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Abstract

Deep learning (DL) has become one of the most successful and widely-adopted
methods in modern artificial intelligence. Accompanying these successes are also
increasingly complex and costly architectural designs, at the foundation of which has
been a core concept: layers. This thesis challenges this fundamental role of layers,
and provides an in-depth introduction to a new, layer-less paradigm of deep learning
that computes the output as the fixed point of a dynamical system: deep equilibrium
(DEQ) models.

First, we introduce the general formulation of deep equilibrium models. We
discuss how these models express “infinite-level” neural networks, decouple forward
and backward passes, yet with the cost and design complexity of one traditional
layer— even in some of the most competitive settings (e.g., language modeling,
semantic segmentation, etc.).

Second, we further discuss the challenges and opportunities such an equilibrium
approach poses. We show that the DEQ formulation reveals numerous new properties
of deep learning that were long buried by the traditional layer-stacking scheme.
Exploiting them allows us to train and deploy these new and lightweight equilibrium
algorithms in ways that significantly complements the existing developments in deep
learning, and enables us to improve results on multiple fronts at the state-of-the-art
level (e.g., optical flow estimation).

The DEQ approach has already led to a new research area on implicit deep
learning in the community (e.g., a NeurIPS 2020 tutorial), on both theoretical and
empirical ends. We thus conclude this thesis by discussing how future work could
further leverage this equilibrium perspective to build more scalable, efficient and
accurate next-generation DL algorithms, including to scientific computing, which are
often characterized by solutions to complex, high-dimensional dynamical systems.
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Chapter 1

Introduction

The past decade has witnessed an explosive rate of growth in the research and development of
modern deep learning methods. Central to almost all of them (and perhaps the deep learning
universe so far), however, is a key concept and basic unit that no model architect can avoid: layers.
Specifically, the deep models are built by stacking many layers together, which creates a gigantic
architecture designed to fit some particular tasks. For example, deep convolutional networks
are made up of several convolutional layers and other non-linear or regularizational components
like ReLU [175], normalizations [13, 110, 246] and dropout [214]. These components are then
connected in multiple ways (e.g., ResNets [96], U-Nets [195]) to extract feature maps, typically
following a complicated schedule (e.g., when to downsample/upsample, how many stages, and
which layers in each stage). Meanwhile, different kinds of layer designs have emerged, like the
multi-head self-attention [233], and graph layers [124, 202]. The most famous AI applications in
the past few years, such as high-resolution image synthesis [118], protein structure prediction [117]
and text generation [32], all contain hundreds, thousands or more of these basic units.

On a high level, such a layer-based view regard deep networks as a huge computation
graph, with a prescribed, detailed instructions on how we compute the output from input (like
a calculator). However, this creates numerous challenges. First, it is often the model architects’
responsibility to construct, as a hyperparameter, the depth and connectivity of a deep network.
This quickly adds up complexity to the design, use and testing of these models, especially as they
grow large [96, 220, 233, 250]. Second, these networks all rely on an algorithm called gradient
backpropagation [89, 197] to train. This entails deep networks to memorize all intermediate layer
activations in the forward pass to traverse the computation graph in reverse [46]. This frequently
creates a memory footprint bottleneck, since the memory consumption will grow quickly with
the architecture depth and reach the hardware limits. Third, such layer composition makes deep
networks rather inelastic, as they have to perform the same amount of computation regardless
of the complexity of the input (e.g., see Fig. 1.1). For example, we cannot simply skip a layer
(unless we add more layers that help us control this, like SkipNet [238]), as any such arbitrary
removal would make the model function differently from how it was trained.

Despite these disadvantages, layers have been deeply stacked regardless and considered
indispensable to modern deep learning for the following reasons:

• Expressivity. It was long believed that composing many layers lays the foundation for
modeling complex input-output mappings (which are frequently non-linear) [89, 102].
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(E.g., a self-driving car)
Frame 1 (t=0) Frame 2 Frame 3

20 LAYERS 20 LAYERS 20 LAYERS

Figure 1.1: Imagine an autonomous vehicle. As it receives and processes streaming camera
frames, each frame needs to go through the exact same deep network computation graph (say 20
layers). However, the inputs are highly-correlated and almost identical. The layer-based deep
learning is causing the model to repeat the same amount of work over and over again. Images
from the Cityscapes [53] dataset.

• Feature hierarchy. A common view is that layers represent resolutions. For example, Lee
et al. [136] hypothesized that different levels extract different abstractions of an image.

• Scalability. To build large-scale models, we rely on the capability of flexibly connecting
a lot of layers; very deep training has been shown to be feasible with techniques like
normalizations [13, 110], residual connection [96], etc.

This thesis aims to revisit this fundamental concept of layers. A key question that we tackle is
the following: Do we even need layers at all?

We propose a new, implicit, layer-less approach to deep learning, dubbed the deep equilibrium
(DEQ) models. Through this equilibrium approach, we essentially present a yet different way of
doing deep learning, and how these deep networks can be built and analyzed as algorithms (rather
than calculators). These DEQ models represent infinitely deep neural networks, but with only a
single layer that is modeled implicitly (defined slightly later). Such implicitness in deep learning,
we show, allows us to keep the three aforementioned properties (expressivity, feature hierarchy
and scalability in real-world settings) even without layers, while correcting the major drawbacks
(e.g., memory footprint) that traditional DL suffers from.

For the rest of this chapter, we first elaborate on what “implicitness” means in a deep learning
context, as well as an overview of the prior work related to this direction. Then, we provide a
general roadmap of this thesis, which we hope will serve as a blueprint for the past, present and
future of deep implicit layers.

1.1 Implicit Perspectives on Deep Learning

In this section, we provide a brief survey of the past related works on implicit and continuous
perspectives of deep learning methods. As shall be introduced in Chapter 2, the DEQ model can
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be viewed as an infinitely deep network, but also a single-layer network, with the caveat that this
layer is defined implicitly: given input x and a (usually parameterized) function F, the output z⋆

is defined as the value which solves some non-linear equation, i.e.,

z⋆ = Find z⋆ such that F(z⋆; x) = 0 (1.1)

In particular, implicit modeling of hidden states has been explored by the deep learning community
for decades, especially in the recurrent network context. Pineda [186] and Almeida [4], for
example, studied implicit differentiation techniques for training recurrent dynamics, also known
as recurrent back-propagation (RBP). In these cases, the RNNs are structured (e.g., via Lyapunov
functions) so that their inference stage is a provably convergent dynamical system, and one needs
to solve for the steady state of an RNN sequence (which absorbs the same input at each time
step). Following these works, Liao et al. [144] also extend the RBP theory to stabler and more
efficient variants based on Neumann series and conjugate gradients (and primarily studied their
relationship with truncated backpropagation-through-time (TBPTT) in these RNNs). Zhang et al.
[263] similarly also enforce fixed point conditions within RNN architectures. However, these
RNNs could only be applied to the extremely limited settings where the same input comes in at
every time step, which is rarely the case in practice (e.g., textual data, time-series, etc.).

The implicit approaches to network design have recently attracted renewed interest in very
different forms and contexts. Amos and Kolter [6], Gould et al. [90], Johnson et al. [116] all
propose to differentiate through an optimization problem (i.e., the arg min operator), thus treating
Eq. (1.1) as optimality (e.g., KKT) conditions. Amos and Kolter [6], for instance, proposes to
solve a quadratic program (QP) in each individual layer of a deep network; e.g., given hidden
state z[i] from the previous layer, the layer i + 1 of an OptNet [6] computes the following QP:

z[i+1] = arg min
z

1
2

z⊤Q(z[i])z + q(z[i])⊤z (1.2)

subject to A(z[i])z = b(z[i]) (1.3)

G(z[i])z ≤ h(z[i]) (1.4)

where z[i] is the optimization (hidden) variable, and Q ⪰ 0, q, A, b, G, h are parameters that define
this QP optimization layer. Differentiation through this layer immediately follows from Eq. (1.1)
(when Q ≻ 0) as we can differentiate through its KKT equation K(z⋆, ν⋆, λ⋆) = 0, where ν, λ are
Lagrangian dual variables that correspond to constraints (1.3) and (1.4). With a similar spirit, Wang
et al. [237] embeds a optimization-based layer for logical structure learning; de Avila Belbute-
Peres et al. [60], Qiao et al. [188] uses these more structured layers to build differentiable physics
engines (e.g., one can simulate constrained rigid body dynamics as a linear complementarity
problem (LCP) [52, 54] layer in a deep autoencoder network [60]). El Ghaoui et al. [69] looks
at such implicit layers in a broad well-posed sense and focuses on training small models via
Lagrangian methods. These optimization layers are usually embedded as a specialized layer in
a conventional deep architecture, customized for a specific problem domain, and whose strong
structural assumptions (e.g., QP [6]) significantly limit their expressivity and scalability.

Another related thread of work formulates Eq. (1.1) to capture differential equations, thus
representing a continuous deep neural network. This perspective was first theoretically stud-
ied by LeCun et al. [133], with later works propose to interpret ResNet [96] architectures as
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discretizations of ordinary differential equation (ODE) solvers to exploit their reversibility and
architectural variants. More recently, this interpretation is significantly advanced by the Neural
ODE approach [45], which directly uses black-box ODE solvers and adjoint methods for direct
differentiation through an ODE solution (and hence, integration with auto-differentiation pack-
ages). Specifically, a Neural ODE solves the following initial value problem (IVP) of the hidden
state z:

∂z(t)
∂t

= fθ(z(t), t), z(0) = x (1.5)

where fθ is a parameterized layer that can take flexible forms, and z⋆ = z(T) =
∫ T

0 fθ(z(t), t) dt
(i.e., computing this continuous network amounts to integrate this layer from t = 0 to T).
Equivalently, these ODEs admit an implicit general solution F(x, z⋆, T) = 0. This Neural ODE
formulation has since been improved [67, 121] and successfully applied in many settings, such
as fluid dynamics [35] and continuous generative modeling [91]. However, due to the inherent
challenge in solving high-dimensional ODEs, these methods are not yet efficient [67, 77, 121]
or scalable to more realistic domains (e.g., one needs about 100 ODE solver iterations just for
CIFAR-10 32 × 32 image classification).

The work we present in this thesis takes a new approach to Eq. (1.1). Whereas characterizing it
as optimality conditions yields optimization-based layers; and differential equations yields Neural
ODEs; we introduce a fixed-point equation formulation that yields “infinite-layer” equilibrium
feature states; i.e., for a layer fθ, F(z⋆, x) = fθ(z⋆; x)− z⋆ = 0. We hence call the resulting
algorithm deep equilibrium models. With such formulation, we show that DEQ models:

1. Use exactly one such standalone implicit layer fθ as the entire architecture (in contrast to
the traditional layer stacking);

2. Perform competitively, or even better, on numerous realistic tasks, such as language
modeling, image classification, semantic segmentation, implicit neural representations, and
optical flow estimation;

3. Reveal numerous new properties (e.g., fixed-point recycle) that were long buried by
conventional deep learning that allow us to compute deep networks in both memory-wise
and computationally efficient ways.

The deep equilibrium models, we show, exemplify a fully implicit deep learning architecture that,
unlike these prior exploration, has one and only one implicit layer as the entire architecture, and
works on the most competitive level and scale. Fig. 1.2 contrasts the conventional (explicit) deep
learning which stacks a huge number of operators, and the implicit DEQ models which solve an
underlying dynamical system to model the output.

This thesis provides the first in-depth analysis of the benefits, applications, extensions and
challenges that this new approach faces. We demonstrate the significant improvements DEQ
models bring to implicit modeling’s performance, scalability, efficiency, flexibility, representa-
tional capacity, and more. Our research on implicitness suggests a way for us to model infinitely
complex concepts (e.g., that of a fixed point) via finite computations, and the layer-less approach
posits an exciting new paradigm of deep learning computations.
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Figure 1.2: Conventional deep neural networks vs. an implicit deep equilibrium (DEQ) model. A
deep equilibrium model defines an underlying dynamical system, and could take any solver path
(e.g., Newton, quasi-Newton, etc.) leading to the fixed-point.

1.2 Our Contributions

In Part I of this thesis, we will discuss multiple findings and motivations that culminate
in the fundamentals of deep equilibrium models (i.e., their generic formulations). While
implicitness has been previously leveraged in deep learning as optimization-driven transformations
(Section 1.1), we start from the very successes (and premises) of existing deep learning and their
trend: very deep— potentially infinite-layer— neural networks. More specifically:

1. In Chapter 2, we will derive how infinitely deep neural networks could be represented by
an equilibrium network that computes the fixed-point of a layer. We will provide arguments
for the universality of this one-layer approach, and (importantly) how such fixed-point
computation could be differentiated through directly at the final output using implicit
function theorem (IFT). We further discuss the implication this has on the forward and
backward passes of DL training (which shall be heavily exploited in Chapter 5, 6 and 7.

2. Given the general formulation of DEQ models, we will show in Chapter 2 and 3 how
they subsumes a wide range of modern and complex layer designs (e.g., multi-head self-
attention [233]) in large-scale realistic settings. In Chapter 3, we study how to enable
the equilibrium networks, which forego a deep sequence of layers, to be able to represent
feature hierarchy. We will expand upon the DEQ construction in Chapter 2 substantially
to introduce simultaneous equilibrium modeling; i.e., we directly optimize for stable
representations on all feature scales at the same time, and provide natural interfaces for
auxiliary losses and compound training procedures.

Therefore, the first part of this thesis will put a lot of emphasis on the representational power of
these equilibrium approaches and their fundamental differences from the traditional deep learning.
A powerful message that we hope to send is, “one layer is all you need”.

In Part II of this thesis, we discuss more in-depth the implications of such implicit perspective of
deep learning. As these equilibrium networks decouple the forward and backward passes of the
training process (i.e., one can train the model even just with the final output), we will demonstrate
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that this leads to several new challenges and opportunities that traditional neural networks have
not faced before. In particular:

1. Chapter 4 will start by discussing some novel problems introduced by the equilibrium
approach that do not exist in conventional deep learning methods, such as convergence
stability and the choice (and cost) of the solver. We will provide a number of empirical
evidence that reflects how DEQ models could turn increasingly unstable (i.e., get “deeper”)
as training progresses and how this worsens several other problems, while outlining a
principle to stabilize the dynamical systems of DEQ models by a regularization-based
solution pursuant to these models’ implicitness.

2. The one-layer structure of deep equilibrium models could liberate these models from
the costly chain-rule backpropagation process that constitute the learning overhead of
conventional deep learning. In Chapter 5, we introduce the notion of approximate
gradient (a.k.a. “phantom” gradient or inexact gradient) that allows us to approximate
the aforementioned implicit function theorem (IFT) extremely efficiently. We will
theoretically justify the feasibility of these approximations, which render the backward
pass of equilibrium models 5× faster or almost free, a property that conventional neural
networks do not have at all.

3. On a parallel thread, these implicit networks also enables decoupling the internal structure
of the layer fθ (which controls representational capacity) from how the fixed point is
actually computed (which impacts inference-time efficiency), which is usually via classic
techniques such as Broyden’s method [34]. In Chapter 6 we show that one can exploit
such decoupling and substantially enhance this fixed point computation using a custom
neural solver that can be trained end-to-end in an unsupervised manner.

Combining these discussions on the DEQ models, in Part III of this thesis we will demonstrate
how these insights can be translated into a variety of applications and extensions (in addition to
the large-scale settings Part I & II). We will additionally demonstrate a key advantage of DEQ
models in practice, across various data modalities: adaptive computation. While conventional deep
networks need to go through a prescribed computation graph regardless of the input complexity,
we show that the equilibrium approach could benefit significantly from highly-correlated data
and effectively recycle computations to amortize the cost. With all of these aforementioned
techniques:

1. In Chapter 7, we will show that a DEQ-based approach can be multiple times more
memory-wise and computationally efficient than, while improving the SOTA performance
of, the best conventional deep network on optical flow estimation tasks. We propose DEQ-
flow as a new framework that is compatible with the prior modeling efforts and replaces the
existing recurrent/unrolling procedure completely.

2. In Chapter 8, we will show that these implicit models better learn the implicit neural
representations (INR) for images, audios, videos and 3D models while with significantly
less training time and memory cost.

In Chapter 9, we provide a summary of all these contributions, while discussing some
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interesting “old questions” related to this new paradigm of deep learning. For example, traditional
neural networks were motivated by neurons in the human brain. Are DEQ models less “biological”
in any sense? As another example, how can these dynamical-system-view of deep learning best
applied in real life dynamical system? We offer some insights for these questions (and for future
research) in this final chapter.

With these theoretical and empirical explorations, we hope to be able to propose a different
form of deep learning as how this subject has been traditionally studied. Are layers necessary
to deep learning? This thesis suggests the answer is no. Or at least they are not the full picture.
We will show that these implicit equilibrium approaches are an important research agenda in
that current deep learning have some fundamental ceiling that has to be overcome, and that DEQ
models are frequently better by design.

These pioneering work included in this thesis has challenged the long-held view that layer-
based hierarchical architectural was a indispensable component of modern deep learning, and
has led to a new and quickly growing community called “implicit deep learning”, as well as a
NeurIPS 2020 official tutorial “Deep Implicit Layers” [68].

1.2.1 Other Contributions
We also briefly summarize here a list of other contributions during the graduate study that were
not extensively discussed in the thesis. Many of the work led (directly or indirectly) to the work
on implicit deep learning which this thesis focus on.

Sequence modeling [15, 16] . While recurrent networks have long been the dominant force and
default toolkit for sequence tasks, we revisit the convolutional approaches to sequence modeling.
We present one of the most extensive systematic comparisons of convolutional and recurrent
architectures [16] on numerous sequence tasks (from synthetic ones to extremely large-scale ones).
Specifically, we distill the best practices in modern ConvNets like residual blocks and dilations to
describe a simple temporal convolutional network (TCN). Our experimental results indicate that 1)
TCN models substantially outperform generic recurrent architectures such as LSTMs and GRUs;
and 2) the “infinite sequence memory” advantage of RNNs is largely absent in practice, while
TCNs exhibit much longer memory than recurrent architectures with the same capacity. Since its
introduction, the proposed generic TCN model has had a phenomenal impact on modeling modern
realistic time-series due to its various benefits (e.g., parallelism, good memory retention), and
still maintain state-of-the-art level performances in many domains as of today (especially where
extremely long-range information is present), such as in speech separation [153, 159], speech
recognition [51], speech enhancement [182], genomics modeling [71], text classfication [111],
lip reading [1], financial time-series [203, 243], dynamic recommender systems [255], human
trajectory prediction [173], and many more.

Deep learning architectures [17, 228] . We also present studies on the architectural properties
of the cutting-edge deep sequence models. In Bai et al. [17], we present trellis networks (Trel-
lisNet), which is a special TCN characterized by weight-tying and direct residual connections
from the input layer into deep layers. But on the other hand, we prove that truncated recurrent
networks are equivalent to trellis networks with special sparsity structures in their weight matrices.
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The TrellisNet architecture therefore bridges two major and seemingly incompatible families
of sequence models: recurrent and convolutional networks, and allows us to combine the best
practices from both worlds. In addition, in Tsai et al. [228], we study the Transformers from a
kernel smoother perspective and perform an in-depth dissection into the individual components of
these models’ self-attention mechanism and positional encoding.

Unaligned multimodal machine learning [227] . A major challenge in modeling multimodal
time-series is the fusion of feature representations from multiple modalities (e.g., visual, acoustic,
and textual time-series), which are asynchronized and usually require laborious human alignment.
We propose Multimodal Transformer (MulT) [227], which uses crossmodal attention to latently
adapt unaligned streams from one modality to another. This significantly reduces the requirement
for careful feature engineering (which frequently involves lots of domain knowledge) and we show
the attention-based multimodal learning can improve over prior methods by 5%-15% consistently.

Deep learning for scientific computing [30, 205] . We present graph transformer neural
network force field (GTFF) [205] as a computational algorithm for direct prediction of atomic
forces in molecular dynamics computer simulations in material systems. Although accurate
methodologies exist to calculate the underlying atomic forces and behaviors, they are also
extremely expensive because of the tremendous amount of computational resources necessary
to apply the approach (e.g., days or weeks per molecule). In contrast, our graph transformer
based method can be hundreds of thousands of times faster while losing almost no accuracy. This
contribution was made as a part of a Kaggle competition on Predicting Molecular Properties [30],
where our method won 1st place out of 2,737 participating teams.
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Part I

Equilibrium Approach Fundamentals:
Infinite Layers to One Layer

9





Chapter 2

Deep Equilibrium Models

Most modern feedforward deep networks are built on the core concept of layers. In the forward
pass, each network consists of a stack of some L transformations, where L is the depth of the
network. To update these networks, the backward passes rely on backpropagating through the
same L layers via the chain rule, which typically necessitates that we store the intermediate values
of these layers. The value for L is usually a hyperparameter and is picked by model designers
(e.g., ResNet-101 [96]).

In very general terms, a deep feedforward model can be written as the following iteration:

z[i+1] = f [i]θ

(
z[i]; x

)
for i = 0, 1, 2, . . . , L − 1 (2.1)

where i is the layer index; z[i] is the hidden state at layer i; x is the input data (i.e., we are choosing
to explicitly model skip connections, for reasons we explain later); and f [i]θ is some nonlinear
transformation. As these networks keep getting deeper (e.g., [32, 49, 96, 130]), one might ask:
what is the limit of this layer stacking process, and how do we model it?

In this chapter, we propose a new approach to “deep” modeling that addresses these questions.
We start in Sec. 2.1 with a preliminary discussion of how we could reduce from a very deep,
and potentially infinite-layer network to a one-layer network, corroborated by theoretical and
empirical evidence of the rationale behind this reduction. Then in Sec. 2.2, we formally introduce
the deep equilibrium (DEQ) models, which are at the core of this entire thesis. This equilibrium
method directly computes the fixed point z⋆ of a nonlinear transformation, i.e., the solution to the
nonlinear system

z⋆ = fθ(z⋆; x). (2.2)

As we shall see, this solution corresponds to the eventual hidden layer values of an infinite
depth network. But instead of finding this value by iterating the model, we propose to directly
(and in practice, more quickly) solve for the equilibrium via any black-box root-finding method.
Importantly, we show that DEQ can directly differentiate through the fixed point equations via
implicit differentation [128], which does not require storing any intermediate activation values. In
other words, we can backpropagate through the infinite-depth network while using only constant
memory, equivalent to a single layer’s activations.

After developing the generic DEQ approach, in the second half of this chapter we study
in detail the universality of these layer-less DEQ models’ representational capacities, and pro-
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vide two specific instantiations of this approach on realistic sequence tasks, based on temporal
convolutions [17] and multi-head self-attention [58, 61] architectures. With these results, we
formally establish the equilibrium approach, thereby offering a novel perspective on deep learning
algorithms and challenging the traditional notion of “layer stacking”. The results in this chapter
have been previously published in Bai et al. [18].

2.1 Preliminary: Infinite Layers to a Single Layer
To achieve our goal to go from infinite-layer networks to one-layer networks, we first broadly
consider the class of L-layer weight-tied deep models (with passthrough connections from the
input to each layer, also known as input injections), which consists of the update

z[i+1] = fθ(z[i]; x), i = 0, . . . , L − 1, z[0] (2.3)

In practice, such weight-tying has been generally considered to come with some major benefits.
For instance, it acts as a form of regularization and could significantly reduce the model size
(as a compression method). While this formulation seems to substantially constrain the class of
functions that deep learning could represent and hurt the model expressivity, there have been
numerous surprising recent works, in domains like computer vision and sequence modeling, that
employ the same transformation in each layer and still achieve results competitive with or better
than the state-of-the-art [17, 57, 61, 123, 131, 143, 221]. Such empirical claim is strengthened
with the following theoretical statement.

Theorem 1. (Universality of Weight-tied Deep Networks) Consider a traditional L-layer deep
network defined by the relation

z[i+1] = σ[i](W [i]z[i] + b[i]), i = 0, . . . , L − 1, z[0] = x (2.4)

where z[i] denotes the hidden features at depth i, W [i], b[i] are parameters of the network, σ[i] is
the non-linearity at depth i, and x is the original input. Then the same network can be represented
by a weight-tied, input-injected network of equivalent depth

z̃[i+1] = σ(Wzz̃[i] + Wxx + b̃), i = 0, . . . , L − 1. (2.5)

where σ, Wz, Wx and b̃ are constant (and shared) over all layers.

Proof. The proof is constructive: we build the weight-tied network equivalent to the original
network by contructing the relevant matrices using a simple “shift” operation. In particular, we
define the network parameters as

Wz =




0 0 . . . 0 0
W [1] 0 . . . 0 0

0 W [2] . . . 0 0
...

... . . . ...
...

0 0 . . . W [L−1] 0




, Wx =




W [0]

0
...
0


 , b̃ =




b[0]

b[1]

...
b[L−1]


 , σ =




σ[0]

σ[1]

...
σ[L−1]


 .

(2.6)
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Figure 2.1: The behavior of hidden states over infinite unrolling: the activations in TrellisNet [17]
and Universal Transformers [61] on sequence inputs with different lengths. The y-axis denotes
∥ fθ(z)− z∥; i.e., the change in hidden units as depth increases. Expectedly, longer sequences
contain more information and take longer to converge. For Transformers, the hidden unit conver-
gence stops at around 100 layers and the fixed-point oscillation starts.

It is clear from inspection that after L applications of the layer, i.e.,

z̃[i+1] = σ(Wzz̃[i] + Wxx + b̃) (2.7)

using these parameters the hidden vector z̃ will take on the value

z̃[L]
⊤
=

[
z[1] z[2]

... z[L]
]

. (2.8)

Thus the weight-tied network computes all the same terms as the original network, using the same
depth as the original network, and with a hidden unit size that is just the sum of the individual
hidden unit sizes in the original network. This establishes the claim of the theorem. ■

In other words, Theorem 1 shows that any conventional deep feedforward network can be
embedded in the weight-tied, input-injected form (of a wider layer Wz) with equivalent depth.
Note that the theorem is not advocating that we should do such weight-tying in practice, but that
we can: expressivity-wise, we do not lose anything by considering these repeated applications of
a layer.

Although these weight-tied networks can be unrolled to any depth, typically with improved
feature abstractions as depth increases [17, 57], in practice almost all such models (and deep nets
in general) are stacked, trained and evaluated by unrolling a pre-determined, fixed number of
layers. Like any deep network, this yields prescribed computation graphs that these deep networks
must abide by at training and inference times. One of the primary reasons is the need for the
models to store intermediate hidden units for backpropagation— and thus they cannot be trained
beyond a certain depth that depends on the available hardware memory.

In principle, the network could have infinite depth. This is attained in the limit of unrolling
a weight-tied model for an ever higher number of layers. But what is the limit of this process?
In practice, for many typical classes of fθ (discussed later), we observe that such weight-tied
models tend to converge to a fixed point as depth increases to infinity (e.g., see Fig. 2.1). This
reflects a phenomenon of “diminishing returns”: each additional layer has a smaller and smaller
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contribution over the feature abstraction (and accordingly, the level of performance), until the
network reaches an equilibrium:

lim
i→∞

z[i] = lim
i→∞

fθ(z[i]; x) ≡ fθ(z⋆; x) = z⋆ (2.9)

A heuristic argument behind this convergent phenomenon is that this kind of convergence pre-
cisely characterizes the stability of common deep networks: since we have developed network
architectures that are already stable for very deep stacking (e.g., ResNet-101 [96] and DenseNet-
264 [103]), we have in a sense already biased our design towards layers that tend to stable fixed
points (or they will quickly blow up anyway). Such hypothesis and observations provide the
key motivation for reducing an infinite-level network to a one-layer version, which we directly
characterize by the (implicit) solution to the fixed-point equation (2.9).

2.2 Deep Equilibrium Models
The goal of a deep equilibrium (DEQ) model is then to exactly solve for this fixed-point expression.
However, instead of iteratively stacking fθ itself, we advocate for directly solving the solution
variable z⋆ in Eq. (2.9) and differentiating through this equilibrium states, which allows us to
characterize output as an implicit function of the input x and parameters θ.

2.2.1 Forward Pass

Unlike a conventional network where the output is the activations from the Lth layer, the output of a
DEQ is the equilibrium point itself. Therefore, the forward evaluation could be any procedure that
solves for this equilibrium point. Conventional deep networks, if they converge to an equilibrium,
can be considered a simplest, naïve iterative solver:

z[i+1] = fθ

(
z[i]; x

)
for i = 0, 1, 2, . . . (2.10)

But alternatively, one can use other methods that provide faster convergence guarantees. For
notational convenience, we define the gθ as the residual function of fθ, and rewrite Eq. (2.9) as
gθ(z⋆; x)− z⋆ → 0. The equilibrium state z⋆ ∈ Rd is thus the root of gθ, which we can find
more easily (and via different trajectories) with Newton’s method or quasi-Newton methods (e.g.,
Broyden’s method [34]):

z[i+1] = z[i] − αBgθ(z[i]; x) (2.11)

where B is the inverse Jacobian at z[i] (or its low-rank update approximation; the idea is to use
gradient-related information about fθ to take a smarter step), and α the step size. But generally,
one can exploit any black-box root-finding algorithm to solve for the equilibrium point in the
forward pass, given an initial estimate z[0] (which we set to 0): z⋆ = RootFind(gθ; x).

In practice, the cost of computing the exact inverse Jacobian J−1
gθ

= (J fθ
− I)−1 ∈ Rd×d

can be prohibitive in high dimensions (in terms of both computation and memory storage).
Therefore, instead of relying on Newton’s method, we address this using quasi-Newton methods;
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for example, Broyden’s method makes low-rank updates to approximate J−1
gθ

via the Sherman-
Morrison formula [207]

J−1
gθ

(z[i+1]) =
(

J fθ
(z[i+1])− I

)−1 ≈ B[i+1] = B[i] +
∆z[i+1] − B[i]∆g[i+1]

θ

∆z[i+1]⊤B[i]∆g[i+1]
θ︸ ︷︷ ︸

d×1

∆z[i+1]⊤B[i]
︸ ︷︷ ︸

1×d

,

(2.12)
where ∆z[i+1] = z[i+1] − z[i] and ∆g[i+1]

θ = gθ(z[i+1]; x)− gθ(z[i]; x). Thus, Broyden’s method
allows us to conveniently store B by only these low-rank updates u, v of iteration: B[i+1] =

−I + ∑i
k=0 u[k]v[k]⊤. Other alternatives include Anderson Acceleration (AA) [8], which mixes

the past few steps of the residual by solving a tiny least-squared solution in each step greedily.
Other follow-up work on DEQ models have relied on different algorithms, such as Peaceman-
Rachford method [244]. We later show in Chapter 6 that this solving process itself can be
parameterized and trained, since the dynamical systems here are clearly input-dependent as well.

2.2.2 Backward Pass
A major problem with using a black-box fixed-point solver is that we are no longer able to rely
on explicit backpropagation through the exact operations in the forward pass. While one can
certainly fix an algorithm (say Newton’s method) to obtain the equilibrium, and then store and
backpropagate through all the Newton iterations, we provide below an alternative procedure based
on the implicit differentiation that is much simpler, requires constant memory, and assumes no
knowledge of the forward pass at all.

Theorem 2. (Gradient of DEQ; Implicit Function Theorem [128]) Let z⋆ ∈ Rd be an equilib-
rium point, and y ∈ Rq the ground-truth. Let h : Rd → Rq be any differentiable function (e.g., a
linear transformation) and let L : Rq × Rq → R be a loss function that computes

ℓ = L(h(z⋆), y) = L(h(RootFind(gθ; x)), y). (2.13)

Then the loss gradient with respect to (·) (a stand-in for any quantity we want to differentiate the
fixed point w.r.t.) is

∂ℓ

∂(·) = − ∂ℓ

∂z⋆
(

J−1
gθ

(z⋆)
)∂ fθ(z⋆; x)

∂(·) =
∂ℓ

∂h
∂h
∂z⋆

(
I − J fθ

(z⋆)
)−1 ∂ fθ(z⋆; x)

∂(·) . (2.14)

The insight provided by Theorem 2 is at the core of our method and its various benefits. Impor-
tantly, the backward gradient through the “infinite” stacking can be represented as one step of
matrix multiplication that involves the Jacobian at equilibrium. For instance, an SGD update step
on model parameters θ would be

θ+ = θ − α · ∂ℓ

∂θ
= θ + α

∂ℓ

∂z⋆
(

J−1
gθ

∣∣
z⋆
)∂ fθ(z⋆; x)

∂θ
. (2.15)

Note that this result is independent of the root-finding algorithm we choose or the internal structure
of the transformation fθ, and thus does not require any storage of the intermediate hidden states,
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which is necessary for backpropagation in conventional deep networks. We now proceed to
formally prove Thm. 2 below.

Proof. We first write out the equilibrium sequence condition: fθ(z⋆; x) = z⋆. By implicitly
differentiating two sides of this condition with respect to (·):

dz⋆

d(·) =
d fθ(z⋆; x)

d(·) =
∂ fθ(z⋆; x)

∂(·) +
∂ fθ(z⋆; x)

∂z⋆
dz⋆

d(·)

=⇒
(

I − ∂ fθ(z⋆; x)
∂z⋆

)
dz⋆

d(·) =
∂ fθ(z⋆; x)

∂(·)

Since gθ(z⋆; x) = fθ(z⋆; x)− z⋆, we have

Jgθ

∣∣
z⋆ = −

(
I − ∂ fθ(z⋆; x)

∂z⋆

)
,

which implies
∂ℓ

∂(·) =
∂ℓ

∂z⋆
dz⋆

d(·) = − ∂ℓ

∂z⋆
(

J−1
gθ

∣∣
z⋆
)∂ fθ(z⋆; x)

∂(·) .

■

Just like in the forward pass (see Sec. 2.2.1), to compute the implicit differentiation in practice
without explicit forming and inverting the Jacobian matrices, we can solve a linear fixed point
system involving variable u ∈ Rd:

u⊤ = u⊤ J fθ
(z⋆) +

∂ℓ

∂z⋆
(2.16)

= u⊤ ∂ fθ(z⋆; x)
∂z⋆

+
∂ℓ

∂z⋆
. (2.17)

The solution u⋆ of this linear system will be exactly the portion of implicit gradient highlighted
in red in Eq. 2.14, and the vector-Jacobian product u⊤ J fθ

(z⋆) can be efficiently computed via
autograd packages (e.g., PyTorch [185]). In fact, such a linear system can be solved by any indirect
methods that leverage fast matrix-vector products; e.g., we can also use Broyden’s method.

Memory cost of DEQ. Fig. 2.2 shows a generic comparison between conventional deep net-
works and the DEQ approach. Specifically, an important benefit of DEQ is its extreme memory
efficiency: to train a deep equilibrium network, we only need to store z⋆ (the equilibrium fea-
ture vector), x (input) and the fθ itself so that we can solve the backward fixed-point linear
system (2.16), where we never construct the Nd × Nd Jacobian inverse J−1

fθ
(where N is the size

of the mini-batch), but only require vector-Jacobian products. Compared to conventional deep
networks whose cost scale linearly with their depths, DEQs therefore offer a constant-memory
alternative which yet models infinite layers. This enables models that previously required multiple
GPUs and other implementation-based techniques (e.g., half-precision or gradient checkpoint-
ing [46]) to fit easily into even a single GPU.
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Figure 2.2: Comparison of the DEQ with conventional weight-tied deep networks.

2.2.3 Universality of Expressivity
Note that the above formulation yields one fixed-point layer (defined by fθ). A natural question
arises: since a single DEQ layer is as powerful as arbitrary stacked (infinite-level) explicit layers,
could we stack these DEQ layers (with potentially different classes of transformations) to obtain
something even more powerful? The answer, somewhat surprisingly, is no; in fact, a single DEQ
layer can model any number of “stacked” DEQ layers as well. This is evidenced formally by the
following theorem.

Theorem 3. (Universality of “single-layer” DEQs.) Let x ∈ Rp be the input, and θ[1], θ[2] the
sets of parameters for stable (but potentially different) transformations fθ[1] : Rr × Rp → Rr

and vθ[2] : Rd × Rr → Rd, respectively. Then there exists ΓΘ : Rd+r × Rp → Rd+r, where
Θ = θ[1] ∪ θ[2], s.t.

z⋆ = RootFind
(

g f
θ[2]

;RootFind
(

gv
θ[1]

; x
))

= RootFind
(

gΓ
Θ; x

)
[−d:] (2.18)

where [·][−d:] denotes the last d feature dimensions of [·].

Proof. We again provide a constructive proof. Assume z[1]⋆ = RootFind
(

g f
θ[1]

; x
)
∈ Rr is the

equilibrium of the first DEQ module under transformation fθ[1] . Define Θ = θ[1] ∪ θ[2], and a new
“wider layer” ΓΘ(w; x) : Rd+r × Rp → Rd+r by:

ΓΘ(w; x) = ΓΘ

( [
w(1)

w(2)

]
; x
)
=

[
fθ[1](w

(1), x)
vθ[2](w

(2), w(1))

]
(2.19)

Then w⋆ =

[
z[1]⋆

z⋆

]
is a fixed point of ΓΘ(·; x), which completes the proof. ■
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The theorem essentially shows that stacking multiple DEQs does not create extra represen-
tational power over a single-layer DEQ (as long as fθ is expressive enough), and one (implicit)
layer is all you need. Indeed, we next show that DEQ models embedded with representative
structures of fθ (e.g., based on the Transformer block) typically perform as competitively, or even
better, than traditional neural networks of the same size.

2.3 Instantiations of DEQ
While the previous analyses of DEQ do not depend on the internal structure of fθ, in this
section we briefly highlight two examples of fθ as specific instantiations of DEQ. Both models
(TrellisNet [17] and self-attention [61, 233]) achieve state-of-the-art results on various sequence
modeling benchmarks (where data are sequences of length T, denoted x1:T). In the later chapters
of this thesis (e.g., Chapter 3, 7 and 8), we shall see more versions of the DEQ models applied to
different data modalities.

Trellis networks. We briefly introduce the trellis network (TrellisNet) here and refer interested
readers to [17] for a detailed description. Generally, TrellisNet is a special kind of temporal
convolution that generalizes recurrent neural networks(RNNs) and their variants (e.g., GRUs [50],
LSTMs [99]). We can write TrellisNet with convolutional kernel size k, dilation s, and nonlinearity
ψ in DEQ form as

x̃1:T = Input injection (i.e., linearly transformed inputs by Conv1D(x1:T; Wx))
fθ(z1:T; x1:T) = ψ(Conv1D([u−(k−1)s:, z1:T]; Wz) + x̃1:T)

where u−(k−1)s: is typically: 1) the last (k − 1)s elements of the previous sequence’s output
(if using history padding [17]); or 2) simply zero-padding. [·, ·] means concatenation along the
temporal dimension. Following [17], we use the LSTM gated activation for ψ.

Weight-tied transformers. At a high level, multi-head self-attention transformers [233] are
very different from most deep networks. Instead of convolutions or recurrence, a self-attention
layer maps the input into Q (query), K (key), and V (value) and computes the attention score
between time-steps ti and tj as [QK⊤]i,j. This attention score is then normalized via softmax and
multiplied with the V sequence to produce the output. Since the transformer is order-invariant,
prior work proposed to add positional embeddings (PE) [58, 233] to the self-attention operation.
While referring readers to [58, 61, 233] for more details, we write a transformer block in the DEQ
form as

x̃1:T = Input injection (i.e., linearly transformed inputs by x1:TWx)
fθ(z1:T; x1:T) = LN(ϕ(LN(SelfAttention(z1:TWQKV + x̃1:T; PE1:T))))

where WQKV ∈ Rd×3d produces the Q, K, V for the multi-head self-attention, and LN stands
for layer normalization [13]. Note that we add input injection x̃1:T to Q, K, V in addition to
the positional embedding and initialize with z[0]1:T = 0. Following prior work [58, 61, 63, 233],
we adopt a positionwise feedforward residual block for ϕ. In our implementation, we use the

18



Table 2.1: DEQ achieves strong performance on the long-range copy-memory task.

Models (Size)
DEQ-Transformer (ours) (14K) TCN [16] (16K) LSTM [99] (14K) GRU [50] (14K)

Copy Memory T=400 Loss 3.5e-6 2.7e-5 0.0501 0.0491

memory-augmented transformer proposed by [58], where we feed [z⋆−T′ :, z1:T] (i.e., with history
padding of length T′) and relative positional embedding PE−T′ :T to the self-attention operation.

Figure 2.2b provides a generic comparison between these conventional weight-tied deep
networks and the DEQ approach, highlighting the constant memory requirements of the latter.

2.4 Experiments
We evaluate DEQ on both synthetic stress tests and realistic large-scale language modeling
(where complex long-term temporal dependencies are involved). We use the two aforementioned
instantiations of fθ in the equilibrium approach framework outlined in Sec. 2.2. On both WikiText-
103 [164] (which contains >100M words and a vocabulary size of >260K) and the smaller
Penn Treebank corpus (where stronger regularizations are needed for conventional deep nets) for
word-level language modeling, we show that DEQ achieves competitive (or better) performance
even when compared to SOTA methods (of the same model size, both weight-tied and not) while
using significantly less memory. A more detailed introduction of the tasks and datasets can be
found in Bai et al. [18].

Setting. Both instantiations of DEQ use Broyden’s method [34], as previously mentioned. For
the DEQ-TrellisNet instantiation, we roughly follow the settings of [17]. For DEQ-Transformers,
we employ the relative positional embedding [58], with sequences of length 150 at both training
and inference on the WikiText-103 dataset.

2.4.1 Copy Memory Task

The goal of the copy memory task is simple: to explicitly test a sequence model’s ability to exactly
memorize elements across a long period of time [10, 16, 260] (see Appendix F in Bai et al. [18]).
As shown in Table 2.1, DEQ demonstrates good memory retention (manifested by a significantly
lower reconstruction loss) over relatively long sequences (T = 400), with substantially better
results than recurrent architectures such as LSTM/GRU. This is consistent with the findings in Bai
et al. [16], while we note that a DEQ sequence model has only one Transformer layer modeled
implicitly.

2.4.2 Large-Scale Language Modeling

One issue encountered in prior works that take a continuous view of deep networks [45, 94] is
the challenge of scaling these approaches to real, high-dimensional, large-scale datasets. In this
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Table 2.2: DEQ achieves competitive performance on word-level Penn Treebank language
modeling (on par with SOTA results, without fine-tuning steps [166]). †The memory footprints
are benchmarked (for fairness) on input sequence length 150 and batch size 15, which does not
reflect the actual hyperparameters used; the values also do not include the memory for word
embeddings.

Word-level Language Modeling w/ Penn Treebank (PTB)

Model # Params
Non-embedding

Test perplexity Memory†
model size

Variational LSTM [82] 66M - 73.4 -
NAS Cell [269] 54M - 62.4 -

NAS (w/ black-box hyperparameter tuner) [162] 24M 20M 59.7 -
AWD-LSTM [166] 24M 20M 58.8 -

DARTS architecture search (second order) [148] 23M 20M 55.7 -

60-layer TrellisNet (w/ auxiliary loss, w/o MoS) [17] 24M 20M 57.0 8.5GB
DEQ-TrellisNet (ours) 24M 20M 57.1 1.2GB

subsection, we evaluate the DEQ approach on some large-scale language datasets and investigate
its effectiveness as a practical “implicit-depth” model.

Performance on Penn Treebank. Following the set of hyperparameters used by [17] for
TrellisNet, we evaluate the DEQ-TrellisNet instantiation on word-level language modeling with
the PTB corpus. Note that without an explicit notion of “layer”, we do not add auxiliary losses, as
was done in [17]. As shown in Table 2.2, when trained from scratch, the DEQ-TrellisNet achieves
a test perplexity on par with the original deeply supervised TrellisNet.

Performance on WikiText-103. On the much larger scale WT103 corpus (about 100x larger
than PTB), the DEQ-TrellisNet achieves better test perplexity than the original deep TrellisNet.
For the Transformer instantiation, we follow the design of the Transformer-XL model [58]. We
specifically compare to a “medium” Transformer-XL model (the largest released model that can
fit on GPUs) and a “small” Transformer-XL model, while noting that the largest Transformer-XL
network has massive memory requirements (due in part to very wide hidden features, batch sizes,
and training-time sequence lengths, which would not be decreased by a DEQ) and can only be
trained on TPUs [58]. In Table 2.3, we show that the DEQs yield competitive performance,
outperforming prior SOTA approaches such as [58] on similar model sizes while consuming much
less memory during training.

Memory footprint of DEQ. For conventional deep networks with L layers, the training memory
complexity is O(L) since all intermediate activations are stored for backpropagation. In com-
parison, DEQs have an O(1) (i.e., constant in depth) memory footprint due to the root-finding
formulation. We benchmark the reduced memory consumption in the last column of Tables 2.2
and 2.3, with controlled sequence lengths and batch sizes for fairness. On both instantiations,
the DEQ approach leads to an over 80% (up to 88%) reduction in memory consumption by the
model (excluding word embeddings, which are orthogonal to the comparison here). Moreover,
we empirically verify (using a 70-layer TrellisNet) that DEQ consumes even less memory than
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Table 2.3: DEQ-based models are competitive with SOTA deep networks of the same model size
on the WikiText-103 corpus, with significantly less memory. †See Table 2.2 for more details
on the memory benchmarking. Transformer-XL models are not weight-tied, unless specified
otherwise. A visualization of this table is also shown in Fig. 2.3.

Word-level Language Modeling w/ WikiText-103 (WT103)

Model # Params
Non-Embedding

Test perplexity Memory†
Model Size

Generic TCN [16] 150M 34M 45.2 -
Gated Linear ConvNet [59] 230M - 37.2 -

AWD-QRNN [165] 159M 51M 33.0 7.1GB
Relational Memory Core [201] 195M 60M 31.6 -

Transformer-XL (X-large, adaptive embed., on TPU) [58] 257M 224M 18.7 12.0GB

70-layer TrellisNet (+ auxiliary loss, etc.) [17] 180M 45M 29.2 24.7GB
70-layer TrellisNet with gradient checkpointing 180M 45M 29.2 5.2GB

DEQ-TrellisNet (ours) 180M 45M 29.0 3.3GB

Transformer-XL (medium, 16 layers) 165M 44M 24.3 8.5GB
DEQ-Transformer (medium, ours). 172M 43M 24.2 2.7GB

Transformer-XL (medium, 18 layers, adaptive embed.) 110M 72M 23.6 9.0GB
DEQ-Transformer (medium, adaptive embed., ours) 110M 70M 23.2 3.7GB

Transformer-XL (small, 4 layers) 139M 4.9M 35.8 4.8GB
Transformer-XL (small, weight-tied 16 layers) 138M 4.5M 34.9 6.8GB

DEQ-Transformer (small, ours). 138M 4.5M 32.4 1.1GB

Table 2.4: Runtime ratios between DEQs and corresponding deep networks at training and
inference (> 1× implies DEQ is slower). The ratios are benchmarked on WikiText-103.

DEQ / 18-layer Transformer DEQ / 70-layer TrellisNet
Training Inference Training Inference

3.24× 2.56× 2.40× 1.64×

gradient checkpointing [46], a popular technique that reduces the memory required to train a
layer-based model to O(

√
L). Note that the DEQ’s memory footprint remains competitive even

when compared with baselines that are not weight-tied (a reduction of over 60%), with similar or
better accuracy.

Convergence to equilibrium. The DEQ models do not have layers. One factor that affects
computation time is the number of solver iterations in forward/backward passes’ fixed-point
solving, where each step (e.g., Broyden or Anderson step) typically evaluates fθ exactly once
(and therefore this is also commonly referred to as the number of functional evaluations (NFEs)
in the implicit deep learning literature later). We find that in general the NFEs gradually increases
with training epochs, an observation similar to the one reported for training other implicit models
like Neural ODEs [45], reflecting a trend of the equilibrium network to “go deeper” as it learns
better performance. We will explore this phenomenon later in Chapter 4 and explain how it is
correlated to the spectral radius of J fθ

during training. Meanwhile, the backward pass requires

21



Large-Scale Sequence Benchmarks
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Figure 2.3: A visualization of the results presented in Table 2.3. The equilibrium formulations
of temporal convolutional or self-attention layers (i.e., DEQ-TrellisNet and DEQ-Transformer)
perform as competitively as conventional deep networks of similze sizes.

much fewer iterations than the forward, primarily due to the simplicity of the linear system in
Eq. (2.16). We also find that DEQs can almost always converge to the sequence fixed points,
much more efficiently than original weight-tied transformers (which could oscillate rather than
converge; see Figure 2.4, right).

We also analyze how the equilibrium approach allows us to trade inference-time efficiency
with the quality of the fixed point; i.e., by stopping the black-box fixed-point solver early,

10 6 10 5 10 4 10 3 10 2 10 1 100

Forward Threshold Epsilon (Step Avg.)

25

50

75

100

125

150

175

200

Te
st

 P
er

pl
ex

ity

DEQ-Transformer on WT103 (Seq. Length=150)
DEQ-Transformer

Figure 2.5: DEQs can be accelerated by early
stopping, but poorer estimates also hurt perfor-
mance.

we can speed up the inference of a DEQ model
at the cost of inaccurate fixed points and thus
the performance of the model. Fundamentally,
this is because DEQ models decouple the repre-
sentational capacity (which is solely controlled
by fθ (e.g., self-attentional or convolutional))
and the forward computation (which is deter-
mined by the solver), a fact that we will further
leverage in Chapter 6. Figure 2.5 visualizes
this tradeoff on a medium DEQ-Transformer.
Note that accuracy quickly diverges when con-
vergence tolerance ε is too large, suggesting
that a poor estimate of the equilibrium can hurt
DEQ performances. Table 2.4 also provides
approximate runtimes for competitive-accuracy DEQs on WikiText-103. DEQs are typically
slower than layer-based deep networks (due to the fixed-point formulation). Accelerating these
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dynamical systems is an important direction of research [20], and we will shed more light on this
in Chapter 4, 5, 6 and 7.

2.5 Discussion
Deep networks have predominantly taken the form of stacks of layers. In this chapter, we
introduced the generic formulation of deep equilibrium approach (DEQ), which directly solves for
the “infinite-level” fixed-point representation of a layer and optimizes this equilibrium for better
representations. We also show empirically and theoretically the universality of this one-layer
implicit modeling. In particular, DEQ needs only O(1) memory at training time, is agnostic
to the choice of the root solver in the forward pass, and is sufficiently versatile to subsume
drastically different architectural choices (e.g., modern, compelx layers like Transformer blocks).
Our experiments have shown that DEQs have good temporal memory retention on sequences, are
able to scale to realistic, large-scale sequence tasks, and perform competitively with, or slightly
outperform, SOTA methods.

This chapter provides a general introduction to the nature of the equilibrium approach, which
is at the center of this thesis. However multiple problem still remains. For example, layers are
traditionally important because they also represent resolutions [136, 179], which are traditionally
important for pattern recognition tasks (e.g., computer vision) to build a feature hierarchy. As
another example, the experimental results suggest some new challenges (e.g., stability) to these
implicit deep networks as we do away with layers. We will tackle at these issues and look at more
applications and extensions of this new equilibrium perspective in the chapters to come.
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Chapter 3

Simultaneous Equilibrium: Modeling
Hierarchy Without Layers

State-of-the-art pattern recognition systems in domains such as computer vision and audio pro-
cessing are almost universally based on multi-layer hierarchical feature extractors [134, 136, 137].
These models are structured in stages: the input is processed via a number of consecutive blocks,
each operating at a different resolution [96, 130, 210, 219]. The architectures explicitly express
hierarchical structure, with up- and downsampling layers that transition between consecutive
blocks operating at different scales. An important motivation for such designs is the prominent
multiscale structure and extremely high signal dimensionalities in these domains. A typical image,
for instance, contains millions of pixels, which must be processed coherently by the model.

An alternative approach to differentiable modeling, as was introduced in Chapter 2, was
implicit deep networks. These DEQ constructions replace explicit, deeply stacked layers with
analytical conditions that the model must satisfy, and are able to simulate models with “infinite”
depth within a constant memory footprint. Is implicit deep learning relevant for general pattern
recognition tasks? One clear challenge here is that implicit networks do away with flexible “layers”
and “stages”. It is therefore not clear whether they can appropriately model multiscale structure,
and be used for cases like compound training (e.g., pre-training and fine-tuning).

Prompted by the flexibility and scalability of the equilibrium approach introduced in the
previous chapter, in this chapter, we expand upon the generic DEQ construction substantially to
introduce simultaneous equilibrium modeling of multiple signal resolutions. As we shall introduce
in Sec. 3.1, a Multiscale DEQ (MDEQ) solves for equilibria of multiple streams simultaneously
by directly optimizing for stable representations on all feature scales at the same time. Unlike
conventional (explicit) networks, MDEQ does not process resolutions in succession, with higher
resolutions flowing into lower ones or vice versa. Rather, the different feature scales are maintained
side by side in a single “shallow” model that is driven to equilibrium.

This design brings two major advantages. First, using implicit differentiation, MDEQ has
an O(1) memory footprint during training. This is especially important as pattern recognition
systems are memory-intensive. Second, MDEQ rectifies one of the drawbacks of DEQ by exposing
multiple feature scales at equilibrium, thereby providing natural interfaces for auxiliary losses and
for compound training procedures such as pretraining (e.g., on ImageNet) and fine-tuning (e.g., on
segmentation or detection tasks). Multiscale modeling enables a single MDEQ to simultaneously
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Figure 3.1: The structure of a multiscale deep equilibrium model (MDEQ). All components of the
model are shown in this figure. MDEQ consists of a transformation fθ that is driven to equilibrium.
Features at different scales coexist side by side and are driven to equilibrium simultaneously.

train for multiple losses defined on potentially very different scales, whose equilibrium features
can serve as “heads” for a variety of tasks.

We demonstrate the effectiveness of MDEQ via extensive experiments on large-scale vision
datasets. Remarkably, this shallow implicit model attains comparable accuracy levels to state-of-
the-art deeply-stacked explicit ones. On ImageNet classification, MDEQs outperform baseline
ResNets (e.g., ResNet-101) with similar parameter counts, reaching 77.5% top-1 accuracy. On
Cityscapes semantic segmentation (dense labeling of 2-megapixel images), ImageNet-pretrained
MDEQs match the performance of recent explicit models while consuming much less memory.
Our largest MDEQ surpasses 80% mIoU on the Cityscapes validation set, outperforming strong
convolutional networks and coming tantalizingly close to the state of the art. This chapter is
primarily based on work that appeared in NeurIPS 2020 [19].

Related work on multiscale networks. Computer vision is a canonical application domain for
hierarchical multiscale modeling. State-of-the-art models for problems in this field are explicitly
structured into sequential stages of processing that operate at different resolutions [96, 130, 210,
219]. For example, a ResNet [96] typically consists of 4-6 sequential stages, each operating
at half the resolution of the preceding one. A dilated ResNet [257] uses a different schedule
for the progression of resolutions. A DenseNet [103] uses different connectivity patterns to
carry information between layers, but shares the overarching structure: a sequence of stages.
Other designs progressively decrease feature resolution and then increase it step by step [195].
Downsampling and upsampling can also be repeated, again in an explicitly choreographed
sequence [176, 218]. Multiscale modeling has been a central motif in computer vision. The
Laplacian pyramid is an influential early example of multiscale modeling [36]. Multiscale
processing has been integrated with convolutional networks for scene parsing by Farabet et al.
[73] and has been explicitly addressed in many subsequent architectures [40, 42, 43, 104, 145,
206, 236, 256, 264].
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3.1 Multiscale Deep Equilibrium Models
We present the structure of an MDEQ model in Fig. 3.1. As in the previous chapter, fθ denotes
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Figure 3.2: The residual block used in MDEQ.
An MDEQ contains only one such layer.

the transformation that is (implicitly) iterated
to a fixed point, x is the input representation
provided to fθ, and z is the model’s internal
state. We omit the batch dimension for clarity,
and break down the multiple aspects of the DEQ
model in this section.

Transformation fθ. The central part of
MDEQ is the transformation fθ that is driven to
equilibrium. Just like in chapter 2, we keep the
design intentionally simple, in which features at
each resolution are first taken through a residual
block. The blocks are shallow and are identical in structure. At resolution i, the residual block
receives the internal state zi and outputs a transformed feature tensor z+i at the same resolution.
The internal structure of the residual block is shown in Figure 3.2, where we largely adopt the
design of He et al. [96]. The residual block at resolution i can be formally expressed as

z̃i = GroupNorm
(
Conv2d(zi)

)

ẑi = GroupNorm
(
Conv2d(ReLU(z̃i)) + 1{i=1} · x

)

z+i = GroupNorm
(
ReLU(ẑi + zi)

)
.

(3.1)

Following these blocks, the second part of fθ is a multi-resolution fusion step that mixes the
feature maps across different scales (see Figure 3.1). The transformed features z+i undergo either
direct upsampling or downsampling from the current scale i to each other scale j ̸= i. The final
output at scale j is formed by summing over the transformed feature maps provided from all
incoming scales i (along with z+j ). This forces the features at all scales to be consistent and drives
the whole system to a coordinated equilibrium that harmonizes the representations across scales.

Input Representation. Notably, only the highest resolution stream (i.e., i = 1) receives an
input injection x (see Eq. (3.1)), which is quite unlike the multiscale (sometimes called pyramidal)
input representations used by many explicit vision architectures [43, 73]. The lower resolutions
hence start with no knowledge at all about the input, with z[0]i = 0 for all i; this information will
only implicitly propagate through them as all scales are gradually driven to coordinated equilibria
z⋆ by the (black-box) fixed-point solver.

(Limited-memory) Multiscale Equilibrium Solver. In the DEQ, the internal state is a single
tensor z. The MDEQ state, however, is a collection of tensors at n resolutions: z = [z1, . . . , zn].
Note that this is not a concatenation, as the different zi have different dimensionalities, feature
resolutions, and semantics. z = [z1, . . . , zn] is maintained as a collection of n tensors whose
respective equilibrium states (i.e., roots) are solved for and backpropagated through simultaneously
(with each resolution inducing its own loss). We present in Figure 3.3 a visualization of the
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convergence of all equilibrium streams in an MDEQ applied on CIFAR-10 images. From the figure,
we see that 1) all MDEQ resolution streams indeed converge to their equilibria in parallel, with
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Figure 3.3: All resolutions of MDEQ converge
simultaneously. Larger scale index means higher
resolution.

lower-resolution converge faster than higher-
resolution streams; and 2) high-resolution fea-
ture converges much more quickly in multi-
scale setting (pink line) than in the generic
single-stream DEQ [18] setting (orange line),
suggesting how the multiscale fusion influ-
ences the fixed-point convergence of these equi-
librium models.

The original Broyden solver was not effi-
cient enough (despite the low-rank updates)
when applied to extremely high-dimensional
computer vision datasets. For example, in the
Cityscapes segmentation task (with 2048 ×
1024 resolution images), the Jacobian of a 4-
resolution MDEQ at z⋆ is well over 2,000 times larger than its single-stream counterpart in
word-level language modeling in chapter 2. To address this, we employed a new solver that is
inspired by Limited-memory BFGS (L-BFGS) [147], where we only keep the latest m low-rank
updates at any step and discard the earlier ones.

3.2 Integration with Other Deep Learning Techniques
Figure 3.4 provides a comparison of different modeling options. Prior implicit models (like
generic DEQs) assume that a loss is defined on a single stream of implicit hidden states, which
has a uniform input and output shape (Figure 3.4b). It is therefore not clear how such a model can
be flexibly transferred across structurally different tasks (e.g., pretraining on image classification
and fine-tuning on semantic segmentation), or how we can define auxiliary losses [135] since the
forward and backward computation trajectories are decoupled.

In comparison, MDEQ exposes convenient “interfaces” to its steady-state features at multiple
resolutions. One resolution (the highest) can be the same as the resolution of the input, and
can be used to define losses for dense prediction tasks such as semantic segmentation. Another
resolution (the lowest) can be a vector in which the spatial dimensions are collapsed, and can be
used to define losses for image-level labeling tasks such as classification. This suggests clean
protocols for training the same model for different tasks, either jointly (e.g., multi-task learning
in which structurally different supervision flows through multiple heads) or in sequence (e.g.,
pretraining for image classification through one head and fine-tuning for semantic segmentation
through another), while still using implicit gradients. Overall, the multiscale equilibrium approach
significantly generalizes the flexibility of the original, canonical equilibrium model, and permits
us to adapt these implicit models to a much broader set of learning settings.

Caveats. However, since MDEQ simulates an “infinitely” deep network, such implicitness also
calls for care when adapting common deep learning techniques. We provide an exploration of
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Figure 3.4: A visual comparison of MDEQ with prior implicit models and with standard explicit
models in computer vision. Equilibrium states at multiple resolutions enable MDEQ to incorporate
supervision in different forms.

such adaptations and their impact on the training dynamics of DEQ models. For example:
• Normalization. Layer normalization of hidden activations in fθ played an important role

in constraining the output and stabilizing DEQs on sequences [18]. A natural counterpart
in vision is batch normalization (BN) [110]. However, BN is not directly suitable for
implicit models, since it estimates population statistics based on layers, which are implicit
in our setting, and the Jacobian matrix of the transformation fθ will scale badly to make
the fixed point significantly harder to solve for. We therefore use group normalization
(GN) [246], which groups the input channels and performs normalization within each group.
GN is independent of batch size and offers more natural support for transfer learning (e.g.,
pretraining and fine-tuning on structurally different tasks). We keep the learnable affine
parameters of group normalization in the equilibrium framework.

• Dropout. The conventional spatial dropout used by explicit vision models applies a random
mask to given layers in the network [214]. A new mask is generated whenever dropout is
invoked. Such layer-based stochasticity can significantly hurt the stability of convergence
to the equilibrium. In fact, as two adjacent calls to fθ most probably will have different
Bernoulli dropout masks, it is almost impossible to reach a fixed point where fθ(z⋆; x) = z⋆.
We therefore adopt variational dropout [82] and apply the exact same mask at all invocations
of fθ in a given training iteration. The mask is reset at each training iteration.

• Convolution and Convergence. Whereas the original DEQ model focused primarily on
self-attention transformations [233], where all hidden units communicate globally, MDEQ
models face additional challenges due to the nature of typical vision models. Specifically,
they employ convolutions with small receptive fields (e.g., the two 3 × 3 convolutional
filters in fθ’s residual block) on potentially very large images. In consequence, we typically
need a higher number of root-finding iterations to converge to an exact equilibrium. While
this does pose a challenge, we find that using the aforementioned strategies of 1) multiscale
simultaneous up- and downsampling and 2) quasi-Newton root-finding, drives the model
close to equilibrium within a reasonable number of iterations (e.g., see Fig. 3.3).
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3.3 Experiments

We investigate the empirical performance of MDEQs from two aspects. First, as prior implicit
approaches such as Neural ODEs (NODEs) have mostly evaluated on smaller-scale benchmarks
such as MNIST [134] and CIFAR-10 (32 × 32 images) [129], we compare MDEQs with these
baselines on the same benchmarks. We evaluate both training-time stability and inference-time
performance. Second, we evaluate MDEQs on large-scale computer vision tasks: ImageNet
classification [62] and semantic segmentation on the Cityscapes dataset [53]. These tasks have
extremely high-dimensional inputs (e.g., 2048 × 1024 images for Cityscapes) and are dominated
by explicit models. More detailed descriptions of the tasks, hyperparameters, and training settings
are in Bai et al. [19].

We do note that even with the implicit modeling of layer fθ, the mini explicit structure
within the design of fθ (e.g., the residual block) is still very helpful empirically in improving the
equilibrium representations. All experiments with MDEQs use the limited-memory version of
Broyden’s method in both forward and backward passes, and the root solvers are stopped whenever
1) the objective value reaches some predetermined threshold ε or 2) the solver’s iteration count
reaches a limit T. On large-scale vision benchmarks (ImageNet and Cityscapes), we downsample
the input twice with 2-strided convolutions before feeding it into MDEQs, following the common
practice in explicit models [236, 264]. We use the cosine learning rate schedule for all tasks [156].

3.3.1 Comparing with Prior Implicit Models on CIFAR-10

Following the setting of Dupont et al. [67], we run the experiments on CIFAR-10 classification

Table 3.1: Evaluation on CIFAR-10. Standard
deviations are calculated on 5 runs.

Model Size Accuracy
CIFAR-10 (without data augmentation)

Neural ODEs [67] 172K 53.7% ± 0.2%
Aug. Neural ODEs [67] 172K 60.6% ± 0.4%
Single-stream DEQ [18] 170K 82.2% ± 0.3%
ResNet-18 [96] [Explicit] 170K 81.6% ± 0.3%

MDEQ-small (ours) 170K 87.1% ± 0.4%

CIFAR-10 (with data augmentation)
ResNet-18 [96] [Explicit] 10M 92.9% ± 0.2%

MDEQ (ours) 10M 93.8% ± 0.3%

(without data augmentation) for 50 epochs and
compare models with approximately the same
number of parameters. However, unlike the
ODE-based approaches, we do not perform
downsamplings on the raw images before pass-
ing the inputs to the MDEQ solver (so the
highest-resolution stream stays at 32 × 32).
When training the MDEQ model, all resolu-
tions are used for the final prediction: higher-
resolution streams go through additional down-
sampling layers and are added to the lowest-
resolution output to make a prediction (i.e., a
form of auxiliary loss).

The results of MDEQ models on CIFAR-10 image classification are shown in Table 3.1.
Compared to NODEs [45] and Augmented NODEs [67], a small MDEQ with a similar parameter
count improves accuracy by more than 20 percentage points: an error reduction by more than a
factor of 2. MDEQ also improves over the single-stream DEQ (applied at the highest resolution).
The training dynamics of the different models are visualized in Figure 3.5a. Finally, a larger
MDEQ matches and even exceeds the accuracy of a ResNet-18 with the same capacity: the first
time such performance has been demonstrated by an implicit model.
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(a) Training dynamics of implicit models
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Figure 3.5: Left: test accuracy as a function of training epochs. Right: MDEQ-Small and
ANODEs correspond to the settings and results reported in Table 3.1. For all metrics, lower is
better.
Table 3.2: Evaluation on ImageNet classification
with top-1 and top-5 accuracy. MDEQs were
trained for 100 epochs.

Model Size top1 Acc. top5 Acc.

AlexNet [130] 238M 57.0% 80.3%
ResNet-18 [96] 13M 70.2% 89.9%
ResNet-34 [96] 21M 74.8% 91.1%

Inception-V2 [110] 12M 74.8% 92.2%
ResNet-50 [96] 26M 75.1% 92.5%

HRNet-W18-C [236] 21M 76.8% 93.4%
Single-stream DEQ + global pool [18] 18M 72.9% 91.0%

MDEQ-small (ours) [Implicit] 18M 75.5% 92.7%

ResNet-101 [96] 52M 77.1% 93.5%
W-ResNet-50 [259] 69M 78.1% 93.9%
DenseNet-264 [103] 74M 79.7% 94.8%

MDEQ-large (ours) [Implicit] 63M 77.5% 93.6%
Unrolled 5-layer MDEQ-large 63M 75.9% 93.0%
MDEQ-XL (ours) [Implicit] 81M 79.2% 94.5%

Table 3.3: Evaluation on Cityscapes val seg-
mentation. “*” marks the current SOTA. Higher
mIoU (mean Intersection over Union) is better.

Backbone Model Size mIoU

ResNet-18-A [152] ResNet-18 3.8M 55.4
ResNet-18-B [152] ResNet-18 15.24M 69.1

MobileNetV2Plus [200] MobileNetV2 8.3M 74.5
GSCNN [222] ResNet-50 - 73.0

HRNetV2-W18-Small-v2* [236] HRNet 4.0M 76.0
MDEQ-small (ours) [Implicit] MDEQ 7.8M 75.1

U-Net++ [267] ResNet-101 59.5M 75.5
Dilated-ResNet [257] D-ResNet-101 52.1M 75.7

PSPNet [264] D-ResNet-101 65.9M 78.4
DeepLabv3 [41] D-ResNet-101 58.0M 78.5
PSANet [265] ResNet-101 - 78.6

HRNetV2-W48* [236] HRNet 65.9M 81.1
MDEQ-large (ours) [Implicit] MDEQ 53.0M 77.8
MDEQ-XL (ours) [Implicit] MDEQ 70.9M 80.3

3.3.2 ImageNet Classification

We now test the ability of MDEQ to scale to a much larger dataset: ImageNet [62]. As with
CIFAR-10 classification, we add a shallow classification layer after the MDEQ module to fuse the
equilibrium outputs from different scales, and train on a combined loss.

We benchmark both a small MDEQ model and a large MDEQ to provide appropriate compar-
isons with a number of reference models, such as ResNet-18, -34, -50, and -101 [96]. Note that
MDEQ has only one layer of residual blocks followed by multi-resolution fusion. Therefore, to
match the capacity of standard explicit models, we need to increase the feature dimensionality
within MDEQ. This is accomplished mainly by adjusting the width of the convolutional filter
within the residual block (see Figure 3.2).

Table 3.2 shows the accuracy of two MDEQs (of different sizes) in comparison to well-
known reference models in computer vision. MDEQs are remarkably competitive with strong
explicit models. For example, a small MDEQ with 18M parameters outperforms ResNet-18
(13M parameters), ResNet-34 (21M parameters), and even ResNet-50 (26M parameters). A

31



Figure 3.6: Examples of MDEQ-large segmentation results on the Cityscapes [53] dataset.

larger MDEQ (64M parameters) reaches the same level of performance as ResNet-101 (52M
parameters). This is far beyond the scale and accuracy levels of prior applications of implicit
modeling.

3.3.3 Cityscapes Semantic Segmentation

After training on ImageNet, we train the same MDEQs for semantic segmentation on the
Cityscapes dataset [53]. When transferring the models from ImageNet to Cityscapes, we di-
rectly use the highest-resolution equilibrium output z⋆1 to train on the highest-resolution loss. Thus
MDEQ is its own “backbone”. We train on the Cityscapes train set and evaluate on the val
set. Following the evaluation protocol of Zhao et al. [265] and Wang et al. [236], we test on a
single scale with no flipping.

MDEQs attain remarkably high levels of accuracy. They come close to the current state of
the art, and match or outperform well-known and carefully architected explicit models that were
released in the past two years. A small MDEQ (7.8M parameters) achieves a mean IoU of 75.1.
This improves upon a MobileNetV2Plus [200] of the same size and is close to the SOTA for
models on this scale. A large MDEQ (53.5M parameters) reaches 77.8 mIoU, which is within 1
percentage point of highly regarded recent semantic segmentation models such as DeepLabv3 [41]
and PSPNet [264], whereas a larger version (70.9M parameters) surpasses them. It is surprising
that such levels of accuracy can be achieved by a “shallow” implicit model, based on principles
that have not been applied to this domain before. Examples of semantic segmentation results are
shown in Fig. 3.6.

3.3.4 Runtime and Memory Consumption

We provide a runtime and memory analysis of MDEQs using CIFAR-10 data, with input batch
size 32. Since prior implicit models such as ANODEs [67] are relatively small, we provide results
for both MDEQ and MDEQ-small for a fair comparison. All computation speeds are benchmarked
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Figure 3.7: Plots of MDEQ’s convergence to equilibrium (measured by ∥z[i+1]−z[i]∥
∥z[i]∥ ) as a function

of the number of times we evaluate fθ. As input image resolution grows (from CIFAR-10 to
Cityscapes), MDEQ takes more steps to converge with (L-)Broyden’s method. Standard deviation
is calculated on 5 randomly selected batches from each dataset.

relative to the ResNet-101 model (about 150ms per batch) on a single RTX 2080 Ti GPU. The
results are summarized in Figure 3.5b.

MDEQ saves more than 60% of the GPU memory at training time compared to explicit models
such as ResNets and DenseNets, while maintaining competitive accuracy. Training a large MDEQ
on ImageNet consumes about 6GB of memory, which is mostly used by Broyden’s method. This
low memory footprint is a direct result of the analytical backward pass. Meanwhile, MDEQs are
generally slower than explicit networks. We observe a 2.7× slowdown for MDEQ compared to
ResNet-101, a tendency similar to that observed in the sequence domain [18]. A major factor
contributing to the slowdown is that MDEQs maintain features at all resolutions throughout,
whereas explicit models such as ResNets gradually downsample their activations and thus reduce
computation (e.g., 70% of ResNet-101 layers operate on features that are downsampled by 8 × 8
or more). However, when compared to ANODEs with 172K parameters, an MDEQ of similar
size is 3× faster while achieving a 3× error reduction.

We will show in Chapter 4 that such slowdown can be significantly mitigated by properly
regularizing the multiscale equilibria to be easier to solve for. By encouraging the MDEQ model
to optimize for simpler/stabler underlying dynamical systems, we can effectively reduce the NFEs
needed for these implicit networks even on large-resolution images (like in ImageNet).

3.3.5 Equilibrium Convergence on High-resolution Inputs

As we scale MDEQ to higher-resolution inputs, the equilibrium solving process becomes more
challenging. This is illustrated in Figure 3.7, where we show the equilibrium convergence of
MDEQ on CIFAR-10 (low-resolution), ImageNet (medium-resolution) and Cityscapes (high-
resolution) images by measuring the change of residual with respect to the number of function
evaluations. We empirically find that (limited-memory) Broyden’s method and multiscale fusion
both help stabilize the convergence on high-resolution data. For example, in all three cases,
Broyden’s method (blue lines in Figure 3.7) converges to the fixed point in a more stable and
efficient manner than simply iterating fθ (yellow lines). We refer interested readers to further
analysis of the multiscale convergence behavior in Bai et al. [19].
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3.4 Discussion
In this chapter, we introduced multiscale deep equilibrium models (MDEQs): a new class of
implicit architectures for domains characterized by high dimensionality and multiscale structure.
Unlike prior implicit models, an MDEQ solves for and backpropagates through synchronized
equilibria of multiple feature representations at different resolutions. A single MDEQ can be
used for different tasks, such as image classification and semantic segmentation. Our experiments
demonstrate for the first time that “shallow” implicit models can scale to practical computer vision
tasks and achieve competitive performance that matches explicit architectures characterized by
sequential processing through deeply stacked layers.

The remarkable performance of such multiscale implicit models brings up a step closer to the
core question that we hope to challenge in this thesis. A longstanding assumption that people have
had for deep learning is that we must have architectural hierarchy (i.e., layer stacking) in order
to achieve feature hierarchy (i.e., resolutions) [136]. We show that this is not correct. Even
without layers, MDEQ models show, we are able to effective represent feature hierarchy.
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Part II

Challenges and Potential Solutions to the
Equilibrium Approach
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Chapter 4

Challenges to the DEQ Approach

In the previous chapters, we briefly went through the underlying formulation of DEQ models,
how it represents an “infinite-level” network, and how we can capture feature hierarchy without
architectural hierarchy by simultaneous feature equilibria. This equilibrium approach, in particular,
is compatible with the designs of modern structured layers and thus demonstrates strong modeling
power and scalability, across a wide range of realistic tasks.

However, in this chapter (and as a part of this thesis’ thorough introduction on the equilibrium
approaches to deep learning), we divert the attention to the multiple challenges of the DEQ
approach. In particular, as we enjoy the simplicity of an “layer-less” formulation, what are some
of the new issues that we could encounter? We outline three main challenges. First, despite
their memory efficiency, DEQs are also slower than conventional deep networks that achieve the
same level of accuracy. Second, the number of iterations required to solve for the equilibrium
quickly grows over the course of training, indicating a trend for approaching instability. Third,
the DEQ model is sensitive to architectural choices, and sometimes even small modifications
could break the model’s stability of convergence (e.g., the position of layer normalization [13]).
Some recent works have tackled this third issue by exploiting provably convergent layers via,
e.g., monotone operator splitting theories [244], Lipschitz boundedness [192] or an underlying
optimization problem [229]. However, these structural solutions rely extensively on specific layer
parameterizations, rendering DEQ models unscalable and even more inflexible.

This chapter starts by summarizing and providing empirical evidence on all of these downsides
of the equilibrium networks that have so far thwarted many from extending DEQs to both broader
applications and more architectural variants. As we shall see in the rest of this thesis, these issues
can be mitigated by numerous different approaches (e.g., regularization, recycle computation,
approximate gradient, etc.) by exploiting the properties of these implicit models. Therefore,
in the second half of this chapter, we will first describe a regularization-based solution that
directly seeks to improve on DEQ models’ stability, efficiency and flexibility. Importantly, while
DEQs have adopted regularizations directly borrowed from explicit deep networks (e.g., recurrent
dropout [82] for better generalization), we introduce a simple and theoretically-motivated Jacobian
regularization pursuant to DEQ models’ implicitness. We discuss in detail how this Jacobian
regularization relates to the contractivity of equilibrium models’ forward non-linear system and
backward linear system, and is thus able to effectively stabilize not only their forward but also
backward dynamics. There are two immediate benefits of such resulting stability. First, solving
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a DEQ requires far fewer iterations than before, which makes regularized DEQs significantly
faster than their unregularized counterparts. Second, this model class becomes much less brittle to
architectural variants that would otherwise break the DEQ.

We validate the proposed regularization by experiments on both toy-scale synthetic tasks and
large-scale real datasets across domains: word-level language modeling on WikiText-103 [164]
and high-resolutional image classification on the full ImageNet dataset [62]. Empirically, our
regularized DEQs are generally 2× to 3× faster than prior DEQs, and can be accelerated to be as
fast as explicit deep networks in some cases (e.g., ResNets-101 and DenseNets-264). With their
O(1) memory footprint, this further establishes these implicit, equilibrium approaches as a strong
competitor to explicit deep architectures.

This chapter is primarily based on a work that appeared in ICML 2021 [20]. We will
additionally discuss and compare in Chapter 5, 6 and 7 some other potential solutions to tackle
the challenges described in this chapter.

4.1 Related Work on Regularizing Implicit Models
Just like explicit deep networks, implicit networks can overfit to the dataset; but additionally,
they can also become unstable. For instance, Neural ODEs are essentially modeling infintesimal
steps of a residual block [39, 96], and Grathwohl et al. [91] found that weight decay & spectral
normalization [171] are useful (though expensive) in reducing the rapidly growing number of
functional evaluations (NFEs) needed to solve for the ODE endpoint. On the other hand, large-
scale DEQ networks that we introduced in Chapter 2 and 3 have adopted techniques like weight
normalization [199], recurrent (variational) dropout [82], and group normalization (GN) [246]
for preventing overfitting and divergence. Nonetheless, all these methods are borrowed from
explicit deep networks, where they have long been known to work well. They do not exploit the
implicitness of implicit models.

More recently, a few different regularization methods have been introduced to specifically fix
the numerous issues of the vanilla Neural ODE and continuous normalizing flow models, such
as augmenting the hidden state [67] and regularizing higher-order time derivatives [121]. These
methods directly leverage the dynamical system view of Neural ODEs. However, due to the
inherent challenge of solving high-dimensional ODEs, these accelerated Neural ODE models can
still easily take > 100 forward iterations even on MNIST classification [121], and even more for
their backward pass. In comparison, DEQs scale better to high-dimensional tasks (e.g., 25-30
iterations on ImageNet, see Chapter 3) and complex fθ (e.g., a Transformer layer, see Chapter 2).
But such extra complexities also make DEQ models harder to regularize; e.g., simply resorting to
weight decay doesn’t fix the instability of DEQs (see Bai et al. [20]).

The method we will present in this chapter is closely connected to the many prior works that
study Jacobian/gradient regularization [66, 77, 100, 146, 178], though these were also motivated
differently. Specifically, Hoffman et al. [100], Sokolić et al. [213] regularized the input-output
Jacobians of the entire (very deep) explicit classification networks to increase the prediction
margin in a robust learning setting (and are thus expensive). Finlay et al. [77] was inspired by a
kinetic energy view and possible overfitting of a training-time dynamical system. The method
of Linsley et al. [146] targeted (for a Jacobian J) a Lipschitzness level λ, used maxi(1⊤ J)i to
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approximate the matrix 1-norm, and proposed loss L = ∥(1⊤ J − λ)+∥2. Yet this approximation
is in fact problematic, as it does not provably bound the spectral radius (i.e., stability) at all. For
example, matrix

J =
[

2 −2
−2 2

]

has loss L = 0 and yet an eigenvalue of 4 (we also empirically verify that this method does not
help DEQ models, exactly due to this issue).

4.2 The Equilibrium Models’ Challenges and Discontents
Despite the DEQ models’ success in some very challenging tasks, such as Cityscapes semantic
segmentation [19, 53], these models suffer from multiple serious downsides. In this section,
we provide a summary of some of these problems. While many of them directly lead to our
subsequent discussion on the need for regularization, we also believe such systematic discussion
in this thesis provides a useful overview for potential future research on further addressing these
issues. (We note that after the initial publication of Bai et al. [20], which this chapter is primarily
based on, numerous concurrent and follow-up work have proposed different ways of addressing
them; e.g., [81, 181, 229, 240]).

4.2.1 Existence and Uniqueness of the Fixed Point
The applications of large-scale DEQ models in chapter 2 and 3 demonstrates how the equilibrium
approaches are compatible with modern, structured layers and are thus more applicable to domains
where deep learning has been traditionally successful. However, unlike other implicit models such
as Neural ODEs, DEQ networks do not have a unique trajectory, and are not generally guaranteed
to converge (since the parameters θ are constantly updated by SGD). We note that some recent
works have indeed begun to examine the stability of the equilibrium models by exploiting provably
convergent layers via monotone operator splitting theories [244], Lipschitz boundedness [81, 192],
and the Banach fixed-point theorem [120, 184], etc. However, these structural solutions rely
extensively on specific layer parameterizations, connections and components, rendering DEQ
models unscalable and frequently less flexible.

4.2.2 Growing Instability
As previously discussed in Chapter 2, although a DEQ network has no “depth”, a relevant measure
of computational efficiency is the number of function evaluations (NFEs) of the layer fθ(z; x)
used by the iterative root solver (e.g., Broyden’s method [34]).

However, one common phenomenon to all prior works on DEQs is that the fixed points
are increasingly harder to solve for over the course of model training. In other words, as a
DEQ’s performance gradually improves during training, the NFE required to converge to the
same threshold ε rapidly grows. This observation has been made on different instantiations
of equilibrium networks, and regardless of whether the model is provably convergent or not
(e.g., [18, 244], where a DEQ at the end of training can take > 3× more iterations; also see
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Figure 4.1: Visualizations of DEQ models’ instablity and inefficiency problems. “Ours” refers to
the regularized DEQ models, which will be introduced in Sec. 4.3.

Fig. 2.4 in chapter 2). Intuitively, such tendency to approach “critical stability” implicitly
characterizes an inclination of the model to learn “deeper” networks; so it is unsurprising that
unregularized training will keep driving it in this direction. But as a result, the dynamical system
only becomes more and more brittle. In practice, one might circumvent this issue by setting a
maximum NFE limit so that the solver stops after T steps, but this could still be risky as the
convergence gets more unstable/critical, such a hard stop for the solver cannot guarantee that we
are close enough to the fixed point. In the backward pass, for instance, we may consequently be
training DEQs with very noisy or even wrong gradients. A similar issue exists for Neural ODEs,
though these cannot easily be hard-stopped like DEQs due to the need to accurately trace the ODE
flows to their endpoints.

We illustrate this issue on CIFAR-10 in Fig. 4.1a. One can easily see that both forward
and backward estimates of the fixed points gets increasingly worse with the training steps (and
eventually plateaus in an unstable region where the model keeps yielding bad gradients). Such
growing instability is also reflected empirically in the growth of Jacobian norm at equilibrium;

i.e.,
∥∥∥ ∂ fθ(z⋆;x)

∂z⋆

∥∥∥
F

(see Figure 4.1b), which we discuss further in the later parts of this chapter.

Moreover, interestingly, while these plots might suggest simple regularizations like weight decay,
we show later that weight decay often makes this stability issue worse for equilibrium networks,
and even leads to divergence.

4.2.3 Inefficiency Compared to Explicit Networks
A direct ramification of such increase in iterations required (see Section 4.2.2) is the significant
increase in both training and inference time for DEQ models.

One advantage of DEQs, as noted previously in Sec. 2.4 of Chapter 2, is that the forward
trajectory need not strictly reach the equilibrium. Therefore in a certain sense, we could trade
performance for efficiency by stopping at a “good enough” estimate of the equilibrium. However,
due to the growing instability problem, this could still be increasingly costly. This causes the
existing DEQs to be significantly slower than their explicit network counterparts of comparable
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size and performance. E.g., a DEQ-Transformer [18] is over 3× slower than a deep Transformer-
XL [58]; a multiscale DEQ [19] is over 4× slower than ResNet-101 on ImageNet and over 7×
slower on Cityscapes. Despite their memory efficiency, such slowdown is a roadblock to wider
deployment of this class of models in practice. In Figure 4.1c, we visualize this slowdown on
the validation set of WikiText-103 language modeling [164] (with comparable model sizes and
number of training steps).

We will propose a regularization-based approach to alleviate this issue in this chapter, which
aims to improve the dynamical systems that DEQ models learn. But as we shall see, DEQ
models’ efficiency could depend strongly on a number of factors, such as the quality of gradient
(Chapter 5), the choice of solver (Chapter 6), and the input complexities (Chapter 7 and 8), which
suggest a number of different solutions that frequently complement each other.

4.2.4 Brittleness to Architectural Choices
The need to have a relatively stable DEQ in order to train it via the implicit function theorem also
calls for more careful attention in designing the layer fθ . For example, the largest-scale DEQs [18,
19] that we have presented so far in this thesis all had normalizations [13, 246] at the end of the
layer to constrain the output range. How important are these architectural choices? We demonstrate
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Figure 4.2: Pre- vs. post-LN DEQ-
Transformer layer

the brittleness of DEQs by ablative studies on the use of
layer normalization (LN) or weight normalization (WN) in
the DEQ-Transformer model on the large-scale WikiText-103
language modeling task. Specifically, we compare the use
of the two most popular Transformer layer designs in the
DEQ framework: pre-LN and post-LN, which simply inserts
the LN layers at different parts of the block (see Figure 4.2).
These two settings have been extensively studied, used, and
compared in the literature [14, 65, 151, 233, 251].

The result is shown in Figure 4.3. Without layer normal-
ization at the end (pink line), a DEQ network (given a max
limit NFEs) quickly diverges after 25K training iterations,
reflected in both forward and backward divergences. Simi-
larly, without weight normalization (orange line), the model
becomes unstable more quickly, with fixed-point solver col-
lapse at around 18K iterations. The original DEQ-Transformer [18] (blue line in Figure 4.3),
although not diverged, still suffers from the same increased instability problem as described in
Section 4.2.2. These plots are strong indicators that while equilibrium networks work on large
scales, they are also relatively inflexible, brittle, and reliant on meticulous architectural designs.

4.2.5 Hidden Cost: Choice of Solver
Although DEQ models enjoy constant memory consumption during training time and can use
any black-box fixed point solvers in the forward and backward passes, a commonly neglected
cost is that introduced by the choice of solver. For example, in Broyden’s method [34] which Bai
et al. [18, 19] used, the inverse Jacobian J−1 is approximated by low-rank updates on the identity
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Figure 4.3: Comparing different architectural modifications of a DEQ-Transformer (first 60K
steps). DEQ models are brittle: even slight modifications such as changing the whereabouts
of LayerNorm (see Fig. 4.2) or removing weight normalization can cause the model to quickly
diverge during training.

matrix, of the form J−1 ≈ −I + ∑n
i=1 u[n]v[n]⊤ = −I + UV⊤. As another example, Anderson

acceleration (AA) [8] stores and uses the past m iterations (z[n−1], . . . , z[n−m]). Generally, more
advanced algorithms (e.g., Newton’s method [11], Halley’s method [2], etc.) incur more costs as
we use higher-order information in the fixed-point solving process. While these are typically tiny
overheads compared to the number of evaluations of fθ itself, they still add to both computation
and memory costs at both training and inference time (which conventional deep networks can
avoid). Note that this cost depends strongly on the solver; for example, the simplest iterative
“solver” z[i+1] = fθ(z[i]; x) wouldn’t have any memory cost, but suffers from bad convergence.
This issue also highlights the value of faster and stabler convergence, which entails less memory
storage overall (e.g., fewer Broyden steps).

4.2.6 Physical Laws of Layer Structure

Even if we can accelerate convergence by careful regularizations (see Sec. 4.3) or with the help
of more advanced solvers, there are certain “physical laws” that we simply cannot bypass. For

42



example, if we apply a shallow convolutional DEQ whose layer has a receptive field 5 × 5
on a large image (e.g., 1024 × 1024), it is hard to be able to reach the fixed point with just 6
iterations simply because the model’s receptive field may not broaden sufficiently to cover valuable
context (and while we can certainly force contractivity, it would undoubtedly hurt performance
substantially as the model will be effectively forced to pay attention to only local context). We
shall see an example of this in Sec. 4.4.

However, we note that this physical law constraint depends strongly on the solver choice
(e.g., while convolution is “local”, the inverse of a convolutional operator’s Jacobian is a “global”
dense matrix, which theoretically makes Newton’s method converge more quickly even on larger
images).

Discussion. We note that almost all of these challenges and issues are specific to the “implic-
itness” of these models (i.e., they don’t exist in explicit models), and typically do not matter
much if our end goal is just to make the model work (e.g., when we are not concerned about
speed and time), or to train on small scales. However, as the equilibrium approach starts to be
applied on large-scale applications like Cityscapes segmentations, and be compared explicitly
with conventional deep learning methods, the severity and accordingly the cost of these challenges
also thwart us to advance implicit modeling to broader applications. It is therefore undoubtedly
vital to address these challenges as we advance these implicit models to their next phase.

4.3 Stabilizing DEQ Models by Jacobian Regularization
In this section, we take a step further in this direction and introduce one strategy to help us cope
with some of these challenges, thereby stabilizing and accelerating the equilibrium approach
significantly. Specifically, as we have seen in Fig. 4.1a and 4.1b, increasing training steps
lead to monotonically growing residual difference and the Jacobian norm at the equilibrium z⋆,
suggesting a lack of proper regularization on DEQ models’ conditioning. We now describe how
the Jacobian conditioning is directly related to the stability of equilibrium networks’ forward
passes (locally) and backward passes (globally), and harness this relationship to stabilize and
accelerate equilibrium models.

The DEQ Jacobian. We first recall from Chapter 2 that the forward pass of a DEQ network
solves for the fixed point representation z⋆ of a shallow layer fθ; i.e., z⋆ = fθ(z⋆; x). Then in the
backward pass, one can directly differentiate through the equilibrium by

∂ℓ

∂(·) =
∂ℓ

∂z⋆
(

I − J fθ
(z⋆)

)−1

︸ ︷︷ ︸
u⊤

∂ fθ(z⋆; x)
∂(·) . (4.1)

where we can leverage fast vector-Jacobian products to compute the implicit gradient u⊤ by a
linear fixed-point system that only depends on this final equilibrium point (same as Eq. (2.16)):

u⊤ = u⊤ J fθ
(z⋆) +

∂ℓ

∂z⋆
. (4.2)
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Figure 4.4: Left: when the slope is less than 1, even the simplest iterative application of fθ

converges. Right: when slope > 1, the iterative approach may diverge or oscillate, but the fixed
point still exists and can be solved for.

Now, consider the spectral radius of the Jacobian J fθ
∈ Rd×d at the equilibrium:

ρ(J fθ
(z⋆)) = ρ(J fθ

(z⋆)⊤) = max(|λ1|, . . . , |λd|),
where λis are eigenvalues. In both the forward and backward passes, this spectral radius directly
affects how stable the convergence to the fixed point z⋆ could be in its neighborhood. For
instance, in the extreme case where we have a contractive ρ(J fθ

) < 1, by Lyapunov linearization
theorem even the simplest iterative calls to fθ(z) (in forward, assuming good initial estimate)
or g(u) = u⊤ J fθ

(z⋆) + ∂ℓ
∂z⋆ (in backward) could converge uniquely, even without advanced

solvers. The linear system (4.2), in particular, would enjoy global asymptotic stability. However
in practice, we don’t always, and probably shouldn’t, require such a strong contractivity on the
dynamical system, which might significantly limit the representational capacity of the model. For
example, as shown in Figure 4.4, a fixed point can exist even if ρ(J fθ

) > 1; and we are still able
to solve for them using the much stronger root solvers (e.g., Newton or quasi-Newton) than the
naïve iterative stackings, which could oscillate or diverge.

Jacobian regularization. These connections between J fθ
(z⋆) and the forward/backward pass

dynamics of DEQs motivate us to append a soft and auxiliary Jacobian term ρ(J fθ
(z⋆)) to the

training objective in order to regularize the model’s conditioning. One way of doing this is by
spectral normalization, essentially constraining σ(J fθ

) = max∥v∥≤1 ∥J fθ
v∥2. However, explicitly

writing out the huge Jacobian and then decomposing it (e.g., by SVD) can be computationally
prohibitive, and in the context of DEQs, even power iterations [170, 171] are too expensive due to
the successive vector-Jacobian product computations needed. Instead, we propose to regularize
the Jacobian through its Frobenius norm since

ρ(J fθ
) ≤ σ(J fθ

) ≤
√

tr(J fθ
J⊤fθ

) = ∥J fθ
∥F.

Importantly, ∥J fθ
∥F can be approximated via various unbiased estimators [108, 168, 230]. We

adopt the classical Hutchinson estimator [108]; formally, for J fθ
∈ Rd×d,

tr(J fθ
J⊤fθ

) = Eϵ∈N (0,Id)
[∥ϵ⊤ J fθ

∥2
2], (4.3)
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which we can approximate by Monte-Carlo estimation (i.e., sampling M i.i.d. ϵi ∈ N (0, Id)).
Specifically, prior works [12, 196] have established that the relative error of this estimation
diminishes with M− 1

2 ; and if we compute the mean over a mini-batch size B, the overall relative
error with respect to Ex∼p(x),ϵ∈N (0,Id)

[∥ϵ⊤ J fθ
∥2

2] is expected to further diminish by a factor of

B− 1
2 [100].
Indeed, empirically, we find that M = 1 already works well since we use relatively large

batch sizes. Since our backward iterations already involved computing multiple vector-Jacobian
products u⊤ J fθ

(see Eq. (4.2)), computing Eq. (4.3) only adds a cost equivalent to that of M = 1
backward steps. The eventual training objective is thus

Ltotal(z⋆) = Lorig(z⋆) + γ
∥ϵ⊤ J fθ

(z⋆)∥2
2

d , ϵ ∈ N (0, Id) (4.4)

As we observed in Figure 4.1a, without regularization, a DEQ model that stops after a fixed number
T of solver iterations exhibits increasingly poor convergence, accompanied by a growing ∥J fθ

∥F
at these fixed points that empirically signals the growing instability. Therefore, by constraining
the Jacobian’s Frobenius norm, we encourage DEQs to optimize for stabler and simpler dynamics
whose fixed points are easier to solve for, without imposing strong structural constraints on the
layer (such as in Fung et al. [81], Park et al. [184], Revay et al. [192], Winston and Kolter [244]).

4.4 Experiments
We validate the proposed regularization of DEQ models on multiple fronts. First, we visualize the
effect of the proposed Jacobian regularization on a tiny DEQ trained on a synthetic 1D dataset.
Second, importantly, we focus on how our method alleviates some of the core problems with DEQs
outlined in Section 4.2. Then we show that our method scales to challenging high-dimensional
tasks that were presented in the earlier chapters of this thesis: word-level language modeling with
the WikiText-103 dataset [164] and image classification with CIFAR-10 and ImageNet [62]. We
specifically compare our model with both unregularized DEQ networks and competitive explicit
models (e.g., ResNet-101, Transformers) in the same settings, in terms of both space & time
efficiency as well as performance. We also explore how Jacobian regularization helps stabilize
DEQs over a wider range of architectural choices. Lastly, we perform some ablative studies.

As we found the Jacoabian regularization could sometimes hurt performance (see Sec. 4.4.3),
we only apply the proposed loss stochastically with a probability p, and gradually increase this p
or the regularization strength γ (see Eq. (4.4)) over training. The memory and speeds reported
are benchmarked across different models on the same setting (e.g., same batch size, sequence
length, number of steps, etc.) with the same GPU. We provide more details regarding the tasks,
hyperparameters, datasets, hardware, and extra experimental results in Bai et al. [20].

4.4.1 Visualization with Synthetic Data
We start by empirically visualizing the effect of our approach on a synthetic dataset. We generated
5096 scalar data pairs (x, y) using function y = h(x) = 3

2 x3 + x2 − 5x + 2 sin(x) − 3 + δ
(where δ ∈ N (0, 0.05)), the shape of which is shown in Fig. 4.6). The data is subsequently split
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Figure 4.5: Top: the surface of the fθ(z; x) layer, and the eventual learned equilibria z⋆(x) as
a function of x (the red dashed line; compare this with the shape of Fig. 4.6). As γ grows, the
surface is “lifted up” and becomes flat in the z-direction. Bottom: each unique input x defines a
slice of the surface, and we perform fixed-point solving on this slice; larger γ values flatten the
curve and significantly accelerate the convergence to equilibrium.

them into 4096 and 1000 training and validation samples, respectively. We then train a tiny DEQ
with 200 parameters with the following structure:

fθ(z; x) = W⊤
2 ReLU(W1z + Ux + b), ŷ = z⋆ (4.5)

where we used z, x ∈ R and W1, W2, U ∈ R50×1. The visualizations of the effect of the Jacobian

h(�1)

h(0.5)

h(1.9)

Target function h(x)

Figure 4.6: Target
function h(x).

regularization, with different weights γ, are shown in Figure 4.5. In par-
ticular, each input x defines a slice (i.e., cross-section) of the 3D surface
zout = fθ(z; x); for example, layer fθ(z; x) when input x = −1 is high-
lighted in blue. After training, all three settings successfully learned the
(almost) identical equilibrium function z⋆(x) (highlighted by the red dashed
line) that perfectly fits the target function h(x); but note that surfaces of fθ

with γ = 2, 4 are “lifted up” significantly compared to the unregularized
(γ = 0) DEQ, which has a steep slope (i.e., large spectral radius in 2D). This
slope slows down the fixed-point convergence, as reflected by the zigzag
patterns in lower Figure 4.5a. In contrast, the convergences for the γ > 0
cases are much faster, and larger γ typically yields flatter surfaces around
the equilibrium point.

4.4.2 WikiText-103 Language Modeling
We next test the approach on much larger scales, first on the DEQ-Transformer instantiation
(see Sec. 2.4) which uses a multi-head self-attention [233] layer as the underlying fθ(z; x)
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Table 4.1: Evaluation on WikiText-103. PPL stands for Perplexity. ttrain stands for relative training
time. JR stands for Jacobian regularization. Memory benchmarked on batch size 15 and excludes
the embedding layer at training time. † indicates unregularized model hard-stopped at inference
time (while still trained with more NFEs).

Model Size Perplexity ttrain (relative) Train NFE Valid. NFE Memory

AWD-Quasi RNN [28] 159M 33.0 - - - 7.1GB
Relational Memory Core [201] 195M 31.6 - - - -
Megatron-LM [208] [SOTA] 8300M 10.8 - - - -

Transformer-XL (18-layer) [58] 110M 24.1 1× - - 9.0GB
DEQ-Transformer (Pre-LN) [18] 98M [diverged] N/A 30 N/A N/A
DEQ-Transformer (Post-LN) [18] 98M 24.0 3.1× 30 30 3.9GB

DEQ-Transformer (Post-LN) early stopped 98M 29.2 3.1× 30 12 3.9GB
DEQ-Transformer (Post-LN) [18] 98M 26.0 2.2× 20 20 3.6GB
DEQ-Transformer (Post-LN) [18] 98M [diverged] N/A 15 N/A 3.6GB

DEQ-Transformer (Pre-LN) + JR (ours) 98M 24.5 1.5× 14 14 4.8GB
DEQ-Transformer (Post-LN) + JR (ours) 98M 24.9 1.4× 13 12 4.8GB

DEQ-Transformer (Post-LN) + JR (ours) (trained on T=300) 98M 23.8 2.2× 13 13 6.5GB

function. Although a DEQ-Transformer is able to perform competitively with a deep Transformer-
XL [58] in terms of test perplexity, and consumes 60-70% less memory, it is also much slower
(about 3×; see Figure 4.1c) and borders on instability. In Table 4.1, we demonstrate how the
Jacobian regularization alleviates this. Compared to the original DEQ models, there are two
major improvements. First, we significantly reduce the NFEs required for DEQ-Transformer
models while maintaining competitive accuracy. Using the Transformer-XL as a time benchmark
(1×), the speed of a DEQ-Transformer is significantly accelerated: training time goes from
3.1× to 1.5×. Second, the regularized DEQ model is more flexible with architectural choices.
Whereas a Pre-LN DEQ-Transformer (see Figure 4.2) quickly diverges in training even in the
presence of a large NFE threshold, the Jacobian regularization resolves this issue and stabilizes the
forward/backward convergences consistently (see Figure 4.3 and Table 4.1), eventually reaching
24.5 perplexity. Moreover, while we can early-stop a well-trained unregularized DEQ model at
inference time, it hurts generalization performance significantly (e.g., 29.2 ppl with 12 NFEs).
Similarly, we find training with NFEs < 30 leads to increasingly bad generalization performance,
and when NFEs drops below 20, model training frequently diverge as a result of extremely noisy
gradients.

Like the original equilibrium networks, the regularized DEQs are memory efficient, consuming
about 45% less training memory than Transformer-XL. Moreover, we find the Jacobian-regularized
DEQs reduce over 50% memory consumption of the original DEQs at inference time (when
both using Broyden’s method) due to faster/stabler convergence, suggesting its effectiveness in
addressing the hidden solver cost issue discussed in Sec. 4.2.5.

4.4.3 CIFAR-10 and ImageNet Classification

We additionally conduct experiments on vision tasks using the recent multiscale deep equilibrium
networks (MDEQ) [19], which drive multiple feature resolutions to their equilibria simultaneously.
Because of the need to maintain high- and low-resolutional feature maps at all iterative steps and
generally higher channel dimensions in fθ, MDEQs are substantially slower than conventional
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Figure 4.7: With the proposed regularization, DEQ models are competitive with popular explicit
networks in accuracy, memory, and runtime. Lower bars are better.

networks like ResNets (which operate on progressively downsampled feature maps). This makes
acceleration vital to broader adoption of multiscale implicit models.

The results of applying Jacobian regularization on multiscale DEQs for image classification are

Table 4.2: Results on CIFAR-10 and ImageNet
classfication (standard deviation is calculated
with 5 runs). † indicates unregularized model
hard-stopped at inference time.

CIFAR-10 classification
Size Accuracy NFEs

ResNet-18 [96] 10M 93.0 (± 0.1)% -
ResNet-101 [96] 40M 93.8 (± 0.3)% -

DenseNet-121 [103] 8M 95.0 (±0.1)% -
monotone DEQ [244] 1M 89.4 (± 0.2)% 24

MDEQ [19] 10M 93.6 (± 0.2)% 17
MDEQ early stopped† 10M 89.1% 6†

MDEQ + JR (ours) [19] 10M 93.1 (± 0.3)% 6

(Full) ImageNet classification
Size Top-1 Acc. NFEs

ResNet-18 [96] 13M 70.2% -
Inception-V2 [110] 12M 74.8% -

ResNet-50 [96] 26M 75.1% -
ResNet-101 [96] 52M 77.1% -

DenseNet-264 [103] 74M 79.7% -
MDEQ-small [19] 18M 75.4% 27
MDEQ-large [19] 63M 77.5% 30

MDEQ-small + JR (ours) 17M 74.5% 14
MDEQ-large + JR (ours) 62M 76.8% 15

shown in Table 4.2. On CIFAR-10, whereas the
unregularized DEQ models used 17 NFEs to
reach the reported competitive level of perfor-
mance, our DEQ with Jacobian regularization
can converge well even within 6 iterations (in
fact, we find smaller NFE values still trains,
but significantly hurts generalization perfor-
mance). This improvement is also obvious
in Figure 4.1a and 4.1b, where we show that
early stopping at threshold T = 6 still yields
good convergence with Jacobian regularization.
On the much larger-scale ImageNet, where we
deal with 224 × 224 images, the factor of re-
duction in NFEs is not as strong (e.g., from
27 to 14 iterations, due to the receptive field
issue; we’ll explain this next in Section 4.4.5)
but still yields a roughly 2× acceleration. This
shows that the Jacobian regularization is ef-
fective in large-scale computer vision tasks,
and in the presence of multiple equilibrium
points. However, we also note that as with
DEQ-Transformers on WikiText-103, we no-
tice a small slip in accuracy, which may be a
result of constraining model parameterizations.

Figure 4.7 provides a visual comparison of different models with respect to three metrics:
performance, inference speed, and training memory. These are reported on the CIFAR-10 dataset.
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Figure 4.8: Empirical evidence of how our method constrains ρ(J fθ
). In contrast, insufficient

NFEs (e.g., T=16) at training time cause a DEQ-Transformer model to explode early in the
training phase.

Compared to the first version of MDEQ presented in Chapter 3, for the first time, we have an
implicit-depth model that runs with a competitive level of speed and accuracy as large explicit
networks such as ResNet-101, while consuming much less memory.

4.4.4 Effect of Jacobian Regularization on ρ(J fθ
)

In addition to the synthetic study, we also verify that the Jacobian regularization is indeed
effectively constraining conditioning of J fθ

. Note that the underlying Jacobian matrices are large
(e.g., [(B·110K) × (B·110K)] in WikiText-103, and [(B·198K) × (B·198K)] in ImageNet with
MDEQ-small) and checking their full spectrum would be infeasible. Therefore, we conduct a
study that monitors the average spectral radius ρ(J fθ

(z⋆)) (i.e., the largest absolute eigenvalue)
on the validation set, over the first 100K steps of DEQ training on WikiText-103 using the power
method [170]; see Fig. 4.8. Importantly, although ∥J fθ

∥F only upper-bounds the spectral radius
(see Sec. 4.3), we verify that our proposed regularization does effectively constrain ρ(J fθ

) (see
/ paths in Fig. 4.8), thereby making deep equilibrium models more stable. In contrast, an

unregularized DEQ with the same few NFEs explodes in both eigenvalue and shortly after also in
perplexity (see / paths), and only works if we increase NFEs to 30 (see ×/× paths). In general,
we empirically observe that training an unregularized DEQ with insufficient NFEs generally
begets extremely noisy gradients, thus leading to faster destabilization and even divergence.

4.4.5 Ablative Analysis and Limitations of the Approach

We continue our discussion with some empirical ablative studies. First, while Grathwohl et al.
[91] found weight decay useful for regularizing ODE-based models’ NFEs, we found weight
decay generally not effective in stabilizing DEQs and sometimes even counter-productive. This is
illustrated in Figure 4.9, where after 50K steps the model started to diverge to > 500 perplexity
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and stopped improving. In addition, we also conduct an ablative experiment on how the Jacobian
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Figure 4.9: Adding weight decay to the DEQ-
Transformer doesn’t help stabilize the convergence.

regularization strength γ affects the per-
formance when we constrain NFEs to ≤ 6
at inference time, with results shown in
Table 4.3 (CIFAR-10 dataset). In general,
we find that if γ is too small, the final per-
formance may be good but entails more
NFEs. When γ is too large, the accuracy
does quickly converge, but the constraint
imposed on the model class is too strong
and eventually hurts performance (e.g.,
since the training loss on CIFAR-10 usu-
ally overfits to almost 0 towards the end
of training, which makes the Jacobian loss dominant instead).

We also highlight two limitations of this approach. First, the addition of Jacobian regu-
larization term does not fundamentally solve the growing instability problem, but only em-
pirically alleviates it. This means that we have to be careful about balancing the main loss

Table 4.3: Controlled experiments on the strength γ of
the Jacobian regularization. The NFE value represents
the “hard stop” threshold we set for the corresponding
DEQ models at inference.

NFE=1 NFE=2 NFE=3 NFE=4 NFE=5 NFE=6

γ = 0.1 82.4% 89.7% 91.9% 92.3% 92.7% 92.9%
γ = 0.6 85.8% 91.5% 92.7% 93.0% 93.0% 93.1%
γ = 1.2 84.4% 89.6% 92.2% 92.6% 92.7% 92.7%

objective and this auxiliary objective (see
Table 4.3). Second, even with the Jaco-
bian regularization facilitates faster con-
vergence, the physical law issue high-
lighted in Sec. 4.2.6 still cannot be eas-
ily bypassed. This explains why we need
more NFEs on ImageNet than on CIFAR-
10 (see Table 4.2); it also indicates that
while our approach alleviates the brittle-
ness to architectural choices, its effective-
ness can still depend on the architecture. This makes global-context alternatives to ConvNets,
such as self-attention-based vision layers (e.g.,ViT [65, 154]) likely more appealing in the implicit
model setting, which we leave for future work.

4.5 Discussion
In this chapter, we summarized the weaknesses and challenges that these “new” equilibrium-based
deep learning models face. We have specifically discussed the relationship between the spectral
radius of the Jacobian and the stability of forward non-linear and backward linear systems of DEQ
models, and provided empirical evidence of the poor conditioning of the Jacobian. This motivates
our introduction of Jacobian regularization. Our experiments show that our method significantly
alleviates the weaknesses of DEQs, yielding a > 2.5× acceleration. This is a major step towards
making implicit models more practical and suitable for large-scale real-world applications. Many
of those challenges have led to numerous subsequent research explorations, only a tiny portion
of which is covered in this thesis (indeed, the Jacobian regularization is just one of the many
potential solutions). We discuss some of these other extensions of the DEQ approach next.
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Chapter 5

Training DEQs with Lightweight Inexact
Gradients

Implicit deep networks treat the evolution of the intermediate hidden states as a certain form
of dynamics, such as fixed-point equations [18, 19] or ordinary differential equations (ODEs)
[45, 67], which represents infinite-level hidden states. This allows us to formulate their forward
passes as solving the underlying dynamical systems; e.g., by black-box and advanced root-finding
algorithms (see Chapter 2). Importantly, DEQ models could directly differentiate through the
final equilibrium point z⋆ (see Sec. 2.2.2):

∂ℓ

∂(·) =
∂ℓ

∂z⋆
(

I − J fθ
(z⋆)

)−1 ∂ fθ(z⋆; x)
∂(·) . (5.1)

However, this could still induce a heavy memory overhead [80, 155] in practice due to the Jacobian
inverse term (highlighted in ). To solve this problem, we have so far relied on the relatively more
efficient vector-Jacobian products and solve a Jacobian-based linear fixed-point equation for the
backward pass of deep equilibrium models (see Eq. 2.16). But this could still be costly in practice
as it relies on another iterative (linear) fixed-point solving process. Without techniques like the
Jacobian regularizations introduced in Chapter 4, for example, it could take over 2 weeks to train
the largest, state-of-the-art implicit models on ImageNet [198] with 8 GPUs.

In this chapter, we investigate a yet different solution from that proposed in Chapter 4: fast
inexact gradients. We propose to directly replace the red Jacobian inverse term in Eq. 5.1 with
a lightweight alternative, and directly circumvent the laborious computation that we (and many
other work) have depended on so far to yield the exact gradient [18, 19, 92, 157, 244]. Importantly,
we find that a first-order oracle that produces good gradient estimates is enough to efficiently
and effectively train these layer-less implicit models (indeed, as we shall see, the fact that DEQ
models have one layer is central to this development).

There are a few ways that we can achieve this. Specifically, we will primarily introduce the
technique of phantom gradient, which is motivated by a Neumann series view of the implicit
function theorem [128]. We will analyze the general condition under which these phantom
gradients can provide a provably descent direction of the loss landscape, and propose two
variations of them for the equilibrium framework (which are based on the the damped fixed-point
unrolling and the Neumann series, respectively). Additionally, we show that the stochastic gradient
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descent (SGD) algorithm based on the phantom gradient enjoys a sound convergence property
as long as the relevant hyperparameters (e.g., the damping factor) are wisely chosen. At the end
of our methodology section, we will also briefly introduce some of the other inexact gradient
schemes concurrently studied by the community for DEQ models, one based on the forward
Broyden matrix [189] (i.e., low-rank updates), and the other one based on the identity matrix [81].

We conduct an extensive set of synthetic, ablation, and large-scale experiments to both analyze
the theoretical properties of the phantom gradient and validate its speedup and performances on
various tasks, such as ImageNet [198] classification, Wikitext-103 [164] language modeling, and
graph classification (COX2, PROTEINS [253]). Overall, our results suggest that: 1) these inexact
gradients provides a provably descent gradient direction; 2) they are applicable to large-scale tasks
and is capable of achieving a strong performance; and 3) they significantly shorten the training
time needed for implicit models roughly by a factor of almost 2×.

We note that this is generally not possible for explicit, conventional neural networks (except
for in certain constrained settings) where each layer decidedly depends on the later layers, which
makes chain-rule backpropagation inevitable. This chapter is primarily based on a NeurIPS 2021
work [87] and a ICLR 2022 work [189].

5.1 Motivation: Inexact Gradients
A deep equilibrium network solves the solution z⋆ to the following fixed-point equation:

z⋆ = fθ(z⋆; x). (5.2)

(In this section, we start by assuming that the function z → fθ(z; x) is a contraction with
respect to z so that its Lipschitz constant Lz < 1. We note that this is a setting that has been
frequently assumed to be the case in relevant DEQ literature [180, 192].) To train these models,
we rely on the implicit function theorem (Eq. (5.1)). However, as we have seen in Chapter 2
and 4, this seemingly simple implicit differentiation suffer from two important issues. First,
as the computation and storage of the Jacobian inverse can be prohibitively expensive in high-
dimensional settings (e.g., over 106 × 106 in language modeling, per sequence), we usually
compute it by solving a corresponding linear system instead. This is still iterative and costly
in nature, since each vector-Jacobian product is about as costly as a forward evaluation of fθ.
Second, the Jacobian matrix (and thus the Jacobian-inverse) can be numerically unstable when
encountering the ill-conditioning issue, which could lead to problems like growing instability and
even training divergence (see Sec. 4.2.2).

On a parallel thread, the inexact gradient [25, 78, 81, 86, 204] has been applied in certain prior
(constrained) learning protocol, like synthetic gradient [112] (which has been mostly applied to
simple tasks such as MNIST classification). Some research has used a moderate gradient noise as
a regularization approach [84], which has been shown to play a central role in escaping poor local
minima and improving generalization ability [7, 245, 268]. This therefore motivates us to rethink
the possibility of replacing the Jacobian-inverse term in the standard implicit differentiation with
a cheaper and more stable counterpart as well: since DEQ models have only one (implicit) layer
and is agnostic to the forward computation trajectory, it is likely that exact gradient estimate is not
always required.
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Broadly, for an implicit deep network with parameter θ ∈ Rp and equilibrium dimensionality
z⋆ ∈ Rd, given a loss ℓ we define the corresponding inexact gradient as:

∂̂ℓ

∂θ
:=

∂ℓ

∂z⋆
A (5.3)

where the matrix A ∈ Rd×p serves to replace the original ∂z⋆
∂θ =

(
I − J fθ

(z⋆)
)−1 ∂ fθ(z⋆;x)

∂θ term
in the implicit function theorem (IFT). It turns out that under certain general conditions of this
approximation A, these inexact gradients can be guaranteed valid in the deep equilibrium model
context, which we provide below as a theorem.

Theorem 4. Let σmax and σmin be the maximal and minimal singular value of ∂ fθ(z⋆;x)
∂θ . If

∥∥∥∥
(

I − J fθ
(z⋆)

)
A− ∂ fθ(z⋆; x)

∂θ

∥∥∥∥ <
σ2

min
σmax

, (5.4)

then the inexact gradient provides an ascent direction of the loss function ℓ, i.e.,
〈

∂̂ℓ

∂θ
,

∂ℓ

∂θ

〉
> 0. (5.5)

Proof. Denote G = ∂ fθ(z⋆;x)
∂θ ∈ Rd×p, v⊤ = ∂ℓ

∂z⋆ ∈ R1×d and u⊤ = v⊤(I − J fθ
(z⋆)

)−1 ∈
R1×d. Let

E =
(

I − J fθ
(z⋆)

)
A− G.

If ∥E∥ < σ2
min/σmax, then
〈

∂̂ℓ

∂θ
,

∂ℓ

∂θ

〉
= v⊤AG⊤(I − J fθ

(z⋆)
)−Tv = u⊤(G + E)G⊤u (5.6)

≥ ∥u⊤G∥2
2 − ∥E∥∥G⊤∥∥u∥2 ≥ (σ2

min − σ2
max∥E∥)∥u∥2 > 0 (5.7)

which concludes the proof. ■

We can also understand inexact gradient as a replacement for the Jacobian inverse. Suppose
we only replace the

(
I − J fθ

(z⋆)
)

term with a matrix D ∈ Rd×d (i.e., A = D ∂ fθ
∂θ ), then condition

in inequality (5.4) can be equivalently reduced to the following simpler form:

∥
(

I − J fθ
(z⋆)

)
D − I∥ <

1
κ2 (5.8)

where κ is the condition number of ∂ fθ
∂θ .

How practical is this theorem? We show next two instantiations of this inexact gradient
(which we call phantom gradients) for which we can verify the condition in Thm. 4 holds if the
hyperparameters in those instantiations are wisely selected.
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5.2 Instantiations: Phantom Gradients
Note that without altering the fixed point of Eq. (5.2), we could equivalently consider a damped
variant naïve fixed point iteration with a damping factor λ < 1:

z[i+1] = λ fθ(z[i]; x) + (1 − λ)z[i], i = 0, 1, . . . (5.9)

(It should be easy to verify that Eq. (5.9) and Eq. (5.2) have the exact same set of fixed points.)
Specifically, when λ is properly chosen and fθ is contractive, this infinite series is bounded and
thus convergent, yielding the following Neumann series expansion of the Jacobian inverse term:

(
I − J fθ

(z⋆)
)−1

=

(
I − ∂ fθ(z⋆; x)

∂z⋆

)−1

= λ(I + B + B2 + B3 + . . . ) = λ
∞

∑
t=0

Bt (5.10)

where B = λJ fθ
(z⋆) + (1 − λ)I. An equivalent way of interpreting this is, suppose we unroll

Eq. (5.9) for a finite T steps (and assuming fθ is continuously differentiable w.r.t. θ and z⋆),
then as T → ∞, we have limT→∞

∂z[T]
∂θ =

(
I − J fθ

(z⋆)
)−1 ∂ fθ(z⋆;x)

∂θ . This suggests two slightly
different variations (up to fixed-point numerical error; see discussion later) of how we could
instantiate this inexact gradient. In both cases, we assume that we use some black-box fixed-point
solver RootFind which yields a fixed point estimate ẑ⋆ (which may not be exactly the same as the
groundtruth fixed point z⋆, as in practice we stop the solver at some ε threshold for efficiency; see
Sec. 2).

Unrolling-based Phantom Gradient (UPG). Setting z[0] = ẑ⋆ (the fixed point estimate
we obtain from the black-box solver), we perform z[i+1] = λ fθ(z[i]; x) + (1 − λ)z[i] for i =
0, . . . , k − 1, and backpropagate through this k-step unrolling as usual.

Formally, this allows us to define matrix A ∈ Rd×p in Thm. 4 in the following form:

Aunr
k,λ = λ

k−1

∑
i=0

[
k−1

∏
t=i+1

(
λJ f (z[t]) + (1 − λ)I

)] ∂ fθ(z[i]; x)
∂θ

(5.11)

Intuitively, we perform k naïve fixed-point iterations at the estimate point ẑ⋆ we obtain, and
perform backpropagation-throught-time (BPTT) on this k-step unrolling. A PyTorch-style [185]
pseudocode describing a sample implementation of UPG is shown in Alg. 1.

Neumann-series-based Phantom Gradient (NPG). We can also perform a k-step truncated
Neumann series expansion with a B matrix (see Eq. 5.10) defined directly by the estimation ẑ⋆
(without unrolling like in UPG at all). That is,

Aneu
k,λ = λ(I + B + B2 + · · ·+ Bk−1)

∂ fθ(ẑ⋆)
∂θ

, where B = λJ fθ
(ẑ⋆) + (1 − λ)I (5.12)

We refer interested readers to Appendix B in Geng et al. [87] for implementation of these two
phantom gradients. Moreover, for a properly chosen λ (which impacts contractivity), we are able
to ensure that condition (5.4) is satisfied when k is large.
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Algorithm 1 Unrolling-based phantom gradient (UPG), PyTorch-style

# solver: the solver to find z⋆, e.g., Broyden’s method.
# func: the single layer fθ that defines the implicit model.
# z: the input injection x to solve z⋆ = fθ(z⋆; x)
# h: the estimated solution ẑ⋆ of the single layer.
# k: the UPG unrolling steps k.
# lambda_: the damping factor λ.
# training: a bool variable that indicates the training or

inference stage.

# Forward pass (Backward pass is accomplished by automatic
differentiation)

def forward(z, k, lambda_, training):
with torch.no_grad():

h = solver(func, z)

if training:
for _ in range(k):

h = (1 - lambda_) * h + lambda_ * func(h, z)
return h

Discussion. We would like to clarify that both the UPG and NPG are derived from a truncated
form of an infinite series. However, we choose to differentiate between these two instantiations
because in practice they can behave very differently with the quality of the fixed-point estimate ẑ⋆
from the solver.

• When ẑ⋆ is a bad estimation of the fixed point (e.g., when the growing instability issue
outlined in Chapter 4 becomes severe), UPG turns into a truncated BPTT (T-BPTT) that is
commonly used for RNNs, whereas NPG could be an extremely noisy (or wrong) gradient.
This resembles the warmup phase that was used in Bai et al. [18] in DEQ-Transformer
training, where we perform a 2-layer unrolling for the first ∼10K training iterations.

• When ẑ⋆ is a high-quality fixed-point estimation (i.e., ∥ẑ⋆ − z⋆∥ → 0, which is typically
the case when the dynamical system is very stable), UPG and NPG with the same k and λ
should also expect to approach each other.

Moreover, we also characterize the impact of the two major hyperparameters on the precision
and conditioning of the inexact gradient A. Take NPG (Eq. (5.12)) as an example.

(i) On the precision of the phantom gradient,
• a large k makes the gradient estimate more accurate, as higher-order terms of the

Neumann series are included; while
• a small λ slows down the convergence of the Neumann series because the norm ∥B∥

increases as λ decreases.
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(ii) On the conditioning of the phantom gradient,
• a large k impairs the conditioning of A since the condition number of Bk grows

exponentially as k increases; while
• a small λ helps maintain a small condition number of A because the singular values

of J fθ
(ẑ⋆) are “smoothed” by the identity matrix.

In a word, a large k is preferable for a more accurate A, whereas a small λ contributes to the
well-conditioning of A. Practically, these hyperparameters should be selected in consideration of
a balanced trade-off between the precision and conditioning of A.

We show prove the convergence guarantee of the SGD algorithm using phantom gradient
in Geng et al. [87], where we show that under mild conditions (e.g., ℓ has bounded gradient almost
surely, and the phantom gradient is an ϵ-approximation) then a DEQ model trained with SGD
converges also to an ε-approximate stationary point in expectation.

5.3 Other Inexact Gradients
While this chapter will primarily focus on the two aforementioned of phantom gradients (which
are based on truncation of an infinite series), we note that they are only instantiations of A could
be like. There are also other formulations, which we highlight in this section, but refer interested
readers to Ramzi et al. [189] and Fung et al. [81] for more results.

5.3.1 SHaring the INverse Estimate (SHINE) from the Forward Pass
In a related work [189], we also leverage the fact that in DEQ models are often solved using
quasi-Newton algorithms such as Broyden’s method [34] and Anderson acceleration [8, 72],
which approximates the inverse of the Jacobian in the direction of steps. Specifically, in those
solvers, we update the fixed-point estimation z[i] via the quasi-Newton update of the form

z[i+1] = z[i] − αp[i] = z[i] − αB[i] ( fθ(z[i]; x)− z[i])︸ ︷︷ ︸
=gθ(z[i];x) in Eq. (2.11)

(5.13)

where the quasi-Newton matrix (e.g., Broyden matrix) B[i] is an approximation (by low-rank
updates performed on top of B[i−1] that satisfies the secant condition) to the Jacobian inverse
(I − J fθ

(z[i])−1. Therefore, one potentially good inexact gradient would then be to recycle
B[i] in the forward pass fixed-point solving as a guess for the backward pass (I − J fθ

(z⋆)−1

term. Specifically, given N forward quasi-Newton iterations which yield (z⋆, B[N]), the SHINE
method [189] proposes to produce inexact gradient

ASHINE
N = B[N] ∂ fθ(z⋆; x)

∂θ
(5.14)

This idea is justified with the theoretical guarantees, which we provide informally here and refer
readers to Ramzi et al. [189] for details.

56



Theorem 5. (Informal) Under mild assumptions (e.g., ∑∞
i=0 ∥z[i] − z∞∥ < ∞, invertible and

Lipschitz-continuous Jgθ
near z⋆, and continuous gradient),

lim
N→∞

∂ℓ

∂z⋆
ASHINE

N =
∂ℓ

∂θ

∣∣∣∣
z⋆

(5.15)

However, this method depends strongly on the fact that we use a white-box BFGS-alike (e.g.,
Broyden’s method) forward iterative solver, which may not always be available to us when training
deep equilibrium models.

5.3.2 Jacobian-Free Estimation
Concurrently, Fung et al. [81] proposes a much simpler approach, where we simply replace the
Jacobian inverse approximation with an identity matrix I ∈ Rd×d. The authors showed in [81]
that this is equivalent to using a preconditioner on the gradient that is provably descent under
certain strong assumptions (e.g., Lipschitzness of fθ). Formally,

AJF =
∂ fθ(z⋆; x)

∂θ
(5.16)

We note that while the Jacobian-free method is theoretically justified only under strong
assumptions, they have been shown to work quite well in practice even when many of these
assumptions are not guaranteed but the DEQ dynamical system is overall stable (we will see an
example in Chapter 7). This is very important as it means the backward pass of these “infinite-
level” neural networks that DEQ represents can be trained with a one-step gradient (i.e., one
matrix-vector product), and is therefore almost free-of-charge.

5.4 Experiments
In this section, we demonstrate the effectiveness of phantom gradient on deep equilibrium models.
We aim to answer the following questions via empirical results: (1) How precise is the phantom
gradient? (2) What is the difference between the unrolling-based and the Neumann-series-based
phantom gradients? (3) How is the phantom gradient influenced by the hyperparameters k and
λ? (4) How about the computational cost of the phantom gradient compared with implicit
differentiation? (5) Can the phantom gradient work at large-scale settings for various tasks?

We start by introducing three experiment settings. First, in a synthetic setting, we adopt a
single fully-connected layer fθ of the form z+ = σ(W(z + x) with spectral normalization [172]
(so that the transformation is guaranteed contractive). This synthetic setting is static and the
weights are randomly generated, thus acting as a sanity check to the quality of the inexact gradients.
Second, on the CIFAR-10 dataset, we use the MDEQ-Tiny model (see Chapter 3, about 170K
parameters) as the ablation setting where the training dynamics of DEQ models come into play.
Finally, we conduct experiments on large-scale datasets to highlight the improved speed and
performances on realistic datasets like ImageNet classification [198] and Wikitext-103 language
modeling [164]. All training sources of this work are available at https://github.com/
Gsunshine/phantom_grad.
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(a) Neumann-series-based phantom gradient (b) Unrolling-based phantom gradient

λ = 0.5 λ = 1.0 λ = 0.5 λ = 1.0

Figure 5.1: Cosine similarity between the phantom and exact gradient in the synthetic setting. As
k increases for both UPG and NPG, the cosine similarity also rapidly approaches the true gradient.

(a) Neumann-series-based phantom gradient (b) Unrolling-based phantom gradient

Figure 5.2: Cosine similarity between the phantom gradient and the exact gradient on CIFAR-10
during training. The horizontal axis corresponds to the cosine similarity, and the vertical axis to
the training iterations (steps).

Precision of the Phantom Gradient. The precision of the phantom gradient is measured by its
angle against the exact gradient, indicated by the cosine similarity between the two.

In the synthetic setting, the function fθ is restricted to be a contraction mapping. Specifically,
we directly set the Lipschitz constant of fθ to be 0.9, and use up to 100 fixed-point iterations to
solve the root z⋆ of Eq. 5.2 until the relative error satisfies ∥ fθ(z⋆;x)−z⋆∥

∥z⋆∥ < 10−5. The inexact
gradients produced by UPG and NPG are then compared to the “references” exact gradients,
which is estimated by backpropagating through the fixed-point iterations, and cross-validated
(with cosine similarity consistently succeeding 0.9999) by implicit differentiation solved with 20
steps of the Broyden’s method [34].

We report the cosine similarity between phantom gradients and the reference exact gradients
in this synthetic setting in Fig. 5.1. The synthetic results show that the cosine similarity tends to
increase as k grows for both UPG and NPG as expected, and that a small λ tends to slow down the
convergence of the phantom gradient, allowing it to explore in a wider range regarding the angle
against the exact gradient. Overall, the inexact and exact gradient directions are highly similar.

We additionally observe this in the ablation setting on CIFAR-10 with an MDEQ-Tiny model,
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with the result shown in Fig. 5.2. The plot shows that the phantom gradient still provides good
quality ascent direction even in the real training process. Interestingly, the cosine similarity
slightly decays as the training progresses, which implies a possibility to construct an adaptive
gradient solver for implicit models (e.g., a dynamic schedule on k and λ).

Trade-offs between Unrolling and Neumann. As mentioned in the discussion of Sec. 5.2,
when our fixed point estimation ẑ⋆ is exactly the fixed point z⋆, there is no difference between UPG
and NPG. They are both a truncated version of the Neumann series that uses the Jacobian matrix
evaluated exactly at z⋆. However, when the numerical error is nontrivial, i.e., ∥ẑ⋆ − fθ(ẑ⋆; x)∥ >
0, these two instatiations can behave increasingly differently as this error gap broadens.

Table 5.1: Complexity comparison.
Mem means the memory cost, and K
and k denote the solver’s steps and the
unrolling/Neumann steps, respectively.
Here, K ≫ k ≈ 1.

Method Time Mem Peak
Mem

Implicit O(K) O(1) O(k)
UPG O(k) O(k) O(k)
NPG O(k) O(1) O(1)

We note that a particular benefit of the UPG is its
ability to automatically switch between an unrolling-
based gradient stage (which can be thought of as a kind
of layer-stacking pretraining, or warm-up, which DEQ-
Transformer and MDEQ models also frequently use) and
an implicit gradient stage (which directly uses the fi-
nal precise fixed-point estimation). Specifically, when
the model is not sufficiently trained or the solver con-
verges poorly (see Bai et al. [19] and Chapter 4), the
UPG defines a forward computation graph that is essen-
tially equivalent to a shallow weight-tied network that
unrolls to refine the equilibrium states. Therefore in this
stage, the phantom gradient serves as a backpropagation-
through-time (BPTT) algorithm through the shallow feedforward unrolling. Then, as training
progresses, the solver could become more stable and converges to the fixed point z⋆ better, which
makes the UPG behave more like the NPG. We argue that such an ability to automatically and
adaptively switch training stages is benign to the implicit models’ training protocol, which is also
supported by the performance gain empirically.

Note that since in practice we only use a very small value for k (e.g., 3), this adds still
minimal memory overhead to the training procedure, but which is higher than the memory
overhead of a canonical implicit differentiation process presented in Chapter 2. We additionally
demonstrate in Table 5.1 the time and memory complexity for canonical implicit differentiation
(which solves a linear system corresponding to the Jacobian inverse (I − J fθ

(z⋆))−1) and the
two forms of phantom gradient (which approximates this term). We note that the Jacobian-free
method presented in Sec. 5.3.2 (originally proposed by Fung et al. [81]) corresponds to a special
case where k = 1.

Phantom Gradient at Scale. We conduct large-scale experiments to verify the advantages
of the phantom gradient on vision, graph, and language benchmarks. We adopt the UPG in
the large-scale experiments as we empirically find it perform better than NPG especially as
we scale to the high-dimensional space (see Geng et al. [87] for more details). The results are
illustrated in table 5.2 and table 5.3. Using the proposed inexact gradient, we are able to train
equilibrium models that match or even surpass the implicit differentiation training protocol on
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Table 5.2: Experiments using DEQ-Transformer and MDEQ on large-scale vision and language
tasks. Metrics stand for accuracy(%)↑ for image classification on CIFAR-10 and ImageNet, and
perplexity↓ for language modeling on Wikitext-103. JR stands for Jacobian Regularization (see
Chapter 4). † indicates additional steps in the forward equilibrium solver.

Datasets Model Method Params Metrics Speed
CIFAR-10 MDEQ Implicit 10M 93.8 ± 0.17 1.0×
CIFAR-10 MDEQ UPG A5,0.5 10M 95.0 ± 0.16 1.4×
ImageNet MDEQ Implicit 18M 75.3 1.0×
ImageNet MDEQ UPG A5,0.6 18M 75.7 1.7×
Wikitext-103 DEQ (PostLN) Implicit 98M 24.0 1.0×
Wikitext-103 DEQ (PostLN) UPG A5,0.8 98M 25.7 1.7×
Wikitext-103 DEQ (PreLN) JR + Implicit 98M 24.5 1.7×
Wikitext-103 DEQ (PreLN) JR + UPG A5,0.8 98M 24.4 2.2×
Wikitext-103 DEQ (PreLN) JR + UPG A5,0.8 98M 24.0† 1.7×

the state-of-the-art implicit deep networks with a substantial reduction on the training time. The
method also complements prior methods that accelerate the equilibrium networks, such as the
Jacobian regularizations presented in Chapter 4. And when we only consider the backward pass
cost, the speed for multiscale DEQ models can be improved by a remarkable 12× factor on the
large-scale ImageNet classification task.

Similarly, on graph classification and node classification tasks that prior implicit graph
networks (which are provably convergent by construction) have done well on [92], we observe
that UPG inexact gradients attain similar level of performance but with much cheaper backward
pass cost. These results demonstrate that the equilibrium models can benefit significantly from
these approximate gradients, and that finding a precise gradient estimation is not often necessary
in these one-layer implicit deep architectures (in contrast to conventional deep networks).

5.5 Discussion
In this chapter, we explore the possibility of training implicit models via lightweight and inexact
gradients that are still in provably ascent gradient directions. We first introduced the two instantia-
tions of the phantom gradient, which were based on a finite-step truncation of an infinite-series
view of the Jacobian inverse term. Then, we briefly discussed other potential ways to producing
inexact gradients, including by recycling forward quasi-Newton matrices or by a completely
Jacobian-free estimation.

Our synthetic and realistic experiments show that implicit deep networks can benefit signifi-
cantly from the proposed phantom gradient approach. These inexact gradients complements other
existing techniques like Jacobian regularization [20] and shows a 1.7× training acceleration with
comparable or better performances than canonical DEQ models on large-scale benchmarks.

We note that non-end-to-end optimization of deep networks is not a completely new subject
(e.g., by auxiliary variable [38, 224, 261, 262], or synthetic gradient [56, 112, 132]). However,
these methods hardly scale to realistic levels due to their inherent complexities (e.g., synthetic
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Table 5.3: Experiments using implicit graph neural networks [92] on graph tasks. Metrics stand
for accuracy(%)↑ for graph classification on COX2 and PROTEINS [253], Micro-F1(%)↑ for
node classification task on PPI.

Datasets Model Method Params Metrics (%)
COX2 IGNN Implicit 38K 84.1 ± 2.9
COX2 IGNN UPG A5,0.5 38K 83.9 ± 3.0
COX2 IGNN UPG A5,0.8 38K 83.9 ± 2.7
COX2 IGNN UPG A5,1.0 38K 83.0 ± 2.9
PROTEINS IGNN Implicit 34K 78.6 ± 4.1
PROTEINS IGNN UPG A5,0.5 34K 78.4 ± 4.2
PROTEINS IGNN UPG A5,0.8 34K 78.6 ± 4.2
PROTEINS IGNN UPG A5,1.0 34K 78.8 ± 4.2
PPI IGNN Implicit 4.7M 97.6
PPI IGNN UPG A5,0.5 4.7M 98.2
PPI IGNN UPG A5,0.8 4.7M 97.4
PPI IGNN UPG A5,1.0 4.7M 96.2

gradient method estimates the local gradient of neural networks using auxiliary models). In
contrast, because a deep equilibrium model has exactly one layer, there is no need chain-rule
backpropagation at all and we can directly work with its Jacobian at the final equilibrium point.
This is a very important property and as we shall see in Chapter 7, inexact gradients can be of
great help as we deploy DEQ models to real-time computer vision problems.
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Chapter 6

Neural Deep Equilibrium Solvers

In Chapter 4, we introduce a way to make equilibrium models faster by improving their dynamics.
That is, by encouraging the model to optimize for a simpler dynamical system, the fixed-point
solving process will be faster as a result. In Chapter 5, we show that a different approach to
improve training efficiency is to produce faster and approximate gradients.

But can we make equilibrium models faster by taking advantage of their implicitness? One
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Figure 6.1: Pareto curves of the same DEQ
with different solvers on WikiText-103 lan-
guage modeling (on 1 GPU).

benefit of deep equilibrium models’ formulation is
the fact that they decouple the internal structure of
the layer (which controls representational capac-
ity) from how the fixed point is actually computed
(which impacts inference-time efficiency), which is
usually via classic techniques such as Broyden’s
method [34] or Anderson acceleration [8]. This is
not possible in any explicit model (e.g., ResNet-
101 [96]), for which a static and prescribed com-
putation graph is built and executed. Hence, as we
showed in Chapter 2, given a trained DEQ, one can
trade off inference time and the accuracy of the es-
timated fixed point by simply reducing the number
of solver iterations. This yields a speed/accuracy trade-off curve; e.g., see Fig. 6.1. However,
this trade-off (i.e., movements along the pareto curves) can be highly risky: as we gradually
increase inference speed by compromising the quality of fixed point estimates, model accuracy
also degrades drastically.

In this chapter, we show that we can shift the DEQ speed/accuracy trade-off curve by exploiting
such decoupling to customize the fixed-point solving process itself. Prior work on equilibrium
models relies on classic solvers, which are manually designed and generic (e.g., Broyden’s
Method [34]). We propose a tiny, learnable, and content-aware solver module that is automatically
customized to a specific DEQ model. Our hypersolver consists of two parts. First, we introduce a
learned initializer that estimates a good starting point for the optimization. Second, we introduce
a generalized parameterized version of Anderson acceleration [8] that learns the iterative updates
as an input-dependent temporal process, and can be trained end-to-end in an unsupervised manner
(i.e., the hypersolver is unaware of the underlying task). Such a solution is particularly suited
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to the implicit model setting, because inference in these models requires repeatedly solving for
a fixed point of the same non-linear layer fθ for different inputs, a task at which our custom
neural solver excels. Moreover, the hypersolver consumes a tiny amount of parameters. Since
fθ is frozen when the hypersolver is trained, the training is very fast and does not compromise
generalization at all.

Our experiments apply this approach to diverse domains with large datasets, including the
largest MDEQ applied to Cityscapes segmentation with megapixel images [53]. Our results
suggest that neural deep equilibrium solvers add little overhead to training (only taking an extra
0.9-1.1% over the original DEQ’s training time), are extremely compact (about 1-3% of the
DEQ’s model size), and lead to a consistent and universal 1.6-2× acceleration of inference
with no compromise in accuracy. The success of these neural fixed-point solving processes
achieves two major objectives, both vital for the quickly growing community studying implicit
models: first, we advance these large-scale implicit models to a much more practical level
across architectures and input complexities (e.g., almost as fast as Transformers, see Fig. 6.1);
and second, we demonstrate how one could exploit this valuable notion of how implicit layers
decouple representational capacity and forward computation, a property that directly challenges
what traditional deep networks have been about (where forward computation, i.e., layer-stacking,
decides representational capacity).

This chapter is primarily based on the work that appeared in ICLR 2022 [22].

6.1 Preliminaries: Learning to Optimize, Fixed-point Solvers
Learning to Optimize/Learn. An important line of work has explored learnable optimization
methods. Li and Malik [139, 140] propose to use reinforcement learning (guided policy search)
to learn a new generic unconstrained continuous optimization algorithm, where the training set
consists of numerous randomly generated objective functions. Andrychowicz et al. [9] introduce
the “learning to learn” (L2L) framework, where a gradient update rule for the parameters is
learned by an LSTM with a pre-defined horizon T of parameter update steps. However, such
approaches [9, 48, 191, 242] have had some difficulty in generalizing to larger tasks due to the
need to unroll for a large T (e.g., 128 [9]). This chapter is related to these prior efforts in L2L, but
differs in important ways. First, the L2L framework aims to learn a learning algorithm that will
be applied to multiple models and tasks, while we aim to fit the nonlinear dynamics of a specific
implicit model. Second, the optimization we tackle is not on the parameter space, but on the
hidden unit space; this means that the RNN optimizer used in L2L would not work here, because
the fixed points themselves can be of variable sizes at test time (e.g., sequence lengths, image
sizes). Third, while L2L methods cannot know a priori what a good “initial guess” of optimal
parameters may be, we show that it is reasonable to infer this in the hidden unit space with implicit
models. Concurrent to the work presented in this chapter, Venkataraman and Amos [234] studies
an RNN-based learnable fixed-point acceleration scheme specifically in the application of convex
cone programming. Poli et al. [187] introduce a Neural ODE formulation that adds a learnable
residual fitting step to the original solver steps, aiming to approximate the higher-order terms of
canonical ODE solvers (e.g., Euler’s method) on each solution checkpoint along the ODE path.
Another recent work by Kidger et al. [122] focuses on improving the adjoint method by replacing

64



Algorithm 2 Anderson acceleration (AA) prototype (with parameter β and m)

1: Input: initial point z[0] ∈ Rn, fixed-point function fθ : Rn → Rn, max storage size m
2: for k = 0, . . . , K do
3: 1) Set mk = min{m, k}
4: 2) Compute weights αk

i for the past mk Anderson steps s.t. ∑mk
i=0 αk

i = 1.
5: 3) z[k+1] = β ∑mk

i=0 αk
i fθ(z[k−mk+i]) + (1 − β)∑mk

i=0 αk
i z[k−mk+i] (AA_update step)

6: end for
7: Return z[K+1] as an estimate for z⋆

the usual L2 norm with a more flexible seminorm to make the NODE backward solver faster.

Fixed-point Solvers for Deep Equilibrium Models. Previous chapters and prior works have
explored a number of techniques for finding the fixed points of DEQs. For example, Bai et al.
[18, 19], Lu et al. [157] used Broyden’s method [34], the memory consumption of which grows
linearly with the number of iterations since all low-rank updates are stored. Other recent work
[68, 88] shifted to Anderson acceleration (AA) [8], a lightweight solver that is provably equivalent
to a multi-secant quasi-Newton method [72]. Some specific structural parameterizations (e.g.,
Lipschitzness or contraction mapping) allows other works to rely on algorithms like Peaceman-
Rachford [192, 240, 244]. We briefly introduce Anderson acceleration (AA) here, since our
approach will use it as the starting point.

Prototype algorithm 2 illustrates the main idea of Anderson acceleration: we maintain a size-m
storage of the most recent steps, and update the iteration as a normalized linear combination
of these past iterates with weights αi (step 3). In the canonical AA algorithm, the weights are
computed in a greedy manner at each step to minimize the sum of their linear combination:

αk = arg min
α∈Rmk+1

∥G[k]α∥2, s.t. 1⊤α = 1, (6.1)

where G[k] = [gθ(z[k−mk]) . . . gθ(z[k])] are the past (up to m + 1) residuals; typically, we choose
β = 1 and m ≤ 5. Eq. (6.1) can be solved by a least-squares method as G[k]⊤G[k] is only an
m × m matrix. In all prior works with DEQs [18, 19, 81, 157, 192, 244], the fixed point iteration
starts with an initial z[0] that is either 0 or a random sample from N (0, I).

6.2 Neural Deep Equilibrium Solvers
While classic fixed-point estimation algorithms, as presented in Section 6.1, already work well,
they are generic and make minimal assumptions about the specific problem being solved. For
example, while multiple papers in optimization literature have acknowledged that tuning m (and
mk) as well as varying β = (βk)k=0,...,K for each Anderson iteration k could accelerate AA’s
convergence to the fixed point [8, 72, 235], this is rarely considered in practice because it’s unclear
what schedule should be applied to these parameters.

We propose to make fixed-point solvers for DEQ models learnable and content-based, which
is made possible by the unique properties of implicit models. First, unlike generic problems,
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the nonlinear system for each DEQ is uniquely defined by the input x (e.g., an image, etc.):
z⋆(x) = z⋆ = fθ(z⋆; x). This opens the door to learning to make an informed initial guess,
followed by content-based iterative updates in the solver. Second, due to implicit models’
disentanglement of representation capacity with forward computation, our goal of improving
solvers is decoupled from the original learning goal of the DEQ model itself (i.e., the solver is not
aware of the original task, such as to predict the class of an image). Hence, we are able to train
this neural solver in a lightweight and unsupervised manner, directly with the help of groundtruth
fixed-point solutions (see below).

6.2.1 General Formulation
For a given DEQ layer fθ and (possibly random) input x, we assume access to its exact fixed
point z⋆ = z⋆(x) = fθ(z⋆, x), which can be obtained by taking a classic solver (e.g., Broyden’s
method) and running it for as many iterations as needed (e.g., 100 steps) to a high level of
precision.

The overall structure of the hypersolver is shown in Fig. 6.2. We use a tiny neural network
parameterized by ω = {ϕ, ξ} (explained below) to learn the initialization and iterative solving
process, and unroll the learnable solver for some K steps to yield a prediction z[K](x). To train this
neural solver, we minimize an objective L(ω, K) (discussed in Sec. 6.2.2) by backpropagating
through this K-step temporal process [174, 194]. The original DEQ parameters θ are frozen, and
only the hypersolver parameters ω are trained here. We also do not need the groundtruth label y
(e.g., the class of an image) that corresponds to input x, which means these neural equilibrium
solvers can also be fine-tuned on the fly after deployment, at inference time.

Initializer. The initial values can have a significant impact on the optimization process and
its convergence speed. We propose to make an input-based guess with a tiny network hϕ:
z[0] = hϕ(x), where ϕ are the parameters. Note that the goal of the initializer is not to solve the
underlying problem at all (e.g., to classify an image; we don’t even need the groundtruth label y),
but only to yield a quick initial estimate. For example, in language modeling, where x ∈ RT×d is
a length-T sequence, we set

hϕ(x) = ReLU(Conv1dk=3(x))W , where Conv1dk=3 : RT×d → RT×p (6.2)

and where W ∈ Rp×q, with q being the dimension of the fixed point of a single token. We set
p ≪ d to be very small (e.g., p = 100 and d = 700 in the WikiText-103 experiment), so that hϕ

is tiny and fast to evaluate. Note that this 1-layer initializer by itself has very low expressivity and
is usually a poor model for the original task, as we verify in Sec. 6.3.3.

HyperAnderson Iterations. We further parameterize the setting of βk and αk
i while following

the AA prototype outlined in Alg. 2. In lieu of setting Eq. 6.1 for α to a least-squares solution
over the past few residuals G, we make both α ∈ R(mk+1) and β ∈ R explicit learnable functions
of G with a neural network sξ(G) : R(mk+1)×n → (R(mk+1) × R); see Alg. 3.

A challenge here is that n (the dimension of z⋆) is typically large in practice, as it is affected
by the scale of the input (e.g., in DEQ sequence models [18], n is over 1.5 · 105 on a single textual
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Algorithm 3 HyperAnderson Iterations (parameterized parts highlighted in color)

1: Input: initial point z[0] = hϕ(x) ∈ Rn, (frozen) layer fθ, storage G = 0 ∈ R(m+1)×n with
size m + 1, HyperAnderson network sξ .

2: Define gθ(z) = fθ(z)− z. Set G[0] = gθ(z[0]).
3: for k = 0, . . . , K do
4: Set mk = min{m, k} and G[k] = G[0:(mk + 1)] ∈ R(mk+1)×n

5: Compute α̂k, βk = sξ(G[k]), where α̂k = (α̂k
0, . . . , α̂k

mk
) ∈ R(mk+1)

6: αk = α̂k + (1−1⊤α̂k)
mk+1 · 1 (normalization step)

7: z[k+1] = βk · 1⊤G[k]+∑mk
i=0 αk

i z[k−mk+i] (same AA_update as in Alg. 2, simplified)
8: Update G = concat(G[1:], [gθ(z[k+1])])
9: end for

10: Return z[K+1]

sequence of length 200). This makes sξ map from an extremely high-dimensional space to a
low-dimensional space (e.g., m = 5). To keep sξ fast, small, and applicable to inputs of varying
dimensionalities (e.g., sequence length or image size), we propose to first compress each gθ(z[k])
to form a smaller yet still representative version Ĝ[k] of G[k] = [gθ(z[k−mk]), . . . , gθ(z[k])]. For
example, when each gθ(z[k]) is a image feature map residual of dimension n = C × H × W,
we can perform global pooling to form a C-dimensional vector Pool(gθ(z[k])) as its compressed
version:

Ĝ[k] = [Pool(gθ(z[k−mk])), . . . ,Pool(gθ(z[k]))] ∈ RC×(mk+1), and predict αk, βk = sξ(Ĝ[k])
(6.3)

Once we have this representative collection Ĝ[k], we treat it as a mini time-series of length
(mk + 1) that encodes the latest estimates of the fixed point. We then apply a 2-layer temporal
convolution [231] to learn to predict: 1) a relative weight αk

i for each of these past residuals
i ∈ [mk]; and 2) the HyperAnderson mixing coefficient βk for the current iteration. Therefore,
sξ shall gradually learn to adjust these parameters α and β in light of the previous hypersolver
steps, and receive gradients from later iterations. We explain the detailed design choices of sξ in
Sec. 6.3, while noting that it still completely captures the AA prototype (see Alg. 2).

We show in Fig. 6.3 an example of the modules in a DEQ-Transformer’s neural solver. The ini-
tializer, as discussed previously, consist of a tiny 1D convolutional module. During the HyperAn-
derson iterations, we compress the past and current residuals G[k] = [gθ(z[k−m]), . . . , gθ(z[k+1])] ∈
R(m+1)×T×q by simply taking the last and most contextualized token of each sequence; i.e.,
(gθ(z[i]))T ∈ Rq. This is reasonable because the design of Transformer block that fθ uses already
ensures that the last token contains most of the contextual information of the entire sequence (and
this technique is frequently used for textual classification tasks, or in vision transformers [65]).

6.2.2 Training the Neural Equilibrium Solvers
One benefit of training hypersolvers on implicit models is that they can be trained in an unsuper-
vised manner via z⋆(x), which a slower classic method can provide as many as needed, and for
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G[k] Ĝ[k]“Compress”

z[0] = h�(x) 2 Rn

Temporal
Convolution

m + 1

(a compressed
version of G[k])

↵k = (↵k
0 , . . . ,↵k

m)

�k

n

p

Predict
↵k,�k = s⇠(Ĝ
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Figure 6.2: 6.2a: The canonical Anderson solver is based on a local least-squares solution at each
iteration, with β = βk set to a constant. 6.2b: Our neural fixed-point solver provides a better
initial guess z[0] and learnable iterative updates.

any given (possibly even random) input tensor x. Moreover, unlike NODE solvers [45, 187], a
DEQ model does not have a unique trajectory and thus its hypersolvers do not need trajectory
fitting at all. All that we need is to drive everything to be as close to z⋆ as possible. As an
example, a neural solver could learn to sacrifice progress in earlier iterations if it subsequently
converges to the equilibrium faster. Formally, given a hypersolver {hϕ, sξ} that yields a set of
states (z[k], G[k], αk, βk)k=0,...,K (recall z[0] = hϕ(x)), we introduce 3 objectives for its training.

Fixed-point Convergence Loss. The first loss aims to encourage convergence at all intermediate
estimates [z[k]]k=1,...,K of the HyperAnderson iterations: Lconv = ∑K

k=1 wk∥z[k]− z⋆∥2, where wk
is the weight for the loss from iteration k such that ∑K

k=1 wk = 1. We set wk to be monotonically
increasing with k such that later iterations are applied a heavier penalty for deviations from the
fixed point (see Appendix A of Bai et al. [22] for more details).

Initializer Loss. We also train the initializer by maximizing the proximity of the initial guess
to the fixed point: Linit = ∥hϕ(x) − z⋆∥2, We separate this objective from Lconv since the
initialization is predicted directly from the input x and does not go through HyperAnderson
updates.

Alpha Loss. Although we replace the generic Anderson solver [8] in terms of how αk, βk are
computed in each iteration, we empirically found it still beneficial to guide the hypersolvers’
prediction of α with an auxiliary loss especially at the start of the training: Lα = ∑K

k=0 ∥G[k]αk∥2.
In practice, we gradually decay the weight of this loss to 0 as training progresses. We summarize
the complete training procedure of a neural solver on top of a DEQ in Fig. 6.4.
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HyperAnderson Iteration (compression step)

"The son of farmer… in 1932 .”
Input (embeddings) x 2 RT⇥d

. . .

Linear + ReLU

d

p

d � p

. . .

. . .

. . .

(A compressed
version of G[k],
independent of
input scale T )

m + 1

m + 1

Causal Conv1d
(kernel size 3)

Select the last
(most contextualized)
token and project

Linear(·)

Figure 6.3: Visualization of DEQ-Transformer (for WikiText-103 language modeling) initializer
and HyperAnderson iterations.

h�, s⇠

r✓` = � @`

@z?
Jg(z

?)�1 @f✓(z)
?

@✓

z? = FixedPointSolve(f✓(·,x))
Forward:

Backward:
f✓

#1. DEQ model training

#1. Define Hypersolver

#2. Compute precise fixed point

for each x

x ! z?(x)
#3. Compute with neural solver (K steps)

NeuralSolve(x, h�, s⇠)

!(z[k], g
[k]
✓ ,↵k,�k)k=0,...,K

#4. Compute loss for the hypersolver

(with potentially as many generic
solver steps as needed)

Frozen (trained) f✓

L(!,K) = �1Lconv + �2Linit + �3L↵

#5. Update hypersolver by…

r⇠L(!,K) = �1r⇠Lconv + �3r⇠L↵ where ! = {�, ⇠}
Gradients r�L(!, K) = �2r�Linit

Figure 6.4: The training procedure of the neural deep equilibrium solver. With a given fθ and input
x, we optimize the hypersolver parameters ω = {ϕ, ξ} via losses applied on the HyperAnderson
iterations and the initializer (see Sec. 6.2.2).

6.2.3 Discussion

Complexity of hypersolver. Note that fθ remains frozen during hypersolver training. This
means that for a given DEQ model fθ and input x, the fixed point z⋆(x) = fθ(z⋆; x) also
remains the same – we are just trying to learn to find it faster, with a limited K-iteration budget.
Moreover, we designed the initializer hϕ and HyperAnderson network sξ to be intentionally
simple (e.g, 1 layer with few hidden units), so that each hypersolver step is even faster than the
original Anderson step, whose main computational overhead occurs in solving the constrained
optimization in Eq. 6.1.

These points also highlight the difference between the neural solver and techniques such as
model compression [95] or distillation [98], where a pruned/smaller (but still representationally
rich) model is trained to match the output and performance of a larger model. Specifically, in
our case, as the fixed point z⋆ is determined solely by fθ and x, the hypersolver itself does not
have much representational capacity, since its only goal is to produce an “educated” initial guess
and learnable iterations to facilitate the optimization process. E.g., the 1-layer Conv1d-based
initializer Sec. 6.2.1 would be a bad language model by itself since it is tiny and only sees the
past 2 tokens (see Sec. 6.3.3 for empirical evidence), yet this limited capacity and context turn out
sufficient to guide and substantially improve the solver.
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Training hypersolver via BPTT. While a generic Anderson solver computes αk by optimizing
locally with G[k], backpropagating through the HyperAnderson steps ensures that the iterative
update network sξ can receive gradient and learn from later iterations. This is appealing because,
arguably, only the output of the Kth iteration matters in the end. Indeed, we empirically verify via
ablation studies in Sec. 6.3 that such learned α and β predictors already significantly accelerate
the convergence process even without the presence of the initializer. Note that as DEQ models’ fθ

layer is typically richly parameterized, the backpropagation-through-time (BPTT) [241] might
consume a lot of memory. To limit memory consumption, we use small batch sizes for hypersolver
training. (This does not affect the training of the DEQ model itself, which is separate.) We have
observed that hypersolver training is highly effective with small batch sizes, as reported in Sec. 6.3.
As an alternative solution, since these hypersolvers are very fast to train in practice, one could
also use methods such as gradient checkpointing [46].

Complementarity with DEQ regularizations. Besides tiny size and fast training, the value
and usefulness of neural equilibrium solvers are highlighted by how DEQ models decouple
representational capacity and forward solver choice. In particular, our method is orthogonal
to prior work that accelerates DEQ models by structural regularization of fθ [20, 192, 244]
(e.g., Chapter 4) or approximating the Jacobian of fθ in the backward pass [81] (e.g., Chapter 5.
In Sec. 6.3, we show evidence that our method (which is solver-based) integrates well with
regularization approaches (which are fθ-based) and yields broad improvements compared to
canonical solvers (e.g., Broyden or Anderson methods) regardless of how fθ was trained or what
structure it uses.

6.3 Experiments
As our goal is to show the superiority of the learnable solvers over generic solvers on both
performance and efficiency aspects, we compare the movement of the entire speed/accuracy
pareto curve rather than a single point on the curve. To achieve this purpose, we study the
hypersolver on some of the largest-scale experiments that DEQs have been used on in the previous
few chapters (which involve models of size almost 100M): WikiText-103 language modeling [164],
ImageNet classification [62], and Cityscapes semantic segmentation with megapixel images [53].
Overall, we show that: 1) these custom neural solvers bring universal improvement over generic
solvers on DEQ models in all scenarios, with a typically 1.6-2× speedup at inference and no loss
in performance (i.e., the new pareto curves strictly dominates old ones); 2) these hypersolvers can
be trained very quickly; and 3) these methods complement prior methods such as regularizations
on fθ to bring these implicit models to a new competitive level. At the end of this section, we also
conduct extensive ablative studies on the design of the hypersolver.

Note that since the neural solver training is independent of the DEQ training, we do not need
to train the actual DEQ model fθ itself, but could instead directly work on top of a pre-trained
DEQ model. Therefore, the major hyperparameters in our setting are only the relative weights of
the loss objectives (see Sec. 6.2.2 and Appendix A in Bai et al. [22]). We also clarify that the use
of hypersolver does implicitly assume local stability around z⋆ for convergence – which we find
almost always holds empirically, and can be regularized for [20] (see Chapter 4).
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Figure 6.5: 6.5a- 6.5c: Comparisons of DEQs with classic and neural solvers. All speed/accuracy
curves within the same plot are benchmarked on the same GPU with the same experimental
setting, averaged over 6 independent runs. 6.5d: The overhead of DEQ hypersolver is extremely
small, generally requiring only < 1.2% the (unsupervised) training time and < 4% the size when
compared to the original DEQ models on these large-scale tasks.

6.3.1 Large-scale Experiments on Vision and Language Tasks

To evaluate the the neural deep equilibrium solvers, we apply them on three largest-scale and
highest-dimensional tasks the implicit models have ever been applied on, across the vision and
language modalities. In contrast to prior work [20, 45, 244] and chapters that measure the number
of function evaluations (NFEs), we directly measure wall-clock inference speed under the exact
same experimental settings (e.g., input scale). We elaborate on the detailed experimental settings
and the implications of the results below.

WikiText-103 Language Modeling. In this experiment, fθ is a Transformer layer [18, 58, 233]
and the fixed points z⋆ are (embeddings of) text sequences. We train the neural solver on
sequences of length 60 for 5000 steps, and demonstrate its inference-time effect in Figure 6.5a
(where we use a validation sequence length of 150). Specifically, compared with the original
DEQ-Transformer [18] (Y curve), which uses generic Anderson acceleration [8] or Broyden’s
method [34] (both have similar pareto curves; see Fig. 6.8), this same DEQ model solved with
our neural approach (dubbed HyperDEQ; see curve) achieves significantly better efficiency.
Moreover, our method is complementary to prior work that builds faster implicit models by
Jacobian regularizations [20, 77]. To demonstrate this, we additionally train a DEQ-Transformer
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model with Jacobian regularization [20] ( curve), and apply the neural solver on this regularized
DEQ (⋆ curve). This movement of the speed/perplexity curves validates the DEQ property
at the core of this paper: the decoupling of the representational capacity (i.e., fθ) and the
forward computation (i.e., the solver). With everything combined, we bring the performance of
implicit Transformer-based DEQs close to the explicit Transformer-XL [58], which is the SOTA
architecture on this task.

ImageNet classification. We additionally evaluate HyperDEQ on ImageNet classification
(224 × 224 images over 1000 classes), customizing a neural solver on top of a 4-resolutional
multiscale DEQ models [19]. We train the HyperDEQ with 12 HyperAnderson iterations, and
the speed/accuracy curves are shown in Figure 6.5b ( and ⋆ curves). Note that while Jacobian
regularization ( curve) eventually hurts the performance of a multiscale DEQ (cf. Y curve) due
to the strong constraint it imposes, the DEQ model with neural solver achieves faster inference
without sacrifing any accuracy (since fθ , and thus z⋆, are identical); e.g., we reach 75.0% accuracy
while being almost 2× faster.

Cityscapes semantic segmentation. We also show that our neural solver approach works well
in domains where existing regularization-based methods fail (see Sec. 4.2.6 for the “physical
law” issue on large images). Specifically, we apply the neural equilibrium solver on Cityscapes
semantic segmentation, where the task objective is to label every pixel on a high-resolution
(typically 2048 × 1024) image with the class of the object that the pixel belongs to. As in the
ImageNet and WikiText-103 tasks, we found that there is a consistent gain in using the neural
solver over the generic alternative, accelerating fixed-point convergence by more than a factor
of 2 (see Figure 6.5c). In contrast, prior methods such as Jacobian regularization [20] presented
in Chapter 4 do not work in this setting, due to their dependence on the exact structure of fθ.
(Specifically, when fθ is convolution-based and the image is very large, Jacobian regularization
that encourages contractivity is at odds with the gradual broadening of the receptive field.) Our
neural solver is orthogonal to the structure of fθ (which is frozen), and we only improve how the
solver functions.

6.3.2 Training Efficiency of the Neural Solver

We also provide extra training analysis in Fig. 6.5d. Not only is our approach effective, but the
overhead for training the neural solver is also extremely small: the neural solver module is tiny
(< 4% of the DEQ model size) and requires only about 1% of the training time needed by the
original DEQ model (e.g., on WikiText-103, a DEQ requires 130 hours on 4 GPUs; the neural
solver requires only about 1.2 extra hours). We believe this is strong evidence that neural solvers
are simple, lightweight, and effective tools that take advantage of the decoupling properties of
equilibrium models to yield an almost-free acceleration at inference time. We additionally provide
empirical evidence on the convergence and generalizability of the neural solver in Fig. 6.6b, where
canonical AA is compared with a hypersolver that was trained to unroll for K = 6 HyperAnderson
steps. As the figure shows, a hypersolver trained with K steps is able to generalize well beyond,
and consistently improves over the canonical solver’s convergence while being more lightweight
per step.
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Figure 6.6: Left: Convergence analysis of the hypersolver at inference time. Right: Although
trained with a frozen fθ , the neural equilibrium solver can also be used to accelerate DEQ training.

Interestingly, one can also employ the neural solver to accelerate the DEQ training, but with
three caveats: 1) during training the fixed point manifold also keeps changing; 2) we want to
amortize the cost of computing “groudtruth” z⋆; and 3) we still keep the backward implicit
differentiation intact. Thus, we propose to train the neural solver {hϕ, sξ} and the DEQ model fθ

in an alternating manner (i.e., we take a snapshot of the fθ layer occasionally, and a hypersolver
customized toward it). We The results are shown in Fig. 6.6b We empirically observe this leads to
a 16-20% DEQ training speedup.

6.3.3 Ablative Studies and Limitations

Finally, we perform a series of ablation studies to understand the benefits of multiple components

Table 6.1: Perplexity (ppl) on WikiText-103
Model Size Test ppl

Gated ConvNet [59] 230M 37.2
Transformer-XL [67] 165M 24.2

HyperDEQ (reg.) w/ 12 iters (ours) 98M 23.4
Initializer hϕ (Conv1d) 0.4M 836.94
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Figure 6.8: Ablations on HyperDEQ (reg.).

within our design of the neural equilibrium
solvers. We use the language modeling task
on WikiText-103 for this purpose (where fθ is
a Transformer layer), while noting that we’ve
noticed similar trends in all other settings. The
results are presented in Fig. 6.8. The Hyper-
DEQ with everything combined (initializer, αk,
and βk predictions) performs best. Making
the Anderson iterations learnable generally im-
proves convergence. Moreover, although sim-
ply adding an initializer to a generic solver (✚
curve) does not help much, learning and back-
propagating through the HyperAnderson itera-
tions makes the initializer quite useful (cf.
and ⋆ curves). We additionally take the learned
initializer hϕ from HyperDEQ and verify that
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Figure 6.7: Further ablations on the neural solver design (in terms of the α prediction and loss
components. Note that we use an unregularized DEQ here (in contrast to Fig. 6.8) to better
demonstrate the curve differences, which could otherwise sometimes be small.)

this tiny module is by itself still a poor language model (see Table 6.1 and Sec. 6.2.3), but is
valuable to our HyperAnderson iterations.

We also perform more ablations on the importance of mixing factor α’s prediction. In our
hypersolver, we propose to “normalize” the predicted α̂k by a shift: αk = α̂k + (1−1⊤α̂k)

mk+1 · 1.
We here compare two alternatives: no normalization at all ( in Fig. 6.7a), and softmax-based
normalization ( in Fig. 6.7a). Specifically, we find that the exact choice of α normalization does
not affect the overall substantial pareto curve improvement, but ensuring that the αk values can be
negative while still normalized (i.e., sum to 1) overall benefit the performance.

In the end, we analyze the effect of different loss components in Fig. 6.7b. For the main
fixed-point convergence loss Lconv, we compare two alternatives of the relative weights applied
on the intermediate HyperAnderson steps: only apply wk = 1 at the final output K (see ✚ curve),
or set wk to be uniform for all K iterates (see ✚ curve). We empirically find that the hypersolver
trained in both scenarios perform well, but the monotonically incresing wk which we use (i.e.,
putting larger emphasis on later iterations) perform best. Moreover, removing either the initializer
loss Linit (note that we still keep the initializer hϕ itself, just don’t supervise it; see the ) or
the alpha loss (the curve) Lα impacts the performance. Interestingly, removing the Linit loss
on the initializer yields even worse performance than even removing the initializer itself (the

curve). However, we note that all of these ablative settings still significantly outperform the
speed/accuracy efficiency than the generic solvers, which suggests the overall benefit of using
custom learnable fixed-point solvers for implicit models.

6.3.4 Caveats

We also note two caveats for our approach. First, as mentioned in Sec. 6.2.3, backpropagating
through the HyperAnderson iterations means the memory could grow with the number of steps

74



K that we run for. However, we don’t find this to be problematic in practice, as we observed
the training of these hypersolvers to be very insensitive to batch size , and that at inference time
hypersolvers do easily generalize to iterations > K (see Fig. 6.6a). Second, though our method
brings consistent improvements over generic solvers, in some cases a certain amount of iterations
may still be required for good performance (e.g., fθ is a 3 × 3 convolution and the input is a large
image), which we also discussed in Sec. 4.2.6 in Chapter 4.

6.4 Discussion
We introduce a neural fixed-point solver in this chapter for the implicit deep networks. The
approach is simple, customizable, and extremely lightweight. Unlike prior efforts that regularize
the structures or parameterizations of the implicit layer design (usually at the cost of accuracy),
we propose to exploit how equilibrium models decouple the representation (i.e., fθ) from the
forwards computation (i.e., solver). We directly learn a model-specific equilibrium solver that
provides: 1) better-informed initial guesses; and 2) parameterized iterations that generalize
Anderson acceleration and take into account future steps. Our experiments show that these
modifications substantially improve the speed/accuracy trade-off across diverse large-scale tasks,
while adding almost no overhead to training. We see these encouraging results as a significant step
towards making implicit equilibrium models more practical at deployment while complementing
the previously introduced approaches in this thesis.
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Part III

Extensions of the Deep Equilibrium Models
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Chapter 7

Building Fast and Cheap Deep Equilibrium
Optical Flow Estimators

In this chapter, we will demonstrate a real-world example of how these previously introduced
techniques (e.g., constant memory, stabilization, adaptive computation, inexact gradients, etc.)
can be integrated to bring cutting-edge applications in optical flow problems.

Optical flow estimation is the classic computer vision task of predicting the pixel-level apparent
motions of objects and surfaces between video frames [24, 64, 79, 101, 158, 225, 266]. Learning
based approaches to this problem first proposed the use of conventional deep convolutional
networks [64, 107, 266], and has shown to outperform classical methods. Recent progress
has shown that finite-step, unrolled and recurrent update operations significantly improve the
estimation quality, exemplified by the emergence of the RAFT [225] method. Contemporary
optical flow models that employ this approach typically rely on a Gated Recurrent Unit (GRU) [50]
to iteratively refine the flow estimate. This approach was motivated to emulate traditional
optimization-based methods, and the update operators defined accordingly have become the
standard design for state-of-the-art flow models [70, 113, 115, 217, 225].

Despite their superior performance, these rolled-out recurrent networks suffer from a few
drawbacks. First, training these models involves tracking a long hidden-state history in the
backpropagation-through-time (BPTT) algorithm [241], which yields a significant computational
and memory burden. Therefore, these models tend to scale poorly with larger images and more
iterations. Second, although these models were designed to emulate traditional optimization
approaches which solve for a “stable estimate" with as many steps as needed, the recurrent
networks do not directly model such a minimum-energy optima state. Rather, they stop after a
predefined L update steps, and are still trained in a path-dependent way using BPTT. We also
show later in Fig. 7.3 that the GRUs frequently oscillate instead of converging.

This suggests a natural connection between the optimization perspectives of optical flows with
the equilibrium modeling that this thesis studies. Specifically, in this chapter, we introduce deep
equilibrium (DEQ) flow estimators, based on explorations in the previous chapters. Our method
functions as a substantially superior and natural framework to replace the existing recurrent,
unrolling-based flow estimation approach. There are multiple reasons why a DEQ-based approach
is preferable. First, instead of relying on the naïve iterative layer stacking, DEQ models define
their outputs as the fixed points of a single layer fθ using the input x, i.e., z⋆ = fθ(z⋆; x),

79



nstep = 1, EPE = 23.35

DEQ-RAFT

nstep = 3, EPE = 10.33

DEQ-RAFT

nstep = 7, EPE = 2.95

DEQ-RAFT

nstep = 10, EPE = 2.15

DEQ-RAFT

nstep = 11, EPE = 2.08

DEQ-RAFT Frame

nstep = 1, EPE = 30.81

RAFT

nstep = 3, EPE = 14.61

RAFT

nstep = 7, EPE = 3.81

RAFT

nstep = 10, EPE = 2.75

RAFT

nstep = 11, EPE = 2.58

RAFT Ground Truth

Figure 7.1: A DEQ flow estimator directly models the flow as a path-independent fixed-point
solving process. We propose to use this implicit framework to replace the existing recurrent
approach to optical flow estimation. The DEQ flows converge faster, require less memory, are
often more accurate, and are compatible with prior model designs (e.g., RAFT and GMA).

modeling an “infinite-layer” equilibrium representation. We can directly solve for the fixed point
using specialized black-box solvers, e.g., quasi-Newton methods [8, 34], in a spirit much more
coherent with the traditional optimization-based perspective [79, 101]. This approach expedites
the stable flow estimation process while often yielding better results. Second, we no longer need
to perform BPTT. Instead, DEQ models can directly differentiate through the final fixed point
z⋆ without having to store intermediary states during the forward computation, considerably
lowering the training memory cost. Third, this fixed-point formulation justifies numerous implicit
network enhancements such as 1) fixed-point reuse from adjacent video frames; and 2) inexact
gradients [81, 86, 87, 189] (see Chapter 5). The former helps avoid redundant computations,
thereby substantially accelerating flow estimations; and the latter makes the backward pass
computationally almost free! Fourth, the DEQ approach is not predicated on any specific
structure for fθ. Therefore, DEQ flow is a framework that is orthogonal to, and thus directly
applicable with, a wide range of these SOTA flow estimation model designs (e.g., RAFT [225],
GMA [113], and Depthstillation [3]), and we can obtain the aforementioned computational and
memory benefits with even additional gain based on the specific structure of fθ.

In addition to suggesting DEQ flow estimators as a superior replacement to the existing
recurrent approach, we also provide an additional method, motivated by the deep supervision
technique in computer vision [135, 225, 249], to tackle the longstanding instability challenge of
training DEQ networks [18, 20, 45, 244] (see Chapter 4). We propose a novel, sparse fixed-point
correction scheme that substantially stabilizes our DEQ flow estimators.

The contributions of the approach presented in this chapter are as follows. First, we propose
the deep equilibrium (DEQ) approach as a new natural starting point for formulating optical
flow methods. A DEQ approach directly models and substantially accelerates the fixed-point
convergence of the flow estimation process, avoids redundant computations across video frames,
and comes with an almost-free backward pass. Second, we show that the DEQ approach is
orthogonal to, and thus compatible with, the prior modeling efforts (which focus on the model
design and feature extraction) [113, 225] and data-related efforts [217]. With DEQ, these prior
arts are now more computationally and memory efficient as well as more accurate. For instance,
on KITTI-15 [85] (train) a zero-shot DEQ-based RAFT model further reduces the state-of-the-art
F1-all measure by 14.0% while using the same underlying RAFT operator. Third, we introduce
a sparse fixed-point correction scheme that significantly stabilizes DEQ models on optical flow
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problems while only adding minimal cost, and show that on flow estimation tasks this approach is
even superior to Jacobian-based regularization in Chapter 4.

This chapter is primarily based on the work published in CVPR 2022 [21].

7.1 Related Work on Iterative Optical Flow

Although optical flow is a classical problem, there has recently been substantial progress in
the area. Earlier methods [27, 33, 101, 239, 258] formulated the optical flow prediction as an
energy minimization problems using continuous optimization with different objective terms. This
perspective inspired multiple improvements that used discrete optimization to model optical flows,
i.e., those based on conditional random fields [163], global optimization [44], and inference on the
global 4D cost volume [252]. More recently, with the advancement of deep learning, there have
been an explosion of efforts trying to emulate these optimization steps via deep neural networks.
For example, a number of optical flow methods are based on deep architectures that rely on coarse-
to-fine pyramids [64, 106, 107, 109, 215, 216, 254]. Specifically, recent research efforts have
turned to iterative refinements, which typically involves stacking multiple direct flow prediction
modules [109, 190]. The RAFT model, which inspired this work, first showed they could achieve
state-of-the-art performance on optical flow tasks using a correlation volume and a convolutional
GRU update operator that mimics the behavior of traditional optimizers, which tends to converge
to a stable flow estimate. Built on top of this recurrent unrolling framework of RAFT, Jiang et al.
[113] introduced an additional self-attention-style global motion aggregation (GMA) module prior
to the recurrent stage to improve the modeling of the occlusions. Another contemporary work,
AutoFlow [217], exploits bilevel optimization to automatically render and augment training data
for optical flow. Finally, Jiang et al. [114] proposes to speed up these flow estimators by replacing
the dense correlation volume with a sparse alternative.

The focus of this chapter is on a direction that is largely orthogonal to and thus complementary
to these modeling efforts. As a part of this thesis, we challenge and improve the “default” recurrent,
unrolled formulation of training flow estimators themselves. With the help of the equilibrium
approach, we can maintain a dynamical-system-based, convergent flow estimation method while
paying substantially less computation and memory costs.

7.2 Method

We start by introducing some preliminaries of existing flow estimators. These modules are
typically applied directly on raw image pairs, with the extracted representations then passed into
the iterative refinement stage. We use RAFT as the illustrative example here while noting that
cutting-edge flow estimators generally share similar structure (i.e.„ for context extraction and
visual correlation computations).
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Figure 7.2: A visual comparison of the DEQ flow estimator and the recurrent unrolled flow
estimator. After the correlation and context modules (see Sec. 7.2.1), a DEQ flow uses a fast,
black-box fixed-point solver (e.g., Anderson) to directly solve for a stable (fixed-point) flow
z⋆ = (h⋆, f⋆), and differentiate through z⋆ with a cheap inexact gradient. This makes a DEQ
flow’s backward pass almost free. In contrast, a recurrent flow estimator has to be unrolled for
many steps, and needs to perform BPTT, which is costly in both computation and memory.

7.2.1 Preliminaries
Given an RGB image pair p1, p2 ∈ R3×H×W , an optical flow estimator aims to learn a correspon-
dence f ∈ R2×H×W between two coordinate grids c1, c2 (i.e., f = c2 − c1), which describes the
per-pixel motion between consecutive frames in the horizontal (dx) and vertical (dy) directions.
To process the matched image pair, we first encode features u1, u2 ∈ RC×H×W of p1, p2, and
produce a context embedding q from the first image p1. Then, we construct a group of pyramid
global correlation tensors C =

{
C0, · · · , C p−1}, where Ck ∈ RH×W×H/2k×W/2k

is found by
first calculating the inner product between all pairs of hyperpixels in u1 and u2 as C0, i.e.,

C0
ijmn = ∑

d
u1

ijdu2
mnd (7.1)

followed by downsampling the last two dimensions to produce Ck (k > 0). The correlation pyra-
mid C and context embedding q, which allow the model to infer large motions and displacements
in a global sense, are then passed as inputs into the iterative refinement stage.

In this work, we keep the correlation and context computation part intact (see Fig. 7.2) and
concentrate on the iterative refinement stage. We refer interested readers to Teed and Deng [225]
for a more detailed description of the feature extraction process.

7.2.2 Deep Equilibrium Flow Estimator
Due to the inherent challenges of the flow estimation task, prior works have shown that explicit
neural networks struggle to predict the flow accurately, requiring a prohibitively large number
of training iterations [64]. Recent works [3, 113, 225] have resorted to mimicking the flavor
of traditional optimization-based algorithms [101] with RNNs (e.g., convGRUs). However,
these methods are still quite different from the traditional methods in a few ways. For example,
optimization-based methods 1) have an adaptive and well-defined stopping criteria (e.g., whenever
they reach the optima); 2) are agnostic to the choice of solver (e.g., first- or second-order methods);
and 3) are essentially path-independent (i.e., the output alone is the only thing we should need).
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None of these properties are directly characterized by the finite-step unrolling of recurrent
networks.

We propose to close this gap with a DEQ-based approach. Specifically, given the context
embedding q and the pyramid correlation tensor C, a DEQ flow estimator simultaneously solves
for the fixed-point convergence of two alternate streams: 1) a latent representation h, which
constructs the flow updates; and 2) the flow estimate f itself, whose updates are generically related
as follows:

h[t+1] = H(h[t] , f[t], q, C)
f[t+1] = F (h[t+1], f[t], q, C). (7.2)

This formulation captures the form of prominent flow estimator model designs like RAFT [225]
or GMA [113]. Formally, the input x = (q, C) and model parameters fθ = (H,F ) jointly define
a dynamical system that the DEQ flow model can directly solve the fixed-point for using the
following flow update equation in its forward pass:

(h⋆, f⋆) = z⋆ = fθ(z⋆; x) = fθ((h⋆, f⋆); x). (7.3)

Intuitively, this corresponds to an “infinite-depth” feature representation z⋆ where, if we perform
one more flow update step fθ, both flow estimation f and latent state h will not change (i.e., an
“equilibrium”). As we can leverage much more advanced root solving methods like quasi-Newton
methods (see Chapter 2 and Chapter 6) to find the fixed point, the DEQ approach guarantee
a much faster (superlinear) and better-quality convergence than if we perform infinitely many
naïve unrolling steps (as do recurrent networks but only up to a finite number of steps due to
computation and memory constraints). Moreover, as we have shown in the previous chapters
and other prior work have demonstrated, the exact structure of fθ subsumes a wide variety of
model designs, such as a Transformer block [18, 233], a residual block [19, 96], or a graph
layer [92, 149, 184]. Similarly, for the deep equilibrium flow estimator, Eq.(7.2) engulfs exactly
the designs of state-of-the-art optical flow models, which we follow and use without modification.
For example, for Recurrent All-pairs Field Transforms (RAFT) [225], we can write a DEQ-flow
version that solves the following fixed-point system:

x = Conv2d
(
[q, f⋆, C(f⋆ + c0)]

)

h⋆ = ConvGRU (h⋆, [x, q])
f⋆ = f⋆ + Conv2d (h⋆) ,

(7.4)

where C(f⋆ + c0) stands for the correlation lookup as in RAFT [225]. A different layer design,
called the Global Motion Aggregation (GMA) [113], can be similarly instantiated in DEQ flows
where we solve for the equilibrium z = (h, fθ) that satisfies

x = Conv2d
(
[q, f⋆, C(f⋆ + c0)]

)

x̂ = Attention (q, q, x)
h⋆ = ConvGRU (h⋆, [x̂, x, q])
f⋆ = f⋆ + Conv2d (h⋆)

(7.5)

where Attention(·) is the self-attention module, see [113, 233].
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In order to update and train such a DEQ flow estimator, as with the previous chapters, we can
directly differentiate through this “infinite-level” flow state, (h⋆, f⋆), even without any knowledge
of the fixed-point convergence trajectory. We write out the (DEQ flow version of) implicit function
theorem here again, while referring readers to Chapter 2 for a much more thorough discussion
and proof.
Corollary 1. (DEQ-Flow Implicit Function Theorem (IFT); see Chapter 2) Given the fixed-
point flow representation z⋆ = (h⋆, f⋆), the corresponding flow loss L(h⋆, f⋆, fgt) and input
x = (q, C), the gradient of DEQ flow is given by

∂L
∂θ

=
∂L
∂z⋆

(
I − ∂ fθ

∂z⋆

)−1 ∂ fθ(z⋆; x)
∂θ

(7.6)

As a DEQ flow only requires the final equilibrium flow estimation, this means a huge memory
reduction: whereas an L-step recurrent flow estimator takes O(L) memory to perform BPTT, a
DEQ estimator reduces the overhead by a factor of L to be O(1) (e.g., RAFT uses L = 12 for
training (and many more for inference), so using a DEQ flow can theoretically reduce the iterative
refinement memory cost by 12×).

To summarize, a DEQ flow’s forward pass directly solves a fixed-point flow-update equation;
and its backward pass relies only on the final optimum z⋆, which make this flow estimation
process much more akin to the traditional optimization-based perspective [101].

7.2.3 Accelerating DEQ Flows
Formulating optical flow estimation as a deep equilibrium solution also enables us to fully exploit
the toolkit from implicit deep learning introduced in the previous chapters. We elaborate below
on how these previous techniques (e.g., inexact gradient; see Chapter 5) can substantially help
us improve the forward and backward pipeline and significantly simplify the overall overhead of
modern flow estimators.

Inexact Gradients for Training DEQs. Despite the niceness of the Corollary 1, inverting the
Jacobian term could quickly become intractable as we deal with high-dimensional feature maps.
While a way around is to solve the linear system by exploiting fast vector-Jacobian products
g⊤ = g⊤ ∂ fθ

∂z⋆ +
∂L
∂z⋆ (see Chapter 2), this is still iterative in nature and in practice no cheaper than

the forward flow solving process.
As introduced in Chapter 5, recent work [81, 86, 189] suggest that these equilibrium methods’

backward dynamics could typically be trained, and even benefit from, simple approximations of
the IFT, while still modeling an “infinite-depth” representation through the fixed-point forward
pass. That is, we do not need the exact solution to Corollary 1 to train these networks; instead we
could use

∂L
∂θ

≈ ∂̂L
∂θ

=
∂L
∂z⋆

D
∂ fθ(z⋆, x)

∂θ
(7.7)

where D is a Jacobian (inverse) approximation term (see Sec. 5.1, where we analyzed the phantom
gradient A = D ∂ fθ

∂θ ). Indeed, Sec. 5.2 and 5.3 have shown that there are numerous ways that
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we could build this approximation D; e.g., using truncation of infinite series (like UPG and
NPG), or simply use D = I which results in a Jacobian-free gradient [81]. Empirically, we find
that Jacobian-free gradients already work very well on most of the DEQ flow estimators, which
essentially simplifies the backward pass of a DEQ flow to ∂L

∂θ ≈ ∂L
∂z⋆

∂ fθ(z⋆,x)
∂θ . Therefore, unlike

the BPTT-based recurrent framework used by existing flow estimators, a DEQ flow estimator’s
backward pass that uses inexact gradient could consist of a single step (and thus is almost free)!
Empirically, since we almost eliminate the backward pass cost, the inexact gradients significantly
reduce the total training time for DEQ flow estimator further by a factor of almost 2×.

Such capability of using inexact gradients is a direct and unique consequence of the fixed-point
formulation, as we proved in Chapter 5, and assumes a certain level of stability for the underlying
dynamics.

Sparse fixed-point correction of DEQ flows. Another longstanding challenge in training
equilibrium models, which was highlighted in Chapter 4, is the growing instability problem
(Sec. 4.2.2). In the context of flow estimation, this means the stable flow estimate z⋆ = (h⋆, f⋆)
could become computationally expensive to reach. This suggests that the optical flow estimation
process gets slower during training.

While Sec. 4.3 describes how we could alleviate this issue via Jacobian regularizations (at a
small cost to the performance), in this work/chapter, we propose to sparsely apply a fixed-point
correction term to stabilize the flow convergence that works even better (see empirical evidence
in Bai et al. [21]). Formally, suppose the black-box DEQ flow solver (e.g., Broyden’s method)
yields a convergence path (z[0], . . . , z[i], . . . z⋆), where z[0] is the initial guess and z⋆ is the final
flow estimate. We then randomly pick z[i] = (h[i], f[i]) on this path (e.g., can be uniformly
spaced), and define our total loss to be

Ltotal = Lmain + Lcor = ∥f⋆ − fgt∥2
2︸ ︷︷ ︸

main loss

+γ ∥f[i] − fgt∥2
2︸ ︷︷ ︸

fixed-point correction

(7.8)

where γ < 1 is a loss weight hyperparameter. This was inspired by the dense step-wise deep
supervision used traditional vision literature [135, 225, 249]. However, our application here
differs in two significant ways. First, we apply this in a very sparse manner, with our primary
goal being correcting instability of a dynamical system. Second, unlike in RAFT, which performs
costly BPTT through the RNN chain, this fixed-point correction loss is still path-independent and
can be understood as a coarse-grained fixed-point estimate. Therefore, we could also perform
inexact gradient updates on this correction loss as well; i.e.,

∂Lcor

∂θ
≈ γ

∂Lcor

∂z[i]
∂ fθ(z[i], x)

∂θ
. (7.9)

Empirically, we find this significantly stabilizes the DEQ flow estimator while having no noticeable
negative impact on performance. This result is in sharp contrast to existing stabilization methods
like Jacobian regularization [20] which 1) apply only locally to z⋆; and 2) usually slightly hurt
model accuracy (also see the ablation study in Sec. 7.3). Moreover, thanks to the inexact gradient
in Eq. (7.9), Eq. (7.9) adds almost no extra computation or memory cost.
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Figure 7.3: (Left) By reusing fixed-point z⋆ from the previous frame’s flow estimation, we
can “jump start” the subsequent equilibrium solving, essentially amortizing the solver cost and
speeding up convergence. (Right) Comparing forward convergence of DEQ and recurrent flow
estimators on Sintel videos (50 frames). "DS" stands for deep supervision used by RAFT. DEQ
flow with fixed-point reuse converges best; and overall, DEQ flows converge faster than RAFT.

While our scope is limited to flow estimation in this chapter, we believe this approach suggests
a potentially valuable and lightweight solution to the generic instability issue of implicit models,
which we leave for future work.

Fixed-point reuse for better initialization. The DEQ flow estimator’s unique formulation
also inherits many useful properties from the general optimization framework. One of these
nice properties is the ability to perform fixed-point reuse to further accelerate flow estimation
convergence. The motivation for this comes from the fact that consecutive frames of a video are
typically highly correlated. For instance, perhaps only a few objects are moving in the foreground,
while most of the other content and background are nearly identical across these adjacent frames.
More formally, if pi, pi+1, and pi+2 are 3 consecutive video frames, then the ground-truth optical
flow fi (between pi and pi+1) is usually highly correlated to the next ground-truth optical flow fi+1.
Thus, when we perform real-time flow estimation with conventional networks like FlowNet [64]
and RAFT [225], we frequently perform a lot of redundant computations. In contrast, with a DEQ
flow, we can recycle the fixed-point solution z⋆i of the previous frame, which estimates fi, as the

initial guess z[0]i+1 for the subsequent frame’s fixed-point solver. Intuitively, these DEQ flows are
able to automatically adjust their forward optimization by exploiting this more informed initial
guess, which facilitates convergence speed. It amortizes the cost of flow estimation over long
video sequences, since only frame 0 requires full fixed-point solving while the remaining frames
can all recycle their predecessor’s flow. We note that such reuse is related to, but still different
from the warm-up scheme of RAFT [225], which only applies to f, excludes h, and still has to be
unrolled for many steps. In our case, because a DEQ flow directly models a fixed point, such an
adaptive computation by exploiting the inductive bias of video data is well-justified.

In fact, when using an equilibrium network, such fixed-point recycle can be applied also to
many other cases where, like here, the inputs are highly-correlated (recall Fig. 1.1 in Chapter 1)
and thus the computations can adapt to the input complexity. We will see another example of
fixed-point recycle in Chapter 8 (but in a different way, across training iterations).

Fig. 7.3 shows the practicality of fixed-point reuse on Sintel dataset video sequences. By
re-using the fixed point, we can further accelerate the DEQ flow estimator’s inference by a
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Algorithm 4 DEQ flow (PyTorch-style). Note that we reuse the fixed point, perform fixed-point
correction, and train with Jacobian-free (aka. “1-step”) inexact gradient.

# solver: fixed-point solver, e.g., Broyden [34]
# func: layer fθ that defines dynamic system
# dist: loss function for fixed point correction
# x: input information xt = (qt, Ct) of frame t
# z: fixed-point flow estimation z⋆t
# f: ground truth optical flow f
# freq: frequency of correction.
# gamma: coefficient of correction.
# prev_z: z∗t−1 of the last frame (if exists)

# training: bool indicating training/inference

# Forward pass (w/ backward pass by autodiff)
def forward(x, f, gamma, freq=1, training=True, prev_z=None):

with torch.no_grad():
# Fixed-Point Reuse
z, z_m = solver(func, x, freq, z0=prev_z)

if training:
loss = dist(f, func(z, x))
# Fixed Point Correction w/ 1-step gradient
for i in range(freq):

loss += gamma[i] * dist(f, func(z_m[i], x))
return z, loss

return z

factor of about 1.6×. Interestingly, while RAFT’s iterative unrolling aims to mimic the iterative
convergence, we find its activations usually oscillate at a relatively high level after about 14 update
iterations.

To summarize, while a conventional recurrent approach like RAFT needs to be unrolled for
some finite L steps and back-propagated through the same L-step chain, a deep equilibrium flow
estimator: 1) leverages the implicit differentiation (thus path-independent) and requires only O(1)
training memory; 2) uses inexact gradients to reduce the backward pass to O(1) computation; 3)
can take advantage of correlation between adjacent frames to amortize the flow estimation cost
across a long sequence; and 4) is directly compatible with prior modeling and data efforts. To
help readers better understand, we provide a PyTorch-style pseudo-code for DEQ-flow in Alg. 4.

7.3 Experiments

We present the results of our experiments in this section. Specifically, we highlight the computa-
tional and memory efficiency of DEQ flow estimators and analyze how the fixed-point correction
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Data Method Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)

Clean Final AEPE F1-all Clean Final F1-fg F1-all

C + T

LiteFlowNet [106] 2.48 4.04 10.39 28.5 - - - -
PWC-Net [215] 2.55 3.93 10.35 33.7 - - - -
LiteFlowNet2 [107] 2.24 3.78 8.97 25.9 - - - -
VCN [254] 2.21 3.68 8.36 25.1 - - - -
MaskFlowNet [266] 2.25 3.61 - 23.1 - - - -
FlowNet2 [109] 2.02 3.54 10.08 30.0 3.96 6.02 - -

RAFT [225] 1.43 2.71 5.04 17.4 - - - -
DEQ-RAFT-B 1.48 2.81 5.01 16.3 - - - -
DEQ-RAFT-L 1.40 2.65 4.76 16.1 - - - -
DEQ-RAFT-H 1.41 2.75 4.38 14.9 - - - -
DEQ-RAFT-H† 1.34 2.60 3.99 13.5 - - - -

GMA[113] 1.30 2.74 4.69 17.1 - - - -
DEQ-GMA-B 1.35 2.90 4.84 16.2 - - - -
DEQ-GMA-L 1.33 2.71 4.72 16.4 - - - -

C+T+S+K+H

LiteFlowNet2 [107] (1.30) (1.62) (1.47) (4.8) 3.48 4.69 7.62 7.62
PWC-Net+ [216] (1.71) (2.34) (1.50) (5.3) 3.45 4.60 7.88 7.72
VCN [254] (1.66) (2.24) (1.16) (4.1) 2.81 4.40 8.66 6.30
MaskFlowNet [266] - - - - 2.52 4.17 7.70 6.10

RAFT [225] (0.76) (1.22) (0.63) (1.5) 1.94 3.18 6.87 5.10
DEQ-RAFT (0.73) (1.02) (0.61) (1.4) 1.82 3.23 6.06 4.91

Table 7.1: Evaluation on Sintel and KITTI 2015 datasets. We report the Average End Point
Error (AEPE) and the F1-all measure for the KITTI dataset (lower is better). “C+T” refers to
results that are pre-trained on the Chairs and Things datasets. “S+K+H” refers to methods that are
fine-tuned on the Sintel, KITTI, and HD1K datasets. The bold font stands for the best result and
the underlined results ranks 2nd. † corresponds to using a 3-step phantom gradient (see Chapter 5).
DEQ flow sets SOTA results even w/o attention.

improves the DEQ flow. Our method achieves the SOTA zero-shot performance on both the MPI
Sintel [37] dataset and the KITTI 2015 [85] dataset, with an astonishing 21.0% error reduction in
the F1-all score and 14.9% improvement in EPE for KITTI-15 (while still using a similar training
budget to RAFT [225]).

7.3.1 Results
Our quantitative evaluation is presented in table 7.1. Following previous work [113, 225], we
first pretrain the DEQ flow model on the FlyingChairs [64] and FlyingThings3D [160] datasets.
We then test the model on the training set of MPI Sintel [37] and KITTI 2015 [85] datasets.
This model is denoted “C + T”; it evaluates the zero-shot generalization of the DEQ flow model.
Then, we fine-tune the DEQ flow estimator on FlyingThings3D [160], MPI-Sintel [37], KITTI
2015 [85], and HD1K [127] for the test submission.

The models we train are of exactly the same size as RAFT (5.3M) and GMA (5.9M) except
they use DEQ flow formulation instead of recurrent updates. They are denoted as DEQ-RAFT-B
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Figure 7.4: Comparing the training memory, inference speed and performance on Sintel (clean)
with image size 436 × 1024. The same model design (based on RAFT) consumes much less
memory and computes much quicker than the recurrent counterpart. All results are benchmarked
on a single Quadro RTX 8000 GPU.

and DEQ-GMA-B, respectively. Exploiting the memory efficiency of the DEQ flow model (see
7.3.2), we can fit much larger models into the same compute budget of two 11 GB 2080Ti GPUs.
To this end, we also trained DEQ-RAFT-L (8.4M) and DEQ-RAFT-H (12.8M) by increasing
the the width of hidden layers inside the update operator. We also trained DEQ-RAFT-D (9.4M)
by duplicating the ConvGRU within fθ. As shown in fig. 7.4, even the largest DEQ-RAFT-H
model only consumes less than half of the flow estimation memory used by a standard-sized
RAFT model, while achieving significantly better accuracy (4.38 AEPE and 14.9 F1-all score on
KITTI-15, see table 7.1).

7.3.2 Performance-Compute Tradeoff

We further verify the aforementioned computational and memory benefits of the DEQ flow model
on the Sintel (clean) [37] dataset with a RAFT-based update operator (see Eq. (7.4)) trained on
FlyingChairs [64] and FlyingThings3D [160]. The results are shown in Fig. 7.4. Specifically,
when training the DEQ flow estimator on Sintel with a batch size of 3 per GPU (the maximum
that RAFT can fit with a 11 GB GPU), we observe that the memory cost of the flow estimation
process reduces by a factor of over 4× (red bars). Note that since we keep the rest of the model
intact (e.g., correlation pyramid and context extraction; see Sec. 7.2.1), the DEQ flow estimator
does not improve those parts of the memory burden, which now becomes the new dominant
source of memory overhead. In addition, when we use the model for inference, we follow Teed
and Deng [225] using 32 recurrent steps for RAFT (with warm-start), and the Anderson solver
for DEQ-RAFT (with reuse), which stops if relative residual falls below ε = 10−3. Our results
suggest that the DEQ flow converges to an accurate solution, and it is in practice about 20%
faster than the RAFT models with the same structure and size (blue bars). Finally, we show
that we can exploit such memory savings to build even larger and more accurate flow estimators
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Figure 7.5: Performance and convergence stability (measured by absolute residual error) of the
DEQ flow. Frequency indicates how many correction terms we pick, with 0 meaning no correction.
We also compare with Jacobian regularization [20] in Fig. 7.6. DEQ flows trained with our
proposed correction enjoy superior performance and stability.

(a) Training stability (b) Training cost and generalization performance

Figure 7.6: Comparison of IFT, Jacobian Regularization and Fixed-Point Correction. Given
a limited forward solver budget, the fixed-point correction protocol successfully stabilizes training
and shows accelerated fixed-point convergence.

(DEQ-RAFT-H), while still staying well within the compute and memory budget.

7.3.3 Ablation Study
In this subsection, we aim to answer the following questions: 1) How useful is the fixed-point
correction compared with canonical IFT in performance, stability, and speed? 2) How does the
convergence of a DEQ flow correlate with the quality of the flow estimation? As in S7.3.2, we use
the model design from RAFT to instantiate our DEQ flow. By default, we conduct the ablation
experiments on the FlyingChairs [64] dataset using the default training hyperparameters of RAFT
and report the Average End Point Error (AEPE) on its validation split.

Stabilizing DEQ by Fixed-Point Correction. As mentioned in Sec. 7.2.3, unregularized
canonical DEQ models (as well as other implicit networks like Neural ODEs [45]) typically
suffer from a growing instability issue typically symptomized by an increasingly costly forward
fixed-point solving process. We perform an ablation experiment to study how our proposed sparse
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Figure 7.7: Visualizations of DEQ models’ instablity and inefficiency problems. “Ours” refers to
the regularized DEQ models, which will be introduced in Sec. 4.3.

fixed-point correction scheme could help alleviate this issue. To understand the scheme’s effect,
we train a DEQ flow model using both an Anderson [8] and a Broyden [34] solver with 36 and
24 forward iterations, respectively. For simplicity, we equally divide the solver convergence
trajectory into r + 1 segments (where r is the frequency in fig. 7.5) and impose a correction loss
after each trajectory clip. As mentioned in Sec. 7.2.3, we apply Jacobian-free (i.e., one-step)
inexact gradient to the correction loss.

We visualize results of DEQ flow models trained with 3 different settings: 1) a DEQ flow
trained by IFT directly without an auxiliary correction loss; 2) a DEQ flow trained by inexact
gradient without an auxiliary correction loss; and 3) DEQ flows trained by inexact gradient as well
as 1-3 fixed-point correction terms. Our results are reported in terms of AEPE (which measures
performance) and absolute fixed-point residual error ∥ fθ(z⋆; x)− z⋆∥2 (which measures stability).
As shown in Fig. 7.5, our proposed fixed-point correction significantly outperforms the standard
IFT training protocol by about 9%, and reduces the fixed-point error by a conspicuous margin,
e.g., over 60%. Moreover, we find that this significant improvement in stability quickly diminishes
as we apply more corrections; therefore in practice, we usually use one correction term. Together
with the inexact gradient, the total training time can be streamlined over 45%, while the backward
pass of a DEQ flow is still almost free.

Correlation between Performance and Convergence. A potential question is whether better
fixed-point convergence can lead to better performance. To tackle this, we evaluate the DEQ
flow model trained using the standard “C+T” training protocol (see S7.3.1) on the KITTI-15 [85]
training dataset. We visualize the per-frame EPE and the convergence measured by the absolute
fixed point error in fig. 7.7a and dye the scatter plot with the average norm of per-pixel flow across
the frame, which can be understood as an indicator of hardness due to the large displacements. The
Pearson correlation coefficient between the fixed-point error and EPE is over 0.86 (see fig. 7.7b)

91



supporting the claim that convergence is strongly correlated with the flow performance. From
fig. 7.7b, we see that hard flows, with large motions are also challenging for a naive solver. This
demonstrates the necessity of advanced solvers in DEQ flow estimation.

7.3.4 Qualitative Results
We also visualize the flow estimation obtained by DEQ flow in Fig. 7.8- 7.10, using consecutive
frames of the MPI Sintel [37] test set.

(a) Frame 12 (b) Frame 13 (c) Frame 14 (d) Frame 15

Figure 7.8: Visualization on the Sintel test set, ambush_1 sequence of the clean split.

(a) Frame 25 (b) Frame 26 (c) Frame 27 (d) Frame 28

Figure 7.9: Visualization on the Sintel test set, bamboo_3 sequence of the final split.

(a) Frame 25 (b) Frame 26 (c) Frame 27 (d) Frame 28

Figure 7.10: Visualization on the Sintel test set, temple_1 sequence of the final split.

7.4 Limitations
The improved performance and efficiency of our approach comes at the cost of a slightly more
complex training pipeline. Implementing the naïve unrolled flow estimation as presented in Teed
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and Deng [225] and Jiang et al. [113] is simple using most libraries equipped with automatic
differentiation that directly handle BPTT. On the other hand, our approach involves some finagling
of the training protocol (e.g., fixed-point solvers, IFT, inexact gradients, etc.). To help alleviate
this complexity and promote the use of DEQ-flows, we release our code at https://github.
com/locuslab/deq-flow.

In addition, while DEQ flows provide a novel and more efficient framework to train and use
these flow estimators, we still occasionally need to be careful about the stability of this approach.
For example, what would happen if the solver converges poorly (or even diverges) on a dynamical
system? In such case, the behavior of the DEQ flow estimation would not be well-defined. In
practice, we rarely observe such instability (as long as we spend enough solver steps); but as we
analyzed in Sec. 4, harder examples also typically lead to more lengthy convergence path. We
leave a more thorough study of the flow estimation stability to future work.

7.5 Discussion
This chapter proposes a new, equilibrium-based framework for modeling optical flow estimation.
We show that equipped with the tools introduced in the other chapters of this thesis, a deep
equilibrium (DEQ) flow directly models and solves a fixed-point stable flow estimate which can
be trained and used for inference efficiently. Such DEQ flow framework is orthogonal to, and
therefore complements, other modeling- and data-related efforts in the optical flow literature.
With experiments we show that we can easily integrate many of these modeling designs in the
equilibrium approach and achieve results that are more accurate, faster, and multiple times more
memory efficient.

We therefore argue that this implicit framework provides a strong (drop-in) replacement for
existing recurrent, unrolled update operators used by most cutting-edge flow estimators. The DEQ
flows are both more performant and lightweight— both computationally and memory-wise. We
believe this suggests an exciting direction for building more efficient, large-scale and accurate
optical flow models in the future.
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Chapter 8

Implicit2: Implicit Models for Implicit
Neural Representations

The concept of “implicitness” has recently been applied to various contexts of machine learning
research. One particular thread is implicit neural representations (INR) [169, 183, 212, 223],
which aims to learn a continuous representation of high-frequency, often discretely-measured
signals such as large images. Formally, given a spatial-temporal coordinate input x ∈ Rd, an
implicit representation of it is a function Φ : Rd → C, where C is the space of desired quantity (e.g.
color, volume density, distance, etc.) and Φ is usually parameterized with a neural network. Such
implicitness has multiple benefits over the conventional discrete (e.g., grid-based) representations;
e.g., as Φ is defined on a continuous domain, an implicitly represented input consumes much less
storage than the original input; as another example, Φ is differentiable, hence allowing for the
computation of higher-order derivatives. However, the training of these Φ networks themselves
are usually quite memory-consuming, since we usually deal with very high-resolution images and
videos, and training is typically done in full-batch mode (e.g., when training on a batch size of
512 × 512, a simple 4-layer MLP with 1024 hidden units already requires > 16 GB memory just
to store the intermediate activations).

An orthogonal usage of implicitness is the implicit deep learning introduced in this thesis,
where the word is used to characterize the nature of model architectures (rather than input
representations). As introduced in Sec. 1.1 of Chapter 1, the nomenclature comes from the
concept of implicit vs. explicit functions: instead of representing a model as an explicit stacking
of layers, an implicit model solves a non-linear dynamical system [68] (e.g., ODEs [45, 67] or
fixed-points [18, 244]) and differentiate via the implicit function theorem [128]. Previous chapters
have established how these implicit models could achieve competitive results on a wide-range of
realistic tasks, as well as the challenges/opportunities they face.

Despite the success of these “implicit” methods in their respective areas, the two concepts
so far have rarely intersected: existing models used for implicit neural representations (INR) are
neither implicit in nature (since they are still stacked multi-layer explicit operators trained end-to-
end in the feedforward manner), nor do they exploit any properties of the implicit functions during
training (e.g., implicit differentiation). In this chapter, we argue that implicit representations and
implicit layers are remarkably well-suited to each other, and their use together can compensate for
each other’s drawbacks.
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Specifically, we propose to combine the best of both worlds by replacing the explicit models
used in conventional INR learning with an implicit layer, thus dubbed (Implicit)2 networks.
Formally, let x be the input and fθ be an (often shallow) layer, the (Implicit)2 approach learns the
following implicit representation Φ of the data x:

Φ(x) = Wz⋆ + b, where z⋆ = fθ(z⋆; x) (8.1)

Importantly, we show that these two “implicitness” complement each other well, especially in
two important aspects. First, the unique large-batch training scheme of implicit representations
as well as the forward/backward decoupling properties of implicit models permit us to amortize
the cost of the iterative solver that would otherwise make implicit models slow to train. We
show that, similar to the DEQ optical flow case in Chapter 7, an implicit equilibrium model can
recycle the fixed-point computations across training iterations and leverage inexact gradient (see
Chapter 5) to significantly lower the hardware requirement and computation budget needed to
train INR. We evaluate (Implicit)2 on multiple INR tasks for images, videos, and audios, showing
substantial improvement upon existing competitive explicit-model methods like SIREN [212] or
MFN [75] using equivalent-sized networks. This chapter is primarily based on the work published
in NeurIPS 2021 [105].

8.1 Preliminaries: Implicit Neural Representations (INR)

While high-frequency data such as images and scene geometry have been traditionally represented
discretely (e.g., pixel/voxel grids or mesh points), recent work has demonstrated the possibility of
replacing them with continuous functions parameterized by multi-layer perceptrons (MLPs) [212,
223]. These deep networks have been used to learn differentiable representations of various
forms, such as continuous spatial-temporal image representations [26, 47], high-resolution scene
representations [183, 211], and volumetric rendering [169, 226], and have been shown to be
significantly more compact than the conventional grid-based approaches.

However, training these INR models is not easy. For example, the training of implicit
representations is usually conducted in very large batch sizes (e.g., 512 × 512), which renders
these (albeit simple) MLPs very memory-consuming during training. As another example, recent
works have shown that typical deep networks with ReLU/tanh/sigmoid non-linearities fail to
capture the fine details of an input signal, and resorted to periodic non-linearities [212], Fourier
feature encodings [223], or repeated application of non-linear filters (e.g., Gabor wavelets) to
the input and then multiply with the features [75]. We introduce below the two latest, highly
competitive models that have been developed on this task, which our work will build on in
Sec. 8.2.1.

Sine-activated Network for Implicit Representations (SIREN). To overcome the detrimental
effect of traditional non-linearities like ReLU/tanh on modeling fine details and higher-order
derivative of the input signals, Sitzmann et al. [212] proposes to use sinusoidal activation functions
that allow explicit supervision on any derivatives of the input signal. The resulting MLPs, though
simple, have been shown to achieve state-of-the-art performance in representing images, videos,
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complex geometries, and more [212]. Formally, given an input x, SIREN learns an implicit
representation by the following L-layer MLP:

Φ(x) = W(gL−1 ◦ gL−2 ◦ · · · ◦ g0)(x) + b (8.2)

where gi is the i-th layer of the network that computes gi(h[i]) = sin(Wih[i] + bi) with a sine
non-linearity, and h[i] denotes the hidden state at i-th layer.

Multiplicative Filter Networks (MFN). More recently, Fathony et al. [75] proposed to forego
the SIREN-like design (i.e., MLPs with periodic activation functions) in favor of multiplicative
operations that are proven to be similarly expressive. Specifically, at each layer i of the network,
an MFN applies a learnable non-linear filter kernel (parameterized by θ(i)) g(x; θ(i)) on the
original input x ∈ Rn, and elementwise multiply it with a linear transformation of the features;
i.e., formally,

Φ(x) = Wh[L] + b, where h[i+1] =
(
Wih[i] + bi) · g(x; θ(i)) and h[0] = g(x; θ(0)) (8.3)

Fathony et al. [75] in particular proposed two instantiations that admit sinusoids or a Gabor
wavelet as the filter g, which are called FourierNet and GaborNet, respectively:

gFourier(x; θ
(i)
Fourier) = sin(ω(i)x + ϕ(i))

gGabor(x; θ
(i)
Gabor) = sin(ω(i)x + ϕ(i)) · exp

(
− (γ(i)/2) · (x − µ(i))2) (8.4)

where θ
(i)
Gabor = {ω(i) ∈ Rn, ϕ(i) ∈ R, γ(i) ∈ R, µi ∈ Rn} (similar for θ

(i)
Fourier), and (µ(i), γ(i))

denotes the mean and scale of the Gabor filter. These models have shown performance on par
with or better than the periodic-nonlinearity-based networks like SIREN on a range of tasks like
image and video representations.

This chapter studies the novel combinations of implicit models (exemplified by the equilibrium
models) and implicit representation learning (see Fig. 8.1). Specifically, we show that these two
“implicitness” are surprisingly well-suited to each other, as they almost perfectly compensate for
each others’ drawbacks. We demonstrate that implicit modeling of a simple layer fθ substantially
improves the training speed, memory, and performance on implicit representation tasks when
compared to the aforementioned state-of-the-art deep explicit networks.

8.2 (Implicit)2 Networks
As we discussed in Sec. 8.1, learning implicit representation for complex signals is often more
effective when projecting the input coordinates onto high-frequency bases (e.g. sinusoidal
functions), making the designs of these models typically different from deep networks used in
more common applications, like image classifications (e.g., ResNets [96]). In this work, we
propose to directly build on the designs of these aforementioned state-of-the-art layer architectures
by only making minimal modifications, but modeling them as shallow implicit models. We briefly
introduce below the two instantiations of our proposed (Implicit)2 approach, which are based on
SIREN [212] and MFN [75], respectively, followed by a discussion of how implicit representation
tasks can enable us to amortize the cost of training these implicit networks significantly in practice.

97



Figure 8.1: (a) Explicit networks incur O(L) complexity in both time and memory during
training. (b) Original DEQ models requires constant memory, yet they take O(M) time in
forward/backward passes, where M is the number of fixed-point solver steps. (c) In contrast,
an (Implicit)2 Network consumes constant amortized memory and time in both forward and
backward passes.

8.2.1 (Implicit)2 Network Architctures

Implicit Sine-activated Networks (iSIREN). Motivated by the success of SIREN, we first
propose an input-injected variant of SIREN (denoted as SIREN (input inj.)) suitable for implicit
models, i.e.,

f SIREN
θ (z; x) = sin(W(z + sin(Vx)) + Ux + b) (8.5)

where, following prior works on deep equilibrium models [18, 192, 244], the transformed input x
is added to the hidden representation z (see Fig. 8.2). Just like the canonical SIREN layer, any
order of derivative of this input-injected SIREN variant is also an input-injected SIREN of the
same form. Therefore, the proposed variant inherits the same high-frequency and higher-order
differentiability properties as SIREN, and we name the implicit model that solves its fixed-point
as iSIREN.

Implicit Multiplicative Filter Networks (iMFN). Additionally, we introduce a variant based
on the recent Multiplicative Filter Networks (MFN) [75]. As MFNs only perform linear trans-
formations on the hidden features, which are multiplied with a non-linear filter function on the
original input x, we slightly modify the layer design as follows to introduce an additional input
injection:

f MFN
θ (z; x) = (W(z + g(x; θ2)) + b) ◦ g(x; θ1) (8.6)

where g denotes the filter function of choice, such as Gabor or Fourier (gGabor and gFourier in
Eq. (8.4)) filters [75]. We call the implicit models defined by this layer iMFN. Moreover, just like
the original MFN [75], we can show that the output of iMFN (which is the fixed-point of f MFN

θ )
is also a linear combination of the non-linear filter functions (see Huang et al. [105] for proof).
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Figure 8.2: The architecture of one implicit layer fθ(z; x) in iMFN and iSIREN. Note that when
z = 0, evaluating fθ(z; x) once is equivalent to the output of the respective explicit layer.

We provide visualizations of these two architectural instantiations in Fig. 8.2. With these vari-
ants, we formally introduce the corresponding (Implicit)2 approaches to implicit representation
tasks as follows:

Φ(x) = W ′z⋆ + b′, where z⋆ = fθ(z⋆; x), and fθ ∈ { f MFN
θ , f SIREN

θ } (8.7)

8.2.2 Accelerated Training of (Implicit)2 Networks
Compared to explicit networks, training with implicit models significantly lowers the memory
budget required. This is especially compelling for training INR tasks, which are often memory-
bottlenecked. In this subsection, we build on the previous chapters and show how we can use
these techniques to improve the speed of these (Implicit)2 models, eventually rendering them
both more memory-efficient and time-efficient than explicit models (while frequently performing
better; see Sec. 8.3).
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Figure 8.3: Zero initialization v.s. fixed-point
reuse in terms of required steps to converge.
Further details of this experiment can be found
in Sec.8.3.1.

Fixed-point Reuse. Suppose we fix a train-
ing step t and let the corresponding network
parameter at this snapshot be denoted by θ(t).
Typically, a DEQ model solves for the fixed-
point z⋆(t) given an input x with a black-box
fixed-point solver starting with an initial guess
z[0] (which is usually 0):

z⋆(t) = RootFind( fθ(t)
, x, z[0]) (8.8)

where z⋆(t) does not depend on this initial guess

z[0] of the optimization. But depending on the
quality of the initial guess, the optimization
process itself can take a different number of
steps. For example, in the unlikely circumstance
where we guessed z[0] to be z⋆(t), the fixed-point
solvers will directly converge at iteration 0. We
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have shown in Chapter 7 another instance of how correlations across high-frequency video frames
can also facilitate a better initial guess.

Similarly, we argue that the training on many implicit representation tasks, which uses the
entire batch of data (e.g., to fit an RGB-color image with an INR, each pixel of this image is
a “sample” of this full batch), also enables us to provide very reasonable initial guesses to our
equilibrium networks. In particular, training in the full-batch mode allows us to have direct access
to all of the fixed-points z⋆(t) for all inputs x in the training set immediately after step t. Assuming
the model updates between iterations t and t + 1 are small (which is true in practice, such as via
SGD with a small learning rate η), one can safely assume the fixed-points of the updated layer
fθ(t+1)

(·; x) do not deviate much from its current estimate z⋆(t). Formally, fθ(t+1)
(·; x) → fθ(t)

(·; x)
as learning rate η → 0, which implies z⋆(t+1) → z⋆(t). We empirically verify this on these full-
batch training settings (see Fig. 8.3), where a majority of the fixed-point convergences (to a target
residual level ε = 0.01) finish in exactly 1 step.

However, we note that this does not imply all training iterations will gain a similar level of
convergence boost (e.g., see the first 100 steps in Fig. 8.3). In particular, at training iteration t = 0,
we do not have a “previous estimate” at all, which means we still have to solve for z⋆ by running
the solver for several steps with a neutral initial guess. Thus, we highlight that such fixed-point
reuse amortizes the cost of later training iterations, and indeed, the vast majority of training steps
of the implicit models. Empirically, we found that performing 1 step of the fixed-point iteration is
sufficient for training the iSIREN and iMFN networks; i.e., at training step t + 1, (if using naïve
iterations) we simply perform

z⋆(t+1) = fθ(t)
(z⋆(t); x). (8.9)

Inexact Gradient. We also propose to use inexact gradient to accelerate the training of
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Figure 8.4: Training PSNR comparison be-
tween different levels of gradient approxi-
mation. T denotes truncation length of the
inexact gradient (where we use NPG; see
Chapter 5), where T = ∞ indicates full
IFT.

(Implicit)2 models further. Specifically, as a recap,
recall from Chapter 5 that unrolling-based phan-
tom gradient (UPG) performs T unrolling steps at
the fixed-point estimate, whereas Neumann-based
phantom gradient (NPG) (Sec. 5.2) directly uses
the Jacobian matrix at the fixed-point estimate and
perform a T-step truncated Neumann-series compu-
tation. Moreover:

1. When the forward fixed point solving is very
accurate, UPG and NPG approaches each
other. In our case, since we can leverage fixed-
point reuse and found NFE=1 to be sufficient
(see above), this condition is satisfied.

2. When T = 0, UPG reduces to the Jacobian-
free gradient [81] (see Sec. 5.3).

While the T = 0 worked well for the DEQ optical
flow estimation (see Chapter 7, we empirically find
on INR tasks that Neumann-based phantom gradient
T = 1 works better. Note that this is still very cheap— it only requires one evaluation of the
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vector-Jacobian product ∂ℓ
∂z⋆ J fθ

. We show in Fig. 8.4 the performance of the model as a result of
using different “approximation” levels of the inexact gradient. Formally, the inexact gradient we
use has the form

∂̂ℓ

∂θ
=

∂ℓ

∂z⋆
T

∑
i=0

Bi ∂ fθ(z⋆; x)
∂θ

, where B = J fθ
(z⋆) (8.10)

Spectral Normalization . We additionally apply spectral normalization on the layers fθ, which
ensures that fθ (for forward passes) and J fθ

(for backward passes) are contractive, and is able to
guarantee unique and stable fixed-points due to the Banach Fixed Point Theorem [23]. Specifically,
we adopt the power-iteration in [25, 171] to scale the spectral norms of W in Eq. (8.5) and Eq. (8.6)
after each training iteration if it become > 1, which incurs little additional computation cost [171].
However, we note that weaker regularizers such as weight normalization [199] may also suffice in
practice.

8.3 Experiments
We evaluate our (Implicit)2 networks on several representation tasks and compare the difference
in performance between the implicit and explicit modeling of implicit representations across a
variety of configurations. For both explicit networks and implicit networks, we use L to denote
the number of layers and D to denote the hidden dimensionality of the features. Unless stated
otherwise, our implicit models have exactly one fθ layer (i.e., L = 1), in the exact form we
described in Sec.8.2.1. Our set of experiments is drawn from prior works where competitive INR
deep networks are evaluated on [75, 212].

Overall, our results of learning INR on various domains (including images, videos, audios)
suggest that the (Implicit)2 approach offers clear improvements over existing explicit models
used for these purposes, where we are able to achieve the same or better level of performance
while being up to 3× more memory-efficient and 3× more time-efficient. Our implementation
can be found at https://github.com/locuslab/ImpSq.

8.3.1 Image Representation

We first evaluate the difference between explicit networks and (Implicit)2 networks on repre-
senting a high-resolution 512 × 512 grayscale image, which is a commonly used goalpost for
evaluating implicit representation models from the scikit-image package [232]. In particular, we
fit an implicit representation function Φ : (x, y) → C, where C is the desired color space (and
in this case C = R). We train each model for 5000 iterations (under the same setting) using all
pixels in the image (i.e., batch size 262,144), and demonstrate the final peak signal-to-noise ratio
(PSNR), memory consumption, and average training step time in Fig. 8.5. The results convey
two interesting facts about using (Implicit)2 networks: Compared to standard 4-layer explicit
networks (4L-256D), even a small implicit network (1L-256D) with approximately 75% fewer
parameters achieves a comparable performance, while requiring only roughly 1/3 of the training
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Figure 8.5: Comparison of step time, memory consumption and PSNR between explicit and
implicit models trained on the 512 × 512 grayscale image.

time and memory footprint. When given a higher parameter budget, an implicit network with a
similar model size (i.e., 1L-512D) outperforms the best explicit network by a large margin.

We also demonstrate the effect of fixed-point reuse and truncated backward gradient

Figure 8.6: Learned 512 × 512 grayscale
image

using a 1L-512D Fourier MFN on fitting the same
512×512 image, with results shown in Fig. 8.3
and 8.4. Specifically, by reusing fixed-points in
implicit layers, the solver takes significantly fewer
steps to converge for the majority of the training
period, making the forward evaluation of implicit
layers drastically more efficient. Meanwhile, Fig.
8.4 shows that the 0th-order gradient approxima-
tion in [81] (i.e. T = 0), albeit efficient, could
substantially hurt model performance. In contrast,
Neumann-based phantom gradient [87] with T = 1
greatly reduces the performance gap with only one
additional vector-Jacobian product evaluation, thus
achieving a better balance between model efficiency and effectiveness.

8.3.2 Image Generalization

In a number of applications [26, 47, 169, 177], implicit representations are used to infer unobserved
parts of data. In order to demonstrate the ability for (Implicit)2 networks to generalize well, we
train the network on only 25% of the pixels from each image in the Natural and Text dataset,
following [75], and evaluate PSNR on an unobserved 25% portion of the image. The average
PSNR over all 16 high-resolution images in Natural and Text is reported in Table 8.1, and a
visualization of the improvement by (Implicit)2 models is shown in Fig. 8.7.

It can be seen that (Implicit)2 networks improve substantially over the explicit baselines,
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Gabor-MFN Fourier-MFN SIREN

Explicit

Implicit

Figure 8.7: Samples of best performing explicit/implicit models learned on Natural

Table 8.1: PSNR (in dB) for all models on image generalization. The reported mean ± std is
taken over the individual PSNR of the 16 images.

Natural Text

1L-256D 1L-512D 4L-256D 1L-256D 1L-512D 4L-256D

Fourier-MFN 23.27 ± 3.18 23.30 ± 3.05 24.57 ± 3.35 24.64 ± 2.11 24.84 ± 2.10 26.67 ± 2.06
Fourier-iMFN (ours) 24.88 ± .44 25.19 ± 3.64 24.52 ± 3.33 26.90 ± 2.14 27.19 ± 1.83 26.48 ± 2.04

Gabor-MFN 24.16 ± 3.35 24.68 ± 3.46 24.65 ± 3.38 27.19 ± 2.18 27.74 ± 2.13 27.57 ± 2.10
Gabor-iMFN (ours) 24.91 ± 3.41 25.42 ± 3.76 24.53 ± 3.33 27.53 ± 2.18 28.07 ± 2.00 27.40 ± 2.10

SIREN (input inj.) 22.88 ± 3.0 24.52 ± 3.28 24.10 ± 3.34 24.54 ± 2.19 25.69 ± 2.18 26.21 ± 2.19
iSIREN (ours) 24.28 ± 3.37 24.92 ± 3.58 24.05 ± 3.39 26.06 ± 2.18 26.81 ± 2.09 26.31 ± 2.20

where the best-performing implicit model outperforms the explicit counterpart by > 0.7 in
PSNR using the same architecture. Visually, (Implicit)2 networks produce a sharper and
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Figure 8.8: Audio signals represented using Fourier-MFNs.
Lower error magnitudes (in light blue) are better.

shape-consistent representation com-
pared with the best performing ex-
plicit network. We observe similar
improvements in training speed and
memory consumption as in the im-
age representation task (about 3×).
For completeness, we also evaluate
an (Implicit)2 network where F also
consists of a stack of 4 layers (rather
than 1), and observe that the implicit
modeling of an already deep struc-
ture does not yield much improve-
ment.
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8.3.3 Audio Representation

We further show that the proposed (Implicit)2 network outperforms explicit networks on repre-
senting very-high-frequency audio signals. Following [212], we train the models to fit a 7-second
music piece. We observe that in all cases, the implicit modeling significantly outperforms the
respective explicit models.

In Fig. 8.8, we show the reconstruction results and the respective errors when using Fourier-
MFN to fit the audio signal, with more results available in the appendix. Although an (Implicit)2

model only defines one layer, it is able to outperform explicit models in terms of PSNR by
more than 23% (43.79 vs. 35.42), while still retaining the same level of memory and speed
improvements as before. We also find that, in this case, having a deeper architecture in an implicit
layer (implicit 4L-256D) leads to improved performance.

8.3.4 Video Representation

1L-1024D 1L-2048D 4L-1024D

Fourier-MFN 24.97 ± 1.08 26.9 ± 0.97 27.64 ± 0.90
Fourier-iMFN (ours) 25.85 ± 1.00 27.7 ± 0.90 28.03 ± 0.95

Gabor-MFN 26.15 ± 1.02 28.18 ± 0.78 29.64 ± 0.81
Gabor-iMFN (ours) 26.45 ± 0.98 28.79 ± 0.77 29.20 ± 1.04

SIREN (input inj.) 25.12 ± 0.96 26.04 ± 0.99 26.52 ± 0.86
iSIREN (ours) 26.03 ± 0.92 27.08 ± 0.93 27.12 ± 0.89

Table 8.2: PSNR for the video representation task. The
reported mean ± std is taken over all frames of the video.

We may add an extra dimension to
the input of implicit representation
function and try to learn a model for
video sequences Φ : (t, x, y) → C,
where t is the space of time. We aim
to represent a 300-frame 512 × 512
video using each model. The PSNR
results are shown in Table 8.2.

Unlike in the image representa-
tion setting, we observe that, due to
the relatively few parameters com-
pared to the size of the video data
(the smallest model only has as many
parameters as 1.3% of all pixel values), model sizes have a more significant impact on the overall
performance. But still, in most configurations, we found (Implicit)2 models lead to a consistently
non-trivial improvement in performance when compared to their explicit counterparts, while
doing so with equivalent or less memory budget.

8.3.5 3D Geometry Representation

To further demonstrate the benefit of (Implicit)2 networks over their explicit counterparts, we
choose three formulations of Fourier-MFN with similar parameter count (i.e. explicit 1L-512D,
explicit 4L-256D, and implicit 1L-512D) and fitted them on several 3D object meshes with the
point occupancy prediction objective similar to [167] - given input coordinate c = (x, y, z), the
model Φ : R3 → R is trained to predict a binary label indicating whether the point corresponding
to the coordinate is located inside the target object (0 if the point is outside the object, and 1
if inside). The visualized normal maps of the learned representations on one of the objects are
shown in Fig. 8.9. We further evaluated the prediction IoU over test points densely sampled near
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Explicit Explicit Implicit Ground Truth
1L-512D 4L-256D 1L-512D

IoU: 0.9650

IoU: 0.9650
IoU: 0.9691

IoU: 0.9691
IoU: 0.9698

IoU: 0.9698

Figure 8.9: Normal maps and IoUs of fitted dragon object using Fourier-MFNs in Occupancy
Network [167]. The (Implicit)2 approach performs better than its deep explicit counterpart.

the mesh and present them in the same figure. Experimental details and results on additional 3D
models are available in the appendix.

The results show that, with a similar model size, the one-layer network modeled with the
(Implicit)2 formulation is able to capture more details than an explicit model with an identical
(1L-512D) or a deeper (4L-256D) structure, and at the same time having a training time and
memory advantage similar to the ones in Fig. 8.5. Such an example demonstrates the superior
parameter and memory efficiency of (Implicit)2 networks.

We note that in both the video and 3D geometry tasks, the signal is either of large dimension
or defined continuously, where we may not fit the entire data into a single batch. Therefore, the
implicit models usually entail more than one step to reach convergence due to the challenge in
fixed-point reuse with mini-batch training (see a more detailed analysis in Huang et al. [105]).
Nevertheless, our proposed method is still able to boost the training efficiency by leveraging the
inexact gradient, while improving upon its explicit counterparts in most cases.

8.4 Limitations
The (Implicit)2 approach can be significantly more time-efficient and memory-friendly than
explicit networks at training time; however, at inference time, the implicit models must resort to
the normal fixed-point solving. Furthermore, accelerated training in the forward pass by fixed
point reuse (see Sec.8.2.2) in practice can be bottlenecked by storage or hardware I/O bandwidth
constraints; i.e., it works best when we can fit all or a large portion of the fixed point into memory
for quick retrieval. Although such assumption can be easily satisfied for implicit representation
learning in many cases, for extremely large data spaces (e.g. Park et al. [183] and Mildenhall et al.
[169], where samples are drawn continuously in R3), the fixed point reuse may not always work
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as well and could require more solver steps.
Smarter caching strategies for the fixed points may be developed in the future, where we

consider only a subset of the input space for caching throughout the training. For example, one
may consider a voxel-grid-based sparse storage for the fixed points, similar to the ones used in Liu
et al. [150], such that fixed points of any batch of inputs may be approximately obtained from
interpolation of the sparse storage. We leave this direction for future work.

8.5 Discussion
In this chapter, we propose (Implicit)2 networks, which demonstrates yet another example
application of equilibrium models— specifically, on implicit neural representation (INR) tasks.
We show that these two concepts of “implicitness” complement each other well, allowing us to
take advantage of their properties (e.g., fixed point reuse across training iterations, in contrast to
the reuse across video frames as in Chapter 7) to produce a significantly more efficient training
routine and usually more parameter-efficient models for INR learning. We demonstrate through
our set of experiments that the implicit modeling of implicit representations may in many cases
be conveniently used as a drop-in replacement for existing state-of-the-art explicit models like
SIREN and MFN to further improve the performance and reduce the memory/computation budget
required to train these tasks.
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Part IV

Conclusion
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Chapter 9

A Different Form of Deep Learning

Are layers necessary to deep learning? This was the question that we asked at the beginning
of this thesis. For a very long time, it has been assumed that deep learning is powerful because
of its deeply stacked architectures. Indeed, when building these modern AI models, there is a
set of questions that all model architects must answer; for example: 1) how many layers should
there be (e.g., ResNet-50 or -100 [96])? 2) How do we schedule these layers (e.g., U-Net [195]
or Pyramid networks [264])? 3) How do we connect different layers (e.g., DenseNet [103] or
ResNeXt [248])? The trend of deep learning in the last decade has been to get deeper and deeper,
with more and more parameters and increasingly complex structures (e.g., GPT-3 [31]).

But this thesis answers otherwise. While layers have been very successful, we introduce a
new arena where we abandon this traditional notion of layer-stacking completely, and model the
output of as an implicit, continuous dynamical system at no cost to model capacity (see Fig. 9.1).
The goal of this thesis is to re-think, re-identify, and exploit new properties and forms of neural
networks that were long buried by the conventional layer-based formulation. We demonstrate a
deep (or really, shallow?) equilibrium approach that

• has no layer stacking or computation graph;
• represents an infinitely deep conventional neural network, but with only one layer modeled

implicitly;
• can be directly differentiated through its final output z⋆, without knowledge of the forward

computation (thus completely decoupling the forward and backward passes);
• consumes only O(1) memory footprint— equivalent to that of just one layer;
• subsumes a wide range of modern, structured and cutting-edge layer designs (e.g., Trans-

former block);
• can compute adaptively and efficiently in both the forward (e.g., different solver paths,

fixed-point reuse, etc.) and in the backward passes (e.g., inexact gradients);
• scales to very high-dimensional space and is able to perform competitively with (or even

improves over) large, deeply stacked traditional networks.
We don’t believe those layer-less deep learning models will replace the conventional explicit

ones, nor is that the main message that this thesis hope to convey. The goal is never to replace, but
to complement: via DEQ models, we hope to demonstrate a different paradigm of deep networks
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Figure 9.1: A simple comparison between conventional explicit deep networks and the implicit
equilibrium approach presented in this thesis. These deep equilibrium (DEQ) models do not
define a prescribed computation trajectory, but can instead rely on any black-box solvers and be
differentiated using only the final output alone (and are thus extremely memory efficient).

that complements the existing development, and suggests a valuable and fundamental approach
to rectify their drawbacks while significantly enhance their efficiency in large-scale, real-world
applications.

We next summarize again the in-depth exploration we have had in this thesis.

9.1 Summary
This thesis was broken into two parts. In the first part, we present a way for very deep, possible
infinite-level, deep networks to be reduced to one level.

• In Chapter 2, we formally introduce the generic formulation of deep equilibrium (DEQ)
models, which compute the “infinite” limit (i.e., a fixed point) representation of hidden acti-
vations. We show that this equilibrium approach is universal in terms of its representational
capacity, and how one can directly differentiate through the final equilibrium point, thus
enabling DEQ models to consume only the memory equivalent to that of just one layer. We
demonstrate the power of this layer-less approach with competitive performance on small-
and large-scale language modeling tasks.

• In Chapter 3, we further extend the idea of a single “equilibrium” to multiple “equilib-
ria”. While the success of conventional deep networks in pattern recognition tasks (e.g.,
computer vision) suggests the indispensable role that layers play to represent drastically
different resolutions, we demonstrate that such feature hierarchy can be modeled even
without architectural hierarchy of models (i.e., layers). By simultaneously driving a set of
representations to a synchronized fixed point, we can effectively model feature abstractions
and enable DEQ models to provide natural interfaces that allows it for multi-tasking or
compound training. We demonstrate state-of-the-art level performance on realistic image
classification and semantic segmentation tasks.
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In the second part of this thesis, we build substantially on this formulation, which regards a
deep network as a dynamical system rather than a computation graph. We provide a thorough
overview of their challenges, present the many new opportunities they bring forth, and leverage
these new properties to build better applications in many fronts.

• In Chapter 4, we start by discussing some new challenges that this equilibrium approach
poses that were unknown to conventional deep networks— e.g., stability, architectural
brittleness, etc. We demonstrate how the equilibrium models “learns to get deeper” (i.e.,
growing instability), and how these convergences are closely related to the Jacobian condi-
tioning at the fixed point. Then, we outline a new regularization, pursuant to the implicitness
of the DEQ models, that stabilize these dynamical systems.

• In Chapter 5, we discuss the implication these one-layer implicit models have on the
backward pass gradient generation process. Unlike conventional deep networks which
relies on chain-rule backpropagtion, we show (both theoretically and empirically), these
equilibrium models can be effectively and efficiently trained with much more lightweight
and inexact gradients. Using these approximate gradients, the DEQ models’ backward pass
could be almost free (e.g., using Jacobian-free methods), while stil achieveing competitive
performances in large-scale experiments.

• In Chapter 6, we bring up the notion of how DEQ models decouple representational
capacity (which is controlled by fθ) and forward computations (which is determined by the
solver). This is in sharp contrast to conventional neural networks, for which the latter is
the foundation of the former (i.e., expressivity comes with deep stacking). We show that
one can harness such decoupling and parameterize the fixed-point solving process itself, by
building customized, neural equilibrium solvers. Importantly, these solvers themselves are
extremely lightweight and cheap to train, are orthogonal to the paramterization or structure
of the single layer fθ itself, and are able to lead to substantial inference-time speedup.

• In Chapter 7 and 8, we show how these equilibrium networks and the toolbox we (and
the rest of the community) have built around them can help us build better applications.
As two examples, we show that as we do away with layers and abandon the computation
graph view of deep learning, these DEQ models can help us build optical flow estimators
(Chapter 7) and implicit neural representations (Chapter 8) that are substantially on all three
axes: computational cost, memory footprint, and accuracy.

9.2 Thoughts and Future Direction

This thesis provides a strong argument that current deep networks have some fundamental ceiling
that must be overcome (e.g., computationally), and that deep equilibrium models are frequently
better by design— even though they are not outperforming everything yet. The idea presented
in this thesis has already led to a new research subarea called implicit deep learning in the
community, and many of the results presented in the earlier chapters would not be possible
without the community wide effort.

We use the rest of this section to discuss some of these community-wide efforts and envision
the future research direction of this “newer” deep learning. But before that, we also go down the
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memory lane to revisit an interesting “old question”.

9.2.1 Are DEQ Models Less “Biological”?

How “biological” are the DEQ models, one might ask, as we replace neuron-stacking with
dynamical systems? After all, conventional deep networks were first inspired by biological
neurons in the human brain [74, 125, 161] (which started the famous connectionist AI vs. symbolic
AI rival), as the neurons constantly propagate signals to the other neurons (i.e., “activations”) and
process the received input signals.

But in fact, there is very limited biology, in terms of both mechanism and learning process, of
these neural networks. For example, as the Nobel Prize winner Francis Crick famously said in his
1989 paper “The recent excitement about neural networks” [55]:

“But is this what the brain actually does? Alas, the back-drop nets are unrealistic
in almost every respect, as indeed some of their inventors have admitted [...] As
far as the learning process is concerned, it is unlikely that the brain actually uses
backpropagation.”

Moreover, he also added that the memory neurons should “have a single layer” that “feeds back
on itself” and constantly “adjusting the strengths of all synapses”.

Certainly, the success of modern deep learning itself is a strong argument that deep networks
do not need to be like human brain in order to perform well, or even better, such as AlphaGo [209].
But what Francis Crick does point out, is that the current deep learning as we know it (which is
based on layers, computation graphs and chain-rule backpropagation) may only be one of the
many potential formulations— even just a rudimentary one. Implicit deep learning, exemplified by
the deep equilibrium (DEQ) models introduces an alternative formulation, and one that arguably
fits better with Crick said.

9.2.2 Community-Wide Effort

Since the deep equilibrium models were first introduced in 2019 [18], these pioneering work
introduced in this thesis has led to a new and quickly growing community dedicated to study and
extend these implicit views of deep learning, as well as a new research subfield called “implicit
deep learning”.

Besides the research directions presented in this thesis, for example, the community has
studied the DEQ models in numerous contexts, such as in graph modeling [92, 138, 149, 184],
gradient dynamics and learning theory [76, 83, 120], generative modeling [93, 157], approximate
gradient [5, 81, 86, 97], provable stability/convergence [141, 180, 192, 193, 229, 244], spiking
neural networks [247], out-of-distribution generalization and robustness [142, 192, 240], and
many more. Notably, these advancements in continuous and “infinite-level” deep networks
(along with the closely related work on Neural ODEs [45]) has led to a NeurIPS 2020 tutorial
“Deep Implicit Layers”. Many ideas of the work presented in this thesis stem from these other
explorations.
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9.2.3 Future

Without a doubt, a lot of questions remain to be answered, and this thesis is likely a just a starting
point of these new perspectives on continuous, implicit deep learning approaches. While we
have summarized some major challenges and limitations of the DEQ models (e.g., instability,
inefficiency (generically), fragility, etc.) in Chapter 4 already, we also identify two major directions
where we believe this research could have a huge impact on.

Implicit Deep Learning and their Practical Applications. Despite their appealing properties
and encouraging results that rival their explicit counterparts, there are still lots of unknowns to
these implicit deep algorithms. A very important open problem is, where do we expect to see
them completely replace the conventional neural networks; e.g., as a strictly better alternative?
A major obstacle here is still the efficiency of fixed-point solving and a lack of more in-depth
understanding of how DEQ models’ stability relate to their generalization (e.g., what does it mean
when the root-solving diverges; what will the computations be like in out-of-distribution (OOD)
contexts). We also believe in the importance of gaining a better understanding of how exactly
these inexact gradients presented previously facilitate the learning process of implicit models on
large-scale practical tasks, and its implication on generalization. This will have a profound impact
as we train and deploy these implicit architectures to broader settings, especially without the
strong (and often constraining) assumption of a global unique fixed point [192, 244]. Moreover, as
these implicit-depth networks model underlying dynamical systems, we expect them to improve
over the traditional domains where iterative, optimization-inspired approaches dominate, a domain
where we already start to see DEQs play a larger role [21, 229]. Finally, we note that the current
computation hardware (e.g., GPUs) are heavily customized toward conventional deep networks to
help them execute the computation graphs more efficiently. But as we abandon the notion of layer
stacking, it raises a value direction where we could further improve the hardware level integration
with AI; e.g., using analogue feedback control circuit, which has a closely connected feedback
logic with the DEQ models. We have also already seen some efforts on the software end, such as
Google’s autodiff frameworks like JAX [29] which makes implicit differentiation significantly
easier and more efficient.

Deep Learning for Scientific Computing. The research presented in this thesis shows a
viable path to make deep learning about solutions to non-linear, high-dimensional and complex
dynamical systems. This advancement shed new light on some old questions. Can we leverage
these expressive deep learning-based dynamical systems to better learn and capture real-world
scientific equilibria, which are often characterized by dynamical systems? For example, recent
work on differentiable density functional theory (DFT) found strong connection between the
fixed-point implicit networks with the self-consistency iteration to calculate density profile in
quantum chemistry [119]. Some work has also explored the connections these equilibrium
networks have with the equilibrium in game theory [97]. But more broadly, can we build more
scientifically informed neural networks (explicit and implicit ones, or a hybrid) to improve the
human knowledge on natural sciences? This direction has shown great prospect as researchers
show that DL can significantly accelerate computational fluid dynamics [126], or predict complex
protein folding [117]. We believe it is important that we have a more systematic exploration and
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understanding of how to design and structure deep learning algorithms for scientific computing,
especially with the advent of implicit networks. With these insights, we may substantially
advance the frontier of science discovery (especially computationally intractable domains) and
their deployment in relevant high-dimensional downstream applications (e.g., drug discovery).
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