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Abstract

The past several decades have witnessed an unprecedented explosion in the size and scope of genomic
datasets, paving the way for statistical and computational data analysis techniques to play a critical
role in driving scientific discovery in the fields of biology and medicine. However, genomic datasets
suffer from a number of problems that weaken their signal-to-noise ratio, including small sample
sizes and widespread data heterogeneity. As a result, the naive application of traditional machine
learning approaches to many problems in computational biology can lead to unreliable results and
spurious conclusions.

In this thesis, we propose several new techniques for extracting meaningful information from
noisy genomic data. To combat the challenges posed by high-dimensional, heterogeneous datasets,
we leverage prior knowledge about the underlying structure of a problem to design models with
increased statistical power to distinguish signal from noise. Specifically, we rely on structured
sparse regularization penalties to encode relevant information into a model without sacrificing
interpretability. Our models take advantage of knowledge about the structure shared among related
samples, features, or tasks, which we derive from biological insights, to boost their power to identify
true patterns in the data.

Finally, we apply these methods to several widely studied problems in computational biology,
including identifying genetic loci that are associated with a phenotype of interest, learning gene
regulatory networks, and predicting the survival rates of cancer patients. We demonstrate that
leveraging prior knowledge about the structure of a problem yields increased statistical power to
detect associations between different components of a biological system (e.g., SNPs and genes). This
in turn provides greater insight into complex biological processes and more accurate predictions of
disease phenotypes, ultimately leading to improved diagnosis and treatment of human diseases.
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Chapter 1

Introduction

1.1 A Wealth of Information

When the first complete human genome sequence was published in the early 2000s, it was the
culmination of a project that spanned nearly 15 years and cost approximately $3 billion. Over the
past two decades since that milestone was reached, the development of next-generation sequencing
technologies has led to an unprecedented explosion in the sheer quantity of genomic data that is
generated and stored on a daily basis. The amount of data has expanded so rapidly that its rate
of growth has been projected to outstrip both every other scientific domain and every source of
user-generated content on the web to become the ultimate new source for truly “big” data over the
next 10 years [81].

The information contained within these datasets has the potential to answer age-old questions
about how the human body works. However, due to their vast size and complexity, gleaning
meaningful information from the raw data is virtually impossible without the aid of computational
techniques. By far the most promising among these are statistical methods that can uncover subtle
but salient patterns buried deep in the data that a human studying the problem manually might
never detect.

Recent years have seen a confluence of factors that are critical for knowledge discovery in this
sphere: larger and more comprehensive datasets, cheaper and faster computer processors, and
new models and algorithms that take advantage of both. These changes have paved the way for
statistical and computational data analysis techniques to play a critical role in the fields of biology
and medicine over the coming decades.

1.2 The Promise of Omic Data

The work in this thesis focuses on two major areas of research within the field of computational
biology. The first is the study of the cellular processes that form the basis for the relationship
between an organism’s genotype and phenotype. The second is the study of how computational
techniques can be used to improve the diagnosis and treatment of human diseases.

In the first domain, the principal goal is to understand how changes in an organism’s DNA
sequence lead to changes in one or more observable characteristics. Many different types of so-
called “omic” data are commonly used to study this question. They include genomic data that
captures information about the raw DNA sequence, transcriptomic data that captures information
about the genes that are transcribed to RNA, proteomic data that captures information about
proteins, and metabolomic data that captures information about small-molecule chemicals found
within the cell. These datasets capture interactions among genes, proteins, and other molecular
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structures, including feedback loops and regulatory networks. As a result, they can be used to gain
insight into the complex mechanisms that govern the influence of molecular changes on external
traits ranging from physical appearance to disease status. Ultimately, these insights help scientists
formulate a more complete picture of how organisms function.

In the second domain, the aim is to develop new methods for better diagnosis, prognosis, and
treatment of an array of human diseases. A wide range of datasets can be combined to address these
problems, including patient medical histories, clinical test results, molecular profiles of diseased
tissue, treatment information, patient outcomes, and more. These datasets capture the complex
interactions between each patient’s unique disease, the treatments they receive, and their response
to those treatments. As a result, they can be used to improve the accuracy and specificity of disease
diagnosis, provide more realistic prognostic information, and aid physicians in making personalized
decisions about the best course of treatment for each individual patient.

Both of these areas have seen an explosion of data in recent years due in part to the spread of
high-throughput data acquisition techniques. In addition, policy changes in some countries, such as
the HITECH Act in the United States, have led to the expanded use of electronic health records to
store patients’ medical data. Finally, the rise of online databases such as GenBank, GEO, TCGA,
and many others have made both genomic and clinical datasets broadly accessible to researchers
all over the world. These changes, most of which have occurred only over the past 15-20 years,
have contributed to the collection and dissemination of petabytes of biological and medical data.

1.3 Obstacles to Knowledge Discovery

Despite the sheer quantity of information captured by the wide range of biological datasets available
today, they have one major drawback: they are inherently extremely noisy. The low signal-to-
noise ratio (SNR) is an enormous roadblock to answering all of the questions that scientists would
like to address within this domain. Although all datasets contain some noise, there are certain
characteristics specific to biological datasets that pose a unique set of challenges.

The first challenge is the fact that nearly all biological datasets, and particularly omic datasets,
contain a small number of samples but a large number of measurements for each sample. In other
words, the datasets contain many more features than samples. This situation is prevalent among
biological datasets for two important reasons. First, collecting each sample is very expensive,
because one sample frequently corresponds to an individual organism (e.g., a human patient) or
a specific wet lab condition. Second, due to high-throughput techniques (such as whole-genome
sequencing), extracting a large number of features from each sample is becoming increasingly cost
effective. This results a situation known as the high-dimensional data setting, in which the sample
size is often many orders of magnitude smaller than the dimensionality of each sample.

In statistics, this problem is often called the curse of dimensionality. As the dimensionality
d of a dataset increases, the total volume of the feature space increases exponentially in d. This
means that a fixed number of data points will become increasingly separated in space as their
dimensionality grows, making it extremely challenging for statistical methods to identify reliable
patterns in high-dimensional settings. Because we want to extract patterns from the data that
generalize to unseen samples, high-dimensional datasets inherently have a very low signal-to-noise
ratio, and therefore provide an especially challenging setting for machine learning.

The second problem is the extreme heterogeneity of biological data. The heterogeneity comes
from a number of sources. First, there are many different types of data. This makes it difficult
to combine datasets in order to obtain a larger sample size. Second, datasets of the same type
still often originate from many different sources, where they may be collected using different tools
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or procedures and pre-processed in different ways, which introduces completely different types
of measurement error and other noise. Because of this, each dataset generated by a different
experimental study may be biased in a different way. Even when two different studies measure the
same set of features across a different set of samples, the samples should not be naively combined.
Third, even samples within the same dataset collected from a single source may be heterogeneous
and intercorrelated. This is particularly the case when dealing with human data (compared with
data collected from organisms grown in vitro) because we are forced to collect data only from the
samples that are available in the real world.

From a statistical perspective, this means that nearly all biological datasets contain samples
that are not i.i.d., i.e. are not drawn independently from the same underlying distribution with
the same sources of noise. Because statistical models frequently rely upon i.i.d. assumptions, this
inherent heterogeneity again makes it difficult for traditional machine learning techniques to extract
signal from the data.

As a result of the low SNR, when applying statistical analysis techniques to biological datasets,
it’s easy to identify spurious patterns that are not real, but merely artifacts of the data. Although
i.i.d. assumptions do not hold in many real-world datasets, the problem of non-i.i.d. data is exac-
erbated in the high-dimensional data setting, making biological data one of the most challenging
types of data to work with from a machine learning perspective.

1.4 How Machine Learning Can Help

Despite these challenges, specialized machine learning techniques can be designed to boost the
signal-to-noise ratio and reach meaningful conclusions from complex, noisy datasets. There are
several widely studied approaches for achieving this goal.

One common approach is to constrain the learning task by encoding domain-specific prior
knowledge into the model. This can be viewed as restricting the space of hypotheses that we
are allowed to choose from when fitting a statistical model. Given that we restrict ourselves to
only considering the hypotheses that fit with our prior knowledge, we are more likely to select a
“correct” hypothesis that identifies true patterns in the data rather than spurious patterns arising
from noisy observations or correlated samples. This approach relies on making assumptions about
the structure of the problem, which are typically derived from pre-existing biological knowledge.

Another approach is to share information between tasks that are related but not identical.
Called transfer learning, this approach can help combat small sample sizes by leveraging samples
across multiple tasks even when the same features are not available for all tasks. Rather than
naively combining samples across related tasks, transfer learning approaches provide a framework
for leveraging the patterns identified in one dataset to restrict the set of hypothesis we consider
when analyzing another dataset, and vice versa.

Yet another approach is to learn a compact but informative representation of the data from
the observed features. Known as representation learning, this approach can help reduce noise
by identifying a representation of the input space that clearly captures the factors that explain
variation in the output. This can also help combat the high-dimensional data setting by reducing
the dimensionality of the input space. There are many different approaches to representation
learning, including feature selection methods that choose the most informative subset of features,
regularization methods that shrink the coefficients of the least informative features to zero, and
feature combination methods that learn a set of latent features as a function of the raw features.
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1.5 Thesis Statement

The goal of this thesis is to develop new machine learning techniques for extracting signal from
inherently noisy biological datasets. In particular, we will leverage ideas from the three categories
of approaches described in the previous section, and will introduce new methods that apply these
ideas to several problems in computational genomics and health informatics, including:

1. Genome wide association studies (GWAS), whose goal is to identify genomic loci (e.g., SNPs)
whose genotype affects a particular downstream trait.

2. Gene network estimation, whose goal is to understand the regulatory relationships among a
set of genes using mRNA expression data or other transcriptomic information.

3. Survival analysis, which entails leveraging genomic and clinical data to predict how long a
patient with a given disease (e.g., a given type of cancer) will survive.

To address these problems, we leverage regularization penalties to incorporate structure into
statistical models. Specifically, we describing a uniform modeling framework that can be used as a
guideline for designing methods that can learn from low-SNR data. Consider a model parameterized
by θ that we want to estimate from a dataset x given additional information α. We construct the
following optimization problem to estimate θ.

min
θ

loss(θ;x) + λ sparsity-penalty(θ) + γ structure-penalty(θ;α) (1.1)

Here λ and γ are hyperparameters that are not known ahead of time but require additional tuning,
whereas α represents external knowledge about the structure of θ that is known a priori and is used
to specify the penalty term. The structure penalty serves to effectively restrict the space of possible
values of θ to those that satisfy the structure captured in α. We purposefully define this term in
a very flexible way. In practice, the structure penalty may encode prior biological knowledge,
information shared across multiple related task, information shared across multiple related feature
sets, or anything else.

This framework can be used to design models for a wide range of tasks across both supervised
and unsupervised learning. Many existing models, including many variants of the classic Lasso,
can be cast into this framework. Furthermore, all of the new methods proposed in this thesis
are captured by the above formulation, although in some cases the sparsity penalty and structure
penalty are combined into a single penalty term.

In the main body of this thesis, we introduce three novel approaches for learning from high-
dimensional, heterogeneous, noisy data. We first introduce a time-varying group sparse additive
model for GWAS that is capable of detecting a sparse set of genomic loci that are associated with
phenotypes that vary over time [56]. This method leverages assumptions about the smoothly vary-
ing nature of SNP effects on a phenotype to boost the statistical power of GWAS. Next, we develop
a structured multi-task regression model for jointly performing eQTL mapping and gene network
estimation [58]. This approach shares information between these two tasks via a structured sparsity
penalty that is designed based on external knowledge about the relationship between SNP-gene and
gene-gene associations. Finally, we propose a representation learning method that is tailored to-
ward high-dimensional, noisy data, and uses structured sparsity to simultaneously perform feature
selection and feature combination [57]. We apply this method to learning compact representations
of cancer genomic data in order to better predict the survival rates of cancer patients.

For each of the methods described above, we present rigorous empirical evaluations on both
simulated and real data, and demonstrate that our approaches achieve greater statistical power to
distinguish signal from noise compared with baseline methods.
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In the last part of this thesis, we take a step back and re-examine the premise, namely, that
incorporating structure into statistical models can help boost the signal-to-noise ratio when work-
ing with biological datasets. To do this, we focus on predicting cancer survival rates from gene
expression data, using a pan-cancer dataset comprised of patients with 10 distinct types of cancer.

This is an ideal problem to study because the statistical challenges that arise from high data
heterogeneity and low sample sizes are particularly extreme in this setting, for two reasons. First,
malignant cancers have extremely high molecular heterogeneity, even within a single tumor in a
single individual [59]. This is due in part to the nature of cancerous growth, where runaway cell
multiplication provides ample opportunities for mutations to arise and accumulate. This problem is
further exacerbated by aggregating data from patients with multiple cancer types that originate in
completely different organs within the body. Second, although most genomic datasets are already
high-dimensional, containing many more dimensions of variation (e.g. genes in a gene expression
dataset) than samples (e.g. cancer patients), survival prediction suffers from the additional challenge
of data censorship, in which the survival outcome is only observed for a subset of patients [46].
The patients that survive past the end of the study or stop responding to follow-up requests have
a censored outcome, which means that we only observe a lower bound on their survival time.
Learning from censored data is particularly challenging because we have incomplete information
about many of the samples.

Using the pan-cancer dataset, we perform an empirical analysis in which we share information
across the cancer types and impose increasingly strict structural assumptions about the relation-
ships between the cancers. We examine the effects of transfer learning on survival prediction and
ultimately demonstrate that using structured sparsity penalties to share information across cancer
types has two significant benefits: it leads to better performance on the survival prediction task,
and it reveals the rich and intricate structure of the problem being studied. We therefore conclude
that structured sparsity is not only useful for boosting the signal-to-noise ratio for prediction tasks,
but also leads to greater understanding of the underlying biological mechanisms.
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Chapter 2

Time-Varying Group SpAM

2.1 Introduction

The goal of genome-wide association studies (GWAS) is to analyze a large set of genetic markers
that span the entire genome in order to identify loci that are associated with a phenotype of
interest. Over the past decade, GWAS has been used to successfully identify genetic variants that
are associated with numerous diseases and complex traits, ranging from breast cancer to blood
pressure [40]. However, a significant challenge in performing GWAS is that the studies are often
vastly under-powered due to the high dimensionality of the feature set relative to the small number
of human samples available.

Traditional GWAS methodologies test each variant independently for association with the phe-
notype, and use a stringent significance threshold to adjust for multiple hypothesis testing [21].
While this approach works well for traits that depend on strong effects from a few loci, it is less
suitable for complex, polygenic traits that are influenced by weak effects from many different ge-
netic variants. More recently, a significant body of work has emerged on penalized regression
approaches for GWAS that capture the joint effects of all markers [48, 91]. The majority of these
methods model the phenotype as a weighted sum of the genotype values at each locus, and use a
regularization penalty such as the `1 norm to identify a sparse set of SNPs that are predictive of
the trait. Although this technique helps to reduce overfitting and detect fewer spurious SNP-trait
associations, the lack of statistical power to identify true associations persists.

Here we aim to further boost the statistical power of GWAS by proposing a new model that
leverages dynamic trait data, in which a particular trait is measured in each individual repeatedly
over time, as depicted in Figure 2.1(a). Such datasets are often generated by longitudinal studies
that follow participants over the course of months, years, or even decades. Though broadly avail-
able, dynamic trait datasets are frequently underutilized by practitioners who ignore the temporal
information. We believe that leveraging time-sequential trait measurements in GWAS can lead to
greater statistical power for association mapping.

To illustrate this concept, consider the hypothetical patterns of SNP influence on the phenotype
shown in Fig 2.1(b). As in traditional GWAS, an association between a SNP and the phenotype
exists if the three SNP genotypes (which we denote AA, Aa, and aa) have differential effects on
the trait. In the first example, the effects of the three SNP genotypes only differ in the t ∈ [0.5, 1]
time interval. A static method that uses data from an arbitrarily chosen time point or simply
treats the time series as i.i.d. samples could easily miss this association, whereas a dynamic method
that considers the entire dataset would detect it. The second example shows a SNP in which the
difference between the effects of the three genotypes is small but consistent over time. Although
this signal could be too weak to be interpreted as a significant association in the static case, it gets
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Figure 2.1: GWAS has greater statistical power with dynamic traits. (a) A toy dataset illustrating
the difference between static and dynamic traits. (b) Two synthetic examples of time-dependent
patterns of SNP influence on the trait that would be difficult to detect with a static model.

much stronger once evidence from the entire time series is considered.

The longitudinal data setting is challenging because traits are measured at irregularly spaced
time points over subject-specific intervals. One approach that has been proposed for performing
GWAS of dynamic traits, called functional GWAS, or fGWAS [25], constructs a separate model
to estimate the smooth, time-varying influence of each SNP on the phenotype. Once the mean
effects have been estimated for each genotype at each time point, a hypothesis test is performed to
determine whether the SNP has any additive or dominant effect on the trait. Although the use of
dynamic trait data gives fGWAS more statistical power than a standard hypothesis test on static
data, the principal drawback of this method is that it is inappropriate for modeling complex traits
that arise from interactions between genetic effects at different loci. A related approach extends the
fGWAS framework to model multiple SNPs at once using a Bayesian group lasso framework [49].
Although this approach seems promising, it is severely limited by its very slow MCMC inference
procedure. There are a number of other methods that have been developed for dynamic trait
GWAS, including [95], [32], [26], and [50]. However, the majority of them either perform single-
locus analysis (as in fGWAS) or fail to learn an explicit, interpretable representation of the dynamic
effects of the genetic variants at each locus.1

In this work, we introduce a new penalized multivariate regression approach for GWAS of
dynamic quantitative traits, in which the phenotype is modeled as a sum of nonparametric,
time-varying SNP effects. We call this a Time-Varying Group Sparse Additive Model, or TV-
GroupSpAM. Our method is based on GroupSpAM [97], a nonparametric regression model with a
group-structured penalty over the input features, which we extend to capture the dynamic effects of
SNPs. This model has three major advantages over existing approaches: (1) we leverage dynamic
trait data; (2) we model the contribution of each SNP to the phenotype as a smooth function of
time, and explicitly learn these influence patterns; (3) we model the combined effects of multiple
SNPs on the phenotype and select a sparse subset that participate in the model, thereby identify-
ing meaningful SNP-trait associations. We show that TV-GroupSpAM exhibits desirable empirical
advantages over baseline methods on both simulated and real datasets.

1The notable exception to this is fGWAS with Bayesian group lasso, which we directly compare to our approach.
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2.2 Method

In this section, we first introduce a time-varying additive model for dynamic complex traits that
captures the underlying patterns of genetic effects. We then apply a group sparse regularization
scheme to this model in order to impose bias useful for discovering a sparse set of markers that
influence the phenotype in a longitudinal setting. Finally, we provide an efficient optimization
algorithm for parameter estimation, and thereby association mapping, under our model.

Notation. Let Xij ∈ {0, 1, 2} : i = 1, . . . , n ; j = 1, . . . , p denote the genotype of individual
i at SNP locus j, where n and p denote the number of individuals and SNPs, respectively. Let
Yiτ ∈ R : i = 1, . . . , n ; τ = 1, . . . ,m denote the phenotype value of individual i at the τ -th time
point. Note that the exact time readings for different individuals at their τ -th time point may be
different, i.e. the measurements are not necessarily time-aligned. We therefore introduce an explicit
time variable Tiτ ∈ R+ to capture the time reading for individual i at the τ -th time point, and
define Yiτ ≡ Y (Tiτ ) as a stochastic process that captures the trait values at each time point. In
what follows, we will use uppercase letters X,Y, T to denote random variables and lowercase letters
x, y, t to denote their instantiated values.

2.2.1 Time-Varying Additive Model

We consider the following time-varying additive model with scalar input variables X1, . . . , Xp and
functional response variable Y (T ):

Y (T ) = f0(T ) +

p∑
j=1

fj(T,Xj) + ω(T ) (2.1)

Here Y (T ), which represents the trait value at time T , is decomposed into three terms: f0(T ) is
an intercept term that represents the non-genetic influence on the phenotype at time T (e.g. from
unknown environmental factors); fj(T,Xj) represents the genetic effect of marker j with genotype
Xj at time T ; ω(T ) is the noise term that models the random fluctuation of the underlying process.

Since Xj is a categorical variable, each bivariate component function fj can be represented
more simply as a set of three univariate functions of time, given by fj = {f0

j , f
1
j , f

2
j }. We can then

define fj(T,Xj) =
∑

g f
g
j (T ) I{Xj = g} where fgj (·) = fj(·, Xj = g). Next we simplify our notation

by expanding each Xj into a set of three binary indicator variables such that Xg
j = 1 ⇔ Xj = g.

This allows us to rewrite the model in the following form.

Y (T ) = f0(T ) +

p∑
j=1

2∑
g=0

fgj (T )Xg
j + ω(T ) (2.2)

Note that in the above formulation, the indicator variable Xg
j selects a single function among the

set {f0
j , f

1
j , f

2
j } for each SNP.

In the data setting, since each observation is subject to measurement error, we assume Yiτ =
Yi(Tiτ ) + εiτ where εiτ ∼ N (0, σ2). It follows from the model defined in (2.2) that the observed
phenotypic values satisfy

yiτ = f0(tiτ ) +

p∑
j=1

2∑
g=0

fgj (tiτ )xgij + ω(tiτ ) + εiτ (2.3)
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for subjects i = 1, . . . , n and measurements τ = 1, . . . ,m. In the remainder of this article, we
assume that the residual errors eiτ = ω(tiτ ) + εiτ are i.i.d. across both subjects and measurements,
though an alternative approach would be to impose an autocorrelation structure on ω(T ) to capture
the temporal pattern of the underlying longitudinal process [25, 50].

In the model specified above, our only assumption about the dynamic genetic effects {f0
j , f

1
j , f

2
j :

j = 1, . . . , p} is that they are smooth functions of time. A well-established approach to estimate
nonparametric functions in additive models [39] is to minimize the expected squared error loss:

h(f) = E
[
Y (T )− f0(T )−

p∑
j=1

2∑
g=0

fgj (T )Xg
j

]2

(2.4)

where the expectation is calculated with respect to the distributions over SNP genotypes (X1, . . . , Xp),
time T , and phenotypic value Y . In the sample setting, this translates to minimizing

ĥ(f) =
n∑
i=1

m∑
τ=1

(
yiτ − f0(tiτ )−

p∑
j=1

2∑
g=0

fgj (tiτ )xgij

)2

(2.5)

subject to a set of smoothness constraints over each function. We go into detail about how to
estimate the parameters of this model in Section 2.2.3.

2.2.2 Group Sparse Regularization

In a typical genome-wide association study, though a large number of markers are assayed, it is
believed that only a small subset of them have a real effect on the trait of interest. This assumption
motivates us to impose sparsity at the level of the SNPs X1, . . . , Xp in the time-varying additive
model of (2.2), such that the effects of many of these variables are zero. To achieve this, we apply
a group-sparsity-inducing penalty that leads to shrinkage on the estimated effect of each locus as
a whole, including the component functions for all genotypes and their values at all time points.
Specifically, we employ a group norm penalty over the component functions in which each group
consists of the three functions {f0

j , f
1
j , f

2
j } that correspond to a particular marker Xj .

To construct this group penalty, we use the `1,2 norm first introduced in the context of the
group lasso [101]. The empirical objective function for our model with group sparsity is given by

ĥ(f) + λ

p∑
j=1

√√√√ 2∑
g=0

‖fgj ‖22 (2.6)

and is again subject to a set of smoothness constraints. Here λ > 0 is a tunable regularization
parameter that controls the amount of sparsity in the model, and the squared `2 norm over fgj is
defined as

‖fgj ‖
2
2 =

n∑
i=1

m∑
τ=1

fgj (tiτ )2xgij (2.7)

The penalty term in (2.6) induces sparsity at the level of groups by encouraging each set of functions
{f0
j , f

1
j , f

2
j } to be set exactly to zero, which implies that the corresponding marker Xj has no effect

whatsoever on the phenotype at any time point.
In what follows, we will refer to the model defined by the objective function in (2.6) as a

Time-Varying Group Sparse Additive Model (TV-GroupSpAM). This model is based on both the
Group Sparse Additive Model of [97], in which a group sparse regularization penalty is applied to a
standard additive model, and the Time-Varying Additive Model of [106], in which an unpenalized
additive model is used to regress a functional response on scalar covariates.
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2.2.3 Optimization Algorithm

To estimate the TV-GroupSpAM model, we use a block coordinate descent algorithm in which we
optimize the objective with respect to a particular group of functions at once while all remaining
functions are kept fixed.

Before presenting a complete algorithm for the regularized model, we first describe how to
estimate the simpler, unpenalized model introduced in Section 2.2.1. Given the loss function
of (2.4), some algebra shows that the optimal solution for fgj satisfies the following conditional
expectation for each genetic marker j = 1, . . . , p and each genotype value g ∈ {0, 1, 2}.

fgj (T ) = E
[
Y (T )− f0(T )−

∑
k 6=j

∑
`

f `k(T )X`
k

∣∣∣T,Xj = g

]
(2.8)

A similar formula holds for the intercept term f0(T ).
It has been well established in the statistics literature that a scatterplot smoother matrix can

be viewed as a natural estimate of the conditional expected value [39]. To evaluate (2.8) in the
sample setting, we therefore replace the conditional expectation operator E[ · |T,Xj = g] by left
multiplication with an n-by-n smoother matrix Sgj = {Sgj [a, b]}, which is defined as

Sgj [a, b] ∝ Kh(|t(a) − t(b)|) if x
(a)
j = g and x

(b)
j = g

Sgj [a, b] = 0 otherwise

where (a, b) is a pair of data points, each corresponding to a particular individual i and time
point τ , and Kh is a smoothing kernel function with bandwidth h. An alternative way to think
about Sgj is as the element-wise product of a smoother matrix for T , in which entry (a, b) is

proportional to Kh(|t(a) − t(b)|), and an indicator matrix for Xj = g, in which entry (a, b) is given

by I{x(a)
j = x

(b)
j = g}. This makes intuitive sense because we want to estimate a smooth function

over time for each genotype value of each SNP. Thus, to learn each function fgj for a particular
SNP j and a particular genotype g, we only want to consider data points for which the genotype
at SNP j is g and we want to smooth over time.

The empirical estimate of fgj will be a vector f̂gj ∈ Rnm whose entries correspond to smoothed
estimates of the effect of marker j with genotype g on the phenotype at each of the observed time
points. Note that the entries of f̂gj corresponding to samples with genotype 6= g for SNP j will
be set to zero because the function is not applicable to those samples. In practice, we drop these
dummy entries at the very end to obtain our final function estimates. We calculate f̂gj using the
empirical formula for (2.8), given by

f̂gj = Sgj

(
y − f̂0 −

∑
k 6=j

∑
`

f̂ `k I{xk = `}
)

(2.9)

where y is the vector of concatenated trait values for each sample, and xk is the corresponding
vector of genotypes at SNP k for each sample. Here a sample is a measurement for a specific
individual i at a specific time point τ . Cycling though SNPs and genotypes one at a time and
applying the update rule of (2.9) leads to a variant of the well-known backfitting algorithm. We
refer the readers to [39] for more details about smoothing and backfitting.

Finally, in order to optimize the penalized objective given in (2.6), we adapt the block coordinate
descent and thresholding algorithms from [97] to our setting. The complete optimization routine
is shown in Algorithm 2.1. After smoothing the partial residual at each iteration, we perform a
thresholding step by estimating the group norm ŵj and using it to determine whether the group
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of functions f̂j should be set to zero. If not, we re-estimate the function values by iteratively
solving a fixed point equation. We note that Step 9 of our algorithm runs more efficiently than
the corresponding step of the thresholding algorithm presented in [97] because we do not need to
perform a matrix inversion on each iteration. This property results from the fact that within a
particular group of function estimates {f̂0

j , f̂
1
j , f̂

2
j }, each one covers a disjoint set of observations,

which ultimately simplifies the update equation.

2.3 Experiments

Next we conduct experiments on both simulated and real data to compare the performance of our
approach against several baselines and evaluate its ability to detect genomic loci that are associated
with a dynamic trait of interest.

2.3.1 Simulation Study

In order to illustrate the utility of our method, we perform several experiments on synthetic data.
We generate data according to the following procedure. First we construct a set of realistic geno-
types Xij by randomly subsampling individuals and SNPs from the real asthma dataset that we
analyze in the next section. Next we independently sample time points Tiτ ∼ Unif(0, 1) and mea-
surement errors εiτ ∼ N (0, 1). We select a subset of SNPs that will have nonzero contribution
to the phenotype by placing their functions in an active set A ⊆ {f1, . . . , fp}. We then construct

Algorithm 2.1 Block Coordinate Descent for TV-GroupSpAM

1: inputs: genotypes x1, . . . ,xp, time points t, trait values y
2: initialize f̂0 = 0 and f̂gj = 0 for j = 1, . . . , p and g ∈ {0, 1, 2}
3: repeat
4: update intercept term: f̂0 = S0

(
y −

∑
k

∑
` f̂ `k I{xk = `}

)
5: for j = 1, . . . , p do
6: compute partial residual: R̂j = y − f̂0 −

∑
k 6=j

∑
` f̂ `k I{xk = `}

7: estimate projected residuals by smoothing:

P̂g
j = Sgj R̂j ∀g

8: compute group norm:

ŵj =
√∑2

g=0 ‖P̂
g
j‖22

9: if ŵj ≤ λ then set f̂gj = 0 ∀g
10: else update f̂gj ∀g by iterating until convergence

f̂g+j :=
(

1 + λ/‖f̂j‖2
)−1

P̂g
j

11: end if
12: center each f̂j by subtracting its mean
13: end for
14: until convergence
15: outputs: estimates f̂0 and f̂j = {f̂0

j , f̂
1
j , f̂

2
j } for j = 1, . . . , p

12



Figure 2.2: Comparison of TV-GroupSpAM to baseline methods shows that our approach achieves
greater power for a fixed false discovery rate (FDR ≤ 0.2). The results are averaged over 20 random
synthetic datasets for each setting, and the shaded region denotes the standard error.

the active functions by sampling their values from a diverse set of predefined influence patterns
that exhibit a variety of trait penetrance models (including additive, multiplicative, dominant, and
recessive) and interact differently with time (including some static patterns for balance). All func-
tions not in the active set, including the intercept term, are defined such that f(t) = 0 ∀ t. Finally,
we generate phenotype values yiτ according to the model defined in (2.3).

To test the robustness of our model, we generate data according to two slightly different vari-
ants of (2.3). In the first setting, we uphold our original assumption that the residual errors are
completely uncorrelated by independently generating ωiτ ∼ N (0, σ2). In the second setting, we
invalidate this assumption and introduce strong correlation among the errors across time by jointly
generating (ωi1, . . . , ωim) ∼ N (0,Σ). In all of our experiments, we fix the number of samples at
n = 100 and the number of time points at m = 10. Then, to evaluate our approach in a broad range
of settings, we vary the total number of SNPs over p ∈ {50, 100, 200, 500, 1000, 2000, 5000}, which
covers both the p ≤ n and p > n cases, and vary the size of the active set over |A| ∈ {5, 10, 20}.

We compare our method against several baselines, including single-marker hypothesis testing
(using the Wald test), group lasso (where each group consists of the 3 genotype indicators for one
SNP), fGWAS, and BGL-fGWAS. We used several software packages to run these methods: the
PLINK toolkit [74] for the Wald test, the SLEP Matlab package [52] for lasso and group lasso,
and the fGWAS2 R package [89] for fGWAS and BGL-fGWAS. To run the static data methods
(hypothesis test and group lasso), we summarize the phenotype values by averaging across time.

To evaluate performance, we calculate the maximum power attained by each method at a fixed
false discovery rate. In order to calculate this metric, we first generate a ranked list of the top
|A| SNPs identified by each method. For the Wald test and fGWAS, this is given by the SNPs
with the smallest p-values. For the penalized regression methods, we test a series of values of the

13



recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AUCPR = 0.59

AUCPR = 0.87

Average Precision-Recall Curves

WaldTest
GroupLasso
fGWAS
BGLfGWAS
TvGroupSpam

Figure 2.3: Comparison of precision-recall
curves of TV-GroupSpAM to baseline meth-
ods shows that our approach has an average
AUCPR of 0.87 ± 0.01, which is much higher
than the most competitive baseline, BGL-
fGWAS, which has average AUCPR 0.59±0.02.

total number of SNPs
50  100 200 500 1000 2000 5000

ru
n

n
in

g
 t

im
e

 i
n

 h
o

u
rs

0

2

4

6

8

10

12

14

16

18

20
Average Running Time

BGLfGWAS
fGWAS
TvGroupSpam

Figure 2.4: Comparison of the running time
of TV-GroupSpAM to baseline methods shows
that our approach runs much faster than both
fGWAS and BGL-fGWAS. We were unable to
run fGWAS for p > 1000 or BGL-fGWAS for
p > 200 due to time constraints.

regularization parameter, λ, and select the one that yields approximately the desired number of
SNPs. We then rank these SNPs according to their fitted model weights or norms. Given this list,
we select a cutoff point that yields the largest set of SNPs such that FDR is below 0.2, and we
calculate the power at this threshold.2 The results of our experiments are shown in Figure 2.2.

Our results indicate that TV-GroupSpAM far outperforms all of the baseline methods in every
setting. In many cases, the three dynamic methods are able to detect at least twice as many true
associations as the static methods. This underscores the value of leveraging longitudinal data to
boost statistical power. The results show that TV-GroupSpAM outperforms fGWAS even when
the residual errors are correlated, despite the fact that our model assumes independent errors while
fGWAS does not. These results demonstrate that TV-GroupSpAM performs well under many
different conditions and is robust to noise.

To obtain a more complete picture of the performance of each method, we plot the precision-
recall curves obtained by varying the number of SNPs selected by each method from 0 to p.
The average precision-recall curves obtained by averaging results over 20 datasets for the most
challenging synthetic data setting (p = 200, |A| = 20, correlated errors) are shown in Figure 2.3.
We also report the area under the precision recall curve (AUCPR) for BGL-fGWAS and TV-
GroupSpAM. Our approach outperforms the most competitive baseline by a significant margin.
Lastly, we compare the run times of the three dynamic trait methods for different values of p, and
show the results in Figure 2.4. For p = 200, TV-GroupSpAM ran in 12 minutes, fGWAS ran in 69
minutes, and BGL-fGWAS ran in 20 hours. These results show that our method is by far the most
computationally efficient.

2Note that power is equivalent to recall = TP/(TP+FN) and FDR is equivalent to 1−precision = FP/(TP+FP).
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Figure 2.5: Manhattan plots of the model weights for each SNP that was selected in the FVC
model (top) and BDR model (bottom) during the filtering stage.

Table 2.1: Selected SNPs associated with forced vital capacity (FVC)

SNP Chrom Location Effect Size Nearby Genes Linked to Asthma

rs6442021 3 46.7 Mb 1.5303 CCR1, CCR2, CCR3, CCR5 – chemokine receptors in the
CC family; CCR2 is a receptor for a protein that plays a
role in several inflammatory diseases, and has been di-
rectly linked to asthma [5]; CCR3 may play a role in air-
way inflammation [1]

PRSS42, PRSS46, PRSS45, PRSS50 – trypsin-like serine
proteases; tryptases cause bronchoconstriction and have
been implicated in asthma [105]

rs2062583 3 56.9 Mb 1.0074 IL17RD – interleukin 17 receptor D; IL-17 is a proinflam-
matory cytokine produced by Th17 cells that plays a role
in multiple inflammatory diseases, including asthma [55]

rs1450118 3 190.4 Mb 0.9027 IL1RAP – interleukin 1 receptor accessory protein; en-
ables the binding of IL-33 to its receptor encoded by
IL1RL1, which has been repeatedly linked to asthma [69]

rs3801148 7 139.3 Mb 0.8538 TBXAS1 – thromboxane A synthase; this enzyme con-
verts prostaglandin H2 to thromboxane A2, a lipid that
constricts respiratory muscle [70]

rs914978 9 132.3 Mb 1.0631 PTGES – prostaglandin E synthase; this enzyme converts
prostaglandin H2 to prostaglandin E2, a lipid inflamma-
tory mediator that acts in the lung [53]

rs11069178 12 117.9 Mb 0.6869 NOS1 – nitric oxide synthase 1; nitric oxide affects
bronchial tone and its levels are elevated in the air ex-
haled by asthmatics; NOS1 has been linked to a higher
risk of asthma [33]

rs6056242 20 8.8 Mb 1.2298 PLCB4 – involved in the endothelial cell signaling path-
way [98] and plays a role in vascular inflammation [51]

2.3.2 Genome-Wide Association Study of Asthma

Next we use TV-GroupSpAM to perform a genome-wide association analysis of asthma traits.
We look for associations between SNPs and two quantitative phenotypes frequently used to assess
asthma severity: the forced vital capacity (FVC), a sensitive measure of airway obstruction, and
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Table 2.2: Selected SNPs associated with bronchodilator response (BDR)

SNP Chrom Location Effect Size Nearby Genes Linked to Asthma

rs7766818 6 46.8 Mb 0.0088 GPR116 – probable G protein-coupled receptor 116; plays
a critical role in lung surfactant homeostasis [96]

TNFRSF21 – tumor necrosis factor receptor superfamily
member 21; plays a central role in regulating immune re-
sponse and airway inflammation in mice [86]

rs12524603 6 159.8 Mb 0.0075 SOD2 – superoxide dismutase 2, mitochondrial; plays a
role in oxidative stress, and has been linked to bronchial
hyperresponsiveness and COPD [79]

rs13239058 7 139.3 Mb 0.0079 TBXAS1 – see Table 1 above

rs10519096 15 59.1 Mb 0.0086 ADAM10 – disintegrin and metalloproteinase domain-
containing protein 10; plays an important role in im-
munoglobulin E dependent lung inflammation [62]

rs8111845 19 41.6 Mb 0.0066 TGFB1 – transforming growth factor β1; has pro-
inflammatory as well as anti-inflammatory properties, and
has been linked to asthma and airway remodeling [66]

CYP2A6, CYP2A7, RAB4B, MIA, EGLND – genes lo-
cated in a known COPD locus [10]

rs6116189 20 4.0 Mb 0.0067 ADAM33 – disintegrin and metalloproteinase domain-
containing protein 33; has been implicated in asthma by
several independent studies [85, 68]

rs6077566 20 9.5 Mb 0.0101 PLCB4 – see Table 1 above

rs1321715 20 58.8 Mb 0.0061 CDH26 – cadherin-like 26; has been linked to asthma-
related traits [29]

bronchodilator response (BDR), which measures lung response to bronchodilator drugs. For this
analysis, we use data from the CAMP longitudinal study of childhood asthma [75] with n = 552
subjects genotyped at p = 510,540 SNPs from across all 22 autosomal chromosomes. After pre-
processing, in which we removed subjects with missing data and SNPs with minor allele frequency
below 0.05, we were left with n = 465 and p = 509,299. In order to control for non-genetic effects,
we incorporated several static covariates into our model, including: sex, race, the age of onset of
asthma, the clinic where the patient’s traits were measured, and the treatment or control group to
which the patient was assigned in the clinical trial associated with the CAMP study.

For computational efficiency, we first used our approach to filter out a relatively small set of
SNPs to include in the final analysis for each phenotype. To do this, we split the dataset into 100
subsets, each containing approximately 5,000 SNPs, and ran TV-GroupSpAM separately on each
set. We regulated the model sparsity by using a binary search procedure to identify a value of
λ that selected between 90 and 110 SNPs from each subset, following the example of [91]. This
yielded a filtered set of 10,118 SNPs for the FVC model and 9,621 SNPs for the BDR model.
Figure 2.5 shows the model weight (an indicator of significance) of every SNP that was selected in
the filtering step for each phenotype. Next we fit a new global model for each trait using only these
selected SNPs, and chose a value of λ that yielded approximately 50 SNPs with nonzero effect on
the phenotype (yielding 48 for FVC and 51 for BDR). Finally, we refit the model on just these
selected SNPs with no regularization penalty, and use the estimated group functional norms to
determine the effect size of each SNP. Note that the FVC effect sizes are much higher in magnitude
than the BDR effect sizes because the FVC phenotype is measured in different units than the BDR
phenotype.
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Figure 2.6: Examples of estimated dynamic SNP effects. Top row shows five SNPs selected from
FVC model. Bottom row shows five SNPs selected from BDR model.
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Figure 2.7: Average stability of the FVC model (left) and BDR model (right) for different fractions
of selected SNPs. Shaded region shows standard deviation. Red line indicates the fraction of the
filtered SNPs that we selected in our final analysis, which yielded 48 SNPs for FVC and 51 SNPs
for BDR.

In order to analyze the validity of our results, we identified all genes located within 500 Kb of
each SNP in the final selected sets and then determined whether any of the genetic loci or nearby
genes are known to be associated with asthma or asthma-related functions in the existing literature.
Because asthma is a disease characterized by inflammation and constriction of the airways of the
lungs, we specifically searched for genes that have been linked to lung function or inflammatory
response. Furthermore, since asthma is partly driven by a series of interactions between vascular
endothelial cells and leukocytes [8], we also searched for genes involved in functions of the vascular
system or the immune system, particularly those in pathways involving T-helper 2 (Th2) cells,
which play a central role in the pathogenesis of asthma [69].

We list a curated subset of the SNPs selected in the FVC and BDR models in Tables 2.1 and 2.2,
along with the nearby genes that can be linked to asthma. Our model was able to identify several
genetic loci that have a well-established connection to asthma. For example, SNP rs6116189 on
chromosome 20 is located near the ADAM33 gene, which has been implicated in asthma by several
independent studies [68]. In addition, SNP rs1450118 on chromosome 3 is located near IL1RAP, a
gene that produces the Interleukin 1 receptor accessory protein needed for the binding of Interleukin
33 (a member of the Interleukin 1 family) to its receptor encoded by the IL1RL1 gene, which is
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known to play an important role in asthma [69]. Finally, the locus on chromosome 7 at 139.3 Mb
is particularly interesting because it was selected in both the FVC and BDR models. This SNP is
located near the TBXAS1 gene, which encodes Thromboxane-A synthase, an enzyme that is known
to play a role in asthma [70]. We plot some examples of the estimated time-varying effects of SNPs
selected in our FVC and BDR models in Figure 2.6.

Finally, in order to evaluate the sensitivity of TV-GroupSpAM to noise in the data, we returned
to the two filtered sets of ∼10,000 SNPs each and reran the final selection step on multiple 90%
subsamples of the data, then analyzed the stability of the set of selected SNPs. Because the
stability naturally varies with the total number of SNPs being selected, we ran our algorithm on
each subsample for a fixed set of λ values such that the fraction of selected SNPs ranged from
0.5% to nearly 100%. We then calculated the average stability for a particular value of λ as the
average pairwise overlap among the selected SNP sets divided by the average number of SNPs
selected across all subsamples. We plot the stability as a function of the average percentage of
SNPs selected in Figure 2.7, with the shaded region showing the standard deviation of the pairwise
stability. These results indicate that the stability of the FVC model when selecting 0.47% of SNPs
(48 out of 10,118) is 32% and the stability of the BDR model when selecting 0.53% of SNPs (51
out of 9,621) is 39%.

2.4 Discussion

In this work, we propose a new approach to GWAS that bridges the gap between existing penalized
regression methods, such as the lasso and group lasso, and dynamic trait methods, such as fGWAS.
Our approach uses penalized regression to identify a sparse set of SNPs that jointly influence a
dynamic trait. This is a challenging task for several reasons: first, we must contend with high-
dimensional data, which requires that we regularize the model to perform variable selection; second,
we do not know the true underlying model by which each SNP acts on the phenotype, and therefore
we must avoid making parametric assumptions about these patterns; and third, we assume that
SNP effects vary smoothly over time, which means that we cannot apply a standard multi-task
regression model that treats the time series as a set of unordered traits.

Although TV-GroupSpAM achieves significantly better performance on synthetic data than
existing methods, there are still certain challenging aspects of genome-wide association mapping
that are not addressed by this approach. One of these is the task of rare variant detection. Although
our method is robust to detecting spurious effects from rare variants, we are also not able to detect
true effects from rare variants with high power. This is due to the lack of data available for the
aa genotype in SNPs with very low minor allele frequency; because we estimate a separate effect
function for each SNP genotype, we are unable to accurately estimate faa when there are very few
data points with this genotype. Modifying TV-GroupSpAM to more accurately detect the effects
of rare variants would be an interesting direction for future work.
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Chapter 3

Inverse-Covariance Fused Lasso

3.1 Introduction

A critical task in the study of biological systems is understanding how gene expression is regulated
within the cell. Although this problem has been studied extensively over the past few decades, it
has recently gained momentum due to rapid advancements in techniques for high-throughput data
acquisition. Within this task, two problems that have received significant attention in recent years
are (a) understanding how various genetic loci regulate gene expression, a problem known as eQTL
mapping [77], and (b) determining which have a direct influence on the expression of other genes,
a problem known as gene network estimation [35]. Prior work on learning regulatory associations
has largely treated eQTL mapping and gene network estimation as completely separate problems.

In this work, we pursue a holistic approach to discovering the patterns of gene regulation in the
cell by integrating eQTL mapping and gene network estimation into a single model. Specifically,
given a dataset that contains both genotype information for a set of single nucleotide polymorphisms
(SNPs) and mRNA expression measurements for a set of genes, we aim to simultaneously learn
the SNP-gene and gene-gene relationships. The key element of our approach is that we transfer
knowledge between these two tasks in order to yield more accurate solutions to both problems.

In order to share information between tasks, we assume that two genes that are tightly linked
in a regulatory network are likely to be associated with similar sets of SNPs in an eQTL map, and
vice versa. Our assumption is motivated by the observation that genes participating in the same
biological pathway or module are usually co-expressed or co-regulated, and therefore linked in a
gene network [4]. Because of this, when the expression of one gene is perturbed, it is likely that
the expression of the entire pathway will be affected. In the case of eQTL mapping, this suggests
that any genetic locus that is associated with the expression of one gene is likely to influence the
expression of the entire subnetwork to which the gene belongs. By explicitly encoding these patterns
into our model, we can take advantage of this biological knowledge to boost our statistical power for
detecting eQTLs. Ultimately, this allows us to leverage information about gene-gene relationships
to learn a more accurate set of eQTL associations, and similarly to leverage information about
SNP-gene relationships to learn a more accurate gene network.

Based on these key assumptions, we construct a unified model for this problem by formulating
it as a multiple-output regression task in which we jointly estimate the regression coefficients
and the inverse covariance structure among the response variables. Specifically, given SNPs x =
(x1, . . . , xp) and genes y = (y1, . . . , yq), our goal is to regress y on x and simultaneously estimate
the inverse covariance of y. In this model, the matrix of regression coefficients encodes the SNP-
gene relationships in the eQTL map, whereas the inverse covariance matrix captures the gene-gene
relationships in the gene network. In order to ensure that information is transferred between the
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two components of the model, we incorporate a regularization penalty that explicitly encourages
pairs of genes that have a high weight in the inverse covariance matrix to also have similar regression
coefficient values. This structured penalty enables the two estimates to learn from one another as
well as from the data.

3.2 Background

Before presenting our approach, we provide some background on the problems of penalized multiple-
output regression and sparse inverse covariance estimation, which will form the building blocks of
our unified model.

In what follows, we assume X is an n-by-p dimensional matrix of SNP genotypes, which we
also call inputs, and Y is an n-by-q dimensional matrix of gene expression values, which we also
call outputs. Here n is the number of samples, p is the number of SNPs, and q is the number of
genes. The element xij ∈ {0, 1, 2} represents the genotype value of sample i at SNP j, encoded as
0 for two copies of the minor allele, 1 for one copy of the minor allele, and 2 for two copies of the
minor allele. Similarly yik ∈ R represents the expression value of sample i in gene k. We assume
that the expression values for each gene are mean-centered.

Multiple-Output Lasso. Given input matrix X and output matrix Y , the standard `1-penalized
multiple-output regression problem, also known as the multi-task lasso [84], is given by

min
B

1
n‖Y −XB‖

2
F + λ‖B‖1 (3.1)

where B is a p-by-q dimensional matrix and βjk is the regression coefficient that maps SNP xj to
gene yk. Here ‖ · ‖1 is an `1 norm penalty that induces sparsity among the estimated coefficients,
and λ is a regularization parameter that controls the degree of sparsity. The objective function
given above is derived from the penalized negative log likelihood of a multivariate Gaussian distri-
bution, assuming y |x ∼ N (xTB, ε2I) where we let ε2 = 1 for simplicity. Although this problem is
formulated in a multiple-output framework, the `1 norm penalty merely encourages sparsity, and
does not enforce any shared structure between the regression coefficients of different outputs. As a
result, the objective function given in (3.1) decomposes into q independent regression problems.

Graph-Guided Fused Lasso. Given a weighted graph G ∈ Rq×q that encodes a set of pairwise
relationships among the outputs, we can modify the regression problem by imposing an additional
fusion penalty that encourages genes yk and ym to have similar parameter vectors β·k and β·m when
the weight of the edge connecting them is large. This problem is known as the graph-guided fused
lasso [45, 44, 18] and is given by

min
B

1
n‖Y −XB‖

2
F + λ‖B‖1 (3.2)

+ γ
∑

k,m |gkm| · ‖β·k − sign(gkm)β·m‖1

Here the `1 norm penalty again encourages sparsity in the estimated coefficient matrix. In contrast,
the second penalty term, known as a graph-guided fusion penalty, encourages similarity among the
regression parameters for all pairs of outputs. The weight of each term in the fusion penalty is
dictated by |gkm|, which encodes the strength of the relationship between yk and ym. Furthermore,
the sign of gkm determines whether to encourage a positive or negative relationship between pa-
rameters; if gkm > 0 (i.e. genes yk and ym are positively correlated), then we encourage β·k to be
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equal to β·m, but if gkm < 0 (i.e. genes yk and ym are negatively correlated), we encourage β·k to
be equal to −β·m. If gkm = 0, then genes yk and ym are unrelated, and so we don’t fuse their
respective regression coefficients.

Sparse Inverse Covariance Estimation. In the graph-guided fused lasso model defined in
(3.2), the graph G must be known ahead of time. However, it is also possible to learn a network
over the set of genes. One way to do this is to estimate their pairwise conditional independence
relationships. If we assume y ∼ N (µ,Σ), where we let µ = 0 for simplicity, then these conditional
independencies are encoded in the inverse covariance matrix, or precision matrix, defined as Θ =
Σ−1. We can obtain a sparse estimate of the precision matrix using the graphical lasso [30] given
by

min
Θ

1
n tr(Y TY Θ)− log det(Θ) + λ‖Θ‖1 (3.3)

This objective is again derived from the penalized negative log likelihood of a Gaussian distribution,
where this time the `1 penalty term encourages sparsity among the entries of the precision matrix.

3.3 Method

We now introduce a new approach for jointly estimating the coefficients in a multiple-output re-
gression problem and the edges of a network over the regression outputs. We apply this technique
to the problem of simultaneously learning an eQTL map and a gene regulatory network from
genome (SNP) data and transcriptome (gene expression) data. Although we focus exclusively on
this application, the same problem formulation appears in other domains as well.

3.3.1 Joint Regression and Network Estimation Model

Given SNPs x ∈ Rp and genes y ∈ Rq, in order to jointly model the n-by-p regression parameter
matrix B and the q-by-q inverse covariance matrix Θ, we begin with two core modeling assumptions,

x ∼ N (0, T ) (3.4)

y |x ∼ N (xTB,E) (3.5)

where T is the covariance of x and E is the conditional covariance of y |x. Given the above model,
we can also derive the marginal distribution of y. To do this, we first use the fact that the marginal
distribution p(y) is Gaussian.1 We can then derive the mean and covariance of y, as follows.

Ey(y) = Ex(Ey|x(y|x)) = 0

Covy(y) = Ex(Covy|x(y|x)) + Covx(Ey|x(y|x)) = E +BTTB

Using these facts, we conclude that the distribution of y is given by

y ∼ N (0,Θ−1) (3.6)

where Θ−1 = E + BTTB denotes the marginal covariance of y. This allows us to explicitly relate
Θ, the inverse covariance of y, to B, the matrix of regression parameters. Lastly, we simplify our

1See Equation B.44 of Appendix B in [9].
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model by assuming T = τ2Ip×p and E = ε2Iq×q. With this change, the relationship between B and
Θ−1 can be summarized as Θ−1 ∝ BTB because B is now the only term that contributes to the
off-diagonal entries of Θ and hence to the inverse covariance structure among the genes.2

3.3.2 Estimating Model Parameters with a Fusion Penalty

Now that we have a model that captures B and Θ, we want to jointly estimate these parameters
from the data while encouraging the relationship Θ−1 ∝ BTB. To do this, we formulate our model
as a convex optimization problem with an objective function of the form

lossy|x(B) + lossy(Θ) + penalty(B,Θ) (3.7)

where lossy|x(B) is a loss function derived from the negative log likelihood of y |x, lossy(Θ) is a loss
function derived from the negative log likelihood of y, and penalty(B,−Θ) is a penalty term that
encourages shared structure between the estimates of B and Θ.

Given n i.i.d. observations of x and y, let X be a matrix that contains one observation of x per
row and let Y be a matrix that contains one observation of y per row. Then we define the inverse
covariance fused lasso (ICLasso) optimization problem as

min
B,Θ

1
n‖Y −XB‖

2
F + 1

n tr(Y TY Θ)− log det(Θ) (3.8)

+ λ1‖B‖1 + λ2‖Θ‖1
+ γ

∑
k,m |θkm| · ‖β·k + sign(θkm)β·m‖1

From a statistical perspective, the above formulation is unusual because we aim to simultaneously
optimize the marginal and conditional likelihood functions of y. However, when we consider it
simply as an optimization problem and divorce it from the underlying model, we see that it boils
down to a combination of the objectives from the multiple-output lasso and the graphical lasso
problems, with the addition of a graph-guided fused lasso penalty to encourage transfer learning
between the estimates of B and Θ.

When Θ is fixed, our objective reduces to the graph-guided fused lasso with the graph given by
G = −Θ. When B is fixed, our objective reduces to a variant of the graphical lasso in which the
`1 norm penalty has a different weight for each element of the inverse covariance matrix, i.e. the
standard penalty term p(Θ) = λ

∑
k,m |θkm| is replaced by p(Θ) =

∑
k,mwkm|θkm| where the weights

are given by wkm = λ2 + γ‖β·k + sign(θkm)β·m‖.
We further deconstruct the ICLasso objective by describing the role of each term in the model:

• The first term 1
n‖Y −XB‖

2
F is the regression loss, and is derived from the conditional

log likelihood of y |x. Its role is to encourage the coefficients B to map X to Y , i.e. to
obtain a good estimate of the eQTL map from the data.

• The second term 1
n tr(Y TY Θ)− log det(Θ) is the inverse covariance loss, and is derived

from the marginal log likelihood of y. Its role is to encourage the network Θ to reflect
the partial correlations among the outputs, i.e. to obtain a good estimate of the gene
network from the data.

2Although we make this simplifying assumption in our model, we later demonstrate via simulation experiments
that ICLasso still performs well in practice when these constraints are violated, namely when the dimensions of x are
not independent and the dimensions of y have residual covariance structure once the effect of xTB is removed.
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• The third term λ1‖B‖1 is an `1 norm penalty over the matrix of regression coefficients
that induces sparsity among the SNP-gene interactions encoded in B.

• The fourth term λ2‖Θ‖1 is an `1 norm penalty over the precision matrix that induces
sparsity among the gene-gene interactions encoded in Θ.

• The final term γ
∑

k,m |θkm|·‖β·k+sign(θkm)β·m‖1 is a graph-guided fusion penalty that
encourages similarity between the coefficients of closely related outputs; specifically,
when genes yk and ym have a positive partial correlation, it fuses βjk towards βjm for
all SNPs xj , and when genes yk and ym have a negative partial correlation, it fuses βjk
towards −βjm for all SNPs xj .

3

In the above objective, the loss functions come directly out of the modeling assumptions given
in (3.5) and (3.6). The sparsity-inducing `1 norm penalties make estimation feasible in the high-
dimensional setting where p, q > n, and contribute to the interpretability of the eQTL map and
gene network.

3.3.3 Sparse Structure in B and Θ

In this section, we describe how the ICLasso model captures sparse structure that is shared between
the eQTL map B and the gene network Θ and in doing so enables transfer learning.

We first prove that the graph-guided fused lasso penalty encourages the structure Θ−1 ∝ BTB,
thereby linking the two estimates. Consider the optimization problem Θ̂ = arg minΘ f(Θ) ≡
tr(BTBΘ)−log det(Θ). We can solve this problem in closed form by taking the gradient ∇Θf(Θ) =
BTB − Θ−1 and setting it to 0, which yields the solution Θ̂−1 = BTB. This suggests that the
penalty tr(BTBΘ) encourages the desired structure, while the log determinant term enforces the
constraint that Θ be positive semidefinite, which is necessary for Θ to be a valid inverse covariance
matrix.

However, instead of directly using this penalty in our model, we demonstrate that it encourages
similar structure as the graph-guided fused lasso penalty. We compare the trace penalty, denoted
TRP, and the graph-guided fused lasso penalty, denoted GFL, below.

TRP(B,Θ) = tr(BTBΘ) =

q∑
k=1

q∑
m=1

θkm · βT·kβ·m (3.9)

GFL(B,−Θ) =

q∑
k=1

q∑
m=1

|θkm| · ‖β·k + sign(θkm)β·m‖1 (3.10)

We show that these penalties are closely related by considering three cases.

• When θkm = 0, the relevant terms in both TRP and GFL go to zero. In this case,
nothing links β·k and β·m in either penalty.

• When θkm < 0, the relevant term in TRP is minimized when βT·kβ·m is large and
positive, which occurs when β·k and β·m point in the same direction. Similarly, the
corresponding term in GFL is minimized when β·k = β·m. In this case, both penalties

3Note that θkm is negatively proportional to the partial correlation between yk and ym, meaning that a negative
value of θkm indicates a positive partial correlation and vice versa (see, e.g., [71]). This explains why the sign is
flipped in the fusion penalty in (3.8) relative to the one in (3.2).
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Figure 3.1: A toy example with 10 SNPs and 12 genes grouped into 3 modules. When B exhibits
a certain type of sparse structure, Σ = I +BTB and Θ = Σ−1 will also be sparse.

encourage similarity between β·k and β·m with strength proportional to the magnitude
of θkm.

• When θkm > 0, the relevant term in TRP is minimized when βT·kβ·m is large and
negative, which occurs when β·k and β·m point in opposite directions. Similarly, the
corresponding term in GFL is minimized when β·k = −β·m. In this case, both penalties
encourage similarity between β·k and −β·m with strength proportional to the magnitude
of θkm.

We choose to use the graph-guided fused lasso penalty instead of the trace penalty because it more
strictly enforces the relationship between B and Θ−1 by fusing the regression parameter values of
highly correlated genes.

Next, we describe a set of conditions under which our assumptions on B and Θ are compatible
with one another. Although we do not provide theoretical guarantees on what type of structure
will be learned by our method, we illustrate via a toy example that certain biologically realistic
scenarios will naturally lead to sparsity in both B and Θ = (BTB)−1.

Consider a gene network that is organized into a set of densely connected sub-networks corre-
sponding to functional gene modules (e.g., pathways). In this case, we might expect the true Θ to
be block diagonal, meaning that there exist blocks C1, . . . , Cd such that any pair of genes belonging
to two different blocks are not connected in the gene network, i.e. θkm = 0 for any yk ∈ Ca and
ym /∈ Ca. Furthermore, suppose our central assumption on the relationship between B and Θ is
satisfied, namely genes that are linked in the gene network are associated with similar sets of SNPs
in the eQTL map. Then we might expect that any pair of genes belonging to the same block will
have the same SNP-gene associations, i.e. βjk = βjm ∀j for any yk, ym ∈ Ca. Since we also assume
that the true B is sparse, this would lead to a block sparse pattern in B in which each gene module
is associated with only a subset of the SNPs.

A simple of example of this type of sparse structure is shown in Figure 3.1. Note that such
a pattern in B would lead to block diagonal structure in Σ = I + BTB that preserves the blocks
defined by C1, . . . , Cd. Furthermore, since the inverse of a block diagonal matrix is also block
diagonal with the same blocks, this implies that Θ = Σ−1 = (I + BTB)−1 will be block diagonal
with blocks C1, . . . , Cd.

This provides an example of a scenario that occurs naturally in biological networks and satisfies
our modeling assumptions. However, we note that our model is flexible enough to handle other
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types of sparse structure as well. In fact, one of the main advantages of our approach is that the
sparsity pattern is learned from the data rather than specified in advanced.

3.3.4 Relationship to Other Methods

There are currently two existing approaches that jointly estimate regression coefficients and network
structure: multivariate regression with covariance estimation (MRCE), from [78], and conditional
Gaussian graphical models (CGGM), originally from [80] and further developed by [92] and [102].
In this section, we describe how our approach differs from these others.

All three methods, including ours, assume that the inputsX and outputs Y are related according
to the basic linear model Y = XB + E, where E is a matrix of Gaussian noise. However, each
approach imposes a different set of additional assumptions on top of this, which we discuss below.

MRCE. This method assumes that E ∼ N (0,Ω−1), which leads to Y |X ∼ N (XB,Ω−1). MRCE
estimates B and Ω by solving the following objective:

min
B,Ω

1
n tr((Y −XB)T (Y −XB) Ω) (3.11)

− log det(Ω) + λ1‖B‖1 + λ2‖Ω‖1

It’s very important to note that Ω is the conditional inverse covariance of Y |X, which actually
corresponds to the inverse covariance of the noise matrix E rather than the inverse covariance of
the output matrix Y . We therefore argue that Ω doesn’t capture any patterns that are shared
with the regression coefficients B, since by definition Ω encodes the structure in Y that cannot be
explained by XB.

CGGM. This approach makes an initial assumption that X and Y are jointly Gaussian with the
following distribution: (

X
Y

)
∼ N

([
0
0

]
,

[
Γ Λ

ΛT Ω

])
In this formulation, the distribution of Y |X is given by N (−XΛΩ−1,Ω−1). This corresponds to
the reparameterization of B as −ΛΩ−1, where Ω is the conditional inverse covariance matrix and
Λ represents the “direct” influence of X on Y . CGGM estimates Λ and Ω by solving the following
optimization problem, where sparsity penalties are applied to Λ and Ω instead of B and Ω as was
the case in (3.11):

min
Λ,Ω

1
n tr((Y +XΛΩ−1)T (Y +XΛΩ−1) Ω) (3.12)

− log det(Ω) + λ1‖Λ‖1 + λ2‖Ω‖1

Here the meaning of Ω has not changed, and it once again represents the inverse covariance of the
noise matrix.

ICLasso. Our method implicitly assumes two underlying models: Y |X ∼ N (XB, I) and Y ∼
N (0,Θ−1). In this case, Θ represents the marginal inverse covariance of Y rather than the condi-
tional inverse covariance of Y |X, which was captured by Ω in (3.11) and (3.12). The optimization
problem in (3.8) is obtained by combining the loss functions derived from the log likelihood of each
model and then incorporating sparsity penalties over B and Θ and an additional graph-guided
fusion penalty to encourage shared structure.
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Both MRCE and CGGM have two important drawbacks that are not shared by our approach.
First, both of these methods estimate Ω, the precision matrix of the noise term, rather than
Θ, the precision matrix of the outputs Y . Second, neither method incorporates a structured
sparsity penalty that explicitly encourages shared structure between the network and the regression
coefficients. In fact, it would not make sense for these methods to apply a joint penalty over B and
Ω because, as discussed above, we wouldn’t expect these parameters to have any shared structure.
By comparison, our method learns the true output network Θ and uses a graph-guided fused lasso
penalty to explicitly encourage outputs that are closely related in Θ to have similar parameter
values in B.

3.3.5 Optimization via Alternating Minimization

Finally, we present an efficient algorithm to solve the inverse-covariance fused lasso problem defined
in (3.8). We start by rewriting the fusion penalty as follows:

GFL(B,−Θ) = γ
∑

k,m |θkm| · ‖β·k + sign(θkm)β·m‖1
= γ

∑
k,m max{θkm, 0} · ‖β·k + β·m‖1

+ γ
∑

k,m max{−θkm, 0} · ‖β·k − β·m‖1,

from which it is clear that GFL is biconvex in B and Θ. Thus, upon defining

g(B) = 1
n‖Y −XB‖

2
F + λ1‖B‖1

h(Θ) = 1
n tr(Y TY Θ)− log det(Θ) + λ2‖Θ‖1,

we can rewrite the original optimization problem as

min
B,Θ

g(B) + h(Θ) + GFL(B,−Θ). (3.13)

Here g(B) is the usual lasso formulation in (3.1), h(Θ) is the usual graphical lasso formulation in
(3.3), and the graph-guided fusion penalty couples the two problems. Since GFL is biconvex, we
can solve the joint problem (3.13) using an alternating minimization strategy. Next we describe how
we leverage and extend state-of-the-art convex optimization routines to solve each sub-problem.

Fix Θ, Minimize B. When Θ is fixed, minimizing the objective over B reduces to the well-
known graph-guided fused lasso problem,

fΘ(B) = g(B) + GFL(B,−Θ), (3.14)

which we optimize using the proximal-average proximal gradient descent (PA-PG) algorithm from
[100]. This algorithm is very simple. On each iteration, we first take a gradient step of the form
B − ηX>(XB − Y ) using some small step size η. Then we compute the weighted average of the
component proximal operators for each pair of outputs, where the prox that corresponds to pair
(k,m) is given by:

B̂ = arg min
B

1
2η‖B − Z‖

2
F + ‖β.k + sgn(θkm)β.m‖1 (3.15)

and the weight of this term is given by |θkm|/θtot where θtot =
∑

k,m |θk,m|. Due to the separability
of (3.15) over the rows of B, we can solve for each βj· independently. Furthermore, it’s clear that
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Algorithm 3.1 PA-PG for Graph-Guided Fused Lasso

1: input: data X,Y , graph Θ, step size η
2: initialize: B = 0
3: repeat
4: B ← B − ηX>(XB − Y )
5: for each edge (k,m) with θkm 6= 0 do
6: dkm ← β.k + sign(θkm)β.m
7: β.k ← β.k − (θkm/θtot) ·min{η, 1

2 |dkm|}
8: β.m ← β.m − (θkm/θtot) ·min{η, 1

2 |dkm|}
9: end for

10: until convergence

for any i 6∈ {k,m}, we have βji = zji. Solving for the remaining elements βjk and βjm leads to the
following two-dimensional subproblem:

β̂jk, β̂jm = arg min
βjk,βjm

1
2η (βjk − zjk)2 (3.16)

+ (βjm − zjm)2 + |βjk + sgn(θkm)βjm|.

which can be solved in closed form. Therefore the full solution to the prox operator can be written
compactly as follows, where dkm = z·k + sign(θkm)z·m.

β̂·i = z·i for i /∈ {k,m}
β̂·k = z·k − sign(dkm) ·min{η, 1

2 |dkm|}
β̂·m = z·m − sign(θkm) · sign(dkm) ·min{η, 1

2 |dkm|}

From these formulas, we can see that βjk and − sign(θkm)βjm are always “fused” towards each
other. For example, when sign(θkm) < 0, we want to push βjk and βjm towards the same value. In
this case, the larger of zjk and zjm will be decremented and the smaller value will be incremented
by the same quantity.

We summarize this procedure in Algorithm 3.1. In practice, we use the accelerated version
of the algorithm, PA-APG. Using the argument from [100], we can prove that this accelerated
algorithm converges to an ε-optimal solution in at most O(1/ε) steps, which is significantly better
than the O(1/

√
ε) converge rate of subgradient descent.

Fix B, Minimize Θ. When B is fixed, minimizing the objective over Θ reduces to a variation
of the well-known graphical lasso problem,

fB(Θ) = h(Θ) + GFL(B,−Θ), (3.17)

which can be optimized by adapting the block coordinate descent (BCD) algorithm of [30]. Indeed,
we can rewrite the objective by introducing two q × q dimensional coefficient matrices U and L
whose elements are defined as

Ukm = 1
nY
>
.k Y.m + λ2 + γ‖β.k + β.m‖1 (3.18)

Lkm = 1
nY
>
.k Y.m − λ2 − γ‖β.k − β.m‖1. (3.19)
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Algorithm 3.2 BCD for the Generalized Graphical Lasso

1: input: sample covariance matrix S = 1
nY

TY , coefficient matrices U,L
2: initialize: Ξ = U
3: repeat
4: for j = 1 to q do
5: ξ ← Ξ\j,j , u← U\j,j , l← L\j,j , Ξ̃← Ξ\j,\j
6: α = 0
7: repeat
8: for j = 1 to q − 1 do
9: δ = Ξ̃jjαj +

∑
k 6=j Ξ̃jkαk

10: if δ ≥ −lj then αj = (−δ − lj)/Ξ̃jj
11: else if δ ≤ −uj then αj = (−δ − uj)/Ξ̃jj
12: else αj = 0
13: end for
14: until convergence
15: Ξ\j,\j = −Ξ̃α
16: end for
17: until convergence
18: Θ = Ξ−1

Using this notation, we collect all linear terms involving Θ+ := max{Θ, 0} and Θ− := max{−Θ, 0}
and reformulate the objective given in (3.17) as

min
Θ
− log det(Θ) + 〈Θ+, U〉 − 〈Θ−, L〉 . (3.20)

The graphical lasso is a special case of the above problem in which U = L. In our case, U and L
differ because of the structure of the GFL penalty. Nevertheless, we can derive a block coordinate
algorithm for this more general setting.

First we dualize (3.20) to get the following problem:

max
L≤Ξ≤U

log det Ξ. (3.21)

where Θ = Ξ−1. Then it can be shown that the diagonal of the covariance Ξ must attain the upper
bound, i.e. we must have Ξjj = Ujj ∀ j = 1, . . . , q. Next, we perform block coordinate descent by
cycling through each column (or row, due to symmetry) of Ξ. We denoted an arbitrary column of
Ξ by ξj , with corresponding columns uj and `j in U and L, respectively. Let Ξ̃j be the submatrix
of Ξ obtained by deleting column j and row j. Then, by applying Schur’s complement, maximizing
(3.21) with respect to ξj with all other columns fixed amounts to:

min
`j≤ξj≤uj

1
2ξ
>
j Ξ̃−1

j ξj . (3.22)

Dualizing again, with ξj = −Ξ̃jα, we obtain

min
α

1
2α
>Ξ̃jα+ u>α+ − `>α−, (3.23)

which is essentially a lasso problem that we can solve using any known algorithm. We outline the
procedure for solving (3.17) in Algorithm 3.2. We use coordinate descent and apply a variant of
the soft-thresholding operator to solve for each coordinate. This algorithm converges very quickly
because there is no tuning of the step size, and each iteration involves only a matrix-vector product.
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3.4 Experiments

In this section, we present the results from a series of experiments on both synthetic and real data.
We compare our method to several baselines and demonstrate that it achieves better recovery of
the underlying structure of B and Θ than existing methods.

3.4.1 Simulation Study

We begin by evaluating our model on synthetic data so that we can directly measure how accurately
the sparse structure of the eQTL map and the gene network are recovered. We compare our eQTL
map estimates B̂ to several baselines, including traditional pairwise linear regression (LinReg),
standard multi-task lasso (Lasso), graph-guided fused lasso using a sparse covariance matrix as its
graph (GFLasso1), graph-guided fused lasso using a sparse precision matrix as its graph (GFlasso2),
sparse multivariate regression with covariance estimation (MRCE), and the conditional Gaussian
graphical model (CGGM). We compare our network estimates Θ̂ to a traditional pairwise correlation
network (Corr) and the graphical lasso (GLasso).

For the two pairwise methods, LinReg and Corr, we use the permutation test proposed by [?
] to select a global significance threshold that achieves a family-wise type I error rate of at most
5%. Because these methods are quite efficient, it is computationally feasible to perform a sufficient
number of permutations to accurately estimate this threshold (we use 2,000 permutations). For all
other methods except GLasso, we select hyperparameter values via a two-step procedure in which
we first refit B using only the selected inputs xj : βjk 6= 0 for each output yk, and then choose the
hyperparameter setting that minimizes the prediction error of Y from the regression model on a
held-out validation set. Since GLasso does not produce an estimate of B, we choose the value of λ
that minimizes the graphical lasso loss on the validation set. Using this approach, we search over
a grid for the best parameter values.

Importantly, when running ICLasso, we actually fix the value of λ2 to a small non-zero value
rather than selecting it via a grid search. This works well in practice when B is not fully sparse,
because the fusion penalty already applies shrinkage directly to the parameters of Θ. This also
reduces the number of hyperparameters that we need to tune for ICLasso from 3 to 2, which is the
same as several of the baselines. Before running all methods, we standardize our data by performing
mean centering and variance normalization of X and mean centering of Y .

In our synthetic data experiments, we focus on recovering block-structured networks in which
the genes are divided into a set of modules, or groups. In order to generate data according to our
model, we assume that the genes within each module only regulate one another and are associated
with the same set of eQTLs. Specifically, this means that if genes k and m belong to the same
module, we will have θkm 6= 0 and β·k ≈ β·m. Although we focus on this data setting because it
makes intuitive biological sense and satisfies our modeling assumptions, we note that our approach
is flexible enough to handle other types of structure among the SNPs and genes.

We generate synthetic data according to the following procedure. Given sample size n, input
dimensionality p, and output dimensionality q, we first fix the module size (a.k.a. group size) in the
gene network, g, and the number of SNPs that each gene will be associated with, s. Note that the
density of the true B will be given by s/p and the density of the true Θ will be given by g/q. Next
we fix the sparsity pattern in the eQTL map and gene network by randomly assigning each gene
to one of the modules and then selecting a random set of s SNPs that will be associated with each
module. We also associate each gene with a small number of fixed SNPs (1-2) that are associated
with every gene.

Given the sparsity structure, we generate the parameters of the nonzero values of B and Θ as
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B -- Truth

 -- Truth

B -- GFLasso1

Covariance -- GFLasso1

B -- GFLasso2

Precision -- GFLasso2

B -- CGGM

 -- CGGM

B -- ICLasso

 -- ICLasso

Figure 3.2: A comparison of results on a single synthetic dataset with p = 60 and q = 60. The
far left panel contains the ground truth for B and Θ. The remaining panels show the estimates of
the regression coefficients for each method (top) along with the graph structure that was used or
estimated by the method (bottom).

follows. For each module, we randomly designate a primary gene in that module and generate its
association strengths according to βjk ∼ Uniform(0.2, 0.8) for each SNP xj with which the primary
gene yk is associated. Next, for all other genes ym that belong to the same module as yk, we
draw βjm ∼ N (βjk, ρ

2) for the same set of SNPs, where ρ = 0.1 is a small standard deviation.
Lastly, assuming the covariance matrices E and T are given, we generate Θ by setting it equal
to (E + BTTB)−1 and then zeroing out all entries that correspond to pairs of genes belonging to
different modules.

In order to investigate a wide range of data scenarios, we consider four different settings of E
and T in our experiments. These are: (0) T = Ip×p and E = Iq×q, (1) T 6= Ip×p and E = Iq×q,
(2) T = Ip×p and E 6= Iq×q, and (3) T 6= Ip×p and E 6= Iq×q. To generate the non-identity
covariance matrices with a random covariance pattern, we first set the element at position j, k
equal to 0.7|j−k| and then we randomly reshuffle the rows and columns (using the same shuffling
for rows and columns to maintain symmetry).

Finally, once we have fixed all of the model parameters, we generate the data according to
X ∼ N (0, τ2T ) and Y |X ∼ N (XTB, ε2E). In all of the experiments that we conduct, we fix
n = 100 and use the same sample size for the training, validation, and test sets.

A synthetic data example is shown in Figure 3.2. The ground truth for both B and Θ is given
in the far left panel. The next three columns show the estimated values of B for three competing
methods, and the results of our method are shown on the far right. In this example, the drawbacks
of each of the baseline methods are evident. The covariance matrix used for the network structure
in GFLasso1 captures many spurious patterns in Y that don’t correspond to true patterns in the
regression map, which confuses the estimate of B. The precision matrix used for the network
structure in GFLasso2 does not accurately capture the true inverse covariance structure because
of the low signal-to-noise ration in Y . This prevents the fusion penalty from effectively influencing
the estimate of B. Finally, although CGGM gets a reasonable estimate of the network, despite the
fact that it learns the conditional inverse covariance Ω instead of the marginal inverse covariance Θ,
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Figure 3.3: A comparison of results on synthetic data generated with each of the four different
types of covariance structure and with several different values of p and q. We fix the group size to
g = 10 and the number of SNP associations per gene to s = 5. The top row shows the F1 score on
the recovery of the true nonzero elements of B. The second row shows the F1 score on the recovery
of the true nonzero elements of Θ. The bottom row shows the prediction error on a held out test
set. All results are averaged over 20 simulations, and the error bars show the standard error.

this structure is not explicitly enforced in B, which still leads to a poor estimate of the regression
parameters. In contrast, the cleanest estimate of both B̂ and Θ̂ comes from ICLasso.

The main results of our synthetic experiments are shown in Figures 3.3 and 3.4. We evaluate
our approach according to three metrics. In the top two rows, we show the F1 score on the recovery
of the true nonzero elements of B and Θ, respectively. This reflects the ability of each method to
learn the correct structure of the eQTL map and the gene network. In the bottom row, we show
the prediction error of Y on an out-of-sample test set. We note that this test set is completely
separate from both the training set (used to estimate the model parameters) and the validation set
(used to select the best values of the hyperparameters).

In our first experiment, we jointly vary the number of SNPs and genes, keeping their ratio
fixed. We show that ICLasso achieves the best performance even when we violate our modeling
assumptions by introducing covariance among the SNPs, introducing conditional covariance among
the genes, or both. In our second experiment, we vary the density of B, the density of Θ, and the
number of SNPs while keeping the number of genes fixed. Our results clearly demonstrate that
ICLasso outperforms all baselines in nearly all of the settings we consider.

3.4.2 Yeast eQTL Study

In order to evaluate our approach in a real-world setting and provide a proof of concept for our
model, we applied ICLasso to a yeast eQTL dataset from [11] that consists of 2, 956 SNP genotypes
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Figure 3.4: A comparison of results on synthetic data generated with different settings. In the first
two columns, we use covariance type 0, p = 1000, q = 100, and vary the density of B and Θ. In
the third column, we use covariance type 3, q = 100, g = 10, s = 5, and vary the number of SNPs.
The top row shows the F1 score on the recovery of the true nonzero elements of B. The second
row shows the F1 score on the recovery of the true nonzero elements of Θ. The bottom row shows
the prediction error on a held out test set. All results are averaged over 20 simulations, and the
error bars show the standard error.

Table 3.1: Regression Error on Yeast Data

density training
error

validation
error

Lasso 1.65% 0.502 0.718

GFLasso 2.87% 0.392 0.715

ICLasso 6.88% 0.395 0.703

and 5, 637 gene expression measurements across 114 yeast samples. To preprocess the data, we
removed SNPs with duplicate genotypes and retained only the 25% of genes with the highest
variance in expression, leaving p = 1, 157 SNPs and q = 1, 409 genes in our analysis.

We used our approach to jointly perform eQTL mapping and gene network inference on the yeast
dataset, treating the the SNPs as inputs X and the genes as outputs Y . We trained our model on
91 samples and used the remaining 23 samples as a validation set for tuning the hyperparameters.
Given the trained model, we read the eQTL associations from the regression coefficient matrix B̂,
which encodes SNP-gene relationships, and obtained the gene network from the inverse covariance
matrix Θ̂, which encodes gene-gene relationships. In addition to ICLasso, we ran Lasso and GFlasso
on the yeast data to obtain two additional estimates of B, and ran GLasso1 to obtain another
estimate of Θ. Note that we chose not to compare to MRCE and CGGM because these methods
performed worse than the other baselines in the most realistic data settings that we tested in our
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Table 3.2: GO and KEGG Enrichment Analysis on Yeast eQTL Map

number of enriched terms avg.
change

number of enriched SNPs avg.
change

GO-BP GO-MF KEGG GO-BP GO-MF KEGG

Lasso 1862 804 205 — 198 132 127 —

GFLasso 3499 1528 312 +77% 286 211 172 +47%

ICLasso 8046 3147 1025 +155% 590 453 441 +126%

Table 3.3: GO and KEGG Enrichment Analysis on Yeast Gene Network

number of enriched terms avg.
change

number of enriched clusters avg.
change

GO-BP GO-MF KEGG GO-BP GO-MF KEGG

GLasso 173 77 31 — 14 12 11 —

ICLasso 321 127 41 +61% 29 26 22 +108%

simulation experiments. Furthermore, we did not compare to GFLasso2 because the performance
of the two variants of GFLasso that we evaluated were comparable.

Table 3.1 shows the density of B̂ obtained with each method, along with the prediction error
of Y on the training set and on the held-out validation set, which were calculated using ‖Ytrain −
XtrainB̂‖2F and ‖Yvalid −XvalidB̂‖2F , respectively. We chose not to sacrifice any data for a test set,
but these results indicate that ICLasso achieves an equivalent or better fit to the training and
validation sets than Lasso and GFLasso.

Quantitative Analysis. Because the true yeast eQTLs and gene network structure are not
known, there is no ground truth for this problem. We instead analyzed the output of each method
by performing a series of enrichment analyses that together provide a comprehensive picture of
the biological coherence of the results. An enrichment analysis uses gene annotations to identify
specific biological processes, functions, or structures that are over-represented among a group of
genes relative to the full set of genes that is examined [82]. To evaluate our yeast data results, we
performed three types of enrichment analyses: biological process and molecular function enrichment
using annotations from the Gene Ontology (GO) database [3], and pathway enrichment using
annotations from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [43]. We used
a hypergeometric test to compute a p-value for each term, and then adjusted the values to account
for multiple hypothesis testing. Significance was determined using an adjusted p-value cutoff of
0.01.

We first analyzed B̂ by performing a per-SNP enrichment analysis. For each SNP j, we used
the nonzero elements in βj· to identify the set of genes associated with the SNP. Next we performed
GO and KEGG enrichment analyses on this group of genes by comparing their annotations to the
full set of 1, 409 genes that we included in our study. We repeated this procedure for each SNP, and
calculated the total number of terms that were enriched over all SNPs to obtain a global measure
of enrichment for B̂. In addition, we calculated the total number of SNPs that were enriched for
at least one term in each category. These results are summarized in Table 3.2. It is evident that
ICLasso outperforms both GFLasso and Lasso on estimating the regression coefficients, since it
has more than twice as many enriched terms in GO biological process, GO molecular function, and
KEGG than either baseline.
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B̂ estimated with GFlasso B̂ estimated with ICLasso

Figure 3.5: Binary heatmap of associations between SNPs (one per row) and genes (one per column),
estimated with GFLasso and ICLasso. In each image, the SNPs and genes are ordered to maximize
the visual clustering of associations.

Next we used a similar approach to evaluate the structure present in Θ̂. We first obtained
groups of genes by using spectral clustering to perform community detection among the genes
using the inferred network structure. After clustering the genes into 100 groups,4 we performed
GO and KEGG enrichment analyses on each cluster and calculated the total number of enriched
terms along with the total number of clusters that were enriched for at least one term. These results
are summarized in Table 3.3. Once again, our approach has more enrichment than the baseline
in every category, which implies that the gene network estimated by ICLasso has a much more
biologically correct structure than the network estimated by GLasso.

Qualitative Analysis. The quantitative results in Tables 3.2 and 3.3 indicate that, compared
to other methods, our approach identifies more eQTLs that are associated with genes significantly
enriched in certain biological processes and pathways. A more detailed examination of our results
revealed that many of the enriched terms correspond to metabolic pathways, and that the eQTLs
we identified agree with those discovered in a previous study that analyzed the effect of genetic
variations on the yeast metabolome.

Breunig et al. [12] identified the metabolite quantitative trait loci (mQTLs) for 34 metabolites
and then examined each mQTL for the presence of metabolic genes in the same pathway as the
linked metabolite. We found that 10 of these 34 metabolites were linked to metabolic genes where
our identified eQTLs reside. For example, Breunig et. al. determined that the metabolite valine
is linked to an mQTL in a region spanned by the ILV6 gene, which encodes a protein involved in
valine biosynthesis. In our study, we also identified an eQTL located in ILV6. Moreover, we found
that the eQTL in ILV6 is associated with 365 genes that are significantly enriched for pathways
involved in the metabolism and biosynthesis of various amino acids. This is consistent with the
fact that the metabolism and biosynthesis of amino acids in the cell needs to be coordinated.

Furthermore, our enrichment analysis shows that the eQTL-associated genes we identified

4We also clustered with 25, 50, and 200 groups and obtained similar results.
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Table 3.4: Known Alzheimer’s Disease Genes

Gene Symbol

APP, APOE, PLD3, TREM2, SORL1, GAB2, BIN1, CLU,
CD33, CR1, PICALM, ABCA7, CD2AP, MS4A6A, MS4A4E

are enriched for various metabolic pathways (e.g. sulfur, riboflavin, protein, starch, and sucrose
metabolism, oxidative phosphorylation, glycolysis), as well as more general pathways, such as cell
cycle pathways, and MAPK pathways. This is consistent with the roles of the mQTLs identified
by Breunig et al. Interestingly, among these genes, SAM1, encoding an S-adenosylmethionine syn-
thetase, is also among the eQTLs in our list. Our results show that the eQTL we found in SAM1
is associated with 252 genes that are enriched for cytoplasmic translation and ribosome functions,
consistent with the fact that SAM is the methyl donor in most methylation reactions and is essential
for DNA methylation of proteins, nucleic acids, and lipids [76].

Finally, to illustrate our results, we visualized the SNP-gene associations discovered by GFLasso
and ICLasso by plotting a binary heatmap of the two estimates of B in Figure 3.5. Within each
heatmap, both the SNPs and genes are sorted to maximize the clustering of associations. From
these plots, it’s clear that the associations discovered by ICLasso contain more interesting block
structure than those discovered by GFLasso.

3.4.3 Human eQTL Study of Alzheimer’s Disease

Finally, we applied our method to a human eQTL dataset in order to identify a set of interesting
genomic loci that may play a role in Alzheimer’s disease. For this study, we used a dataset from
[104] that contains n = 540 case and control samples of patients with Alzheimer’s disease, genotypes
of p = 555,091 SNPs across all chromosomes, and mRNA expression values of q = 40, 638 gene
probes measured in the cerebellum, a region of the brain that governs motor control and some
cognitive functions.

We preprocessed this data by selecting a subset of interesting SNPs and genes to include in
our analysis. To filter genes, we calculated the marginal variance of the expression of each gene,
the fold change in each gene’s expression between the case and control samples, and the p-value
of a t-test with the case-control status. We then selected all genes with variance in the top 10%,
fold change in the top 10%, or p-value in the bottom 10%, along with a set of 15 genes known
to be associated with Alzheimer’s disease. These genes are listed in Table 3.4. To filter SNPs,
we calculated the p-value of a chi-square test with the case-control status. We then selected all
SNPs with uncorrected p-value < 0.05, along with all SNPs located within 500kb of any of the
Alzheimer’s genes. This filtering yielded p = 24, 643 SNPs and q = 9, 692 genes.

Applying ICLasso to this dataset yielded an estimate of B̂ with 4.07% density and an estimate
of Θ̂ with 1.70% density. To analyze the results, we first constructed a set of candidate SNPs
comprised of the top 10 SNPs associated with each of the Alzheimer’s genes based on association
strength. Since some of the genes are represented by multiple probes in the dataset, there are 25
gene expression values corresponding to to the 15 Alzheimer’s genes. From these, we identified 185
unique candidate eQTLs.

Next we performed an enrichment analysis for each of these SNPs by looking at the set of genes
linked to each SNP in the eQTL map and determining whether these are enriched for any GO
biological process terms relative to the full universe of 9, 692 genes. Among these, 58 (31%) are
enriched for at least one term using a corrected p-value cutoff of 0.01. When analyzing the results,
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Table 3.5: Candidate Alzheimer’s Disease SNPs Linked to Immune Response

SNP Chrom Associated
Alzheimer’s Genes

Enriched Biological Process GO Terms
(adjusted p-value < 0.01, category size > 5)

rs12058997 1 CR1, CD33 neutrophil degranulation; neutrophil activation; myeloid cell
activation involved in immune response; myeloid leukocyte
mediated immunity; hematopoietic or lymphoid organ devel-
opment

rs1464401 3 CR1, CD33, GAB2,
APOE, TREM2

myeloid cell activation involved in immune response; immune
system development; circulatory system development; neu-
trophil activation; neutrophil degranulation; myeloid leuko-
cyte mediated immunity

rs2187204 6 CR1, CD33, APOE,
TREM2, PICALM

neutrophil degranulation; neutrophil activation, myeloid cell
activation involved in immune response; immune system de-
velopment; cardiovascular system development

rs780382 11 APP, CD33,
TREM2

neutrophil activation; neutrophil degranulation; myeloid cell
activation involved in immune response; myeloid leukocyte
mediated immunity

rs11174276 12 CLU, APOE leukocyte mediated immunity; negative regulation of cell
death; positive regulation of NF-kappaB transcription fac-
tor activity

rs4072111 15 CD33, TREM2,
PICALM, GAB2

neutrophil degranulation; neutrophil activation; myeloid cell
activation involved in immune response; myeloid leukocyte
mediated immunity

Table 3.6: Candidate Alzheimer’s Disease SNPs Linked to Metabolic Processes

SNP Chrom Associated
Alzheimer’s Genes

Enriched Biological Process GO Terms
(adjusted p-value < 0.01, category size > 5)

rs3795550 1 APP, BIN1 SRP-dependent cotranslational protein targeting to mem-
brane; nuclear-transcribed mRNA catabolic process,
nonsense-mediated decay

rs7094118 10 SORL1 nucleoside triphosphate metabolic process; nucleoside
monophosphate metabolic process; mitochondrial transla-
tional elongation; mitochondrial translational termination

rs4945276 11 GAB2 ATP synthesis coupled electron transport; ribonucleo-
side triphosphate metabolic process; purine nucleoside
monophosphate metabolic process; mitochondrial electron
transport, NADH to ubiquinone

rs1571376 14 SORL1 nucleoside triphosphate metabolic process; ribonucleoside
monophosphate metabolic process; energy derivation by ox-
idation of organic compounds; purine nucleoside monophos-
phate metabolic process; organophosphate metabolic process
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Table 3.7: Candidate Alzheimer’s Disease SNPs Linked to Neural Activity

SNP Chrom Associated
Alzheimer’s Genes

Enriched Biological Process GO Terms
(adjusted p-value < 0.01, category size > 5)

rs11123605 2 BIN1, GAB2, CD33 trans-synaptic signaling

rs2855794 11 CR1 detection of chemical stimulus involved in sensory perception
of smell

rs3895113 22 BIN1, GAB2 ensheathment of neurons

we noticed three categories of candidate eQTLs that might play a role in Alzheimer’s disease:
SNPs associated with genes enriched for immune functions, SNPs associated with genes enriched
for metabolic functions, and SNPs associated with genes enriched for neural functions. A selected
set of interesting results from each category are highlighted in Tables 3.5, 3.6, and 3.7.

One particularly interesting observation is that many of the SNPs in the first category are
associated with genes implicated in myeloid cell activated immune response. This is notable because
Alzheimer’s disease has previously been linked to acute myeloid leukemia [54].

Finally, we compared our results to the two simple pairwise baselines (LinReg and Corr). These
methods are commonly used for QTL mapping and gene network estimation, and are often favored
for large datasets due to their efficient run time. For the purposes of this experiment, we selected
significance thresholds for the baselines that yielded estimates of B and Θ that had the same density
as the estimates produced by ICLasso.

The results of our comparative analysis are summarized in Figure 3.6. This plot shows the
number of SNP associations per gene sorted by the degree of the gene in the network estimated by
ICLasso. The trend lines clearly emphasize that ICLasso has more power to detect eQTL associa-
tions for genes that are highly connected in the estimated gene network. This result matches our
intuition about the structural prior encoded in the ICLasso penalty term, which enables the model
to detect SNP-gene associations that exhibit a weak signal in the data by leveraging information
about other related genes. We also note that the gene connectivity estimated by ICLasso correlates
well with the connectivity estimated by the correlation network.

To provide an additional view of the results, we plotted the distributions of the SNP and gene
association counts in Figure 3.7. One significant difference between ICLasso and the baseline in
the distribution of the number of gene associations (shown in the right panel) is that the ICLasso
distribution clearly has 3 modes (one peaked at 0, one peaked at 750, and a third peaked at
1500). This suggests that the ICLasso estimate of the gene network identified at least two large
interconnected sub-networks.

3.5 Discussion

In this work, we propose a new model called the inverse-covariance fused lasso which jointly
estimates regression coefficients B and an output network Θ while using a graph-guided fused
lasso penalty to explicitly encourage shared structure. Our model is formulated as a biconvex
optimization problem, and we derive new, efficient optimization routines for each convex sub-
problem based on existing methods.

Our results on both synthetic and real data unequivocally demonstrate that our model achieves
significantly better performance on recovery of the structure of B, recovery of the structure of Θ,
and prediction error than all six baselines that we evaluated. In this paper, we demonstrated that
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Figure 3.6: A comparison of the results obtained by ICLasso and the pairwise methods on
Alzheimer’s data. The blue and green lines show the number of SNP associations per gene, and
the red and gray lines show the number of gene associations per gene. The genes on the horizontal
axis are sorted according to their degree in the network estimated by ICLasso. The three dashed
and dotted lines are smoothed versions of the corresponding scatter plots.

Figure 3.7: A comparison of the distribution of the number of estimated SNP associations per gene
(left panel) and the number of estimated gene associations per gene (right panel).
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our approach can effectively be used to perform joint eQTL mapping and gene network estimation
on a yeast dataset, yielding more biologically coherent results than previous work. However, the
same problem setting appears in many different applications, and the inverse-covariance fused lasso
model can therefore be effectively used within a wide range of domains.

The primary disadvantage of our proposed method is that it is not scalable in the number of
genes. One promising direction for future work would be to explore an approximation in the style
of [64] that performs neighborhood selection for estimating the gene network instead of solving for
the exact value of Θ. Furthermore, the screening rules for the graphical lasso proposed in [24] can
be directly extended to our model, and would likely provide a significant speedup when working
with block sparse gene networks.
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Chapter 4

Hybrid Subspace Learning

4.1 Introduction

High-dimensional datasets, in which the number of features p is much larger than the sample size
n, appear in a broad variety of domains. Such datasets are particularly common in computational
biology [60], where high-throughput experiments abound but collecting data from a large number of
individuals is costly and impractical. In this setting, many traditional machine learning algorithms
lack sufficient statistical power to distinguish signal from noise, a problem that is known as the
curse of dimensionality [41].

One way to alleviate this problem is to perform dimensionality reduction, either by choosing
a subset of the original features or by learning a new set of features. In this work, we focus on
the class of subspace learning methods, whose goal is to find a linear transformation that projects
the high-dimensional data points onto a nearby low-dimensional subspace. This corresponds to
learning a latent space representation of the data that captures the majority of information from
the original features.

The most popular subspace learning method is principal component analysis (PCA), which
learns a compact set of linearly uncorrelated features that represent the directions of maximal
variance in the original data [42]. Since PCA was first introduced, many variants have been
developed. For example, Sparse PCA uses an elastic net penalty to encourage element-wise sparsity
in the projection matrix, resulting in more interpretable latent features [108]. Another method,
Robust PCA, learns a decomposition of the data into the sum of a low-rank component and a sparse
component, leading to increased stability in the presence of noise [15]. Finally, there are approaches
that propose richer models for the underlying latent representation of the data, involving multiple
subspaces rather than just one [27].

A significant limitation of existing subspace learning methods is their assumption that the data,
except for noise terms, can be fully represented by an embedding in one or more low-dimensional
subspaces. While this may hold true in some settings, we contend that in most high-dimensional,
real-world datasets, only a subset of the features exhibit low-rank structure, while the remainder
are best represented in the original feature space. Specifically, since the low-rank features will be
highly intercorrelated, they can be accurately represented as the linear combination of a small set
of latent features. However, if there are raw features that are largely uncorrelated with the others,
it’s clear that including them in the latent space model would require adding one new dimension
for each such feature. We therefore argue that these features, which we describe as exhibiting high-
dimensional rather than low-rank structure, should be excluded from the low-dimensional subspace
representation.

We illustrate this intuition with a simple example. Figure 4.1 shows two toy datasets that each
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Figure 4.1: Toy datasets that illustrate the difference between fully low-rank data (left) and hybrid
data (right). Here z1 and z2 represent latent features that are linear combinations of raw features,
whereas w3 represents a latent feature that is perfectly correlated with the raw feature x3.

lie on a different 2D plane in 3D space. In the left plot, all three of the raw dimensions exhibit
low-rank structure because they are all correlated. However, in the right plot, the vertical axis x3

is completely uncorrelated with x1 and x2, which causes the 2D subspace on which the data points
lie to be axis-aligned with x3. We say that this data exhibits hybrid structure because only two out
of the three features are truly low-rank.

In this simple example, PCA would easily succeed on both of the datasets shown. However,
in a high-dimensional and noisy setting, the data may not lie exactly on a low-rank subspace.
In this case, we can boost the signal-to-noise ratio in the data by identifying a sparse set of high-
dimensional features that do not contribute to the low-rank structure of the dataset and eliminating
them from the low-rank projection. This is the core motivation for our approach.

In this work, we introduce a new method called hybrid subspace learning that learns a latent
representation of the data in which some features are mapped to a low-rank subspace but others
remain in the original high-dimensional feature space. To enforce this structure, we propose a
novel regularization scheme that encourages each variable to choose between participating in the
low-rank or high-dimensional component of the model. The resulting problem is biconvex, and we
propose an efficient alternating minimization scheme using proximal gradient descent.

The goal of our hybrid method is to perform dimensionality reduction for high-dimensional
datasets in a way that allows flexibility in the proportion of low-rank vs. high-dimensional structure
that is present in the data, and is also robust to noise. This approach has connections to Outlier
Pursuit [93], a variant of PCA that attempts to learn a latent space representation of the data in
the presence of outliers (i.e. points that do not lie on the same low-rank subspace as the others).
However, in our case, we treat features as outliers instead of points.

This work has two main contributions. First, we propose the idea of learning a partial low-rank
representation of the data by identifying features that are outliers. We demonstrate that certain
high-dimensional datasets naturally exhibit hybrid structure, indicating that our idea is useful for
solving real-world tasks. Second, we introduce a new regularization term that encourages mutually
exclusive sparsity. We show that this penalty outperforms the simple l1,2 norm in our setting, and
we provide practical guidelines for optimizing it.
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(f) θ = (1, 0, 0)
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(g) θ = (0, 1, 0)
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(h) θ = (.8, .2, 0)
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Figure 4.2: Singular value spectra of real and synthetic datasets; (a)-(e) five real biological datasets
collected from tumor samples of 163 leukemia patients; (f) synthetic data with pure low-rank
structure; (g) synthetic data with pure high-dimensional structure; (h)-(j) synthetic data with
varying degrees hybrid structure.

Notation. We use lowercase bold symbols for vectors x and uppercase bold symbols for matrices
X. The ith element of x is denoted x(i), the ith row and jth column of X are denoted X(i, :) and
X(:, j), respectively, and diag(x) denotes a diagonal matrix X s.t. X(i, i) = x(i). We use ‖ · ‖1
for the element-wise l1 norm of a vector or matrix, ‖ · ‖2 for the l2 norm of a vector, ‖ · ‖F for
the Frobenius norm of a matrix, and ‖ · ‖1,p to denote an l1,p column-wise block norm of a matrix
s.t. ‖X‖1,p =

∑
j ‖A(:, j)‖p.

4.2 Motivation

In this section, we motivate our approach by demonstrating that certain properties of several real-
world datasets naturally hint at a hybrid model. To do this, we use a series of simulations to show
that hybrid structure causes the singular value spectrum of a dataset to become long-tailed, i.e. to
have a distribution in which much of the probability mass is far from the mean. We then provide
examples of real datasets that possess long-tailed singular value spectra, which implies that it is
not appropriate to attempt to capture all of the information contained in these datasets with a
low-dimensional feature representation.

Consider a dataset X ∈ Rn×p with n samples and p features. The top row of Figure 4.2 shows
the singular value spectra of five genomic datasets that consist of measurements taken from tumor
samples of cancer patients. In all of these datasets, the singular values start out large but then
decay very quickly. However, instead of going directly to zero, the spectrum has a long tail. This
points to the presence of structure in the data that does not fit into a low-rank space. As a result,
if we ignored the tail by projecting the data to a low-rank subspace, it is likely that we would only
capture a very coarse-grained representation of the data.
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We compare these real datasets with several simulated datasets to demonstrate how certain
underlying modeling assumptions affect the singular value spectrum of the data. We generate
synthetic data as follows. Let Z be an n×k matrix with full column rank, A be a k×p matrix with
full row rank, and W be an n × p matrix whose elements are independent. Define a probability
vector θ = (θ1, θ2, θ3) that specifies the likelihood that each feature participates in only a low-rank
component, only a high-dimensional component, or both, respectively. For simplicity, we consider
only the case of θ3 = 0 for now. For each variable j ∈ {1, . . . , p}, we draw Cj ∼ Categorical(θ).
Then if Cj = (1, 0, 0), we set X(:, j) ∼ N (ZA(:, j), σ2In×n) and if Cj = (0, 1, 0), we set X(:, j) ∼
N (W(:, j), σ2In×n).

For our simulations, we use n = 100, p = 1000, k = 20, and σ2 close to 0. We plot the spectra
of synthetic datasets generated for multiple values of θ in the bottom row of Figure 4.2. In panel
(f), we set θ = (1, 0, 0) such that X is rank k with some random noise. In this case the singular
value spectrum drops sharply after k, but the tail that appears in the real data is missing. While
it is possible that the tail could only contain noise, we postulate that it contains some important
information that is ignored by subspace learning methods that focus purely on low-rank structure.
In panel (g), we set θ = (0, 1, 0) such that X has rank n. In this case, the singular value spectrum
of X decays slowly, again unlike the real data. This implies that methods that use the full data
matrix X without alteration are not exploiting its intrinsic structure.

Panels (h)-(j) display three “hybrid” settings of θ. The spectra of these datasets exhibit struc-
ture that is much more similar to the real data, with a few large singular values and a tail that
decays slowly. In these cases, forcing all of the variables to fit into a subspace would necessitate
including a large number of dimensions in that subspace, many of which would be highly under-
utilized. This is the motivation for our hybrid approach that can model both the head and tail of
the singular value spectrum.

4.3 Method

4.3.1 Hybrid Matrix Factorization Model

Given a dataset X ∈ Rn×p, traditional subspace learning aims to solve the following problem:

min
Z,A

‖X− ZA‖2F (4.1)

where Z ∈ Rn×k is a k-dimensional representation of each point and A ∈ Rk×p is a transformation
that maps the latent space to the observed feature space. The above model, which is equivalent to
PCA when the columns of Z are constrained to be orthogonal, implicitly assumes that all of the
information in X can be captured by its embedding in a low-rank subspace. However, as previously
discussed, this assumption is inappropriate for high-dimensional data with a long-tailed singular
value spectrum.

To overcome this limitation, we propose a new, flexible model for subspace learning that allows
each feature in X to choose between participating in a low-rank representation, Z, or a high-
dimensional representation, W. With this formulation, the goal is to have the low-rank (“low-r”)
component capture the head of the singular value spectrum while the high-dimensional (“high-d”)
component captures the tail. This leads naturally to the following problem:

min
Z,A,W,b

‖X− ZA−W diag(b)‖2F + λ‖b‖0

s.t. ‖A(:, j)‖2 · b(j) = 0 ∀ j
‖W‖F ≤ 1 (4.2)
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Here, Z ∈ Rn×k is the low-rank component (as before) and W ∈ Rn×p is the high-dimensional
component. Furthermore, b ∈ {0, 1}p is a vector of indicator variables, each of which dictates
whether or not a particular feature j participates in the high-d component. We apply an l0 norm
regularizer to restrict the total number of features that are captured by the high-d component.
Finally, we constrain the problem such that each feature belongs to exactly one component.

However, this problem is intractable for two reasons. First, the l0 penalty is highly nonconvex
and difficult to optimize. Secondly, since A and b are coupled in the constraint, they cannot be
optimized jointly. Performing alternating minimization on (4.2) would yield degenerate solutions,
since initializing b(j) to non-zero would always force A(:, j) to be zero and vice-versa. We therefore
propose the following relaxation:

min
Z,A,W,b

‖X− ZA−W diag(b)‖2F
+ γ‖A diag(b)‖1,2 + λ‖b‖1

s.t. ‖Z‖F ≤ 1 ‖W‖F ≤ 1 (4.3)

We make two changes in order to arrive at (4.3). First, as is common in the sparsity literature,
we relax b ∈ {0, 1}p to b ∈ Rp, and replace the l0 penalty on b with an l1 penalty. Second, and
more unique to our problem, we replace the hard constraint on A and b in (4.2) with a structured
sparse regularizer that encourages each feature to participate in either the low-r component (Z)
or the high-d component (W), but not both. This is achieved with an l1,2 norm penalty of the
form ‖A diag(b)‖1,2 =

∑p
j=1 |b(j)| · ‖A(:, j)‖2. Notice that sparsifying either the jth element of b

or the jth column of A will completely zero out the jth term of the penalty. This regularization
scheme therefore encourages mutually exclusive sparsity over the columns of A and the elements of
b. Furthermore, once the jth term of the penalty is zero, there is no longer any shrinkage applied
to the jth column of A, which yields a better estimate of the model parameters and eliminates the
need for refitting the low-rank model after the high-d features have been identified.

As γ tends to∞, the model shown in (4.3) will enforce the hard constraint in (4.2). Conveniently,
as we will see in the next section, this relaxation also permits us to develop a much more effective
optimization procedure that is less likely to be trapped in local optima. At the same time, the new
model is more flexible than (4.2) in that it can allow some overlap between A and b at the cost of
having an additional tuning parameter.

Our approach, hybrid subspace learning (HSL), is closely related to Robust PCA (RPCA) [15]
and its variants, which learn a decomposition of the data X into the sum of a low-rank component
L and a sparse component S. In particular, while RPCA encourages element-wise sparsity in S,
Outlier Pursuit (OP) [93] is a more structured approach that encourages row-wise sparsity in S in
order to identify points in the dataset that are outliers, and allow them to be ignored by the low-
rank representation L. The OP model can just as easily be applied to a transposed data matrix to
identify features that are “outliers” because they can’t easily be embedded in a low-rank subspace.
Although this is conceptually very similar to the core idea of HSL, there are several key differences.

First, and most importantly, HSL also strictly enforces sparsity in the projection matrix A,
which causes some features to be completely excluded from the low-rank representation. In OP,
although S can be made column-wise sparse, there is nothing to prevent the features that participate
in S from also participating in L. Second, we learn an exact rank k low-rank representation, whereas
OP aims to minimize the nuclear norm of L.

Finally, HSL also has some connections to Sparse PCA (SPCA) [108], which learns a rank k
decomposition of X given by ZA, where A is encouraged to be element-wise sparse.
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Algorithm 4.1 Proximal Gradient Descent for HSL

1: inputs: data matrix X; regularization parameters λ, γ; step size α; initial values Z, A, W, b
2: initialize Ẑ, Â, Ŵ, b̂ using provided initial values
3: repeat
4: fix Z = Ẑ, b = b̂
5: initialize W0 = Ŵ, A0 = Â
6: repeat . Optimize {W,A}
7: W+ = Wt − α∇W `(Z,At,Wt,b)
8: Wt+1 = lF –project

(
W+

)
. Eq. (4.4)

9: A+ = At − α∇A `(Z,A
t,Wt,b)

10: At+1 = l2–prox
(
A+, α γ|b|

)
. Eq. (4.5)

11: until convergence
12: fix W = Ŵ, A = Â
13: initialize Z0 = Ẑ, b0 = b̂
14: repeat . Optimize {Z,b}
15: Z+ = Zt − α∇Z `(Z

t,A,W,bt)
16: Zt+1 = lF –project

(
Z+
)

. Eq. (4.4)
17: b+ = bt − α∇b `(Z

t,A,W,bt)
18: bt+1 = l1–prox

(
b+, α (γ‖A‖·,2 + λ)

)
. Eq. (4.6)

19: until convergence
20: until convergence
21: outputs: estimates Ẑ, Â, Ŵ, b̂

4.3.2 Optimization Algorithm

Our optimization objective consists of a differentiable, biconvex loss function,

`(Z,A,W,b) = ‖X− ZA−W diag(b)‖2F

and two non-smooth, biconvex regularizers,

ψ(A,b) = ‖A diag(b)‖1,2 and φ(b) = ‖b‖1.

The objective is jointly convex in {W,A} when Z and b are fixed, and is jointly convex in {Z,b}
when W and A are fixed. We implement an alternating minimization scheme to solve this problem,
in which we iteratively optimize each convex sub-problem until the complete objective converges.
Since the objective function of each sub-problem consists of a smooth, convex loss function plus
a non-smooth, convex regularizer, we can leverage well-known tools to optimize functions of this
form. Specifically, we apply proximal gradient descent, which projects the gradient step back
onto the solution space at each iteration. The complete optimization procedure is outlined in
Algorithm 4.1. In practice, we employ accelerated proximal gradient descent with line search to
achieve a convergence rate of O(1/

√
ε) [6]. We also find that 25-50 outer iterations is typically

sufficient to reach convergence.
The projection and proximal operators used on lines 8, 10, 16, and 18 of Algorithm 4.1 are

defined as:

lF –project
(
W
)

= W/max{1, ‖W‖F } (4.4)

l2–prox
(
a, u
)

= a ·max{0, ‖a‖2 − u}/‖a‖2 (4.5)

l1–prox
(
b, u
)

= sign(b) ·max{0, |b| − u} (4.6)
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Figure 4.3: Results comparing the performance of our hybrid model against four baselines on
synthetic data. The top row shows the recovery error for the low-rank component L, and the
bottom row shows the recovery error for the high-dimensional component S. Results are averaged
over 10 simulated datasets, and the error bars show the standard error over these trials.

These are applied column-wise or element-wise when given matrix arguments in place of vectors
or vector arguments in place of scalars, respectively. We also use |b| to denote the element-wise
absolute value of b, and ‖A‖·,2 to denote the column-wise l2 norm of A.

Although this optimization procedure is quite efficient, the algorithm can easily get trapped in
local optima. The joint regularization term compounds the problem by increasing the sensitivity
of the algorithm to initialization, especially when the value of γ is very high. However, when γ
is small, these local optima are substantially reduced. Therefore, to circumvent this problem, we
fit our model to data by incrementally increasing the value of γ from 0 to γmax, while using warm
starts to initialize the estimate of each successive model.1 We define γmax as the smallest value of
γ that yields ‖A diag(b)‖1,2 = 0. In the next section, we demonstrate empirically that using warm
starts in place of cold starts leads to significant performance gains.

4.4 Experiments

4.4.1 Simulation Study

In order to quantitatively evaluate our approach, we perform a series of experiments on synthetic
data. We compare HSL to four baseline methods: PCA, Sparse PCA [108], Robust PCA [15], and
Outlier Pursuit [93]. Note that we apply OP to the transposed data matrix, XT .

We generate synthetic data as follows. Given raw feature space dimensionality p, latent space
dimensionality k, and sample size n, we first generate low-rank features from Z ∼ N (0, Ik×k)
and high-dimensional features from W ∼ N (0, Ip×p). We then generate coefficients for the low-r
component A by drawing uniform random values in [−1.5,−0.5] ∪ [0.5, 1.5] and similarly generate
coefficients for the high-d component b by drawing uniformly at random from

√
k[−1.5,−0.5] ∪√

k[0.5, 1.5]. Next, given a probability vector θ = (θ1, θ2, θ3) whose elements denote the likelihood
that a feature will participate in only the low-r component (θ1), only the high-d component (θ2),
or both (θ3), we incorporate sparsity by setting randomly chosen columns of A and elements of

1This is based on [63] who proposed using warm starts for a nonconvex sparse regularizer.
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Figure 4.4: Average precision-recall curves for SPCA, RPCA, OP, and HSL calculated by varying
hyperparameter values and evaluating recovery of the true set of high-dimensional features. Each
curve is averaged over 20 simulated datasets.
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Figure 4.5: (a) Convergence of HSL. (b) The final objective value obtained from running HSL with
each value of γ using warm and cold starts. (c) The F1 score on the selection of high-dimensional
features obtained from running HSL with each value of γ using warm and cold starts. (d) The final
objective value of HSL averaged over multiple simulations with warm and cold starts.

b to zero according to the proportions specified in θ. Finally we generate the data according to
X = ZA + W diag(b) + E, where E ∼ N (0, σ2) is i.i.d. Gaussian noise.

We compare the performance of our method against the baselines on three tasks: recovery of the
low-rank subspace, recovery of the high-dimensional component, and selection of the set of high-
dimensional features. We measure the recovery error using the Frobenius norm distance between
estimated and true matrices, and evaluate the identification of the high-dimensional feature set
using precision and recall. Since parameter selection is a challenging task in unsupervised learning,
each method is run with the ground truth value of k, and tuning parameters are chosen by picking
the values that yield the best recovery of the low-rank subspace. We believe this provides a fair
comparison of all methods.

In our first set of experiments, we use default parameter values n = 100, p = 200, k = 20, σ2 = 1,
θ = (0.9, 0.1, 0), and then vary certain parameters in order to evaluate the performance of our model
under a wide range of settings. In particular, we vary (a) the noise σ2, (b) the dimensionality of the
latent and feature space k, (c) the proportion of low-r and high-d participation (θ1 v. θ2) with no
overlap, and (d) the amount of overlap (θ3) with θ1 and θ2 set to the same value.2 In the first three

2Note that in the second experiment, we also scale the variance of the noise σ2 by a factor of k/20. This counteracts
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cases, we run HSL with γ → γmax to ensure no overlap between the low-r and high-d components.
In the fourth case, we pick the optimal value of γ. The results of these experiments are shown in
Figure 4.3. They demonstrate that HSL significantly outperforms all baselines in most conditions.

Next, we generated precision-recall curves for the task of identifying the correct set of high-
dimensional features. We compared the performance of SPCA, RPCA, OP, and HSL in Figure 4.4.
The left panel shows the PR curve generated using the standard data generation approach that
we previously described. Although HSL achieves a very high AUC, several other methods perform
just as well. In order to increase the difficulty of this task, we generated data in which the average
variance of the high-dimensional features is about half the average variance of the low-rank features,
making them harder to distinguish. The right panel shows the PR curve generated from this data.
In the second case, HSL achieves a significantly higher average area under the curve than all other
methods.

Finally, we perform an empirical analysis of the effects of using cold starts versus warm starts to
optimize our model. To do this, we train a series of models with different values of γ in two ways.
Using cold starts, we randomly initialize each model. Using warm starts, we start with γ = 0 and
then increase its value incrementally, each time initializing the model with the estimate obtained
from the previous value, until we hit γmax. We evaluate the performance of HSL using these two
approaches. The results are shown in Figure 4.5, and illustrate that using warm starts helps avoid
local optima and leads to increased stability. Figure 4.5 also shows that HSL with warm starts
exhibits good convergence properties.

4.4.2 Genomic Analysis of Cancer

Next we apply HSL to biomedical data, and provide both qualitative and quantitative results to
illustrate its performance. A common data type in which p � n is microarray data, in which
the number of features measured typically far exceeds the number of patients for whom data is
available. Here, we study the effectiveness of applying subspace learning methods to microarray
data taken from cancer patients. We show that our approach outperforms several baselines on this
data. Specifically, HSL produces subspace embeddings that achieve lower reconstruction error and
lead to better performance on downstream tasks than competing methods. Finally, we demonstrate
that HSL can also be used as a feature selection algorithm, since the features assigned to the high-
dimensional component reflect biological characteristics of the original data.

To conduct our experiments, we used two datasets from TCGA.3. The first dataset contains
miRNA expression levels for five types of cancer. We used this dataset to evaluate how well the
low-rank embedding of HSL captures the original data and its characteristics. The second dataset
contains gene expression data for breast cancer patients with matching tumor and control samples.
We used this to analyze the high-dimensional component of HSL and to determine whether the
information contained in the HSL estimate can differentiate between cancer and control samples.
Additional details about these datasets are provided in Table 4.1.

For each dataset, the number of latent dimensions k was chosen by manually inspecting the
singular value spectrum. This value was determined to be k = 5 for the miRNA datasets and
k = 30 for the gene expression dataset. In all experiments, we selected hyperparameter values
as follows. For RPCA, the value of λ was set to 1√

n
, which can optimally recover the low-rank

structure under standard assumptions [15]. In keeping with our synthetic experiments, OP was run

the fact that the magnitude of the generated features depends on the value of k.
3The Cancer Genome Atlas, http://cancergenome.nih.gov/.
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Table 4.1: List of Genomic Datasets

Data Type Cancer Type Organ Sample Size Feature Size

miRNA expression breast invasive carcinoma breast 106 354

miRNA expression glioblastoma multiforme brain 93 354

miRNA expression colon adenocarcinoma colon 216 354

miRNA expression kidney renal clear cell carcinoma kidney 123 354

miRNA expression lung adenocarcinoma lung 107 354

gene (mRNA) expression breast invasive carcinoma breast 106 13,794

Table 4.2: Reconstruction Errors of the Low-Rank Component of miRNA Data

Tumor Type PCA Robust PCA Outlier Pursuit HSL

Breast 63.99 29.46 172.44 29.61

Colon 83.73 33.09 141.17 31.32

GBM 70.35 106.08 303.06 40.69

Kidney 54.77 45.56 179.56 25.93

Lung 54.74 25.31 172.97 25.73

on the transposed data matrix. The value of λ for OP was chosen to produce a low-rank component
with rank equal to k. For HSL, parameters were selected by performing a grid search and selecting
the combination of parameters that minimized the AIC score [13].

In our first experiment, we evaluated the quality of the low-r components estimated for each
miRNA dataset. To do this, we measured the reconstruction errors of the low-r embeddings pro-
duced by each method. Reconstruction errors, calculated as the Euclidean distance between the
original data X and the estimated low-r component L̂, are shown in Table 4.2. We see that HSL
performs at least comparably, and frequently outperforms, all baseline methods on all datasets.

Next, we hypothesized that the low-r component of the HSL embedding may be more biologically
informative than those estimated by traditional subspace learning methods. To study this, we used
the estimated low-rank embeddings from each method to cluster the samples within each cancer type
into subtypes. Since we do not have ground truth information about the subtypes, we evaluated the
quality of the clusters by their silhouette scores, which provide a measure of how well the samples
fit into their respective clusters. We performed k-means clustering using 4 clusters for breast [88],
GBM [87], and colon [36] cancers and 5 clusters for kidney [73] and lung [90] cancers, where the
number of clusters is based on the number of experimentally identified subtypes. The mean and
standard deviation of the silhouette scores over 100 initializations of the clustering algorithm are
shown in Table 4.3. From these results, we see that the features extracted from the low-r component
of the hybrid model yield more coherent clusters than features extracted from baseline methods.

Since our hybrid model does not encode all the features of the original data in the low-rank
subspace, using these features alone would not necessarily be expected to boost performance on
downstream tasks. Furthermore, the features assigned to the high-d component of the model
likely correspond to genes that display uncommon activity patterns, which is why they cannot be
easily represented by the same low-rank structure as the other genes. Based on this reasoning,
we hypothesized that, rather than being unimportant, some of these genes may actually have very
important biological functions. This is particularly likely in the case of cancer data, since genes
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Table 4.3: Silhouette Scores for Clusters Produced by k-Means

Tumor Type Raw Data PCA Robust PCA Outlier Pursuit HSL

Breast 0.35± 0.07 0.51± 0.04 .27± .02 0.17± 0.02 0.65± 0.08

Colon 0.37± 0.17 0.52± 0.07 0.30± 0.04 0.15± 0.05 0.70± 0.07

GBM 0.22± 0.05 0.45± 0.06 0.20± 0.03 0.15± 0.07 0.48± 0.06

Kidney 0.26± 0.04 0.43± 0.04 0.24± 0.02 0.13± 0.04 0.59± 0.08

Lung 0.29± 0.05 0.53± 0.05 0.28± 0.03 0.19± 0.05 0.52± 0.09

Table 4.4: Differential Enrichment of the Features Assigned to High-Dimensional Components

Data Type Gene Ontology Term Selected Oncogenes

interleukin-4 production LEF1, CD83

Tumor nucleoside-triphosphatase activity TCIRG1, RAB31, ATP6V1C1, ATP6V1G3

protein binding NTRK3, HSPA1A, CCR5, ITGA2 + 10 more

snRNA 3’-end processing None

Control epidermal growth factor receptor activity ERRFI1, PSEN1

acrosomal vesical exocytosis None

that are mutated in cancerous cells display highly aberrant activity that disrupts their normal
correlations with other genes.

To test this hypothesis, we investigated whether genes assigned to the high-d component in
HSL are enriched for oncogenes when the model is run on cancerous samples but not enriched for
oncogenes when it is run on samples of healthy tissue. For this experiment, we used the breast
cancer gene expression data with matching control samples. After estimating the latent subspaces,
we identified gene ontology (GO) terms by performing an enrichment analysis [28] of the features
comprising the high-d component, and identified known oncogenes [7] in the subsets. For both
cancer and control samples, the three GO terms with the lowest p-value for each dataset, and their
contained oncogenes, are shown in Table 4.4.

From these results, we see that HSL identifies a significant number of oncogenes when trained
on tumor samples but selects non-oncogenic genes when trained on the healthy control samples.
Notably, the high-d component estimated from the breast cancer tumor dataset selected features
involved in the regulation of Interleukin-4, an enzyme that is known to be key in the growth of
human breast cancer tumors [65]. In contrast, the high-d component learned from a control group
did not include those features, instead assigning them to the low-rank space. In addition, the high-
d component for the cancerous samples is enriched for the GO term “nucleoside-triphosphatase
activity”, which includes both ATPase and GTPase activity. These processes are involved in
regulation of the cell metabolism, a central mechanism in tumor growth [14]. Once again, the
hybrid model assigned these features to the low-r component for non-cancerous samples. As the
two datasets share the same set of features, the differential enrichment of oncogenes in the high-d
component suggests that the assignment of features to either high-d or low-r component reflects
characteristics of the original data.

Finally, we studied whether the subspaces estimated by HSL are more useful for downstream
analysis than those of competing methods. To do this, we clustered the low-rank embeddings
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Figure 4.6: Results of survival analysis performed on a breast cancer gene expression dataset. (a-e)
Examples of representative Kaplan-Meier survival function estimates. (f) Distribution of p-values
over 100 clustering initializations.

estimated from gene expression levels of both tumor and control samples into two groups using
k-means. As seen in Figure 4.6, clusters formed in the subspace estimated by HSL have more dif-
ferential survival patterns than clusters formed in the subspaces estimated by traditional methods.
While the survival effect size is not large, HSL is the only dimensionality reduction technique that
retains enough information to produce survival curves that are different at a significance level of
p < .05. This indicates that the subspace estimated by HSL is both efficient and retains information
for downstream analysis.

4.5 Discussion

In this work, we present a new subspace learning model that employs a novel regularization scheme
to estimate a partial low-dimensional latent space embedding of a high-dimensional dataset and
simultaneously identify features that do not easily fit in a low-rank space. This model addresses
a critical gap in the existing literature on subspace learning, in which it is usually assumed that
the high-dimensional data can be completely captured by a low-rank approximation, modulo some
noise.

By comparing the singular value decompositions of real and synthetic datasets, we demonstrate
that this assumption is not fulfilled in many real datasets. We therefore argue that our model is
more appropriate for subspace learning on high-dimensional datasets that have a long-tailed singular
value spectrum. Through applications to synthetic data, a video background subtraction task, and
real gene expression data, we demonstrate that hybrid subspace learning can effectively learn a
low-rank latent structure while assigning meaningful features to the high-dimensional component.
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Chapter 5

Cancer Survival Analysis

5.1 Introduction

One of the central hypotheses of this thesis is that leveraging structure and sharing information
across related learning tasks can help boost the signal-to-noise ratio when learning from high-
dimensional biological data. In the final part of this thesis, we set out to explore and systematically
test this hypothesis. To do this, we focus on a particular task that has significant clinical relevance:
survival prediction for cancer patients. In particular, we seek to combine genomic and clinical data
from patients with multiple different cancer types, and share information across the distinct but
closely related tasks of predicting survival rates for each cancer type.

In addition to its clinical relevance, we choose this problem for two key reasons. First, cancer
data is extremely heterogeneous. Even across patients with the same cancer type, molecular and
genetic diversity abounds. This problem is only exacerbated by aggregating data from patients with
multiple distinct types of cancer. Heterogeneity across samples means that the i.i.d. assumption that
is central to many statistical learning models is violated. Second, survival data is particularly prone
to small sample sizes due to censorship, which occurs when the survival outcome is not observed
for patients that survive past the end of the study or stop responding to follow-up requests. In
practice, although survival models are able to cope with censored data, they still primarily learn
from uncensored samples where the outcome is observed. This further exacerbates the curse of
dimensionality, which is already a problem due to the high-dimensional nature of genomic datasets,
in which we typically have many more features (e.g. genes) than samples (e.g. human patients).

Using the pan-cancer dataset described in the next section, we systematically evaluate the effects
of incorporating different degrees of information sharing between the survival models, ranging from
estimating completely independent models for each cancer type all the way to estimating a single
fully joint model that does not distinguish between cancer types. This concept is illustrated in
Figure 5.1, where we show a hypothetical set of 5 survival prediction tasks, each of which involves
predicting yi from xi. In the left-most diagram, a completely independent model is learned for each
cancer type, with no information sharing. This method would work well if there were no similarities
between the tasks. In the right-most diagram, a single unified model is learned for all cancer types,
with no differentiation between them. This method would work well if there were no differences
between the tasks. The middle diagram shows a hybrid approach in which we estimate multiple
related models by sharing information between them.

Although this diagram only shows three distinct possibilities, in reality there are multiple dimen-
sions over which in which information can be shared. In this chapter, we explore several different
types of information sharing in order to determine whether any of them lead to improvements over
the independent models that are traditionally used for cancer survival prediction [103].
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Figure 5.1: An illustration of multiple degrees of information sharing. The people represent cancer
patients, with the colors indicating different cancer types. Each diagram shows a different approach
for aggregating data across cancer types. (a) Independent models: estimate completely separate
models for each task, and do not share any information between the tasks. (b) Related models:
estimate multiple models that are related but still capture some differences between the tasks. (c)
Single model: estimate a single model for all tasks, do not differentiate between the tasks at all.

5.2 Dataset

We conduct our analysis on a pan-cancer dataset collected from The Cancer Genome Atlas (TCGA).
Our dataset spans 10 cancer types and contains a total of n = 4,610 patients. For each patient,
we downloaded and pre-processed gene expression data, survival data, and some additional clinical
variables. After filtering out missing data and retaining only genes that had measurements for all
patients in our cohort, we ended up with expression values for p = 60,483 genes. The survival
outcome for each patient includes their survival time (measured in days to death if observed or
days to last followup) and censorship status (whether the outcome was observed or censored). We
only kept patients for whom both survival outcomes and gene expression data was available. We
also extracted the patient’s age and gender from their clinical file so that we could incorporate
these additional non-genomic covariates into our survival models. We did not use any additional
clinical variables, such as tumor grade, because these tend to vary quite a bit across cancer types
and have high rates of missing data.

For our experiments, we split our data into a training set (80%) and test set (20%). Table 5.1
shows a list of the cancer types in our dataset along with the training and test sample sizes for
each cancer type. Overall, the vast majority (76%) of the patients have censored outcomes. Some
cancer types have much higher censorship rates than others. In particular there are two cancer
types, Prostate Adenocarcinoma (PRAD) and Thyroid Carcinoma (THCA), that respectively only
have 7 and 11 uncensored samples in their training sets. Unfortunately this means that the test
sets for these cancer types are even smaller and may cause high variance in the results that we
obtain. However, the extreme disparity between the dimensionality of the problem (p ≈ 60,000)
and the uncensored sample size (n ≈ 10) for these cancer types clearly underscores the need for
leveraging information from additional samples in order to mitigate the curse of dimensionality.
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Table 5.1: 10-Cancer TCGA Gene Expression Dataset

Cancer Type Sample Sizes: Total (Uncensored)

Training Set Test Set

Breast Invasive Carcinoma (BRCA) 760 (106) 191 (27)

Glioblastoma Multiforme (GBM) 117 (94) 29 (23)

Head and Neck Squamous Cell Carcinoma (HNSC) 387 (169) 96 (42)

Kidney Renal Clear Cell Carcinoma (KIRC) 263 (62) 65 (15)

Brain Lower Grade Glioma (LGG) 396 (98) 100 (25)

Lung Adenocarcinoma (LUAD) 379 (136) 95 (34)

Ovarian Serous Cystadenocarcinoma (OV) 203 (121) 51 (30)

Prostate Adenocarcinoma (PRAD) 382 (7) 96 (2)

Thyroid Carcinoma (THCA) 387 (11) 97 (3)

Uterine Corpus Endometrial Carcinoma (UCEC) 413 (69) 103 (17)

Total 3687 (873) 923 (218)

5.3 Related Work

Prior work in pan-cancer analysis for survival prediction has been somewhat limited, but has
nonetheless shown significant promise. As part of a broader analysis of the utility of genomic data
in predicting patient survival for 4 different cancer types, [103] found that a survival model trained
on data from patients with ovarian cancer was more predictive of the survival rates of patients with
kidney cancer than a model trained on kidney cancer patients themselves. Based on additional
experiments, the authors hypothesized that the performance gain was primarily due to the larger
sample size of the ovarian cancer training set. In a separate study of predicting the survival rates
of breast cancer patients using a deep learning approach, [99] compared models trained purely on
breast cancer data with those trained on data from multiple cancer types, including breast cancer,
ovarian cancer, and uterine cancer. The authors found that the model trained on data combined
from all three cancer types achieved the best performance when predicting breast cancer survival,
and this result was consistent across multiple feature sets and model types.

Another recent large-scale study of cancer survival prediction analyzed a pan-cancer dataset
containing tumors aggregated from 32 cancer types to obtain a cohort with 9,000 patients [94]. In
this study, the authors fit a series of univariate Cox proportional hazards models on the aggregated
pan-cancer dataset to identify a list of the top 10 adverse and top 10 favorable prognostic genes.
They subsequently calculated a risk score for each patient using a weighted sum of the individual
gene expression values weighted by their regression coefficients from the univariate models. This
analysis was then repeated using only the data for each individual cancer type. Although the
authors estimated both pan-cancer and individual cancer models, they did not evaluate whether
the pan-cancer model led to better survival prediction. However, they briefly mentioned that the
individual models are too limited by small sample sizes to be of real clinical value.

The approaches described above all focus directly on fitting survival models by combining data
or sharing information across multiple cancer types. There have also been successful approaches
that first learn an informative low-dimensional representation of genomic data in an unsupervised
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manner by integrating datasets across cancer types, and then use the latent representation to train
separate survival models for individual cancer types [19, 16]. One of these approaches led to the
winning submission in the Sage Bionetworks DREAM Breast Cancer Prognosis Challenge [20].

In [2], the authors conduct a pan-cancer analysis of prognostic genes by first fitting a series
of univariate Cox models to each gene on each individual cancer type and then using the results
to perform an in-depth analysis of the similarities and differences across cancer types. One of the
key conclusions from this study is that although cancer types do not have much overlap among the
specific sets of genes with the smallest p-values, they do share co-regulated gene sets, which provides
additional evidence to suggest that joint survival models can outperform individual models.

Finally, a few recent methods have been proposed to use deep learning for pan-cancer survival
prediction, including [17], which trains a pan-cancer survival model using data aggregated from
20 cancer types and from multiple different modalities of genomic data. The authors compare
their pan-cancer model to models trained on individual cancer types and observe a significant
performance improvement for the majority of cancer types, with only one performance regression.
However, their unified pan-cancer model does not attempt to explicitly capture the differences
between the cancer types and therefore may miss some of the key patterns that set some cancers
apart from others.

5.4 Methodology

In this section, we describe the methodology we used to conduct a comprehensive study of transfer
learning for multi-task cancer survival prediction. Given a set of covariates Xi = (Xi1, · · · , Xip)
and a (possibly censored) survival outcome value Yi, we want to predict the relative survival across
patients. To achieve this, we use the standard multivariate Cox proportional hazards regression
model [23] with an additional `1 regularization term. We refer to this model as the Cox Lasso.
The regression parameters β ∈ Rp capture the influence of each gene on patient hazard, which is
inversely proportional to survival time. The regression parameters can be estimated by solving the
following optimization problem, which minimizes the partial log likelihood:

min
β

∑
i:Ei=1

log
∑

j:Yj≥Yi

exp{XT
j β} −XT

i β

+ λ‖β‖1 (5.1)

Here Ei is an indicator variable whose value is 1 if the event was observed and 0 if it was censored.

In our setting, each patient i belongs to a particular cancer type Ti = t ∈ T . We therefore
estimate one set of regression parameters β(t) for each cancer type. As discussed in the following
sections, we experiment with different degrees of information sharing between these |T | tasks in
order to arrive at the best possible estimate of each β(t).

Table 5.2 provides a brief overview of the different types of sharing that we examine. Additional
details about each type can be found in Sections 5.4.1 through 5.4.4. We assume that we have
expression measurements for the exact same set of genes for all cancer types, and we also have
clinical covariates (age and gender) for each patient, which we include as features in all models.

Across all experiments, we evaluate the predictive power of each fitted model using Harrell’s
concordance index [38], which is a measure of ranking accuracy. Given an estimated set of regression
parameters {β̂(t)}t∈T , the predicted hazard ratio of an individual patient i with cancer type Ti = t
is given by Ĥi = exp{XT

i β
(t)}. Since the hazard ratio is inversely proportional to survival time,

we report 1 − concordance(Ĥ, Y ) where Ĥ = (Ĥ1, · · · , Ĥn) are the predicted hazards and Y =
(Y1, · · · , Yn) are the ground truth survival times for a set of patients.
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Table 5.2: Transfer Learning Study for Cancer Survival Prediction

Type of Information Sharing Experiment Purpose

Feature Selection Assess the effect of performing separate vs. joint feature selection across
cancer types.

Hyperparameter Tuning (λ) Assess the effect of performing separate vs. joint hyperparameter tuning
(to control the sparsity level) across cancer types.

Regression Parameters (β) Assess the effect of encouraging or enforcing different degrees of similarity
between the estimated regression parameters for each cancer type.

Objective Function Assess the effect of minimizing the sum of separate Cox objectives for each
cancer type vs. a single joint Cox objective across all patients.

5.4.1 Feature Selection

Before fitting any multivariate survival models, as is standard in the literature, we perform a
preliminary feature selection step in order to select a relevant and compact set of genes that are
predictive of the survival outcome. To select the genes, we fit a univariate Cox model to each
gene in turn and calculate a p-value for each gene using a likelihood ratio test. We then select the
m genes with the smallest p-values, for several different values of m. These genes may be either
positively or negatively associated with survival.

In order to evaluate the effect of sharing information between cancer types during the feature
selection process, we compare two different approaches:

• Separate Feature Selection: In this setting, feature selection is performed separately for each
cancer type. This means that each β(t) may be estimated from a different set of m genes.

• Joint Feature Selection: In this setting, feature selection is performed jointly across all cancer
types. This means that each β(t) will be estimated from the same set of m genes, although
each β(t) is still estimated separately, i.e., we fit |T | independent Cox Lasso models.

When performing joint feature selection, instead of using a univariate model to estimate the p-
value for each gene, we fit an 11-variable Cox model that includes 10 binary variables representing
a one-hot encoding of the patient’s cancer type. This allows us to identify genes that still provide
prognostic information after accounting for the information encoded by the cancer type itself.

5.4.2 Hyperparameter Tuning

In order to determine the value of the regularization hyperparameter λ from Equation 5.1, we
follow the standard approach of performing a grid search over a range of possible values of λ and
evaluating each fitted model on a held-out validation set, then choosing the value of λ that leads
to the highest concordance index on the validation set. In order to evaluate the effect of sharing
information during the hyperparameter tuning phase, we compare two different approaches:

• Separate Hyperparameter Tuning: In this setting, λ selection is performed separately for each
cancer type. As a result, we are free to choose a different value of λ for each cancer type,
leading to differing amounts of regularization in the estimate of each β(t).
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• Joint Hyperparameter Tuning: In this setting, λ selection is performed jointly across all
cancer types. As a result, we are forced to choose the same value of λ for all cancer types.

We conduct this experiment using the Joint Feature Selection setting from Section 5.4.1, since it
does not necessarily make sense to use the same amount of regularization across cancer types when
the set of features are different between them.

5.4.3 Regression Parameters

Next, we experiment with directly sharing information across the regression parameter values β(t)

for t ∈ T . We compare three different sharing settings:

• No Sharing: In this setting, we estimate the regression parameter values independently for
each cancer type. Specifically, we use the model shown in Equation 5.2, which fully decom-
poses over cancer types.

• GFLasso Penalty: In this setting, we apply a graph-guided fused lasso penalty on the matrix
B ∈ Rm×|T | formed by performing a column-wise concatenation of each β(t) vector. Specifi-
cally, we use the model shown in Equation 5.3. Because we do not have good prior knowledge
about the relationships between cancer types, we set wtitj = 1 for all pairs of cancer types.

• Full Sharing: In this setting, we require that the regression parameter values be identical
across cancer types, i.e. we enforce β(ti) = β(tj) ∀ ti, tj ∈ T . Specifically, we use the model
shown in Equation 5.4, where the shared regression parameters are simply denoted by β.

The specific penalty function formulations we consider are given below.

min
{β(t)}t∈T

`(B) + λ
∑
t∈T
‖β(t)‖1 (5.2)

min
{β(t)}t∈T

`(B) + λ
∑
t∈T
‖β(t)‖1 + γ

∑
ti∈T

∑
tj∈T

wtitj‖β(ti) − β(tj)‖1 (5.3)

min
β

`(B) + λ
∑
t∈T
‖β‖1 (5.4)

Here B is used as shorthand for {β(t)}t∈T and `(B) denotes the multi-task Cox loss function, which
minimizes the partial log likelihood as in Equation 5.1 but considers all cancer types. Details
about how the loss function is formulated are provided in the next section. We conduct this
experiment using the Joint Feature Selection setting and the Joint Hyperparameter Tuning setting
from Sections 5.4.1 and 5.4.2, respectively.

5.4.4 Objective Function

In our final experiment, we evaluate the effect of including all samples from all cancer types in the
Cox loss function used to estimate the regression parameters for each individual cancer type. We
hypothesize that considering all pairs of patients for every cancer type in the loss function itself
leads to a richer prediction target, which may help the model estimate more robust associations.
In particular, we compare two approaches:

• Separate Objective Functions: In this setting, we estimate each β(t) using only the samples
from cancer type t. Specifically, we optimize the objective shown in Equation 5.5.
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• Joint Objective Functions: In this setting, we estimate each β(t) using some information from
all of the cancer types. Specifically, we optimize the objective shown in Equation 5.6. This
is different from Equation 5.5 in that the second sum is over all j such that Yj ≥ Yi, even
if patient j belongs to a different cancer type than patient i. This effectively leads to an
estimate of β(t) that is able to accurately rank patient i’s survival against that of all other
patients from all cancer types, not just those with the same cancer type as i.

The two objective function formulations we consider are given below. Both are slight variations
of the general formulation given in Equation 5.1. Here B is used as shorthand for {β(t)}t∈T and
ψ(B) denotes a sparsity-inducing or structure-inducing penalty term over B. Refer to the previous
section for details about how the penalty term is formulated.

min
{β(t)}t∈T

∑
t∈T

∑
i:Ei=1,Ti=t

log
∑

j:Yj≥Yi,Tj=t

exp{XT
j β

(t)} −XT
i β

(t)

+ ψ(B) (5.5)

min
{β(t)}t∈T

∑
t∈T

∑
i:Ei=1,Ti=t

log
∑

j:Yj≥Yi

exp{XT
j β

(Tj)} −XT
i β

(t)

+ ψ(B) (5.6)

≡ min
{β(t)}t∈T

∑
i:Ei=1

log
∑

j:Yj≥Yi

exp{XT
j β

(Tj)} −XT
i β

(Ti)

+ ψ(B)

When using the joint objective functions, we also include the cancer type itself as an additional
covariate in the model. We do this by converting it into a set of 10 binary feature values using a
one-hot encoding.

We conduct this experiment using the Joint Feature Selection setting and the Joint Hyperpa-
rameter Tuning setting from Sections 5.4.1 and 5.4.2, respectively. We experiment with using both
objective function formulations with each of the parameter sharing settings described in Section
5.4.3, which we can easily do by substituting either the separate or joint loss for `(B) in Equations
5.2 through 5.4.

5.5 Quantitative Results

5.5.1 Experimental Details

In order to determine the statistical significance of our results, we conducted our experiments by
generating 25 random splits of the data into a training set and test set. In each split, the training
set contains 80% of the data and the test set contains the remaining 20%. When splitting the
data, we made sure to preserve both the distribution of cancer types and the ratio of censored to
uncensored samples within each cancer type. We train all models on the training set and report
performance on the test set, with error bars showing the standard error over the 25 splits.

In order to perform hyperparameter selection for each model, we further split the training set
into a training and validation set, again respectively using 80% and 20% of the data. We trained
models with each hyperparameter setting on the training set and then selected the hyperparameter
values that led to the best performance on the held-out validation set. We then retrained a final
model on the full training plus validation set using the chosen hyperparameter values.

We repeated our experiments using a wide range of different values of m, where m denotes the
number of genes selected in the initial feature selection step. In particular, we experimented with
m ∈ {10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000}. This allows us to see how the results change
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as we move from the low-dimensional setting, where p < n, to the high-dimensional setting, where
p > n. In our dataset, the total number of uncensored samples in the training set across all cancer
types is n = 873. We therefore consider p = 1,000 to be the smallest gene set size that falls into
the high-dimensional setting when any sharing is used.

To measure performance on the validation and test sets, we used the following sample-weighted
concordance index:

weighted c-index =
∑
t∈T

ntu
nu

concordance(Y (t), Ŷ (t)) (5.7)

Here nu is the total uncensored sample size across all cancers and ntu is the uncensored sample size
for cancer type t. Y (t) and Ŷ (t) denote the ground truth and predicted survival outcomes for the
set of patients with cancer type t. This weighted concordance was used in order to assign equal
weight to each uncensored sample in the full dataset rather than assigning equal weight to each
cancer type, which matches the design of our overall objective function.

The remainder of this section presents the quantitative results from each of the experiments
described in Section 5.4 and discusses their implications.

5.5.2 Sharing Feature Selection

In this experiment, our aim was to understand the effect of using shared vs. joint feature selection
as a pre-processing step before fitting individual Cox models.

The main results of this experiment are shown in Figure 5.2. They indicate that shared feature
selection helps for some cancer types but not others. Furthermore, for each cancer type, sharing
appears to help in some data dimensionality regimes but not others. One cancer type of interest is

Figure 5.2: Comparison of separate vs. joint feature selection.
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Figure 5.3: Left: The relative stability of separate and joint feature selection across random dataset
splits. Right: The average overlap between features selected using the separate and joint methods.

BRCA, where sharing helps in the low-dimensional regime but the performance of separate feature
selection catches up in the high-dimensional regime. Other cancer types, such as GBM and to a
lesser extent UCEC, follow a similar pattern. In contrast, we see the opposite pattern in KIRC
and some others, where sharing does not help in the low-dimensional regime but then starts to
outperform no sharing in the high-dimensional regime.

The left panel of Figure 5.3 compares the stability of the set of genes selected using the separate
and joint methods, measured as the pairwise overlap among the gene sets selected in each random
split. Unsurprisingly, joint feature selection, which uses the full dataset and therefore estimates
p-values over a larger set of samples, is much more stable than separate feature selection. This
provides evidence to support the hypothesis that sharing information in the feature selection step
boosts the signal-to-noise ratio. The right panel of Figure 5.3 shows the average overlap between
the genes selected with the joint method and the separate method for each individual cancer type.
Overall, the overlap is very low for small numbers of genes and never exceeds 50% even when
selecting 10,000 out of the full set of 60,000 genes.

The stability and overlap results help explain the patterns observed in overall results from
Figure 5.2. We hypothesize that joint feature selection leads to a more useful set of genes being
selected for cancers such as BRCA that are more multi-genic and whose survival outcomes are less
driven by a small set of high-impact genes. In contrast, there are several cancers where the joint
feature selection method tends to miss some important genes, particularly when m is small. An
interesting example is LUAD. If we examine the separate gene sets selected for LUAD, we see that
there are a few key genes that are selected with high stability even when m = 10, the primary one
being PITX, which is highly associated with LUAD survival. This gene is not selected in the joint
set for small values of m.

Overall, the joint and separate methods tend to converge for larger values of m where there
is generally more overlap among the selected gene sets. The notable exception to this pattern is
KIRC, which benefits greatly from joint feature selection in the high-dimensional setting.
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Figure 5.4: Comparison of separate vs. joint regularization hyperparameter tuning.

Figure 5.5: The counts of selected genes (i.e. those with nonzero βj) in the regression parameter
estimates when using separate vs. joint regularization hyperparameter tuning.
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5.5.3 Sharing Hyperparameters

In this experiment, our goal was to understand the effect of using shared vs. joint hyperparameter
selection in order to determine how much sparsity is appropriate for each regression parameter
estimate β(t).

The results of this experiment are shown in Figure 5.4. Overall, we see that learning the value
of λ jointly leads to a slight performance improvement in the majority of cancer types. We further
investigate this by examining the overall sparsity of the estimated regression parameters when the
hyperparameter is tuned separately vs. jointly. These results are shown in Figure 5.5, which plots
the total number of genes with nonzero values in β as a function of the total number of input
genes. Somewhat surprisingly, joint hyperparameter tuning leads to fewer genes being selected in
the model for small numbers of input genes, but nearly always leads to more genes being selected
in the high-dimensional setting.

A particularly interesting case is that of PRAD, for which we only have 7 uncensored samples
in the training set. We see that joint hyperparameter selection leads to a much sparser model
for PRAD than separate hyperparameter selection. This is likely because the separate approach
leads to significant overfitting on this cancer type, whereas the joint approach is able to leverage
information from the other cancer types to learn that more regularization is necessary in this case.

5.5.4 Sharing Regression Parameters

In this experiment, our goal was to evaluate the effects of directly sharing information between the
hyperparameters for each cancer type, β(t) for t ∈ T . The overall results of this experiment are
shown in Figure 5.6. From here onward, we refer to the setting with no information sharing as

Figure 5.6: Comparison of different amounts of sharing among the regression parameters with the
separate objective function formulation.
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Figure 5.7: Distribution of the number of cancer types that each gene is associated with in the B
estimates from Separate Lasso, GFLasso, and Joint Lasso with p = 1000 genes. Note that due to
its design, Joint Lasso can only associate genes with either 0 cancer types or all 10 cancer types. In
contrast, neither Separate Lasso nor GFLasso have any strict limitations on what they can express.

Separate Lasso (or SLasso for short), the setting with partial sharing using a graph-guided fused
lasso penalty as GFLasso, the setting where we enforce exact equality of the regression parameters
as Joint Lasso (or JLasso for short). The results shows that either GFLasso or Joint Lasso or
both outperform Separate Lasso in the majority of cancer types, including BRCA, GBM, HNSC,
OV, PRAD, THCA, and UCEC. Furthermore, in the three remaining cancer types, KIRC, LGG,
and LUAD, all three methods perform comparably. Overall, this suggests that sharing information
across regression parameters is a net win and never makes the performance worse.

In several cancer types, including HNSC and UCEC, we see that the performance gap between
Separate Lasso and the other two methods widens as the number of genes included in the model
increases. This provides evidence to support the hypothesis that sharing information across related
tasks helps combat the curse of dimensionality.

To analyze these results in more detail, we also evaluated the sparsity pattern of the regression
parameters that were estimated with each approach. Given an estimate of the full set of regression
parameters B, each gene may have an association with one or more cancer types, where an asso-

ciation between gene j and cancer type t is indicated by a nonzero value of β
(t)
j . In order to gain
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insight into the structure of B, we calculated the number of cancer types with which each gene was

associated, given by Cj =
∑

t∈T I{‖β(t)
j ‖ > 0}. We then plotted the distribution of Cj across genes

for each method in Figure 5.7.

From these results, we can see that Separate Lasso primarily associates genes with only one or
two cancer types and does not associate any genes with more than 7 cancer types. In contrast,
by its very design, Joint Lasso can only associate genes with either no cancer types (in which case
they are not selected in the model at all) or with all cancer types. However, interestingly, GFLasso
yields a much more uniform distribution of association counts. This suggests that GFLasso is able
to learn a much richer structure of gene associations with cancer types. In particular, it is able to
identify genes that affect the multiple cancer types (including all 10 cancer types) but also identify
genes that only affect a single cancer type. Based on its inherent limitations, Joint Lasso is only
able to do the former. Based on empirical observations, Separate Lasso is only able to do the latter.
We explore this hypothesis in more detail in Section 5.6.

5.5.5 Sharing the Objective Function

Finally, the aim of our last experiment was to investigate the effects of providing a richer and more
challenging loss function for Cox regression by pooling information from all cancer types in the
loss itself. This experiment was originally motivated by the observation that a fully joint model in
which all data is pooled together and a single Cox model is trained also uses a joint loss function
by default. We wanted to tease apart whether any performance improvements provided by a fully
joint model were due to sharing information between the regression parameter estimates or due to

Figure 5.8: Comparison of separate vs. joint objective function formulations with GFLasso. We
repeated the same experiment using both the Separate Lasso and Joint Lasso formulations and
observed very similar results.
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Figure 5.9: Comparison of separate vs. joint objective function formulations with Separate Lasso
(left), GFLasso (middle), and Joint Lasso (right). The models are evaluated on the overall concor-
dance index across all cancer types. Unsurprisingly, the joint objective far outperform the separate
objective models because the separate models are not trained to perform well on this overall survival
prediction task.

the loss function formulation.
The results from this experiment when using the GFLasso penalty are shown in Figure 5.8.

Overall, we see that using the joint objective formulation does not help improve performance on
the within-cancer survival prediction task. However, the results in Figure 5.9 show the overall test
set concordance index measured on the full set of samples from all cancer types. Unsurprisingly,
the models trained with a joint objective function significantly outperform the models trained with
separate objective functions on this task.

We hypothesize that because the joint objective function provides a richer prediction target for
the survival models, these models would also learn a more meaningful set of gene associations than
models trained on the separate objectives. However, in order to restrict the scope of this analysis,
we do not explore that direction any further in this thesis, and instead leave it for future work.

5.5.6 Analysis of Training vs Test Error

For completeness, we include the full set of experimental results, with concordance indices reported
on both the training and test sets, in Figures 5.10 through 5.17. By comparing the training and
test errors, we can clearly see that sharing information across related tasks leads to less overfitting
on the training set, which generally translates to better performance on the test set.

One interesting observation from these results is that reducing the gap between the training
and test error does not always correspond to improving the test error. For example, in nearly all
settings, increasing the number of genes selected in the feature selection step leads to a much better
fit to the training set. However, the effect on the test set is very mixed. In some cases, such as
BRCA, including more genes seems to help its test set performance overall. In other cases, such as
LUAD, the overall best performance is achieved with a small number of genes.

In general, the large gap between training and test error that is seen even with the full joint
model indicates that there are still a lot of spurious patterns being estimated by the Cox model
that do not generalize to unseen data. This suggests that more sophisticated or more structured
approaches are needed in order to further improve the signal-to-noise ratio.
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Figure 5.10: Results for Cox Lasso regression with separate feature selection, separate hyperpa-
rameter tuning, no regression parameter sharing, and separate objective functions.

Figure 5.11: Results for Cox Lasso regression with joint feature selection, separate hyperparameter
tuning, no regression parameter sharing, and separate objective functions.
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Figure 5.12: Results for Cox Lasso regression with joint feature selection, joint hyperparameter
tuning, no regression parameter sharing, and separate objective functions.

Figure 5.13: Results for Cox Lasso regression with joint feature selection, joint hyperparameter
tuning, no regression parameter sharing, and joint objective functions.
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Figure 5.14: Results for Cox Lasso regression with joint feature selection, joint hyperparameter
tuning, GFLasso regression parameter sharing, and separate objective functions.

Figure 5.15: Results for Cox Lasso regression with joint feature selection, joint hyperparameter
tuning, GFLasso regression parameter sharing, and joint objective functions.
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Figure 5.16: Results for Cox Lasso regression with joint feature selection, joint hyperparameter
tuning, complete regression parameter sharing, and separate objective functions.

Figure 5.17: Results for Cox Lasso regression with joint feature selection, joint hyperparameter
tuning, complete regression parameter sharing, and joint objective functions.
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Table 5.3: Density of B Estimates

Cancer Type Separate Lasso GFLasso Joint Lasso

Breast Invasive Carcinoma (BRCA) 0.017 0.061 0.082

Glioblastoma Multiforme (GBM) 0.005 0.040 0.082

Head and Neck Squamous Cell Carcinoma (HNSC) 0.064 0.028 0.082

Kidney Renal Clear Cell Carcinoma (KIRC) 0.008 0.055 0.082

Brain Lower Grade Glioma (LGG) 0.019 0.062 0.082

Lung Adenocarcinoma (LUAD) 0.022 0.071 0.082

Ovarian Serous Cystadenocarcinoma (OV) 0.010 0.060 0.082

Prostate Adenocarcinoma (PRAD) 0.000 0.027 0.082

Thyroid Carcinoma (THCA) 0.000 0.029 0.082

Uterine Corpus Endometrial Carcinoma (UCEC) 0.008 0.046 0.082

5.6 Qualitative Results

The quantitative results summarized in the previous section demonstrate that sharing information
across cancer types leads to a significant improvement in the accuracy of cancer survival prediction.
In particular, the two best-performing methods in nearly all situations were the ones that employed
the largest amount of sharing, namely GFLasso and Joint Lasso. However, in biology, we are
not solely interested in predictive power, but are also interested in understanding the biological
mechanisms of disease. To that end, in this section, we perform a qualitative comparison of the
results that incorporate different amounts of information sharing between the regression parameter
estimates in order to see what insights each one reveals about the structure of the problem that we
are studying.

For this analysis, we selected a single train/test split of the data in the p = 1000 setting and
closely examined the regression parameter estimates from each of the three methods. We denote
these as B̂gflasso, B̂jlasso, and B̂slasso for GFLasso, Joint Lasso, and Separate Lasso, respectively. In
order to reduce the total number of associations to analyze, we performed some additional post-
processing on every B̂ by thresholding the regression parameter values at ε = 0.01 and setting
any element with absolute value smaller than ε to 0. This allows us to retain only the strongest
associations for closer analysis. The resulting densities of the three B̂ estimates for each cancer
type are shown in Table 5.3.

In order to visualize the associations between genes and cancer types, we constructed a bipar-
tite graph consisting of gene nodes and cancer type nodes, with edges in the graph representing
associations (i.e. nonzero values in the thresholded B̂). The graphs for the B̂s estimated with all
three methods are shown in Figure 5.18.

The top graph shows B̂gflasso. In this visualization, the gene nodes are colored according to their
“gene type” as defined in Table 5.4, which categorizes the genes according to their approximate
degree in the graph. We define four distinct gene types: non-cancer genes are not associated
with any cancer types, and are shown in gray; single-cancer genes are associated with exactly one
cancer type, and are shown in green; multi-cancer genes are associated with multiple but not all
cancer types, and are shown in blue; pan-cancer genes are associated with all or nearly all cancer
types, and are shown in pink. We use the R package ggnet2 to plot the graph, which uses the
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Figure 5.18: A graph representation of the associations between genes and cancer types estimated
by GFLasso (top), Joint Lasso (middle), and Separate Lasso (bottom). The nodes corresponding to
cancer types are shown in yellow and labeled with their cancer type. All other nodes correspond to
individual genes, and the size of these gene nodes is proportional to their degree in the graph. An
edge between gene j and cancer type t in the graph represents a nonzero association in B̂, and the
thickness of the edge represents the strength of the association. The gene nodes in all three graphs
are colored according to their gene type in the GFLasso estimate (see Table 5.4 for definitions).
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Table 5.4: Gene Type Definitions

Gene Type Number of Associated Cancers Node Color

Non-Cancer Gene 0 Gray

Single-Cancer Gene 1 Green

Multi-Cancer Gene 2-7 Blue

Pan-Cancer Gene 8-10 Pink

Table 5.5: Gene Type Counts in B Estimates

Gene Type Separate Lasso GFLasso Joint Lasso

Number of Non-Cancer Genes 888 816 918

Number of Single-Cancer Genes 107 115 0

Number of Multi-Cancer Genes 5 42 0

Number of Pan-Cancer Genes 0 27 82

Fruchterman-Reingold algorithm [31] to determine a node placement that minimizes intersections
among edges.

The middle and bottom graphs show B̂jlasso and B̂slasso, respectively. For the visualizations in
Figure 5.18, we kept the node placement unchanged in order to better highlight the contrasts across
the three graphs. We also kept the node coloring unchanged, meaning that the node colors in all
three graphs reflect the gene type that is determined by B̂gflasso, even though these same genes
may have different node degrees in the other two graphs. However, the node sizes and the edges
themselves are updated in each graph to reflect that particular estimate of B̂.

Overall, these visualizations highlight stark differences between the three estimates. Table 5.5
shows a summary of the number of genes in each category that are identified by each method. The
GFLasso estimate is able to capture a compact set of 27 pan-cancer genes, but also identifies a
reasonably large set of 115 single-cancer genes, which are distributed across the cancer types. In
contrast, Joint Lasso can only consider pan-cancer or non-cancer genes by design, which means
that it ends up missing a lot of the single-cancer gene associations that are identified by the other
two methods (it only picks up 20 out of the 115 single-cancer genes identified by GFLasso). Finally,
Separate Lasso, although it does not have any constraints, seems unable to capture most of the pan-
cancer gene associations that are identified by the other two methods, and virtually only identifies
single-cancer associations (except for 5 multi-cancer genes, which are all associated with exactly
two cancer types).

In order to illustrate the structural differences more clearly, we show the same graphs in Fig-
ure 5.19 but with the node placement and node coloring updated to reflect the gene node types
determined by each individual B̂ estimate. These three graphs have significantly different structure,
which underscores the fact that GFLasso is the only one that can uncover nuanced information
about which genes are truly pan-cancer, which are multi-cancer, and which are single-cancer. Ta-
ble 5.6 shows how the four different categories of genes identified by GFLasso are treated in each
of the other two estimates. Since GFLasso and Joint Lasso are the two methods that perform best
in terms of concordance index, we analyze the differences between these two methods more closely
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Figure 5.19: A graph representation of the associations between genes and cancer types estimated
by GFLasso (top), Joint Lasso (middle), and Separate Lasso (bottom). The nodes corresponding
to cancer types are shown in yellow and labeled with their cancer type. All other nodes correspond
to individual genes, and the size of these gene nodes is proportional to their degree in the graph.
An edge between gene j and cancer type t in the graph represents a nonzero association in B̂, and
the thickness of the edge represents the strength of the association. The gene nodes are colored
according to their gene type in their own respective estimates (see Table 5.4 for definitions).
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Table 5.6: Gene Type Overlaps in B Estimates

Separate Lasso Joint Lasso

GFLasso Type Count Not Selected Selected Not Selected Selected

Non-Cancer 816 806 10 804 12

Single-Cancer 115 49 66 95 20

Multi-Cancer 42 22 20 16 26

Pan-Cancer 27 11 16 3 24

Total 1,000 888 112 918 82

by examining a few genes in detail.

We first look at the 3 genes that were identified by GFLasso as pan-cancer but were not selected
by Joint Lasso. Among these, we find FOXD1, which is known to play a role in tumor growth across
a wide range of cancer types [47, 67, 34, 37]. It’s possible that Joint Lasso missed this pan-cancer
gene because it may have different magnitudes of association with different cancer types, which is
not something that the Joint Lasso estimate is expressive enough to capture.

Next we examine the set of genes that GFLasso identifies as multi-cancer and that Joint Lasso
still selects but (by necessity) identifies as pan-cancer. Among these, we find CAMSAP3, which
encodes a protein that suppresses the epithelial to mesenchymal transition of epithelial cells, a
process that leads to cancer metastasis [72]. Because of this, increased expression of CAMSAP3
is known to be associated with less metastasis and therefore better cancer prognoses. This is also
what we find in both the GFLasso and Joint Lasso estimates; namely, both models identify a
negative association between CAMSAP3 expression and survival hazard. However, GFLasso only
associates it with 5 cancers out of the full set of 10. Although we don’t know for sure whether
this multi-cancer association is more accurate than the pan-cancer association identified by Joint
Lasso, this again highlights the fact that Joint Lasso does not have as much expressive power as
GFLasso to identify these nuanced patterns. There may be some genes that are only associated
with carcinomas, or only associated with metastatic cancers, that the Joint Lasso model simply
does not have the ability to capture.

Finally we examine the set of genes that GFLasso identifies as single-cancer and that Joint
Lasso does not select at all. As shown in Table 5.6, there are 95 genes in this set, which is quite a
large fraction of the GFLasso single-cancer genes (83%). This illustrates the greatest weakness of
the Joint Lasso method relative to GFLasso, because it leaves behind a number of genes that are
known in the literature to be associated with cancer survival. A notable example is SHOX2, which
has been independently established as a strong biomarker for predicting LGG survival [107]. In
both the GFLasso and Separate Lasso estimates, this gene was in the top 3 genes associated with
LGG, but Joint Lasso is not able to pick up the association at all because it is not correlated with
survival in any other cancer types.

5.7 Conclusion

In this study, we experimented with sharing information across related cancer types in order to
boost the signal to noise ratio of cancer survival prediction. Our results lead to two significant
conclusions.
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Figure 5.20: Comparison of separate feature selection, separate hyperparameter tuning, separate
objective, and no parameter sharing (red) to joint feature selection, joint hyperparameter tuning,
joint objective, and full sharing (pink). The fully joint method significantly outperforms the fully
separate method on nearly all cancer types in nearly all settings.

First, incorporating sharing leads to a significant improvement on the task of survival prediction
relative to the fully separate baseline. In fact, the fully joint model is arguably the method that
performs the best on the prediction task. Figure 5.20 drives this point home by comparing the
results of the fully separate model side by side with those of the fully joint model. The joint
method outperforms the separate method by a significant margin on nearly every cancer type in
nearly every setting. The other methods that incorporate significant amounts of sharing, such as
GFLasso with the separate objective formulation, are nearly tied for performance with the fully
joint model.

Second, we observe that GFLasso has significant advantages over the fully joint model because it
is able to capture the rich structure of the underlying problem. In particular, it is able to distinguish
between pan-cancer, multi-cancer, and single-cancer genes and identify meaningful associations in
all three categories. Ultimately, based on these results, we conclude GFLasso has both the statistical
power (due to sharing information between cancer types) and the expressivity (due to not having
any hard constraints on B) to identify rich patterns of association between gene expression and
cancer survival.

76



Chapter 6

Conclusion

6.1 Thesis Summary

The central goal of this thesis was to develop and apply machine learning methods that can boost the
signal-to-noise ratio when learning from inherently noisy genomic data. To that end, we developed
the following novel approaches:

• Time-varying group SpAM boosts the signal of GWAS by leveraging dynamic trait data and
incorporating biological context into a time-varying nonparametric regression model [56].

• Inverse covariance fused lasso boosts the signal of eQTL mapping and gene network estimation
by using transfer learning to share information between the two highly related tasks [58].

• Hybrid subspace learning estimates an informative latent representation of high-dimensional
data by combining the ideas of feature combination and feature selection and enforcing mutual
exclusion between low-rank and high-dimensional features [57].

• Multi-task Cox regression with GFLasso improves the performance of cancer survival predic-
tion by using structured sparsity to share information across cancer types while retaining the
flexibility to estimate separate regression parameters for each cancer type.

All of these methods follow the overarching framework laid out at the beginning of this thesis in
Equation 1.1, which uses regularization penalties to impose structural priors on the problem. In
addition to demonstrating that structured sparsity leads to improved performance on prediction
tasks, throughout this thesis, we also investigated and highlighted the ability of this class of methods
to reveal interesting patterns in the data that provide scientific or medical insights into the biological
mechanisms at play. In particular:

• We used time-varying group SpAM to identify specific SNPs with time-varying patterns of
influence on childhood asthma. These SNPs may have been missed by previous analyses that
only considered static patterns of SNP influence, and studying them further could provide
new insights into how the functional mechanisms of asthma change as children grow older.

• We used inverse covariance fused lasso to study Alzheimer’s disease and identified several
candidate eQTLs that may play a role in Alzheimer’s. In particular, we identified a previously
discovered connection between Acute Myeloid Leukemia and Alzheime’rs disease. Further
investigating the additional eQTLs identified by our method may provide new insights and
new connections with other diseases that were not previously known.

77



• We used hybrid subspace learning to identify aberrant genes whose expression does not fit
into any coherent gene modules in cancer patients. This could help reveal driver mutations
in cancer, which is a critical step in understanding how individual cancers evolve, grow, and
spread in the body.

• We used penalized multi-task Cox regression to identify a set of single-cancer, multi-cancer,
and pan-cancer genes. This helps provide greater insight into the overall structure of cancer
by revealing which genes play a role in all cancers vs. affect only a subset of cancer types.

Overall, throughout this thesis, we sought to use our models both to generate accurate predictions
and to facilitate scientific exploration. We did not develop new statistical methods purely in order
to optimize a metric on a dataset, but instead also demonstrated their capability to shed insight
into some of the extraordinarily complex functions of biological systems.

6.2 Future Directions

There are many promising areas of future work that can be explored using the ideas presented in
this thesis as a starting point. Below we outline a few key directions in broad strokes.

6.2.1 Personalized Learning and Zero-Shot Learning

One of the promises of high-throughput genomic data is that it will facilitate the development of
personalized medicine. To that end, one important area of future work is to extend the ideas of
transfer learning explored in several sections of this thesis to the personalized setting. In particular,
given the Cox GFLasso formulation of Equation 5.3 and using the joint objective formulation
of Equation 5.6, we can completely drop the information about which sample belongs to which
cancer type and simply learn an individualized regression parameter estimate β(i) for each patient.
Specifically, we can formulate the optimization problem as follows:

min
{β(i)}ni=1

∑
i:Ei=1

log
∑

j:Yj≥Yi

exp{XT
j β

(j)} −XT
i β

(i)

+ λ
n∑
i=1

‖β(i)‖1 + γ
n∑

i,j=1

‖β(i) − β(j)‖1 (6.1)

In the above model, we learn an individual set of regression parameters for each sample i, and we
use a GFLasso penalty to encourage similarity between all pairs of β’s. This can be done without
having any prior knowledge about the classes or types of the samples. An open question is how
the regression parameter estimates would be used to make predictions for unseen samples at test
time. However, even without addressing that problem, analyzing the relationships among the β’s
that are estimated from the training set would likely still reveal some very interesting patterns and
could potentially be used to discover new cancer subtypes.

Closely related to the idea of personalized learning is the idea of learning a model that can
make predictions for a task that was never observed at training time, a problem that is known
as zero-shot learning. Given that the results from our multi-task survival prediction analysis in
Chapter 5 revealed that the best-performing model was the fully joint model, which did not distin-
guish between cancer types but simply aggregated all of the data, a very promising future direction
would be to use this model to make predictions for cancer types that were not even included in the
training set. This would be particularly useful for rare cancer types, which suffer from an extreme
data shortage. This idea could then be extended to the problem of learning models for rare diseases
in general, which have historically been under-studied, due in part to the lack of data [22].
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6.2.2 Inferring Latent Structure

The methods developed in this thesis all use structured regularization penalties to impose structural
priors on a problem. We then solve an optimization problem and analyze the resulting parameter
estimates to understand the structure that they encode. However, the majority of these methods
do not explicitly model or estimate the latent structure of the problem, with the possible exception
of ICLasso. One potential future direction would be to extend these methods to directly estimate
latent structure while simultaneously using the structure to constrain the parameter estimates.

To achieve this, one or more of the models presented this thesis could be recast in a Bayesian
framework. As a specific example, the inverse covariance induced fused lasso could be reformulated
by assuming the eQTL map B ∈ Rp×q is drawn from a Matrix Normal distribution with latent
variables for the row-wise and column-wise covariances. Another possible approach would be to
design a Mixture of Experts [61] formulation for the Cox Lasso model that jointly estimates a latent
cancer type or sub-type along with the regression parameters β(t) for that sub-type.

Finally, another potential direction would be to extend the ICLasso multi-task regression for-
mulation described in Chapter 3 and applied to eQTL mapping to the problem of multi-task cancer
survival prediction. One key difference between the eQTL setting and the pan-cancer setting is
that in the former, we have matched input features xi ∈ Rp and output targets yi ∈ Rq for every
sample, and we observe the values of all q prediction tasks for all samples. In contrast, in the
pan-cancer setting, each sample belongs to a separate prediction task, or cancer type, which means
that we only observe the value of a single prediction task for each sample. This makes it impossi-
ble to directly apply ICLasso for cancer survival prediction. However, an interesting direction for
future work would be to explore one or more extensions of ICLasso that would allow us to directly
estimate a latent graph structure G over the cancer types and then use that similarity graph as
weights in the GFLasso penalty for the Cox regression formulation given in Equation 5.3.

6.2.3 Multi-View Learning

In this thesis, we developed models that shared information across related input variables, related
output tasks, and related samples. However, one other major area of information sharing is the
problem of sharing information across related “views” or data modalities. One example of this is in
the cancer genomics setting. Table 6.1 shows the full TCGA dataset that we collected and curated
for the pan-cancer study, not all of which was used in the analysis presented in Chapter 5. In
addition to collecting gene expression data, we also collected somatic mutations and copy number
variations for each patient. These different data modalities can be said to provide different views
of the disease being studied. Since the views provide both overlapping and complementary infor-
mation, we can further boost the signal-to-noise ratio by designing methods that explicitly model
the relationships between these data views. This problem is known as multi-view learning.

One exciting direction for future work would be to make use of the full dataset shown in
Table 6.1 and design methods for structured multi-view learning. In particular, the hybrid subspace
learning method described in Chapter 4 could be extended to the multi-view setting using ideas
from canonical correlation analysis [83].

6.2.4 Biological Validation

Finally, another important future direction would be to conduct wet-lab experiments to biologically
validate some of the associations inferred by the various methods introduced in this work. This
would provide true evidence for the quality of the models, but more importantly, could lead to
meaningful new discoveries about the functional mechanisms of particular diseases.
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Table 6.1: Full TCGA Dataset

Cancer Type Sample Size by Data Type

Somatic
Mutation

Gene
Expression

Copy
Number

Survival
(Censored)

Breast Invasive Carcinoma 1,044 1,092 1,096 1,096 (945)

Glioblastoma Multiforme 396 166 593 596 (105)

Ovarian Serous Cystadenocarcinoma 443 376 573 584 (236)

Lung Adenocarcinoma 569 515 518 513 (329)

Uterine Corpus Endometrial Carcinoma 542 555 547 547 (456)

Kidney Renal Clear Cell Carcinoma 339 530 532 537 (360)

Head and Neck Squamous Cell Carcinoma 510 501 521 527 (304)

Brain Lower Grade Glioma 513 511 514 514 (389)

Thyroid Carcinoma 496 502 505 507 (491)

Lung Squamous Cell Carcinoma 497 501 504 498 (283)

Prostate Adenocarcinoma 498 495 498 500 (490)

Colon Adenocarcinoma 433 456 458 458 (356)

Stomach Adenocarcinoma 441 380 443 438 (268)

Bladder Urothelial Carcinoma 412 408 412 411 (231)

Liver Hepatocellular Carcinoma 375 371 376 376 (244)

Total 7,508 7,359 8,090 8,102 (5,487)

Since our hypothesis is that structured sparsity increases the power of regression models to
detect true associations, it would be particularly interesting to validate some of the associations
identified by the structured models that are missed by other models that do not explicitly incor-
porate structure but still jointly reason about the same set of covariates.

6.3 Closing Thoughts

Although this thesis focused solely on modeling and reasoning about structure in the context of
genomics and computational biology, the reality of our world is that data from all domains exhibits
rich underlying structure. If this were not the case, we would not be able to use machine learning
to uncover meaningful patterns in the first place. This suggests that all machine learning problems
are in fact structured prediction problems, even if they are not always formulated that way.

Even with the recent explosion of deep learning and the popularity of connectionism, structured
prediction and inductive biases still play an important role in many models and algorithms. The
evidence from both this thesis and from the broader machine learning literature indicate that when
we design methods that can either uncover this structure or make use of this structure to learn
efficiently, we are able to learn meaningful patterns from even a very small number of examples and
generalizable patterns that transfer to new settings. Understanding and leveraging this structure
is critically important for the future of applied machine learning in all domains.
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