,

Cov(x̃1, x̃2) = Cov(AB,CD)

= E[ABCD]− E[AB]E[CD]

= E[ABCD]− E[A]E[B]E[C]E[D]

= E[A]E[C](E[BD]− E[B]E[D])

= E[A]E[C]Cov(B,D)

= (1−m1)(1−m2)Cov (x1, x2)

=⇒ Cov(x1, x2) =
1

(1−m1)(1−m2)
Cov(x̃1, x̃2)

And similarly,

Cov(x̃1, y) = (1−m1)Cov (x1, y)

=⇒ Cov (x1, y) =
1

1−m1

Cov(x̃1, y)

The variance (entries along the diagonal of the covariance matrix) is given by:

Var(x̃1) = Var (b1x1)

= Var(AB)

= (σ2
A + µ2

A)(σ
2
B + µ2

B)− µ2
Aµ

2
B

= (m1(1−m1) + (1−m1)
2)
(
Var(x1) + E[x1]

2
)
− (1−m1)

2E[x1]
2

= (1−m1)
(
Var(x1) + E[x1]

2
)
− (1−m1)

2E[x1]
2

= (1−m1)
(
Var(x1) + E[x1]

2 − (1−m1)E[x1]
2
)

= (1−m1)
(
Var(x1) + E[x1]

2 − E[x1]
2 +m1E[x1]

2
)

= (1−m1)
(
Var(x1) +m1E[x1]

2
)

= (1−m1)Var(x1) +m1(1−m1)E[x1]
2

Var(x1) =
Var(x̃1)

1−m1

−m1E[x1]
2

=
Var(x̃1)

1−m1

− m1

(1−m1)2
E[x̃1]

2

Putting this together, the variance-covariance matrix is given by (elementwise division

below):

Cov(X̃, X̃) = (1−m)(1−m)⊤ ⊙ Cov(X,X)
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+ diag(((1−m)− (1−m)2)Var(X) +m(1−m)E[x1]2)
= (1−m)(1−m)⊤ ⊙ Cov(X,X) + diag(m(1−m)(Var(X) + E[X]2))

= (1−m)(1−m)⊤ ⊙ Cov(X,X)

+ diag(m(1−m)⊤)diag(Cov(X,X) + E[X]⊤E[X])

= (1−m)(1−m)⊤ ⊙ Cov(X,X) + diag(m(1−m)⊤)diag(E[X⊤X])

=⇒ Cov(X,X) =

(
1

1−m

)(
1

1−m

)⊤
⊙ Cov(X̃, X̃)

+ diag

− Var(X̃)

(1−m)2
+

Var(X̃)

1−m
−

mE
[
X̃
]2

(1−m)2


=

(
1

1−m

)(
1

1−m

)⊤
⊙ Cov(X̃, X̃)− diag

(
m

(1−m)2
(Var(X̃) + E[X̃]2)

)
Thus far, we have been working with the covariance matrix. How do the expressions for

covariance relate to X̃⊤X̃ and X̃⊤Y ? We have:

Cov(X̃, X̃) = (1−m)(1−m)⊤ ⊙ Cov(X,X) + diag

(
m(1−m)⊤

)
diag(E[X⊤X])

E[X̃⊤X̃] = Cov

(
X̃, X̃

)
+ E[X̃]⊤E[X̃]

= (1−m)(1−m)⊤ ⊙ (Cov(X,X) + E[X]⊤E[X])diag

(
m(1−m)⊤

)
diag

(
E
[
X⊤X

])
= (1−m)(1−m)⊤ ⊙ E

[
X⊤X

]
+ diag

(
m(1−m⊤)

)
diag

(
E
[
X⊤X

])
Additionally,

Cov (X,X) =

(
1

1−m

)(
1

1−m

)⊤
⊙ Cov(X̃, X̃) + diag

(
− m

(1−m)2

)
diag

(
Var(X̃) + E[X̃]2

)
E
[
X⊤X

]
= Cov (X,X) + E [X]⊤ E [X]

=

(
1

1−m

)(
1

1−m

)⊤
⊙
(

Cov(X̃, X̃) + E[X̃]⊤E[X̃]
)

+ diag

(
− m

(1−m)2

)
diag

(
Var(X̃) + E[X̃]2

)
=

(
1

1−m

)(
1

1−m

)⊤
⊙ E[X̃⊤X̃]− diag

(
m

(1−m)2

)
diag

(
E[X̃⊤X̃]

)

D.8.3 Closed Form Solution

Using results from previous sections, we can now derive a closed form solution for the optimal

linear classifier for a target domain with missing rates mt, given labeled data from a source

domain with missing rates ms. We break down this problem by going from corrupted data

with some missingness rate to clean data with 0 missingness, and then from clean data with 0

missingness to corrupted data with another level of missingness.
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Table D.1: Summary of 1st and 2nd moments of corrupted data and clean data

Quantity of Interest Expression

E [X] 1
1−m
⊙ E

[
X̃
]

E
[
X̃
]

(1−m)⊙ E [X]

E
[
X⊤X

] (
1

1−m

) (
1

1−m

)⊤ ⊙ E
[
X̃⊤X̃

]
− diag

(
m

(1−m)2

)
diag

(
E[X̃⊤X̃]

)
E
[
X̃⊤X̃

]
(1−m)(1−m)⊤ ⊙ E

[
X⊤X

]
+ diag

(
m(1−m)⊤

)
diag

(
E
[
X⊤X

])
Suppose we are going from corrupted data X̃ with missing rate m to clean data X with 0

missingness:

Cov (X, y) =
1

1−m
⊙ Cov

(
X̃, y

)
E
[
X⊤y

]
= Cov (X, y) + E [X]⊤ E [y]

=
1

1−m
⊙ Cov

(
X̃, y

)
+

1

1−m
⊙ E

[
X̃
]⊤

E [y]

=
1

1−m
⊙ E

[
X̃⊤y

]
E
[
X⊤X

]
=

(
1

1−m

)(
1

1−m

)⊤
⊙ E

[
X̃⊤X̃

]
− diag

(
m

(1−m)2
⊙ E

[
X̃⊤X̃

])
=⇒ β =

{(
1

1−m

)(
1

1−m

)⊤
⊙ E

[
X̃⊤X̃

]
− diag

(
m

(1−m)2
⊙ E

[
X̃⊤X̃

])}−1
1

1−m
⊙ E

[
X̃⊤y

]
Going from clean to corrupted data, we have:

E[X̃⊤y] = Cov(X̃, y) + E[X̃]⊤E [y]

= (1−m)⊙ Cov (X, y) + (1−m)⊙ E
[
X̃
]⊤

E [y]

E[X̃⊤X̃] = (1−m)(1−m)⊤ ⊙ E
[
X⊤X

]
+ diag

(
m(1−m⊤)

)
diag

(
E
[
X⊤X

])
=⇒ β̃ =

[
(1−m)(1−m)⊤ ⊙ E

[
X⊤X

]
+ diag

(
m(1−m⊤)

)
diag

(
E
[
X⊤X

])]−1
(1−m)⊙ E

[
X⊤y

]
Now, we put all of these equations together, going from source corrupted data (S), to clean

data (C), to target corrupted data (T).

(S)→ (C):

E[X⊤X] =

(
1

1−ms

)(
1

1−ms

)⊤
⊙ E[X̃s⊤X̃s]− diag

(
ms

(1−ms)2
⊙ (E[X̃s⊤X̃s])

)
E[X⊤y] =

1

1−ms
⊙ Cov

(
X̃s, y

)
+

1

1−ms
⊙ E[X̃s]⊤E [y]
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(C)→ (T):

E
[
X̃t⊤X̃t

]
= (1−mt)(1−mt)

⊤ ⊙ E
[
X⊤X

]
+ diag

(
mt(1−m⊤

t )
)

diag

(
E
[
X⊤X

])
= (1−mt)(1−mt)

⊤ ⊙

[(
1

1−ms

)(
1

1−ms

)⊤
⊙ E

[
X̃s⊤X̃s

]
− diag

(
ms

(1−ms)2
E
[
X̃s⊤X̃s

])]

+ diag

(
mt

1−mt

)
⊙ diag

(
E
[
X̃s⊤X̃s

]
− diag (ms)E

[
X̃s⊤X̃s

])
= (1−mt)(1−mt)

⊤ ⊙
(

1

1−ms

)(
1

1−ms

)⊤
⊙ E

[
X̃s⊤X̃s

]
− (1−mt)(1−mt)

⊤ ⊙ diag

(
ms

(1−ms)2
⊙ E

[
X̃s⊤X̃s

])
+ diag

(
mt(1−mt)

1−ms
⊙ E

[
X̃s⊤X̃s

])

For i ̸= j, the off-diagonal entries of the above expression are given by:

E
[
X̃t⊤X̃t

]
ij
=

(
1−mti

1−msi

)(
1−mtj

1−msj

)
E
[
X̃s⊤X̃s

]
ij
= (1− rs→t

i )(1− rs→t
j )E

[
X̃s⊤X̃s

]
ij

The diagonal entries of the above expression are given by:

E
[
X̃t⊤X̃t

]
ii
= E

[
X̃s⊤X̃s

]
ii

((
1−mti

1−msi

)2

− msi(1−mti)
2

(1−msi)2
+

mti(1−mti)

1−msi

)
= E

[
X̃s⊤X̃s

]
ii

(
(1− rs→t

i )2 −msi(1− rs→t
i )2 +mti(1− rs→t

i )
)

= E
[
X̃s⊤X̃s

]
ii
(1− rs→t

i )
(
(1− rs→t

i )−msi(1− rs→t
i ) +mti

)
= E

[
X̃s⊤X̃s

]
ii
(1− rs→t

i )

(
1−mti

1−msi
− msi −msimti

1−msi
+

mti −msimti

1−msi

)
= E

[
X̃s⊤X̃s

]
ii
(1− rs→t

i )

(
1−msi

1−msi

)
= E

[
X̃s⊤X̃s

]
ii
(1− rs→t

i )

Additionally,

E
[
X̃t⊤y

]
= (1−mt)⊙ E

[
X⊤y

]
= (1−mt)⊙

(
1

1−ms
⊙ Cov

(
X̃s, y

)
+

1

1−ms
⊙ E

[
X̃s
]⊤

E [y]

)
=

1−mt

1−ms
⊙ E

[
X̃s⊤y

]

185



D.9 Experiment Details

Experiments were run on a machine with 28 CPU cores. The linear regression models were

implemented from scratch and validated against that of sklearn. The MLPRegressor class from

the scikit-learn Python package was used with default hyperparameters, and the XGBoost class

from the xgboost Python package was used with default hyperparameters. All experiments

(except imputation) are feasible to run within a few hours.

Semi-synthetic experiments on linear models included 10 samples of β, and 50 samples of

missingness rates under each regime (ms ⪯ mt
and ms

? mt
). Semi-synthetic experiments on

nonlinear models (XGB, NN) included 5 samples of β and 20 samples of missingness rates under

each regime. Across these runs, 95% confidence intervals were computed.

In the imputation experiments, a MissForest imputer from the missingpy Python package

was trained on the combination of the source training set and target training set (just on the

covariates, without labels). This imputer was then applied to both the source and target test

sets. Finally, we train a source classifier on the imputed source labeled data and evaluate its

performance on the target unlabeled data. We note that in our experience with the imputation

experiments, imputation was somewhat slow (2-3 minutes for each imputation), and so all of

our imputed results are reported on 5 samples of β and 20 samples of missingness rates under

each regime, across all semi-synthetic datasets.

D.9.1 Synthetic Data Experiments

Table D.2: MSE/Var(Y) on Redundant Features and Confounded Features settings, with 95%

confidence intervals computed over varying ϵ between 0.05 to 0.95.

ms ⪯ mt ms
? mt

Lin. Reg. (oracle) 0.178 (0.172 – 0.185) 0.206 (0.199 – 0.213)

Lin. Reg. (source) 1.259 (1.231 – 1.286) 1.103 (1.076 – 1.129)

Lin. Reg. (imputed) 1.002 (1.002 – 1.002) 0.918 (0.915 – 0.921)

Lin. Reg. (closed-form adj.) 0.186 (0.180 – 0.193) 0.209 (0.205 – 0.213)
Lin. Reg. (non-param. adj.) 0.473 (0.471 – 0.476) 0.492 (0.489 – 0.495)

XGBoost (oracle) 0.166 (0.160 – 0.172) 0.200 (0.193 – 0.208)

XGBoost (source) 0.166 (0.160 – 0.172) 0.475 (0.458 – 0.492)

XGBoost (imputed) 1.002 (1.002 – 1.002) 1.157 (1.102 – 1.211)

XGBoost (non-param. adj.) 0.425 (0.422 – 0.428) 0.473 (0.468 – 0.478)

MLP (oracle) 0.166 (0.160 – 0.172) 0.201 (0.195 – 0.208)

MLP (source) 0.184 (0.165 – 0.202) 0.321 (0.300 – 0.342)
MLP (imputed) 1.003 (1.002 – 1.003) 0.924 (0.918 – 0.930)

MLP (non-param. adj.) 0.436 (0.428 – 0.444) 0.470 (0.465 – 0.474)
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D.9.2 Semi-Synthetic Data Experiments

The UCI datasets Dua and Graff, 2017 used in this work are:

• Adult Data Set: The classification task is whether an individual’s income exceeds $50K

a year based on census data. The dataset contains categorical variables (occupation,

education, marital status, etc.), as well as continuous variables (age, hours per week, etc.)

• Bank Marketing Data Set: The classification task is whether a client will subscribe a term

deposit. This dataset contains categorical features such as type of job, marital status,

education, whether they have a housing loan, etc., as well as continuous variables such as

age, number of contacts performed, etc.

• Thyroid Disease Data Set: The classification task is of increased vs. decreased binding

protein. This dataset contains binary variables such as whether the patient is pregnant, is

male, on thyroxine, has a tumor, etc., as well as continuous variables such as age, TSH, T3,

TT4, etc.

For semi-synthetic experiments, we pre-process the UCI data by creating dummy variables from

categorical variables, dropping redundant columns, normalizing numerical variables, dropping

binary variables with low frequency (< 5%, since we apply additional synthetic missingness

in our experiments), and dropping columns with low variance (< 5%). We additionally gen-

erate synthetic labels by sampling coefficients βj ∼ Uniform(0, 10),∀j ∈ {0, 1, 2, ..., d} and

computing new synthetic labels ynew = Xβ. Table D.3 contains the MSE/Var(Y) and 95% confi-

dence intervals (from sampling several β and ms,mt
) of the adult dataset, Table D.4 contains

the MSE/Var(Y) and 95% confidence intervals of the bank dataset, and Table D.5 contains the

MSE/Var(Y) and 95% confidence intervals of the thyroid dataset.

Table D.3: MSE/Var(Y) on UCI Adult Semi-synthetic Setting, with 95% confidence intervals

computed over multiple samples of β and ms,mt
(described in Section 7.5).

ms ⪯ mt ms
? mt

Lin. Reg. (oracle) 0.420 (0.415 – 0.424) 0.362 (0.356 – 0.367)

Lin. Reg. (source) 0.437 (0.433 – 0.442) 0.380 (0.373 – 0.386)

Lin. Reg. (imputed) 0.490 (0.471 – 0.509) 0.483 (0.475 – 0.491)

Lin. Reg. (closed-form adj.) 0.422 (0.417 – 0.426) 0.363 (0.358 – 0.368)
Lin. Reg. (non-param. adj.) 0.420 (0.415 – 0.424) 0.373 (0.367 – 0.379)

XGBoost (oracle) 0.398 (0.386 – 0.409) 0.354 (0.344 – 0.363)

XGBoost (source) 0.399 (0.387 – 0.410) 0.379 (0.369 – 0.388)

XGBoost (imputed) 0.512 (0.491 – 0.534) 0.521 (0.508 – 0.535)

XGBoost (non-param. adj.) 0.399 (0.387 – 0.410) 0.392 (0.382 – 0.402)

MLP (oracle) 0.389 (0.378 – 0.401) 0.343 (0.334 – 0.352)

MLP (source) 0.399 (0.387 – 0.410) 0.357 (0.348 – 0.367)

MLP (imputed) 0.480 (0.461 – 0.499) 0.468 (0.456 – 0.481)

MLP (non-param. adj.) 0.389 (0.378 – 0.400) 0.355 (0.346 – 0.364)
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Table D.4: MSE/Var(Y) on UCI Bank Semi-synthetic Setting, with 95% confidence intervals

computed over multiple samples of β and ms,mt
(described in Section 7.5).

ms ⪯ mt ms
? mt

Lin. Reg. (oracle) 0.338 (0.336 – 0.340) 0.433 (0.426 – 0.440)

Lin. Reg. (source) 0.371 (0.369 – 0.373) 0.480 (0.472 – 0.487)

Lin. Reg. (imputed) 0.501 (0.491 – 0.511) 0.592 (0.583 – 0.602)

Lin. Reg. (closed-form adj.) 0.339 (0.337 – 0.340) 0.442 (0.436 – 0.449)
Lin. Reg. (non-param. adj.) 0.338 (0.336 – 0.340) 0.459 (0.453 – 0.466)

XGBoost (oracle) 0.287 (0.279 – 0.295) 0.453 (0.438 – 0.468)

XGBoost (source) 0.305 (0.297 – 0.313) 0.500 (0.484 – 0.516)
XGBoost (imputed) 0.492 (0.482 – 0.503) 0.708 (0.684 – 0.732)

XGBoost (non-param. adj.) 0.287 (0.279 – 0.295) 0.503 (0.486 – 0.519)

MLP (oracle) 0.295 (0.287 – 0.303) 0.458 (0.442 – 0.473)

MLP (source) 0.322 (0.314 – 0.330) 0.499 (0.483 – 0.516)

MLP (imputed) 0.484 (0.474 – 0.494) 0.668 (0.645 – 0.690)

MLP (non-param. adj.) 0.294 (0.286 – 0.302) 0.487 (0.471 – 0.503)

Table D.5: MSE/Var(Y) on UCI Thyroid Semi-synthetic Setting, with 95% confidence intervals

computed over multiple samples of β and ms,mt
(described in Section 7.5).

ms ⪯ mt ms
? mt

Lin. Reg. (oracle) 0.298 (0.292 – 0.303) 0.251 (0.246 – 0.256)

Lin. Reg. (source) 0.350 (0.342 – 0.357) 0.320 (0.314 – 0.326)

Lin. Reg. (imputed) 0.306 (0.298 – 0.313) 0.358 (0.351 – 0.365)

Lin. Reg. (closed-form adj.) 0.316 (0.310 – 0.322) 0.291 (0.286 – 0.295)
Lin. Reg. (non-param. adj.) 0.293 (0.288 – 0.298) 0.291 (0.286 – 0.296)

XGBoost (oracle) 0.316 (0.304 – 0.328) 0.274 (0.265 – 0.282)

XGBoost (source) 0.310 (0.298 – 0.322) 0.352 (0.341 – 0.362)
XGBoost (imputed) 0.355 (0.346 – 0.364) 0.441 (0.430 – 0.452)

XGBoost (non-param. adj.) 0.310 (0.298 – 0.321) 0.381 (0.370 – 0.392)

MLP (oracle) 0.279 (0.269 – 0.288) 0.230 (0.223 – 0.236)

MLP (source) 0.320 (0.308 – 0.331) 0.303 (0.294 – 0.311)

MLP (imputed) 0.304 (0.296 – 0.311) 0.345 (0.336 – 0.355)

MLP (non-param. adj.) 0.278 (0.268 – 0.288) 0.272 (0.265 – 0.279)
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D.9.3 Real Data Experiments

The data for these experiments were derived from eICU-CRD (Pollard et al., 2018a), a multi-

hospital critical care database which uses the PhysioNet Credentialed Health Data License

Version 1.5.0. We extract data for predicting 48-hour mortality through the FIDDLE (Tang et al.,

2020) preprocessing pipeline with default parameters. FIDDLE extracts both time-varying and

fixed features. We collapse the time-varying features by taking the maximum value (note that

most features are binary, and none take values less than 0). We extract data from two of the

hospitals with the most data, the first of which contains 3,006 data points, and the second of

which contains 2,663 data points. The rate of 48-hour mortality in the first hospital is 0.097,

and the rate of 48-hour mortality in the second hospital is 0.100. Additionally, we threshold for

features that are present that have a prevalence of at least 5% in either of the hospitals and at least

1% in both of the hospitals. Code is provided at https://github.com/acmi-lab/Missingness-Shift.

We used target unlabeled data (αt = 1, αs = 0) to estimate E[X̃ t⊤X̃ t] for the adjusted linear

closed form model because we noticed that the estimation error with limited data made the

source estimates less reliable. Due to limited positive samples, in order to evaluate cross-domain

performance, a model was trained on all data from one domain and tested on all data from

the other. Oracle performance (training and testing on the same domain) was computed from

training on a randomly sampled 80% of the data and testing on the remaining 20%. Table D.6

contains the estimated relative non-missingness of the top five coefficients for the oracle models

from each hospital.

Table D.6: The estimated proportion of nonzeros in Hospital 1 (q1) and Hospital 2 (q2), estimated

relative non-missingness rates q2/q1 = 1− r1→2
, Hospital 1 Oracle coefficient (β1), and Hospital

2 Oracle coefficient (β2) for each of the top five features (measure by magnitude of coefficient)

from the Oracle linear predictors of Hospital 1 and 2.

β1 β2 q1 q2 q2/q1

noninvasivemean max (78.0, 86.0] -0.279 -0.364 0.754 0.938 1.244

systemicsystolic mean (-94.001, 99.667] 0.271 -0.362 0.333 0.134 0.404

unittype…Neuro ICU 0.055 -0.577 0.194 0.315 1.629

ethnicity…African American -0.275 0.361 0.141 0.071 0.506

…Intake (ml)…(100.0, 150.0] 0.070 -0.732 0.318 0.045 0.142

…Invasive BP Systolic…(-59.001, 101.0] -0.571 0.474 0.350 0.130 0.372

cvp max (8.0, 12.0] 0.536 -0.476 0.262 0.125 0.477

189

https://github.com/acmi-lab/Missingness-Shift


Appendix E
Business Metric-Aware Forecasting

E.1 Differentiable Computation of Inventory Performance
Metrics

In this appendix section we derive equations (6.5) and (6.4), and walk through differentiable

computation of all inventory system variables.

Consider a model trained on N univariate time-series, each with at most T time points.

Each time point, the model makes a lead-time forecast for the demand across a forecast horizon

L. Thus, the model outputs a tensor d̂ = RN×T×L
, where an entry d̂[i, t, l] corresponds to the

forecasted demand in the ith series for time t+ l at time t.

E.1.1 Computing forecasted lead-time demand

The forecasted lead-time demand is D̂L
t =

∑L
l=1 d̂[:, t, l], i.e. summation along the last axis of

the d̂ tensor.

E.1.2 Computing orders

Here we derive equation (6.5). Alternating plugging in the inventory position equation (6.4) into

the order-up-to policy equation (6.1) and recursively plugging in (6.1) to itself, we can expand

the expression for orders into a closed form:

ot = D̂L
t + sst − ipt

= D̂L
t + sst − (ipt−1 + ot−1 − dt)

= D̂L
t + sst − ipt−1 − (D̂L

t−1 + sst−1 − ipt−1) + dt
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= (D̂L
t − D̂L

t−1) + (sst − sst−1) + dt

= (D̂L
t − D̂L

t−1) + Φ−1(αs) · (σe,t − σe,t−1) + dt,

where the last step plugs in the safety stock definition (6.3). Using this equation we have derived,

it is now possible to compute ot given just a tensor of demand forecasts d̂ and true demands d.

E.1.3 Computing net inventory

Here we derive the closed-form net inventory equation (6.6). Recursively plugging in the net

inventory equation as well as the closed form expression for orders (6.5), we have:

it = it−1 + ot−L − dt

= (it−2 + ot−1−L − dt−1) + ot−L − dt

= i0 +
t−L∑
j=0

oj −
t∑

k=1

dk

= i0 +
t−L∑
j=0

(
(D̂L

j − D̂L
j−1) + (ssj − ssj−1) + dj

)
−

t∑
k=1

dk

= i0 +

t−L∑
j=0

(D̂L
j − D̂L

j−1 + ssj − ssj−1) + d0 −
t∑

k=t−L+1

dk

= i0 + D̂L
t−L +Φ−1(αs) · σe,t−L + d0 −

t∑
k=t−L+1

dk,

assuming that all quantities at time t = −1 are equal to 0. Then, i0 = i−1 + o−L − d0 = −d0.
Simplifying,

it = D̂L
t−L + Φ−1(αs) · σe,t−L −

t∑
k=t−L+1

dk.

Intuitively this makes sense, as the net inventory is determined by the lead time forecast

from L time steps prior, with additional safety stock estimated at the time, subtracting the

interim demand leading up to the current time step. This closed form equation is much more

efficient to implement in terms of tensor operations than the original recursive equation for

inventory position. We have already described how to compute the first term, and the last

term is simply the sum of true demands in a window of size L leading up to time t. The 2nd

term (safety stock) is computed by some constant Φ−1(αs) dependent on desired service level

αs, multiplied by the standard deviation of forecast errors up until the previous time σe,t−1.

Similar to the net inventory, we can also derive a closed-form expression for the inventory

position: ipt = D̂L
t−1 +Φ−1(αs) · σe,t−1 − dt, and the work in progress can simply be derived as

wt = ipt − it.
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E.1.4 Computing safety stock

The inverse CDF of the target service level Φ−1(αs) is a constant and straightforward to compute.

The standard deviations of forecast errors σe,t are more involved since forecasts are made at

each time point for some horizon, but can be computed as follows:

• Create an N × T tensor M where M [:, t] = t.

• Construct sliding windows of size L along the time dimension. This will create a tensor

M ′
with the same shape as d̂ (N × T × L), of the time of each entry.

• Repeat the tensor T times in a new (fourth) dimension, thresholding to create a binary

mask M ′′
for each t ∈ {1, 2, ..., T} corresponding to whether that time has occurred. That

is, M ′′[i, t, l, t′] = 1 {M ′[i, t, l, t′] ≤ t′}.
• Compute per-element squared error E of the N × T ×L predictions. Copy T times to get

E ′
(N × T × L× T ).

• Multiply the repeated error E ′
element-wise with the binary mask M ′′

(both should be

N ×T ×L×T ). Sum along the second and third dimensions (of size T and L), and divide

by the sum of the binary mask along the second and third dimensions. This gives the

average squared forecast errors for each time point, for each time-series. Take the square

root to get the standard deviation.

E.1.5 Computing inventory performance metrics

There are three main aspects of inventory performance we examine:

1. Holding cost: Ch = ch · E[max(0, it)]

2. Stockout cost: Cs = cs · E[max(0,−it)]
3. Order variance cost: Cv = cv · Var(ot)

The holding cost can be computed by passing the computed inventory positions through a ReLU

activation, and then taking the average across times and series. The variance of orders can

be computed by taking the average orders for each series, subtracting them from the orders,

squaring, and then taking the expectation.

The total cost (TC) and relative RMS (RRMS) objectives combine these three components in

differentiable ways (either summation or subtracting and dividing by a constant, squaring, and

summing).
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E.2 Double-Rollout Supervision

Here we describe the double-rollout supervision technique. Since some objectives must be

computed holistically across multiple time points (e.g. order variance), a single series of points

may only yield one inventory performance value. If one model is being trained per time series

(as is the case in M3 univariate data), this provides very little supervision for the model. The

double-rollout supervision technique addresses this problem by having the model predict a long

forecasting horizon H , which is then treated as the series to compute inventory performance

over (Figure E.1, top). A sliding window of size L is taken over the H time points (Figure E.1,

bottom) in order to compute lead-time demands across the H time points (Figure E.2). Thus, we

choose an H > L. If there are t−W decoding points, then this gives t−W series of length

≤ H , which can provide t−W measures of inventory performance to help supervise learning.

Double rollout training

…

Train model up to time    :

encoding 

window 

(W )

forecasting 

horizon 
( H )

decoding 
point

…

…for all decoding points, the forecasting horizons are:

Consider one decoding point and the corresponding 
forecasting horizon H. Since we have H > L, we can 
compute multiple roll-outs of lead-time L across the 
forecasting horizon:

H
forecasting 
horizon H

lead time L
compute inventory 
performance across all 
lead-time predictions 
made over forecasting 
horizon

Figure E.1: First step of the double-rollout training procedure. At each decoding point, the model

forecasts a long forecasting horizon H .

Double rollout training

…

Train model up to time    :

encoding 

window 

(W )

forecasting 

horizon 
( H )

decoding 
point

…

…for all decoding points, the forecasting horizons are:

Consider one decoding point and the corresponding 
forecasting horizon H. Since we have H > L, we can 
compute multiple roll-outs of lead-time L across the 
forecasting horizon:

H
forecasting 
horizon H

lead time L
compute inventory 
performance across all 
lead-time predictions 
made over forecasting 
horizon

Figure E.2: Second step of the double-rollout training procedure. For each forecasted horizon of

H time points, take a sliding window of size L as the lead-time demand forecasts and compute

inventory performance across the H time points.
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E.3 Roll-Forward Evaluation

In real-world settings, models are updated over time as new data are collected. To better simulate

the process of how forecasting models could feasibly be updated over time, we employ a training

procedure which rolls forward in time.

At each time point t = 1, 2, ..., T , the model is updated with the most recent data by taking

additional gradient steps based on all data up to time t (i.e. fine-tuning to the latest dataset each

time). Given a model trained on the most recent demand data up time t, predictions are made

for the next lead-time L time steps (Figure E.3), giving D̂L
t (Figure E.4). Roll-forward evaluation

…

train model 
up to time 

predict 
next 

…

…

…

all lead-time      predictions

…and so on

compute inventory performance 
across all lead-time predictions 

made over time

For each    ,

Figure E.3: Each time t, the model is updated using all data available up until t, and forecasts the

next L time steps.

These predictions are used by the order-up-to policy (6.1) to determine how many orders to

place. This way, when inventory performance is computed across all t, the predictions are made

using the most up-to-date models that could have been trained at each time point.

Roll-forward evaluation

…

train model 
up to time 

predict 
next 

…

…

…

all lead-time      predictions

…and so on

compute inventory performance 
across all lead-time predictions 

made over time

For each    ,

Figure E.4: Predictions resulting from the roll-forward evaluation procedure after rolling across

the whole series.
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E.4 Hyperparameter Selection

Ten iterations of random search with the MSE, TC, and RRMS objectives are used to choose

hyperparameters for the M3 and Favorita datasets. For the Favorita dataset, a subset of 10,000

time series is used in order to tune hyperparameters more quickly. For the Naive Seasonal Scaler,

the grid of hyperparameters considered is batchsize (100, 200, 300) and learning rate (0.01, 0.001,

0.0001). For the LSTM, the grid of hyperparameters considered is batchsize (100, 200, 300, 500),

hidden size (32, 64, 128), and learning rate (0.01, 0.001, 0.0001, 0.00001). A small amount of

subsequent manual tuning was done if the selected parameter was at the edge of the grid.

For the M3 dataset, a hidden size of 20 is used for both the encoder and decoder. For the

Favorita dataset, a hidden size of 64 is used for both the encoder and decoder, and the embedding

size is 10. Categorical variables are embedded such that each possible value is stored as a different

learnable 10-dimensional vector, and numerical variables are passed through a linear layer with

10-dimensional output. The run_all.sh script in the included code supplement contains

commands to run all of the experiments, with exact hyperparameter settings included.

E.5 Training Details

On Favorita, LSTM encoder-decoder models are trained on machines with A100 GPUs, and

require about 10GB of memory. On M3, LSTM encoder-decoder models are trained on machines

with 32 CPUs, and since one model is trained for each series, model training is done in parallel,

taking about 2GB of memory at a time. All model training is done on the Ubuntu operating

system. Package versions are included in the code package.

For M3, the training and validation cutoff points are chosen so that there are substantial time

points in the training set (72) while still leaving enough to evaluate validation (36) and test (36)

performance. For Favorita, training and validation cutoffs are the same as in Lim et al. (2021).

E.6 Architecture
Encoder-decoder

LSTM

en
co

de
d 

sta
te

LSTM LSTM… LSTM LSTM LSTM

LSTM Encoder LSTM Decoder

…

(If teacher forcing is true, in the training 
phase,  feed in the true previous value.)

Figure E.5: LSTM encoder-decoder architecture.
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E.7 Additional Results: Average Forecasts

Business-aware forecasts are visualized in Figure E.6.
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Figure E.6: Forecasted and true lead demand, averaged across all series in M3 (first row) and

Favorita (second row). True demand is the red dotted line, and forecasts from the MSE objective

are the green dotted line. Forecasts from the TC objective are solid lines, for several unit cost

tradeoffs—fixing cv = 10−6
in the M3 dataset and cv = 10−2

in the Favorita dataset, ratios of

ch/cs are indicated by line color.

E.8 Relative Improvements with Different Tradeoffs
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Figure E.7: Improvements in total cost when using the TC objective vs. the MSE objective, under

various cost tradeoffs. Left two columns are for different cv’s on the M3 dataset, and right two

columns are for the Favorita dataset. Radius is ten times the relative proportional improvement.
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Appendix F
Timing as an Action: Learning When to

Observe and Act

F.1 Proofs for Section 7.4

F.1.1 Proof of Lemma 7.4.1

Proof. Let us show that the Bellman backup operator H described in (7.2) is a contraction

mapping in the finite space (R, L∞).

(Hq)(s, a, k) =
∑
s′∈S

Pa,k(s
′|s)
[
E[G(s, a, k)] + γk max

a′,k′
q(s′, a′, k′)

]
||Hq1 −Hq2||∞

= max
s,a,k

∣∣∣∣∣∑
s′∈S

Pa,k(s
′|s)
[
E[G(s, a, k)] + γk max

a′,k′
q1(s

′, a′, k′)− E[G(s, a, k)]− γk max
a′,k′

q2(s
′, a′, k′)

]∣∣∣∣∣
= max

s,a,k

∣∣∣∣∣∑
s′∈S

Pa,k(s
′|s)
[
γk(max

a′,k′
q1(s

′, a′, k′)−max
a′,k′

q2(s
′, a′, k′))

]∣∣∣∣∣
≤ max

s,a,k
γk
∑
s′∈S

Pa,k(s
′|s)
∣∣∣∣max
a′,k′

q1(s
′, a′, k′)−max

a′,k′
q2(s

′, a′, k′)

∣∣∣∣
≤ max

s,a,k
γk
∑
s′∈S

Pa,k(s
′|s)max

a′,k′
|q1(s′, a′, k′)− q2(s

′, a′, k′)|

= max
s,a,k

γk
∑
s′∈S

Pa,k(s
′|s)||q1 − q2||∞

= γk||q1 − q2||∞
≤ γ||q1 − q2||∞
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where the last line follows from the fact that k ≥ 1. Thus, the operator H is a contraction.

Hence, by the Banach fixed point theorem, there exists a unique optimal Q∗
.

F.1.2 Proofs for Lemma 7.4.2 and Lemma 7.4.3

First we prove Lemma 7.4.3. Applying Lemma F.1.1 to {Di}Ni=1 drawn as in the generative setting

(Definition 3), the LHS becomes

N∑
i=1

E(s,a,k)∼Di

∥∥∥P̂ (s′|s, a, k)− P (s′|s, a, k)
∥∥∥2
1
= n

∑
s,a,k

∥∥∥P̂ (s′|s, a, k)− P (s′|s, a, k)
∥∥∥2
1

and we have the bound that with probability at least 1− δ,

∑
s,a,k

∥∥∥P̂ (s′|s, a, k)− P (s′|s, a, k)
∥∥∥2
1
≤ 12 log(|P1|/δ)

n
+ 6ϵSAK + ϵ2SAK

Then choosing ϵ = 1/nSAK , Lemma F.1.4 states that |P1| has cardinality ≤ (nS2AK2)S
2A

,

thus ∑
s,a,k

∥∥∥P̂ (s′|s, a, k)− P (s′|s, a, k)
∥∥∥2
1
≤ 12S2A log(S2AK2n/δ)

n
+

6

n
+

1

SAKn2
,

which implies that (suppressing log factors)

max
s,a,k

∥∥∥P̂ (s′|s, a, k)− P (s′|s, a, k)
∥∥∥
1
≲ S

√
A log(K/δ)

n

The proof of Lemma 7.4.2 proceeds similarly but with |P| ≤ (nS2AK)S
2AK

from Lemma F.1.4.

Maximum likelihood estimation We state and prove a general MLE guarantee for condi-

tional probability estimation. This section is takes inspiration from the results in Agarwal et al.,

2020a; Liu et al., 2022; Liu et al., 2023; Huang et al., 2023. We consider the problem of estimating

the conditional density f ∗(y|x), for all x ∈ X (the input space) and y ∈ Y (the target space).

We are given a function class F : X × Y → R, and suppose f ∗ ∈ F . In addition, we have

an adaptive dataset D = {(xi, yi)}Ni=1 where xi ∼ Di(x<i, y<i), and yi ∼ f ∗(·|xi). We output

f̂ = argmaxf∈F
∑n

i=1 log f(yi|xi). Note that this is analogous to the model-based estimation in

(??) and (??) with function classes P1 and P , respectively, and X = S ×A×K and Y = S .

We allow F to be an infinite function class, and the MLE bound will depend on the statistical

complexity of the function class F , which is quantified using the ℓ1 optimistic cover, defined

below:
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Definition 4 (ℓ1 optimistic cover). For a function class F ⊆ (X → R), we call function class
F an ℓ∞ optimistic cover of F with scale ϵ, if for any f ∈ F there exists f ∈ F , such that
maxx∈X ∥f(·|x)− f(·|x)∥1 ≤ ϵ and f(y|x) ≤ f(y|x), ∀x ∈ X , y ∈ Y .

The formal bound for MLE estimation is stated below:

Lemma F.1.1 (MLE guarantee). Suppose F satisfies: (i) f ∗ ∈ F , (ii) each function f ∈ F is a
valid probability distribution over Y given x (i.e., f(·|x) ∈ ∆(Y) for all x ∈ X ), and (iii) F has a
finite ℓ1 optimistic cover (Definition 4) F with scale ϵ and F ⊆ (X → R≥0). Then with probability
at least 1− δ, the MLE solution f̂ has an ℓ1 error guarantee

N∑
i=1

Exi∼Di

∥∥∥f̂(·|xi)− f ∗(·|xi)
∥∥∥2
1
≤ 12 log(|F|/δ) + 6ϵN + ϵ2N

Proof of Lemma F.1.1. First, define

L(f,D) = 1

2

N∑
i=1

log

(
f(yi|xi)

f ∗(yi|xi)

)
.

Next, we decouple the dependencies between samples, and state the following result from

Agarwal et al., 2020a without proof:

Lemma F.1.2 (Lemma 24 of Agarwal et al., 2020a). Let D be a dataset of N examples, and let D′

be a tangent sequence. A tangent sequence {(x′
i, y

′
i)}Ni=1 is sampled as x′

i ∼ Di(x1:i−1, y1:i−1) and
y′i ∼ f ∗(·|x′

i), which is independent conditioned on D. Let L(f,D) = 1
N

∑N
i=1 l(f, (xi, yi)) be any

function that decomposes additively across examples, where l is any function, and let f(D) be any
estimator taking as input the random variable D and with range F . Then

ED [exp (L(f(D),D)− logED′ exp(L(f(D),D′))− log |F|)] ≤ 1.

Using Chernoff’s method with union bound over F , with probability at least 1− δ we have

for any f ∈ F that

− logED′ exp (L(f(D),D′)) ≤ −L(f(D),D) + log(|F|/δ)

Now let f ∈ F be the ϵ-close ℓ1 optimistic approximator of the MLE solution f̂ ∈ F . Applying

the above to f , in the RHS we have

−L(f(D),D) = 1

2

N∑
i=1

log
f ∗(yi|xi)

f(yi|xi)

≤ 1

2

N∑
i=1

log
f ∗(yi|xi)

f̂(yi|xi)
(f is optimistic cover)

=
1

2

(
N∑
i=1

log f ∗(yi|xi)−
N∑
i=1

log f̂(yi|xi)

)
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≤ 0 (f̂ optimal)

Combining inequalities, we have

log(|F|/δ) ≥ − logED′ exp
(
L(f(D),D′)

)
= − logED′

[
exp

(
1

2

N∑
i=1

log

(
f(y′i|x′

i)

f ∗(y′i|x′
i)

))
|D

]

= −
N∑
i=1

logEx∼Di,y∼f∗(·|xi)

√ f(y|x)
f ∗(y|x)

 (F.1)

Next, we show that for any D, we have

Ex∼D
∥∥f(·|x)− f ∗(·|x)

∥∥2
1
≤ −12 logEx∼D,y∼f∗(·|x)

√ f(y|x)
f ∗(y|x)

+ 6ϵ (F.2)

Combining (F.1) and (F.2), we have

N∑
i=1

Ex∼Di

∥∥f(·|x)− f ∗(·|x)
∥∥2
1
≤ 12 log(|F|/δ) + 6ϵN (F.3)

Finally, using the triangle inequality, we have

N∑
i=1

Ex∼Di

∥∥∥f̂(·|x)− f ∗(·|x)
∥∥∥2
1
≤

N∑
i=1

Ex∼Di

∥∥∥f̂(·|x)− f(·|x)
∥∥∥2
1
+

N∑
i=1

Ex∼Di

∥∥f(·|x)− f ∗(·|x)
∥∥2
1

≤ ϵ2N + 12 log(|F|/δ) + 6ϵN

Lemma F.1.3 (Optimistic cover for P). For the function class P (from (7.4)) there exists an ℓ1

optimistic cover (Definition 4) with scale ϵ of size
(
⌈S
ϵ
⌉
)S2AK .

Lemma F.1.4 (Optimistic cover for P1). For the function class P1 (from (7.5)) there exists an ℓ1

optimistic cover (Definition 4) with scale ϵ of size
(
⌈KS

ϵ
⌉
)S2A.

Proof of Lemma F.1.3. Denote P = {Pk}k∈[K], where Pk denotes the model class for the k-

step transitions, and we will construct P = {Pk}k∈[K] its optimistic covering set. For any

P ∈ Pk, set its optimistic covering function to be P (s′|s, a, k) = ϵ′⌈P (s′|s,a,k)
ϵ′

⌉ and include this

P in Pk. Clearly for any (s, a, k, s′) we have P (s′|s, a, k) ≥ P (s′|s, a, k), and ∥P (·|s, a, k) −

P (·|s, a, k)∥1 ≤ ϵ|S| so we need to set ϵ′ = ϵ′/|S|. Then |P| ≤
(
⌈ |S|

ϵ
⌉
)S2AK

.

Proof of Lemma F.1.4. For any P, P ′ ∈ P1 and k ∈ [K],∥∥Pa,k(·|s)− P ′
a,k(·|s)

∥∥ =
∥∥P k

a,1(·|s)− (P ′
a,1)

k(·|s)
∥∥
1
≤ k

∥∥Pa,1(·|s)− P ′
a,1(·|s)

∥∥
1
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Let P ′
1 = {P : S × A → ∆(S)} to be the set of all valid one-step transitions. Then it

suffices to first find a cover P ′
1 of P ′

1 using a grid of size
ϵ

|S|K , then set the cover of P1 to be

P = {[(P a,1)
k]a∈A,k∈K : P ∈ P ′

1}. Then |P| ≤
(
⌈K|S|

ϵ
⌉
)S2A

.

F.1.3 Proof of Lemma 7.4.4

We treat P̂ as independent of Ĝ in this section, which can be accomplished by splitting the

samples N into two folds, one for P̂ estimation, and one for Ĝ estimation, which dilutes the

final bound by only a small constant factor without changing the dependencies, and we discuss

this at the end of this section.

Let (si, ai, ki) ∼ µ independently. For a fixed P̂ , rewrite the regression as

Ĝ = argmin
f∈F

P̂

1

N

N∑
i=1

(f(si, ai, ki)− gi)
2

where FP̂ = {GR′,P̂ : R′ ∈ [0, 1]SA} is the set of aggregated rewards induced by P̂ and any

valid one-step reward function. We will bound the error

∥∥∥Ĝ− GR,P

∥∥∥2
2,µ

, starting with the

decomposition∥∥∥Ĝ− GR,P

∥∥∥2
2,µ

=
∥∥∥Ĝ− g

∥∥∥2
2,µ×G

− ∥GR,P − g∥22,µ×G

=
∥∥∥Ĝ− g

∥∥∥2
2,µ×G

−
∥∥∥GR,P̂ − g

∥∥∥2
2,µ×G

+
∥∥∥GR,P̂ − g

∥∥∥2
2,µ×G

− ∥GR,P − g∥22,µ×G

=
∥∥∥Ĝ− g

∥∥∥2
2,µ×G

−
∥∥∥GR,P̂ − g

∥∥∥2
2,µ×G︸ ︷︷ ︸

T1

+
∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ︸ ︷︷ ︸

T2

We can bound T2 as follows:∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ
≤ 1

(1− γ)2
max
s,a,k

∥∥∥P̂ (·|s, a, k)− P (·|s, a, k)
∥∥∥2
1
:=

1

(1− γ)2
εP (F.4)

We have the following bound for T1 from Lemma F.1.5:

∥∥∥Ĝ− g
∥∥∥2
2,µ×G

−
∥∥∥GR,P̂ − g

∥∥∥2
2,µ×G

≲

√
SAG2

max log(1/δ
′)

N

∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ

+
SAG2

max log(1/δ
′)

N

Then combining (F.4) and Lemma F.1.5, we have

∥∥∥Ĝ− GR,P

∥∥∥2
2,µ
≲

√
SAG2

max log(1/δ
′)

N

∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ

+
SAG2

max log(1/δ
′)

N
+
∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ
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≤ 1

1− γ

√
SAG2

max log(1/δ
′)

N
εP +

SAG2
max log(1/δ

′)

N
+

1

(1− γ)2
εP

Finally, to translate the above inequality to the ℓ∞ guarantee of Lemma 7.4.4 in the generative

setting (Definition 3),∥∥∥Ĝ− GR,P

∥∥∥2
2,µ

=
1

SAK

∑
s,a,k

(
Ĝ(s, a, k)− GR,P (s, a, k)

)2
≥ 1

SAK
max
s,a,k

(
Ĝ(s, a, k)− GR,P (s, a, k)

)2
Combining the above two inequalities and rearranging gives the result.

Bounds for timing-aware model-based and timing-naive model-based methods We

briefly discuss the bound for timing-aware model-based, and the bound for timing-naive model-

based follows the same argument. Due to sample splitting, we call the results in Lemma 7.4.3

and Lemma 7.4.4 with
1
2
N samples and δ′ = 1

2
δ, then union bound over the two results. For

timing-smart, we have εP ≲
S2A log(K/δ)

n
.

Lemma F.1.5. Let R̂ be the output of (7.6) with transition P̂ , and define Ĝ = GR̂,P̂ . With
probability at least 1− δ′ we have

∥∥∥GR̂,P̂ − g
∥∥∥2
2,µ×G

−
∥∥∥GR,P̂ − g

∥∥∥2
2,µ×G

≲

√
SAG2

max log(1/δ
′)

N

∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ

+
SAG2

max log(1/δ
′)

N

Proof of Lemma F.1.5. For any f , define the empirical loss LD(f) and its expectation Lµ(f),
respectively, as

LD(f) :=
1

N

N∑
i=1

(f(si, ai, ki)− gi)
2

Lµ(f) := E(s,a,k)∼µ,g∼G(s,a,k)

[
(f(s, a, k)− g)2

]
.

Let F P̂ be an ℓ∞ covering of FP̂ with scale ϵ, in other words, for any f ∈ FP̂ there exists

f ∈ F P̂ such that |f(s, a, k)− f(s, a, k)| ≤ ϵ for any (s, a, k). Lemma F.1.6 shows that such a

covering exists and has cardinality |F P̂ | = (⌈1/(1− γ)ϵ⌉)SA. For any f ∈ F P̂ , for a random

(s, a, k, g) ∼ µ×G, define

Z(f) := (f(s, a, k)− g)2 −
(
GR,P̂ (s, a, k)− g

)2
and let Zi(f) be the corresponding variable for each (si, ai, ki, gi) ∈ Di. Observe that LD(f)−
LD(GR,P̂ ) =

1
N

∑N
i=1 Zi(f). Applying Bernstein’s inequality with union bound over F P̂ , with

probability ≥ 1− δ we have that for any f ∈ F P̂ ,

E[Z(f)]− 1

N

N∑
i=1

Zi(f) ≤

√
2V[Z(f)] log |F

P̂
|

δ

N
+

8G2
max log

|F
P̂
|

δ

3N
(F.5)
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For any f ∈ F P̂ , we can upper bound V[Z(f)] as follows (with the constant Gmax such that

g ∈ [−Gmax, Gmax]):

Vµ×P [Z(f)] ≤ Eµ×G[Z(f)
2]

= Eµ×G

[(
(f(s, a, k)− g)2 −

(
GR,P̂ (s, a, k)− g

)2)2
]

= Eµ×G

[(
f(s, a, k)− GR,P̂ (s, a, k)

)2 (
f(s, a, k) + GR,P̂ (s, a, k)− 2g

)2]
≤ 16G2

maxEµ

[(
f(s, a, k)− GR,P̂ (s, a, k)

)2]
= 16G2

max

∥∥∥f − GR,P̂

∥∥∥2
2,µ

Further,∥∥∥f − GR,P̂

∥∥∥2
2,µ
≤ 2

(
∥f − GR,P∥22,µ +

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
= 2

(
∥f − GR,P∥22,µ −

∥∥∥GR,P̂ − GR,P

∥∥∥2
2,µ

+ 2
∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
= 2

(
Lµ(f)− Lµ(GR,P )−

(
Lµ(GR,P̂ )− Lµ(GR,P )

)
+ 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
= 2

(
Lµ(f)− Lµ(GR,P̂ ) + 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
= 2

(
E[Z(f)] + 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
To summarize the above series of inequalities, we have upper bounded the variance as:

Vµ×P [Z(f)] ≤ 32G2
max

(
E[Z(f)] + 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
(F.6)

Plugging this back into (F.5), with probability ≥ 1− δ for any f ∈ F P̂ we have

E[Z(f)]− 1

N

N∑
i=1

Zi(f) ≤

√√√√√64G2
max

(
E[Z(f)] + 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
log

|F
P̂
|

δ

N
+

8G2
max log

|F
P̂
|

δ

3N

(F.7)

Now let f̂ = GR̂,P̂ ∈ FP̂ , and let f be its covering function. Then for any (s, a, k, g),

∣∣∣Z(f)− Z(f̂)
∣∣∣ = ∣∣∣∣(f(s, a, k)− g

)2 − (f̂(s, a, k)− g
)2∣∣∣∣
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=
∣∣∣(f(s, a, k)− f̂(s, a, k)

)(
f(s, a, k) + f̂(s, a, k)− 2g

)∣∣∣
≤ 4Gmax

∥∥∥f − f̂
∥∥∥
∞

≤ 4Gmaxϵ

since F P̂ is an ℓ∞ cover of scale ϵ. By extension,

∣∣∣E[Z(f)]− E[Z(f̂)]
∣∣∣ ≤ ϵ, and same for its

empirical approximation. Then

E[Z(f̂)]− 1

N

N∑
i=1

Zi(f̂)

= E[Z(f)]− 1

N

N∑
i=1

Zi(f) +
(
E[Z(f̂)]− E[Z(f)]

)
+

(
1

N

N∑
i=1

Zi(f)−
1

N

N∑
i=1

Zi(f̂)

)

≤ E[Z(f)]− 1

N

N∑
i=1

Zi(f) + 2ϵ

≤

√√√√√64G2
max

(
E[Z(f)] + 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
log

|F
P̂
|

δ

N
+

8G2
max log

|F
P̂
|

δ

3N
+ 2ϵ

≤

√√√√√64G2
max

(
E[Z(f̂)] + ϵ+ 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
log

|F
P̂
|

δ

N
+

8G2
max log

|F
P̂
|

δ

3N
+ 2ϵ

Since f̂ is the regression loss minimizer,
1
N

∑N
i=1 Zi(f̂) ≤ 1

N

∑N
i=1 Zi(GR,P̂ ) = 0, and we have

E[Z(f̂)] ≤

√√√√√64G2
max

(
E[Z(f̂)] + ϵ+ 2

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
log

|F
P̂
|

δ

N
+

8G2
max log

|F
P̂
|

δ

3N
+ 2ϵ.

Completing the square gives

E[Z(f̂)] ≤

√√√√128G2
max log

|F
P̂
|

δ

N

(
ϵ+

∥∥∥GR,P − GR,P̂

∥∥∥2
2,µ

)
+

112G2
max log

|F
P̂
|

δ

3N
+ 28ϵ

and ϵ = 1
N

, along with the identity of E[Z(f̂)] and |F P̂ | from Lemma F.1.6, gives the final

bound.

Lemma F.1.6 (ℓ∞ cover of FP ′). Let P ′ be a valid transition matrix in the timing − as− an−
action MDP, and let FP ′ = {GR′,P̂ : R′ ∈ [0, 1]SA} be the induced function class of aggregate
rewards. There exists an ℓ∞ cover FP ′ , meaning that for any f ∈ FP ′ there exists f ∈ FP ′ with

∥f − f∥∞ ≤ ϵ, of cardinality
(
⌈ 1
(1−γ)ϵ

⌉
)SA

.
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Proof of Lemma F.1.6. FP ′ is induced by an ℓ∞ covering of the one-step reward functions. Let

R = {R′ : R′ ∈ [0, 1]SA}, and let R be its ℓ∞ covering of scale ϵ′, such that any R′ ∈ R has

R ∈ Rwith ∥R′−R∥∞ ≤ ϵ′. It is easy to verify that the cardinality ofR is ⌈ 1
ϵ′
⌉SA, by discretizing

the interval [0, 1] at a scale of ϵ′ for each (s, a). Then we define FP ′ = {GR,P̂ : R ∈ R}.

For any f = GR′,P ′ ∈ FP ′ , consider f = GR,P ′ ∈ FP ′ , where ∥R − R′∥∞ ≤ ϵ′. Then using

the definition of G in (7.7), for any (s, a, k) we have

∣∣f(s, a, k)− f(s, a, k)
∣∣ = ∣∣∣∣∣

k−1∑
τ=0

γτ
∑
s′

P ′(s′|s, a, k)
(
R′(s′, a)−R(s′, a)

)∣∣∣∣∣
≤

k−1∑
τ=0

γτ
∑
s′

P ′(s′|s, a, k)
∣∣R′(s′, a)−R(s′, a)

∣∣
≤ 1

1− γ
∥R′ −R∥∞

≤ ϵ′

1− γ

Choosing ϵ′ = (1− γ)ϵ gives the result.

F.1.4 Proof of Proposition 4

Using the fact that Q∗
is the unique solution to the timing-as-an-action Bellman equation in

(7.2), and the definition of Q̂ in (7.8), for a fixed (s, a, k) we have∣∣∣Q∗(s, a, k)− Q̂(s, a, k)
∣∣∣

=

∣∣∣∣∣GR,P (s, a, k)− GR̂,P̂ (s, a, k) + γk
∑
s′

(
P (s′|s, a, k)max

a′,k′
Q∗(s′, a′, k′)− P̂ (s′|s, a, k)Q̂(s′, a′, k′)

)∣∣∣∣∣
≤
∣∣∣GR,P (s, a, k)− GR̂,P̂ (s, a, k)

∣∣∣+ γk
∑
s′

∣∣∣P (s′|s, a, k)− P̂ (s′|s, a, k)
∣∣∣max

a′,k′
|Q∗(s′, a′, k′)|

+ γk
∑
s′

P̂ (s′|s, a)
∣∣∣∣max
a′,k′

Q∗(s′, a′, k′)−max
a′,k′

Q̂(s′, a′, k′)

∣∣∣∣
≤
∥∥∥GR,P − GR̂,P̂

∥∥∥
∞
+

γk

1− γ
max
s,a,k

∥∥∥P (·|s, a, k)− P̂ (·|s, a, k)
∥∥∥
1
+ γk

∥∥∥Q∗ − Q̂
∥∥∥
∞

where we use the fact P̂ is a valid transition and that ∥Q∗∥∞ ≤ 1/(1− γ) in the last inequality

above. Since this holds for any (s, a, k), we have∥∥∥Q∗ − Q̂
∥∥∥
∞
≤
∥∥∥GR,P − GR̂,P̂

∥∥∥
∞
+

γk

1− γ
max
s,a,k

∥∥∥P (·|s, a, k)− P̂ (·|s, a, k)
∥∥∥
1
+ γk

∥∥∥Q∗ − Q̂
∥∥∥
∞
,

and rearranging the above inequality gives the result.
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F.2 Implementation Details

For the transition estimation experiments, optimization is done using SGD with a learning rate

of 0.01. For the RL environments, optimization is done using the Adam optimizer with a batch

size of 500 and initial learning rate of 10−3
for P̂ and 0.1 for R̂, and Q-value iteration is done

to convergence, where convergence is defined as a change of less than 10−5
for at least two

iterations. For additional details, see the code provided in the supplement, which reproduces

all results in the paper. All experiments were conducted on a single machine with 24 CPUs

and 1 Tital RTX GPU. Windy grid experiments were conducted on the GPU whereas all other

experiments were conducted on CPU.

F.3 RL Environment Details

The true one-step transition probabilities for the disease progression simulator are as follows:

true_P = np.array([
[

[0.89, 0.1, 0.01],
[0.15, 0.8, 0.05],
[0.0, 0.0, 1.0]

],
[

[0.1, 0.89, 0.01],
[0.8, 0.15, 0.05],
[0.0, 0.0, 1.0]

],
])

which is a A× S × S matrix, and the (i, j, k)-th element is the probability of transitioning to

state k conditioned on taking action i from state j.

206



F.4 RL Experiment Results

Reward Estimation In the generative setting, averaged over 30 trials, we characterize the

aggregate reward estimation error when the reward model is learned in conjunction with the

timing-aware and timing-naive models. This estimation error is compared to when the reward

model is learned but paired with an oracle transition model, as well as against simply averaging

the rewards gathered from tuples of experience taking each action from each state.

0 20 40 60 80 100
n

101

102

Es
tim

at
io

n 
er

ro
r

|| P, R P, R||  vs. n
learning R, oracle P
learning R, timing-aware P
learning R, timing-naive P
empirical avg

Figure F.1: Average reward estimation error ||GP,R − GP̂ ,R̂||∞ in the generative setting over 30

trials, with 95% confidence intervals. The number of repetitions n = [1, 2, 5, 10, 20, 50, 100] is

the number of per-(s, a, k) samples drawn for all (s, a, k) ∈ S ×A×K.

Overall, simply tracking the average empirical reward is the least sample efficient, followed

by learning R̂ in conjunction with timing-naive P̂ , followed by timing-aware P̂ , and finally

using the oracle P when learning R̂.

Distribution of Actions Taken Next, we include visualizations of distribution of actions

taken by the policy in each environment (Figure F.2) and the policies learned in the windy grid

environment (Figure F.3).
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Figure F.2: Distribution of actions (sub-left) and delays (sub-right) taken by the policy in the

disease progression (left), glucose monitoring (middle), and windy grid (right) environments. In

the disease simulator, action 0 corresponds to “don’t treat” and action 1 corresponds to “treat.”

Delays are 0-indexed, but delay 0 corresponds to a one-timestep delay, delay 1 corresponds to a

two-timestep delay, etc.
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Figure F.3: Maximum Q-values learned in each state from the timing-aware and timing-naive

model-based methods after 200 episodes, as well as the oracle Q values. In each grid state, the

arrow gives the direction of the action, the number gives the delay, and the color gives the value.

ˆ or ˆˆ indicate a stochastic wind which pushes the agent up with probability 0.5 for one or two

squares, respectively. The star is the goal state, and the x’s are hazard states.
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[28] Spyros Makridakis and Michèle Hibon. “The M3-Competition: results, conclusions and

implications”. In: International Journal of Forecasting 16.4 (2000). The M3- Competition,

pp. 451–476. issn: 0169-2070. doi: https://doi.org/10.1016/S0169-2070(00)00057-1. url:

https://www.sciencedirect.com/science/article/pii/S0169207000000571 (cit. on p. 80).

[29] Spyros Makridakis and Michele Hibon. “The M3-Competition: results, conclusions and

implications”. In: International Journal of Forecasting 16.4 (2000), pp. 451–476. url: https:

//ideas.repec.org/a/eee/intfor/v16y2000i4p451-476.html (cit. on p. 86).

[30] Hidetoshi Shimodaira. “Improving predictive inference under covariate shift by weighting

the log-likelihood function”. In: Journal of Statistical Planning and Inference 90.2 (2000),

pp. 227–244. issn: 0378-3758. doi: https://doi.org/10.1016/S0378-3758(00)00115-4. url:

https://www.sciencedirect.com/science/article/pii/S0378375800001154 (cit. on p. 2).

[31] Hidetoshi Shimodaira. “Improving predictive inference under covariate shift by weighting

the log-likelihood function”. In: Journal of Statistical Planning and Inference 90.2 (2000),

pp. 227–244 (cit. on pp. 31, 61, 64).

[32] James W Taylor. “A quantile regression neural network approach to estimating the

conditional density of multiperiod returns”. In: Journal of forecasting 19.4 (2000), pp. 299–

311 (cit. on p. 79).

[33] Lyn C Thomas. “A survey of credit and behavioural scoring: forecasting financial risk of

lending to consumers”. In: International journal of forecasting 16.2 (2000), pp. 149–172

(cit. on p. 77).

[34] Patrick S Kamath, Russell H Wiesner, Michael Malinchoc, Walter Kremers, Terry M

Therneau, Catherine L Kosberg, Gennaro D’Amico, E Rolland Dickson, and W Ray Kim.

“A model to predict survival in patients with end-stage liver disease”. In: Hepatology 33.2

(2001), pp. 464–470 (cit. on pp. 32, 33).

[35] N Gregory Mankiw and Ricardo Reis. “Sticky information versus sticky prices: a proposal

to replace the New Keynesian Phillips curve”. In: The Quarterly Journal of Economics
117.4 (2002), pp. 1295–1328 (cit. on p. 92).

[36] Marco Saerens, Patrice Latinne, and Christine Decaestecker. “Adjusting the Outputs of a

Classifier to New a Priori Probabilities: A Simple Procedure”. In: Neural Computation
(2002) (cit. on pp. 31, 61).

[37] Andrew G Barto and Sridhar Mahadevan. “Recent advances in hierarchical reinforcement

learning”. In: Discrete event dynamic systems 13.1-2 (2003), pp. 41–77 (cit. on p. 95).

[38] Rob J Hyndman and Baki Billah. “Unmasking the Theta method”. In: International Journal
of Forecasting 19.2 (2003), pp. 287–290 (cit. on p. 80).

[39] Wei Shen Lim, MM Van der Eerden, and et al. “Defining community acquired pneumonia

severity on presentation to hospital: an international derivation and validation study”.

In: Thorax 58.5 (2003), pp. 377–382 (cit. on pp. 8, 9).

211

https://doi.org/https://doi.org/10.1016/S0169-2070(00)00057-1
https://www.sciencedirect.com/science/article/pii/S0169207000000571
https://ideas.repec.org/a/eee/intfor/v16y2000i4p451-476.html
https://ideas.repec.org/a/eee/intfor/v16y2000i4p451-476.html
https://doi.org/https://doi.org/10.1016/S0378-3758(00)00115-4
https://www.sciencedirect.com/science/article/pii/S0378375800001154


[40] Lim W, Van Der Eerden M, and et al. “Defining community acquired pneumonia severity

on presentation to hospital: An international derivation and validation study”. In: Thorax
58.5 (2003), pp. 377–382 (cit. on pp. 9, 12, 14).

[41] M-F Yen, L Tabar, B Vitak, RA Smith, H-H Chen, and SW Duffy. “Quantifying the potential

problem of overdiagnosis of ductal carcinoma in situ in breast cancer screening”. In:

European journal of cancer 39.12 (2003), pp. 1746–1754 (cit. on p. 103).

[42] Alexey Tsymbal. “The problem of concept drift: definitions and related work”. In: Com-
puter Science Department, Trinity College Dublin 106.2 (2004), p. 58 (cit. on pp. 31, 61).

[43] Bianca Zadrozny. “Learning and evaluating classifiers under sample selection bias”. In:

Proceedings of the twenty-first international conference on Machine learning. 2004, p. 114

(cit. on pp. 2, 31, 61, 64).
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