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Abstract
Building artificial intelligence systems from a human-centered perspective is

increasingly urgent, as large-scale machine learning systems ranging from personal-

ized recommender systems to language and image generative models are deployed

to interact with people daily. In this thesis, we propose a guideline for building

these systems from a human-centered perspective. Our guideline contains three

steps: (i) identifying the role of the people of interest and their core characteristics

concerned in the learning task; (ii) modeling these characteristics in a useful and

reliable manner; and (iii) incorporating these models into the design of learning

algorithms in a principled way.

We ground this guideline in two applications: personalized recommender sys-

tems and decision-support systems. For recommender systems, we follow the

guideline by (i) focusing on users’ evolving preferences, (ii) modeling them as

dynamical systems, and (iii) developing efficient online learning algorithms with

provable guarantees to interact with users sharing different preference dynamics.

For decision-support systems, we (i) choose decision-makers’ risk preferences to be

the core characteristics of concern, (ii) model them in the objective function of the

system, and (iii) provide a general procedure with statistical guarantees for learning

models under diverse risk preferences. We conclude by discussing the future of

human-centered machine learning and the role of interdisciplinary research in this

field.
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Chapter 1
Introduction

We are in an exciting era where artificial intelligence systems ranging from personalized rec-

ommender systems to large-scale language and image generative models are being deployed

to interact with people at scales. To date, one of the most successful paradigms for building

these intelligent systems is machine learning. At its core, machine learning deals with data—it

uncovers statistical patterns underlying the data and utilizes these patterns to make inferences

and decisions on future unseen scenarios. It typically involves specifying a set of models to

choose from, a learning objective that emits a score of a model under the given data and settings,

and an optimization procedure for finding the model that performs well under the learning

objective. In this pipeline, the data is generated by human users or annotators, and the machine

learning objectives are specified by human engineers or researchers. Once a model is learned,

it may be evaluated by human stakeholders or crowdsourcing workers and later deployed in

settings where human users may provide additional feedback to adjust and improve the model.

To this extent, though many machine learning models are not explicitly trained to interact with

people, the entire machine learning pipeline implicitly (or explicitly) relies on humans in an

indispensable manner.

Despite the ubiquity of human presence throughout the machine learning pipeline, traditional

academic treatments of machine learning have largely focused on problem settings that either

overlook or oversimplify it. This may result in building undesirable systems in terms of (i)
Usefulness: when the end users of these systems are humans, without knowing their way of

using the systems, what we build may not be useful for them; (ii) Safety: if we ignore users’

preferences and behavior characteristics, the resulting systems may harm the end users; and (iii)
Reliability: even in contexts where the machine learning systems are not deployed to interact

with human users, understanding the influence of other people involved in the pipeline of

building these systems will improve the reliability of them. Thus, in this thesis, we focus on the

human-centered perspective of building machine learning systems. The central question we aim

to answer is the following:

Are there some guidelines one could use when building machine learning systems from
a human-centered perspective?

Taking a human-centered perspective on machine learning has become an increasingly
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studied subject in recent years—both the empirical and theoretical machine learning communities

have started looking into explicitly accounting for human presence in the learning pipeline.

For example, given the ambiguity of the learning objective of language generative models,

researchers proposed to fine-tune models based on human preferences instead of using a pre-

specified reward (hence objective) function (Ziegler et al., 2019; Stiennon et al., 2020). On

the other hand, for theoretical machine learning frameworks that aim to account for human

presence, humans have mostly been modeled as rational or noisily rational agents (Arora and

Doshi, 2021; Haghtalab et al., 2021) and behave adversarially (Podimata, 2022; Haghtalab et al.,

2022) or strategically (Hardt et al., 2016a; Kleinberg and Raghavan, 2020). In addition to the

machine learning community that develops algorithms for building machine learning models in

these settings, researchers from human-computer interaction, public policy, philosophy, and

many other fields have proposed new evaluation mechanisms for machine learning pipelines

from a human-centered perspective, using human subject studies (Holstein et al., 2019; Heger

et al., 2022) and simulations of humans involved in the pipeline (Dai et al., 2021; Martin et al.,

2023). As this naturally interdisciplinary field—human-centered machine learning—continues to

grow, there is an urgent need to define its scope, understand the role of different disciplines in

this field, and outline how researchers across disciplines could collaborate.

1.1 Thesis Statement

This thesis aims to provide principles for developing machine learning systems from a human-

centered perspective and illustrate how these principles can be applied to a variety of learning

tasks in application domains ranging from decision-support systems to personalized recom-

mender systems. Throughout, we will discuss other disciplines’ roles in the process of developing

these systems.

Thesis Statement. The following statement is at the center of this thesis: Building machine
learning systems from a human-centered perspective requires us to

S.1 specify the role of the humans of interest and their core characteristics concerned in the
learning task;

S.2 develop reliable models that capture these core characteristics;

S.3 incorporate these models into the design of the machine learning systems in a principled way.
Remark 1.1. The “model” referred in S.2 is a mathematical model in the broad sense and may
not be a machine learning model. In certain machine learning settings, S.2 and S.3 may take place
simultaneously. For example, one could learn a preference model of the user and build machine
learning systems that interact with the user at the same time. Finally, the overarching goal for S.1
and S.2 is to build useful and ideally simple human models for the machine learning setting of
interest.

When illustrating the usage of this guideline, we focus on two application domains: person-

alized recommender systems and decision-support systems. For recommender systems, we take

the human-centered perspective by specifying the humans of interest to be the users and their

core characteristics concerned in the learning task to be their evolving preferences (S.1). We
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use human subject studies to test the existence of such evolving preferences and model them

using dynamical systems (S.2). New online learning algorithms with provable guarantees are

developed in face of these user preference dynamics (S.3). For decision-support systems, we

choose the decision-makers who are facilitated by these systems to be the subject of interest,

and their risk preferences to be the core characteristics (S.1). We model these risk preferences

in the objective functions of the machine learning models (S.2), and provide algorithms with

statistical guarantees for learning such models (S.3).

Due to the interdisciplinary nature of human-centered machine learning, other disciplines

play important roles in this field. For example, the human-computer interaction community can

help machine learning researchers with S.1 by conducting user studies to understand the core

characteristics concerned in a learning task; and with S.2 by testing if the proposed model for

capturing those core characteristics is valid. On the other hand, social sciences like behavioral

economics and psychology provide machine learning researchers with modeling assumptions on

the relevant characteristics of the people of our interest in S.2. These assumptions and structures

are especially of need in low-data regimes and may help machine learning researchers build

human models that are simple yet useful in S.2.

1.2 Overview

We organize the thesis into three parts. The first part covers S.2 in the thesis statement and

focuses on modeling human preferences and decision-making characteristics in recommender

systems and decision-support systems, respectively. The second part illustrates S.3 by discussing

how one could develop machine learning systems while integrating human preference models.

The last part summarizes the takeaways and envisions future directions in human-centered

machine learning. We provide a brief overview for the first two parts of the thesis.

1.2.1 Modeling Human Preferences and Decision-Making (Part I)

The first part presents how we could build reliable models for human preferences and decision-

making. Using human subject studies, we identify existing oversimplifications of user preferences

in the development of recommender system algorithms (Chapter 2). Inspired by models proposed

in behavioral economics, we develop new ways for representing different risk preferences in the

design of decision-support systems (Chapter 3).

Chapter 2: Understanding the Validity of Assumptions on Human Preferences in
Multi-armed Bandits
Theoretical treatments of recommendation systems frequently address the decision-theoretic

nature of the problem via the multi-armed bandits (MABs) framework. In this framework,

the learner (e.g., the recommender system) interactively chooses actions to take (e.g., recom-

mendations to present) based on the historical rewards it collects. These rewards are users’

responses to the recommendations, which are driven by their underlying preferences. Thus,

the assumptions on reward distributions, which MAB-based approaches rely heavily on, can be
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translated to assumptions on user preferences. Such assumptions are seldom evaluated with

real-world human interactants, making it difficult to assess the applicability of the algorithms

powered by them. As an example, in the MABs framework, the reward distribution is commonly

assumed to be fixed, suggesting that the user preference is static over time. However, it is unclear

whether such simplification of user preference is valid: the existing psychology and marketing

literatures have shown that people’s preferences evolve as a function of their past consumption

(e.g., (Tucker, 1964)).

To test the validity of core MABs assumptions, we provide a flexible experimental frame-

work and an open source library for collecting human preference data when interacting with

recommendation algorithms in MABs. Using this framework, we conduct human subject studies

in a comics recommendation setting and find that the static reward assumption does not hold,

and thus bandit algorithms interacting with humans must account for user preference dynamics.

We subsequently apply the experimental framework to assess the performance of different MAB

algorithms interacting with real human interactants. In general, our toolkits can be used to

identify assumptions on reward distributions that better captures the characteristics of user

preference dynamics.

Chapter 3: On Human-Aligned Risk Minimization
While the statistical decision-theoretic foundations of modern machine learning have largely

focused on the minimization of the expectation of some loss function, seminal results in behav-

ioral economics—Cumulative Prospect Theory (CPT)—have shown that human decision-making

is based on different risk measures that overweigh small probabilities and underweigh large

probabilities (Tversky and Kahneman, 1992). To model the risk preference of a decision-maker

when building machine learning models in decision-support systems, we design a new objec-

tive function based on the CPT. We explore how the models learned under this new objective

differ from the ones learned under the traditional expectation-based objective and empirically

demonstrate that these models have improved performance on desiderata such as fairness.

1.2.2 Integrating Human Characteristics into Machine Learning Algo-
rithm Design (Part II)

The second part illustrates how we could incorporate human models into the design of machine

learning algorithms with provable guarantees. For recommender systems, we design online

learning algorithms to interact with users with evolving preferences (Chapter 4) who may leave

the system (Chapter 5). For decision-support systems, we provide recipes for learning models

under different risk preferences in settings including supervised learning (Chapter 6) and optimal

treatment regimes (Chapter 7).

Chapter 4: Rebounding Bandits for Modeling Satiation Effects
Psychological research shows that enjoyment of many goods is subject to satiation, with short-

term satisfaction declining after repeated exposures to the same item. Nevertheless, proposed

algorithms for powering recommender systems seldom model these dynamics, instead pro-

ceeding as though user preferences were fixed in time. We introduce rebounding bandits, a
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multi-armed bandit setup, where satiation dynamics are modeled as time-invariant linear dy-

namical systems. Unlike classical bandit settings, methods for tackling rebounding bandits

must plan ahead and model-based methods rely on estimating the parameters of the satiation

dynamics. We characterize the planning problem and propose efficient learning algorithms that

achieve sublinear dynamic regret.

Chapter 5: Modeling Attrition in Recommender Systems with Departing Bandits
We consider settings where the user has evolving preferences over time and may leave the

recommender system upon being presented by unsatisfying content. Traditionally, when recom-

mender systems are formalized as multi-armed bandits, the policy of the recommender system

influences only the rewards accrued, but not the length of interaction. Our proposed departing

bandits setup captures policy-dependent horizons. While naive approaches cannot handle this

setting, we provide an efficient learning algorithm that utilizes a simple planning shortcut and

achieves sublinear regret.

Chapter 6: Supervised Learning with General Risk Functionals
To date, the vast majority of supervised, unsupervised, and reinforcement learning research

has focused on objectives expressible as expectations (over some dataset or distribution) of

an underlying loss (or reward) function. However, real-world concerns such as risk aversion,

equitable allocations of benefits and harms, or alignment with human preferences, often demand

that we address other functionals of the loss distribution. Focusing on supervised learning,

consider the common scenario in which a population contains a minority (constituting fraction

α of the population) but where group membership was not recorded in the available data. If the

pattern relating the features to the label were different for different demographics, a naively

trained model might adversely harm members of a minority group. Absent further information,

one sensible strategy could be to optimize the worst case performance over all subsets (of size up

to α). This would translate to the Conditional Value at Risk (CVaR) objective (i.e., the expectation

of the worst 100α percent of the losses incurred by the model).

To account for such risk preferences of decision-makers, we develop a learning framework for

obtaining models under general risk functionals. Our results rely on estimating the Cumulative

Distribution Function of the loss distribution and identifying that a variety of risk functionals of

interest (e.g., CVaR, mean-variance) are Lipschitz. We establish the first uniform convergence

results for estimating Lipschitz risk functionals, which licenses us to perform empirical risk

minimization.

Chapter 7: Median Optimal Treatment Regimes
We propose a new treatment regime that optimizes a particular risk functional of interest, the

Average Conditional Median Effect (ACME), which summarizes across-group median treatment

outcomes of a policy, and which the median optimal treatment regime maximizes. This pro-

posed risk functional captures “in-subject robustness” and “across-subject fairness.” We give a

nonparametric efficiency bound for estimating the ACME of a policy, and propose a new doubly
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robust-style estimator that achieves the efficiency bound under weak conditions. To construct

the median optimal treatment regime, we introduce a new doubly robust-style estimator for the

conditional median treatment effect.
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Chapter 2
A Field Test of Bandit Algorithms for

Recommendations: Understanding the

Validity of Assumptions on Human

Preferences in Multi-armed Bandits

2.1 Introduction

As online services have become inescapable fixtures of modern life, recommender systems have

become ubiquitous, influencing the music curated into our playlists, the movies pumped into the

carousels of streaming services, the news that we read, and the products suggested whenever

we visit e-commerce sites. These systems are commonly data-driven and algorithmic, built upon

the intuition that historical interactions might be informative of users’ preferences, and thus

could be leveraged to make better recommendations (Gomez-Uribe and Hunt, 2015). While these

systems are prevalent in real-world applications, we often observe misalignment between their

behavior and human preferences (Jain et al., 2015). In many cases, such divergence comes from

the fact that the underlying assumptions powering the learning algorithms are questionable.

Recommendation algorithms for these systems mostly rely on supervised learning heuris-

tics (Bennett, Lanning, et al., 2007; Gomez-Uribe and Hunt, 2015), including latent factor models

such as matrix factorization (Koren et al., 2009) and deep learning approaches that are designed

to predict various heuristically chosen targets (Wei et al., 2017) (e.g., purchases, ratings, reviews,

watch time, or clicks (Bennett, Lanning, et al., 2007; McAuley and Leskovec, 2013)). Typically

they rely on the naive assumption that these behavioral signals straightforwardly indicate the

users’ preferences. However, this assumption may not hold true in general for a variety of

reasons, including exposure bias (users are only able to provide behavioral signals for items they

have been recommended) and censoring (e.g., reviews tend to be written by users with strong

opinions) (Swaminathan and Joachims, 2015; Joachims et al., 2017).

On the other hand, to study the decision-theoretic nature of recommender systems, the online
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decision-making framework—multi-armed bandits (MABs)—has commonly been used (Slivkins,

2019; Lattimore and Szepesvári, 2020). In MABs, at any given time, the decision-maker chooses

an arm to pull (a recommendation to make in the recommender system setting) among a set of

arms and receives a reward, with the goal of obtaining high expected cumulative reward over

time. Theoretical research on MABs centers on algorithms that balance between the exploration

and exploitation tradeoff and analyses capturing the performance
1

of these algorithms (Lattimore

and Szepesvári, 2020). There is a long line of work on developing MAB-based approaches for

recommender systems in settings including traditional K-armed bandits (Barraza-Urbina and

Glowacka, 2020, and references therein), contextual bandits (Li et al., 2010; McInerney et al.,

2018; Mehrotra et al., 2020, and references therein), and Markov decision processes (Shani et al.,

2005a; Chen et al., 2019; Chen et al., 2021a; Chen et al., 2021b; Wang et al., 2022; Chen et al.,

2022, and references therein). To guide such research on applying MAB-based algorithms in

recommender systems, it is of importance to test whether the assumptions that these algorithms

are built upon are valid in real-world recommendation settings.

In this work, we focus on the assumption of temporal stability that underlies both practical

supervised learning methods and algorithms for classical MAB settings where the reward distri-

bution is assumed to be fixed over time. In a recommendation setting, the reward distribution

of an arm corresponds to the user’s preference towards that recommendation item. Although

the assumption that the reward distribution is fixed may be appropriate to applications driving

early MABs research (e.g., sequential experimental design in medical domains) (Robbins, 1952),

one may find it to be unreasonable in recommender systems given that the interactants are

humans and the reward distributions represent human preferences. For example, consider

the task of restaurant recommendations, though a user may be happy with a recommended

restaurant for the first time, such enjoyment may decline as the same recommendation is made

over and over again. This particular form of evolving preference is known as satiation, and

results from repeated consumption (Galak and Redden, 2018). One may also think of cases

where a user’s enjoyment increases as the same item being recommended multiple times, due to

reasons including sensitization (Groves and Thompson, 1970). In both settings, the assumption

that reward distributions are fixed is violated and the recommendation algorithms may influence

the preferences of their users.

We test the assumption on fixed reward distributions through randomized controlled trials

conducted on Amazon Mechanical Turk. In the experiment, we simulate a K-armed bandit

setting (a MAB setup where the arm set is the same set of K arms over time) and recommend

comics from K comic series to the study participants. After reading a comic, the participants

provide an enjoyment score on a 9-point Likert scale (Cox III, 1980), which serves as the reward

received by the algorithm for the recommendation (for pulling the corresponding arm). Each

comic series belongs to a different genre and represents an arm. Our analyses on the collected

dataset reveal that in a bandit recommendation setup, human preferences can evolve, even within

a short period of time (less than 30 minutes) (Section 2.4). In particular, between two predefined

sequences that result in the same number of pulls of each arm in different order, the mean

reward for one arm has a significant difference of 0.57 (95% CI = [0.30, 0.84], p-value < 0.001).

This suggests that any MAB algorithms that are applied to recommendation settings should

1
We provide more details on how performances are defined in MABs in Section 2.3.1.
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account for the dynamical aspects of human preferences and the fact that the recommendations

made by these algorithms may influence users’ preferences.

The line of work that develops contextual bandits and reinforcement learning algorithms for

recommender systems (Shani et al., 2005a; McInerney et al., 2018; Chen et al., 2019; Mehrotra

et al., 2020; Chen et al., 2021a; Chen et al., 2021b; Wang et al., 2022; Chen et al., 2022) hinges upon

the assumption that users’ preferences depend on the past recommendations they receive. The

proposed algorithms have been deployed to interact with users on large-scale industry platforms

(e.g., Youtube). These prior works differ from ours in multiple ways. Among them, the most

significant distinction is that our work aims to understand and identify assumptions on reward

distributions that better represent user preference characteristics. On the other hand, this line

of work asks the question that once an assumption on the reward distribution has been made, how

to design the recommendation algorithms so that they have better performance. For example,

in settings where recommender systems are modeled as contextual bandits (Mehrotra et al.,

2020; McInerney et al., 2018), the reward distributions are assumed to take a certain functional

form (often linear) in terms of the observable states. When treating recommender systems as

reinforcement learning agents in a Markov decision process (Shani et al., 2005a; Chen et al., 2019;

Chen et al., 2021a; Chen et al., 2021b; Wang et al., 2022; Chen et al., 2022), one has made the core

assumption that the reward is Markovian and depends only on the observable user states (e.g.,

user history) and recommendations. In other words, the reward (and user preference) does not

depend on unobservable states (e.g., user emotions) as in partially observable Markov decision

processes. Under this assumption, the proposed algorithms deal with difficulties (e.g., large

action spaces) in the reinforcement learning problem. It is worth noting that in these prior works,

the proposed algorithms have been evaluated on industry platforms. For academics who want to

evaluate their recommendation algorithms with human interactants, such infrastructure is not

easily accessible. We take an initial step to address this need by developing our experimental

framework.

The experimental framework we developed is flexible. It allows one to conduct field tests of

MAB algorithms, use pre-defined recommendation sequences to analyze human preferences,

and ask users to choose an arm to pull on their own. These functionalities can be used to

identify assumptions on user preference dynamics and reward distributions that better capture

user characteristics. As an illustration of the flexibility of our experimental framework, we

have collected data while the participants interact with some traditional MAB algorithms and

analyze their experience with these algorithms. Interestingly, we observe that interactants (of a

particular algorithm) who have experienced the lowest level of satisfaction are the ones to have

the poorest performance in recalling their past ratings for previously seen items.

In summary, we provide a flexible experimental framework that can be used to run field

tests with humans for any K-armed bandit algorithms (Section 2.3.3). Using this experimental

framework, we have tested the validity of the fixed-reward-distribution (fixed-user-preference)

assumption for applying MAB algorithms to recommendation settings (Section 2.4). As an

illustration of the flexibility of our experimental framework, we have inspected different bandit

algorithms in terms of user enjoyment and attentiveness (Section 2.5). We discuss the limitation

of our study in Section 2.6. The code for our experimental framework can be found at https:

//github.com/HumainLab/human-bandit-evaluation.

10

https://github.com/HumainLab/human-bandit-evaluation
https://github.com/HumainLab/human-bandit-evaluation


Background 
Survey Comic Rating

Register on 
Platform

MAB Algorithm

Self-Selected

Fixed Sequence

(Random)
Experiment 
Assignment

Post-Study 
Survey

Seen/Unseen? Rating >= 5? Experience

?

?

Figure 2.1: Overview of the experimental protocol. Participants first complete a background survey and

then register their MTurk ID on our platform to get randomly assigned (without their direct knowledge)

one of the following types of experimental setups: Self-selected, one of the fixed sequences, or one of the

MAB algorithms. Study participants who are assigned to a fixed sequence and an MAB algorithm only

provide ratings (enjoyment scores to the comics). Self-selected study participants provide both a rating as

well as the next genre to view. Once the comic rating portion of the study is complete, participants move

onto the post-study survey, where they are asked questions related to their experience in the study, e.g.,

how well they remember the consumed content. Participants must complete all parts of the study and

answer attention checks sufficiently correctly to receive full compensation, and therefore be included in

the final study data.

2.2 Related Work

The study of evolving preferences has a long history, addressed by such diverse areas as psy-

chology (Christensen and Brooks, 2006; Galak and Redden, 2018), economics (Prelec, 2004;

Gul and Pesendorfer, 2005), marketing (Tucker, 1964), operations research (Baucells and Sarin,

2007), philosophy (Liu et al., 2007; Baber, 2007), and recommender systems (Kapoor et al., 2015;

Rafailidis and Nanopoulos, 2015; Lee et al., 2014). In the bandits literature, there is a recent line

of work, motivated by recommender systems, that aims to incorporate the dynamic nature of

human preference into the design of algorithms. These papers have different models on human

preferences, expressed as specific forms of how the reward of an arm depends on the arm’s

past pulls. Levine et al. (2017) and Seznec et al. (2019) model rewards as monotonic functions of

the number of pulls. By contrast, Kleinberg and Immorlica (2018), Basu et al. (2019), and Cella

and Cesa-Bianchi (2020) consider the reward to be a function of the time elapsed since the last

pull of the corresponding arm. In Mintz et al. (2020), rewards are context-dependent, where

the contexts are updated based on known deterministic dynamics. Finally, Leqi et al. (2021b)

consider the reward dynamics to be unknown stochastic linear dynamical systems. These prior

works model the reward (user preferences) in distinct ways, and lack (i) empirical evidence on

whether user preferences evolve in the short period of time in a bandit setup; and (ii) datasets

and experimental toolkits that can be used to verify the proposed theoretical models and to

explore more realistic ways of modeling user preferences. On the other hand, there is a line

of work on developing contextual bandits and reinforcement learning algorithms to account

for user preference dynamics in recommender systems. The evaluations of these algorithms

against human users rely on accessibility to large-scale industry platforms (Shani et al., 2005a;
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McInerney et al., 2018; Chen et al., 2019; Mehrotra et al., 2020; Chen et al., 2021a; Chen et al.,

2021b; Wang et al., 2022; Chen et al., 2022).

Datasets that are publicly available and can be used to evaluate bandit algorithms in rec-

ommendation settings often contain ratings or other types of user feedback of recommenda-

tions (Saito et al., 2020; Lefortier et al., 2016). These datasets do not contain trajectories of

recommendations and the associated feedback signal for a particular user, making it hard to

understand the dynamical aspects of user preferences and to identify effects of past recommen-

dations on the preferences. In addition, existing MAB libraries (e.g., (Holtz et al., 2020)) only

consist of implementations of bandit algorithms, but lack the appropriate tools and infrastruc-

ture to conduct field tests of these algorithms when interacting with humans. The toolkit we

have developed closes this gap and allows one to use these libraries while conducting human

experiments on bandit algorithms. Another relevant stream of research that considers human

experiments in bandits settings are the ones that ask human participants to make decisions in

a bandit task and collect data for modeling their decision-making (Acuna and Schrater, 2008;

Reverdy et al., 2014; Lee et al., 2011). In other words, in those experiments, human participants

take the role of the algorithm that selects the arm to pull instead of the role of providing reward

signals. In one of our experimental setups, the study participants are asked to select comics

to read on their own. However, in contrast to reward distributions that are defined by the

experiment designers of those experiments, in our setting, the rewards are provided by the

human participants, indicating their preferences.

2.3 Experimental Setup

In this section, we first describe a classical MABs setting—stochastic K-armed bandits—and

discuss the algorithms we have used in our experiments (Section 2.3.1). We then provide

reasoning on why we choose comics as the reommendation domain and selection criteria for

the comics used for recommendations (Section 2.3.2). Finally, we discuss our experimental

framework (Section 2.3.3).

2.3.1 Stochastic K-armed bandits

In stochastic K-armed bandits, at any time t, the learner (the recommender in our case) chooses

an arm a(t) ∈ [K] to pull (a recommendation to present in our case) and receives a reward

R(t). For any horizon T , the goal for the learner is to attain the highest expected cumulative

reward E[
∑T

t=1R(t)]. In this setup, the reward distribution of each arm k ∈ [K] is assumed to

be fixed over time and the rewards received by pulling the same arm are independently and

identically distributed. An oracle (the best policy), in this case, would always play the arm with

the highest mean reward. The difference between the expected cumulative reward obtained

by the oracle and the one obtained by the learner is known to be the “regret.” As is shown

in existing literature (Lattimore and Szepesvári, 2020), the regret lower bound for stochastic

K-armed bandits is Ω(
√
T ). Many existing algorithms achieve the regret at the optimal rate

O(
√
T ), including the Upper Confidence Bound (UCB) algorithm and the Thompson Sampling

12



2

1

3

Figure 2.2: The user interface of our experimental platform when the participants read and rate a comic.

For each comic, the participants have up to three action items to complete. First, they must provide the

comic an enjoyment score (a rating) between 1 and 9 using the Likert scale slider bar, indicating how

they like the comic. Second, if the participants are under the Self-selected setting, they must select the

genre of comic they would like to view next. For other participants, this step does not exist. Finally, the

participants are asked to answer one or more customized attention check questions.

(TS) algorithm. We also include a traditional algorithm Explore-then-Commit (ETC) and a greedy

heuristic (ε-Greedy) in our study. These algorithms along with their regret guarantees are built

upon the key assumption that the reward distributions are fixed. In Section 2.4, we test the

validity of this assumption in a recommendation setting where the interactants are humans and

the rewards represent their preferences.

Algorithms We give a brief summary and a high-level intuition for each algorithm. More

detailed descriptions of these algorithms can be found in Appendix A.1 in the supplementary

material. We use the term “algorithm” in a broad sense and the following items (e.g., Self-selected

and Fixed sequence) may not all be traditional MAB algorithms.

• Self-selected: The participants who are assigned to the Self-selected algorithm will choose

which arm to interact with by themselves. In other words, at each time t, instead of a

prescribed learning policy determining the arm a(t), the participants themselves will

choose the arm.

• UCB: At time t, UCB deterministically pulls the arm with the highest upper confidence
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bound, a value that for each arm, combines the empirical mean reward with an uncertainty

estimate of the mean reward. An arm with high upper confidence bound can have high

empirical mean and/or high uncertainty on the mean estimate.

• TS: In Thompson Sampling, a belief distribution is maintained over the possible reward

values for each arm. At time t, the algorithm samples a reward from each arm’s belief

distribution and pulls the arm with the highest sampled reward. When a reward is received

after pulling the arm, TS updates the corresponding arm’s prior belief distribution to obtain

a posterior.

• ETC: Unlike UCB and TS, the Explore-then-Commit algorithm has two separate stages—

the exploration stage and the exploitation stage. It starts with an exploration period where

the algorithm pulls the arms in a cyclic order and then switches to an exploitation stage

where only the arm with the highest empirical mean in the exploration stage will be pulled.

Given that the ETC algorithm achieves a regret of O(T 2/3) when the exploration time

is on the order of T 2/3
, we have set the exploration period to be c · T 2/3

for a positive

constant c.

• ε-Greedy: This greedy heuristic pulls the arm with the highest empirical mean with

probability 1− ε where 0 < ε < 1, and pulls an arm uniformly at random with probability

ε. In a setting with long interaction period, one way of setting ε is to have it decreasing over

time, e.g., setting ε to be on the order of
1
t

(Auer et al., 2002). Given the short interaction

period in our setting, we have used a fixed ε = 0.1 (which may result in linear regret).

• Fixed sequence (CYCLE, REPEAT): The fixed sequence algorithms pull arms by following a

predefined sequence. That is, the arm pulled at time t only depends on the current time step

and does not rely on the received rewards so far. We have used two fixed sequences CYCLE

and REPEAT for testing whether the reward distributions (that represent participants’

preferences) are fixed over time. We provide more details on these two fixed sequences in

Section 2.4.

Next, we present how we have selected the comics used for recommendations.

2.3.2 Comics data

In our experiment, we choose comics as our recommendation domain for the following reasons:

(i) Fast consumption time: Given the nature of our experiment where study participants are

recommended a sequence of items to consume in a limited amount of time, we require the time

for consuming each of the recommendations to be short. For example, recommending movie

clips to watch may not be appropriate in our setting given that each clip may take a couple

of minutes to finish. (ii) No strong pre-existing preferences: Another important feature of the

chosen recommendation domain is that the majority of the study participants should have no

strong preference on that subject prior to the experiment. For example, unlike comics, music is a

subject that most people tend to already have strong preferences towards (Schäfer and Sedlmeier,

2010). In such cases, the effects of recommendations towards the participants’ preferences may

be minimal.
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We collected comics from 5 comic series on GoComics (GoComics, 2021). Each comic series

belongs to a genre and represents an arm for pulling. The 5 comic series along with their genre

are Lisa Benson (political, conservative), Nick Anderson (political, liberal), Baldo (family), The

Born Loser (office), and The Argyle Sweater (gag). The genres of these comics are assigned by

GoComics. For each series, we take the following steps to select the set of comics:

1. We first collect all comics belonging to the comic series from the year 2018. We select this

time period to be not too recent so that the results of the study are not heavily influenced

by ongoing events. It is also not too distant so that the content is still relevant to all

subjects.

2. For each individual comic, we obtain its number of likes on GoComics. Then, we choose

the top 60 comics from each comic genre/series in terms of the number of likes. This

selection criteria is designed to ensure the quality of the chosen comics.

3. Finally, we randomly assign an ordering to the comics. We keep this ordering fixed

throughout the study such that if an arm is pulled (a genre is chosen) at its j-th time, the

presented comics will always be the same.

The comics within the same comic series are independent, in the sense that they can generally

be read in any order, without requiring much context from previous comics from the same series.

For these collected comics, we have labeled the number of unique characters in them, and use

it for the attention check questions to ensure that the study participants have read the comics.

Although we have adopted the above selection criteria to ensure the quality of comics from the

same comic series to be similar, there is heterogeneity among individual comics and thus may

influence the interpretation of our results. We provide more discussion on this in Section 2.6. In

Section 2.3.3, we discuss our experimental protocol and platform.

2.3.3 Experimental protocol and platform

We first outline our experimental protocol, which consists of the following steps (Figure 2.1):

1. Background survey (initial filtering): We ask the study participants to complete a brief

background survey (Appendix A.3 in the supplementary material). The participants will

only be given a code to continue to the next step if an arithmetic question is answered

correctly. The goal for the first step is to set up an initial filtering for participants.

2. Registration: After completing the background survey, participants are then asked to

register on our platform using their completion code. Each participant in our study is

assigned an algorithm in the following fixed probabilities—0.25 for Self-selected, 0.125
for UCB, 0.125 for TS, 0.125 for ETC, 0.125 for ε-Greedy and 0.125 for each of the two

fixed sequences.

3. Comic rating: In this step, participants will read a sequence of 50 comics and provide

an enjoyment score (a rating) after reading each comic. The sequence of comics can be

generated by any of the algorithms discussed in Section 2.3.1. After reading each comic and

providing a rating, the participants are also asked to answer an attention check question.

4. Post-study survey: Once the participants are finished with the comics rating step of the
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study, they are asked to complete a post-study survey about their reading experience.

They are asked if they remember reading certain comics and if they have rated them

positively, as well as how they perceive the recommendations they are provided. An

example of the post-study survey questions can be found in Figure A.2 (Appendix A.4 in

the supplementary material).

Our experimental platform is built as a toolkit for running field tests for any MAB algorithms

with human users. It consists of (a) the participant-facing web interface, and (b) the server

backend that stores and processes incoming data from the web interface. When designing the

experimental protocol and platform, we consider the following questions:

1. Given that we are asking users to give subjective feedback, how do we have more user

responses that are reflective to the user’s true preference?

2. How do we design an experimental interface that impose less bias to the users?

3. Since our study requires users to complete a long (up to 30-minute) sequence of non-

independent tasks, how do we have the study to be less interrupted?

4. How do we build the system flexible enough to conduct studies for different MAB algo-

rithms and test different assumptions of MAB setups, including ones that we do not cover

in this work?

For (1), we adopt a 9-point Likert scale so that the numbers are sufficiently distinguishable

to the participants (Cox III, 1980) and check whether users are paying sufficient attention during

the study. In particular, we test the participants on objective properties of the comics they have

read, e.g. the number of unique characters (with a face and/or body) in them. We also set a

minimum time threshold of 10 seconds before each user response can be submitted so that users

spend adequate time on each comic.

For (2), to ensure that the participant’s rating is not biased towards (e.g., anchored on) the

Likert scale slider’s initial value, we set the slider to be transparent before the participant clicks

on the scale. In addition, in the Self-selected setting where the participants choose the genre of

comics to read next, we minimize the color- and ordering-based biases by setting the category

selection buttons to be the same color and in random order.

As stated in design question (3), because we are interested in studying evolving preferences

over a sequence of non-independent tasks, we would like to have continuous and uninterrupted
user attention over a period of time. To do so, we design the system to be stateful so that

participants can resume the study where they left off in the event of brief network disconnection

and browser issues.

Finally, we discuss the flexibility of our system and address design question (4). Our experi-

mental platform allows the experimenter to specify any recommendation domains and MAB

algorithms for interacting with the human interactant. This flexibility allows the experimenter

to not only test the performance of different MAB algorithms but also design pull sequences to

understand user preference dynamics and test existing assumptions on user preferences. For

example, one may design pull sequences to study the correlation between rewards obtained at

different time steps and rewards obtained from pulling different but related arms. It is worth

noting that the attention checks in our system are also customizable, allowing for diverse atten-
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Self-selected UCB TS ETC ε-Greedy CYCLE REPEAT

# of Participants 74 40 44 39 41 40 38

Table 2.1: Number of participants for each algorithm. The description for Self-selected, UCB, TS, ETC

and ε-Greedy are in Section 2.3.1. CYCLE and REPEAT are defined in Section 2.4.

tion checks for each recommendation domain. For more details about the experimental platform

and MTurk-related implementation details, we refer the readers to Appendix A.4.

2.3.4 Recruitment and compensation

To ensure the quality of our collected data, we only allow MTurk workers to participate in

the study if they are U.S. residents and have completed at least 500 Human Intelligence Tasks

(HITs) with an above 97% HIT approval rate. The anticipated (and actual) time to complete

the study is less than 30 minutes. For participants who have successfully completed the study

and answered the attention check questions correctly 70% of time, we have paid $7.5 (the

equivalent hourly salary is above $15/hr). In Appendix A.3, we provide more details on the

participants’ demographics and backgrounds. Out of the 360 participants who have successfully

completed the study, 316 passed the attention check (acceptance rate 87.8%). Our analyses are

only conducted on the data collected from these participants. Table 2.1 shows the number of

participants for each experimental setup.

2.4 Evolving Preferences in K-armed bandits

As we have previously discussed, in K-armed bandits, the reward distribution of each arm is

assumed to be fixed over time (Robbins, 1952; Slivkins, 2019; Lattimore and Szepesvári, 2020),

which implies that the mean reward of each arm remains the same. It is unclear whether such

an assumption is reasonable in recommender system settings where the reward distributions

represent human preferences. Our first aim is to test for the existence of evolving preference in

the K-armed bandits setup. In other words, using randomized controlled trials, we want to test

the following hypothesis: In a K-armed bandit recommendation setting, the reward distribution
of each arm (i.e., the user preference towards each item) is not fixed over time.

To answer this, we collect enjoyment scores for two fixed recommendation sequences, where

each sequence is of length T = 50. The sequence consists of recommendations from K = 5
genre of comics. In other words, the total number of arms is 5. The first sequence pulls the

arms in a cyclic fashion which we denote by CYCLE, while the second sequence pulls each arm

repeatedly for m = T/K times which we denote by REPEAT:

CYCLE : (12 . . . K12 . . . K . . . 12 . . . K︸ ︷︷ ︸
12...K for m times

),

REPEAT : (22 . . . 2︸ ︷︷ ︸
m times

1 . . . 1︸ ︷︷ ︸
m times

3 . . . 3 . . . K . . .K).
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We note that for both sequences, the number of arm pulls of each arm is the same (m times).

Since the order of the comics is fixed for each arm (e.g., pulling an arm for m times will always

result in the same sequence of m comics from that genre), the set of comics recommended by

the two sequences are the same. The only difference between the two sequences is the order of

the presented comics. Intuitively, if the mean reward of each arm is fixed over time (and does

not depend on the past pulls of that arm), then the (empirical) mean reward of each arm should

be very similar under the two pull sequences.

In this work, we utilize a modification of the two-sample permutation test (Fisher, 1936)

to deal with the different numbers of participants under the two recommendation sequences.

We let PCYCLE
and PREPEAT

denote the set of participants assigned to the CYCLE and REPEAT

recommendation sequence, respectively. For each participant i ∈ PCYCLE
, we use ai(t) to denote

the pulled arm (the recommended comic genre) at time t and Xi(t) to denote the corresponding

enjoyment score (the reward) that the participant has provided. Similarly, for each participant

j ∈ PREPEAT
, we use aj(t) and Yj(t) to denote the arm pulled at time t and the enjoyment score

collected from participant j at time t. Using these notations, for each arm k ∈ [K], we define

the test statistic as follows:

τk =
1

|PCYCLE|
∑

i∈PCYCLE

 1

m

∑
t∈[T ]:ai(t)=k

Xi(t)


︸ ︷︷ ︸

MCYCLE

k

− 1

|PREPEAT|
∑

j∈PREPEAT

 1

m

∑
t∈[T ]:aj(t)=k

Yj(t)


︸ ︷︷ ︸

MREPEAT

k

.

The test statistic τk is the difference between the mean reward (enjoyment score) MCYCLE

k

under the CYCLE recommendation sequence and the mean reward MREPEAT

k under the REPEAT

recommendation sequence for arm k. A non-zero τk suggests that the mean reward of arm k is

different under CYCLE and REPEATand that the reward distribution is evolving. The higher the

absolute value of τk is, the bigger the difference between the two mean rewards is. A positive

test statistic value indicates that the participants prefer the arm under CYCLE over REPEAT on

average.

To quantify the significance of the value of the test statistic, we use a two-sample permutation

test to obtain the p-value of the test (Fisher, 1936): First, we permute participants betweenPCYCLE

andPREPEAT
uniformly at random for 10, 000 times and ensure that the size of each group remains

the same after each permutation. Then, we recompute the test statistic τk for each permutation

to obtain a distribution of the test statistic. Finally, we use the original value of our test statistic

along with this distribution to determine the p-value.

To report the 95% confidence interval of the test statistic for each arm, we use bootstrap

and re-sample the data for 5, 000 times at the level of arm pulls. That is, for each arm pull at

time t, we obtain its bootstrapped rewards under CYCLE and REPEAT by resampling from the

actual rewards obtained by pulling that arm under CYCLE and REPEAT at time t, respectively.
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family gag political (conservative) office political (liberal)

Overall

τk value 0.290 0.132 0.445 0.047 0.573
95% CI [0.042, 0.549] [−0.096, 0.371] [0.158, 0.744] [−0.196, 0.290] [0.301, 0.837]
p-value 0.025∗ 0.275 0.004∗ 0.694 < 0.001∗

Heavy

τk value −0.394 −0.556 −0.694 −0.647 −0.664
95% CI [−0.678,−0.114] [−0.864,−0.243] [−1.056,−0.325] [−0.944,−0.350] [−1.021,−0.302]
p-value 0.007∗ < 0.001∗ < 0.001∗ < 0.001∗ < 0.001∗

Light

τk value 0.784 0.635 1.274 0.552 1.475
95% CI [0.421, 1.150] [0.298, 0.977] [0.860, 1.681] [0.198, 0.905] [1.120, 1.827]
p-value < 0.001∗ < 0.001∗ < 0.001∗ 0.001∗ < 0.001∗

Table 2.2: The difference between the mean reward under CYCLE and the mean reward under REPEAT for

each arm. All results are rounded to 3 digits. The p-values are obtained through permutation tests with

10, 000 permutations. We use asterisk to indicate that the test is significant at the level α = 0.1. The 95%
confidence intervals are obtained using bootstrap with 5, 000 bootstrapped samples.

Given that we have conducted 5 tests simultaneously (one for each arm), in order to control the

family-wise error rate, we need to correct the level αk (k ∈ [K]) for each test. More formally,

to ensure the probability that we falsely reject any null hypothesis to be at most α, for each

test, the p-value of a test should be at most its corresponding corrected αk. We adopt the

Holm’s Sequential Bonferroni Procedure (details presented in Appendix A.2) to perform this

correction (Abdi, 2010).

Our results show that for three arms—family, political (conservative) and political (liberal)—

the non-zero difference between the mean reward under the two recommendation sequences are

significant at level α = 0.1 (Table 2.2). These findings confirm our research hypothesis that user

preferences are not fixed (even in a short amount of time) in a K-armed bandit recommendation

setting. There may be many causes of the evolving reward distributions (preferences). One

possibility, among many others, is that the reward of an arm depends on its past pulls. In other

words, people’s preference towards an item depends on their past consumption of it. For example,

existing marketing and psychology literature has suggested that people may experience hedonic

decline upon repeated exposures to the same item (Galak and Redden, 2018; Baucells and Sarin,

2007). On the other hand, in music play-listing, one may expect the expected reward of an arm (a

genre) to increase due to the taste that the listener has developed for that genre of music (Schäfer

and Sedlmeier, 2010). For a more comprehensive discussion on preference formation, we refer

the readers to Becker (1996).

Finally, to better understand the nature of our findings, we divide the participants into

heavy comic readers who read comics daily and light comic readers who read comics at a lower

frequency. Among participants who are assigned the CYCLE sequence, there are 17 heavy

readers and 23 light readers. For REPEAT, there are 16 heavy readers and 22 light readers. We

perform the same analysis as noted above for each of the two groups. Similar to the overall

findings, among both heavy and light readers, evolving preferences (evolving mean reward) have

been observed (Table 2.2), confirming our research hypothesis. Interestingly, we find that for

each genre, the heavy readers tend to prefer the recommendations from the REPEAT sequence

over the CYCLE sequence. On the contrary, for each genre, light readers prefer recommendations
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Figure 2.3: The reward at each time step of the CYCLE and REPEAT recommendation sequence averaged

across heavy and light readers, respectively. The error bars indicate one standard deviation from the

mean. For the REPEAT sequence, we highlight when the arm switches using the vertical lines and add the

arm name (comic genre) corresponding to the time period in between the switches using the black texts.

The blue and orange dotted lines are fitted through the rewards collected under CYCLE and REPEAT,

respectively.

from the CYCLE sequence over the REPEAT sequence. As an initial step towards understanding

this phenomenon, we present descriptive data analysis on how rewards (user preferences) evolve

for heavy and light readers under the two recommendation sequences. Similar to our results in

Table 2.2, for light readers, at most time steps, the reward trajectory of CYCLE has a higher value

than the reward trajectory of REPEAT; while for heavy readers, this is the opposite (Figure 2.3).

By looking at the reward trajectories (and the lines fitted through the reward trajectories) over

the entire recommendation sequence (Figure 2.3), we find additional trends: for light readers, the

differences between the rewards collected under CYCLE and REPEAT are increasing over time;

while for heavy readers, such differences are relatively stable. This trend is also observed in the

reward trajectory (and the line fitted through the reward trajectory) of each arm under CYCLE

and REPEAT (Figure 2.4). In particular, for light readers, among all arms (comic genres) except

family, we find that the lines fitted through the rewards collected under CYCLE and REPEAT

become further apart as the number of arm pulls increases. This distinction between heavy

and light users may be due to various reasons. For example, light readers may prefer variety

in their recommendations because they are exploring their interests or the light readers and

heavy readers share different satiation rates. On a related note, a recent study has shown that

the satiation rates of people may depend on their personality traits (Galak et al., 2022). Precisely

understanding the causes of this distinction between heavy and light readers is of future interest.

2.5 Usage Example of the Experimental Framework

As an illustration of the usage of our experimental framework, we compare the performance

of different algorithms, in terms of both the cumulative rewards, and the users’ own reflection

on their interactions with these algorithms. Though we are in a simulated and simplified
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Figure 2.4: Each plot shows the reward collected for a particular arm at each arm pull under the CYCLE

and REPEAT recommendation sequences. The error bars indicate one standard deviation from the mean.

The reward trajectories are averaged across heavy and light readers, respectively. The blue and orange

dotted lines are fitted through the reward trajectories for each arm under CYCLE and REPEAT, respectively.

Self-selected UCB TS ETC ε-Greedy CYCLE REPEAT

Cumulative reward

319.36
[205, 434]

323.70
[223, 424]

312.37
[204, 420]

324.49
[209, 440]

307.59
[205, 411]

316.5
[216, 417]

301.63
[201, 427]

Hindsight satisfaction 81.08% 75.00% 72.73% 76.92% 80.49% 77.50% 63.16%
Preference towards autonomy 71.62% 50.00% 68.18% 58.97% 58.54% 62.50% 65.79%

Table 2.3: Performances of each algorithm in terms of different enjoyment characterizations. The first row

gives the cumulative rewards for each algorithm, averaged over participants who have interacted with it.

We also report the 95% confidence intervals for the cumulative rewards. The hindsight-satisfaction row

shows the percentage of participants who believe the sequence of comics they have read captures their

preference well. The last row provides the percentage of participants who prefer to select comics to read

on their own in hindsight.

recommender system setup, we aim to provide some understanding on (i) whether people prefer

to be recommended by an algorithm over deciding on their own, and (ii) whether more autonomy

(choosing the next comic genre on their own) results in a more attentive and mindful experience.

We note that, compared to our findings in Section 2.4 that are obtained through a rigorous

hypothesis testing framework, the results in this section are exploratory in nature and should

not be interpreted as definitive answers to the above questions.

2.5.1 Enjoyment

We first compare different algorithms (Self-selected, UCB, TS, ETC, ε-Greedy, CYCLE and

REPEAT) in terms of the participants’ enjoyment. More specifically, we want to compare the

participants who are provided recommended comics to read with the ones who choose on their
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Self-selected UCB TS ETC ε-Greedy CYCLE REPEAT

Reading Memory 91.89% 90.00% 92.42% 93.16% 90.24% 90.00% 90.35%
Rating Memory 71.17% 70.00% 70.45% 76.92% 69.92% 69.16% 57.89%

Table 2.4: Average correctness of the two types of memory questions for each algorithm.

own. In general, enjoyment is hard to measure (Payne et al., 1999). To this end, we look at

participants’ enjoyment and preference towards these algorithms through the following three

aspects:

• Cumulative rewards: This metric is closely related to the notion of “regret” that is com-

monly used to compare the performance of bandit algorithms (Lattimore and Szepesvári,

2020). More formally, for any participant i, the cumulative reward of an algorithm that

interacts with participant i is given by

∑T
t=1Ri(t) where Ri(t) is the reward provided by

participant i at time t. In Table 2.3, for each algorithm, we show their cumulative rewards

averaged over participants who have interacted with the algorithm.

• Hindsight satisfaction: After the participants interact with the algorithm, in the post-

study survey, we ask them the following question: “Do you feel that the sequence of

recommendations
2

captured your preferences well?” Participants’ answers to this question

provide their hindsight reflections towards how well the algorithm performed and whether

they are satisfied with it. The second row of Table 2.3 shows the percentage of participants

who believe the sequence of comics they read has captured their preference well.

• Preference towards autonomy: In addition to the previous two metrics, we have explicitly

asked the participants to indicate whether they prefer to choose comics to read on their

own. In the post-study survey, we ask: “Do you prefer being recommended comics to

read or selecting comics to read on your own?” The third row of Table 2.3 provides the

percentage of participants who prefer to select comics on their own for each algorithm.

In our collected data, the participants who have given more autonomy (the Self-selected

participants) prefer more autonomy in hindsight, compared to other participants. Though

Self-selected does not have the highest mean cumulative reward, it has the highest percent

of participants who believe that the comics they read have captured their preferences well

in hindsight (Table 2.3). This misalignment between mean cumulative reward and hindsight

satisfaction also shows in other algorithms (i.e., higher mean cumulative reward may not indicate

higher hindsight satisfaction), including ε-Greedy and ETC. On the other hand, UCB performs

well in terms of the mean cumulative reward, while having the lowest percentage of participants

wanting to have more autonomy.

2.5.2 Attentiveness

We want to understand whether participants who are asked to choose on their own have a

more mindful experience, in which the participants are more attentive to what they have read

2
For Self-selected participants, this should be interpreted as comics they have read/self-selected.
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through (Epstein, 1999). There is no consensus on defining and measuring mindfulness of an

experience (Grossman, 2008). Some of the existing research uses self-reported mindfulness as

a measurement (Greco et al., 2011). In our case, we look at how attentive the participants are

to their own experience, though the lens of memory—for each participant, in the post-study

survey, we ask them two types of memory questions:

• Reading memory: In the post-study survey, we present the participants three randomly

selected comics and ask them to indicate whether they have read the comics before. This

question aims to measure the participants’ memory of what they have read. The first row

of Table 2.4 shows the average correctness percentage for the reading memory questions

for each algorithm.

• Rating memory: We also look at the participants’ memory on how they have liked certain

comics. To this end, in the post-study survey, we present three randomly selected comics

among the ones the participants have read and ask them to indicate whether they have

rated the comic with a score of five or above. The second row of Table 2.4 shows the

average correctness percentage.

We note that these questions differ from the attention check questions after each comic and are

not directly related to the compensation that the participants get. However, the high correctness

percentage shown in Table 2.4 on the reading memory questions suggest that the participants

have attempted to answer the questions from their memory instead of providing random answers.

In general, the participants have performed much better on the reading memory questions

than the rating memory questions, suggesting that they may be more aware of what they have

consumed than how they have liked them. In addition, all participants perform similarly in

terms of the reading memory correctness percentage with those whose algorithm is ETC or

Self-selected performing slightly better. Though it is hard to say which algorithm provides the

most attentive experience to the participants and whether Self-selected participants have a more

mindful experience, it is relatively clear that participants whose algorithm is REPEAT perform

the worst in terms of rating memory. Our data does not provide strong evidence on believing

that more autonomy results in more attentive experience, but may suggest that less enjoyable

experience (e.g., for participants whose algorithm are REPEAT) correlates to less attentiveness.

2.6 Discussion

Our work provides a general experimental framework and toolkit to understand assumptions on

human preferences in a bandit setup. It also allows one to perform field tests of different bandit

algorithms that interact with humans. Using these tools, we build a publicly available dataset

that contains trajectories of recommendations and ratings of them given by multiple users in

a bandit setting. The collected data has been used to check the validity of a core assumption

on human preference in MABs literature—that the reward distributions (corresponding to user

preferences) are fixed. We show that even in a short time period like our bandit recommendation

setup, such dynamical preference exists. Further, our observations on the difference between

the light and heavy user in their preference dynamics suggest the need of having a more
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granular understanding of human preferences. As an illustrative usage of our experimental

framework, we have explored the study participants’ preferences towards selecting content

to read on their own and being recommended content to read. As we have discussed above,

these findings are exploratory in nature with the goal of showcasing different usages of our

experimental framework; thus, they should not be interpreted as definitive answers. In our

exploratory analysis, we observe that an algorithm achieving the highest cumulative reward

does not necessarily imply that it will achieve the highest hindsight satisfaction.

At a higher level, our work fits in the broader picture of understanding the validity of

assumptions that machine learning systems (and in our case, recommender systems) rely on.

Although all machine learning models are built upon some simplifying assumptions of the

world, some of these assumptions oversimplify the world to the extent that they lose the core

characterizations of the problem we are interested in. In our case, the assumptions we want

to understand are centered around user preferences. We have identified that assumptions on

the temporal stability of preferences used in traditional MABs literature are oversimplifications.

The balance between identifying simplifications that are helpful for building learning systems

and avoiding oversimplifications that discard core characteristics of the problem is difficult. As

put by the famous statistician George Box, “all models are wrong, but some are useful” (Box,

1979). Our goal for developing the experimental toolkit and conducting the human subjects

study is to provide ways for identifying assumptions on user preferences that are useful for

developing MABs algorithms in recommender systems. Below we discuss the limitations and

future directions of our work.

2.6.1 Limitations

We discuss several limitations of our study. First, the sizes of the mean reward differences of

each arm reported in Section 2.4 are within 1.5 point on the 9-point Likert scale, which may

be considered small. This is due to many reasons. For one, the enjoyment score (the reward)

provided by each participant is subjective and may have high variance due to this subjectivity.

Though a difference may be considered to be strong in a within-subjective study, it may be

thought of as small in a between-subject study (the type of study in our case). However, we note

that our results obtained using the permutation test show that reward distributions are indeed

not fixed over time for multiple arms in the K-armed bandit recommendation setup. Second,

each arm represents a comic series. Though we have selected the comics from each series in terms

of their quality (the number of likes that the comics receive), there may still be heterogeneity

among the selected comics belonging to the same series, and it is up to discussion on whether

one should consider these comics to belong to the same arm. Thirdly, many quantities (e.g.,

enjoyment/satisfaction, mindfulness/attentiveness) we want to measure are less well-defined.

Our way of measuring them is from a particular angle, and may not be widely applicable. Fourthly,

the study domain is chosen to be comics due to reasons including the short consumption time

of a comic and the study requires the participants to read 50 comics. Although all of our

experiments are completed within 30 minutes, it is uncommon in real-world settings for people

to read 50 comics at a time and thus may introduce uncontrolled boredom effects. Fifthly, in our

experiments, we compare the user preferences towards each arm using two fixed sequences.
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One may also utilize a purely randomized sequence as a baseline to better understand user

preferences. Finally, due to resource constraints (e.g., funding limits for conducting the study

and computational limits on the number of simultaneous experiment instances we can host on

our server), we recruited 360 participants (with 316 of them passing the attention checks) for our

study. Compared to industry-scale experiments, the number of participants in our study is on the

lower end. It is also worth mentioning that our implementations of the bandit algorithms ensure

that the comic recommendations only depend on the user’s own history, which is not a common

practice for recommender systems on existing platforms. In practice, one may utilize other users’

interaction histories to warm start these bandit algorithms. Though there are these limitations,

we would like to emphasize that our work makes a substantive step towards understanding the

applicability of traditional assumptions on user preferences in MABs literature.

2.6.2 Future Work

There are multiple future directions for our work. Our findings on the existence of evolving

preferences in a K-armed bandits recommendation setting suggest that in order to study the

decision-theoretic nature of recommender systems using the MAB framework, one must account

for such preference dynamics. The need for learning algorithms (oftentimes reinforcement

learning algorithms) that deal with the impact of recommendations on user preferences have

also been proposed in recent works (Zheng et al., 2018; Ie et al., 2019; Shani et al., 2005a;

McInerney et al., 2018; Chen et al., 2019; Mehrotra et al., 2020; Chen et al., 2021a; Chen et

al., 2021b; Wang et al., 2022; Chen et al., 2022). An important building block for this line of

research is to have better modeling of human preference dynamics. Our experimental framework

and toolkit can provide more grounding and accessibility for research on it. As an example,

our observation that heavy and light comic readers have different preference dynamics can

be further investigated using our experimental framework, advancing our understanding on

evolving preferences in a more granular way. More broadly, our toolkit can be used for: (i)

collecting data using fixed or randomized recommendation sequences or bandit algorithms to

identify and estimate preference dynamics; and (ii) conducting field tests of bandit algorithms

designed to address evolving preferences.

Our exploratory data analysis on the performance of different algorithms suggests that the

human interactants of the bandit algorithms may care about other aspects of their experience in

addition to cumulative rewards. For example, Self-selected has a higher percentage of satisfied

participants in hindsight compared to UCB, though UCB has a higher average cumulative reward.

This suggests that besides traditional performance metrics used to analyze and develop these

bandit algorithms, we should consider a broader set of objectives and metrics when studying

these problems. On a related note, given that we want our algorithm to account for evolving

preferences, when regret (the difference between the expected cumulative reward obtained by a

proposed policy and an oracle) is used as the performance metric, the oracle should be chosen

to be adaptive instead of the best-fixed arm considered in many MABs (including contextual

bandits) literature.
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Chapter 3
On Human-Aligned Risk Minimization

3.1 Introduction

The decision-theoretic foundations of modern machine learning models have largely focused

on estimating model parameters that minimize the expectation of some loss function. This

ensures that the resulting model have high average case performance, which loosely is what is

meant by good generalization performance. However, as ML models are increasingly deployed

in broader societal settings, and in particular, to assist humans in decision-making, it is clear that

humans want models to have not just good average performance but also properties like fairness.

Due to the importance of these additional desiderata, there have been a burgeoning interest in

capturing these properties via appropriate constraints and modifications of the classical objective

of expected loss (Kamishima et al., 2011; Garcıa and Fernández, 2015; Sra et al., 2012; Duchi

et al., n.d.). In this work, we posit a very natural if simple solution to addressing these varied

desiderata that are driven in large part by human considerations. Specifically, we suggest that in

contrast to using the standard workhorse of expected loss, we draw from theories of human

cognition in psychology and behavioral economics, to consider a “human-aligned” risk instead.

Alternatives to expected loss based risk measures have a long history in decision-making

(Howard and Matheson, 1972), with earlier efforts focusing on percentile risk criteria (Filar et al.,

1995). In machine learning, instead of minimizing expected loss, various risk measures have

been considered in different settings. In risk sensitive reinforcement learning, conditional value-

at-risk (CVaR), a percentile risk measure that quantifies the tail performance of a model, has

been connected to robustness to modeling errors (Chow et al., 2015; Osogami, 2012). Recently,

human-aligned risk measures have also been explored in bandit (Gopalan et al., 2017) and

reinforcement learning (Prashanth et al., 2016), where the goal of the agent is to produce long

term returns aligned with the preferences of one or more humans.

Contributions. In this work, we introduce a novel notion of human risk minimization (Sec-

tion 3.3), by bringing ideas from cumulative prospect theory (Section 3.2) into supervised

learning. We explore various salient characteristics of our objective such as diminishing sensi-

tivity, decision-making based on higher-order moments and information-content or ”surprisal”
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view point of human risk (Section 3.4). We also study the implications of minimizing our objec-

tive in the context of subpopulation performance (Section 3.5). In particular, our empirical results

illustrate that human risk minimization inherently avoids drastic losses across all subgroups.

3.2 Background

3.2.1 Cumulative Prospect Theory

As a seminal work in behavioral economics, cumulative prospect theory (CPT) (Tversky and

Kahneman, 1992) provides a framework to emulate human decision-making under uncertainty.

In particular, CPT points out that humans overweight extreme events that occur with low

probability, rather than treating all the events equally, which is the assumption of expected

utility theory (EUT). As an alternative to EUT, CPT has three important components (Rieger

and Wang, 2006):

• Outcomes are considered as gains or losses compared to a reference point;

• Value functions are concave for gains, convex for losses and flatter for gains than for

losses;

• An inverse S-shaped (first concave then convex) probability weighting function (Figure 3.1

(a)) is used to transform the cumulative distribution function so that small probabilities

are inflated and large probabilities are deflated (Wu and Gonzalez, 1996).

Current machine learning follows the EUT framework in the sense that expected losses are

minimized. However, as CPT has pointed out, a human evaluates risk differently. For example,

given two models {M1,M2} such thatM1 has zero loss with probability .95 and loses 100 with

probability .05 whileM2 loses 5.01 all the time, EUT will chooseM1. The reasoning behind is

that the expected loss ofM1 is 5, which is smaller than the expected loss ofM2, which is 5.01.

However, from the CPT perspective,M2 will be chosen because CPT inflates the probability .05
andM1 will end up having a larger risk. In this case, because of the human-innate probability

weighting, we end up choosing a model that avoids drastic losses instead of the one with a better

average performance.

The inverse S-shaped CPT probability weighting function captures that humans over-weight

extreme events with low probability while under-weight “average” events that are more probable

but less extreme. Many parametric forms of the probability weighting function have been

proposed (Tversky and Kahneman, 1992; Prelec et al., 1998; Wu and Gonzalez, 1996; Rieger and

Wang, 2006). To start with, we formally define a class of weighting functions calledWCPT.

Definition 3.1

Let w : [0, 1]→ [0, 1] be a differentiable function. Then, w ∈ WCPT if and only if

1. w(0) = 0 and w(1) = 1;

2. there exists a ∈ (0, 1) such that w(a) = a;
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3. w′(x) is monotonically decreasing on x ∈ [0, a) andw′(x) is monotonically increasing

on x ∈ (a, 1].

Traditional CPT probability weighting functions fall into this class, including the original

weighting function (for losses) w(x) = x.69

(x.69+(1−x).69)1/.69 (Tversky and Kahneman, 1992). For a

real-valued continuous random variable X with cumulative distribution function F (x) and a

CPT probability weighting function w ∈ WCPT, the CPT subjective utility is defined as (Tversky

and Kahneman, 1992; Rieger and Wang, 2006):

UCPT(X) =

∫ +∞

−∞
v(x)dg(F (x)) (3.1)

where (1) v : R→ R is a value function; (2) g(F (x)) = w(F (x)) when x < 0 and g(F (x)) =
−w(1− F (x)) when x ≥ 0.

Rank-dependent Utility. As pointed out in (Tversky and Kahneman, 1992), CPT subjective

utility is a rank-dependent utility since the decision weight on x depends on the “rank” of x,

which is given by F (x). When F (x) is weighted by w ∈ WCPT (Diecidue and Wakker, 2001) and

v(x) = x, the CPT-weighted rank-dependent utility is:

UCPT-RD(X) =

∫ +∞

−∞
xdw(F (x)). (3.2)

We focus on studying the effect of using CPT-weighted cumulative distribution functionw(F (x))
on training an ML model. Hence, analyzing the effect of using a reference point and a value

function v is out of the scope of this paper. As one may have noticed, if w(F (x)) = F (x), then

UCPT-RD(X) = E[X].

To have a finite CPT subjective utility (Rieger and Wang, 2006) for a real-valued continuous

random variable X with w ∈ WCPT, it is sufficient to ensure w to be strictly increasing on [0, 1]
and continuously differentiable on [0, 1], i.e. w′(0) and w′(1) are finite. As proposed by (Rieger

and Wang, 2006), the simplest polynomial that satisfies the above conditions is

wPOLY(F (x)) =
3− 3b

a2 − a+ 1

(
F (x)3 − (a+ 1)F (x)2 + aF (x)

)
+ F (x) (3.3)

where a ∈ (0, 1) is the fixed point, i.e. wPOLY(a) = a, and b ∈ (0, 1) controls the curvature

of wPOLY(·) ∈ WCPT. As b approaches 1, wPOLY(F (x)) will converge to the linear function

w(F (x)) = F (x). One could interpret b as controlling the sensitivity of the probability weight-

ing function to a unit difference in probability changes (Gonzalez and Wu, 1999). We use

wPOLY( · ; a, b) to denote the polynomial form CPT probability weighting function with fixed

point a and curvature b.
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(a) wPOLY(F (x)) (b) w′
POLY

(F (x))

Figure 3.1: (a) Inverse S-shaped probability weighting function wPOLY is the steepest near the endpoints

0, 1. The parametric form of wPOLY( · ; a, b) is shown in Equation 3.3. (b) U -shaped CPT probability

weighting function derivative w′
POLY

up-weights the tails of the original distribution.

Proposition 1. Given any cumulative distribution function F (x), if a non-decreasing continuous
function w : [0, 1] → [0, 1] satisfies w(0) = 0 and w(1) = 1, then w(F (x)) is a cumulative
distribution function of some random variable.

For any w ∈ WCPT that is non-decreasing (e.g. wPOLY), for a real-valued continuous random

variable X with cumulative distribution function F (x) and density f(x), one can think of

f(x)w′(F (x)) as a CPT-weighted density and w(F (x)) is the corresponding CPT-weighted

cumulative distribution function. UCPT-RD is the expectation of the random variable that has the

CPT-weighted cumulative distribution function. We denote the set of non-decreasing functions

inWCPT to beWCPT.

3.2.2 Empirical Risk Minimization

The canonical way of learning an ML model is through empirical risk minimization (ERM).

Given n i.i.d. samples Z1, . . . , Zn ∈ Z , and a loss function ℓ : Θ×Z → R, the population risk
(expected loss) for model θ is defined to be:

R(θ) = E[ℓ(θ;Z)].

ERM minimizes
1
n

∑n
i=1 ℓ(θ;Zi) (empirical risk). However, expectation is only one of the many

risk measures. For example, value-at-risk and conditional value-at-risk (Rockafellar, Uryasev,

et al., 2000) are popular risk measures for evaluating risks of portfolios of financial instruments.

CPT defines another way of measuring risk, which aligns with human’s preferences. We want

to study if minimizing a human-aligned risk will give us ML models that have properties other

than a low population risk.

3.3 Human Risk Minimization
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Definition 3.2

Given a real-valued random variable Z ∈ Z , a loss function ℓ : Θ × Z → R and a CPT

probability weighing function w ∈ WCPT, the human risk is defined to be

RH(θ;w)
def
= E[ℓ(θ;Z)w′(F (ℓ(θ;Z)))], (3.4)

where F (ℓ(θ;Z)) is the cumulative distribution function of the loss.

Comparing Equation 3.4 with the CPT-weighted rank-dependent utility in Equation 3.2, we

see that RH(θ) = UCPT-RD(ℓ(θ;Z)). Given n i.i.d. samples Z1, . . . , Zn ∈ Z , we define empirical

human risk minimization (EHRM) as

θ∗ = argmin
θ

1

n

n∑
i=1

ℓ(θ;Zi)w
′(Fn(ℓ(θ;Zi))), (3.5)

where Fn is the empirical CDF of the loss.

Optimization. When ℓ is differentiable, we use the following iterative update rule to minimize

empirical human risk:

θt+1 = θt − ηt
n

n∑
i=1

wti∇θℓ(θ
t;Zi) for all t ∈ {0, · · · , T − 1},

where wti = w′(Fn(ℓ(θ
t;Zi))) and ηt is the learning rate. Note that this heuristic approach relies

crucially on the assumption that minor perturbations in θ, don’t change w′(Fn(ℓ(θ;Z)) drasti-

cally. We empirically show that such a heuristic approach performs quite well in practice (See

Appendix B.2). Deriving provably optimal optimization algorithms for EHRM is an interesting

open problem.

Remarks. In general, there are two levels of decision making in supervised learning: model

selection when training a model, and instance prediction when using a model. These two kinds

of decisions are very much related. In traditional ERM, a model is selected over others when

per-instance predictions are more accurate on average. We explore the consequences of EHRM

in both settings: Section 3.2.1 and 3.4.2 discuss the model selection consequences of EHRM;

Section 3.5 explores its consequences on per-instance predictions. Different from traditional

settings where CPT is considered, supervised learning only evaluates losses. Humans tend to be

risk-averse when facing possibilities of large loss. Such a property distinguishes EHRM from

ERM. When training machine learning models, surrogate losses are used (e.g., hinge loss is used

in replace of 0/1 loss). Most of the times, such surrogate losses are upper bounds for the original

losses. In such cases, the risk-aversion towards possible drastic loss will be carried through

when surrogate loss is used instead of the true loss.

To further understand how adding the weights w′(F (ℓ(θ;Z))) to expected loss influences

the learned model, we provide the psychological interpretation (Section 3.4.1) and an analytical

illustration of how skewness of the loss distribution may influence choices of people with different

risk preferences (Section 3.4.2) as well as an information weighting view point (Section 3.4.3) of

the probability weighting function.
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3.4 Characteristic Properties of Human Risk Minimization

We next review some characteristic properties of human risk minimization, contrasting it with

the standard machine learning objective of expected loss minimization. To simplify the notation,

we will denote the CDF F (ℓ(θ;Z)) of the loss random variable L as F (ℓ) in the subsequent

analysis.

3.4.1 Diminishing Sensitivity to Probability Changes

Recall from Equation (3.3) that we work with the following polynomial form of CPT probability

weighting function

wPOLY(F (x)) =
3− 3b

a2 − a+ 1

(
F (x)3 − (a+ 1)F (x)2 + aF (x)

)
+ F (x),

where a ∈ (0, 1) is the fixed point of the function, and b ∈ (0, 1) controls the curvature. For any

event E with probability P (E) ∈ (0, 1), given a probability change ∆, we define

g(P (E)) =
(
wPOLY(P (E) + ∆; a, b)− wPOLY(P (E); a, b)

)
/∆,

which is the ratio between the human perceived probability change and the original probability

change. Intuitively, g(P (E)) represents human’s sensitivity to probability changes.

Lemma 3.1

For any eventE with probabilityP (E) ∈ (0, 1), lim
∆→0

g(P (E)) is a monotonically increasing

function of |P (E)− a+1
3
|.

The above stated result can be seen as a quantitative evidence of how CPT probability

weighting function captures humans’ diminishing sensitivity, which has been long-studied

in behavioral economics (Tversky and Kahneman, 1992). Humans are sensitive to probability

changes of extreme events. Such sensitivity diminishes as the events become less extreme.

When using CPT probability weighting function to weight F (ℓ), the event we are considering is

E = I {L ≤ ℓ}, i.e. if the loss L is less than or equal to a threshold ℓ. In this case, P (E) = F (ℓ).
Diminishing sensitivity states that for a given amount of probability change, human’s perceived

probability change depends on where the probability change happens. The perceived change

diminishes as the distance between where it happens and the boundary (impossibility F (ℓ) = 0
and certainty F (ℓ) = 1) becomes smaller. The probability changes that happen close to the

boundary will be up-weighted while the changes in between will be down-weighted. As shown

in Lemma 3.1, for wPOLY, the sensitivity of the probability change ∆ diminishes as P (E) moves

away from 0 (impossibility) and 1 (certainty).

3.4.2 Responsiveness to Skewness of the Loss Distribution

Since the inverse S-shaped probability weighting function exaggerates small probabilities of both

good and bad extreme outcomes, intuitively, its overall impact on evaluating a model depends
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on higher-order moments of the loss distribution. We highlight this phenomena by considering

a family of Bernoulli distributions with same mean and variance. In particular, consider the

family of models {Mθ | θ ∈ [0, 1]} whose losses {ℓ(θ) | θ ∈ [0, 1]} are parameterized by θ. For

all θ ∈ [0, 1], suppose that ℓ(θ) follows a Bernoulli distribution (He et al., 2018; Low et al., 2012):

P

(
ℓ(θ) = 1−

(
1− θ
θ

)1/2
)

= θ, P

(
ℓ(θ) = 1 +

(
θ

1− θ

)1/2
)

= 1− θ.

In the above setup, the mean and variance of the losses are independent of θ. In particular,

we have that

E[ℓ(θ)] = 1 and Var(ℓ(θ)) = 1 for all θ ∈ [0, 1].

Hence, in this setting empirical risk minimization will treat all the models equally. However, the

third central moment (skewness) of ℓ(θ) is given by

Skewness(ℓ(θ)) =
2θ − 1√
θ(1− θ)

.

Observe that Skewness(ℓ(θ)) is a monotonically increasing function of θ, with Skewness(ℓ(θ)) =
0 for θ = 1

2
. Hence, θ < 0.5 corresponds to models with negatively skewed loss distributions,

while θ > 0.5 corresponds to models with positively skewed loss distributions. Then, in this

setting, we have the following result:

Lemma 3.2

Consider the human risk objective in Equation (3.4) instantiated with wPOLY having fixed

point a = 1
2
. Then, we have the following:

1. For θ < 0.5, RH(θ;wPOLY( · ; a, b)) is a monotonically increasing function of b.

2. For θ > 0.5, RH(θ;wPOLY( · ; a, b)) is a monotonically decreasing function of b.

Remarks. The above result shows that for models with negatively skewed loss distributions,

their expected loss is higher than any human risk, while the opposite is true for positively

skewed loss distributions. While empirical risk minimization will treat all the models equally,

human risk minimization will distinguish the models through higher-order moments of the loss

distribution.

3.4.3 Weighting by Information Content

The information content or “surprisal” of an event is the amount of information gained when

the event is observed and is defined as follows.
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Definition 3.3

The information content of an event E with probability P (E) is defined as

I(E)
def
= − ln[P (E)],

where e is used as the base of the logarithm.

Note that the above definition captures the intuition that the observation of a rare event provides

more information than a common one. In our setting, the rare event corresponds to the event

that the loss L takes extreme values.

Next, we construct a special weighting function wIT(·) using the information content of the

events E1 = I{L ≤ ℓ} and E2 = I{L > ℓ}. Observe that the information content of the events

E1 and E2 is given by− lnF (ℓ) and− ln(1−F (ℓ)) respectively. Moreover, it is easy to see that

as ℓ gets smaller, the information content of the left tail event E1 increases; and as ℓ gets larger,

the information content of the right tail event E2 increases.

Then, we can use the information content of E1 and E2 to weight the density of L, and

define the corresponding weighting function. In particular, the information weighted density is

defined to be:

w′
IT
(F (ℓ))f(ℓ) =

1

2
(I(E1) + I(E2))f(ℓ)

= −1

2
f(ℓ) ln (F (ℓ) · (1− F (ℓ))) ,

and the corresponding information content weighting function is given by:

wIT(F (ℓ)) =

∫ 1

0

1 · w′
IT
(F (ℓ))dF (ℓ)

=
1

2

(
(1− F (ℓ)) · ln(1− F (ℓ))− F (ℓ) · ln(F (ℓ))

)
+ F (ℓ).

Lemma 3.3

The information content weighing function wIT belongs toWCPT.

Interestingly, using wIT to weight a distribution is of interest in information theory, where

it is known as the two-sided information-weighted distribution (Oliveira and Cintra, 2016).

Moreover, it is easy to see that wPOLY(·, a, b) with fixed point a = 1/2 and curvature b = ln 2 is

approximately equal to the third order Taylor approximation ofwIT. To the best of our knowledge,

this is the first time that information weighting function and CPT probability weighting function

have been connected. Uncertainty-aversion in human preferences has also been studied in

behavioral economics (Camerer and Weber, 1992; Camerer et al., 2004). In the context of human

risk minimization, using wIT, we can define the information-weighted human risk to be

RH(θ;wIT) = E[ℓ(θ;Z)w′
IT
(F (ℓ(θ;Z)))].
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As studied in (Oliveira and Cintra, 2016), the information-weighted distribution wIT(F (ℓ))
will be heavy-tailed when the CDF F (ℓ) = e−κ|ℓ| for some κ > 0. Such heavy-tailedness for

the loss distribution may cause human risk to be hard to estimate. We believe that deriving

statistically and computationally optimal procedures for minimizingRH(θ;wIT) is an interesting

direction for future work.

3.5 Implications for Performance over Subgroups

Machine learning models are being increasingly deployed to automate a variety of day-to-

day tasks. Employers use such models to select job applicants, provide credit scoring and

predicting insurance premiums. With such high stakes, ensuring that learned models are non-

discriminatory or fair with respect to sensitive features such as gender and race is of utmost

importance (Pedreshi et al., 2008; Kamishima et al., 2011; Dwork et al., 2012; Kusner et al.,

2017). In this section, we explore the implications of HRM towards subgroup performances.

In particular, we know that HRM up-weights possible extreme events, hence, we expect HRM

to avoid drastic losses for all subpopulations. We test this hypothesis on both synthetic and

real-world datasets and use wPOLY( · ; a, b) specified in Equation 3.3. We have chosen a = .5 so

that for all b ∈ (0, 1), w′
POLY

(F (ℓ)) is symmetric about the line F (ℓ) = a.

3.5.1 Synthetic Experiment

Setup. In this experiment, we create a synthetic regression task to test the performance of

EHRM on the minority subgroup. We follow the setup of (Durrett, 2019) and draw our covariates

(features) from an isotropic Gaussian X ∼ N (0, I5) in R5
. The noise distribution is fixed as

ϵ ∼ N (0, .01). We draw our response variable Y as,

Y =

{
X⊤θ∗ + ϵ if X(1) ≤ 1.645

X⊤θ∗ +X(1) + ϵ otherwise

where θ∗ = [1, 1, 1, 1, 1] and X(1)
is the first coordinate of X . Observe that since

P
(
X(1) > 1.645

)
= .05, {X | X(1) > 1.645} represents our minority subgroup. We fix the

squared error ℓ(θ; (x, y)) = 1
2
(y − xT θ)2 as our loss function.

Results. Figure 3.2 plots the risk of minority and majority groups for EHRM and ERM. The

empirical risk minimizer is denoted by OLS, the solution of this ordinary least square problem.

We see that for different values of b < 1, EHRM has a lower minority risk than ERM. Moreover,

as b approaches 1, EHRM becomes more similar to ERM. This validates our hypothesis: because

the inverse S-shaped probability weighting function inflates small probabilities for extreme

losses, drastic losses of the minority group will be exaggerated and human risk minimization

trades a low population risk for a better minority performance. Optimization performance of

EHRM is shown in Figure B.1 (Appendix B.2). In addition to comparing with ERM, we have

also compared EHRM with conditional value-at-risk (CVaR), a risk measure that has been used

to measure the worst-case subgroup performance (Duchi et al., n.d.; Williamson and Menon,
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(a) Majority Group Performance (b) Minority Group Performance

Figure 3.2: Majority and minority performance of ERM, EHRM and CVaR on the synthetic dataset. Note

that when b = 1, the CPT probability weighting function is the identity function. Hence, EHRM is the

same as ERM. 2000 training and 20000 testing data points are used in the experiment. Solid lines and

shaded area represent the means and one standard derivations of the risks.

2019). CVaRα(ℓ(θ; (x, y))) is the expectation of the worst α proportion of the losses. As shown

in Figure 3.2, when α is small, CVaR has a lower minority risk than EHRM and ERM, at a cost of

a higher majority risk. As α approaches 1, the minority risk increases drastically.

3.5.2 Recidivism Prediction: Similar Subpopulation Performance

Setup. We follow the experimental set up in (Duchi et al., n.d.). Using the fairML toolkit version

of the COMPAS recidivism dataset (Adebayo et al., 2016), we want to study the performance of

EHRM and ERM on different demographic subgroups. With a 90% and 10% train-test split, ERM

and EHRM are used to train a logistic regression model with L2−regularization. To study the

subgroup performances, we report the misclassification rate of different demographic groups on

the test set. In particular, out of the 10 binary features in the dataset, we have chosen 7 of them

that have more than 10 samples to group the population. For each chosen (binary) attribute, the

dataset can be divided into two subgroups. For EHRM, we have chosen b to be .3 so that the

EHRM probability weighting function is close to the median estimate of the CPT probability

weighting function for high rank losses in (Tversky and Kahneman, 1992). In practice, a and b
are application-dependent and user-dependent.

Results. In Figure 3.3, for each attribute, we report the maximum misclassification rate of the

two subgroups at test time. Compared to ERM, EHRM has a higher misclassification rate but a

more similar worst case performance across different subgroups. Such an observation aligns

with our hypothesis that EHRM avoids extremely bad performances for all demographic groups

and hence will sacrifice average performance for similar subpopulation performances.
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Figure 3.3: Test misclassification rate of the recidivism prediction task. Each box represents the worst

performance among the subpopulations grouped by the attribute listed below. EHRM has a more similar

performance across subgroups.

3.5.3 Gender Classification based on Facial Image: Fairness Metrics
Comparison

Setup. To study EHRM performance on standard fairness metrics, we use the AI Fairness 360

toolkit (Bellamy et al., 2018). In particular, we use the UTKFace dataset (Zhang et al., 2017) to

train a neural network
1

for predicting gender based on facial images (male= 0, female= 1). As

suggested by (Bellamy et al., 2018), we use race as an indicator to divide the population into

two groups G1 (white) and G2 (other race). The fairness metrics we have used include statistical

parity difference, disparate impact, equal opportunity difference, average odds difference, Theil

index and false negative rate difference.
2

We train the model with ERM and EHRM over 10

random seeds. For EHRM, b is chosen to be .3 for the same reason mentioned in Section 3.5.2.

To minimize empirical human risk, we have used a variant of mini-batch stochastic gradient

descent. At each step t, θt+1 = θt − ηt
∑B

i=1w
t
i∇θℓ(θ;Zi)/B, where wti = w′

POLY
(Fn(ℓ(θ

t;Zi))),
Fn(·) is the empirical CDF of the mini-batch losses,B is the mini-batch size and ηt is the learning

rate. As shown in Figure B.2 (Appendix B.2), the empirical human risk of the entire training

dataset decreases as training proceeds. We have also compared EHRM with a data pre-processing

algorithm named reweighing (Kamiran and Calders, 2012) that re-weights the samples so that

statistical dependence between the protected attribute and label are mitigated.

Results. Table 3.1 shows the mean and standard deviation of the test time performance of

EHRM, and ERM with and without reweighing pre-processing. ERM performs the best in terms

of accuracy at test time. However, reweighing with ERM and EHRM does better in terms of

the fairness metrics. The empirical result suggests that the human innate risk-aversion towards

possibility of extreme losses has promoted similar performances across different subgroups.

1
Appendix B.4 consists details of the model configuration.

2
Appendix B.3 contains definitions of these metrics in terms of G1 and G2.
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Table 3.1: Mean and standard deviation of accuracy and fairness metrics of models learned by EHRM

with wPOLY( · ; .5, .3), and ERM with and without reweighing pre-processing. For each metric, the best

performing algorithm is highlighted.

EHRM(.5, .3) Reweighing (Kamiran and Calders, 2012) ERM

Accuracy .8751 ±.0052 .8767 ±.0067 .8767 ±.0060
Stat. Parity Diff. -.0825 ±.0220 -.0875 ±.0212 -.0881 ±.0208

Disparate Impact .8475 ±.0411 .8396 ±.0390 .8368±.0386

Equal Opp. Diff. -.0440 ±.0261 -.0518 ±.0253 -.0502±.0263

Avg. Odds Diff. -.0116 ±.0202 -.0165 ±.0177 -.0173 ±.0188

Theil Index .0859 ±.0058 .0824 ±.0038 .0855 ±.0071

FNR Diff. .0440 ±.0261 .0518 ±.0253 .0502 ±.0263

3.6 Discussion

In this work, we have studied alternatives to empirical risk minimization, and in particular

proposed alternate formulations, which are better aligned with human risk measures. We have

analyzed several characteristics of human risk minimization such as diminishing sensitivity,

model selection based on higher-order moments and information-weighted loss distributions.

Further, our empirical analysis has shown that such risk measures have implications for fairness,

and in particular trade average performance for similar subgroup performances. Our empirical

analysis raises several interesting future directions. Fairness is only one of such desiderata

that people start caring about in ML. We would like to study other desiderata that HRM brings.

Meanwhile, many risk measures such as conditional value-at-risk (Rockafellar, Uryasev, et al.,

2000) can be expressed in a dual form, however, it is not immediately clear if HRM has an

equivalent formulation.
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Chapter 4
Rebounding Bandits for Modeling Satiation

Effects

4.1 Introduction

Recommender systems suggest such diverse items as music, news, restaurants, and even job can-

didates. Practitioners hope that by leveraging historical interactions, they might provide services

better aligned with their users’ preferences. However, despite their ubiquity in application, the

dominant learning framework suffers several conceptual gaps that can result in misalignment

between machine behavior and human preferences. For example, because human preferences are

seldom directly observed, these systems are typically trained on the available observational data

(e.g., purchases, ratings, or clicks) with the objective of predicting customer behavior (Bennett,

Lanning, et al., 2007; McAuley and Leskovec, 2013). Problematically, such observations tend to

be confounded (reflecting exposure bias due to the current recommender system) and subject to

censoring (e.g., users with strong opinions are more likely to write reviews) (Swaminathan and

Joachims, 2015; Joachims et al., 2017).

Even if we could directly observe the utility experienced by each user, we might expect it

to depend, in part, on the history of past items consumed. For example, consider the task of

automated (music) playlisting. As a user is made to listen to the same song over and over again,

we might expect that the utility derived from each consecutive listen would decline (Ratner

et al., 1999). However, after listening to other music for some time, we might expect the utility

associated with that song to bounce back towards its baseline level. Similarly, a diner served

pizza for lunch might feel diminished pleasure upon eating pizza again for dinner.

The psychology literature on satiation formalizes the idea that enjoyment depends not only

on one’s intrinsic preference for a given product but also on the sequence of previous exposures

and the time between them (Baucells and Sarin, 2007; Caro and Martıénez-de-Albéniz, 2012).

Research on satiation dates to the 1960s (if not earlier) with early studies addressing brand

loyalty (Tucker, 1964; McConnell, 1968). Interestingly, even after controlling for marketing

variables like price, product design, promotion, etc., researchers still observe brand-switching
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behavior in consumers. Such behavior, referred as variety seeking, has often been explained as

a consequence of utility associated with the change itself (McAlister, 1982; Kahn, 1995). For a

comprehensive review on hedonic decline caused by repeated exposure to a stimulus, we refer

the readers to (Galak and Redden, 2018).

In this paper, we introduce rebounding bandits, a multi-armed bandits (MABs) (Robbins, 1952)

framework that models satiation via linear dynamical systems. While traditional MABs draw

rewards from fixed but unknown distributions, rebounding bandits allow each arm’s rewards to

evolve as a function of both the per-arm characteristics (susceptibility to satiation and speed of

rebounding) and the historical pulls (e.g., past recommendations). In rebounding bandits, even if

the dynamics are known and deterministic, selecting the optimal sequence of T arms to play

requires planning in a Markov decision process (MDP) whose state space scales exponentially

in the horizon T . When the satiation dynamics are known and stochastic, the states are only

partially observable, since the satiation of each arm evolves with (unobserved) stochastic noises

between pulls. And when the satiation dynamics are unknown, learning requires that we identify

a stochastic dynamical system.

We propose Explore-Estimate-Plan (EEP) an algorithm that (i) collects data by pulling each

arm repeatedly, (ii) estimates the dynamics using this dataset; and (iii) plans using the estimated

parameters. We provide guarantees for our estimators in Section 4.6.2 and bound EEP’s regret

in Section 4.6.3.

Our main contributions are: (i) the rebounding bandits problem (Section 4.3), (ii) analysis

showing that when arms share rewards and (deterministic) dynamics, the optimal policy pulls

arms cyclically, exhibiting variety-seeking behavior (Section 4.4.1); (iii) an estimator (for learning

the satiation dynamics) along with a sample complexity bound for identifying an affine dynamical

system using a single trajectory of data (Section 4.6.2); (iv) EEP, an algorithm for learning with

unknown stochastic dynamics that achieves sublinear w-step lookahead regret (Pike-Burke and

Grunewalder, 2019) (Section 4.6); and (v) experiments demonstrating EEP’s efficacy (Section 4.7).

4.2 Related Work

Satiation effects have been addressed by such diverse disciplines as psychology, marketing,

operations research, and recommendation systems. In the psychology and marketing literatures,

satiation has been proposed as an explanation for variety-seeking consumer behavior (Galak

and Redden, 2018; McAlister, 1982; McAlister and Pessemier, 1982). In operations research,

addressing continuous consumption decisions, (Baucells and Sarin, 2007) propose a deterministic

linear dynamical system to model satiation effects. In the recommendation systems community,

researchers have used semi-Markov models to explicitly model two states: (i) sensitization—

where the user is highly interested in the product; and (ii) boredom—where the user is not

engaged (Kapoor et al., 2015).

The bandits literature has proposed a variety of extensions where rewards depend on past

exposures, both to address satiation and other phenomena. (Heidari et al., 2016; Levine et al.,

2017; Seznec et al., 2019) tackle settings where each arm’s expected reward grows (or shrinks)

monotonically in the number of pulls. By contrast, (Kleinberg and Immorlica, 2018; Basu et al.,
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Figure 4.1: These plots illustrate the satiation level and reward of an arm from time 1 to 30. The two

plots are generated with the same pull sequence, base rewards bk = 3 and realized noises with variance

σz = .1. In Figure 4.1a, γk = .5 and λk = 3. In Figure 4.1b, γk = .8 and λk = 1.5. In both cases, the arm

has started with 0 as its base satiation level. Black dashed line: the satiation level. Red solid line: the

reward. Blue dots: time steps where the arm is pulled.

2019; Cella and Cesa-Bianchi, 2020) propose models where rewards increase as a function of

the time elapsed since the last pull. (Pike-Burke and Grunewalder, 2019) model the expected

reward as a function of the time since the last pull drawn from a Gaussian Process with known

kernel. (Warlop et al., 2018) propose a model where rewards are linear functions of the recent

history of actions and (Mintz et al., 2020) model the reward as a function of a context that evolves

according to known deterministic dynamics. In rested bandits (Gittins, 1979), an arm’s expected

rewards change only when it is played, and in restless bandits (Whittle, 1988) rewards evolve

independently from the play of each arm.

Key Differences This may be the first bandits paper to model evolving rewards through

continuous-state linear stochastic dynamical systems with unknown parameters. Our framework

captures several important aspects of satiation: rewards decline by diminishing amounts with

consecutive pulls and rebound towards the baseline with disuse. Unlike models that depend only

on fixed windows or the time since the last pull, our model expresses satiation more organically

as a quantity that evolves according to stochastic dynamics. To estimate the reward dynamics,

we leverage recent advances in the identification of linear dynamical systems (Simchowitz et al.,

2018; Sarkar and Rakhlin, 2019) that rely on the theory of self-normalized processes (Peña et al.,

2009; Abbasi-Yadkori et al., 2011) and block martingale conditions (Simchowitz et al., 2018).

4.3 Rebounding Bandits Problem Setup

Consider the set of K arms [K] := {1, . . . , K} with bounded base rewards b1, . . . , bK . Given

a horizon T , a policy π1:T := (π1, . . . , πT ) is a sequence of actions, where πt ∈ [K] depends

on past actions and observed rewards. For any arm k ∈ [K], we denote its pull history from

time 0 to T as the binary sequence uk,0:T := (uk,0, . . . , uk,T ), where uk,0 = 0 and for t ∈ [T ],
uk,t = 1 if πt = k and uk,t = 0 otherwise. The subsequence of uk,0:T from t1 to t2 (including

both endpoints) is denoted by uk,t1:t2 .
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At time t, each arm k has a satiation level sk,t that depends on a satiation retention factor

γk ∈ [0, 1), as follows

sk,t := γk(sk,t−1 + uk,t−1) + zk,t−1, ∀t > tk0, (4.1)

where tk0 := mint{t : uk,t = 1} is the first time arm k is pulled and zk,t−1 is independent

and identically distributed noise drawn from N (0, σ2
z), accounting for incidental (uncorrelated)

factors in the satiation dynamics. Because satiation requires exposure, arms only begin to have

nonzero satiation levels after their first pull, i.e., sk,0 = . . . = sk,tk0 = 0.

At time t ∈ [T ], if arm k is played with a current satiation level sk,t, the agent receives reward

µk,t := bk − λksk,t, where bk is the base reward for arm k and λk ≥ 0 is a bounded exposure
influence factor. We use satiation influence to denote the product of the exposure influence factor

λk and the satiation level sk,t. In Figure 4.1, we show how rewards evolve in response to both pulls

and the stochastic dynamics under two sets of parameters. The expected reward of arm k (where

the expectation is taken over all noises associated with the arm) monotonically decreases by

diminishing amounts with consecutive pulls and increases with disuse by diminishing amounts.

Remark 4.1. We note that there exist choices of bk, γk, λk for which the expected reward of arm k
can be negative. In the traditional bandits setup, one must pull an arm at every time step. Thus, what
matters are the relative rewards and the problem is mathematically identical, regardless of whether
the expected rewards range from −10 to 0 or 0 to 10. In addition, one might construct settings
where negative expected rewards are reasonable. For example, when one of the arms corresponds to
no recommendation with 0 being its expected reward (e.g., bk = 0, λk = 0), then the interpretation
of negative expected reward would be that pulling (recommending) the corresponding arm (item) is
less preferred relative to not pulling (no recommendation).

Given horizon T ≥ 1, we seek a pull sequence π1:T , where πt depends on past rewards and

actions (π1, µπ1,1, . . . , πt−1, µπt−1,t−1), that maximizes the expected cumulative reward:

GT (π1:T ) := E
[∑T

t=1 µπt,t

]
. (4.2)

Additional Notation Let γ := maxk∈[K] γk and λ := maxk∈[K] λk. We use a ≲ b when a ≤ Cb
for some positive constant C .

4.4 Planning with Known Dynamics

Before we can hope to learn an optimal policy with unknown stochastic dynamics, we need

to establish a procedure for planning when the satiation retention factors, exposure influence

factors, and base rewards are known. We begin by presenting several planning strategies and

analyzing them under deterministic dynamics, where the past pulls exactly determine each

arm’s satiation level, i.e., sk,t = γk(sk,t−1 + uk,t−1), ∀t > tk0 . With some abuse of notation, at

time t ≥ 2, given a pull sequence uk,0:t−1, we can express the satiation and the expected
1

reward

1
We use “expected reward” to emphasize that all results in this section apply to settings where the satiation

dynamics are deterministic but the rewards are stochastic, i.e., µk,t = bk−λksk,t+ ek,t for independent mean-zero

noises ek,t.
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of each arm as

sk,t(uk,0:t−1) = γk (sk,t−1 + uk,t−1) = γk (γk (sk,t−2 + uk,t−2)) + γkuk,t−1 =
∑t−1

i=1 γ
t−i
k uk,i,

µk,t(uk,0:t−1) = bk − λk
(∑t−1

i=1 γ
t−i
k uk,i

)
. (4.3)

At time t = 1, we have that sk,1(uk,0:0) = 0 and µk,1(uk,0:0) = bk for all k ∈ [K]. Since the arm

parameters {λk, γk, bk}Kk=1 are known, our goal (4.2) simplifies to finding a pull sequence that

solves the following bilinear integer program:

max
uk,t


K∑
k=1

T∑
t=1

uk,t

(
bk − λk

t−1∑
i=0

γt−ik uk,i

)
:

K∑
k=1

uk,t = 1, ∀t ∈ [T ],

uk,t ∈ {0, 1}, uk,0 = 0, ∀k ∈ [K],∀t ∈ [T ]


(4.4)

where the objective maximizes the expected cumulative reward associated with the pull se-

quence and the constraints ensure that at each time period we pull exactly one arm. Note

that (4.4) includes products of decision variables uk,t leading to bilinear terms in the objective.

In Appendix C.1, we provide an equivalent integer linear program.

4.4.1 The Greedy Policy

At each step, the greedy policy πg picks the arm with the highest instantaneous expected reward.

Formally, at time t, given the pull history {uk,0:t−1}Kk=1, the greedy policy picks

πgt ∈ argmax
k∈[K]

µk,t(uk,0:t−1).

In order to break ties, when all arms have the same expected reward, the greedy policy chooses

the arm with the lowest index.

Note that the greedy policy is not, in general, optimal. Sometimes, we are better off allowing

the current best arm to rebound even further, before pulling it again.

Example 4.1. Consider the case with two arms. Suppose that arm 1 has base reward b1, satiation
retention factor γ1 ∈ (0, 1), and exposure influence factor λ1 = 1. For any fixed time horizon T > 2,
suppose that arm 2 has b2 = b1 +

γ2−γT2
1−γ2 where γ2 ∈ (0, 1) and λ2 = 1. The greedy policy πg1:T will

keep pulling arm 2 until time T − 1 and then play arm 1 (or arm 2) at time T . This is true because
if we keep pulling arm 2 until T − 1, at time T , we have µ2,T (u2,0:T−1) = b1 = µ1,T (u1,0:T−1).
However, the policy πn1:T , where πnt = 2 if t ≤ T − 2, πnT−1 = 1, and πnT = 2, obtains a higher
expected cumulative reward. In particular, the difference GT (π

n
1:T )−GT (π

g
1:T ) will be γ2 − γT−1

2 .

4.4.2 When is Greedy Optimal?

When the satiation effect is always 0, e.g., when the satiation retention factors γk = 0 for

all k ∈ [K], we know that the greedy policy (which always plays the arm with the highest

instantaneous expected reward) is optimal. However, when satiation can be nonzero, it is less
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clear under what conditions the greedy policy performs optimally. This question is of special

interest when we consider human decision-making, since we cannot expect people to solve

large-scale bilinear integer programs every time they pick music to listen to.

In this section, we show that when all arms share the same properties (γk, λk, bk are identical

for k ∈ [K]), the greedy policy is optimal. In this case, the greedy policy exhibits variety-seeking

behavior as it plays the arms cyclically. Interestingly, this condition aligns with early research

that has motivated studies on satiation (Tucker, 1964; McConnell, 1968): when controlling for

marketing variables (e.g., the arm parameters γk, λk, bk), researchers still observe variety-seeking

behaviors of consumers (e.g., playing arms in a cyclic order).

Assumption 4.1. γ1 = . . . = γK = γ, λ1 = . . . = λK = λ, and b1 = . . . = bK = b.

We start with characterizing the greedy policy when Assumption 4.1 holds.

Lemma 4.1: Greedy Policy Characterization

Under Assumption 4.1 and the tie-breaking rule that when all arms have the same expected

reward, the greedy policy chooses the one with the lowest arm index, the sequence of

arms pulled by the greedy policy forms a periodic sequence: π1 = 1, π2 = 2, · · · , πK =
K, and πt+K = πt, ∀t ∈ N+.

In this case, the greedy policy is equivalent to playing the arms in a cyclic order. All proofs for

the paper are deferred to the Appendices.

Theorem 4.1

Under Assumption 4.1, given any horizon T , the greedy policy πg1:T is optimal.

Proof Sketch. First, when T ≤ K , greedy policy is optimal since its cumulative expected reward

is Tb. So, we consider the case of T > K . Assume for contradiction that there exists another

policy πo1:T that is optimal and is not greedy, i.e., ∃t ∈ [T ], πot /∈ argmaxk∈[K] b− λsok,t where

sok,t denotes the satiation level of arm k at time t under the policy πo1:T . We will construct a new

policy πn1:T that obtains a higher cumulative expected reward than πo1:T . Throughout the proof,

we use snk,t to denote the satiation levels for the new policy.

We first note two illustrative facts to give the intuition of the proof.

Fact 1: Any policy πo1:T that does not pick the arm with the lowest satiation level (i.e., highest

expected reward) at the last time step T is not optimal.

Proof of Fact 1: In this case, the policy πn1:T = (πo1, . . . , π
o
T−1, πT ) where πT ∈ argmaxk∈[K] b−

λsok,T will obtain a higher cumulative expected reward.

Fact 2: If a policy πo1:T picks the lowest satiation level for the final pull πoT but does not pick the

arm with the lowest satiation level at time T−1, we claim that πn1:T = (πo1, . . . , π
o
T−2, π

o
T , π

o
T−1) ̸=

πo1:T obtains a higher cumulative expected reward.

Proof of Fact 2: First, note that πoT−1 ̸= πoT because otherwise πoT−1 is the arm with the lowest

satiation level at T −1. Moreover, at time T −1, πoT ∈ argmink s
o
k,T−1 has the smallest satiation,

since if not, then there exists another arm k ̸= πoT and k ̸= πoT−1 that has a smaller satiation
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level than πoT at time T − 1. In that case, πoT will not be the arm with the lowest satiation at

time T , which is a contradiction. Then, we deduce soπo
T−1,T−1 > soπo

T ,T−1. Combining this with

πoT−1 ̸= πoT , we arrive at

GT (π
n
1:T )−GT (π

o
1:T ) = λ(1− γ)

(
soπo

T−1,T−1 − soπo
T ,T−1

)
> 0.

For the general case, given any policy πo1:T that is not a greedy policy, we construct the new

policy πn1:T that has a higher cumulative expected reward through the following procedure:

1. Find t∗ ∈ [T ] such that for all t > t∗, πot ∈ argmaxk∈[K] b − λsok,t and πot∗ /∈
argmaxk∈[K] b − λsok,t∗ . Further, we know that πot∗+1 ∈ argmaxk∈[K] b − λsok,t∗ , using

the same reasoning as the above example, i.e., otherwise πot∗+1 /∈ argmaxk∈[K] b−λsok,t∗+1.

To ease the notation, we use k1 to denote πot∗ and k2 to denote πot∗+1.

2. For the new policy, we choose πn1:t∗+1 = (πo1, . . . , π
o
t∗−1, k2, k1). Let Aot1,t2 denote the set

{t′ : t∗+2 ≤ t′ ≤ t2, π
o
t′ = πot1}. A

o
t1,t2

contains a set of time indices in between t∗+2 and

t2 when arm πot1 is played under policy πo1:T . We construct the following three sets TA :=
{t : t∗ + 2 ≤ t ≤ T, |Aot∗,t| < |Aot∗+1,t|}, TB := {t : t∗ + 2 ≤ t ≤ T, |Aot∗,t| > |Aot∗+1,t|}
and TC := {t : t∗ + 2 ≤ t ≤ T, |Aot∗,t| = |Aot∗+1,t|}. For time t ≥ t∗ + 2, we consider the

following three cases:

Case I. TB = ∅, which means that at any time t in between t∗ + 2 and T , arm k1 is

played more than arm k2 from t∗ + 2 to t. In this case, the new policy follows

πnt∗+2:T = πot∗+2:T .

Case II. TA = ∅, which means that at any time t in between t∗ + 2 and T , arm k2 is played

more than arm k1 from t∗ + 2 to t. In this case, the new policy satisfies: for all

t ≥ t∗ + 2, 1) πnt = πot if πot ̸= k1 and πot ̸= k2; 2) πnt = k2 if πot = k1; and 3) πnt = k1
if πot = k2.

Case III. TA ̸= ∅ and TB ̸= ∅. Then, starting from t∗+2, if t ∈ TA, πnt follows the new policy

construction in Case I, i.e., πnt = πot . If t ∈ TB , πnt follows the new policy construction

in Case II. Finally, for all t ∈ TC , define t′A,t = maxt′∈TA:
t′<t

t′ and t′B,t = maxt′∈TB :
t′<t

t′.

If t′A,t > t′B,t, then πnt follows the new policy construction as Case I. If t′A,t < t′B,t,
πnt follows the new policy construction as Case II. We note that t′A,t ̸= t′B,t since

TA ∩ TB = ∅.

When TA = ∅ and TB = ∅, we know that k1 and k2 are not played in πot∗+2:T . In this

case, the new policy construction can follow either Case I or Case II. The proof proceeds by

analyzing the difference between GT (π
n
1:T ) and GT (π

o
1:T ). We provide the complete proof in

Appendix C.2.2.

Remark 4.2. Theorem 4.1 suggests that when the (deterministic) satiation dynamics and base
rewards are identical across arms, planning does not require knowledge of those parameters, since
playing the arms in a cyclic order is optimal.
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Lemma 4.1 and Theorem 4.1 lead us to conclude the following result: when recommend-

ing items that share the same properties, the best strategy is to show the users a variety of

recommendations by following the greedy policy.

On a related note, Theorem 4.1 also gives an exact Max K-Cut of a complete graph KT on T
vertices, where the edge weight connecting vertices i and j is given by e(i, j) = λγ|j−i| for i ̸= j.
The Max K-Cut problem partitions the vertices of a graph into K subsets P1, . . . PK , such that

the sum of the edge weights connecting the subsets are maximized (Frieze and Jerrum, 1997).

Mapping the Max K-Cut problem back to our original setup, each vertex represents a time step.

If vertex i is assigned to subset Pk, it suggests that arm k should be played at time i. The edge

weights e(i, j) = λγ|j−i| for i ̸= j can be seen as the reduction in satiation influence achieved

by not playing the same arm at both time i and time j. The goal (4.4) is to maximize the total

satiation influence reduction.

Proposition 4.1: Connection to Max K-Cut

Under Assumption 4.1, an optimal solution to (4.4) is given by a Max K-Cut on KT , where

KT is a complete graph on T vertices with edge weights e(i, j) = λγ|j−i| for all i ̸= j.

Using Lemma 4.1 and Theorem 4.1, we obtain an exact Max K-Cut of KT : ∀k ∈ [K], Pk = {t ∈
[T ] : t ≡ k (mod K)}.

4.4.3 The w-lookahead Policy

To model settings where the arms correspond to items with different characteristics (e.g., we

can enjoy tacos on consecutive days but require time to recover from a trip to the steakhouse)

we must allow the satiation parameters to vary across arms. Here, the greedy policy may not

be optimal. Thus, we consider more general lookahead policies (the greedy policy is a special

case). Given a window of size w and the current satiation levels, the w-lookahead policy picks

actions to maximize the total reward over the next w time steps. Let l denote ⌈T/w⌉. Define

ti = min{iw, T} for i ∈ [l] and t0 = 0. More formally, the w-lookahead policy πw1:T is defined

as follows: for any i ∈ [l], given the previously chosen arms’ corresponding pull histories

{uwk,0:ti−1
}Kk=1 where uwk,0 = 0 and uwk,t = 1 if (and only if) πwt = k, the next w (or T mod w)

actions πwti−1+1:ti
are given by

max
πw
ti−1+1:ti


ti∑

t=ti−1+1

µπw
t ,t

(uπt,0:t−1) :

uk,0:ti−1
= uwk,0:ti−1

, ∀k ∈ [K],∑K
k=1 uk,t = 1, ∀t ∈ [ti],

uk,t ∈ {0, 1}, ∀k ∈ [K], t ∈ [ti]

 (4.5)

In the case of a tie, one can pick any of the sequences that maximize (4.5). We recover the greedy

policy when the window size w = 1, and finding the w-lookahead policy for the window size

w = T is equivalent to solving (4.4).

Remark 4.3. Another reasonable lookahead policy, which requires planning ahead at every time
step, would be the following: at every time t, plan for the next w actions and follow them for a
single time step. To lighten the computational load, we adopt the current w-lookahead policy which
only requires planning every w time steps.
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For the rest of the paper, we use Lookahead({λk, γk, bk}Kk=1, {uwk,0:ti−1
}Kk=1, ti−1, ti) to

refer to the solution of (4.5), when the arm parameters are {λk, γk, bk}Kk=1, the historical pull

sequences of all arms till time ti−1 are given by {uwk,0:ti−1
}Kk=1. The solution corresponds to the

actions that should be taken by the w-lookahead policy for the next ti − ti−1 time steps.

Theorem 4.2

Given any horizon T , let π∗
1:T be a solution to (4.4). For a fixed window size w ≤ T , we

have that

GT (π
∗
1:T )−GT (π

w
1:T ) ≤

λγ(1− γT−w)
(1− γ)2

⌈T/w⌉.

Remark 4.4. Note that whenw = T , thew-lookahead policy by definition is the optimal policy and
in such a case, the upper bound for the optimality gap of w-lookahead established in Theorem 4.2 is
also 0. In contrast to the optimal policy, the computational benefit of thew-lookahead policy becomes
apparent when the horizon T is large since it requires solving for a much smaller program (4.5). In
general, the w-lookahead policy is expected to perform much better than the greedy policy (which
corresponds to the case of w = 1) at the expense of a higher computational cost. Finally, we note
that for the window size of w =

√
T , we obtain GT (π

∗
1:T )−GT (π

w
1:T ) ≤ O(

√
T ).

4.5 Learning with Unknown Dynamics: Preliminaries

When the satiation dynamics are unknown and stochastic (σz > 0), the learner faces a continuous-

state partially observable MDP because the satiation levels are not observable. To set the stage, we

first introduce our state representation (Section 4.5.1) and a regret-based performance measure

(Section 4.5.2). In the next section, we will introduce EEP, our algorithm for rebounding bandits.

4.5.1 State Representation

Following (Ortner et al., 2012), at any time t ∈ [T ], we define a state vector xt in the state space

X to be xt = (x1,t, n1,t, x2,t, n2,t, . . . , xK,t, nK,t), where nk,t ∈ N is the number of steps at time

t since arm k was last selected and xk,t is the satiation influence (product of λk and the satiation

level) as of the most recent pull of arm k. Since the most recent pull happens at t−nk,t, we have

xk,t = bk − µk,t−nk,t
= λksk,t−nk,t

. Recall that µk,t−nk,t
is the reward collected by pulling arm k

at time t− nk,t. Note that bk is directly observed when arm k is pulled for the first time because

there is no satiation effect. The state at the first time step is x1 = (0, . . . , 0). At time t, if arm k
is chosen at state xt, and reward µk,t is obtained, then the next state xt+1 will satisfy (i) for the

pulled arm k, nk,t+1 = 1 and xk,t+1 = bk − µk,t; (ii) for other arms k′ ̸= k, nk′,t+1 = nk′,t + 1 if

nk′,t ̸= 0, nk′,t+1 = 0 if nk′,t = 0, and the satiation influence remains the same xk′,t+1 = xk′,t.

Given {γk, λk, bk}Kk=1, the reward function r : X × [K]→ R represents the expected reward

of pulling arm k under state xt:

If nk,t = 0, then r(xt, k) = bk. If nk,t ≥ 1, r(xt, k) = E[µk,t|xt] = bk − γ
nk,t

k xk,t − λkγ
nk,t

k ,

where the expectation is taken over the noises in between the current pull and the last pull of
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arm k. See Appendix C.3.1 for the full description of the MDP setup (including the transition

kernel and value function definition) of rebounding bandits.

4.5.2 Evaluation Criteria: w-step Lookahead Regret

In reinforcement learning (RL), the performance of a learner is often measured through a regret

that compares the expected cumulative reward obtained by the learner against that of an optimal

policy in a competitor class (Lattimore and Szepesvári, 2020). In most episodic (e.g., finite

horizon) RL literature (Ortner and Ryabko, 2012; Jaksch et al., 2010), regrets are defined in

terms of episodes. In such cases, the initial state is reset (e.g., to a fixed state) after each episode

ends, independent of previous actions taken by the leaner. Unlike these episodic RL setups, in

rebounding bandits, we cannot restart from the initial state because the satiation level cannot

be reset and user’s memory depends on past received recommendations. Instead, (Pike-Burke

and Grunewalder, 2019) proposed a version of w-step lookahead regret that divides the T time

steps into ⌈T/w⌉ episodes where each episode (besides the last) consists of w time steps. At the

beginning of each episode, the initial state is reset but depends on how the learner has interacted

with the user previously. In particular, at the beginning of episode i+ 1 (at time t = iw + 1),

given that the learner has played π1:iw with corresponding pull sequence uk,0:iw for k ∈ [K], we

reset the initial state to be xi = (µ1,iw+1(u1,0:iw), n1,iw+1, . . . , µK,iw+1(uK,0:iw), nK,iw+1) where

µk,t(·) is defined in (4.3) and nk,iw+1 is the number of steps since arm k is last pulled by the

learner as of time iw + 1. Then, given the learner’s policy π1:T , where πt : X → [K], the w-step

lookahead regret, against a competitor class Cw (which we define later), is defined as follows:

Reg
w(T ) =

∑⌈T/w⌉−1
i=0 maxπ̃1:w∈Cw E

[∑min{w,T−iw}
j=1 r(xiw+j, π̃j(xiw+j))

∣∣∣xiw+1 = xi
]

− E
[∑min{w,T−iw}

j=1 r(xiw+j, πiw+j(xiw+j))
∣∣∣xiw+1 = xi

]
, (4.6)

where the expectation is taken over xiw+2, . . . , xmin{(i+1)w,T}.

The competitor class Cw that we have chosen consists of policies that depend on time steps, i.e.,

Cw = {π̃1:w : π̃t = π̃t(xt) = π̃t(x
′
t), π̃t ∈ [K],∀t ∈ [w], xt, x

′
t ∈ X} . We note that Cw subsumes

many traditional competitor classes in bandits literature, including the class of fixed-action poli-

cies considered in adversarial bandits (Lattimore and Szepesvári, 2020) and the class of periodic

ranking policies (Cella and Cesa-Bianchi, 2020). In our paper, the w-lookahead policy (including

the T -lookahead policy given by (4.4)) is a time-dependent policy that belongs to Cw, since at

time t, it will play a fixed action by solving (4.5) using the true reward parameters {λk, γk, bk}Kk=1.

The time-dependent competitor class Cw differs from a state-dependent competitor class which

includes all measurable functions π̃t that map from X to [K]. The state-dependent competitor

class contains the optimal policy π∗
where π∗

t (xt) depends on not just the time step but also

the exact state xt. Finding the optimal state-dependent policy requires optimal planning for a

continuous-state MDP, which relies on state space discretizion (Ortner and Ryabko, 2012) or

function approximation (e.g., approximate dynamic programming algorithms (Munos, 2007;

Ernst et al., 2005; Riedmiller, 2005)). In Appendix C.3, we provide discussion and analysis on

an algorithm compared against the optimal state-dependent policy. We proceed the rest of the

main paper with Cw defined above.
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When w = 1, the 1-step lookahead regret is also known as the instantaneous regret, which

is commonly used in restless bandits literature and some nonstationary bandits papers includ-

ing (Mintz et al., 2020). Note that low instantaneous regret does not imply high expected

cumulative reward in the long-term, i.e., one may benefit more by waiting for certain arms to

rebound. When w = T , we recover the full horizon regret. As we have noted earlier, finding

the optimal competitor policy in this case is computationally intractable because the number

of states, even when the satiation dynamics are deterministic, grows exponentially with the

horizon T . Finally, we note that the w-step lookahead regret can be obtained for not just policies

designed to look w steps ahead but any given policy. For a more comprehensive discussion on

these notions of regret, see (Pike-Burke and Grunewalder, 2019, Section 4).

4.6 Explore-Estimate-Plan

We now present Explore-Estimate-Plan (EEP), an algorithm for learning in rebounding bandits

with stochastic dynamics and unknown parameters, that (i) collects data by pulling each arm a

fixed number of times; (ii) estimates the model’s parameters based on the logged data; and then

(iii) plans according to the estimated model. Finally, we analyze EEP’s regret.

Because each arm’s base reward is known from the first pull, whenever arm k is pulled at

time t and nk,t ̸= 0, we measure the satiation influence λksk,t, which becomes the next state

xk,t+1:

xk,t+1 = λksk,t = λkγ
nk,t

k sk,t−nk,t
+ λkγ

nk,t

k + λk
∑nk,t−1

i=0 γikzk,t−1−i

= γ
nk,t

k xk,t+1−nk,t
+ λkγ

nk,t

k + λk
∑nk,t−1

i=0 γikzk,t−1−i. (4.7)

We note that the current state xk,t equals xk,t+1−nk,t
, since xk,t+1−nk,t

is the last observed satiation

influence for arm k and nk,t is the number of steps since arm k was last pulled.

4.6.1 The Exploration Phase: Repeated Pulls

We collect a dataset Pnk by consecutively pulling each arm n + 1 times, in turn, where n ≥
⌊T 2/3/K⌋ (Line 4-7 of Algorithm 4.1). Specifically, for each arm k ∈ [K], the datasetPnk contains

a single trajectory of n+ 1 observed satiation influences x̃k,1, . . . , x̃k,n+1, where x̃k,1 = 0 and

x̃k,j (j > 1) is the difference between the first reward and the j-th reward from arm k. Thus, for

x̃k,j, x̃k,j+1 ∈ Pnk , using (4.7) with nk,t = 1 (because pulls are consecutive), it follows that

x̃k,j+1 = γkx̃k,j + dk + z̃k,j, (4.8)

where dk = λkγk and z̃k,j are independent samples from N (0, σ2
z,k) with σ2

z,k = λ2kσ
2
z . In

Appendix C.5.2, we discuss other exploration strategies (e.g., playing the arms in a cyclic order)

for EEP and their regret guarantees.
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4.6.2 Estimating the Reward Model and Satiation Dynamics

For all k ∈ [K], given the dataset Pnk , we estimate Ak = (γk, dk)
⊤

using the ordinary least
squares estimator :

Âk ∈ argmin
A∈R2

∥Yk −XkA∥22, (4.9)

where Yk ∈ Rn is an n-dimensional vector whose j-th entry is x̃k,j+1 and Xk ∈ Rn×2
takes as

its j-th row the vector xk,j = (x̃k,j, 1)
⊤

, i.e., x̃k,j+1 is treated to be the response to the covariates

xk,j . For n ≥ 2, we have that

Âk =

(
γ̂k
d̂k

)
=
(
Xk

⊤
Xk

)−1

Xk
⊤
Yk, (4.10)

and we take λ̂k = |d̂k/γ̂k|.
The difficulty in analyzing the ordinary least squares estimator (4.10) for identifying an affine

dynamical system (4.8) using a single trajectory of data comes from the fact that the samples

are not independent. Asymptotic guarantees of the ordinary least squares estimators in this

case have been studied previously in the control theory and time series communities (Hamilton,

1994; Ljung, 1999). Recent work on system identifications for linear dynamical systems focuses

on the sample complexity (Simchowitz et al., 2018; Sarkar and Rakhlin, 2019). Adapting the

proof of (Simchowitz et al., 2018, Theorem 2.4), we derive the following theorem for identifying

our affine dynamical system (4.8).

Theorem 4.3

Fix δ ∈ (0, 1). For all k ∈ [K], there exists a constant n0(δ, k) such that if the dataset Pnk
satisfies n ≥ n0(δ, k), then

P
(
∥Âk − Ak∥2 ≳

√
1/(ψn)

)
≤ δ,

where ψ =

√
min

{
σ2
z,k(1−γk)2

16d2k(1−γ
2
k)+(1−γk)2σ2

z,k
,

σ2
z,k

4(1−γ2k)

}
.

As shown in Theorem 4.3, when dk = λkγk gets larger, the convergence rate for Âk gets

slower. Given a single trajectory of sufficient length, we obtain |γ̂k − γk| ≤ O(1/
√
n) and

|d̂k−dk| ≤ O(1/
√
n). In Corollary 4.1, we show that the estimator of λk also achievesO(1/

√
n)

estimation error.

Corollary 4.1. Fix δ ∈ (0, 1). Suppose that for all k ∈ [K], we have P(∥Âk−Ak∥2 ≳ 1/
√
n) ≤ δ

and γ̂k > 0. Then, with probability 1− δ, we have that for all k ∈ [K],

|γ̂k − γk| ≤ O

(
1√
n

)
, |λ̂k − λk| ≤ O

(
1√
n

)
.
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Algorithm 4.1 w-lookahead Explore-Estimate-Plan

Require: Lookahead window size w, Number of arms K , Horizon T Initialize t = 1, π1:T to

be an empty array of length T and T̃ = T 2/3 + w − (T 2/3
mod w).

for k = 1, . . . , K do
Set t′ = t and initialize an empty array Pnk .

for c = 0, . . . , ⌊T̃ /K⌋ do
Play arm k to obtain reward µk,t′+c and add µk,t′ − µk,t′+c to Pnk .

Set πt = k and increase t by 1.

end for
Obtain γ̂k, d̂k using the estimator (4.9),set λ̂k = |d̂k/γ̂k| and b̂k = µk,t′ .

end forLet t0 = T̃ , set πt:t0 = (1, . . . , T̃ − t+ 1), and play πt:t0 .

for i = 1, . . . , ⌈T−t0
w
⌉ do

Set ti = min{ti−1 + w, T}.
Obtain πti−1+1:ti = Lookahead({λ̂k, γ̂k, b̂k}Kk=1, {uk,0:ti−1

}Kk=1, ti−1, ti) where

{uk,0:ti−1
}Kk=1 are the arm pull histories correspond to π1:ti−1

.

Play πti−1+1,ti .

end for

4.6.3 Planning and Regret Bound

In the planning stage of Algorithm 4.1 (Line 11-15), at time ti−1 + 1, the next w arms to play are

obtained through the Lookahead function defined in (4.5) based on the estimated parameters

from the estimation stage (Line 8). Using the results in Corollary 4.1, we obtain the following

sublinear regret bound for w-lookahead EEP.

Theorem 4.4

There exists a constant T0 such that for all T > T0 and w ≤ T 2/3
, the w-step lookahead

regret of w-lookahead Explore-Estimate-Plan satisfies

Reg
w(T ) ≤ O(K1/2T 2/3 log T ).

Remark 4.5. The fact that EEP incurs a regret of order O(T 2/3) is expected for two reasons: First,
EEP can be viewed as an explore-then-commit (ETC) algorithm that first explores then exploits.
The regret of EEP resembles the O(T 2/3) regret of the ETC algorithm in the classical K-armed
bandits setting (Lattimore and Szepesvári, 2020). In rebounding bandits, the fundamental obstacle
to mixing the exploration and exploitation stages is the need to estimate the satiation dynamics.
When the rewards of each arm are not observed periodically, the obtained satiation influences can
no longer be viewed as samples from the same time-invariant affine dynamical system, since the
parameters of the system depend on the duration between pulls. In practice, one may utilize the
maximum likelihood estimator to obtain estimates of the reward parameters but obtaining the
sample complexity of such an estimator with dependent data is difficult. Second, it has been shown
in (Besbes et al., 2019) that when the rewards of the arms have temporal variation that depends on
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(a) log |γ̂k − γk| v.s. log n (b) log |λ̂k − λk| v.s. log n

Figure 4.2: Figure 4.2a and 4.2b are the log-log plots of absolute errors of γ̂k and λ̂k with respect to the

number of samples n in a single trajectory. The results are averaged over 30 random runs, where the

shaded area represents one standard deviation.
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Figure 4.3: Figure 4.3a shows the expected cumulative reward collected by the T -lookahead policy (red

line) and w-lookahead policy (blue dots) when T = 30. Figure 4.3b shows the log-log plot of the w-step

lookahead regret of w-lookahead EEP under different T averaged over 20 random runs.

the horizon T , the worst case instantaneous regret has a lower bound Ω(T 2/3). On the other hand,
in the traditional K-armed bandits setup, the regret (following the classical definition (Lattimore
and Szepesvári, 2020)) is lower bounded by Ω(T 1/2), and can be attained by methods like the upper
confidence bound algorithm (Lattimore and Szepesvári, 2020). Precisely characterizing the regret
lower bound for rebounding bandits is of future interest.

4.7 Experiments

We now evaluate the performance of EEP experimentally, separately investigating the sample

efficiency of our proposed estimators (4.10) for learning the satiation and reward models (Fig-

ure 4.2) and the computational performance of the w-lookahead policies (4.5) (Figure 4.3a). For

the experimental setup, we have 5 arms with satiation retention factors γ1 = γ2 = .5, γ3 =
.6, γ4 = .7, γ5 = .8, exposure influence factors λ1 = 1, λ2 = λ3 = 3, λ4 = λ5 = 2, base rewards

b1 = 2, b2 = 3, b3 = 4, b4 = 2, b5 = 10, and noise with variance σz = 0.1.

Parameter Estimation We first evaluate our proposed estimator for using a single trajectory

per arm to estimate the arm parameters γk, λk. In Figure 4.2, we show the absolute error

(averaged over 30 random runs) between the estimated parameters and the true parameters for

each arm. Aligning with our theoretical guarantees (Corollary 4.1), the log-log plots show that

the convergence rate of the absolute error is on the scale of O(n−1/2).
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w-lookahead Performance To evaluate w-lookahead policies, we solve (4.5) using the true

reward parameters and report expected cumulative rewards of the obtainedw-lookahead policies

(Figure 4.3a). Recall that the greedy policy is precisely the 1-lookahead policy. In order to solve

the resulting integer programs, we use Gurobi 9.1 (LLC, 2021) and set the number of threads

for solving the problem to 10. When T = 30, the T -lookahead policy (expected cumulative

rewards given by the red line in Figure 4.3a) solved through (4.4) is obtained in 1610s. On

the other hand, all w-lookahead policies (expected cumulative rewards given by the blue dots

in Figure 4.3a) for w in between 1 and 15 are solved within 2s. We provide the results when

T = 100 in Appendix C.7. Despite using significantly lower computational time, w-lookahead

policies achieve a similar expected cumulative reward to the T -lookahead policy.

EEP Performance We evaluate the performance of EEP when T ranges from 60 to 400. For each

horizon T , we examine the w-step lookahead regret of w-lookahead EEP where w = 2, 5, 8, 10.

All results are averaged over 20 random runs. As T increases, the exploration stage of EEP

becomes longer, which results in collecting more data for estimating the reward parameters

and lower variance of the parameter estimators. We fit a line for the regrets with the same

lookahead size w to examine the order of the regret with respect to the horizon T . The slopes of

the lines (see Figure 4.3b’s legend) are close to 2/3, which aligns with our theoretical guarantees

(Theorem 4.4), i.e., the regrets are on the order ofO(T 2/3). In Appendix C.7, we present additional

experimental setups and results.

4.8 Discussion

While our work has taken strides towards modeling the exposure-dependent evolution of

preferences through dynamical systems, there are many avenues for future work. First, while

our satiation dynamics are independent across arms, a natural extension might allow interactions

among the arms. For example, a diner sick of pizza after too many trips to Di Fara’s, likely

would also avoid Grimaldi’s until the satiation effect wore off. On the system identification side,

we might overcome our reliance on evenly spaced pulls, producing more adaptive algorithms

(e.g., optimism-based algorithms) that can refine their estimates, improving the agent’s policy

even past the pure exploration period. Finally, our satiation model captures just one plausible

dynamic according to which preferences might evolve in response to past recommendations.

Characterizing other such dynamics (e.g., the formation of brand loyalty where the rewards of

an arm increase with more pulls) in bandits setups is of future interest.
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Chapter 5
Modeling Attrition in Recommender Systems

with Departing Bandits

5.1 Introduction

At the heart of online services spanning such diverse industries as media consumption, dating,

financial products, and more, recommendation systems (RSs) drive personalized experiences by

making curation decisions informed by each user’s past history of interactions. While in practice,

these systems employ diverse statistical heuristics, much of our theoretical understanding of

them comes via stylized formulations within the multi-armed bandits (MABs) framework. While

MABs abstract away from many aspects of real-world systems they allow us to extract crisp

insights by formalizing fundamental tradeoffs, such as that between exploration and exploitation

that all RSs must face (Joseph et al., 2016; Liu and Ho, 2018; Patil et al., 2020; Ron et al., 2021).

As applies to RSs, exploitation consists of continuing to recommend items (or categories of

items) that have been observed to yield high rewards in the past, while exploration consists of

recommending items (or categories of items) about which the RS is uncertain but that could

potentially yield even higher rewards.

In traditional formalizations of RSs as MABs, the recommender’s decisions affect only the

rewards obtained. However, real-life recommenders face a dynamic that potentially alters the

exploration-exploitation tradeoff: Dissatisfied users have the option to depart the system, never

to return. Thus, recommendations in the service of exploration not only impact instantaneous

rewards but also risk driving away users and therefore can influence long-term cumulative

rewards by shortening trajectories of interactions.

In this work, we propose departing bandits which augment conventional MABs by incorporat-

ing these policy-dependent horizons. To motivate our setup, we consider the following example:

An RS for recommending blog articles must choose at each time among two categories of articles,

e.g., economics and sports. Upon a user’s arrival, the RS recommends articles sequentially. After

each recommendation, the user decides whether to “click” the article and continue to the next

recommendation, or to “not click” and may leave the system. Crucially, the user interacts with
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the system for a random number of rounds. The user’s departure probability depends on their

satisfaction from the recommended item, which in turn depends on the user’s unknown type.

A user’s type encodes their preferences (hence the probability of clicking) on the two topics

(economics and sports).

When model parameters are given, in contrast to traditional MABs where the optimal policy

is to play the best fixed arm, departing bandits require more careful analysis to derive an optimal

planning strategy. Such planning is a local problem, in the sense that it is solved for each user.

Since the user type is never known explicitly (the recommender must update its beliefs over the

user types after each interaction), finding an optimal recommendation policy requires solving a

specific partially observable MDP (POMDP) where the user type constitutes the (unobserved)

state (more details in Section 5.5.1). When the model parameters are unknown, we deal with a

learning problem that is global, in the sense that the recommender (learner) is learning for a

stream of users instead of a particular user.

We begin with a formal definition of departing bandits in Section 5.2, and demonstrate that

any fixed-arm policy is prone to suffer linear regret. In Section 5.3, we establish the UCB-based

learning framework used in later sections. We instantiate this framework with a single user

type in Section 5.4, where we show that it achieves Õ(
√
T ) regret for T being the number of

users. We then move to the more challenging case with two user types and two recommendation

categories in Section 5.5. To analyze the planning problem, we effectively reduce the search

space for the optimal policy by using a closed-form of the expected return of any recommender

policy. These results suggest an algorithm that achieves Õ(
√
T ) regret in this setting. In the full

version of this paper (Ben-Porat22), we also show an efficient optimal planning algorithm for

multiple user types and two recommendation categories, and describe a scheme to construct

semi-synthetic problem instances for this setting using real-world datasets.

5.1.1 Related Work

MABs have been studied extensively by the online learning community (Cesa-Bianchi and

Lugosi, 2006; Bubeck, Cesa-Bianchi, et al., 2012). The contextual bandit literature augments the

MAB setup with context-dependent rewards (Abbasi-Yadkori et al., 2011; Slivkins, 2019; Mahadik

et al., 2020; Korda et al., 2016; Lattimore and Szepesvári, 2020). In contextual bandits, the learner

observes a context before they make a decision, and the reward depends on the context. Another

line of related work considers the dynamics that emerge when users act strategically (Kremer

et al., 2014; Mansour et al., 2015; Cohen and Mansour, 2019; Bahar et al., 2016; Bahar et al., 2020).

In that line of work, users arriving at the system receive a recommendation but act strategically:

They can follow the recommendation or choose a different action. This modeling motivates the

development of incentive-compatible mechanisms as solutions. In our work, however, the users

are modeled in a stochastic (but not strategic) manner. Users may leave the system if they are

dissatisfied with recommendations, and this departure follows a fixed (but possibly unknown)

stochastic model.

The departing bandits problem has two important features: Policy-dependent horizons, and

multiple user types that can be interpreted as unknown states. Existing MAB works (Azar et al.,
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2013; Cao et al., 2020) have addresses these phenomena separately but we know of no work that

integrates the two in a single framework. In particular, while Azar et al. (2013) study the setting

with multiple user types, they focus on a fixed horizon setting. Additionally, while Cao et al.

(2020) deal with departure probabilities and policy-dependent interaction times for a single user

type, they do not consider the possibility of multiple underlying user types.

The planning part of our problem falls under the framework of using Markov Decision

Processes for modeling recommender-user dynamics (Shani et al., 2005b). Specifically, our

problem works with partially observable user states which have also been seen in many recent

bandits variants (Pike-Burke and Grunewalder, 2019; Leqi et al., 2021b). Unlike these prior works

that focus on interactions with a single user, departing bandits consider a stream of users each

of which has an (unknown) type selected among a finite set of user types.

More broadly, our RS learning problem falls under the domain of reinforcement learning (RL).

Existing RL literature that considers departing users in RSs include Zhao et al. (2020b), Lu and

Yang (2016), and Zhao et al. (2020a). While Zhao et al. (2020b) handle users of a single type that

depart the RS within a bounded number of interactions, our work deals with multiple user types.

In contrast to Zhao et al. (2020a), we consider an online setting and provide regret guarantees

that do not require bounded horizon. Finally, Lu and Yang (2016) use POMDPs to model user

departure and focus on approximating the value function. They conduct an experimental analysis

on historical data, while we devise an online learning algorithm with theoretical guarantees.

5.2 Departing Bandits

We propose a new online problem, called departing bandits, where the goal is to find the

optimal recommendation algorithm for users of (unknown) types, and where the length of

the interactions depends on the algorithm itself. Formally, the departing bandits problem is

defined by a tuple ⟨[M ], [K],q,P,L⟩, where M is the number of user types, K is the number

of categories, q ∈ [0, 1]M specifies a prior distribution over types, and P ∈ (0, 1)K×M
and

L ∈ (0, 1)K×M
are the click-probability and the departure-probability matrices, respectively.

1

There are T users who arrive sequentially at the RS. At every episode, a new user t ∈ [T ]
arrives with a type type(t). We let q denote the prior distribution over the user types, i.e.,

type(t) ∼ q. Each user of type x clicks on a recommended category a with probability Pa,x. In

other words, each click follows a Bernoulli distribution with parameter Pa,x. Whenever the user

clicks, she stays for another iteration, and when the user does not click (no-click), she departs
with probability La,x (and stays with probability 1 − La,x). Each user t interacts with the RS

(the learner) until she departs.

We proceed to describe the user-RS interaction protocol. In every iteration j of user t, the

learner recommends a category a ∈ [K] to user t. The user clicks on it with probability Pa,type(t).

If the user clicks, the learner receives a reward of rt,j(a) = 1.
2

If the user does not click, the

1
We denote by [n] the set {1, . . . , n}.

2
We formalize the reward as is standard in the online learning literature, from the perspective of the learner.

However, defining the reward from the user perspective by, e.g., considering her utility as the number of clicks she

gives or the number of articles she reads induces the same model.
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Algorithm 5.1 The Departing Bandits Protocol

Input: number of types M , number of categories K , and number of users (episodes) T
Hidden Parameters: types prior q, click-probability P, and departure-

probability L
1: for episode t← 1, . . . , T do
2: a new user with type type(t) ∼ q arrives

3: j ← 1, depart← false
4: while depart is false do
5: the learner picks a category a ∈ [K]
6: with probability Pa,x, user t clicks on a and rt,j(a)← 1; otherwise, rt,j(a)← 0
7: if rt,j(a) = 0 then
8: with probability La,x: depart← true and user t departs

9: end if
10: the learner observes rt,j(a) and depart
11: if depart is false then
12: j ← j + 1
13: end if
14: end while
15: end for

learner receives no reward (i.e., rt,j(a) = 0), and user t departs with probability La,type(t). We

assume that the learner knows the value of a constant ϵ > 0 such that maxa,xPa,x ≤ 1− ϵ (i.e.,

ϵ does not depend on T ). When user t departs, she does not interact with the learner anymore

(and the learner moves on to the next user t+1). For convenience, the departing bandits problem

protocol is summarized in Algorithm 5.1.

Having described the protocol, we move on to the goals and performance of the learner.

Without loss of generality, we assume that the online learner’s recommendations are made based

on a policy π, which is a mapping from the history of previous interactions (with that user)

to recommendation categories. For each user (episode) t ∈ [T ], the learner selects a policy πt
that recommends category πt,j ∈ [K] at every iteration j ∈ [Nπt(t)], where Nπt(t) denotes the

episode length (i.e., total number of iterations policy πt interacts with user t until she departs).
3

The return of a policy π, denoted by V π
is the cumulative reward the learner obtains when

executing the policy π until the user departs. Put differently, the return of π from user t is the

random variable V π =
∑Nπ(t)

j=1 rt,j(πt,j).

We denote by π∗
an optimal policy, namely a policy that maximizes the expected return,

π∗ = argmaxπ E[V π]. Similarly, we denote by V ∗
the optimal return, i.e., V ∗ = V π∗

.

We highlight two algorithmic tasks. The first is the planning task, in which the goal is to

find an optimal policy π∗
, given P,L,q. The second is the online learning task. We consider

settings where the learner knows the number of categories, K , the number of types, M , and the

number of users, T , but has no prior knowledge regarding P,L or q. In the online learning task,

3
We limit the discussion to deterministic policies solely; this is w.l.o.g. (see Subsection 5.5.1 for further details).
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Type x Type y
Category 1 P1,x = 0.5 P1,y = 0.28
Category 2 P2,x = 0.4 P2,y = 0.39
Prior qx = 0.4 qy = 0.6

Table 5.1: The departing bandits instance in Section 5.2.1.

the value of the learner’s algorithm is the sum of the returns obtained from all the users, namely

T∑
t=1

V πt =
T∑
t=1

Nπ(t)∑
j=1

rt,j(πt,j).

The performance of the leaner is compared to that of the best policy, formally defined by the

regret for T episodes,

RT = T · E[V π∗
]−

T∑
t=1

V πt . (5.1)

The learner’s goal is to minimize the expected regret E[RT ].

5.2.1 Example

The motivation for the following example is two-fold. First, to get the reader acquainted with

our notations; and second, to show why fixed-arm policies are inferior in our setting.

Consider a problem instance with two user types (M = 2), which we call x and y for

convenience. There are two categories (K = 2), and given no-click the departure is deterministic,

i.e.,La,τ = 1 for every category a ∈ [K] and type τ ∈ [M ]. That is, every user leaves immediately

if she does not click. Furthermore, let the click-probability P matrix and the user type prior

distribution q be as in Table 5.1.

Looking at P and q, we see that Category 1 is better for Type x, while Category 2 is better for

type y. Notice that without any additional information, a user is more likely to be type y. Given

the prior distribution, recommending Category 1 in the first round yields an expected reward of

qxP1,x + qyP1,y = 0.368. Similarly, recommending Category 2 in the first round results in an

expected reward of 0.394. Consequently, if we recommend myopically, i.e., without considering

the user type, always recommending Category 2 is better than always recommending Category

1.

Let πa denote the fixed-arm policy that always selects a single category a. Using the tools

we derive in Section 5.5 and in particular Theorem 5.3, we can compute the expected returns of

π1
and π2

, E[V π1
] and E[V π2

]. Additionally, using results from Section 5.5.2, we can show that

the optimal policy for the planning task, π∗
, recommends Category 2 until iteration 7, and then

recommends Category 1 for the rest of the iterations until the user departs.

Using simple calculations, we see that E[V π∗
] − E[V π1

] > 0.0169 and E[V π∗
] − E[V π2

] >
1.22× 10−5

; hence, the expected return of the optimal policy is greater than the returns of both
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Algorithm 5.2 UCB-based algorithm with hybrid radii: UCB-Hybrid (Jia et al., 2021)

1: Input: set of policies Π, number of users T , τ̃ , η
2: Initialize: ∀π ∈ Π : U0(π)←∞, n(π) = 0
3: for user t← 1, . . . , T do
4: Execute πt such that πt ∈ argmaxπ∈Π Ut−1(π) and receive return V̂ πt [n(πt)] ←∑Nπt (t)

j=1 rt,j(πt,j)
5: n(πt)← n(πt) + 1
6: if n(πt) < 8η lnT then
7: Update Ut(πt) =

∑n(πt)
i=1 V̂ πt [i]

n(πt)
+

8
√
η·τ̃ lnT

n(πt)

8: else
9: Update Ut(πt) =

∑n(πt)
i=1 V̂ πt [i]

n(πt)
+
√

8τ̃2 lnT
n(πt)

10: end if
11: end for

fixed-arm policies by a constant. As a result, if the learner only uses fixed-arm policies (πa for

every a ∈ [K]), she suffers linear expected regret, i.e., E[RT ] = T ·E[V π∗
]−
∑T

t=1 E[V πa
] = Ω(T ).

5.3 UCB Policy for Sub-exponential Returns

In this section, we introduce the learning framework used in the paper and provide a general

regret guarantee for it.

In standard MAB problems, at each t ∈ [T ] the learner picks a single arm and receives

a single sub-Gaussian reward. In contrast, in departing bandits, at each t ∈ [T ] the learner

receives a return V π
, which is the cumulative reward of that policy. The return V π

depends

on the policy π not only through the obtained rewards at each iteration but also through the

total number of iterations (trajectory length). Such returns are not necessarily sub-Gaussian.

Consequently, we cannot use standard MAB algorithms as they usually rely on concentration

bounds for sub-Gaussian rewards. Furthermore, as we have shown in Section 5.2.1, in departing

bandits fixed-arm policies can suffer linear regret (in terms of the number of users), which

suggests considering a more expressive set of policies. This in turn yields another disadvantage

for using MAB algorithms for departing bandits, as their regret is linear in the number of arms

(categories) K .

As we show later in Sections 5.4 and 5.5, for some natural instances of the departing bandits

problem, the return from each user is sub-exponential (Definition 5.1). Algorithm 5.2, which we

propose below, receives a set of policies Π as input, along with other parameters that we describe

shortly. The algorithm is a restatement of the UCB-Hybrid Algorithm from Jia et al. (2021), with

two modifications: (1) The input includes a set of policies rather than a set of actions/categories,

and accordingly, the confidence bound updates are based on return samples (denoted by V̂ π
)

rather than reward samples. (2) There are two global parameters (τ̃ and η) instead of two local

parameters per action. If the return from each policy in Π is sub-exponential, Algorithm 5.2 not

only handles sub-exponential returns, but also comes with the following guarantee: Its expected
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value is close to the value of the best policy in Π.

5.3.1 Sub-exponential Returns

For convenience, we state here the definition of sub-exponential random variables (Eldar and

Kutyniok, 2012).

Definition 5.1

We say that a random variable X is sub-exponential with parameters (τ 2, b) if for every γ
such that |γ| < 1/b,

E[exp(γ(X − E[X]))] ≤ exp(
γ2τ 2

2
).

In addition, for every (τ 2, b)-sub-exponential random variables, there exist constants

C1, C2 > 0 such that the above is equivalent to each of the following properties:

1. Tails: ∀v ≥ 0 : P[|X| > v] ≤ exp(1− v
C1
).

2. Moments: ∀p ≥ 1 : (E[|X|p])1/p ≤ C2p.

Let Π be a set of policies with the following property: There exist τ̃ , η such that the return

of every policy π ∈ Π is (τ 2, b)-sub-exponential with τ̃ ≥ τ and η ≥ b2

τ2
. The following Algo-

rithm 5.2 receives as input a set of policies Π with the associated parameters, τ̃ and η. Similarly

to the UCB algorithm, it maintains an upper confidence bound U for each policy, and balances

between exploration and exploitation. Theorem 5.1 below shows that Algorithm 5.2 always gets

a value similar to that of the best policy in Π up to an additive factor of Õ
(√
|Π|T + |Π|

)
. The

theorem follows directly from Theorem 3 from Jia et al. (2021) by having policies as arms and

returns as rewards.

Theorem 5.1

Let Π be a set of policies with the associated parameters τ̃ , η. Let π1, . . . , πT be the policies

Algorithm 5.2 selects. It holds that

E

[
max
π∈Π

T · V π −
T∑

t=1

V πt

]
= O(

√
|Π|T log T + |Π| log T ).

There are two challenges in leveraging Theorem 5.1. The first challenge is crucial: Notice that

Theorem 5.1 does not imply that Algorithm 5.2 has a low regret; its only guarantee is w.r.t. the

policies in Π received as an input. As the number of policies is infinite, our success will depend

on our ability to characterize a “good” set of policies Π. The second challenge is technical: Even

if we find such Π, we still need to characterize the associated τ̃ and η. This is precisely what we

do in Section 5.4 and 5.5.
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5.4 Single User Type

In this section, we focus on the special case of a single user type, i.e., M = 1. For notational

convenience, since we only discuss single-type users, we associate each category a ∈ [K] with

its two unique parameters Pa := Pa,1,La := La,1 and refer to them as scalars rather than

vectors. In addition, We use the notation Na for the random variable representing the number

of iterations until a random user departs after being recommended by πa, the fixed-arm policy

that recommends category a in each iteration.

To derive a regret bound for single-type users, we use two main lemmas: Lemma 5.1, which

shows the optimal policy is fixed, and Lemma 5.2, which shows that returns of fixed-arm policies

are sub-exponential and calculate their corresponding parameters. These lemmas allow us to use

Algorithm 5.2 with a policy set Π that contains all the fixed-arm policies, and derive a Õ(
√
T )

regret bound. All omitted proofs can be found in the full version of this paper (Ben-Porat22).

To show that there exists a category a∗ ∈ [K] for which πa
∗

is optimal, we rely on the

assumption that all the users have the same type (hence we drop the type subscripts t), and

as a result the rewards of each category a ∈ [K] have an expectation that depends on a

single parameter, namely E[r(a)] = Pa. Such a category a∗ ∈ [K] does not necessarily have

the maximal click-probability nor the minimal departure-probability, but rather an optimal

combination of the two (in a way, this is similar to the knapsack problem, where we want to

maximize the reward while having as little weight as possible). We formalize it in the following

lemma.

Lemma 5.1

A policy πa
∗

is optimal if

a∗ ∈ argmax
a∈[K]

Pa

La(1−Pa)
.

As a consequence of this lemma, the planning problem for single-type users is trivial—the

solution is a fixed-arm policy πa
∗

given in the lemma. However, without access to the model

parameters, identifying πa
∗

requires learning. We proceed with a simple observation regarding

the random number of iterations obtained by executing a fixed-arm policy. The observation

would later help us show that the return of any fixed-arm policy is sub-exponential.

Observation 5.1. For every a ∈ [K] and every La > 0, the random variable Na follows a
geometric distribution with success probability parameter La[1−Pa] ∈ (0, 1− ϵ].

Using Observation 5.1 and previously known results (stated as Lemma D.3 in the appendix),

we show that Na is sub-exponential for all a ∈ [K]. Notice that return realizations are always

upper bounded by the trajectory length; this implies that returns are also sub-exponential.

However, to use the regret bound of Algorithm 5.2, we need information regarding the parameters

(τ 2a , ba) for every policy πa. We provide this information in the following Lemma 5.2.
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Lemma 5.2

For each category a ∈ [K], the centred random variable V πa − E[V πa
] is sub-exponential

with parameters (τ 2a , ba), such that

τa = ba = −
8e

ln(1− La(1−Pa))
.

Proof sketch. We rely on the equivalence between the subexponentiality of a random variable

and the bounds on its moments (Property 2 in Definition 5.1). We bound the expectation

of the return V πa
, and use Minkowski’s and Jensen’s inequalities to show in Lemma D.2 that

E[|V πa−E[V πa
]|p])1/p is upper bounded by−4/ ln(1−La(1−Pa)) for every a ∈ [K] and p ≥ 1.

Finally, we apply a normalization trick and bound the Taylor series of E[exp(γ(V πa − E[V πa
]))]

to obtain the result.

An immediate consequence of Lemma 5.2 is that the parameters τ̃ = 8e/ ln( 1
1−ϵ) and η = 1

are valid upper bounds for τa and ba/τ
2
a for each a ∈ [K] (I.e., ∀a ∈ [K] : τ̃ ≥ τa and η ≥ b2a/τ

2
a ).

We can now derive a regret bound using Algorithm 5.2 and Theorem 5.1.

Theorem 5.2

For single-type users (M = 1), running Algorithm 5.2 with Π = {πa : a ∈ [K]} and

τ̃ = 8e
ln( 1

1−ϵ
)
, η = 1 achieves an expected regret of at most

E[RT ] = O(
√
KT log T +K log T ).

5.5 Two User Types and Two Categories

In this section, we consider cases with two user types (M = 2), two categories (K = 2)

and departure-probability La,τ = 1 for every category a ∈ [K] and type τ ∈ [M ]. Even

in this relatively simplified setting, where users leave after the first “no-click”, planning is

essential. To see this, notice that the event of a user clicking on a certain category provides

additional information about the user, which can be used to tailor better recommendations;

hence, algorithms that do not take this into account may suffer a linear regret. In fact, this is

not just a matter of the learning algorithm at hand, but rather a failure of all fixed-arm policies;

there are instances where all fixed-arm policies yield high regret w.r.t. the baseline defined in

Equation (5.1). Indeed, this is what the example in Section 5.2.1 showcases. Such an observation

suggests that studying the optimal planning problem is vital.

In Section 5.5.1, we introduce the partially observable MDP formulation of departing bandits

along with notion of belief-category walk. We use this notion to provide a closed-form formula for

policies’ expected return, which we use extensively later on. Next, in Section 5.5.2 we characterize

the optimal policy, and show that we can compute it in constant time relying on the closed-form
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formula. This is striking, as generally computing optimal POMDP policies is computationally

intractable since, e.g., the space of policies grows exponentially with the horizon. Conceptually,

we show that there exists an optimal policy that depends on a belief threshold: It recommends

one category until the posterior belief of one type, which is monotonically increasing, crosses

the threshold, and then it recommends the other category. Finally, in Section 5.5.3 we leverage

all the previously obtained results to derive a small set of threshold policies of size O(lnT ) with

corresponding sub-exponential parameters. Due to Theorem 5.1, this result implies a Õ(
√
T )

regret.

5.5.1 Efficient Planning

To recap, we aim to find the optimal policy when the click-probability matrix and the prior over

user types are known. Namely, given an instance in the form of ⟨P,q⟩, our goal is to efficiently

find the optimal policy.

For planning purposes, the problem can be modeled by an episodic POMDP,

⟨S, [K], O,Tr,P,Ω,q, O⟩. A set of states, S = [M ] ∪ {⊥} that comprises all types [M ], along

with a designated absorbing state ⊥ suggesting that the user departed (and the episode termi-

nated). [K] is the set of the actions (categories). O = {stay, depart} is the set of possible obser-

vations. The transition and observation functions, Tr : S × [K]→ S and Ω : S × [K]→ O (re-

spectively) satisfy Tr(⊥ |i, a) = Ω(depart|i, a) = 1−Pi,a and Tr(i|i, a) = Ω(stay|i, a) = Pi,a

for every type i ∈ [M ] and action a ∈ [K]. Finally, P is the expected reward matrix, and q is

the initial state distribution over the M types.

When there are two user types and two categories, the click-probability matrix is given by

Table 5.2 where we note that the prior on the types holds qy = 1− qx, thus can be represented

by a single parameter qx.

Remark 5.1. Without loss of generality, we assume that P1,x ≥ P2,x,P1,y,P2,y since one could
always permute the matrix to obtain such a structure.

Since the return and number of iterations for the same policy is independent of the user

index, we drop the subscript t in the rest of this subsection and use .

Type x Type y
Category 1 P1,x P1,y

Category 2 P2,x P2,y

Prior qx qy = 1−qx

Table 5.2: Click probabilities for two user types and two categories.

As is well-known in the POMDP literature (Kaelbling et al., 1998), the optimal policy π∗
and

its expected return are functions of belief states that represent the probability of the state at

each time. In our setting, the states are the user types. We denote by bj the belief that the state

is (type) x at iteration j. Similarly, 1 − bj is the belief that the state is (type) y at iteration j.
Needless to say, once the state ⊥ is reached, the belief over the type states [M ] is irrelevant, as

users do not come back. Nevertheless, we neglect this case as our analysis does not make use it.

63



We now describe how to compute the belief. At iteration j = 1, the belief state is set to be

b1 = P (state = x) = qx. At iteration j > 1, upon receiving a positive reward rj = 1, the belief

is updated from bj−1 ∈ [0, 1] to

bj(bj−1, a, 1) =
bj−1 ·Pa,x

bj−1 ·Pa,x +Pa,y(1− bj−1)
, (5.2)

where we note that in the event of no-click, the current user departs the system, i.e., we move

to the absorbing state ⊥. For any policy π : [0, 1]→ {1, 2} that maps a belief to a category, its

expected return satisfies the Bellman equation,

E[V π(b)] =
(
bPπ(b),x + (1− b)Pπ(b),y

)
·

(1 + E[V π(b′(b, π(b), 1))]).

To better characterize the expected return, we introduce the following notion of belief-category

walk.

Definition 5.2: Belief-category walk

Let π : [0, 1]→ {1, 2} be any policy. The sequence

b1, a1 = π(b1), b2, a2 = π(b2), . . .

is called the belief-category walk. Namely, it is the induced walk of belief updates and

categories chosen by π, given all the rewards are positive (rj = 1 for every j ∈ N).

Notice that every policy induces a single, well-defined and deterministic belief-category

walk (recall that we assume departure-probabilities satisfy La,τ = 1 for every a ∈ [K], τ ∈
[M ]). Moreover, given any policy π, the trajectory of every user recommended by π is fully

characterized by belief-category walk clipped at bNπ(t), aNπ(t).

In what follows, we derive a closed-form expression for the expected return as a function of

b, the categories chosen by the policy, and the click-probability matrix.

Theorem 5.3

For every policy π and an initial belief b ∈ [0, 1], the expected return is given by

E[V π(b)] =
∞∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y ,

where m1,i := |{aj = 1, j ≤ i}| and m2,i := |{aj = 2, j ≤ i}| are calculated based on the

belief-category walk b1, a1, b2, a2, . . . induced by π.

5.5.2 Characterizing the Optimal Policy

Using Theorem 5.3, we show that the planning problem can be solved in O(1). To arrive at this

conclusion, we perform a case analysis over the following three structures of the click-probability
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matrix P:

• Dominant Row, where P1,y ≥ P2,y;

• Dominant Column, where P2,x ≥ P2,y > P1,y;

• Dominant Diagonal, where P1,x ≥ P2,y > P1,y,P2,x.

Crucially, any matrix P takes exactly one of the three structures. Further, since P is known in

the planning problem, identifying the structure at hand takes O(1) time. Using this structure

partition, we characterize the optimal policy.

Dominant Row We start by considering the simplest structure, in which the Category 1 is

preferred by both types of users: Since P1,y ≥ P2,y and P1,x ≥ P2,x,P1,y,P2,y (Remark 5.1),

there exists a dominant row, i.e., Category 1.

Lemma 5.3

For any instance such that P has a dominant row a, the fixed policy πa is an optimal policy.

As expected, if Category 1 is dominant then the policy that always recommends Category 1
is optimal.

Dominant Column In the second structure we consider the case where there is no dominant

row, and that the column of type x is dominant, i.e., P1,x ≥ P2,x ≥ P2,y > P1,y . In such a case,

which is also the one described in the example in Section 5.2.1, it is unclear what the optimal

policy would be since none of the categories dominates the other.

Surprisingly, we show that the optimal policy can be of only one form: Recommend Category

2 for some time steps (possibly zero) and then always recommend Category 1. To identify when

to switch from Category 2 to Category 1, one only needs to compare four expected returns.

Theorem 5.4

For any instance such that P has a dominant column, one of the following four policies is

optimal:

π1, π2, π2:⌊N∗⌋, π2:⌈N∗⌉,

where N∗ = N∗(P,q) is a constant, and π2:⌊N∗⌋
(π2:⌈N∗⌉

) stands for recommending Cate-

gory 2 until iteration ⌊N∗⌋ (⌈N∗⌉) and then switching to Category 1.

The intuition behind the theorem is as follows. If the prior tends towards type y, we might

start with recommending Category 2 (which users of type y are more likely to click on). But

after several iterations, and as long as the user stays, the posterior belief b increases since

P2,x > P2,y (recall Equation (5.2)). Consequently, since type x becomes more probable, and

since P1,x ≥ P2,x, the optimal policy recommends the best category for this type, i.e., Category

1. For the exact expression of N∗
, we refer the reader to Appendix D.5.3.

Using Theorem 5.3, we can compute the expected return for each of the four policies in O(1),
showing that we can find the optimal policy when P has a column in O(1).
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Dominant Diagonal In the last structure, we consider the case where there is no dominant row

(i.e., P2,y > P1,y) nor a dominant column (i.e., P2,y > P2,x). At first glance, this case is more

complex than the previous two, since none of the categories and none of the types dominates

the other one. However, we uncover that the optimal policy can be either always recommending

Category 1 or always recommending Category 2. Theorem 5.5 summarizes this result.

Theorem 5.5

For any instance such that P has a dominant diagonal, either π1
or π2

is optimal.

With the full characterization of the optimal policy derived in this section (for all the three

structures), we have shown that the optimal policy can be computed in O(1).

5.5.3 Learning: UCB-based Regret Bound

In this section, we move from the planning task to the learning one. Building on the results

of previous sections, we know that there must exist a threshold policy—a policy whose belief-

category walk has a finite prefix of one category, and an infinite suffix with the other category—

which is optimal. However, there can still be infinitely many such policies. To address this

problem, we first show how to reduce the search space for approximately optimal policies with

negligible additive factor to a set of |Π| = O(ln(T )) policies. Then, we derive the parameters

τ̃ and η required for Algorithm 5.2. As an immediate consequence, we get a sublinear regret

algorithm for this setting. We begin with defining threshold policies.

Definition 5.3: Threshold Policy

A policy π is called an (a, h)-threshold policy if there exists an number h ∈ N∪ {0} in π’s

belief-category walk such that

• π recommends category a in iterations j ≤ h, and

• π recommends category a′ in iterations j > h,

for a, a′ ∈ {1, 2} and a ̸= a′.

For instance, the policy π1
that always recommends Category 1 is the (2, 0)-threshold policy,

as it recommends Category 2 until the zero’th iteration (i.e., never recommends Category 2)

and then Category 1 eternally. Furthermore, the policy π2:⌊N∗⌋
introduced in Theorem 5.4 is the

(2, ⌊N∗⌋)-threshold policy.

Next, recall that the chance of departure in every iteration is greater or equal to ϵ, since

we assume maxa,τ Pa,τ ≤ 1 − ϵ. Consequently, the probability that a user will stay beyond

H iterations is exponentially decreasing with H . We could use high-probability arguments to

claim that it suffices to focus on the first H iterations, but without further insights this would

yield Ω(2H) candidates for the optimal policy. Instead, we exploit our insights about threshold

policies.

Let ΠH be the set of all (a, h)-threshold policies for a ∈ {1, 2} and h ∈ [H] ∪ {0}. Clearly,
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|ΠH | = 2H+2. Lemma 5.4 shows that the return obtained by the best policy in ΠH is not worse

than that of the optimal policy π∗
by a negligible factor.

Lemma 5.4

For every H ∈ N, it holds that

E

[
V π∗ − max

π∈ΠH

V π

]
≤ 1

2O(H)
.

Before we describe how to apply Algorithm 5.2, we need to show that returns of all the

policies in ΠH are sub-exponential. In Lemma 5.5, we show that V π
is (τ 2, b)-sub-exponential

for every threshold policy π ∈ ΠH , and provide bounds for both τ and b2/τ 2.

Lemma 5.5

Let τ̃ = 8e
ln( 1

1−ϵ
)

and η = 1. For every threshold policy π ∈ ΠH , the centred random variable

V π − E[V π] is (τ 2, b)-sub-exponential with (τ 2, b) satisfying τ̃ ≥ τ and η ≥ b2/τ 2.

We are ready to wrap up our solution for the learning task proposed in this section. Let

H = Θ(lnT ), ΠH be the set of threshold policies characterized before, and let τ̃ and η be

constants as defined in Lemma 5.5.

Theorem 5.6

Applying Algorithm 5.2 with ΠH , T, τ̃ , η on the class of two-types two-categories instances

considered in this section always yields an expected regret of

E[RT ] ≤ O(
√
T lnT ).

Proof. It holds that

E[RT ] = E

[
TV π∗ −

T∑
t=1

V πt

]

= E

[
TV π∗ − max

π∈ΠH

TV π

]
+ E

[
max
π∈ΠH

TV π −
T∑
t=1

V πt

]
≤ T

2O(H)
+O(

√
HT log T +H log T ) = O(

√
T lnT ),

where the inequality follows from Theorem 5.1 and Lemma 5.4. Finally, setting H = Θ(lnT )
yields the desired result.
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5.6 Discussion

This paper introduces a MAB model in which the recommender system influences both the

rewards accrued and the length of interaction. We dealt with two classes of problems: A single

user type with general departure probabilities (Section 5.4) and the two user types, two categories

where each user departs after her first no-click (Section 5.5). For each problem class, we started

with analyzing the planning task, then characterized a small set of candidates for the optimal

policy, and then applied Algorithm 5.2 to achieve sublinear regret.

In the full version (Ben-Porat22), we also consider a third class of problems: Two categories,

multiple user types (M ≥ 2) where user departs with their first no-click. We use the closed-form

expected return derived in Theorem 5.3 to show how to use dynamic programming to find

approximately optimal planning policies. We formulate the problem of finding an optimal policy

for a finite horizon H in a recursive manner. Particularly, we show how to find a 1/2O(H)
additive

approximation in run-time of O(H2). Unfortunately, this approach cannot assist us in the

learning task. Dynamic programming relies on skipping sub-optimal solutions to sub-problems

(shorter horizons in our case), but this happens on the fly; thus, we cannot a-priori define a small

set of candidates like what Algorithm 5.2 requires. More broadly, we could use this dynamic

programming approach for more than two categories, namely for K ≥ 2, but then the run-time

becomes O(HK).

There are several interesting future directions. First, achieving low regret for the setup in

Section 5.5 with K ≥ 2. We suspect that this class of problems could enjoy a solution similar to

ours, where candidates for optimal policies are mixing two categories solely. Second, achieving

low regret for the setup in Section 5.5 with uncertain departure (i.e., L ̸= 1). Our approach

fails in such a case since we cannot use belief-category walks; these are no longer deterministic.

Consequently, the closed-form formula is much more complex and optimal planning becomes

more intricate. These two challenges are left open for future work.
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Chapter 6
Supervised Learning with General Risk

Functionals

6.1 Introduction

To date, the vast majority of supervised, unsupervised, and reinforcement learning research

has focused on objectives expressible as expectations (over some dataset or distribution) of

an underlying loss (or reward) function. This focus is understandable. The expected loss is

mathematically convenient and a reasonable default, and a special case of nearly every proposed

family of risks. To be sure, this focus has paid off: we now possess a rich body of theory and

methods for evaluating, optimizing, and providing theoretical guarantees on the expected loss.

However, real-world concerns such as risk aversion, equitable allocations of benefits and

harms, or alignment with human preferences, often demand that we address other functionals of

the loss distribution. For example, in finance, the expectation of returns must be weighed against

their variance to determine an ideal portfolio allocation, as codified, e.g., in the mean-variance

objective (Björk et al., 2014). Focusing on supervised learning, consider the common scenario in

which a population contains a minority (constituting fraction α of the population) but where

group membership was not recorded in the available data. If the pattern relating the features to

the label were different for different demographics, a naively trained model might adversely

harm members of a minority group. Absent further information, one sensible strategy could be

to optimize the worst case performance over all subsets (of size up to α). This would translate to

the familiar Conditional Value at Risk (CVaR) objective (Rockafellar, Uryasev, et al., 2000). In

addition, even in settings where a model is evaluated in terms of the expected loss at test time,

the training objective may be chosen as other functionals due to reasons including distribution

shifts (Duchi and Namkoong, 2018), noisy labels (Lee et al., 2020), imbalanced dataset (Li et al.,

2020), etc.

Risk-sensitive learning research addresses the problem of learning models under many

families of (risk) functionals, including (among others) distortion risks (Wirch and Hardy, 2001),

coherent risks (Artzner et al., 1999), spectral risks (Acerbi, 2002), and cumulative prospect theory
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risks (Prashanth et al., 2016). Subsuming these risks under a common framework addressing

bounded losses/rewards, Huang et al. (2021) recently introduced Lipschitz risk functionals,

for which differences in the risk are bounded by (sup norm) differences in the Cumulative

Distribution Function (CDF) of losses. Thus, because a single CDF estimate can be used to

estimate all Lipschitz risks, sup norm concentration of the CDF estimate entails corresponding

(simultaneous) concentration of all Lipschitz risks calculated on that CDF estimate. However, this

concentration result applies only to a single hypothesis. In contrast, most uniform convergence

results in learning theory have concentrated largely on the expected loss (Vapnik, 1999; Vapnik,

2013; Bartlett and Mendelson, 2002). While uniform convergence results are known for several

specific risk classes, including the spectral/rank-weighted risks (Khim et al., 2020) and optimized

certainty equivalent risks (Lee et al., 2020), no results to date provide uniform convergence

guarantees that hold simultaneously over both a hypothesis class and a broad class of risks.

Tackling this problem, we present, to our knowledge, the first uniform convergence guarantee

on estimation of the loss CDF. Our bounds rely on appropriate complexity measures of the

hypothesis class. In addition to the traditional Rademacher complexity and VC dimension, we

propose a new notion of permutation complexity that is especially suited to CDF estimation.

For general risk estimation, we adopt the broader class (subsuming the Lipschitz risks) of

Hölder risk functionals, for which closeness in distribution entails closeness in risk. Combined

with our uniform convergence guarantees for CDF estimation, this property allows us to establish

uniform convergence guarantees for risk estimation of supervised learning models, which hold

simultaneously over all hypotheses in the model class and over all Hölder risks.

These results license us to optimize general risks, assuring that for appropriate model

classes and given sufficient data, the empirical risk minimizer will indeed generalize and that

whichever objective is optimized, all Hölder risk estimates will be close to their true values.

Generalization aside, optimizing complex risks is non-trivial. To tackle this problem, we propose

a new algorithm for optimizing distortion risks, a subset of Hölder risks that subsumes the

spectral risks, including the expectation, CVaR, cumulative prospect theory risks, and others.

Our approach extends traditional gradient-based empirical risk minimization methods to handle

distortion risks (Denneberg, 1990; Wang, 1996). In particular, we calculate the empirical distortion

risk by re-weighting losses based on CDF values and establish convergence guarantees for the

proposed optimization method. Finally, we experimentally validate our algorithm, both in

settings where uniform convergence results hold and in high-dimensional settings with deep

networks.

In summary, we contribute the following:

1. The first uniform convergence result for CDF estimation together with corresponding new

complexity measures suited to the task (Section 6.4).

2. Uniform convergence for risk estimation that holds simultaneously for all Hölder risks,

yielding learning guarantees for empirical risk minimization for the broad class of distor-

tion risks (Section 6.5).

3. A gradient-based method for minimizing distortion risks that re-weights examples dynam-

ically based on the empirical CDF of losses, and corresponding convergence guarantees

(Section 6.6).
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4. Experiments confirming the practical usefulness of our learning algorithm (Section 6.7).

6.2 Related Literature

Risk functionals have long been studied in diverse contexts (Sharpe, 1966; Artzner et al., 1999;

Rockafellar, Uryasev, et al., 2000; Krokhmal, 2007; Shapiro et al., 2014; Acerbi, 2002; Prashanth

et al., 2016; Jie et al., 2018). CVaR, value-at-risk, and mean-variance (Cassel et al., 2018; Sani

et al., 2013; Vakili and Zhao, 2015; Zimin et al., 2014) rank among the most widely studied

risks. Prashanth et al. (2016) introduces the cumulative prospect theory risks, which have been

studied in bandit (Gopalan et al., 2017) and supervised learning settings (Leqi et al., 2019b).

Many previous works have tackled the evaluation (Huang et al., 2021; Chandak et al., 2021) and

optimization (Torossian et al., 2019; Munos, 2014) of risk functionals.

Recent work on risk-sensitive supervised learning has established the uniform convergence

of a single risk functional when losses incurred by the models are bounded (Khim et al., 2020;

Lee et al., 2020), or the excess risk of a particular learning procedure in cases where the loss

could be unbounded (Holland and Haress, 2021). Collectively, these works have addressed the

class of spectral risks (L-risks or rank-weighted risks) that includes the expected value, CVaR

and cumulative prospect theory risks (Khim et al., 2020; Holland and Haress, 2021), as well as

the class of optimized certainty equivalent risks that includes the expected value, CVaR and

entropic risks (Ben-Tal and Teboulle, 1986; Lee et al., 2020) .

To our knowledge, the aforementioned risk-sensitive learning results are considerably nar-

rower: the analyses apply only to smaller families of risks and the guarantees hold only for a

single risk functional (not simultaneously over the family). By contrast, we establish uniform

convergence results that hold simultaneously over both a broader class of risks and over an

entire model class (constrained by an appropriate complexity measure). The key to our approach

is to estimate the CDF of losses and control its sup norm error uniformly over a hypothesis

class. CDF estimation is a central topic in learning theory (Devroye et al., 2013). Strong

approximation results provide concentration bounds on the Kolmogorov–Smirnov distance (sup

norm) between the true and estimated CDF (Massart, 1990). As our uniform convergence results

are over a hypothesis class of possibly infinite number of hypotheses, we control the complexity

of the hypothesis class using data-dependent complexity notions (e.g., Rademacher complexity)

and data-independent complexity notions (e.g., VC dimension) (Alexander, 1984; Vapnik, 2006;

Gänssler and Stute, 1979).

6.3 Preliminaries

We use X to denote the space of covariates, Y the space of labels, and Z = X × Y . Let

ℓ : Y×Y → R denote a loss function and F a hypothesis class, where for any f ∈ F, f : X → Y .

The set Fℓ, with elements ℓf , denotes the class of functions that are compositions of the loss

function ℓ and a hypothesis f ∈ F, i.e., ∀z ∈ Z , ℓf (z) = ℓ (f(x), y). Furthermore, we use ℓf (Z)
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to denote the random variable of the loss incurred by f ∈ F under data Z = (X, Y ). For any

n ∈ N, [n] := {1, . . . , n}.
We use U to denote the space of real-valued random variables that admit CDFs. For any

U ∈ U , its CDF is denoted by FU . A risk functional ρ : U → R is a mapping from a space

of real-valued random variables to reals. A risk functional is called law-invariant (or version-

independent) if for any pair of random variables U,U ′ ∈ U with the same law (FU = FU ′), we

have ρ(U) = ρ(U ′) (Kusuoka, 2001). We work with law-invariant risk functionals in this paper,

and with some abuse of notation, we refer to ρ(FU) and ρ(U) interchangeably.

6.4 Uniform Convergence for CDF Estimation

We begin with an important building block for risk estimation—CDF estimation with uniform

convergence guarantees. Given a loss function ℓ and a data set of n labeled data points {Zi}ni=1

where Zi = (Xi, Yi), we are interested in estimating the CDF of ℓf (Z) for all f ∈ F. We use the

unbiased empirical CDF estimator:

F̂ (r; f) :=
1

n

n∑
i=1

1{ℓf (Zi)≤r}, (6.1)

where E[F̂ (r; f)] = P(ℓf (Z) ≤ r) = F (r; f). To establish the uniform convergence of the

estimator, our central goal is to analyze the following quantity:

en(F, ℓ) = sup
f∈F

sup
r∈R

∣∣∣F̂ (r; f)− F (r; f)∣∣∣ . (6.2)

In Section 6.4.1, we exploit the special structure of CDF estimation and propose a new notion

of permutation complexity that captures the complexity of the hypothesis class used for CDF

estimation. In Section 6.4.2, we apply the more classical approach for analyzing uniform con-

vergence that does not exploit any special structure of CDF estimation. Each approach offers a

unique perspective and contributes to our understanding of CDF estimation. We highlight that

the uniform convergence we provide hold for any loss distribution regardless of whether the

loss is binary or bounded.

We first introduce notation key to our analysis. The Rademacher complexity in our setting

(for a given loss function ℓ) is given as follows:

R(n,F) = EP,R

[
sup
f∈F

sup
r∈R

1

n

∣∣∣∣∣
n∑
i=1

ξi1{ℓf (Zi))≤r}

∣∣∣∣∣
]

= EP,R

[
sup
f∈F

sup
g∈G(1)

1

n

∣∣∣∣∣
n∑
i=1

ξig(ℓf (Zi))

∣∣∣∣∣
]
, (6.3)

with R being a Rademacher measure on a set of Rademacher random variables {ξi}ni=1 and

G(1) := {1{· ≤r} : ∀r ∈ R} is the set of indicator functions parameterized by a real-valued r.
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Using McDiarmid’s inequality and symmetrization, we obtain the following classical result that

bounds en(F, ℓ) in terms of the Rademacher complexity. All proofs in this section can be found

in Appendix E.2.

Theorem 6.1

Given a hypothesis class F, any loss function ℓ : Y × Y → R, and n samples {Zi}ni=1, we

have that with probability at least 1− δ,

en(F, ℓ) ≤ 2R(n,F) +

√
log(1

δ
)

2n
.

In general, the Rademacher complexityR(n,F) is hard to obtain. Researchers have come up

with different ways to control it for various hypothesis classes, e.g., hypothesis classes with finite

VC dimension (Wainwright, 2019). In the following, we discuss how we work withR(n,F).

6.4.1 Permutation Complexity

We first notice thatR(n,F) depends jointly on both the hypothesis class F and G(1). A direct

approach that follows from the classical statistical learning theory is to work with the function

class that combines F and G(1), which we provide more details in Section 6.4.2. In this section,

we propose a new way of thinking aboutR(n,F). By exploiting the special structure of CDF

estimation (the structure of G(1)), we uncover that R(n,F) can be controlled by only the

complexity of the hypothesis class F (or Fℓ with elements ℓf ). In order to do so, we first

introduce the notion of permutation complexity. This complexity measure is data-dependent and

enables us to work withR(n,F) by disentangling the complexity of F (or Fℓ) from that of G(1).

For a measurable space V , let ζ : V → R denote a measurable function and {vi}ni=1 denote

a set of n points in V . Satisfying the conditions of selection and maximum theorems (Guide,

2006, Chapter 17), a permutation function π : [n]→ [n] in the space Π(n) of all permutation of

size n exists, and permutes the indices of {vi}ni=1 such that ζ(vπ(1)) ≤ ζ(vπ(2)) ≤ . . . ≤ ζ(vπ(n)).
We note that the permutation function can depend on the specific data points {vi}ni=1 and the

function ζ of interests. In the following definitions, we consider a function class J of functions

ζ : V → R and a probability measure µ on (V , σ(V)), where σ(V) denotes the σ-algebra

generated by V .

Definition 6.1: Permutation Complexity

The instance-dependent permutation complexity of J at n data points {vi}ni=1, denoted

as NΠ(J, {vi}ni=1), is the minimum number of permutation functions π ∈ Π(n) needed to

sort elements of {ζ(vi)}ni=1, ∀ζ ∈ J. The permutation complexity of J at n (random) data

points {Vi}ni=1 with measure µ is

NΠ(n,J, µ) := Eµ [NΠ(J, {Vi}ni=1)] .
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To obtain a better understanding of permutation complexity, we provide the permutation

complexity of monotone real-valued functions.

Lemma 6.1

When V is the space of reals, J is a set of real-valued non-decreasing functions on V , the

permutation complexity NΠ(n,J, µ) = 1.

Proof. For a set of real-valued points {vi}ni=1, we can construct a permutation function π such

that vπ(1) ≤ vπ(2) ≤ . . . ≤ vπ(n). Since all functions in J are non-decreasing, for any ζ ∈ J,

we have {vi}ni=1 such that ζ(vπ(1)) ≤ ζ(vπ(2)) ≤ . . . ≤ ζ(vπ(n)). Thus, NΠ(J, {vi}ni=1) = 1 and

NΠ(n,J, µ) = 1 for any measure µ.

Remark 6.1. This result implies that the permutation complexity of threshold functions G(1) is
one.

Mapping the definition to our setting, the function class J of interest is Fℓ with elements ℓf .

The data points Vi = Zi = (Xi, Yi) and the measure µ = P (the probability measure for Z).

An immediate observation is that when |F| is finite, we only need at most |F| permutation

functions to sort {ℓf (zi)}ni=1 (one permutation function for each f ∈ F), i.e., NΠ(Fℓ, {zi}ni=1) ≤
|F|. For the special case of binary classification, where Y = {0, 1} and the loss function ℓ
is the 0/1 loss, a coarse upper bound on the permutation complexity when F has finite VC

dimension ν(F) is NΠ(n,Fℓ,P) ≤ (n+ 1)ν(F). This is due to Sauer’s Lemma: there are at most

(n+1)ν(F) ways of labeling the data, which suggests that we need at most (n+1)ν(F) permutation

functions. However, as one may have noticed, the number of permutation functions needed

may be (much) smaller than this number. For example, consider a binary classification setting

where we have 3 data points and F is large enough such that all 23 possible losses (000, 001, . . .)
can be incurred. In such a case, we only need 4 permutation functions, since loss sequences

that are non-decreasing (or non-increasing) can share the same permutation function, e.g., for

loss sequences 111, 011, 001, 000, we can use the same permutation function π(i) = i, ∀i ∈ [3].
We note that the permutation complexity is defined for not just binary-valued function classes.

Precisely characterizing the permutation complexity for different combinations of function

classes, data distributions and loss functions is of future interest.

Theorem 6.2

For any hypothesis class F and loss function ℓ : Y × Y → R, we have that

R(n,F) ≤
√

log(4NΠ(n,Fℓ,P))
2n

.

Theorem 6.2 indicates that, despite R(n,F) depending on the supremum over both the

function class F and G(1) where G(1) is an infinite set, R(n,F) can be controlled by just the

complexity of Fℓ. When the permutation complexityNΠ(n,Fℓ,P) is polynomial in the number of

samples n, we obtain thatR(n,F) = O(
√

log(n)/n). The immediate consequence of Theorem 6.2

when the hypothesis class F is finite is provided below.
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Corollary 6.1. For a finite hypothesis class F,

R(n,F) ≤
√

log(4|F|)
2n

.

Corollary 6.1 suggests that the generalization bound of CDF estimation follows the same rate

as classical generalization bound of the expected loss for finite function classes, i.e.,O(
√

log(|F|)/n).

6.4.2 Classical Approach

In this section, we present a more classical approach for analyzing the uniform convergence

without exploiting the specific structure of CDF estimation. As we have noted before,R(n,F)
depends on both F and G(1). In this approach, we directly work with the function class that

combines F and G(1): for a given loss function ℓ, we define

H := {h : Z → {0, 1} :
h(z; r) = 1{ℓf (z)≤r}, f ∈ F, r ∈ R}.

We note that even when F is finite, H is an infinite set. The Rademacher complexity (6.3) can be

re-written as

R(n,F) = EP,R

[
sup
h∈H

1

n

∣∣∣∣∣
n∑
i=1

ξih(Zi)

∣∣∣∣∣
]
.

Lemma 6.2

(Wainwright, 2019, Lemma 4.14) Let |H({zi}ni=1)| denote the maximum cardinality of the

set H({zi}ni=1) = {(h(z1), . . . , h(zn)) : h ∈ H} , where n ∈ N is fixed and {zi}ni=1 can be

any data collection for zi ∈ Z . Then, we have

R(n,F) ≤ 2

√
log(|H({zi}ni=1)|)

n
.

Since H consists of binary functions, for any data collection {zi}ni=1, the set H({zi}ni=1) is

finite. When F is finite, we obtain that |H({zi}ni=1)| ≤ (n + 1)|F|. This is true since for

a given data collection {zi}ni=1 and hypothesis f ∈ F, after sorting {ℓf (zi)}ni=1, we have at

most (n + 1) ways of labeling them using the indicator functions 1{·≤r} for r ∈ R. Thus, if

we directly apply Lemma 6.2, we obtain that the Rademacher complexity R(n,F) is on the

order of O(
√

(log |F|+logn)/n), which has an extra log(n) term in the numerator compared to

our bound in Corollary 6.1. In general, when H has finite VC dimension ν(H), we obtain

that R(n,F) ≤ O(
√

ν(H) log(n+1)/n). However, this result is far from being sharp. Using more

advanced techniques, e.g., chaining and Dudley’s entropy integral (Wainwright, 2019), one can

remove the extra log(n) factor on the numerator, and obtain that R(n,F) ≤ O(
√

ν(H)/n) (for

more details, see Wainwright (2019, Example 5.24)). As a consequence, when |F| <∞, we have

ν(H) ≤ log(|F|) and thus obtain thatR(n,F) ≤ O(
√

log(|F|)/n) which is at the same rate as our

bound in Corollary 6.1.
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6.5 Uniform Convergence for Hölder Risk Estimation

Using our results in Section 6.4, we show uniform convergence for a broad class of risk

functionals—Hölder risks. As illustrated in Section 6.6, uniform convergence for a single risk

functional provides grounding for learning models through minimizing the empirical risk. In

addition to uniform convergence for a single risk, we also provide uniform convergence results

hold for a collection of risks simultaneously. The second result is important due to the following

reasons: Although models are trained to optimize a single risk objective, evaluating their per-

formance under multiple risks can give a holistic assessment of their behavior—a task we call

risk assessment. For example, models minimizing CVaR at different α levels may have different

tradeoffs with their expected loss, and monitoring the progress of both objectives throughout

the training process can inform choice of the best model. In addition, when given a set of

models obtained under different learning mechanisms, one may want to compare them in terms

of different risks. To this end, using our results on uniform convergence for CDF estimation

(Section 6.4), we demonstrate how a collection of models may be assessed under many risks

simultaneously, with estimation errors of the same order as the CDF estimation error.

6.5.1 Hölder Risk Functionals

We begin by introducing a new class of risks—the Hölder risk functionals—that includes many

popularly studied risks and generalizes the notion of Lipschitz risk functionals (Huang et al.,

2021) and Hölder continuous functionals in Wasserstein distance (Bhat and LA, 2019).

Definition 6.2

Let d denote a quasi-metric
a

on the space of CDFs. A risk functional ρ isL(ρ, p, d)Hölder on

a space of real-valued random variables U if there exist constants p > 0 and L(ρ, p, d) > 0
such that for all U,U ′ ∈ U with CDF FU and FU ′ respectively, the following holds:

|ρ(FU)− ρ(FU ′)| ≤ L(ρ, p, d)d(FU , FU ′)p.

a
Quasi-metrics are defined in Appendix E.1.

The class of Hölder risk functionals subsumes many other risk functional classes. In particu-

lar, Lipschitz risk functionals (Huang et al., 2021) are L(·, 1,L∞) Hölder on bounded random

variables. As a direct result, distortion risk functionals with Lipschitz distortion functions (Den-

neberg, 1990; Wang, 1996; Wang et al., 1997; Balbás et al., 2009; Wirch and Hardy, 1999; Wirch

and Hardy, 2001), cumulative prospect theory risks (Prashanth et al., 2016; Leqi et al., 2019b),

variance, and linear combinations of aforementioned functionals are all Hölder on bounded

random variables. In addition, the optimized certainty equivalent risks (Lee et al., 2020) and

spectral risks (Khim et al., 2020; Holland and Haress, 2021) recently studied in risk-sensitive

supervised learning literatures, are Lipschitz (hence Hölder) on the space of bounded random

variables. We provide proofs and further details in Appendix E.1.

To be more specific, we present a subset of Hölder risk functionals—distortion risks with
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Lipschitz distortion functions—that consists of many well-studied risks including the expected

value, CVaR and cumulative prospect theory risks. When the loss is non-negative, the distortion

risk of ℓf (Z) is defined to be:

ρ(F (·; f)) =
∫ ∞

0

g(1− F (r; f))dr, (6.4)

where the distortion function g : [0, 1]→ [0, 1] is non-decreasing with g(0) = 0 and g(1) = 1.

In the case of expected value, the distortion function g is 1-Lipschitz. For CVaR at level α,

the distortion function g is
1
α

-Lipschitz. For more details, we refer the readers to Huang et al.

(2021). In the following, we show uniform convergence for estimating Hölder risks using our

proposed estimator (Section 6.5.2) and develop optimization procedures to minimize distortion

risks (Section 6.6).

6.5.2 Uniform Convergence for Risk Estimation

For a given hypothesis f ∈ F and loss function ℓ, we estimate the risk ρ(F (·; f)) using the

CDF estimator F̂ (·; f) by plugging it in the functional of interest: ρ(F̂ (·; f)). Many existing

risk estimators in the supervised learning literatures, including the traditional empirical risk

and estimators used for estimating spectral risks (Khim et al., 2020) and optimized certainty

equivalent risks (Lee et al., 2020) can be viewed as examples of the above estimator.

Leveraging the uniform convergence results of the CDF estimator, we present uniform

convergence result of the proposed risk estimator. The uniform convergence holds both over

the hypothesis class F and over a set of Hölder risk functionals. As the Hölder class contains a

large set of popularly studied risks, our result demonstrates that models can be assessed under

many risks without loss of statistical power. This is formalized in Theorem 6.3 below.

Theorem 6.3

For a hypothesis class F, a bounded loss function ℓ, and δ ∈ (0, 1], if P(en(F, ℓ) ≤ ϵ) ≥ 1−δ,

then with probability 1− δ, for all ρ ∈ T, we have

sup
f∈F
|ρ(F (·; f))− ρ(F̂ (·; f))| ≤ L(ρ, 1,L∞)ϵ,

where T is the set of L(·, 1,L∞) Hölder risk functionals on the space of bounded random

variables.

In cases where the CDF estimation error ϵ is of order O(1/
√
n), we can estimate the set of

Hölder risks T for all hypotheses in F at rate O(1/
√
n). Because our result is uniform over both

the hypothesis class F and the risk functional class T, it is a generalization of existing uniform

convergence results that are uniform over F, but for a single risk functional (Khim et al., 2020;

Lee et al., 2020).

In Appendix E.3, we provide similar uniform convergence results where the set of risk

functionals are Hölder smooth in Wasserstein distance. As a direct consequence to Theorem 6.3,

uniform convergence of a single Hölder risk, e.g., a distortion risk (6.4), is given below.
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VGG-11 GoogLeNet ShuffleNet Inception ResNet-18

Accuracy 69.022% 69.772% 69.356% 69.542% 69.756%

E[ℓf ] 1.261 1.283 1.360 1.829 1.247

CVaR.05(ℓf ) 1.327 1.350 1.431 1.925 1.313

E[ℓf ] + 0.5Var(ℓf ) 5.215 4.376 6.718 14.416 5.353

HRM.3,.4(ℓf ) 1.374 1.336 1.542 2.214 1.382

HRM.2,.8(ℓf ) 1.233 1.239 1.344 1.845 1.225

Table 6.1: Risks for different ImageNet classification models evaluated on the validation set. ℓf (Z) is the

cross-entropy loss for each model f . For simplicity, we omitted the arguments Z in the table. CVaRα is

the expected value of the top 100α percent losses. HRMa,b is the cumulative prospect theory risk defined

in Leqi et al. (2019b). All results are rounded to 3 digits.

Corollary 6.2. For a hypothesis class F, a bounded loss function ℓ : Y×Y → [0, D], and δ ∈ (0, 1],
if P(en(F, ℓ) ≤ ϵ) ≥ 1− δ, then with probability 1− δ, we have

sup
f∈F
|ρ(F (·; f))− ρ(F̂ (·; f))| ≤ Lϵ,

where ρ is a distortion risk with L
D

-Lipschitz distortion function.
Remark 6.2. As an example, consider a binary classification setting where the loss function ℓ is
the 0/1 loss and the hypothesis class F is finite, using our results in Corollary 6.2, we obtain that
the the generalization error for the expected value is O(

√
log(|F|)/n) and the generalization error for

the CVaR is O(
√

log(|F|)/α2n), which are of the same rates (with better constants) as the ones in Lee
et al. (2020).

6.6 Empirical Risk Minimization

For a single risk functional, one may want to learn models that optimize it. Our uniform

convergence results for risk estimation license us to learn models that minimize the population

risk through Empirical Risk Minimization (ERM). We denote the population and empirical risk

minimizers as follows:

f⋆ ∈ argmin
f∈F

ρ(F (·; f)), f̂⋆ ∈ argmin
f∈F

ρ(F̂ (·; f)). (6.5)

The excess risk of the empirical risk minimizer f̂⋆ can be bounded by

ρ(F (·; f̂⋆))− ρ(F (·; f⋆)) = ρ(F (·; f̂⋆))− ρ(F̂ (·; f̂⋆))
+ ρ(F̂ (·; f̂⋆))− ρ(F̂ (·; f⋆)) + ρ(F̂ (·; f⋆))− ρ(F (·; f⋆))
≤ 2 sup

f∈F
|ρ(F̂ (·; f))− ρ(F (·; f))|.
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We study ERM when the loss function is non-negative and the risk functional of interest is a

distortion risk with a Lipschitz distortion function (6.4). Such distortion risk functionals consist

many well-studied risks, including the expected value, CVaR, cumulative prospect theory risks,

and other spectral risks (Bäuerle and Glauner, 2021). Using Corollary 6.2, we obtain that when

en(F, ℓ) = O(1/
√
n) and the loss ℓ is bounded, the excess risk of f̂⋆ is O(1/

√
n).

We consider settings where the hypothesis class F is a class of parameterized functions,

e.g., linear models and neural networks and use Θ ⊆ Rd to denote the set of parameters. For

a hypothesis f ∈ F parameterized by θ ∈ Θ, we denote F (·; f) and ℓf (zi) by Fθ and ℓθ(i),

respectively. Similarly, we use θ⋆ and θ̂⋆ for referring to f⋆ and f̂⋆. As in Section 6.4.1, we use

πθ : [n]→ [n] to denote the permutation function such that ℓθ(πθ(i)) is the i-th smallest loss

under the current model θ and the fixed dataset {zi}ni=1. Using the CDF estimator F̂θ (6.1), the

empirical distortion risk ρ(F̂θ) can be re-written as

n∑
i=1

g

(
1− i− 1

n

)
· (ℓθ(πθ(i))− ℓθ(πθ(i− 1))) ,

where for all θ ∈ Θ, we set ℓθ(πθ(0)) := 0 since the losses are non-negative.

To employ first-order methods for minimizing the empirical distortion risk, it is natural to

first identify when ρ(F̂θ) is differentiable.

Lemma 6.3

If {ℓθ(zi)}ni=1 are Lipschitz continuous in θ ∈ Θ, then for all i ∈ [n], ℓθ(πθ(i)), i.e., the i-th

smallest loss, is Lipschitz continuous in θ and ρ(F̂θ) is differentiable in θ almost everywhere.

When ρ(F̂θ) (and ℓθ(πθ(i))) is differentiable, the gradient∇θρ(F̂θ) can be written as

n∑
i=1

(
g

(
1− i− 1

n

)
− g

(
1− i

n

))
· ∇θℓθ(πθ(i)). (6.6)

When g(x) = x, the distortion risk is the same as the expected loss and we recover the

gradient for the traditional empirical risk.

To avoid the non-differentiable points, we add a small noise to the gradient descent steps.

By doing so, we ensure that the descent steps will end up in differentiable points almost surely.

Choose initial point θ1 ∈ Θ. At iteration t, the parameter is updated as follows

θt+1 ← θt − η
(
∇θρ(F̂θ) + wt

)
, (6.7)

where η is the learning rate,∇θρ(F̂θ) is given in (6.6) and wt is sampled from a d-dimensional

Gaussian with mean 0 and variance
1
d
.

In general, even when the loss function ℓ is convex in the parameter θ, the empirical distortion

risk ρ(F̂θ) may not be convex in θ. In Corollary 6.3, we show local convergence of θt obtained

through following (6.7).
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Figure 6.1: Prediction (predicted probability of a covariate being labeled as 1) contours and loss histograms

of two models learned under the expected loss and the CVaR.05 objective, respectively. The blue pluses

and orange dots represent two classes. The loss distribution for the expected loss model has extremely

high values for a small subset of the covariates.
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Figure 6.2: Performance of VGG-16 models trained under expected loss, CVaR.05, CVaR.7 and HRM.3,.4.

In Figures 6.2a and 6.2b, each model is trained and evaluated on the same objective. In Figures 6.2c and

6.2d, we only train one model under the expected loss but report all four objectives of that model. All

results are averaged over 5 runs.

Corollary 6.3. If {ℓθ(zi)}ni=1 are Lipschitz continuous and ρ(F̂θ) is β-smooth in θ, then the
following holds almost surely when the learning rate in (6.7) is η = 1

β
√
T

:

1

T

T∑
t=1

E
[
∥∇θρ(F̂θt)∥2

]
≤ 2β√

T

(
ρ(F̂θ1)− ρ(F̂θ⋆) +

1

2β

)
.

Corollary 6.3 demonstrates that the average gradient magnitude over T iterations shrinks as

T goes to infinity, suggesting that performing gradient descent by following (6.7) will converge

to an approximate stationary point.

6.7 Experiment

In our experiments, we demonstrate the efficacy of our proposed estimator for risk estimation

and proposed learning procedure for obtaining risk-sensitive models. In Section 6.7.1, we work

with a risk assessment setting where we simultaneously inspect a finite set of models in terms of

multiple risks. In Section 6.7.2, we show the performance of empirical risk minimization under
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various distortion risks. After showing that the classifier learned under different risk objectives

behave differently in a toy example, we learn risk-sensitive models for CIFAR-10.

6.7.1 Risk Assessment on ImageNet Models

We perform risk assessments on pretrained Pytorch models for ImageNet classification. In

particular, we choose models with similar accuracy (both reported on the official Pytorch

website and confirmed by us) on the validation set (50,000 images) for the ImageNet classification

challenge (Russakovsky et al., 2015). The models are VGG-11 (Simonyan and Zisserman, 2014),

GoogLeNet (Szegedy et al., 2015), ShuffleNet (Ma et al., 2018), Inception (Szegedy et al., 2016)

and ResNet-18 (He et al., 2016) and the accuracy of these models evaluated on the validation set

are around 69% (Table 6.1). By assessing the risks of models with similar accuracy, we highlight

how models with similar performance under traditional metrics (e.g., accuracy) could have

different risk performances. For example, though Inception has similar accuracy compared to

other models, its loss variance is much higher compared to others, which may be detrimental in

settings where high-varying performance is not preferred. We also evaluated the CVaR of these

models under different α’s (Figure E.1 in Appendix E.5). Our theoretical results suggest that all

these evaluations hold simultaneously across the risk functionals and models of interest with

the error being O(
√

log |F|/n) (|F| = 5 in this experiment). In addition to showcasing the power

of our theoretical results, this example demonstrates how model assessments under multiple

risk notions provide a better understanding of model behaviors.

6.7.2 Empirical Distortion Risk Minimization

To illustrate the difference among models learned under different risk objectives, we first present

a toy example for comparing models learned under the expected loss objective and the CVaR

objective respectively. We then show the efficacy of our proposed optimization procedure

through training deep neural networks on CIFAR-10. In both cases, the models are learned by

following (6.7). For more details on these experiments, we refer the readers to Appendix E.5.

Toy Example In the toy example, we work with a binary classification task where the covari-

ates are 2-dimensional. In Figure 6.1, the blue pluses and orange dots represent two classes,

respectively. We have learned logistic regression models to minimize the expected loss and

the CVaR.05 (expected value of the top 5% losses) through minimizing their empirical risks.

The loss distribution along with the prediction contours of the two classifiers showcase the

difference between the two models. In particular, the model learned under expected loss suffers

high loss for a small subset of the covariates while the model learned under CVaR.05 have all

losses concentrated around a small value. Indicated by the (uniform) grey color in the contour

plot, the predictions (predicted probability of a covariate being labeled as 1) for the CVaR.05

model are around 0.5. In contrast, the predictions for the expected loss model spread across a

wide range between 0 and 1.

CIFAR-10 We have trained VGG-16 models on CIFAR-10 through minimizing the empirical

risks for expected loss, CVaR.05, CVaR.7 and HRM.3,.4 (Leqi et al., 2019b) using the gradient
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descent step presented in (6.7). The models are trained over 150 epochs and the learning rate

is chosen to be 0.005. As shown in Figure 6.2a and 6.2b, in general, the objective values are

decreasing over the epochs during training and testing. In addition, we observe that minimizing

the empirical risk for expected loss does not necessarily imply minimizing other risks, e.g.,

CVaR.05 (Figure 6.2c). These results suggest the efficacy of our proposed optimization procedure

for minimizing distortion risks.

6.8 Discussion

We have presented a principled framework, including analytic tools and algorithms for risk-

sensitive learning and assessment that: (1) obtains the empirical CDF; (2) estimates the risks

of interest through plugging in the empirical CDF; and (3) minimizes the empirical risk (for

risk-sensitive learning). Our theoretical results on the uniform convergence of the proposed

risk estimators hold simultaneously over a hypothesis class (constrained by an appropriate

complexity measure) and over Hölder risks. The key building block for these results is the

uniform convergence of the CDF estimator.

There are multiple future directions of our work. First, we hope to more precisely characterize

the permutation complexity (under various hypothesis classes). Second, our gradient descent

procedure (6.7) requires sorting all losses. An important next step would be to allow minibatches

(sorting only a small subset of losses) when minimizing empirical distortion risks. Third, as shown

in Figure 6.1, models learned under different risk objectives behave distinctly. Characterizing

these model behaviors theoretically and empirically, and understanding the trade-offs among

these objectives is crucial for building future models.
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Chapter 7
Median Optimal Treatment Regimes

7.1 Introduction

Optimal treatment regime methods aim to learn policies that map subject covariates to a decision,

typically with the goal of maximizing a population criterion. The task of assigning treatment

decisions based on individual characteristics is common and crucially important in many disci-

plines, with applications ranging from personalized medicine to loan approval to educational

program assignment. By now there is a large literature on theory, methods, and applications of

optimal treatment regimes (Murphy, 2003; Robins, 2004; Laber et al., 2014; Chakraborty, 2013;

Schulte et al., 2014; Laan and Luedtke, 2014; Kosorok and Laber, 2019); we mostly refer to this

and related work for more general background and details.

As more individualized policies are deployed in practice, it is of particular importance to

examine the target value for which the treatment regimes are optimized. Traditionally, the

mean outcome in the population has been used as the criterion. An important reference in this

stream for our purposes is Laan and Luedtke (2014), which studies doubly robust estimation of

the mean outcome under both a known policy and the unknown optimal policy, showing how

nonparametric efficiency bounds can be achieved in both cases. This is part of a larger literature

on semiparametric efficiency theory and doubly robust estimation (also known as one-step or

debiased or double machine learning estimation) (Newey, 1990; Bickel et al., 1993; Vaart, 2002;

van der Laan and Robins, 2003; Tsiatis, 2007; Kennedy, 2016; Chernozhukov et al., 2018).

However, compared to the median, means can be a poor and/or sensitive measure of the

centrality of a distribution, for example in the presence of skew or contamination (Huber et

al., 1967; Casella and Berger, 2002; Huber, 2004). As a result, a recent literature has evolved

studying alternative target values for learning policies. Linn et al. (2017), Wang et al. (2018), and

Luedtke, Chambaz, et al. (2020) propose the marginal quantile to be the criterion in settings

where the outcome distribution is skewed or the tail of the outcome distribution is of interest.

For simplicity we refer to these approaches as marginal median-based, since the issues we detail

with marginal median objectives are the same as those for generic quantiles. In presenting

the marginal quantile optimal treatment regime, Linn et al. (2017) also considers a marginal
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cumulative distribution function related target value where the goal is to find a policy that

maximizes the probability of the outcome being above a given threshold. Qi et al. (2019) uses

conditional value-at-risk (Rockafellar and Uryasev, 2002) on the outcome distribution as the

criterion to ensure the policy to be risk-averse. Unfortunately, in addition to not having a

closed-form optimal policy, the marginal median approaches yield optimal treatment decisions

for subjects with covariates X = x that depend on outcomes of other subjects with different

covariates X ̸= x. We view this as allowing a form of unfairness, which will be discussed in

more detail shortly.

Motivated by these concerns, in this paper we propose a treatment regime which assigns

treatment to those subjects who have a higher conditional median outcome under treatment

versus control, and which is optimal with respect to a new objective we call the Average

Conditional Median Effect (ACME). Crucially, the optimal policy for the ACME has two key

properties, which in general do not both hold for either mean or marginal median optimal

treatment regimes:

• “Within-group robustness”: Within a group, i.e., for subjects with the same observed

covariates, the treatment decision is based on the median of the conditional outcome

distribution, and thus the policy is robust to outliers (e.g., when a small fraction of the

group has extreme outcomes), unlike the mean optimal treatment regime.

• “Across-group fairness”: Across groups, i.e., for subjects with different observed covariates,

the treatment decision for a given group cannot depend on outcomes of a different group,

unlike the marginal median optimal treatment regime.

Remark 7.1. Here we use the term “fair” rather loosely; in contrast there has been lots of recent
work defining fairness more formally (Dwork et al., 2012; Hardt et al., 2016b; Chouldechova and
Roth, 2020; Mehrabi et al., 2019). We also acknowledge that other definitions of fairness could be
plausible in our setup, and really only use the above for a convenient shorthand. We describe in much
more detail why we refer to the second property as fairness-related in an example in Section 7.4.3.

Our main contributions are as follows. We reflect on existing standard target values and

their optimal treatment regimes and propose the median optimal treatment regime
1
, that assigns

treatment to an individual based on their conditional median treatment effect (Section 7.3). A

new measure of policy value, namely the average conditional median effect, is defined. The

proposed regime promotes within-group robustness and across-group fairness, in comparison to

the mean optimal and marginal median optimal policies (Section 7.4). In Section 7.5, we establish

the local asymptotic minimax bound for estimating the ACME, and construct a doubly robust-

style estimator along with a simple algorithm that achieves the bound under mild conditions

(Section 7.6). To learn the median optimal treatment regime, we propose a new doubly robust-

style estimator for the Conditional Median Treatment Effect (CMTE) in Section 7.7. Finally, we

use numerical simulations to show finite-sample properties of the estimator and illustrate the

algorithm using a dataset from a randomized clinical trial on HIV patients (Section 7.8).

1
We use marginal median optimal treatment regimes to refer to policies that maximize marginal median values.
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7.2 Preliminaries

We are given independent and identically distributed (iid) samples Zi = (Xi, Ai, Yi) drawn

from a distribution P where Xi ∈ X ⊆ Rd are covariates, Ai ∈ {0, 1} is a binary treatment

assignment and Yi ∈ Y is a continuous real-valued outcome of interest. We use Y a
to denote

the potential outcome under treatment A = a (Rubin, 1974). Throughout we let m (V | w) =
inf{v ∈ R : P(V ≤ v | W = w) ≥ 1/2} denote the median of a generic random variable V
givenW = w. To simplify the presentation, we introduce the following notation for components

of the distribution P:

πa(x) = P(A = a | X = x),

Fa(y | x) = P(Y ≤ y | X = x,A = a),

fa(y | x) =
d

dy
Fa(y | x),

ma(x) = m (Y | X = x,A = a) ,

Fa,m(x) = Fa(ma(x) | X = x),

fa,m(x) = fa(ma(x) | X = x),

σa(x) =
√

Var(Y | X = x,A = a).

We note that π1(x) is called the propensity score, i.e., chance of receiving treatment given

covariates, and π0(x) = 1− π1(x). We assume Fa(y | x) to be absolutely continuous and hence

fa(y | x) exists. Throughout the paper, we refer to Fa(y | x) as the conditional cumulative

distribution function, fa(y | x) as the conditional density, ma(x) as the conditional median,

fa,m(x) as the conditional density at the conditional median, and σa(x) as the conditional

standard deviation. We assume the following standard conditions for identifying causal effects:

Assumption 7.1. The following causal assumptions hold

(Consistency) Y = AY 1 + (1− A)Y 0,

(Positivity) P (ϵ ≤ π1(X) ≤ 1− ϵ) = 1 for some ϵ > 0,

(Exchangeability) A ⊥⊥ Y a | X for a = 0, 1.

Additional Notation We use Pf̂ :=
∫
f̂(z)dP(z) to denote the expectation conditioned upon

the randomness of f̂ and Pnf := Pn{f(Z)} = 1
n

∑n
i=1 f(Zi). We denote the Euclidean norm

for a real-valued vector x ∈ Rd to be ∥x∥2 and the L2(P) norm of a function f to be ∥f∥ :=(∫
f(z)2dP(z)

)1/2
. Finally, a ≲ b is equivalent to a ≤ Cb for some positive constant C .

7.3 Proposed Target Policy & Value

In this section, we first review common target values and their optimal policies in the current

literature (Section 7.3.1). In Section 7.3.2, we introduce a new policy and a new measure of a
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policy’s value, based on conditional medians. We show that under Assumption 7.1 these policies

and values are identified.

7.3.1 Standard Policies & Values

Let d : X → {0, 1} denote a deterministic policy that assigns a treatment based on input

covariates and D be the set of all such measurable functions. Traditionally, most optimal

treatment regime research (Murphy, 2003; Zhang et al., 2012) has focused on finding the policy

that maximizes the mean outcome

E[Y d] := E[d(X)Y 1 + (1− d(X))Y 0],

which under Assumption 7.1 is equivalent to E[Y d] = EX [µd(X)] , where µd(X) :=
d(X)µ1(X) + (1− d(X))µ0(X) and µa(X) := E[Y | X,A = a]. When the goal is to maximize

the overall population mean E[Y d], it is well-known that the optimal policy is given by

d∗
MEAN

(X) := 1{µ1(X) > µ0(X)}.

This policy simply treats only those subjects whose conditional mean treatment effect is positive.

Remark 7.2. Often, the mean optimal policy d∗MEAN is motivated by the fact that it maximizes
E[Y d]; however, we view its primary motivation as coming from the fact that it maximizes the
conditional value E[Y d | X = x] for all x ∈ X , i.e., it is mean optimal for subjects of any type.
From this perspective, the marginal value E[Y d] is just a one-number summary of the overall
performance of a policy, across a heterogeneous population of subjects with different covariates. As
we discuss further in subsequent sections, we view the maximization of the conditional value as
more fundamental and fair in the across-group sense introduced in Section 7.1 and detailed further
in Section 7.4.3.

While the mean is a valuable measure of centrality in many cases, it is sensitive to outliers

and so can be an inappropriate target value when some have extreme responses to treatment.

This has led to recent work maximizing the marginal median

m(Y d) := m
(
d(X)Y 1 + (1− d(X))Y 0

)
.

In the general case, marginal quantile-based values are proposed where the goal is to find the

optimal policy with respect to a quantile of the outcome (Linn et al., 2017; Wang et al., 2018;

Kallus et al., 2019). Under Assumption 7.1, we obtain that

m(Y d) = inf
{
m : P(Y d ≤ m) ≥ 1/2

}
= inf

{
m :

∫
P(Y d ≤ m | X = x)dP(x) ≥ 1/2

}
= inf

{
m :

∫
P(Y ≤ m | A = d(x), X = x)dP(x) ≥ 1/2

}
.

From here on we use m(Y d) to refer to the identified quantity above, with the understanding

that it corresponds the counterfactual marginal median only under Assumption 7.1.
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Unfortunately, as illustrated in Proposition 7.2, the marginal median objective allows specific

subjects’ optimal treatment assignments to be determined by different subjects, with different

covariate values. We see this as a violation of across-group fairness. For example, if in some

population one group suddenly started responding more to treatment, then under the marginal

median objective, the optimal treatment for other groups could change – even if their response

to treatment did not.

Unlike the mean optimal policy d∗
MEAN

(x), in general, the optimal policy under the marginal

median objective (which we denote as d∗
MME

(x)) cannot be viewed as maximizing a parameter

defined upon the conditional outcome distributions [Y | X = x,A = a] for a ∈ {0, 1}, and does

not have a closed form that depends only on the conditional outcome distributions.

7.3.2 Median Optimal Treatment Regimes

As mentioned in Remark 7.2, we believe conditional values are generally more fundamental

and useful than marginal values. Therefore here we propose a policy d∗
ACME

that maximizes the

conditional median m(Y d | X = x) for all x ∈ X . This implies that

d∗
ACME

(X) := 1{m1(X) > m0(X)}. (7.1)

Using the conditional median instead of the conditional mean to measure centrality of the

conditional outcome distributions, compared to the mean optimal policy d∗
MEAN

, d∗
ACME

is more

robust to outliers. Unlike the marginal median optimal policy d∗
MME

, for all x ∈ X , our proposed

policy d∗
ACME

(x) is more individualized, in the sense that optimal treatment assignments for

subjects with X = x do not depend on outcomes of different subjects with X ̸= x. We

summarize the overall performance of our proposed conditional median optimal policy (also

denoted as median optimal treatment regime and median optimal policy) d∗
ACME

across groups

of subjects with different covariates using the average conditional median effect, which we

introduce below.

Definition 7.1

Given a policy d ∈ D, we define the average conditional median effect (ACME) as

EX [m(Y d | X)] := EX
[
m
(
d(X)Y 1 + (1− d(X))Y 0 | X

)]
. (7.2)

Remark 7.3. Traditionally a treatment “effect” is a contrast between (distributions of) potential
outcomes; for simplicity we call the ACME parameter an effect even though it involves counterfactuals
under only one treatment policy, and so is not a contrast.

Identification Under Assumption 7.1, we have that

EX [m(Y d | X)] = EX [d(X)m(Y 1 | A = 1, X) + (1− d(X))m(Y 0 | A = 0, X)]

= EX [d(X)m(Y | A = 1, X) + (1− d(X))m(Y | A = 0, X)]

= EX [md(X)] ,
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where md(X) := d(X)m1(X) + (1− d(X))m0(X). For the rest of the paper, without further

specification, we assume Assumption 7.1 to hold.

As illustrated at the beginning of Section 7.3.2, the ACME is used to summarize the per-

formance of the conditional median optimal policy d∗
ACME

. We show here that, just as d∗
MEAN

optimizes E[E[Y d | X]], d∗
ACME

optimizes the ACME E[m(Y d | X)], i.e., for all d ∈ D,

EX [m(Y d | X)] = EX [d(X)m1(X) + (1− d(X))m0(X)]

= EX [m0(X) + (m1(X)−m0(X)) d(X)]

≤ EX [m0(X) + (m1(X)−m0(X)) d∗
ACME

(X)].

Remark 7.4. We note that in the case where the polices can only be measurable functions of a
subset of covariates V ⊆ X , the optimal treatment regime for ACME is not as straightforward as
the one for the mean outcome, due to the nonlinearity of the median. Developing the V -specific
optimal treatment regime for ACME is an avenue for future work.

7.4 Policy Comparisons

In this section, we compare the three policies d∗
MEAN

, d∗
MME

and d∗
ACME

. In Section 7.4.1, we give a

simple condition under which the mean and median optimal treatment regimes are equivalent,

and point out that the mean optimal policy is not necessarily robust within groups (defined

in Section 7.1). In Section 7.4.2, we illustrate that the marginal median optimal treatment

regime does not ensure across-group fairness (defined in Section 7.1). In Section 7.4.3, we use a

motivating example to summarize the differences among the three policies.

7.4.1 d∗MEAN and d∗ACME

To characterize the difference between the mean optimal treatment regime d∗
MEAN

and our

proposed median optimal treatment regime d∗
ACME

, we begin by stating a simple condition that

ensures the two to be equivalent: d∗
MEAN

(x) = d∗
ACME

(x) if and only if the conditional mean and

median treatment effects are always the same sign. One sufficient condition for the two policies

to be equivalent is thus given below.

Proposition 7.1

If the conditional mean and median treatment effects are separated from zero relative to

the conditional outcome standard deviation, in the sense that

|µ1(x)− µ0(x)| > σ1(x) + σ0(x) and |m1(x)−m0(x)| > σ1(x) + σ0(x),

then d∗
MEAN

(x) = d∗
ACME

(x).

An important note about the mean optimal policy d∗
MEAN

is that it does not necessarily satisfy

the within-group robustness mentioned in Section 7.1, in that it is sensitive to outliers. For
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example, as illustrated in Section 7.4.3, its decision can be very affected by a small subgroup

that benefits a lot from the treatment, even if the majority of the subgroup is harmed by the

decision. In contrast, the median remains unchanged as long as the amount of mass below and

above it remains unchanged, while the mean is determined by how the masses are distributed,

e.g., the mean can be arbitrarily high (or low) by moving a small fraction of the mass above (or

below) the median to extreme values (Huber et al., 1967; Casella and Berger, 2002; Huber, 2004).

Further comparisons between the mean optimal and our proposed median optimal treatment

regime are given in Section 7.4.3.

7.4.2 d∗MME and d∗ACME

To illustrate ideas, here we consider a simple Gaussian model to compare the marginal median

optimal treatment regime d∗
MME

and our proposed median optimal treatment regime d∗
ACME

. This

provides a counterexample showing that d∗
MME

(x) is determined not just by the conditional

outcome distribution [Y | X = x,A = a] for a ∈ {0, 1} but also by the conditional outcome

distribution at other (different) covariate values. That is, even if the conditional distribution

[Y | X = x,A = a] for a ∈ {0, 1} is unchanged, the marginal median optimal policy d∗
MME

(x)
can be different depending on [Y | X = x′, A = a] for x′ ̸= x. On the other hand, our median

optimal policy d∗
ACME

(x) is fair across groups, in that the optimal decision remains the same so

long as the conditional distribution for X = x is unchanged.

Specifically consider a data-generating process where

X ∼ Bernoulli(1/2)

Y | X = x,A = a ∼ N
(
µa(x), σ

2
a(x)

)
for some unspecified (for now) mean µa(x) and standard deviation σa(x). For any policy d ∈ D,

the ACME is E[md(X)] = (µd(0) + µd(1)) /2, and the marginal median value m(Y d) satisfies

Φ
(
m(Y d)−µd(0)

σd(0)

)
+ Φ

(
m(Y d)−µd(1)

σd(1)

)
= 1, which implies that

m(Y d) =
σd(1)µd(0) + σd(0)µd(1)

σd(0) + σd(1)
,

i.e., it is a standard deviation-weighted average of outcome regressions (where each regression

is weighted by the standard deviation of the other group). In the next proposition we give a

counterexample showing how, somewhat surprisingly, the marginal median optimal policy for

subjects with X = 1, for example, can depend on the means and variances for different subjects

with X = 0.

Proposition 7.2

Suppose outcomes are higher and more variable under treatment for X = 1, i.e.,

µ1(1) > µ0(1) and σ1(1) > σ0(1),

and the variances differ more than the means in the sense that
µ1(1)
µ0(1)

< σ1(1)
σ0(1)

. Then there
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exist conditional distributions Qa and Qa for [Y | X = 0, A = a] where a ∈ {0, 1} such

that

1{µ1(1) > µ0(1)} = d∗
MME

(1;Q0, Q1) ̸= d∗
MME

(1;Q0, Q1) = 1{µ1(1) ≤ µ0(1)}

where d∗
MME

(x;Q0, Q1) and d∗
MME

(x;Q0, Q1) are the marginal median optimal policies when

[Y | X = x,A = a] follows distributions Qa and Qa respectively.

Remark 7.5. When σ1(0) = σ0(0) = σ1(1) = σ0(1), it follows that m(Y d) = E[md(X)] for all
d ∈ D and d∗ACME(x) = 1{µ1(x) > µ0(x)} is an optimal policy with respect to m(Y d).

Remark 7.6 (Distribution shift). Importantly, we also note that among the three optimal policies,
only the marginal median optimal policy d∗MME varies under different covariate distribution P(X).
This is crucial when distribution shift is a concern, which is common in many current setups
(Quionero-Candela et al., 2009; Mo et al., 2020). Therefore, under distribution shift between training
and testing times, the marginal median optimal policy d∗MME could be suboptimal at testing time
even if optimal at training. For example, if during test time P(X = 0) = 0 and P(X = 1) = 1,
then in the case when d∗MME(1) = 1{µ1(1) ≤ µ0(1)} during training and µ1(1) ̸= µ0(1), d∗MME is
not optimal (with respect to the marginal median) during test time since m(Y d) = µd(1). Unlike
d∗MME, our proposed median optimal treatment regime d∗ACME remains the same under covariate
shifts.

As illustrated in Proposition 7.2, the optimal decision for a specific subject of covariate

x with respect to the marginal median depends on not just its own conditional distribution

[Y | X = x,A = a] for a ∈ {0, 1} but also the conditional distributions at other covariate

values. On the other hand, ACME allows the optimal decision for x to be only influenced by

its own conditional outcome distribution at that x. In Section 7.4.3, we give an illustration that

summarizes the differences among the three policies.
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Figure 7.1: The density of [Y | X = G2, A = a] in Case I and Case II.
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7.4.3 Simple Illustration Comparing d∗MEAN, d∗MME, and d∗ACME

Here we give a simple illustration that showcases the differences among the three policies,

and among the corresponding values they maximize. We will see how the ACME optimal

policy d∗
ACME

exhibits both within-group robustness and across-group fairness, while the more

standard policies d∗
MEAN

and d∗
MME

may not. We note that although in this illustrative example,

the covariate X is chosen to be discrete, none of the above characterization of median optimal

treatment regimes and the theory we develop for estimating and evaluating such regimes

require the covaraite to be discrete. In particular, while within-group robustness may be more

interpretable in settings where there are multiple treatment outcomes under the same covariate,

across-group robustness is a property that does not require it. That is, a treatment decision

of one subject should ideally not depend on the outcome distribution of another subject with

different covariates, regardless of whether there are more than one individual with the same

covariate.

Consider a population of two groups: one with college degrees (G1) and the other without

(G2). The binary treatment A indicates whether a job training program is assigned to the

individual and the outcome Y is the subjects’ improvement in income. In Case I, suppose the

groups and outcomes follow the distribution:

X ∼ Bernoulli(1/2)

Y | X = G1, A = a ∼ N (9, 1)

Y | X = G2, A = a ∼ (1− a)N (0, 1) + a(.2 N (22, 1) + .8 N (−5, 1))

In other words, there is no treatment effect for subjects with a college degree, whose outcome

distribution is always the same Gaussian. However, under control subjects without a college

degree have outcomes that follow a Gaussian centered at 0, while under treatment the outcomes

follow a Gaussian mixture. The outcome distribution for G2 is given in Figure 7.1. When

examining the optimal treatment under each value, we find that both the mean optimal policy

d∗
MEAN

and marginal median optimal policy d∗
MME

treat all subjects without a college degree

(Table 7.1), while d∗
ACME

does not treat them. Compared to d∗
MEAN

, our proposed median optimal

policy d∗
ACME

is robust against outliers, hence its decisions promotes within-group robustness in

the sense that the decisions are less prone to only benefiting a small subgroup, e.g., as in our

A = 1 case for the group without a college degree. On the other hand, although intuitively the

marginal median optimal policy d∗
MME

also gives robust decisions, it overlooks characteristics of

specific subgroups. In particular, treatment decisions for those with X = x can depend on other

subjects’ conditional outcome distribution with X ̸= x, violating across-group fairness. This is

illustrated by comparing the optimal marginal median decision for subjects without a college

degree under Case I and Case II where in Case II the the conditional outcome distribution for

subjects with a college degree under treatment and control is changed to

Y | X = G1, A = a ∼ N (−4, 2) .

Surprisingly, as in Proposition 7.2, the marginal median optimal policy d∗
MME

under Case II is

different for individuals without a college degree compared to the d∗
MME

under Case I, even
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though it was only the outcome distribution for subjects with a college degree that changed.

This illustrates across-group unfairness of the marginal median value. In contrast, the median

optimal decision for individuals without a college degree has remained unchanged.

Case I Case II

Policy Treat G1 Treat G2 Treat G1 Treat G2

d∗
MEAN

— ✓ — ✓
d∗

MME
— ✓ —

d∗
ACME

— —

Table 7.1: The table shows the treatment assignments under the mean optimal policy d∗
MEAN

, the marginal

median optimal policy d∗
MME

, and the median optimal policy d∗
ACME

in Case I and Case II. Since in both

cases, the conditional outcome distributions for G1 are the same under treatment and control, “—” is

used to indicate that the optimal decision for G1 can be either a = 0 or a = 1. Though the conditional

outcome distributions for G2 remain unchanged in both cases, the optimal marginal median decision for

G2 has changed.

To summarize, our characterization for the three types of policies shed light on when to use

each of them. Depending on the context, one may choose to use the ACME optimal policy d∗
ACME

because of reasons including that the conditional outcome distribution is skewed, the policy

should not decide a subject’s treatment based on other subjects’ outcome distribution, or the

policy should not be influenced by covariate distribution shifts. In addition, as we discuss next,

one may also choose the policy to use based on how well one can estimate it. Our discussion

above should be interpreted as characterizations of different treatment regimes, and a reminder

for us to start critically examining the target value of a treatment regime, instead of a firm

conclusion that one should only use median optimal treatment regimes.

7.5 Efficiency Bound

In this section, using semiparametric theory (Newey, 1990; Bickel et al., 1993; Vaart, 2002; van

der Laan and Robins, 2003; Tsiatis, 2007; Kennedy, 2016; Dıéaz, 2017; Chernozhukov et al.,

2018), we study the nonparametric efficiency bound for estimating the ACME ψd := E[md(X)]
of a given policy d, given iid samples from distribution P. One of the key tools we will use

throughout the paper is the efficient influence function ϕd(Z) (Corollary 7.2) which serves as a

first-order derivative in a von Mises-type expansion of the target parameter (Lemma 7.1).

There are a number of reasons why characterizing efficient influence functions is important.

The variance of the efficient influence function gives a minimax lower bound for estimating ψd
(Theorem 7.1) and so provides a benchmark to compare against when constructing estimators.

In particular, as used in Section 7.6, efficient influence functions suggest a doubly robust-style

bias-corrected estimator. Doubly robust estimators attain fast parametric rates in nonparametric

settings where nuisance functions (e.g., ma, πa, fa,m in our context) are estimated at slower rates.

We begin with presenting the von Mises-type expansion (a distributional Taylor expansion) for
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ACME, which is crucial for the efficiency bound (Theorem 7.1) and the estimation guarantees

for our proposed doubly robust-style estimator (Theorem 7.2).

Lemma 7.1

Given a policy d ∈ D, for the average conditional median effect ψd defined in (7.2), the

following decomposition holds for all distributions P and P:

ψd(P)− ψd(P) =
∫
ϕd(Z;P)d(P− P) +Rd(P,P),

where ϕd(Z;P) = ξd(Z;P)− ψd(P),

ξd(Z;P) =
Ad(X)

π1(X)

1/2− 1{Y ≤ m1(X)}
f1,m (X)

+
(1− A)(1− d(X))

π0(X)

1/2− 1{Y ≤ m0(X)}
f0,m (X)

+md(X), (7.3)

and

Rd(P,P) =
∫
X
d(x)

(
m1(x)−m1(x)−

π1(x)

π1(x)

F1,m(x)− F1,m(x)

f 1,m(x)

)

+ (1− d(x))

(
m0(x)−m0(x)−

π0(x)

π0(x)

F0,m(x)− F0,m(x)

f 0,m(x)

)
dP(x). (7.4)

π1,ma and fa,m are the propensity score, the conditional median and the conditional

density at the conditional median defined under P and Fa,m(x) = Fa(ma(x) | x).

Proofs of the results in this section can be found in Appendix F.1.2. Lemma 7.1 has several

important implications. It implies that the efficient influence function of ACME is ϕd(Z) as

shown in Corollary 7.2. The efficient influence function plays a crucial role in the bias term for

the plug-in estimator ψd(P̂), which we will correct to obtain the doubly robust-style estimator

given later on in (7.8). The decomposition result in (7.4) (along with an alternate expression

in (7.5)) is then used to show the convergence rate of the proposed estimator.

Throughout the rest of the paper, we rely on the following model assumption, which ensures

that certain boundedness and mild smoothness conditions hold.

Assumption 7.2. The true distribution P lies in P where P is the statistical model given by

P :=
{

P
∣∣∣ ∃ϵ ∈ (0, 1),P (ϵ < π1(X) ≤ 1− ϵ) = 1,

∀a ∈ {0, 1},∃ 0 < M0 ≤M1,P (M0 ≤ fa,m(X) ≤M1) = 1, and

∀a ∈ {0, 1}, y ∈ Y , fa(y | X) is differentiable and L-Lipschitz continuous in y almost surely
}
.

The conditions of Assumption 7.2 only require some boundedness of the propensity score

and conditional outcome density, as well as some weak smoothness of the conditional density
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in y. Importantly, Assumption 7.2 does not require any smoothness of the propensity score or

outcome density in X . The condition on fa,m(X) ensures that the density at the conditional

median outcome is bounded away from 0 almost surely, ensuring sufficient number of samples

for estimating the median.

As written, the reminder term Rd(P,P) in Lemma 7.1 does not appear to be second-order,

i.e., involving products of differences of P and P. However, in the next corollary we show that it

is in fact second-order, under the model assumption (Assumption 7.2).

Corollary 7.1. For all distributions P ∈ P , given any distribution P, the remainder term Rd(P,P)
defined in (7.4) is equivalent to

Rd(P,P) = P

{
d (m1 −m1)

π1f 1,m

(
(π1 − π1) f 1,m +

(
f 1,m − f1,m

)
π1 − (m1 −m1)

f ′
1,cπ1

2

)

+
(1− d) (m0 −m0)

π0f 0,m

(
(π0 − π0)f 0,m + (f 0,m − f0,m)π0 − (m0 −m0)

f ′
0,cπ0

2

)}
, (7.5)

where f ′
a,c ≤ L is the derivative of fa(y | x) at y = ca(x) for some value ca(x) between ma(x) and

ma(x).2

The fact that the remainder term is second-order implies that ϕd from Lemma 7.1 is the

efficient influence function, as stated in the next corollary.

Corollary 7.2. For a given policy d ∈ D, the efficient influence function for the average conditional
median effect ψd is ϕd(Z) = ξd(Z)− ψd where ξd is defined in (7.3).

Since the variance of ϕd serves as a nonparametric efficiency bound, in the local minimax

sense (Vaart, 2002), in the next result we give the exact form of this variance. This shows what

factors drive the statistical difficulty in ACME estimation, and demonstrates the difference in

efficiency for ACME versus other value measures.

Theorem 7.1

For a given policy d ∈ D, the nonparametric efficiency bound for estimating ψd is given

by the variance σ2
d := Var{ϕd(Z)} where

σ2
d = E

[
d(X)

4π1(X)f 2
1,m(X)

+
1− d(X)

4π0(X)f 2
0,m(X)

]
+ Var (md(X)) . (7.6)

Theorem 7.1 shows how the efficiency bound for the ACME is driven by three main factors:

• the inverse propensity score 1/π1(X),

• the inverse conditional density at the conditional median 1/fa,m (X), and

• the heterogeneity of the conditional median md(X), i.e., Var (md(X)).

In contrast, recall the nonparametric efficiency bound for the mean value E[Y d] (Hahn, 1998,

2
Since P ∈ P , f ′a,c exists and is bounded by L almost surely.
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Theorem 1):

σ2
d,MEAN

:= E

[
d(X)σ2

1(X)

π1(X)
+

(1− d(X))σ2
0(X)

π0(X)

]
+ Var (µd(X)) ,

instead depends on the heterogeneity of the conditional outcomes σ2
a(X) and the heterogeneity

of the conditional mean Var (µd(X)) (along with the inverse propensity score).

Importantly, when the conditional distribution [Y | X = x,A = a] is heavy-tailed, e.g., the

outcome variance σ2
a(X) is very large, then in general the mean value efficiency bound σ2

d,MEAN

would be severely affected, while the ACME analog σ2
d could still be quite small. However, in

settings where fa,m(x) is close to 0 for all x ∈ X , σ2
d may be larger than σ2

d,MEAN
. (In settings

where fa,m(x) is close to 0 only for covariates with low densities, σ2
d may still be low.) This is

understandable, as one requires samples around the conditional median outcome in order to

estimate it. When fa,m(x) is not bounded away from 0, e.g., when Assumption 7.2 is violated,

one may not be able to obtain enough samples to estimate the conditional medians and thus

should consider using alternative policies, e.g., the mean optimal treatment regimes. In general,

if one can estimate σ2
a(X) and fa,m(X) reliably well, one may use these estimates to obtain the

estimated efficiency bound to decide between the conditional mean and outcome treatment

regimes.

Next we formalize the local minimax lower bound property of the variance σ2
d .

Corollary 7.3. (Vaart, 2002, Corollary 2.6) For a given policy d ∈ D and any estimator ψ̂d learned
using n iid samples from P, it follows that

inf
δ>0

lim inf
n→∞

sup
TV(P,P)<δ

n EP

[(
ψ̂d − ψd

(
P
))2]

≥ σ2
d,

where TV(P,P) is the total variation distance between P and P and σ2
d is defined in (7.6).

Corollary 7.3 directly follows from Vaart (2002, Corollary 2.6). It shows that without further

assumptions, the asymptotic local minimax mean squared error of any estimator scaled by n can

be no smaller than σ2
d . In Section 7.6, under mild conditions, we construct doubly robust-style

estimators that achieve the local minimax lower bound shown in Corollary 7.3.

7.6 Estimation of the ACME

In this section, we propose efficient estimators of the ACME that utilize the efficient influence

function given in Corollary 7.2. We start by presenting a simple plug-in estimator, which is

a sample analogue of ψd for a given policy d ∈ D. In Section 7.6.1, we present the doubly

robust-style estimator for evaluating the ACME of a fixed given policy, as well as the optimal

policy, and which improves on the simple plug-in. Specifically, under mild conditions, we show

that in both cases the doubly robust-style estimator achieves the local minimax lower bound

shown in Corollary 7.3. Finally, we present an algorithm for constructing the doubly robust-style

estimator (Section 7.6.2).
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Let Zn = (Z1, . . . , Zn) and Zn,0 = (Z0
1 , . . . , Z

0
n) denote two independent samples. For a

given policy d ∈ D, the most natural estimator for estimating ψd is the plug-in estimator, i.e.,

ψ̂d,pi = Pn {d(X)m̂1(X) + (1− d(X)) m̂0(X)} , (7.7)

where m̂1 and m̂0 are learned using a separate sample Zn,0
from the sample Zn

used for taking

the sample average Pn. While the plug-in estimator is intuitive, in general it inherits the slow

convergence rate from the nuisance functions (Bickel et al., 1993; Vaart, 2002). As suggested

by the von Mises-type decomposition (Lemma 7.1), a natural estimator that improves upon the

plug-in estimator is given in (7.8).

Remark 7.7. For a given set of iid data, we can obtain Zn and Zn,0 by randomly splitting the data
in half. In general, to obtain full sample size efficiency, one can split the data in folds and perform
cross-fitting (Bickel and Ritov, 1988; Robins et al., 2008; Zheng and Laan, 2010; Chernozhukov et al.,
2018), i.e., repeat the learning procedure for each split and average the results. Throughout this
section, to ease notation, we present the analyses and results for the learning procedure with a single
sample split, which can be easily extended to averages of multiple independent splits. If one wants
to avoid sample splitting, our results would still hold under appropriate empirical process conditions
(e.g., the nuisance functions taking values in Donsker classes).

7.6.1 Doubly Robust-Style Estimator of the ACME

To improve on the potential deficiencies of the simple plug-in above, we propose the doubly

robust-style estimator ψ̂d,dr:

ψ̂d,dr = Pn

{
1{A = d(X)}

Aπ̂1(X) + (1− A)π̂0(X)

1/2− 1{Y ≤ m̂A(X)}
f̂A,m̂ (X)

+ m̂d(X)

}
, (7.8)

where the nuisance functions π̂1, m̂a and f̂a,m̂ are learned using the separate sample Zn,0
,

and π̂0(X) = 1 − π̂1(X). Importantly, this estimator uses the efficient influence function

(Corollary 7.2) to correct the bias of the plug-in.

Remark 7.8. As will be shown in Theorem 7.2, our estimator is not strictly doubly robust in the usual
sense (i.e., its consistency requires consistent estimation of the conditional median). Nonetheless, we
still call it doubly robust-style because it does have what is arguably the most crucial property of
doubly robust estimators: its error involves second-order products, and so is “doubly small”.

In Section 7.6.1, we study the asymptotic convergence rate of ψ̂d,dr for a given fixed policy

d, showing it can converge at parametric rates even when nuisance functions are estimated

nonparametrically, and follows a straightforward asymptotic normal distribution. Then in Sec-

tion 7.6.1, we show that under mild conditions, our estimator ψ̂d,dr still exhibits

√
n-convergence

and asymptotic normality for the optimal ACME value, even after plugging in the learned policy

1{m̂1(X) > m̂0(X)}, under a margin condition.
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ACME of a Fixed Policy

We begin with the case when a fixed policy d is given and we aim to estimate the ACME of it. This

can be useful if we have a specified class of policies, which we aim to optimize over; this includes

the case where we use an independent sample or split to learn a policy, and then condition on

that sample when estimating the value using another. In such cases, under mild assumptions,

we show in Theorem 7.2 that the error of ψ̂d,dr is the sum of a centered sample average term

which is asymptotically normal and a term containing products of nuisance estimation errors.

Theorem 7.2

Assume

1. P (ϵ ≤ π̂1(X) ≤ 1− ϵ) = 1 for some ϵ ∈ (0, 1),

2. P(M0 ≤ f̂a,m̂(X) ≤M1) = 1 for a ∈ {0, 1} and 0 < M0 ≤M1, and

3. ∥ξ̂d − ξd∥ = oP(1).

Then,

ψ̂d,dr − ψd =(
Pn − P

)
ξd(P) +OP

(
1∑

a=0

∥m̂a −ma∥
(
∥π̂af̂a,m̂ − πafa,m∥+ ∥m̂a −ma∥

)
+ oP(1/

√
n)

)
.

Importantly, Theorem 7.2 implies that ψ̂d,dr attains a faster convergence rate than its nuisance

estimators and can be asymptotically normal even when these nuisance functions only satisfy

nonparametric sparsity, smoothness or other assumptions. We detail this further in the next

corollary.

Corollary 7.4. Given d ∈ D, under assumptions in Theorem 7.2, and the following two conditions:

1. ∥m̂a −ma∥ = oP(n
−1/4), and

2. For a ∈ {0, 1}, ∥π̂af̂a,m̂ − πafa,m∥ = OP(n
−1/4),

we have that ψ̂d,dr is root-n consistent and asymptotically normal with:
√
n(ψ̂d,dr − ψd)⇝ N

(
0, σ2

d

)
.

Remark 7.9. Note that one sufficient condition for ∥π̂af̂a,m̂ − πafa,m∥ = OP(n
−1/4) is that

∥π̂a − πa∥ = OP(n
−1/4) and ∥f̂a,m̂ − fa,m∥ = OP(n

−1/4) separately.

Corollary 7.4 shows that ψ̂d,dr can achieve the nonparametric efficiency bound given in

Corollary 7.3. For example, when πa,ma and fa,m are d-dimensional functions in a Hölder smooth

class with smoothness parameter being α, β and γ respectively (i.e., their partial derivatives

up to order α, β, γ exist and are Lipschitz) and are estimated with squared error n−2α/(2α+d)
,

n−2β/(2β+d)
and n−2γ/(2γ+d)

, then the conditions in Corollary 7.4 will be satisfied when α, β, γ ≥
d/2, i.e., when the smoothness is greater than half the dimension.
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ACME of the Optimal Policy

Instead of evaluating a fixed policy d, one may want to evaluate the ACME of the truly optimal

(but unknown) policy d∗
ACME

= 1{γ(X) > 0}where γ(X) := m1(X)−m0(X) is the conditional

median treatment effect (CMTE). This would give a benchmark for the best possible value that

could be achieved by any policy; any improvements would have to come by way of changing

the population or changing the treatment. A natural estimator for the optimal policy would

simply plug in an estimate of γ: d̂∗
ACME

(X) = 1{γ̂(X) > 0}. Here, the policy d̂∗
ACME

is learned

through the same sample Zn,0
as the one used for estimating the nuisance functions (7.8). For

estimating the CMTE γ, in addition to the plug-in m̂1− m̂0, a doubly robust-style estimator will

be discussed in Section 7.7. An immediate question to ask is whether the estimator ψ̂d̂∗
ACME

,dr
for

the learned policy d̂∗
ACME

can still exhibit similar asymptotic convergence guarantees as ψ̂d,dr for

a fixed policy d. Our goal in this subsection is to answer this question. To simplify notation, we

use ψd∗ := ψd∗
ACME

and ψ̂d̂∗,dr
:= ψ̂d̂∗

ACME
,dr

.

Importantly, the ACME of the optimal policy is a non-smooth functional, because of its

dependence on the indicator function 1{γ(X) > 0}. This challenge also arises in the mean

value setting (Chakraborty et al., 2010; Laber and Murphy, 2011; Hirano and Porter, 2012; Laan

and Luedtke, 2014; Laber et al., 2014; Luedtke and Laan, 2016). One solution is to incorporate a

margin condition (Tsybakov et al., 2004; Luedtke and Laan, 2016), as follows.

Assumption 7.3 (Margin Condition). For some α > 0 and all t > 0, we have

P (|γ(X)| ≤ t) ≤ c(t)α,

for some constant c > 0 such that ct ≤ 1.

The exponent α in the margin condition characterizes the mass such that m1(X) and m0(X)
are close. The lower α is, the weaker the margin condition is, i.e., the more mass the distribution

of γ(X) is allowed to have near zero. Similar margin conditions are used in classification

literature (Tsybakov et al., 2004) and optimal treatment regimes (Luedtke and Laan, 2016). Note

that α = 0 encodes no assumption, allowing γ(X) = 0 almost surely, while α = 1 would hold as

long as γ(X) is continuously distributed with bounded density. The margin condition therefore

provides a characterization on how hard the optimal decision problem is—intuitively, when

γ(X) is near zero, it is very hard to distinguish which subjects will benefit from treatment, while

when γ(X) is very different from zero, this is easy to distinguish. Under the margin condition,

we show in Theorem 7.3 that the error of ψ̂d̂∗,dr
is similar to that of the error of ψ̂d∗,dr for the

truly optimal policy d∗.
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Theorem 7.3

Assume

1. P (ϵ ≤ π̂1(X) ≤ 1− ϵ) = 1 for some ϵ ∈ (0, 1),

2. P(M0 ≤ f̂a,m̂(X) ≤M1) = 1 for a ∈ {0, 1} and 0 < M0 ≤M1, and

3. ∥ξ̂d̂∗ − ξd∗∥ = oP(1).

Then, under Assumption 7.3, we have that

ψ̂d̂∗,dr
− ψd∗ = (Pn − P) ξd∗

+OP

( 1∑
a=0

∥m̂a −ma∥
(
∥π̂af̂a,m̂ − πafa,m∥+ ∥m̂a −ma∥

)
+ ∥γ̂ − γ∥1+α∞ + oP(1/

√
n)

)
.

Unlike the error of ψ̂d,dr for a fixed policy d presented in Theorem 7.2, the error of ψ̂d̂∗,dr

depends on ∥γ̂ − γ∥1+α∞ . When α gets higher, the error of γ̂ plays less of a role, as captured

in Corollary 7.5. Under the conditions in Corollary 7.5 we obtain asymptotic normality of

the estimator and thus can construct asymptotic confidence intervals as illustrated in our

experiments in Section 7.8.2.

Corollary 7.5. Under the assumptions of Theorem 7.3, and the following three conditions:

1. ∥m̂a −ma∥ = oP(n
−1/4),

2. ∥γ̂ − γ∥∞ = oP

(
n−1/(2(1+α))

)
,

3. For a ∈ {0, 1}, ∥π̂af̂a,m̂ − πafa,m∥ = OP(n
−1/4),

we have that ψ̂d̂∗,dr is root-n consistent and asymptotically normal with:

√
n(ψ̂d̂∗,dr − ψd∗)⇝ N

(
0, σ2

d∗

)
.

As shown in Corollary 7.5, the error of ψ̂d̂∗,dr
shares the same convergence guarantee as

ψ̂d∗,dr under the extra assumption that the margin condition holds and the estimation error of

γ̂ is oP

(
n−1/(2(1+α))

)
. This suggests that when the CMTE γ can be estimated well, or when

the margin condition holds in a strong sense, the doubly robust-style estimator when based

on the estimated policy d̂∗ behaves as if the true optimal policy d∗ was instead plugged in. In

Section 7.6.2, we give an algorithm that describes the estimation procedure for our proposed

estimator.

7.6.2 Construction of the Estimators

The construction of the estimator contains two main steps: nuisance training and policy evalua-

tion (with cross-fitting an additional possible step). Let (D1, D2, D3) denote three independent

samples of n observations of (Xi, Ai, Yi).
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Step 1 Nuisance training:

(a) Use D1 to construct propensity score estimates π̂1.

(b) Use D1 to construct conditional median estimates m̂a for a ∈ {0, 1}, for example

using quantile regression.

(c) UseD2 to construct conditional density estimates at the estimated conditional median

f̂a,m̂, for example by regressing
1
h
K
(
Y−m̂a(X)

h

)
on X among those with A = a, for

K a standard kernel function.

Step 2 Evaluate the value of the given fixed policy d or the learned optimal policy d̂∗(X) =
1{γ̂(X) > 0} on D3 through the estimator presented in (7.8).

Step 3 Cross-fitting (Optional): Repeat Step 1 and 2 two times by using the dataset in the order

(D1, D3, D2), and (D2, D3, D1). Use the average of the resulting estimators as the final

estimate of the ACME of the evaluated policy. We focus on three folds for simplicity, but

alternatives using k > 3 folds are also possible.

In Section 7.8.2, we use an example to illustrate this estimation procedure. In the above we

suggested quantile regression and a particular conditional density estimation procedure, but our

convergence rate results show that any generic method could be used, as long as it satisfied the

high-level L2 error conditions listed there.

Remark 7.10. In the above we use sample splitting to avoid empirical process conditions. Specifi-
cally, we splitD1 fromD2 in order to avoid conditions when estimating the conditional density fa,m,
and we split D3 in order to avoid conditions in doing bias correction using the estimated influence
function. This splitting could be omitted for if Donsker-type conditions are deemed acceptable.

7.7 Estimation of the CMTE & Policy Learning

In this section, we propose efficient estimators for the conditional median treatment effect

γ(X) = m1(X)−m0(X), and use it to construct the median optimal treatment regime. Such an

estimator is of independent interest, as it suggests ways to characterize the heterogeneity of the

median treatment effect. After providing the doubly robust-style estimator γ̂dr in Section 7.7.1,

we show how its estimation error is connected to the performance of the corresponding median

optimal policy estimator d̂∗
dr
(X) = 1{γ̂dr(X) > 0} (Section 7.7.2). Unlike existing work on

estimating the marginal and conditional quantile treatment effect (Chernozhukov and Hansen,

2005; Dıéaz, 2017; Firpo, 2007; Fortin et al., 2011; Frölich and Melly, 2013; Machado and Mata,

2005; Melly, 2005; Rothe, 2010), our proposed nonparametric estimator for the CMTE relies on

pseudo-outcome regression.

7.7.1 Doubly Robust-Style Estimator of the CMTE

Following the conditional average treatment effect estimation procedure proposed in Kennedy

(2020), we construct the doubly robust-style estimator γ̂dr as follows: Let (D1, D2, D3) denote

three independent samples of n observations of Zi = (Xi, Ai, Yi).
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Step 1 Nuisance training: Same as Step 1 in Section 7.6.2.

Step 2 Pseudo-outcome regression: Use D3 to construct the pseudo-outcome

ĝ(Z) = m̂1(X)− m̂0(X) +
A− π̂1(X)

π̂1(X)π̂0(X)

1
2
− 1{Y ≤ m̂A(X)}

f̂A,m̂(X)
,

and regress it on covariates X to obtain γ̂dr. The regression estimator Ên is given by

γ̂dr(x) = Ên{ĝ(Z)|X = x} =
n∑
i=1

wi(x;X
n)ĝ(Zi), (7.9)

where the weights wi(x;X
n) are learned using Xn

in sample D3. Examples of such

linear smoothers Ên include kernel estimators, linear, ridge, local polynomial and RKHS

regression, some random forests (e.g., Mondrian and kernel forests), as well as weighted

combinations of aforementioned methods (Wasserman, 2006).

Step 3 Cross-fitting (Optional): Repeat Step 1 and 2 two times by using the dataset in the order

(D1, D3, D2), and (D2, D3, D1). Use the average of the resulting estimators as the final

γ̂dr.

In a recent line of work (Nie and Wager, 2021; Kennedy, 2020), the conditional treatment

effect estimators are commonly compared with an oracle estimator γ̃ that has access to the true

nuisance functions. We define the oracle estimator in our setting as follows.

Definition 7.2: Oracle

Denote g(Z) to be the pseudo-outcome that depends on the true nuisance fucntions:

g(Z) = m1(X)−m0(X) +
A− π1(X)

π1(X)π0(X)

1/2− 1{Y ≤ mA(X)}
fA,m(X)

.

Given independent and identically distributed samples {Xi, Oi}ni=1 where Oi = γ(Xi) + εi
and εi is a mean-zero noise defined to be εi = g(Zi)− γ(Xi), the oracle is given by

γ̃(x) = Ên{O|X = x}.

In other words, the oracle γ̃ regresses O on the covariates X using the same linear smoother Ên
as the one used in γ̂dr (7.9). The performance of the oracle depends directly on the complexity

(e.g., smoothness) of γ itself, since the outcome O is the sum of γ(X) and a mean-zero noise.

We illustrate in the following theorem that the mean squared error of γ̂dr can be upper

bounded by the oracle error incurred by γ̃ and products of nuisance errors. This allows the

CMTE to be estimated at a faster rate even when the nuisance estimates are obtained at slower

rates.
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Theorem 7.4

Let γ̂dr and γ̃ denote the conditional median treatment effect estimator and oracle defined

as above. Define the weighted norm ∥ · ∥w and squared-weighted norm ∥ · ∥w2 by

∥v∥2w = ∥v(x)∥2w =
n∑
i=1

|wi(x;Xn)|∑
j |wj(x;Xn)|

∫
|v(z)|2dP(z|Xi),

∥v∥2w2 = ∥v(x)∥2w2 =
n∑
i=1

|wi(x;Xn)|2∑
j |wj(x;Xn)|2

∫
|v(z)|2dP(z|Xi).

Assume

1. P (ϵ ≤ π̂1(X) ≤ 1− ϵ) = 1 for some ϵ ∈ (0, 1),

2. P(M0 ≤ f̂a,m̂(X) ≤M1) = 1 for a ∈ {0, 1} and 0 < M0 ≤M1.

3. Var{g(Z)|X = x} ≥ σ2
min for all x ∈ X .

Then, for all x ∈ X , we have

(γ̂dr(x)− γ(x))2 ≲ (γ̃(x)− γ(x))2 + b(x) +OP

(
∥ĝ − g∥2w2E[(γ̃(x)− γ(x))2]

)
, (7.10)

where b(x) = (
∑n

i=1 |wi(x;Xn)|)2(
∑1

a=0 ∥m̂a − ma∥2w(∥π̂af̂a,m̂ − πafa,m∥w + ∥m̂a −
ma∥w))2.

Remark 7.11. When the pseudo-outcome estimator ĝ is consistent in the squared-weighted norm,
i.e., ∥ĝ − g∥w2 = oP(1), we have the third term in (7.10) to be oP(E[(γ̃(x)− γ(x))2]).

The assumptions of Theorem 7.4 require g(Z) to have variation for all X = x. Our upper

bound on the squared error of γ̂dr contains three terms: the first and last terms depend on the

error of the oracle γ̃, while the middle term relies on products of nuisance errors with respect to

the weighted norm. When

∑
j |wj(x;Xn)| = 1, the weighted norm ∥ · ∥w weighs the nuisance

errors bywi(x;X
n) in a similar way to how the linear smoother Ên weighs the pseudo-outcomes.

As an example, when the linear smoother Ên (e.g., nearest neighbor estimator) relies only on local

information, these weighted norms ensure that the error at x is also weighed by only its local

information. In the more general case, the weights for the weighted norms are normalized so that

they sum up to 1. As shown in Stone (1977) and Györfi et al. (2002),

∑n
i=1 |wi(x;Xn)| = OP(1)

is a sufficient condition to ensure Ên to be weakly universally consistent. In such cases, if

∥ĝ − g∥w2 = oP(1), then the squared error of γ̂dr deviates from the error of the oracle γ̃ by

products of nuisance errors, suggesting that the CMTE can be estimated at a faster rate compared

to the nuisance functions. For a more detailed discussion on sufficient and necessary conditions

on wi(x;X
n) for ensuring the consistency of Ên, we refer the readers to (Stone, 1977).

7.7.2 Policy Learning

We briefly touch on the problem of learning the median optimal treatment regime. There are

many approaches for policy learning. Among them, the two canonical ways are (1) empirical
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value maximization where the goal is to directly find the optimal policy through maximizing the

empirical value of policies in a fixed policy class (Zhao et al., 2012; Zhang et al., 2013; Athey and

Wager, 2021); and (2) estimating the conditional treatment effect γ(X) first and then plugging

it into the closed form of the optimal treatment regime d∗(X) = 1{γ(X) > 0} (Murphy,

2003; Robins, 2004; Laan and Luedtke, 2014). The second approach is closely related to plug-in

classifiers (Audibert and Tsybakov, 2007), since deciding on the optimal treatment can be viewed

as a binary classification task. Another related line of work is robust policy learning (Xiao et al.,

2019; Zhang et al., 2021). Using a model-based approach, Xiao et al. (2019) learns conditional

quantile treatment regimes through robust regression. On the other hand, Zhang et al. (2021)

uses a heuristic two-stage nonparametric approach for robust policy learning. For a more

comprehensive review on policy learning, we refer the readers to Athey and Wager (2021).

Using the doubly robust-style estimator γ̂dr presented in (7.9), we adopt the second approach

and construct the median optimal treatment regime through d̂∗
dr
(X) = 1{γ̂dr(X) > 0}. We

notice that the error of the policy d̂∗
dr

is bounded by the error of γ̂dr. Under the assumption that

for all x ∈ X , either |γ(x)| > δ for some δ > 0 or γ(x) = 0, we obtain that

E[1{d̂∗
dr
(x) ̸= d∗(x)}] ≤ P(|γ(x)| ≤ |γ̂dr(x)− γ(x)|)

≲ E[|γ̂dr(x)− γ(x)|] ≤
√

E[(γ̂dr(x)− γ(x))2].

The first inequality follows from Lemma F.1 and the second inequality holds since if γ(x) = 0,

then d∗(x) can be either 1 or 0, suggesting that d̂∗
dr
(x) will always be optimal. The error of the

learned policy d̂∗
dr

can be upper bounded by the square root of the expected squared error given

in Theorem 7.4. The assumption used here is stronger than the margin condition. It is of future

interest to relax such assumption and study the performance of d̂∗
dr

in more flexible settings.

7.8 Experiments

7.8.1 Numerical Simulation

To explore the finite-sample properties of the estimator, we simulate from the following data

generating process:

X ∼ N (0, I5),

logit{π1(X)} = X⊤β where β = (.2, .2, .2, .2, .2),

Y |X,A ∼ Lognormal(X⊤β + A, .25).

We note that there is heterogeneity of the conditional median treatment effects across covariates

X , i.e., m1(X)−m0(X) = exp(X⊤β + 1)− exp(X⊤β) = (e− 1) exp(X⊤β). To inspect the

rate of convergence of the estimator in terms of the nuisance estimation error, we constructed

the nuisance estimators through the following procedure: π̂1(X) = expit{logit(π1(X)) + ϵ1,n},
m̂a(X) = ma(X) + ϵ2,n, and f̂a,m̂(X) = fa,m(X) + ϵ3,n where ϵ1,n, ϵ2,n, ϵ3,n are independent

samples drawn from N (n−α, n−2α). This construction ensures that the root mean square errors
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Figure 7.2: Root mean square error of the doubly robust-style estimator (7.8) and the plug-in estimator (7.7)

for settings described in Section 7.8.1. The sample size n varies in each subplot. Within a subplot, the

x-axis is α, which controls the estimation error of the nuisances.
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Figure 7.3: 7.3a is the histogram of the outcomes for females under treatment and control. The difference

in mean outcome under treatment versus control is 49, while the difference in median outcomes is only

1. 7.3b is the histogram of m̂1(Xi)− m̂0(Xi) where m̂a is estimated using quantile regression forests

described in Section 7.8.2.

of π̂a, m̂a and f̂a,m̂ are of order O(n−α). The policy used for evaluation is d(X) = 1{X1 > 0}.
Results shown in Figure 7.2 are averaged over 1000 rounds.

As we have seen in Figure 7.2, the doubly robust-style estimator converges faster compared

to the plug-in estimator. In general, the plug-in estimator is more intuitive but often times, not

optimal. When n = 5000, we see the estimation error of the doubly robust-style estimator is

close to 0 when α = .25, in line with what our theory suggests in Corollary 7.4.

7.8.2 Application: ACTG 175

We illustrate our proposed methods using the ACTG 175 dataset given in the R package

speff2trial (Juraska et al., 2012). The data are from a randomized clinical trial in a pop-

ulation of adults with HIV type I. The treatment is binary where A = 0 stands for only using

zidovudine as the therapy and A = 1 represents combination therapies. The outcome of interest

is CD4 T cell count after 96± 5 weeks. Covariates X include baseline CD4 and CD8 T cell count,

age, weight, Karnofsky score, indicators for race, gender, hemophilia, homosexual activity, drug
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use, whether symptomatic, and previous zidovudine and antiretroviral use. Since the treatment

is randomized, the propensity score is known to be π1(x) = .75 for all subjects. The number of

observations is n = 1342, after excluding subjects with missing outcomes.

Figure 7.3a shows a histogram of outcomes under treatment versus control for females.

The presence of skewed responses in both histogram suggests that the median may be a more

useful measure than the mean for characterizing both the treatment and the control conditional

outcome distributions and for determining the optimal treatment in this study. In fact, although

the mean outcome in this group is quite different under treatment versus control (mean CD4

count is 341 for treated females, but only 292 for controls), the medians are similar (313 for

treated, 312 for control).
3

Therefore we apply our proposed methods to estimate the value of the median optimal

policy, and the value of a few competing policies. Specifically we use the estimator described

in Section 7.6.2, splitting the sample into thirds (D1, D2 and D3) and using cross-fitting. In

D1 the conditional median estimate m̂a is obtained with quantile regression forests via the

package quantregForest (Meinshausen, 2006) (recall the propensity score is known and so

does not need to be estimated here). D2 is then used to construct the density estimate f̂a,m̂, which

we estimated by regressing a Gaussian kernel-weighted outcome centered at m̂a on X using the

randomForest R package. The bandwidth h was chosen using Silverman’s rule (Silverman,

1986). We considered estimating the ACME value of five policies using D3: the observational

policy d(Xi) = Ai, a plug-in median optimal policy d(Xi) = 1{m̂1(Xi) > m̂0(Xi)}, the treat-

all policy d(Xi) = 1, the treat-none policy d(Xi) = 0, and a plug-in mean optimal policy

d(Xi) = 1{µ̂1(Xi) > µ̂0(Xi)} where the regression functions µ̂a are also estimated via random

forests.

Figure 7.4 shows the estimated values with the proposed doubly robust-style estimator ψ̂d,dr,

as well as the plug-in ψ̂d,pi, for reference. 95% confidence intervals for ψ̂d,dr are obtained with

the usual Wald interval based on the empirical variance ψ̂d,dr ± 1.96σ̂d/
√
n where σ̂d is the

sample standard deviation of the influence function estimates. The results show the median

optimal policy gives the highest value (342.40 with 95% CI 8.20), with the mean optimal policy

and treat-all policy close behind. The treat-none policy does substantially worse than even the

observational (random assignment) policy. Figure 7.3b shows a histogram of the conditional

median treatment effects m̂1(Xi)− m̂0(Xi), indicating a modest amount of effect heterogeneity.

7.9 Discussion

In this paper, we proposed a treatment policy based on conditional median treatment effects,

and a new ACME value measure which is maximized for this policy. Importantly, our proposed

approach avoids both within-group lack of robustness issues with the mean, as well as across-

group unfairness issues with the marginal median. We argue that optimal treatment policies

3
Connection to the margin condition: We note that the reported medians are only conditioned upon a single

covariate (not the entire covariates), thus the the difference between these two values cannot be interpreted as the

margin γ(x). In addition, we cannot use a particular γ(x) to infer the margin condition since the margin condition

depends on γ(x) for all x ∈ X .
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Figure 7.4: The results for the ACTG 175 data analysis. Black triangles show the estimated ACME

values of five different policies, computed with our proposed estimator (7.8), and the black lines show the

estimated 95% confidence intervals. For comparison, the yellow circles are estimates from the plug-in

estimator (7.7).

should be defined in terms of the conditional distribution of outcomes, given covariates, rather

than the marginal, in order to avoid across-group unfairness. We study nonparametric efficiency

bounds and propose provably optimal doubly robust-style estimators, showing their finite-

sample properties in simulations and in an illustration analyzing effects of combination therapy

in treating HIV. We would generally argue that the mean is most useful as a measure of centrality

when it is close to the median, and otherwise the median should be preferred; this suggests

median effects should at least be used more widely than they are at present.

There are many opportunities for future related work. In addition to developing V -specific

median optimal treatment regimes and analyzing d̂∗
dr

in more general settings, one could also

consider more general (conditional) quantile optimal treatment regimes that replace conditional

medians by conditional quantiles. All of this could also be adapted to numerous other settings,

including continuous or time-varying treatments, or mediation problems, or settings where

treatments may be confounded so that sensitivity analysis or instrumental variables may be

used, etc.

106



Part III

Conclusion

107



Chapter 8
Conclusion

Building artificial intelligence systems from a human-centered perspective is an increasingly

urgent subject, as large-scale machine learning models are deployed to interact with people daily.

It is a thrilling time to work in this area as we are shaping the very form of artificial intelligence

that will interact with many generations in the future. In this thesis, we ask the basic question:

Are there some guidelines one could use when building machine learning systems from
a human-centered perspective?

We propose a three-step guideline that involves (S.1) identifying the people and their char-

acteristics we want to center the machine learning systems around; (S.2) modeling these char-

acteristics in a reliable manner; and (S.3) incorporating these models into the design of the

learning algorithm. To ground this guideline, we illustrate these steps in applications including

recommender systems and decision-support systems. For recommender systems, we focus on

users’ evolving preferences, model them as dynamical systems (Chapter 2), and design online

learning algorithms when facing such preference dynamics (Chapter 4, 5). For decision-support

systems, we choose the decision-makers’ risk preferences to be the core characteristics of con-

cern, incorporate these preferences into the objective function of the machine learning models

(Chapter 3), and propose a general recipe for learning models under diverse risk preferences

(Chapter 6, 7).

While we have only covered two applications in this thesis, our proposed guideline can be

used to establish human-centered machine learning research in a variety of settings, including

mechanism design (Koster et al., 2022) and fine-tuning large language models (Stiennon et al.,

2020). The development of this guideline provides a common ground for positioning different

human-centered machine learning research, since if following the guideline, we will be clear

about which people and their corresponding characteristics are the focus of the study, and

articulate which aspect of the learning problem—the modeling of humans or the design of the

machine learning algorithm in face of these human models or both—our research tackles.

In contextualizing our proposed guideline, we use insights and methodology from social

sciences including behavioral economics and psychology to conduct human subject studies,

model human preferences, and provide theoretical guarantees for different learning settings.
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Our work is an example showcasing the interdisciplinary nature of human-centered machine

learning research. We briefly discuss the interdisciplinarity of this field before outlining a future

vision of human-centered machine learning.

Interdisciplinarity. Human-centered machine learning is naturally interdisciplinary. While

its main focus is to build learning-based systems, the focal point for building these systems is

human-centered, which deviates from the focus of traditional backbone disciplines—statistics

and optimization—of machine learning. Thus, it is of crucial need for us to learn from and

collaborate with researchers from other fields who have experience in taking a human-centered

perspective. To make effective progress across different disciplines, we need to identify the role

of each discipline in human-centered machine learning research. As one way of figuring this

out, we may use the three-step guideline proposed in this thesis to specify the support that

machine learning researchers need from other disciplines. Take human-computer interaction

(HCI) as an example. On S.1, using human subject studies (e.g., human-in-the-loop evaluation of

existing machine learning systems), HCI research can provide machine learning researchers with

a more comprehensive understanding of which group of people and what their most relevant

characteristics are for building the next generation of the system. On the hand, with respect to

S.2, HCI research may help test the modeling assumptions on human preferences and behaviors

that existing machine learning algorithms rely on. There are also aspects of human-centered

machine learning that we have not touched upon here. We note that since the main focus of

this thesis is to design learning algorithms from a human-centered perspective. we have not

touched upon topics including the design of user interfaces for machine learning systems that

some HCI research has focused on.

Future of Human-Centered Machine Learning

We are at the beginning of establishing how we could build machine learning systems from a

human-centered perspective. There are many future directions that one could take, with the

more concrete ones outlined at the end of each chapter. At a high level, there are three major

directions that we envision the field to pursue.

The first direction centers around understanding the human factors that one should account

for when developing machine learning models. Ideally, this should be uncovered by first

hypothesizing what these factors could be and then conducting human-subject studies in either

an experimental or an observational setting. For example, a human-subject study may be used

to evaluate existing machine-learning systems and to figure out how the ideal system should

behave. This line of research requires us to have an effective communication channel between

the HCI and the machine learning community. With that, findings from the HCI community can

inform machine learning researchers about the problem settings that require human-centered

machine learning algorithm design; and machine learning researchers could provide machine

learning models for HCI researchers to analyze.

The second direction is to build realistic, useful, potentially large-scale yet interpretable

models for human preferences and behaviors. These models could be used to simulate human

behaviors and feedback when building new machine learning systems and evaluating the impact
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of existing systems. Currently, most theoretical research in analyzing machine learning systems

from a human-centered perspective uses stylized models that capture a particular aspect of the

people of interest. While these stylized models can help us highlight the algorithmic challenges

in developing machine learning systems that interact with users of certain characteristics, it

may be hard to understand the practical insights these models bring. On the other hand, recent

economics and psychology research has proposed to use large language generative models to

simulate human responses and behaviors. These models may also not be ideal as we do not have

a clear path to verify how close the responses given by these models are to the ones given by

actual human subjects of interest. The lack of guarantees for these models necessarily indicates

that we cannot provide guarantees for the evaluation of machine learning systems conducted

using these models. Building the ideal human preference and behavior model requires us to

have representative and large-scale preference and behavior data from diverse groups of people.

The diversity is crucial here as when using these human models to facilitate human-centered

machine learning research, the role of the human subjects of interest may range from the users

to the designers to the evaluators of the model. Once we have the ideal human models, we can

build new personalized learning systems to interact with them and be evaluated by them.

Finally, although we have not touched upon this topic in the thesis, one growing need in the

field is to develop public policies and supporting technologies for regulating and auditing models

from a human-centered perspective. For example, in the context of recommender systems, we

may require new auditing methods to inspect their impacts on the information received by the

users; for large-language models, we may need new model unlearning techniques to fulfill the

users’ data deletion needs.
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Appendix A
Dynamic Preference: Additional Details

A.1 Algorithms

We provide additional details on algorithms presented in Section 2.3.1. Recall that R(t) denote

the reward obtained at time t and a(t) denote the arm pulled at time t. Denote Tk,t = {t′ ∈
[t − 1] : a(t′) = k}. As we discussed in our main paper, the reward R(t) obtained by pulling

arm a(t) is given by the enjoyment score the user provides after reading the recommended

comic. Thus, for each arm (i.e., each comic genre), the reward distribution corresponds to user’s

enjoyment score distribution (or in other words, user’s preference) towards that genre.

• UCB: For t ∈ {1, . . . , K}, we have a(t) = t. For t ∈ {K + 1, . . . , T}, we have

a(t) ∈ arg max
k∈[K]

1

|Tk,t|
∑
t∈Tk,t

R(t) +

√
2 log t

|Tk,t|
.

• TS: For each arm k ∈ [K], their prior distribution is set to be a Dirichlet distribution

with parameters being (1, 1, 1, 1, 1, 1, 1, 1, 1), given that the rewards are categorical with

9 values. At time t, for each arm k, we obtain a virtual reward R̃(k, t) by sampling from

the corresponding Dirichlet distribution first and then use that sample to sample from

a multinomial distribution. Then, a(t) ∈ argmaxk∈[K] R̃(k, t). Upon a reward R(t) is

received by pulling arm k, the parameter of arm k’s Dirichlet distribution is updated:

the R(t)-th entry of the parameter is increased by 1. We have chosen the Dirichlet and

multinomial distribution as the prior distribution and likelihood function because of their

conjugacy, which ensures that the posterior distribution is tractable. This choice of the

prior distribution and likelihood function has not utilized the fact that the reward is ordinal.

One can potentially use a likelihood function that captures the ordinal structure of the

rewards, but it may result in difficulties in obtaining the posterior distribution since there

may not be a conjugate prior for this new likelihood function.
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• ETC: For t ∈ {1, . . . , ⌊0.5 · (T 2/3)⌋}, a(t) = t mod K . For t ∈ {⌈0.5 · (T 2/3)⌉, . . . , T},

a(t) ∈ argmax
1

|Tk,t|
∑
t∈Tk,t

R(t).

• ε-Greedy: For t ∈ {1, . . . , K}, a(t) = t. For t ∈ {K + 1, . . . , T}, with probability 0.9,

a(t) ∈ argmax
1

|Tk,t|
∑
t∈Tk,t

R(t).

With probability 0.1, a(t) is randomly selected from the K arms.

A.2 Holm’s Sequential Bonferroni Procedure

When testing K hypotheses (in our case, we have one hypothesis for each arm), we adopt

Holm’s Sequential Bonferroni Procedure to control the family-wise error rate. To ensure that

the probability of falsely rejecting any null hypothesis to be at most α, we perform the following

procedure: Suppose that we are given m sorted p-values p1, . . . , pm from the lowest to the

highest for hypothesis H1, . . . , Hm. For i ∈ [m], if pi < α/(m + 1 − i), then reject Hi and

move on to the next hypothesis; otherwise, exit the process (and we cannot reject the rest of

the hypotheses). As an illustration, in Table 2.2, since we are testing 5 hypothesis (one for each

arm) at the same time and we have set the overall α level to be 0.1, to reject all null hypotheses,

we require the lowest to the highest p-values to be no bigger than 0.02, 0.04, 0.06, 0.08, 0.1. In

other words, setting α at level 0.1 suggests that the probability of falsely rejecting any null

hypothesis is at most 0.1. Under Bonferroni’s correction, when rejecting the null hypothesis

with the lowest p-value, the corrected alpha level is α/K = 0.02.

A.3 Background Survey

We asked the study participants the following four questions:

• What is your age?

• How often do you read comic strips (e.g. newspaper comics, Sunday comics, …)? Please

pick an option that best describes you.

• Out of the following genres of comic strips, which genre do you find to be the most

familiar?

• Out of the below genres of comic strips, which genre do you like the most?

The provided data are plotted as histograms in Figure A.1.
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A.4 Implementation Details

A.4.1 Platform implementation

As described in Section 2.3.3, our platform consists of two main components: the participant-

facing web interface and server backend. In this section, we provide more in-depth implementa-

tion details about both platform components.

Web interface. The participant-facing web interface is written using standard web development

tools (HTML/CSS/Javascript) as well as the Flask web framework. When participants are

performing the comic rating portion of the study, their responses are submitted in the background.

Once the response is successfully recorded by the server, the images, rating slider bar, and button

orderings are updated in-place so that users are not distracted by full page refreshes after each

comic. The web interface also has a experimenter-defined variable to enforce a minimum time

that must elapse between submissions. This ensures that participants spend an adequate amount

of time on each comic; there is also a server-side mechanism to handle duplicate submissions

if the button is clicked multiple times in quick succession. Once the comic reading portion is

complete, the web interface will automatically transition to the post-study survey after users

have read the end-of-study message.

Server. We use the Flask web framework to implement the server and MongoDB for the database

backend. The MAB algorithms are implemented in Python with a common interface that defines

get arm() and update arm() functions, which can easily be extended to include other

MAB algorithms that share this interface. The user accounts used by participants, the comic

rating responses, post-study survey responses, and attention check answers are each stored in

a separate database. All experiment configurations are prepared prior to launching the study.

Experiments are configured using JSON files that enable both local and global control over

experiment parameters, such as the number of comics to read, or the post-study survey and

attention check questions asked. Participants can only access their assigned experiment, using

credentials that are given when they register on the website. As participants are completing

tasks in the study, each submitted task response is recorded in the database. The server can use

the stored data to reload the session where it left off if the browser is closed or refreshed. This

state includes that required for the algorithms, which are all executed on the server and require

up-to-date parameters at each timestep of the study. Lastly, we host the server on Amazon Elastic

Compute Cloud (EC2) using a t2.xlarge instance with 4 vCPUs and 16GB of memory.

A.4.2 MTurk implementation

The study is split into two separate tasks on the MTurk platform. Participants must sign up for

both tasks in order to proceed with the study. Once they have completed the initial background

survey with a valid completion code, they must register their MTurk ID on our website. If their

MTurk ID is found among the completed Qualtrics survey entries (retrieved through the MTurk

query API), they are then assigned an account with a pre-loaded configuration. We also assign

a unique survey code to each participant in the event to ensure that all parts of the study are
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Figure A.1: Histograms of demographic information collected from the background survey.

properly completed. Submissions that contain reused survey codes from other participants are

considered invalid, and therefore not included in the final dataset.
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(a) Testing whether the participant remembers if the given comic was in the study.

(b) Testing whether the participant remembers rating the given comic positively in

the study.

(c) Final questions asked in the post-study survey.

Figure A.2: An example of questions contained in the post-study survey.
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Appendix B
Human-Algined Risk Minimization:

Additional Details

B.1 Proofs

Proof of Proposition 1. w(F (x)) satisfies: (i) non-decreasing since both w(·) and F (·) are non-

decreasing; (ii) lim
x→+∞

w(F (x)) = w

(
lim

x→+∞
F (x)

)
= 1, lim

x→−∞
w(F (x)) = w

(
lim

x→−∞
F (x)

)
= 0;

and (iii) right continuous since both w(·) and F (·) are continuous. Thus, as shown in Theorem

1.2.2 in (Durrett, 2019), w(F (x)) is a cumulative distribution function.

Proof of Lemma 3.1. First, notice that wPOLY(P (E))
′ = lim

∆→0

(
wPOLY(P (E) + ∆; a, b) −

wPOLY(P (E); a, b)
)
/∆. Denote P (E) to be y. Then, wPOLY(y)

′ = 3(3−3b)
a2−a+1

(
y2− 2(a+1)

3
y+ a

3

)
+1 =

3(3−3b)
a2−a+1

(
(y − a+1

3
)2 + (a

3
− (a+1)2

9
)
)
+ 1. Let u = |y − a+1

3
|. Then, w′(y) = 3(3−3b)

a2−a+1

(
u2 + (a

3
−

(a+1)2

9
)
)
+ 1 = f(u). f ′(u) = 6(3−3b)

a2−a+1
u ≥ 0. Therefore, f(u) is a monotonically increasing

function of u. Thus, the lemma follows.

Proof of Lemma 3.2. Recall that we are given a family of models {Mθ | θ ∈ [0, 1]} whose

losses {ℓ(θ) | θ ∈ [0, 1]} are parameterized by θ. For all θ ∈ [0, 1], ℓ(θ) follows a Bernoulli

distribution:

P

(
ℓ(θ) = 1−

(
1− θ
θ

)1/2
)

= θ, P

(
ℓ(θ) = 1 +

(
θ

1− θ

)1/2
)

= 1− θ.

The mean and variance of the losses are the same, i.e. E[ℓ(θ)] = 1 and Var(ℓ(θ)) = 1. Thus,

the skewness of ℓ(θ) is

Skewness(ℓ(θ)) =
2θ − 1√
θ(1− θ)

.
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Denote αθ = 1−
(
1−θ
θ

)1/2
, βθ = 1 +

(
θ

1−θ

)1/2
and αθ ≤ 1 ≤ βθ.

RH(ℓ(θ);w) = αθ(w(θ)− w(0)) + βθ(w(1)− w(θ)) = αθw(θ) + βθ(1− w(θ)).1

Then, for different polynomial form of CPT probability weighting function w1 and w2,

RH(ℓ(θ);w1)−RH(ℓ(θ);w2) = (βθ − αθ)(w2(θ)− w1(θ)).

Suppose that the probability weighting functions w1, w2 have the parametric form suggested

by Equation 3.3 with parameter a1, b1 and a2, b2 respectively. If a1 = a2 =
1
2

and b1 < b2, then

w1(θ) > w2(θ) on [0, .5) and w1(θ) < w2(θ) on (.5, 1].

• If 0 ≤ θ < .5, then RH(θ;w1) < RH(θ;w2).

• If .5 < θ ≤ 1, then RH(θ;w2) < RH(θ;w1).

Proof of Lemma 3.3. First, notice that wIT(0) = 0 and wIT(1) = 1. The fixed point of wIT

is
1
2

because wIT(1/2) = 1/2. Since w′
IT
(y) = −1/2 ln(y · (1 − y)) > 0 for all x ∈ [0, 1], wIT

is monotonically increasing. Notice that w′′
IT
(y) = 2y−1

2y(1−y) . Since w′′
IT
(y) < 0 for all y ∈ [0, 1

2
)

and w′′
IT
(y) > 0 for all y ∈ (1

2
, 1], w′

IT
is monotonically decreasing on [0, 1

2
) and monotonically

increasing on (1
2
, 1]. Thus, wIT ∈ WCPT.

Connection between wIT and wPOLY. Let y = F (ℓ) and w′
IT
(y) = dwIT(y)

dy
.

wPOLY(y; 1/2, ln 2) = 4y3 − 6y2 + 3y +
(
−4 ln 2y3 + 6 ln 2y2 − 2 ln 2y

)
= 4y3 − 6y2 + 3y + g(y)

≈ 4y3 − 6y2 + 3y + g(1/2) + g′(1/2)(y − 1/2)

= 4y3 − 6y2 + 3y + (ln 2y − ln 2/2)

= wIT(1/2) + w′
IT
(1/2)(y − 1/2) +

w
′′
IT
(1/2)

2
(y − 1/2)2 +

w
′′′
IT
(1/2)

6
(y − 1/2)2

≈ wIT(y).

The first approximation is done by the first order Taylor expansion of g(y) around 1/2 and the

second approximation is done through the third order Taylor expansion of wIT around 1/2.

B.2 Optimization of EHRM

Optimally optimizing empirical human-aligned risk is an interesting open question. However,

the heuristic approach described in Section 3.3 performs relatively well in the experiments.

Figure B.1 and B.2 show the empirical human risk (at training time) of experiments in Section 3.5.1

and 3.5.3 respectively.

1
The loss distribution is discrete in this case. We have used the CPT-weighted rank-dependent utility of a

discrete random variable to obtain the human risk (Diecidue and Wakker, 2001).
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(a) a = .5, b = .4 (b) a = .5, b = .8

Figure B.1: Using a fixed learning rate .05 and optimization method described in Section 3.3, empirical

human risk of the experiments in Section 3.5.1 converge within 100 iterations.

(a) a = .5, b = .3

Figure B.2: Using the optimization method described in Section 3.5.3, empirical human risk of the

experiment (Section 3.5.3) converges in 100 epochs.
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B.3 Fairness Metrics

Denote true positive rate as TPR, false positive rate as FPR, false negative rate as FNG, covariate

as X ∈ X and label as Y ∈ {0, 1}. As suggested by (Bellamy et al., 2018), we define the below

fairness metrics in terms of the privileged group G1 ⊆ X and unprivileged group G2 ⊆ X :

1. Statistical Parity Difference: P (Y = 1|X ∈ G2)− P (Y = 1|X ∈ G1).

2. Disparate Impact:
P (Y=1|X∈G2)
P (Y=1|X∈G1)

.

3. Equal Opportunity Difference: TPR(G2)− TPR(G1).

4. Average Odds Difference:
1
2
(FPR(G2)− FPR(G1) + (TPR(G2)− TPR(G1))).

5. Theil Index:
1
n

∑n
i=1

bi
µ
ln( bi

µ
) where bi = Ŷi−Yi+1 and µ = 1

n

∑n
i=1 bi. Ŷi is the prediction

of Xi and n is the number of samples.

6. False Negative Rate Difference: FNR(G2)− FNR(G1).

B.4 Model Configuration

The model configuration for the gender classification task (Section 3.5.3) is as follows: 3 con-

volutional layers (with number of output channels (6, 16, 16) respectively, kernel size (5, 5, 6)
respectively and a 2× 2 max-pooling on the outputs of the first layer), followed by two fully

connected layers (the first has 120 hidden units and the second is the output layer with 2 output

units); all activation functions are ReLU and all convolutional layers use stride 1.

120



Appendix C
Rebounding Bandits: Additional Details

C.1 Integer Linear Programming Formulation

The bilinear integer program of (4.4) admits the following equivalent linear integer programming

formulation:

max
uk,t,zk,t,i

∑
k∈[K]

∑
t∈[T ]

bkuk,t − λk
t−1∑
i=0

γt−ik zk,t,i

s.t.

∑
k∈[K]

uk,t = 1, ∀t ∈ [T ],

zk,t,i ≤ uk,i, zk,t,i ≤ uk,t, uk,i + uk,t − 1 ≤ zk,t,i, ∀k ∈ [K], t ∈ [T ], i ∈ {0, . . . , t− 1},
uk,t ∈ {0, 1}, uk,0 = 0, ∀k ∈ [K], t ∈ [T ],

zk,t,i ∈ {0, 1}, ∀k ∈ [K], t ∈ [T ], i ∈ {0, . . . , t− 1}.
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C.2 Proofs and Discussion of Section 4.4

C.2.1 Proof of Lemma 4.1

Proof. When the expected rewards of all arms are the same, we know that the arm with the

lowest index will be chosen and thus the first K pulls will be π1 = 1, . . . , πK = K . We will

complete the proof through induction. Suppose that the greedy pull sequence is periodic with

π1 = 1, . . . , πK = K and πt+K = πt until time h > K . We define k′ to be h mod K and n to

be (h − k′)/K . We will show that πh+1 = 1 if πh = K and πh+1 = πh + 1 otherwise. When

k′ = 0 (i.e., πh = K), all arms have been pulled exactly n times as of time h. By the induction

assumption, we know that u1,1:h−K = u2,2:h−K+1 = . . . = uK,K:h, which implies that last time

when each arm is pulled, all of them have the same expected rewards, i.e.,

µ1,h−K+1(u1,0:h−K) = µ2,h−K+2(u2,0:h−K+1) = · · · = µK,h(uK,0:h−1).

Moreover, u1,h−K+1:h = (1, 0, · · · 0︸ ︷︷ ︸
K times

), u2,h−K+1:h = (1, 0, · · · 0︸ ︷︷ ︸
K-1 times

), · · · , uK,h:h = (1).

Therefore, by (4.3), at time h+ 1, arm 1 has the highest expected reward and will be chosen. In

the case where k′ > 0 (i.e., πh = k′), we let h′ := h− k′. We have that µ1,h′−K+1(u1,0:h′−K) =

. . . = µK,h(uK,0:h′−1) and s = s1,h′−K+1(u1,0:h′−K) = . . . = sK,h′(uK,0:h′−1) ≤ γK

1−γK . Then, at

time h + 1, the satiation level for the arms will be sk,h+1(uk,0:h) = γk
′−k+1

(
1 + γKs

)
for all

k ≤ k′ and sk,h+1(uk,0:h) = γK−k+k′+1s for all k > k′. Thus, the arm with the lowest satiation

level will be πh+1 = k′ + 1 = πh + 1, since sk′+1,h+1(uk′+1,0:h) < s1,h+1(u1,0:h). Consequently,

the greedy policy will select arm πh + 1 at time h+ 1.

C.2.2 Proof of Theorem 4.1

Proof. First, when T ≤ K , greedy policy is optimal since its cumulative expected reward is

Tb. So, we consider the case of T > K . Assume for contradiction that there exists another

policy πo1:T that is optimal and is not greedy, i.e., ∃t ∈ [T ], πot /∈ argmaxk∈[K] b− λsok,t where

sok,t denotes the satiation level of arm k at time t under the policy πo1:T . We will construct a new

policy πn1:T that obtains a higher cumulative expected reward than πo1:T . Throughout the proof,

we use snk,t to denote the satiation levels for the new policy.

We first note two illustrative facts to give the intuition of the proof.

Fact 1: Any policy πo1:T that does not pick the arm with the lowest satiation level (i.e., highest

expected reward) at the last time step T is not optimal.

Proof of Fact 1: In this case, the policy πn1:T = (πo1, . . . , π
o
T−1, πT ) where πT ∈ argmaxk∈[K] b−

λsok,T will obtain a higher cumulative expected reward.

Fact 2: If a policy πo1:T picks the lowest satiation level for the final pull πoT but does not pick the

arm with the lowest satiation level at time T−1, we claim that πn1:T = (πo1, . . . , π
o
T−2, π

o
T , π

o
T−1) ̸=

πo1:T obtains a higher cumulative expected reward.

Proof of Fact 2: First, note that πoT−1 ̸= πoT because otherwise πoT−1 is the arm with the lowest
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satiation level at T −1. Moreover, at time T −1, πoT ∈ argmink s
o
k,T−1 has the smallest satiation,

since if not, then there exists another arm k ̸= πoT and k ̸= πoT−1 that has a smaller satiation

level than πoT at time T − 1. In that case, πoT will not be the arm with the lowest satiation at

time T , which is a contradiction. Then, we deduce soπo
T−1,T−1 > soπo

T ,T−1. Combining this with

πoT−1 ̸= πoT , we arrive at

GT (π
n
1:T )−GT (π

o
1:T ) = λ(1− γ)

(
soπo

T−1,T−1 − soπo
T ,T−1

)
> 0.

For the general case, given any policy πo1:T that is not a greedy policy, we construct the new

policy πn1:T that has a higher cumulative expected reward through the following procedure:

1. Find t∗ ∈ [T ] such that for all t > t∗, πot ∈ argmaxk∈[K] b − λsok,t and πot∗ /∈
argmaxk∈[K] b − λsok,t∗ . Further, we know that πot∗+1 ∈ argmaxk∈[K] b − λsok,t∗ , using

the same reasoning as the above example, i.e., otherwise πot∗+1 /∈ argmaxk∈[K] b−λsok,t∗+1.

To ease the notation, we use k1 to denote πot∗ and k2 to denote πot∗+1.

2. For the new policy, we choose πn1:t∗+1 = (πo1, . . . , π
o
t∗−1, k2, k1). Let Aot1,t2 denote the set

{t′ : t∗+2 ≤ t′ ≤ t2, π
o
t′ = πot1}. A

o
t1,t2

contains a set of time indices in between t∗+2 and

t2 when arm πot1 is played under policy πo1:T . We construct the following three sets TA :=
{t : t∗ + 2 ≤ t ≤ T, |Aot∗,t| < |Aot∗+1,t|}, TB := {t : t∗ + 2 ≤ t ≤ T, |Aot∗,t| > |Aot∗+1,t|}
and TC := {t : t∗ + 2 ≤ t ≤ T, |Aot∗,t| = |Aot∗+1,t|}. For time t ≥ t∗ + 2, we consider the

following three cases:

Case I. TB = ∅, which means that at any time t in between t∗ + 2 and T , arm k1 is

played more than arm k2 from t∗ + 2 to t. In this case, the new policy follows

πnt∗+2:T = πot∗+2:T .

Case II. TA = ∅, which means that at any time t in between t∗ + 2 and T , arm k2 is played

more than arm k1 from t∗ + 2 to t. In this case, the new policy satisfies: for all

t ≥ t∗ + 2, 1) πnt = πot if πot ̸= k1 and πot ̸= k2; 2) πnt = k2 if πot = k1; and 3) πnt = k1
if πot = k2.

Case III. TA ̸= ∅ and TB ̸= ∅. Then, starting from t∗+2, if t ∈ TA, πnt follows the new policy

construction in Case I, i.e., πnt = πot . If t ∈ TB , πnt follows the new policy construction

in Case II. Finally, for all t ∈ TC , define t′A,t = maxt′∈TA:
t′<t

t′ and t′B,t = maxt′∈TB :
t′<t

t′.

If t′A,t > t′B,t, then πnt follows the new policy construction as Case I. If t′A,t < t′B,t,
πnt follows the new policy construction as Case II. We note that t′A,t ̸= t′B,t since

TA ∩ TB = ∅.

When TA = ∅ and TB = ∅, we know that k1 and k2 are not played in πot∗+2:T . In this case, the

new policy construction can follow either Case I or Case II. To complete the proof, we state

some facts first:

• From t∗, the expected rewards collected by the policies πo1:T and πn1:T only differ at times

when arm k1 or arm k2 is played.

• πn1:t∗+1 obtains a higher cumulative expected reward than πo1:t∗+1.
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• At time t∗+2, the new policy follows that snk1,t∗+2 = γ+γ2sok1,t∗ and snk2,t∗+2 = γ2+γ2sok2,t∗ .

On the other hand, the old policy has sok1,t∗+2 = γ2 + γ2sok1,t∗ and sok2,t∗+2 = γ + γ2sok2,t∗ .

Let Nk1 := {t : t∗ + 2 ≤ t ≤ T, πot = k1} and Nk2 := {t : t∗ + 2 ≤ t ≤ T, πot = k2} denote

the sets of time steps when k1 and k2 are played in πo1:T . For a given satiation level x at time

t′ together with the time steps the arm is pulled Nk, we have that at time t ≥ t′, the arm has

satiation level gNk
(x, t, t′) = γt−t

′
x+

∑
Nk,i<t

γt−Nk,i
where Nk,i is the i-th smallest element in

Nk.

In Case I, the difference of the cumulative expected rewards between the two policies satisfies:

GT (π
n
1:T )−GT (π

o
1:T ) >

|Nk2
|∑

i=1

−λgNk2
(snk2,t∗+2, Nk2,i, t

∗ + 2) + λgNk2
(sok2,t∗+2, Nk2,i, t

∗ + 2)

+

|Nk1
|∑

j=1

−λgNk1
(snk1,t∗+2, Nk1,j, t

∗ + 2) + λgNk1
(sok1,t∗+2, Nk1,j, t

∗ + 2)

= λ
(
sok2,t∗+2 − snk2,t∗+2

) |Nk2
|∑

i=1

γNk2,i
−(t∗+2) + λ

(
sok1,t∗+2 − snk1,t∗+2

) |Nk1
|∑

j=1

γNk1,j
−(t∗+2) > 0,

where we have used the fact that sok2,t∗+2− snk2,t∗+2 = −
(
sok1,t∗+2 − snk1,t∗+2

)
> 0, |Nk2| ≥ |Nk1|

and for all j ∈ [|Nk1|], Nk2,j < Nk1,j . In Case II, similarly, we have that

GT (π
n
1:T )−GT (π

o
1:T ) >

|Nk1
|∑

j=1

−λgNk1
(snk2,t∗+2, Nk1,j, t

∗ + 2) + λgNk1
(sok1,t∗+2, Nk1,j, t

∗ + 2)

+

|Nk2
|∑

i=1

−λgNk2
(snk1,t∗+2, Nk2,i, t

∗ + 2) + λgNk2
(sok2,t∗+2, Nk2,i, t

∗ + 2)

= λ
(
sok1,t∗+2 − snk2,t∗+2

) |Nk1
|∑

j=1

γNk1,j
−(t∗+2) + λ

(
sok2,t∗+2 − snk1,t∗+2

) |Nk2
|∑

i=1

γNk2,i
−(t∗+2) > 0,

since sok1,t∗+2 − snk2,t∗+2 = −
(
sok2,t∗+2 − snk1,t∗+2

)
> 0, |Nk2| ≤ |Nk1| and for all i ∈ [|Nk2|],

Nk1,i < Nk2,i.

Finally, for Case III, the new policy construction is a mix of Case I and Case II. We represent

the time interval [t∗ +2, T ] to be [t∗ +2, T ] = [ti1,s1 , ti1,e1 ]∪ [ti2,s2 , ti2,e2 ]∪ · · · ∪ [tiM ,sM , tiM ,eM ]
where t∗ + 2 = ti1,s1 ≤ . . . ≤ tiM ,sM = T , ∩Mm=1[tim,sm , tim,em ] = ∅ and M − 1 is the number

of new policy construction switches happen in between t∗ + 2 and T . We say that a new policy

construction switch happens at time t if the policy construction follows Case I at time t − 1
but follows Case II at time t or vice versa. Each im ̸= im−1 can take values I or II, representing

which policy construction rule is used between the time period tim,sm and tim,em . For any time

index set V , we use the notation V [tim,sm , tim,em ] := {t ∈ V : tim,sm ≤ t ≤ tim,em}.
We notice that at any switching time tim,sm , the number of previous pulls of arm k1 and k2

from time tim−1,sm−1 to tim−1,em−1 are equivalent, which is denoted by lm = |Nk1 [tim,sm , tim,em ]| =
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|Nk2 [tim,sm , tim,em ]| for all m < M . From our analysis of Case I and Case II, we know that to

show that πn1:T obtains a higher cumulative expected reward, it suffices to prove: for all m < M
such that

sok2,tim,sm
− snk2,tim,sm

= −
(
sok1,tim,sm

− snk1,tim,sm

)
> 0,

sok1,tim,sm
− snk2,tim,sm

= −
(
sok2,tim,sm

− snk1,tim,sm

)
> 0,

we have

sok2,tim+1,sm+1
− snk2,tim+1,sm+1

= −
(
sok1,tim+1,sm+1

− snk1,tim+1,sm+1

)
> 0,

sok1,tim+1,sm+1
− snk2,tim+1,sm+1

= −
(
sok2,tim+1,sm+1

− snk1,tim+1,sm+1

)
> 0.

We will establish these facts in Lemma C.1. Finally, we note that the above required conditions

are held at time ti1,s1 = t∗ + 2.

Lemma C.1

Let Nk[ts, te] denote the set of time steps when arm k is pulled in between (and including)

time ts and te under policy πo1:T . Let sok,t and snk,t represent the satiation level of arm k at

time t when following the policy πo1:T and πn1:T , respectively. For two different arms k1 and

k2, suppose that at time ts we have

sok2,ts − s
n
k2,ts

= −
(
sok1,ts − s

n
k1,ts

)
> 0,

sok1,ts − s
n
k2,ts

= −
(
sok2,ts − s

n
k1,ts

)
> 0.

Further, suppose that from time ts to te, π
n
1:T follows either Case I (or Case II) of new policy

construction (see proof of Theorem 4.1 for their definitions); and at time t′s = te + 1, the

new policy construction for πn1:T has switched to Case II (or Case I if Case II is used from ts
to te). Then at time t′s, we have that

sok2,t′s − s
n
k2,t′s

= −
(
sok1,t′s − s

n
k1,t′s

)
> 0,

sok1,t′s − s
n
k2,t′s

= −
(
sok2,t′s − s

n
k1,t′s

)
> 0.

Proof of Lemma C.1. Following the definition in the proof of Theorem 4.1, given that at time ts,
arm k has satiation s, let gNk[ts,te](s, t

′
s, ts) denote the satiation level of arm k at time t′s after

being pulled at the time steps in the set Nk[ts, te]. Let Nk,i[ts, te] be the i-th smallest element

in the set Nk[ts, te]. From the definition of the new policy construction given in the proof of

Theorem 4.1, we also know that (1) N := |Nk1 [ts, te]| = |Nk2 [ts, te]|; (2) if Case I is applied in

between ts and te, we have that for all i ∈ [N ], Nk2,i[ts, te] < Nk1,i[ts, te]; and (3) if Case II is

applied in between ts and te, we have that for all i ∈ [N ], Nk2,i[ts, te] > Nk1,i[ts, te].
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We first consider the setting when Case I new policy construction is applied, then at time t′s,
we can show that

sok1,t′s − s
n
k2,t′s

=gNk1
[ts,te]

(
sok1,ts , t

′
s, ts
)
− gNk2

[ts,te]

(
snk2,ts , t

′
s, ts
)

=γt
′
s−ts

(
sok1,ts − s

n
k2,ts

)
+

l∑
i=1

γt
′
s−Nk1,i

[ts,te] − γt′s−Nk2,i
[ts,te]

=γt
′
s−ts

(
snk1,ts − s

o
k2,ts

)
+

l∑
i=1

γt
′
s−Nk1,i

[ts,te] − γt′s−Nk2,i
[ts,te]

=snk1,t′s − s
o
k2,t′s

> 0,

where the last inequality has used the fact that when we use Case I construction, we have

Nk2,i[ts, te] < Nk1,i[ts, te]. Meanwhile, we also have that

sok2,t′s − s
n
k2,t′s

=gNk2
[ts,te]

(
sok2,ts , t

′
s, ts
)
− gNk2

[ts,te]

(
snk2,ts , t

′
s, ts
)

=γt
′
s−ts

(
sok2,ts − s

n
k2,ts

)
= −γt′s−ts

(
sok1,ts − s

n
k1,ts

)
=−

(
sok1,t′s − s

n
k1,t′s

)
> 0.

When Case II new policy construction is applied, then at time t′s, we get

sok1,t′s − s
n
k2,t′s

=gNk1
[ts,te]

(
sok1,ts , t

′
s, ts
)
− gNk1

[ts,te]

(
snk2,ts , t

′
s, ts
)

=γt
′
s−ts

(
sok1,ts − s

n
k2,ts

)
= −γt′s−ts

(
sok2,ts − s

n
k1,ts

)
=−

(
sok2,t′s − s

n
k1,t′s

)
> 0,

since sok1,ts − s
n
k2,ts

> 0. On the other hand, we have that

sok2,t′s − s
n
k2,t′s

=gNk2
[ts,te]

(
sok2,ts , t

′
s, ts
)
− gNk1

[ts,te]

(
snk2,ts , t

′
s, ts
)

=γt
′
s−ts

(
sok2,ts − s

n
k2,ts

)
+

l∑
i=1

γt
′
s−Nk2,i

[ts,te] − γt′s−Nk1,i
[ts,te]

=γt
′
s−ts

(
snk1,ts − s

o
k1,ts

)
+

l∑
i=1

γt
′
s−Nk2,i

[ts,te] − γt′s−Nk1,i
[ts,te]

=snk1,t′s − s
o
k1,t′s

> 0,

where the last inequality is true because when Case II new policy construction is applied, we

have Nk1,i[ts, te] < Nk2,i[ts, te].

C.2.3 Proof of Proposition 4.1

Proof. If T ≤ K , a Max K-Cut of KT is ∀k ∈ [T ], Pk = {k}, which is the same as an optimal

solution to (4.4). Let 1{·} denote the indicator function. When T > K , the integer program
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in (4.4) is equivalent to

max
uk,t∈{0,1}:

∀t∈[T ],
∑

k uk,t=1

K∑
k=1

buk,1 +
K∑
k=1

T∑
t=2

(
buk,t − λ

t−1∑
i=1

γt−iuk,iuk,t

)

= max
P1,...,PK⊆[T ]:
∪kPk=[T ],

∀k ̸=k′,Pk∩Pk′=∅

K∑
k=1

b1{1 ∈ Pk}+
K∑
k=1

T∑
t=2

(
b1{t ∈ Pk} − λ

t−1∑
i=1

γt−i1{i ∈ Pk}1{t ∈ Pk}

)

= max
P1,...,PK⊆[T ]:
∪kPk=[T ],

∀k ̸=k′,Pk∩Pk′=∅

Tb−
K∑
k=1

∑
t,i∈Pk:
i<t

λγt−i

=Tb−
T∑
t=2

t−1∑
i=1

λγt−i + max
P1,...,PK⊆[T ]:
∪kPk=[T ],

∀k ̸=k′,Pk∩Pk′=∅

K−1∑
k=1

K∑
k′=k+1

∑
t∈Pk,
i∈Pk′ :
i<t

λγt−i,

where the second equality uses the fact

∑K
k=1 1{t ∈ Pk} = 1 for all t ∈ [T ] and the third

equality is true because for any P1, . . . PK such that ∀k ̸= k′, Pk ∩Pk′ = ∅ and ∪kPk = [T ], we

have

Total Edge Weights of KT =
T∑
t=2

t−1∑
i=1

e(t, i) =
∑

t,i∈[T ]:i<t,
∃k∈[K],i,t∈Pk

e(t, i) +
∑

t,i∈[T ]:i<t,
∀k∈[K],i,t/∈Pk

e(t, i).

C.2.4 Proof of Theorem 4.2

Proof. Given π∗
1:T and πw1:T , define a set of new policies {π̃i1:T}l−1

i=1 such that for all i, π̃i1:T =
(πw1:iw, π

∗
iw+1:T ). Based on this, we have the following decomposition

GT (π
∗
1:T )−GT (π

w
1:T ) = GT (π

∗
1:T )−GT (π̃

1
1:T )︸ ︷︷ ︸

A0

+

 l−2∑
i=1

GT (π̃
i
1:T )−GT (π̃

i+1
1:T )︸ ︷︷ ︸

Ai


+GT (π̃

l−1
1:T )−GT (π

w
1:T )︸ ︷︷ ︸

Al−1

.

To distinguish the past pull sequences of each arm under different policies, we use the

following notations: µk,t(uk,0:t−1; π
′) gives the expected reward of arm k at time t by following

pull sequence π′
1:t−1. By the definition of πw1:T , we have that

A0 =
w∑
t=1

µπ∗
t ,t
(uπ∗

t ,0:t−1; π
∗)− µπw

t ,t
(uπw

t ,0:t−1; π
w) +

T∑
t=w+1

µπ∗
t ,t
(uπ∗

t ,0:t−1; π
∗)− µπ∗

t ,t
(uπ∗

t ,0:t−1; π̃
1)
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≤
T∑

t=w+1

µπ∗
t ,t
(uπ∗

t ,0:t−1; π
∗)− µπ∗

t ,t
(uπ∗

t ,0:t−1; π̃
1),

where the inequality follows from the fact that πw1:w is optimal for (4.4) when T = w. Similarly,

we obtain that for all i ∈ [l − 2],

Ai =
iw∑
t=1

µπw
t ,t

(uπw
t ,0:t−1; π

w)− µπw
t ,t

(uπw
t ,0:t−1; π

w)︸ ︷︷ ︸
=0

+

(i+1)w∑
t=iw+1

µπ∗
t ,t
(uπ∗

t ,0:t−1; π̃
i)− µπw

t ,t
(uπw

t ,0:t−1; π
w)︸ ︷︷ ︸

≤0

+
T∑

t=(i+1)w+1

µπ∗
t ,t
(uπ∗

t ,0:t−1; π̃
i)− µπ∗

t ,t
(uπ∗

t ,0:t−1; π̃
i+1)

≤
T∑

t=(i+1)w+1

µπ∗
t ,t
(uπ∗

t ,0:t−1; π̃
i)− µπ∗

t ,t
(uπ∗

t ,0:t−1; π̃
i+1).

Finally, we have Al−1 =
∑T

t=(l−1)w+1 µπ∗
t ,t
(uπ∗

t ,0:t−1; π̃
l−1) − µπw

t ,t
(uπw

t ,0:t−1; π
w) ≤ 0. To com-

plete the proof, it suffices to use the fact that for all i ∈ {1, . . . , l − 1},

max
π′
1:T ,π1:T :

π′
iw+1:T=πiw+1:T

T∑
t=iw+1

µπt,t(uπt,0:t−1; π)− µπt,t(uπt,0:t−1; π
′) ≤

T−iw−1∑
t=0

λγt
γ

1− γ
≤ λγ(1− γT−iw)

(1− γ)2

≤ λγ(1− γT−w)
(1− γ)2

,

where the first inequality holds because for any arm, the maximum satiation level discrepancy

under two pull sequences (after iw time steps) is γ/(1− γ) and from time iw+1 till time T , the

objective will be maximized when the arm with the maximum satiation discrepancy is played

all the time.
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C.3 MoreDiscussion on LearningwithUnknownDynamics

As we have noted in Section 4.5, when the learner makes a decision on which arm to pull, the

learner does not observe the hidden satiation level the user has for the arms. The POMDP the

learner faces can be cast as a fully observable MDP (Appendix C.3.1) where the estimated reward

model (Appendix C.3.2) can be used for planning (Appendix C.3.3). In addition to policies that

are time-dependent (actions taken by time-dependent policies only depend on the time steps

at which they are taken) considered in Section 4.6, we also consider state-dependent policies

where the states are continuous.

C.3.1 MDP Setup

We begin with describing the full MDP setup of rebounding bandits, including the state repre-

sentation and reward function defined in Section 4.5.1. Following (Ortner et al., 2012), at any

time t ∈ [T ], we define our state vector to be xt = (x1,t, n1,t, x2,t, n2,t, . . . , xK,t, nK,t), where

nk,t ∈ N is the number of steps since arm k is last selected and xk,t is the satiation influenceas

of the most recent pull of arm k. Since the most recent pull happens at t − nk,t, we have

xk,t = bk − µk,t−nk,t
= λksk,t−nk,t

. We note that bk can be obtained when arm k is pulled for the

first time since the satiation effect is 0 if an arm has not been pulled before. The initial state is

xinit = (0, . . . , 0). Transitions between two states xt and xt+1 are defined as follows: If arm k is

chosen at time t, i.e., πt = k, and reward µk,t is obtained, then the next state xt+1 will be:

A.1 For the pulled arm k, nk,t+1 = 1 and xk,t+1 = bk − µk,t.
A.2 For other arms k′ ̸= k, nk′,t+1 = nk′,t + 1 if nk′,t ̸= 0 and nk′,t+1 = 0 if nk′,t = 0. The

satiation influence remains the same, i.e., xk′,t+1 = xk′,t.

For all xt ∈ X and k ∈ [K], we have that E[xk,t] ≤ λγ/(1− γ) and Var[xk,t] ≤ λ
2
σ2
z/(1− γ2).

Hence, for any δ ∈ (0, 1), P (maxk,t |xk,t| ≥ B(δ)) ≤ δ, where

B(δ) :=
λγ

1− γ
+ λσz

√
2 log(2KT/δ)

1− γ2
. (C.1)

The MDP the learner faces can be described as a tupleM := ⟨xinit, [K], {γk, λk, bk}Kk=1, T ⟩ of

the initial state xinit, actions (arms) [K], the horizon T and parameters {γk, λk, bk}Kk=1. Let ∆(·)
denote the probability simplex. Given {γk, λk, bk}Kk=1, the expected reward r : X × [K] → R
and transition functions p : X × [K]× [T ]→ ∆(X ) are defined as follows:

1. r : X × [K] → R gives the expected reward of pulling arm k conditioned on xt, i.e.,

r(xt, k) = E[µk,t|xt].1 If nk,t = 0, then r(xt, k) = bk. If nk,t ≥ 1, r(xt, k) = bk −
γ
nk,t

k xk,t − λkγ
nk,t

k .

2. When pulling arm k at time t and state xt, p (xt+1|xt, k, t) = 0 if xt+1 does not satisfy A.1

or A.2. When xt+1 fulfills both A.1 and A.2, we consider two cases of xt. If nk,t ̸= 0,

1
By conditioning on xt, we mean conditioning on the σ-algebra generated by past actions and observed rewards.
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then the transition function p (xt+1|xt, k, t) is given by the Gaussian density with mean

γ
nk,t

k (xk,t + λk) and variance λ2kσ
2
z

∑nk,t−1
i=0 γ2ik , as illustrated in (C.2). If nk,t = 0, then

p(xt+1|xt, k, t) = 1 since for the first pull of arm k, the obtained reward µk,t = bk.

At time t, the learner follows an action πt : X → [K] that depends on the state. We use

V π
t,M : X → R to denote the value function of policy π1:T at time t under MDPM: V π

t,M(xt) =
r(xt, πt(xt)) + Ext+1∼p(·|xt,πt(xt),t)[V

π
t+1,M(xt+1)] and V π

T+1,M(x) = 0 for all x ∈ X . To restate

our goal (4.2) in terms of the value function: for an MDPM, we would like to find a policy π1:T
that maximizes

V π
1,M(xinit) = E

[
T∑
t=1

r(xt, πt(xt))

∣∣∣∣∣x1 = xinit

]
.

To simplify the notation, we use π to refer to a policy π1:T . Given an MDPM, we denote its

optimal policy by π∗
M and the value function for the optimal policy by V ∗

t,M, i.e., V ∗
t,M(x) :=

V
π∗
M

t,M (x).

C.3.2 Exploration and Estimation of the Reward Model

As we have discussed in Section 4.6.1, based on our satiation and reward models, the satiation

influence xk,t of arm k forms a dynamical system where we only observe the value of the system

when arm k is pulled. When arm k is pulled at time t and nk,t ̸= 0, we observe the satiation

influence λksk,t which becomes the next state xk,t+1, i.e.,

xk,t+1 = λksk,t = λkγ
nk,t

k sk,t−nk,t
+ λkγ

nk,t

k + λk

nk,t−1∑
i=0

γikzk,t−1−i

= γ
nk,t

k xk,t+1−nk,t
+ λkγ

nk,t

k + λk

nk,t−1∑
i=0

γikzk,t−1−i. (C.2)

We note that the current state xk,t equals to xk,t+1−nk,t
since xk,t+1−nk,t

is the last observed

satiation influence for arm k and nk,t is the number of steps since arm k is last pulled.

Exploration Settings Depending on the nature of the recommendation domain, we consider

two types of exploration settings: one where the users only interact with the recommendation

systems for a short time after they log in to the service (Appendix C.3.2) and the other where the

users tend to interact with the system for a much longer time, e.g., automated music playlisting

(Appendix C.3.2). In the first case, the learner collects multiple (n) short trajectories of user

utilities, while in the second case, similar to Section 4.6.2, the learner obtains a single trajectory

of user utilities that has length n. In both settings, we obtain that under some mild conditions,

the estimation errors of our estimators for γk and λk are O(1/
√
n).

Exploration Strategies Generalizing from the case where arms are pulled repeatedly, we

explore by pulling the same arm at a fixed interval m. In particular, when m = 1, the explo-

ration strategy is the same as repeatedly pulling the same arm for multiple times, which is the
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exploration strategy used in Section 4.6.1. When m = K , the exploration strategy is to pull the

arms in a cyclic order. We present the estimator for γk, λk using the dataset collected by this

exploration strategy in both the multiple trajectory and single trajectory settings.

Estimation using Multiple Trajectories

For each arm k ∈ [K], we use Dn,mk to denote a dataset containing n trajectories of evenly

spaced observed satiation influences that are collected by our exploration phase. The time

interval between two pulls of an arm is denoted by m. Each trajectory is of length at least

Tmin + 1 for Tmin > 1. For trajectory i ∈ [n], the observed satiation influences are denoted

by x̃
(i)
k,1, . . . , x̃

(i)
k,Tmin+1, . . ., where x̃

(i)
k,1 = 0 is the initial satiation influence and the rest of the

satiation influences x̃
(i)
k,j (j > 1) is the difference between the first received reward, i.e., the base

reward bk, and the reward from the j-th pull of arm k. In other words, for x̃
(i)
k,j, x̃

(i)
k,j+1 ∈ D

n,m
k , it

follows that

x̃
(i)
k,j+1 = akx̃

(i)
k,j + dk + z̃

(i)
k,j, (C.3)

where ak = γmk , dk = λkγ
m
k and z̃

(i)
k,j are the independent samples from N

(
0, σ2

z,k

)
with

σ2
z,k = λ2kσ

2
z(1− γ2mk )/(1− γ2k).

To estimate dk, we use the estimator d̂k =
1
n

∑n
i=1 x̃

(i)
k,2 = dk +

1
n

∑n
i=1 z̃

(i)
k,1. By the standard

Gaussian tail bound, we obtain that for δ ∈ (0, 1), with probability 1− δ,

|d̂k − dk| ≤

√
2σ2

z,k log(2/δ)

n
=: ϵd(n, δ, k). (C.4)

When estimating ak, we first take the difference between the first Tmin + 1 entries of two

trajectories i and 2i for i ∈ ⌊n/2⌋ and obtain a new trajectory ỹ
(i)
k,1, . . . , ỹ

(i)
k,Tmin+1 where ỹ

(i)
k,j =

x̃
(i)
k,j − x̃

(2i)
k,j for j ∈ [Tmin + 1]. We note that the new trajectory forms a linear dynamical system

without the bias term dk, i.e.,

ỹ
(i)
k,j+1 = akỹ

(i)
k,j + w̃

(i)
k,j,

where w̃
(i)
k,j are samples fromN (0, 2σ2

z,k). We use the ordinary least squares estimator to estimate

ak:

âk = argmin
a

⌊n/2⌋∑
i=1

(
ỹ
(i)
k,Tmin+1 − aỹ

(i)
k,Tmin

)2
=

∑⌊n/2⌋
i=1 ỹ

(i)
k,Tmin

ỹ
(i)
k,Tmin+1∑⌊n/2⌋

i=1

(
ỹ
(i)
k,Tmin

)2 . (C.5)
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Theorem C.1

(Matni and Tu, 2019, Theorem II.4) Fix δ ∈ (0, 1). Given n ≥ 64 log(2/δ), with probability

1− δ, we have that

|âk − ak| ≤ 4

√
2 log(4/δ)

n
∑Tmin

t=0 a
2t
k

=: ϵa(n, δ, k). (C.6)

We notice that as the minimum length of the trajectory gets greater, the upper bound of the

estimation error of ak gets smaller. Using our estimators for ak and dk, we estimate γk and λk
through γ̂k = |âk|1/m and λ̂k = |d̂k/âk|.
Corollary C.1. Fix δ ∈ (0, 1). Suppose that for all k ∈ [K], we are given Dn,mk where n ≥
64 log(2/δ) and âk > 0 where âk is defined in (C.5). Then, with probability 1− δ, we have that for
all k ∈ [K],

|γ̂k − γk| ≤
ϵa(n, δ/K, k)

γm−1
k

= O

(
1√
n

)
and |λ̂k − λk| ≤ O

(
1√
n

)
.

The proof of Corollary C.1 can be found in Appendix C.6.1. In the case where we have

collected n trajectories of evenly spaced user utilities for each arm, when the sample size n is

sufficient large, the estimation errors of γ̂k and λ̂k are O(1/
√
n).

Estimation using a Single Trajectory

In the case where the learner gets to interact with the user for a long period of time (which is the

setting considered in Section 4.5 and Section 4.6), we collect a single trajectory of evenly spaced

arm pulls for each arm: for each arm k ∈ [K], we use Pn,mk to denote a dataset containing a

single trajectory of n + 1 observed satiation influences x̃k,1, . . . , x̃k,n+1, where similar to the

multiple trajectories case, x̃k,1 = 0, x̃k,j (j > 1) is the difference between the first received

reward and the j-th received reward and the time interval between two consecutive pulls is m.

Thus, for x̃k,j, x̃k,j+1 ∈ Pn,mk , it follows that

x̃k,j+1 = akx̃k,j + dk + z̃k,j, (C.7)

where ak, dk and z̃k,j are defined the same as the ones in (C.3). For all k ∈ [K], given Pn,mk , we

use the following estimators to estimate Ak = (ak, dk)
⊤

,

Âk =

(
âk
d̂k

)
= (Xk

⊤
Xk)

−1Xk
⊤
Yk, (C.8)

where Yk ∈ Rn is an n-dimensional vector whose j-th entry is x̃k,j+1 and Xk ∈ Rn×2
has its

j-th row to be the vector xk,j = (x̃k,j, 1)
⊤

. Finally, we take γ̂k = |âk|1/m and λ̂k = |d̂k/âk|. We

note that Âk = argminAk∈R2 ∥Yk −XkAk∥22, i.e., it is the ordinary least squares estimator for

Ak given the dataset that treats x̃k,j+1 to be the response of the covariates xk,j .
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As we have noted earlier (Section 4.6.2), unlike the multiple trajectories setting, in the single

trajectory case, the difficulty in analyzing the ordinary least squares estimator (C.8) comes from

the fact that the samples are not independent. Asymptotic guarantees of the ordinary least

squares estimators in this case have been studied previously in control theory and time series

community (Hamilton, 1994; Ljung, 1999). The recent work on system identifications for linear

dynamical systems focuses on studying the sample complexity of the problem (Simchowitz et al.,

2018; Sarkar and Rakhlin, 2019). Adapting the proof of (Simchowitz et al., 2018, Theorem 2.4),

we derive the following theorem for identifying our affine dynamical system (C.7).

Theorem C.2

Fix δ ∈ (0, 1). For all k ∈ [K], there exists a constant n0(δ, k) such that if the dataset Pn,mk

satisfies n ≥ n0(δ, k), then

P
(
∥Âk − Ak∥2 ≳

√
1/(ψn)

)
≤ δ,

where ψ =

√
min

{
σ2
z,k(1−ak)2

16d2k(1−a
2
k)+(1−ak)2σ2

z,k
,

σ2
z,k

4(1−a2k)

}
.

As shown in Theorem C.2, when dk = λkγ
m
k gets larger, the rates of convergence for Âk gets

slower. Given that we have a single trajectory of sufficient length, |âk − ak| ≤ O(1/
√
n) and

|d̂k − dk| ≤ O(1/
√
n). Similar to the multiple trajectories case, as shown in Corollary C.2, the

estimators of γk and λk also achieve O(1/
√
n) estimation error.

Corollary C.2. Fix δ ∈ (0, 1). Suppose that for all k ∈ [K], we have P(∥Âk−Ak∥2 ≳ 1/
√
n) ≤ δ

and âk > 0 where Âk and âk are defined in (C.8). Then, with probability 1− δ, we have that for all
k ∈ [K],

|γ̂k − γk| ≤ O

(
1√
n

)
and |λ̂k − λk| ≤ O

(
1√
n

)
.

In the next section, we assume that the satiation and reward models are estimated using the

dataset collected by the proposed exploration strategies and estimators for multiple trajectories

or a single trajectory of user utilities. We will show that performing planning based on these

estimated models will give us policies that perform well for the true MDP.

C.3.3 Planning

For a continuous-state MDP, planning can be done through either dynamic programming with a

discretized state space or approximate dynamic programming that uses function approximations.

In Appendix C.3.3, we consider the case where we are given a continuous-state MDP planning

oracle and provide guarantees of the optimal state-dependent policy planned under the estimated

satiation dynamics and reward model. Within the state-dependent policies, we also consider a

set of policies that only depend on time (Appendix C.3.3), i.e., the time-dependent competitor

class defined in Section 4.5.2. In addition to not requiring discretization of the state space to
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solve the planning problem, such policies can be deployed to settings where user utilities are

hard to attain after the exploration stage. We will show that using the dataset (collected by

our exploration strategy in Appendix C.3.2) with sufficient trajectories (or a sufficient long

trajectory) to estimate {γk, λk}Kk=1, the optimal policy π∗
M̂

for M̂ = ⟨x1, [K], {γ̂k, λ̂k, bk}Kk=1, T ⟩
also performs well in the original MDPM. We note that bk is known exactly since it is the same

as the first observed reward for arm k, as discussed in Appendix C.3.2.

Time-dependent Policy

We first show that finding the optimal time-dependent policy is equivalent to solving the bilinear

program (4.4).

Lemma C.2

Consider a policy π that depends only on the time step t but not the state xt, i.e., π satisfies

πt = πt(xt) = πt(x
′
t) for all t ∈ [T ] and xt, x

′
t ∈ X . Then, we have

V π
1,M(xinit) =

T∑
t=1

µπt,t(uπt,0:t−1),

where uπt,0:t−1 is the corresponding pull sequence of arm πt under policy π and µk,t is

defined in (4.3).

Remark C.1. We denote the policy obtained by solving (4.4) using model parameters inM by
πTM. Because solving (4.4) is equivalent to maximizing

∑T
t=1 µπt,t(uπt,0:t−1), Lemma C.2 suggests

that, for MDPM, the best policy π that depends only on the time step t but not the exact state xt
(which we refer as time-dependent policies), is πTM.

Proposition C.1

Fix δ ∈ (0, 1). Suppose that for all k ∈ [K], we are given Dn,mk such that n ≥ 64 log(2/δ)
and âk ∈ (a, a) for some 0 < a < a < 1 almost surely where âk is defined in (C.5). Consider

a policy π that depends on only the time step t but not the state xt. Then, with probability

1− δ, we have that

|V π
1,M(xinit)− V π

1,M̂(xinit)| ≤ O

(
T√
n

)
.

Remark C.2. Proposition C.1 applies to time-dependent policies. Such policies can be constructed
from an optimal solution to (4.4) or the w-lookahead policy (4.5). From these results, we deduce
that when the historical trajectory is of size n = O(T ), the

√
T -lookahead policy πw

M̂
obtained

from solving (4.5) with the parameters from the estimated MDP M̂ will be O(
√
T )-separated from

the optimal time-dependent policy πTM obtained by solving (4.4) with the true parameters ofM.
That is,

0 ≤ V
πT
M

1,M(xinit)− V
πw
M̂

1,M(xinit) = V
πT
M

1,M(xinit)− V
πT
M

1,M̂
(xinit) + V

πT
M

1,M̂
(xinit)− V

πT
M̂

1,M̂
(xinit)
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+ V
πT
M̂

1,M̂
(xinit)− V

πw
M̂

1,M̂
(xinit) + V

πw
M̂

1,M̂
(xinit)− V

πw
M̂

1,M(xinit)

≤ |V πT
M

1,M(xinit)− V
πT
M

1,M̂
(xinit)|+ |V

πT
M̂

1,M̂
(xinit)− V

πw
M̂

1,M̂
(xinit)|+ |V

πw
M̂

1,M̂
(xinit)− V

πw
M̂

1,M(xinit)|

≤ O(
√
T ),

where the second inequality follows from the fact that V πT
M

1,M̂
(xinit)− V

πT
M̂

1,M̂
(xinit) ≤ 0 (since for the

MDP M̂, πT
M̂

is the optimal time-dependent policy), and the third (last) inequality is derived by
applying Proposition C.1 twice and using Remark 4.4.

State-dependent Policy

In Proposition C.2, we show that the difference between the value of the optimal state-dependent

policy π∗
M, and the value of the optimal state-dependent policy π∗

M̂
planned under the estimated

M̂ is of order O(T 2/
√
n) where n is the number of historical trajectories if we use multiple

trajectories to estimate γk and λk.

Proposition C.2

Fix δ ∈ (0, 1). Suppose that for all k ∈ [K], we are given Dn,mk such that n ≥ 64 log(2/δ)
and âk ∈ (a, a) for some 0 < a < a < 1 almost surely where âk is defined in (C.5). Then,

with probability 1− δ,

|V ∗
1,M(xinit)− V

π∗
M̂

1,M(xinit)| ≤ O

(
T 2

√
n

)
.

Remark C.3. The assumptions in Proposition C.1 and C.2 correspond to the case where we use
multiple trajectories to estimate the satiation dynamics and reward model. They can be replaced by
conditions on single trajectory datasets when one uses a single trajectory to estimate the parameters.

In summary, as Proposition C.2 suggests, when given a continuous-state MDP planning

oracle, our algorithm obtain a policy π∗
M̂

that is O(T 2/
√
n) away from the optimal policy π∗

M
under the true MDPMwhere the size of the exploration stage for our algorithm (EEP) isO(Kn)
and the horizon of the exploitation/planning stage is T . We also note that the optimal state-

dependent policy π∗
M is the optimal competitor policy when the competitor class (Section 4.5.2)

contains all measurable functions from X to [K].
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C.4 Proofs of Section 4.6.2 and Appendix C.3.2

C.4.1 Proof of Theorem 4.3 andTheorem C.2

We notice that Theorem 4.3 is a consequence of Theorem C.2 when m = 1. More specifically, the

dataset Pnk and the parameter Ak = (γk, λkγk)
⊤

in Theorem 4.3 is a special case of the dataset

Pn,mk and parameter Ak = (γmk , λkγ
m
k )

⊤
considered in Theorem C.2 by taking m = 1. Thus,

below we directly present the proof of Theorem C.2 where we use the notation from Theorem C.2

(and Appendix C.3.2), i.e., ak = γmk and dk = λkγ
m
k .

We begin with presenting some key results from (Simchowitz et al., 2018); we utilize these

results in establishing the sample complexity of our estimator for identifying an affine dynamical

system in Appendix C.3.2.

Definition C.1

(Simchowitz et al., 2018, Definition 2.1) Let {ϕt}t≥1 be an {Ft}t≥1-adapted random process

taking values in R. We say (ϕt)t≥1 satisfies the (k, ν, p)-block martingale small-ball (BMSB)

condition if, for any j ≥ 0, one has
1
k

∑k
i=1 P(|ϕj+i| ≥ ν|Fj) ≥ p almost surely. Given a

process (Xt)t≥1 taking values in Rd, we say that it satisfies the (k,Γsb, p)-BMSB condition

for Γsb ≻ 0 if for any fixed w in the unit sphere of Rd, the process ϕt := ⟨w,Xt⟩ satisfies

(k,
√
w⊤Γsbw, p)-BMSB.

Proposition C.3

(Simchowitz et al., 2018, Proposition 2.5) Fix a unit vectorw ∈ Rd, define ϕt = w⊤Xt. If the

scalar process {ϕt}t≥1 satisfies the (l,
√
w⊤Γsbw, p)-BMSB condition for some Γsb ∈ Rd×d,

then

P

(
n∑
t=1

ϕ2
t ≤

w⊤Γsbwp
2

8
l⌊T/l⌋

)
≤ exp

(
−⌊T/l⌋p

2

8

)
.

Theorem C.3

(Simchowitz et al., 2018, Theorem 2.4) Fix δ ∈ (0, 1), T ∈ N and 0 ≺ Γsb ⪯ Γ. Then

if (Xt, Yt)t≥1 ∈ (Rd × Rn)n is a random sequence such that (a) Yt = AXt + ηt, where

Ft = σ(η1, . . . , ηt) and ηt|Ft−1 is σ2
-sub-Gaussian and mean zero, (b) X1, . . . , XT satisfies

the (l,Γsb, p)-BMSB condition, and (c) P(
∑n

t=1XtX
⊤
t ⪯̸ TΓ) ≥ δ. Then if

T ≥ 10l

p2
(
log (1/δ) + 2d log(10/p) + log det(ΓΓ−1

sb
)
)
,
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we have that for Â = argminA∈Rn×d

∑T
t=1 ∥Yt − AXt∥22,

P

∥Â− A∥op >
90σ

p

√
n+ d log(10/p) + log det

(
ΓΓ−1

sb

)
+ log(1/δ)

Tλmin(Γsb)

 ≤ 3δ.

We note that in the proof of Theorem C.3 in (Simchowitz et al., 2018), condition (b) is used

through applying Proposition C.3 to ensure that for any unit vector w ∈ Rd,

P

(
T∑
t=1

⟨w,Xt⟩2 ≤
(w⊤Γsbw)p

2

8
l⌊T/l⌋

)
≤ exp

(
−⌊T/l⌋p

2

8

)
. (C.9)

To apply Theorem C.3 in our setting to obtain Theorem C.2, we verify condition (a) and (c). For

condition (b), we show a result similar to (C.9). The below technical lemmas are used in our

proof of Theorem C.2.

Lemma C.3

Let a, b be scalars with b > 0. Suppose that X ∼ N(a, b). Then for any θ ∈ [0, 1],

P(|X| ≥
√
θ(a2 + b)) ≥ (1− θ)2

9
.

Proof. By the Paley-Zygmund inequality,

P(|X| ≥
√
θE[X2]) = P(X2 ≥ θE[X2]) ≥ (1− θ)2E[X2]2

E[X4]
.

Using the mean and variance of non-central chi-squared distributions, we obtain that

E[X2] = a2 + b,

E[X4] = a4 + 6a2b+ 3b2 = (a2 + 3b)2 − 6b2.

Plugging them back to the Paley-Zygmund inequality, we have that

P(|X| ≥
√
θ(a2 + b) ≥ (1− θ)2

9
,

where the last inequality uses the fact that E[X4] ≤ (a2 + 3b)2 ≤ 9(a2 + b)2 = 9E[X2]2.

Lemma C.4

Let {ϕt}t≥1 be a scalar process satisfying that

1

l

l∑
i=1

P(|ϕt+i| ≥ νt|Ft) ≥ p,
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for νt depending on Ft. If P(mint νt ≥ ν) ≥ 1− δ for ν > 0 that depends on δ, then

P

(
T∑
t=1

ϕ2
t ≤

ν2p2

8
l⌊T/l⌋

)
≤ exp

(
−3⌊T/l⌋p

4

)
+ δ.

Proof. We begin with partitioning Z1, . . . , ZT into S := ⌊T/l⌋ blocks of size l. Consider the

random variables

Bj = 1

(
l∑

i=1

ϕ2
jl+i ≥

ν2jlpk

2

)
, for 0 ≤ j ≤ S − 1.

We observe that

P

(
T∑
t=1

ϕ2
t ≤

ν2p2

8
l⌊T/l⌋

)
= P

({
T∑
t=1

ϕ2
t ≤

ν2p2

8
l⌊T/l⌋

}
∩ {min

t
νt ≥ ν}

)

+ P

({
T∑
t=1

ϕ2
t ≤

ν2p2

8
l⌊T/l⌋

}
∩ {min

t
νt < ν}

)

≤ P

({
T∑
t=1

ϕ2
t ≤

ν2⌊t/l⌋lp
2

8
lS

}
∩ {min

t
νt ≥ ν}

)
+ P(min

t
νt < ν)

≤ P

(
T∑
t=1

ϕ2
t ≤

ν2⌊t/l⌋lp
2

8
kS

)
+ δ.

Using Chernoff bound, we obtain that

P

(
T∑
t=1

ϕ2
t ≤

ν2⌊t/l⌋lp
2

8
kS

)
≤ P

(
S−1∑
j=0

l∑
i=1

ϕ2
jl+i ≤

ν2jlp
2

8
lS

)
= P

(
S−1∑
j=0

l∑
i=1

ϕ2
jl+i ≤

ν2jlp
2

8
lS

)

≤ P

(
S−1∑
j=0

Bj ≤
p

4
S

)
≤ inf

λ≤0
e−

pS
4 E[eλ

∑S−1
j=0 Bj ],

where the second to the last inequality uses the fact that

ν2jlpl

2
Bj ≤

∑l
i=1 ϕ

2
jl+i Further, we have

that

E[Bj|Fjl] = P

(
l∑

i=1

ϕ2
jl+i ≥

ν2jlpl

2

∣∣∣Fjl) ≥ P

(
1

l

l∑
i=1

1 {|ϕjl+i| ≥ νjl} ≥
p

2

∣∣∣Fjl)
≥ p

2
,

where the first inequality uses the fact that
1
ν2jl
ϕ2
jl+i ≥ 1{ϕjl+i| ≥ νjl} and the last inequality

uses the fact that for a random variable X supported on [0, 1] almost surely such that E[X] ≥ p
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for some p ∈ (0, 1), then for all t ∈ [0, p], P (X ≥ t) ≥ p−t
1−t . This is true because

P (X ≥ t) =

∫ 1

t

dP(x) ≥
∫ 1

t

xdP(x) =
∫ 1

0

xdP(x)−
∫ t

0

xdP(x) = p− t (1− P (X ≥ t)) .

In our case, E
[
1
l

∑l
i=1 1 {|ϕjl+i| ≥ νjl}

∣∣∣Fjl] = 1
l

∑l
i=1 P

(
|ϕjl+i| ≥ νjl

∣∣∣Fjl) ≥ p. Thus, we

obtain that for λ ≤ 0, i.e., eλ ≤ 1,

E[eλBj |Fjl] = eλP
(
Bj = 1

∣∣∣Fjl)+ P (Bj = 0) = (eλ − 1)E[Bj|Fjl] + 1 ≤ (eλ − 1)
p

2
+ 1.

By law of iterated expectation, we obtain that

E[eλ
∑S−1

j=0 Bj ] = E
[
eλ

∑S−2
j=0 BjE[eλBj |F(S−1)k]

]
≤
(
(eλ − 1)

p

2
+ 1
)

E
[
eλ

∑S−2
j=0 Bj

]
≤
(
(eλ − 1)

p

2
+ 1
)S

.

Finally, we need to find

inf
λ≤0

e−pS/4
(
(eλ − 1)

p

2
+ 1
)S

.

We can see that λ∗ = −∞, which gives that

inf
λ≤0

e−pS/4
(
(eλ − 1)

p

2
+ 1
)S

= e−pS/4
(
1− p

2

)S
≤ e−pS/4e−pS/2 = e−3pS/4,

where we have used the fact that 1 + x ≤ ex for all real-valued x.

To apply Theorem C.3, we first recall that the affine dynamical system we aim to identify is

as follows:

x̃k,j+1 = akx̃k,j + dk + z̃k,j,

where x̃k,1 = 0, ak ∈ (0, 1) and z̃k,j ∼ N (0, σ2
z,k). We define the following quantities

Γk,j := σ2
z,k

j−1∑
i=0

a2ik , dk,j :=

j−1∑
i=0

ajkdk,

and Γk,∞ = σ2
z,k

∑∞
i=0 a

2i
k =

σ2
z,k

1−a2k
. We notice that for all t ∈ [T ], j ≥ 1,

x̃k,t+j|x̃k,t ∼ N
(
ajkx̃k,t + dk,j,Γk,j

)
.
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Lemma C.5

Fix t ≥ 0 and j ≥ 1. Recall that xk,t := (x̃k,t, 1) ∈ R2
. Fix a unit vector w ∈ R2

. For any

ϵ ∈ (0, 1), we have

P

(
|⟨w, xk,t+j⟩| ≥

1√
2

√
min

{
1− ϵ,Γk,j −

(
1

ϵ
− 1

)
(ajkx̃k,t + dk,j)2

})
≥ 1

36

Proof. By Lemma C.3, we have that for any unit vector w ∈ R2
,

P

{
|⟨w, xk,t+j⟩| ≥

1√
2

√(
w1

(
ajkx̃k,t + dk,j

)
+ w2

)2
+ w2

1Γk,j

∣∣∣∣ xk,t} ≥ 1

36
.

For all ϵ ∈ (0, 1), we have

((w1(a
j
kx̃k,t + dk,j) + w2)

2 + w2
1Γk,j =

(
w1

(
ajkx̃k,t + dk,j

))2
+ w2

2 + 2w2w1

(
ajkx̃k,t + dk,j

)
+ w2

1Γk,j

≥ (1− ϵ)w2
2 −

(
1

ϵ
− 1

)(
w1

(
ajkx̃k,t + dk,j

))2
+ w2

1Γk,j

≥ min

{
1− ϵ,Γk,j −

(
1

ϵ
− 1

)
(ajkx̃k,t + dk,j)

2

}
.

Lemma C.6

Fix δ ∈ (0, 1). {xk,t}nt=1 satisfy that for any unit vector w ∈ R2
,

P

(
n∑
t=1

⟨w, xk,t⟩2 ≤
ψ2p2

16
j⋆⌊n/j⋆⌋

)
≤ exp

(
−3⌊n/j⋆⌋p

4

)
+ δ

with p = 1/72,

j⋆ :=

⌈
max

{
− logak

(
1 + (1− ak)

√
2Γk,∞ log(n/δ)

dk

)
,− logak

√
2

}⌉
,

ψ :=

√√√√√min

 Γk,∞
16d2k

(1−ak)2
+ Γk,∞

,
Γk,∞
4

.

Proof. Fix δ ∈ (0, 1). Recall that from Lemma C.4, we have shown that for all t ≥ 0 and k ≥ 1,
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given a unit vector w ∈ R2
, for any ϵ ∈ (0, 1), we have

P

{
|⟨w, xk,t+j⟩| ≥

1√
2

√
min

{
1− ϵ,Γk,j −

(
1

ϵ
− 1

)
(ajkx̃k,t + dk,j)2

}}
≥ 1

36
.

Denote qt,j = ajkx̃k,t + dk,j where x̃k,t ∼ N (dk,t,Γk,t). Fix δ ∈ (0, 1). Using the standard

Gaussian tail bound and the union bound, we have that with probability 1− δ,

max
t∈[T ]

qt,j ≤ ajk

(
dk

1− ak
+
√

2Γ∞ log(n/δ)

)
+

dk
1− ak

.

When j ≥ j⋆, Γk,j ≥ Γk,∞/2, and with probability 1− δ, maxt∈[T ] qt,j ≤ 2dk
1−ak

. Thus, for j ≥ j⋆,
and

ϵ =

4d2k
(1−ak)2

4d2k
(1−ak)2

+ Γ∞/4
,

we have

ν2t,j :=min

{
1− ε,Γk,j −

(
1

ε
− 1

)
q2t,j

}
≥min

{
1− ε,Γk,∞/2−

(
1

ε
− 1

)
4d2k

(1− ak)2

}

≥min

 Γk,∞
16d2k

(1−ak)2
+ Γk,∞

,
Γk,∞
4

 = ψ2.

Putting it altogether, we have

1

2j⋆

2j⋆∑
j=1

P
(
|⟨w, xk,t+j⟩| ≥ νt,j/

√
2|Ft

)
≥ 1

2j⋆

2j⋆∑
j=j⋆

P(|⟨w, xk,t+j⟩| ≥ νt,j⋆/
√
2|Ft) ≥

1

72
.

Further, we have

P

(
min
t∈[T ]

ν2t,j⋆ ≥ ψ2

)
≥ 1− δ.

Applying Lemma C.4, we have that for p = 1
72

,

P

(
n∑
t=1

⟨w, xk,t⟩2 ≤
ψ2p2

16
j⋆⌊n/j⋆⌋

)
≤ exp

(
−3⌊n/j⋆⌋p

4

)
+ δ.
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Proof of Theorem C.2. Based on our setup, condition (a) of Theorem C.3 is satisfied. For any n,

using Lemma C.6 with δ = exp(−n), we have that

∀w ∈ R2, P

(
n∑
t=1

⟨w, xk,t⟩2 ≤
ψ2p2

16
j⋆⌊n/j⋆⌋

)
≤ exp

(
−3⌊n/j⋆⌋p

4

)
+ δ ≤ 2 exp

(
−3⌊n/j⋆⌋p

4

)
,

with p = 1/72,

j⋆ :=

⌈
max

{
− logak

(
1 + (1− ak)

√
2Γk,∞(log(n) + n)

dk

)
,− logak

√
2

}⌉
,

ψ :=

√√√√√min

 Γk,∞
16d2k

(1−ak)2
+ Γk,∞

,
Γk,∞
4

.
Thus, we have provided a similar result to (C.9), which is what condition (b) of Theorem C.3 is

used for. In this case, we have Γsb = ψI where I is a 2 × 2 identity matrix. Finally, to verify

condition (c), we notice that we have

Γk,j := E[xk,jx
⊤
k,j] =

 b2k(1−a
j−1
k )2

(1−ak)2
+

σ2
z,k(1−a

2j−2
k )

1−a2k

(1−aj−1
k )bk

1−ak
(1−aj−1

k )bk
1−ak

1

 .

and we denote

Γ := Γk,n +

(
0 0
0 1

)
+ Γsb,

which gives that 0 ≺ Γsb ≺ Γ and for all j ≥ 1, 0 ⪯ Γk,j ≺ Γ. Then, we have that

P

(
X

⊤
kXk ⪯̸

2n

δ
Γ

)
= P

(
λmax

(
(nΓ)−1/2X

⊤
kXk(nΓ)

−1/2
)
≥ 2

δ

)
≤ δ

2
E
[
λmax

(
(nΓ)−1/2X

⊤
kXk(nΓ)

−1/2
)]

≤ δ

2
E
[
tr

(
(nΓ)−1/2X

⊤
kXk(nΓ)

−1/2
)]
≤ δ,

where the last inequality is true since E
[
X

⊤
kXk

]
=
∑n

j=1 Γk,j ⪯ nΓ (for all j ∈ [n], trace(Γ−
Γk,j) > 0 and det(Γ− Γk,j) > 0). Following Theorem C.3, for δ ∈ (0, 1), when the number of

samples satisfy that

n

j⋆
≥ 10

p2
(
log (1/δ) + 4 log(10/p) + log det(ΓΓ−1

sb
)
)
,

we have that

P

∥Âk − Ak∥2 > 90σz,k
p

√
1 + 2 log(10/p) + log det

(
ΓΓ−1

sb

)
+ log(1/δ)

nψ

 ≤ 3δ.
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C.4.2 Proof of Corollary 4.1 and Corollary C.2

Similar to Appendix C.4.1, Corollary 4.1 is a special case of Corollary C.2 when m = 1. Hence,

we directly present the proof of Corollary C.2 below.

Proof of Corollary C.2. Fix δ ∈ (0, 1). We have that with probability 1− δ, ϵ(n, δ, k) := ∥Âk −
Ak∥2 ≤ O(1/

√
n). With probability at least 1 − δ

K
, ϵak := |âk − ak| ≤ ∥Âk − Ak∥2 =

ϵ(n, δ/K, k) = O(1/
√
n) and ϵdk := |d̂k − bk| ≤ ∥Âk − Ak∥2 = ϵ(n, δ/K, k) = O(1/

√
n).

When m = 1, then |γ̂k − γk| = ||âk| − ak| ≤ |âk − ak| = ϵak ≤ ϵ(n, δ/K, k). When m ≥ 2,

since γk ̸= 0, we have that

|γ̂k − γk| =
∣∣∣∣ |âk| − ak
|âk|(m−1)/m + |âk|(m−2)/mγk + . . .+ γm−1

k

∣∣∣∣ ≤ |âk − ak|γm−1
k

.

On the other hand, we obtain that

|λ̂k − λk| =

∣∣∣∣∣
∣∣∣∣∣ d̂kâk
∣∣∣∣∣− dk

ak

∣∣∣∣∣ ≤
∣∣∣∣∣ d̂kâk − dk

âk
+
dk
âk
− dk
ak

∣∣∣∣∣ ≤ ϵdk
âk

+
λkϵak
âk
≤ O

(
1√
n

)
.

The proof completes as follows:

P
(
∀k ∈ [K], |γ̂k − γk| ≤ O(1/

√
n), |λ̂k − λk| ≤ O(1/

√
n)
)
≥

K∏
k=1

(
1− δ

K

)
≥ 1− δ,

where the last inequality follows from Bernoulli’s inequality.
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C.5 Additional Proofs and Discussion of Section 4.6

C.5.1 Proof of Theorem 4.4

Lemma C.7

Consider any episode i + 1 (from time ti + 1 to ti+1) where the initial state xi =
(µ1,ti+1(u1,0:ti), n1,ti+1, . . . , µK,ti+1(uK,0:ti), nK,ti) and {uk,0:ti}Kk=1 are the past pull se-

quences of the proposed policy π1:ti . For all π̃ti+1:ti+1
such that π̃t = π̃t(xt) = π̃t(x

′
t), π̃t ∈

[K],∀t ∈ [ti + 1, ti+1], xt, x
′
t ∈ X , we have that

ti+1∑
t=ti+1

Exti+2,...,xti

[
r(xt, π̃t(xt))|xti+1 = xi

]
=

ti+1∑
t=ti+1

µk,t(uk,0:t−1),

where {uk,ti+1:ti+1
}Kk=1 is the arm pull sequence of π̃ti+1:ti+1

.

Proof. Let k denote π̃t where t ∈ {ti + 1, . . . , ti+1}. Recall that we use uk,0:t−1 to denote the

pull sequence of arm k under policy π̃1:ti+1
= (π1:ti , π̃ti+1:ti+1

). If k has not been pulled before

time t by π̃1:ti+1
, then Exti+2,...,xti+1

[r(xt, π̃t)|xti+1 = xi] = bπt = µπt,t(uπt,0:t−1). If k has been

pulled before, then let q1, . . . , qn denote the time steps that arm k has been pulled before time

t by π̃1:ti+1
, i.e., uk,qi = 1 for i ∈ [n] and uk,t′ = 0 for t′ /∈ {q1, . . . , qn}. We have that for

t ∈ {ti + 1, . . . , ti+1},

Exti+2,...,xti+1

[
r(xt, π̃t)|xti+1 = xi

]
=bk −

(
Exti+2,...,xti+1−1

[
Exti+1

[
γ
nk,ti+1

k xk,ti+1
+ λkγ

nk,ti+1

k

]
|xti+1 = xi

])
=bk −

(
Exti+2,...,xqn

[
Exqn+1

[
γ
nk,ti+1

k xk,qn+1 + λkγ
nk,ti+1

k

]
|xti+1 = xi

])
=bk −

(
Exti+2,...,xqn

[
γ
nk,ti+1

k

(
γ
nk,qn

k xk,qn + λkγ
nk,qn

k

)
+ λkγ

nk,ti+1

k |xti+1 = xi
])

= . . . = bk − λk
(
γ
nk,ti+1

k + γ
nk,ti+1

+nk,qn

k + . . .+ γ
nk,ti+1+nk,qn+...nk,q1
k

)
=µk,t(uk,0:t−1),

where the second equality is true because when arm k is not pulled for example at time ti+1− 1,

the state for arm k at time ti+1− 1 will satisfy that xk,ti+1
= xk,ti+1−1 and nk,ti+1

= nk,ti+1−1 + 1
with probability 1. In this case, we have that

Exti+1

[
γ
nk,ti+1

k xk,ti+1
+ λkγ

nk,ti+1

k

∣∣xti+1−1

]
= γ

nk,ti+1−1+1

k xk,ti+1−1 + λkγ
nk,ti+1−1+1

k

= γ
nk,ti+1

k xk,ti+1−1 + λkγ
nk,ti+1

k .

The third equality is true since when arm k is pulled for example at time qn, then we have that

Eqn+1∼pM(·|xqn ,k,qn)

[
γ
nk,ti+1

k xk,qn+1 + λkγ
nk,ti+1

k

]
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=γ
nk,ti+1

k

(
γ
nk,qn

k xk,qn + λkγ
nk,qn

k

)
+ λkγ

nk,ti+1

k ,

where pM is given in Appendix C.3.1. The second to last last equality holds because xk,ti+1 =
µk,ti+1(uk,0:ti) where µk,t(·) is defined in (4.3).

Lemma C.8

For any episode i+1 (from time ti+1 to ti+1), given the past arm pull sequences {uk,0:ti}Kk=1

of the proposed policy π1:ti , the optimal time-dependent competitor policy π̃ti+1:ti+1
, where

π̃t = π̃t(xt) = π̃t(x
′
t), π̃t ∈ [K],∀t ∈ [ti + 1, ti+1], xt, x

′
t ∈ X , for this episode is given

by Lookahead({λk, γk, bk}Kk=1, {uk,0:ti}Kk=1, ti, ti+1) where {λk, γk, bk}Kk=1 are the true

reward parameters for the rebounding bandits instance.

Proof. By Lemma C.7, we have that the optimal time-dependent competitor policy π̃ti+1:ti+1

maximizes

∑ti+1

t=ti+1 µk,t(uk,0:t−1), by choosing uk,ti+1:ti+1
. Thus, by the definition of

Lookahead (4.5), given our proposed policy π1:ti , the optimal time-dependent competitor

policy is given by Lookahead({λk, γk, bk}Kk=1, {uk,0:ti}Kk=1, ti, ti+1).

Proof of Theorem 4.4. Using Lemma C.8, we have that given our policy π1:T and its correspond-

ing pull sequence uk,0:t−1 for k ∈ [K], t ∈ [T ], the optimal competitor policy for episode

i + 1 where i ∈ {0, . . . , ⌊T/w⌋} (episode i + 1 ranges from time ti + 1 = iw + 1 to

ti+1 = min{iw + w, T}) is given by Lookahead({λk, γk, bk}Kk=1, {uk,0:ti}Kk=1, ti, ti+1). We

use M({λk, γk, bk}Kk=1, {uk,0:ti}Kk=1, ti, ti+1) to denote the (optimal) objective value of (4.5) given

by Lookahead({λk, γk, bk}Kk=1, {uk,0:ti}Kk=1, ti, ti+1). Denote b = maxk bk and b = mink bk.

Exploration Stage Recall that in Algorithm 4.1, we have defined T̃ = T 2/3+w− (T 2/3
mod w)

which is a multiple of w. For the first T̃ time steps, as defined in Algorithm 4.1, our policy π1:T̃ is

a time-dependent policy, i.e., it satisfies that πt = πt(xt) = πt(x
′
t), πt ∈ [K],∀t ∈ [1, T̃ ], xt, x

′
t ∈

X . Using C.7, we obtain that the regret for the first T̃ /w episodes is given by

T̃ /w−1∑
i=0

max
π̃1:w∈Cw

E

[
w∑
j=1

r(xiw+j, π̃j(xiw+j))
∣∣∣xiw+1 = xi

]

−
T̃ /w−1∑
i=0

E
[
r(xiw+j, πiw+j(xiw+j))

∣∣∣xiw+1 = xi
]

≤
T̃ /w−1∑
i=0

M({λk, γk, bk}Kk=1, {uk,0:iw}Kk=1, iw, iw + w)− T̃
(
b− λγ

1− γ

)
≤T̃

(
b− b+ λγ

1− γ

)
≲ T̃ ≲ T 2/3.

since T̃ ≤ T 2/3 + w and by assumption, w ≤ T 2/3
.
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Estimation Stage By Theorem 4.3 and Corollary 4.1, we have that for any δ ∈ (0, 1) and

n ≥ n0(δ, k) where n0(δ, k) depends on δ logarithmically, with probability 1− δ, for all k ∈ [K]

|γ̂k − γk| ≤
Cγk

log(1/δ)√
n

and |λ̂k − λk| ≤
Cλk

log(1/δ)
√
n

when γ̂k > 0.

We define two numbers T ′
0 := minT{T : (

∑K
k=1 n0(k, T

−1/3))3/2 = C1K(log T )3/2 < T}

and T ′′
0 := minT

{
T : maxk γk +

Cγk√
T 2/3/K

< 1

}
. These two numbers exist as T can be chosen

to be arbitrarily large. Take T0 = max{T ′
0, T

′′
0 }. Then for all T ≥ T0, with probability 1 − δ

where δ = T−1/3
, we have that ∀k ∈ [K], |γ̂k − γk| ≤ ϵγ = O(

√
KT−1/3 log T ), |λ̂k − λk| ≤

ϵλ = O(
√
KT−1/3 log T ) and

(
ϵλ

∣∣∣ γ̂k
1−γ̂k

∣∣∣+ ϵγ

∣∣∣ λ
(1−γ̂k)(1−γk)

∣∣∣) ≤ O(
√
KT−1/3 log T ) since γ̂k ≤

γk +
Cγk√
T

2/3
0 /K

< 1 and γk ≤ γ < 1.

For any pull sequence uk,0:t−1, using our obtained estimated parameters {γ̂k, λ̂k, b̂k}Kk=1, we

define the estimated reward function: for t ≥ 2, µ̂k,t(uk,0:t−1) = bk − λ̂k
(∑t−1

i=1 γ̂
t−i
k uk,i

)
, and

for t = 1, µ̂k,1(uk,0:1) = bk = µk,1(uk,0:1), where we note that b̂k = bk since it is the reward of

the first pull of arm k. Given t ≥ 2, we have that

|µk,t(uk,0:t−1)− µ̂k,t(uk,0:t−1)|

=

∣∣∣∣∣λ̂k
(

t−1∑
i=1

γ̂t−ik uk,i

)
− λk

(
t−1∑
i=1

γt−ik uk,i

)∣∣∣∣∣
=

∣∣∣∣∣λ̂k
(

t−1∑
i=1

γ̂t−ik uk,i

)
− λk

(
t−1∑
i=1

γ̂t−ik uk,i

)
+ λk

(
t−1∑
i=1

γ̂t−ik uk,i

)
− λk

(
t−1∑
i=1

γt−ik uk,i

)∣∣∣∣∣
≤|λ̂k − λk|

∣∣∣∣ γ̂k
1− γ̂k

∣∣∣∣+ λ

∣∣∣∣ γ̂k
1− γ̂k

− γk
1− γk

∣∣∣∣
≤ϵλ

∣∣∣∣ γ̂k
1− γ̂k

∣∣∣∣+ ϵγ

∣∣∣∣ λ

(1− γ̂k)(1− γk)

∣∣∣∣ . (C.10)

Planning Stage Given our policy π1:T (along with its pull sequence {uk,0:T}Kk=1), starting from

time T̃ + 1, for any episode i + 1 ≥ T̃ /w, we denote the optimal competitor policy to be

π∗
ti+1:ti+1

= Lookahead({λk, γk, bk}Kk=1, {uk,0:ti−1
}Kk=1, ti, ti+1) where ti = iw and ti+1 =

min{iw + w, T}. The cumulative expected reward collected by π∗
ti+1:ti+1

and πti+1:ti+1
has the

difference

M({λk, γk, bk}Kk=1, {uk,0:ti−1
}Kk=1, ti, ti+1)−M({λ̂k, γ̂k, bk}Kk=1, {uk,0:ti−1

}Kk=1, ti, ti+1)

=

ti+1∑
t=ti+1

µπ∗
t ,t
(u∗π∗

t ,0:t−1)−
ti+1∑

t=ti+1

µπt,t(uπt,0:t−1)

=

ti+1∑
t=ti+1

µπ∗
t ,t
(u∗π∗

t ,0:t−1)−
ti+1∑

t=ti+1

µ̂π∗
t ,t
(u∗π∗

t ,0:t−1)

+

ti+1∑
t=ti+1

µ̂π∗
t ,t
(u∗π∗

t ,0:t−1)−
ti+1∑

t=ti+1

µ̂πt,t(uπt,0:t−1)
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+

ti+1∑
t=ti+1

µ̂πt,t(uπt,0:t−1)−
ti+1∑

t=ti+1

µπt,t(uπt,0:t−1)

≤
ti+1∑

t=ti+1

µπ∗
t ,t
(u∗π∗

t ,0:t−1)−
ti+1∑

t=ti+1

µ̂π∗
t ,t
(u∗π∗

t ,0:t−1)

+

ti+1∑
t=ti+1

µ̂πt,t(uπt,0:t−1)−
ti+1∑

t=ti+1

µπt,t(uπt,0:t−1).

where u∗π∗
t ,0:t−1 is the corresponding pull sequence of arm π∗

t under pol-

icy π∗
1:t = (π1:ti , π

∗
ti+1:t), and the last inequality holds because πti+1:ti+1

=

Lookahead({λ̂k, γ̂k, b̂k}Kk=1, {uk,0:ti}Kk=1, ti, ti+1) is the optimal solution under the esti-

mated parameters {λ̂k, γ̂k, b̂k}Kk=1 and π’s previous past pull sequence {uk,0:ti}Kk=1. Further,

using (C.10) and the fact that ti − ti−1 ≤ w, we obtain that

ti+1∑
t=ti+1

µπ∗
t ,t
(u∗π∗

t ,0:t−1)−
ti+1∑

t=ti+1

µ̂π∗
t ,t
(u∗π∗

t ,0:t−1)

+

ti+1∑
t=ti+1

µ̂πt,t(uπt,0:t−1)−
ti+1∑

t=ti+1

µπt,t(uπt,0:t−1)

≤2wmax
k

(
ϵλ

∣∣∣∣ γ̂k
1− γ̂k

∣∣∣∣+ ϵγ

∣∣∣∣ λ

(1− γ̂k)(1− γk)

∣∣∣∣) .
Finally, putting it altogether, we have obtained that for all T ≥ T0,

Reg
w(T ) =

∑⌈T/w⌉−1
i=0 maxπ̃1:w∈Cw E

[∑min{w,T−iw}
j=1 r(xiw+j, π̃j(xiw+j))

∣∣∣xiw+1 = xi
]

− E
[∑min{w,T−iw}

j=1 r(xiw+j, πiw+j(xiw+j))
∣∣∣xiw+1 = xi

]
≤O(T 2/3) + (1− T−1/3)

⌈T/w⌉−1∑
i=T/w

2wO(
√
KT−1/3 log T )

+ T−1/3

(
T

(
b− b+ λγ

1− γ

))
≤O(T 2/3) + (T − T 2/3)O(

√
KT−1/3 log T ) +O(T 2/3)

≤O(
√
KT 2/3 log T ),

which we notice that with probability δ = T−1/3
, the cumulative expected reward from time T̃

to T between the optimal competitor policy and our policy π is at most T
(
b− b+ λγ

1−γ

)
. This

completes the proof.

C.5.2 Exploration Strategies

In the exploration phase of Algorithm 4.1 (from time 1 to T̃ ), in addition to playing each arm

repeatedly for T̃ /K times, in general, we could explore by playing each arm at a fixed interval,
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i.e., the time interval between two consecutive pulls of arm k should be a constant mk. For

example, this includes playing the arms cyclically with the cylce being 1, 2, . . . , K or playing

the first two arms in an alternating fashion from time 1 to 2T̃ /K , then the next two arms, etc.

As shown in Theorem C.2 and Corollary C.2, using the datasets (of size n) collected by these

exploration strategies, we can obtain estimators γ̂k and λ̂k with the estimation error being on

the order of O(1/
√
n). Using these results (in replacement of Theorem 4.3 and Corollary 4.1 in

the estimation stage of the proof of Theorem 4.4), we can obtain that there exists T0 such that

for all T ≥ T0, the regret upper bound of EEP under these exploration strategies are of order

O(
√
KT 2/3 log T ).
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C.6 Additional Proofs of Appendix C.3

C.6.1 Proof of Corollary C.1

Proof. Fix δ ∈ (0, 1). By Theorem C.1, for all k ∈ [K], with probability 1 − δ
2K

, we have the

following: When m = 1, then |γ̂k − γk| = ||âk| − ak| ≤ |âk − ak| ≤ ϵa(n,
δ
2K
, k). When m ≥ 2,

we have that

|γ̂k − γk| =
∣∣∣∣ |âk| − ak
|âk|(m−1)/m + |âk|(m−2)/mγk + . . .+ γm−1

k

∣∣∣∣ ≤ |âk − ak|γm−1
k

.

On the other hand, given that |âk − ak| ≤ ϵa(n,
δ
2K
, k), we have that with probability 1− δ

2K
,

|λ̂k − λk| =

∣∣∣∣∣
∣∣∣∣∣ d̂kâk
∣∣∣∣∣− dk

ak

∣∣∣∣∣ ≤
∣∣∣∣∣ d̂kâk − dk

âk
+
dk
âk
− dk
ak

∣∣∣∣∣ ≤ ϵd(n,
δ
2K
, k)

âk
+
λkϵa(n,

δ
2K
, k)

âk
≤ O

(
1√
n

)
.

The proof completes as follows:

P

(
∀k, |γ̂k − γk| ≤

|âk − ak|
γm−1
k

, |λ̂k − λk| ≤
ϵd(n,

δ
2K
, k)

âk
+
λkϵa(n,

δ
2K
, k)

âk

)
≥

K∏
k=1

(
1− δ

2K

)2

≥ 1− δ,

where the last inequality follows from Bernoulli’s inequality.

C.6.2 Proof of Lemma C.2

Proof. Let π1:T denote the sequence that policy π will take from time 1 to T . By the definition

of the value function, we have that

V π
1,M(xinit) = bπ1 +

T∑
t=2

Ex2,...,xt [r(xt, πt)] ,

where xt ∼ pM(·|xt−1, πt−1, t−1) is a state vector drawn from the transition distribution defined

in Section C.3.1. Let k denote πt and uk,0:t−1 denote the past pull sequence for arm k under

policy π. If k has not been pulled before time t, then Ex2,...,xt [r(xt, πt)] = bπt = µπt,t(uπt,0:t−1).
If k has been pulled before, then let t1, . . . , tn denote the time steps that arm k has been pulled

before time t. We have that

Ex2,...,xt [r(xt, k)] = bk −
(
Ex2,...,xt−1

[
Ext∼pM(·|xt−1,k,t−1)

[
γ
nk,t

k xk,t + λkγ
nk,t

k

]])
= bk −

(
Ex2,...,xtn

[
Extn+1∼pM(·|xtn ,k,tn)

[
γ
nk,t

k xk,tn+1 + λkγ
nk,t

k

]])
= bk −

(
Ex2,...,xtn

[
γ
nk,t

k

(
γ
nk,tn

k xk,tn + λkγ
nk,tn

k

)
+ λkγ

nk,t

k

])
= . . . = bk − λk

(
γ
nk,t

k + γ
nk,t+nk,tn

k + . . .+ γ
nk,t+nk,tn+...nk,t1
k

)
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= µk,t(uk,0:t−1),

where we note that the second equality is true because when arm k is not pulled

for example at time t − 1, the state for arm k at time t − 1 will satisfy that

xk,t = xk,t−1 and nk,t = nk,t−1 + 1 with probability 1. In this case, we have that

Ext∼pM(·|xt−1,k,t−1)

[
γ
nk,t

k xk,t + λkγ
nk,t

k

]
= γ

nk,t−1+1

k xk,t−1 + λkγ
nk,t−1+1

k = γ
nk,t

k xk,t−1 + λkγ
nk,t

k .

The third equality is true since when arm k is pulled for example at time t− 1, then we have that

Ext∼pM(·|xt−1,k,t−1)

[
γ
nk,t

k xk,t + λkγ
nk,t

k

]
= γ

nk,t

k

(
γ
nk,t−1

k xk,t−1 + λkγ
nk,t−1

k

)
+ λkγ

nk,t

k . The proof

completes by summing over Ex2,...,xt [r(xt, πt)] for all t ≥ 2.

C.6.3 Proof of Proposition C.1

Proof. Fix δ ∈ (0, 1). Let E1 be the event that

∀k ∈ [K], |γ̂k − γk| = ϵγk ≤ O

(
1√
n

)
, |λ̂k − λk| = ϵλk ≤ O

(
1/
√
n
)
.

From Corollary C.1, we have that P(E1) ≥ 1− δ. Let π1:T denote the sequence that policy π
will take from time 1 to T . From Lemma C.2, we have that

|V π
1,M(xinit)− V π

1,M̂(xinit)| =

∣∣∣∣∣
T∑
t=1

µπt,t(uπt,0:t−1)− µ̂πt,t(uπt,0:t−1)

∣∣∣∣∣ ,
where uπt,0:t−1 is the past pull sequence for arm πt under policy π before time t and

µ̂k,t(uk,0:t−1) = bk − λ̂k
(∑t−1

i=1 γ̂
t−i
k uk,i

)
for t ≥ 2 and µ̂k,1(uk,0:1) = bk = µk,1(uk,0:1). Given

t ≥ 2, let k denote πt, we have that

|µk,t(uk,0:t−1)− µ̂k,t(uk,0:t−1)|

=

∣∣∣∣∣λ̂k
(

t−1∑
i=1

γ̂t−ik uk,i

)
− λk

(
t−1∑
i=1

γt−ik uk,i

)∣∣∣∣∣
=

∣∣∣∣∣λ̂k
(

t−1∑
i=1

γ̂t−ik uk,i

)
− λk

(
t−1∑
i=1

γ̂t−ik uk,i

)
+ λk

(
t−1∑
i=1

γ̂t−ik uk,i

)
− λk

(
t−1∑
i=1

γt−ik uk,i

)∣∣∣∣∣
≤|λ̂k − λk|

∣∣∣∣ γ̂k
1− γ̂k

∣∣∣∣+ λ

∣∣∣∣ γ̂k
1− γ̂k

− γk
1− γk

∣∣∣∣
≤ γ̂kϵλk
1− γ̂k

+
λϵγk

(1− γ̂k)(1− γk)

Since γ̂k < 1 (âk ∈ (a, a)) almost surely and with probability 1 − δ, for all k ∈ [K], ϵγk ≤
O (1/

√
n) and ϵλk ≤ O (1/

√
n). We have that with probability 1− δ,∣∣∣∣∣

T∑
t=1

µπt,t(uπt,0:t−1)− µ̂πt,t(uπt,0:t−1)

∣∣∣∣∣ ≤
T∑
t=1

|µπt,t(uπt,0:t−1)− µ̂πt,t(uπt,0:t−1)| ≤
(
T√
n

)
.
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C.6.4 Proof of Proposition C.2

Proof. Fix δ ∈ (0, 1). Let E1 be the event that

∀k ∈ [K], |γ̂k − γk| = ϵγk ≤ O

(
1√
n

)
, |λ̂k − λk| = ϵλk ≤ O

(
1/
√
n
)
.

From Corollary C.2, we have that P(E1) ≥ 1− δ/2. Let ϵλ := maxk ϵλk . Let E2 denote the event

that ∀t ∈ [T ], k ∈ [K], |xk,t| ≤ B(δ/2) (C.1). We know that P(E2) ≥ 1 − δ/2. When E1 and

E2 happen, we first observe that for all positive integer n and k ∈ [K],

|γ̂nk − γnk | ≤ |γ̂k − γk|
(
nmax(γn−1

k , γ̂n−1
k )

)
≤ |γ̂k − γk|

max(γk, γ̂k) ln (1/max(γk, γ̂k))
= O(1/

√
n),

whereand the second inequality uses the assumption that âk, γk are bounded away from 0 and 1.

To continue, we first bound the distance between the transition function in M̂ andM. At

any any time t and state xt = (x1,t, n1,t, . . . , xK,t, nK,t), when we pull arm πt = k, the next state

xt+1 is updated by: (i) for arm k, nk,t+1 = 1 and (ii) for all other arms k′ ̸= k, nk,t+1 = nk,t + 1
if nk ̸= 0, nk,t+1 = 0 if nk,t = 0, and xk′,t+1 = xk′,t. Then, by (Devroye et al., 2018, Theorem 1.3),

we have that when nπt,t ̸= 0,

∥pM̂ (xt+1|xt, πt, t)− pM (xt+1|xt, πt, t) ∥1
(∗)
≤ 3|λ̂2k

∑nk,t−1
i=0 γ̂2ik − λ2k

∑nk,t−1
i=0 γ2ik |

λ2k
∑nk−1

i=0 γ2ik
+
|γnk,t

k xk,t + λkγ
nk,t

k − γ̂nk,t

k xk,t − λ̂kγ̂
nk,t

k |

λk

√∑nk,t−1
i=0 γ2ik

=
3|λ̂2k

(∑nk,t−1
i=0 γ̂2ik −

∑nk,t−1
i=0 γ2ik

)
+ (λ̂2k − λ2k)

∑nk,t−1
i=0 γ2ik |

λ2k
∑nk−1

i=0 γ2ik

+
|γ̂nk,t

k − γnk,t

k |B(δ/2) + |λkγ
nk,t

k − λ̂kγ̂
nk,t

k |

λk

√∑nk,t−1
i=0 γ2ik

(∗∗)
≤ 3

∣∣∣∣∣λ̂2k
(
nk,t−1∑
i=0

γ̂2ik −
nk,t−1∑
i=0

γ2ik

)
+ (λ̂2k − λ2k)

nk,t−1∑
i=0

γ2ik

∣∣∣∣∣+ |γ̂nk,t

k − γnk,t

k | (B(δ/2) + λk)

+ |λkγ̂
nk,t

k − λ̂kγ̂
nk,t

k |

≤3

(
(λk + ϵλ)

2

∣∣∣∣ 1

1− γ̂2k
− 1

1− γ2k

∣∣∣∣+ |λ̂k − λk|(2λk + ϵλ)

1− γ2k

)
+ |γ̂nk,t

k − γnk,t

k | (B(δ/2) + λk) + |λk − λ̂k|

=3

(
(λk + ϵλ)

2|γ̂2k − γ2k|
(1− γ̂2k) (1− γ2k)

+
|λ̂k − λk|(2λk + ϵλ)

1− γ2k

)
+ |γ̂nk,t

k − γnk,t

k | (B(δ/2) + λk) + |λk − λ̂k|

=: ϵP = O

(
1√
n

)
,
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where (∗) holds since pM (xt+1|xt, πt, t) is a Gaussian density with mean γ
nk,t

k xk,t+ λkγ
nk,t

k and

variance λ2k
∑nk−1

i=0 γ2ik and (∗∗) uses the fact that λ2k
∑nk−1

i=0 γ2ik ≥ λ2k ≥ 1. When nπt,t = 0 and

condition (i) and (ii) are fulfilled, we have that ∥pM̂ (xt+1|xt, πt, t)− pM (xt+1|xt, πt, t) ∥1 = 0.

Otherwise, that is, if condition (i) or (ii) is not satisfied, we also have that ∥pM̂ (xt+1|xt, πt, t)−
pM (xt+1|xt, πt, t) ∥1 = 0 since pM̂ (xt+1|xt, πt, t) = pM (xt+1|xt, πt, t) = 0. Next, we examine

the difference of the expected reward obtained by pulling arm k at state xt at time t in MDPM
and M̂; when nk,t ̸= 0, this is given by

|r̂(xt, k)]− r(xt, k)]| = |γ
nk,t

k xk,t + λkγ
nk,t

k − γ̂nk,t

k xk,t − λ̂kγ̂
nk,t

k |
≤ |xk,t| · |γnk,t − γ̂nk,t|+ |λkγ

nk,t

k − λkγ̂
nk,t

k + λkγ̂
nk,t

k − λ̂kγ̂
nk,t

k |

≤ (B(δ/2) + λk) |γ̂
nk,t

k − γnk,t

k |+ |λ̂k − λk| =: ϵR = O

(
1√
n

)
,

where r̂(xt, k) is the expected reward of pulling arm k at state xt in MDP M̂. Putting it altogether,

we have that for any deterministic policy π,

V π
1,M(xinit)− V π

1,M̂(xinit) = r(xinit, π1(xinit))− r̂(xinit, π1(xinit)) + Ex2∼pM(·|x1,π,1)[V
π
2,M(x2)]

− Ex2∼pM̂(·|x1,π,1)[V
π
2,M̂(x2)]

≤ ϵR + Ex2∼pM(·|x1,π,1)[V
π
2,M(x2)]− Ex2∼pM̂(·|x1,π,1)[V

π
2,M(x2)]

+ Ex2∼pM̂(·|x1,π,1)[V
π
2,M(x2)]− Ex2∼pM̂(·|x1,π,1)[V

π
2,M̂(x2)]

≤ TϵR +
T∑
t=1

EM̂,π

{
Ext+1∼pM(·|xt,π,t)[V

π
t+1,M(xt+1)]

− Ext+1∼pM̂(·|xt,π,t)[V
π
t+1,M(xt+1)]

}
≤ TϵR + T 2ϵP max

k
bk,

where pM(·|xt, π, t) denotes p(·|xt, πt(xt), t) in MDPM and the last inequality uses the fact

that ⟨pM(·|xt, π, t)− pM̂(·|xt, π, t), V π
t+1,M⟩ ≤ ∥pM(·|xt, π, t)− pM̂(·|xt, π, t)∥1∥V π

t+1,M∥∞ ≤
ϵPT maxk bk. Finally, we have that

V ∗
1,M(xinit)− V

π∗
M̂

1,M(xinit) = V
π∗
M

1,M(xinit)− V
π∗
M

1,M̂
(xinit) + V

π∗
M

1,M̂
(xinit)− V

π∗
M̂

1,M̂
(xinit)

+ V
π∗
M̂

1,M̂
(xinit)− V

π∗
M̂

1,M(xinit) ≤ 2TϵR + 2T 2ϵP max
k
bk,

where the equation follows from the fact that V ∗
1,M(xinit) = V

π∗
M

1,M(xinit) and rearranging the

terms, and the inequality follows from applying the bound of V π
1,M(xinit)− V π

1,M̂
(xinit) ≤ TϵR +

T 2ϵP maxk bk that was derived above for π = π∗
M and π = π∗

M̂
and using the fact that the policy

π∗
M̂

is optimal for MDP M̂. Let E3 denote the event that V ∗
1,M(xinit)−V

π∗
M̂

1,M(xinit) ≤ O(T 2/
√
n).

Putting it altogether, we have that P(E3) ≥ P(E2, E1) = 1− P(Ec
2 ∪ Ec

1) ≥ 1− δ.
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Figure C.1: The expected cumulative reward collected byw-lookahead policies (blue dots) when T = 100.

When solving for the T -lookahead policy (solving (4.4) with T = 100), after 24 hours, Gurobi 9.1 obtains

an objective value of 491.3 (red solid line) with an upper bound 555.3 (red dotted line) and an absolute

optimality gap 64.0 (13.0%). The true expected cumulative reward for T -lookahead policy for this

problem lies in between the solid and dotted red lines.
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Figure C.2: Figure C.2a shows the log-log plot of the w-step lookahead regret of w-lookahead EEP

(averaged over 20 random runs) under different T when there are 5 arms. Figure C.2b shows the log-log

plot of the w-step lookahead regret of w-lookahead EEP (averaged over 20 random runs) under different

T when there are 10 arms.

C.7 Additional Experimental Details and Results

We present additional experimental details and results.

w-lookahead Performance When evaluating the performance of w-lookahead policies, in

addition to the case where T = 30 (Figure 4.3a), we have also run the experiments with

T = 100 (Figure C.1). When solving for the 100-lookahead policy, we have increased the

number of threads to 50 to solve for (4.4) and stopped the program at a time limit of 24 hours.

In such settings, we obtain an upper bound on the absolute optimality gap of 64.0 (percentage

optimality gap of 13.0%). When solved for w-lookahead policies with w in between 1 and 15
using 10 threads, Gurobi ends up solving (4.5) within 40s for all different w values. Thus, despite

using significantly lower computational time, w-lookahead policies achieve a similar expected
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cumulative reward to the T -lookahead policies (see Figures 4.3a and C.1).

EEP Performance Figure 4.3b is the log-log plot of thew-step lookahead regret ofw-lookahead

EEP against the horizon T when T = 60, 80, 100, 150, 200, 300, 400 (averaged over 20 random

runs) and Figure C.2a is the log-log plot when T = 60, 80, 100, 150, 200, 300, 400, 600, 800
(averaged over 20 random runs), under the experimental setup provided in Section 4.7.

Finally, we present the result when we include 5 additional arms to the existing problem.

The 5 new arms have parameters γ6 = .4, γ7 = .5, γ8 = .6, γ9 = .8, γ10 = .7, λ6 = 2, λ7 =
3, λ8 = 2, λ9 = 3, λ10 = 1, and b6 = 10, b7 = 5, b8 = 6, b9 = 7, b10 = 8. Figure C.2b is the

log-log plot of the w-step lookahead regret of w-lookahead EEP against the horizon T when

T = 200, 250, 300, 350, 450, 500 (averaged over 20 random runs).
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Appendix D
Departing Bandits: Additional Details

D.1 Extension: Planning Beyond Two User Types

In this section, we treat the planning task with two categories (K = 2) but potentially many

types (i.e., M ≥ 2). For convenience, we formalize the results in this section in terms of M = 2,

but the results are readily extendable for the more general 2×M case. We derive an almost-

optimal planning policy via dynamic programming, and then explain why it cannot be used for

learning as we did in the previous section.

For reasons that will become apparent later on, we define by V π
H as the return of a policy π

until the H’s iteration. Using Theorem 5.3, we have that

E[V π
H(b)] =

H∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y ,

where m1,i := |{aj = 1, j ≤ i}| and m2,i := |{aj = 2, j ≤ i}| are calculated based on the

belief-category walk b1, a1, b2, a2, . . . induced by π. Further, let π̃∗
denote the policy maximizing

VH .

Notice that there is a bijection from H−iterations policies to (m1,i,m2,i)
H
i=1; hence, we can

find π̃∗
by finding the arg max of the expression on the right-hand-side of the above equation,

in terms of (m1,i,m2,i)
H
i=1. Formally, we want to solve the integer linear programming (ILP),

maximize

H∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y

subject to ma,i =
i∑
l=1

za,l for a ∈ {1, 2}, i ∈ [H],

za,i ∈ {0, 1} for a ∈ {1, 2}, i ∈ [H],
z1,i + z2,i = 1 for i ∈ [H].

(D.1)

Despite that this problem involves integer programming, we can solve it using dynamic pro-

gramming in O (H2) runtime. Notice that the optimization is over a subset of binary variables
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(z1,i, z2,i)
H
i=1. Let ZH

be the set of feasible solutions of the ILP, and similarly let Zh
denote set of

prefixes of length h ≤ H of ZH
.

For any h ∈ [H] and z ∈ Zh
, define

Dh(z)
def
=

h∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y ,

where ma,i =
∑i

l=1 za,l for j ∈ {1, 2}, i ∈ [h] as in the ILP.

Consequently, solving the ILP is equivalent to maximizing DH
over the domain ZH

.

Next, for any h ∈ [H] and two integers c1, c2 such that c1 + c2 = h, define

D̃h(c1, c2)
def
= max

z∈Zh,
m1,h(z)=c1
m2,h(z)=c2

Dh(z). (D.2)

Under this construction, maxc1,c2 D̃
H(c1, c2) over c1, c2 such that c1 + c2 = H is precisely the

value of the ILP.

Reformulating Equation (D.2) for h > 1,

D̃h(c1,c2)= max
z1,z2∈{0,1}
z1+z2=1

{
D̃h−1(c1−z1,c2−z2)+α(c1,c2)

}
,

where α(m1,m2)
def
= b · xm1

1 · xm2
2 + (1 − b)ym1

1 · ym2
2 . For every h, there are only h + 1

possible values D̃h
can take: All the ways of dividing h into non-negative integers c1 and c2;

therefore, having computed D̃h−1
for all h feasible inputs, we can compute D̃h(c1, c2) in O(h).

Consequently, computing maxc1,c2 D̃
H(c1, c2), which is precisely the value of the ILP in (D.1),

takes O(H2) run-time. Moreover, the policy π̃∗
can be found using backtracking. We remark

that an argument similar to Lemma 5.4 implies that E[V π∗ − V π̃∗
] ≤ 1

2O(H) ; hence, π̃∗
is almost

optimal.

To finalize this section, we remark that this approach could also work for K > 2 categories.

Naively, for a finite horizon H , there are KH
possible policies. The dynamic programming

procedure explain above makes the search operate in run-time of O(HK). The run-time, expo-

nential in the number of categories but polynomial in the horizon, is feasible when the number

of categories is small.

D.2 Experimental Evaluation

For general real-world datasets, we propose a scheme to construct semi-synthetic problem

instances with many arms and many user types, using rating data sets with multiple ratings

per user. We exemplify our scheme on the MovieLens Dataset Harper and Konstan (2015). As

a pre-processing step, we set movie genres to be the categories of interest, select a subset of

categories |A| of size k (e.g., sci-fi, drama, and comedy), and select the number of user types, m.
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Remove any user who has not provided a rating for at least one movie from each category a ∈ A.

When running the algorithm, randomly draw users from the data, and given a recommended

category a, suggest them a random movie which they have rated, and set their click probability

to 1− r, where r ∈ [0, 1] is their normalized rating of the suggested movie.

D.3 UCB Policy for Sub-exponential Returns

An important tool for analyzing sub-exponential random variables is Bernstein’s Inequality,

which is a concentration inequality for sub-exponential random variables (see, e.g., Jia et al.

(2021)). Being a major component of the regret analysis for Algorithm 5.2, we state it here for

convenience.

Lemma D.1

(Bernstein’s Inequality) Let a random variable X be sub-exponential with parameters

(τ 2, b). Then for every v ≥ 0:

P[|X − E[X]| ≥ v] ≤

{
2 exp(− v2

2τ2
) v ≤ τ2

b

2 exp(− v
2b
) else

.

D.4 Single User Type: Proofs from Section 5.4

To simplify the proofs, we use the following notation: For a fixed-arm policy πa, we use V πa

j to

denote its return from iteration j until the user departs. Namely,

V πa

j =
Nπa∑
i=j

Pa

Throughout this section, we will use the following Observation.

Observation D.1. For every policy π and iteration j,

E[V π
j ] = Pπj(1 + E[V π

j+1]) + (1− Lπj)(1−Pπj)E[V
π
j+1] = E[V π

j+1](1− Lπj(1−Pπj)) +Pπj .

Lemma 5.1

A policy πa
∗

is optimal if

a∗ ∈ argmax
a∈[K]

Pa

La(1−Pa)
.

Proof. First, recall that every POMDP has an optimal Markovian policy which is deterministic

(we refer the reader to Section 5.5.1 for full formulation of the problem as POMDP). Having
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independent rewards and a single state implies that there exists µ∗ ∈ N such that E[V ∗
j ] = µ∗

for every j ∈ N (similarly to standard MAB problems, there exists a fixed-arm policy which is

optimal).

Assume by contradiction that the optimal policy πa
∗

holds

a∗ /∈ argmax
a∈[k]

Pa

La(1−Pa)
.

Now, notice that

E[V πa′

] = E[V πa′

1 ] = E[V πa′

2 ](1− La′(1−Pa′)) +Pa′

Solving the recurrence relation and summing the geometric series we get

E[V πa′

] = Pa′

∞∑
j=0

(1− La′(1−Pa′))
j =

Pa′

La′(1−Pa′)
.

Finally,

a∗ /∈ argmax
a∈[k]

Pa

La(1−Pa)
,

yields that any fixed-armed policy, πa
′

such that

a′ ∈ argmax
a∈[k]

Pa

La(1−Pa)

holds E[V πa′
] > E[V πa∗

], a contradiction to the optimality of πa
∗

.

Lemma D.2

For each a ∈ [k], the centered random return V πa − E[V πa
] is sub-exponential with

parameter C2 = −4/ ln(1− La(1−Pa)).

In order to show that returns of fixed-arm policies are sub-exponential random variables,

we first show that the number of iterations of users recommended by fixed-arm policies is also

a sub-exponential. For this purpose, we state here a lemma that implies that every geometric

r.v. is a sub-exponential r.v.. The proof of the next lemma appears, e.g., in Hillar and Wibisono

(2018) (Lemma 4.3).

Lemma D.3

Let X be a geometric random variable with parameter r ∈ (0, 1), so that:

P[X = x] = (1− r)x−1 r, x ∈ N.

Then X satisfies Property (2) from Definition 5.1. Namely, X is sub-exponential with
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parameter C2 = −2/ ln(1− r). Formally,

∀p ≥ 0 : (E[|X|p])1/p ≤ − 2

ln(1− r)
p.

The lemma above and Observation 5.1 allow us to deduce that the variables Na are sub-

exponential in the first part of the following Corollary (the case in which La = 0 follows

immediately from definition.). The second part of the lemma follows directly from the equiva-

lences between Properties (2) and (1) in Definition 5.1.

Corollary D.1. For each a ∈ [K], the number of iterations a user recommended by πa stays within
the system, Na, is sub-exponential with parameter Ca

2 = −2/ ln(1 − La(1 − Pa)). In addition,
there exist constants Ca

1 > 0 for every a ∈ [K] such that

∀a ∈ [K], v ≥ 0 : P[|Na| > v] ≤ exp(1− v

Ca
1

).

The next Proposition D.1 is used for the proof of Lemma D.2.

Proposition D.1

For every a ∈ [K],

|E[V πa

]| ≤ −2
ln(1− La(1−Pa))

Proof. First, notice that

(1− La(1−Pa)) ln(1− La(1−Pa)) > (1− La(1−Pa))
−La(1−Pa)

1− La(1−Pa)
= −La(1−Pa)

> −2La(1−Pa),

where the first inequality is due to
x

1+x
≤ ln(1 + x) for every x ≥ −1. Rearranging,

1− La(1−Pa)

La(1−Pa)
<

−2
ln(1− La(1−Pa))

. (D.3)

For each user, the realization of V πa
is less or equal to the realization of Na − 1 for the same

user (as users provide negative feedback in their last iteration); hence,

|E[V πa

]| = E[V πa

] ≤ E[Na]− 1 =
1

La(1−Pa)
− 1 =

1− La(1−Pa)

La(1−Pa)
<

−2
ln(1− La(1−Pa))

.
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We proceed by showing that returns of fix-armed policies satisfy Property (1) from Definition

5.1.

Lemma D.2

For each a ∈ [k], the centered random return V πa − E[V πa
] is sub-exponential with

parameter C2 = −4/ ln(1− La(1−Pa)).

Proof. We use Property (1) from Definition 5.1 to derive that V πa
is also sub-exponential. This

is true since the tails of V πa
satisfy that for all v ≥ 0,

P[|V πa| > v] ≤ P[|Na| > v + 1] ≤ P[|Na| > v] ≤(1) exp(1−
v

C1

),

where the first inequality follows since |Na| > v + 1 is a necessary condition for |V πa | > v, and

the last inequality follows from Corollary D.1. Along with Definition 5.1, we conclude that

E[|V πa|p]1/p ≤ −2/ ln(1− La(1−Pa))p. (D.4)

Now, applying Minkowski’s inequality and then Jensen’s inequality (as f(z) = zp, g(z) = |z|
are convex for every p ≥ 1) we get

(E[|V πa − E[V πa

]|p])1/p ≤ E[|V πa|p]1/p + E[E[|V πa|]p]1/p ≤ E[|V πa|p]1/p + |E[V πa

]|.

Using Proposition D.1 and Inequality (D.4), we get

E[|V πa|p]1/p + |E[V πa

]| ≤ −2
ln(1− La(1−Pa))

+
1

La(1−Pa)
− 1 ≤ −4

ln(1− La(1−Pa))

Hence V πa − E[V πa
] is sub-exponential with parameter C2 = −4/ ln(1− La(1−Pa)).

Lemma 5.2

For each category a ∈ [K], the centred random variable V πa − E[V πa
] is sub-exponential

with parameters (τ 2a , ba), such that

τa = ba = −
8e

ln(1− La(1−Pa))
.

Proof. Throughout this proof, we will use the sub-exponential norm, || · ||ψ1 , which is defined as

||Z||ψ1 = sup
p≥1

(E[|Z|p])1/p

p
.

Let

X =
V πa − E[V πa

]

||V πa − E[V πa ]||ψ1

, y = γ · ||V πa − E[V πa

]||ψ1 .
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We have that

||X||ψ1 = ||
V πa − E[V πa

]

||V πa − E[V πa ]||ψ1

||ψ1 = 1. (D.5)

Let γ be such that |γ| < 1/ba = − ln(1−La(1−Pa))
8e

. From Lemma D.2 we conclude that

|γ| =
∣∣ y

||V πa − E[V πa ]||ψ1

∣∣ ≤ − ln(1− La(1−Pa))

8e
=

1

2e
· 1

||V πa − E[V πa ]||ψ1

;

hence, |y| < 1
2e

.

Summing the geometric series, we get

∞∑
p=2

(e|y|)p = e2y2

1− e|y|
< 2e2y2 (D.6)

In addition, notice that yX = γ(V πa − E[V πa
]).

Next, from the Taylor series of exp(·) we have

E[exp(γ(V πa − E[V πa

]))] = E[exp(yX)] = 1 + yE[x] +
∞∑
p=2

ypE[Xp]

p!
.

Combining the fact that E[X] = 0 and (D.5) to the above,

1 + yE[x] +
∞∑
p=2

ypE[Xp]

p!
≤ 1 +

∞∑
p=2

yppp

p!
.

By applying p! ≥ (p
e
)p and (D.6), we get

1+
∞∑
p=2

yppp

p!
≤ 1+

∞∑
p=2

(e|y|)p ≤ 1+ 2e2y2 ≤ exp(2e2y2) = exp(2e2(γ · ||V πa − E[V πa

]||ψ1)
2),

where the last inequality is due to 1 + x ≤ ex.

Note that ||V πa − E[V πa
]||ψ1 ≤ − 4

ln(1−La(1−Pa))
)2). Ultimately,

E[exp(γ(V πa − E[V πa

]))] ≤ exp
(
2e2γ2(− 4

ln(1− La(1−Pa))
)2
)

= exp
(1
2
γ2(− 8e

ln(1− La(1−Pa))
)2
)
.

This concludes the proof of the lemma.
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D.5 Two User Types and Two Categories: Proofs from Sec-
tion 5.5

D.5.1 Planning when K = 2

Theorem 5.3

For every policy π and an initial belief b ∈ [0, 1], the expected return is given by

E[V π(b)] =
∞∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y ,

where m1,i := |{aj = 1, j ≤ i}| and m2,i := |{aj = 2, j ≤ i}| are calculated based on the

belief-category walk b1, a1, b2, a2, . . . induced by π.

Proof. Let βπi (b) := b ·P1,x
m1,i ·P2,x

m2,i +(1− b)P1,y
m1,i ·P2,y

m2,i
. We will prove that for every

policy π and every belief b, we have that E[V πa
H (b)] =

∑H
i=1 β

π
i (b) by a backward induction over

H .

For the base case, consider H = 1. We have that

E[V π
1 (b1)] = b1 ·Pa1,x+(1− b)Pa1,y = b ·P1,x

m1,1 ·P2,x
m2,1 +(1− b)P1,y

m1,1 ·P2,y
m2,1 = βπ1 (b)

as ma,1 = I[a1 = a].

For the inductive step, assume that E[V π
H−1(b)] =

∑H−1
i=1 βπi (b) for every b ∈ [0, 1]. We need

to show that E[V π
H(b)] =

∑H
i=1 β

π
i (b) for every b ∈ [0, 1].

Indeed,

E[V π
H(b1)] = βπ1 (b1)(1 + E[V π

H−1(b
′(b1, a1, liked))])

= βπ1 (b1)(1 + E[V π
H−1(b2)])

= βπ1 (b1)(1 +
H−1∑
i=2

βπi (b2))

=
H∑
i=1

βπi (b1),

where the second to last equality is due to the induction hypothesis and the assumption

that π is a deterministic stationary policy. The proof completes by realizing that E[V π(b)] =
limH→∞ E[V π

H(b)] = limH→∞
∑H

i=1 β
π
i (b) =

∑∞
i=1 β

π
i (b), since the sum is finite and has positive

summands.

D.5.2 Dominant Row (DR)
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Lemma 5.3

For any instance such that P has a dominant row a, the fixed policy πa is an optimal policy.

Proof. We will show that for every iteration j, no matter what were the previous topic recom-

mendations were, selecting topic 1 rather than topic 2 can only increase the value.

Let π be a stationary policy such that π(bj) = 2. Changing it into a policy πj that is equivalent

to π for all iterations but iteration j + 1 in which it recommends topic 1 can only improve the

value.

Since P1,x,P2,x,P1,y,P2,y ≥ 0, P1,x − P2,x ≥ 0, b, 1 − b ≥ 0 and this structure satisfies

P2,y −P1,y ≤ 0, we get that for every m̄1,j, m̄2,j, n1,j, n2,j ∈ N and for every b,

b ·Pm̄1,j+n1,j

1,x ·Pm̄2,j+n2,j

2,x (P1,x −P2,x) ≥ (1− b)Pm̄1,j+n1,j

1,y ·Pm̄2,j+n2,j

2,y (P2,y −P1,y);

thus,

b ·Pm̄1,j+1+n1,j

1,x ·Pm̄2,j+n2,j

2,x + (1− b)Pm̄1,j+1+n1,j

1,y ·Pm2,j+n2,j

2,y ≥

b ·Pm̄1,j+n1,j

1,x ·Pm̄2,j+1+n2,j

2,x + (1− b)Pm̄1,j+n1,j

1,y ·Pm̄2,j+1+n2,j

2,y .

Hence for every time step j+1, choosing topic 1 instead of topic 2 leads to increased value of each

of the summation element b·Pm1,i

1,x ·P
m2,i

2,x +(1−b)Pm1,i

1,y ·P
m2,i

2,y such thatm1,i = m̄1,j+n1,j ≥ m̄1,j

and m2,i = m̄2,j + n2,j ≥ m̄2,j . We deduce that

E[V πj

(b)] ≥ E[V π(b)].

D.5.3 Dominant Column (DC)

Before proving the main theorem (Theorem 5.4), we prove two auxiliary lemmas.

Lemma D.4

For P with a DC structure, if a policy π is optimal then it recommends topic 1 for all

iteration j′ ≥ j + 1 such that

∞∑
i=j+1

P
m1,i

1,x P
m2,i

2,x >

∞∑
i=j+1

1− b
b
· P2,y −P1,y

P1,x −P2,x

· P2,x

P2,y

P
m1,i

1,y P
m2,i

2,y . (D.7)

Proof. First, assume by contradiction that there exists an optimal policy π that recommends

topic 2 in iteration j + 1 such that (D.7) holds.

Let πj be the policy that is equivalent to π but recommend topic 1 instead of topic 2 in

iteration j + 1. Since π and πj recommends the same topic until iteration j, along with the

optimality of π, we have

E[V πj

(b)]− E[V π(b)] = E[V πj

j+1(b)]− E[V π
j+1(b)] ≤ 0.
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Expending the above equation,

∞∑
i=j+1

b·Pmπ
1,i+1

1,x ·Pmπ
2,i−1

2,x +(1−b)Pmπ
1,i+1

1,y ·Pmπ
2,i−1

2,y −
( ∞∑
i=j+1

b·Pmπ
1,i

1,x ·P
mπ

2,i

2,x +(1−b)Pmπ
1,i

1,y ·P
mπ

2,i

2,y

)
≤ 0

∞∑
i=j+1

b ·Pmπ
1,i

1,x ·P
mπ

2,i

2,x (
P1,x

P2,x

− 1) ≤
∞∑

i=j+1

(1− b)Pmπ
1,i

1,y ·P
mπ

2,i

2,y (1− P1,y

P2,y

)

b(P1,x −P2,x)

P2,x

∞∑
i=j+1

·Pmπ
1,i

1,x ·P
mπ

2,i

2,x ≤
(1− b)(P2,y −P1,y)

P2,y

∞∑
i=j+1

P
mπ

1,i

1,y ·P
mπ

2,i

2,y

∞∑
i=j+1

P
mπ

1,i

1,x ·P
mπ

2,i

2,x ≤
1− b
b
· P2,x

P2,y

· P2,y −P1,y

P1,x −P2,x

∞∑
i=j+1

P
mπ

1,i

1,y ·P
mπ

2,i

2,y ,

which is a contradiction to (D.7).

For the second part of the lemma, assume that condition (D.7) holds for some iteration

j+1 ∈ N and some optimal policy π; hence, π(b,mπ
1,j,m

π
2,j) = 1 and we havemπ

1,j+1 = mπ
1,j+1

and mπ
2,j+1 = mπ

2,j . Exploiting this fact, we have that

∞∑
i=j+2

P
mπ

1,i

1,x P
mπ

2,i

2,x =
∞∑

i=j+1

P
mπ

1,i+1

1,x P
mπ

2,i

2,x = P1,x

∞∑
i=j+1

P
mπ

1,i

1,x P
mπ

2,i

2,x > (D.7),

implying

P1,x

∞∑
i=j+1

1− b
b
· P2,y −P1,y

P1,x −P2,x

· P2,x

P2,y

P
mπ

1,i

1,y P
mπ

2,i

2,y

>(P1,x ≥ P1,y)P1,y

∞∑
i=j+1

1− b
b
· P2,y −P1,y

P1,x −P2,x

· P2,x

P2,y

P
mπ

1,i

1,y P
mπ

2,i

2,y

=
∞∑

i=j+1

1− b
b
· P2,y −P1,y

P1,x −P2,x

· P2,x

P2,y

P
mπ

1,i+1

1,y P
mπ

2,i

2,y

=
∞∑

i=j+2

1− b
b
· P2,y −P1,y

P1,x −P2,x

· P2,x

P2,y

P
mπ

1,i

1,y P
mπ

2,i

2,y .

An immediate consequence of Lemma D.4 is the following corollary.

Corollary D.2. For any DC-structured P and every belief b ∈ [0, 1], the optimal policy π first
recommends topic 2 for at most

argminN

N∑
i=1

P
mπ

2,i

2,x >
1− b
b
· P2,y −P1,y

P1,x −P2,x

· P2,x

P2,y

N∑
i=1

P
mπ

2,i

2,y

times, and then recommends topic 1 permanently. In addition, N ∈ N since P2,x > P2,y.
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Theorem 5.4

For any instance such that P has a dominant column, one of the following four policies is

optimal:

π1, π2, π2:⌊N∗⌋, π2:⌈N∗⌉,

where N∗ = N∗(P,q) is a constant, and π2:⌊N∗⌋
(π2:⌈N∗⌉

) stands for recommending Cate-

gory 2 until iteration ⌊N∗⌋ (⌈N∗⌉) and then switching to Category 1.

Proof. Due to Theorem 5.3 and Corollary D.2, we can write the expected value of a policy as a

function of N when P has a DC structure:

E[V πN (b)] =
∞∑
i=1

b ·Pm1,i

1,x ·P
m2,i

2,x + (1− b)Pm1,i

1,y ·P
m2,i

2,y

=
N∑
i=1

b ·Pi
2,x + (1− b)Pi

2,y +
∞∑

i=N+1

b ·PN
2,x ·Pi−N

1,x + (1− b)PN
2,y ·Pi−N

1,y

=b ·
P2,x(P

N
2,x − 1)

P2,x − 1
+ (1− b) ·

P2,y(P
N
2,y − 1)

P2,y − 1
+ b ·PN

2,x ·
∞∑
i=1

Pi
1,x + (1− b)PN

2,y ·
∞∑
i=1

Pi
1,y

=b ·
P2,x(P

N
2,x − 1)

P2,x − 1
+ (1− b) ·

P2,y(P
N
2,y − 1)

P2,y − 1
+ b ·PN

2,x ·
P1,x

1−P1,x

+ (1− b)PN
2,y

P1,y

1−P1,y

=PN
2,x · b

( P2,x

P2,x − 1
+

P1,x

1−P1,x

)
+PN

2,y(1− b)
( P2,y

P2,y − 1
+

P1,y

1−P1,y

)
+

bP2,x

1−P2,x

+
(1− b)P2,y

1−P2,y

.

(D.8)

Equation (D.8) could be cast as c1 ·PN
2,x + c2P

N
2,y + c3(P2,x,P2,y) for positive c1, negative

c2 and positive c3. Let f : R ← R be the continuous function such that f(N) = c1 · PN
2,x +

c2P
N
2,y + c3(P2,x,P2,y).

We take the derivative w.r.t. N to find the saddle point of f :

d

dN
f = c1 · lnP2,x ·PN

2,x + c2 lnP2,y ·PN
2,y = 0,

which suggests the saddle point of f is

Ñ =
ln
(
− c2 lnP2,y

c1 lnP2,x

)
ln
(P2,x

P2,y

) .

Next, set N∗ def
= max{0, Ñ}. Since f has a single saddle point and for every n ∈ N it holds

that f(N) = E[V πN (b)], to determine the optimal policy, one only needs to compare the value

E[V πN (b)] at the boundary points (N = 0, N = ∞) and at the closest integers to the saddle

point (N = ⌊N∗⌋ , N = ⌈N∗⌉).
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D.5.4 Dominant Diagonal (SD)

Theorem 5.5

For any instance such that P has a dominant diagonal, either π1
or π2

is optimal.

Proof. We prove the following claim by a backward induction over the number of iterations

remaining: For every k = H − 1, . . . 1 it holds that for every policy π and belief b,

E[V π
k (b)] ≤ max{E[V π1

k (b)],E[V π2

k (b)]}.

First, we notice that when k = H−1, the only possible policies are π1
and π2

. For k = H−2, we

prove the statement by contradiction. There are only two ways to selects topics when k = H−2:

π′
1:H = (π1:H−2, 1︸︷︷︸

H−1

, 2︸︷︷︸
H

) and π′′
1:H = (π1:H−2, 2︸︷︷︸

H−1

, 1︸︷︷︸
H

).

Let m1 and m2 denote the number of times π has played topic 1 and 2 till time H − 2, inclusive.

Assume that the policy π′
is optimal. In particular, it holds that E[V π1

k ] ≤ E[V π′

k ] and E[V π2
k ] ≤

E[V π′

k ]. We get

bPm1
1,xP

m2
2,xP1,x(P1,x −P2,x) ≤ Pm1

1,yP
m2
2,y (1− b)P1,y(P2,y −P1,y), (D.9)

and

Pm1
1,yP

m2
2,y (1− b)(P2,y −P1,y)(1 +P2,y) ≤ bPm1

1,xP
m2
2,x(P1,x −P2,x)(1 +P2,x). (D.10)

As both sides of (D.9) and (D.10) are positive, the multiplication of their left hand sides is smaller

than the multiplication of their right hand sides, i.e.,

bPm1
1,xP

m2
2,xP1,x(P1,x −P2,x)P

m1
1,yP

m2
2,y (1− b)(P2,y −P1,y)(1 +P2,y)

≤ Pm1
1,yP

m2
2,y (1− b)P1,y(P2,y −P1,y)bP

m1
1,xP

m2
2,x(P1,x −P2,x)(1 +P2,x)

Dividing both sides by bPm1
1,xP

m2
2,x(P1,x −P2,x)P

m1
1,yP

m2
2,y (1− b)(P2,y −P1,y) > 0, we obtain

P1,x(1 +P2,y) ≤ P1,y(1 +P2,x),

which is a contradiction as P1,x > P1,y and 1 +P2,y > 1 +P2,x.

Now, assume that the policy π′′
is optimal. In particular, it holds that E[V π1

k ] ≤ E[V π′′

k ] and

E[V π2

k ] ≤ E[V π′′

k ]. We get

Pm1
1,xP

m2
2,xb(P1,x −P2,x)(1 +P1,x) ≤ Pm1

1,yP
m2
2,y (1− b)(1 +P1,y)(P2,y −P1,y), (D.11)

and

Pm1
1,yP

m2
2,y (1− b)P2,y(P2,y −P1,y) ≤ Pm1

1,xP
m2
2,xbP2,x(P1,x −P2,x). (D.12)
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As both sides of (D.11) and (D.12) are positive, the multiplication of their left hand sides is smaller

than the multiplication of their right hand sides,

Pm1
1,xP

m2
2,xb(P1,x −P2,x)(1 +P1,x)P

m1
1,yP

m2
2,y (1− b)P2,y(P2,y −P1,y)

≤ Pm1
1,yP

m2
2,y (1− b)(1 +P1,y)(P2,y −P1,y)P

m1
1,xP

m2
2,xbP2,x(P1,x −P2,x).

Dividing both sides by Pm1
1,xP

m2
2,xb(P1,x −P2,x)P

m1
1,yP

m2
2,y (1− b)(P2,y −P1,y) > 0, we obtain

P2,y(1 +P1,x) ≤ P2,x(1 +P1,y),

which is again, a contradiction as P2,x < P2,y and 1 +P1,y < 1 +P1,x.

For H ≥ 3, we prove the statement by contradiction. Suppose not, i.e., the optimal policy π
switch recommended topic at least once. Let t denote the time step where π switch for the last

time. We first consider the case where π has switched from topic 2 to topic 1 at time t. More

specifically, we have

π1:H = (π1:t−2, 2︸︷︷︸
πt−1

, 1︸︷︷︸
πt

, 1, . . . , 1︸ ︷︷ ︸
πt+1:H−1

, 1︸︷︷︸
πH

).

Consider another policy π̃ (that behaves the same as π except at time step t− 1) defined as

π̃1:H = (π1:t−2, 2︸︷︷︸
πt−1

, 2︸︷︷︸
πt

, 1, . . . , 1︸ ︷︷ ︸
πt+1:H−1

, 1︸︷︷︸
πH

).

Let m1 and m2 denote the number of times π has recommended topic 1 and 2 till (and include)

time t − 1. Since π is optimal, we have the difference between the value of π and π̃ to be

non-negative, i.e.,

E[V π
H ]− E[V π̃

H ] =
H−t+1∑
i=1

bPm1+i−1
1,x Pm2+1

2,x (P1,x −P2,x) + (1− b)Pm1+i−1
1,y Pm2+1

2,y (P1,y −P2,y) ≥ 0,

(D.13)

where the difference is induced by the discrepancy of the two policies from time step t to H .

Consider another policy π′
(that behaves the same as π except at time step H) defined as

π′
1:H = (π1:t−2, 2︸︷︷︸

πt−1

, 1︸︷︷︸
πt

, 1, . . . , 1︸ ︷︷ ︸
πt+1:H−1

, 2︸︷︷︸
πH

).

Since π is optimal, we have the difference between the value of π and π′
to be non-negative, i.e.,

E[V π
H ] > E[V π′

H ]⇒ bPm1+H−t
1,x Pm2

2,x(P1,x −P2,x) > (1− b)Pm1+H−t
1,y Pm2

2,y (P2,y −P1,y),

where the difference is induced by the discrepancy of the two policies from time step H . Multi-

plying both sides by P1,y > 0, we get

P1,ybP
m1+H−t
1,x Pm2

2,x(P1,x −P2,x) > (1− b)Pm1+H−t+1
1,y Pm2

2,y (P2,y −P1,y).
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Using
P1,x

P1,y
> 1, and P1,ybP

m1+H−t
1,x Pm2

2,x(P1,x −P2,x) > 0,

bPm1+H−t+1
1,x Pm2

2,x(P1,x −P2,x) > (1− b)Pm1+H−t+1
1,y Pm2

2,y (P2,y −P1,y);

hence,

bPm1+H−t+1
1,x Pm2

2,x(P1,x −P2,x) + (1− b)Pm1+H−t+1
1,y Pm2

2,y (P1,y −P2,y) ≥ 0. (D.14)

Next, we construct a new policy πnew that outperforms π. We let πnew
to be the policy defined as

below

πnew

1:H = (π1:t−2, 1︸︷︷︸
πt−1

, 1︸︷︷︸
πt

, 1, . . . , 1︸ ︷︷ ︸
πt+1:H−1

, 1︸︷︷︸
πH

).

The value difference between πnew
and π (caused by the discrepancy of the two policies from

time t− 1 to H) is

E[V πnew

H ]− E[V π
H ] =

H−t+1∑
i=1

bPm1+i−1
1,x Pm2

2,x(P1,x −P2,x) + (1− b)Pm1+i−1
1,y Pm2

2,y (P1,y −P2,y)

+ bPm1+H−t+1
1,x Pm2

2,x(P1,x −P2,x) + (1− b)Pm1+H−t+1
1,y Pm2

2,y (P1,y −P2,y)

>
H−t+1∑
i=1

bPm1+i−1
1,x Pm2+1

2,x (P1,x −P2,x) + (1− b)Pm1+i−1
1,y Pm2+1

2,y (P1,y −P2,y)

≥ 0,

where the first inequality is true because P2,x < P2,y, P1,x − P2,x > 0 and P1,y − P2,y < 0,

therefore for every 1 ≤ i ≤ H − t+ 1

bPm1+i−1
1,x Pm2

2,x(P1,x −P2,x)(1−P2,x) > 0 > (1− b)Pm1+i−1
1,y Pm2

2,y (P2,y −P1,y)(P2,y − 1)

along with (D.14). The second inequality follows from (D.13). Thus, we have successfully find

another policy πnew

1:H that differs from π and achieves a higher value, which is a contradiction.

next, we consider the case where π has switched from topic 1 to topic 2 at time t, i.e.,

π1:H = (π1:t−2, 1︸︷︷︸
πt−1

, 2︸︷︷︸
πt

, 2, . . . , 2︸ ︷︷ ︸
πt+1:H−1

, 2︸︷︷︸
πH

).

Consider another policy π̃ (that behaves the same as π except at time step t) defined as

π̃1:H = (π1:t−2, 1︸︷︷︸
πt−1

, 1︸︷︷︸
πt

, 2, . . . , 2︸ ︷︷ ︸
πt+1:H−1

, 2︸︷︷︸
πH

).

Since π is optimal, we have the difference between the value of π and π̃ to be non-negative, i.e.,

E[V π
H ]− E[V π̃

H ] =
H−t+1∑
i=1

bPm1+1
1,x Pm2+i−1

2,x (P2,x −P1,x) + (1− b)Pm1+1
1,y Pm2+i−1

2,y (P2,y −P1,y)

(D.15)
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≥ 0, (D.16)

where the difference follows from the discrepancy between the two policies from time step t to

H .

Consider another policy π′
(that behaves the same as π except at time step H) defined as

π′
1:H = (π1:t−2, 1︸︷︷︸

πt−1

, 2︸︷︷︸
πt

, 2, . . . , 2︸ ︷︷ ︸
πt+1:H−1

, 1︸︷︷︸
πH

).

Since π is optimal, we have the difference between the value of π and π′
to be non-negative,

i.e.,

E[V π
H ] > E[V π′

H ]⇒ (1− b)Pm1
1,yP

m2+H−t
2,y (P2,y −P1,y) ≥ bPm1

1,xP
m2+H−t
2,x (P1,x −P2,x),

where the difference is induced by the discrepancy of the two policies from time step H . Multi-

plying both sides by P2,x > 0,

P2,x(1− b)Pm1
1,yP

m2+H−t
2,y (P2,y −P1,y) ≥ bPm1

1,xP
m2+H−t+1
2,x (P1,x −P2,x).

Using P2,x(1− b)Pm1
1,yP

m2+H−t
2,y (P2,y −P1,y) > 0 and

P2,y

P2,x
≥ 1, we get

(1− b)Pm1
1,yP

m2+H−t+1
2,y (P2,y −P1,y) ≥ bPm1

1,xP
m2+H−t+1
2,x (P1,x −P2,x);

hence,

bPm1
1,xP

m2+H−t+1
2,x (P2,x −P1,x) + (1− b)Pm1

1,yP
m2+H−t+1
2,y (P2,y −P1,y) ≥ 0. (D.17)

Again, we will construct a new policy πnew that outperforms π. We let πnew
to be the policy

defined as below

πnew

1:H = (π1:t−2, 2︸︷︷︸
πt−1

, 2︸︷︷︸
πt

, 2, . . . , 2︸ ︷︷ ︸
πt+1:H−1

, 1︸︷︷︸
πH

).

Now, the value difference between πnew
and π (caused by the discrepancy of the two policies

from time t− 1 to H) is

E[V πnew

H ]− E[V π
H ] =

H−t+1∑
i=1

(
bPm1

1,xP
m2+i−1
2,x (P2,x −P1,x) + (1− b)Pm1

1,yP
m2+i−1
2,y (P2,y −P1,y)

)
+ bPm1

1,xP
m2+H−t+1
2,x (P2,x −P1,x) + (1− b)Pm1

1,yP
m2+i−1
2,y (P2,y −P1,y)

>
H−t+1∑
i=1

bPm1+1
1,x Pm2+i−1

2,x (P2,x −P1,x) + (1− b)Pm1+1
1,y Pm2+i−1

2,y (P2,y −P1,y)

≥ 0,

where the first inequality is true because P1,y < P1,x, P2,x −P1,x < 0 and P2,y −P1,y > 0 and

(D.17), and the second from (D.15). Similarly, we have successfully find another policy πnew

1:H that

differs from π and achieves a higher value, which is a contradiction.

We have covered all cases, so the inductive argument holds. This concludes the proof of the

theorem.
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D.5.5 UCB-based regret bound

Lemma 5.5

Let τ̃ = 8e
ln( 1

1−ϵ
)

and η = 1. For every threshold policy π ∈ ΠH , the centred random variable

V π − E[V π] is (τ 2, b)-sub-exponential with (τ 2, b) satisfying τ̃ ≥ τ and η ≥ b2/τ 2.

Proof. Let γ be such that

|γ| < − ln(1− ϵ)
8e

≤ min
a∈{1,2},i∈{x,y}

{− ln(1− La,i(1−Pa,i))

8e
} = min

a∈{1,2},i∈{x,y}
{− ln(Pa,i)

8e
}.

Next, we have that

E[exp(γ(V π − E[V π]))]

≤
∑

a∈{1,2}

E[exp(γ(V πa − E[V πa ]))]
∣∣type(t) ∈ argmax

i∈[1,2]
Pa,i] · P[type(t) ∈ argmax

i∈[1,2]
Pa,i]

≤ max
a∈{1,2}

{E[exp(γ(V̄ πa − E[V̄ πa

]))]}

Where V̄ πa
is the return for the instance ⟨[1], [2],q, P̄, L̄⟩ such that for every a ∈ {1, 2}:

P̄a,1 = maxi∈{x,y}Pa,i and La,1 = 1.

Finally, from Lemma 5.2 we get

max
a∈{1,2}

{E[exp(γ(V̄ πa − E[V̄ πa

]))]}

≤ max
a∈{1,2}

exp((− 8e

ln(P̄a,1)
)2
γ2

2
)

= max
a∈{1,2},i∈{x,y}

exp((− 8e

ln(Pa,i)
)2
γ2

2
).

Choosing

τ = b = max
a∈{1,2},i∈{x,y}

− 8e

ln(Pa,i)

completes the proof as

max
a∈{1,2},i∈{x,y}

− 8e

ln(Pa,i)
≤ − 8e

ln(1− ϵ)
= τ̃ and

τ 2

b2
= 1 = η.
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Lemma 5.4

For every H ∈ N, it holds that

E

[
V π∗ − max

π∈ΠH

V π

]
≤ 1

2O(H)
.

Proof. Recall that V π =
∑Nπ

j=1 rj(πj), where we drop the dependence on the user index for

readability. Formulating differently, for any H ∈ N it holds that

V π =
H∑
j=1

1j≤Nπ · rj(πj) +
∞∑

j=H+1

1j≤Nπ · rj(πj).

Using the same representation for V π′
and taking expectation, we get that

E
[
V π − V π′

]
≤ E

[
H∑
j=1

1j≤Nπ · rj(πj)−
H∑
j=1

1j≤Nπ′ · rj(π′
j)

]
+ E

[
∞∑

j=H+1

1j≤Nπ · rj(πj)

]

≤ 0 + E

[
∞∑

j=H+1

1j≤Nπ · rj(πj)

]
=

∞∑
j=H+1

P (j ≤ Nπ) rj(πj)

≤
∞∑

j=H+1

(1− ϵ)j(1− ϵ) = (1− ϵ)H+2

∞∑
j=0

(1− ϵ)j

≤ (1− ϵ)H 1

ϵ
≤ e−ϵH

ϵ
=

1

2O(H)
.
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Appendix E
Risk-sensitive Supervised Learning:

Additional Details

E.1 Hölder Risk Functionals

In the definition of Hölder risk functionals, we require d to be a quasi-metric, which we provide

the definition here.

Definition E.1

A function d : L∞(R,B(R))× L∞(R,B(R))→ [0,+∞) is a quasi-metric if the following

two conditions hold:

• For all FU , FU ′ ∈ L∞(R,B(R)), d(FU , FU ′) = 0 if and only if FU = FU ′ ;

• For all FU , FU ′ , FZ′′ ∈ L∞(R,B(R)), d(FU , FZ′′) ≤ d(FU , FU ′) + d(FU ′ , FZ′′).

If a quasimetric is symmetic, i.e., for all FU , FU ′ ∈ L∞(R,B(R)), d(FU , FU ′) = d(FU ′ , FU), it is

also a metric. The set of quasi-metrics contains symmetric quasi-metics, e.g., sup norms L∞,

Wasserstein distance, along with non-symmetric quasi-metrics, e.g., Kullback-Leibler divergence.

We will now discuss why optimized certainty equivalent (OCE) risks (e.g., mean-variance,

entropic risk, CVaR) and spectral risks with bounded spectrum (e.g., CVaR, certain CPT-inspired

Risks) are Lipschitz on bounded random variables. OCE risks, first introduced by Ben-Tal and

Teboulle (1986), are defined as

ρoce(FU) := inf
λ∈R
{λ+ E[ϕ(U − λ)]} ,

where ϕ : R → R ∪ {+∞} is a nondecreasing, closed and convex function with ϕ(0) = 0
and 1 ∈ ∂ϕ(0). To complement the risk-averse OCEs, a risk-seeking version (inverted OCE) is

proposed:

ρoce(FU) := sup
λ∈R
{λ− E[ϕ(λ− U)]} .
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Proposition E.1

If ϕ is continuously differentiable, then the OCE risks ρoce and inverted OCE risks ρoce are

Lipschitz on the space of bounded random variables with support [0, D]:

|ρoce(FU)− ρoce(FU ′)| ≤ max
x∈[0,D]

(ϕ(D − x)− ϕ(−x))∥FU − FU ′∥∞,

|ρoce(FU)− ρoce(FU ′)| ≤ max
x∈[0,D]

(ϕ(x−D)− ϕ(x))∥FU − FU ′∥∞.

Remark E.1. Similar to Huang et al. (2021, Lemma 4.1), Proposition E.1 shows that the expected
value and CVaRα are D- and D

α
-Lipschtiz on random variables with support [0, D], respectively. In

addition, this result also provides Lipschitzness of the entropic risks (since the corresponding ϕ is
continuously differentiable (Lee et al., 2020, Table 1)) and other OCE and inverted OCE risks that do
not belong to distortion risk functionals.

Proof. When U has support [0, D], as shown in Lee et al. (2020, Lemma 9), we can re-write the

OCE and inverted OCE risks as follows:

ρoce(FU) = min
λ∈[0,D]

{λ+ E[ϕ(U − λ)]}

ρoce(FU) = max
λ∈[0,D]

{λ− E[ϕ(λ− U)]} .

For any U,U ′ ∈ [0, D], denote λU ∈ argminλ∈[0,D] λ + EU [ϕ(U − λ)] and λU ′ ∈
argminλ∈[0,D] λ+ EU ′ [ϕ(U ′ − λ)]. Consider the case where ρoce(FU) < ρoce(FU ′).

|ρoce(FU)− ρoce(FU ′)|
= ρoce(FU ′)− ρoce(FU)

= λU ′ + EU ′ [ϕ(U ′ − λU ′)]− λU − EU [ϕ(U − λU)]
(i)

≤λU + EU ′ [ϕ(U ′ − λU)]− λU − EU [ϕ(U − λU)]

=

∫ D

0

ϕ(u− λU)d (FU ′(u)− FU(u))

(ii)
= ϕ(u− λU) (FU ′(u)− FU(u))

∣∣∣u=D
u=0
−
∫ D

0

ϕ′(u− λU) (FU ′(u)− FU(u)) du

(iii)

≤ ∥FU − FU ′∥∞
∫ D

0

ϕ′(u− λU)du

= (ϕ(D − λU)− ϕ(−λU)) ∥FU − FU ′∥∞,

where (i) comes from the definition of λU ′ , (ii) uses integration by parts, and (iii) uses the fact

that ϕ is non-decreasing, i.e., ϕ′
is non-negative, andFU(0) = FU ′(0) = 0, FU(D) = FU ′(D) = 1.

The case when ρoce(FU ′) < ρoce(FU) proceeds similarly:

|ρoce(FU)− ρoce(FU ′)|
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= ρoce(FU)− ρoce(FU ′)

≤
∫ D

0

ϕ(u− λU ′)d (FU(u)− dFU ′(u))

= ϕ(u− λU ′) (FU(u)− FU ′(u))
∣∣∣u=D
u=0
−
∫ D

0

ϕ′(u− λU ′) (FU(u)− FU ′(u)) du

≤ (ϕ(D − λU ′)− ϕ(−λU ′)) ∥FU − FU ′∥∞.

Putting it together, we have that

|ρoce(FU)− ρoce(FU ′)| ≤ max
λ∈[0,D]

(ϕ(D − x)− ϕ(−x))∥FU − FU ′∥∞.

For inverted OCE risks, denote λU ∈ argmaxλ∈[0,D] λ + EU [ϕ(λ − U)] and λU ′ ∈
argmaxλ∈[0,D] λ + EU ′ [ϕ(λ − U)]. The proof proceeds similarly by using the fact that

ρoce(FU ′) − ρoce(FU) ≤ EU [ϕ(λU ′ − U)] − EU ′ [ϕ(λU ′ − U ′)] and ρoce(FU) − ρoce(F
′
U) ≤

EU ′ [ϕ(λU − U ′)]− EU [ϕ(λU − U)]. Following similar steps, we obtain that

|ρoce(FU)− ρoce(FU ′)| ≤ max
λ∈[0,D]

(ϕ(x−D)− ϕ(x))∥FU − FU ′∥∞.

Spectral risks (also known as L-risks or rank-weighted risks) are a subset of distortion risk

functionals. As noted in Bäuerle and Glauner (2021), a spectral risk can be written as a distortion

risk (Equation (6.4)) with the following distortion function: for t ∈ [0, 1],

g(t) =

∫ t

0

h(s)ds,

where h : [0, 1]→ R+ is the non-decreasing spectrum function that integrates to 1. Since g is

Lipschitz when h is bounded (i.e., g′(t) = h(t) for t ∈ (0, 1)), spectral risks are Lipschitz on the

space of bounded random variables when their spectrum is bounded.

Finally, examples of risk functionals that are Hölder but are not Lipschitz include distortion

risks whose distortion functions are Hölder but not Lipschitz.
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E.2 Proof of Results in Section 6.4

We note that in the following proofs, Z is used to denote a generic random variable and the loss

function is denoted by ℓ : X × Y × Y → R. (The loss function presented in the main text is a

special case of this.) For a given (X, Y, f(X)), the loss is denoted by ℓ(X, Y, f(X)).

E.2.1 Auxillary Lemmas

The below two auxillary lemmas are mainly adaptations to the class note from Professor Roberto

Imbuzeiro Oliveira (Oliveira and Yang, n.d.).

Lemma E.1

Let G(1) :=
{
g(· ; r) := 1{· ≤r} : ∀r ∈ R

}
. For a fixed f ∈ F, iid sample {Xi, Yi}ni=1 with

joint probability measure P, and a loss function ℓ : X × Y × Y → R, we have that

sup
g∈G(1)

∣∣∣∣∣
n∑
i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣ = max
j∈[n]

∣∣∣∣∣
j∑
i=1

ξi

∣∣∣∣∣ , (E.1)

and further

EP,R

[
exp

(
λ

n
sup
g∈G(1)

∣∣∣∣∣
n∑
i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣
)]

≤ 2ER

[
max
j∈[n]

(
exp

(
λ

n

j∑
i=1

ξi

)
1{

∑j
i=1 ξi≥0}

)]
. (E.2)

Remark E.2. We note that an important property of Lemma E.1 is that the bound is independent
of the samples {Xi, Yi}ni=1.

Proof. Let {Ri}ni=1 denote the sorted sequence of {ℓ(Xi, Yi, f(Xi))}ni=1, where R1 ≤ R2 . . . ≤
Rn. Using {Ri}ni=1, we have

EP,R

[
exp

(
λ

n
sup
g∈G(1)

∣∣∣∣∣
n∑
i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣
)]

= EP,R

[
exp

(
λ

n
sup
g∈G(1)

∣∣∣∣∣
n∑
i=1

ξig(Ri)

∣∣∣∣∣
)]

Consider a function g(t; r) = 1{t≤r}. For such a function,

∑n
i=1 ξig(Ri; r) is equal to

• 0 if r < mini∈[n]Ri,

•

∑j
i=1 ξi when Rj ≤ r < Rj+1 for some j ∈ {1, . . . , n− 1},

•

∑n
i=1 ξi otherwise.
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Therefore, we have that

sup
g∈G(1)

∣∣∣∣∣
n∑
i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣ = max
j∈[n]

∣∣∣∣∣
j∑
i=1

ξi

∣∣∣∣∣ .
Finally, we notice that

EP,R

[
sup
g∈G(1)

exp

(
λ

n

∣∣∣∣∣
n∑
i=1

ξig(Ri)

∣∣∣∣∣
)]

= EP,R

[
max
j∈[n]

exp

(
λ

n

∣∣∣∣∣
j∑
i=1

ξi

∣∣∣∣∣
)]

=EP,R

[
max
j∈[n]

(
exp

(
λ

n

j∑
i=1

ξi

)
1{

∑j
i=1 ξi≥0} + exp

(
−λ
n

∑
i = 1jξi

)
1{

∑j
i=1 ξi<0}

)]
=EP,R

[
max
j∈[n]

(
exp

(
λ

n

j∑
i=1

ξi

)
1{

∑j
i=1 ξi≥0}

)]
+ EP,R

[
max
j∈[n]

(
exp

(
−λ
n

j∑
i=1

ξi

)
1{

∑j
i=1 ξi<0}

)]

≤2EP,R

[
max
j∈[n]

(
exp

(
λ

n

j∑
i=1

ξi

)
1{

∑j
i=1 ξi≥0}

)]
. (E.3)

Lemma E.2

Let {Zi}ni=1 taking values inZ denote independent samples drawn from P andw : Z → R+.

For n independent Rademacher random variables {ξi}ni=1, we have that for all λ ≥ 0,

EP,R

[
exp

(
max
j∈[n]

λ

n

j∑
i=1

w(Zi)ξi

)]
≤ 2EP,R

[
exp

(
λ

n

n∑
i=1

w(Zi)ξi

)]
.

Further, if
1
n

∑n
i=1w(Zi)ξi is mean zero

γ2

n
-subGaussian, then

ER

[
exp

(
max
j∈[n]

λ

n

j∑
i

ξi

)]
≤ 2 exp

(
λ2γ2

2n

)
.

Remark E.3. We note that an immediate consequence of Lemma E.2 is

EP,R

[
max
j∈[n]

(
exp

(
λ

n

j∑
i=1

w(Zi)ξi

)
1{

∑j
i=1 w(Zi)ξi≥0}

)]

≤EP,R

[
exp

(
max
j∈[n]

λ

n

j∑
i=1

w(Zi)ξi

)]
≤ 2EP,R

[
exp

(
λ

n

n∑
i=1

w(Zi)ξi

)]
.
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Proof. The proof contains two main steps:

Step 1: We will show that for all t > 0,

P

(
max
j∈[n]

j∑
i=1

w(Zi)ξi ≥ t

)
≤ 2P

(
n∑
i=1

w(Zi)ξi ≥ t

)
. (E.4)

To show (E.4), for t > 0, consider eventsE0 := ∅ andEj := {
∑j

i=1w(Zi)ξi ≥ t,
∑l

i=1w(Zi)ξi <

t,∀l < j} for j ∈ [n], which states that j is the first index such that the partial sum

∑j
i=1w(Zi)ξi

is at least t. We first notice that{
max
j

j∑
i=1

w(Zi)ξi ≥ t

}
⊂

n⋃
j=0

Ej.

Since Ej and

∑n
i=j+1w(Zi)ξi ≥ 0 implies that

∑n
i=1w(Zi)ξi ≥ t, we obtain

n⋃
j=0

(
Ej
⋂{

n∑
i=j+1

w(Zi)ξi ≥ 0

})
⊂

{
n∑
i=1

w(Zi)ξi ≥ t

}
. (E.5)

Moreover, for any j ∈ [n], we have

P

(
n∑

i=j+1

w(Zi)ξi ≥ 0

)
≥ 1

2
, (E.6)

since

∑n
i=j+1w(Zi)ξi is symmetic around 0 (i.e.,

∑n
i=j+1w(Zi)ξi

d
= −

∑n
i=j+1w(Zi)ξi) for all

i ∈ {0, . . . , n}. For any j ∈ [n], since the eventEj (dependeing on {w(Zi), ξi}i≤j) is independent

of {
∑n

i=j+1w(Zi)ξi ≥ 0}, we have

P

(
Ej
⋂{

n∑
i=j+1

w(Zi)ξi ≥ 0

})
= P (Ej)P

(
n∑

i=j+1

w(Zi)ξi ≥ 0

)
≥ P (Ej)

2
.

As a result, we have

P

(
n∑
i=1

w(Zi)ξi ≥ t

)
≥ P

(
n⋃
j=0

(
Ej
⋂{

n∑
i=j+1

w(Zi)ξi ≥ 0

}))

=
n∑
j=0

P

(
Ej
⋂{

n∑
i=j+1

w(Zi)ξi ≥ 0

})

≥
n∑
j=1

P (Ej)

2

≥ 1

2
P

(
max
j∈[n]

j∑
i=1

w(Zi)ξi ≥ t

)
,
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where the first equality holds because for i ̸= j, Ei ∩ Ej = ∅, the first inequality follows

from (E.5) and the last inequality comes from the union bound.

Step 2: For any differentiable f and random variable X ,

E[f(X)1{X≥0}] = E

[(
f(0) +

∫ X

0

f ′(t)dt

)]
= f(0)E[1{X≥0}] + E

[∫ ∞

0

f ′(t)1{X≥t}dt

]
= f(0)P(X ≥ 0) +

∫ ∞

0

f ′(t)P(X ≥ t)dt, (E.7)

where the last equality follows from Fubini’s theorem. Putting it altogether, we have

EP,R

[
exp

(
max
j∈[n]

λ

n

j∑
i=1

w(Zi)ξi

)]

=1 + λ

∫ ∞

0

exp (λt)P

(
max
j∈[n]

1

n

j∑
i=1

w(Zi)ξi ≥ t

)
dt

≤1 + 2λ

∫ ∞

0

exp (λt)P

(
1

n

n∑
i=1

w(Zi)ξi ≥ t

)
dt

=1 + 2EP,R

[(
exp

(
λ

n

n∑
i=1

w(Zi)ξi

)
− 1

)
1{

∑n
i=1 w(Zi)ξi≥0}

]

=1 + 2EP,R

[
exp

(
λ

n

n∑
i=1

w(Zi)ξi

)]
− 2P

(
n∑
i=1

w(Zi)ξi ≥ 0

)

≤2EP,R

[
exp

(
λ

n

n∑
i=1

w(Zi)ξi

)]
,

where the first inequality follows from (E.4), the second equality uses (E.7) with f(t) = eλt

and X = maxj∈[n]
1
n

∑j
i=1w(Zi)ξi, and the last inequality follows from (E.6). Finally, if

1
n

∑n
i=1w(Zi)ξi is mean zero

γ2

n
-subGaussian, then using the definition of a subGaussian random

variable, we obtain

2EP,R

[
exp

(
λ

n

n∑
i=1

w(Zi)ξi

)]
≤ 2 exp

(
λ2γ2

2n

)
.
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E.2.2 Proof of Theorem 6.1

Theorem 6.1

Given a hypothesis class F, any loss function ℓ : Y × Y → R, and n samples {Zi}ni=1, we

have that with probability at least 1− δ,

en(F, ℓ) ≤ 2R(n,F) +

√
log(1

δ
)

2n
.

Proof. We first analyze the sensitivity of the sup-norm of the CDF estimator over F and G(1).
For a given two sets {xi, yi}ni=1 and {x′i, y′i}ni=1, which just differ in j’th entry, let

F̂1(r; f) :=
1

n

n∑
i=1

1{ℓ(yi,f(xi))≤r} and, F̂2(r; f) :=
1

n

n∑
i=1

1{ℓ(y′i,f(x′i))≤r}

Then, if supf∈F supr∈R

∣∣∣F̂1(r; f)− F (r; f)
∣∣∣ ≥ supf∈F supr∈R

∣∣∣F̂2(r; f)− F (r; f)
∣∣∣, we have

sup
f∈F

sup
r∈R

∣∣∣F̂1(r; f)− F (r; f)
∣∣∣− sup

f∈F
sup
r∈R

∣∣∣F̂2(r; f)− F (r; f)
∣∣∣

= sup
f∈F

sup
r∈R

∣∣∣∣∣ 1n
n∑
i=1

1{ℓ(Xi,yi,f(xi))≤r} − F (r; f)

∣∣∣∣∣− sup
f∈F

sup
r∈R

∣∣∣∣∣ 1n
n∑
i=1

1{ℓ(xi,y′i,f(x′i))≤r} − F (r; f)

∣∣∣∣∣
= sup

f∈F
sup
r∈R

∣∣∣∣∣ 1n
n∑
i=1

1{ℓ(x′i,y′i,f(x′i))≤r} +
1

n

(
1{ℓ(xj ,yj ,f(xj))≤r} − 1{ℓ(x′j ,y′j ,f(x′j))≤r}

)
− F (r; f)

∣∣∣∣∣
− sup

f∈F
sup
r∈R

∣∣∣∣∣ 1n
n∑
i=1

1{ℓ(x′i,y′i,f(x′i))≤r} − F (r; f)

∣∣∣∣∣
= sup

f∈F
sup
r∈R

1

n

∣∣∣1{ℓ(xj ,yj ,f(xj))≤r} − 1{ℓ(x′j ,y′j ,f(x′j))≤r}

∣∣∣ ≤ 1

n
.

∣∣∣∣sup
f∈F

sup
r∈R

∣∣∣F̂1(r; f)− F (r; f)
∣∣∣− sup

f∈F
sup
r∈R

∣∣∣F̂2(r; f)− F (r; f)
∣∣∣∣∣∣∣

≤ sup
f∈F

sup
r∈R

1

n

∣∣∣1{ℓ(xj ,yj ,f(xj))≤r} − 1{ℓ(x′j ,y′j ,f(x′j))≤r}

∣∣∣ = 1

n

This bound holds no matter what j and what data set we choose. Using bounded difference

inequality, i.e., McDiarmid’s inequality (Boucheron et al., 2013), we have,

P

sup
f∈F

sup
r∈R

∣∣∣F̂ (r; f)− F (r; f)∣∣∣− EP

[
sup
f∈F

sup
r∈R

∣∣∣F̂ (r; f)− F (r; f)∣∣∣] ≤
√

log(1
δ
)

2n

 (E.8)
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with probability at least 1− δ. Using a ghost sample set {X ′
i, Y

′
i }ni=1 we have

EP

[
sup
f∈F

sup
r∈R

∣∣∣F̂ (r; f)− F (r; f)∣∣∣]
=EP

[
sup
f∈F

sup
r∈R

∣∣∣∣∣ 1n
n∑
i=1

1{ℓ(Xi,Yi,f(Xi))≤r} − EP

[
1

n

n∑
i=1

1{ℓ(X′
i,Y

′
i ,f(X

′
i))≤r}

]∣∣∣∣∣
]

=EP

[
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣ 1n
n∑
i=1

g(ℓ(Xi, Yi, f(Xi)))− EP

[
1

n

n∑
i=1

g(ℓ(X ′
i, Y

′
i , f(X

′
i)))

]∣∣∣∣∣
]

=EP

[
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣ 1nEP

[
n∑
i=1

g(ℓ(Xi, Yi, f(Xi)))−
n∑
i=1

g(ℓ(X ′
i, Y

′
i , f(X

′
i)))
∣∣∣σ ({Xi, Yi}ni=1)

]∣∣∣∣∣
]

≤EP

[
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣ 1n
n∑
i=1

(g(ℓ(Xi, Yi, f(Xi)))− g(ℓ(X ′
i, Y

′
i , f(X

′
i))))

∣∣∣∣∣
]

≤EP,R

[
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣ 1n
n∑
i=1

ξi (g(ℓ(Xi, Yi, f(Xi)))− g(ℓ(X ′
i, Y

′
i , f(X

′
i))))

∣∣∣∣∣
]

≤2EP,R

[
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣ 1n
n∑
i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣
]
= 2R(n,F). (E.9)

Putting (E.8) and (E.9) together concludes the proof.

E.2.3 Permuation Complexity

We note that this proof, along with many other proofs for Section 6.4, is based on the machinery

and techniques in Massart’s finite class Lemma (Massart, 2000) and DKW inequality in (Devroye

et al., 2013).

Theorem 6.2

For any hypothesis class F and loss function ℓ : Y × Y → R, we have that

R(n,F) ≤
√

log(4NΠ(n,Fℓ,P))
2n

.

Proof. For a positive λ, we have,

exp (λR(n,F)) = exp

(
λ

n
EP,R

[
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣
n∑
i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣
])

≤ EP,R

[
exp

(
λ

n
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣
n∑
i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣
)]
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≤ EP,R

[
EP,R

[
exp

(
λ

n
sup
f∈F

sup
g∈G(1)

∣∣∣∣∣
n∑
i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣
) ∣∣∣σ ({Xi, Yi}ni=1)

]]
(E.10)

For any f ∈ F, let πf denote a permutation such that ℓ(Xπf (i), Yπf (i), f(Xπf (i))) ≤
ℓ(Xπf (j), Yπf (j), f(Xπf (j))) for any i, j ∈ [n] and i ≤ j. Therefore we have,

sup
g∈G(1)

∣∣∣∣∣
n∑
i=1

ξig(ℓ(Xi, Yi, f(Xi)))

∣∣∣∣∣ = sup
g∈G(1)

∣∣∣∣∣
n∑
i=1

ξπf (i)g(ℓ(Xπf (i), Yπf (i), f(Xπf (i))))

∣∣∣∣∣
Consider a function g(r′) = 1{r′≤r}. For such a function,∑n
i=1 ξπf (i)g(ℓ(Xπf (i), Yπf (i), f(Xπf (i)))) is equal to,

• 0 if r < mini{ℓ(Xπf (i), Yπf (i), f(Xπf (i)))}ni ,

•

∑j
i ξπf (i) when ℓ(Xπf (j), Yπf (j), f(Xπf (j))) ≤ r < ℓ(Xπf (j+1), Yπf (j+1), f(Xπf (j+1))) for a

j ∈ {1, . . . , n− 1},
•

∑n
i ξπf (i) otherwise.

Using this property, we have,

sup
g∈G(1)

∣∣∣∣∣
n∑
i=1

ξπf (i)g(ℓ(Xπf (i), Yπf (i), f(Xπf (i))))

∣∣∣∣∣ = max
j

∣∣∣∣∣
j∑
i

ξπf (i)

∣∣∣∣∣ (E.11)

Using this equality, we can further extend the Eq. E.10,

exp (λR(n,F)) ≤ EP,R

[
EP,R

[
exp

(
λ

n
sup
f∈F

max
j

∣∣∣∣∣
j∑
i

ξπf (i)

∣∣∣∣∣
) ∣∣∣σ ({Xi, Yi}ni=1)

]]

≤ EP,R

[
EP,R

[
NΠ(Fℓ, {Xi, Yi}ni=1) exp

(
λ

n
max
j

∣∣∣∣∣
j∑
i

ξi

∣∣∣∣∣
) ∣∣∣σ ({Xi, Yi}ni=1)

]]

≤ NΠ(n,Fℓ,P)EP,R

[
exp

(
λ

n
max
j

∣∣∣∣∣
j∑
i

ξi

∣∣∣∣∣
)]

, (E.12)

where the second inequality follows from the fact that effectively, there are at most

NΠ(Fℓ, {Xi, Yi}ni=1) number of πf ’s. Using the same derivation for (E.3) (Lemma E.1), we

have

exp (λR(n,F)) ≤ 2NΠ(n,Fℓ,P)EP,R

[
max
j

(
exp

(
λ

n

j∑
i

ξi

)
1{

∑j
i ξi≥0}

)]
.
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By Lemma E.2, we have

exp (λR(n,F)) ≤ 4NΠ(n,Fℓ,P) exp

(
λ2

2n

)

Now, taking the log from both sides, and dividing by λ, we haveR(n,F) ≤ log(4NΠ(n,Fℓ,P))
λ

+
λ
2n
. Choosing λ =

√
2n log(2NΠ(n,Fℓ,P)), we obtain the final result

R(n,F) ≤
√

log(4NΠ(n,Fℓ,P))
2n

.

Corollary 6.1. For a finite hypothesis class F,

R(n,F) ≤
√

log(4|F|)
2n

.

Proof. The result follows since when |F| < ∞, NΠ(n,Fℓ,P) ≤ |F|, i.e., we need at most one

permutation function to sort the losses for each f ∈ F.
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E.3 Proof of Results in Section 6.5

Theorem 6.3

For a hypothesis class F, a bounded loss function ℓ, and δ ∈ (0, 1], if P(en(F, ℓ) ≤ ϵ) ≥ 1−δ,

then with probability 1− δ, for all ρ ∈ T, we have

sup
f∈F
|ρ(F (·; f))− ρ(F̂ (·; f))| ≤ L(ρ, 1,L∞)ϵ,

where T is the set of L(·, 1,L∞) Hölder risk functionals on the space of bounded random

variables.

Proof. For all ρ ∈ T, since ρ is L(ρ, 1,L∞) Hölder, we have that |ρ(F (·; f)) − ρ(F̂ (·; f))| ≤
L(ρ, 1,L∞)∥F − F̂∥∞. The desired result then follows.

The error of risk assessment can be bounded using distances other than the sup-norm, such

as the Wasserstein distance. For two random variables U and U ′
with bounded support [0, D],

the dual form of the Wasserstein distance W1(FU , FU ′) is given by (Vallender, 1974),

W1(FU , FU ′) =

∫ D

0

|FU(t)− FU ′(t)|dt ≤ D∥FU − FU∥∞.

This inequality suggests the following corollary.

Corollary E.1. Under the setting of Theorem 6.3 where the loss has support [0, D], with probability
1− δ, for all ρ ∈ T, we have

sup
f∈F
|ρ(F (·; f))− ρ(F̂ (·; f))| ≤ L(ρ, p,W1)D

pϵp,

where T is the set of L(·, p,W1) Hölder risk functionals on the space of bounded random variables.

Proof. For all ρ ∈ T, since ρ is L(ρ, p,W1) Hölder, we have that |ρ(F (·; f)) − ρ(F̂ (·; f))| ≤
L(ρ, p,W1)W1(F, F̂ )

p ≤ L(ρ, p,W1)D
p∥F − F̂∥p∞. The desired result then follows.

Corollary 6.2. For a hypothesis class F, a bounded loss function ℓ : Y×Y → [0, D], and δ ∈ (0, 1],
if P(en(F, ℓ) ≤ ϵ) ≥ 1− δ, then with probability 1− δ, we have

sup
f∈F
|ρ(F (·; f))− ρ(F̂ (·; f))| ≤ Lϵ,

where ρ is a distortion risk with L
D

-Lipschitz distortion function.

Proof. As is shown in Huang et al. (2021, Lemma 4.1), ρ is L-Lipschitz. Thus, directly applying

Theorem 6.3 concludes the proof.
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E.4 Proofs for results in Section 6.6

E.4.1 Proof of Lemma 6.3

Before proving Lemma 6.3, we first present two auxiliary lemmas.

Lemma E.3

For any continuous function g, h : Rd → R, min(g, h) and max(g, h) are continuous.

Similarly, for any Lipschitz continuous function g, h : Rd → R, min(g, h) and max(g, h)
are Lipschitz continuous.

Proof. Denote fmin = min(g, h) and fmax = max(g, h).
Continuity: Continuity: We first consider the case when both g and h are continuous. Define

Θ = {θ ∈ Rd : g(θ) = h(θ)}. For θ /∈ Θ, fmin and fmax are continuous since g, h are

continuous. Consider θ ∈ Θ. For every ϵ > 0, there exists δg, δh > 0 such that for all θ′ ∈ Rd,
∥θ − θ′∥ ≤ ϵ =⇒ |g(θ)− g(θ′)| ≤ δg, |h(θ)− h(θ′)| ≤ δh. In addition, fmin(θ) = g(θ) = h(θ),
fmax(θ) = g(θ) = h(θ) and fmin(θ

′), fmax(θ
′) can be either g(θ′) or h(θ′). Combining both facts

gives us that |fmin(θ)− fmin(θ
′)| ≤ max(δg, δh) and |fmax(θ)− fmax(θ

′)| ≤ max(δg, δh).

Lipschitz Continuity: We next work with the case where both g and h are Lipschitz

continuous. When |fmax(θ)− fmax(θ
′)| = |g(θ)− h(θ′)|, we have the following two cases:

1. g(θ) > h(θ′): |g(θ)− h(θ′)| = g(θ)− h(θ′) ≤ g(θ)− g(θ′), since fmax(θ
′) = h(θ′).

2. g(θ) ≤ h(θ′): |g(θ)− h(θ′)| = h(θ′)− g(θ) ≤ h(θ′)− h(θ), since fmax(θ) = g(θ).

Since both h and g are Lipschitz continuous, we obtain that

|fmax(θ)− fmax(θ
′)|≤ max

f∈{g,h}
|f(θ)− f(θ′)| ≲ ∥θ − θ′∥,

showing that fmax is Lipschitz continuous. The proof completes with the fact that min(f, g) =
−max(−f,−g).

Lemma E.4

If {ℓθ(xj, yj)}nj=1 are Lipschitz continuous in θ, then for all i ∈ [n], ℓθ(πθ(i)), i.e., the i-th
smallest loss evaluated using data points {xj, yj}nj=1, is Lipschitz continuous in θ.

Proof. The key observation is that the i-th smallest loss can be defined as ℓθ(πθ(i)) =
min{max{ℓθ(j) : j ∈ J} : J ⊆ [n], |J | = i}. Since each ℓθ(j) is Lipschitz continuous in θ and

that for j′ ∈ J , max{ℓθ(j) : j ∈ J} = max{ℓθ(j′),max{ℓθ(j) : j ∈ J \ {j′}}}, by Lemma E.3,

we have max{ℓθ(j) : j ∈ J} to be Lipschitz continuous in θ. Similarly, since max{ℓθ(j) : j ∈ J}
is Lipschitz continuous in θ, we have min{max{ℓθ(j) : j ∈ J} : J ⊆ [n], |J | = i} to be Lipschitz

continuous.
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Lemma 6.3

If {ℓθ(zi)}ni=1 are Lipschitz continuous in θ ∈ Θ, then for all i ∈ [n], ℓθ(πθ(i)), i.e., the i-th

smallest loss, is Lipschitz continuous in θ and ρ(F̂θ) is differentiable in θ almost everywhere.

Proof. Using Lemma E.4, we obtain that ℓθ(πθ(i)) is Lipschitz in θ ∈ Θ. Following from a classical

result of Rademacher (Rockafellar and Wets, 2009, Theorem 9.60), i.e., a locally Lipschitz function

is differentiable almost everywhere, we have that ρ(F̂θ) is differentiable almost everywhere.

E.4.2 Local Convergence

The proofs for Corollary 6.3 are standard (Bottou et al., 2018), which we provide for completeness.

Corollary 6.3. If {ℓθ(zi)}ni=1 are Lipschitz continuous and ρ(F̂θ) is β-smooth in θ, then the
following holds almost surely when the learning rate in (6.7) is η = 1

β
√
T

:

1

T

T∑
t=1

E
[
∥∇θρ(F̂θt)∥2

]
≤ 2β√

T

(
ρ(F̂θ1)− ρ(F̂θ⋆) +

1

2β

)
.

Proof. For notation simplicity, we use h(θ) to denote ρ(F̂θ) and gt to denote ∇θρ(F̂θ) when

θ = θt. Since h(θ) is differentiable almost everywhere, following (6.7), the sequence {h(θt)}Tt=1

will be differentiable almost surely. Since h is β-smooth, we have that

h(θt+1)− h(θt) ≤ ∇θh(θt)
⊤(θt+1 − θt) +

β

2
∥θt+1 − θt∥2.

We denote the filtration for the stochastic process {θt}Tt=1 to be {Ft}Tt=1. Extending the above

inequality, we have

h(θt+1)− h(θt) ≤ ∇θh(θt)
⊤(−η(gt + wt)) +

β

2
∥ − η(gt + wt)∥2,

which suggests that

E[h(θt+1)− h(θt)] ≤ −η∇θh(θt)
⊤gt + η2

β

2
(∥gt∥2 + dσ2

w),

where σ2
w = 1/d is the variance of wt. Therefore, for the conditional expectation, we have

E
[
h(θt+1)− h(θt)

∣∣∣Ft] ≤ E

[
−η∇θh(θt)

⊤gt + η2
β

2
(∥gt∥2 + 1)

∣∣∣Fk]
= −(η − η2β

2
)E
[
∥∇θh(θt)∥2

∣∣∣Ft]+ η2
β

2
.

Using the telescoping sum and law of total expectation, we obtain

E
[
h(θT )− h(θ1)

∣∣∣F1

]
= E

[
T∑
t=1

h(θ1)− h(θt−1)
∣∣∣F1

]
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≤ (η − η2β
2
)E

[
T∑
t=1

−∥∇θh(θt)∥2
∣∣∣F1

]
+ Tη2

β

2
. (E.13)

Use the fact that h(θ⋆) ≤ h(θT ), we have E [h(θ1)− h(θT )] ≤ h(θ1)− h(θ⋆), which implies

(η − η2β
2
)E

[
T∑
t=1

∥∇θh(θt)∥2
]
≤ h(θ1)− h(θ⋆) + Tη2

β

2
.

Plugging the learning rate η = 1
β
√
T

, we have η − η2 β
2
= 1

β
√
T
− 1

2βT
≥ 1

β
√
T
− 1

2β
√
T
≥

1
2β

√
T
> 0. Therefore we have

1

2β
√
T

E

[
T∑
t=1

∥∇θh(θt)∥2
]
≤ h(θ1)− h(θ⋆) +

1

2β
.

Rearranging the above inequality gives the result.
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E.5 Additional Experimental Details

E.5.1 Risk Assessment on ImageNet Models

Figure E.1 shows the CVaR of models presented in Table 6.1 under different α’s. We note that

CVaRα is the expected value above the top 100α percent losses.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.81
2
3
4
5
6
7
8

CV
aR

vgg11, accuracy: 0.69022
googlenet, accuracy: 0.69772
shufflenet, accuracy: 0.69356
inception, accuracy: 0.69542
resnet18, accuracy: 0.69756

Figure E.1: CVaRα(ℓf (Z)) across different α’s where ℓf is the cross-entropy loss evaluated on the

ImageNet validation dataset.

E.5.2 Empirical Distortion Risk Minimization

Toy Example The data used in this experiment is generated using the make blobs function

from sklearn.datasets with the following parameters: n samples = [1000, 50], centers = [[0.0,

0.0], [1.0, 1.0]], cluster std = [1.5, 0.5], random state = 0, shuffle = False.

CIFAR-10 For completeness, we report the average test accuracy for the VGG-16 models

obtained through minimizing the empirical risks for expected loss, CVaR.05, CVaR.7 and HRM.3,.4.

The models are trained over 150 epochs and the learning rate is chosen to be 0.005. The accuracy

is 55.2%, 13.2%, 51.3%, and 53.9% respectively. We note that the goal of this experiment is to

illustrate the efficacy of our proposed optimization procedure for minimizing distortion risks

instead of arguing for the usage of a particular risk functional for finding a model with the

highest test accuracy.
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Appendix F
Median Optimal Treatment Regimes:

Additional Details

F.1 Proofs

F.1.1 Proofs in Section 7.4

Proof of Proposition 7.1. Pick x ∈ X . For all a ∈ {0, 1}, we have |µa(x) −ma(x)| ≤ σa(x). If

µ1(x) > µ0(x), then m1(x) ≥ µ1(x) − σ1(x) > µ0(x) + σ0(x) ≥ m0(x), where the second

inequality holds because of the assumption that |µ1(x) − µ0(x)| > σ1(x) + σ0(x). Similarly,

m1(x) > m0(x) implies that µ1(x) ≥ m1(x)− σ1(x) > m0(x) + σ0(x) ≥ µ0(x). Thus, we have

that µ1 (x) > µ0 (x)⇔ m1 (x) > m0 (x), which completes the proof.

Proof of Proposition 7.2. By definition, the marginal median optimal policy d∗
MME

satisfies that for

all d ∈ D, m(Y d∗
MME) ≥ m(Y d). We use a tuple (a1, a0) to represent a policy d where ai = d(i),

which gives us the following table:

(a0, a1) m(Y d)

(0, 1) σ1(1)µ0(0)+σ0(0)µ1(1)
σ0(0)+σ1(1)

(1, 1) σ1(1)µ1(0)+σ1(0)µ1(1)
σ1(0)+σ1(1)

(0, 0) σ0(1)µ0(0)+σ0(0)µ0(1)
σ0(0)+σ0(1)

(1, 0) σ0(1)µ1(0)+σ1(0)µ0(1)
σ1(0)+σ0(1)

Table F.1: Marginal medians of all possible policies in the setting described in Section 7.4.2.

Given σ1(1) > σ0(1) and µ1(1) > µ0(1) and
µ1(1)
µ0(1)

< σ1(1)
σ0(1)

, when we pick {µa(0), σa(0)}1a=0
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such that for a = 0 and a = 1,

(σ1(1)− σ0(1))µa(0) + (µ1(1)− µ0(1))σa(0) > σ1(1)µ0(1)− σ0(1)µ1(1), (F.1)

the optimal policy d∗
MME

will assign the decision for x = 1 according to d∗
MME

(1) = 1{µ1(1) >
µ0(1)} since the conditions have ensured thatm(Y (1,1)) > m(Y (1,0)) andm(Y (0,1)) > m(Y (0,0)).
On the other hand, if (F.1) does not hold for a = 0 and a = 1, then the marginal median optimal

policy d∗
MME

(1) = 1{µ1(1) ≤ µ0(1)}.

F.1.2 Proofs in Section 7.5

Derivation of the influence function under discrete covariates and continuous outcome.
Let IF(·) denote the operator that returns the influence function of an input functional. In this

analysis, we assume X to be discrete and Y to be continuous. Let p(x) denote the probability

mass function of X . We start with the chain rule of IF(·).

ϕd(Z) = IF(ψd(P)) = IF

(∑
x∈X

p(x)md(x)

)
=
∑
x∈X

p(x)
{

IF(m1(x))d(x) + IF(m0(x))(1− d(x))
}
+ IF(p(x))md(x),

where IF(p(x)) = 1{X = x} − p(x). Thus, it suffices to find IF(ma(x)) where a ∈ {0, 1}.
Let δz denote the Dirac measure at z. We use the submodel Pϵ(z) = (1− ϵ)P(z) + δz′ for

some z′ = (x′, a′, y′) to find the influence function, which gives that

fϵ(y|a, x) =
(1− ϵ)f(y|x, a)P(X = x,A = a) + ϵδz′

(1− ϵ)P(X = x,A = a) + ϵ1{x = x′, a = a′}
,

where fϵ and f are densities with respect to Pϵ and P respectively. Letma,ϵ(x) denote the median

of the distribution Pϵ(Y |X = x,A = a). By the definition of the median, we have that

Fϵ(ma,ϵ(x)|x, a) =
∫
y≤ma,ϵ(x)

fϵ(y|x, a)dy

=

∫
y≤ma,ϵ(x)

(1− ϵ)f(y|x, a)P(X = x,A = a) + ϵδz′

(1− ϵ)P(X = x,A = a) + ϵ1{x = x′, a = a′}
dy =

1

2

When x ̸= x′ or a ̸= a′, we have that

P(X = x,A = a)

∫
y≤ma,ϵ(x)

f(y|x, a)dy =
P(X = x,A = a)

2
,

which suggests that ma(x) = ma,ϵ(x). When x = x′ and a = a′, we have that∫
y≤ma,ϵ(x)

(1− ϵ)f(y|x, a)P(X = x,A = a) + ϵδy′

(1− ϵ)P(X = x,A = a) + ϵ
dy =

1

2
. (F.2)

It has two cases
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• When y′ > ma,ϵ(x), (F.2) can be simplified into

F (ma,ϵ(x)|x, a) =
∫
y≤ma,ϵ(x)

f(y|x, a)dy =
(1− ϵ)P(X = x,A = a) + ϵ

2(1− ϵ)P(X = x,A = a)
,

and ma,ϵ(x) = F−1

(
(1−ϵ)P(X=x,A=a)+ϵ
2(1−ϵ)P(X=x,A=a)

∣∣∣∣x, a).

• When y′ ≤ ma,ϵ(x), (F.2) can be simplified into

F (ma,ϵ(x)|x, a) =
∫
y≤ma,ϵ(x)

f(y|x, a)dy =
(1− ϵ)P(X = x,A = a)− ϵ
2(1− ϵ)P(X = x,A = a)

,

and ma,ϵ(x) = F−1

(
(1−ϵ)P(X=x,A=a)−ϵ
2(1−ϵ)P(X=x,A=a)

∣∣∣∣x, a).

Putting it altogether, we have that when x ̸= x′ or a ̸= a′:

IF(ma(x)) =
d

dϵ
ma,ϵ(x)

∣∣∣
ϵ=0

= 0 = 1{x = x′}1{a = a′}.

When x = x′ and a = a′, we have that

IF(ma(x)) =1{x = x′}1{a = a′} d
dϵ
ma,ϵ(x)

∣∣∣
ϵ=0

= − 1{x = x′}1{a = a′}
P(X = x)P(A = a|X = x)

1{y′ ≤ ma(x)} − 1/2

f(ma(x)|x, a)
,

where the last equality holds since for all ma,ϵ(x) = F−1(g(ϵ)|x, a),

d

dϵ
ma,ϵ(x)

∣∣∣
ϵ=0

=

(
1

f(ma,ϵ(x)|x, a)
d

dϵ
g(ϵ)

) ∣∣∣∣
ϵ=0

,

and for example when g(ϵ) = (1−ϵ)P(X=x,A=a)+ϵ
2(1−ϵ)P(X=x,A=a)

, i.e., when y′ > F−1
(

(1−ϵ)P(X=x,A=a)+ϵ
2(1−ϵ)P(X=x,A=a)

∣∣∣∣x, a),

gives that
d
dϵ
g(ϵ) = 1

2P(X=x,A=a)
· d
dϵ

ϵ
1−ϵ =

1
2(1−ϵ)2P(X=x,A=a)

.

Therefore, we have obtained that

ϕd(Z) =
∑
x∈X

p(x)
{

IF (m1(x)) d(x) + IF (m0(x)) (1− d(x))
}
+ IF(p(x))md(X)

=
∑
x∈X

p(x)
{ 1{X = x}1{A = 1}

P(X = x)P(A = 1|X = x)

1/2− 1{Y ≤ m1(x)}
f(m1(x)|x, 1)

d(x)

+
1{X = x}1{A = 0}

P(X = x)P(A = 0|X = x)

1/2− 1{Y ≤ m0(x)}
f(m0(x)|x, 0)

(1− d(x))
}
+ (1{X = x} − p(x))md(x)

=
Ad(X)

π1(X)

1/2− 1{Y ≤ m1(X)}
f1,m(X)

+
(1− A)(1− d(X))

π0(X)

1/2− 1{Y ≤ m0(X)}
f0,m(X)

+md(X)− ψd.

where the last equality follows since the indicator function 1{X = x} picks out the values

x ∈ X such that it equals X and p(x) = P(X = x).
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Proof of Lemma 7.1. By definition, since

∫
ϕd(Z;P)dP = 0, we have that

Rd(P,P) = ψd(P)− ψd(P) +
∫
ϕd(Z;P)dP

= − ψd(P) +
∫
X

π1(x)d(x)

π1(x)

1/2− F1,m1(x)

f 1,m(x)
+
π0(x)(1− d(x))

π0(x)

1/2− F0,m(x)

f 0,m(x)
+md(x)dP(x)

=

∫
X
d(x)

(
m1(x)−m1(x)−

π1(x)

π1(x)

F1,m(x)− F1,m(x)

f 1,m(x)

)
+ (1− d(x))

(
m0(x)−m0(x)−

π0(x)

π0(x)

F0,m(x)− F0,m(x)

f 0,m(x)

)
dP(x),

where the second equality follows from iterated expectation, i.e., EP[1{Y ≤ ma(X)}|X =
x,A = a] = Fa,m(x), and the third equality follows from rearranging terms and the fact that

Fa,m(x) = 1/2.

Proof of Corollary 7.1. Recall that for (7.4), we have

Rd(P,P) =
∫
X
d(x)

(
m1(x)−m1(x)−

π1(x)

π1(x)

A2︷ ︸︸ ︷
F1,m(x)− F1,m(x)

f 1,m(x)︸ ︷︷ ︸
A1

)

+ (1− d(x))
(
m0(x)−m0(x)−

π0(x)

π0(x)

F0,m(x)− F0,m(x)

f 0,m(x)︸ ︷︷ ︸
A0

)
dP(x),

For x ∈ X such that fa(y|x) is differentiable and L-Lipschitz continuous in y, we can simplify

A2 as:

A2 =
F1,m(x)− F1,m(x)

f 1,m(x)

=
1

f 1,m(x)

(
F1,m(x) + f1,m(x)(m1(x)−m1(x)) +

f ′
1(c1(x)|x)

2
(m1(x)−m1(x))

2 − F1,m(x)

)
=

1

f 1,m(x)

(
f1,m(x)(m1(x)−m1(x)) +

f ′
1,c(x)

2
(m1(x)−m1(x))

2

)
,

where the second equality follows from Taylor’s theorem and c1(x) is a value in between

m1(x) and m1(x). To simplify the notations, in the third equality (and the following usage

of Taylor’s theorem), we denote the derivative of the conditional probability density function

fa(·|X = x) at ca(x) to be f ′
a,c(x) where ca(x) is a value betweenma(x) andma(x) and satisfies

that Fa,m(x) = Fa,m(x) + fa,m(x)(ma(x) −ma(x)) + f ′
a,c(x)(ma(x) −ma(x))

2/2. This gives

that

A1 = m1(x)−m1(x)−
π1(x)

π1(x)

1

f 1,m(x)

(
f1,m(x)(m1(x)−m1(x)) +

f ′
1,c(x)

2
(m1(x)−m1(x))

2

)
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= (m1(x)−m1(x))

(
1− π1(x)

π1(x)

f1,m(x)

f 1,m(x)

)
−
f ′
1,c(x)π1(x)(m1(x)−m1(x))

2

2π1(x)f 1,m(x)
.

Applying the same logic to A0, we obtain that

Rd(P,P)

=

∫
d(x)

(
(m1(x)−m1(x))

(
1− π1(x)

π1(x)

f1,m(x)

f1,m(x)

)
−
f ′1,c(x)π1(x)(m1(x)−m1(x))

2

2π1(x)f1,m(x)

)

+(1− d(x))

(
(m0(x)−m0(x))

(
1− π0(x)

π0(x)

f0,m(x)

f0,m(x)

)
−
f ′0,c(x)π0(x)(m0(x)−m0(x))

2

2π0(x)f0,m(x)

)
dP(x)

= P

{
d

π1f1,m

(
(m1 −m1)

(
π1f1,m − π1f1,m

)
−
f ′1,cπ1(m1 −m1)

2

2

)

+
(1− d)
π0f0,m

(
(m0 −m0)

(
π0f0,m − π0f0,m

)
−
f ′0,cπ0(m0 −m0)

2

2

)}

= P

{
d (m1 −m1)

π1f1,m

(
(π1 − π1) f1,m +

(
f1,m − f1,m

)
π1 − (m1 −m1)

f ′1,cπ1

2

)

+
(1− d) (m0 −m0)

π0f0,m

(
(π0 − π0)f0,m + (f0,m − f0,m)π0 − (m0 −m0)

f ′0,cπ0

2

)}
.

Proof of Corollary 7.2. Consider a parametric submodel Pϵ, e.g., the probability density functions

pϵ and p of Pϵ and P satisfy that pϵ(z) = p(z)(1 + ϵh(z)) where E[h] = 0, ∥h∥∞ < M and

ϵ > 1/M . To show that ϕd is an influence function, it suffices to show that the mean-zero ϕd
satisfies path-wise differentiability, i.e.,

dψd(Pϵ)
dϵ

∣∣∣∣∣
ϵ=0

=

∫
Z

ϕd(Z;P)

(
d

dϵ
log dPϵ

) ∣∣∣∣∣
ϵ=0

dP.

As shown in Lemma 7.1, we have that ψd(Pϵ) = ψd(P) +
∫
Z
ϕd(Z;P)d(Pϵ − P) − Rd(P,Pϵ),

which gives that

dψd(Pϵ)
dϵ

∣∣∣∣∣
ϵ=0

=
d

dϵ

∫
ϕd(Z;P)dPϵ

∣∣∣∣∣
ϵ=0

− d

dϵ
Rd(P,Pϵ)

∣∣∣∣∣
ϵ=0

=

∫
Z

ϕd(Z;P)

(
d

dϵ
log dPϵ

) ∣∣∣∣∣
ϵ=0

dPϵ −
d

dϵ
Rd(P,Pϵ)

∣∣∣∣∣
ϵ=0

.

Finally, as shown in Corollary 7.1, Rd(P,Pϵ) only contains second-order products of errors

between P and Pϵ and thus using the product rule on
d
dϵ
Rd(P,Pϵ), one can get that

d

dϵ
Rd(P,Pϵ)

∣∣∣∣∣
ϵ=0

= 0.
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Since our model is nonparametric, there is only one influence function which is efficient (Bickel

et al., 1993; Tsiatis, 2007). Thus, ϕd is the efficient influence function of ψd.

Proof of Theorem 7.1. For a given policy d ∈ D, we have that

Var {ϕd(Z)} = E[ϕd(Z)
2] = E[(ξd(Z)− ψd)

2]

=E

{(
Ad(X)

π1(X)

1/2− 1{Y ≤ m1(X)}
f1,m (X)

)2

+

(
(1−A)(1− d(X))

π0(X)

1/2− 1{Y ≤ m0(X)}
f0,m (X)

)2

+ (md(X)− ψd)
2

}

=E

{(
Ad(X)

π1(X)

1/2− 1{Y ≤ m1(X)}
f1,m (X)

)2
}

+ E

{(
(1−A)(1− d(X))

π0(X)

1/2− 1{Y ≤ m0(X)}
f0,m (X | X, 0)

)2
}

+ Var{md(X)}

=EX,A

Ad(X)

π2
1(X)

EY |X,A

[
(1/2− 1{Y ≤ m1(X)})2

]
f21,m (X)


+ EX,A

 (1−A)(1− d(X))

π0(X)2

EY |X,A

[
(1/2− 1{Y ≤ m0(X)})2

]
f0,m (X)

+ Var{md(X)}

=EX

{
d(X)Var{1{Y ≤ m1(X)|X,A = 1}}

π1(X)f21,m(X)
+

(1− d(X))Var{1{Y ≤ m0(X)}|X,A = 0}
π0(X)f20,m(X)

}
+ Var{md(X)}

=E

{
d(X)

4π1(X)f21,m(X)
+

(1− d(X))

4π0(X)f20,m(X)

}
+ Var {md(X)} ,

where the first equality is true since E[ϕd(Z)] = 0, the forth equality uses the fact

A2 = A, the fifth equality holds as EY |X,A=a[1{Y ≤ ma(X)}] = 1/2, and the last

equality is true since Var{1{Y ≤ m1(X)|X,A = 1} = P(Y ≤ m1(X)|X,A =
1) (1− P(Y ≤ m1(X)|X,A = 1)) = 1/4.

F.1.3 Proofs in Section 7.6

Proof of Theorem 7.2. We start with the following decomposition

ψ̂d,dr − ψd = Pnξd(P̂)− Pξd(P̂)

=
(
Pn − P

) (
ξd(P̂)− ξd(P)

)
︸ ︷︷ ︸

T1

+
(
Pn − P

)
ξd(P)︸ ︷︷ ︸

T2

+P
(
ξd(P̂)− ξd(P)

)
︸ ︷︷ ︸

T3

.

When ξ̂d is learned from a separate sample from the empirical measure Pn, by Lemma F.2,

we obtain that

T1 = OP

(
∥ξ̂d − ξd∥√

n

)
= oP(1/

√
n),
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where the last equality follows from our assumption that ∥ξ̂d − ξd∥ = oP(1). On the other hand,

when ξd and ξ̂d are contained in a Donsker class and ∥ξ̂d − ξd∥ = oP(1), by Vaart (2000, Lemma

19.24), we have that T1 = oP(1/
√
n). Since Pξd − ψd = 0, we have that

T3 = P
(
ξ̂d − ξd

)
= P

{
π1d

π̂1

F1,m − F1,m̂

f̂1,m̂
+
π0(1− d)

π̂0

F0,m − F0,m̂

f̂0,m̂
+ m̂d −md

}

= P

{
d

(
m̂1 −m1 −

π1
π̂1

F1,m̂ − F1,m

f̂1,m̂

)
+ (1− d)

(
m̂0 −m0 −

π0
π̂0

F0,m̂ − F0,m

f̂0,m̂

)}
= Rd

(
P̂,P

)
,

where the second equality holds since Pξd = ψd = P{md} and EY |X,A=a[1{Y ≤
m̂a(X)}|X,A = a] = Fa,m̂(X). Finally, using Lemma 7.1, we obtain that

Rd(P̂,P) = P

{
d (m̂1 −m1)

π̂1f̂1,m̂

(
(π̂1 − π1) f̂1,m̂ +

(
f̂1,m̂ − f1,m

)
π1 − (m̂1 −m1)

f ′
1,cπ1

2

)

+
(1− d) (m̂0 −m0)

π̂0f̂0,m̂

(
(π̂0 − π0)f̂0,m̂ + (f̂0,m̂ − f0,m)π0 − (m̂0 −m0)

f ′
0,cπ0

2

)}

= OP

(
1∑

a=0

∥m̂a −ma∥
(∥∥∥π̂af̂a,m̂ − πafa,m∥∥∥+ ∥m̂a −ma∥

))
.

Proof of Corollary 7.4. Following from the proof of Theorem 7.2, we have that ψ̂d,dr − ψd =
T1 + T2 + T3 where T1 = oP(1/

√
n). From Theorem 7.1, we have that Var{ξd} = Var{ϕd} =

σ2
d < +∞ since P ∈ P . By Central Limit Theorem, we have that T2 = oP(1/

√
n) and

√
nT2 =

√
n(Pn − P)ξd(P) =

√
n

(
1

n

n∑
i=1

ξd(Zi)− E[ξd(Z)]

)
⇝ N (0,Var(ξd)).

Using Slutsky’s theorem and the assumptions that ensure T3 = oP(1/
√
n), we have

√
n(ψ̂d,dr − ψd)⇝ N (0, σ2

d).

Proof of Theorem 7.3. For any d ∈ D, by the fact that Pξd = ψd, we have that

ψ̂d̂∗,dr
− ψd∗ = Pnξ̂d̂∗ − Pξd̂∗ + Pξd̂∗ − Pξd∗

= Pnξ̂d̂∗ − Pξd̂∗ + Pγ(d̂∗ − d∗),
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where the second equality uses that

Pξd̂∗ − Pξd∗ = P

{
A
(
d̂∗(X)− d∗(X)

)
π1(X)

1/2− 1{Y ≤ m1(X)}
f1,m (X)

+
(1− A)(d∗(X)− d̂∗(X))

π0(X)

1/2− 1{Y ≤ m0(X)}
f0,m (X)

+md̂∗(X)−md∗(X)

}
= P

{
m1(d̂

∗ − d∗) +m0(d
∗ − d̂∗)

}
= Pγ(d̂∗ − d∗).

The second equality above comes from the fact that EY |X,A=a[1{Y ≤ ma(X)}] = 1/2. Further,

by Lemma F.1 and the fact that d∗ = 1{γ > 0}, we obtain that

Pγ(d̂∗ − d∗) ≤ Pγ1{|γ| ≤ |γ̂ − γ|} ≤ P|γ̂ − γ|1{|γ| ≤ |γ̂ − γ|}
≤ ∥γ̂ − γ∥∞P (|γ| ≤ ∥γ̂ − γ∥∞) ≲ ∥γ̂ − γ∥1+α∞ ,

where the last inequality follows from the margin condition. On the other hand, similar to the

proof of Theorem 7.2, we use the decomposition

Pnξ̂d̂∗ − Pξd̂∗ = (Pn − P)
(
ξ̂d̂∗ − ξd∗

)
+ (Pn − P) ξd∗ + P

(
ξ̂d̂∗ − ξd̂∗

)
.

By the fact that Pϕd̂∗ = ψd̂∗ + Pξd̂∗ = 0, we have that

P
(
ξ̂d̂∗ − ξd̂∗

)
= P

{
π1d̂

∗

π̂1

F1,m − F1,m̂

f̂1,m̂
+
π0(1− d̂∗)

π̂0

F0,m − F0,m̂

f̂0,m̂
+ m̂d̂∗ −md̂∗

}

= P

{
d̂∗

(
m̂1 −m1 −

π1
π̂1

F1,m̂ − F1,m

f̂1,m̂

)
+ (1− d̂∗)

(
m̂0 −m0 −

π0
π̂0

F0,m̂ − F0,m

f̂0,m̂

)}

= Rd̂∗

(
P̂,P

)
= OP

(
1∑

a=0

∥m̂a −ma∥
(∥∥∥π̂af̂a,m̂ − πafa,m∥∥∥+ ∥m̂a −ma∥

))
.

Finally, for the term (Pn − P)
(
ξ̂d̂∗ − ξd∗

)
: when ξ̂d̂∗ is estimated from a separate sample Zn,0

from the empirical measure over Zn
, by Lemma F.2 we have that

(Pn − P)
(
ξ̂d̂∗ − ξd∗

)
= OP

(
∥ξ̂d̂∗ − ξd∗∥√

n

)
= oP(1/

√
n),

where the last equality follows from our assumption that ∥ξ̂d̂∗ − ξd∗∥ = oP(1). When ξd∗ and

ξ̂d̂∗ are contained in a Donsker class and ∥ξ̂d̂∗ − ξd∗∥ = oP(1), by Vaart (2000, Lemma 19.24), we

have that (Pn − P)
(
ξ̂d̂∗ − ξd∗

)
= oP(1/

√
n).
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Proof of Corollary 7.5. From Theorem 7.3, we have that

ψ̂d̂∗,dr
− ψd∗ = (Pn − P) ξd∗

+OP

(
oP(1/

√
n) + ∥γ̂ − γ∥1+α∞ +

1∑
a=0

∥m̂a −ma∥
(
∥π̂af̂a,m̂ − πafa,m∥+ ∥m̂a −ma∥

)
︸ ︷︷ ︸

R

)
.

The conditions in Corollary 7.5 ensure that R = oP(1/
√
n), which gives that

√
n(ψ̂d̂∗,dr

− ψd∗)⇝ N
(
0, σ2

d∗

)
,

since Var{ξd∗} = Var{ϕd∗} = σ2
d∗ .

F.1.4 Proofs in Section 7.7

Proof of Theorem 7.4. We begin with a decomposition:

γ̂dr(x)− γ(x) =
n∑
i=1

wi(x;X
n)ĝ(Zi)− γ(x)

=

(
n∑
i=1

wi(x;X
n)g(Zi)− γ(x)

)
+

n∑
i=1

wi(x;X
n)h(Xi) +

n∑
i=1

wi(x;X
n) (ĝ(Zi)− g(Zi)− h(Xi))

= (γ̃(x)− γ(x)) +
n∑
i=1

wi(x;X
n)h(Xi) +

n∑
i=1

wi(x;X
n) (ĝ(Zi)− g(Zi)− h(Xi)) ,

where h(x) = E[ĝ(Z)− g(Z)|Dn, X = x] and Dn = (D1, D2) is the training data for obtaining

ĝ.

To bound h(x), we obtain that

h(x) = E[ĝ(Z)− g(Z)|Dn, X = x] = E[ĝ(Z)|Dn, X = x]− γ(x)

=

(
m̂1(x)−m1(x)−

π1(x)

π̂1(x)

F1,m̂(x)− F1,m(x)

f̂1,m̂(x)

)
−

(
m̂0(x)−m0(x)−

π0(x)

π̂0(x)

F0,m̂(x)− F0,m(x)

f̂0,m̂(x)

)

=

(
(m̂1(x)−m1(x))

(
1− π1(x)

π̂1(x)

f1,m(x)

f̂1,m̂(x)

)
−
f ′1,c(x)π1(x)(m̂1(x)−m1(x))

2

2π̂1(x)f̂1,m̂(x)

)

−

(
(m̂0(x)−m0(x))

(
1− π0(x)

π̂0(x)

f0,m(x)

f̂0,m̂(x)

)
−
f ′0,c(x)π0(x)(m̂0(x)−m0(x))

2

2π̂0(x)f̂0,m̂(x)

)

≲
1∑

a=0

|m̂a(x)−ma(x)|
(
|π̂a(x)f̂a,m̂(x)− πa(x)fa,m(x)|+ |m̂a(x)−ma(x)|

)
,

where f ′
a,c(x) ≤ L is the derivative of fa(y | x) at y = ca(x) for some value ca(x) between

ma(x) and m̂a(x) and the third equality follows similarly to the proof of Corollary 7.1. This

gives that

n∑
i=1

wi(x;X
n)h(Xi)
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≲
n∑

i=1

|wi(x;X
n)|

(
1∑

a=0

|m̂a(Xi)−ma(Xi)|
(
|π̂a(Xi)f̂a,m̂(Xi)− πa(Xi)fa,m(Xi)|+ |m̂a(Xi)−ma(Xi)|

))

=

1∑
a=0

n∑
i=1

|wi(x;X
n)||m̂a(Xi)−ma(Xi)|

(∣∣∣πa(Xi)fa,m(Xi)− π̂a(Xi)f̂a,m̂(Xi)
∣∣∣+ |m̂a(Xi)−ma(Xi)|

)
=

1∑
a=0

n∑
i=1

|wi(x;X
n)||m̂a(Xi)−ma(Xi)| ·

∣∣∣πa(Xi)fa,m(Xi)− π̂a(Xi)f̂a,m̂(Xi)
∣∣∣

+

1∑
a=0

n∑
i=1

|wi(x;X
n)| · |m̂a(Xi)−ma(Xi)| · |m̂a(Xi)−ma(Xi)|

≤
1∑

a=0

√√√√ n∑
i=1

|wi(x;Xn)||m̂a(Xi)−ma(Xi)|2 ·

√√√√ n∑
i=1

|wi(x;Xn)|
∣∣∣πa(Xi)fa,m(Xi)− π̂a(Xi)f̂a,m̂(Xi)

∣∣∣2

+

1∑
a=0

√√√√ n∑
i=1

|wi(x;Xn)||m̂a(Xi)−ma(Xi)|2 ·

√√√√ n∑
i=1

|wi(x;Xn)| |m̂a(Xi)−ma(Xi)|2

=

(
n∑

i=1

|wi(x;X
n)|

)
·

(
1∑

a=0

∥m̂a −ma∥w
(
∥π̂af̂a,m̂ − πafa,m∥w + ∥m̂a −ma∥w

))
.

To bound G(x) :=
∑n

i=1wi(x;X
n) (ĝ(Zi)− g(Zi)− h(Xi)), we observe that by definition,

E[ĝ(Zi)− g(Zi)− h(Xi)|Dn, Xn] = 0,

where Xn
are the covariates in D3. We also have

Var{G(x)|Dn, Xn} = Var

{
n∑
i=1

wi(x;X
n) (ĝ(Zi)− g(Zi)− h(Xi)) |Dn, Xn

}

=
n∑
i=1

wi(x;X
n)2Var {ĝ(Zi)− g(Zi)− h(Xi)|Dn, Xn}

=
n∑
i=1

wi(x;X
n)2Var {ĝ(Zi)− g(Zi)|Dn, Xn}

≤ ∥ĝ − g∥2w2

n∑
i=1

wi(x;X
n)2,

where the third equality holds since Var {ĝ(Zi)− g(Zi)|Dn, Xn} = E[(ĝ(Zi) −
g(Zi))

2|Dn, Xn]− E[ĝ(Zi)− g(Zi)|Dn, Xn]2 ≤ E[(ĝ(Zi)− g(Zi))2|Dn, Xn]. We note that

E[(γ̃(x)− γ(x))2]

= E

( n∑
i=1

wi(x;X
n) (g(Zi)− γ(Xi)) +

n∑
i=1

wi(x;X
n)γ(Xi)− γ(x)

)2


= E

( n∑
i=1

wi(x;X
n) (g(Zi)− γ(Xi))

)2
+ E

( n∑
i=1

wi(x;X
n)γ(Xi)− γ(x)

)2
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= E

[
n∑
i=1

wi(x;X
n)2Var{g(Zi)|Xi}

]
+ E

( n∑
i=1

wi(x;X
n)γ(Xi)− γ(x)

)2


≥ σ2
min

n∑
i=1

E
[
wi(x;X

n)2
]
,

where the second and third equality hold since E[g(Zi)|Xn] = γ(Xi) and all samples are

independent. Putting it altogether, using Markov’s inequality, we obtain

P

(
|G(x)|

∥ĝ − g∥w2

√
E[(γ̃(x)− γ(x))2]

≥ t

)

= E

[
P

(
|G(x)|

∥ĝ − g∥w2

√
E[(γ̃(x)− γ(x))2]

≥ t
∣∣∣Dn, Xn

)]

≤ 1

t2
· E
[

Var{G(x)|Dn, Xn}
∥ĝ − g∥2w2E[(γ̃(x)− γ(x))2]

]
≤ 1

σ2
mint

2
.

Thus, we have that G(x) = OP(∥ĝ − g∥w2

√
E[(γ̃(x)− γ(x))2]) and

G(x)2 = OP

(
∥ĝ − g∥2w2E[(γ̃(x)− γ(x))2]

)
.

The proof completes by realizing that (a+ b+ c)2 ≤ 3a2 + 3b2 + 3c2.

F.2 Auxiliary Lemmas

Below are the auxiliary lemmas we have used to prove the results in this paper. For completeness,

we include their proofs here as well.

Lemma F.1

(Kennedy et al., 2020, Lemma 1) Let f̂ , f be functions taking any real values. Then

|1{f̂ > 0} − 1{f > 0}| ≤ 1{|f | ≤ |f̂ − f |}.

Proof. It follows that

|1{f̂ > 0} − 1{f > 0}| = 1{f, f̂ have opposite signs} ≤ 1{|f | ≤ |f̂ − f |},

since |f̂ − f | = |f̂ |+ |f | when f, f̂ have opposite signs.

Lemma F.2

(Kennedy et al., 2020, Lemma 2) Let Pn denote the empirical measure over Zn =

(Z1, . . . , Zn) and ϕ̂ be a function estimated from a sample Zn,0 = (Z0
1 , . . . , Z

0
n), which
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is independent of Zn
, then for any function ϕ,

(Pn − P) (ϕ̂− ϕ) = OP

(
∥ϕ̂− ϕ∥√

n

)
.

Proof. First, we notice that

Var

{
(Pn − P) (ϕ̂− ϕ)

∣∣Zn,0
}
= Var

{
Pn(ϕ̂− ϕ)

∣∣Zn,0
}
=

1

n
Var

{
ϕ̂− ϕ|Zn,0

}
≤ ∥ϕ̂− ϕ∥

2
2

n
,

where the first equality is true since conditioned on Zn,0
, P(ϕ̂ − ϕ) is a constant. Then by

applying the law of total expectation and Chebyshev’s inequality, we obtain that

P

(
| (Pn − P) (ϕ̂− ϕ)|
∥ϕ̂− ϕ∥2/

√
n
≥ t

)
= E

{
P

(
| (Pn − P) (ϕ̂− ϕ)|
∥ϕ̂− ϕ∥2/

√
n
≥ t

∣∣∣∣Zn,0

)}

≤ E

Var

{
(Pn − P) (ϕ̂− ϕ)

∣∣Zn,0
}

∥ϕ̂− ϕ∥22t2/n

 ≤ 1

t2
,

where we have utilized the fact that E

{
(Pn − P) (ϕ̂− ϕ)

∣∣∣∣Zn,0

}
= E{ϕ̂−ϕ|Zn,0}−P(ϕ̂−ϕ) =

0.
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Annales de l’Institut Henri Poincaré, Probabilités et Statistiques. Vol. 56. 3. Institut Henri
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