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Abstract

The field of artificial intelligence has been interested in knowledge since
its early days, using carefully crafted rules and curated knowledge from
humans to build effective expert systems. Since then, many fields, such as
computer vision and natural language processing, have been dominated
by large-scale end-to-end learning using large datasets. This has often left
knowledge as an afterthought for many important problems. However,
as our performance on marquee challenges and datasets such as the
ImageNet Challenge [294] saturates and the field becomes more concerned
with problems such as large-category recognition and problems of full
embodied AI (agents that require understanding of multiple modalities),
knowledge will become even more important. In this thesis, we argue that
to achieve the goal of clever robots, or embodied AI, we need to deal with
all three modalities of vision, language and action. We further argue that
knowledge is the critical piece to in connect these modalities.

In our contributions, we show different slices of these cross-modalities to
come to an understanding of how knowledge can be used to join these
modalities. First, we look at how to incorporate knowledge into neural
network architectures in vision problems. Next, we examine how we can
combine the modalities of vision and language. We introduce a benchmark
for vision and language that requires models with the capability to bring in
and reason about knowledge about the world. Then we develop a method
on that dataset which combines two types of knowledge: knowledge graphs
and implicit knowledge from large language models. We then examine the
action modality by first showing that by using the knowledge inherent in
language models to solve a highly complex, semantic crafting task. Then,
we apply knowledge in the robotics setting of task-oriented grasping and
see how we can use knowledge to allow agents to perform tasks on never
before seen object categories and new tasks. Finally, we start to move in
the opposite direction and look at how knowledge can be created. We
show how an action policy can be used by agents to build up their own
knowledge of the world.
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Chapter 1

Introduction

It has been said that which way you ought to go depends on where you want to get
to [56]. So where do we want to go, and how do we get there?

For the first question, we would propose that what we want is an embodied agent
that is able to perform everyday cognitive and physical tasks as a human might. We
might for instance want a robot that is capable of acting as a home assistant. It would
need to be able to navigate a house and understand what “living room” referred to
and know the proper place for items. It would need to be able to use tools for a
wide variety of tasks such chopping carrots for a stew or using a broom or vacuum to
clean. We would want to be able to converse with the robot to give it instructions
and to explain how we would like a particular task done, such as specifying that we
like DVDs sorted by genre rather than alphabetically. We would also want it capable
of understanding and performing under-specified tasks such as finding things around
the house to pack for a vacation.

In other words, we want agents that are capable first of understanding the
world around them, understanding how different objects and people and locations
correspond semantically, and completing complex actions requiring fine motor control.
We also need them to understand human language and be able to pick up on and
understand not only the names of objects, but abstract concepts. From this, we
propose viewing embodied intelligence as a three-legged stool (see Figure 1.1). The
stool is held up by three legs. The first leg is vision. Agents need perception to make
observations about their immediate environment, to navigate and to recognize various
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1. Introduction

Figure 1.1: The three legged stool of embodied intelligence.

objects. The next leg is action. We want our agents to actually take action in their
environments including locomotion. The third leg is language. If we want agents that
can receive complex and nuanced instructions from humans or share information and
be cooperative, they must understand language beyond the surface level. Finally,
the stool is held together by the base: knowledge. Knowledge, in our view, is key
to an agent’s ability to act intelligently in the world. It is key for recognition, and
for taking action and understanding language. And it is key for connecting these
modalities together.

In this thesis, we will use this idea of embodied intelligence as a framework and
show how our work on knowledge systems in these modalities contributes to the goal
of human-like embodied intelligence.

1.1 What is Knowledge?

One preliminary question we might need to answer first, however, is: What is
knowledge? As we’ll see in our sections summarizing knowledge in philosophy in
Chapter 2.1, this is not even a settled question outside of AI. While we probably
will not be able to arrive at a final answer to this question, we can try to get at this
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by describing what knowledge does, what things we would informally consider to be
knowledge and what we would not.

1.1.1 What Knowledge Does

Informally, we might describe knowledge as a capability. And what it does is give a
human or an agent a prior or model of the world. The world is incredibly complicated.
There are so many things in the world that even humans cannot have a precise model
for everything we might experience in the world. So humans use knowledge, gathered
from ourselves and from others to fill in missing information to act as a simplified,
structured way to think about the world. Knowledge is both a prior we have to do a
task (e.g. roses are red, cats have ears) and a thing we produce (e.g. summarize a
historical event into an article, make a diagram describing the water cycle).

1.1.2 Types of Knowledge

Perhaps more useful to this question would be to be list the things that we or others
have considered to be “knowledge” and think about what they have in common.

Knowledge graphs / knowledge bases

A knowledge graph is a particular form of knowledge structured as triplets: (head,
relation, tail)1. The head and tail are concepts, often nouns and sometimes single
words (e.g. “dog” “cat” “PhD thesis”). Relations are words or phrases, often including
verbs, that describe the relationship between the head and tail concepts (e.g. is, has,
part of). Because of this particular structure, we can represent this knowledge as a
graph where concepts are the nodes of the graph and relations are the edges.

Textual knowledge

Text is a much broader category of knowledge. Some common forms of this might
be encyclopedia articles such as from Wikipedia [1], definitions from a dictionary, or

1Sometimes also referred to as a knowledge base, but a knowledge graph is a particular form of a
knowledge base with a graph structure
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even free-form sentences about a particular object or being. It may even come as
exact logical forms from which we can symbolically derive other beliefs.

Situational knowledge

Another type of knowledge (which may overlap with textual or other forms of
knowledge depending on the representation) is situational or environmental knowledge.
This is distinguishable from general or global knowledge in that it may relate to
specific instances or be in some way embodied to a particular agent. For instance,
knowing that the door near a particular exit in a particular building at a particular
time gets stuck easily.

Implicit knowledge from large language models

Recently, with the advent of extremely large pre-trained language models such
as BERT [90, 203] and GPT [50, 278, 279], we might also want to think about
the knowledge contained within these models. These models have been trained
on millions or even billions of sentences. They have essentially read thousands of
books and encyclopedia articles, and often implicitly contain knowledge about many
subjects. We know in fact that they contain a large amount of knowledge because
many methods have in fact studied how we can extract explicit knowledge from these
models [37, 39, 153, 210, 269].

1.1.3 What Knowledge is

Given these types of knowledge, we would list the following properties as important:

1. Knowledge is semantic. Either directly with symbols, or with words in a
language which are recognized by humans as relating to discrete categories, or
sub-symbolically from which symbolic meanings can be extracted [37, 39, 355]

2. Knowledge is a priori to the final learning task (although the knowledge
itself may be learned from data)

3. Knowledge is not the same as data

4. Knowledge relates to and contains information about the world (either
our world or its simulated environment)
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While this is not meant to be an exhaustive or complete set of properties or a
definition, it is at least enough for us to distinguish knowledge and knowledge-based
methods in AI from other methods and allow us to discuss work in knowledge-capable
AI from this point forward.

1.2 Why Use Knowledge

Now that we have an idea of what knowledge is, we can ask what benefits we gain
from using knowledge. Especially in a time where it seems that methods which are
able to simply scale computation and data always outpefrom carefully tuned systems
or try to encorporate human knowledge [330], we want to outline some reasons why we
still may want to use knowledge in our systems. Despite the centrality of data-driven,
supervised learning approaches, there are still a number of applications where systems
can greatly benefit from knowledge.

1. Incorporating knowledge priors we have about the world. This is
essentially an argument of scale: if we define our set of tasks and capabilities
wide enough, we cannot cannot simply learn everything, we need knowledge
to give us priors which we do not need to learn. For narrow tasks, we would
not see this benefit as the benefit of priors converges to zero as we increase the
amount of data. But if our goal is agents that can do anything, this scaling of
data for all possible tasks is not possible.

2. Recognizing rare or novel categories by using prior knowledge we
have about those categories. This is similar to the earlier argument, but
specific to categories. We know that in vision, and in other areas, concepts
or objects naturally create a “long-tail” distribution [400]. So no matter how
much additional data you add, you are always going to have categories with
very little data. This is where knowledge can help.

3. Planning and making decisions by using or learning specific knowl-
edge about an environment. This is most related to this earlier idea we
had about situational knowledge. To be able to make decisions in the world,
we need to know all of the relevant things in our environment.
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4. Communicating and doing recognition in settings where the learning
agent must have very specific kinds of knowledge. We know that humans
have conversation based on shared knowledge about things (e.g. you can’t have
a conversation about a football game without shared knowledge about what
football even is, its rules, knowledge about how that particular game went
etc.). This insight has been shared and used in several works in conversational
agents [93, 398, 398].

On a high level, we believe that we still need knowledge for the same reason that
humans do. The world is so vast that it is impossible to learn everything directly.
Some narrow tasks we may be able to collect larger and larger datasets, but as
we focus on broader AI tasks and as focus moves away from tasks where we can
exploit fixed datasets and towards tasks requiring direct experience (e.g. in robotics),
knowledge will become more important. It seems inevitable that as we try to move
towards better mimicry of human capabilities, that will include humans’ ability to
use and acquire knowledge.

1.3 Contributions

We now know that our goal is embodied intelligence. We have a working idea of
what “knowledge” is. And we have a rationale as to why knowledge systems are
important in the age of data-driven AI. We now discuss our contributions to the field
of embodied knowledge-capable AI, each of which we will discuss in detail in later
chapters2.

1.3.1 Knowledge in Vision

The first contribution we will discuss is how we use knowledge specifically for the first
leg of our stool: visual perception.

One characteristic that sets humans apart from modern learning-based computer
vision algorithms is the ability to acquire knowledge about the world and use that

2Because of course the works in these chapters were written in collaboration with my co-authors
and much of those publications are used in whole or part in this thesis, any works that want to cite
this thesis should credit the corresponding papers
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knowledge to reason about the visual world. Humans can learn about the characteris-
tics of objects and the relationships that occur between them to learn a large variety
of visual concepts, often with few examples. In this contribution, we investigate the
use of structured prior knowledge in the form of knowledge graphs and shows that
using this knowledge improves performance on image classification. We build on the
work on end-to-end learning on graphs, introducing the Graph Search Neural Network
as a way of efficiently incorporating large knowledge graphs into a vision classification
pipeline. We show in a number of experiments that our method outperforms standard
neural network baselines for multi-label classification.

We published this work in the conference paper: “The More You Know: Using
Knowledge Graphs for Image Classification” CVPR 2017 [222]. We describe this work
in Chapter 3.

1.3.2 Knowledge in Language and Vision: Benchmarks

In the second contribution we move towards joining two modalities: vision and
language. In this contribution we look specifically at moving towards better tests of
visual and language understanding that require reasoning about the world outside
the image, requiring outside knowledge.

Visual question answering (VQA) in its ideal form lets us study reasoning in
the joint space of vision and language and serves as a proxy for the AI task of
scene understanding. However, most VQA benchmarks are focused on questions
such as simple counting, visual attributes, and object detection that do not require
reasoning or knowledge beyond what is in the image. In this contribution we address
the task of knowledge-based visual question answering and provide a benchmark,
called OK-VQA, where the image content is not sufficient to answer the questions,
encouraging methods that rely on external knowledge resources. The dataset includes
more than 14,000 questions that require external knowledge to answer. We show
that the performance of the standard VQA models degrades drastically in this new
setting. Our analysis shows that our knowledge-based VQA task is diverse, difficult,
and large compared to previous knowledge-based VQA datasets.

We published this work in the conference paper: “OK-VQA: A visual question
answering benchmark requiring external knowledge” CVPR 2019 [224]. We describe
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this work in Chapter 4.

1.3.3 Knowledge in Language and Vision: Methods

In the next contribution, now that we have a dataset to investigate knowledge-capable
vision and language systems, we propose and analyze a method that combines two of
our notions of knowledge: knowledge graphs and implicit knowledge from language
models.

One of the most challenging question types in VQA is when answering the question
requires outside knowledge not present in the image such as those in OK-VQA. To
solve this, we tap into two types of knowledge representations and reasoning. First,
implicit knowledge which can be learned effectively from unsupervised language
pretraining and supervised training data with transformer-based models. Second,
explicit, symbolic knowledge encoded in knowledge bases. Our approach combines
both—exploiting the powerful implicit reasoning of transformer models for answer
prediction, and integrating symbolic representations from a knowledge graph, while
never losing their explicit semantics to an implicit embedding. We combine diverse
sources of knowledge to cover the wide variety of knowledge needed to solve knowledge-
based questions. We show our approach, KRISP (Knowledge Reasoning with Implicit
and Symbolic rePresentations), significantly outperforms state-of-the-art on OK-VQA.
We show with extensive ablations that while our model successfully exploits implicit
knowledge reasoning, the symbolic answer module which explicitly connects the
knowledge graph to the answer vocabulary is critical to the performance of our
method and generalizes to rare answers.

We published this work in the conference paper: “KRISP: Integrating Implicit and
Symbolic Knowledge for Open-Domain Knowledge-Based VQA” CVPR 2021 [226].
We describe this work in Chapter 5.

1.3.4 Knowledge in Action: RL

In our next contribution, we now begin to incorporate action into our systems. We take
our notion of language as knowledge and look at how we can use the implicit knowledge
that comes from language to solve a complex multi-task crafting environment by
training our agent to generate language.
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Complex, multi-task problems have proven to be difficult to solve efficiently
in a sparse-reward reinforcement learning setting. In order to be sample efficient,
multi-task learning requires reuse and sharing of low-level policies. To facilitate
the automatic decomposition of hierarchical tasks, we propose the use of step-by-
step human demonstrations in the form of natural language instructions and action
trajectories. We introduce a dataset of such demonstrations in a crafting-based grid
world. Our model consists of a high-level language generator and low-level policy,
conditioned on language. We find that human demonstrations help solve the most
complex tasks. We also find that incorporating natural language allows the model
gives prior knowledge to our agent and allows it to generalize to unseen tasks in a
zero-shot setting or to learn a new task quickly from a few demonstrations.

We published this work in the conference paper: “Ask Your Humans: Using
Human Instructions to Improve Generalization in Reinforcement Learning” ICLR
2021 [64]. We describe this work in Chapter 6.

1.3.5 Knowledge in Action: Robotics

In the next contribution, we continue exploring how we use knowledge for action, this
time joining the action modality with vision in a robotics setting. In this work, we look
at how we can use knowledge to allow agents to perform tasks on never-before-seen
object categories and tasks.

Despite the enormous progress and generalization in robotic grasping in recent
years, existing methods have yet to scale and generalize task-oriented grasping to
the same extent. This is due to the lack of scale of the number of objects and tasks
studied and then by the lack of knowledge and prior semantics is previous work. We
address these concerns first with the TaskGrasp dataset which is more diverse both in
terms of objects and tasks, and an order of magnitude larger than previous datasets.
The dataset contains 250K task-oriented grasps for 56 tasks and 191 objects along
with their RGB-D information. With a more semantically rich dataset, we have a new
breadth and diversity of categories that lets us develop the GCNGrasp framework
which uses the semantic knowledge of objects and tasks encoded in a knowledge graph
to generalize to new object instances, classes and even new tasks. Our framework
shows a significant improvement of around 12% on held-out settings compared to

9



1. Introduction

baseline methods which do not use semantics. We demonstrate that our dataset and
model are applicable for the real world by executing task-oriented grasps on a real
robot on unknown objects.

We published this work in the conference paper: “Same Object, Different Grasps:
Data and Semantic Knowledge for Task-Oriented Grasping” CoRL 2021 [244]. We
describe this work in Chapter 7.

1.3.6 Learning Knowledge from Actions

And, moving in the other direction, our final contribution looks at how we can learn
what we called situation knowledge in an embodied setting. We would argue that
there is a two step process to learning knowledge. The first step is to create some
candidate knowledge or hypothesis. Given what knowledge we already have, and
some model of what we need to know next, we generate a hypothesis that we want to
test. Next, given a hypothesis, we want to verify it. So for instance, we might verify
the hypothesis that the door is sticky by moving the door and observing its behavior.
Once we have verified a hypothesis, we can then add it to our pool of knowledge. In
this last contribution, we focus in on this second part. Given some hypothesis about
the world, how do we verify it, thus turning it into knowledge?

This contribution formulates “hypothesis verification” as a reinforcement learning
problem. Specifically, we aim to build an agent that, given a hypothesis about the
dynamics of the world can take actions to generate observations which can help
predict whether the hypothesis is true or false. Existing RL algorithms fail to solve
this task, even for simple environments. In order to train the agents, we exploit the
underlying structure of many hypotheses, factorizing them as {pre-condition, action
sequence, post-condition} triplets. By leveraging this structure we show that RL
agents are able to succeed at the task. Furthermore, subsequent fine-tuning of the
policies allows the agent to correctly verify hypotheses not amenable to the above
factorization.

We published this work on ArXiv: “Empirically Verifying Hypotheses Using
Reinforcement Learning” [225]. We describe this work in Chapter 8.
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Chapter 2

Background

This section will provide an overview of how knowledge has been viewed and used in
the various sub-fields of AI and by others. We will also provide background details
and explanations of the common datasets, knowledge sources and methods used in the
field of knowledge-based AI. Finally, we give a broad overview of the use of knowledge
in the fields of computer vision (CV), natural language processing (NLP), robotics,
and reinforcement learning (RL).

With this chapter, we hope to do a couple things. First, to give credit to the
many works throughout the years that have dealt with the question of knowledge.
Second, to provide background to readers who are less familiar with knowledge-aware
AI systems. Finally, we seek to put our own contributions into historical perspective.
We hope that this chapter will serve not only as a useful background for reading this
thesis, but also serve the community as a useful source for literature review, historical
perspective and overview of common methods in this sub-field.

In Section 2.1 we begin with a very brief overview of knowledge in philosophy to
try to get a grounding on the origins of the ideas we have about what knowledge is.
Then in Section 2.2 we look at the origins of knowledge in the earlier years of artificial
intelligence, especially looking at the symbolic approaches (sometimes nicknamed
Good Old-Fashioned AI or GOFAI).

Next, in Section 2.3 we give an overview of some common methods used in
knowledge systems, including word2vec, large language models, and graph neural
networks used in our contributions. We then go through in Section 2.4 some common
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knowledge sources including knowledge graphs used by knowledge systems, including
in our own work.

We then move on to problems and application areas. First in Section 2.5, we
look at learning knowledge. This is relevant to our contribution in Chapter 8 on how
we learn knowledge in action. We then go through the applications of knowledge in
various AI subfields. First we discuss knowledge applications in natural language
processing (Section 2.6) where it is perhaps most common. Next, we discuss the use
of knowledge in computer vision, including in the cross-field of Language+Vision
(Section 2.7). We discuss how our contributions in Chapters 3,4 &5 fit into these
lines of work. Finally, we discuss knowledge in the context of the modality of action,
encompassing both robotics and general RL and simulated agents (Section 2.8). Here
we put our contributions in Chapters 6&7 into context of this work.

2.1 Knowledge in Philosophy

The subject of knowledge: what it is, how it’s acquired and how it’s used is a major
topic in the field of Philosophy. Such a major topic in fact that not only is the field
too big to be contained in a Philosophy PhD thesis, it is too big even for entire
books to fully capture. As the author of this thesis is not a philosopher, we will
not attempt anything except a very brief overview of epistemology, the philosophical
study of knowledge. It will mostly be a summary of the relevant entries of the
Stanford Encyclopedia of Philosophy [392], the Encyclopedia Britannia and other
sources which we will note.

Most summaries of the history of epistemology start with Plato. The word
epistemology in fact comes from the Greek words “episteme” and “logos” meaning
knowledge and knowledge/understanding and argument/reason. Plato’s epistemology
looked at what it means to “know” and how acquiring knowledge is a moral virtue in
and of itself [392]. Plato’s understanding of knowledge contrasted sensory experience
from knowledge, saying in Theaetetus that “sense experience cannot be a source of
knowledge, because the objects apprehended through it are subject to change.” [47].
This idea of a separation of experience and knowledge is still influential, including in
this thesis. We often make a distinction between “experience” or “data,” things which
are directly experienced by an agent as not being knowledge (although knowledge
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can be informed by experience). To Plato, knowledge was transcendent to experience,
requiring the application to reason to arrive at an unchanging understanding of the
objects in the world. This Platonic idea of categories as fixed unchanging things is
quite relevant to the AI community as this is the often unstated assumptions we have
about, for instance, object categories such as cat or dog.

As part of the empiricist movement, Locke’s epistemology was concerned with
the role of experience in the formation of ideas or knowledge [47]. Locke defined
knowledge as “the perception of the connexion of and agreement, or disagreement
and repugnancy of any of our ideas” [204]. Locke considered knowledge to be of
three types: intuitive knowledge which are driven purely the mind such as “white
is not black”, demonstrative knowledge, such as a conclusion driven by a premise
to its conclusion by the laws of logic, and sensitive knowledge which are ideas that
are caused externally rather than by the mind [47]. An important idea in Locke’s
epistemology is ideas of certainty. He considered intuitive knowledge to be the most
certain, demonstrative knowledge to be less certain than that as it required logical
steps to the conclusion and sensitive knowledge to be the least. He had an additional
category which he called “probable opinion” which he did not consider knowledge
at all as it could not be held with certainty [47]. Most of what we would consider
knowledge, including in this thesis falls into this last category.

In his famous work Critique of Pure Reason [161] Kant argues that “space and
time are merely formal features of how we perceive objects, not things in themselves
that exist independently of us, or properties or relations among them” [392]. In other
words, we know nothing of what Kant called things in themselves. Kant believed
that “knowledge must rest on judgements that are a priori, for it is only as they are
separate from the contingencies of experience that they could be necessary and yet
also synthetic” [47]. This idea is also very relevant to our understanding of AI. For
instance, Kant said that concepts are read into experience, not out of it, meaning that
these are a priori concepts rather than empirical ones. In other words, knowledge is
prescriptive.

Russell’s epistemology gives us another useful distinction between direct and
indirect knowledge of truths, and later a distinction between knowledge by Acquain-
tance and Knowledge by Description [392]. “To be justified, every indirect knowledge
claim must be capable of being derived from more fundamental, direct or intuitive
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knowledge claims. The kinds of truths that are capable of being known directly
include truths about immediate facts of sensation and truths of logic.” [392].

More recently, philosophers have tried to understand “how our degrees of confidence
are rationally constrained by our evidence” and feminist philosophers have explored
how our material interests can affect our evidence and rational constraints [392].
Other philosophers such as the postmodernists (characterized by their skepticism
of modernism) reject the idea of being able having objective knowledge. To the
postmodernist, what is considered to be knowledge is influenced by or even wholly
determined by the society which they are formed in [47]. This idea is useful to keep
in mind as our datasets and knowledge sources are human-made and thus encode
certain cultural or political assumptions about our world and if we are not careful
this can have unintended consequences.

2.2 Knowledge in Good Old-Fashioned AI

Knowledge, what it is, how it’s represented and how it is used is one of the foundations
problems in the field of artificial intelligence. In the inaugural presidential address to
the American Association for Artificial Intelligence (AAAI), Allen Newell (one of the
founders of the field as well as the School of Computer Science at Carnegie Mellon)
said this about the question of knowledge and representation: “[This] is a little like a
physicist wishing to address the question of radiation and matter.” [251]

Knowledge [40] is a central theme of traditional AI. Commonsense reasoning
[82, 83, 200] approaches, e.g. CYC [190], codify everyday knowledge into a schema
that permits inference and question answering. However, the underlying operations
are logic-based and occur purely within the structured representation, having no
mechanism for interaction with an external world. Expert systems [122] instead
focus on narrow domains of knowledge, but are similarly self-contained. Logic-based
planning methods [73, 109] generate abstract plans that could be regarded as action
sequences for an agent.

Some of the earliest work in artificial intelligence was concerned with the manipula-
tion of knowledge. For example, in “Baseball: An Automatic Question Answerer” [128],
Bert Green and his collaborators devised a system called Baseball. Baseball was a
program designed to answer question asked by humans posed in “ordinary English”
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related to the data it had stored. The program was written in IPL-V [252], an
information processing language using lists and list hierarchies to store information.
The program would take in a question and parse the question to generate specification
list, or a simplified canonical expression for what the question was asking. Using
this, the program would then use a series of logical rules to pull relevant entries and
find the answer which answers the spec list. This early period in AI and knowledge
was characterized by these so-called “AI-languages” and the direct manipulation of
symbols like entries in a database.

In his AAAI address in 1982, The Knowledge Level [251], Newell recounts what he
calls the great theorem-proving controversy. Alan Robinson developed the first-order
logic program Resolution [289] which kicked off a flood of papers exploring resolution-
based theorem-proving. In his telling, “[w]ithin about five years, however, it became
clear that this basic engine was not going to be powerful enough to prove theorems that
are hard on a human scale, or to move beyond logic to mathematics, or to serve other
sorts of problem solving, such as robot planning.” [251]. Newell further summarizes
his opinion of the state of knowledge representation in AI by recounting the SIGART
“Special issue of knowledge representation” [41]. The issue gathered together survey
results from dozens of researchers working on knowledge representation. Newell
concluded from the diverse results that “[t]here was no consensus on any question of
substance” and highlighting one response: “Standard practice in the representation
of knowledge is the scandal of AI.” Despite these pessimistic notes, however, Newell
was still optimistic about the role of knowledge in AI, believing it to be essential. He
proposed in that address the “Knowledge Level” [251] which is a level of abstraction
for agents above the program or symbol level “which is characterized by knowledge
as the medium and the principle of rationality as the law of behavior.” In other
words, the knowledge level was not merely a claim that agents have knowledge, but
a claim that there exists this higher level of computation or reasoning that reasons
over knowledge. The knowledge itself (the body of knowledge) is distinct here from
the agent’s knowledge level.

While none of these ideas or approaches about knowledge or symbolic AI really
disappeared (especially in robotics where planning is still widely used), we believe
that it is fair to say that this became a less overwhelming focus of the community. In
the decades since Newell’s address, much of the focus of research in the community
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moved towards statistical techniques. The field of machine learning has become so
dominant now in the way that we think about AI that in common usage the two
terms became interchangeable1.

The work in this thesis is largely concerned with how knowledge systems can be
incorporated as a part of machine learning systems rather than as an attempt to
directly continue the work in symbolic AI. However, there is still much that can be
learned and appreciated from the early work in knowledge AI. For instance, the work
on building up a large body of knowledge such as with CYC [190] has carried through
to the present era. More recent knowledge graphs such as ConceptNet [200, 321] owe
their origins to this line of work. And the contributions of this thesis certainly owe a
lot to this line of work in knowledge graphs, although our interest in them has mostly
been as the consumer of this knowledge (Chapters 3,5,7). The problem formulation
of question answering has its origins from at least [128]. From its translation from
Question Answering in the NLP community to visual question answering (VQA) in
the vision community, it lost this idea of retrieving from a base of knowledge. But in
our work in Chapter 4 (and in other contemporary works) owes greatly to the original
understanding of the problem. Indeed, even Newell’s ideas about knowledge influence
the ways that we now think about what knowledge in AI even is.

2.3 Common Methods in Knowledge Systems

In this section, we discuss some of the most common methods and forms that
knowledge-aware systems take, with a particular emphasis on the methods that we
employ with out contributions. In particular, we discuss word embeddings, large
language models and graph neural networks. In the next section (Section 2.4) we
discuss the sources of knowledge themselves (although with word vectors for instance,
this distinction can be blurry).

2.3.1 Word Embeddings

Maybe one of the earliest forms that prior knowledge takes is word embeddings. As
we discussed in Chapter 1.1.2, text and pre-trained models trained on text is itself a

1This is a descriptive statement rather than a normative one.
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form of knowledge. In early systems in computer vision and robotics in particular,
word embedding were a common way to summarize or get prior knowledge about a
particular word or category.

At the most basic level, a word embedding is simply a mapping of a single word2.
We could write this as f : WORD → emb ∈ Rd where d is the fixed dimensionality
of our embedding. While the idea representing words as continuous vectors is very
old [22, 101, 293], where this gets truly interesting from a knowledge perspective is
when we train these embedding on datasets of billions of words. The best known
early example of this was Mikolov et al. [232], often referred to as Word2Vec3. Other
popular embeddings include GloVE [266], ConceptNet NumberBatch Speer et al.
[321] and FastText [30] (which includes N-grams).

The basic training procedure to collect word embeddings is pretty simple. You
start with a large corpus of text such as Wikipedia [1], Common Crawl, or even
Twitter. You then create a neural network architecture and train on that corpus
by trying to learn to predict the context of a particular word. In the Continuous
Bag-of-Words (CBOW) approach, the model learns a projection for all words (this will
later become the word2vec embedding), projects the four words before and the four
words after (the context words) and tries to predict the target word between. The
second architecture, the Continuous Skip-gram Model does the opposite, predicting
the context words given the input word. See Figure 2.1 taken from Mikolov et al.
[232]. In either model, you end up with a learned projection for each word in the
vocabulary that we can now use as the vector representation of that word.

Why do people train these models? The simple answer that relates to this thesis is
that it provides a very convenient representation for words that also gives knowledge
about that word or category. Because the CBOW or Skip-gram model is trained to
try to learn the context of a particular word, this representation tends to group similar
concepts together. For instance, synonyms or very similar words such as dog and
canine are grouped together because these words often appear in a very similar context.
Another result that we have found with word embeddings is that they tend to actually
encode useful knowledge. For example, in [234] and [233] they find that word vectors

2Only one word per vector is not strictly necessary, see Speer et al. [321]. And this idea of word
vectors can be extended to multiple words using n-grams [45]

3In fact, this term is often used interchangeably with the overall concept of any word embeddings
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Figure 2.1: Figure showing the architecture and training of the Continuous Bag-of-
Words (CBOW) and Continuous Skip-gram Models. Figure taken from Figure 1 of
Mikolov et al. [232].

tend to implicitly encode relationships between words. For instance, if you look at
countries and their capital city, you find that the vector difference for different pairs
tends to be very similar. So the vector when you subtract “Greece” from “Athens” is
similar to the vector “Oslo – Norway” and “Harare – Zimbabwe.” And in practice,
word embeddings have been useful in many different application areas as one form of
knowledge. Word embeddings are quite convenient because the user of the embedding
does not need to train the large models themselves and because the simple nature
of vectors makes them incredibly versatile. We discuss many applications of word
embeddings in Section 2.7 and Section 2.8. We also make use of word vectors as a
form of knowledge in several of our contributions: in Chapter 5 and Chapter 6 we
use them as the initialization for our graph node embeddings and in Chapter 7 we
use them as our representation of the task, environment and instruction.

2.3.2 Large Language Models

The next logical step is to extend the embedded knowledge from word embeddings to
entire sentences or even paragraphs. This is where large pretrained language models
come in. One of the early extensions of the idea of word embeddings to sentences was
Skip-Thought Vectors [172]. Similar to the Skip-gram model for word embeddings,
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this model would train on a large text corpus. The model takes in a fixed-length
sentence as input and tries to predict the previous and next sentences as context.
This method has two major drawbacks. The first is that it only works for sentences
of a fixed size. The second is that because sentences are sequential, one word after
another, training this model at scale on large corpora is difficult.

The transformer architecture [347] solved both of these problems, and as a result
is the basis for the modern pretrained language models trained on large corpora. As
with previous works, these transformer-based models are trained on an unsupervised
objective on a large corpus. For BERT (Bidirectional Encoder Representations from
Transformers) [90, 203], the proxy task is again predicting the context of words in a
sentence, this time by making use of a special mask token, asking the model to predict
the masked out words of a sentence. GPT (Generative Pre-Training) [50, 278, 279]
on the other hand uses sentence generation as the proxy task. Given the first part of
a sentence or paragraph, it predict the most likely completion of that text.

As with word embedding models, many works have looked at these models as
learning and storing vast amounts of knowledge learned from the Web. For instance,
many works have found that knowledge graph triplets can be explicitly extracted
using these models [37, 39, 153, 210, 269], implying that they essentially contain
knowledge bases [153].

We include works in the proceeding sections that use the knowledge from these
models. Section 2.5 discusses works which automatically learn knowledge bases
from these models. Section 2.6&2.7 show the use of pretrained language models for
downstream tasks in NLP and computer vision. In Chapter 5, we use knowledge
from one of these pretrained language models (BERT [90]) and combine this with
knowledge graphs to achieve better performance on our knowledge-based visual
question answering dataset OK-VQA (Chapter 4).

2.3.3 Graph Neural Networks

Another common method in knowledge-based machine learning systems is to use a
knowledge graph or graphs (see Section 2.4) as a source of knowledge and incorporate
in an end-to-end manner using graph neural networks). In this section, we will give
an overview of graph neural networks to better understand the methods in our thesis.
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Much of the work on graph neural networks starts with Graph Neural Net-
works [300]. The idea was fairly straightforward, consisting of a propagation model to
compute node representations on the graph and an output model to make predictions
on nodes. For each node v we have a state xv ∈ Rd. And we let the graph neural
network update itself based on the value of its neighboring nodes and the edge types
between them.

xv = fw(lv, lco[v], xne[v], lne[v]) (2.1)

on = gw(xv, lv) (2.2)

where fw is a parametric function called the local transition function that expresses
the dependence between node v on its neighbors and gw is the local output function.
ln, lco[v], xne[v] and lne[v] are the label of v, the labels of its edges, the states and
labels of the nodes in the neighborhood of v respectively. Because these equations
are recurrent (the value of xv depends on the value of neighboring states xv′ which in
turn rely on xv) these networks were restricted so that the propagation function is a
contraction map around a unique fixed point and trained with the Almeida-Pineda
algorithm [6, 272].

One of the later extensions of Graph Neural Networks was Graph Gated Neural
Networks (GGNN) [196]. Like GNN, GGNN is an end-to-end neural network model
operating on graph structured data and which can output a per-node classification.
As with Graph Neural Networks the idea of GGNN is that given a graph with N

nodes, we want to produce some output which can either be an output for every
graph node o1, o2, ...oN or a global output oG. Similarly to GNN, the hidden state of
each node xv is updated by the value of its neighbors based on the type and direction
of edge joining them. Unlike GNNs however, this model unrolls the recurrence to
a fixed number of steps and does propagation through time to update the value of
the nodes, similar to how recurrent network models such as LSTMs [141] are trained.
Like with GNNs, we have a hidden state xv, but it is also indexed by time: x(t)

v at
every time step t. We start at t = 0 with initial hidden states iv that depends on the
problem. For instance, for learning graph reachability, this might be a two bit vector
that indicates whether a node is the source or destination node.

Next, we use the structure of our graph, encoded in a matrix A which serves to
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retrieve the hidden states of adjacent nodes based on the edge types between them.
The hidden states are then updated by a gated update module similar to an LSTM.
The basic recurrence for this propagation network is

x(1)
v = [iv, 0]T (2.3)

a(t)
v = AT

v [x(t−1)
1 ...x

(t−1)
N ]T + b (2.4)

zt
v = σ(W za(t)

v + U zx(t−1)
v ) (2.5)

rt
v = σ(W ra(t)

v + U rx(t−1)
v ) (2.6)

x̃t
v = tanh(Wa(t)

v + U(rt
v � x(t−1)

v )) (2.7)

x(t)
v = (1− zt

v)� x(t−1)
v + zt

v � x̃t
v (2.8)

Av is the adjacency matrix of the graph for node v, and the W ’s and U ’s are learned
parameters. Eq 2.3 is the initialization of the hidden state with iv and 0 in the empty
dimensions. Eq 2.4 shows the propagation updates from adjacent nodes. Eq 2.5-2.8
combine the information from adjacent nodes and current hidden state of the nodes
to compute the next hidden state.

After T time steps, we have our final hidden states. The node level outputs can
then just be computed as:

ov = g(x(T )
v , iv) (2.9)

where g is a fully connected network: the output network.
Another line of work reframes graphs as a special case of a convolutional input.

Pixels on a grid can be thought of as a graph structure where each node is connected to
its neighboring pixels, relying on either some global graph structure or doing some sort
of pre-processing on graph edges [51, 100, 138, 254]. The most widely-used of these
works is the Graph Convolutional Network (GCN) model from Kipf and Welling [170].
The first input of a GCN is an undirected graph G = (V,E). The graph is represented
as a binary adjacency matrix A, which is normalized to obtain Â following [170] 4. As
with earlier graph networks, each node v has an embedding xv ∈ Rdinput 5 The input

4This follows from a first order approximation of localized spectral filters on graphs, see [170]
5For GCN, the dimension can be different for the input dinput at each convolutional layer, and at

the output.
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to each node can be rewritten as a single input matrix X ∈ R|V |×dinput . The output
of the GCN is another doutput-dimensional embeddings for each node Z ∈ R|V |×doutput .
The node embeddings are propagated to their neighbours using message passing in
each convolutional layer:

H(l+1) = σ(ÂH(l)W (l)) (2.10)

where σ is the ReLU activation function, W (l) is the learned weight parameter for
each layer l, H(0) = X and H(L) = Z where L is the number of layers.

Since these initial work, many variants of graph neural networks have been
proposed and studied. First, there are many varieties of graph convolutional networks.
The Relational Graph Convolutional Network (RGCN) [301]. This model (unlike
GCN which takes undirected graphs as input) supports having different calculations
between nodes for different edge types and edge directions. Other variants include
Edge-Conditioned Convolution on Graphs [313], Crystal Graph Convolutional Neural
Networks [369], Edge-Conditioned Convolution [313], Topology Adaptive Graph
Convolutional Networks [97], Signed Graph Convolutional Network [88] and many
others [19, 63, 85]

Another line of work in graph networks has looked at how powerful the represen-
tations are for different varieties of graph network are [375]. Many works such as the
Graph Attention Network [348] have looked at adding attention mechanisms into the
propagation equations of graph networks [165, 340]. Others have investigated various
kinds of graph pooling [25, 52, 91, 92, 187, 214, 284, 313, 388] and neighborhood
aggregation [74, 107]. Memory-based Graph networks (MemGNN) [163] integrate
an external memory with graph networks. Other works have looked at Graph En-
coders [259, 297] including Variational Graph Auto-Encoders [169]. Others works have
introduced yet more varieties of graph neural networks such as SAGEConv [134], Resid-
ual Gated Graph ConvNets [46] and many others [26, 48, 214, 240, 291, 363, 374]6.

There are a number of works looking at graph embeddings [129, 136, 349, 380],
and still more works relating deep neural networks with graph structures [7, 154,
267, 302, 341]. Another related neural network structure are Deep Sets [391] and

6Thanks to Fey and Lenssen [108] for compiling and implementing an extensive list of Graph
Neural Networks, which we used to find many of these citations.
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Set2Set [351] which, like graph networks, do not have a set ordering of elements.
Unlike graph neural networks, the inputs are un-ordered elements, which can be seen
as a special case of a graph where all of the nodes are un-connected. This makes the
networks operating on graphs in many ways similar to networks operating on graphs.
The Transformer architecture [347], while primarily used for sequential data, also
naturally deals with sets by simply removing the positional encoding input of the
input encoder.

There is also a parallel line of work that uses graph kernels for SVM classifiers
rather than neural networks. The first of these works that referred themselves as
“graph kernels” were Gärtner et al. [121] and Kashima et al. [162]7 Since then many
varieties of graph kernels have been proposed including shortest-path kernels [35],
graphlet kernels [307], Weisfeiler-Lehman graph kernels [308], deep graph kernels [271]
and graph invariant kernels [258]. Vishwanathan et al. [352] gives an overview of
many of these kinds of kernels and creates a framework for comparing them to each
other. Some works, such as [98] have even looked at fusing graph neural networks
with graph kernels.

For a more in-depth review of graph networks, graph kernels, deep sets and other
related geometric deep learning topics, see Bronstein et al. [49].

We make use of graph neural networks in several of our contributions. In Chapter 3
we build off of GGNNs [196]; in Chapter 7 we use GCN [170]; and in Chapter 5 we
use the related RGCN [301].

2.4 Types and Sources of Knowledge

In this section, we talk about the sources of knowledge that are commonly used
in the community, including in our contributions. This includes knowledge graphs
(Section 2.4.1) and textual sources (Section 2.4.2) either directly or as a source of
training large language models (see Section 2.3.2).8 We will mention knowledge

7Somewhat similar approaches such as diffusion kernels [176] predate this, but were not specifically
referred to as graph kernels.

8One thing you may notice is that nearly all of the knowledge sources listed here are in English.
The overwhelming number of works in NLP are done in the English language, and this bias is
reflected here in these datasets. Surely we miss something by only looking at English language
sources. See Ruder [292] for further discussion.
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sources such as NELL [55] which are collected automatrically from the web or by
other means, but will discuss that like of work in Section 2.5.

2.4.1 Knowledge Bases/Graphs

A knowledge graph is a particular representation of knowledge commonly used
in knowledge AI systems. It is structured as a graph G = (V,E) where each
node v corresponds to a concept represented as a word or series of words (e.g.
“dog”, ‘cat”, “Labrador retriever”) and each edge corresponds to a relation between
those concepts (e.g. “is a”, “has”, “is part of”). An equivalent way to describe
a knowledge graph is a knowledge base containing a list of tuples of the form
(head concept, relation, tail concept).

CYC

Perhaps the earliest large-scale knowledge bases was CYC [190]. CYC aimed to be a
universal schema to span all all concepts understood by humans. It contains 105 con-
cepts and 106 handcrafted axioms. Concepts (called CycL terms or constants) include
individuals such as #$BillGates or #$England, collections such as #$Tree-ThePlant
(all trees), and functions which take input terms and output a new one, and truth
functions which return true or false. So this database would contain simple relations
such as Bill Clinton is the President of the U.S. (#$isa #$BillClinton #$United-
StatesPresident) and even more complicated expressions such as (#$relationAllExists
#$biologicalMother #$ChordataPhylum #$FemaleAnimal) which translates to “for
every instance of the phylum Chordata, there is a female animal which is its mother.”9

CYC falls pretty clearly into the Good Old-Fashioned AI (See Section 2.2) way of
thinking about knowledge. The goal was to encode every concept and axiom known
to humans to allow an expert system to make logical inferences about every concept
in existence. The classical example would be that given that Socrates is a man, and
all men are mortal, the system would be able to conclude that Socrates is mortal.

9These examples come from the Wikipedia [1] article on CYC
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WordNet

Shortly after, WordNet [235] sought to capture a database of all English nouns, verbs,
adjectives and adverts. Unlike CYC, the goal was not to try to compile all human
knowledge, but to create a complete ontology of English words. Words are grouped
into synonyms (synsets) to represent each distinct concept. These synsets are joined
by semantic relations. Most notable of these was the hyperonymy, instance or “is a”
relationship between nouns, which gave users of WordNet a graph of concepts linked
by their instance relationship to each other. We might for instance have pug, which
is a dog, which is a canine. This resource was incredibly influential, both as a source
of knowledge (e.g. in Zhu et al. [401] and in our own contributions in Chapters 3&7)
and as a way to have a list of discrete concepts, taking away synonyms10. This second
idea in particular was critical in ImageNet [86] by allowing the dataset authors to
collect a set of 1, 000 image categories without significant overlap between categories.

ConceptNet

Building itself out from the WordNet ontology, ConceptNet [200], sought, like
CYC [190], to collect commonsense knowledge about the world. The project was
crowd-sourced and contains over 100,000 facts. Unlike CYC, however, it is organized
as a knowledge graph, collected by translating English-language facts gathered from
crowd workers into a triplet structure. Typical examples from the dataset include
things such as (dog, has property, friendly) or (cat, is capable of, hunt mice). We
make use of ConceptNet in our contribution in Chapter 5.

DBPedia

One of the largest available knowledge graph sources is DBPedia [18], which contains
millions of knowledge triplets. DBPedia is a crowd-sourced project which structures
content created from the various Wikimedia projects, including Wikipedia (see Sec-
tion 2.4.2). Being sourced from Wikipedia articles and info boxes, DBPedia contains
knowledge about virtually every film, book, song and notable human in history.
Unlike previous knowledge graphs such as ConceptNet or Freebase, its knowledge is

10Although WordNet, like every ontology, does not do this perfectly
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heavily biased towards proper nouns rather than everyday or commonsense knowledge.
We use part of DBPedia for our contribution in Chapter 5.

Visual Genome

Visual Genome [179] is a dataset for studying visual relationships. Drawn from Flickr
images, it contains annotations of over 33k object categories, 68k attribute categories
and 42k relationship categories which were all later canonicalized to WordNet synsets.
For each image in the dataset, there is a corresponding ground truth “scene graph”
which contains labels for objects in these scenes, relational edges between those
objects, and attributes for each object. In many works, a knowledge graph is built
from these scene graphs by taking the most frequently occurring object-object and
object-attribute relationships in the dataset. The Visual Genome graphs are useful for
our research problems because they contain scene-level relationships between objects,
e.g. person wears pants or fire hydrant is red and thus allow the graph network to
reason about what is typically in a scene. This knowledge source tends to give spatial
relationships e.g. (boat, is on, water) and common pairwise affordances e.g. (person,
sits on, coach) as well as attributes. This knowledge-graph version of Visual Genome
was possibly first used by our work in Chapter 3, and we make use of it again in
Chapter 5.

hasPartKB

Another knowledge graph specifically collected for part relationships is hasPartKB [24].
It contains just one relation: “has part” for common objects such as (dog, has part,
whiskers) as well as scientific ones (molecules, has part, atoms). We use hasPartKB
as one of our knowledge sources in Chapter 5.

Other Knowledge Bases

Freebase [31] was another collaborative knowledge base attempting to harvest all kinds
of structured data. It contains more than 125 million tuples. Freebase was eventually
shut down and merged into Wikidata. Similarly, ATOMIC [298] looks at inferential
knowledge including if-then relations (for example “if X pays Y a compliment, then
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Y will likely return the compliment”). Later [147] introduced the bigger ATOMIC
2020 which focuses on knowledge not contained in pretrained language models.

Some knowledge bases were collected specifically with robotics in mind, such
as KnowRobo [339] and Robobrain [299], ORO [189], OUR-K [197], and RoboCSE
[79]. These knowledge bases aimed to provide robots with extensive knowledge about
objects, spaces, tasks, actions, and agents they were likely to encounter. Other
knowledge bases were collected specifically for visual reasoning tasks [65, 94, 295, 401,
402, 404].

Several works have looked at automatically gathering knowledge graphs from
the web such as NELL [55] and the related NEIL [65], while others have looked at
extracting them from large language models [37, 39, 153, 210, 269]. We give a more
thorough survey of this line of work in Section 2.5.

2.4.2 Textual Knowledge Sources

Textual sources and especially knowledge-like text is very important in NLP. Many of
our contributions use these textual sources in some way. Some such as the baselines
in Chapter 4 use them directly, while other use them through pre-trained word
embeddings (Chapters 5,6&7) or pre-trained language models (Chapters 4&5).

Wikipedia

Perhaps the most widely used textual knowledge source in AI is Wikipedia [1]. Like
an encyclopedia, Wikipedia is divided into articles for each topic which can include
historical figure, celebrities, novels, movies and music albums. The English-language
Wikipedia alone contains over 6 million articles and 2.5 billion words. It was created
to be a free online resource created and maintained by volunteers and contributors.
According to Wikipedia, it is the most-read reference work in history. Because it
contains information-dense text on so many topics, it is a very common use of both
textual knowledge and text for training word embeddings large-language models
such as GloVE [266], BERT [90] and GPT-3 [50]. Wikipedia is the source text for a
number of NLP question answering datasets such as SQuAD [281] and VQA datasets
such as WIT [323]. It has also been used as the source text for retrieval systems
trying to apply knowledge on another task, including by us in our contribution in
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Chapter 4.

Common Crawl

Another common source for large-scale text data is Common Crawl. As the name
suggests, Common Crawl is data that has been continually scraped (using a web
crawler) from the web since 2008. It contains peta-bytes of information including raw
webpages, media and text. Unlike Wikipedia which is specifically curated as a useful
source of knowledge, Common Crawl is meant to be just all of the data from the
Web. As such it is much less structured and often contains duplicate or non-useful
text. Despite this, due to the sheer amount of text it contains, it is a very popular
dataset for training large language models, including GloVE [266] and GPT-3 [50].

BookCorpus

The BookCorpus dataset11 was compiled from 11,038 free, unpublished books found
by the authors on the internet. It contains over 74 million sentences and almost 1
billion words 12 and is split into 16 genres such as Science Fiction, Romance and
Fantasy. The corpus was used to train GPT [278] and BERT [90], but now appears
to be no longer accessible. Subsequently, GPT-3 [50] uses datasets which it calls
Books1 and Books213.

Other crawls and datasets

Many other large-scale raw text datasets have been described and used in papers.
One common type of text dataset is news. Common Crawl collected a crawl dataset
specifically for news. Gigaword 5 [262] was an archive of newswire text gathered by
the Linguistic Data Consortium (LDC). APNEWS was a dataset of AP news articles
which was often used in the NLP literature including in Lau et al. [185]. And the
Google News dataset, which was used to train Word2vec [234] was a proprietary

11Later works that use this including GPT Radford et al. [278] and BERT [90] refer to this as the
BooksCorpus, which is presumably a typo.

12However, [90] describes it as 800 million words while in the original paper [405] it is said to have
984 million words.

13Which from the name would seem to be similar, but little information is given about them other
than that they contain 12 and 55 billion tokens respectively
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Google dataset containing one billion words. Twitter, the famous14 social media
platform which shows tweets publicly has been used as another source of raw text,
including in GloVE [266]. ELMo [268] uses the 1B Word Benchmark [60]. GPT-2 [279]
created a dataset of 8 million documents it calls WebText by crawling webpages
linked on the social media site Reddit. Unlike common crawl, it only crawls webpages
whose links on the social media cite are highly “upvoted” indicating that users found
these pages useful or interesting.

2.5 Automated Knowledge Learning

While much of the focus in the literature (and indeed this thesis) is on knowledge
as a source or input to models, it can also be an output. In our final contribution
(Chapter 8) we tackle this problem in the context of learning knowledge about our
immediate environment with our action policy, but this idea of learning knowledge
automatically has many precedents.

2.5.1 Learning Knowledge from Text on the Web Text

One influential work in this area was the Never-Ending Language Learner (NELL) [55].
The essential idea was to build an intelligent computer agent that does two things.
First, it extracts text from reading the web to populate a structured knowledge
graph. Second, it learns to perform this first task better than it could the day before.
NELL learns two types of knowledge: knowledge about which noun phrases map to
specified semantic categories (e.g. cities, companies), and knowledge about pairs of
noun phrases which specify semantic relations. It learns these types of knowledge
in a number of ways. It learns to extract these from free-form text patterns (e.g.
it learns that “Boston is a city” can be structured as the entity “Boston” having
an ISA relationship with “city”), from sem-structured data such as tables and lists,
and it learns probabilistic horn clause rules that let it infer relations based on other
relations it knows (e.g. 〈 dog, is a, mammal〉 and 〈 mammal, is a, animal〉 =⇒ 〈
dog, is a, animal〉). NELL has been continuously running since 2010 and has to date

14infamous?
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logged almost 3 million high confidence beliefs with over 2,000 nodes/concepts and
over 4,000 edges/relationships.

Other works have similarly learned knowledge from text data such as books [4] or
web data, either by semi-supervised learning [54], by analyzing the frequency of a
relational predicate in a text corpus [96, 383].

2.5.2 Learning Knowledge from Images

One of NELL’s primary influences was the similarly named Never-Ending Image
Learner (NEIL) [65]. Like NELL, NEIL ran unsupervised continuously for several
years to extract, in this case, visual knowledge from the web. NEIL scrapes images
from the internet and learns new object categories and relations between the object
categories based on new images and its previously learned detectors. For instance, it
might discover a new category “Corolla” and based on its similarity to its already
trained “car” detector learn that (Corolla is a kind of car). In addition to taxonomy
relationships, NEIL can learn part of relationships (eye is a part of baby), similarity
relationships (swan looks similar to goose), object attribute relationships (pizza has
round shape), scene-object relationships (bus found in bus depot) and scene attribute
relationships (ocean is blue). It has learned an ontology of over 8000 visual concepts
along with over 20,000 commonsense relationships.

In a similar vein, other systems learn knowledge about visual concepts. VisKE [295]
learns to verify a relation predicate by jointly reasoning over text and images while
other works learn to automatically discover new visual categories by using paired
visual and textual data sources [328] or by web search of text [94]. Other works
have used fully annotated object detection datasets combined with text to extract
commonsense facts [384]. Other work has been done in object discovery [66], or
learning structure or parts [255, 256], and other works have also explored this general
idea of collecting knowledge for visual question answering [402, 404].

Unlike the approaches described here and in Section 2.5.1, our method in Chapter 8
does not use web data (either text or images) to predict edges in a knowledge base,
but rather has an agent that needs to act in the world and observe the results of those
actions. Like these works on never-ending learning [55, 65, 238] however, there is a
similarity in that knowledge creation is seen as a two step process of hypothesizing
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facts and then verifying them. In our case, however, these hypotheses are generated
by the environment rather than gathered from the web.

2.5.3 Learning Knowledge from Large Language Models

Most recently, the extreme scale of training data used for large language models
(see Section 2.3.2&2.4.2) has inspired works to extract explicit knowledge from these
models.

There were several concurrent works that made the observation that these models
implicitly contained a lot of this relational knowledge. In [269], the authors find
that BERT contains relational knowledge and is competitive with oracle knowledge
on several NLP tasks, and shows that BERT can perform well on open-domain
question answering. It develops a benchmark called LAMA to test completion of
knowledge based sentence (e.g. Obama is a by profession). [153] builds on this
approach by automatically discovering prompts that better induce the correct answer.
Similarly [372] shows that pretrained models such as BERT can be used for zero-shot
fact completion. Thus, this line of work aims to find ways of better extracting
knowledge these large language models implicitly contain. In COMET [37], this
observation was used combined with the idea that these models could be train to
explicitly generate knowledge graphs. Given a seed of training knowledge, for instance
on ConceptNet [200], the base model would finetune a pretrained language model
to generate sentences of the form head concept, relation, tail concept. This was
found to be able to generate novel, high-quality knowledge. [39] similarly generates
new knowledge graph relations by first going to the raw text to find sentences that
often express relations, extract the relation according to a template rule and then
using the pretrained language model to predict whether that pair is likely correct.
This recalls an early approach from [77], but this approach makes use of the explicit
knowledge from the language model. Wang et al. [353] takes a similar approach as [39]
using a text corpus in addition to a large language model to learn knowledge graphs.
Wang et al. [355] shows that language models can be fine-tuned for multiple-relations
extraction which is similar to knowledge base completion in that the task asks to find
the semantic relation between two input entities given a source text. And although
it does not generate knowledge graphs, [280] showed that language models could be
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used to generate commonsense explanations and boosted state-of-the-art by 10% on
a commonsense question answering task CommonsenseQA [333].

As with the previous sections, this line of work is related to our contribution
in Chapter 8 in that they are data-driven approaches to extracting knowledge, but
extracted from a source of data rather than by interacting with an environment.

2.5.4 Learning Knowledge with RL and Robotics

Most similar to our ideas in Chapter 8 are lines of work that have looked at agents
which take action which are used to infer or create knowledge.

One line of work including [209, 395] have attempted to combine RL with Knowl-
edge representation and reasoning, for tasks such as navigation and dialogue. These
take the world dynamics learned by RL and make them usable in declarative form
within the knowledge base, which is then used to improve the underlying RL policy.
Unlike in these works, however, these do not take the form of formal statements about
the world and the goal is to improve the downstream policy rather than to extract
knowledge per-se.

Another line of work relating to formalizations of (statistical) causality [265] has
developed to provide a framework for an agent to draw conclusions about its world,
and verify hypothesis as in Chapter 8. This is the approach taken in [81], where RL
is used to train an agent that operates directly on a causal Bayesian network (CBN)
in order to predict the results of interventions on the values on its nodes. In contrast,
our approach was to avoid this formalization, with the hope of training agents who
test hypotheses without building explicit CBNs. Unlike [81], our agents intervene
on the actual world (where interventions make take many actions), rather than the
abstract CBN.

The most similar work to ours is [87], which uses reinforcement learning (or
imitation learning) directly on the world, and the agent gets reward for answering
questions that require experimentation. However, the form of these questions (and
thus the form of the knowledge they can acquire) in each world is the same, involving
asking to describe an attribute or count of objects in a partially observable environment.
In addition, the space of actions is such that random experimental policies could still
find correct answers. In contrast, in our contribution this space of possible questions
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for a world is combinatorial and both random experimentation and vanilla RL are
insufficient.

In the area of robotics, work has been demonstrated for automating the scientific
process. In [127], robotic exploration of chemical reactivity was demonstrated using
ML techniques. [167] developed a robot scientist that explored genomics hypotheses
about yeast and experimentally tested them using laboratory automation. In bio-
chemistry [345] used Bayesian methods for optimal experiment design. More generally,
the Automated Statistician project [324] uses a Bayesian approach to reason about
different hypotheses for explaining the data, with the aim of creating interpretable
knowledge. These works can all be seen as automating the acquisition of knowledge
by an agent, similar to our contribution.

2.6 Applications of Knowledge in NLP

The area of knowledge 15 is perhaps best studied in the field of natural language
processing from knowledge base completion [32] to knowledge-based question answer-
ing [281] to open-domain question answering [61]. Because we are primarily interested
in applying or learning knowledge in embodied systems, our contributions generally
fall outside of the field of NLP, or are at least exist in the various subfields of language
+ vision/RL/robotics/etc. However, the line of text or language-only research has
been enormously influential to our thinking in the area and sometimes directly on our
methods. We will therefore give a broad overview of knowledge in NLP and where
necessary relate it back to our contributions.

The generation of knowledge from textual sources is of course incredibly relevant
to our work in Chapter 8. We discuss this line of work separately in its own section
(Section 2.5), including works in multi-modal knowledge learning.

Another particular work of interest to knowledge-based systems is knowledge base
completion. Some of the earliest work in this field comes from [104] and [32]. The
typical setup for this task is that, given an existing knowledge graph, infer new facts

15The line of work on using and acquiring knowledge when it relates to what humans would
consider “common sense” is often referred to commonsense or commonsense reasoning. We often
use the terms interchangeably, but in the literature, the distinction will often be made to contrast
this line of work with those which retrieve facts (e.g. “what is the capitol of Qatar”).
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from an incomplete knowledge base. This task has been looked at many times using
a variety of methods including using entity and relation embedding [376], tensor
factorization or tensor networks [20, 317] and a variety of other methods [216, 288, 361].
This line of work again relates to our contribution in Chapter 8 except that here the
agent needs to act in a world and observe the results of those actions rather than
using an incomplete knowledge base or text corpus.

Another relevant area of NLP research is question answering, especially question
answering from knowledge sources [23, 34, 382] including in open-domain question
answering [61, 329, 358, 378, 379]. In the open-domain question answering setting,
perhaps best exemplified by [61], the system is asked to answer a general knowledge
question such as “Who won the 2018 super bowl” and the system has to reference
an external knowledge source such as Wikipedia and answer the question. In the
closed setting such as SQuAD [281, 282] the passage containing the answer was given,
but in the open-domain setting, the exact passage will not be given. In the most
general case, there might not even be any guarantee that there is a closed source text
containing the answer. This is of special interest to commonsense knowledge as in
CommonsenseQA [333].

This line of work on knowledge-requiring question answering datasets is quite
similar to our work in knowledge-requiring visual question answering in Chapter 4.
The major difference between these two lines of work is that in visual question
answering, the question comes paired with an image as visual context. So the
problem becomes not just one of question answering from knowledge sources, but
of perception and reasoning about knowledge in the context of a visual scene. The
methods developed for knowledge-based question answering are relevant to our work
in Chapter 5, especially methods which also use knowledge graphs [320, 371, 387],
other external knowledge [260] and especially works with mixed symbolic and implicit
methods for question answering [164, 212].

Other knowledge intensive NLP tasks aside from question answering have also
been introduced. One interesting line of work looks at using knowledge to augment
dialog systems to produce more knowledgeable, engaging dialog agents [93, 398].
There has also been work in knowledge graph alignment [276], logical reasoning and
theorem proving on knowledge graphs [236, 277], and generating structured graph
explanations for commonsense reasoning [296]. Most recently KILT [270] introduced
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a benchmark for knowledge intensive language tasks including not only open domain
QA but also dialog, fact checking, slot filling and entity linkin.

Another very relevant line of work to embodied knowledge is so-called physical
commonsense. Recent works [27, 112] have investigated whether pre-trained language
can learn what they called physical commonsense including the properties of objects
(boats need fuel), affordances (boats can be driven) and inferences (if it can be driven
it requires fuel). The conclusion of [112] is that language models can in fact learn
some of this commonsense, but in general they only can learn things that have been
explicitly written down. This validates our motivation in Chapter 8: certain kinds of
knowledge about the world have to be learned directly through interaction.

2.7 Applications of Knowledge in CV

In this section, we discuss the related work in the field of computer vision (including
the intersection of language and vision) using knowledge-based methods, from early
work in attribute and ontology graphs to more recent work in knowledge-aware VQA
systems. In this section, we will also give context and comparison to our work in
knowledge and vision in Chapters 3,4&5.

2.7.1 Recognition

The use of knowledge and knowledge graphs for visual reasoning in general has been
quite well studied. Possibly the earliest work we could call “knowledge” was the work
relating to attribute approaches [106] to vision such as [183] which uses a fixed set
of binary attributes to do zero-shot prediction, [311] which uses attributes shared
across categories to prevent semantic drift in semi-supervised learning and [99] which
automatically discovers attributes and uses them for fine-grained classification. We
can think of this use of attributes for these applications as using a knowledge graph
where the knowledge is simply a graph of visual concepts connected to their attributes
(e.g. our knowledge is that elephants are grey, cats are furry, etc.). Attribute
knowledge is in fact among the knowledge used in our work in Chapters 3&5 through
the Visual Genome graph (see Section 2.4.1) so in some sense this line of work is a
subset of ours.
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Another line of early work on knowledge for vision was in using pretrained word
vectors from large-scale language training. As we saw in Section 2.3.1, word vectors
trained on billions of words or sentences can give a lot of prior knowledge about words
and categories which can be used in visual recognition, or other tasks. One important
early work in this was DeViSE [114] which demonstrated improved performance on
ImageNet [86] and zero-shot learning. Some works, such as [178] even looked to create
more visually aligned word embeddings by making use of both visual and textual data.
Word embeddings have been shown in a wide variety of visual tasks including image
retrieval [171], image captioning [171, 350] and visual relationship detection [205].
This technique is in fact used so frequently, especially in vision and language tasks
(including our work in Chapter 5), that to try to cite all of the works which use it
would be impossible.

Another line of work in vision has attempted to use a class hierarchy such as
WordNet [235] (Section 2.4.1) as a source of external knowledge to aid in image
recogntion [285, 290, 401]. More generally, knowledge graphs have also been used in
visual classification [67] as well as zero-shot classification [360] and image retrieval [155].
In particular, our work in Chapter 3 was one of the earliest work which made use of
the then new techniques in graph neural networks (Section 2.3.3) combining these with
the existing interest in the CV community with knowledge. Prior to our contribution,
several approaches to reasoning on graphs have been studied. For example, [401]
collects a knowledge base and then queries this knowledge base to do first-order
probabilistic reasoning to predict affordances. [220] builds a graph of exemplars for
different categories and uses the spatial relationships to perform contextual reasoning.
Approaches such as [184] use random walks on the graphs to learn patterns of edges
while performing the walk and predict new edges in the knowledge graph. There has
also been some work using a knowledge base for image retrieval [155] or answering
visual queries [402]. Our main contribution was to shift the focus away from building
specialized knowledge bases and towards existing knowledge bases, and to include
end-to-end reasoning using graph networks rather than on query operations or other
non-differentiable operations. After the publication of our work in Chapter 3, a
number of works have also used knowledge graphs using graph neural networks or
similar setups including for detection [67] and zero-shot classification [360].
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2.7.2 VQA Methods

The work on knowledge-aware systems is perhaps best studied in computer vision
in the language and vision community. Because success on VQA, especially those
datasets specifically designed for the use of outside knowledge (Section 2.7.3), relies
on systems having both visual recognition and the ability to reason about a question
and a scene, knowledge-based methods have become popular.

Several approaches to using knowledge have been proposed. We can roughly
break this into three categories: explicit knowledge graphs/bases, retrieval on source
text or with large-scale language pre-training such as with BERT [90]. Several
works have been studied which directly try to use knowledge graphs or knowledge
bases [248, 249, 356, 357]. Some of these, however only handle the knowledge that
is represented by subject-relation-object or visual concept-relation-attribute triplets,
and rely on direct supervision to do the retrieval of the relevant knowledge. More
recent methods such as [194] encorporate knowledge graphs without this supervision.

Most common are methods which rely on much of the implicit knowledge from
large language models (Section 2.3.2) to improve performance by using a transformer
architecture for both language and visual features [5, 68, 192, 195, 326, 334, 399]. In
several works they not only pretrain on language tasks, but on language and vision
tasks such as masking on image captions [316], or by training on several language
and vision tasks simultaneously [70, 207, 208].

In contrast to these works, our contribution in Chapter 5 takes advantage of
both the implicit and symbolic knowledge methods. We retain symbols until the
end without the need of knowledge/fact annotations and integrate it with implicit
knowledge and powerful reasoning abilities of multi-modal transformers. Concurrent
with the publication of that work, others have also sought to combine these forms
of knowledge. In ConceptBERT [120], a knowledge graph embedding is combined
with the embedded output of a pretrained VilBERT [207] to produce a summary
hidden state which is then used for classification. Similarly, in [309], the matching
knowledge in a knowledge base is embedded using a vision and language transformer
which are then fed into a pretrained transformer (LXMERT [334]). Unlike both of
these approaches, we do not fuse the hidden representation of symbols (the knowledge
graph node hidden states) until answer prediction. We discuss in detail Chapter 5
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the positive effects of this choice.

2.7.3 VQA Tasks

Many works in the vision and language space have specifically considered knowledge as
an inherent capability of these models. The task of visual question answering [16, 218]
is a popular vision and language task where the VQA system is given a natural
language question Q and an image I and must correctly answer (a ∈ A) what the
question asks in the context of the image. Several datasets for VQA have been
proposed [16, 117, 156, 179, 218, 286, 335, 390, 403]. However, in many cases, these
questions do not require much knowledge of the world, often just asking about the
attributes of specific objects, counting objects in a scene, or about basic visual
recognition. To better benchmark systems which incorporate visual and language
reasoning as well as the capability to draw upon outside knowledge, several datasets
and benchmarks have been proposed, including ours in Chapter 4.

Early work in benchmarking knowledge-based VQA began with KB-VQA [356]
and FVQA [357]. While this work explicitly tackles this problem of knowledge-aware
VQA benchmarking, these benchmarks annotate questions in a way that makes them
“closed” rather than “open” knowledge systems. FVQA [357] is annotated by selecting
a fact (a knowledge triplet such as “dog is mammal”) from a fixed knowledge base and
then writing a question around this fact. While this construction does force questions
to require specific knowledge, because it is generated from a known fixed knowledge
base, it generates questions which are quite easy to solve when the right knowledge is
retrieved. It also does not test the ability of a system to draw upon outside knowledge
without a fixed source of knowledge and without explicit annotation of the “correct”
knowledge. These datasets also only test knowledge which can be retrieved as one
triplet from a knowledge base while in datasets with more natural questions such
as the ones from our contribution in Chapter 4 do not necessarily require triplet
knowledge as the questions were written without an explicit correct piece of knowledge.
Similarly, KVQA [304] is generated on top of Wikipedia articles with images and ask
questions relating to that image and article. Because the images in Wikipedia articles
tend to be depictions of famous people and important world events, this dataset also
suffers from the questions mainly being about recognizing specific named entities (e.g.
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Syama Prasad Mookerjee) in the image and retrieving facts about those same people.
A later line of work called VisualCOMET [261] tests similar capabilities as our

dataset in Chapter 4. In [261] they introduce a dataset which requires systems to
predict given an image: events that happened before the image, events that might
happen after, and the intentions of the people. The Ads Dataset [146] is also a
dataset requiring a lot of background knowledge, specifically about brands and even
commonsense knowledge like “sunglasses symbolically indicate that something is cool”
with knowledge-based approaches such as [385] being proposed to fill in the missing
knowledge. Unlike our work, these works are not framed as visual question answering:
these predictions take the form of requiring the generation of a commonsense graph
for an image or as sentence outputs.

2.8 Applications of Knowledge in Interaction

Finally, as our motivation is to understand knowledge in embodied agents, we turn
to the application of knowledge systems in robotics and other agents.16 Here we
will discuss work using textual knowledge and supervision in RL relating to our
contribution in Chapter 6 where we use the implicit knowledge from language to
solve zero and few-shot tasks. We will also discuss the work of direct or symbolic
knowledge in robotics system relating to our work in Chapter 7 which uses background
knowledge about categories and tasks to do semantic grasping on novel objects and
tasks.

2.8.1 Language and Interaction

First, we look at the intersection of language and robotics and embodied agents. As
we discussed in Section 1.1, knowledge can take the form of text or implicit knowledge
from the structure of language or learned models such as word embeddings. Thus,
works that look at this intersection by using language are also in some sense using
knowledge and this work is relevant to our thesis. This implicit knowledge from
language (and from word embeddings) also forms the basis of our work in Chapter 6.

16For lack of a better term, we will refer to the latter as “Interaction” or “RL”
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The sub-field of language and vision navigation has investigated the use of natural
language and action, training agents to navigate to a particular location in an
environment (real or simulated) given templated or natural language [11, 29, 59, 62,
229, 336, 389] or to navigate to a particular location to answer a question [80]. In
these works, the agent reads some text (both at train and test time) and follows these
instructions towards some goal. In contrast, our work in Chapter 6 is not a translation
task of semantics to action. Our agent uses language as supervision, but this is only
provided as training data, and at test time, no instructions our given. Our agent
must generate instructions from a high-level goal and then use those instructions to
reach the goal.

Other related works such as [253] uses human-generated language to find objects
in a simulated environment, [44, 396] read a document (i.e. a players manual) to play
a variety of games, and [213] trains agents to follow both image and language-based
goals. Others have utilized natural language for other tasks, including [362], [72], and
[14] but not focused on the multi-task learning setting.

Many works, as ours in Chapter 6 are interested in the use of language as
descriptions of tasks and sub-tasks, often with the hope of achieving some form of
compositionality or generalization. Early work often relied on what [13] calls “sketches.”
A sketch specifies the necessary sub-tasks for a final task and is manually constructed
for every task. The agent then relies on reward signals from the sketches in order
to learn these predefined sub-tasks. [312] introduced what they call a Stochastic
Temporal Grammar for multi-task RL in Minecraft. Similarly, BabyAI [69] creates a
synthetic language inside a grid-based environment. [71] extends Hindsight Experience
Replay (HER) to language goals in the BabyAI platform to solve a single instruction
generated from a hand-crafted language. [152] also uses procedurally generated
language on top of MuJoCo [342] and the CLEVR [156] engine to learn a hierarchical
representation for multi-task RL. [257] also tackles zero-shot generalizations, but
like the others considers only procedurally-generated instructions, learning to use
analogies to learn correspondences between similar sub-tasks. All of these works rely
on procedurally defined instructions. However, because these are pre-defined, it is less
realistic for settings where we do not have a predefined ontology of tasks or simulator
to generate the sketches, such as our work in Chapter 6 where we only have access to
a limited number of human-generated instructions.
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Most similar to our contribution is [142], which also investigates using a limited
number of human-generated instructions in RL environments. This paper also uses
natural language instructions in hierarchical decision making to play a real-time
strategy game involving moving troop units across long time scales. The paper differs
from ours in methods (using only imitation learning which fails in our setting) and
in task definition. While their method has a wide variability in starting locations
and placement of objects, they do not investigate whether language can be used in
zero-shot or few-shot settings or in cross-task generalization as we do in Chapter 6.

A number of other language and action environments have been proposed which
could benefit from both the implicit knowledge of large language models and sym-
bolic knowledge. In [359], they create a language learning setting involving placing
differently colored voxel blocks to make different objects. The computer initially
knows nothing about language and learns it directly through interactions where a
human player gives commands about what it should do (e.g. put down brown blocks
on orange) and gives feedback. In a similar vein, agents in [139] are dropped into a
simulated 3D world and must learn new tasks one-shot through human instructions
and a access to language clues about objects. Similar to our environment in Chapter 6,
ALFRED [310] requires the completion of high-level goals specified in language in
a 3D simulated house and gives access to low-level demonstrations and language
instructions for training. In situated (non-simulated) robotics, there have been a
number of works which looked at teaching robots new tasks or goals through human
demonstrations and language instructions [28, 57, 306].

2.8.2 Knowledge in Robotics and RL

Finally, we look at the use of explicit knowledge in robotics and other embodied
agents, and place our work in Chapter 7 into this context. For a more complete
survey on knowledge and semantic reasoning in robotics, see Liu et al. [201].

Text Adventure games such as Zork Nemesis and TextWorld [75] have recently
emerged as an interesting test-bed for RL agents which require commonsense and
language understanding [246]. These games were originally developed when rendering
graphics in video games was prohibitively expensive and all perception and action
happened through plain text. The player or agent receives descriptions of a scene
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through text (e.g. there is a door to your left) and takes actions by typing in the prompt
window to take actions in the simulated world. Because the space of observations is
textual, it can benefit enormously from semantic and knowledge-based techniques. In
particular Ammanabrolu and Riedl [8] showed that representing the game state of
text adventures as a knowledge graph improves learning and Ammanabrolu and Riedl
[9] showed that adding prior knowledge from existing knowledge graphs would allow
for better transfer to new games and genres of games (e.g. horror). Voice assistants,
text or speech AI systems which can speak with humans and do useful tasks are
very similar to this line of research as both the observation and action spaces are
textual. Similarly, works such as [250] show that using external knowledge sources
can improve these agents.

In the field of robotics, semantic knowledge has been used to help robots in
adapting to diverse and changing environments and to provide priors and abstractions
that help them generalize to new situations. As discussed in 2.4.1, knowledge bases
have been specifically collected for robotics tasks including KnowRobo [339] and
Robobrain [299], ORO [189], OUR-K [197], and RoboCSE [79]. Knowledge has been
used for a variety of robotics tasks such as affordance learning [239, 346] (what
actions can be done with different objects), active object search [394] (searching for
a particular object in a room), plan repair [38] (autonomously correcting plans if a
plan is invalid), semantic localization [116, 274] (room categories such as “kitchen”),
and visual semantic navigation [377] (navigating to an object specified by language).

One line of work considers how to improve planning from background knowledge
such as text or instructional videos. Kaiser et al. [159] looks at using recipes to learn
background knowledge relevant for robotics-related planning problems. In [43], a
model learns to predict precondition relations from text to learn the high level plan for
crafting tasks (similar to our tasks in Chapter 6). Similarly, [58], takes instructional
videos and learns a structured and plannable state and action spaces directly from
those videos.

Most relevant to our contribution in Chapter 7 on semantic grasping is the line
of work using for grasping. In Antanas et al. [15] and [17], grounded geometric
information about objects paired with semantic information about the category of
different parts of the object were used to improve semantic grasping. However, this
requires fine-grained segmentation of objects and only reasons implicitly based on a
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limited number of segmentation labels. In contrast, our work in Chapter 7 does not
rely on this kind of annotation and can reason based purely on the semantic category
at the object level.
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Chapter 3

Knowledge in Vision

3.1 Introduction

In this chapter, we build towards our goal of knowledge-capable embodied systems by
first looking at how knowledge systems can be incorporated into deep learning-based
visual perception systems. Our world contains millions of visual concepts understood
by humans. These often are ambiguous (tomatoes can be red or green), overlap
(vehicles includes both cars and planes) and have dozens or hundreds of subcategories
(thousands of specific kinds of insects). While some visual concepts are common
such as person or car, most categories have many fewer examples, forming a long-tail
distribution [400]. And yet, even when only shown a few or even one example, humans
have the remarkable ability to recognize these categories with high accuracy. In
contrast, while modern learning-based approaches can recognize some categories with
high accuracy, it usually requires thousands of labeled examples for each of these
categories. Given how large, complex and dynamic the space of visual concepts is,
this approach of building large datasets for every concept is unscalable. Therefore,
we need to ask what humans have that current approaches do not.

One possible answer to this is structured knowledge and reasoning. Humans
are not merely appearance-based classifiers; we gain knowledge of the world from
experience and language. We use this knowledge in our everyday lives to recognize
objects. For instance, we might have read in a book about the “elephant shrew”
(maybe even seen an example) and will have gained knowledge that is useful for
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Figure 3.1: Example of how semantic knowledge about the world aids classification.
Here we see an elephant shrew. Humans are able to make the correct classification
based on what we know about the elephant shrew and other similar animals.

recognizing one. Figure 3.1 illustrates how we might use our knowledge about the
world in this problem. We might know that an elephant shrew looks like a mouse,
has a trunk and a tail, is native to Africa, and is often found in bushes. With this
information, we could probably identify the elephant shrew if we saw one in the wild.
We do this by first recognizing (we see a small mouse-like object with a trunk in a
bush), recalling knowledge (we think of animals we have heard of and their parts,
habitat, and characteristics) and then reasoning (it is an elephant shrew because it
has a trunk and a tail, and looks like a mouse while mice and elephants do not have
all these characteristics). With this information, even if we have only seen one or two
pictures of this animal, we would be able to classify it.

There has been a lot of work in end-to-end learning on graphs or neural network
trained on graphs [51, 100, 125, 138, 227, 231, 254, 300]. Most of these approaches
either extract features from the graph or they learn a propagation model that transfers
evidence between nodes conditional on the type of edge. An example of this is the
Gated Graph Neural Network [196] which takes an arbitrary graph as input. Given
some initialization specific to the task, it learns how to propagate information and
predict the output for every node in the graph. This approach has been shown to
solve basic logical tasks as well as program verification.

This work improves on this model and adapts end-to-end graph neural networks
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to multi-label image classification. We introduce the Graph Search Neural Network
(GSNN) which uses features from the image to efficiently annotate the graph, select
a relevant subset of the input graph and predict outputs on nodes representing
visual concepts. These output states are then used to classify the objects in the
image. GSNN learns a propagation model which reasons about different types of
relationships and concepts to produce outputs on the nodes which are then used
for image classification. Our architecture mitigates the computational issues with
the Gated Graph Neural Networks for large graphs which allows our model to be
efficiently trained for image tasks using large knowledge graphs. We show how our
model is effective at reasoning about concepts to improve image classification tasks.
Importantly, our GSNN model is also able to provide explanations on classifications
by following how the information is propagated in the graph.

3.2 Related Work

Knowledge Bases in CV: Learning knowledge graphs [55, 65, 295] and using graphs
for visual reasoning [220, 400] has long been of interest to the vision community.
For reasoning on graphs, several approaches have been studied. For example, [401]
collects a knowledge base and then queries this knowledge base to do first-order
probabilistic reasoning to predict affordances. [220] builds a graph of exemplars for
different categories and uses the spatial relationships to perform contextual reasoning.
Approaches such as [184] use random walks on the graphs to learn patterns of edges
while performing the walk and predict new edges in the knowledge graph. There had
also been some work using a knowledge base for image retrieval [155] or answering
visual queries [402], but these works were focused on building and then querying
knowledge bases rather than using existing knowledge bases as side information
for some vision task. However, none of these approaches had been learned in an
end-to-end manner and the propagation model on the graph was mostly hand-crafted.

Graph Neural Networks: Learning from knowledge graphs using neural net-
works and other end-to-end learning systems to perform reasoning had recently
become an active area of research. Several works treat graphs as a special case of a
convolutional input where, instead of pixel inputs connected to pixels in a grid, we
define the inputs as connected by an input graph, relying on either some global graph
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structure or doing some sort of pre-processing on graph edges [51, 100, 138, 254]. Li
and Zemel present Graph Gated Neural Networks (GGNN) [196] which uses neural
networks on graph structured data. This work (an extension of Graph Neural Net-
works [300]) serves as the foundation for our Graph Search Neural Network (GSNN).
Several papers have found success using variants of Graph Neural Networks applied to
various simple domains such as quantitative structure-property relationship (QSPR)
analysis in chemistry [231] and subgraph matching and other graph problems on toy
datasets [125]. GGNN is a fully end-to-end network that takes as input a directed
graph and outputs either a classification over the entire graph or an output for each
node. For instance, for the problem of graph reachability, GGNN is given a graph, a
start node and end node, and the GGNN will have to output whether the end node
is reachable from the start node. They show results for logical tasks on graphs and
more complex tasks such as program verification.

Attributes: This work is also related to attribute approaches [106] to vision
such as [183] which uses a fixed set of binary attributes to do zero-shot prediction,
[311] which uses attributes shared across categories to prevent semantic drift in
semi-supervised learning and [99] which automatically discovers attributes and uses
them for fine-grained classification. Our work also uses attribute relationships that
appear in our knowledge graphs, but also uses relationships between objects and
reasons directly on graphs rather than using object-attribute pairs directly.

3.3 Methodology

In this section, we begin with an explanation of the Graph Gated Neural Network
(Section 3.3.1) which serves as the basis of our network1. We then describe our
network, the Graph Search Neural Network (Section 3.3.2) and describe our complete
image processing pipeline and baselines (Section 3.3.3).

1We more thoroughly discuss prior graph neural network models in Chapter 2.3.3 and explain
the recurrence equations there. But for clarity, we repeat parts of that section here.
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3.3.1 Graph Gated Neural Network

The idea of GGNN is that given a graph with N nodes, we want to produce some
output which can either be an output for every graph node o1, o2, ...oN or a global
output oG. This is done by learning a propagation model similar to an LSTM. For
each node in the graph v, we have a hidden state representation h(t)

v at every time step
t. We start at t = 0 with initial hidden states xv that depends on the problem. For
instance, for learning graph reachability, this might be a two bit vector that indicates
whether a node is the source or destination node. In case of visual knowledge graph
reasoning, xv can be a one bit activation representing the confidence of a category
being present based on an object detector or classifier.

Next, we use the structure of our graph, encoded in a matrix A which serves to
retrieve the hidden states of adjacent nodes based on the edge types between them.
The hidden states are then updated by a gated update module similar to an LSTM.
The basic recurrence for this propagation network is:

h(1)
v = [xT

v , 0]T (3.1)

a(t)
v = AT

v [h(t−1)
1 ...h

(t−1)
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v)� h(t−1)
v + zt

v � h̃t
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where h(t)
v is the hidden state for node v at time step t, xv is the problem specific

annotation, Av is the adjacency matrix of the graph for node v, and W and U are
learned parameters. Eq 3.1 is the initialization of the hidden state with xv and empty
dimensions. Eq 3.2 shows the propagation updates from adjacent nodes. Eq (3-6)
combine the information from adjacent nodes and current hidden state of the nodes
to compute the next hidden state.

After T time steps, we have our final hidden states. The node level outputs can
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then just be computed as
ov = g(h(T )

v , xv) (3.7)

where g is a fully connected network, the output network, and xv is the original
annotation for the node.

3.3.2 Graph Search Neural Network

The biggest problem in adapting GGNN for image tasks is computational scalability.
NEIL [65] for example has over 2000 concepts, and NELL [55] has over 2M confident
beliefs. Even after pruning to our task, these graphs would still be huge. Forward
propagation on the standard GGNN is O(N2) to the number of nodes N and backward
propagation is O(NT ) where T is the number of propagation steps. We perform simple
experiments on GGNNs on synthetic graphs and find that after more than about 500
nodes, a forward and backward pass takes over 1 second on a single instance, even
when making generous parameter assumptions. On 2,000 nodes, it takes well over a
minute for a single image. Using GGNN out of the box is infeasible.

Our solution to this problem is the Graph Search Neural Network (GSNN). As
the name might imply, the idea is that rather than performing our recurrent update
over all of the nodes of the graph at once, we start with some initial nodes based
on our input and only choose to expand nodes which are useful for the final output.
Thus, we only compute the update steps over a subset of the graph. So how do we
select which subset of nodes to initialize the graph with? During training and testing,
we determine initial nodes in the graph based on likelihood of the concept being
present as determined by an object detector or classifier. For our experiments, we
use Faster R-CNN [287] for each of the 80 COCO categories. For scores over some
chosen threshold, we choose the corresponding nodes in the graph as our initial set of
active nodes.

Once we have initial nodes, we also add the nodes adjacent to the initial nodes to
the active set. Given our initial nodes, we want to first propagate the beliefs about
our initial nodes to all of the adjacent nodes. After the first time step, however, we
need a way of deciding which nodes to expand next. We therefore learn a per-node
scoring function that estimates how “important” that node is. After each propagation
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step, for every node in our current graph, we predict an importance score

i(t)v = gi(hv, xv) (3.8)

where gi is a learned network, the importance network.

Once we have values of iv, we take the top P scoring nodes that have never been
expanded and add them to our expanded set, and add all nodes adjacent to those
nodes to our active set. Figure 3.2 illustrates this expansion. At t = 1 only the
detected nodes are expanded. At t = 2 we expand chosen nodes based on importance
values and add their neighbors to the graph. At the final time step T we compute the
per-node-output and re-order and zero-pad the outputs into the final classification
net.

To train the importance net, we assign target importance value to each node
in the graph for a given image. Nodes corresponding to ground-truth concepts in
an image are assigned an importance value of 1. The neighbors of these nodes are
assigned a value of γ. Nodes which are two-hop away have value γ2 and so on. The
idea is that nodes closest to the final output are the most important to expand.

We now have an end-to-end network which takes as input a set of initial nodes and
annotations and outputs a per-node output for each of the active nodes in the graph.
It consists of three sets of networks: the propagation net, the importance net, and
the output net. The final loss from the image problem can be backpropagated from
the final output of the pipeline back through the output net and the importance loss
is backpropagated through each of the importance outputs. See Figure 3.3 to see the
GSNN architecture. First xinit, the detection confidences initialize h(1)

init, the hidden
states of the initially detected nodes. We then initialize h(1)

adj1, the hidden states of
the adjacent nodes, with 0. We then update the hidden states using the propagation
net. The values of h(2) are then used to predict the importance scores i(1), which
are used to pick the next nodes to add adj2. These nodes are then initialized with
h

(2)
adj2 = 0 and the hidden states are updated again through the propagation net. After
T steps, we then take all of the accumulated hidden states hT to predict the GSNN
outputs for all the active nodes. During backpropagation, the binary cross entropy
(BCE) loss is fed backward through the output layer, and the importance losses are
fed through the importance networks to update the network parameters.
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Figure 3.2: Graph Search Neural Network expansion. Starts with detected nodes and
expands neighbors. Adds nodes adjacent to expand nodes predicted by importance
net.

One final detail is the addition of a “node bias” into GSNN. In GGNN, the
per-node output function g(h(T )

v , xv) takes in the hidden state and initial annotation
of the node v to compute its output. In a certain sense it is agnostic to the meaning
of the node. That is, at train or test time, GSNN takes in a graph it has perhaps
never seen before, and some initial annotations xv for each node. It then uses the
structure of the graph to propagate those annotations through the network and then
compute an output. The nodes of the graph could have represented anything from
human relationships to a computer program. However, in our graph network, the
fact that a particular node represents “horse” or “cat” will probably be relevant, and
we can also constrain ourselves to a static graph over image concepts. Hence we
introduce node bias terms that, for every node in our graph, has some learned values.
Our output equations are now g(h(T )

v , xv, nv) where nv is a bias term that is tied to a
particular node v in the overall graph. This value is stored in a table and its value
are updated by backpropagation.
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Figure 3.3: Graph Search Neural Network diagram. Shows initialization of hidden
states, addition of new nodes as graph is expanded and the flow of losses through the
output, propagation and importance nets.

3.3.3 Image Pipeline and Baselines

Another problem we face adapting graph networks for vision problems is how to
incorporate the graph network into an image pipeline. For classification, this is fairly
straightforward. We take the output of the graph network, reorder it so that nodes
always appear in the same order into the final network, and zero pad any nodes that
were not expanded. Therefore, if we have a graph with 316 node outputs, and each
node predicts a 5-dim hidden variable, we create a 1580-dim feature vector from
the graph. We also concatenate this feature vector with fc7 layer (4096-dim) of a
fine-tuned VGG-16 network [314] and top-score for each COCO category predicted
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by Faster R-CNN (80-dim). This 5756-dim feature vector is then fed into 1-layer final
classification network trained with dropout.

For baselines, we compare to: (1) VGG Baseline - feed just fc7 into final classifica-
tion net; (2) Detection Baseline - feed fc7 and top COCO scores into final classification
net.

3.3.4 Building the Knowledge Graph

We use Visual Genome [179] as a source for our knowledge graph. Using only the
train split, we build a knowledge graph connecting the concepts using the most
common object-attribute and object-object relationships in the dataset. Specifically,
we counted how often an object-object relationship or object-attribute pair occurred in
the training set, and pruned any edges that had fewer than 200 instances. This leaves
us with a graph over all of the images with each edge being a common relationship.
The idea is that we would get very common relationships (such as grass is green or
person wears clothes) but not relationships that are rare and only occur in single
images (such as person rides zebra).

The Visual Genome graphs are useful for our problem because they contain
scene-level relationships between objects, e.g. person wears pants or fire hydrant is
red and thus allow the graph network to reason about what is in a scene. However,
it does not contain useful semantic relationships. For instance, it might be helpful
to know that dog is an animal if our visual system sees a dog and one of our labels
is animal. To address this, we also create a version of graph by fusing the Visual
Genome Graphs with WordNet [235]. Using the subset of WordNet from [133], we
first collect new nodes in WordNet not in our output label by including those which
directly connect to our output labels and thus likely to be relevant and add them to
a combined graph. We then take all of the WordNet edges between these nodes and
add them to our combined graph.
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3.4 Experiments

3.4.1 Datasets

For our experiments, we wanted to test on a dataset that represents the complex,
noisy visual world with its many different kinds of objects, where labels are potentially
ambiguous and overlapping, and categories fall into a long-tail distribution [400].
Humans do well in this setting, but vision algorithms still struggle with it. To this
end, we chose the Visual Genome dataset [179]2.

Visual Genome contains over 100,000 natural images from the Internet. Each
image is labeled with objects, attributes and relationships between objects entered
by human annotators. Annotators could enter any object in the image rather than
from a predefined list, so as a result there are thousands of object labels with some
being more common and most having many fewer examples. There are on average
21 labeled objects in an image, so compared to datasets such as ImageNet [294] or
PASCAL [102], the scenes we are considering are far more complex. Visual Genome is
also labeled with object-object relationships and object-attribute relationships which
we use for GSNN.

In our experiments, we create a subset from Visual Genome which we call Visual
Genome multi-label dataset or VGML. In VGML, we take the 200 most common
objects in the dataset and the 100 most common attributes and also add any COCO
categories not in those 300 for a total of 316 visual concepts. Our task is then multi-
label classification: for each image predict which subset of the 316 total categories
appear in the scene. We randomly split the images into a roughly 80-20 train/test
split. Since we used pre-trained detectors from COCO, we ensure none of our test
images overlap with our detector’s training images.

We also evaluate out method on the more standard COCO dataset [198] to show
that our approach is useful on multiple datasets and that our method does not rely
on graphs built specifically for our datasets. We train and test in the multi-label
setting [237], and evaluate on the minival set [287].

2v1.0
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Table 3.1: Mean Average Precision for multi-label classification on Visual Genome
Multi-Label dataset. Numbers for VGG baseline, VGG baseline with detections,
GSNN using Visual Genome graph and GSNN using a combined Visual Genome and
WordNet graph.

Method mAP
VGG 30.57
VGG+Det 31.40
GSNN-VG 32.83
GSNN-VG+WN 33.00

Table 3.2: Mean Average Precision for multi-label classification on COCO. Numbers
for VGG baseline, VGG baseline with detections, GSNN using Visual Genome graph
and GSNN using combined Visual Genome and WordNet graph.

Method mAP
VGG 69.86
VGG+Det 73.93
GSNN-VG 77.57
GSNN-VG+WN 75.73

3.4.2 Training Details

We jointly train all parts of the pipeline (except for the detectors). All models
are trained with Stochastic Gradient Descent, except GSNN which is trained using
ADAM [168]. We use an initial learning rate of 0.05, 0.005 for the VGG net before
fc7, decreasing by a factor of 0.1 every 10 epochs, an L2 penalty of 1e−6 and a
momentum of 0.5. We set our GSNN hidden state size to 10, importance discount
factor γ to 0.3, number of time steps T to 3, initial confidence threshold to 0.5 and
our expand number P to 5. Our GSNN importance and output networks are single
layer networks with sigmoid activations. All networks were trained for 20 epochs
with a batch size of 16.
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Figure 3.4: Mean Average Precision on Visual Genome in the low data setting. Shows
performance for all methods for the full dataset, 40,000, 20,000, 10,000, 5,000, 2,000,
1,000, and 500 training examples.

3.4.3 Quantitative Evaluation

Table 3.1 shows the result of our method on Visual Genome multi-label classification.
In this experiment, the combined Visual Genome, WordNet graph outperforms the
Visual Genome graph. This suggests that including the outside semantic knowledge
from WordNet and performing explicit reasoning on a knowledge graph allows our
model to learn better representations compared to the other models.

We also perform experiments to test the effect of limiting the size of the training
dataset has on performance. Figure 3.4 shows the results of this experiment on Visual
Genome, varying the training set size from the entire training set (approximately
80,000), all the way down to 500 examples. Choosing the subsets of examples for these
experiments is done randomly, but each training set is a subset of the larger ones—e.g.
all of the examples in the 1,000 set are also in the 2,000 set. We see that, until the
1,000 sample set, the GSNN-based methods all outperform baselines. At 1,000 and
500 examples, all of the methods perform equally. Given the long-tail nature of Visual
Genome, it is likely that for fewer than 2,000 samples, many categories do not have
enough examples for any method to learn well. This experiment indicates that our
method is able to improve even in the low-data case up to a point.

In Table 3.2, we show results on the COCO multi-label dataset. We can see that the
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Table 3.3: Mean Average Precision for multi-label classification on COCO, using only
odd and even detectors.

Method even mAP odd mAP
VGG+Det 71.87 71.73
GSNN-VG 73.00 73.43
GSNN-VG+WN 73.59 73.97

boost from using graph knowledge is more significant than it was on Visual Genome.
One possible explanation is that the Visual Genome knowledge graph provides
significant information which helps improve the performance on the COCO dataset
itself. In the previous Visual Genome experiment, much of the graph information
is contained in the labels and images themselves. One other interesting result is
that the Visual Genome graph outperforms the combined graph for COCO, though
both outperform baselines. One possible reason is that the original VGML graph is
smaller, cleaner, and contains more relevant information than the combined graph.
Furthermore, in the VGML experiment, WordNet is new outside information for the
algorithm helping boost the performance.

One possible concern is the over-dependence of the graph reasoning on the set
of 80 COCO detectors and initial detections. Therefore, we performed an ablation
experiment to see how sensitive our method is to having all of the initial detections.
We reran the COCO experiments with both graphs using two different subsets of
COCO detectors. The first subset is just the even COCO categories and the second
subset is just the odd categories. We see from Table 3.3 that GSNN methods again
outperform the baselines.

As one might suspect, our method does not perform uniformly on all categories,
but rather does better on some categories and worse on others. Figure 3.5 shows
the differences in average precision for each category between our GSNN model
with the combined graph and the detection baseline for the VGML experiment.
Figure 3.6 shows the same for our COCO experiment. Performance on some classes
improves greatly, such as “fork” in our VGML experiment and “scissors” in our
COCO experiment. These and other good results on “knife” and “toothbrush” seem
to indicate that the graph reasoning helps especially with small objects in the image.
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Figure 3.5: Difference in Average Precision for each of the 316 labels in VGML
between our GSNN combined graph model and detection baseline for the Visual
Genome experiment. Top categories: scissors, donut, frisbee, microwave, fork. Bottom
categories: stacked, tiled, light brown, ocean, grassy.
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Figure 3.6: Difference in Average Precision for each of the 80 labels in COCO between
our GSNN VG graph model and detection baseline for the COCO experiment. Top
categories: fork, donut, cup, apple, microwave. Bottom categories: hairdryer, parking
meter, bear, kite, and giraffe.

In the next section, we analyze our GSNN models on several examples to try to gain
a better intuition as to what the GSNN model is doing and why it does well or poorly
on certain examples.

3.4.4 Qualitative Evaluation

One way to analyse the GSNN is to look at the sensitivities of parameters in our
model with respect to a particular output. Given a single image I, and a single label
of interest yi that appears in the image, we would like to know how information
travels through the GSNN and what nodes and edges it uses. We examined the
sensitivity of the output to hidden states and detections by computing the partial
derivatives ∂yi

∂h(1)
∂yi

∂h(2)
∂yi

∂xdet
with respect to the category of interest. These values tell
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Figure 3.7: Sensitivity analysis of GSNN in VGML experiment (left) and COCO
experiment (right) with the combined graph and Visual Genome graphs respectively.
Each example shows the image, part of the knowledge graph expanded during the
classification, and the sensitivity values of the initial detections, and the hidden states
at time steps 2 and 3 with respect to the output class listed. The top detections
and hidden state nodes are printed for convenience since the x-axis is too large to
list every class. The top and middle rows show the results for images and classes
where the GSNN significantly outperforms the detection baseline to get an intuition
for when our method is working. The bottom row shows images and classes where
GSNN does worse than the detection baseline to get an idea of when our method
fails and why.
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us how a small change in the hidden state of a particular node affects a particular
output. We would expect to see, for instance, that for labeling elephant, we see a
high sensitivity for the hidden states corresponding to grey and trunk.

In this section, we show the sensitivity analysis for the GSNN combined graph
model on the VGML experiment and the Visual Genome graph on the COCO
experiments. In particular, we examine some classes that performed well under GSNN
compared to the detection baseline and a few that performed poorly to try to get a
better intuition into why some categories improve more.

Figure 3.7 shows the graph sensitivity analysis for the experiments with VGML on
the left and COCO on the right, showing four examples where GSNN does better and
two where it does worse. Each example shows the image, the ground truth output
we are analyzing and the sensitivities of the concept of interest with respect to the
hidden states of the graph or detections. For convenience, we display the names of the
top detections or hidden states. We also show part of the graph that was expanded,
to see what relationships GSNN was using.

For the VGML experiment, the top left of Figure 3.7 shows that using the detection
for person, GSNN is able to reason that jeans are more likely since jeans are usually
on people in images using the “wearing” edge. It is also sensitive to skateboard and
horse, and each of these has a second order connection to jeans through person, so it
is likely able to capture the fact that people tend to wear jeans while on horses and
skateboards. Note that the sensitivities are not the same as the actual detections,
so it is not contradictory that horse has high sensitivity. The second row on the left
shows a successful example for bicycle, using detections from person and skateboard
and the fact that people tend to be “on” bicycles and skateboards. The last row
shows a failure case for windshield. It correctly correlates with bus, but because the
knowledge graph lacks a connection between bus and windshield, the graph network
is unable to do better than the detection baseline. On the right, for the COCO
experiment, the top example shows that fork is highly correlated with the detection
for fork, which should not be surprising. However, it is able to reinforce this detection
with the connections between broccoli and dining table, which are both two step
connections to fork on the graph. Similarly, the middle example shows that the
graph connections for pizza, bowl, and bottle being “on” dining table reinforce the
detection of dining table. The bottom right shows another failure case. It is able to
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get the connection between the detection for toilet and hair dryer (both found in the
bathroom), but the lack of good connections in the graph prevent the GSNN from
improving over the baseline.

3.5 Conclusion

In this chapter, we present the Graph Search Neural Network (GSNN) as a way of
efficiently using knowledge graphs as extra information to improve image classification.
We provide analysis that examines the flow of information through the GSNN and
provides insights into why our model improves performance.

In later chapters, we will extend on many of the ideas from this work of how to
incorporate knowledge graphs into deep learning systems, but we extend these ideas
to join multiple modalities and study problems which require more knowledge about
the world.
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Chapter 4

Knowledge in Language and
Vision: Benchmarks

4.1 Introduction

In this chapter, we extend our study of knowledge systems to those that operate
across multiple modalities, in this case vision and language. In particular, we also
wanted to study problems where the the benefits of knowledge are more obvious.

Consider the question in Figure 4.1, which asks about the relation between the
teddy bear and an American president. The information in the image here is not
complete for answering the question. We need to link the image content to external
knowledge sources, such as the sentences at the bottom of the figure taken from
Wikipedia. Given the question, image, and Wikipedia sentences, there is now enough
information to answer the question: Teddy Roosevelt!

Prior research had started to look at how to incorporate knowledge-based methods
into VQA [248, 249, 356, 357]. These methods investigated incorporating knowledge
bases and retrieval methods into VQA datasets with a set of associated facts for each
question. In this contribution, we go one step forward and design a VQA dataset
which requires VQA to perform reasoning using unstructured knowledge.

To enable research in this direction, we introduce a dataset, named Outside
Knowledge VQA (OK-VQA), which includes only questions that require external
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Figure 4.1: We propose a novel dataset for visual question answering, where the
questions require external knowledge resources to be answered. In this example,
the visual content of the image is not sufficient to answer the question. A set of
facts about teddy bears makes the connection between teddy bear and the American
president, which enables answering the question.

resources for answering them. On our dataset, we can start to evaluate the reasoning
capabilities of models in scenarios where the answer cannot be obtained by only
looking at the image. Answering OK-VQA questions is a challenging task since, in
addition to understanding the question and the image, the model needs to: (1) learn
what knowledge is necessary to answer the questions, (2) determine what query to
do to retrieve the necessary knowledge from an outside source of knowledge, and (3)
incorporate the knowledge from its original representation to answer the question.

The OK-VQA dataset consists of more than 14,000 questions that cover a variety
of knowledge categories such as science & technology, history, and sports. We provide
category breakdowns of our dataset, as well as other relevant statistics to examine
its properties. We also analyze the then-standard VQA models and show their
performance degrades on this dataset. Furthermore, we provide results for a set of
baseline approaches that are based on simple knowledge retrieval. Our dataset is
diverse, difficult, and to date the largest VQA dataset focused on knowledge-based
VQA in natural images.
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4.2 Related Work

Visual Question Answering (VQA). Visual question answering (VQA) has been
one of the most popular topics in the computer vision community over the past few
years. Early approaches to VQA combined recurrent networks with CNNs to integrate
textual and visual data [219]. Attention-based models [115, 206, 370, 373, 381, 403]
better guide the model in answering the questions by highlighting image regions
that are relevant to the question. Modular networks [12, 143, 157] leverage the
compositional nature of the language in deep neural networks. These approaches
have been extended to the video domain as well [150, 242, 344]. [80, 124] address
the problem of question answering in an interactive environment. None of these
approaches, however, is designed for leveraging external knowledge so they cannot
handle the cases that the image does not represent the full knowledge to answer the
question.

The problem of using external knowledge for answering questions had been tackled
by [193, 248, 249, 356, 357, 365]. These methods, however, only handle the knowledge
that is represented by subject-relation-object or visual concept-relation-attribute
triplets, and rely on supervision to do the retrieval of facts. In contrast, answering
questions in our dataset requires handling unstructured knowledge resources.
VQA datasets. In the past decade, several datasets have been proposed for visual
question answering [16, 117, 156, 179, 218, 286, 335, 357, 390, 403]. The DAQUAR
dataset [218] includes template-based and natural questions for a set of indoor
scenes. [16] proposed the VQA dataset, which is two orders of magnitude larger than
DAQUAR and includes more diverse images and less constrained answers. FM-IQA
[117] is another dataset that includes multi-lingual questions and answers. Visual
Madlibs [390], constructs fill-in-the-blank templates for natural language descriptions.
COCO-QA [286] is constructed automatically by converting image descriptions to
questions. The idea of Visual 7W [403] is to provide object-level grounding for
question-answer pairs as opposed to image-level associations between images and QA
pairs. Visual Genome [179] provides dense annotations for image regions, attributes,
relationships, etc. and provide free-form and region-based QA pairs for each image.
MovieQA [335] is a movie-based QA dataset, where the QAs are based on information
in the video clips, subtitles, scripts, etc. CLEVR [156] is a synthetic VQA dataset
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that mainly targets visual reasoning abilities. In contrast to all these datasets, we
focus on questions that cannot be answered by the information in the associated
image and require external knowledge to be answered.

Most similar to our dataset is FVQA [357]. While that work also tackles the
difficult problem of creating a VQA dataset requiring outside knowledge, their method
annotates questions by selecting a fact (a knowledge triplet such as “dog is mammal”)
from a fixed knowledge base. While this dataset is still quite useful for testing
methods’ ability to incorporate a knowledge base into a VQA system, our dataset
tests methods’ ability to retrieve relevant facts from the web, from a database, or
some other source of knowledge that was not used to create the questions. Another
issue is that triplets are not sufficient to represent general knowledge.
Building knowledge bases & Knowledge-based reasoning. Several knowledge
bases have been created using visual data or for visual reasoning tasks [65, 94, 295,
401, 402, 404]. These knowledge bases are potentially helpful resources for answering
questions in our dataset. Knowledge-based question answering has received much
more attention in the NLP community (e.g., [23, 34, 61, 382, 387]).

4.3 Dataset Collection

In this section we explain how we collect a dataset which better measures performance
of VQA systems requiring external knowledge. The common VQA datasets such as
[16, 126] do not require much knowledge to answer a large majority of the questions.
The dataset mostly contains questions such as “How many apples are there?”, “What
animal is this?”, and “What color is the bowl?”. While these are perfectly reasonable
tasks for open-ended visual recognition, they do not test our algorithms’ ability to
reason about a scene or draw on information outside of the image. Thus, for our goal
of combining visual recognition with information extraction from sources outside the
image, we would not be able to evaluate knowledge-based systems as most questions
do not require outside knowledge.

To see this specifically, we examine the “age annotations” that are provided for
10,000 questions in the VQA dataset [3]. For each question and image pair, an MTurk
worker was asked how old someone would need to be to answer the question. While
this is not a perfect metric, it is a reasonable approximation of the difficulty of a
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question and how much a person would have to know to answer a question. The
analysis shows that more than 78% of the questions can be answered by people who
are 10 years old or younger. This suggests that very little background knowledge is
actually required to answer the vast majority of these questions.

Given that current VQA datasets do not test exactly what we are looking for, we
collect a new dataset. We use random images from the COCO dataset [198], using
the original 80k-40k training and validation splits for our train and test splits. The
visual complexity of these images compared to other datasets make them ideal for
labeling knowledge-based questions.

In the first round of labeling, we asked MTurk workers to write a question given
an image. Similar to [16], we prompt users to come up with questions to fool a “smart
robot.” We also ask in the instructions that the question should be related to the
image content. In addition, we prompt users not to ask what is in an image, or how
many of something there is, and specify that the question should require some outside
knowledge. In a second round of labeling, we asked 5 different MTurk workers to
label each question-image pair with an answer.

Although this prompt yielded many high-quality questions, it also yielded a lot of
low quality questions, for example, ones that asked basic questions such as counting,
did not require looking at the image, or were nonsensical. To ensure that the dataset
asked these difficult knowledge-requiring questions, the MTurk provided questions
were manually filtered to get only questions requiring knowledge. From a pool of
86,700 questions, we filtered down to 34,921 questions.

One more factor to consider was the potential bias in the dataset. As discussed in
many works, including [126], the VQAv1 dataset had a lot of bias. Famously, questions
beginning with “Is there a ...” had a very strong bias towards “Yes.” Similarly, in our
unfiltered dataset, there were a lot of questions with a bias towards certain answers.
For instance, in a lot of images where there is snowfall, the question would ask “What
season is it?” Although there were other images (such as ones with deciduous trees
with multi-colored leaves) with different answers, there was a clear bias towards
“winter.” To alleviate this problem, for train and test, we removed questions so that
the answer distribution was uniform; specifically, we removed questions if there were
more than 5 instances of that answer as the most common answer. This had the effect
of removing a lot of the answer bias. It also had the effect of making the dataset
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Q: What sort of vehicle uses 
this item? 
A: firetruck

Vehicles and 
Transportation

Q: When was the soft drink 
company shown first created?
A: 1898

Brands, Companies 
and Products

Q: What is the material used 
to make the vessels in this 
picture? 
A: copper

Objects, Material and 
Clothing

Q: What is the sports position 
of the man in the orange shirt?
A: goalie

Sports and Recreation Cooking and Food

Q: What is the name of the 
object used to eat this food? 
A: chopsticks

Q: What days might I most 
commonly go to this building? 
A: Sunday

Geography, History, 
Language and Culture

Q: Is this photo from the 50’s 
or the 90’s?
A: 50’s

People and Everyday Life

Q: What phylum does this 
animal belong to?
A: chordate, chordata

Plants and Animals

Q: How many chromosomes 
do these creatures have?
A: 23

Science and Technology Weather and Climate

Q: What is the warmest outdoor 
temperature at which this kind 
of weather can happen?
A: 32 degrees

Figure 4.2: Dataset examples. Some example questions and their corresponding
images and answers have been shown. We show one example question for each
knowledge category.

harder by limiting the number of times VQA algorithms would see questions with
a particular answer, making outside information more important. We also removed
questions which had no inter-annotator agreement on the answer as we found that
this was most often a sign that the question was too ambiguous. Performing this
filtering brought us down to 9,009 questions in train and 5,046 questions in test for a
total of 14,055 questions.

Figure 4.2 shows some of the collected questions, images, and answers from our
dataset. You can see that these questions require at least one piece of background
knowledge to answer. For instance, in the bottom left question, the system needs
to recognize that the image is of a Christian church and know that those churches
hold religious services on Sundays. That latter piece of knowledge should be obtained
from external knowledge resources, and it cannot be inferred from the image and
question alone.
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1. Vehicles and 
Transportation

16%
2. Brands, 

Companies and 
Products

3%

3. Objects, 
Material and 

Clothing
8%

4. Sports and 
Recreation

12%
5. Cooking and 

Food
15%

6. Geography 
History, 

Language and 
Culture

3%

7. People and 
Everyday Life

9%

8. Plants and 
Animals

17%

9. Science and 
Technology

2%

10. Weather and 
Climate

3%

Other
12%

KNOWLEDGE CATEGORIES

Figure 4.3: Breakdown of questions in terms of knowledge categories. We
show the percentage of questions falling into each of our 10 knowledge categories.

4.4 Dataset Analysis

In this section, we explore the statistical properties of our dataset, and compare to
other visual question answering datasets to show that our dataset is diverse, difficult,
and, to the best of our knowledge, the largest VQA dataset specifically targeted for
knowledge-based VQA on natural scenes.

4.4.1 Knowledge Categories

Requiring knowledge for VQA is a good start, but there are many different types of
knowledge that humans have about the world that could come into play. There is
commonsense knowledge: water is wet, couches are found in living rooms. There is
geographical knowledge: the Eiffel Tower is in Paris, scientific knowledge: humans
have 23 chromosomes, and historical knowledge: George Washington is the first U.S.
president. To get a better understanding of the kinds of knowledge our dataset
requires, we asked five MTurk workers to annotate each question as belonging to one
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Number of
questions

Number of
images

Knowledge
based?

Answer
type

Avg. A
length

Avg. Q
length

DAQUAR [218] 12,468 1,449 8 Open 1.1 11.5
Visual Madlibs [390] 360,001 10,738 8 FITB/MC 2.8 4.9

Visual 7W [403] 327,939 47,300 8 MC 2.0 6.9
VQA (v2) [126] 1.1M 200K 8 Open/MC 1.2 6.1
MovieQA [335] 14,944 408V 8 MC 5.3 9.3
CLEVR [156] 999,968 100,000 8 Open 1.0 18.4
KB-VQA [356] 2,402 700 3 Open 2.0 6.8

FVQA [357] 5,826 2,190 3 Open 1.2 9.5
OK-VQA (ours) 14,055 14,031 3 Open 1.3 8.1

Table 4.1: Comparison of various visual QA datasets. We compare OK-VQA
with some other VQA datasets. The bottom three rows correspond to knowledge-
based VQA datasets. A length: answer length; Q length: question length; MC:
multiple choice; FITB: fill in the blanks; KB: knowledge base.

of ten categories of knowledge that we specified: Vehicles and Transportation; Brands,
Companies and Products; Objects, Materials and Clothing; Sports and Recreation;
Cooking and Food; Geography, History, Language and Culture; People and Everyday
Life, Plants and Animals; Science and Technology; and Weather and Climate. If
no one category had a plurality of workers, it was categorized as “Other”. This
also ensured that the final category labels are mutually exclusive. We show the
distribution of questions across categories in Figure 4.3.

4.4.2 Comparison with Other VQA Datasets

In Table 4.1 we look at a number of other visual question answering datasets and
compare them to our dataset in a number of different ways. In the top section, we
look at a number of datasets which do not explicitly try to include a knowledge
component including the ubiquitous VQAv2 dataset [126], the first version of which
was one of the first datasets to investigate visual question answering. Compared
to these datasets, we have a comparable number of questions to DAQUAR [218] as
well as MovieQA [335], and many more questions than knowledge-based datasets
KB-VQA [356] and FVQA [357]. We have fewer questions compared to CLEVR [156]
where the images, questions and answers are automatically generated, as well compared
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to more large-scale human annotated visual datasets such as VQAv2 [126], and Visual
Madlibs [390]. Since we manually filtered our dataset to avoid the pitfalls of other
datasets and to ensure our questions are knowledge-based and because we filtered
down common answers to emphasize the long tail of answers, our dataset is more
time-intensive and expensive to collect. We trade off size in this case for knowledge
and difficulty.

We can see from the average question lengths and average answer lengths that our
questions and answers are about comparable to KB-VQA [356] and FVQA [357] and
longer than the other VQA datasets with the exception of DAQUAR and CLEVR
(which are partially and fully automated from templates respectively). This makes
sense since we would expect knowledge-based questions to be longer as they are
typically not able to be as short as common questions in other datasets such as “How
many objects are in the image?” or “What color is the couch?”.

4.4.3 Question Statistics

We also collected statistics for our dataset by looking at the number of questions,
and by looking at which were most frequent for each knowledge category. OK-VQA
has 12,591 unique questions out of 14,055 total, and 7,178 unique question words.
This indicates that we get a variety of different questions and answers in our dataset.

Finally, we show in Figure 4.4 question words and answers in each category that
are most “unique” to get a better idea of what types of questions we have in each
categories. We calculate these for each knowledge category by looking at the number
of appearances within the category over the total number in the dataset to see which
question words and answers had the highest relative frequency in their category.
In question words, we see words specific to categories such as bus in Vehicles and
Transportation, sandwich in Cooking and Food, and clouds in Weather and Climate.
We also see that the answers are also extremely related to each category, such as
herbivore in Plants and Animals, and umpire in Sports and Recreation.
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Figure 4.4: For each category we show the question words and answers that have the
highest relative frequency across our knowledge categories (i.e. frequency in category
divided by overall frequency).

4.5 Experiments

In this section, we evaluate various VQA approaches and provide results for some
baselines, including knowledge-based ones.

4.5.1 Baselines

MUTAN [21]

Multimodal Tucker Fusion (MUTAN) model [21], a tensor-based method for VQA.
Specifically, we use the attention version of MUTAN, and choose the parameters to
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match the single best performing model of [21].

BAN [166]

Bilinear Attention Networks for VQA. A VQA method that uses a co-attention
mechanism between the question features and the bottom-up detection features of
the image.

MLP

The MLP has 3 hidden layers with ReLU activations and hidden size 2048 that
concatenates the image and question features after a skip-thought GRU after one
fully connected layer each. Like MUTAN, it uses fc7 features from ResNet-152.

Q-Only

The same model as MLP, but only takes the question features.

ArticleNet (AN)

We consider a simple knowledge-based baseline that we refer to as ArticleNet. The
idea is to retrieve some articles from Wikipedia for each question-image pair and then
train a network to find the answer in the retrieved articles.

Retrieving articles is composed of three steps. First, we collect possible search
queries for each question-image pair. We come up with all possible queries for each
question by combining words from the question and words that are identified by
pre-trained image and scene classifiers. Second, we use the Wikipedia search API
to get the top retrieved article for each query. Third, for each query and article, we
extract a small subset of each article that is most relevant for the query by selecting
the sentences within the article that best correspond to our query based on the
frequency of those query words in the sentence.

Once the sentences have been retrieved, the next step is to filter and encode them
for use in VQA. Specifically, we train ArticleNet to predict whether and where the
ground truth answers appear in the article and in each sentence. The architecture
is shown in Figure 4.5. To find the answer to a question, we pick the top scoring
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Figure 4.5: ArticleNet architecture. ArticleNet takes in the question Q and visual
features V . All modules within the dotted line box share weights. The output of the
GRUs is used to classify each word as the answer or not awi

. The final GRU hidden
states htitle and hsent are put through fully connected layers to predict if the answer
is in the sentence asent or title atitle, and then are combined together and used to
classify if the answer is in the article aart.

word among the retrieved sentences. More specifically, we take the highest value of
awi

.asent, where awi
is the score for the word being the answer and asent is the score

for the sentence including the answer.

MUTAN + AN

We augment MUTAN with the top sentence hidden states (hsent in Figure 4.5)
from ArticleNet (AN). During VQA training and testing, we take the top predicted
sentences (ignoring duplicate sentences), and feed them in the memory of an end-to-
end memory network [327]. The output of the memory network is concatenated with
the output of the first MUTAN fusion layer.

BAN + AN

Similarly, we incorporate the ArticleNet hidden states into BAN and incorporate
it into VQA pipeline with another memory network. We concatenate output of
the memory network with the BAN hidden state right before the final classification
network.
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Method OK-VQA VT BCP OMC SR CF GHLC PEL PA ST WC Other

Q-Only 14.93 14.64 14.19 11.78 15.94 16.92 11.91 14.02 14.28 19.76 25.74 13.51
MLP 20.67 21.33 15.81 17.76 24.69 21.81 11.91 17.15 21.33 19.29 29.92 19.81

ArticleNet (AN) 5.28 4.48 0.93 5.09 5.11 5.69 6.24 3.13 6.95 5.00 9.92 5.33
BAN [166] 25.17 23.79 17.67 22.43 30.58 27.90 25.96 20.33 25.60 20.95 40.16 22.46

MUTAN [21] 26.41 25.36 18.95 24.02 33.23 27.73 17.59 20.09 30.44 20.48 39.38 22.46
BAN + AN 25.61 24.45 19.88 21.59 30.79 29.12 20.57 21.54 26.42 27.14 38.29 22.16

MUTAN + AN 27.84 25.56 23.95 26.87 33.44 29.94 20.71 25.05 29.70 24.76 39.84 23.62
BAN/AN oracle 27.59 26.35 18.26 24.35 33.12 30.46 28.51 21.54 28.79 24.52 41.4 25.07

MUTAN/AN oracle 28.47 27.28 19.53 25.28 35.13 30.53 21.56 21.68 32.16 24.76 41.4 24.85

Table 4.2: Benchmark results on OK-VQA. We show the results for the full
OK-VQA dataset and for each knowledge category: Vehicles and Transportation (VT);
Brands, Companies and Products (BCP); Objects, Material and Clothing (OMC);
Sports and Recreation (SR); Cooking and Food (CF); Geography, History, Language
and Culture (GHLC); People and Everyday Life (PEL); Plants and Animals (PA);
Science and Technology (ST); Weather and Climate (WC); and Other.

MUTAN/AN oracle

As an upper bound check, and to see potentially how much VQA models could benefit
from the knowledge retrieved using ArticleNet, we also provide results on an oracle,
which simply takes the raw ArticleNet and MUTAN predictions, taking the best
answer (comparing to ground truth) from either.

BAN/AN oracle

Similar to the MUTAN/AN oracle, but we take the best answer from the raw
ArticleNet and BAN instead, again taking the best answer for each question.

4.5.2 Benchmark Results

We report the results using the common VQA evaluation metric [16], but use each
of our answer annotations twice, since we have 5 answer annotations versus 10 in
[16]. We also stem the answers using Porter stemming to consolidate answers that
are identical except for pluralization and conjugation as in [357]. We also show
the breakdowns for each of our knowledge categories. The results are reported in
Table 4.2.

The first observation is that no method gets close to numbers on standard VQA
dataset such as VQA [126] (where the best real open-ended result for the 2018
competition is 72.41). Moreover, models such as MUTAN [21] and BAN [166],
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Method VQA score on OK-VQA
ResNet152 26.41
ResNet50 24.74
ResNet18 23.64
Q-Only 14.93

Table 4.3: Results on OK-VQA with different visual features.

which are specifically designed for VQA to learn high-level associations between
the image and question, get far worse numbers on our dataset. This suggests that
OK-VQA cannot be solved simply by coming up with a clever model, but actually
requires methods that incorporate information from outside the image.

It is interesting to note that although the performance of the raw ArticleNet is low,
it provides improvement when combined with the other models (MUTAN + AN and
BAN + AN). From the oracle numbers, we can see that the knowledge retrieved by
ArticleNet provides complementary information. These oracles are optimistic upper
bounds using ArticleNet, but they show that smarter knowledge-retrieval approaches
could have stronger performance on our dataset. Note that ArticleNet is not directly
trained on the OK-VQA task and can only predict answers within the articles it has
retrieved. So the relatively low performance on OK-VQA is not surprising.

Looking at the category breakdowns, we see that ArticleNet is particularly helpful
for brands, science, and cooking categories, perhaps suggesting that these categories
are better represented in Wikipedia. It should be noted that the major portion of
our dataset requires knowledge outside Wikipedia such as commonsense or visual
knowledge.

The Q-Only baseline performs significantly worse than the other VQA baselines,
suggesting that visual features are indeed necessary and our procedure for reducing
answer bias was effective.

4.5.3 Visual Feature Ablation

We also want to demonstrate the difficulty of the dataset from the perspective of
visual features, so we show MUTAN results using different ResNet architectures. The
previously reported result for MUTAN is based on ResNet152. We also show the

76



4. Knowledge in Language and Vision: Benchmarks

Figure 4.6: Results on OK-VQA using different sizes of the training set.

results using extracted features from ResNet50 and ResNet18 in Table 4.3. From
this table it can be seen that going from ResNet50 to ResNet152 features only has a
marginal improvement, and similarly going from ResNet18 to ResNet50. However,
going from ResNet18 to no image (Q-Only) causes a large drop in performance. This
suggests that our dataset is indeed visually grounded, but better image features do
not hugely improve the results, suggesting the difficulty lies in the retrieving the
relevant knowledge and reasoning required to answer the questions.

4.5.4 Scale Ablation

Finally, we investigate the degree to which the size of our dataset relates to its
difficulty as opposed to the nature of the questions themselves. We first take a
random subdivision of our training set and train MUTAN on progressively smaller
subsets of the training data and evaluate on our original test set. Figure 4.6 shows
the results.
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[But] most seedless citrus fruits 
require a stimulus from 
pollination to produce fruit

The orange (specifically the 
sweet orange) is the fruit of the 
citrus species citrus x sinensis in 
the family Rutaceae

The citrus sinensis is subdivided 
into four classes with distinct 
characteristics common 
oranges …

Q: What fruit family is this 
from?

GT Ans: citrus,orange

MUTAN : fruit 

MUTAN+AN: citrus
Retrieved Sentences

Query: fruit orange

Query: orange family

Query: fruit

X inactivation is when one of 
the two x chromosomes in 
females is almost completely 
inactivated

Human cells have 23 pairs of 
chromosomes 22 pairs of 
autosomes and one pair of sex 
chromosomes …

Most eukaryotic cells have a set 
of chromosomes 46 in humans 
with the genetic material 
spread among them

Q: How many chromosomes 
do these creatures have?

GT Ans: 46,23,23 pairs

MUTAN : 3

MUTAN+AN: 23

A cow will produce large 
amounts of milk over its 
lifetime

Cows of certain breeds that are 
kept for the milk they give are 
called dairy cows or milking 
cows (formerly milch cows)

Milk is a pale liquid produced 
by the mammary glands of 
mammals

Q: What type of liquid does 
this animal produce?

GT Ans: milk

MUTAN: beef

MUTAN+AN: milk
Retrieved Sentences Retrieved Sentences

Query: cow

Query: liquid cow

Query: produce cow

Query: chromosomes

Query: chromosomes

Query: chromosomes

Figure 4.7: Qualitative results. We show the result of MUTAN+AN compared to
the MUTAN baseline answer and the ground truth answer (‘GT Ans’). We show the
query words that were used by ArticleNet (pink boxes) and the corresponding most
relevant sentences (blue boxes).

4.5.5 Qualitative Examples

We show some qualitative examples in Figure 4.7 to see how outside knowledge helps
VQA systems in a few examples. We compare MUTAN+AN method with MUTAN.
The left example asks what “fruit family” the fruit in the image (oranges) comes
from. We see that two sentences that directly contain the information that oranges
are citrus fruits are retrieved —“The orange ... is a fruit of the citrus species” and
“The citrus sinensis is subdivided into four classes [including] common oranges”.

The middle example asks what liquid the animal (cow) produces. The first and
third sentences tell us that cows produce milk, and the second sentence tells us that
milk is a liquid. This gives the combined MUTAN+AN method enough information
to correctly answer milk.

The example on the right asks how many chromosomes humans have. It is
somewhat ambiguous whether it means how many individual chromosomes or how
many pairs, so workers labeled both as answers. The retrieved articles are helpful
here, retrieving two different articles referring to 23 pairs of chromosomes and 46
chromosomes total. The combined MUTAN+AN method correctly answers 23, while
MUTAN guesses 3.
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4.6 Conclusion

In this chapter, we address the task of knowledge-based visual question answering. We
introduce a novel benchmark called OK-VQA for this task. Unlike the common VQA
benchmarks, the information provided in the question and the corresponding images
of OK-VQA is not sufficient to answer the questions, and answering the questions
requires reasoning on external knowledge resources. We show that the performance
of VQA models significantly drops on OK-VQA. We analyze the properties and
statistics of the dataset and show that background knowledge can improve results
on our dataset. Our experimental evaluations show that the proposed benchmark is
quite challenging and that there is a large room for improvement.

In the next chapter, we will look at an approach we took to make progress on this
dataset that incorporates different kinds of knowledge.
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Chapter 5

Knowledge in Language and
Vision: Methods

5.1 Introduction

In this chapter, we build directly on our dataset contribution from the previous
chapter. Now that we have a better test of knowledge-aware vision and language
systems, we introduce a method which combines both knowledge graphs (symbolic
knowledge) and pretrained large language models (implicit knowledge).

Consider the example shown in Figure 5.1. To answer this question, we not only
need to parse the question and understand the image but also use external knowledge.
Early work in VQA focused on image and question parsing [3, 16, 115, 217, 219]
assuming all required knowledge can be learned from the VQA training set. However,
learning knowledge from image-question-answer triplets in the training data is not
scalable and is liable to biases in the training data. We should exploit other external
knowledge sources such as Wikipedia or knowledge graphs. In the last chapter, we
introduced the OK-VQA dataset [224] which consists of these types of questions and
allows us to study open-domain knowledge in VQA.

We have earlier defined two types of knowledge representation that can be useful
for these types of questions: First we have implicit knowledge, knowledge which
is embedded into some non-symbolic form such as the weights of a neural network
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Orange juice

Which liquid here comes from a citrus fruit?

Implicit Knowledge

BERT
… In English, the color orange is named after the 
appearance of the ripe orange fruit … Orange 
juice or grapefruit juice is a common breakfast 
beverage … 

citrus
fruit

orange juice

juice

liquid

apple juice

orangeis a

used for

Symbolic Knowledge

drink

?

Figure 5.1: An OK-VQA [224] example that requires external knowledge. Our KRISP
model uses a symbolic knowledge graph as well as the implicit knowledge learned
from large-scale BERT training to answer the question.

derived from annotated data or large-scale unsupervised language training. Recently,
transformer- and specifically BERT- [90] based multi-modal VQA models have been
proposed [195, 207, 208], which incorporate large scale language pretraining, implicitly
capturing language based, as well as multimodal knowledge. This type of knowledge
can be quite useful, but we find this form of implicitly learned knowledge is not
sufficient to answer many knowledge-based questions as we will show. Perhaps this is
not surprising if one considers that many facts are rare such as “Thomas Newcomen
invented the steam engine” and learning them with implicit representations might
be less efficient while there are external sources and knowledge bases that state it
explicitly.

The other type of knowledge we look at here is explicit or symbolic knowledge in
the form of knowledge graphs. Approaches that use this form of knowledge either
take the symbolic knowledge and then embed-and-fuse them into a larger VQA
model before answer prediction which no longer maintains the well-defined knowledge
structures [194, 224], or by relying on a closed set of knowledge facts with strong
annotation of source knowledge [249, 357, 365]. In the second case, the VQA dataset
itself has ground truth “facts” associated with the question, so solving these questions
often ends up being the problem of retrieving a fact from the closed set. In our

82



5. Knowledge in Language and Vision: Methods

method, we preserve the symbolic meaning of our knowledge from input until answer
prediction. This allows us to use knowledge that is rare or is about rare entities as
learning the reasoning logic with symbols is shared across all symbols. And unlike
other work, we do not have a closed set or ground truth knowledge, so we must build
a large diverse knowledge base for use by our model.

In this work, we develop an architecture, KRISP (Knowledge Reasoning with Im-
plicit and Symbolic rePresentations), to combine the implicit and symbolic knowledge.
Specifically, KRISP uses (i) a multi-modal BERT-pretrained transformer to process
the question and image, and take advantage of the implicit knowledge in BERT, and
(ii) a graph network to make use of symbolic knowledge bases. To cover the wide
variety of knowledge required in OK-VQA, we draw on four very different knowledge
sources to construct our knowledge graph: DBPedia [18], ConceptNet [200], Visual
Genome [179] and hasPart KB [24]. This covers crowdsourced data, visual data,
encyclopedic data, knowledge about everyday objects, knowledge about science and
knowledge about specific people, places and events. Finally, our method preserves
the symbolic meaning of the knowledge by making predictions based on the hidden
state of individual nodes in the knowledge graph and using a late-fusion strategy to
combine the implicit and symbolic parts of the model.

5.2 Related Work

Multimodal Vision and Language Modeling. Approaches for multimodal vision
and language tasks have explored diverse set of fusion strategies such as bilinear
models (e.g. [115, 166]) or self-attention (e.g. [118]). Many recent works have
been inspired by the success of transformer [347] and BERT [90] models for natural
language tasks and proposed transformer-based fusion between image and text [5, 68,
192, 195, 207, 326, 334, 399]. Similar to these works as part of our method we train
a multimodal transformer with BERT-pretraining to import the implicit knowledge
learned by BERT and learn any knowledge encoded in the training data and study it
on knowledge VQA.

Another line of work has been extracting programs from the question for explicit
reasoning with modules [12] or extracting symbols from the image to reason over
them [386]. These works focus on reasoning about things explicitly in the image but

83



5. Knowledge in Language and Vision: Methods

do not integrate external knowledge.
Knowledge-based VQA datasets. While open-ended VQA datasets (e.g. [16])
might require outside knowledge to answer some of its questions which cannot be
learned from the dataset, there are a few datasets which focus specifically on knowledge
based multi-modal reasoning. One is FVQA [357], where image-questions-answer
triples are annotated with a fact-triple (e.g. “chair is furniture”) from a fixed outside
knowledge base, which allows deriving the answer. Specifically one of the two nodes
(i.e. chair or furniture in this example) is the answer. In Chapter 4 we introduced
OK-VQA [224] which stands for Outside Knowledge VQA, as the name suggests,
focusing on knowledge which is not tied to a specific knowledge base. We focus
our evaluation on OK-VQA due to its relatively large number of knowledge-based
questions, as well as its challenging and open-ended nature.
Symbolic Knowledge for VQA. Symbolic knowledge from knowledge bases is
commonly represented as graphs/knowledge bases [194, 248, 249, 356, 357] or textual
knowledge sources such as Wikipedia [224, 365]. We can separate these into two
directions: where symbols are retained until prediction and where they are not.
[249, 356, 357] retain the symbols until the answers, allowing good generalization
capabilities but require annotations of the “correct” knowledge fact and are difficult
to generalize to open knowledge VQA. For improved generalization to open-domain
VQA, [120, 194, 224, 365] embed the symbolic knowledge to an implicit embedding
loosing the semantics of the symbols, but therefore are able to easily integrate the
embedding with standard VQA approaches. Similar to our work, the recent work
[120] relies on a multimodal transformer model (pretrained VilBERT [207]), however,
similar to the other works it looses the semantics of the knowledge symbols when it
integrates over them with an attention model. In contrast, our work shows how to
take advantage of both the implicit and symbolic knowledge directions: We retain
symbols until the end without the need of knowledge-fact annotations and integrate it
with implicit knowledge and powerful reasoning abilities of multi-modal transformers.
Knowledge Bases & Knowledge in NLP. There have been many knowledge bases
proposed for knowledge-based reasoning, both language-only and multi-modal [24,
65, 94, 179, 235, 295, 401, 402, 404]. In the NLP literature, there has been much
work in question answering from knowledge sources [23, 34, 382] including for open-
domain question answering [61, 358, 378, 379], and including mixed symbolic/implicit
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DBPedia
(tree, is near, building)

(car, is on, road)

(building, is made of, bricks)

(outlet, is on, wall)

(tracks, is for, train)

(chair, is near, table)

(food, is in, bowl)

(giraffe, has, spots)

(bear, has part, coat)

(wasp, has part, wing)

(cnidarian, has part, cell)

(alfalfa plant, has part, leave)

(water, has part, water 
molecule)

(human, has part, bone)

(hare, has part, long ear)

(fern, has part, spore)

(poland, is a, country)

(mark, is a, currency)

(easyjet, is a, company)

(gerbera, is a, insect)

(new era, is a, automobile)

(brussels, has part, ixelles)

(syrah, is a, grape)

leona, is a, ship)

hasPart KB
(saloon, used for, drink)

(stream, at location, forest)

(eye, used for, look)

(tearoom, used for, drink tea)

(heifer, at location, barnyard)

(quartz, is a, mineral)

(star, at location, galaxy)

(hotel room, used for, sleep in)
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hasPart KB ✕
DBPedia ✕ ✕

ConceptNet ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

VisualGenome ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✕

Relation Types

Figure 5.2: Example knowledge and edge types from our knowledge graph. The graph
is built from four sources of explicit knowledge.

methods for question answering [164, 212].

5.3 Methodology

In this section we introduce our model: Knowledge Reasoning with Implicit and
Symbolic rePresentations (KRISP). An overview of our model can be seen in Figure 5.3.
We first introduce our transformer-based multi-modal implicit knowledge reasoning
(Section 5.3.1), then discuss the symbolic knowledge sources and reasoning with
symbols (Section 5.3.2), and then describe their integration in Section 5.3.3.

5.3.1 Reasoning with Implicit Knowledge

We want to incorporate implicit external knowledge as well as multi-modal knowledge
which can be learned from training set in our model. Language models, and especially
transformer-based language models, have shown to contain common sense and factual
knowledge [153, 269] 1. Most recent multi-modal models have also relied on the
transformer architecture to learn vision-and-language alignment [195, 207]. We adopt
this direction in our work and build a multi-modal transformer model, pretrained with
BERT [90], which has been pretrained on the following language corpora to capture
implicit knowledge: BookCorpus [405] (800M words) and English Wikipedia [1]
(2.5B words). To learn multi-modal knowledge from the training set, our model is
most closely related to the architecture used in [195]. We also explore multi-modal
pretraining in Section 5.4.2.

1For a further discussion of implicit knowledge from and large language models generally, see
Chapter 2.3.2.
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Answer
Easter

Image

Question
What kind of event can be 
celebrated with these cakes?

Pre-trained BERT

Knowledge
Base

MMBERT

Implicit Knowledge: Transformer-based

Symbolic Knowledge: Graph-based

event

celebrate

cake

bunny

rabbit

pastry
Image
symbols

avg-pool

Eq. (2)

[what]

[cake]…

…input
tokens

question
symbols

max

𝑧 !"#$!%!&

𝑧'(")*$!% 𝑦'(")*$!%

𝑦 !"#$!%!&

Eq. (1)

potential answers

Figure 5.3: Our model: KRISP integrates implicit knowledge and reasoning (bottom)
with explicit graph-based reasoning on a knowledge base (top). The implicit knowl-
edge model receives the visual features and question encoding whereas the explicit
knowledge model operates on image and question symbols. They predict answers
according to Eq. 5.1&5.2 and we take the max overall prediction (see Section 5.3.3).

Question Encoding

We tokenize a question Q using WordPiece [366] as in BERT [90], giving us a
sequence of |Q| tokens and embed them with the pretrained BERT embeddings
and append BERT’s positional encoding, giving us a sequence of d-dimensional
token representation xQ

1 , ..., x
Q
|Q|. We feed these into the transformer, finetuning the

representation during training.

Visual Features

As with most VQA systems, we use visual features extracted on the dataset by a visual
recognition system trained on other tasks. We use bottom-up features [10] collected
from the classification head of a detection model, specifically Faster R-CNN [287].
Because of the overlap in OK-VQA test and Visual Genome/COCO [198] trainval,
we trained our detection model from scratch on Visual Genome, using a new split
of Visual Genome not containing OK-VQA test images. The detector uses feature
pyramid networks [199], and is trained using the hyper-parameters used for the
baselines in [151].
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We input bounding box features extracted from the image as well as the question
words to the transformer. We mean-pool the output of all transformer steps to get
our combined implicit knowledge representation zimplicit.

5.3.2 Reasoning with Symbolic Knowledge

Visual Symbols

In addition to using a pretrained visual recognition system to get image features, we
also extract visual concepts (i.e. the predictions). This not only allows us to get a set
of concepts to use to prune our knowledge graph (see Section 5.3.2), it also gives us
an entry point to get from the raw image to a set of symbols. This is significant—in
order for our graph network to be able to reason about the question, it not only
needs to reason about the question itself, but the entities in the image. For instance,
if a question were to ask “what is a female one of these called?” in order use our
knowledge that a female sheep is called an “ewe,” the graph network needs to actually
know that the thing in the picture is a sheep. As we will see, using these symbols is
critical for our graph network to reason about the question.

There are a number of visual concepts we want to cover: places, objects, parts
of objects and attributes. Therefore we run four classifiers and detectors trained on
images from the following datasets: ImageNet [294] for objects, Places365 [397] for
places, LVIS [131] for objects and object parts and Visual Genome [179] for objects,
parts and attributes. This gives us a total of about 4000 visual concepts.

Knowledge Graph Construction

Unlike previous work such as [249], or in NLP work on datasets such as SQuAD
[281] which study the problem of closed-system knowledge retrieval, we do not have
a ground truth set of facts or knowledge which can be used to answer the question.
We must make an additional choice of what knowledge sources to use and how to
clean or filter them2.

There are a few different kinds of knowledge that might help us on this task. One
is what one might call trivia knowledge: facts about famous people, places or events.

2For a more complete set of knowledge sources and knowledge graphs used in AI, see Chapter 2.4
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Another is commonsense knowledge: what are houses made of, what is a wheel part
of. Another is scientific knowledge: what genus are dogs, what are different kinds
of nutrients. Finally, situational knowledge: where do cars tend to be located, what
tends to be inside bowls.

The first and largest source of knowledge we use is DBPedia [18], containing
millions of knowledge triplets in its raw form. DBPedia is created automatically
from data from Wikipedia [1]. This tends to give a lot of categorical information
e.g. (Denmark, is a, country), especially about proper nouns such as places, people,
companies, films etc. The second source of knowledge is ConceptNet [200], a crowd-
sourced project containing over 100,000 facts organized as knowledge triples collected
by translating English-language facts into an organized triplet structure. It also
contains as a subset the WordNet [235] ontology. This dataset contains commonsense
knowledge about the world such as (dog, has property, friendly). As we did in
Chapter 3, we also use the scene graphs from Visual Genome [179] as another source
of knowledge. As we did there, we take a split of Visual Genome that does not contain
any OK-VQA test images. This knowledge source tends to give us more spatial
relationships e.g. (boat, is on, water) and common pairwise affordances e.g. (person,
sits on, coach). Finally, we use the new hasPart KB [24] to get part relationships
between common objects such as (dog, has part, whiskers) as well as scientific ones
(molecules, has part, atoms)3. We show example knowledge triplets from our in
Figure 5.2.

With these knowledge sources, we can capture a large amount of knowledge about
the world. But we then run into a problem of scale. In its raw form, DBPedia
alone contains millions of edges, with the others containing a total of over 200,000
knowledge triplets. This first presents a technical problem—this graph is far too
large to fit into GPU memory if we use a graph neural network model. But more
fundamentally, while this knowledge graph contains a lot of useful information for
our downstream task, it also includes a lot of irrelevant knowledge. In particular,
DBPedia, being parsed automatically from Wikipedia pages, contains information
about virtually every film, book, song and notable human in history. While some of
those may be useful for particular questions, the vast majority is not.

To deal with these issues, we limit our knowledge graph to entities that are likely
3See Chapter 2.4.1 for more details on these and other knowledge graphs
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to be helpful for our end task. First, we collect all of the symbolic entities from the
dataset: in particular the question, answers and visual concepts that can be picked
up by visual recognition systems (see Section 5.3.2). We then include edges that only
include these concepts. After this filtering, we have a total of about 36,000 edges and
8,000 nodes.

Graph Network

Now we move to our symbolic knowledge representation. We want to treat our
knowledge graph as input without having to decide on which few facts out of our
entire graph might be relevant. So to process on our entire graph and decide this
during training, we use a graph neural network to incorporate our knowledge 4. In
our network, each node of the graph network corresponds to one specific symbol
representing one concept such as “dog” or “human” in our knowledge graph.

The idea is that the graph neural network can take in information about each
specific symbol and use the knowledge edges to infer information about other symbols
by passing information along the edges in the knowledge graph. And, in our graph
neural network we share the network parameters across all symbols, meaning that
unlike for other types of networks, the reasoning logic is shared across all symbols
which should allow it to generalize better to rare symbols or graph edges.

We use the Relational Graph Convolutional Network (RGCN) [301] as the base
graph network for our model. Unlike the related GCN [170], this model natively
supports having different calculations between nodes for different edge types (an is a
relationship is treated differently than a has a relationship) and edge directions (dog
is a animal is different than animal is a dog). With this architecture we also avoid the
large asymptotic runtime of other architectures with these properties such as [196]
or [348].

Graph Inputs

For one particular question image pair, each node in the graph network receives 4
inputs.

4See Chapter 2.3.3 for a thorough discussion, explanation and mathematical formulation of graph
neural networks.
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1. An indicator 0/1 of whether the concept appears in the question.

2. The classifier probabilities for the node’s concept, introduced above (or 0 if the
concept is not detected in the particular image or not one of the classifier’s
concepts). With 4 image classifiers or detectors, the node receives 4 separate
numbers.

3. The 300d word embedding (GloVe [266]) representation of that concept, or
average embedding for multi-word concepts.

4. The implicit knowledge representation zimplicit from Section 5.3.1 passed through
a fully connected layer: fc(zimplicit) with ReLU activation to reduce the size of
this feature to 128 for efficient graph computation.

Following the standard formulation of graph neural networks, we write the input
to the graph neural networks (described above) as X=H(0) where X is a Rn×ds matrix
with n node inputs of size ds = 433. Then for each layer of the RGCN, we have
a non-linear function H(l+1)=f(H(l), KG) where KG is the knowledge graph. The
RGCN convolution uses different weight matrices for different edge types and for
different directions. As a result the semantic difference between an is-a relationship
and a has-a relationship as well as the direction of those edges is captured in the
structure of the network and different transformations are learned for each. After all
RGCN layers are computed we end up with H(L)=G which is a Rn×dh matrix which
corresponds to having a hidden state of size fh for each node (and therefore concept)
in our graph.

5.3.3 Integrating Implicit and Symbolic Knowledge

Finally, given the output of our implicit transformer-based module zimplicit and our
explicit/symbolic module G, how do we get our final prediction? Our main insight to
make a separate prediction for zimplicit and for each node/concept in the knowledge
graph.

Implicit Answer Prediction

As is now commonplace among VQA methods, to get the implicit answer prediction,
we do a final prediction layer and predict the answer within a set vocabulary of
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answers V ∈ Ra where a is the size of the answer vocabulary. We simply have:

yimplicit=σ(Wzimplicit+b) (5.1)

where σ is the sigmoid activation.

Symbolic Answer Prediction

To predict the answers for symbolic, we note that G can be rewritten as a hidden
state node zsymbolic

i for each node/concept i in the knowledge graph. Because each
of these nodes corresponds to a word or multi-word symbol, we actually have nodes
and corresponding hidden states that are possible answers to a V QA question. So
for each hidden state that is in our answer vocab V ∈ Ra we make a prediction for it.

For each of these answer nodes i, we predict:

ysymbolic
i =σ((W szsymbolic

i +bs)T (W zzimplicit+bz)) (5.2)

We additionally re-use the implicit hidden state zimplicit to make this prediction.
This gives us an additional late fusion between the implicit and symbolic parts of our
model.

Final Prediction

Finally, given our final predictions yimplicit and ysymbolic, we simply choose the final
answer by choosing the highest scoring answer from both answer vectors. For training,
we can simply optimize yimplicit and ysymbolic separately with a binary cross entropy
loss end-to-end through the entire network. See Figure 5.3.

5.4 Experiments

5.4.1 Experimental Setup

For all experiments, we train our models with PyTorch [264] and the MMF Multimodal
Framework [315]. We use PyTorch Geometric [108] for our graph neural network
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implementations. For consistency, for each result we train each model on 3 random
seeds and take the average as the result.

For the purpose of state-of-the art comparisons in Table 5.1, we compare our
main method on the 1.0 version of OK-VQA [224]. This was later updated to a 1.1
version, and all other experiments including ablations are done on this version. The
only change between the versions is a change in how answer stemming is handled,
resulting in a more coherent answer vocabulary. In particular, we observe that the
new answer vocabulary has much fewer “non-word” stemming such as “buse” for
busses and “poni tail” instead of “pony tail.” Unless otherwise stated, an experiment
is on version 1.1.

For many of our ablations and analysis we train just the Multi-modal BERT
(MMBERT) model described in Section 5.3.1 by itself by scratch or we do multi-modal
pre-training. Unless otherwise stated, this model and ours is always initialized from
BERT.

In Section 5.4.3 we do a through ablation of KRISP comparing the different
parts of the model and design choices we made. In Section 5.4.2 we add multimodal
pretraining to our models to show how our model achieves state-of-the-art performance
on OK-VQA. In Section 5.4.4 we show the results of a number of experiments to more
thoroughly analyze our method, especially looking at its performance on rare answers.
Finally in Section 5.4.5 we look at some specific questions and predictions from our
model to get a more grounded idea of what our model does on real examples.

5.4.2 State-of-the-Art Comparisons

We provide the comparisons to the state-of-the-art of OK-VQA in Table 5.1. To
achieve best results, like other works [120] we pretrain our network on other tasks.
We find it the most effective to pretrain our models on the VQA dataset [126].

In order to compare to other works (all of which show results on v1.0), we compute
the performance of on OK-VQA v1.0 as well. We see that our model achieves 38.35%
accuracy versus the best previous state-state-of-the-art of 33.66% [120]. We also
compare on v1.1 as well, re-running the MUTAN+AN model from [224] to get a
comparison with KRISP.
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Method accuracy (v1.0) accuracy (v1.1)
Q-Only 14.93 -
MLP 20.67 -
BAN [166] 25.17 -
BAN+AN [224] 25.61 -
BAN+KG-Aug [194] 26.71 -
MUTAN [21] 26.41 -
MUTAN+AN [224] 27.84 26.64
ConceptBERT [120] 33.66 -
KRISP (w/o mm pre.) 29.77 32.31
KRISP (with mm pre.) 38.35 38.90

Table 5.1: Benchmark results on OK-VQA

5.4.3 Model Analysis and Ablations

We first analyse our model to see where the improvement is coming from with several
ablations, especially focusing on symbolic vs implicit knowledge and their integration.
We want to understand which parts are working and why.

Ablation of Symbolic Knowledge

First, we see how much of the improvement comes from the Multi-modal BERT
backbone of our model versus from the symbolic Graph Network. In Table 5.2
(lines 1&2), we see that KRISP combining implicit and symbolic knowledge improves
significantly over the Multi-modal BERT by about 3%.

We should, however, make sure this improvement is due to the symbolic knowledge
and not merely from a more complex or better architecture. While our KRISP only
has slightly more parameters (116M parameters versus MMBERT with 113M), it
does add at least some extra computation. To test this, we approximate a version of
our method with only the architecture and not the underlying knowledge. To do this,
we keep all network details the same, but instead of using the knowledge graph we
constructed in Section 5.3.2, we use a randomly connected graph. We keep all of the
nodes the same, but we randomize the edges connecting them. So in this version with
a random graph, our graph network receives all of the same inputs and the outputs,
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Method accuracy
1. KRISP (ours) 32.31

Ablation of Symbolic Knowledge
2. MMBERT 29.26
3. KRISP w/ random graph 30.15

Ablation of Implicit Knowledge
4. KRISP w/o BERT pretrain 26.28
5. MMBERT w/o BERT pretrain 21.82

Ablation of Network Architecture
6. KRISP no late fusion 31.10
7. KRISP no MMBERT input 31.10
8. KRISP no MMBERT input or late fusion 25.00
9. KRISP no backprop into MMBERT 27.98

10. KRISP with GCN 30.58
11. KRISP feed graph into MMBERT 30.99

Ablation of Graph Inputs
12. KRISP no Q to graph 31.74
13. KRISP no I to graph 31.59
14. KRISP no symbol input 30.26
15. KRISP no w2v 31.95

Table 5.2: KRISP ablation on OK-VQA v1.1. We show the performance of our
model compared with the implicit-only baseline (MMBERT). We also show ablations
without BERT training, with a random knowledge graph, ablations on our model
architecture, and ablations where we remove the question input to the graph network
(no Q), the image inputs (no I) and both (no symbol).

but all connections are completely random. If the performance were just from the
computation, we would expect this to work. Instead, we see from line 3 that the
performance using the random graph drops significantly.

Ablation of Implicit Knowledge

Next we look at the implicit knowledge contained in the BERT versus our combined
system to see how much of an effect it had. From Table 5.2 we can see that BERT is
a crucial element. Without the BERT pretraining (lines 4&5), our method falls by 6%
and the Multi-modal BERT falls by an even larger 7%. This shows that the implicit
knowledge is an important component of our model. The difference between KRISP
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and Multi-modal BERT when neither has BERT pretraining is actually higher than
the difference with BERT, about 4.5%, suggesting that there is some overlap in the
knowledge contained in our knowledge graphs with the implicit knowledge in BERT,
but most of that knowledge is non-overlapping.

Ablation of Network Architecture

Next, we want to get a sense of which parts of our architecture were important. As
we can see, our particular architecture is critical: the use of MMBERT features as
input to KRISP and the late fusion were both important. With just one of these,
performance drops by about 1%, but without either (line 8), performance drops
over 7%. Without at least one connection between the Multi-modal BERT and the
graph network, there can be no fusion of the visual features and question and the
graph network cannot incorporate any of the implicit knowledge in BERT. We also
tried KRISP where these two ways of fusing were present, but we did not allow any
backpropogation from the Graph Network to MMBERT (line 9). This also performs
badly, as the graph network cannot correct errors coming from this input, but not as
bad as removing these connections entirely (line 8).

We also tried a less powerful graph network: GCN [170] (line 10) which critically
does not have directed edges or edge types. This baseline hurts performance by about
2% justifying our choice of a graph network that uses edge direction and type. We
also have another architectural ablation, where we feed the graph network features
directly to the Multi-modal BERT rather than having a separate answer prediction
directly from the graph as in KRISP or any of the other baselines (line 11). This
architecture performs much worse than our final model.

Ablation of Graph Inputs

Next we look at the symbolic and non-symbolic inputs to the knowledge graph nodes
to see what effect those might have had in the next section of Table 5.2. First, we
ablate the question indicator input (line 12) and the image confidences (line 13)
described in Section 5.3.2. We find that removing one or the other drops performance,
but not drastically; removing both (line 14) drops performance by about 2%, much
more than the effect of dropping the MMBERT input to the graph. We also ablate the
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Method accuracy
1. KRISP max(yimplicit, ysymbolic) (ours) 32.31
2. KRISP yimplicit 31.47
3. KRISP ysymbolic 29.36
4. KRISP no backprop yimplicit 28.19
5. KRISP oracle(yimplicit|ysymbolic) 36.71

Table 5.3: KRISP Subpart Analysis on OK-VQA v1.1. Here we show the OK-VQA
accuracy of different parts of the model separately: just the MMBERT (yimplicit),
just the graph network (ysymbolic). We also show the MMBERT only without a
backpropogation signal between the two parts and an oracle best-case performance
between the two parts.

word2vec inputs to nodes (line 15) and find that this part made the least difference,
dropping it less than 1%.

Preserving Symbolic Meaning

One major claim we make is that symbolic and implicit knowledge are both necessary
for this problem. The results without BERT training make the case pretty clearly
that implicit, non-symbolic knowledge from BERT is critical. From the ablation of
symbolic knowledge, we show that it is the symbolic knowledge (and not just the
architecture) greatly contributes to the performance of our method. On the symbol
input side, we show that removing the symbolic inputs (line 12) hurts performance,
even more than removing the Multi-modal BERT hidden input (line 7) which contains
information about the same image and question, but in a non-symbolic form. Finally
we have a baseline (line 11) where instead of predicting separate outputs from the
graph network and Multi-modal BERT, we directly connect the graph network into
MMBERT, feeding a pooled graph hidden state into MMBERT as an input. This
baseline does significantly worse. What these ablations have in common is that they
remove the direct connection between the knowledge graph and the input and/or
answer symbols. When the graph network is not able to connect the knowledge
symbolically to the input symbols or the output symbols, we see that it performs
worse. In addition, we know symbolic knowledge itself is useful because when we
only change the connections between nodes and nothing else (line 3), performance
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drops drastically. Our entire graph module directly connects symbols in the input
(question words and image symbols from classifiers) to symbols in the output (the
answer words) and this seems critical to performance.

5.4.4 Quantitative Analysis

First we examine the parts of our model separately to see if we can learn anything
about how the MMBERT and Graph Network parts of KRISP interact.

In Table 5.3 we look at the performance of different parts of our model (without
retraining the model for lines 1,2,3,5). Since the MMBERT and Graph Network
parts of KRISP produce separate predictions, we can analyze them separately. For
instance, we find that despite the fact that the MMBERT part of our model does
not receive input from the Graph Network, the MMBERT (Table 5.3, line 2) has a
higher accuracy of 31.47% than the MMBERT baseline (Table 5.2, line 2), 29.26%.
This we suspect is because this part of the network receives a back-propagation from
the Graph Network part of the model and this extra component improves the quality
of the MMBERT pooled feature because it is also trained to reduce the loss from the
late fusion predictions. Indeed, if we remove the back-propagation signal (Table 5.3,
line 4) we see that the accuracy of this part of the model drops down to 28.19%.
We also see a direct improvement beyond this effect. Comparing the Multi-modal
BERT (line 2) and Graph Network (line 3) -only accuracies, the Graph Network
does a bit worse on its own, but not by a huge amount, and the Graph Network
predictions are used 47% of the time in the joint model (line 1). Since the accuracy of
the combined model is higher than each, it is able to choose the correct answer from
between MMBERT and Graph Network. Finally, we see that if we had an oracle that
always chose the best prediction from either the MMBERT or the Graph Network,
we would improve the accuracy to 36.71%. Obviously this is not a realistic number
to achieve since it uses ground truth, but it shows that the MMBERT and Graph
Network predictions are non-redundant.

Long-Tail Analysis

Next, we try to see whether our explicit/implicit model performs any differently on
the “long tail” of OK-VQA. OK-VQA itself is built as a long-tail dataset, specifically
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Metric→ Frequency Rank # Unique answers
Method ↓ All Correct All Correct
KRISP (ours) 528.5 456.7 1349 780
MMBERT 467.1 427.4 1247 719

Table 5.4: Long-tail Analysis. We show KRISP and the non-symbolic MMBERT
long-tail metrics for “all” predictions made by the model and for “correct” predictions.
Higher is better.

rejecting answers that appear too many times to avoid models overfitting to the
answer vocabulary, making it a good dataset to study knowledge-based VQA. Even
with this filtering, some answers do appear more often than others, so we can try to
study whether our method does better on rare answers.

In Table 5.4 we show metrics on KRISP versus the baseline Multi-modal BERT.
First we use a metric we refer to as “Answer Frequency Rank”. This simply means
we order the answers in the dataset from most common to least common and assign
them a rank from 1 for the most common to the total number of answers in the
dataset. On this metric our model scores higher, which means it chooses on average
less common answers. This is true whether one measures for all prediction or for only
correct predictions. For a perhaps more intuitive metric we also look at the number
of unique answers our model predicts versus the baseline. Here we predict 1349 versus
1247 or 780 versus 719 if we only look at correct predictions. These results indicate
that our model is generalizing better to the long-tail.

5.4.5 Qualitative Analysis

Finally, we show examples to understand how the knowledge graph might be helping
our model to answer questions. In the top left example in Figure 5.4 our model
correctly answers that the source of heat for the pot is “gas.” Looking at the knowledge
graph, some knowledge that may be helpful is that gas is used for heat, and that
both gas and pot are used to cook. The knowledge graph here connects directly from
a word in the question to the answer. The next question asks what model the TV is
and our model predicts Samsung. This is supported by an edge that indicates that
Samsung is a company which makes it more likely to be a “model” of a product.
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Q: What source of heat is the pot using?

Knowledge

(gas, used for, heat) (gas, used for, cook)

(pot, is on, stove) (pot, used for, cook)

(gas stove, is a, stove) (gas, has part, methane)

Q: Can you guess the model of tv shown in this picture?

Knowledge

(samsung, is a, company) (tv, used for, learn)

(tv, at location, living room) (tv, made of, metal)

(remote control, at location, tv) (tv, is a, media)

Q: The kids on skateboards are wearing what kind of safety gear?

Q: What healthy properties do these fruit contain?

Knowledge

(banana, has part, vitamin) (fruit, has property, healthy)

(banana, is a, fruit) (fruit, has property, very healthy)

(orange, is a, fruit) (vitamin, is a, nutrition)

Q: What branch of the military is this woman from?

Knowledge

(navy, is a, colour) (plant, has part, branch)

(navy, is a, fashion) (military, part of, government)

(military, is a, film) (person, at location, military base)

Q: What is this street made of?

Ours: vitaminBL: orange

Ours : helmetBL: skateboard

Ours : samsungBL: flat screen

Ours: gasBL: hot

BL: brick Ours: concrete

Ours: marineBL: navy

Knowledge

(helmet, used for, protection) (helmet, used for, protect head)

(helmet, is a, safety) (boy, is on, skateboard)

(wheel, is on, skateboard) (helmet, is on, head)

Knowledge

(sidewalk, made of, concrete) (freeway, made of, concrete)

(building, is made of, brick) (brick, made of, clay)

(stripe is on street) (avenue, is a, street)

Figure 5.4: Qualitative examples from KRISP. Showing predictions by our model and
the implicit knowledge baseline Multi-modal BERT. We show the question, image,
and answers given by both models. We also show knowledge in the graph related to
the question, answers or image that seemed most relevant.

5.5 Conclusion

In this work we introduce Knowledge Reasoning with Implicit and Symbolic rePresen-
tations (KRISP): a method for incorporating implicit and symbolic knowledge into
Knowledge-Based VQA. We show it outperforms prior works on OK-VQA [224], the
largest available open-domain knowledge VQA dataset. We show through extensive
ablations that our particular architecture outperforms baselines and other alterna-
tives by preserving the symbolic representations from input to prediction. Moreover,
through experiments, analysis, and examples we find our model makes use of both
implicit and symbolic knowledge to answer knowledge-based questions and generalizes
to rare answers.

In the remaining chapters, we will shift our focus towards knowledge in embodied
agents: those which take actions. Despite the change in setting, many of the methods
and ideas from these first three contributions will remain relevant there.
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Chapter 6

Knowledge in Action: RL

6.1 Introduction

In this chapter, we take our first look at systems which take actions. In our three-
legged stool, we examine the role of knowledge for connecting the action and language
legs. By exploiting the prior knowledge contained in language and word vectors, we
see in this work that we are able to solve a complex multi-task crafting environment.

One of the most remarkable aspects of human intelligence is the ability to quickly
adapt to new tasks and environments. From a young age, children are able to acquire
new skills and solve new tasks through imitation and instruction [76, 145, 230]. The
key is our ability to use language to learn abstract concepts and then reapply them in
new settings. Inspired by this, one of the long term goals in AI is to build agents that
can learn to accomplish new tasks and goals in an open-world setting using just a
few examples or few instructions from humans. For example, if we had a health-care
assistant robot, we might want to teach it how to bring us our favorite drink or make
us a meal in just the way we like it, perhaps by showing it how to do this a few times
and explaining the steps involved. However, the ability to adapt to new environments
and tasks remains a distant dream.

Previous work have considered using language as a high-level representation for RL
[13, 152]. However, these approaches typically use language generated from templates
that are hard-coded into the simulators the agents are tested in, allowing the agents
to receive virtually unlimited training data to learn language abstractions. But both
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Figure 6.1: From state observation at time step t, the agent generates a natural
language instruction “go to key and press grab,” which guides the agent to grab the
key. After the instruction is fulfilled and the agent grabs the key, the agent generates
a new instruction at t+ 1.

ideally and practically, instructions are a limited resource. If we want to build agents
that can quickly adapt in open-world settings, they need to be able to learn from
limited, real instruction data [211]. And unlike the clean ontologies generated in
these previous approaches, human language is noisy and diverse; there are many ways
to say the same thing. Approaches that aim to learn new tasks from humans must
be able to use human-generated instructions.

In this work, we take a step towards agents that can learn from limited human
instruction and demonstration by collecting a new dataset with natural language
annotated tasks and corresponding game-play. The environment and dataset is
designed to directly test multi-task and sub-task learning, as it consists of nearly 50
diverse crafting tasks. Crafts are designed to share similar features and sub-steps so
we would be able to test whether the method is able to learn these shared features
and reuse existing knowledge to solve new, but related tasks more efficiently. Our
dataset is collected in a crafting-based environment and contains over 6, 000 game
traces on 14 unique crafting tasks which serve as the training set. The other 35
crafting tasks will act as zero-shot tasks. The goal is for an agent to be able to learn
one policy that is able to solve both tasks it was trained on as well as a variety of
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unseen tasks which contain similar sub-tasks as the training tasks.
To do this, we train a neural network to generate natural language instructions

as a high-level representation of the sub-task, and then a policy to achieve the goal
condition given these instructions. Figure 6.1 shows how our agent takes in the given
state of the environment and a goal (Iron Ore), generates a language representation of
the next instruction, and then uses the policy to select an action conditioned on the
language representation - in this case to grab the key. We incorporate both imitation
learning (IL) using both the language and human demonstrations and reinforcement
learning (RL) rewards to train our agent to solve complicated multi-step tasks.

Our approach which learns from human demonstrations and language outperforms
or matches baseline methods in the standard RL setting. We demonstrate that
language and word embeddings can provide prior knowledge and be used to better
generalize to new tasks. We show that our method is able to, by providing a high-level
task language, allow for more efficient learning of multi-step tasks in the standard
RL setting. We also show that the agent can learn few-shot tasks with only a few
additional demos and instructions and generalize with no new training to new tasks in
a zero-shot setting. Finally, we show that training with human-generated instructions
gives us an interpretable explanation of the agent’s behavior in cases of success and
failure. With our dataset collection procedure and language-conditioned method, we
demonstrate that using natural human language and word embeddings can allow
agents to solve difficult RL problems and begin solving the generalization problem in
RL.

6.2 Related Work

Sketches: Previous works on language descriptions of tasks and sub-tasks have
generally relied on what [13] calls “sketches.” A sketch specifies the necessary sub-
tasks for a final task and is manually constructed for every task. The agent then
relies on reward signals from the sketches in order to learn these predefined sub-tasks.
However, in our setup, we want to infer such “sketches” from a limited number of
instructions given by human demonstrations. This setting is not only more difficult
but also more realistic for practical applications of RL where we might not have
a predefined ontology and simulator, just a limited number of human-generated
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instructions. In addition, at test time, their true zero-shot task requires the sketch,
whereas our method is able to generate the “sketches” in the form of high-level
language with no additional training and supervision.

Language and RL: Similarly, other works have used synthetically generated
sub-goals and descriptions to train their methods and suffer from similar problems
of impracticality. [312] introduces a Stochastic Temporal Grammar to enable inter-
pretable multi-task RL in the Minecraft environment. Similarly, the BabyAI platform
[69] presents a synthetic language which models commands inside a grid-based envi-
ronment. They utilize curriculum training to approach learning complex skills and
demonstrate through experimentation in their environment that existing approaches
of pure IL or pure RL are extremely sample inefficient. [71] extend Hindsight Ex-
perience Replay (HER) to language goals in the BabyAI platform to solve a single
instruction generated from a hand-crafted language. The BabyAI environment is
extended by [53] to include descriptive texts of the environment to improve the
generalization of RL agents. [152] also uses procedural generated language using the
MuJoCo physics engine and the CLEVR engine to learn a hierarchical representation
for multi-task RL. [257] also tackles zero-shot generalizations, but like the others
considers only procedurally-generated instructions, learning to use analogies to learn
correspondences between similar sub-tasks.

The main work that also investigates using a limited number of human-generated
instructions in RL environments is [142]. This work also uses natural language
instructions in hierarchical decision making to play a real-time strategy game involving
moving troop units across long time scales. This work uses only behavioral cloning
with natural language instructions, whereas we use a mixture of RL and imitation
learning. They also do not investigate the benefits of language in zero-shot or few-shot
settings and do not demonstrate cross-task generalization as we do.

Others have utilized natural language for other tasks, including [362], [72], and
[14] but not focused on the multi-task learning setting. [228] demonstrates the
use of word embeddings to inform robotic motor control as evidence of particular
promise for exploiting the relationship between language and control. [247] uses
language descriptions of the environment to aid domain transfer. The sub-field
of language and vision navigation specifically has investigated how to train agents
to navigate to a particular location in an environment given templated or natural
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language [11, 59, 62, 229, 336, 389] or to navigate to a particular location to answer
a question [80]. Similarly to this work, [253] uses human-generated language to
find objects in a simulated environment, [396] and [44] reads a document (i.e. a
players manual) to play a variety of games, and [213] trains agents to follow both
image and language-based goals. All of these works require the agent to read some
text at both train and test time and follow those instructions to achieve some goal.
In contrast, at test time, our agent only receives a high-level goal, which is what
item to craft. Our agent must take the high-level goal as input and generates its
own instructions to solve the task. In other words, our task is both instruction
following and instruction generation. Related to instruction generation, some work
have explored more generally intrinsic motivation for goal generation [111, 113]. In
our work, however, we learn the goals via the human language instructions.

Hierarchical RL: Hierarchical approaches as a way of learning abstractions is
well studied in the Hierarchical reinforcement learning (HRL) literature [84, 263, 325].
This is typically done by predefining the low-level policies by hand, by using some
proxy reward to learn a diverse set of useful low-level policies [103, 110, 135, 137, 223],
or more generally learning options [331]. Our approach differs in that unlike in
options and other frameworks, we generate language as a high-level state which
conditions the agent’s policy rather than handing control over to low-level policies
directly.

RL + IL: Other works have shown the effectiveness of using a combination of
reinforcement learning and imitation learning. [186] presents a hybrid hierarchical
reinforcement learning and imitation learning algorithm for the game Montezuma’s
revenge by leveraging IL for the high-level controller and RL for the low-level controller
demonstrating the potential for combining IL and RL to achieve the benefits of both
algorithms. By learning meta-actions, the agent is able to learn to solve the complex
game. However, their meta-actions were also hand specified.

6.3 Human Annotation Collection

The first step of our approach requires human demonstrations and instructions. To
that requirement, we built an interface to collect human-annotated data to guide the
learning model.
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Figure 6.2: Example board and goal configuration where the goal is to make an
iron ore. The worker uses the recipes provided to give appropriate instructions and
execute accordingly. The agent is not given the recipe but must learn it or infer it
based on its previous experience.

6.3.1 Crafting Environment

As shown in Figure 6.2, our environment is a Minecraft-inspired 5-by-5 gridworld.
The Crafting Agent navigates the grid by moving up, down, left, and right. The
agent can grab certain objects, like tools, if it is next to them and use the tools to
mine resources. The agent must also use a key or switch to open doors blocking its
path. Finally, the agent can also go to a crafting table to build final items. The
agent can choose from 8 actions to execute: up, down, left, right, toggle, grab, mine,
and craft. The environment is fully observable. Our crafting environment extends
the crafting environment of [13] to include obstacles and crafts that are specified by
material, introducing compositionally complex tasks (i.e. instead of “Make Axe”, we
have “Make Iron Axe” etc). In total, we consider about 50 crafting tasks, 14 of which
we collect annotations for and 35 of which are used for test time. At the start of each
game, all object/resource locations are fully randomized in the environment.
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6.3.2 Crafting Task

The goal of the agent in our world is to complete crafts. By design, a crafting-based
world allows for complexity and hierarchy in how the agent interacts with items in
the gridworld. To craft an item, the agent must generally first pick up a tool, go to a
resource, mine the resource, and then go to a table to craft the item. To make an
iron ore, the agent must use the pickaxe at the Iron Ore Vein to mine Iron Ore to
complete the task. The Iron Ore recipe is an example of a 1-step task because it
creates one item. A 5-step task, like Diamond Pickaxe, involves the mining and/or
crafting of 5 items. We capped the tasks at a maximum length of 5 recipe steps to
limit the amount of time a worker would have to spend on the task. Note that each
recipe step requires multiple time-steps to complete. Crafts are designed to share
similar features and sub-steps to test whether the agent is able to learn these shared
features and reuse existing knowledge to solve new, but related tasks more efficiently
(these relations between tasks are detailed in Table 6.1 and in Figure 6.4). While
the task may seem simple to human annotators to solve, such compositional tasks
still pose difficulties for sparse-reward RL. We further increase the difficulty of this
task by restricting the agent to a limited number of steps (100) to complete the task,
leaving little room to make unrecoverable mistakes such as spending time collecting
or using unnecessary resources.

6.3.3 Data Collection Process

Figure 6.3 shows our interface for human annotation. Given the goal craft, rele-
vant recipes, and the initial board configuration, the worker provides step-by-step
instructions accompanied by execution on the actual game board of each instruction.
The workflow would be to type one instruction, execute the instruction, then type
the next instruction, and execute until the goal was completed. The data collection
interface and a corresponding example set of natural language instructions provided
by a Turker is illustrated on the rightmost side of Figure 6.3. This is but one way
that a Turker might choose to break down the 5-step crafting task.
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Figure 6.3: (Left) Example view of game interface that the worker would see on AMT.
On the left the worker is given the goal and recipes; the board is in the middle; the
worker provides annotations on the right. (Right) Example sequence of instructions
provided by the Turker for the given task of Stone Pickaxe.

6.3.4 Dataset Analysis

Between the 14 crafts, we collected 6,322 games on AMT. In total, this dataset
contains 195,405 state-action pairs and 35,901 total instructions. Figure 6.2 gives an
example of the type of task (Make Iron Ore) that would be presented to the worker,
which includes the goal, recipes, and the current board. We provide details of how the
tasks are related in Figure 6.4 and Table 6.1 which shows how the tasks are related
in terms of sub-tasks. This might be because of a similar material (i.e. Iron) or a
similar craft (i.e. Stairs). In Table 6.2 we show the average number of steps and
instructions required for each n-step task. Unsurprisingly, we find that the number of
instructions and actions required increases with the number steps.

6.4 Methodology

Our proposed approach to solving these multi-step crafting tasks is to learn from
human-generated natural language instructions and demonstrations. The model is
first pretrained using imitation learning (IL) and then fine-tuned using sparse-reward
in reinforcement learning (RL). The goal of the agent is to learn one policy that is
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Table 6.1: List of recipes for which we have collected annotations, labeled by the
number of steps needed to complete it and other recipes which may share sub-tasks
of underlying structure.

ID Recipe Name Steps Related Crafts by ID
1 Gold Ore 1 2
2 Iron Ore 1 1, 8
3 Diamond Boots 2 12, 14
4 Brick Stairs 2 5, 7
5 Cobblestone Stairs 2 4, 7, 13
6 Wooden Door 3 7
7 Wood Stairs 3 4, 5, 6
8 Iron Ingot 3 2
9 Leather Leggins 3 10, 11, 12
10 Leather Chestplate 3 9, 11, 12
11 Leather Helmet 3 9, 10, 12
12 Leather Boots 3 3, 9, 10, 11
13 Stone Pickaxe 5 5, 14
14 Diamond Pickaxe 5 3, 13

Figure 6.4: A more in-depth example of 3 out of the 14 training tasks to show how
the subtasks are related (red boxes = final craft, blue boxes = raw material).

able to solve a variety of tasks (around 50) in the environment including ones it has
not seen when only trained on a subset of the total tasks.
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Table 6.2: Summary statistics for tasks of varying difficulty.

Steps Average # of Instructions Average # of Actions
1-step 3.7 15.4
2-step 4.9 21.5
3-step 6.1 27.6
5-step 8.8 40.1

6.4.1 Data Preprocessing

From the dataset, which had 6,322 game traces, we extracted 195,405 state-action pairs
and 35,901 total instructions. This is done by matching an action to the corresponding
state within a trace as well as the high-level natural language instruction. Each
instruction was edited using a spell checker package to reduce the size of the final
vocabulary.

6.4.2 Architecture

As outlined in Figure 6.5, we factor the agent into a hierarchical set-up with a
language generator at the high-level and policy conditioned on the language at the
low-level. At each time step, the state encoder produces a vector representation that
is then used as input to both the language generator and language-conditioned policy.
Relevant information about the state, including the grid, inventory, and goal are
encoded. Items which are relevant for crafting are embedded using a 300-dimension
GloVe embedding, summing the embeddings for multiple word items (i.e. Iron Ore
Vein). Non-crafting items, such as door, wall, or key, are represented using a one-hot
vector.

State Encoding

As shown in Figure 6.6, the relevant information about the state that is encoded
includes the 5x5 grid, inventory, and goal. We have two representations of the 5x5
grid: one with items relevant for crafting and another with a one-hot representation of
non-crafting-related items, such as a door, wall, or key. All crafting-related items on
the board, inventory, and goal are embedded using a 300-dimension GloVe embedding,
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Figure 6.5: (Left) High-level language generator. (Right) Low-level policy conditioned
on language.

summing the embeddings for multiple word items (i.e. Iron Ore Vein). The intuition
for this distinction is that for generalization, crafting items should be associated in
terms of compositionality, whereas non-crafting items are standalone.

To compute the state encoding, we first passed the two grids, inventory, and
goal through separate fully connected layers to reduce to the same dimension and
concatenated along the vectors. The final size of the state encoding tensor is (27,
128), where 25 are for the grid, 1 for inventory, and 1 for goal.

6.4.3 Training

Imitation Learning Pre-training

We warm-start the model using the human demonstrations. Language is generated
at the high-level with an encoder-decoder framework. The encoding from the state
encoder is decoded by an LSTM which generates a natural language instruction. The
target language instruction is the AMT worker’s provided instruction. In our dataset,
the vocabulary size was 212, after filtering for words that appeared at least 5 times.
At test time, we do not have access to the ground truth instructions, so instead
the LSTM decoder feeds back the previously generated word as the next input and
terminates when the stop token is generated. From the language generator module,
we extract the last hidden state of the generated instruction. The hidden state is
concatenated with the encoded state and passed through a series of fully connected
layers. The final layer outputs the action. In the supervised training phase, the
full model is trained by backpropagating through a language and action loss (cross
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Figure 6.6: At each time step we encode state relevant observations including the
goal, inventory, and grid. This encoding is utilized by both the language generator
and the language-conditioned policy. The boxes in green, denote the observations
that were encoded using the GloVe embedding.

entropy loss).

Reinforcement Learning Fine-tuning

We use the proximal policy optimization (PPO) algorithm [303] in RL with the
reward defined below to learn an optimal policy to map from state encoding to
output action. The maximum number of steps in an episode is set to 100. We
utilize a training set-up which samples from all tasks (1-step through 5-step tasks).
In preliminary experiments, we observe that sampling from 3-step tasks alone, for
example, poses too complex of an exploration problem for the model to receive any
reward. We define a sparse reward, where the agent only receives a reward when it
has completed the full craft. In RL fine-tuning, we freeze the language generator
component because there is no more language supervision provided in the simulated
environment. We also find that empirically backpropagating the loss through language
distorts the output language as there is no constraint for it to continue to be similar
to human language. All training hyperparameters and other details are provided in
the conference publication [64].
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6.5 Experiments

6.5.1 Baseline Comparisons

We compare our method against five baselines (1-5) which are reduced forms of
our method to evaluate the necessity of each component. We also consider two
baselines (6-7), which swap out the language generator for alternative high-level
tasks, to evaluate the usefulness of language as a selected high-level task. These
baselines have the additional training that our method received, as well as the implicit
compositionality, but without language. In both baselines (6-7), we perform the same
training steps as with our method.

1. IL: The IL baseline uses the same low-level architecture as our method, without
a high-level hidden state. The model learns to map state encoding to an output
action.

2. IL w/ Generative Language: IL w/ Generative Language is the supervised
baseline of our method, which does not include RL reward. This baseline allows
us to observe and compare the benefit of having a reward to train in simulation
when the model has access to both actions and language instructions.

3. IL w/ Discriminative Language: We compare our method to a closely
adapted version of the method proposed in [142] which similarly uses language
in the high-level. Rather than generate language, their high-level language is
selected from a set of instructions from the collected user annotation. They
consider instruction sets of sizes N = {50, 250, 500} and find the best perfor-
mance on the largest instruction set N = 500 which is the size we use in our
implementation.

4. RL: Another baseline we consider is the reinforcement learning (RL) setting
where the agent is provided no demonstrations but has access to sparse-reward
in RL. The architecture we use here is the same as the IL architecture. This
baseline demonstrates the capacity to learn the crafting tasks without any
human demonstrations and allows us to see whether human demonstrations are
useful.
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Figure 6.7: Comparing baselines with our method on accuracy. Human demonstrations
are necessary to complete tasks with 3 or more steps. Averaged over 3 runs.

5. IL + RL: We also consider a baseline that does not incorporate language which
is IL+RL. In IL+RL, we pretrain the same IL architecture using the human
demonstrations as a warm-start to RL. It is important to note that this baseline
does not include the natural language instructions as a part of training. We
extract all of the state-action pairs at train a supervised model on the data as
in the IL model and then we utilize the RL sparse-reward to fine-tune.

6. State Reconstruction (SR): We train an autoencoder to perform state
reconstruction. The autoencoder reconstructs the state encoding and the vector
at the bottleneck of the autoencoder is used as the hidden layer for the policy.
SR as a baseline allows us to consider latent representations in the state encoding
as a signal for the policy.

7. State Prediction (SP): We train a recurrent network, with the same archi-
tecture as our language generator, to perform state prediction. The model
stores the past 3 states from time T to predict the T + 1 state. So at time
T , the states T − 2, T − 1, and T are used to predict state T + 1. From the
LSTM, the hidden state is extracted in the same manner as our IL + RL w/
Lang model. SP as a baseline allows us to compare against another recurrent
high-level method with the additional computation power.

6.5.2 Standard setting

We evaluate the various methods on crafts which we have collected human demon-
strations for to benchmark comparative performance in our environment. An initial
analysis is to first consider how much the IL model is able to learn from human
demonstrations alone, so we consider IL, IL with Generative Language, and IL with
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Table 6.3: Accuracy of IL (with and without language) evaluated over 100 games
with 3 different seeds.

Steps IL no language IL Gen. Language IL Disc. Language
1-step 18.00%± 3.55% 19.33% ± 1.89% 20.00% ± 1.35%
2-step 0.00%± 0.00% 9.33% ± 2.05% 8.33%± 0.98%
3-step 0.00%± 0.00% 4.33% ± 0.47% 0.00%± 0.00%
5-step 0.00%± 0.00% 0.00%± 0.00% 0.00%± 0.00%

Discriminative Language (see Table 6.3). None of these approaches are able to solve
the most difficult 5-step tasks or the simpler tasks consistently, with an average of
about 18-19% success rate for 1-step tasks. We believe the 3 and 5-step tasks are
difficult enough such that annotations alone were not able to capture the diversity
of board configurations for the variety of crafts given that the board is randomly
initialized each time. However, based on an analysis of the language selected (see
Table 6.7), the generated language is more interpretable and made more sense in a zero
shot setting. Given the language is fixed after this point, all remaining experiments
moving forward use generative language.

As shown in Figure 6.7, our method performs well against baselines. We find that
human demonstrations are necessary to guide learning because the learned behavior
for RL is essential to arbitrarily walk around the grid and interact with items. For
simple 1 and 2 step tasks, this is a feasible strategy for the allotted steps for an
episode. However, there is little room for error in the most difficult 5-step tasks, as
even human demonstrations take on average 40 steps to solve. We also find that for
the standard setting, incorporating a high-level network allows the model to achieve
good results when comparing our method to SP and SR.

In Figure 6.8 we show the result of our method when we ablate the number of
demonstrations we use. This lets us see how many demonstrations we would feasibly
need for the model to learn how to solve the crafting tasks. As we decrease the
amount of data provided, we find that there is greater variance in the policy’s ability
to complete the task, but the performance only significantly degrades when we start
using only 25% of the data on the hardest tasks.
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Figure 6.8: Ablation of our method with varying amounts of human annotations (25%,
50%, 75% and 100%). For each fraction, we sample that number of demonstrations
from the dataset for each type of task. Averaged over 3 runs.

6.5.3 Zero-Shot

Our method is able to use natural language instructions to improve performance on
difficult tasks in the standard setting. But how well is our method able to do on
completely new tasks not seen during training? We investigate our performance on
zero-shot tasks, where the agent receives no human demonstrations or instructions,
and no rewards on these tasks. The agent has to try to complete these tasks that it
has never seen before and cannot train on at all. These unseen tasks do share sub-task
structure with tasks which were seen in the training process, so the desired behavior
is for the model to reuse subpolicies seen in other contexts for this new context. For
example, in training the agent might have seen demonstrations or received rewards for
a task like “Cobblestone Stairs” and “Iron Ingot.” At test time, we can evaluate the
agent on an item like “Cobblestone Ingot”, which has never been seen by the agent.
The agent should be able to infer the sub-task breakdown given prior knowledge of
similar tasks.

We present 35 examples of unseen tasks in Table 6.4. We find that overall our
method outperforms all other baselines. While SR and SP were able to match our
method’s performance in standard setting, they are not able to generalize. SR and
SP are viable solutions to learn complex tasks in the standard RL setting, but the
representations these models learned do not aid in generalizing to unseen tasks. Here,
we believe, using language and word embeddings as prior knowledge is key because it
creates a representation that better abstracts to new tasks. We see that in the cases of
unseen tasks, the model indeed is able to generate language that properly corresponds
to these new combinations of materials and items, particularly decomposing the
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complex item into sub-tasks that were previously seen in the training phase (see
Table 6.8).

Table 6.4: Accuracy evaluated on 100 games for 35 unseen crafts. Our method
outperforms baselines. We do not list IL or IL w/ Language results which are 0% for
all tasks.
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Ours 97 98 2 3 18 0 40 0 96 39 95 98 49 36 0 0 0 14 10 69

6.5.4 Demonstration Only and Few-Shot

In the demonstration only, we assume that we have access to only human demon-
strations for some subset of tasks. From the entire pool of 14 tasks we collected
demonstrations for, we withhold 3 tasks (around 20% of total tasks) for testing. These
3 tasks consist of a one, two, and three step task. We run results on 3 permutations of
withholding 3 tasks. For each of the 3 withheld tasks, we include these demonstrations
in the supervised training phase but do not provide reward in RL fine-tuning. We
vary the amount of demonstrations that are provided: 5%, 10%, and 100%. The
most generous case is to assume that the model has access to all demonstrations
that were collected in the dataset. Per task, the total number of demonstrations
was about 300-500. Additionally we considered a more strict few-shot case where we
reduce the number of demonstrations to 20-40 which is about 5-10% of the original
number of demonstrations. We do not include 5-step tasks because we only collected
demonstrations for two 5-step tasks. From the results in Table 6.5, we can see that
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our method outperforms baselines in its ability to utilize the few demonstrations to
improve performance.

Table 6.5: Evaluation of few-shot tasks for our method against baseline comparisons.
We consider three settings for how many demonstrations are given to the model: 5%
(20 demos), 10% (40 demos), 100%. Results are averaged across 3 seeds.

IL IL w/ Lang IL+RL SP SR Ours
Steps 5% 10% 100% 5% 10% 100% 5% 10% 100% 5% 10% 100% 5% 10% 100% 5% 10% 100%
1-step 16% 18% 18% 17% 19% 19% 96% 91% 98% 96% 98% 97% 53% 84% 94% 97% 90% 95%
2-step 4% 3% 0% 5% 5% 9% 66% 64% 66% 53% 64% 71% 10% 40% 63% 87% 73% 82%
3-step 1% 2% 0% 1% 3% 4% 1% 23% 22% 10% 27% 46% 0% 31% 50% 5% 47% 74%

6.5.5 Reward Only

Finally, for completeness, we consider the scenario where the agent receives a reward
but no demonstrations. The tasks which we select for this setting are sampled from
the unseen tasks list. We choose 3 2-5 step crafts. We evaluate this scenario on our
method against other baselines which train using a reward signal. In Table 6.6, we
evaluate on tasks for which we do not have demonstrations and fine-tune a trained
model with the reward signal for these tasks. This setting is not very interesting
from a generalization perspective, since rewards are a far more expensive resource
compared to demonstrations and instructions. We don’t include 1-step tasks since
that is able to be solved easily by RL alone (see 1-step results in Figure 6.7). IL and
IL w/ Language is not included because this reduces to the zero-shot setting.

Table 6.6: Comparison of 2-5 step tasks where only reward is provided to the agent.
We believe IL+RL is not able to adapt to these new tasks, given reward only, since
it has overfit to the original training tasks. We find that our method outperforms
baselines in this setting.

Steps RL IL+RL Ours
2-step 92.00%±0.81% 0% 95.33%±0.94%
3-step 71.67%±0.47% 0% 88.00%±1.41%
5-step 0.00%±0.00% 0% 65.00%±5.67%
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6.5.6 Interpretability

One key benefit of incorporating natural language into the model is the ability for
humans to interpret how the model is making decisions. We observe that the generated
instructions closely match those of the recipes that we provide to the annotators
in the data collection phase in both train (Table 6.7) and test (Table 6.8) settings.
Figure 6.9 presents example instructions generated by our model.

Table 6.7: Step-by-step generated high-level instructions for seen crafts.

Goal: Gold Ore
go to key and press grab.
go to pickaxe and grab.
go to gold ore vein and mine.

Goal: Brick Stairs
go to pickaxe and press grab.
go to the brick factor and mine brick.
go to brick stairs and press craft.

Goal: Diamond Pickaxe
go to axe and press grab.
go to key grab it go to door and open door.
go to tools and click grab to take each one.
go to tree and press mine.
go to stocks click mine to harvest.
go to tree and mine.
go to wood plank and press craft.
go to stick bench and craft stick.

Goal: Wooden Door
go to the axe and grab it.
go to the switch and open door.
go to the axe and grab it.
go to the tree.
go to the tree and press mine.
go to wood plank and press craft.
go to wood plank bench and craft wooden door.

Goal: Leather Helmet
go to sword and click grab to take it.
go to key and press grab.
go to sword and click grab to take it.
go to rabbit and press mine.
go to leather and press craft.
go to leather boots bench and craft leather.

Goal: Diamond Boots
go to key and press grab.
go to pickaxe and press grab.
go to diamond ore vein and mine.
go to diamond boots and press craft.
go to diamond bench and craft diamond boots.

Goal: Iron Ore
go to key and press grab.
go to pickaxe and press grab.
go to iron ore vein and press mine.

Goal: Cobblestone Stairs
go to key and press grab.
go to pickaxe and press grab.
go to cobblestone stash and press mine.
go to cobblestone stairs and press craft.

Goal: Wood Stairs
go to axe and press grab.
go to tree and mine.
go to wood plank and press craft.
go to wood stairs and press craft.

Goal: Leather Chestplate
go to sword and press grab.
go to rabbit and mine.
go to leather and craft.
go to leather chestplate and craft.

Goal: Leather Leggins
go to sword and click grab to take it.
go to rabbit and press mine.
go to leather and press craft.
go to leather bench and craft leather

Goal: Iron Ingot
go to key and press grab.
go to pickaxe and press grab.
go to iron ore vein and mine.
go to iron ingot and craft.

119



6. Knowledge in Action: RL

Figure 6.9: Generated language at test time for a 2-step craft. We only display key
frames of the trajectory which led to changes in the language. These key frames
match changes in the inventory to the object mentioned in the generated instruction.
Qualitatively, the generated instructions are consistent during what we would describe
as a sub-task. Quantitatively, the network will spend on average 4.8 steps in the
environment for the same generated language output.

Table 6.8: Step-by-step generated high-level instructions for unseen crafts.

Goal: Cobblestone Boots
go to key and press grab.
go to pickaxe and press grab.
go to cobblestone stash and mine.
go to workbench and press craft.

Goal: Diamond Leggins
go to pickaxe and press grab.
go to diamond ore vein and mine.
go to diamond boots and press craft.

Goal: Leather Stairs
go to sword and press grab.
go to rabbit and mine the rabbit.
go to leather and press craft.

Goal: Stone Helmet
go to pickaxe and press grab.
go to the cobblestones stash and mine.
go to the workbench and craft.

Goal: Diamond Ingot
go to pickaxe and press grab.
go to diamond ore vein.
go to the workbench and craft.

Goal: Brick Door
go to pickaxe and press grab.
go to the brick factory and mine the brick.
go to the brick stairs and craft.

Goal: Brick Pickaxe
go to the pickaxe and grab it
go to the axe and press grab.
go to the tree.
go to the tree and mine.
go to the brick factory and mine.
go to the wood plank and craft.
go to the stick bench and craft stick.
go to stick and craft.

Goal: Gold Pickaxe
go to the pickaxe and press grab.
go to the axe and grab it.
go to the tree.
go to stocks and click mine to harvest <unk>.
go to the tree and mine the tree.
go to wood plank and press craft.
go to stick and press craft.

Goal: Diamond Stairs
go to key and press grab.
go to pickaxe and press grab.
go to the diamond ore vein and mine.
go to the bench and craft.

Goal: Wood Chestplate
go to key and grab it.
go to axe and grab it.
go to the tree.
go to tree and mine.
go to wood plank and craft.
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6.6 Conclusion

In this work, we present a dataset of human demonstrations and natural language
instructions to solve hierarchical tasks in a crafting-based world. We also describe
a hierarchical model to enable efficient learning from this data through a combined
supervised and reinforcement learning approach. In general, we find that leveraging
human demonstrations and the knowledge from word embeddings allows the model
to drastically outperform RL baselines. Additionally, our results demonstrate that
natural language not only allows the model to explain its decisions but the additional
prior knowledge improves the model’s performance on the most difficult crafting tasks
and further allows generalization to unseen tasks. We also demonstrate the model’s
ability to expand its skillset through few additional human demonstrations.

While we demonstrate our approach’s success in a grid-based crafting environment,
we believe that our method is able to be adapted towards generalizable, multi-task
learning in a variety of other environments. In the next chapter, we discuss applying
prior knowledge (in this case both word embeddings and knowledge graphs) to robotic
grasping.
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Chapter 7

Knowledge in Action: Robotics

7.1 Introduction

In this chapter, we continue exploring the use of knowledge for action, this time in
the much more difficult setting of robotics, which also necessitates the use of a visual
modality. We extend prior work on semantic grasping by introducing a new dataset
and incorporating knowledge into the grasping methodology.

We have seen tremendous progress in the fundamental task of robotic grasping
in recent years. State-of-the-art grasping algorithms have shown generalization
to object instances [160, 215, 273, 393], viewpoints [191], DOF constraints [241,
245, 338], unknown environments [130] and even adversarial objects [354]. The key
reason for the success of these approaches is large-scale learning. Typically data is
sampled from analytical approaches in simulation [215, 241] or using a self-supervised
framework [191, 273]. Despite these recent successes, there is still a significant gap
between how humans grasp objects and how robots perform picking. Most techniques
plan for stable grasps assume grasping to be the end goal. However, when humans
grasp an object, we do so with a particular purpose in mind and grasping is just
the first step as a means to that end. For example, when humans grasp a cup, we
use the handle to drink from it though several other stable grasps exist. Humans
also use objects creatively, such as scooping with a bowl or hammering with a heavy
mug. Different tasks may require completely different grasps for the same object. To
effectively operate in human homes and complete multiple tasks, a personal robot
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would have to learn from humans to generalize grasping to several tasks and skills
beyond a tool’s prototypical use. For instance, if the robot is cooking and needs to stir
a pot of pasta but doesn’t have a spoon at hand, it can use an alternate tool, such as
a knife. To truly get to human-level grasping, we must study not just stable grasping
or grasping for an object’s primary use-case but rather how to grasp depending on
both the task and the object.

What are the bottlenecks in Task-Oriented robotic grasping? One of the biggest
hurdles is the need for human-labeled data. Unlike self-supervised or analytical
approaches for which force sensing or contact models can provide labels for stable
grasps, here we need humans to identify how an object can be grasped for multiple
tasks. There has been a lot of recent work in this area, including [42, 105, 202].
Brahmbhatt et al. [42] used thermal imaging in a curated setup to study human
grasping contacts on 50 3D printed objects for two tasks. Fang et al. [105] proposed to
jointly learn a task-oriented grasping network and manipulation policy in simulation
with reinforcement learning and demonstrated the framework on two-goal tasks with
two object categories. Liu et al. [202] proposed a data-driven approach to learning
the complex relationships between grasps, objects, tasks, and broadened semantic
contexts. However, their approach required pixel-wise affordance segmentation [95]
for a small set of known object categories, which is challenging to generalize and get
supervision for.

Despite this progress in learning from human grasping, there are still significant
gaps, both from a data and methods perspective. On the data side, existing datasets
are limited in terms of the number of object instances, but especially in the number
of tasks and object classes collected. Yet, even if we scale the datasets, it is unclear
if current approaches will generalize to new object categories and tasks in the real
world. We tackle both problems: first, we collect a dataset that is diverse both in
terms of objects and tasks and an order of magnitude larger than previous datasets.
Second, we exploit the semantic knowledge of objects and tasks to create a system
that can generalize to new object instances, classes, and new tasks. To the best of our
knowledge, this work is one of the first efforts in demonstrating robust generalization
in task-oriented grasping, especially with semantic knowledge.

First, we collect a large-scale dataset which we call TaskGrasp. We increase the
number of real objects from 50 in prior works [42] to 191, and collect RGB-D point
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cloud observations and object-centric 6-DOF grasps for the task-oriented grasping
problem. We also scale the number of object classes from 40 [42] to 75 and resolve
each of these to the WordNet ontology [235]. And perhaps most importantly, we
scale the number of tasks from 2-7 in prior works [42, 105, 202] to 56. This expanded
dataset both gives a better benchmark for task-oriented grasping and allows us to
study generalization by expanding the number of object categories and tasks.

Now that we have developed this semantically richer dataset, we can also begin to
incorporate knowledge and semantics into the task of task oriented grasping. In order
to generalize to a new object or task, we need to have some prior knowledge about it.
For instance, if we knew that mugs and bowls were both containers, we might infer
that we should apply the scoop action in a similar way. To this end we propose a
method, called GCNGrasp, that incorporates semantic knowledge into the end-to-end
learning of task-oriented grasping from object point clouds. In particular, we use a
Graph Convolutional Network (GCN) [170] to reason about a knowledge graph that
encodes relations between objects and tasks, and further leverage word embeddings
trained on large-scale language tasks to provide additional prior information. Our
GCNGrasp model shows a significant improvement of 12% and 3.5% on held-out tasks
and object categories, respectively, compared to baselines which do not incorporate
semantics. We also show that our method and dataset are applicable for actual robots
by executing task-oriented stable grasps on a 7-DOF Sawyer Robot on unknown
objects.

7.2 Related Work

Task-Oriented Grasping: Prior work in Task-Oriented Grasping can be grouped
into analytic methods, data-driven approaches using object state information, and
frameworks learning from observations. Early work in analytic grasping proposed task
wrench spaces with task-oriented grasp quality metrics [36]. Data-driven approaches
have been proposed to improve generalization, though a large body of work has relied
on object state information. Song et al. [318] used generative Bayesian Networks
to model the relations between objects, grasps and tasks; Antanas et al. [15] and
Ardón et al. [17] leveraged probabilistic logic languages to reason about grasp regions
affording different tasks through semantic relations. However, both methods require
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grounding geometric information about objects to semantic representations and
can only reason about semantic knowledge alone. A related line of work has used
object parts and affordance detection [89, 95, 173, 182]. Do et al. [95] leveraged the
affordances of object parts to define the correspondences between affordances and
grasp types (e.g., rim grasp for parts with contain or scoop affordance). Detry et al.
[89] trained a separate affordance detection model using synthetic data to detect
suitable grasp regions for each task. While we do not provide explicit supervision for
object affordance, we demonstrate that our model achieves an implicit understanding.

More recent works have learned task-oriented grasping from just RGB-D observa-
tions of objects. Dang and Allen [78] proposed an example-based approach which
learns task-oriented grasps by storing visual and tactile data of grasps. Hjelm et al.
[140] proposed a discriminative model based on visual features of objects. Jang
et al. [149] proposed an end-to-end learning method of grasping objects from spe-
cific categories in a bin. To accelerate learning from observations, there have been
efforts in scaling datasets as discussed previously [42, 105, 202]. The computer vision
community has also focused on annotating datasets for inferring human grasp pose
estimation from visual data [144, 174, 305] with the aim that it could be adapted to
robotic grasping with kinematic retargeting. In this work, we propose an expanded
dataset in terms of the number of object categories and tasks to study generalization.
We also present a unified framework that jointly learns from semantic knowledge and
geometric observations.

Semantic Knowledge in Vision and Robotics: In Chapter 2.7 we discuss
the prior work in knowledge in computer vision and in Chapter 2.8 we discuss the
work in RL and robotics. What we find is extensive work on using word embeddings,
both in CV [114] and robotics [228] as well as a variety of techniques in both that use
class hierarchies [401]. Knowledge graphs are less common, however, in the robotics
community. Methods leveraged more specific knowledge in a variety of robotic
tasks, such as affordance learning [239] and visual-semantic navigation [377]. Similar
to Antanas et al. [15] and Ardón et al. [17], we reason about semantic knowledge
for task-oriented grasping, but we leverage semantic knowledge for generalization to
novel object classes and tasks.
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Figure 7.1: Example point clouds and grasps from our TaskGrasp dataset. Column
7-9 shows how grasps vary with tasks for a salad tongs (with higher diversity) and
a rolling pin (with lower diversity). Green and Red means successful and incorrect
task-oriented grasps respectively.

7.3 Dataset

In this section we describe our dataset: TaskGrasp, specifically its properties, collec-
tion and annotation methodology. As shown in Table 7.1, TaskGrasp is the largest
and most diverse dataset for task-oriented grasping to date with respect to number
of objects, categories and tasks.

TaskGrasp contains 191 individual household and kitchen objects comprising
75 distinct object categories and varying in size, geometry, material, and visual
appearance. Figure 7.2 shows the class of each object and its proportion in the
dataset. We collect RGB-D point clouds for each object, and automatically annotate
250K stable grasps. We also curate a list of 56 everyday tasks that impose different
semantic constraints on grasping and annotate for each grasp whether that grasp is
appropriate for each particular task.
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Table 7.1: Comparing recent Task-Oriented Grasping Datasets

ContactDB [42] SG14000 [202] TOG-Net [105] TaskGrasp (Ours)
Semantic Knowledge 7 7 7 3

Object Categories 40 5 2 75
Objects 50 44 18K (synthetic) 191
Tasks 2 7 2 56

Grasps 3750 14K 1.5M 250K
Grasp Type Contact Map SE(3) Planar SE(3)

7.3.1 Data Acquisition on a Robot

After selecting our 191 objects by browsing various homegoods stores, we scan the
objects to acquire their point clouds. A RealSense D415 eye-in-hand camera mounted
on a LoCoBot [243] is used for 3D scanning. The object is placed on a transparent
mount in front of the robot, which is commanded to different poses along the object
approach direction to capture point clouds from multiple viewpoints. This setup helps
to capture more of the object geometry under self-occlusion, which in turn increases
the coverage of grasp samples. The multi-view observations are registered using robot
kinematics and further refined with the iterative closest point algorithm. After table
plane segmentation, 600 object-centric stable grasps are then sampled [337] from the
object point cloud. 25 grasps are selected with farthest point sampling (to maximize
grasp coverage) for annotation. These grasps are chosen as a representative, albeit
limited, grasp set for the object to trade off between dataset size and budget.

7.3.2 Data Annotation by Crowdsourcing

We use Amazon Mechanical Turk (AMT) to crowdsource labels for the 250K stable
grasps. Instead of exhaustively labeling each task-object combination (∼ 10K) , we
reduce the annotation cost with a two-stage procedure. We use the insight that the
pre-condition for a task-oriented grasp is that the object has to be capable of the task
in the first place. First, we gather labels for whether a task is suitable for each object.
Second, for this filtered subset of task-object combinations, we collect labels for the
25 task-oriented grasps per object. To ensure annotation quality, we assign each
labeling task to three annotators and use gold standard questions (questions that we
know the answers to) to filter annotators with low accuracy. For both stages, we take
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a majority vote between the annotators. We measure agreement with Randolph’s
free-marginal multirater kappa [283]. Kappa values for the two stages are 0.65 and
0.62 respectively (0.0 meaning agreement equal to chance, and 1.0 indicating perfect
agreement above chance), which suggests good agreement between annotators.

7.3.3 Analysis

In Figure 7.1 we show prototypical examples from TaskGrasp.
Diversity of Grasps: As a result of the large number of objects and tasks,

TaskGrasp contains a wide variety of task-oriented grasps. On average, each object is
suitable for 7 tasks. As shown in Figure 7.1, these tasks involve both prototypical (a
ladle for pouring) and creative use of objects (tongs for stirring), imposing drastically
different semantic constraints on grasping. These examples also demonstrate the
complex geometries presented in real world objects, which pose another challenge for
generalization.

We also quantitatively measure grasp diversity by analyzing the effect of tasks on
grasps. Since different tasks provide different labels for the same set of stable grasps
on each object, we compute Randolph’s kappa [283] on these labels as a measure of
agreement between tasks, i.e., how likely grasps for one task (e.g., stir) agree with
grasps for another task (e.g., cut). Ranging from 0.19 to 0.93, kappa values of the
objects suggest that the effect of tasks vary greatly for different objects. Column 7-9
in Figure 7.1 show how grasps vary with tasks for a salad tongs with a kappa value
of 0.38 and a rolling pin with kappa value of 0.97. In TaskGrasp, 25% of the objects
have kappa values lower than 0.5 and these objects require significantly different
grasps for different tasks.

Semantic Knowledge of Objects and Tasks: We also provide semantic
knowledge about objects and tasks in the dataset. Objects are manually mapped to
WordNet synsets [235] which represent a semantic hierarchy, as shown in Figure 7.2.
Each of the 75 leaf synsets in the hierarchy represents a distinct object class and is
linked to 2.5 objects on average. Building on the hypernym paths from WordNet,
the semantic hierarchy includes a rich set of object concepts interlinked by “Is-A”
relations. This provides useful semantic knowledge for task-oriented grasping as
objects in the same subtree of the hierarchy often share similar functionalities or
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Figure 7.2: Semantic hierarchy of objects. Each level of the hierarchy is represented
by one ring with the innermost circle as the root of the hierarchy. The angle of each
segment is proportional to the number of objects.

geometric properties. For example, mug, ladle, and bottle are in the vessel subtree
and can all be used to hold liquid. In addition, we connect a task to an object class
through “Used-For” relations if any object in the class is considered suitable for the
task from the first stage of our crowdsourcing.

7.4 Methodology

We consider the problem of generating grasps for task-oriented grasping given the
object point cloud and task constraints. Specifically, we want to estimate the grasp
distribution P (G∗|X, T ), where X is the point cloud input, T are the constraints
imposed by goal tasks, and G∗ is the space of successful grasps. Following convention
in related work [241, 338], we represent grasps g ∈ G∗ as the grasp pose (R, T ) ∈ SE(3)
1 of a parallel-jaw gripper with its fingers open which when closing will lead to a stable
grasp. We further factorize the estimation of P (G∗|X, T ) into task-agnostic grasp

1SE(3) stands for 3D special euclidean space and is represented as a 3D rotation and a 3D
rotation.
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sampling P (G∗|X) and task-oriented grasp evaluation P (S|X, T , g). The primary
benefit of this factorization is that it allows us to leverage prior work in stable grasp
generation.

In this section, we describe our method (GCNGrasp) for Task-Oriented grasping.
Our method is composed of:

1. A Grasp and Object Encoder built on a PointNet++ architecture [275] to
encode the object point cloud and grasp

2. A Graph Convolutional Network [170] which takes the encoded object shape
and grasp as input as well as a knowledge graph G encoding the semantic
relationships between object categories, tasks and hierarchies

3. A Grasp Evaluator which outputs the final grasp prediction. See Fig 7.3 for
an overview of the framework.

7.4.1 Grasp and Object Encoder

Our input observations are object point clouds and we want to reason about SE(3)
grasps. Qi et al. [275] proposed the PointNet++ architecture to efficiently represent
3D data which we use to learn a representation for the object point cloud and 6-DOF
grasp poses. The grasp g is defined in the object frame and six control points are
selected on the gripper to form a gripper point cloud Xg. Similar to Mousavian et al.
[241], Xg is concatenated with the object point cloud X with an extra latent indicator
vector to represent whether a point is part of the gripper or the object. The PointNet
layer reasons about the relative spatial information between the grasp and the object.
It outputs a embedding which is used initialize the grasp node (orange in Fig 7.3) in
the graph.

7.4.2 Graph Convolutional Network

We use the Graph Convolutional Network (GCN) model from Kipf and Welling
[170], which is a neural network structured on the shape of the input graph2. By
structuring a neural network to pass information between adjacent nodes, we use

2We more thoroughly discuss graph neural network models in Chapter 2.3.3 and explain GCN
equations there. For clarity, we repeat parts of that section here.
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Figure 7.3: Overview of our Task-Oriented grasping framework using semantic
knowledge graphs.

the input graph to correctly reason about the relationship between the object classes
and the target task. The first input of a GCN is the graph itself G = (V,E). In our
application, we use a knowledge graph constructed from two sources: the task-object
class relationships in our dataset and the object hierarchy from WordNet [235]. The
grasp nodes (orange in Fig 7.3) are added online to the existing knowledge graph G by
connecting edges to the corresponding object class nodes. The graph is represented
as a binary adjacency matrix A, which we normalize to obtain Â following [170].
Each node of the graph also has a D−dimensional embedding which is used by the
GCN. The target tasks are specified using an extra indicator latent variable that
is concatenated with this embedding to get a vector of size D + 1. Except for the
grasp nodes, we initialize the matrix with the word embeddings corresponding to
each concept in the knowledge graph (e.g. “mug”). We use ConceptNet numberbatch
[321] for the word embeddings. The embedding vectors are stacked across nodes along
the first dimension to get the input matrix X ∈ R|V |×(D+1). The output of the GCN
are K-dimensional embeddings for each node Z ∈ R|V |×K . The node embeddings are
propagated to their neighbours using message passing in each convolutional layer:

H(l+1) = σ(ÂH(l)W (l)) (7.1)

where σ is the ReLU activation function, H(0) = X and H(L) = Z where L is the
number of layers.
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7.4.3 Grasp Evaluator

After the GCN, we are left with a node-level embedding Z. We use the embedding
corresponding to the grasp node zg to train the final grasp evaluator P (S|zg), where
S is the grasp score. This module has three fully connected layers with K units and
a final sigmoid layer. The entire model, including the grasp and object encoder, GCN
and grasp evaluator, is optimized with ADAM using a binary cross entropy loss.

7.4.4 Implementation Details

The point clouds were downsampled to 4096 points during training. They were
also mean centered and unit-scaled. The PointNet module consists of three set
abstraction layers and the number of points sampled are 512, 128 and all points. The
set abstraction layers are followed by three fully connected layers with sizes [1024,
512, D]. Each set abstraction layer has three fully connected layers to learn features.
The point clouds were perturbed with random rotations, jitter and dropout for data
augmentation and to build robustness when testing on novel objects in unknown
poses. We choose D=300 and K=128, and L=6 as the parameters for our GCN
network.

7.5 Experiments

7.5.1 Zero-Shot Generalization

A central goal of both our dataset and our method is to show that we can learn
task-oriented grasping models which generalize to novel objects, classes and tasks.
In an ideal robotics system, we should be able to correctly grasp a novel object
from a novel object class, or even grasp for a novel task. To test this, we measure
our system and baselines in three different held-out test settings: held-out object
instances, held-out object categories, and held-out tasks.

These held-out settings are of increasing difficulty in terms of zero-shot general-
ization. For each setting, we perform k-fold cross validation (k=4), such that each
category (a task, object class, or object instance, based on the setting) will be held
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out exactly once. In each fold, grasps from 25% of the categories will be used for
testing while remaining grasps will be used for training and validation.

In all experiments, we only evaluate tasks that are valid for a given input object
class. This makes sense from an evaluation perspective as it separates the problem of
predicting applicable tasks for objects from task-driven grasping. It also makes the
comparison to methods using object-task information fair since the models do not
have to decide whether the object-task pair is valid.

Evaluation Metrics

Since k-fold cross validation in any held-out setting will evaluate all grasps in the
dataset, we can compute Average Precision (AP) scores for any category, i.e., any
object instance, object class, or task. We then compute an mAP averaged over object
instances, mAP averaged over object classes, and mAP over tasks. We show all three
metrics for each of our three settings in Tables 7.2a,7.2b,7.2c, but emphasize the
mAP metric that corresponds to what category is being held out.

Baselines

We compare our approach to the following models:

1. Random, which represents grasping strategies that focus on grasp stability and
ignore task constraints. Results are averaged over five random seeds.

2. Semantic Grasp Network (SGN), which learns to reason about context of grasps
(e.g., constraints imposed by objects and tasks) from data. This model is
adapted from [202], with the difference that the input to the model is replaced
with geometric embedding from our shape encoder and word embeddings of the
task and the object class. Note that embeddings of tasks and object classes are
both learned from training data.

3. SGN + word embedding, which uses ConceptNet [321] numberbatch as pretrained
word embeddings for object classes and tasks.
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Table 7.2: Results on TaskGrasp

(a) Object Instance Generalization

Model Test Performance (mAP)

Instances Classes Tasks
Random 59.75 60.28 54.76

SGN [202] 78.51 75.08 68.80
SGN + word embedding 79.74 77.91 74.36

GCNGrasp (ours) 80.25 77.94 73.71

(b) Object Class Generalization

Model Test Performance (mAP)

Instances Classes Tasks
Random 59.32 58.73 52.27

SGN [202] 74.20 72.95 62.55
SGN + word embedding 77.21 75.51 63.73

GCNGrasp (ours) 78.81 76.57 57.36

(c) Task Generalization

Model Test Performance (mAP)

Instances Classes Tasks
Random 59.06 58.24 52.37

SGN [202] 75.17 71.59 63.35
SGN + word embedding 78.06 74.49 70.55

GCNGrasp (ours) 81.50 79.56 76.01

7.5.2 Analysis

First, to get context for our results in Table 7.2, we see that random grasp prediction
achieves approximately 50-60% mean average precision, establishing a floor for the
other methods. Because the number of positive and negative grasps in the dataset is
about even, random guessing is able to achieve a seemingly high mAP. In a dataset
with more negatives we would expect this number to be much lower.

Our method outperforms baselines in all three settings. This confirms that our
method can effectively leverage the knowledge graph to generalize to novel object
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Table 7.3: Ablation on Semantic Knowledge

Model Graph Held-out Setting

Nodes Edges Task Class Instance
GCN + tasks + WordNet 345 989 76.01 76.57 80.25

GCN + tasks 131 693 77.54 75.86 81.46
GCN + WordNet 155 106 71.77 70.00 78.66

instances, object classes, and tasks. SGN + word embedding also outperforms SGN,
suggesting that implicit distributional knowledge provides a prior that is useful for
generalization. Despite the benefit of distributional knowledge, it still only represents
semantic similarities between concepts. In contrast, the knowledge graph directly
stores relations between the relevant objects and tasks, and exploiting this additional
structured knowledge allows our model to achieve better zero-shot generalization
than SGN + word embedding.

When comparing our method with SGN and SGN + word embedding, we observe
increasingly larger margins in performance from the held-out instance to the held-
out class setting. As objects from different classes have more variance in terms of
geometric and visual features than objects from the same class, semantic knowledge
becomes more important in unifying these objects. The difference in performance
between our method and these two baselines on the held-out task setting reached
12.6% and 5.46% respectively, affirming that semantic knowledge is especially crucial
for generalizing disparate constraints from different tasks.

Ablations on Knowledge Graph

We investigated how performance is affected by changing the knowledge graph used in
our model. Specifically, we compared the default knowledge graph with a knowledge
graph containing only the semantic hierarchy of objects and a knowledge graph
containing only the relations between object classes and tasks. The results from
the three held-out settings are summarized in Table 7.3 (we only show the mAP
metrics corresponding to the held-out category). From these results, we observe
that edges between object classes and tasks were the most important knowledge for
generalizing to novel tasks and instances, though every task we tested was valid for the
target object class. This suggests that knowledge about which objects could generally
be used for which tasks provide important information for discovering similarities
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Figure 7.4: Robot executions of example task-oriented grasps on unknown objects.
For each execution, the top 3D visualization shows the grasp that was executed (which
had the best evaluator score) and the bottom shows all the stable grasp candidates
colored by their scores (green is higher).

between tasks. In the held-out object class setting, additional knowledge from the
object hierarchy helped generalize to novel object classes by associating known classes
and novel classes through the WordNet hierarchy.

7.5.3 Real Robot Evaluation

We run experiments to show that our approach and dataset transfer to a real robot.
We test our approach on novel objects not from the dataset and in unknown poses.
We place each object (without clutter) on a table in front of the robot. After table
plane segmentation to obtain the object point cloud, 600 stable grasps are sampled
and 50 candidates are selected using farthest point sampling for evaluation. We
evaluate the grasps on our best performing GCNGrasp model from the held-out task
ablations (Table 7.2). Our hardware setup comprises of a 7-DOF Sawyer Robot with
a 2-fingered Robotiq gripper and a Intel RealSense D415 RGB-D camera mounted on
the gripper wrist. Inference for the 50 grasps takes around 3 seconds on a desktop
with an NVIDIA GTX 1080 Ti GPU and the grasp with the best score is executed on
the robot. Fig 7.4 shows the executed task-oriented grasps on unknown objects. Even
though our dataset objects were collected only in one canonical pose, our approach is
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able to generalize to new grasps and in unknown poses due to data augmentation
during training. Based on the grasp evaluator scores from Fig 7.4, our model is also
able to interpolate between modes in the continuous SE(3) space to reason about
task-oriented grasping.

7.6 Conclusion

We present the TaskGrasp dataset to study generalization in Task-Oriented grasping.
The dataset is diverse and an order of magnitude larger than previous datasets.
We also present a framework for jointly learning from geometric observations and
semantic knowledge to generalize to new object instances, classes and even new tasks.

In the next and final contribution chapter, we reverse the usual direction in these
contributions: knowledge to end task. In the final contribution, we show how action
policies can be used themselves to generate knowledge.
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Chapter 8

Learning Knowledge from Actions

8.1 Introduction

We end our thesis contributions in this chapter with our investigation on learning
knowledge from action in an embodied environment. In this chapter, we investigate
how agents can learn to verify hypothesis/knowledge by learning a specific action
policy that allows the agent to learn about its world.

Empirical research on early learning [123, 180] has shown that infants build
an understanding of the world around by constantly formulating hypotheses about
how some physical aspect of the world might work and then proving or disproving
them through deliberate play. Through this process the child builds up an abstract
consistent causal understanding (i.e. knowledge) of the world. This contrasts with the
manner in which current ML systems operate. Both traditional i.i.d and interactive
learning settings use a single user-specified objective function that codifies a high-
level task, and the optimization routine finds the set of parameters (weights) which
maximizes performance on the task. The learned representation (knowledge of how
the world works) is embedded in the weights of the model, which makes it harder
to inspect, hypothesize or even enforce domain constraints that might exist. On
the other hand, hypothesis generation and testing is a process explored in classical
approaches to AI [40]. In this work we take a modest step towards combining the
reasoning mechanisms of the classical approach with modern statistical ML, with the
goal of building an agent capable of testing hypotheses about its world.
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[pickup]

[craft]

Hypothesis: “when you are at craftingtable and you have stick and then you craft then torch is made”

[answer: true]

Figure 8.1: Example of a “Crafting” world. The agent must verify a given hypothesis
(provided as a text string) about the causal relationships in the world. Acting
according a learned policy, the agent manipulates the initial state to one that allows
a predictor (also learned) to reliably determine if the hypothesis is true or not.
The learning of policy and predictor is aided by a pretraining phase, during which
an intermediate reward signal is provided by utilizing hypotheses that factor into
{pre-condition state, action sequence, post-condition state}.

The problem we address is illustrated in Figure 8.1. Agents are placed in an
world which has several interactive elements. They are provided with a hypothesis
(an “action sentence” [265]) about the underlying mechanics of the world via a text
string 1 (e.g. “A will be true if we do B”). The task is to determine if the hypothesis
is true or not.

This problem cannot be solved without interaction with a dynamic world (com-
paring the state before and after taking action B).

A key novelty in our work is formulating the task in a manner that permits the
application of modern RL methods, allowing raw state observations to be used rather
than abstract Boolean expressions of events. To do this, we use a model composed of
two different deep parametric functions which are learned through interaction: (i) an
action policy that generates observations relevant to verification of the hypothesis
and (ii) a prediction function which uses the observations to predict whether the
hypothesis is true or false.

We first show that even in simple environments, agents trained end-to-end using

1We note that while the core idea of using RL for hypothesis verification is incognizant of how
we specify and represent hypothesis – in this work, we use natural language as a medium since it
gives flexibility over using logical relations, and is consistent with our learning-based approach.
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deep reinforcement learning methods cannot learn policies that can generate observa-
tions to verify the hypothesis. To remedy this, we exploit the underlying structure
of hypotheses – they can often be formulated as a triplet of a pre-condition (P), an
action sequence (collectively B), and a post-condition (A) that is causally related
to the pre-condition and actions. Using this common structure, we are able to seed
our action policy to learn behaviors which alter the truth of the pre-condition and
post-condition. This allows agents to learn policies that can generate meaningful
observations for training the prediction function. We further show that these policies
can be adapted to learn to verify more general hypotheses that do not necessarily fit
into the triplet structure.

8.2 Related Work

Knowledge representation and reasoning (KRR) [40] is a central theme of
traditional AI2. Commonsense reasoning [82, 83, 200] approaches, e.g. CYC [190],
codify everyday knowledge into a schema that permits inference and question an-
swering. However, the underlying operations are logic-based and occur purely within
the structured representation, having no mechanism for interaction with an external
world. Expert systems [122] instead focus on narrow domains of knowledge, but are
similarly self-contained. Logic-based planning methods [73, 109] generate abstract
plans that could be regarded as action sequences for an agent. By contrast, our
approach is statistical in nature, relying on reinforcement learning (RL) to guide the
agent.

Our approach builds on the recent interest [119, 221] in neural-symbolic approaches
that combine neural networks with symbolic representations. In particular, some
recent works [209, 395] have attempted to combine RL with KRR, for tasks such as
navigation and dialogue. These take the world dynamics learned by RL and make
them usable in declarative form within the knowledge base, which is then used to
improve the underlying RL policy. In contrast, in our approach, the role of RL is
to verify a formal statement about the world. Our work also shares some similarity
with [177], where ML methods are used to learn mappings from world states to

2See Chapter 2.2 for a more background
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representations a planner can use.
Causality and RL: There are now extensive and sophisticated formalizations

of (statistical) causality [265]. These provide a framework for an agent to draw
conclusions about its world, and verify hypothesis as in this work. This is the
approach taken in [81], where RL is used to train an agent that operates directly on
a causal Bayesian network (CBN) in order to predict the results of interventions on
the values on its nodes.

In contrast, the approach in this work is to sidestep this formalization entirely,
with the hope of training agents who test hypotheses without building explicit CBNs.
Unlike [81], our agents intervene on the actual world (where interventions make take
many actions), rather than the abstract CBN. Nevertheless, we find that it is necessary
to add inductive bias to the training of the agent; here we use the pretraining on
(P , B, A) triplets. These approaches are complementary- one could combine explicit
generation and analysis of CBNs as an abstract representation of an environment
with our training protocols.

Our work is thus most similar to [87], which uses reinforcement learning directly
on the world, and the agent gets reward for answering questions that require exper-
imentation. However, in that work (and in [81]) , the “question” in each world is
the same; and thus while learning to interact led to higher answer accuracy, random
experimental policies could still find correct answers. On the other hand, in this work,
the space of questions possible for any given world is combinatorial, and random
experimentation (and indeed vanilla reinforcement learning) is insufficient to answer
questions.

Cognitive Development: Empirical research on early learning [123, 180] has
shown that infants build an understanding of the world around them in ways that
parallel the scientific process: constantly formulating hypotheses about how some
physical aspect of the world might work and then proving or disproving them through
deliberate play. Through this process the child builds up an abstract consistent causal
understanding of the world. Violations of this understanding elicit surprise that can
be measured by researchers [322].

Automated Knowledge Base completion: This work is also related to knowl-
edge base completion [33, 104]3, especially as formulated in [288]. Instead of using

3See Chapter 2.6
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other facts in the knowledge base or a text corpus to predict edges in the KB, here
the agent needs to act in a world and observe the results of those actions. This recalls
[238], where the system verifies facts it has previously hypothesized by searching for
corroboration in the corpus.

Automation of the scientific process has been tried in several domains.
Robotic exploration of chemical reactivity was demonstrated [127] using ML tech-
niques. [167] developed a robot scientist that explored genomics hypotheses about
yeast and experimentally tested them using laboratory automation. In biochemistry
[345] used Bayesian methods for optimal experiment design. More generally, the Au-
tomated Statistician project [324] uses a Bayesian approach to reason about different
hypotheses for explaining the data, with the aim of creating interpretable knowledge.

Embodied Question and Answering: The problem studied in this work is
closely related to the embodied visual question answering problem in [80]. Indeed,
our basic formulation is a particular case of the most general formulation of embodied
QA, as the agent is rewarded for successfully answering questions about the world
that require interaction. However, the form of the questions is different than those
considered in that work, as they may require drawing a conclusion about the dynamics
of the world, rather than a static property. Even the questions about static properties
we are interested in have a different flavor, as they encode rules, rather than statements
about the current configuration. Our approach is built around hypothesis-conclusion
structure special to these questions.

There is also a large body of work on (non-embodied) visual QA [158, 364]
and text-based QA [282]. From this, most relevant to our work is [365] who use a
structured knowledge base to augment standard statistical QA techniques.

Language grounding: Our approach requires us to solve the language grounding
problem, albeit in a simplified form due to templated language/limited vocabulary.
Most other works such as [11, 59, 336] are focused on instruction following in known
or unknown environments.

8.3 The Hypothesis Verification Problem

In this section we introduce the hypothesis verification problem, first informally then
formally in 8.3.1.
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An agent is spawned in a world sampled from a distribution over possible worlds.
In the case of “Crafting”, shown in Figure 8.1, there are various items lying around
that the agent can pick up and combine using a “craft” action. The exact dynamics
are changed for every newly instantiated world, so in one world, taking a craft action
with a stick might produce a torch, and in another, it might produce a pickaxe. At
the start of each episode, the agent is given a hypothesis about the world, such as
the one shown at the top of Figure 8.1. The agent gets a reward when it correctly
answers if that hypothesis is true or false. Because the dynamics and rules change
each episode, the agent must learn to interact with the world in order to decide if the
hypothesis is true or not. In Figure 8.1, the agent picks up the stick and does a craft
action to see that a torch is created. It then has enough information to determine
that the hypothesis is indeed true, and the agent receives the reward for verifying the
hypothesis correctly.

8.3.1 Formal Definition

Here we formally introduce the problem of hypothesis verification as a Partially
Observable Markov Decision Process (POMDP).

We first define a world as a set of states and actions with Markovian dynamics; that
is, an MDP without a notion of reward. We define an environment E as a distribution
over a set of worlds W and hypotheses H. A world W ∈ W is specified by rules L
which describe the dynamics of the world; and data C which specifies other elements
of the configuration of the world. So for example, in the crafting environment, L
might consist of the crafting rules, and C might be an initial placement of the agent
and objects. Thus each world in the environment can be written W = {C,L}. A
hypothesis is a function from W to {true, false}; in this work they will be generated
via templated language and depend on L. For each environment, all worlds will
have the same action space A (e.g. {up, down, left, right, pickup, craft, true, false} for
Crafting), although they may not have the same sets of states. The special actions
true, and false will be described in the next paragraph. Figure 8.1 shows a particular
Crafting world W and hypothesis h.

Now E is an episodic POMDP where each episode consists of sampling a W and
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h. The episode ends when the agent executes either the true or false action4. Given a
world W and hypothesis h, an agent gets reward

RHyp =


+1 a = h(W )
−1 a = ¬h(W )
0 otherwise

8.4 Methodology

8.4.1 RL baseline

Given the formulation as a POMDP, we could try to solve it with an RL agent that
has a = π(S, h), where St = {st, st−1, . . . st−K}, s is an observation of the current
world, K is a history window size, and h is the hypothesis for the current world.
Because we have access to the ground truth for whether the hypothesis is true at
the end of the episode through the reward, we can train a network with supervised
learning to predict true and false. We define our prediction network f(S, h) which
takes in the last K observed observations of the environment and the hypothesis and
predicts whether or not the hypothesis is true.

Despite its simplicity, we find that training such an agent from the environment
reward to be challenging. In order determine whether a hypothesis is true or not, we
need to take the correct sequence of actions related to the hypothesis. But in order
to know that a particular sequence of actions was the right one, we need to be able to
correctly predict the hypothesis. Guessing with no information gives a zero average
reward, and until it learns good predictor, there is no signal to guide the policy. In
practice, as shown in Figure 8.5, an RL baseline is not able to solve the task, since it
can neither learn the right policy nor the right predictor to verify the hypothesis.

8.4.2 Pretraining using Triplet Hypotheses

In light of the difficulties directly training an RL model using terminal reward alone,
we take advantage of the fact that many causal statements about the world have the

4To avoid confusion, when we refer to the action of the agent deciding if the hypothesis is true or
false, we will refer to those in bold as true or false.
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form:
(pre-condition, action sequence) =⇒ post-condition

This structure can be converted into a reward function that can be used to pretrain
the agent policy π. The idea is to reward the agent for taking actions which alter the
truth of the pre-condition and post-condition (i.e. changing the world state so that
pre/post-conditions are met or not). If it matches the pre-condition state and takes
the action, if the statement is true, the post-condition should toggle from false to
true in the world. Similarly, if post-condition changes but the pre-condition did not
change, the statement must be false. This can be formalized in the following reward
function to encourage the agent to toggle pre-condition and post-condition states:

Rpre =


+C a = stop &

pre-condition changed in last K steps
0 otherwise

Rpre+post =


+C a = stop & post+pre-condition

changed in last K steps
0 otherwise

This encourages the policy π to change the pre-condition and post-conditions
(via pre-condition) in the last K steps, so that a predictor looking at the last K
observations will be able to deduce the truth value of the hypothesis. More generally,
training with this reward function forces the policy network to ground text concepts
(e.g. the text “stick” means [object stick]) and also capture the causal rules within the
world. Consequently, following pretraining, the policy network can then be fine-tuned
using the original reward function RHyp. Furthermore, since the policy network is
no longer random, a robust prediction network f can also be learned. While not all
hypotheses fit into the triplet format, we show in the experiments that the knowledge
captured by the policy and prediction networks during this phase of training can
generalize to less structured forms of hypotheses. We have a set of hypotheses for
each world that contains only these triplet-structured hypotheses. We use this set for
our pretraining.
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8.4.3 Training using Triplet Hypothesis

After pretraining the policy π, we then further train π, as well as the prediction
network f using the same set of triplet hypotheses, but now using RHyp instead of
Rpre or Rpre+post. Two variants are explored: (i) “fixed” – keep π fixed but train
the prediction network f and (ii) “finetune” – finetune π and train f . Performance
in this phase is used to select promising models for subsequent stages of training.
Specifically, runs achieving less than 90% accuracy are eliminated.

8.4.4 Adaptation to Non-triplet Hypotheses

Next, we want to show that we can adapt our networks to hypotheses other than those
that fall neatly into the triplet structure. To adapt to the larger set of hypotheses,
we start with the networks from Section 8.4.3. During this training stage, the triplet-
form constraint is relaxed and training proceeds with both triplet and non-triplet
hypotheses (see Section 8.5.2), using an even split between the two types.

8.4.5 Network Architecture

Although other works such as [59] have investigated language-conditioned RL (usually
in the form of instruction following), our hypothesis conditioned problem proved to
be challenging, and required some novelty in network architectures. Figure 8.2 shows
our network diagrams.

For the policy network, it was important to use key-value attention. That is:
the hypothesis is fed into a seq2vec model and is used as the key of a dot-product
attention mechanism. The state (the grid locations of the items in the world and the
inventory of the agent if applicable) is fed as input to N parallel MLPs. The output
of the MLPs are then fed as the values of the attention mechanism. The output of
the module is then fed into the final hidden layer of the actor-critic network.

For the prediction network, we use the popular transformer architecture [347].
Our prediction network encodes both the hypothesis and past observations (after
they are passed through a one layer network) using transformer encoders. These
sequences are then combined using a transformer to generate a final hidden state as
output which is then fed to a final prediction layer and sigmoid function to get our
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Figure 8.2: Network architecture for our policy network (left) and prediction network
(right)

binary prediction.

8.5 Evaluation Environments

In this section we describe the environments we use to evaluate the approach from
Section 8.4. The environments E are designed so that (a) the prior probability
p(h = true) = 0.5 and (b) the initial state s0 does not contain information about h.

8.5.1 Environments

We created four different environments for hypothesis verification. ColorSwitch,
Pushblock and Crafting are all gridworld-based environments. A fourth enviornment
is created by adapting the standard Cartpole task to include interactive elements.
See Figure 8.3.
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ColorSwitch

The agent is placed in a world with one or more color switches which are randomly
either “on” or “off” and a door which is either open or closed. The agent is able
to move and toggle the switch positions. One of the switches in the world, when
in the correct position (can be either on or off) will cause the door to open. The
other switches have no effect. Hypotheses in this environment relate to the color and
position of switches and how that opens or closes the door.

Pushblock

The agent is placed in a world with a block which can be pushed by the agent, and a
door. The agent can move and push on the block. The door opens when the block is
in a particular part of the grid: “up” – top two rows, “down” – bottom two rows, “left”
– leftmost two rows, “right” – rightmost two rows. The hypotheses in this environment
related to the position of the pushblock and how that affects the door.

Crafting

The agent is placed in a world with crafting rules similar to that of the popular
Minecraft game. The agent is spawned along with a number of crafting items, and a
crafting location. The agent is able to move, pick up items into its inventory and use
the crafting location using special crafting actions. There is some true “recipe” which
produces some new item in the agent’s inventory.

Cartpole

This is the standard classic control cartpole problem where a pole is attached by an
un-actuated joint to a cart. The regular actions are “left” and “right” and if the
pole falls, the episode ends. In our modification, there are “zones” (an interval on
the x axis) where the physical laws of the cartpole change by either changing the
gravity constant, or applying a “wind force” blowing the cart in one direction. Like in
ColorSwitch, the zones are specified by color. Typically one color zone has an effect
and the other is a decoy zone that has no effect. The hypotheses related to which
color zones correspond to what changes to the physics.
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Figure 8.3: Examples of the four environments used in our experiements: Color
Switch, Pushblock, Crafting and Cartpole.

In the grid world environments, items are randomly generated in a 5 by 5 grid.
The world observation is given by a 1-hot vector for each grid location and inventory.
The hypothesis is encoded as sequence of tokens. In Cartpole the state is the standard
dynamics as well as a 1-hot vector specifying the location and color of the zones.

8.5.2 Hypothesis Construction

We now describe how the hypotheses for each world in each environment are auto-
matically generated via templates. Three different varieties are considered:

1. Triplet Hypotheses

2. General Templates

3. Special Case Templates5

Triplet hypotheses

Here the hypotheses takes the form of an explicit logical statement: (pre-condition,
action sequence) =⇒ post-condition. When the pre-condition is true, and the
action sequence is performed, the post-condition will become true. To generate triplet
hypotheses, we:

1. Randomly select a pre-condition template from a set list
5See appendix of the original paper [225] for all of the possible templates for an environment and

further details.
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Figure 8.4: Pretraining reward (Rpre +Rpre+post) on our four environments.
.

2. Randomly select an action template

3. Randomly select a post-condition template

4. Fill in any entities in the final template

In our example from Figure 8.1 this would be (“when you are at crafting table and
you have stick”; “and then you craft”; “then torch is made”).

General templates

Instead of drawing a template from the triplet form, a single template for the hypoth-
esis is drawn and the values populated. For instance, in Pushblock, a template might
be “the door can only be opened when the pushblock is PUSHBLOCK POSITION”
and then “left” would be drawn for PUSHBLOCK POSITION. These templates are
more general than the triplet ones in that they have no explicit (pre-condition, action
sequence and post-condition) structure.

Special cases

We also use more difficult and general hypothesis templates. These cannot be neatly
fit into a triplet format by rewording, and may not fully describe the rules of the
world. Some examples of these harder templates are: negating effects (e.g. “door
is not open”), negating conditions (e.g. “switch is not on”) and independence (e.g.
“door independent of blue switch”).
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Figure 8.5: Hypothesis prediction accuracy on both triplet and non-triplet hypotheses
for the Color Switch, Pushblock, Crafting and Cartpole environments, using RHyp
reward for training.

8.6 Experiments

Figure 8.4 shows results from learning with pretraining rewards Rpre+post and Rpost.
There is relatively little variance, with all runs achieving near the theoretical maximal
rewards. Note that for Pushblock, sometimes the block can be stuck against a wall,
so not all worlds are solvable. For Crafting and Cartpole, Rpre+post is not always
achievable if true and distractor items are far away from each other. For the three
gridworld environments we show results and variance runs on 25 random seeds. For
Cartpole, we show results on 5 random seeds.

In Figure 8.5, we show the results on non-triplet adaptation (Section 8.4.4). As
discussed in Section 8.5.2, this stage includes the more difficult, non-triplet templates
not seen during pretraining or during triplet hypothesis training. We also break down
the final hypothesis prediction accuracy for our methods in Table 8.1. This allows us
to see whether our methods were able to adapt to non-triplet hypotheses.

RL Baseline

Figure 8.5 shows the RL baseline at chance-level performance, the only exception
being Cartpole were it achieves ∼ 60%, versus the ∼ 90% of our approaches. This
poor performance is not surprising given the difficulty of training both policy and
predictor from scratch.

Other Baselines

We also include two other simple baselines “no act” and “random act.” The “no act”
baseline simply takes the stop action at t = 0, forcing the prediction network to give
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Table 8.1: Average Hypothesis Prediction scores, broken down by triplet (pretrained)
and non-triplet (not seen in pretraining)

Method Overall Triplet Acc. Non-triplet Acc.

Color Switch Fixed Policy 86.6% 91.1% 82.1%
Finetuned Policy 77.5% 79.7% 75.4%

Pushblock Fixed Policy 86.9% 87.9% 85.9%
Finetuned Policy 85.6% 86.3% 84.8%

Crafting Fixed Policy 77.3% 92.8% 61.8%
Finetuned Policy 90.7% 98.4% 83.0%

Cartpole Fixed Policy 84.2% 92.0% 76.3%
Finetuned Policy 92.5% 93.4% 91.6%

an answer from just the first observation. This fails because the agent needs to take
actions in the world to be able to predict the hypothesis accurately. For “random
act”, a random policy is used (i.e. uniform distribution across actions). This similarly
fails as random actions are extremely unlikely to yield observations that allow for the
verification of the hypothesis. This also confirms that we do not accidentally leak the
true value of h into the initial state of the world.

Discussion

From these results, we can clearly see that naive RL and other baselines cannot
efficiently solve hypothesis verification tasks. When we use our pretraining method,
we use the insight that hypotheses often have a clear causal structure that can be
exploited when they are formed as “triplet hypotheses.” Not all hypotheses fall neatly
into this form, and we may not have this form for all hypotheses. But if we have
some that fit this form, we can gain a foothold that lets us make progress on this
problem, and then later adapt them to other hypotheses. From Figure 8.5 we can
see that this pretraining, triplet training and adaptation works. We also show in
Section 8.6.1 that our choice of pretraining task was not arbitrary; other plausible
pretraining rewards fail to achieve the same results as our method.

Looking at the different environments, we see that in Pushblock and Color Switch,
even with the policy learned from the triplet pre/post reward, the agent is able to
generalize and perform well on hypotheses not seen in the pretraining phase as we
can see in Table 8.1.
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Figure 8.6: Final hypothesis accuracies using alternate forms of intrinsic pretraining
versus our pretraining (purple). “End” = reward only received at end of episode.
“Dense” = reward received immediately after changing item state.

In Crafting and Cartpole on the other hand, to do well on the unseen templates,
the policy also needs to be fine-tuned. This tells us that when we do have to generalize
to hypotheses we have not seen before, and even ones that differ greatly from our
triplet hypotheses, adapting the policy as well as the prediction network is necessary.
Recall that in our evaluation environments, we test very different hypotheses such as
as negations and “independence” hypotheses not see in triplets. We see from Table 8.1
that indeed, our finetuned policies greatly outperformed the fixed policies on the
non-triplet templates.

8.6.1 Alternate Forms of Pretraining

As an ablation, we test four variants of an “intrinsic” proxy reward to see if other
pretraining schemes might perform equally well. We show results on the gridworld
domains using 4 different intrinstic forms of pretraining:

1. Change any item state in the world; receive reward at end of episode

2. Change any item referenced in the hypothesis; receive reward at end of episode

3. Change any item state in the world; receive reward instantaneously

4. Change any item6 referenced in the hypothesis; receive reward instantaneously.
In Figure 8.6 we show the accuracies on the final hypothesis verification task (from

Section 8.4.4) for both triplet and non-triplet hypotheses, using the four intrinsic
pretraining methods. We also plot the final average accuracy obtained by our adapted

6Here, “item” means any object that is not the agent (including crafting items, switches,
pushblocks, etc.).
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Figure 8.7: Results on training an RL using RHyp with oracle predictor on the Crafting
environment. Mean and variance on 25 random seeds are shown.

methods from Figure 8.5. For the intrinsic pretrained policies the best run (from 25
seeds) is shown to show the best-possible case of the alternative methods.

For Crafting the dense intrinsic pretraining works about as well as ours. This can
be explained by the fact that this particular form intrinsic pretraining directly rewards
the agent for doing many of the operations in the actual Crafting task, i.e. picking
up objects and crafting objects. However, averaging across the three environments,
all the intrinsic pretraining methods do worse than our approach, showing the merits
of our pretraining approach which exploits structure common to many hypotheses,
yield an effective and general form of pretraining.

8.6.2 Oracle Predictor Ablation

In this experiment, we provide an “oracle” hypothesis predictor on the Crafting
environment that, given the last K states of the world, will output the ground truth
of the hypothesis if it is inferable from those frames. We then explore if RL is now
able to learn directly using reward RHyp. First, we train a RL agent with access to the
oracle. The RL agent must learn its action policy, but when it takes the stop action,
the oracle is used to predict the hypothesis. Therefore, if the actions it has taken
yield observations that permit verification of the hypothesis, it will automatically
answer correctly and get the reward.
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Figure 8.8: (left) policy network ablation (right) prediction network ablation.

8.6.3 Network Ablation

Figure 8.7 shows the oracle-equipped agent quickly converging on perfect performance.
From this we surmise that if we know how to predict the hypothesis already, learning a
policy that makes the oracle prediction possible is relatively straightforward. Mindful
of the inability of the RL baseline (lacking an oracle) to converge to a good solution,
this shows the joint nature of the problem (i.e. learning both policy and predictor) is
what makes it challenging.

In Figure 8.8 we see the results of our network architecture ablation. As we can
see, our new policy architecture described in Section 8.4.5 clearly outperforms a
standard MLP policy network on the language-condition pretraining task. We also
see that the transformer architecture outperforms the LSTM and MLP model on the
final task when we hold the policy network constant.

8.7 Conclusion

In this work, we propose a tractable formulation of the problem of training agents that
can interact with a world to test hypotheses. We show that generic RL techniques
struggle with the problem, but by using the common structure of some hypotheses,
we are able to develop a method that works in simple environments. Specifically,
we use the fact that many hypotheses can be broken into triples of the form of
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(pre-condition, action sequence, post-condition). We also show that once pretrained
using this factorization, agents can be adapted to verify more general hypotheses.

With this contribution, we have begun completing the loop and discussed tech-
niques that use knowledge for downstream embodied tasks (vision, VQA, procedural
crafting, robotic grasping) and now how agents can learn knowledge from its sur-
roundings.

One major limitation of this work is the environment on which it was tested.
Although our environments were sufficient to allow us to formulate the problem for
RL and to identify early challenges in solving it, future work would need to move
beyond these simple environments. First, our approach in this paper achieves around
90% accuracy on these tasks already. But more importantly, the “richness” of these
environments limits what we can test. Here richness encompasses the never-ending
list of attributes, properties, laws and causal relationships that make up the world. It
includes things such as richness of perception (what exact shade of blue is this item,
what is the texture, is it soft or hard), physics (what happens to an object when
you drop it, can this object break), and more indirect causal relationships (when the
light is turned off how does that affect our ability to view objects at a distance). You
could not run a never-ending learning [238] system here because it would run out of
new things to discover.

So to truly have a never-ending agent which can learn things endlessly (or at least
for a very long time), we really need more rich environments. One way to do this
would be to either use a rich simulator [2, 175, 367] or set up a robot platform in a
setting with a variety of objects and tasks to perform. However, once we have added
this additional richness, we will still run into exactly the same problem we faced in
Section 8.4.1 that an initial random policy will not provide enough of a reward signal.
In fact, this problem is much worse because these more realistic environments will
actually be much more difficult than the ones presented in this chapter. In order to do
knowledge acquisition, we will also need to have agents have some prior prediction or
policy ability to properly do the exploration. And because this environment becomes
more realistic, our works on using knowledge for vision, language, and action will
become more relevant and useful. This gives us the opportunity to fully close the
loop: to learn knowledge about the world and then use that knowledge to perform
action, perception and language tasks.
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In our final conclusion to this thesis, we will discuss in detail how we might
begin to set up these more realistic environments, and how we might then be able to
combine knowledge-learning from this chapter with the use of knowledge in vision,
language and action as we did in previous chapters.
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Chapter 9

Conclusions

9.1 Summary of Contributions

Throughout this thesis, we have examined the role that knowledge plays in embodied
AI, in vision, language and action and introduced our contributions in these areas.
First we introduced our contribution to using knowledge for vision. We showed
that we were able to improve performance on multi-label image classification by
exploiting knowledge from our graph relating various visual categories that appear
in the dataset. In the next contributions we looked at using knowledge for vision
and language, first by introducing a benchmark dataset called Outside Knowledge
Visual Question Answering (OK-VQA) which provides a benchmark for works which
incorporate outside knowledge into a joint recognition and question answering problem.
We then and present KRISP to integrate knowledge graphs and large language models
models to cover the wide variety of knowledge needed to solve these knowledge-based
questions.

We then examined the action modality. We exploited the knowledge from language
and showed that by training our model to mimic the natural language instructions of
humans, we can learn long-trajectory crafting tasks and generalize to unseen tasks
in a zero-shot setting and to learn quickly from a few demonstrations. We then
demonstrated that by incorporating knowledge graphs, our GCNGrasp framework
can generalize to new object instances, classes and even new tasks for task oriented
grasping. Finally, we formulated “hypothesis verification” as a reinforcement learning
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problem that trains agents to ground proposed knowledge about their world.

9.2 Future Directions: Bringing it all Together

Before we conclude, we would like to sketch out where we think our ideas on knowledge
in embodied agents might take us. In this thesis, we have shown contributions where
we have used knowledge for a downstream task: image classification, VQA, RL,
robotic grasping and shown places where it helps us join modalities such as vision
and language, language and action, and action in vision. We have even shown how
we might use an agent’s action policy to learn knowledge from its environment. In
some sense, what we have done is show a number of case studies in these modalities.

But one thing that is so far missing is a universal system that joins all of these
things together. At the beginning of this thesis, we imagined a robot which had a
wide number of capabilities. It could speak to humans, do a wide variety of household
chores, it could make plans and it could use knowledge. We still believe this is the
right kind of goal to aim for as a community. We want to show that knowledge is not
only useful for the specific end tasks we have demonstrated, but that knowledge in
fact allows for a unified system to do all of these tasks. We showed that an agent can
learn knowledge from its environment, but to reach human capabilities of knowledge,
we want an agent that can both gather knowledge, combine it with prior knowledge
and then apply it again to its environment.

To do this, we really need to address two things. First, what is the right envi-
ronment or test-bed for the confluence of these ideas. Our end goal is somewhat
clear (a robot that can do anything), but in research, we must always find the next
stepping stone on the way to that goal. So what is both bringing in these modalities
and bringing in ideas of both creating and using knowledge, but is more achievable
in a shorter time frame. Second, what is the right task setup or evaluation setup?
What are the immediate goals to accomplish in this environment and how can we
know that we are successful. Again, what is the right balance between moving in the
direction we want and being achievable in a reasonable time-frame?
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9.2.1 Environments

At the end of Chapter 8, we discussed the limitations of our environments. Specifically
we talked about the lack of richness. In a rich environment, there are a near infinite
number of things that an agent can know or learn about. This includes a variety of
different objects in its environment, diversity in sensory observations (color, texture,
sound, feel, visibility), and diversity in causal relationships, rules and world physics
(gravity, wind, breakability, weight, affordance, movability). The more rich an
environment is, the more things an agent is able to do in it, the more knowledge
there is to learn and use and the more difficult the potential range of tasks is. In
order for us to test our knowledge agent and to give it sufficient things to learn, we
require a rich environment.

The first path we might conceivably go down is the simulator path. The idea
would be to make use of or create a simulated environment that has richness in enough
of the areas you care about to give agents enough opportunity to learn and perform
tasks. The choice of environment here is critical to the kinds of richness you would be
able to make use of. On one end you have environments which try to maximize visual
or physics-related realism of simulated robotics platforms such as the IKEA Furniture
Assembly Environment [188], SAPIEN [368], Flightmare [319] or RLBench [148]. On
the other end of the spectrum, you have environments which sacrifice in either visual
or physics realism or richness for more semantic or causal richness. For instance
MineRL [132] based on the Minecraft video game, AndroidEnv [343] where the
actions are the interactions with a simulated smartphone and observations are the
display, TextWorld [75], a collection of text-adventure games where actions and
observations are English words and sentences and NetHack [181] which is a simple
ASCII observation space overlaid on a text-adventure game setup. In between these
extremes you have environments such as the Interactive Intelligence Playroom [2],
Habitat 2.0 [332], AI2 THOR[175] and Interactive Gibson [367] which to different
degrees trade off visual realism, precise physics and action spaces and semantically
rich worlds.

This approach has many positives. It is very controllable, which would allow for
the precise creation of training and testing scenarios. Relative to true robotics setup,
it is far more convenient, cheap, and allows for greater reproducibility by others. Less
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positively, it does likely sacrifice richness in at least one dimension. Some such as
TextWorld have no physics or visual observations while physics-based environments
often have very limited spaces for semantic exploration. To try to deal with this, we
would want to have a strong notion of introducing “new richness” to the environment
or to possible knowledge continuously over time. For instance, you might create an
environment where every once in a while you could add a new object, or new types
of hypotheses to have new things for the agents to discover.

The other possible direction one could take would be to actually have the en-
vironment be a real environment such as a lab or home that a mobile robot could
explore and interact with. This does not completely solve the richness problem, since
the environment is still limited by the rooms and objects you have in that testing
space, but allows for all kinds of richness about the world that might otherwise be
difficult to program. One major hurdle with this approach, however, is that you
really need to have a strong enough initialization for the robot to really allow it to do
these explorations, not unlike how in Chapter 8 policy initialization was the major
challenge, even in simpler environments. To really allow robots that can explore and
test hypotheses, they need to already be able to have some abilities to act in the
world.

9.2.2 Every-task Learning

Whether the environment is a simulated one or a real robot platform, the next question
is what our agents would actually do and how we evaluate them. Our suggestion is
not only to set up agents for multi-task learning, but for every-task learning.

The first step is to set up an environment (either in simulation or in situ with
a robot) with a wide array of different objects and different tasks possible for the
agent to do. As an example, in Chapter 7 we designed a semantic grasping dataset
including 56 final tasks that the robot would have to perform with that object. In
that work, we only considered the initial grasp, but ideally we would want to have the
agent actually perform all of those tasks. What these “low-level tasks” are here would
depend on the environment we have chosen. The next level up to consider might be
what you might call “high-level tasks.” We make this distinction in Chapter 5 between
high-level and low-level. A low-level task might be to crack an egg while a high-level
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task would be “make an omelette.” To set up our task, we should specify, or have
annotators specify a large number of these high-level tasks that can be accomplished
in the environment for training and evaluating our agents. Ideally our environment
should be sufficiently rich that the space of possible tasks that can be accomplished
should be functionally infinite.

At the same time, because we want to also be learning knowledge about the world;
the world should also be set up such that rich knowledge about the world can be
learned or known prior to the task. This can take many forms, from the commonsense
knowledge from sources such as ConceceptNet [200] which we used in Chapter 5,
affordances and what things can be done with which objects such as in Chapter 7,
and even implicit knowledge about how a high-level task can be performed with
low-level actions such as in Chapter 6.

With our tasks and knowledge set, as we discussed earlier, at the beginning of
training, we provide our agent with the ability to perform a number of low-level skills,
and prior knowledge about the world. Now what does our agent do, and how is it
evaluated.?Our proposal is to set aside a large number of annotations for high-level
and low-level skills and knowledge the agent should learn. We use some of these
to train our agents and then use some for evaluation. The idea here is to build a
coherent multi-task agent. It works in both directions of knowledge, learning from
our set aside training tasks to both accomplish end tasks using its prior knowledge
and learning to verify new knowledge in the environment.

How do we get an agent that has a large variety of skills like cracking eggs or
picking things up and putting them down? One challenge is that besides the challenge
of actually doing those low-level policies, how do you organize them? Knowledge can
give you a way of figure out in the first place what were these skills that we actually
needed to learn. With semantic knowledge, we can give names to these sub-policies,
and by being able to name them, we also get knowledge from language (as we saw in
Chapter 6) and from explicitly structured knowledge. The knowledge helps to figure
out how you would explore a new object and where you would go. The knowledge
also helps (as we’ve seen in Chapter 7) by providing a way to learn generalization
between related tasks and object.

Obviously, this is just a sketch of the ways we and other researchers might go
about building a fully-integrated knowledge agent. Missing from this are several key
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details and research questions. This includes:

1. What neural architecture or what other kinds of models does our learning agent
use? How does it structure memory? How does it represent its observations?

2. How does our agent structure its knowledge? Do we use graphs, raw language,
or some other representation?

3. How do we train our agents? Do we take a pure reward approach or perhaps
use a mixture of supervised, unsupervised and reinforcement learning methods?

4. How do we collect a series of tasks and evaluations that both gives the agent
enough to show that it can learn, but also does not trivialize the problem?

These and other questions remain to be solved. But as we said from the start,
the first step in knowing which way to go is knowing where we want to get to.

9.3 Final Thoughts

In this thesis, we have shown ways knowledge can be used and learned in many
different modalities and argued that knowledge needs to seen as a key part of AI going
forward. We have done a number of case studies to show that background knowledge
can be helpful in vision, language and action and that agents can learn knowledge
about the world. We, and the many many others who work in this sub-field, have
started laying the pieces on the board. But the long-term, even if it is 10 years or 20
or even a lifetime away, needs to be agents that can do everything and know anything.
As the field moves forward, we hope that community moves towards understanding
knowledge as a fundamental part of cognition and that we continue to develop our
ideas and methods towards knowledge-capable AI. We hope that this thesis can be
even a small part of arriving at that goal.
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Bengio, and R Devon Hjelm. Deep graph infomax. In ICLR, 2019. 22

[350] Oriol Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural
image caption generator. In CVPR, pages 3156–3164, 2015. 36

[351] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence
to sequence for sets. In ICLR, 2016. 23

[352] S. V. N. Vishwanathan, Nicol N. Schraudolph, Risi Kondor, and Karsten M.
Borgwardt. Graph kernels. JMLR, 2010. 23

[353] Chenguang Wang, Xiao Liu, and Dawn Song. Language models are open
knowledge graphs. arXiv preprint arXiv:2010.11967, 2020. 31

[354] David Wang, David Tseng, Pusong Li, Yiding Jiang, Menglong Guo, Michael
Danielczuk, Jeffrey Mahler, Jeffrey Ichnowski, and Ken Goldberg. Adversarial
grasp objects. In Conference on Automation Science and Engineering. IEEE,
2019. 123

[355] Haoyu Wang, Ming Tan, Mo Yu, Shiyu Chang, Dakuo Wang, Kun Xu, Xiaoxiao
Guo, and Saloni Potdar. Extracting multiple-relations in one-pass with pre-
trained transformers. In ACL, 2019. 4, 31

[356] Peng Wang, Qi Wu, Chunhua Shen, Anthony R. Dick, and Anton van den

191



Bibliography

Hengel. Explicit knowledge-based reasoning for visual question answering. In
IJCAI, 2017. 37, 38, 63, 65, 70, 71, 84

[357] Peng Wang, Qi Wu, Chunhua Shen, Anton van den Hengel, and Anthony R.
Dick. FVQA: fact-based visual question answering. TPAMI, 2017. 37, 38, 63,
65, 66, 70, 71, 75, 82, 84

[358] Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei
Zhang, Shiyu Chang, Gerald Tesauro, Bowen Zhou, and Jing Jiang. R3:
Reinforced reader-ranker for open-domain question answering. arXiv preprint
arXiv:1709.00023, 2017. 34, 84

[359] Sida I Wang, Percy Liang, and Christopher D Manning. Learning language
games through interaction. In ACL, 2016. 41

[360] Xiaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot recognition via
semantic embeddings and knowledge graphs. In CVPR, 2018. 36

[361] Zhigang Wang, Juanzi Li, Zhiyuan Liu, and Jie Tang. Text-enhanced represen-
tation learning for knowledge graph. In IJCAI, pages 4–17, 2016. 34

[362] Edward C Williams, Nakul Gopalan, Mine Rhee, and Stefanie Tellex. Learning
to parse natural language to grounded reward functions with weak supervision.
In ICRA, pages 1–7. IEEE, 2018. 40, 104

[363] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. Simplifying graph convolutional networks. In ICML, pages 6861–
6871. PMLR, 2019. 22

[364] Qi Wu, Damien Teney, Peng Wang, Chunhua Shen, Anthony R. Dick, and
Anton van den Hengel. Visual question answering: A survey of methods and
datasets. arXiv preprint arXiv: 1607.05910, 2016. 143

[365] Qi Wu, Peng Wang, Chunhua Shen, Anthony R. Dick, and Anton van den
Hengel. Ask me anything: Free-form visual question answering based on
knowledge from external sources. In CVPR, 2016. 65, 82, 84, 143

[366] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144, 2016. 86

[367] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg, Micael Edmond
Tchapmi, Alexander Toshev, Roberto Mart́ın-Mart́ın, and Silvio Savarese.
Interactive gibson benchmark: A benchmark for interactive navigation in
cluttered environments. IEEE Robotics and Automation Letters, 5(2):713–720,
2020. 157, 161

[368] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu,

192



Bibliography

Minghua Liu, H. Jiang, Yifu Yuan, H. Wang, Li Yi, A. Chang, L. Guibas, and
Hao Su. Sapien: A simulated part-based interactive environment. In CVPR,
pages 11094–11104, 2020. 161

[369] Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks
for an accurate and interpretable prediction of material properties. Physical
review letters, 120(14):145301, 2018. 22

[370] Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic memory net-
works for visual and textual question answering. In ICML, 2016. 65

[371] Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang.
Improving question answering over incomplete kbs with knowledge-aware reader.
In ACL, 2019. 34

[372] Wenhan Xiong, Jingfei Du, William Yang Wang, and Veselin Stoyanov. Pre-
trained encyclopedia: Weakly supervised knowledge-pretrained language model.
In ICLR, 2020. 31

[373] Huijuan Xu and Kate Saenko. Ask, attend and answer: Exploring question-
guided spatial attention for visual question answering. In ECCV, 2016. 65

[374] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs with
jumping knowledge networks. In ICML, pages 5453–5462. PMLR, 2018. 22

[375] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful
are graph neural networks? In ICLR, 2019. 22

[376] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embed-
ding entities and relations for learning and inference in knowledge bases. In
ICLR, 2015. 34

[377] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and Roozbeh Mottaghi.
Visual semantic navigation using scene priors. In ICLR, 2018. 42, 126

[378] Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li,
and Jimmy Lin. End-to-end open-domain question answering with BERTserini.
NAACL, page 72, 2019. 34, 84

[379] Yi Yang, Wen-tau Yih, and Christopher Meek. WikiQA: A challenge dataset
for open-domain question answering. In EMNLP, pages 2013–2018, 2015. 34,
84

[380] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-
supervised learning with graph embeddings. In ICML, pages 40–48. PMLR,
2016. 22

[381] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alexander J. Smola.
Stacked attention networks for image question answering. In CVPR, 2016. 65

193



Bibliography

[382] Xuchen Yao and Benjamin Van Durme. Information extraction over structured
data: Question answering with Freebase. In ACL, 2014. 34, 66, 84

[383] Alexander Yates, Michele Banko, Matthew Broadhead, Michael J Cafarella,
Oren Etzioni, and Stephen Soderland. Textrunner: open information extraction
on the web. In NAACL-HLT, pages 25–26, 2007. 30

[384] Mark Yatskar, Vicente Ordonez, and Ali Farhadi. Stating the obvious: Extract-
ing visual common sense knowledge. In NAACL-HLT, pages 193–198, 2016.
30

[385] Keren Ye and Adriana Kovashka. ADVISE: Symbolism and external knowledge
for decoding advertisements. In ECCV, 2018. 39

[386] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and
Josh Tenenbaum. Neural-symbolic VQA: Disentangling reasoning from vision
and language understanding. In NeurIPS, pages 1031–1042, 2018. 83

[387] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic
parsing via staged query graph generation: Question answering with knowledge
base. In ACL-IJCNLP, 2015. 34, 66

[388] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton,
and Jure Leskovec. Hierarchical graph representation learning with differentiable
pooling. In NeurIPS, 2018. 22

[389] Haonan Yu, Haichao Zhang, and Wei Xu. Interactive grounded language
acquisition and generalization in a 2D world. In ICLR, 2018. 40, 105

[390] Licheng Yu, Eunbyung Park, Alexander C. Berg, and Tamara L. Berg. Visual
madlibs: Fill in the blank description generation and question answering. In
ICCV, 2015. 38, 65, 70, 71

[391] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. Deep sets. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
NeurIPS, volume 30. Curran Associates, Inc., 2017. 22

[392] Edward N Zalta, Uri Nodelman, Colin Allen, and R Lanier Anderson. Stanford
encyclopedia of philosophy. Palo Alto CA: Stanford University, 2005. 12, 13, 14

[393] Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois R Hogan,
Maria Bauza, Daolin Ma, Orion Taylor, Melody Liu, Eudald Romo, et al.
Robotic pick-and-place of novel objects in clutter with multi-affordance grasping
and cross-domain image matching. In ICRA, pages 1–8. IEEE, 2018. 123
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[402] Yuke Zhu, Ce Zhang, Christopher Ré, and Li Fei-Fei. Building a large-scale
multimodal knowledge base system for answering visual queries. arXiv preprint
arXiv:1507.05670, 2015. 27, 30, 36, 47, 66, 84

[403] Yuke Zhu, Oliver Groth, Michael S. Bernstein, and Li Fei-Fei. Visual7W:
grounded question answering in images. In CVPR, 2016. 38, 65, 70

[404] Yuke Zhu, Joseph J Lim, and Li Fei-Fei. Knowledge acquisition for visual
question answering via iterative querying. In CVPR, pages 1154–1163, 2017.
27, 30, 66, 84

[405] Yukun Zhu, Jamie Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In ICCV,
pages 19–27, 2015. 28, 85

195


	1 Introduction
	1.1 What is Knowledge?
	1.1.1 What Knowledge Does
	1.1.2 Types of Knowledge
	1.1.3 What Knowledge is

	1.2 Why Use Knowledge
	1.3 Contributions
	1.3.1 Knowledge in Vision
	1.3.2 Knowledge in Language and Vision: Benchmarks
	1.3.3 Knowledge in Language and Vision: Methods
	1.3.4 Knowledge in Action: RL
	1.3.5 Knowledge in Action: Robotics
	1.3.6 Learning Knowledge from Actions


	2 Background
	2.1 Knowledge in Philosophy
	2.2 Knowledge in Good Old-Fashioned AI
	2.3 Common Methods in Knowledge Systems
	2.3.1 Word Embeddings
	2.3.2 Large Language Models
	2.3.3 Graph Neural Networks

	2.4 Types and Sources of Knowledge
	2.4.1 Knowledge Bases/Graphs
	2.4.2 Textual Knowledge Sources

	2.5 Automated Knowledge Learning
	2.5.1 Learning Knowledge from Text on the Web Text
	2.5.2 Learning Knowledge from Images
	2.5.3 Learning Knowledge from Large Language Models
	2.5.4 Learning Knowledge with RL and Robotics

	2.6 Applications of Knowledge in NLP
	2.7 Applications of Knowledge in CV
	2.7.1 Recognition
	2.7.2 VQA Methods
	2.7.3 VQA Tasks

	2.8 Applications of Knowledge in Interaction
	2.8.1 Language and Interaction
	2.8.2 Knowledge in Robotics and RL


	3 Knowledge in Vision
	3.1 Introduction
	3.2 Related Work
	3.3 Methodology
	3.3.1 Graph Gated Neural Network
	3.3.2 Graph Search Neural Network
	3.3.3 Image Pipeline and Baselines
	3.3.4 Building the Knowledge Graph

	3.4 Experiments
	3.4.1 Datasets
	3.4.2 Training Details
	3.4.3 Quantitative Evaluation
	3.4.4 Qualitative Evaluation

	3.5 Conclusion

	4 Knowledge in Language and Vision: Benchmarks
	4.1 Introduction
	4.2 Related Work
	4.3 Dataset Collection
	4.4 Dataset Analysis
	4.4.1 Knowledge Categories
	4.4.2 Comparison with Other VQA Datasets
	4.4.3 Question Statistics

	4.5 Experiments
	4.5.1 Baselines
	4.5.2 Benchmark Results
	4.5.3 Visual Feature Ablation
	4.5.4 Scale Ablation
	4.5.5 Qualitative Examples

	4.6 Conclusion

	5 Knowledge in Language and Vision: Methods
	5.1 Introduction
	5.2 Related Work
	5.3 Methodology
	5.3.1 Reasoning with Implicit Knowledge
	5.3.2 Reasoning with Symbolic Knowledge
	5.3.3 Integrating Implicit and Symbolic Knowledge

	5.4 Experiments
	5.4.1 Experimental Setup
	5.4.2 State-of-the-Art Comparisons
	5.4.3 Model Analysis and Ablations
	5.4.4 Quantitative Analysis
	5.4.5 Qualitative Analysis

	5.5 Conclusion

	6 Knowledge in Action: RL
	6.1 Introduction
	6.2 Related Work
	6.3 Human Annotation Collection
	6.3.1 Crafting Environment
	6.3.2 Crafting Task
	6.3.3 Data Collection Process
	6.3.4 Dataset Analysis

	6.4 Methodology
	6.4.1 Data Preprocessing
	6.4.2 Architecture
	6.4.3 Training

	6.5 Experiments
	6.5.1 Baseline Comparisons
	6.5.2 Standard setting
	6.5.3 Zero-Shot
	6.5.4 Demonstration Only and Few-Shot
	6.5.5 Reward Only
	6.5.6 Interpretability

	6.6 Conclusion

	7 Knowledge in Action: Robotics
	7.1 Introduction
	7.2 Related Work
	7.3 Dataset
	7.3.1 Data Acquisition on a Robot
	7.3.2 Data Annotation by Crowdsourcing
	7.3.3 Analysis

	7.4 Methodology
	7.4.1 Grasp and Object Encoder
	7.4.2 Graph Convolutional Network
	7.4.3 Grasp Evaluator
	7.4.4 Implementation Details

	7.5 Experiments
	7.5.1 Zero-Shot Generalization
	7.5.2 Analysis
	7.5.3 Real Robot Evaluation

	7.6 Conclusion

	8 Learning Knowledge from Actions
	8.1 Introduction
	8.2 Related Work
	8.3 The Hypothesis Verification Problem
	8.3.1 Formal Definition

	8.4 Methodology
	8.4.1 RL baseline
	8.4.2 Pretraining using Triplet Hypotheses
	8.4.3 Training using Triplet Hypothesis
	8.4.4 Adaptation to Non-triplet Hypotheses
	8.4.5 Network Architecture

	8.5 Evaluation Environments
	8.5.1 Environments
	8.5.2 Hypothesis Construction

	8.6 Experiments
	8.6.1 Alternate Forms of Pretraining
	8.6.2 Oracle Predictor Ablation
	8.6.3 Network Ablation

	8.7 Conclusion

	9 Conclusions
	9.1 Summary of Contributions
	9.2 Future Directions: Bringing it all Together
	9.2.1 Environments
	9.2.2 Every-task Learning

	9.3 Final Thoughts

	Bibliography

