
Unifying State and Policy-Level
Explanations for Reinforcement Learning

Nicholay Topin

July 2022
CMU-ML-22-103

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Manuela Veloso, Chair

Tom Mitchell
Ameet Talwalkar

Marie desJardins, Previously at Simmons University

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

This research was funded by: Air Force Research Laboratory award FA87501720152; Office of Naval Research award
N000141712899; and a National Defense Science and Engineering Graduate Fellowship.

Keywords: reinforcement learning, explainable AI, interpretable AI, deep learning

To my friends, mentors, and family.

Abstract

Reinforcement learning (RL) is able to solve domains without needing to learn a model of
the domain dynamics. When coupled with a neural network as a function approximator, RL
systems can solve complex problems. However, verifying and predicting RL agent behavior is
made difficult by these same properties; a learned policy conveys “what” to do, but not “why.”

This thesis focuses on producing explanations for deep RL, summaries of behavior and
their causes that can be used for downstream analysis. Specifically, we focus on the setting
where the final policy is obtained from a limited, known set of interactions with the environment.
We categorize existing explanation methods along two axes:

1. Whether a method explains single-action behavior or policy-level behavior

2. Whether a method provides explanations in terms of state features or past experiences

Under this classification, there are four types of explanation methods, and they enable
answering different questions about an agent. We introduce methods for creating explanations
of these types. Furthermore, we introduce a unified explanation structure that is a combination
of all four types. This structure enables obtaining further information about what an agent has
learned and why it behaves as it does.

First, we introduce CUSTARD, our method for explaining single-action behavior in terms
of state features. CUSTARD’s explanation is a decision tree representation of the policy. Unlike
existing methods for producing such a decision tree, CUSTARD directly learns the tree without
approximating a policy after training and is compatible with existing RL techniques.

We then introduce APG-Gen, our approach for creating a policy-level behavior explanation
in terms of state features. APG-Gen produces a Markov chain over abstract states that enables
predicting future actions and aspects of future states. APG-Gen only queries an agent’s Q-values,
making no assumptions about an agent’s decision-making process.

We integrate these two methods to produce a Unified Explanation Tree (UET). A UET
is a tree that maps from a state directly to both an action and an abstract state, thus unifying
single-action and policy-level behavior explanations in terms of state features.

We extend existing work on finding important training points in deep neural networks. Our
method, MRPS, produces explanations of single-action behavior in terms of past experiences.
MRPS can find importance values for sets of points and accounts for feature magnitudes to
produce more meaningful importance values.

Finally, we find the importance values of sets of past experiences for any node within
a UET. Additionally, we introduce methods for computing approximate and exact influence
for UET nodes. Since a UET conveys both single-action and policy-level behavior, these
importance and influence values explain both levels of behavior in terms of past experiences.
Our overall solution enables identifying the portion of the UET that would change if specific
experiences were removed or added from the set used by the agent.

Acknowledgements

I want to thank my family, who taught me to always keep learning.

I would like to thank my advisor, Manuela Veloso, who has been crucial in completing this
thesis. Her guidance throughout my PhD has been invaluable, and her insights and questions
played a critical role in the development of my work. When I first began working on reinforce-
ment learning, I had the pleasure of attending a talk by Manuela. Since then, I wanted to be
part of her lab. Having her as my advisor has been every bit as great as I had dreamed.

I also want to thank Marie desJardins, another member of my committee and my research
supervisor during undergrad. She was the one who initially introduced me to reinforcement
learning and who encouraged me to pursue a PhD. When I was just an enthusiastic highschool
student, she graciously offered me a summer research assistant position. This experience
galvanized my interest in artificial intelligence and motivated me to focus on research. Without
her influence, this thesis would likely not exist.

I would also like to thank the other two members of my committee: Tom Mitchell and Ameet
Talwalkar. Tom gave me the opportunity to TA for his reinforcement learning class which
he was co-teaching. This was an amazing experience and reminded me how much I enjoyed
teaching. I have enjoyed collaborating with Ameet and others in his research group. He has
been crucial in shaping my understanding of explainability and its role in machine learning.

I also would like to thank Mark Owen, my NDSEG mentor. His encouragement made
completing my thesis substantially easier. Through the talk opportunities which he arranged I
was able to meet many new researchers that I would not have met otherwise.

I also want to thank all my collaborators on the MineRL project. It was incredibly rewarding
to launch a new ML competition centered around a new task and dataset.

Finally, I would like to thank my lab mates at CORAL and the other MLD students, both
current and past. I am grateful for all of the advice and input I received as well as the encour-
agement and support. All of these aspects were essential to making my time at CMU as great
as it has been.

Contents

1 Introduction 1
1.1 Thesis Question . 1
1.2 Motivating Example . 2

1.2.1 Problem Description . 2
1.2.2 Benefits of Explanations . 3
1.2.3 Benefit of Unified Explanation . 6

1.3 Approach . 7
1.3.1 Decision Tree Policies . 7
1.3.2 Abstract Policy Graphs . 8
1.3.3 Importance Scores for Past Experiences 8
1.3.4 Unification . 8

1.4 Contributions . 9
1.5 Thesis Outline . 10

2 Preliminaries 13
2.1 Background . 13

2.1.1 Markov Decision Processes . 13
2.1.2 Reinforcement Learning . 14

2.2 Environments . 15
2.2.1 PrereqWorld . 15
2.2.2 PotholeWorld . 18
2.2.3 CartPole . 20

3 Decision Tree Policies via DRL 21
3.1 Motivation . 21

3.1.1 Decision Trees and Decision Tree Policies 21
3.1.2 Downsides of Past Approaches . 22
3.1.3 Benefits of a Meta-Problem Approach 23

3.2 Approach: CUSTARD . 24
3.2.1 Iterative Bounding MDPs . 24

viii

3.2.2 Tree Extraction . 27
3.2.3 Training Procedure . 28

3.3 Experiments . 31
3.3.1 Learning with CUSTARD . 31
3.3.2 Response to Environment Size . 32
3.3.3 Response to Tree Depth . 33

3.4 Summary . 34

4 Abstract Policy Graph Creation 36
4.1 Motivation . 36
4.2 Approach: APG-Gen . 38

4.2.1 Feature Importance Function . 38
4.2.2 Abstract Policy Graphs . 39
4.2.3 APG Construction . 40
4.2.4 Abstract State Summarization . 42
4.2.5 Computational Complexity . 43

4.3 Experiments . 45
4.3.1 Experimental Settings . 45
4.3.2 Local Explanation Generalization 47
4.3.3 n-hop Prediction Evaluation . 48
4.3.4 Explanation Size . 49

4.4 Summary . 50

5 Unified Explanation Trees 51
5.1 Motivation . 51
5.2 Approach: Unified Explanation Trees . 52

5.2.1 Extracting a Forest via APG-Gen 52
5.2.2 Extending a DTP with an Abstract Policy Forest 54
5.2.3 Initializing APG-Gen with Leaves from a DTP 55

5.3 Experiments . 57
5.3.1 Explanation Size . 57
5.3.2 Split Effectiveness . 59

5.4 Summary . 61

6 Importance and Influence in Neural Networks 62
6.1 Motivation . 62
6.2 Problem Formulation . 63

6.2.1 General Notation . 63
6.2.2 Influence . 64

ix

6.2.3 Importance . 64
6.2.4 Representer Point Selection . 65

6.3 Approach: MRPS . 66
6.3.1 Reparameterize Last Layer in Terms of Exemplar Points 66
6.3.2 Remove Alpha Sensitivity to Weight Rescaling 67
6.3.3 Compute Importance based on Larger Portion of Network 68

6.4 Experiments . 68
6.4.1 Baseline Approaches . 69
6.4.2 Dataset Creation . 69
6.4.3 Experiment Setup . 69
6.4.4 Evaluation Metrics . 71
6.4.5 Results . 71

6.5 Summary . 72

7 Importance and Influence for Unified Explanation Trees 73
7.1 Motivation . 73
7.2 Problem Formulation . 74

7.2.1 Notation for Reinforcement Learning Setting 74
7.2.2 Influence/Importance at a Tree Node 75

7.3 Approach: Influence for CUSTARD Nodes 75
7.3.1 Regression in Q-learning . 75
7.3.2 Ordinary Least Squares and Ridge Regression 76
7.3.3 Explaining CUSTARD . 77
7.3.4 Computing Exact Influence . 80

7.4 Approach: Influence for APG-Gen Nodes 83
7.4.1 Feature Importance and MRPS Decomposition 84
7.4.2 Initial Influence Estimate . 85
7.4.3 Influence while Accounting for Change in Q 86
7.4.4 Accounting for Change in Alpha Values 87
7.4.5 Exact Influence Computation . 88

7.5 Experiments . 89
7.5.1 Identifying Most Influential Experiences 89
7.5.2 Ranking Influential Experiences . 91

7.6 Summary . 93

8 Related Work 94
8.1 Per-Action Feature Importance Explanation 94

8.1.1 Post-hoc Conversion to Explainable Format 95
8.1.2 Learn as Inherently Explainable Format 95

x

8.1.3 Directly Generating an Explanation 96
8.2 Explanations in Terms of MDP or Learning Process 98

8.2.1 Modeling of Domain Information 98
8.2.2 Decomposition of Reward Function 98
8.2.3 Identification of Important Training Points 99

8.3 Policy-level Behavior Explanations . 99
8.3.1 Summarization via Set of Transition Tuples 99
8.3.2 Conversion of RNN to Finite State Machine 99
8.3.3 Extraction of Clusters or Abstract States 100

8.4 Comparison with Our Work . 100

9 Conclusions and Future Work 101
9.1 Contributions . 101

9.1.1 Decision Tree Policies . 101
9.1.2 Abstract Policy Graphs . 101
9.1.3 Importance Scores for Past Experiences 102
9.1.4 Unified Explanation Trees . 102
9.1.5 Domains and Evaluation . 102

9.2 Future Work . 103
9.2.1 Extending UETs to Continuous Features 103
9.2.2 Extending UETs to Continuous Actions 103
9.2.3 Enabling Efficient Intervention via Experience Removal/Addition . . 103
9.2.4 Applying to “Learning from Demonstrations” Problem 104
9.2.5 Applying to Health and Finance Domains 104

9.3 Summary . 105

Bibliography 106

xi

List of Figures

1.1 An example GridWorld environment (a) and a learned policy (b) overlaid onto
this environment. 3

1.2 A policy for the example environment resulting from a limited set of past
experiences. The suboptimal action in s8 is hatched. 4

1.3 A Decision Tree Policy representation of the same policy as before. The leaf
corresponding to s8 is hatched. 4

1.4 An explanation that groups states into abstract states and then shows the Markov
chain relating these abstract states. The abstract state corresponding to s8 is
hatched. 5

1.5 Importance values for past transition tuples. Identical transitions are grouped
and given an importance value for the entire group. The top-ranked transition
tuple group relates to moving left in s8. 5

1.6 Updated explanations for the policy obtained by removing the unwanted expe-
rience. 6

1.7 Organization of the chapters of this thesis along our two explanation type
dimensions. Chapters that build upon other chapters are shown encapsulating
those other chapters. 10

2.1 Example PrereqWorld environments showing item-action correspondence (top)
and prerequisite hierarchy (bottom). (a) corresponds to the environment shown
in Figure 2.2. (b) shows a different environment, to illustrate commonalities
and differences between PrereqWorld instantiations. 16

2.2 The MDP for an example PrereqWorld instance. 17

2.3 Example PotholeWorld environment showing pothole locations in lanes 2 and
3. Note how lane 1 is free of potholes but offers lower reward per unit travelled. 18

3.1 Method overview: we wrap a base MDP to form an IBMDP and solve using
a modified RL algorithm. The solution is a decision tree policy for the base
environment. 23

xii

3.2 The division between the tree agent (circle states and arrow actions) and the
leaf agent (square states and arrow actions). Each tree traversal is an episode
for the tree agent and one transition for the leaf agent. 29

3.3 The method for using the omniscient Q-function, Qo, for Q targets. The policy
is based only on Q, so a DTP can be extracted despite Qo being a function on
the full state. 31

3.4 Tree depth and node count as the PrereqWorld environment size increases. The
bars indicate the Standard Deviation. CUSTARD yields smaller trees for larger
environments than VIPER. 33

3.5 Average per-episode reward for trees of a fixed depth for PotholeWorld. The
bars indicate the Standard Deviation. CUSTARD DTPs consistently achieve
higher reward than VIPER’s DTPs. The line at 50 indicates maximum possible
per-episode reward. 34

4.1 An example Abstract Policy Graph with edge labels indicating transition prob-
abilities. The abstract state identifier is shown within each node, and the action
taken is written adjacent to the node. 40

4.2 An example APG made by APG-Gen for a small PrereqWorld domain instance
with m = 8 and ρ = 0. All edges have transition probability 1. The abstract
state identifier is shown within each node, and the action taken is written
adjacent to the node. 46

4.3 Comparison of feature importance prediction accuracy for increasing portion
of non-terminal states for stochastic and deterministic PrereqWorld instantiations. 47

4.4 Action prediction for increasing time horizon for stochastic and deterministic
PrereqWorld instantiations. 48

4.5 Comparison of explanation versus state-space size for stochastic and determin-
istic PrereqWorld instantiations. 49

5.1 Starting with the DTP and APF in (a), our two approaches yield different UETs:
(b) via Extension and (c) via Initialization. 54

6.1 Sample data from the CIFAR-10 dataset, showing the ten classes, of which the
benchmark task uses two. 70

6.2 Comparison of our approaches to RPS and Influence Functions on the CIFAR-
10 benchmark task. The left plot corresponds to success in the original task,
and the right plot corresponds to the success in identifying mislabeled datapoints. 71

6.3 A pair of example clusters found using our method. The one on the left shows
grouping of near-identical images while the one on the right shows grouping of
a similar type of image. 72

xiii

7.1 Comparison of methods for selecting sets of negatively impactful experiences.
The resulting sets are compared to the sets obtained via exact influence values. 91

7.2 Comparison of methods for selecting sets of positively impactful experiences.
The resulting sets are compared to the sets obtained via exact influence values. 92

xiv

List of Tables

3.1 Final average reward and tree depth for different methods that make a DTP.
The values in parentheses are Standard Deviation values. 32

5.1 Comparison of tree sizes for different ways of combining a DTP and APF. The
values in parentheses are Standard Deviation values. 59

5.2 Comparison of average information gain for different ways of combining a
DTP and APF. The values in parentheses are Standard Deviation values. . . . 61

7.1 Properties of different methods for computing importance or influence for UET
nodes obtained via an APG-Gen variant. 83

7.2 Comparison of Spearman Rank Correlations with respect to the ranking pro-
duced by exact influence values. 93

xv

List of Algorithms

1 Extract a Decision Tree Policy from an IBMDP policy π, beginning traversal
from obs. 27

2 Compute abstract states based on transition samples and learned policy. . . . 42
3 Create mapping function and transition matrix based on policy graph. 43
4 Compute feature importance for all features for given set of transitions. . . . 44
5 Compute abstract states based on transition samples and learned policy; simul-

taneously track performed partitions within a forest. 53
6 Compute abstract states based on transition samples and learned policy that is

split into a mapping from states to leaves and a mapping from leaves to actions;
simultaneously track performed partitions within a forest. 56

xvi

Chapter 1

Introduction

Recent advances in neural networks have enabled the use of powerful function approximators
alongside reinforcement learning (RL) techniques to solve difficult problems. However, the
deployment of RL systems may be hampered by the difficulty to verify and predict the behavior
of RL agents, as well as an inability to intervene based on this knowledge. Existing work on
Explainable Reinforcement Learning (XRL) explains either single-action behavior or policy-
level behavior. Single-action behavior explanations identify causes for an agent’s action choice
in a single state. Policy-level behavior explanations illustrate the long-term behavior of the
agent. We focus on explanations that convey the significance of either state features or past
experiences. State feature explanations identify the features of a state that affect how an agent
treats that state. Past experience explanations show which past experiences led the agent to
learn the current behavior.

In this thesis, we advocate for the use of explanations that simultaneously provide information
of all four types. A unified explanation identifies the link between local behavior and policy-
level behavior, so it enables inferences about the cause of policy-level behavior. Furthermore,
identifying the impact of past experiences on both levels of behavior is a step toward predicting
the global effects of a local intervention.

1.1 Thesis Question

This thesis seeks to answer the question,

How can we endow agents in an RL setting with the ability to explain single-action
and policy-level behaviors in terms of both state features and past experiences?

We focus on the RL setting, where an agent interacts with an environment by selecting an
action, observing the resulting transition, and obtaining a reward. Notably, an agent is not
permitted arbitrary queries to a domain model nor direct access to the domain dynamics.
We believe this setting reflects properties present in real-world environments. For this same
reason, we avoid learning approximate models of the environment, since we understand that
modeling real-world environments is often not feasible. Finally, in our setting, an agent does

1

not necessarily explore the entire state-action space, so we assume a policy is learned from a
limited (even if rich) set of past experiences.

By “explain,” we mean the process of creating intermediate representations that serve to
summarize agent behavior. We refer to such representations as explanations. These explanations
can then be used for down-stream use-cases such as verifying agent correctness or safety
(e.g., ensuring the agent takes certain actions only when certain conditions are met). We
do not necessarily seek to produce human-interpretable representations; our focus is on the
summarization aspect rather than how to best convey information to a human user.

Single-action behaviors are the most fine-grained behavior of an agent, so an explanation at
this level permits analyzing local behavior at individual time steps. Moving beyond this low-
level explanation, we seek to summarize an agent’s overall behavior, competency, and policy
complexity. We refer to explanations of such a global type as policy-level explanations. With
both kinds of explanations, one can not only predict individual actions but also approximate
entire trajectories.

Finally, we consider explanations in terms of both state features and past experiences. State
features are the basic unit in which an agent receives information prior to selecting an action;
by producing explanations in terms of this same unit, an agent can convey “what” behavior
it has learned. By referring to past experiences, an agent is able to justify behavior based on
past interactions with the environment. As a result, the learning process itself can appear in the
explanations, allowing the agent to explain “why” an action was learned in addition to “what”
was learned.

This thesis presents algorithms for creating explanations of all the aforementioned types. We
also present an approach for joining these techniques to create a single explanatory structure.
Furthermore, we experimentally evaluate the introduced methods on domains designed to
validate a method’s ability to avoid common pitfalls in explaining RL agents.

1.2 Motivating Example

To further motivate the explanation types we consider in this thesis, we describe an example
GridWorld scenario.

1.2.1 Problem Description

Figure 1.1a shows the environment. In this environment, an agent is tasked with navigating to
the goal, the top-left corner. Each state consists of two features: an x-coordinate value and a
y-coordinate value. In the figure, the states are arranged based on their spatial relationships,
following GridWorld conventions. Actions take the form of “move in this direction until an
obstacle (e.g., edge boundary) is reached.” Note that these actions differ from the common
“move one unit in this direction” format; each action effectively moves the agent down the entire
length of a hallway. A reward of −1 is provided for each action, except for some instances
where a reward of 0 is randomly provided. An episode starts in a random state and ends when
the goal state, sG, is reached.

2

(a) Environment (b) Policy

Figure 1.1: An example GridWorld environment (a) and a learned policy (b) overlaid onto this
environment.

A hypothetical learned policy is shown in Figure 1.1b, overlaid onto the grid of states. In this
example, a policy was first learned in an online fashion, and the final policy is the result of
training to convergence with the final gathered set of experiences (i.e., training with the limited
set of experiences until the policy stops changing). This policy is not necessarily optimal–for
illustrative purposes, we consider a situation where the domain may not behave exactly as
desired.

When an agent follows this policy, from some starting states, it takes three actions to reach the
goal. An expert familiar with the domain may have the expectation that the traversable path is a
rectangle, so any corner should be reachable within two actions. This outcome deviates from
this expectation. Therefore, a human observer may wish to know why the agent behaves as it
does and, secondarily, whether there is an intervention that yields better behavior.

The true cause of sometimes requiring three actions to reach the goal is taking the “move right”
action in state s8 (marked with hatching in Figure 1.2). If the policy were to move left in state s8

instead, then the goal state is reached using one or two actions regardless of starting state. Note
that, in non-toy environments, manual inspection of a policy (as can be done via Figure 1.1b) is
not feasible, and even full enumeration of all states can be difficult.

1.2.2 Benefits of Explanations

Different explanation formats can provide different insights, which we briefly demonstrate here
along with how these insights can build on each other.

Decision Tree Policy To determine how feature values influence single-action behavior
(i.e., which immediate action is chosen), one could consult a decision tree policy, as shown
in Figure 1.3. This is a decision tree that maps from a state to an action, so traversing the tree
reveals which features impact a given choice. Investigating the leaves reveals a leaf where the
“move right” action is taken (marked with hatching in the figure). Since the goal is maximally

3

Figure 1.2: A policy for the example environment resulting from a limited set of past experiences.
The suboptimal action in s8 is hatched.

left in the rectangular region, intuition about this environment suggests that the “move right”
action should never be taken. Therefore, the set of states where an incorrect action is chosen
can be identified via the tree (i.e., s8).

Figure 1.3: A Decision Tree Policy representation of the same policy as before. The leaf
corresponding to s8 is hatched.

Behavior Summarization To determine how feature values influence policy-level behav-
ior (i.e., which sequence of actions will be taken), one could reference a Markov chain over
abstract states, as shown in Figure 1.4b. This explanation format groups states into abstract
states and then presents transitions between them via a Markov chain. Figure 1.4a shows the
mapping from states to abstract states, and Figure 1.4b shows the Markov chain along with
annotations of action chosen for all states within an abstract state. As shown with hatching,
s8 (and only s8) maps to the abstract state b4. The chain confirms that three actions are used

4

only when starting from b4, also hatched. This process confirms that s8 is the sole cause of the
problematic behavior.

Env. State Abs. State

s1 b1

s2 b1

s3 b1

s4 b2

s5 b5

s6 b2

s7 b3

s8 b4

s9 b5

(a) State mapping (b) Markov chain over abstract states

Figure 1.4: An explanation that groups states into abstract states and then shows the Markov
chain relating these abstract states. The abstract state corresponding to s8 is hatched.

Experience Importance Now that the issue with the policy has been pinpointed, an observer
may seek to determine why this aspect of the policy was learned. For this purpose, one needs
an explanation in terms of past experiences, such as the importance of learning tuples with
respect to a given action choice (“move right” in s8). Figure 1.5 shows example importance
values for this action choice, where a higher importance corresponds to a greater impact, so
tuples with high importance values can be prioritized during investigation. The tuple with
highest importance corresponds to instances where the “move left” action was taken in s8, but
the next state was still s8. That is to say, on some occasions when the agent previously tried
moving left, an unexpected obstacle prevented moving leftward, so the agent has learned to
move right instead.

Figure 1.5: Importance values for past transition tuples. Identical transitions are grouped and
given an importance value for the entire group. The top-ranked transition tuple group relates to
moving left in s8.

5

1.2.3 Benefit of Unified Explanation

The process outlined above identifies a potential cause of the unwanted behavior (an unexpected
inability to move leftward in s8 during training). As a next step, an observer may seek to
remove this experience and change the behavior, but the current setup reveals little information
about the effects of such a change. We propose to address this shortcoming through a unified
explanation format that permits coordination between structures and nuanced explanations via
past experiences.

Coordination between Structures In this example, the leaf marked in Figure 1.3 and the
abstract state marked in Figure 1.4b conveniently correspond to each other. In general, additional
states could fall into just the leaf or the abstract state, thus making the relationship between the
two uncertain. Additionally, any changes to the tree or the Markov chain can be accompanied
by arbitrary changes in the other structure. If the scope of possible changes were known, then
changes in behavior could be predicted better. For example, in this case, changing the x ≤ 3
node to a “move left” leaf only impacts the abstract states b3 and b4. The local nature of this
impact can be identified and represented. Separate explanations of single-action behavior and
policy-level behavior in terms of state features are unable to provide this information.

Nuanced Explanation via Past Experiences Simply removing the experience has an un-
known effect on the entire policy. We seek to deliberately modify a single leaf in the tree (i.e.,
to obtain the tree shown in Figure 1.6a), so we specifically want importance with respect to
the division at x ≤ 3. Relatedly, the effects of the problematic transition should be limited to
this subtree and not, e.g., directly affect the actions in s1. This explanation of a single-action
behavior in terms of past experiences produces a more nuanced explanation. Additionally,
we wish to know if the desired result is obtained (i.e., only two actions are needed to reach
the goal). For this, we effectively seek to obtain the Markov chain shown in Figure 1.6b. To
determine the impact of removing the experience on the Markov chain, we need to know the
experience’s importance with respect to the chain. This is then an explanation of policy-level
behavior in terms of past experiences.

(a) Decision Tree Policy (changed) (b) Markov chain over abstract states (changed)

Figure 1.6: Updated explanations for the policy obtained by removing the unwanted experience.

6

This scenario demonstrates the problem addressed in this thesis. We advocate for a unified
explanation format which maintains a link beween single-action behavior and policy-level
behavior and provides an explanation in terms of both state features and past experiences
for both types of behavior.

1.3 Approach

Our work unifies three explanation approaches:

1. Feature importance explanations for single actions in the form of a policy that is a
decision tree,

2. Policy-level behavior explanations in the form of a Markov chain over abstract states
and corresponding mapping of states to abstract states, and

3. Experience importance explanations that assign a numeric weight to each past experi-
ence based on impact on learned behavior.

To create a unified explanation, we first introduce methods for creating explanations that address
a subset of our thesis question, then we present how to integrate these methods. Specifically,
we merge our techniques for creating explanations of single-action and policy-level behavior in
terms of state features, then we adapt our technique for creating explanations in terms of past
experiences.

1.3.1 Decision Tree Policies

Our first approach, CUSTARD (Constrain Underlying Solution to a Tree; Apply RL to Domain),
constructs a feature importance explanation in the form of a Decision Tree Policy (DTP). We
introduce a novel Markov decision process (MDP) class, Iterative Bounding MDPs (IBMDPs),
which encapsulates the problem of learning a DTP for a base MDP, the MDP for the original
problem. An IBMDP requires an agent to take a sequence of observation actions before selecting
an action from the base MDP. IBMDPs are designed so a sequence of observation actions
is equivalent to traversing a decision tree, so we can extract a DTP from an IBMDP policy.
Existing approaches for directly learning a DTP cannot use a neural network as their function
approximator, which means these methods cannot leverage advances in deep RL. Approaches
that do leverage neural networks approximate the learned policy with a DTP, so the learned
policy cannot be fully explained. In contrast, the solution to an IBMDP is a DTP for the base
MDP, regardless of the function approximator used in solving the IBMDP. This property allows
IBMDPs to use neural networks during training and yield an equivalent DTP at any time. We
present a way to convert existing deep RL methods to a form suitable for solving an IBMDP to
find a DTP. This conversion is motivated by a two-agent approach that we show is equivalent to
a modified single-agent system.

7

1.3.2 Abstract Policy Graphs

For policy-level behavior explanations, we introduce Abstract Policy Graphs (APGs). An APG
is a Markov chain over abstract states with actions as edges. An APG allows the prediction
of sequences of actions and qualities of future states. We introduce APG-Gen, a method for
constructing an APG for an agent based only on a set of transition tuples and Q-value estimates
for these transitions without relying on knowledge about the agent’s function approximation
scheme. APG-Gen forms abstract states using a process similar to divisive clustering: the set of
transition tuples is repeatedly split on the feature with highest importance. This importance
is computed with respect to the Q-value estimate for the cluster, so states which lead to
similar future outcomes are grouped together. APG-Gen then constructs a Markov chain using
empirical estimates of transition probabilities between abstract states. This process requires
discrete actions and a binary featurization of all states.

1.3.3 Importance Scores for Past Experiences

To assign importance scores to past experiences, we build off of Representer Point Selection
(RPS) [1], existing work on decomposing the weights of the final layer of a neural network into
a weighted sum of the training points (as featurized by the rest of the network). We present
Modified RPS (MRPS) that (i) provides an explanation in terms of clusters of similarly-treated
points and (ii) accounts for variations in feature magnitudes. These modifications better account
for near-duplicate points in the training set and feature rescaling, which yields more concise
explanations than RPS to better reflect the actual impact of training points.

1.3.4 Unification

We merge CUSTARD and APG-Gen to create a method for producing a Unified Explanation
Tree (UET). By using a tree to map from states to both an action and an abstract state, a UET
provides both feature importance and policy-level behavior explanations. Using a UET rather
than two separate explanations identifies the relationship between local behaviors and global
behaviors. Specifically, we use the DTP partitions from CUSTARD as the initial clusters for
APG-Gen, thereby creating specialized, shorter subtrees compared to a direct linking of trees.

When applied to a standard deep RL agent, MRPS identifies the transitions that influence
overall action selection. We further adapt MRPS to provide these explanations at all levels of
our UET. Internal UET nodes specify a feature and value for partitioning the state space, and
they originate from the DTP or APG-Gen clustering process. For DTP nodes, we apply MRPS
to the neural network used to solve the IBMDP that produced the DTP. For APG-Gen nodes, we
use an RPS-style reparameterization of the feature importance values used for selecting division
features. In both cases, we produce experience importance values with respect to partitioning
features and values. These extensions allow a UET to compute experience importance at all
of its levels, as well as identify the scope of potential changes should a set of experiences be
removed.

8

1.4 Contributions

The key contributions of this thesis are as follows:

• CUSTARD, an approach for creating a Decision Tree Policy (DTP), an explanation of
single-action behavior;

– A novel class of MDPs, Iterative Bounding MDPs, which represent the problem of
solving a base MDP using actions that correspond to a DTP for that base MDP;

– A method for converting existing deep RL techniques to variants suitable for
solving Iterative Bounding MDPs;

• APG-Gen, an algorithm for constructing an Abstract Policy Graph, a policy-level
behavior explanation for closed-box RL agents;

– A novel explanation form, the Abstract Policy Graph, which takes the form of a
Markov chain over abstract states;

– A set of algorithms for efficiently constructing an Abstract Policy Graph without
assumptions about the RL agent’s internal structure;

• MRPS, a method for explaining behavior in terms of past experiences;

– An approach for identifying importance of sets of past experiences in addition to
importance of single experiences;

– A modification which accounts for varying feature magnitudes;

• A method for producing a single, unified explanation;

– A new explanation format: Unified Explanation Trees that capture both an agent’s
action choice as well as abstract state membership;

– An extension of CUSTARD and APG-Gen to produce an explanation of this
format;

– A modification of MRPS for identifying experience importance at all levels of the
Unified Explanation Tree (i.e., importance with respect to decision tree partitions
rather than only the final action);

• Novel environments for evaluating explainable RL methods and evaluation of our
approaches using these domains;

– PrereqWorld, a family of domains with configurable complexity and size, which
have known prerequisite relationships between actions and therefore enable measur-
ing how well an explanation method can identify these prerequisite relationships;

– PotholeWorld, an environment where a limitation on policy complexity changes the
best-performing policy, thus allowing evaluation of a method’s ability to correctly
perform this complexity/performance trade-off.

9

1.5 Thesis Outline

Figure 1.7 illustrates the relationship between chapters in this thesis, and the following outline
summarizes each chapter. Note how we introduce methods for explanations of different types
(e.g., single-action explanations in terms of state features in Chapter 3 vs. policy-level explana-
tions in terms of state features in Chapter 4) and later join these techniques (e.g., explaining
both single-action and policy-level behavior in terms of state features in Chapter 5).

Figure 1.7: Organization of the chapters of this thesis along our two explanation type dimensions.
Chapters that build upon other chapters are shown encapsulating those other chapters.

Chapter 2 – Preliminaries provides background helpful for reading this thesis as well as
introducing the environments we use to evaluate our methods. Here, we clarify the notation
and formulations we choose to use. We discuss potential issues that may arise when explaining
an agent, and we use these potential issues to motivate the design of our environments.

10

Chapter 3 – Decision Tree Policies via DRL introduces Decision Tree Policies (DTPs):
policies expressed in a form which is amenable to single action explanations in terms of state
features. We introduce the Iterative Bounding MDP, which we show can be used to produce a
DTP for a desired environment. Additionally, we introduce CUSTARD, a process to solve an
Iterative Bounding MDP using a neural network function approximator. We show how this
technique successfully learns concise DTPs without compromising agent performance. We also
show how CUSTARD is able to make the correct complexity/performance trade-off, unlike
existing methods that are not aware of complexity constraints.

Chapter 4 – Abstract Policy Graph Creation presents the Abstract Policy Graph, which is
a Markov chain over abstract states. This structure summarizes an agent’s behavior within a
domain at a policy level in terms of state features; the contained information permits predicting
an agent’s future actions, determining whether the agent is competent, and measuring the
complexity of its learned policy. We present APG-Gen, our algorithm for creating an Abstract
Policy Graph for a trained agent. We show that APG-Gen’s computational complexity is
favorable, and we demonstrate its ability to produce accurate and concises explanations.

Chapter 5 – Unified Explanation Trees describes the Unified Explanation Tree, our
explanation format which contains both single action and policy-level behavior information in
terms of state features. We present a method to extract a set of decision trees over abstract
states while using APG-Gen. We introduce how to join the trees produced via CUSTARD
and from APG-Gen to yield a Unified Explanation Tree. We discuss how to produce a more
concise tree by reducing repetitive structure, and we experimentally demonstrate the resulting
reduction in complexity.

Chapter 6 – Importance and Influence in Neural Networks introduces our approach,
Modified Representer Point Selection (MRPS), for assigning importance weights to an agent’s
past experiences. This method enables explaining single actions in terms of agent experiences.
Our approach accounts for identical or similar points and can therefore assign importance
weights to sets of experiences in a principled manner, unlike past approaches. We use a
standard classification benchmark task to demonstrate the improved ability of our approach to
detect experiences of interest.

Chapter 7 – Importance and Influence for Unified Explanation Trees describes how
Modified Representer Point Selection can be further extended to allow more nuanced
explanations in conjunction with a Unified Explanation Tree. While direct application of MRPS
yields importance with respect to an action selection, we show how to obtain importance with
respect to a decision node within the Unified Explanation Tree. This process consists of two
sets of approaches, one for each of the two node types within a Unified Explanation Tree. We
discuss how to leverage the properties of a Unified Explanation Tree to efficiently perform the
required computations and avoid the approximations generally present within MRPS.

11

Chapter 8 – Related Work reviews previous work on explaining RL agents that is related to
the methods presented in this thesis and compares to our contributions.

Chapter 9 – Conclusions and Future Work summarizes the contributions of this thesis and
presents potential directions for future work.

12

Chapter 2

Preliminaries

We summarize key concepts used throughout this document in Section 2.1, along with clarifying
our choice of formulations and notation. This is also where we note any assumptions that we
leverage later. In Section 2.2, we describe the environments we introduce for evaluation of our
work.

2.1 Background

2.1.1 Markov Decision Processes

In the context of RL, an agent acts in an environment defined by a Markov decision process
(MDP). We use a six-tuple MDP formulation: 〈S,A, P,R, γ, T 〉 [2], where:

• S is the set of states,

• A is the set of actions,

• P is the transition function (S × A× S → (0, 1)),

• R is the reward function (S × A× S → R),

• γ is the discount factor, and

• T is the set of terminal states, which may be the empty set.

In this work, we assume all states consist of an assignment to each feature f ∈ F . Specifically,
we use factored MDPs [3], in which each state consists of a set of feature value assignments
s = {f1, ..., f|F |}. Note that we do not require a factored reward function. For certain presented
methods (e.g., Chapter 4), we rely on the features consisting of binary values (f ∈ {0, 1}∀f ∈
F). In cases where an MDP contains non-binary features, the MDP can be reparameterized
in terms of binary features. For categorical features, this can be achieved by using a one-hot
encoding. For continuous featurs, a discretization would be required.

13

2.1.2 Reinforcement Learning

2.1.2.1 Task

An agent is tasked with finding a policy, π : S → A, which yields the highest expected
discounted future return for all states. Note that, in general, the policy need not be deterministic,
but we only consider the deterministic case in this work.

Likewise, note that we do not assume an optimal policy. In other words, the policy found by
any given agent may not be the one that maximizes expected discounted future reward. We
seek to explain the outcome of a learning process without assuming success on the part of the
agent. Indeed, one of the applications of explanation methods is in identifying the cause of
failure or learning suboptimal behavior.

2.1.2.2 Reinforcement Learning Constraints

We focus on the reinforcement learning (RL) setting. In this setting, the agent only has access
to samples from P and R; the agent must interact with the world to learn a policy rather than
directly querying the functions. There are RL methods that learn approximate models of P or
R as part of the training process, but we focus on the case where only the policy and value
function(s) are learned.

RL methods may operate in an offline setting (also called a batch setting) or an online setting.
In an offline setting, the samples from P and R are fixed and cannot be influenced by the agent.
In an online setting, the samples from P and R depend on the agent’s choices, whether on
the current best policy found by the agent or some other selected policy, such as a random
exploration policy.

We do not limit ourselves to methods that operate in either the offline or the online setting, but
there are two caveats. First, we perform our experiments with online methods and do prioritize
techniques compatible with an online setting. Second, when computing experience importance
values, we rely on the final policy being a function of a fixed set of experiences. This property
naturally occurs in an offline setting. In an online setting, this can be achieved by collecting
data during the typical online learning portion and then learning the final policy using a fixed
set of collected data. This process can also be described as performing online learning and then
fine-tuning on the final set of gathered data.

2.1.2.3 State- and Action-Value Functions

In the process of learning a policy, an RL agent generally approximates the state-value function
or the action-value function [2]. The state-value function represents the expected return for a
state s0 when following policy π:

Vπ(s0) = E

(
∞∑
t=0

γtR(st, π(st), st+1)

)
. (2.1)

Analogously, the action-value function is the expected return when taking action at in st and
following π afterward (when π is chosen to maximize expected discounted future reward). This

14

is known as the Q-function:

Qπ(st, at) = Eπ
(
rt + γV π(st+1)

)
= Eπ

(
rt + γmax

at+1

Qπ(st+1, at+1)

)
. (2.2)

Note that the state-value function can be obtained from the action-value function:

Vπ(st) = Qπ(st, π(st)). (2.3)

2.1.2.4 Learning Value Functions

Q-learning-based algorithms incrementally learn the Q-function and use it to infer the optimal
policy π∗. The Q-function estimate is incrementally updated to be closer to a target, the
bootstrapped estimate rt + γmaxa′ Q(st+1, a

′). In contrast, policy gradient methods directly
model and optimize the policy. Actor-critic methods [4] additionally model the value function
to leverage it in the policy update. They often use a critic for estimating the advantage function,
A(s, a) = Q(s, a) − V (s). Since methods generally use Q or V (and V can be obtained via
Equation 2.3), the value-function is generally available alongside the policy of a trained agent.
If an agent does not learn a value function while learning a policy, then a value function can be
learned for an arbitrary policy using a set of (s, a, s′) tuples.

2.1.2.5 Approximating Value Functions

In practice, a Q-function or state-value function is approximated using a neural network [5].
Such a neural network generally consists of several layers (matrix multiplications on interme-
diate activation matrices) with nonlinear activation functions applied element-wise between
layers. The final layer typically is not followed by a nonlinear activation function. With this
network architecture, the network excluding the penultimate layer can be treated as learning
a featurization of the input. The final layer can then be viewed as performing linear value
function approximation atop this learned featurization. In Chapters 6 and 7, we take a similar
perspective and rely on access to this final linear layer within a network.

2.2 Environments

Throughout this work, we evaluate on three different environments. Two of them are novel
environments, designed to test aspects of explainable RL methods. We briefly describe the
three environments and the motivation for their inclusion.

2.2.1 PrereqWorld

We introduce the PrereqWorld domain for evaluating our approach. This domain is an abstrac-
tion of a production task where the agent is to create a specific, multi-component item using a
number of manufacturing steps. This environment is similar in structure to advising domains [6]
and crafting, as in MineRL [7].

15

(a) PrereqWorld example with m = 4. (b) PrereqWorld example with m = 6.

Figure 2.1: Example PrereqWorld environments showing item-action correspondence (top) and
prerequisite hierarchy (bottom). (a) corresponds to the environment shown in Figure 2.2. (b)
shows a different environment, to illustrate commonalities and differences between PrereqWorld
instantiations.

2.2.1.1 Environment Description

The size of the state-space for an instance of this domain is controlled by the number of unique
items, m. The agent may only have one of each item at a time. Production of each item may
require some prerequisites, a subset of the other items, but no cycle of dependencies is permitted.
In producing an item, the prerequisite items are usually consumed. A domain parameter, ρ,
controls the probability that an item is consumed.

For ease of notation, we assume that the items are numbered according to their place in a
topological sort (i.e., an item’s prerequisites must be higher-numbered). Let id refer to the
desired final item. For each item ij , let Cj be the set of prerequisite items which ij requires. A
sample MDP is shown in Figures 2.1a and 2.2. Looking at Figure 2.2, note how the goal is to
make i1 and it requires having i3 and i4. In turn, i3 also requires i4. These dependencies induce
the prerequisite hierarchy shown at the bottom of Figure 2.1a.

A state consists of m binary features, where the binary feature fj corresponds to whether the
agent has an item ij . Any state where s[fd] = 1 is a terminal state. The distribution of initial
states is uniform over all possible non-terminal states. The reward is −1 for transitioning to a
non-terminal state and 0 for transitioning to a terminal state. For simplicity, we take γ to be 1,
but the optimal policies for any domain instance remain optimal for any γ in the interval (0, 1].

16

m = 4, ρ = 0, id = i1
C1 = {i3, i4}
C2 = {i3, i4}
C3 = {i4}
C4 = {}
S = {0000, 0001, . . . , 1111}
A = {a1, . . . , a4}
T = {1000, 1001, . . . , 1111}
R(s, a, s′) = 0 for s′ ∈ T
R(s, a, s′) = −1 for s′ 6∈ T
γ = 1

P (0001|0000, a4) = 1
P (0010|0001, a3) = 1
P (0011|0010, a4) = 1
P (1000|0011, a1) = 1
P (0100|0011, a2) = 1
P (0101|0100, a4) = 1
P (0110|0101, a3) = 1
P (0111|0110, a4) = 1
P (1100|0111, a1) = 1
for other s and a,
P (s′|s, a) = 0 when s 6= s′

and
P (s′|s, a) = 1 when s = s′

Figure 2.2: The MDP for an example PrereqWorld instance.

There are m actions where the action aj corresponds to attempting to produce item ij . Actions
for currently possessed items or for items with unmet prerequisites have no effect. That is,
P (s|s, aj) = 1 when feature s[fj] = 1 or there is an ik ∈ Cj such that s[fk] = 0. When an
action is successful, fj is set to 1 and each of item ij’s prerequisites is used with probability
1− ρ. That is, for all ik ∈ Cj , fk is independently set to 0 with probability (1− ρ) and left as 1
with probability ρ.

For the MDP in Figure 2.2, note that transitions are deterministic (ρ = 0) for simplicity and we
do not show the transition function for states where s[f1] = 1 (i1 is present) since all such states
are terminal. Notice how the domain can be solved optimally from the starting position 0000
(no items present) using the action sequence [a4, a3, a4, a1]. This ensures that an i4 is present
before i3 is made, and another i4 is created as a prerequisite to creating i1. The correspondence
between actions and items is seen at the top of Figure 2.1a. The bottom of Figure 2.1a then
shows the relationship between items and, by extension, prerequisites for actions. We show
another example environment in Figure 2.1b. In this case, m is 6, and the dependencies induce
a different prerequisite hierarchy.

2.2.1.2 Motivation for Use

When applying a method for producing explanations, a user may seek to identify whether an
agent is performing actions in the proper order. Similarly, a user may seek to know whether an
agent is attending to (“looking at”) only the relevant portions of the state. The PrereqWorld
domain has inherent dependencies between actions which can be computed while creating an
instantiation of the domain.

Since the “ground truth” for these different evaluations can be directly computed from the
underlying mechanics of an environment instantiation, we can perform objective evaluation
with respect to an upper-bound performance (i.e., compared to a method which can access all
C, which is not available in practice).

17

A method for producing explanations can then be evaluated based on its ability to detect
these dependencies. Specifically, explanations can be compared based on their ability to detect
temporal patterns. For example, action 4 precedes action 1 when acting optimally within the
MDP given in Figure 2.1a. Likewise, explanations can be compared based on ability to detect
relevant and irrelevant features. For example, when acting optimally within the MDP given
in Figure 2.1b, feature 4 is never relevant, but feature 6 is relevant only when feature 3 is
0. Furthermore, PrereqWorld naturally has sets of states that are treated identically, so any
methods that group states can be evaluated based on their ability to correctly group these states
that are equivalent under the given policy.

2.2.1.3 Inspiration

PrereqWorld is effectively a subset of the MineRL environment [7]. MineRL is an RL envi-
ronment built around the game Minecraft. Within the environment, an embodied agent seeks
to obtain a penultimate item. As in PrereqWorld, this item has prerequisite items, which
themselves may have prerequisites.

Unlike PrereqWorld, obtaining an item in MineRL requires moving in a persistent, three-
dimensional environment while observing the world in a limited way (i.e., only from a
first-person point of view). The methods which perform best in MineRL in practice take
a hierarchical approach where the high-level actions correspond to obtaining individual items
and a sub-policy is used to perform all movement to obtain these items [8, 9, 10]. The high-level
problem with the high-level actions is effectively the PrereqWorld environment.

The MineRL environment has been shown to be a compelling problem with analogues for many
real-world difficulties such as a first-person perspective, a sparse reward function, and deep
dependencies between subgoals [11, 12, 13, 14]. Since PrereqWorld captures a meaningful
component of the MineRL environment (i.e., the top level of the policy hierarchy), evaluating
explanations using PrereqWorld provides some insight into how explanations would perform
when applied to problems relevant to broader RL research.

2.2.2 PotholeWorld

Figure 2.3: Example PotholeWorld environment showing pothole locations in lanes 2 and 3.
Note how lane 1 is free of potholes but offers lower reward per unit travelled.

18

We introduce the PotholeWorld domain, shown in Figure 2.3. In this domain, the agent is
tasked with traversing 50 units along a three-lane road. The first lane gives less reward per unit
traveled, but the other two lanes contain “potholes” which lead to a reward penalty if traversed.

2.2.2.1 Environment Description

A state contains a single feature: the current position, in [0, 50]. The initial state is at position 0;
an episode terminates when the position is 50. The three actions are {lane_1, lane_2, lane_3},
which each advance the agent in the corresponding lane by a random amount drawn from
Unif(0.5, 1). Potholes are added starting from position 0 until position 50 with distances
drawn from Unif(1, 2). Potholes are assigned with equal probability to lane 2 or lane 3. When
an action is taken, the base reward is equal to the distance moved. This is reduced by 10%
if the lane_1 action was taken. If a pothole is in the chosen lane along the traversed stretch
(i.e., between previous agent position and next agent position), then the reward is reduced by 5.
Though we randomly generate pothole locations, we use the same locations across all methods
within any experiment trial.

A key aspect of this environment is that the pothole locations are not directly revealed to
the agent as part of a state. To avoid the potholes, the agent must use its current position to
infer whether the next stretch of each lane is devoid of potholes. Because of the relationship
between movement distance and pothole spacing, at least one of lane 2 or lane 3 is always
devoid of potholes for the maximum possible movement caused by taking an action. Thus, to
attain maximum reward, an agent would initially encounter potholes, then learn their locations
(relative to agent position), and finally avoid these potholes by weaving between lanes 2 and 3
in future episodes.

In the Figure 2.3 example, note how the optimal policy is to weave between lanes 2 and 3 by
initially picking lane 3, then switching to lane 2 for a time and so on. Though the agent could
always pick lane 1 to avoid the reward reduction caused by potholes, the agent receives a lower
reward for each unit traversed along lane 1 than, e.g., the same distance within the first stretch
of lane 3.

2.2.2.2 Motivation for Use

This domain is designed such that limiting a policy’s complexity changes the best-performing
behavior. When not limiting the policy, as noted above, the optimal behavior is to weave
between lanes 2 and 3. When severely limiting the policy, such as forcing the agent to pick a
single action (i.e., single lane) for the entire episode, then the best policy is to pick lane 1.

For policy complexities between these two extremes, the optimal behavior changes further.
For example, if limiting how many times an agent can change actions from its choice in the
previous state, then the agent is incentivized to change actions where many potholes appear in
sequence within a specific lane.

This property enables evaluating a policy learning method’s ability to successfully trade off
complexity and performance. This is relevant where an interpretable policy is desired, so policy
complexity must be limited. If a policy learning method does not account for this complexity

19

limitation, it is liable to poorly approximate the behavior that is optimal in the non-limited case
and thus attain lower performance than merely always choosing lane 1. In contrast, a successful
method would gracefully deteriorate in terms of total attained reward but never perform worse
than the simple policy of always choosing lane 1.

2.2.3 CartPole

CartPole [15] is a commonly used domain for evaluating methods that produce DTPs, where
the agent must balance a pole affixed to a cart by moving the cart back and forth.

2.2.3.1 Environment Description

We use the variant where the agent can select between applying a fixed amount of force to the
left or to the right of the cart. As part of a state, the agent observes the cart’s position, the cart’s
velocity, the pole’s angle, and the pole’s angular velocity. We use the variant where an episode
terminates when the pole falls or 200 timesteps have elapsed. The agent is rewarded for each
timestep, so an optimal policy is one where the pole does not fall for 200 timesteps for almost
every starting position. Note that a successful policy is traditionally one that attains an average
reward of at least 195.

2.2.3.2 Motivation for Use

We include this environment to provide standard benchmark results. This is a common environ-
ment for evaluation since (1) this environment has a long history of use in testing RL algorithms
and (2) there exist policies that attain a high reward in this environment while consisting of a
shallow decision tree. Following previous work, when using this environment, we limit methods
to decision trees of depth two.

20

Chapter 3

Decision Tree Policies via DRL

In this chapter, we seek to explain individual actions in terms of the state features. For this
purpose, we construct a Decision Tree Policy (DTP, a policy in the form of a decision tree) so
that the tree can be subsequently analyzed, e.g., to identify which features are used in making a
decision. Unlike existing work which converts a policy to a DTP or greedily constructs one
using a tree-building method, we pose the tree-building problem as a reinforcement learning
problem. This approach avoids the error caused by approximation and also enables use of deep
learning function approximation rather than direct tree-building.

3.1 Motivation

The incorporation of deep neural networks into reinforcement learning (RL) has broadened the
set of problems solvable with RL. Though these techniques yield high-performing agents, the
policies are encoded using thousands to millions of parameters, and the parameters interact in
complex, non-linear ways. As a result, directly inspecting and verifying the resulting policies is
difficult. Without a mechanism for a human operator to readily inspect the resulting policy, we
cannot deploy deep RL (DRL) in environments with strict regulatory or safety constraints.

3.1.1 Decision Trees and Decision Tree Policies

Decision trees (DTs) [16] are an interpretable model family commonly used to represent
policies. DTs recursively split the input space along a specific feature based on a cutoff value,
yielding axis-parallel partitions. Leaf nodes are the final partitions; internal nodes are the
intermediate partitions. Some benefits of DTs include that they allow formal verification of
policy behavior [17], counterfactual analysis [18], and identification of relevant features. DT-
like models have been used to represent different components of the MDP or RL learning
process. We focus on DT policies (DTPs), which map each state to a leaf node representing an
action.

Sufficiently small DTPs are interpretable [19], in that people understand the mechanisms by
which they work. DTs conditionally exhibit simulatability, decomposability, and algorithmic
transparency [20]. When a person can contemplate an entire model at once, it is simulatable;

21

sufficiently small DTs exhibit this property. A decomposable model is one in which sub-parts
can be intuitively explained; a DT with interpretable inputs exhibits this property. Algorith-
mic transparency requires an understanding of the algorithm itself: in particular, DTs are
verifiable [17], which is important in safety-critical applications. Because of the additional
constraints placed on a DTP, a DTP may perform worse than an unconstrained policy. Changing
the featurization of an environment’s state space can affect the relative performance of a DTP
and unconstrained policy, but we consider a setting where the environment cannot be modified.
We focus on environments where the given state featurization and action set is conducive to
high-performing DTPs.

A DTP provides a way for users to answer questions such as:

• “What will the agent do in state s?”; and

• “Which features informed this choice?”

3.1.2 Downsides of Past Approaches

However, DRL techniques are not directly compatible with policies expressed as DTs.
UTree [21] and its extensions [22, 23, 24] incrementally build a DT while training an RL agent.
Transition tuples (or tuple statistics) are stored within leaf nodes, and a leaf node is split when
the tuples suggest that two leaf nodes would better represent the Q-function. A concurrent
work [25] uses a differential decision tree to represent the policy and approximates the soft-max
tree with a DT after training. However, these methods require specific policy or Q-function
representations, so they cannot leverage powerful function approximators like neural networks.

We discovered the need for an alternate approach while working on a UTree-style method,
CQI [24]. CQI was designed to produce smaller trees than other UTree variants by changing the
leaf-partitioning condition. When using a statistical test to split leaves, as is done in UTree, small
differences in outcomes can lead to leaf partitions even when the chosen action does not change.
In contrast, CQI tracks candidate partitions and only performs a partition when the policy’s
performance is expected to increase. Furthermore, CQI prioritizes the partitions that increase
the policy’s performance the most. However, we encountered scaling issues with CQI, since all
methods in this family are fundamentally tabular methods across leaves. The only generalization
that occurs is within a leaf; if a leaf is partitioned, no further generalization can happen across the
new children. This experience motivates the desire for a method compatible with reinforcement
learning algorithms that use a neural network as a value function approximator.

An alternative approach is to convert a DRL policy to a DT: a non-DT policy is learned and then
is approximated using a DT. One such method is VIPER [17], which uses model compression
techniques [26, 27, 28] to distill a policy into a DT. This work adapts DAGGER [29] to prioritize
gathering critical states, which are then used to learn a DT. However, VIPER approximates
an expert. When the expert is poorly approximated by a DT, the DTP that is found performs
poorly. The resulting policy can be arbitrarily worse than the original one, and the DT can be
large due to unnecessary intricacies in the original policy.

22

Figure 3.1: Method overview: we wrap a base MDP to form an IBMDP and solve using a
modified RL algorithm. The solution is a decision tree policy for the base environment.

3.1.3 Benefits of a Meta-Problem Approach

To address the limitations of these techniques, we propose to solve a meta-problem using
RL such that the solution corresponds to a DT-format policy for the original problem. We
introduce CUSTARD (Constrain Underlying Solution to a Tree; Apply RL to Domain) [30], a
process that uses RL to solve the meta-problem while ensuring that the embedded solution is
equivalent to a DT-format policy throughout training (overview in Figure 3.1). We propose a
novel Markov Decision Process (MDP) formulation for the meta-problem: Iterative Bounding
MDPs. We present a general procedure to make RL techniques compatible with CUSTARD.
CUSTARD allows modern DRL techniques to be applied to the meta-problem, since the learned
policy weights can be fully replaced by an equivalent DT. Thus, CUSTARD maintains the
interpretability advantage of a DT policy while using a non-interpretable function approximator
during training. Additionally, CUSTARD ensures that the DT is an exact representation of the
learned behavior, not an approximation. By directly finding a DTP, CUSTARD avoids the case
encountered by VIPER where a high-performing expert is approximated, and this resulting
DTP performs poorly.

In this chapter:

1. we introduce a novel MDP representation (IBMDPs) for learning a DT policy for a
base MDP;

2. beginning with a two-agent UTree-like algorithm, we present an equivalent single-agent
formulation that solves IBMDPs to produce DTs;

3. we show how to modify existing RL algorithms (policy gradient and Q-learning) to
produce valid DTs for the base MDP; and

23

4. we empirically evaluate the performance of our approach and identify cases where it
outperforms post-hoc DT fitting.

3.2 Approach: CUSTARD

We present CUSTARD, an approach for training an agent to produce a Decision Tree Policy
using existing RL algorithms. We achieve this goal by training the agent to solve a wrapped
version of the original, base MDP. The wrapped MDP, which we name an Iterative Bounding
MDP, extends the base MDP by adding information-gathering actions and bounding state
features to indicate the gathered information. The bounding features correspond to a position
within a DT traversal, and the information-gathering actions correspond to partitions performed
by internal nodes within a DT. By constraining an agent’s policy to be a function of the
bounding state features, the learned policy is equivalent to a DT.

In Section 3.2.1, we describe IBMDPs. In Section 3.2.2, we describe the process for extracting a
DTP from an IBMDP policy during any point in training. In Section 3.2.3, we present methods
for adapting existing RL algorithms to learn an implicit DTP for the base MDP. In particular,
we describe modifications to Q-learning and actor-critic algorithms.

3.2.1 Iterative Bounding MDPs

We introduce Iterative Bounding MDPs (IBMDPs), a novel MDP formulation for producing
DTPs. We seek to produce a DTP by ensuring that an agent’s IBMDP policy is equivalent to a
DTP for the original, base MDP. To use a DTP to select an action in the base MDP, a series of
internal nodes are traversed, and then the leaf node specifies the action. To allow this behavior,
an IBMDP has actions that are equivalent to traversing nodes and state features that indicate
the current node.

The base MDP must be an MDP with a factored state representation, where each state feature
has upper and lower bounds on its values. A base state is a state from the base MDP’s state
space, and a wrapped state is a state from the IBMDP’s state space; other terms are defined
analogously.

3.2.1.1 State Space

A wrapped state sw consists of two parts: a base state sb and bounding features, f l1-f ln and
fh1 -fhn . There exist two bounding features per base state feature, such that f li represents a lower
bound on the base feature fi’s current value, and fhi represents an upper bound for that same
base feature’s current value. The bounding features reflect the outcomes of binary comparisons
performed during the traversal, and the bounds are tightened with more comparisons. A
sequence of wrapped states represents a traversal through a DTP for a specific sb. For simplicity,
and without loss of generality, we consider sb to be normalized such that all features are in
[0, 1]. We use sw[c] to refer to a component c within sw. An IBMDP state and state space are:

Sw = Sb × [0, 1]2n, sw = 〈sb, f l1, . . . , f ln, fh1 , . . . , fhn 〉.

24

3.2.1.2 Action Space

The action space for an IBMDP Aw consists of the base actions Ab and an additional set of
information-gathering actions AI :

Aw = Ab ∪ AI .

Base actions correspond to taking an action within the base MDP, as when reaching a leaf in a
DTP. Information-gathering actions specify a base state feature and a value, which correspond
to the feature and value specified by an internal node of a DTP. We present two different action
space formats: a discrete set of actions and a Parameterized Action Space [31]. In both cases,
the action can be described by a tuple, 〈c, v〉, where c is the chosen feature and v is the value.
For simplicity, we consider v ∈ [0, 1], where 0 and 1 respectively correspond to the current
lower and upper bound on c.

With a discrete set of IBMDP actions, each of the n features can be compared to one of p
possible values. This results in p×n discrete actions, with v values of 1/(p+ 1), . . . , p/(p+ 1)
for each of the n possible f . With this construction, the base actions must be discrete. In this
case, the information-gathering actions are:

AI = {c1, . . . , cn} ×
{

1

p+ 1
, . . . ,

p

p+ 1

}
.

In a Parameterized Action Space MDP (PASMDP), each action a ∈ Ad has ma continuous
parameters. A specific action choice is specified by selecting (a, pa1, . . . , p

a
ma

). If the IBMDP is
a PASMDP, then there is an action for each of the n features with a single parameter (ma = 1),
where the action specifies c and the parameter specifies v. With this formulation, the base MDP
may have a continuous, multi-dimensional action space. This is supported by adding a single a
with parameters corresponding to the base action choices. If Ab has discrete actions, then an a
is added for each of them, with the corresponding ma set to zero. The information-gathering
actions in the PASMDP variant are:

AI = {c1, . . . , cn} × [0, 1].

3.2.1.3 Transition Function

When an agent takes an information-gathering action, 〈c, v〉, the selected value v is compared
to the indicated feature c. Since v is constrained to [0, 1] but represents values in [cl, ch], the
un-normalized vp is obtained by projecting vp ← v × (ch − cl) + cl. The bounding features
cl and ch are updated to reflect the new upper and lower bounds for c; the base features are
unchanged. This process is equivalent to the behavior of an internal node in a DTP: a feature is
compared to a value, and the two child nodes represent different value ranges for that feature.
Thus, for an information-gathering action 〈c, v〉, the transition function of the IBMDP, Tw, is

25

deterministic, and the next state, s′w, is based on sw:

s′w[sb] = sw[sb],

s′w[f] = sw[f]∀f /∈ {cl, ch},
If sb[c] ≤ vp: s′w[ch] = min(sw[ch], vp), s

′
w[cl] = sw[cl],

If sb[c] > vp: s′w[cl] = max(sw[cl], vp), s
′
w[ch] = sw[ch].

When a base action is taken, the base features are updated as though this action was taken in
the base MDP, and the bounding features are reset to their extreme values. This is equivalent
to selecting a base action in a DTP and beginning to traverse the DTP for the next base state
(starting from the root node). This corresponds to a transition function of:

a ∈ Ab ∧ ((s′w[f li] = 0) ∧ (s′w[fhi] = 1)∀i ∈ {1, . . . , n})
=⇒ Tw(sw, a, s

′
w) = Tb(sw[sb], a, s

′
w[sb]).

3.2.1.4 Reward Function

The reward for a base action is the reward specified by the base MDP for the base action, base
original state, and base new state. The reward for information-gathering actions is a fixed, small
penalty ζ. For a sufficiently low value of ζ, the optimal solution for the IBMDP includes the
optimal solution of the base MDP. The overall IBMDP reward function is:

a ∈ Ab =⇒ R(sw, a, s
′
w) = R(sw[sb], a, s

′
w[s′b]),

a /∈ Ab =⇒ R(sw, 〈c, v〉, s′w) = ζ.

3.2.1.5 Gamma

We introduce a second discount factor, γw. When a base action is taken in the IBMDP, the
gamma from the base MDP, γb, is used to compute the expected discounted future reward.
Otherwise, γw is used. For a γw sufficiently close to 1, the expected discounted future reward is
identical for an sw, if acted upon in the IBMDP, and its corresponding sb, if acted upon in the
base MDP.

3.2.1.6 Remaining Components

We present the additional components required for an episodic MDP, but the framework is also
applicable to non-episodic environments. A transition in the IBMDP, (sw, aw, s

′
w), is terminal

if a ∈ Ab and (sw[sb], a, s
′
w[sb]) is a terminal transition in the base MDP. The distribution over

starting states of the IBMDP is derived from the distribution of starting states in the base MDP.
The probability of starting in state sw is 0 if some f li 6= 0 or fhi 6= 1; otherwise, it is equal to
the probability of starting in sw[sb] in the base MDP.

[todo: provide concrete example for a specific domain?]

26

Algorithm 1 Extract a Decision Tree Policy from an IBMDP policy π, beginning traversal
from obs.

1: procedure SUBTREE_FROM_POLICY(obs, π)
2: a← π(obs)
3: if a ∈ Ab then . Leaf if base action
4: return Leaf_Node(action: a)
5: else
6: c, v ← a . Splitting action is feature and value
7: vp ← v × (obs[ch]− obs[cl]) + obs[cl]
8: obsL ← obs; obsR ← obs
9: obsL[ch]← vp; obsR[cl]← vp

10: childL ← Subtree_From_Policy(obsL, π)
11: childR ← Subtree_From_Policy(obsR, π)
12: return Internal_Node(feature: c, value: vp,

children: (childL, childR))

3.2.2 Tree Extraction

Not all policies for the IBMDP correspond to valid DTPs; the presence of sb within each
wrapped state allows access to full state information at any point during tree traversal. However,
all IBMDP policies that only consider the bounding features (i.e., ignore sb) correspond to
a DTP. We describe the process for extracting a DTP from a policy defined over bounding
observations from the environment, π(sw \ sb). We present the training of such policies in
Section 3.2.3.

Algorithm 1 outlines the full DTP extraction procedure. SUBTREE_FROM_POLICY constructs
a single node based on the current observation; that node’s children are constructed through
recursive calls to this same function. As described in Section 3.2.1, the bounding features (sw \
sb) describe a node within a DTP, with sw[f li] = 0 ∧ sw[fhi] = 1∀i ∈ [1, . . . , n] corresponding
to the root node. SUBTREE_FROM_POLICY(sw \ sb, π) for a root node sw yields the DTP for
π.

An action a within the IBMDP corresponds to a leaf node action (when a ∈ Ab) or a DT
split (when a /∈ Ab). Lines 2-3 obtain the action for the current node and identify its type.
The action taken for a leaf node defines that leaf, so Line 4 constructs a leaf if a is not an
information gathering action. Information gathering actions consist of a feature choice c and
a splitting value v (Line 6). The IBMDP constrains v to be in [0, 1], which corresponds to
decision node splitting values between sw[cl] and sw[ch], the current known upper and lower
bounds for feature c. Line 7 projects v onto this range, yielding vp, to which feature c can be
directly compared.

To create the full tree, both child nodes must be explored, so the procedure considers both
possibilities (sb[c] ≤ vp and sb[c] > vp). Lines 8-9 construct both possible outcomes: a tighter
upper bound, ch ← vp, and a tighter lower bound, cl ← vp. This procedure then recursively
creates the child nodes (Lines 10-11). The final result (Line 12) is an internal DTP node: an

27

incoming observation’s feature is compared to a value vp (obs[c] ≤ vp), and traversal continues
to one of the children, depending on the outcome of the comparison.

3.2.3 Training Procedure

If an agent solves an IBMDP without further constraints, then it can learn a policy where
actions depend on sb in arbitrarily complicated ways. To ensure that the base MDP policy
follows a DT structure, the IBMDP policy must be a function of only the bounding features.
Effectively, if the policy is a function of sw \ sb, then the policy is a DTP for the base MDP.
However, with a policy of the form π(sw \ sb), the standard bootstrap estimate does not reflect
expected future reward because the next observation is always the zero-information root node
state. Therefore, standard RL algorithms must be modified to produce DTPs within an IBMDP.

We present a set of modifications that can be applied to standard RL algorithms so the one-step
bootstrap reflects a correct future reward estimate. We motivate this set of modifications by
presenting a “two agent” division of the problem and then show the equivalent single-agent
Q target. We then demonstrate how a target Q-function or critic can be provided with the full
state (sw) to facilitate learning while maintaining a DT-style policy. Finally, we present how the
modifications are applied to Q-learning and actor-critic algorithms. Without loss of generality,
we focus on learning a Q-function. If learning an advantage function or value function, an
analogous target modification can be made.

3.2.3.1 Two Agent Division

Learning in an IBMDP can be cast as a two-agent problem: (i) a tree agent selects which
information-gathering actions to take and when to take a base action, and (ii) a leaf agent
selects a base action using the bounding features, when prompted to do so. Figure 3.2 shows
this division, where the leaf agent selects actions in sl1 and sl2 , and the tree agent selects all
other actions.

With this division of the problem, the leaf agent is equivalent to the agent in UTree-style
methods. The tree agent replaces the incremental tree construction used in UTree and is akin
to an RL agent constructing a DT for a supervised problem [32]. The leaf agent’s observed
transition sequence consists of leaf nodes and its own selected actions: sl1 , al1 , rl1 , sl2 , al2 . The
bootstrapped Q-value estimate is:

rl1 + γb max
a′∈Ab

Ql(sl2 , a
′),

where rl1 is a reward obtained from the base MDP.

In this framing, the tree agent experiences a new episode when a base action is taken. The initial
state is always the zero-information, root state, and the episode terminates when the agent
chooses the stop splitting action, astop, which we add for the two-agent formulation. When the
tree agent stops splitting, the reward is the value estimated by the leaf agent, Ql(sl, al). The
tree agent’s Q-value target is:

rd + γw max
a′∈astop∪Aw\Ab

Qd(s
′
d, a
′),

28

Figure 3.2: The division between the tree agent (circle states and arrow actions) and the leaf
agent (square states and arrow actions). Each tree traversal is an episode for the tree agent and
one transition for the leaf agent.

where rd is maxa′∈Ab
Ql(sd, a

′) if the astop action was chosen and ζ otherwise. When astop is
taken, Qd(s

′
d, a
′) is 0 for all a′ since the transition is terminal for the tree agent.

These two equations for target Q-values allow an IBMDP to be solved using only the partial
sw \ sb observations. The tree agent does not directly receive a reward signal from future base
actions but uses the leaf agent’s estimates to update. The leaf agent learns long-term reward
estimates based on rewards from the environment.

3.2.3.2 Merging of Agents

The target Q-value for a terminal tree agent action is rd, which is maxa∈Ab
Ql(s, a). The tree

agent’s episode terminates if and only if astop is taken. Effectively, the tree agent seeks to
learn Qd(s, astop) = maxa∈Ab

Ql(s, a). Rather than learning this relationship, Qd(s, astop) can
directly query Ql, simplifying the learning task without changing the underlying problem.

With this change to Qd(s, astop), Qd and Ql are defined over disjoint subsets of Aw. A single,
unified Q-function Q can be learned, which is defined over all a in Aw. This allows the target
Q-values to be re-written as:

a ∈ Ab =⇒ target = rl1 + γb max
a′∈Ab

Q(sl2 , a
′),

a /∈ Ab =⇒ target = ζ + γw max
a′∈Aw

Q(s′, a′),

29

where s′ is the next state, regardless of type. In the former equation, sl2 is the next state in
which a base action is taken when following the greedy policy. In the latter equation, if the
max returns the Q-value for an a /∈ Ab, the two terms correspond to the reward and expected
discounted future reward. When the max returns the Q-value for an a ∈ Ab, the two terms are
then the immediate reward and the reward from astop in the next state, effectively removing the
terminal/non-terminal distinction for the tree agent.

As a result, this two-agent problem is equivalent to a single agent updating a single Q-function
using two different targets, depending on the action taken. The equation for computing a target
differs from the standard Q-function update equation (as applied to the IBMDP) in one way: if
a base action is taken, the “next state” is the next state in which a base action is taken, rather
than simply the next state. This single change is sufficient to learn DTPs for IBMDPs.

3.2.3.3 Omniscient Q-function

The above merged agent formulation can be directly used to learn DTPs. However, the merged
formulation requires the next leaf state, sl2 , when a base action is taken. This state is not
naturally encountered when performing off-policy exploration, so sl2 must be computed by
repeatedly querying the Q-function with a sequence of sd tree states until the next base action
is chosen. As a result, computing a single base action target Q-value requires simulating the
next choice of base action, roughly doubling the computation time.

As an extension of the merged agent formulation, we propose to approximate Q(sl2 , a) using
a second Q-function, Qo. We refer to this second Q-function as an omniscient Q-function,
because its input is the full state sw. Qo is used in a supporting role during training; the policy
is obtained directly from Q. As a result, providing Qo the full state, sw, does not violate the
extraction process’s requirement that the policy is a function of only sw \ sb.
The omniscient Q-function is trained to approximate Q(sl2 , a) based on a and the full state at
sl2’s root, sr. This root state is sufficient since sl2 is obtained from sr through a sequence of
actions, each based on the previous sd. Therefore, the current greedy policy corresponds to
some function F (sr) = sl2 for all (sr, sl2) pairs. We have Qo implicitly learn this function as it
aims to learn an approximation Qo(sr, a) ≈ Q(sl2 , a) for all base actions.

Additionally, the original merged formulation learns the Q-value at each level in the tree (for
sd1,1, sd1,2, etc.) using targets computed from the next level. This leads to slow propagation of
environment reward signals from the leaf nodes. In addition to using Qo for the root node, we
propose to have it learn to approximate Qo(sw, a) ≈ Q(s, a) for all states and all actions. Since
Qo has access to sb, the rewards obtained in the leaf node, sl1 , directly propagate through Qo to
earlier levels of the tree instead of sequentially propagating upward (from leaf to root).

As shown in Figure 3.3, during training, we use Qo in cases where Q(s, a) would be used as a
target. The action choice is still based on Q(s, a), but the value is obtained from Qo. Both Qo

and Q are updated using the Qo-based target.

30

Figure 3.3: The method for using the omniscient Q-function, Qo, for Q targets. The policy is
based only on Q, so a DTP can be extracted despite Qo being a function on the full state.

3.2.3.4 Modifying Standard RL Algorithms

For Q-learning-based methods, such as Dueling Deep Q-Networks (DDQN) [33] and Model-
Free Episodic Control (MFEC) [34], we use the merged agent formulation target value of
Qo(sw, arg maxaQ(sw \ sb, a)) in place of maxaQ(s, a) (for both a ∈ Ab and a /∈ Ab); the
additional Q-function, Qo, is updated using the same target value. For policy gradient methods,
such as Proximal Policy Optimization (PPO) [4], the Q-function is used to compute advantage
values only during training. Therefore, we use only Qo, not Q, to compute advantages. Qo is
then trained using the merged agent formulation target value computations (replacing Q(s, a)
with Qo(sw, a)).

3.3 Experiments

We evaluate CUSTARD’s ability to generate DTPs through solving an IBMDP using a non-
interpretable function approximator during the learning process. An alternative to implicitly
learning a DTP is to learn a non-tree expert policy and then find a tree that mimics the expert. We
compare to VIPER, which takes this alternative approach and outperforms standard imitation
learning methods. VIPER gathers samples using a DAGGER variant and weights the samples
during tree training. For this evaluation, we use three environments, as described in Section 2.2.
PrereqWorld is parameterized by m and ρ, which we set to 10 and 0, respectively. We produce
smaller PrereqWorld variants by removing high-numbered items (based on the topological
sort).

3.3.1 Learning with CUSTARD

To evaluate CUSTARD’s ability to produce DTPs with a non-interpretable function approxima-
tor for the IBMDP, we apply the CUSTARD modifications to three base methods: DDQN, PPO,
and MFEC with improvements from Neural Episodic Control [35]. DDQN is a Q-learning

31

CartPole PrereqWorld PotholeWorld
Reward Reward Depth Reward Depth

VIPER (DQN) 200.00 (0.00) -4.00 (0.00) 5.70 (0.62) 46.30 (0.39) 6.00 (0.61)
VIPER (BI) 200.00 (0.00) -4.00 (0.00) 6.00 (0.00) 46.31 (1.32) 9.18 (1.08)
CUSTARD (DQN) 198.72 (4.74) -4.08 (0.34) 4.28 (0.67) 46.92 (2.14) 5.36 (1.41)
CUSTARD (PPO) 199.32 (3.23) -4.04 (0.20) 4.16 (0.47) 45.39 (0.42) 1.04 (0.75)
CUSTARD (MFEC) 200.00 (0.00) -4.00 (0.00) 3.92 (0.27) 49.18 (1.04) 9.74 (0.49)

Table 3.1: Final average reward and tree depth for different methods that make a DTP. The
values in parentheses are Standard Deviation values.

approach that uses a neural network to learn a state-value function and action-value function,
which are combined to form a Q-function. PPO is a policy gradient method that uses a critic
for estimating the advantage function. We use a neural network for both the actor and critic.
MFEC is a Q-learning approach that uses a nearest neighbor model to estimate Q-values.

The modifications from Section 3.2.3 are applied to all three methods. Actions are selected
based on IBMDP states without the base state (sw \ sb); this affects the actor for PPO and the
Q-function for DDQN and MFEC. DDQN and MFEC are used with a target Q-value function,
Qo, when performing updates, as in Figure 3.3. The target function and the critic for PPO are
used with full IBMDP states.

We compare to VIPER using two expert types: DQN and Backward Induction (BI). In Table 3.1,
we show the final average reward and tree depth for 50 trials on CartPole, PrereqWorld (m = 7),
and PotholeWorld. Optimal final average rewards would be 200, -4, and 50, respectively.
CUSTARD finds DTPs with high average reward for all environments and tends to find
shorter DTPs than VIPER. To further evaluate depth-vs.-reward trade-offs, we use VIPER(BI)
and CUSTARD(MFEC) since these methods have the fewest hyperparameters and are least
computationally expensive.

3.3.2 Response to Environment Size

CUSTARD discourages the learning of unnecessarily large trees through the use of two penalty
terms, ζ and γw. These penalties are akin to regularization of the implicit DTP: when multiple
optimal DTPs exist for the base MDP, the optimal IBMDP policy corresponds to the DTP with
the lowest average leaf height. In contrast, if a tree mimics an expert policy, then the resulting
tree will include complex behaviors that are artifacts of the expert’s intricacy.

We evaluate the decrease in tree size attained by using CUSTARD to directly learn a tree.
We compare the tree depth and node count for DTPs found by VIPER and CUSTARD on
PrereqWorld. The environment size is varied through m, which specifies the number of states
(2m) and the number of actions (m). For a given m, average reward is equal for both methods.
The results are shown in Figure 3.4 (50 trials per method/m pair). CUSTARD produces smaller
trees for m ≥ 4, and the size differences increases with the environment size. This is because an
unconstrained expert can learn more complex behaviors with a larger state space, and VIPER
faithfully mimics the expert policy.

32

Figure 3.4: Tree depth and node count as the PrereqWorld environment size increases. The bars
indicate the Standard Deviation. CUSTARD yields smaller trees for larger environments than
VIPER.

3.3.3 Response to Tree Depth

If an application requires a DTP of fixed depth, then fitting a DT to an expert policy can yield a
poor policy of that depth. This is because the expert is not learned in the context of the depth
limitation; imperfectly imitating that expert can lead to low reward. CUSTARD yields better
policies at a given depth since it directly solves an IBMDP that can be augmented with a depth
limit. An IBMDP can include affordances [36], so that information-gathering actions cannot be

33

Figure 3.5: Average per-episode reward for trees of a fixed depth for PotholeWorld. The bars
indicate the Standard Deviation. CUSTARD DTPs consistently achieve higher reward than
VIPER’s DTPs. The line at 50 indicates maximum possible per-episode reward.

chosen n actions after the most recent base action. With this modification, an RL algorithm can
directly find the best DTP subject to the depth restriction.

We evaluate CUSTARD’s ability to find DTPs with high average reward for PotholeWorld
subject to a tree depth limit. This domain is designed so the overall optimal DTP cannot
be pruned to obtain the optimal DTP for a smaller depth. We present the average episode
reward as a function of the depth limit in Figure 3.5 for VIPER and CUSTARD (50 trials per
method/depth pair). CUSTARD attains higher reward through using lane_1 when the DTP
depth is too shallow to avoid potholes in the other lanes. In contrast, VIPER always attempts to
imitate the expert and attains a low reward when the DTP poorly represents the expert policy.

3.4 Summary

In this chapter, we introduced Iterative Bounding MDPs, an MDP representation that corre-
sponds to the problem of finding a decision tree policy for an underlying MDP. Additionally,
we identified how the standard value update rule must be changed so that all IBMDP solutions
correspond to decision tree policies for the underlying MDP. We showed how existing RL
algorithms can be modified to solve IBMDPs, so a non-interpretable function approximator can
be used in conjunction with an existing RL method to solve an IBMDP and produce a decision
tree policy. In addition, we provided empirical results showing the tree size and reward im-
provements possible through solving an IBMDP rather than approximating a non-interpretable
expert with a decision tree after training.

We later incorporate the learned DTPs into our Unified Explanation Trees in Chapter 5. Inclusion
of DTPs permits the UET to explain individual actions in a local context. In Chapter 7, the

34

overall structure is then augmented with the ability to identify which past experiences were
most influential. As a result, the nodes within a DTP can also be explained in terms of influential
past experiences.

35

Chapter 4

Abstract Policy Graph Creation

In this chapter, we move beyond the “single action” explanation introduced in Chapter 3 to
explain longer-term behavior. To create a policy-level explanation, we express the policy as
an Abstract Policy Graph (APG) [37], a Markov chain over abstract states. We present an
algorithm for creating APGs, APG-Gen, that uses a learned value function and a set of observed
transitions. We prove that the worst-case time complexity of our method is quadratic in the
number of features and linear in the number of provided transitions, O(|F |2|tr_samples|). By
applying our method to a family of domains, we show that our method scales well in practice
and produces APGs that reliably capture relationships within these domains.

Later, in Chapter 5, we demonstrate how to build decision trees over APG abstract states and
then combine these trees with a DTP to form a Unified Explanation Tree. This process of
building APG DTs reveals which features determine abstract state membership and permits
analysis of an APG by recursively analyzing subtrees. The combination then permits a UET
to describe both immediate behavior (for the next action) and longer-term behavior (for the
sequence of all subsequent actions). In Chapter 7, we then find influential experiences for all
nodes of a Unified Explanation Tree. Because of our incorporation of APG DTs into a UET, this
identification of influential experiences also finds the influential experiences for partitioning
abstract states.

4.1 Motivation

In the context of RL, autonomous agents learn to operate in an environment through repeated
interaction. After training, the agent is able to make decisions in any given state, but is unable
to provide a plan nor rule-based system for determining which action to take. Generally, a
policy which selects actions (π(s) = a) is available along with its value function (Vπ(s) ∈ R),
which predicts future reward from a state. However, neither the outcome of the actions nor the
sequence of future actions taken is available. Without these, a human operator must blindly
trust an RL agent’s evaluation.

Existing techniques for explaining Deep Reinforcement Learning agents borrow techniques
used for explaining neural network predictions, so they focus on explaining one state at a time.

36

These techniques pinpoint the features of the state that influence the agent’s decision, but do
not provide an explanation incorporating expected future actions. Therefore, the explanation
is insufficient for a human supervisor to decide whether to trust the system. Likewise, no
whole-policy view is available, so evaluating the agent’s overall competency (as opposed to
single-state evaluation) is impossible. For these reasons, we are interested in explaining policies
as a whole: giving the context for action explanations and providing an abstraction of an entire
policy.

To address the aforementioned issues, we propose the creation of a full-policy abstraction,
which is then used as the basis for generating local explanations. We introduce Abstract Policy
Graphs (APGs) as such a full-policy abstraction. Each APG is effectively a graph where each
node is an abstract state and each edge is an action with associated transition probability
between two abstract states. Using a mapping from states to abstract states, one can identify
which groups of states the agent treats similarly, as well as predict the sequence of actions the
agent will take. This explanation provides local explanations along with a global context.

An APG provides a way for users to answer questions about a specific state such as:

• “What other states are treated as equivalent?”;

• “Which action will the agent take next?”;

• “What are expected properties (feature values) of future states?”; and

• “Will the agent ever loop back to a state that is treated similar to this one?”

Additionally, we propose an algorithm, APG-Gen, for creating an APG given a policy, a learned
value function, and a set of transitions. Starting with a single abstract state which encompasses
the full state-space, APG-Gen uses a feature importance measure to repeatedly divide abstract
states along important features. These abstract states are then used to create an APG. The
splitting procedure additionally identifies which features are important within each abstract
state. Notably, this general procedure is compatible with existing methods for learning a policy
and value function.

The main contributions of this chapter are as follows:

1. we introduce a novel representation, Abstract Policy Graphs, for summarizing policies
to enable explanations of individual decisions in the context of future transitions,

2. we propose a process, APG-Gen, for creating an APG from a policy and learned value
function,

3. we prove that APG-Gen’s runtime is favorable (O(|F |2|tr_samples|), where F is the
set of features and tr_samples is the set of provided transitions),

4. we empirically evaluate APG-Gen’s capability to create the desired explanations.

37

4.2 Approach: APG-Gen

In Section 4.2.1, we first briefly describe an existing approach for computing feature impor-
tance; we use this without APG-Gen to partition sets of states. In Section 4.2.2, we describe
Abstract Policy Graphs, our representation for explaining a policy. In Section 4.2.3, we propose
APG-Gen, a method for constructing such explanations. In Section 4.2.4, we describe local
explanations we produce from our policy explanations. Finally, in Section 4.2.5, we show that
our method has favorable asymptotic runtime: quadratic in the number of features and linear in
the number of transition tuples considered, where there are usually few features and runtime
sub-linear in the number of transitions is unattainable.

4.2.1 Feature Importance Function

We use an importance measure for grouping states from an original MDP into abstract states.
An importance measure is a function If (c) that represents the importance of feature f in
determining how a system treats a set of inputs (e.g., states), c. If f takes on the same value for
all s ∈ c or its value does not influence the system’s output, then f is not important. We use the
Feature Importance Ranking Measure (FIRM) [38] since it is fast to compute exactly for binary
features and can be meaningfully interpreted. As a result, our method is applicable to domains
where the states are featurized with binary features (i.e., all features are 0 or 1).

To calculate importance, FIRM uses qf (v), the conditional expected score of s for a feature
f with respect to an arbitrary function g(s). This score is the average value of g(s) for all s
within the set c where feature f takes value v:

qf (v) = E(g(s)|s[f] = v). (4.1)

Intuitively, if qf (v) is a flat function, then v, the value of f , has no impact on the average value
of g(s) over s ∈ c, so provides little information. However, if v significantly impacts g(s), then
the value of qf (v) will vary. This motivates FIRM’s importance measure If (c), the variance of
the conditional expected score:

If (c) =
√

V(qf (s[f])). (4.2)

In specific cases, the exact value of If (c) can be computed quickly. One such case is when f is
a binary feature. For a binary feature, the importance measure is given by

If (c) = (qf0(c)− qf1(c))
√
pf0(c)pf1(c),

pfv(c) = P(s[f] = v),

qfv(c) = E(g(s)|s[f] = v).

(4.3)

In the case of binary features, FIRM corresponds to the expected change if the feature switches
from 0 to 1. Conveniently, sign is preserved in the binary case, showing magnitude of importance
as well as direction of effect.

38

4.2.2 Abstract Policy Graphs

To create a policy-level explanation, we express the policy as a Markov chain over abstract
states where edges are transitions induced by a single action from the original MDP, which
we term an Abstract Policy Graph (APG). We present an example in Figure 4.1. Consider a
mapping function, l(s), which maps states in the original MDP (grounded states) to abstract
states. In effect, each abstract state represents a set of grounded states from the original MDP.
We use the phrase “an agent is in abstract state b” to mean that the current state of the domain, s,
maps to b (i.e., l(s) = b). Let each set contain all states interchangeable under the agent’s policy
such that the agent behaves similarly when starting in a state from the set in a similar fashion.
As a result, states in which the agent behaves similarly lead the agent to states in which the agent
also behaves similarly. If the agent’s transitions between grounded states are approximated
using a Markov chain between these abstract states, then states that are treated similarly are
readily identified and the agent’s transitions between abstract states can be predicted.

For example, let the agent’s distribution of actions be approximately equal for all future
time-steps for all grounded states in the set:

Es1,tP(π(s1,t) = a) ≈ Es2,tP(π(s2,t) = a)∀a, t (4.4)

for all s1 and s2 within a set, where si,t is the state reached from si in t further time-steps using
policy π.

If the transition function is deterministic, then the agent takes the same sequence of actions
from each grounded state in the set because there is only a single si,t for each i and t. In
addition, since no two sets could combine to form an interchangeable set, then the abstract
states for all si,t are identical, too. Since the probability of transitioning from one abstract state
to another after one action is then either zero or one (regardless of grounded state), the agent is
effectively traversing a Markov chain of abstract states induced by its policy.

However, most interesting domains have stochastic transition functions. Under a stochastic
transition function, two grounded states can satisfy Equation 4.4 while having different transi-
tion probabilities to future abstract states. The transition probability from one abstract state to
another can be approximated as the average transition probability for grounded states in the
source abstract state. For stochastic policies, the probability of taking any given action can
be similarly approximated as the average over all grounded states in the source abstract state.
The transition probability is no longer exact for any given grounded state in the set but is the
transition probability for a randomly chosen state in the set. To make predictions for a series of
transitions, we make a simplifying Markov assumption: the abstract state reached, bt+1, when
performing an action depends only on the current abstract state, bt. This assumption leads to
approximation error but works well in practice, as shown in Section 4.3.3.

The abstract states now form a Markov chain, as desired. This final product allows human
examination of higher-level behavior (e.g., looking at often-used trajectories and checking for
loops), prediction of future trajectory (along with accompanying probability), and verification of
agent abstraction (e.g., ensuring agent’s behavior is invariant to certain features being changed).

39

Figure 4.1: An example Abstract Policy Graph with edge labels indicating transition probabil-
ities. The abstract state identifier is shown within each node, and the action taken is written
adjacent to the node.

4.2.3 APG Construction

We propose an algorithm for creating APGs, APG-Gen. It first divides states into sets to form
abstract states, then computes transition probabilities between them.

4.2.3.1 Importance Measure

APG-Gen is compatible with arbitrary interchangeability measures. We choose Vπ(s) as it is
readily available, but the method does not rely on this choice. Using an interchangeability
measure based on Equation 4.4 is difficult since it would depend on an expectation over all
future states, which is often computationally expensive and requires knowing transitions for all
states. We note that the definition of Vπ(s) in Equation 2.1 also includes an expectation over all
future future states, as well as a dependency on the policy. Since the full state-value function is
generally available and does not require computing additional expectations, we use it as our
measure of interchangeability. The intuition is that two states with similar state-values lead
to similar future outcomes in terms of reward, so are likely treated similarly by the agent. A
different measure could be used instead

With an importance measure If (c) for Vπ(s), a set of states which is interchangeable under the
agent’s policy should have low If (c) for all f . Consider the case of c1

⋃
c2, a set containing the

original MDP states which should be contained in two abstract states. At least one f should
have high If (c1

⋃
c2) because the grounded states from the two abstract states are treated

differently. If there is no such f , then the two sets are treated the same and therefore belong to
the same abstract state.

40

4.2.3.2 Splitting Binary Features

In the case where all features are binary, if the set is split based on the value of that f (into
one subset if f = 0 and the other if f = 1), then both subsets will have If be 0, since f has a
constant value within the subset. This holds for any set of grounded states which will ultimately
form several abstract states. Therefore, this splitting procedure can be repeatedly performed to
create abstract states from initially larger sets until all features have low importance.

Since each binary feature can only be important once and it is straightforward to split along a
binary feature, the use of binary features allows quick computation. Therefore, in cases where
the original MDP does not have solely binary features, pre-processing can be done to create
features for APG-Gen. Note that these features are not used when evaluating Vπ(s) (i.e., an
unmodified, arbitrary model can be used for approximating Vπ(s)). The binary features are
instead used when deciding to which set a specific tuple belongs while performing APG-Gen.

4.2.3.3 Abstract State Division

Since binary features allow efficient splitting, our approach is to initially form sets based on
action taken under the current policy and then repeatedly split the set which has the greatest If
value, as computed within that set. When the importances of all features for all abstract states
are sufficiently low, then the abstract states consist of sets of states which are interchangeable
under the agent’s policy.

The pseudocode for our method is given in Algorithm 2. To perform the procedure, we require
a set of sample transitions. As mentioned in Section 2.1.1, RL agents generally learn through
interacting with a domain, meaning a set of (s, a, s′) transitions is generally available. The
notation we use for this set is a vector tr_samples consisting of entries t where action ta is
taken in state ts, leading to a transition to state ts′ , an observed reward tr, and a termination flag
tt (0 or 1). The policy is used in line 5 to discard transition tuples where the provided policy
would perform a different action from the action in the stored tuple. This is done so that the
generated explanation reflects only the current policy and not transition tuples observed under
past policies.

Lines 2-6 separate the tuples based on the action taken. We pre-compute the feature importance
for each set and save it in lines 7-8. Line 9 forms the core procedure, where abstract states
are divided until no feature has importance greater than ε. The abstract state with the most
important feature is found, then divided based on the most important feature. The importance
of each feature is then re-computed in lines 18 and 20.

4.2.3.4 APG Edge Creation

Once the abstract state sets have been created, we create the mapping function l and Markov
chain transition matrix using Algorithm 3 (a sparse matrix can be created in an almost identical
fashion). In lines 2-4, the contents of each set are used to create the necessary entries in a
lookup table for the mapping function. Simultaneously, the transition matrix is initialized to be
zero-valued by lines 5-6. Then, in lines 7-13, the mapping function is used in conjunction with
the transition tuples within each abstract state set to compute transition probabilities. That is, if

41

Algorithm 2 Compute abstract states based on transition samples and learned policy.
1: procedure DIV_ABS_STATES(tr_samples, policy)
2: for i in {1, . . . , |A|} do
3: c[i]← ∅ . initially, all sets empty
4: for t in tr_samples do . separate by action
5: if policy(ts) = ta then
6: c[ta]← c[ta] ∪ t
7: for i in {1, . . . , c} do . pre-compute feat. imp.
8: m[i]← [|If (c[i])| for f ∈ {1, . . . , |F |}]
9: while maximaxj (m[i][j]) > ε do

10: imax ← argmaximaxj (m[i][j])
11: jmax ← argmaxj (m[imax][j])
12: cn0 , cn1 ← ∅
13: for t in c[imax] do . split on most imp. feat.
14: if ts[jmax] = 0 then
15: cn0 ← cn0 ∪ t
16: else
17: cn1 ← cn1 ∪ t
18: m[imax]← [|If (cn0)| for f ∈ {1, . . . , |F |}]
19: c[imax]← cn0

20: m[|c|]← [|If (cn1)| for f ∈ {1, . . . , |F |}]
21: c[|c|+ 1]← cn1

22: return c

a transition tuple t is in set c[i], then the origin state, ts, is in the abstract state represented by
c[i]. The destination state, ts′ , then indicates a connection between c[i] and l(ts′). The transition
probability from c[i] to c[n] is the portion of tuples in c[i] which lead to a state in c[n], so each
tuple in c[i] should increment transition(i, l(ts′)) by 1/|c[i]|, as done in line 13. Terminal
transitions are identified in line 9 and instead lead to the special bT abstract state. This abstract
state represents termination and is represented by the highest-numbered row and column in
transition. There will be no incoming edges to bT if the set of terminal states, T , is empty.
Line 14 sets bT to have an edge to itself to create a valid Markov chain.

4.2.4 Abstract State Summarization

The policy graph algorithm presented creates a summary of the overall policy out of abstract
states, which are each defined by a set of states from the original MDP. Due to the process that
we use to create the abstract states, we can also create a characterization of the states that are in
their set. Note that Algorithm 2 splits an abstract state into two based on a feature f because f
is “important” based on chosen function g. These fs can be trivially recorded and stored for
each abstract state. Once the final abstract states have been created, these fs indicate which

42

Algorithm 3 Create mapping function and transition matrix based on policy graph.
1: procedure COMPUTE_GRAPH_INFO(c)
2: for i in {1, . . . , |c|+ 1} do
3: for t in c[i] do
4: lookup[ts]← i . create lookup table
5: for n in {1, . . . , |c|+ 1} do . zero matrix
6: transition(i, n)← 0

7: for i in {1, . . . , |c|} do
8: for t in c[i] do
9: if tt = 1 then . terminal tt go to dummy bT

10: n← |c|+ 1
11: else . others go to abstract state of next state
12: n← lookup[ts′]

13: transition(i, n) += 1/|c[i]|
14: transition(|c|+ 1, |c|+ 1)← 1 . add bT self-loop
15: return lookup, transition

features were previously important. From this, the important features of an abstract state can be
determined.

For any state in the transition set, sn, and a specific abstract state, b, if π(sn) = π(s) and
sn[f] = s[f] for any s in b’s set and for all f which were used to create b, then sn will also be
in b’s set. Similarly, if sn[f] 6= s[f] (for similarly defined s and f), then sn cannot be in b’s set.
These feature-value assignments are necessary and sufficient to be part of b, so this creates an
“if and only if” relationship. As a result, for any chosen state s, based on the features used to
create its abstract state, the “relevant” features can be determined. If the value for any of these
features changes, then s would be in a different abstract state and treated differently. Similarly,
the agent is oblivious to changes in the other features given the values assigned to the relevant
features. This relationship allows a human supervisor to determine which features affect how
an agent treats a specific state. In addition, a summary of an abstract state can be formed using
these same feature-value assignments.

4.2.5 Computational Complexity

We present the big-O runtime of our method. Since an agent may be trained on millions of
transitions, it is important that an interpretability method scale favorably with respect to the
number of transitions. We show that our approach takes time linear in the number of samples.

4.2.5.1 Computing FIRM

Since pf1(c) = 1 − pf0(c) and qf1(c) = (E(g(s)) − pf0(c)qf0(c))/pf1(c), computing pf0(c)
and qf0(c) is enough to calculate the importance. These can be computed for all f with a single
pass through the set of states, as shown in Algorithm 4.

43

Algorithm 4 Compute feature importance for all features for given set of transitions.
1: procedure FIRM(tuples)
2: qtot ← 0 . expected value over full set
3: for f in {1, . . . , |F |} do
4: p0[f]← 0 . ratio of set with s[f] = 0
5: q0[f]← 0 . E(s|s[f] = 0) for s in set
6: for t in tuples do
7: g_val← g(ts)
8: qtot += g_val . store sum for qtot
9: for f in {1, . . . , |F |} do

10: if s[f] = 0 then . p0 is tally, q0 is sum
11: p0[f] += 1
12: q0[f] += g_val
13: qtot = qtot/|tuples| . convert sum to average
14: for f in {1, . . . , |F |} do . intermediate terms
15: q0[f]← q0[f]/p0[f]
16: p0[f]← p0[f]/|tuples|
17: p1[f]← 1− p0

18: q1[f]← (qtot − p0[f]q0[f])/p1[f]
19: qdiff [f]← q0[f]− q1[f]

20: return [qdiff [f]
√
p0[f]p1[f] for f in {1, . . . , |F |}]

The bulk of the computation is performed in lines 6 to 12. Here, every transition in the set is
separately considered. Only a single evaluation of g is required regardless of the number of
features. This evaluation is used to calculate E(g(s)) and qf0 for each feature where s[f] = 0.
The overall complexity of Algorithm 4 is therefore O(|F ||tuples|), where |F | is the number of
features and |tuples| is the number of transitions over which FIRM is computed.

4.2.5.2 APG-Gen Runtime

The runtime of Algorithm 2 is quadratic in the number of features and linear in the number of
provided transitions, O(|F |2|tr_samples|).

Creating the initial abstract states (i.e., those based only on action taken) takes time O(|A|+
|tr_samples|), where we assume |A| ≤ |tr_samples|. Computing FIRM for all of these
abstract states takes O(|F ||tr_samples|) time. The while loop in lines 9 to 21 forms the bulk
of the algorithm, which we will analyze last. Creating the lookup and transition tables takes
O(|tr_samples|), assuming a zero matrix can be created in constant time for line 6.

For lines 9 to 21, during each iteration of the while loop, the runtime is O(log2(|c|)) to insert
the new imaxs if a max-heap is used to store the jmaxs, O(|c[imax]|) to partition the set c[imax],
and O(|F ||c[imax]|) to compute FIRM for both new sets. Note that each time a set is divided,
the number of features within that set with non-fixed values (and therefore positive importance)
is reduced by one. Therefore, any given tuple may only be part of an evaluated set |F | times.

44

As a result, over all iterations of the loop, the set division and FIRM computation takes at
most O(|F |2|tr_samples|) time. This can happen over the course of up to 2|F | divisions, so
the max-heap insertion takes time at most O(|F |).

The overall worst-case runtime for APG-Gen is then on the order of O(|F |2|tr_samples|).
This is favorable since runtime must be at least linear in |tr_samples| and F is generally small
compared to the number of tuples.

4.3 Experiments

We evaluate APG-Gen on our domain with scalable state space and controllable stochasticity.
This domain, PrereqWorld, is described in Section 2.2.1. Experimental settings are described in
Section 4.3.1.

An example APG made by APG-Gen for an instance of PrereqWorld is given in Figure 4.2.
APG-Gen additionally describes each abstract state. For example, b16 corresponds to all states
where features 2 and 3 are 1. This corresponds to always taking action a1 when an i2 and i3
are present, which corresponds to C1 = {i2, i3} in this domain instance. This correspondence
between the domain constraints and the explanation would allow a human operator to verify
that an agent is behaving as expected.

4.3.1 Experimental Settings

We briefly describe how the subsequent experiments were performed. In particular, we describe:
(1) how transitions were generated, (2) how APG-Gen was configured, (3) how plot points
were created, and (4) how the domains were paramterized.

4.3.1.1 APG Inputs

For consistency, we use value iteration [39] to create the policies and value functions used for
experiments, but other methods could be used instead. We iterate until the state-value function
no longer changes. To generate the transitions, we generated trajectories from a random starting
state until the maximum number was reached.

4.3.1.2 APG-Gen Stopping Criterion (ε)

In the case of binary features, FIRM corresponds to the expected change should the feature be
changed from 0 to 1. Conveniently, sign is also preserved in the binary case, showing magnitude
of importance as well as direction of effect. As a result, if no feature for any abstract state has
FIRM magnitude greater than ε, then changing any given feature is not expected to change the
value of g(s) by more than ε (e.g., Es∈c(|g(s, sf = 0)− g(s, sf = 1)|) < ε∀c). We use this as
a guideline for setting ε: we set ε to be the minimum difference in action-value between the
best action and second-best action. For the PrereqWorld domain, this is ε = 1.

45

Figure 4.2: An example APG made by APG-Gen for a small PrereqWorld domain instance
with m = 8 and ρ = 0. All edges have transition probability 1. The abstract state identifier is
shown within each node, and the action taken is written adjacent to the node.

4.3.1.3 Trials

For each plotted data-point, we generate 100 different PrereqWorld instances. We evaluate
each instance 1,000 times (i.e., we compute the feature importance for 1,000 different states or
predict the nth action for 1,000 different trajectories), except for the points in Figure 4.5, since
the explanation size is fixed per APG.

4.3.1.4 Domain Generation

Each domain instance is parameterized by ρ and m as specified for each experiment. For
simplicity, d is always i1. For each instance, we randomly add prerequisite relationships by
selecting an item ij uniformly at random and then an item ik uniformly at random such that
k > j. When adding prerequisite relationships, we constrain the expected number of actions to
reach a terminal state to be within 10% of 2m. This ensures that the domain can be solved in a
reasonable amount of time using value iteration.

46

Figure 4.3: Comparison of feature importance prediction accuracy for increasing portion of
non-terminal states for stochastic and deterministic PrereqWorld instantiations.

4.3.2 Local Explanation Generalization

Based on the way we construct our abstract states, we can create “if and only if” conditions for a
state in the transition sample set to be part of an abstract state’s set, as described in Section 4.2.4.
From this, we can create a local explanation consisting of the set of features that are important
in that state. To evaluate how well APG-Gen can generalize when predicting important features,
we generate APGs using a set of transitions less than the full set of non-terminal states (i.e.,
we provide a set of transitions where no (s, a, s′) tuple shares an s such that only a portion
of non-terminal states appear as s). We then evaluate the local explanations by comparing to
a ground truth computed for individual PrereqWorld instances with a domain parameter of
m = 15 (|S| = 215).

The portions of correct feature classifications (important vs. not important) are shown in
Figure 4.3. APG-Gen almost always correctly identifies the important features. Even with only
10% of the states, the prediction is correct over 93% of the time. When given 80% of the states,
predictions are correct 98.7% of the time for both the stochastic and deterministic environments,
which suggests that the model is able to identify genuine patterns in the policy. We believe

47

Figure 4.4: Action prediction for increasing time horizon for stochastic and deterministic
PrereqWorld instantiations.

the errors the system makes are caused by the splitting order induced by APG-Gen’s greedy
splitting strategy.

4.3.3 n-hop Prediction Evaluation

An APG is able to predict the actions an agent will take, but this ability comes from an
assumption made in Section 4.2.2. For each pair of abstract states, we produce a transition
probability: the probability that the agent will be in the second abstract state, assuming the
agent is following a transition tuple chosen at random from that first abstract state. This holds
for a single action for states in the provided transition sample set, but a sequence of states is
not independent, so performing several of these predictions in sequence will not yield the true
probability of a state sequence.

To evaluate the error caused by making this assumption, we have APG-Gen predict the distribu-
tion of actions the agent will take n time-steps in the future. We compare it to the true computed
distribution and report the portion of actions for which the true and predicted distributions

48

Figure 4.5: Comparison of explanation versus state-space size for stochastic and deterministic
PrereqWorld instantiations.

agree. This is for a domain parameter of m = 15 (|S| = 215|). The size of the transition sample
set is half the size of the set of non-terminal states.

The action prediction is consistently correct when the domain is deterministic, so we report
results for two stochastic domains in Figure 4.4. Even with a small ρ, the prediction is less
accurate as the number of steps increases, as is expected. However, there is no dramatic decrease,
suggesting that the Markovian assumption made in Section 4.2.3 is reasonable. The steady
decline is likely due to computing transition probabilities as an average of the transition sample
set.

4.3.4 Explanation Size

The purpose of APGs is to be more human-interpretable than a Markov chain made from the
base MDP. Therefore, the number of nodes in an APG should be much lower than the number
of grounded states in the base MDP. To test this, we construct domains with a number of states
ranging from 32 to 1,073,741,824 and count the number of abstract states in the corresponding
APG. As in Section 4.3.3, for each generated APG, the size of the transition sample set is half

49

the size of the set of non-terminal states. The results are presented in Figure 4.5. Note that the
x-axis is in log-scale.

The explanation size grows sub-linearly in m while the state-space size grows exponentially
in m. This suggests that the explanation size is based more on the number of actions required
to reach a terminal state than the number of states, which indicates that compact policy
representations are being automatically extracted.

4.4 Summary

In this chapter, we introduced Abstract Policy Graphs, a whole-policy explanation from which
state-specific explanations can be extracted. In addition, we presented APG-Gen, an algorithm
for creating an APG given a policy, learned value function, and set of transitions, without
constraints on how these are created. We showed that APG-Gen runs in time quadratic in the
number of features and linear in the number of transitions provided, O(|F |2|tr_samples|).
Additionally, we demonstrated empirical results showing the small size of the APGs relative
to the original MDPs, as well as the types and quality of explanations that can be extracted.
Together, these show that APG-Gen can produce concise policy-level explanations in a tractable
amount of time.

50

Chapter 5

Unified Explanation Trees

In Chapter 3 and Chapter 4, we present methods for single action and policy-level explanations
in terms of state features, but these methods yield separate explanations of different aspects
of the agent’s behavior. Given our objective of producing an explanation that simultaneously
conveys all these aspects, we now focus on how CUSTARD and APG-Gen can be used to
create such a joined explanation. We first introduce the target explanation structure, Unified
Explanation Trees. Next, we describe how to modify APG-Gen to extract a set of decision
trees mapping from states to abstract states during the cluster partitioning process. We then
introduce two ways to create Unified Explanation Trees: one combines the trees produced by
CUSTARD and APG-Gen after each has been used; the other integrates the two methods more
closely. Finally, we demonstrate the reduction in overall explanation size obtained by using our
integrated approach.

5.1 Motivation

Decision Trees have favorable properties when used as an explanation format. We briefly note
some relevant ones: (1) A DT directly conveys which features are considered within different
portions of the input space. (2) A DT can be used to determine which features are relevant
when deciding whether to pick a specific label of interest. (3) Meta-information about a DT’s
structure (e.g., its size) conveys the relative complexity of the DT. (4) The recursive structure
of a DT permits explaining it recursively. (5) A single traversal through a DT uses only a
small portion of the tree’s parameters, allowing a single decision to be explained more readily.
In contrast, consider a neural network, where all parameters are used for each decision. (6)
Similarly, a traversal through a DT consists of a sequential application of simple rules; in our
case, each partition requires a single binary comparison to a single other parameter to producing
a binary output. By comparison, a neural network requires matrix multiplication to produce an
output matrix of continuous values.

Decision Tree Policies benefit from these properties, but a DTP only conveys this information
(e.g., which features are used) for local behavior (i.e., choosing a single action based on the
state). In contrast, an APG provides information about general properties of the policy as well
as longer-term information about states: states are grouped into abstract states such that all

51

states within an abstract state lead to similar future behavior by the agent. This grouping enables
abstract state membership alone to convey longer-term behavior information. However, an
APG is not expressed as a DT, so it does not inherit the favorable properties. The potential for
improved interpretability motivates us to modify APG-Gen to produce decision tree structures.

To maximally benefit from the recursive nature of a DT and its repeated partitioning of the input
space, we seek a single tree rather than separate DTP and APG-based trees. The benefits of a
single tree motivate us to integrate DTPs and APG-based trees into a single Unified Explanation
Tree (UET). This unified tree accepts a state as an input and returns both an action and an
abstract state. As a result, a single tree conveys both the agent’s current action and information
about future behavior. Explanation methods that rely on a tree structure can then be applied to
the abstract state categorization performed by APG-Gen.

A UET provides a way for users to answer questions such as:

• “What will the agent do in state s?”;

• “Which features informed this choice?”;

• “What other states are treated as equivalent?”; and

• “What are expected properties (feature values) of future states?”

5.2 Approach: Unified Explanation Trees

We seek a Unified Explanation Tree (UET): a tree mapping from a state s to both an action
a and an abstract state b. The abstract states should have a relationship as specified within an
APG. The partitions within the tree should each be based on a single feature, as is done in a
Decision Tree Policy.

We leverage CUSTARD and APG-Gen to produce a UET: CUSTARD produces a tree mapping
from s to a, and APG-Gen produces a mapping from s to b. We first modify APG-Gen to
also produce a forest of trees in Section 5.2.1. Then, in Section 5.2.2, we demonstrate how
to combine this forest with a DTP to produce a UET. Finally, in Section 5.2.3, we present a
further modification of APG-Gen that yields a more concise UET by more closely integrating
CUSTARD’s DTP.

5.2.1 Extracting a Forest via APG-Gen

As an intermediate step to creating a UET, we must obtain trees that convey longer-term
behavior. We can extract suitable trees based on the clustering of states performed by APG-Gen.
For each action, APG-Gen partitions the state space such that each region corresponds to an
abstract state. Because this partitioning is performed based on one feature at a time and by
splitting on this feature, the partitioning process implicitly creates one DT per action in the
environment.

52

Algorithm 5 Compute abstract states based on transition samples and learned policy; simulta-
neously track performed partitions within a forest.

1: procedure DIV_ABS_STATES_WITH_FOREST(tr_samples, policy)
2: for i in {1, . . . , |A|} do
3: c[i]← ∅ . initially, all sets empty
4: r[i]← new_tree() . create root node for each tree in forest
5: l[i]← r[i] . entry in leaf list initially points to root node
6: for t in tr_samples do . separate by action
7: if policy(ts) = ta then
8: c[ta]← c[ta] ∪ t
9: for i in {1, . . . , c} do . pre-compute feat. imp.

10: m[i]← [|If (c[i])| for f ∈ {1, . . . , |F |}]
11: while maximaxj (m[i][j]) > ε do
12: imax ← argmaximaxj (m[i][j])
13: jmax ← argmaxj (m[imax][j])
14: cn0 , cn1 ← ∅
15: ln0 , ln1 ← l[imax].make_child_leaves() . create new children at leaf; get pointers
16: for t in c[imax] do . split on most imp. feat.
17: if ts[jmax] = 0 then
18: cn0 ← cn0 ∪ t
19: else
20: cn1 ← cn1 ∪ t
21: m[imax]← [|If (cn0)| for f ∈ {1, . . . , |F |}]
22: c[imax]← cn0

23: l[imax]← ln0 . store pointer to left child, replacing previous pointer
24: m[|c|]← [|If (cn1)| for f ∈ {1, . . . , |F |}]
25: c[|c|+ 1]← cn1

26: l[|c|+ 1]← ln1 . store pointer to right child, extending list
27: return c, r . return list of clusters and list of trees in forest

We call the outcome of this process an Abstract Policy Forest (APF) since each tree in the
forest maps from a state s to an abstract state b; the abstract states are the same ones that appear
within the corresponding Abstract Policy Graph.

Rather than recovering or discovering an APF after using APG-Gen, we modify APG-Gen to
produce an APF at the same time as it produces an APG. The modified algorithm, APF+APG-
Gen, differs only in the “Div_Abs_States” function. The modified function is shown in Algo-
rithm 5; the portions in red are those that have been changed from APG-Gen.

Algorithm Explanation The core modification is maining a list of leaf pointers, l, alongside
the list of clusters, c. The leaf pointers are references to nodes within the APF. The forest is
initialized with one tree per action type in line 4. The initial leaf pointers consist only of root

53

(a) DTP (top) and APF (bottom) (b) UET produced by Extension (c) UET produced by Initialization

Figure 5.1: Starting with the DTP and APF in (a), our two approaches yield different UETs: (b)
via Extension and (c) via Initialization.

nodes for the APF (line 5). As divisive clustering is performed in lines 11-26, the leaf pointers
are updated in accordance with cluster partitions. Specifically, each cluster division leads to a
new partition in the appropriate tree (line 15). Once the cluster is divided and the new clusters
are stored (lines 22 and 25), the corresponding leaf pointers are set to reference these new
leaves (lines 23 and 26, respectively). In addition to the final list of clusters, the output of the
modified function now also includes a list of trees in the corresponding APF.

Computational Complexity Notably, the computational complexity of APF+APG-Gen is
the same as for APG-Gen:O(|F |2|tr_tuples|). The changes in Algorithm 5 consist of additional
book-keeping whenever operations are already performed (i.e., a cluster is divided), while
APG-Gen’s complexity is dominated by computing feature importance (lines 10, 21, and
24) within a loop (line 11). Likewise, no additional assumptions are made and no additional
constraints are added: only transition tuples and a policy are required; an alternative feature
importance calculation may be used; and the agent may take any form.

5.2.2 Extending a DTP with an Abstract Policy Forest

Given a DTP and an APF, we can create a UET by appropriately linking together the trees.
Note that each tree within an APF provides an s to b mapping only for states where the agent
takes a specific action. Specifically, for each action a, there is a separate tree in the APF to
provide the s to b mapping. In a DTP, each leaf node corresponds to a specific action choice by
the agent; when the DTP is viewed as a partitioning of the state space, each leaf corresponds to
a set of states where the same action is taken. Therefore, for all states within a given leaf node,
the same APF tree would be used to identify the corresponding abstract states. This allows us
to directly extend a DTP with APF trees by replacing each leaf node with the corresponding
APF tree (i.e., if the DTP leaf corresponds to action a, then that leaf should be replaced with
the APF tree for action a). This extended tree is then a valid UET.

Example Consider the example in Figure 5.1. A DTP for the example environment is shown
at the top of Figure 5.1a: a state is mapped to one of two actions, blue or red. APF+APG-Gen

54

yields one tree per action, blue and red, as shown at the bottom of Figure 5.1a. Each of these
trees maps a state where the agent takes the appropriate action, blue or red, to an abstract
state. Since all states that fall into, e.g., a blue leaf of the DTP are valid inputs to the blue APF
tree, each blue DTP leaf can be replaced with the blue APF tree. The same operation can be
performed on the red DTP leaves using the red APF tree. This process yields the UET shown
in Figure 5.1b.

5.2.3 Initializing APG-Gen with Leaves from a DTP

The Extension approach has the advantage of being post-hoc: any method of producing a
DTP and an APF is compatible with this process. However, the resulting UET will necessarily
exhibit recurring sub-structures (note the matching sub-trees within Figure 5.1b). This leads to
two related disadvantages.

First, the UET may be larger than necessary. Each APF tree partitions the entire state space into
abstract states, but each DTP leaf represents only a subset of the state space. As a result, some
of the APF-derived partitions within the UET may be completely unnecessary; these partitions
may be redundant with DTP-derived partitions closer to the root. Additionally, the best way for
an APF tree to partition different portions of the state space may differ. By sharing a single
APF tree, only a single, common structure can be found.

Second, the way that different portions of the UET are created is linked. This aspect reduces the
interpretability of the tree: the partition created at a given node is based on a larger portion of
the tree. As a result, the recursive nature of the tree is compromised (a subtree can be analyzed
in isolation as its own tree) in addition to the local nature of its behavior (a single output can
be analyzed in terms of the sequence of nodes traversed). Since we seek to later explain what
influenced the creation of a UET, it is crucial that each partition depends only on the current
node.

These disadvantages motivate us to more tightly couple the creation of the DTP and APF that
are used to produce a UET. We further modify APF+APG-Gen to consider the leaves of the
DTP. Specifically, we choose initial clusters for APF+APG-Gen based on leaf membership in
the DTP, thus removing the relationship between states in different DTP leaves. This process
allows a specialized tree for different regions of the state space even when the same action is
taken; effectively, this approach leverages the partitioning performed by the policy tree.

For clarity, we refer to our resulting approach of creating an APF as APF+APG-Gen via
Initialization; we refer to the base APF+APG-Gen method as using Extension. The difference
between this variant and APF+APG-Gen is in the Div_Abs_States algorithm. The modified
version is shown in Algorithm 6. The portions which have been modified or added (relative to
Algorithm 5) are shown in red.

Example As an example, with the same DTP as shown in Figure 5.1a, APF+APG-Gen
via Initialization would produce four trees within its APF (one per leaf in the DTP). These
APF trees can then be joined with the DTP following the process outlined in Section 5.2.2,
yielding the UET shown in Figure 5.1c. Note how though the left blue subtree and right blue

55

Algorithm 6 Compute abstract states based on transition samples and learned policy that is
split into a mapping from states to leaves and a mapping from leaves to actions; simultaneously
track performed partitions within a forest.

1: procedure DIV_DTP_ABS_STATES_WITH_FOREST(tr_samples, s_to_l, l_to_a)
2: leaf_set← ∅
3: leaf_to_samples← dict()
4: for t in tr_samples do
5: tl ← s_to_l(ts)
6: if l_to_a(l)← ta then
7: leaf_set← leaf_set ∪ tl
8: leaf_to_samples[tl]← leaf_to_samples[tl] ∪ t
9: leaf_list← order(leaf_set)

10: for i in {1, . . . , |leaf_list|} do
11: c[i]← leaf_to_samples[leaf_list[i]] . initialize with policy leaf membership
12: r[i]← leaf_list[i] . initialize each tree in forest with policy leaf
13: l[i]← r[i] . entry in leaf list initially points to starting leaf node
14: for i in {1, . . . , c} do . pre-compute feat. imp.
15: m[i]← [|If (c[i])| for f ∈ {1, . . . , |F |}]
16: while maximaxj (m[i][j]) > ε do
17: imax ← argmaximaxj (m[i][j])
18: jmax ← argmaxj (m[imax][j])
19: cn0 , cn1 ← ∅
20: ln0 , ln1 ← l[imax].make_child_leaves() . create new children at leaf; get pointers
21: for t in c[imax] do . split on most imp. feat.
22: if ts[jmax] = 0 then
23: cn0 ← cn0 ∪ t
24: else
25: cn1 ← cn1 ∪ t
26: m[imax]← [|If (cn0)| for f ∈ {1, . . . , |F |}]
27: c[imax]← cn0

28: l[imax]← ln0 . store pointer to left child, replacing previous pointer
29: m[|c|]← [|If (cn1)| for f ∈ {1, . . . , |F |}]
30: c[|c|+ 1]← cn1

31: l[|c|+ 1]← ln1 . store pointer to right child, extending list
32: return c, r, leaf_list . return lists of clusters, trees in forest, and input leaves

subtree correspond to the same DTP action, the subtrees have different structures. In particular,
the right blue subtree is smaller in Figure 5.1c than the one in Figure 5.1b. Intuitively, since
APF+APG-Gen via Initialization is partitioning a strictly smaller portion of the state-space, we
would generally expect a smaller APF tree in this case.

56

Algorithm Explanation For this variation of the algorithm, the policy must be decomposable
into a mapping from states to groups and a mapping from groups to actions. For our purposes,
each group corresponds to states that fall into a specific leaf of a DTP. The algorithm provides
a similar output as APF+APG-Gen: a list of clusters and a list of trees that constitute an APF.
However, the APF contains one tree per leaf in the DTP rather than one tree per action. Thus,
to pair APF trees with DTP leaves, the algorithm also returns the list of leaves found, in
corresponding order (line 32).

The difference between the methods lies in how clusters are initially assigned (lines 2-13); the
cluster division is identical (lines 14-31). First, the set of DTP leaves is identified (line 7), and
transitions are grouped based on leaf membership (line 8). For compatibility with the rest of
the algorithm, the DTP leaves must be put into an arbitrary order (line 9). As shown in lines
10-13, the initial clusters are then based on this leaf membership, with all states from the same
DTP leaf starting within the same cluster.

Complexity and Assumptions Since the fundamental difference is only a change in initial
grouping, the overall complexity of this version is identical to previous versions. The only
additional assumption that is required is that the policy is a DTP or can be expressed as one.
Likewise, the favorable properties remain. One notable benefit of this version is that the set
of actions does not need to be iterated over. The requirement to iterate over actions limits
unmodified APG-Gen to policies over discrete actions, but this variation is compatible with
arbitrary action spaces.

5.3 Experiments

We demonstrate our method’s ability to create concise UETs through combining CUSTARD
DTPs and APF+APG-Gen’s APFs. We have introduced two methods for creating a UET: via
Extension and via Initialization. Another approach would be to create a decision tree over
the trees in the APF and then sequentially use a DTP and the APF tree to mimic the output
of a UET. We compare our two methods with this baseline approach in terms of explanation
size (Section 5.3.1) and effectiveness of splits (Section 5.3.2). For these comparisons, we use
PrereqWorld, as introduced in Section 2.2.1.

5.3.1 Explanation Size

Each of the approaches produces a tree as a final output. In general, a more concise tree is
preferred: a smaller tree has fewer nodes to consider and fewer levels of recursion. In particular,
one of the key motivations for our Initialization approach is to reduce the resulting tree size. We
evaluate the size of the resulting UETs and baseline approach, and we measure the effectiveness
of Initialization in reducing this size. For these experiments, we learn a DTP with CUSTARD,
apply the appropriate APG-Gen variant, and then measure the tree size.

Note that, since APG-Gen repeatedly divides clusters until all features have low importance,
all APF trees achieve the desired objective. This process means that a smaller tree cannot be
caused by insufficient partitioning, which produces an unacceptable clustering of the transition

57

tuples. This property allows us to consider only tree size; in a different setting, thorough
evaluation would also have to include measuring tree performance (e.g., in a classification
setting, comparing both tree size and tree accuracy).

5.3.1.1 Metrics

We select average leaf depth as the key metric due to (1) its intuitive meaning and (2) how
it arises in practical applications. If a leaf is chosen at random, the average leaf depth is the
number of intermediate nodes that must be explained or considered while traversing from the
root to that leaf. We also report the total number of nodes, though we argue that this is of less
interest than the average leaf depth. In practice, traversing a DT (whether for prediction or
explanation) is more common than considering the entirety of the tree at once, and the average
leaf depth is already affected by the overall tree size. Finally, we report the tree height, which
is effectively the worst-case numebr of nodes to consider while traversing from the root to any
leaf.

A common metric in comparing explanations is the number and type of operations to perform
common operations such as one inference (i.e., traversal from root to leaf). In our comparisons,
all methods are decision trees that are restricted to partitions that compare a single feature to a
single parameter. As a result, the operations are proportional to the average depth of the leaves.
This metric is generally used for showing the benefits of a DT compared to a neural network,
but only DTs exhibit the properties that we seek. We are comparing approaches to find a suitable
DT rather than different explanation formats (e.g., DTs vs feature importance vectors). For this
same reason, the total number of parameters or the “byte length” of an explanation (i.e., the
amount of space required to store the parameters) are proportional to the number of nodes in
each tree (which we already report).

5.3.1.2 Setup

We perform our evaluation on PrereqWorld, as described in Section 2.2.1. For this experiment,
we select m = 5 and ρ = 0. We create the DTP using CUSTARD on top of Quantile Regression
DQN since this is the variation that tends to perform best on PrereqWorld. We report results
as an average across 15 trials. Because we are comparing APG-Gen variants and not DTP-
producing methods, we use the same DTP for all methods within a trial. Likewise, within a
trial, we use the same transition set across all evaluated methods. In this way, all methods are
given the same starting point and additional variance is not introduced due to different method
inputs.

5.3.1.3 Results

We report the tree height, average leaf depth, and total node count in Table 5.1.

In the baseline approach, a separate DTP and APF are used together. For the purposes of
investigating all paths within the tree (i.e., understanding the entire explanation), one can treat
the APF as appended to each leaf of the DTP– this is the “Stacking Baseline” in Table 5.1. If
not investigating all paths but simply all nodes, then it may be possible to investigate the APF a

58

Method Tree Height Average Leaf Depth Total Node Count

Stacking Baseline 8.13 (0.83) 5.82 (0.50) 105.33 (41.83)
Sequence Baseline 8.13 (0.83) 5.82 (0.50) 025.87 (05.37)
UET via Extension 4.73 (0.96) 3.84 (0.78) 022.07 (12.69)

UET via Initialization 4.07 (0.46) 3.23 (0.41) 014.07 (03.84)
Table 5.1: Comparison of tree sizes for different ways of combining a DTP and APF. The values
in parentheses are Standard Deviation values.

single time rather than as part of each DTP leaf. In this case, the number of nodes to investigate
is th sum of the DTP node count and APF node count. This is the “Sequence Baseline” in
Table 5.1. Note that this baseline represents an optimistic case that may not be applicable for
all use-cases, and we do not assume that our approaches benefit from such de-duplication of
APF nodes.

Using Extension results in meaningfully shorter trees than directly stacking the trees; this is
expected since stacking requires the addition of partitions that distinguish between APF trees
while Extension leverages the fact that a DTP already performs this partitioning. Initialization
with DTP leaves further reduces tree height by 0.66 nodes (14%). We believe this difference
scales with the complexity of the environment since different portions of the state-space would
yield APF trees that differ more, thus increasing the benefit from creating them separately.

We note that both the tree height and the average leaf depth decrease by a similar amount
betwen Extension and Initialization. This suggests that using Initialization reduces leaf depth
consistently across the entire tree rather than merely decreasing the length of the longest path.

Finally, a UET contains far fewer nodes overall (by at least a factor of four) than directly stacking
a DTP and APF. Using Initialization in particular drops the number of nodes by a further 36%.
This improvement indicates that a UET created using Initialization can more concisely present
the same information and would therefore contain fewer unnecessary partitions. The intuition
for this is that each leaf corresponds to a particular abstract state and the tree is merely a
mechanism to group states into these abstract states; all the methods identically map states to
abstract states, but any partitioning beyond that which is needed to group states appropriately
adds unnecessary complexity without adding more information to the UET.

5.3.2 Split Effectiveness

In Section 5.3.1, we argued that a smaller tree performs the same function as a larger tree,
so it removes unnecessary partitions or uses partitions in a more efficient manner. We further
demonstrate the effectiveness of our methods by measuring the usefulness of splits. Specifically,
we look at the average information gain within a combined DTP and APF to determine how
well node partitions divide transitions based on their corresponding abstract state.

59

5.3.2.1 Metrics

We use average information gain as the metric for this experiment. The information gain within
a node is the change in Shannon entropy due to a partition. This change is the difference
between entropy of the entire transition set and weighted entropy of the subsets created by the
node. The weights assigned to the subsets sum to one and are proportional to the number of
transitions in each subset. We use Shannon entropy with the natural log. In cases where a node
does not correspond to any transitions, then the information gain is taken to be zero.

Information gain is a common metric in evaluating the effectiveness of decision tree splits.
In some use cases, it is used in selecting node partitions. This process effectively greedily
maximizes information gain. We use abstract state membership for the class label required
to compute entropy. This label is not available while constructing our UETs since abstract
state membership is derived from the states found by APG-Gen after all partitioning has been
performed. As a result, we cannot compare to methods that directly use information gain to
build a decision tree.

For our Sequence Baseline results, the use of two sequential trees introduces complications.
When computing entropy, using the whole transition set as input to the APF tree re-shuffles
the transitions after the DTP has already separated them. As a result, repetition of partitioning
between the DTP and APF tree would result in higher information gain–both trees would
effectively get credit for the same reduction in entropy. To avoid double-counting information
gain, we measure information gain with respect to the separate subsets found at each of the
DTP’s leaves. Though each APF tree node may process several different subsets, for purposes
of computing the mean, we only count each APF tree node a single time to reflect the use of
a single APF tree copy. This process leads to not penalizing the Sequence Baseline for using
the same APF tree multiple times, but this property is at the expense of an optimistic average
information gain for this baseline.

5.3.2.2 Setup

We follow the same setup as in Section 5.3.1. However, we use only 10 trials for these results.
Note that these results are for a different set of trials, so the information gain measurements are
for different trees than the previously reported heights, depths, and node counts.

5.3.2.3 Results

The average information gain for different methods is shown in Table 5.2.

Note that all of the methods partition the transitions into the same abstract states for the purposes
of computing entropy. Each leaf is pure. As a result, one would expect trees with fewer nodes
to have a higher average information gain. Our results match this intuition: ranking the methods
from lowest to highest average information gain leads to the same order as ranking methods
from highest to lowest node count.

The Stacking Baseline has a very low average information gain compared to the other ap-
proaches. This outcome is primarily due to the entire APF tree being appended to each DTP

60

Method Mean Information Gain

Stacking Baseline 0.075 (0.014)
Sequence Baseline 0.286 (0.034)
UET via Extension 0.439 (0.127)

UET via Initialization 0.582 (0.079)
Table 5.2: Comparison of average information gain for different ways of combining a DTP and
APF. The values in parentheses are Standard Deviation values.

leaf which leads to many APF tree nodes that are not used in practice. The Sequence Baseline
attains higher average information gain, but it still performs substantially worse than our ap-
proaches. As noted previously, the APF tree used by this method must include additional nodes
that distinguish between APF trees. In contrast, our approaches leverage the partitions made by
the DTP to omit these nodes. Since these nodes provide no information gain, their inclusion
meaningfully impacts the average information gain of this baseline.

Between our two approaches, Initialization performs better, as one would expect. We observed
that Extension sometimes attains the same performance as Initialization. This outcome can
occur when the trees found by APF+APG-Gen via Extension match all of the trees found by
APF+APG-Gen via Initialization. We expect this to occur less frequently in more complex
environments. As the environment size increases, the cases where different actions are chosen
will differ more, so the trees are less likely to be equivalent. Unsurprisingly, there was no case
where a UET via Extension had higher average information gain than its corresponding UET
via Initialization.

5.4 Summary

In this chapter, we introduced Unified Explanation Trees (UETs). We presented two methods
for creating a UET based on APG-Gen and the DTP learned via CUSTARD. As a prerequisite
for these methods, we demonstrated how APG-Gen creates an implicit set of decision trees
which can be readily extracted while performing APG-Gen’s divisive clustering. First, we
proposed a process to combine the trees into a UET. Next, we presented a modification to
APG-Gen that integrated the DTP created by CUSTARD. Finally, we experimentally compared
the resulting UETs to demonstrate the usefulness of the integrated variant.

61

Chapter 6

Importance and Influence in Neural
Networks

We now address the third type of explanation in our thesis: identifying which past experiences
are impactful with respect to the agent’s current behavior. In this chapter, we introduce our ap-
proach for measuring experience importance in the case that the agent is using a neural network
for value function approximation. This approach is based on Representer Point Selection (RPS),
so our extended approach is Modified Representer Point Selection (MRPS). We develop our
approach in a supervised learning setting so we can use standard benchmarks; in this setting,
training points are used instead of experiences.

First, we identify the simplifications made by RPS: importance of a training point is computed
independently of other points and of the feature values, and importance is computed based only
on the final layer of a network. We then present remedies for these shortcomings by extending
RPS in three distinct ways: computing importance for clusters of training points, normalizing
feature values before computing importance, and measuring importance with respect to a
greater portion of the network. We evaluate our proposed methods on a standard benchmark
task and show that both clustering and normalization result in improved performance. In
contrast, importance with respect to earlier layers does not meaningfully improve performance,
so we argue that MRPS at the final layer is sufficient to explain a neural network.

In Chapter 7, we will then extend and apply MRPS to the structure introduced in Chapter 5.
This extension will enable identifying impactful experiences at all levels of the UET. As a
result, we will find impactful experiences with respect to both the overall action choice as well
as intermediate decision tree partitions.

6.1 Motivation

Deep neural networks have revolutionized many technical and non-technical industries. These
networks enabled human-level accuracy on tasks that were recently considered too difficult
for AI. With the increasing availability of powerful toolkits and computation power, training
a deep neural network has become a mundane task. However, deep learning systems can

62

exhibit unexpected behavior. Because of their non-interpretable nature, identifying the cause
for specific behaviors requires additional methods. This motivates us to improve techniques for
explaining deep networks.

Methods for explaining the predictions of a deep neural network have mostly focused on
explaining the last layer or explaining the impact of different input features. Our goal is to
develop a method that we will use in tandem with Decision Tree Policies. Decision Tree Policies
already provide information about the impact of varying the input features, so we focus on
the former technique: explaining the final layer of a neural network. In particular, we extend
Representer Point Selection (RPS) [1] through three modifications:

• Computing importance in the context of the entire training set,

• Removing the sensitivity to parameter re-scaling, and

• Computing importance based on a larger portion of the network.

We compare the performance of these extensions to the baseline technique on a benchmark
task. We find that the first two modifications result in large improvements in performance,
whereas the third extension exhibits similar results to RPS. When these first two modifications
are combined to form Modified RPS (MRPS), we achieve even better performance on the
benchmark task.

6.2 Problem Formulation

Prior to introducing our approach, we briefly introduce the concepts upon which we build.
First, we present the notation for the case of general deep learning (i.e., not necessarily RL). In
Chapter 7, we will then introduce the RL-specific instatiation. We then define influence and
importance. These closely relate to our overall objectives. Finally, we summarize Representer
Point Selection, which we will extend in Section 6.3.

6.2.1 General Notation

Consider a function Φ parameterized by Θ with input x: Φ(x,Θ). The output of Φ for a given
x is the prediction for that x. Φ could be a neural network, Θ the weights of the network, and x
an input to this network. In this chapter, we will focus on the case where Φ is a neural network
predicting the class of each input image.

Θ is the result of some training procedure G, applied to (x, y) training pairs. In a deep learning
classification setting, G would be the full learning procedure (gradient descent with a specific
optimizer and hyperparameters) and the (x, y) pairs are training data input-label pairs.

The pairs are ordered in an arbitrary fashion and numbered sequentially. For simplicity, we
treat G as a deterministic process. To distinguish Θ arising from different sets of pairs, we
subscript Θ with the set of indices of the used pairs. For convenience, we use [i..k] to mean
{i, . . . , k} and [k] to mean {1, . . . , k}. Therefore, Θ[n] := G((x1, y1), . . . , (xn, yn)), Θ[n−1] :=

63

G((x1, y1), . . . , (xn−1, yn−1)), etc. Likewise, for simplicity, we use [n] \ i to mean removing
i from the set, leaving the set {1, . . . i − 1, i + 1, . . . , n} (i.e., using \i rather than \{i} for
brevity).

6.2.2 Influence

The influence of a training point (xi, yi) on xj is the effect of including (xi, yi) on the prediction
for xj . This is equivalent to the change in prediction for xj if (xi, yi) were added to the training
pairs:

INFLD((xi, yi), xj) := Φ(xj,ΘD)− Φ(xj,ΘD\i). (6.1)

A subtle point to note is that while influence measures the impact of including a point, the
counterfactual training set is one where (xi, yi) is removed. In other words, influence conveys
the change in prediction had a given point not been included.

Note how the influence is defined with respect to a given set of training data, D. In practice,
one seeks the influence with respect to some initial dataset. For simplicity, we will use a default
D of [n] and imply the [n] for the sake of brevity:

INFL((xi, yi), xj) := Φ(xj,Θ[n])− Φ(xj,Θ[n]\i). (6.2)

The definition is analogous for sets of points. The influence of a set of points P on xj is the
effect of including the entire set on the prediction for xj:

INFL(P, xj) := Φ(xj,Θ[n])− Φ(xj,Θ[n]\P). (6.3)

Note that this is equivalent to setting P = (xi, yi); we slightly overload notation for brevity
within this chapter.

Influence directly provides a way to explain the impact of a specific point or set of points on a
specific prediction (i.e., on a local behavior). Additionally, this information is actionable in the
sense that influence can be used to decide whether to remove specific points to obtain a desired
change in behavior. With influence, the objective is to compute influence values in an efficient
manner for different i and j.

However, exactly computing influence can be computationally expensive, even for a single
point. This computation generally requires computing G([n] \ i) from scratch (i.e., not based
on the known G([n]) value). Even if a single Φ(xj,Θ[n]\i) can be computed, influence provides
a single value per xj — an explanation of the broader impact of i would require applying Φ to
many xj .

6.2.3 Importance

Given the difficulty of measuring influence and the local (point-specific) nature of influence,
an alternative is more appropriate in some use-cases. This difficulty motivates the use of
importance, where an importance value, a scalar, is found for each training pair or a set of pairs,
P . Unlike influence, the importance value does not depend on another xj:

IMP_VALD(P) ∈ R (6.4)

64

This independence from an xj permits importance to serve as a global measure of a point’s
impact. However, again unlike influence, importance does not correspond to any specific
relationship with G or Φ. Therefore, the objective in developing a way to compute importance
is both to compute importance values efficiently and to find importance values which are
empirically useful. This idea of usefulness is based on downstream use-cases. In this chapter,
we focus on the standard use-case of identifying training points which (1) have incorrect y
values and (2) maximally improve Φ’s performance on the original task when labeled with their
correct y values.

6.2.4 Representer Point Selection

Representer Point Selection (RPS) is a method for assigning an importance value to each point.
Note that RPS is only able to find importance for individual points rather than for sets of
points. RPS requires that Φ is a linear function of a featurized input. When applied to a deep
network, RPS computes importance only for the final layer. The inputs to this final layer are
the featurizations by the rest of the network. RPS effectively treats the featurization as fixed, so
we treat Θ as only parameterizing Φ.

Thus, the overall network is split into Φ and Ω, where

Φ(Ω(x),Θ) = ΘΩ(x).

Following [1], we define a featurized input as ψ := Ω(x). We use ψ rather than the f used in
[1] to avoid confusion with our f features within a featurized state. We then use (ψ, y) pairs in
an anlogous way to (x, y) pairs.

RPS requires that the training process minimize average loss L using squared L2 regularization:

Θ[n] = arg min
Θ

(
1

n

n∑
i=1

L(ψi, yi,Θ) + λ||Θ||22

)
. (6.5)

When this is true (i.e., the gradient is effectively zero), the solution can be expressed as:

Θ[n] =
n∑
i=1

−1

2λn

(
∂L(ψi, yi,Θ)

∂Φ(ψi,Θ)

)
ψTi .

For each additive term, the non-ψTi portion is termed αi:

αi =
−1

2λn

(
∂L(ψi, yi,Θ)

∂Φ(ψi,Θ)

)
. (6.6)

The original function is then

Φ(ψj,Θ[n]) =
n∑
i=1

αiψ
T
i ψj.

65

From this, RPS obtains the scalar importance value and corresponding vector:

IMP_VAL(ψi, yi) = αi,

IMP_VEC(ψi, yi) = αiψ
T
i .

The importance value corresponds to the quantity described previously. The importance vector
is unique to RPS and stems from the relationship of α to the output of Φ: an ψj is effectively
multiplied by a single vector to obtain a prediction, and this weight vector is a weighted sum of
ψTi vectors. The importance vector is then the contribution from a single training point to this
weight vector.

6.3 Approach: MRPS

We present three potential extensions to RPS: find importance values for sets of similar sets of
points rather than individual points, remove the sensitivity of importance to parameter rescaling,
and find importance based on an earlier layer in the network. We describe our approaches in
Sections 6.3.1, 6.3.2, and 6.3.3, respectively.

6.3.1 Reparameterize Last Layer in Terms of Exemplar Points

RPS is motivated by a use-case where a human is shown a list of training points ordered based
on their importance values. The importance values are meant to help the human prioritize
training points for review.

RPS identifies the training points with the greatest |α| values without considering the values
nor embeddings of other training points. This approach has two shortcomings when there are
training points with similar embeddings. First, introducing a copy of a point splits the original
α value across both copies, so RPS reports the point as less important. However, the actual
importance of all copies taken together is unchanged, so RPS will overlook important points if
duplicates are introduced. Second, if there are multiple similar points with high |α|, they are
all identified as important without indicating a relationship between them. This results in an
inefficient, homogeneous explanation.

In order to address these problems, we propose to find importance values for a set of points
rather than for individual points. For any given set of points, we can create a hypothetical
exemplar point for each class using a weighted average of all the points in the cluster, where
weights are the original α importance of those:

ck,j =

∑
i∈Ck

αi,jψi∑
i∈Ck

αi,j
. (6.7)

We then assign an importance weight for each exemplar as

αck,j =
∑
i∈Ck

αi,j. (6.8)

66

Then we reparameterize the last layer in terms of these exemplar points:

Θ =
∑
k,j

αck,jc
T
k,j. (6.9)

These sets can be selected in a number of ways. To address the first shortcoming, we can form
sets out of x values that are identical or within some edit distance. We could also use the ψ
representations for this, though it is possible for different inputs (e.g., images) to lead to similar
embeddings. However, empirically, we find this does not happen. When there are multiple exact
duplicate inputs, the exemplar point for all classes is then exactly the same as the duplicated
input. This approach effectively recovers the original, non-duplicated case where a single point
has its entire α value.

For the second shortcoming, we can create sets of similar points. The learned featurization
function Ω is already trained to produce a useful featurization; Ω is meant to arrange the training
points such that Φ, a linear function, can categorize all points into their respective classes.
Thus, distance within this featurized space gives some notion of the similarity between points.
We propose to cluster points using hierarchical clustering and treat each cluster as a set. This
approach is computationally efficient and leverages the featurization that is already learned by
Ω. With this method, the exemplar points are the cluster centers within the embedding space
and capture the importance of the entire cluster.

Through our exemplar point importance values, we produce explanations that are more succinct
and that better respond to duplicate points. Note that Equations 6.7 and 6.8 can be used with
any set of points. Though we use local clusters for our experiments, any set of selected points
can be assigned an exemplar point and a corresponding overall importance value. This ability
is in contrast to standard RPS which produces importance values for one point at a time.

6.3.2 Remove Alpha Sensitivity to Weight Rescaling

RPS uses the computed α values to identify important training points based on the intuition that
increasing the α for a training point would directly increase that training point’s contribution to
the network’s output. However, a point contributes to the network weights through both α and
its own feature values. Directly comparing the α values is not sufficient since the magnitude of
the embedded training point features is not taken into account.

As an example, consider scaling the output of a specific neuron in the previous layer and the
corresponding weights in the subsequent layer. This scaling effectively changes one component
of the ψ vectors while keeping the network output unchanged. If this change is made, then
the dot product of training point and testing point embeddings can change substantially. Since
the output remains unchanged but the ψ vectors change, then the α values will also change.
However, the importance vector for any data point need not change. In this way, the α values are
sensitive to changes in weight rescaling in a way that undermines their utility as an indication
of the actual impact a training point has on the learned function.

We propose to normalize the previous layer’s activations so that the α values will be more
representative. This approach is similar to using Batch Normalization [40], except no scale

67

nor shift parameter is learned; the normalization layer learns only to normalize the data to be
mean zero and variance one. This normalization function, N , is directly applied on the learned
featurization, leading to this architecture:

Φ(N(Ω(x)),Θ) = ΘN(Ω(x)) = ΘN(ψ).

In practice, RPS is applied by fixing Ω and then fine-tuning Θ to reduce the gradient of the
loss, as shown in Equation 6.5, to effectively zero. Our approach can be applied within this
procedure, without changing Ω or making any additional assumptions about it. After fixing Ω,
the normalization parameters for N are learned. Then, Θ is computed as in standard RPS.

In the context of fine-tuning Θ after fixing Ω, our proposed normalization has an additional
intuitive motivation. When treating the ψ values as fixed inputs (i.e., not affected by changing
Θ), then Θ is obtained via Ridge Regression [41]. When using Ridge Regression, it is important
to normalize the inputs so that each feature has mean zero and variance one. If this normalization
is not performed, then the L2 penalty biases Θ away from the data and using some elements of
ψ is unnecessarily penalized more. Our approach is exactly the normalization recommended
when performing Ridge Regression.

6.3.3 Compute Importance based on Larger Portion of Network

RPS computes importance values using Equation 6.6. As a result, these values only reflect the
relative contribution of the training points at the last layer of a network; the other layers are
treated as part of a fixed Ω. We perform a similar reparameterization at the previous layer to
obtain a second α vector for each training point:

1

n

n∑
i=1

(
∂L(ψi, yi,Θ)

∂Φ(ψi,Θ)
· ∂Φ(ψi,Θ)

∂Θ(2)

)
+ 2λΘ(2) = 0 ⇒ Θ(2) =

n∑
i=1

α
(2)
i ψ

(2)T
i (6.10)

where
α

(2)
i = αiΘ

Tσ′(Θ(2)ψ
(2)
i). (6.11)

Here, Θ(2), α(2), and ψ(2) are defined analogously to Θ, α, and ψ except they correspond to the
next-to-last layer of the network.

Using all α values, it is possible to compute the contribution of a training point to the sequence
of two layers (as opposed to just the layers individually). By including more layers in the
importance weight calculation, one may expect to produce better explanations than RPS, which
only uses importance at the last layer as an approximation for importance for the whole network.

6.4 Experiments

We focus on quantitative evaluations of RPS and our extensions of RPS. Since these are methods
for producing explanations, there is no ground truth available to which to compare. Therefore,
we evaluate all methods by using the produced explanations in downstream tasks. Though [1]

68

perform a few experiments using RPS, only one experiment is a quantitative comparison with an
existing method: “Dataset Debugging.” In this experiment, a network is trained on a corrupted
dataset, and each method is evaluated based on its ability to identify potentially corrupted
datapoints as well as its ability to improve learning performance. We use this same experiment
to evaluate our proposed extensions and compare them to RPS and Influence Functions [42],
the method to which RPS was compared in [1].

6.4.1 Baseline Approaches

We compare to RPS, as described in Section 6.2.4, as well as the method to which RPS was
originally compared, Influence Functions [42].

The authors of [42] propose to use influence functions to identify the most important training
points. The “most important” points are taken to be those whose removal would most change the
model’s predictions. Since repeatedly retraining a model with different training sets is infeasible,
the influence of a point is approximated based on what would happen if the training point
had slightly greater weight. This problem has a closed-form solution, but requires inverting
the Hessian. By approximating the inverted Hessian via stochastic estimation, the authors can
readily compute importance of all training points. The authors show that the approximations
made are reasonable since the predicted change in model loss is similar to the actual change in
loss.

To evaluate the method itself, the authors perform a series of experiments for different use cases
(determining model behavior, detecting adversarial examples, identifying domain mismatches,
and identifying mislabeled examples). This last experiment is the same one used by RPS.
Before RPS, influence functions was the state of the art for finding the important training points
for identifying mislabeled points.

6.4.2 Dataset Creation

As done in [1], we use part of the CIFAR-10 [43] dataset which corresponds to the images of
horses or automobiles. A network is then trained to perform binary classification on this data.
We closely follow the experimental methodology used to evaluate RPS in order to best compare
our extensions to the base method; we use the same architectures, hyperparameter values, and
dataset processing.

Note that we intentionally do not use a validation set in order to follow the experimental
methodology used in [1]. If we were to use a validation set, then we would unfairly favor
our method over RPS and influence functions, neither of which uses a validation set to tune
hyperparameters. We use the same hyperparameter settings for all methods, following the ones
provided by the authors of RPS.

6.4.3 Experiment Setup

The binary classification dataset is corrupted by flipping the class label of 40% of the training
instances. An oracle is available for correctly re-labelling datapoints, but this oracle is only

69

Figure 6.1: Sample data from the CIFAR-10 dataset, showing the ten classes, of which the
benchmark task uses two.

permitted to label a limited number of points (n points). To select which points to label using
the oracle, a network is trained on the corrupted data, and each explanation method is tasked
with assigning a weight to each training point on the basis of this trained network. For a given
value of n, the methods decide which n points to request from the oracle and how to re-label
inputs based on the oracle’s response. Then, the network is re-trained using the updated dataset.
The resulting test accuracy and the fraction of identified corrupted input points are recorded.
Intuitively, methods which improve testing accuracy and identify more corrupted points are
potentially more useful for real-world dataset debugging.

In [1], n ranges from 5% of the training data to 40% of the training data, in increments of 5%.
We evaluate using the same n values, but also evaluate for n equal to 45% of the training set.
We do this because Figure 2 in [1] shows a change in behavior at 40% which may suggest a
regime change for greater n values. Ultimately, we see only a smooth increase, but we still
report results for that n value.

One of our proposed modifications produces an importance weight per exemplar point rather
than for each training point. Specifically, we cluster training points in the embedding space into
2000 clusters using scipy’s hierarchical clustering with Euclidean distance. We then create an
exemplar point and importance value for each class for each cluster using Equations 6.7 and 6.8,
respectively. To allow a fair comparison to RPS, this method only queries the oracle for these
exemplar points (not with the whole set of points which that exemplar point represents). The
total number of selected points is still limited to n. After the labels are obtained, each cluster
associated with an exemplar point is relabelled based on the label assigned to the exemplar
point. In practice, an exemplar point is not a member of the original training set and real-world
oracles may be unable to label them, so we instead have the oracle label the point closest in
embedding space to an exemplar point (as measured by Euclidean distance) rather than the
exemplar point itself.

70

Figure 6.2: Comparison of our approaches to RPS and Influence Functions on the CIFAR-10
benchmark task. The left plot corresponds to success in the original task, and the right plot
corresponds to the success in identifying mislabeled datapoints.

6.4.4 Evaluation Metrics

Following [1], we report the test accuracy and the portion of corrupted points found for each
value of n. The test accuracy is the accuracy computed on a withheld test set with non-corrupted
ground-truth labels. This computation is done with respect to predictions from a model trained
on the corrupted training set after points have been labelled by the oracle. The proportion of
corrupted points found is equal to the number of points which the method relabeled correctly
after oracle was queried, divided by the total number of corrupted points in the training set.

6.4.5 Results

The results of 30 trials of the experiment are shown in Figure 6.2. Two of our proposed
approaches (clustering and normalization) increase the test accuracy and the portion of corrupted
points found. Moreover, when we combine the two techniques, the test accuracy increases
even further. This shows that the two approaches address different types of issues found within
the original RPS model. It is apparent that even though RPS beat the previous state-of-the-art
method of influence functions, the improvements are tiny compared to the improvements we
obtain by combining our clustering and normalization approaches.

There is a clear intuition why clustering improves performance. Figure 6.3 shows two examples
of clusters with high total importance value (sum of α products of individual images). As we
can see, all three images of the cars are very similar to each other. The original RPS method
would query the oracle for a true label individually for all three images. However, it is sufficient
to treat these three images as a single entity, since they are so close in the embedding space.

On the other hand, results obtained using our third approach of using α(2) are less than 1%
different from the original RPS results. This result suggests that using α(1) values is a reasonable
approximation of the overall importance of training points, so finding importance with respect
to other layers is unnecessary.

71

Figure 6.3: A pair of example clusters found using our method. The one on the left shows
grouping of near-identical images while the one on the right shows grouping of a similar type
of image.

6.5 Summary

In this chapter, we introduced three extensions to the state-of-the-art network explanation
method RPS: computing importance for clusters of training points, normalizing feature values
before computing importance, and measuring importance with respect to a greater portion of
the network. We evaluated our proposed methods on the standard benchmark problem used for
evaluating RPS and showed that both clustering and normalization resulted in huge boosts to
performance. These results have motivated our incorporation of these techniques into Modified
RPS, which we will subsequently incorporate into our unified explanation method.

72

Chapter 7

Importance and Influence for Unified
Explanation Trees

In Chapter 5, we introduced our Unified Explanation Tree (UET), which merges a Decision
Tree Policy obtained via CUSTARD (Chapter 3) and an Abstract Policy Forest obtained via
a variant of APG-Gen (Chapter 4). In Chapter 6, we presented the concepts of experience
importance and influence, and we introduced our method for computing importance: Modified
Representer Point Selection (MRPS).

In this chapter, we demonstrate how to identify importance and influence for experiences with
respect to nodes within a UET. This finishes the integration of the explanations considered in
this thesis: a UET presents both single-action and policy-level behavior explanations in terms
of state features by grouping states and identifying relevant features; computing experience
importance at all levels of the tree explains single-action and policy-level behavior in terms of
past experiences.

We first note that a UET consists of two node types. After training, both nodes perform the
same operation (partitioning state space based on a feature value), but they originate from
either CUSTARD or APG-Gen. We then introduce closed-form solutions for the importance
and the influence for both of these node types. We show that these solutions achieve the desired
objective of finding importance or influence, as appropriate.

7.1 Motivation

We seek an approach for identifying representative clusters of points for all nodes within the
Unified Explanation Tree (UET). Extending MRPS to the UET provides a way for users to
answer questions such as:

1. “Which experiences lead to this feature split?”;

2. “Which experiences lead to this split value?”; and

3. “Which experiences lead to this action choice?”

73

If CUSTARD is used with a neural network for its value function approximation, then MRPS
can be directly applied to that network. Though this does produce importance values with
respect to policy choices, this approach is insufficient. First, it simultaneously finds importance
based on the entire network and therefore explains all partitions at once rather than a specific
partition. Second, it does not explain the partitions performed by APG-Gen.

We instead seek to find impactful experiences with respect to individual nodes in a UET. A
UET has nodes from CUSTARD and from our proposed modification of APG-Gen; we must
compute importance/influence differently in these two cases. An RL agent directly selects
CUSTARD node parameters, and CUSTARD uses a single network to facilitate internal transfer.
To explain individual nodes obtained via CUSTARD, we must disentangle the values of training
points across different tree depths. Nodes obtained via APG-Gen are the result of applying a
feature importance metric to Q-value estimates. To obtain importance and influence for such
nodes, we must decompose the feature importance metric into individual contributions.

7.2 Problem Formulation

We had previously defined the problems of finding importance and influence for an entire
neural network in a classification setting. We now seek importance and influence for our
Unified Explanation Trees in a reinforcement learning setting. We describe the change from
classification to reinforcement learning in Section 7.2.1. We then explain our objective and
what it means to have importance and influence within a tree node in Section 7.2.2.

7.2.1 Notation for Reinforcement Learning Setting

We begin with the terminology introduced in Chapter 6. We now focus on the case where Φ
represents a function learned by an RL agent: e.g., the Q-function, where the neural network
predicts the future total discounted reward for an input state. In a reinforcement learning setting,
G would be the full learning procedure (the learning algorithm as well as gradient descent with
a specific optimizer and hyperparameters) and the (x, y) pairs are pairs of states along with the
“target” value for that state (i.e., bootstrapped estimate for future total discounted reward).

An experience is a specific (s, a, r, s′, d) tuple obtained from the environment. It corresponds
to taking action a in state s, resulting in reward r and subsequent state s′. The boolean d
indicates whether an episode has ended during this experience. An experience can be converted
to a training point by setting x equal to s and obtaining a target value based on the tuple, as
described in Section 2.1.2.4.

As in the classification setting, each input is featurized using a Ω function, so we use (ψ, t) pairs
as inputs to G. The way we split a trained network into Φ and Ω effectively turns G into linear
value function approximation with featurized states as input. This approach of treating a DRL
agent as using linear value function approximation for the purposes of analysis is common.

The definitions for influence and importance are the same.

74

7.2.2 Influence/Importance at a Tree Node

A tree node partitions the input space based on a feature and a value to which that feature is
compared. Within a UET, the choice of feature and value is based on some metric: potential fea-
ture/value pairs are assigned numeric scores and the highest-scoring pair is selected. Therefore,
to explain why a given feature/value pair was chosen, we explain the numeric score assigned to
this pair. We use the phrase “influence at a tree node” to mean “influence on the numeric score
of the feature/value pair chosen at a tree node.” We use “importance at a tree node” analogously.
These influence and importance values are then node-dependent, and we seek a way to compute
the influence and importance at a tree node of a set of experiences.

Though we focus on the importance and influence with respect to the selected feature/value pair,
importance and influence can be calculated in the same way for other, non-selected feature/value
pairs. Therefore, a method for computing importance or influence could be used to compare
the current behavior within a node with a hypothetical alternative choice. For example, the
influence of a transition with respect to a feature/value pair enables one to compute the numeric
score of the feature/value pair if that transition were removed. If influence values are used to
compute the numeric scores of the selected feature/value pair and an alternative pair, then one
can determine whether the alternative pair would be selected if the transition were removed.

7.3 Approach: Influence for CUSTARD Nodes

We first look at nodes that arise from CUSTARD creating a DTP. First, in Section 7.3.1, we
look at how Q-learning in general relates to the supervised problem which was considered in
Chapter 6. In Section 7.3.2, we then discuss what the last layer of a network is learning when
learning a Q-function; this is relevant since MRPS is applied to the last layer, and much of RL
theory is based on a linear function approximator atop learned features. Then, in Section 7.3.3
we present how to disentangle the impact of experiences on different CUSTARD nodes and
how to compute importance for these nodes. From here, we get a set of separate function
approximations (one per node), so we can compute separate influences at each node. This then
leads to our closed-form solutions for influence in Section 7.3.4.

7.3.1 Regression in Q-learning

When using a Q-learning-based method, we are effectively performing regression with squared
loss. Q-learning methods use a set of (s, a, r, s′, d) transition tuples. Each tuple corresponds to
an experience where the agent was in state s, took action a, which yielded scalar reward r, led
to state s′, and may have ended the episode, as indicated by boolean d. These tuples are used
to learn a Q-function Q(s, a) that estimates the expected future discounted total reward after
taking action a in state s. The optimal Q-function Q∗(s, a) satisfies the Bellman equation

Q∗(s, a) = E
(
r + dγmax

a′
Q∗(s′, a′)

)
75

for all (s, a) pairs. The term inside the expectation is termed the target for a given (s, a, r, s′, d)
tuple. In practice, the Q-function is incrementally adjusted based on transition tuples so Q(s, a)
is closer to the target.

When using a neural network to represent the Q-function, this adjustment is done using some
form of stochastic gradient descent along with squared loss regression on Q(s, a), the current
estimate, and the target. The loss is then:

L(s, a, r, s′, d) := (r + dγmax
a′

(Q(s′, a′))−Q(s, a))2.

In practice, DRL methods learn a separate Qa for each a (i.e., a is not an input). Additionally,
the Q(s′, a′) term is treated as fixed, in the sense that when computing the derivative of the loss
with respect to Q, Q(s′, a′) is treated as a constant. To make this clear, we define the target
function TQ

TQ(r, s′, d) := r + dγmax
a′

Qa′(s
′).

The loss is then expressed as a function of a state s and a target t:

L(s, t) := (t−Qa(s))
2. (7.1)

During training, the loss is then used with a specific tuple by setting t = TQ(r, s′, d).

7.3.2 Ordinary Least Squares and Ridge Regression

Though neural networks in RL generally consist of several sequential layers, they can be treated
as performing linear value function approximation atop a learned feature extractor. Under this
perspective, the final layer constitutes the value function approximator and the other layers
form the feature extractor. This approach is akin to the one taken by RPS and, by extension,
MRPS: Ω is a feature extractor and Φ is the function learned by the final layer.

7.3.2.1 Q-Learning as Ordinary Least-Squares

If we focus only on training the final layer of a model by minimizing Equation 7.1, we are
effectively finding the ordinary least-squares solution (OLS):

OLS((ψ1, t1), . . . , (ψn, tn)) := arg min
β

(
1

n

n∑
i=1

(ti − βψi)2

)
,

where ψ is a featurized state, ψi := Ω(si).

We use β here to distinguish from the Θ learned by RPS and MRPS. Note that the learned β is
for a specific Qa; it is action-specific. The tuples provided as input must therefore share this
same action a.

76

7.3.2.2 RPS-Compatible Q-Learning as Ridge Regression

RPS and MRPS require squared L2 norm regularization in order to perform their reparameteri-
zation. If we use this regularization to allow the use of RPS and MRPS, then we are performing
Ridge Regression (RR) [41]:

RR((ψ1, y1), . . . , (ψn, yn)) := arg min
Θ

(
1

n

n∑
i=1

(yi −Θψi)
2 + λ[n]||Θ||22

)
.

We use λ[n] to indicate that the regularization term is generally chosen based on the dataset
rather than some fixed value.

The closed-form solution for RR is then

RR((ψ1, y1), . . . , (ψn, yn)) := (ΨT
[n]Ψ[n] + λ[n]I|ψ|)

−1ΨT
[n]Y[n], (7.2)

where Ψ[n] is the matrix formed by stacking ψ1, . . . , ψn, and Y[n] is the vector formed by
stacking y1, . . . , yn, and I|ψ| is the |ψ|× |ψ| identity matrix, where |ψ| is the number of features
in each featurized state.

This optimization problem is a member of the class supported by RPS: the average loss is being
minimized, Φ is a linear function, and L2 regularization is used.

Selecting Lambda We choose λ[n] = n× λc, where λc is a fixed regularization term, inde-
pendent of the set [n]. We scale by n based on two motivations. First, when using deep learning
in practice, the weight-decay and similar regularization terms are generally not modified from
their default values. Since the regularization is applied during each mini-batch, the number
of minibatches dictates the degree of regularization. The mini-batch size is generally kept
constant, so more mini-batches are used when there are more training points, which leads to
regularization proportional to the number of points. As a result, scaling λc proportional to n in
our non-batch setting is closer to how regularization is used in deep learning where batches are
almost always used. Second, if λc were not scaled, then its contribution would decrease as n
increases. For example, if each training point were duplicated, then the closed-form solution
would change though the distribution of points is identical. By using n× λc, the closed-form
solution is invariant to duplication of the dataset.

7.3.3 Explaining CUSTARD

When explaining a DRL policy in terms of transitions, one may want to know “which past
transitions contributed to choosing this current action?” In addition to identifying relevant
transitions for a selection of a base action, we can perform a similar analysis on each node of
the DTP– i.e., determine why the agent chose this type of node and the current parameters.

We first summarize the key aspects of CUSTARD in Section 7.3.3.1. We then describe how we
separate the Q-value estimates learned across different nodes within a DTP in Section 7.3.3.2
Finally, we introduce our approach for finding importance with respect to any node and discuss
the shortcomings with importance in this context in Section 7.3.3.3.

77

7.3.3.1 Relevant CUSTARD Properties

As discussed in Chapter 3, CUSTARD learns a DTP for a base MDP through a three-stage
process:

1. “wrapping” the base MDP to form an IBMDP,

2. solving the IBMDP with a modified DRL method, and

3. extracting a DTP for the base MDP from the learned IBMDP policy.

A state sw in the IBMDP consists of a state in the base MDP, sb, and additional, IBMDP-
specific features. Actions in the IBDMP are either base actions (ab, those from the base MDP)
or splitting actions that correspond to gathering more information as in an internal node within
a DT.

Since the splitting actions do not change sb, an agent’s interaction with an IBMDP can be
factored into an information-gathering step (where the agent performs splitting actions) and
an interaction with the base environment (where the agent selects a base action and obtains
an updated base state). The learned IBMDP policy, πw, is forced to be invariant to sb as part
of step 2 by removing sb from πw’s input. This policy then corresponds to a DTP with only
sw \ sb as input, where the internal nodes correspond to the information-gathering and each
leaf corresponds to an interaction with the base environment.

7.3.3.2 Disentanging Q-value Estimates

We seek to explain individual CUSTARD nodes in terms of past experiences. As mentioned
previously, this explanation process corresponds to identifying past experiences that have high
importance or influence with respect to the feature and partition value chosen for a given node.
The choice of feature and partition value is based on a Q-value estimate made by CUSTARD.

However, CUSTARD is designed to use a single neural network for all of its nodes. This design
choice permits generalization across nodes, but it also causes all nodes to be related. As a
result, if MRPS is directly applied to explain a node, then all past experiences are potentially
impactful, not just the ones that correspond to that node. This entangling of nodes reduces
the utility of a decision tree structure, which typically enables explaining a sequence of nodes
while disregarding non-visited nodes.

We first note that CUSTARD with a tabular representation for its Q-value estimates does not
have this entangling complication. If each node had separate Q-values, then updates to one
node would have no effect on the others. Likewise, the Q-value estimate for a node would only
be based on transitions that correspond to that node.

We then note that CUSTARD’s single neural network for all nodes is useful only during
training. In other settings, a neural network may be needed to generalize beyond the states
encountered during training. However, when converting an IBMDP policy to a DTP for the
base environment, CUSTARD already iterates over all nodes in the final DTP. As a result, once
the DTP is found, the single neural network can be replaced by a modified network for each

78

node. In particular, we propose to keep the Ω portion of each network and treat it as fixed. Then,
the final layer is fine-tuned separately for each node, effectively learning a separate Φ for each
node. This process ensures that each node’s Φ can be separately explained; each node’s Q-value
estimates are then based only on transitions that correspond to itself.

Changes During Fine-Tuning During this fine-tuning process, the DTP may change; the
feature and partition value with the highest Q-value may change. One might expect such a
change to disrupt our process and thus require a work-around. However, if such a change occurs,
then we can readily alter the DTP in line with this change and create the new subtree following
this same system. Such a change is automatically handled by fine-tuning nodes starting from the
root. This approach ensures that any potential changes to the DTP do not invalidate fine-tuning
that has already been performed.

Extra Weights This change can be made partway through learning, which allows generaliza-
tion for faster training and subsequent independence. Only the final, linear layer is duplicated
while the learned embedding Φ can still be shared. The increase in number of parameters
is generally low, as only the linear weights are duplicated per node in the DTP, which itself
generally has few nodes. Specifically, the number of new weights is g × |ψ|, where g is the
number of nodes in the DTP. In the worst case, the DTP has one leaf per past experience, so
g = 2n. In this case, storing the past experiences requires n× |ψ| space, so the new weights
can never require more than twice the space to store than the set of past experiences.

Extra Computation The fine-tuning is also quick to perform, unlike fine-tuning a single
neural network for all nodes. A more thorough explanation will be given in Section 7.3.4.1, but
the core idea is that each node corresponds to a specific sw \ sb input. Thus, not only can we
use the closed-form RR solution, but we can also use a special case where the time complexity
is linear in the number of inputs and linear in the number of features. Furthermore, though
each sb corresponds to a number of nodes within a DTP (i.e., all the nodes along the path
from the root to the corresponding leaf), each node can leverage the computation performed
within its children. Thus, rather than needing O(hn+ h|ψ|) time, where h is the height of the
tree, only O(n+ h|ψ|) time is needed. In practice, the time comlexity is O(n), since, typically,
h < log2(n) and |ψ| < log2(n).

7.3.3.3 Importance Computation and Importance Shortcomings

Using CUSTARD with a RR penalty and separating the parameters used for partitioning differ-
ent nodes produces a problem compatible with RPS and MRPS. The MRPS reparameterization
of the final layer can be directly used to produce a closed-form solution for importance:

αi =
1

λ[n]n
(ti −Θψi) . (7.3)

As with importance in other cases, this solution provides a sense of the relative impact of
different tuples encountered during training. As in Chapter 6, the α values for multiple points

79

can be combined to find the overall influence of the set of points. Note that the disentangling we
previously performed ensures that all past experiences that correspond to a given CUSTARD
node share the same ψ value. Therefore, the importance values are effectively a scaled error: a
past experience where the target value differs more from the learned estimate will have higher
importance. This relationship between error rate and importance matches intuition.

However, importance values do not have the same functionality as influence. They cannot be
used to find the hypothetical change in learned weights and change in estimates should the set
of past experiences be changed. The influence of a transition on the Q-function corresponds
to the exact change in the Q-estimate if that transition were removed/added. Thus, influence
values allow us to predict changes in the DTP by means of predicting changes in the Q-
function. Effectively, the influence value is sufficient to determine whether and what impact
adding/removing a transition would have on the DTP itself.

7.3.4 Computing Exact Influence

Ultimately, we seek a closed-form solution for influence for CUSTARD nodes. Ideally, this
solution would contain separate components for different points that are added and removed.
These components could be computed separately, and the decomposition would allow direct
identification of the most and least influential sets of points.

To obtain such a solution, we first note that the RR solution has a convenient form in our
case (Section 7.3.4.1). Then, we note the relationship of this solution to the prediction made
at a node (Section 7.3.4.2). The mean target value affects the optimal RR estimator and, in
turn, the Q-value estimate within a CUSTARD node. (Section 7.3.4.3). We combine all these
to get the influence on the estimate (Section 7.3.4.4) and the change in learned parameters
(Section 7.3.4.5).

7.3.4.1 Ridge Regression with Identical Inputs

We start by leveraging the closed-form solution for RR, Equation 7.2, to get Lemma 1.

When all inputs are the same, we can replace the matrix multiplication with just vector
multiplication of a single input:

RRss(ψ0, (y1, . . . , yn)) := RR((ψ0, y1), . . . , (ψ0, yn))

= (ΨT
[n]Ψ[n] + λI)−1ΨT

[n] × ȳ[n]

= (n× ψT0 ψ0 + λI)−1(n× ψT0)× ȳ[n]

=
1

||ψ0||22 + (λ/n)
ψT0 × ȳ[n],

(7.4)

where ȳ[n] is the mean y value, 1
n

∑n
i=1 yi.

Computational Complexity This alternate form is favorable in two ways. First, the original
matrix multiplication and inversion has polynomial time complexity in |ψ| and linear in n (at
least O(n|ψ|2)). In contrast, Equation 7.4 takes time linear in |ψ| for the ψ0 portion and linear
in n for ȳ[n], leading to an overall complexity of O(n+ |ψ|).

80

When applied to our setting with CUSTARD, we get Lemma 1.

Lemma 1. For a set of transitions with identical state representations, {(ψ0, t1) . . . , (ψ0, tn)},
the optimal Ridge Regression estimator is

RRss(ψ0, (t1, . . . , tn)) := RR((ψ0, t1), . . . , (ψ0, tn)) =
1

||ψ0||22 + λc
ψT0 × t̄[n], (7.5)

where t̄[n] = 1
n

∑n
i=1 ti.

Computational Complexity In addition to the base time complexity of O(n+ |ψ|), we can
leverage the t̄ computations across different nodes to further decrease the time complexity
within the entire tree. As mentioned previously, when performing this computation in all
nodes of the DTP, we can compute t̄ only at the leaves and then use a weighted average of the
children’s nodes at each inner node. This approach leads to an overall complexity ofO(n+h|ψ|)
rather than O(hn+ h|ψ|), where h is the height of the tree.

7.3.4.2 Q-value Estimates within CUSTARD

Since we successfully separated the estimates produced by the different CUSTARD nodes, we
get a separate RR solution for each node. This gives us Lemma 2.

Lemma 2. For a CUSTARD DTP node N (created using Q-learning with an L2 penalty) and
any state within that node s′w, the Q-value estimate for an action a is

Qa,N(s′w) := qa,N = RRss(ψw\b,N , (t1, . . . , tn))× ψw\b,N , (7.6)

where ψw\b,N is a node-specific assignment of bounding features.

7.3.4.3 Influence on Mean Target Value

As an intermediate to the influence of training points on a Q-value estimate, we get the influence
on the target values. Algebraic manipulation yields Lemma 3. Here, we introduce E, which
can be considered the error of estimating a given target value by using the mean target value.

Lemma 3. When removing transitions with indices Rem and adding transitions with indices
Add,

t̄[n] − t̄[n]\Rem∪Add =

∑
j∈Rem E[n](tj)−

∑
k∈Add E[n](tk)

n− |Rem|+ |Add|
, (7.7)

where

E[n](tj) = tj −
1

n

n∑
i=1

ti. (7.8)

7.3.4.4 Influence on CUSTARD Q-Value Estimate

Taken together, these then yield a closed-form solution for influence for a CUSTARD node,
presented in Theorem 1.

81

Theorem 1. The change in action Q-value estimate of a CUSTARD DTP node N on any state
s′w within the node, Qa,N(s′w), when removing the points with indices in Rem and adding the
points with indices in Add is

∆Qa,N(s′w) =
1

1 + λc/||ψw\b,N ||22
×
∑

j∈Rem E[n](tj)−
∑

k∈Add E[n](tk)

n− |Rem|+ |Add|
(7.9)

where E[n](tj) is as defined in Equation 7.8, when sb is within the bounds set by sw,N and is 0
otherwise.

This solution has the desirable property of largely independent contributions by different
points with indices in Rem and Add. Therefore, given a constraint on |Rem| and |Add|, it is
straightforward to find the largest potential change.

Informal Proof The CUSTARD DTP is directly extracted from the Q-function learned by
CUSTARD. CUSTARD’s Q-function is deliberately not shown the base state portion of sw. The
remaining features of sw uniquely identify a potential node within CUSTARD’s DTP, though
not all nodes are present within a given learned DTP. As a result, each Qa(sw) is a Q-value
estimate within a specific node.

Since Qa(sw) is deliberately only a function of sw \ sb and this portion of sw is the same for all
sw within a node, Qa(sw) outputs the same value for all applicable sw. The prediction made by
the OLS solution in this instance is t̄[n] := 1

n

∑n
i=1 ti, the mean target value for all input points.

The RR solution is the scaled OLS solution (Lemma 1). Since the CUSTARD Q-value estimate
is tied to the RR solution (Lemma 2), the influence on the CUSTARD Q-value estimate is the
scaled influence on the OLS prediction (Lemma 3).

7.3.4.5 Change in CUSTARD Weight Vector

In addition to the influence on the CUSTARD Q-value, we can also find the exact change in the
weights of the final layer.
Theorem 2. The change in the weights at the final layer of a CUSTARD DTP node N when
a set of transition tuples with indices in Rem is removed and a set of transition tuples Add is
added is

∆Θ =
1

||ψw\b,N ||22 + λc
ψTw\b,N ×

∑
j∈Rem E[n](tj)−

∑
k∈Add E[n](tk)

n− |Rem|+ |Add|
, (7.10)

where E[n](tj) is as defined in Equation 7.8.

Informal Proof Without loss of generality, consider removing the pair (sn, tn).

By the definition of influence (Equation 6.1) and since the final layer is a linear function of its
featurized input, the change in weights is tied to the influence in Theorem 1:

INFL((ψn, tn), ψj) = (Θ[n] −Θ[n−1])× ψj. (7.11)

Since CUSTARD DTP node influence is identical for all states that fall within the node, the ψj
term can be readily removed from the left-hand side.

82

7.4 Approach: Influence for APG-Gen Nodes

In the case of CUSTARD-created nodes, Q-values are derived from a network, so we can directly
apply RPS and MRPS. For the nodes appended to a DTP by APG-Gen, feature partitions are
based on feature importance. This feature importance is a function of Q-network outputs,
so we can combine an MRPS decomposition of the Q-network with additional MRPS-style
importance decompositions of these feature importance values.

In Section 7.4.1, we first note the relationship between feature importance and the decomposi-
tion found by RPS and MRPS. We use this relationship to compute an MRPS-style importance.
We then present three methods in Sections 7.4.2-7.4.4 for computing influence. We introduce
our methods in order of decreasing approximation, so latter methods account for more inter-
dependencies at the expense of more computation. Finally, in Section 7.4.5, we present an
exact computation of influence that does not rely on an MRPS decomposition. As described in
Chapter 6, influence provides the exact change if a given training experience is removed, so
this computation is not an approximation in any way.

Method Summarization We briefly summarize the differences between our methods in
Table 7.1. Rem is the set of indices of past experiences to be removed, Add is the set of indices
of past experiences to be added, and n is the number of past experiences currently used by the
agent.

Note how the first three methods do not closely depend on Rem nor Add. These methods can
first compute the contributions of individual points and then Rem and Add can be chosen.
However, these methods only provide importance or approximate influence. In contrast, the
last two methods provide exact influence, but this capability requires selecting Rem and Add
before meaningful computation can be performed.

If computing importance or influence for a specific Rem and Add, then all methods take time
linear in n. However, if several different sets are evaluated, then the first three methods can cache
intermediate computations. As a result, the time to perform further influence computations with
those methods does not depend on n. The final two methods always take time linear in n for
any given Rem and Add.

These tradeoffs between the methods motivate our inclusion of both types.

Section Method “Retrain” with Time complexity Time complexity Time Complexity
Rem and Add? in n (overall) in n (per pair) in |Rem| and |Add|

7.4.1 MRPS-Style Importance No Linear Constant Linear
7.4.2 Initial Influence Estimate No Linear Constant Linear
7.4.3 Influence with Fixed α Values No Linear Constant Linear
7.4.4 Influence via α Value Changes Yes Linear Linear Linear
7.4.5 Influence without α values Yes Linear Linear Linear

Table 7.1: Properties of different methods for computing importance or influence for UET
nodes obtained via an APG-Gen variant.

83

7.4.1 Feature Importance and MRPS Decomposition

As noted in Chapter 4, APG-Gen is compatible with any feature importance method. We
choose FIRM for computing feature importance due to its performance, intuitive meaning, and
simple computation. For the same reasons, we focus on the case of binary features: with binary
features, exact computation is faster and the full effect of the feature is captured within the
importance value.

7.4.1.1 FIRM within APG-Gen

FIRM’s importance measure of a feature f on an arbitrary function g with respect to a set of
inputs c is

If (c) = (qf0(c)− qf1(c))
√
pf0(c)pf1(c),

pfv(c) = P(s[f] = v),

qfv(c) = E(g(s)|s[f] = v).

(7.12)

The pfv(c) values correspond to an empirical estimate of the probability that the feature f takes
on value v based on the input set c. The qfv(c) values correspond to the expected value of the
function for which importance is being computed for inputs in c that match the constraint set
by v.

In our case, we seek the importance of transition tuples with respect to the learned Q-function
(g = Q). As a result, we treat the pfv(c) values as fixed: slight changes in the distribution
of encountered states have a limited impact compared to the difference in Q-value estimates
between different states. Thus, if we find the influence on both qf0(c) and qf1(c), then their
difference is the influence on If (c).

The two q quantities are computed in the same way, just over different sets of states (those in
c with f = 0 and those in c with f = 1). Without loss of generality, we consider how qf0 is
computed. We set n as the number of states that satisfy the feature-value filtering and number
these states from 1 to n. The value of qf0(c) is based on the Q-value estimates learned by the
agent:

qf0(c) =
1

n

∑
i∈[n]

Q(si). (7.13)

Note that we can use Qo (see Section 3.2.3.3), since APG-Gen just needs an arbitrary way
to compute importance. Using Qb is not strictly necessary. By using Qo, we can use the
maximum information about future outcome in determining feature importance. Since APG-
Gen is specifically for conveying potential future outcomes, this choice improves APG-Gen’s
ability to achieve its primary objective.

7.4.1.2 MRPS-Style Importance for FIRM

Since Q is obtained from a network compatible with MRPS, we can perform an MRPS
decomposition, where ψi is the featurized state si, Φ(si). To obtain the impact of a transition

84

ψz, we seek the contribution of the zth point to the final qf0(c) value. With some algebraic
manipulation, we separate qf0(c) into three terms:

qf0(c) =
1

n

(∑
j 6=z

((∑
i 6=z

αiψ
T
i

)
ψj

)
+
∑
j 6=z

(
(αj + αz)ψ

T
j ψz

)
+ αzψ

T
z ψz

)
. (7.14)

The last two terms are those where αz plays a role, so we can follow the approach of RPS and
get an importance value for ψz with respect to qf0(c):

1

n
Q(sz) +

1

n
αzψ

T
z

∑
j 6=z

ψj. (7.15)

Intuitively, this quantity captures the direct contribution of sz via the 1
n
Q(sz) term and then the

contribution of sz’s α term. The summation can be efficiently performed for multiple different
sz by finding the overall sum of all ψ and then subtracting ψz as needed.

Though this process yields an importance value, the approach leans heavily on the MRPS
decomposition of Θ and does not provide an influence value. Therefore, we now take a different
approach, which also has the benefit of clearer assumptions.

7.4.2 Initial Influence Estimate

Whenever the set of data used to train a network changes, the predictions made by this network
will generally slightly change on all datapoints. However, when removing or adding only a
small amount of data, these prediction changes can be quite small. By assuming that our learned
Q does not change through adding or removing points, we can obtain a computationally simple
influence estimate.

Lemma 4. If Q is assumed to not change as a result of adding or removing points (Θ[n] =
Θ[n]\Rem∪Add), then the change in qf0(c) when removing points with indices in Rem and adding
points with indices in Add is:

1

n− |Rem|+ |Add|

(∑
j∈Rem

(
Q(sj)−

∑
i∈[n] Q(si)

n

)
−
∑
k∈Add

(
Q(sk)−

∑
i∈[n] Q(si)

n

))
.

(7.16)

Note how the contribution of each individual point with index from Rem or Add does not
depend on other points. With this estimate, we can perform procedures that are generally
difficult to perform with influence. For example, we can maximize the change in qf0(c) subject
to a limit on how many points we can add or remove. By first computing the potential individual
contributions, we can sort the points by these values and select the ones that would change
qf0(c) the most.

Assuming a fixed Q is effectively reducing the link between the data used for APG-Gen and
the data used to learn Q. By making this assumption, we compute the effect on the APG we
find but not the effect on the underlying agent. As a result, this assumption is correct (i.e., does

85

not lead to an approximation) when seeking to explain only the APG itself. For example, if one
uses a different dataset to train the agent and to create the APG, then changing the latter dataset
will indeed not change the agent’s Q.

7.4.3 Influence while Accounting for Change in Q

The previous influence estimate relied on a fixed Q. If the same data is used for both learning
Q and constructing the APG, then removing or adding points can change Q. To account for
this, we can use the MRPS decomposition of Q to find the effect on Q.

7.4.3.1 Old and New Q via Alpha Values

We now use Q0 to signify the original Q, before points are added or removed. Q1 is then the
new Q, which is the Q obtained by training on the set [n]\Rem∪Add. The distinction between
Q0 and Q1 prevents the cancellation of some Q terms used to obtain Lemma 4.

Lemma 5. If Q0 is the Q obtained using dataset [n] and Q1 is the Q obtained using [n]\Rem∪
Add, then the change in qf0(c) when removing points with indices in Rem and adding points
with indices in Add is:

init_est +
1

n− |Rem|+ |Add|
∑

i∈[n]\Rem∪Add

(
Q0(si)−Q1(si)

)
, (7.17)

where init_est is the original estimate from Lemma 4.

Equation 7.17 provides the exact influence without any assumptions or approximations, but it
requires obtaining the updated Q. In practice, this means retraining a Q-network, which we
seek to avoid.

The term within the summation is related to the influence of points with indices in Rem and
Add on Q. We can use the MRPS decomposition of Q0 and Q1 to express that term as a sum of
individual point contributions:

Q0(s)−Q1(s) =

∑
i∈[n]

((αi − α′i)ψi) +
∑
j∈Rem

(
α′jψj

)
−
∑
k∈Add

(α′kψk)

T

ψ, (7.18)

where αi is the α obtained from Q0 and α′i is the α obtained from Q1.

Using this decomposition, we obtain a new equation for the change in qf0(c):

init_est +
1

n− |Rem|+ |Add|
×∑

i∈[n]

((αi − α′i)ψi) +
∑
j∈Rem

(
α′jψj

)
−
∑
k∈Add

(α′kψk)

T ∑
i∈[n]\Rem∪Add

ψi. (7.19)

86

Here, the weighted ψ values (not including the ψi sum) provide a contribution of the points
as a weight vector of sorts. The α values are then analogous to MRPS importance. Note how
the final result is similar to MRPS in that (1) the overall structure is αψiψj and (2) the overall
importance is a summation of individual importances.

Notably,
∑

i ψi can be pre-computed and then re-used for all different Rem and Add sets.

7.4.3.2 Influence if Assuming Alpha Values Do Not Change

Equation 7.19 requires α′ values. RPS implicitly assumes that α′i = αi. The two values are
indeed close in general, particularly when |Rem| and |Add| are low. Making this assumption
yields the next step in terms of a better estimate (compared to init_est).

Lemma 6. If the MRPS importance values are assumed to not change as a result of adding
or removing points (αi = α′i), then the change in qf0(c) when removing points with indices in
Rem and adding points with indices in Add is:

init_est +
1

n− |Rem|+ |Add|

(∑
j∈Rem

(αjψj)−
∑
k∈Add

(αkψk)

)T ∑
i∈[n]\Rem∪Add

ψi (7.20)

where init_est is the original estimate from Lemma 4.

The use of αk may seem bizarre since these α values are for points not in the original set of
experiences. However, MRPS provides a closed-form solution for α that does not depend on
the point being used to train the original network. Therefore, αk values can be readily computed
though they are not part of the MRPS expression for Θ in terms of α values.

A benefit for this approximation is that individual αj and αk terms do not depend on the entire
sets, neither Rem nor Add, so operations such as maximizing a change subject to |Rem|+ |Add|
constraints is easier than when allowing α values to change.

7.4.4 Accounting for Change in Alpha Values

Instead of assuming αi and α′i are equal, we can compute the difference. This then links to the
next step of a better estimate, the true influence value. However, this computation of α′i depends
on the full Rem and Add sets, so using the true α differences prevents computing contributions
of potential members of Rem and Add before considering the entire sets.

Following the MRPS approach of treating Q to be a linear model atop a learned featurization
of inputs and given that we use an L2-based loss function, the exact alpha values are

αi =
−1

2λn

∂L(ψi, ti,Θ)

∂Φ(ψi,Θ)

=
−1

λn
(Φ(ψi,Θ)− ti)

=
−1

λn
(Θψi − ti) .

(7.21)

87

The change in αi is then closely related to the change in Θ, the optimal Ridge Regression
weights:

αi − α′i =
−1

λn
(Θψi − ti)−

−1

λ(n− |Rem|+ |Add|)
(Θ′ψi − ti) , (7.22)

where Θ′ is the set of weights used with Q1.

For our problem, the change in Θ values can be exactly computed:

∆Θ := Θ−Θ′ = (ΨTΨ + λI)−1ΨTT − (Ψ′TΨ′ + λI)−1Ψ′TT ′, (7.23)

where Ψ′ and T ′ are the matrix of featurized states and vector of target values used with Q1,
respectively.

For CUSTARD, we were able to reduce the change in Θ to a constant times the change in t̄
since the ψ values were all related (within a given leaf). Here, there is no such relationship, so
the change in Θ effectively requires solving the RR problem to find the new weights for the
final layer of the original Q-network. In practice, the change can be computed more easily than
solving the problem from scratch since the terms involving Ψ′ are closely related to the terms
involving Ψ, but this is a detail beyond the scope of this current work.

The change in Θ, in conjunction with the equations for the change in α above, allows us not
only to exactly compute the change when a point is removed or added but also the degree to
which α′i := αi is a reasonable approximation.

7.4.5 Exact Influence Computation

The above computation is convenient when changes in α MRPS values are desired, but comput-
ing only the influence on qf0(c) allows skipping the steps that involve α terms. In particular, we
can avoid finding Q0(si)−Q1(si) through an MRPS decomposition. Instead, we can use the
definition of qf0(c) along with the equation for influence on Q. First, the influence with respect
to qf0(c) is:

∑
i∈[n] Q

0(si)

n
−
∑

i∈[n]\Rem∪Add Q
1(si)

n− |Rem|+ |Add|
.

With the relationship between Q0 and Q1 that we identified before, we can get a closed-form
solution.

88

Lemma 7. The change in qf0(c) when removing points with indices in Rem and adding points
with indices in Add is:

1

n− |Rem|+ |Add|

(
1

n
(|Add| − |Rem|) Θ

∑
i∈[n]

ψi+Θ

(∑
j∈Rem

ψj −
∑
k∈Add

ψk

)

+∆Θ

∑
i∈[n]

ψi −
∑
j∈Rem

ψj +
∑
k∈Add

ψk

)
(7.24)

where ∆Θ is as given in Equation 7.23.

The dominating term in the computational complexity of using this solution comes from finding
∆Θ. As with the previous solution for influence, the dependence of ∆Θ on the entire Rem
and Add sets precludes separately computing contributions of potential points to remove or
add and later selecting the Rem and Add sets. In these instances, an approximation (from
earlier sections, such as Section 7.4.2) can be used for the purpose of selecting points based on
approximate influence prior to determining exact influence.

7.5 Experiments

We have introduced methods for computing importance and influence for all nodes within a
UET. As noted previously, influence is the exact change induced by removing or adding a set
of experiences (i.e., transition tuples). Our overall goal is to compare the impact of removing or
adding different sets of experiences, particularly with the goal of finding the most impactful set
to remove/add based on a set size constraint.

In Section 7.3, we introduced an efficient approach for computing exact influence for nodes
originating from the CUSTARD DTP. In Section 7.4, we introduced a number of different
methods for computing influence. These latter methods make different assumptions in order to
reduce computational complexity at the expense of computing approximate influence.

We demonstrate the utility of approximate influence values for finding impactful points with
respect to nodes obtained via APG-Gen. In particular, in Section 7.5.1, we show that ranking
experiences based on approximate influence rather than importance leads to a ranking closer
to that obtained when using exact influence values. Then, in Section 7.5.2, we show that the
approximate influence values lead to an ordering of experiences that strongly correlates with
the ordering induced by the exact influence values.

7.5.1 Identifying Most Influential Experiences

One of the use-cases for influence values is to assist in deciding whether to remove or add given
experiences. Thorough evaluation of each experience (e.g., via a human expert or experiment
that allows the modified agent to act in the real world) is generally not feasible. Instead,
experiences that have the highest influence values can then be screened to determine whether
they are anomalous (outliers) or crucial (rare positive examples).

89

We consider a setting where a fixed number of experiences are to be evaluated. Each method
selects a set of experiences of fixed size, and the different sets are compared. Effectively, we are
evaluating methods based on their ability to identify the “top k” most influential experiences.
We compare selecting experiences at random, based on importance, based on approximate
influence (by assuming a fixed Q-function), and based on exact influence.

7.5.1.1 Metrics

We use the set chosen based on exact influence values as the ground truth. We make this
choice since the experiences with highest exact influence are, by definition, those that are most
impactful. The sets chosen by other methods are then compared to this set chosen via exact
influence values. A successful method is then one that has high recall, treating the experiences
selected based on exact influence as positive samples and all others as negative samples. We
refer to this as the “intersection percentage” because this metric is the “size of intersection with
ground truth set” divided by the size of the set retrieved. Note that this set size is fixed– all
methods must select sets of identical size.

We perform this evaluation for a range of different set sizes. We report these sizes as “sample
percentage.” The sample percentage ranges from 0 to 1 (with a step size of 0.02) and corresponds
to the set size divided by the number of total experiences.

Influence and importance may be positive or negative. Some past work on importance, such as
[1], only considers the absolute value of influence and importance. For some use-cases, one
seeks experiences that specifically reinforce or reduce a given behavior. Therefore, we evaluate
methods by looking at the “most negative” and “most positive” experiences separately. This
evaluation leads to two separate sets of plots.

7.5.1.2 Setup

We largely follow the setup used in Chapter 5. We perform our evaluation on PrereqWorld,
as described in Section 2.2.1. For this experiment, we select m = 8 and ρ = 0. The DTP is
created using CUSTARD on top of Quantile Regression DQN, and we use the APG-Gen with
Initialization method.

7.5.1.3 Results

We report the intersection percentage for most negatively influential experiences in Figure 7.1
and for most positively influential experiences in Figure 7.2.

As expected, in both plots, random selection of experiences leads to an intersection percentage
that closely matches the sample percentage. The two percentages are expected to match; the
slight deviations present are due to empirical sampling.

Importance generally performs better than random selection for intermediate sample percentage
values in the 0.2-0.8 range. This behavior suggests that the importance values do not distinguish
well between the most negatively and positively influential experiences.

90

Figure 7.1: Comparison of methods for selecting sets of negatively impactful experiences. The
resulting sets are compared to the sets obtained via exact influence values.

In contrast, approximate influence maintains a relatively high intersection percentage. In
particular, the most positively influential experiences are identified with an intersection of
more than 90% even for small sample percentages. These results indicate that approximate
influence can be used to identify the large majority of truly influential points for evaluation
using a subsequent evaluation method (e.g., executing the agent to observe its performance).

7.5.2 Ranking Influential Experiences

Building on the previously mentioned use-case, one may seek not only a set of impactful
experiences but a ranking of the experiences based on their relative impact. To that end, we
directly compare the rankings induced by approximate influence and importance relative to
exact influence.

7.5.2.1 Metrics

We use the Spearman Rank Correlation (SRC) metric to quantify how well the order produced
by different methods matches the order produced by exact influence values. We omit details on

91

Figure 7.2: Comparison of methods for selecting sets of positively impactful experiences. The
resulting sets are compared to the sets obtained via exact influence values.

SRC, but briefly note that the SRC reflects the correlation between two rankings of the same
points. An SRC coefficient is bounded by −1 and 1. In our case, values closer to 1 correspond
to a closer match between the rankings, and a value of 1 means that the rankings are identical.

7.5.2.2 Setup

We use the same setup as Section 7.5.1.

7.5.2.3 Results

We report the Spearman Rank Correlation coefficients for importance and approximate influence
relative to exact influence values in Table 7.2.

Notably, the SRC for approximate influence is substantially higher than that of importance.
This result indicates that our approach for computing approximate influence is more effective
at ranking points based on actual influence than importance. Additionally, the SRC for approxi-
mate influence is quite close to 1. This outcome suggests that, for this domain, the assumption
that the Q-function does not change is reasonable.

92

Method Spearman Rank Correlation
Influence (fixed Q) 0.9866

Importance 0.3667
Table 7.2: Comparison of Spearman Rank Correlations with respect to the ranking produced by
exact influence values.

7.6 Summary

In this chapter, we presented our approach for finding the importance and influence of experi-
ences on nodes within a UET. We introduced our closed-form solutions for these quantities.We
further introduced methods for efficiently computing importance and influence based on these
solutions. These solutions enable identifying which experiences impacted a partition within a
UET and the degree of this impact. With this ability, a UET can be explained in terms of both
state features and agent experiences.

93

Chapter 8

Related Work

In this chapter, we review the literature related to our work. This thesis builds upon and presents
a unified method for providing four types of explanations, so we provide an overview of
existing work around each of the relevant explanation types. Section 8.1 focuses on works that
explain single-action behavior in terms of state features. Section 8.2 focuses on methods that
explain the impact of aspects of the MDP or learning process (such as the reward function
or observed transitions) that led to the agent’s learned behavior; this includes explanations in
terms of past experiences, though existing work explains only single-action behavior in this
way. Section 8.3 focuses on approaches that explain the agent’s longer-term behaviors (i.e.,
policy-level behavior) in terms of state features or another featurization of the states. Section 8.4
compares our approach to existing methods.

In addition to this review of related work, we contributed to a broader survey of explainable
reinforcement learning methods [44]. This survey organizes works into a hierarchy that is
derived from the categorization used for this chapter, but the survey includes methods beyond
those immediately relevant to contextualizing the contributions of this thesis. The survey also
provides a more thorough comparison across groups within the hierarchy that is orthogonal to
the comparisons within this chapter of prior work to our methods. While surveying existing
work for the survey paper, we did not identify work which fully addresses our thesis question.

8.1 Per-Action Feature Importance Explanation

Methods that explain a single action in terms of the current state’s features fall into three
distinct types: (1) those that use a post-learning step to convert the policy to an inherently
interpretable form, (2) those that use an inherently interpretable format for the policy (i.e., at
any point in time, an action can be explained), and (3) those that generate an explanation for an
action without converting the policy to an inherently interpretable form. We summarize these
categories within Sections 8.1.1, 8.1.2, and 8.1.3, respectively. This categorizations roughly
correspond to the distinctions made by DARPA’s XAI initiative [45] between Model Induction,
Interpretable Models, and Deep Explanation.

94

8.1.1 Post-hoc Conversion to Explainable Format

Policies represented with suitable models enable explanations to be readily generated or the
use of the representation itself as an explanation. The standard structures used in RL, lookup
tables and neural networks, are not directly interpretable, but a conversion step can be used
to approximate an original policy with an explainable model. Many explanation-generation
methods effectively use imitation learning [46, 47], where the policy obtained via RL is the
expert and the policy obtained via imitation learning is the learner. The most successful line of
work, to date, began with VIPER [48], where a DT is trained using the Q-values from expert
transitions gathered via DAGGER [29]. MoET [49] builds on VIPER, replacing the DT with a
gating function over multiple DTs.

Other approaches use a standard supervised approach instead of DAGGER but vary the model
type and optimization procedure. The Lumberjack algorithm [50] constructs a Linked Decision
Forest (LDF). [51] use a learner consisting of an ensemble of decision trees, which is trained
via gradient boosting. [52] train a set of Binary Space Partitioning (BSP) Trees to approximate
a learned Q-function, with one tree per action. [53] use a U-Tree regression tree with a linear
model at each leaf. [54] use Soft Decision Trees (SDTs). [55] grow a decision tree using an
extension of CART which measures action, value, and derivative estimation accuracy. [56]
introduce AI-Interpret, which ultimately produces a decision tree where internal nodes use
boolean expressions over domain language expressions.

An alternative approach is taken by [57], who use genetic programming to extract control
policies from a neural network. Similarly, [58] use a recursive bilevel evolutionary algorithm to
find a nonlinear decision tree, then prune the tree by reoptimizing all rules using an evolutionary
optimization procedure.

8.1.2 Learn as Inherently Explainable Format

Methods which learn an inherently explainable policy can be categorized by the format of the
policy. The most common format is a decision tree, though other formats are also sometimes
used.

8.1.2.1 Decision Tree Models

Given the relative interpretability of DTs [19, 59], they are frequently used as representations
for explaining RL agents. Earlier work in learning a DT policy was not explicitly motivated by
explainability, but these methods produce DT policies of the same style as newer approaches
which seek explainable RL agents. [60] introduce the G algorithm, which incrementally builds
a DT while training an RL agent for MDPs with binary features. Transition tuples are stored
within leaf nodes, and leaf nodes are split when the Student’s t-test suggests that two distinct
distributions are present in the saved transition tuples.

UTree [21] uses the Kolmogorov-Smirnov test, which identifies violations in the Markov
property. Continuous UTree [22] extends UTree to MDPs with continuous-valued features.
[61] also extends the G algorithm to continuous-valued features and evaluates splitting criteria

95

of information gain, Gini index, and the Twoing Rule [62]. [63] extend [61] to a multi-agent
setting. TTree [64] is a UTree-like algorithm for solving Semi-MDPs (SMDPs) [65, 66, 67].
[23] modifies UTree to use a variety of splitting criteria: Gini, Info Gain, t-test, and Twoing rule.
The TG algorithm [68] extends the G algorithm to use internal nodes with tests on conjunctions
of first-order literals (rather than a single comparison). TGR [69] extends TG to have pruning
and revising operations. To allow these additional operations, TGR stores tuple statistics for all
nodes (not just the leaves, as in TG and G).

[70] create tree policies in a batch RL setting. The authors use fitted Q-iteration with tree-based
regression methods (CART, Kd tree, tree bagging, and two new ensemble algorithms). Policy
Tree [71] creates trees with leaves that are Giffs softmax sub-policies. The splitting values are
updated via policy-gradient RL. Similarly, [25] learns a softmax tree using an on-policy policy
gradient method. After training, the tree can be discretized to form a DT policy approximation.

8.1.2.2 Other Models

[72] and [73] propose a policy-iteration scheme that produces a clustering over the state space,
where a single action is associated with each cluster. [74] use a genetic algorithm to create
an inherently interpretable model: trees with basic algebraic functions as internal nodes and
constants and state variables as leaves. [75] use a biological neuronal cell model to represent a
policy. [76] propose to use a search algorithm over closed-form formulas which are used to
rank actions. [77] use Particle Swarm Optimization to learn a fuzzy controller policy, which is
a set of linguistic if-then rules whose outputs are combined. [78] use fuzzy RL to learn a policy
where state space regions around prototypes can each be expressed as a single distribution.

8.1.3 Directly Generating an Explanation

We categorize methods for directly generating explanations based on the form the explanation
takes. Note that different approaches for generating similar styles of explanations may make
different assumptions about the agent being explained, but there are generally commonalities
within a group. For example, saliency-based methods require a differentiable policy or Q-
function while attention-based methods sometimes require the ability to add an attention layer
to the value function approximator used by the agent.

8.1.3.1 Incremental Explanations

[79] compare an agent’s chosen action to a possible alternative using a known factored MDP;
natural language templates are filled based on policy execution outcomes. [80] perform model
reconciliation: the agent provides sufficient information to the user such that the user’s pre-
dicted plan matches the agent’s plan. [81] represent a user’s understanding of the task and
produce contrastive explanations in natural language and a form akin to PDDL [82] precondi-
tion/postcondition/effects/actions.

96

8.1.3.2 Natural Language Explanation

[83] provide information about the agent’s target using a linear classifier that is trained in
a supervised fashion. [84] provide per-action natural language explanations by training a
supervised model on a corpus of human-provided action-explanation pairs. [85] fill natural
language templates using a domain model trained on demonstrations and a set of operator-
specified important program state variables and functions. [86] segment a path and map each
segment to an utterance, as a function of the desired point in the verbalization space. [87]
construct natural language explanations by comparing outcomes of a user-specified policy and
a learned policy.

8.1.3.3 Saliency

[88] use standard gradient approaches ([89], [90]) to produce saliency maps for RL agents.
[91] produce object saliency maps using a perturbation-based approach, where an object
detector is assumed to be provided. [92] use Layer-wise Relevance Propagation (LRP) to create
saliency maps. [93] propose a perturbation-based approach. Motion-Orient REinforcement
Learning (MOREL) [94] identifies motion within the pixel-based observations. [95] directly
use LIME [96] to identify groups of features which are used by the Pensieve [97] agent. [98]
find that saliency is not sufficient as an explanatory model for RL agents; the authors argue that
conclusions drawn from saliency map outputs are highly subjective.

8.1.3.4 Attention

After training, [99] use imitation learning to train an additional network that modifies the
state input by applying an attention mask. [100] add an attention module within the LSTM
portion of the agent’s value function approximator. [101] add an attention-like module to the
agent’s value function approximator, though they do not use an LSTM within their agent.
[102] use a two agent system, where one agent constrains what the second agent may use for
predictions, and the first agent has an attention layer. [103] add an attention component to their
agent, which they train using an evolutionary algorithm to allow non-differentiable attention
components. [104] add a key-value store to their agent such that the agent’s output is multiplied
by each key, and these outputs are multiplied by the values. The agent’s output is put through
deconvolutional layers to visualize the attention. [105] question the validity and usefulness of
attention in Natural Language Processing problems. The authors find that multiple different
attention explanations can lead to the same behavior and that attention often does not correlate
with gradients at feature inputs.

8.1.3.5 Other Explanation Types

[106] generate a counterfactual state which minimally differs from the query state. The authors
split the policy network into a “state to latent representation” portion and a “latent repre-
sentation to action” portion. A deep generative model is then used to shift a state’s latent
representation toward one which leads to a different action. [107] train a generative model over

97

the environment’s state space, and they use its latent space to select states which maximize a
user-specified objective.

8.2 Explanations in Terms of MDP or Learning Process

Beyond feature importance explanations, specific actions have been explained in terms of
the MDP or the training process. Most commonly, the agent is made to reveal the transition
dynamics it has learned. Such methods are described and compared in Section 8.2.1. More
recently, different types of reward function decomposition have been used to explain the agent
in terms of the MDP’s reward function. Such methods are discussed in Section 8.2.2. Finally,
methods that identify impactful training experiences are discussed in Section 8.2.3.

8.2.1 Modeling of Domain Information

[108] use a neural network to approximate the transition function. Since the network is a
differentiable model of the environment, gradients from the state predictor network can be used
to update the policy. In this work, the “explanations” are internal explanations for the agent to
improve itself rather than explanations for a human user. [109] learn a representation of the
transition dynamics as a dynamic Bayesian Network or DT. [6] learn per-feature pre-requisites
for a factored domain to then use a case aggregation method to explain actions in terms of past
experiences. [110] learn an environment model as a Probabalistic Graphical Model (PGM).
This model is learned jointly with the policy using a latent state space, so future states and
actions can be predicted. However, the components of the PGM are still CNNs, so they cannot
be directly interpreted.

[111] ground opportunity chains in human-agent experimental data. They use an RNN to
learn opportunity chains, and they use DTs to improve the accuracy of task prediction and
of the generated counterfactuals. [112] use inductive learning to identify preconditions of
agent actions in terms of first-order relational conjunctions of symbolic state variables. [113]
learn the structure of a factored MDP as a DT for the reward function and each feature’s
transition function. [114] model the relative effect of actions with DTs. The DTs are trained
in a supervised fashion to predict the change for each state feature and the reward for each
state-action pair. [115] propose a memory-based RL approach that uses an episodic memory to
explain decisions using probability of success and number of transitions required to reach the
goal state. [116] learn a structural causal model (with pre-specified structure), which encodes
causal relationships between variables of interest.

8.2.2 Decomposition of Reward Function

By conveying aspects of the reward that contributed to the agent’s behavior, an explanation
can provide information in terms of the agents objectives. [117] use reward decomposition
charts (RDCs) as explanations. The reward function is assumed to be decomposable into a set
of additive terms with semantic meaning. The Q-function is decomposed into a similar set of
additive terms (with one Q-function term per reward function term). [118] produce explanations
of the form, “I could do [action] to decrease R(obj). However, this would decrease R(obj2)”

98

through a vector value function based Multi-Objective RL approach that quantifies objective
relationship via RL. [119] present a two-level hierarchical DRL system. The high-level agent
effetively discretizes the environment and defines subgoals based on this discretization. The
expected value of choosing a subgoal is then available via the higher-level policy, allowing the
return for various subgoals to be accessed via the high-level agent.

8.2.3 Identification of Important Training Points

[120] examine which states an RL agent needs to memorize for efficient learning and explaining.
The authors train an agent with DRL and use Sparse Bayesian RL (SBRL) to extract and store
important memories. SBRL effectively selects which states to record, along with a weight for
each state. [121] identify training points that are influential for the off-policy estimation of
Q-values (i.e., whose removal causes a large change in Q-value estimates for initial states). The
authors present closed-form solutions for cases where a linear model trained with least-squares
error or a nearest-neighbors model is used as a value function approximator. [122] convey the
objective function of an agent by presenting a set of transition tuples. In particular, the agent
models the human’s current belief about the agent’s objective function, and the agent presents
tuples which most contradict the human’s current estimate.

8.3 Policy-level Behavior Explanations

Explanations of an agent’s longer-term behavior have been studied less than explanations of
single actions. Given the interactive nature of an agent, explanations for long-term behavior
generally take the form of a graph over abstract states (or an equivalent formulation).

8.3.1 Summarization via Set of Transition Tuples

[123] explain agent behavior by presenting a user a set of trajectories. The trajectories are
selected based on the diversity of states as well as the difference in Q-value between the best
and worse actions among states within the chosen trajectories. Similarly, [124] seek to find
“critical states,” which are provided to a user so they can form a mental model of the agent.
Critical states are those where the chosen action has a much higher Q-value than another. [125]
builds on [124]. The authors pick trajectories to show to humans so they can see key interactions
by the agent. The trajectories are selected based on “interestingness” statistics, which include
frequency, estimated value, and certainty. [126] compare different ways of choosing state/action
pairs for policy summarization. The authors find that the best method for selecting pairs depends
on the method of policy reconstruction: there is no single best way to select pairs.

8.3.2 Conversion of RNN to Finite State Machine

[127] convert a trained agent’s RNN into a Finite State Machine (FSM). The authors consider
an agent where the output of a CNN is fed as input into an RNN. They apply a discretization
process between the two networks and fine-tune the RNN. The resulting agent has a set number
of possible inputs and possible transitions, so a FSM can be constructed to replace the RNN.

99

This family of techniques only applies in cases where the agent contains a RNN. Additionally,
to obtain a fully explainable agent, the CNN would have to be explained using a different
approach.

8.3.3 Extraction of Clusters or Abstract States

[128] embed states into a space such that states located close to each other in this space are
treated similarly by the agent. A human operator can then identify clusters within this space
as well as relationships between clusters. [129] present TLdR, an approach for identifying
landmarks, which are propositional formulas that must be satisfied for a goal to be completed.
Effectively, each landmark corresponds to a set of states in which a subgoal has been completed.
The possible transitions between landmarks can then be displayed as a graph that shows how
an agent would reach a goal state from the starting state. These two methods can be interpreted
as creating abstract states that encapsulate sets of states from the base MDP. [130] provide
an overview of previous methods for creating abstractions for MDPs. Though the authors do
not consider explainability, the approaches they describe could be used to explain an agent’s
behavior in terms of the created abstract states. The methods either create an abstraction before
or during training, so the agent must act in the abstract MDP. As a result, such approaches
cannot be used to explain an arbitrary agent that learned to act on states from the base MDP.

8.4 Comparison with Our Work

In contrast with existing approaches, our explanation format explains both single-action be-
havior and policy-level behavior in terms of both state features and past experiences. Since we
use a unified structure (rather than one structure per explanation type), we identify important
training points at all levels of the structure. Furthermore, each element of our approach provides
capabilities not present in existing approaches.

For single-action behavior explanations in terms of state features, we introduce Iterative
Bounding MDPs (Chapter 3), which cast the problem of finding a decision tree policy as a meta-
problem. This approach is the first that simultaneously does not approximate the learned policy
after training and allows the use of standard deep RL techniques. For policy-level behavior
explanations in terms of state features, we construct a Markov chain over abstract states
(Chapter 4). This format provides quantitative information about future transitions without
constraints on the agent type (e.g., requiring a Recurrent Neural Network during training).
Using a single decision tree for both explanation types (Chapter 5) enables us to identify
important past experiences for specific elements of an agent’s behavior (Chapters 6 and 7).
Using these feature importance values, a user is able to modify agent behavior in terms of the
explanation itself (e.g., change the features considered and the categorization of states into
abstract states).

100

Chapter 9

Conclusions and Future Work

We first summarize the contributions of this thesis. Then, we discuss the future lines of work
that are enabled by the contributions of this thesis. We conclude with a summary of our overall
work.

9.1 Contributions

In the motivating example in Chapter 1, we demonstrated the types of insights possible through
explainable reinforcement learning methods with different properties: explanations of single-
action vs policy-level behavior and explanations that are state-feature-based vs experience-
based. We have shown techniques for producing explanations of all of these types as well as a
unification of these techniques which permits further insights.

9.1.1 Decision Tree Policies

We introduced a new method, CUSTARD, for creating a Decision Tree Policy (DTP), which is
an explanation of single-action behavior in terms of state features. CUSTARD is designed to be
compatible with existing RL methods, including those that leverage neural networks as value
function approximators. This compatibility is achieved by posing the “find a DTP for this MDP”
problem as an RL problem that is then solved by an existing RL method. The meta-problem
takes the form of a novel type of MDP, an Iterative Bounding MDP (IBMDP), which ensures
that any solution for the underlying MDP is a valid DTP. We additionally presented a method
for extracting a DTP from any policy that solves the meta-problem framed as an IBMDP. We
showed how to use this approach with existing RL methods to avoid the downsides of other
methods that find DTPs.

9.1.2 Abstract Policy Graphs

We introduced a new type of policy-level behavior explanation, the Abstract Policy Graph
(APG). An APG effectively partitions the state space into abstract states and then forms a
Markov chain out of the resulting abstract states. This type of explanation enables predicting an
agent’s future actions and identifying the sequence of subgoals it will complete. Additionally,

101

we introduced APG-Gen, a method for constructing an APG using only sample transitions from
an agent and its Q-value estimates for its chosen actions. APG-Gen treats the Q-function as an
opaque box and makes no assumptions about how it was trained or how it functions internally.
We showed that APG-Gen can efficiently construct APGs. We also demonstrated that an APG
successfully captures information about future actions and relevant features.

9.1.3 Importance Scores for Past Experiences

We introduced MRPS, a method for assigning importance scores to sets of past experiences for
agents that use a neural network as their value function approximator. This score computation
follows previous work where the final layer of the network is decomposed into a weighted sum
of past experiences, and these weights are then used as importance values. We evaluate our
approach on a supervised classification debugging task and show the benefits of our approach,
assigning scores to sets of points rather than only to individual points. Since CUSTARD was
designed to leverage RL methods that use neural networks, MRPS is directly compatible with
CUSTARD and finds the importance values for past experiences. These values are with respect
to the IBMDP actions so show importance not only for the base MDP actions but also for
partitioning actions taken within the DTP.

9.1.4 Unified Explanation Trees

We introduced a new explanation structure, the Unified Explanation Tree (UET), which explains
both single-action and policy-level behavior in terms of state features. We introduced a method
for creating a UET which is effectively an application of a modified APG-Gen variant to a
DTP learned by CUSTARD. Due to the way a UET is constructed, it captures the relationship
between local and global behaviors. Furthermore, we presented several approaches for finding
the importance and the influence of training points on all nodes of a UET. These approaches
enable explaining not only agent actions in terms of past experiences but also the internal
operation of the UET itself, thus explaining the effect of experiences on policy-level behavior.
We introduced approaches that ranged from exact solutions that make no assumptions to
approximations that are preferred for certain use-cases.

9.1.5 Domains and Evaluation

We introduced two novel domains for evaluating explainable RL methods. The first domain,
PrereqWorld, is automatically constructed with known, ground-truth feature importances and
subgoal ordering. These properties enable a quantitative evaluation of an explanation’s ability
to identify relevant features and the sequence of subgoals completed by an agent. The second
domain, PotholeWorld, is a domain where the optimal policy substantially differs depending on
the permitted policy complexity. This property causes interpretable approximations of an expert
to perform poorly compared to alternative interpretable policies. This domain enables evaluating
an RL method’s ability to not only learn an interpretable policy but also find a high-performing
one subject to this constraint. We demonstrated the effectiveness of our interpretable policy-

102

learning method, CUSTARD, on both of these domains and used PrereqWorld throughout our
evaluation.

9.2 Future Work

We present potential research directions that extend the work presented in this thesis.

9.2.1 Extending UETs to Continuous Features

We introduced a method for creating a unified explanation tree that conveys both single-action
and policy-level behavior in terms of both state features and past experiences. However, the
policy-level behavior component is provided by APG-Gen with FIRM as the feature importance
metric, and FIRM relies on all state features being binary. Though this permits using APG-Gen
with categorical features, continuous features are not directly supported. APG-Gen should be
extended to become compatible with continuous features. To achieve this, one would need to
either create a method for dynamically discretizing continuous features or identify a suitable
feature importance metric which is compatible with continuous features while maintaining the
favorable computational complexity exhibited by APG-Gen with FIRM over binary features.

9.2.2 Extending UETs to Continuous Actions

We introduced CUSTARD, a way to learn a decision tree policy via an arbitrary reinforcement
learning algorithm by casting the “find a decision tree policy for this environment” meta-
problem as an RL problem. We then used the resulting decision tree in constructing our unified
explanation tree. Though we presented a hypothetical way to leverage continuous actions in
solving the meta-problem, our current methods all use discrete actions. In the same way that
we modified RL methods that can handle discrete actions (e.g., DQN), we would need to
modify methods that can handle a mixture of discrete and continuous actions (i.e., one that is
compatible with Parameterized Action Spaces).

9.2.3 Enabling Efficient Intervention via Experience Removal/Addition

We presented methods for finding the influence of any set of past experiences on any node
within a unified explanation tree. Influence provides the exact change in the node’s behavior
if that set of experiences is removed or added, as appropriate. As a result, we can determine
whether removing/adding any given set would have an effect and, if it does, which subtree
would change as a result of this intervention. However, if an intervention is performed by such a
removal or addition, there is no efficient way to rebuild the affected subtree. We could create an
approach that finds an optimal subtree based on the gathered experiences without affecting other
portions of the unified explanation tree. Ideally, this approach would leverage the computation
performed to create the original subtree so that this process is as computation-efficient as
possible.

For this method, we would need differing approaches for CUSTARD-derived and APG-Gen-
derived nodes, as when initially building the unified explanation tree. In the CUSTARD nodes,

103

we could use an IBMDP formulation along with a tabular method to find the new optimal
subtree. This tabular method could be initialized with the Q-values for the original subtree, and
we could prioritize updates for leaves that would contain the removed or added experiences. For
all leaves of this subtree, we could then apply APG-Gen, which is already efficient to compute
and whose computation does not depend on other leaves in the tree.

Such an approach would enable direct, simultaneous modification of a policy and its corre-
sponding unified explanation tree whenever experiences are added or removed. Potentially, this
could form the basis of an online method to automatically gather new experiences as needed.
This extension would be a large step toward the overall goal of our work, to enable the use of
RL in more domains by enabling interventions via requesting specific experiences instead of
requiring trust in an opaque policy.

9.2.4 Applying to “Learning from Demonstrations” Problem

Our approaches for creating explanations are compatible with suboptimal policies. As a result,
they can be used to explain arbitrary policies, even those that are not the result of a reinforcement
learning process. In particular, our method for explaining policy-level behavior, APG-Gen,
only requires examples of transitions induced by the policy and makes no assumptions about
how the policy internally operates. Therefore, we can apply APG-Gen to a dataset of human
behavior to gain insight into a human expert’s choices. Beyond this, behavior cloning can be
used to imitate a human expert and all our approaches can be used to explain the resulting
agent. By applying our methods for identifying influential experiences, we can identify cases
where the human demonstrations may not be representative of useful demonstrations for the
imitating agent’s learning.

This process would be most useful in cases where human demonstrations are expected to be of
varying but unknown quality, so our approach could be used to filter out low-quality demonstra-
tions that may lead to incorrect policy entries. A natural setting in which to evaluate such an
extension would be with the MineRL data, where we have gathered human data from a large
number of different experts of varying skill level. This extension would contribute to solving the
same problems that we began to address with our MineRL line of work: “How can we make RL
more computationally efficient? How can we reduce the need for exploration?” These barriers
of computational complexity and need for random exploration reduce the applicability of RL,
but efficient learning from human demonstrations can diminish the impacts of these barriers by
initializing an agent with useful sub-policies and initial behavior. Automatic identification of
low-quality demonstrations would facilitate learning from human demonstrations which, in
turn, reduces the need for random exploration.

9.2.5 Applying to Health and Finance Domains

We have applied our methods to environments specifically designed for evaluating explanation
methods. We designed these environments to have ground-truth dependencies between sub-
goals and different optimal policies depending on the maximum permitted policy complexity.
These properties facilitated our development of methods that provide information on the

104

sequence of sub-goals an agent is seeking to reach and that successfully find high-performing
policies when the policy representation cannot capture the overall optimal policy. These aspects
are of great importance in finance and healthcare domains. We could potentially apply our
methods to these domains. Such an application of our work is key to our overall goal of allowing
RL to be used more broadly. By providing explanations instead of only prescribing a policy,
our work has the potential to make RL more useful and more applicable in real-world settings.

9.3 Summary

We have introduced methods for creating explanations for RL agents. We categorize these
methods using two axes: whether the method explains single-action behavior or policy-level
behavior and whether the method provides explanations in terms of state features or in terms of
past experiences. These four types of explanations allow answering different questions about
an agent, and the combination of all four types enables gleaning further information about
an agent and its learning process. To the best of our knowledge, this work is the first work
that does reasoning about adding and removing past experiences in reinforcement learning
explanations.

We introduced a method for explaining single-action behavior in terms of state features via a
decision tree representation of a policy. Notably, this method is compatible with existing RL
techniques that use neural networks as their function approximator. We have also introduced a
method for explaining policy-level behavior in terms of a Markov chain over abstract states. We
showed that our method has a favorable computational complexity despite using only queries
to an agent’s Q-values, making no assumptions about an agent’s decision-making process. We
showed how to integrate these two methods to produce a Unified Explanation Tree, which
maps from a state directly to both an action and abstract state, thus unifying single-action and
policy-level behavior explanations in terms of state features. We evaluated our methods on
domains designed specifically for testing RL explanation techniques. We then showed how to
find the importance of sets of past experiences. We extended this general method to our Unified
Explanation Tree and also presented closed-form solutions for exact influence. This addition
of explanations in terms of past experiences allows identifying the exact subtree that would
change if experiences were removed or added.

105

Bibliography

[1] C.-K. Yeh, J. Kim, I. E.-H. Yen, and P. K. Ravikumar, “Representer point selection
for explaining deep neural networks,” in Advances in Neural Information Processing
Systems, pp. 9291–9301, 2018.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT Press,
1998.

[3] C. Boutilier, R. Dearden, M. Goldszmidt, et al., “Exploiting structure in policy construc-
tion,” in Proc. of the 14th Int. Joint Conf. on Artificial Intelligence, 1995.

[4] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing Atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[6] T. Dodson, N. Mattei, and J. Goldsmith, “A natural language argumentation interface for
explanation generation in markov decision processes,” in International Conference on
Algorithmic Decision Theory, pp. 42–55, Springer, 2011.

[7] W. H. Guss*, B. Houghton*, N. Topin, P. Wang, C. Codel, M. Veloso, and R. Salakhut-
dinov, “MineRL: a large-scale dataset of Minecraft demonstrations,” in Proceedings of
the 28th International Joint Conference on Artificial Intelligence, 2019.

[8] S. Milani, N. Topin, B. Houghton, W. H. Guss, S. P. Mohanty, K. Nakata, O. Vinyals, and
N. S. Kuno, “Retrospective analysis of the 2019 MineRL competition on sample-efficient
reinforcement learning using human priors,” Proceedings of Machine Learning Research
(PMLR): NeurIPS2019 Competition & Demonstration Track Postproceedings, 2020.

[9] W. H. Guss, S. Milani, N. Topin, B. Houghton, S. Mohanty, A. Melnik, A. Harter,
B. Buschmaas, B. Jaster, C. Berganski, et al., “Towards robust and domain agnostic
reinforcement learning competitions: Minerl 2020,” in NeurIPS 2020 Competition and
Demonstration Track, pp. 233–252, PMLR, 2021.

106

[10] A. Kanervisto, S. Milani, K. Ramanauskas, N. Topin, Z. Lin, J. Li, J. Shi, D. Ye, Q. Fu,
W. Yang, et al., “Minerl diamond 2021 competition: Overview, results, and lessons
learned,” arXiv preprint arXiv:2202.10583, 2022.

[11] W. H. Guss, C. Codel, K. Hofmann, B. Houghton, N. Kuno, S. Milani, S. Mohanty,
D. P. Liebana, R. Salakhutdinov, N. Topin, et al., “Neurips 2019 competition: the minerl
competition on sample efficient reinforcement learning using human priors,” arXiv
preprint arXiv:1904.10079, 2019.

[12] B. Houghton, S. Milani, N. Topin, W. Guss, K. Hofmann, D. Perez-Liebana, M. Veloso,
and R. Salakhutdinov, “Guaranteeing reproducibility in deep learning competitions,” in
The 33rd Conference on Neural Information Processing Systems, Challenges in Machine
Learning Workshop, 2020.

[13] W. H. Guss, M. Y. Castro, S. Devlin, B. Houghton, N. S. Kuno, C. Loomis, S. Milani,
S. Mohanty, K. Nakata, R. Salakhutdinov, et al., “The minerl 2020 competition on sample
efficient reinforcement learning using human priors,” arXiv preprint arXiv:2101.11071,
2021.

[14] R. Shah, C. Wild, S. H. Wang, N. Alex, B. Houghton, W. Guss, S. Mohanty, A. Kan-
ervisto, S. Milani, N. Topin, et al., “The minerl basalt competition on learning from
human feedback,” arXiv preprint arXiv:2107.01969, 2021.

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[16] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1, 1986.

[17] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement learning via policy
extraction,” in Advances in Neural Information Processing Systems, 2018.

[18] K. Sokol and P. Flach, “Desiderata for interpretability: Explaining decision tree predic-
tions with counterfactuals,” in Proceedings of the 33rd AAAI Conference on Artificial
Intelligence (AAAI-19), Student Abstract Track, vol. 33, pp. 10035–10036, 2019.

[19] C. Molnar, Interpretable Machine Learning. 2019. https://christophm.
github.io/interpretable-ml-book/ (July 2020).

[20] Z. C. Lipton, “The mythos of model interpretability,” ACM Queue, vol. 16, no. 3, pp. 31–
57, 2018.

[21] R. McCallum, “Reinforcement learning with selective perception and hidden state,” PhD
Thesis, University of Rochester, Department of Computer Science, 1997.

[22] W. T. Uther and M. M. Veloso, “Tree based discretization for continuous state space
reinforcement learning,” in Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI-98), pp. 769–774, 1998.

107

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

[23] L. D. Pyeatt, “Reinforcement learning with decision trees,” in Applied Informatics,
pp. 26–31, 2003.

[24] A. M. Roth, N. Topin, P. Jamshidi, and M. Veloso, “Conservative q-improvement:
Reinforcement learning for an interpretable decision-tree policy,” arXiv preprint,
arXiv:1907.01180, 2019.

[25] I. D. J. Rodriguez, T. W. Killian, S. Son, and M. C. Gombolay, “Optimization methods
for interpretable differentiable decision trees in reinforcement learning,” arXiv preprint,
arXiv:1903.09338, 2019.

[26] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compression,” in Proc. of the
12th ACM Int. Conf. on Knowledge Discovery and Data Mining, 2006.

[27] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

[28] A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pas-
canu, V. Mnih, K. Kavukcuoglu, and R. Hadsell, “Policy distillation,” arXiv preprint
arXiv:1511.06295, 2015.

[29] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and struc-
tured prediction to no-regret online learning,” in Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics, pp. 627–635, 2011.

[30] N. Topin, S. Milani, F. Fang, and M. Veloso, “Iterative bounding mdps: Learning inter-
pretable policies via non-interpretable methods,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, 2021.

[31] W. Masson, P. Ranchod, and G. Konidaris, “Reinforcement learning with parameterized
actions,” in Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016.

[32] M. Preda, “Adaptive building of decision trees by reinforcement learning,” in Proceed-
ings of the 7th WSEAS International Conference on Applied Informatics and Communi-
cations, 2007.

[33] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling network
architectures for deep reinforcement learning,” in Proceedings of the 33rd International
Conference on Machine Learning, 2016.

[34] C. Blundell, B. Uria, A. Pritzel, Y. Li, A. Ruderman, J. Z. Leibo, J. Rae, D. Wierstra,
and D. Hassabis, “Model-free episodic control,” arXiv preprint arXiv:1606.04460, 2016.

[35] A. Pritzel, B. Uria, S. Srinivasan, A. Puigdomenech, O. Vinyals, D. Hassabis, D. Wierstra,
and C. Blundell, “Neural episodic control,” arXiv preprint arXiv:1703.01988, 2017.

108

[36] K. Khetarpal, Z. Ahmed, G. Comanici, D. Abel, and D. Precup, “What can i do here?
a theory of affordances in reinforcement learning,” arXiv preprint arXiv:2006.15085,
2020.

[37] N. Topin and M. Veloso, “Generation of policy-level explanations for reinforcement
learning,” in Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-
19), 2019.

[38] A. Zien, N. Krämer, S. Sonnenburg, and G. Rätsch, “The feature importance ranking
measure,” in Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, 2009.

[39] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[40] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in International conference on machine learning,
pp. 448–456, PMLR, 2015.

[41] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthogonal
problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[42] P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,”
in Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 1885–1894, JMLR. org, 2017.

[43] Alex Krizhevsky, “The cifar-10 dataset,” 2009. [Online; accessed 14-November-2019].

[44] S. Milani, N. Topin, M. Veloso, and F. Fang, “A survey of explainable reinforcement
learning,” arXiv preprint arXiv:2202.08434, 2022.

[45] D. Gunning and D. W. Aha, “Darpa’s explainable artificial intelligence program,” AI
Magazine, vol. 40, no. 2, pp. 44–58, 2019.

[46] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,” in
Proceedings of the 21st International Conference on Machine Learning, 2004.

[47] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A survey of
learning methods,” ACM Computing Surveys (CSUR), vol. 50, no. 2, pp. 1–35, 2017.

[48] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement learning via policy
extraction,” in Advances in Neural Information Processing Systems, pp. 2494–2504,
2018.

[49] M. Vasic, A. Petrovic, K. Wang, M. Nikolic, R. Singh, and S. Khurshid, “Moët: In-
terpretable and verifiable reinforcement learning via mixture of expert trees,” arXiv
preprint, arXiv:1906.06717, 2019.

109

[50] W. T. Uther and M. M. Veloso, “The lumberjack algorithm for learning linked deci-
sion forests,” in The 4th International Symposium on Abstraction, Reformulation, and
Approximation, pp. 219–232, 2000.

[51] A. Brown and M. Petrik, “Interpretable reinforcement learning with ensemble methods,”
arXiv preprint, arXiv:1809.06995, 2018.

[52] A. Jhunjhunwala, “Policy extraction via online q-value distillation,” Masters Thesis,
University of Waterloo, 2019.

[53] G. Liu, O. Schulte, W. Zhu, and Q. Li, “Toward interpretable deep reinforcement learning
with linear model u-trees,” in Proceedings of the Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 414–429, 2018.

[54] Y. Coppens, K. Efthymiadis, T. Lenaerts, A. Nowé, T. Miller, R. Weber, and D. Mag-
azzeni, “Distilling deep reinforcement learning policies in soft decision trees,” in Pro-
ceedings of the 28th International Joint Conference on Artificial Intelligence Workshop
on Explainable Artificial Intelligence, 2019.

[55] T. Bewley and J. Lawry, “Tripletree: A versatile interpretable representation of black
box agents and their environments,” arXiv preprint arXiv:2009.04743, 2020.

[56] J. Skirzynski, F. Becker, and F. Lieder, “Automatic discovery of interpretable planning
strategies,” arXiv preprint arXiv:2005.11730, 2020.

[57] H. Zhang, A. Zhou, and X. Lin, “Interpretable policy derivation for reinforcement
learning based on evolutionary feature synthesis,” Complex & Intelligent Systems, pp. 1–
13, 2020.

[58] Y. Dhebar, K. Deb, S. Nageshrao, L. Zhu, and D. Filev, “Interpretable-ai policies us-
ing evolutionary nonlinear decision trees for discrete action systems,” arXiv preprint
arXiv:2009.09521, 2020.

[59] C. Kingsford and S. L. Salzberg, “What are decision trees?,” Nature Biotechnology,
vol. 26, no. 9, pp. 1011–1013, 2008.

[60] D. Chapman and L. P. Kaelbling, “Input generalization in delayed reinforcement learning:
An algorithm and performance comparisons,” in Proceedings of the 12th International
Joint Conference on Artificial Intelligence, vol. 91, pp. 726–731, 1991.

[61] L. D. Pyeatt and A. E. Howe, “Decision tree function approximation in reinforcement
learning,” in Proceedings of the 3rd International Symposium on Adaptive Systems:
Evolutionary Computation and Probabilistic Graphical Models, vol. 2, pp. 70–77, 2001.

[62] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression
trees. CRC press, 1984.

110

[63] K. Tuyls, S. Maes, and B. Manderick, “Reinforcement learning in large state spaces,” in
Robot Soccer World Cup, pp. 319–326, 2002.

[64] W. T. Uther and M. M. Veloso, “Ttree: Tree-based state generalization with temporally
abstract actions,” in Adaptive agents and multi-agent systems, pp. 260–290, Springer,
2003.

[65] R. E. Parr and S. Russell, Hierarchical control and learning for Markov decision
processes. University of California, Berkeley Berkeley, CA, 1998.

[66] P. Marbach, O. Mihatsch, M. Schulte, and J. N. Tsitsiklis, “Reinforcement learning for
call admission control and routing in integrated service networks,” in Advances in Neural
Information Processing Systems, pp. 922–928, 1998.

[67] S. J. Bradtke and M. O. Duff, “Reinforcement learning methods for continuous-time
markov decision problems,” in Advances in Neural Information Processing Systems,
pp. 393–400, 1995.

[68] K. Driessens, J. Ramon, and H. Blockeel, “Speeding up relational reinforcement learning
through the use of an incremental first order decision tree learner,” in Proceedings of the
12th European Conference on Machine Learning, pp. 97–108, 2001.

[69] J. Ramon, K. Driessens, and T. Croonenborghs, “Transfer learning in reinforcement
learning problems through partial policy recycling,” in Proceedings of the 18th European
Conference on Machine Learning, 2007.

[70] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode reinforcement learning,”
Journal of Machine Learning Research, vol. 6, no. Apr, pp. 503–556, 2005.

[71] U. D. Gupta, E. Talvitie, and M. Bowling, “Policy tree: Adaptive representation for
policy gradient,” in Proceedings of the 29th AAAI Conference on Artificial Intelligence
(AAAI-15), pp. 2547–2553, 2015.

[72] R. Akrour, D. Tateo, and J. Peters, “Towards reinforcement learning of human readable
policies,” in The European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases: The 1st Workshop on Deep Continuous-Discrete
Machine Learning, 2019.

[73] R. Akrour, D. Tateo, and J. Peters, “Reinforcement learning from a mixture of inter-
pretable experts,” arXiv preprint arXiv:2006.05911, 2020.

[74] D. Hein, S. Udluft, and T. A. Runkler, “Interpretable policies for reinforcement learning
by genetic programming,” in Proceedings of the Genetic and Evolutionary Computation
Conference, 2019.

[75] M. Lechner, R. M. Hasani, and R. Grosu, “Interpretable neuronal circuit policies for
reinforcement learning environments,” Proceedings of the 27th International Joint

111

Conference on Artificial Intelligence Workshop on Explainable Artificial Intelligence,
2018.

[76] F. Maes, R. Fonteneau, L. Wehenkel, and D. Ernst, “Policy search in a space of simple
closed-form formulas: Towards interpretability of reinforcement learning,” in Proceed-
ings of the 15th International Conference on Discovery Science, pp. 37–51, 2012.

[77] D. Hein, A. Hentschel, T. Runkler, and S. Udluft, “Particle swarm optimization for gen-
erating interpretable fuzzy reinforcement learning policies,” Engineering Applications
of Artificial Intelligence, vol. 65, pp. 87 – 98, 2017.

[78] J. Huang, P. P. Angelov, and C. Yin, “Interpretable policies for reinforcement learning
by empirical fuzzy sets,” Engineering Applications of Artificial Intelligence, vol. 91,
p. 103559, 2020.

[79] O. Z. Khan, P. Poupart, and J. P. Black, “Minimal sufficient explanations for factored
markov decision processes.,” in Proceedings of the 19th International Conference on
Automated Planning and Scheduling, 2009.

[80] M. Zakershahrak, Z. Gong, N. Sadassivam, and Y. Zhang, “Online explanation generation
for human-robot teaming,” arXiv preprint, arXiv:1903.06418, 2019.

[81] S. Sreedharan, S. Srivastava, and S. Kambhampati, “Hierarchical expertise level model-
ing for user specific contrastive explanations,” in Proceedings of the 27th International
Joint Conference on Artificial Intelligence, pp. 4829–4836, 2018.

[82] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld, and
D. Wilkins, “Pddl-the planning domain definition language,” 1998.

[83] M. van der Meer, M. Pirotta, and E. Bruni, “Exploiting language instructions for inter-
pretable and compositional reinforcement learning,” arXiv preprint, arXiv:2001.04418,
2020.

[84] U. Ehsan, B. Harrison, L. Chan, and M. Riedl, “Rationalization: A neural machine
translation approach to generating natural language explanations,” Proceedings of the
1st AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society, 2018.

[85] B. Hayes and J. A. Shah, “Improving robot controller transparency through autonomous
policy explanation,” in Proceedings of the 2017 12th ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI, pp. 303–312, IEEE, 2017.

[86] S. Rosenthal, S. P. Selvaraj, and M. M. Veloso, “Verbalization: Narration of autonomous
robot experience,” in Proceedings of the 25th International Joint Conference on Artificial
Intelligence, pp. 862–868, 2016.

[87] J. van der Waa, J. van Diggelen, K. v. d. Bosch, and M. Neerincx, “Contrastive explana-
tions for reinforcement learning in terms of expected consequences,” in Proceedings of

112

the 27th International Joint Conference on Artificial Intelligence Workshop on Explain-
able Artificial Intelligence, 2018.

[88] L. Weitkamp, E. van der Pol, and Z. Akata, “Visual rationalizations in deep reinforcement
learning for Atari games,” in Proceedings of the 30th Benelux Conference on Artificial
Intelligence, pp. 151–165, 2018.

[89] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visu-
alising image classification models and saliency maps,” arXiv preprint, arXiv:1312.6034,
2013.

[90] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial intelligence: Un-
derstanding, visualizing and interpreting deep learning models,” arXiv preprint,
arXiv:1708.08296, 2017.

[91] R. Iyer, Y. Li, H. Li, M. Lewis, R. Sundar, and K. Sycara, “Transparency and explanation
in deep reinforcement learning neural networks,” in Proceedings of the 1st AAAI/ACM
Conference on Artificial Intelligence, Ethics, and Society, 2018.

[92] T. Huber, D. Schiller, and E. André, “Enhancing explainability of deep reinforcement
learning through selective layer-wise relevance propagation,” in Proceedings of the
Joint German/Austrian Conference on Artificial Intelligence (Künstliche Intelligenz),
pp. 188–202, 2019.

[93] S. Greydanus, A. Koul, J. Dodge, and A. Fern, “Visualizing and understanding atari
agents,” in Proceedings of the 35th International Conference on Machine Learning,
pp. 1792–1801, 2018.

[94] V. Goel, J. Weng, and P. Poupart, “Unsupervised video object segmentation for deep re-
inforcement learning,” in Advances in Neural Information Processing Systems, pp. 5683–
5694, 2018.

[95] A. Dethise, M. Canini, and S. Kandula, “Cracking open the black box: What observations
can tell us about reinforcement learning agents,” in Proceedings of the 2019 Workshop
on Network Meets AI & ML, pp. 29–36, 2019.

[96] M. T. Ribeiro, S. Singh, and C. Guestrin, ““why should i trust you?”: Explaining the
predictions of any classifier,” in Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, (New York, NY,
USA), pp. 1135–1144, ACM, 2016.

[97] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video streaming with pen-
sieve,” in Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, pp. 197–210, 2017.

[98] A. Atrey, K. Clary, and D. Jensen, “Exploratory not explanatory: Counterfactual analysis
of saliency maps for deep rl,” in Proceedings of the 8th International Conference on
Learning Representations, 2020.

113

[99] W. Shi, Z. Wang, S. Song, and G. Huang, “Self-supervised discovering of causal features:
Towards interpretable reinforcement learning,” arXiv preprint, arXiv:2003.07069, 2020.

[100] A. Mott, D. Zoran, M. Chrzanowski, D. Wierstra, and D. J. Rezende, “Towards in-
terpretable reinforcement learning using attention augmented agents,” in Advances in
Neural Information Processing Systems, pp. 12329–12338, 2019.

[101] Z. Yang, S. Bai, L. Zhang, and P. H. Torr, “Learn to interpret Atari agents,” arXiv preprint
arXiv:1812.11276, 2018.

[102] X. Wang, Y. Chen, J. Yang, L. Wu, Z. Wu, and X. Xie, “A reinforcement learning frame-
work for explainable recommendation,” in Proceedings of the 2018 IEEE International
Conference on Data Mining (ICDM), pp. 587–596, 2018.

[103] Y. Tang, D. Nguyen, and D. Ha, “Neuroevolution of self-interpretable agents,” arXiv
preprint, arXiv:2003.08165, 2020.

[104] R. M. Annasamy and K. Sycara, “Towards better interpretability in deep q-networks,” in
Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-19), vol. 33,
pp. 4561–4569, 2019.

[105] S. Jain and B. C. Wallace, “Attention is not explanation,” in Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pp. 3543–3556,
2019.

[106] M. L. Olson, L. Neal, F. Li, and W.-K. Wong, “Counterfactual states for atari agents via
generative deep learning,” in Proceedings of the 28th International Joint Conference on
Artificial Intelligence Workshop on Explainable Artificial Intelligence, 2019.

[107] C. Rupprecht, C. Ibrahim, and C. J. Pal, “Finding and visualizing weaknesses of deep
reinforcement learning agents,” in Proceedings of the 8th International Conference on
Learning Representations, 2020.

[108] T. M. Mitchell and S. B. Thrun, “Explanation-based neural network learning for robot
control,” in Advances in Neural Information Processing Systems, pp. 287–294, 1993.

[109] A. L. Strehl, C. Diuk, and M. L. Littman, “Efficient structure learning in factored-state
mdps,” in Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI-07),
pp. 645–650, 2007.

[110] J. Chen, S. E. Li, and M. Tomizuka, “Interpretable end-to-end urban autonomous driving
with latent deep reinforcement learning,” arXiv preprint, arXiv:2001.08726, 2020.

[111] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere, “Distal explanations for explainable
reinforcement learning agents,” arXiv preprint, arXiv:2001.10284, 2020.

114

[112] D. Dannenhauer, M. W. Floyd, M. Molineaux, and D. W. Aha, “Learning from ex-
ploration: Towards an explainable goal reasoning agent,” in Proceedings of the 27th
International Joint Conference on Artificial Intelligence Workshop on Adaptive Learning
Agents, 2018.

[113] T. Degris, O. Sigaud, and P.-H. Wuillemin, “Learning the structure of factored markov
decision processes in reinforcement learning problems,” in Proceedings of the 23rd
International Conference on Machine Learning, pp. 257–264, 2006.

[114] T. Hester, M. Quinlan, and P. Stone, “Generalized model learning for reinforcement learn-
ing on a humanoid robot,” in Proceedings of the 2010 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2369–2374, 2010.

[115] F. Cruz, R. Dazeley, and P. Vamplew, “Memory-based explainable reinforcement learn-
ing,” AI 2019: Advances in Artificial Intelligence, 2019.

[116] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere, “Explainable reinforcement learn-
ing through a causal lens,” in Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI-20), 2020.

[117] A. Anderson, J. Dodge, A. Sadarangani, Z. Juozapaitis, E. Newman, J. Irvine, S. Chat-
topadhyay, A. Fern, and M. Burnett, “Explaining reinforcement learning to mere mortals:
An empirical study,” in Proceedings of the 28th International Joint Conference on
Artificial Intelligence, 2019.

[118] H. Zhan and Y. Cao, “Relationship explainable multi-objective reinforcement learning
with semantic explainability generation,” arXiv preprint, arXiv:1909.12268, 2019.

[119] B. Beyret, A. Shafti, and A. A. Faisal, “Dot-to-dot: Explainable hierarchical reinforce-
ment learning for robotic manipulation,” in Proceedings of the 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2019.

[120] G. Dao, I. Mishra, and M. Lee, “Deep reinforcement learning monitor for snapshot
recording,” in Proceedings of the 2018 17th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 591–598, IEEE, 2018.

[121] O. Gottesman, J. Futoma, Y. Liu, S. Parbhoo, L. A. Celi, E. Brunskill, and F. Doshi-Velez,
“Interpretable off-policy evaluation in reinforcement learning by highlighting influential
transitions,” arXiv preprint, arXiv:2002.03478, 2020.

[122] S. Huang, D. Held, P. Abbeel, and A. Dragan, “Enabling robots to communicate their
objectives,” in Autonomous Robots, pp. 309–326, 2019.

[123] D. Amir and O. Amir, “Highlights: Summarizing agent behavior to people,” in Pro-
ceedings of the 17th International Conference on Autonomous Agents and Multiagent
Systems, pp. 1168–1176, International Foundation for Autonomous Agents and Multia-
gent Systems, 2018.

115

[124] S. H. Huang, K. Bhatia, P. Abbeel, and A. D. Dragan, “Establishing appropriate trust
via critical states,” in Proceedings of the 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3929–3936, IEEE, 2018.

[125] P. Sequeira and M. Gervasio, “Interestingness elements for explainable reinforce-
ment learning: Understanding agents’ capabilities and limitations,” arXiv preprint
arXiv:1912.09007, 2019.

[126] I. Lage, D. Lifschitz, F. Doshi-Velez, and O. Amir, “Exploring computational user
models for agent policy summarization,” in Proceedings of the 28th International Joint
Conference on Artificial Intelligence, 2019.

[127] A. Koul, S. Greydanus, and A. Fern, “Learning finite state representations of recurrent
policy networks,” arXiv preprint, arXiv:1811.12530, 2018.

[128] T. Zahavy, N. Ben-Zrihem, and S. Mannor, “Graying the black box: Understanding dqns,”
in Proceedings of the 33rd International Conference on Machine Learning, 2016.

[129] S. Sreedharan, S. Srivastava, and S. Kambhampati, “Tldr: Policy summarization for
factored ssp problems using temporal abstractions,” 2020.

[130] L. Li, T. J. Walsh, and M. L. Littman, “Towards a unified theory of state abstraction for
mdps,” in Proceedings of the 9th International Symposium on Artificial Intelligence and
Mathematics, 2006.

116

	Introduction
	Thesis Question
	Motivating Example
	Problem Description
	Benefits of Explanations
	Benefit of Unified Explanation

	Approach
	Decision Tree Policies
	Abstract Policy Graphs
	Importance Scores for Past Experiences
	Unification

	Contributions
	Thesis Outline

	Preliminaries
	Background
	Markov Decision Processes
	Reinforcement Learning

	Environments
	PrereqWorld
	PotholeWorld
	CartPole

	Decision Tree Policies via DRL
	Motivation
	Decision Trees and Decision Tree Policies
	Downsides of Past Approaches
	Benefits of a Meta-Problem Approach

	Approach: CUSTARD
	Iterative Bounding MDPs
	Tree Extraction
	Training Procedure

	Experiments
	Learning with CUSTARD
	Response to Environment Size
	Response to Tree Depth

	Summary

	Abstract Policy Graph Creation
	Motivation
	Approach: APG-Gen
	Feature Importance Function
	Abstract Policy Graphs
	APG Construction
	Abstract State Summarization
	Computational Complexity

	Experiments
	Experimental Settings
	Local Explanation Generalization
	n-hop Prediction Evaluation
	Explanation Size

	Summary

	Unified Explanation Trees
	Motivation
	Approach: Unified Explanation Trees
	Extracting a Forest via APG-Gen
	Extending a DTP with an Abstract Policy Forest
	Initializing APG-Gen with Leaves from a DTP

	Experiments
	Explanation Size
	Split Effectiveness

	Summary

	Importance and Influence in Neural Networks
	Motivation
	Problem Formulation
	General Notation
	Influence
	Importance
	Representer Point Selection

	Approach: MRPS
	Reparameterize Last Layer in Terms of Exemplar Points
	Remove Alpha Sensitivity to Weight Rescaling
	Compute Importance based on Larger Portion of Network

	Experiments
	Baseline Approaches
	Dataset Creation
	Experiment Setup
	Evaluation Metrics
	Results

	Summary

	Importance and Influence for Unified Explanation Trees
	Motivation
	Problem Formulation
	Notation for Reinforcement Learning Setting
	Influence/Importance at a Tree Node

	Approach: Influence for CUSTARD Nodes
	Regression in Q-learning
	Ordinary Least Squares and Ridge Regression
	Explaining CUSTARD
	Computing Exact Influence

	Approach: Influence for APG-Gen Nodes
	Feature Importance and MRPS Decomposition
	Initial Influence Estimate
	Influence while Accounting for Change in Q
	Accounting for Change in Alpha Values
	Exact Influence Computation

	Experiments
	Identifying Most Influential Experiences
	Ranking Influential Experiences

	Summary

	Related Work
	Per-Action Feature Importance Explanation
	Post-hoc Conversion to Explainable Format
	Learn as Inherently Explainable Format
	Directly Generating an Explanation

	Explanations in Terms of MDP or Learning Process
	Modeling of Domain Information
	Decomposition of Reward Function
	Identification of Important Training Points

	Policy-level Behavior Explanations
	Summarization via Set of Transition Tuples
	Conversion of RNN to Finite State Machine
	Extraction of Clusters or Abstract States

	Comparison with Our Work

	Conclusions and Future Work
	Contributions
	Decision Tree Policies
	Abstract Policy Graphs
	Importance Scores for Past Experiences
	Unified Explanation Trees
	Domains and Evaluation

	Future Work
	Extending UETs to Continuous Features
	Extending UETs to Continuous Actions
	Enabling Efficient Intervention via Experience Removal/Addition
	Applying to ``Learning from Demonstrations'' Problem
	Applying to Health and Finance Domains

	Summary

	Bibliography

