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Abstract
Intelligent tutoring systems (ITSs) are an educational technology that democratizes
the benefits of personal tutoring by providing millions of learners with access to
educational resources and adaptive instruction. Central to the function of ITSs are
machine learning algorithms that support instructional decision-making processes,
for example by selecting learning activities of appropriate difficulty. These algo-
rithms analyze sequence log data that describes the learner’s interactions with the
ITS to make inferences about the learner’s latent knowledge state and to evaluate the
effects of instructional design choices on learning outcomes. In this thesis we study
the question of how the large-scale data that is available in today’s tutoring systems
can be used to give those systems better methods for learner assessments and for
choosing the right teaching action for the individual learner.

First, focusing on learner assessments, we improve the accuracy of student per-
formance models (SPMs) by incorporating rich interaction data, such as response
times, hint usage, and semantic relationships among learning materials. We fur-
ther enhance the flexibility of SPMs via transfer learning enabling accurate predic-
tions for new courses by leveraging data from existing courses. Second, we explore
data-driven improvements of instructional policies within a real-world online tutor-
ing system frequented by millions of students. Employing reinforcement learning
methodologies we optimize policies to provide feedback during practice activities
leading to significant improvements in learning outcomes. We further assess how
the effects of decisions made by these policies can vary across learners. Third, we
bridge between generative AI and ITS design principles by introducing a new type
of conversational tutoring system that employs large language models (LLMs) for
AI-assisted content authoring and facilitating free-form conversational learning. Our
user studies illustrate how LLMs can generate content tailored to individual learners
on-demand, enabling ITSs to operate outside the boundaries of instructional materi-
als predefined by human instructors.
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Chapter 1
Introduction

Millions of learners worldwide rely on intelligent tutoring systems (ITSs) to access educational
materials and to receive personalized instruction. Even though ITS offerings come at a much
lower cost, they can in certain cases be as effective as a personal human tutor [112, 231]. ITSs can
reduce academic achievement gaps and can serve as support for disadvantaged students promot-
ing equitable learning experiences [87, 195]. Digital innovations are a root of constant change in
our personal and professional lives and the line between acquiring knowledge during formal edu-
cation and applying acquired knowledge at the workplace is fading. With this, life-long learning
becomes increasingly important [66]. We believe that ITSs driven by modern machine learning
algorithms grounded in evidence-based instructional design principles [106] will become a key
technology helping us acquire new skills throughout our lives.

One essential component of ITSs are student performance models (SPMs) [176]. An SPM
assesses a learner’s evolving proficiency levels across a range of skills over time using sequential
log data that captures the learner’s interactions with the tutoring system. This allows the ITS
to tailor the curriculum to the individual learner’s needs and enables targeted feedback and sup-
port [54]. From a machine learning perspective the SPM faces a supervised sequence-learning
problem. The SPM needs to estimate the learner’s changing proficiency in solving different ques-
tions based on sequential log data that captures the learner’s prior interactions with the system.
Internally, the ITS represents this estimate of the learner’s latent knowledge state typically as
a list of probabilities. Each probability value represents the learner’s likelihood of correct re-
sponse for a particular question that covers one or more key concepts (also known as knowledge
components (KCs)) in the curriculum if that question were asked next.

Provided an accurate SPM that assesses the learner’s changing ability level over time, the
prototypical ITS workflow consists of an inner and an outer loop [107, 230] (outlined in Fig-
ure 1.1). At each outer loop step the ITS strives to select the optimal next learning activity (i.e.,
problem solving, lecture video, . . . ) for the individual learner. Different ITSs pursue different
learning activity sequencing strategies. For example, tutoring systems that follow the mastery
learning paradigm require the learner to become proficient in one topic before moving on to
the next [193] and systems that follow the Goldilocks principle dynamically adapt the problem
difficulty to match the learner’s evolving ability level [106]. The spacing effect, which states
that multiple shorter learning episodes distributed in time are more beneficial for long-term re-

1



no Session
done?

Student 
enters session

Select next 
learning activity

no

Student 
performs action

Evaluate action
Activity
done?

yes

yes

Inner Loop

Outer Loop

Student 
requests help
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Figure 1.1: Prototypical ITS workflow. The outer loop selects the next learning activity for the
learner. The inner loop monitors and guides the learner through the selected activity. Throughout
the process the ITS collects data for the learner which allows the system to adapt the workflow
at each decision point.

tention than a single bulk study session, is another inspiration for outer loop sequencing strate-
gies [37, 170]. While the outer loop focuses on selecting the next learning activity for the user
(e.g., a suitable practice problem), the ITS’s inner loop monitors and guides the learner as they
go through the selected activity (e.g., explain why an answer is incorrect). Problem solving ac-
tivities often involve multiple steps and the ITS can provide feedback in response to the learner’s
actions and help them progress to the next solution step. Furthermore, ITSs can offer additional
assistance in the form of hints, targeted explanations and references to earlier lesson materials.

From a machine learning perspective, the ITS’s inner and outer loop sequencing policies
face a reinforcement learning (RL) problem [59] in an environment which can be described
by a partially observable Markov decision process (POMDP) [12]. The POMDP environment
state is defined by the learner’s latent knowledge state and their position in the curriculum. The
action set is defined by the set of learning activities and inner loop interventions (e.g. hints and
explanations) the ITS draws from. The ITS observes the learner’s behavior as they go through
the selected learning activities and can use this information to make inferences on the learner’s
latent knowledge state. The ITS can learn a model of the environment dynamics by observing
how different learning activities and interventions affect the learner’s future behavior. Finally,
the POMDP’s reward function encourages actions that improve the learner’s knowledge state
and facilitate learning. How to measure learner knowledge and learning are active research
questions and are core interests of the field of psychometrics [199]. Current approaches include
the probabilistic inference of KC mastery using Bayesian Knowledge Tracing (BKT) [50], the
computation of learning gains measures using pre-test/post-test schemes [80] as well as learner
ability estimates derived from item response theory (IRT) [229] and other machine learning based
approaches [207, 227, 251]. Furthermore, machine learning can help us understand how the
instructional decisions ITSs’ make within the learning process affect learning outcomes to gain
insights into the effects of teaching policies vary across individual users [121, 157].

2



1.1 Thesis Statement and Outline

In recent years, the usage of and interest in online tutoring systems has been continuously ris-
ing [67, 74], partially by their potential to mitigate learning loss caused by the COVID-19 pan-
demic [223] and partially by enhanced capabilities enabled by advances in foundation mod-
els [96]. User bases of individual tutoring systems are becoming larger, and their course offer-
ings are becoming more diverse. Parallel to these developments, ITSs are capturing increasingly
detailed information about each learner’s interactions, such as the exact reading materials and
videos they use, the time they spend on individual activities, and the assistance they receive on
specific practice problems [204]. The large-scale data collected by modern ITSs makes them a
fertile environment for research on how users learn within digital environments. This dissertation
pursues a data-driven approach, using modern machine learning to leverage rich learner log data
with the aim enhance future ITSs. The work is guided by the following thesis statement:

The data that is now available in today’s learning systems can be used to give those
systems better methods for learner assessment and for choosing the right teaching
action for the individual learner.

This thesis approaches this statement through a series of case studies developing machine
learning methodologies tailored to the unique demands of educational environments. These case
studies leverage large-scale log data from multiple different tutoring systems, each pursuing its
own unique instructional design choices (e.g., workflow, problem design, types of assistance) for
facilitating learning within specific contexts (e.g., teaching 6th graders biology). Among others,
these efforts led to improvements in problem-solving support within an online tutoring platform
used by millions of students worldwide as well as design, implementation and evaluation of a new
type of generative AI-based conversational tutoring system capable of inducing ITS workflows
automatically from existing learning materials. Explorations and related contributions can be
categorized into three main research directions. Here we provide a brief summary of each.

Part I: Directions in Student Performance Modeling
ITSs analyze interaction log data to assess learners’ evolving proficiency levels across multiple
skills over time. These assessments serve as a foundation for adaptive learning activity sequenc-
ing and for providing learners with feedback about their personal knowledge state. Relatedly,
the first part of this thesis centers on advances that enhance the accuracy and flexibility of as-
sessment algorithms. In Chapter 2, we study which features of a learner’s interactions with the
ITS are most useful for proficiency assessments. We find that by leveraging data types beyond
conventional question-response logs, including response times, hint usage, and semantic rela-
tionships between learning materials, the accuracy of performance predictions can be increased,
promoting a more detailed modeling of the human learning process. In Chapter 3, we address the
cold-start problem that occurs when assessing learner proficiency in new courses for which no or
only limited usage data is available. We introduce transfer learning methodologies that enables
accurate performance predictions for new courses by leveraging log data from existing courses.
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Part II: Data-Driven Assistance Policy Improvements
The process of building ITSs requires domain experts to make numerous design decisions. These
decisions range in granularity from specifying general instructional design principles, to curat-
ing lesson materials, to writing practice questions and hints. While designers rely on domain
expertise and intuition to make effective decisions, predicting what is best for learners remains
challenging. Relatedly, the second part of this thesis explores how reinforcement learning can en-
hance problem-solving support inside a large-scale online tutoring system by equipping the ITS
with the ability to improve learning outcomes by making data-driven design decisions. Chap-
ter 4 employs a multi-armed bandit framework to learn which of several hints to provide to
users when they answer a practice question incorrectly. Combining offline evaluation algorithms
with data from one million learners, we assesses effects on various learning outcome measures
and demonstrate significant benefits from optimized assistance policies in live use. Chapter 5
employs a contextual bandit framework and moves the focus from optimizing support for the
average learner to providing personalized assistance selection tailored to the needs of individ-
ual learners. Relatedly, we employ statistical and causal machine learning methodologies to
understand how the effects of individual hints on learning outcomes vary across ITS users.

Part III: From Generative AI to Intelligent Tutoring
Generative AI provides an enabling technology that addresses several long-standing challenges
of ITSs. First, the complexity and cost associated with content authoring often necessitated ITSs
to focus on core subject areas and demographic groups. By supporting authoring processes, gen-
erative AI can increase the range of topics covered and diversity of learners adequately served.
Second, prior NLP algorithms often limited ITSs’ ability to fully comprehend user inputs and to
respond to their needs, for example by answering personal questions. The final part of this thesis,
Chapter 6, bridges between generative AI and ITSs and introduces a new type of conversational
tutoring system (CTS). This system is grounded in design principles of earlier CTSs and em-
ploys LLMs for AI-assisted content authoring and facilitating coherent free-form conversational
tutoring. Importantly, our user studies demonstrate how foundation models can generate content
tailored to each individual learner on-demand, enabling ITSs to operate outside the boundaries of
content elements predefined by human instructors. System architecture and user studies provide
various insights for design and evaluation of future tutoring systems.
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1.2 Summary of Contributions

The contributions of this work are outlined as follows:

• Chapter 2: We assess which features of a learner’s previous and current interactions with
the ITS are most beneficial for performance modeling, leveraging data from 750,000 stu-
dents taking diverse courses across four ITSs. Our findings provide guidance on which
aspects of student-ITS interactions should be logged and which additional types of infor-
mation (e.g., curriculum prerequisite structure) can enhance prediction accuracy.

• Chapter 2: We present methodological advancements that enhance performance modeling
through: (i) new features computed from conventional question-response logs; (ii) features
derived from alternative types of student log data (e.g., response times); and (iii) aggre-
gating predictions from multiple SPMs specialized for different aspects of the curriculum
(e.g., earlier/later interaction history). Across four datasets, the combined innovations
yield an average AUC score of 0.808, compared to the previous best logistic regression
score of 0.767, and outperform multiple state-of-the-art deep learning approaches.

• Chapter 3: We introduce course-agnostic performance modeling techniques to support
new courses where no log data is available for SPM training. Trained exclusively on data
from existing courses, these agnostic models achieve predictive accuracy comparable to
conventional BKT [50] and PFA [174] models trained on large data from the new course.

• Chapter 3: We introduce a transfer learning methodology that improves the data efficiency
of SPMs by fine-tuning pre-trained course-agnostic SPMs to new courses by learning
question- and KC-specific parameters. Mitigating the cold-start problem, this technique
improves prediction accuracy upon alternative SPM approaches in settings where small-
scale new course data is available (< 100 learners).

• Chapter 4: We present a fielded online tutoring system that learns which assistance actions
(e.g., one of multiple hints) to provide to students after they answer a practice questions
incorrectly. Using a randomized assignment mechanism we recorded 23, 800, 000 logs
from 1, 000, 000 students interacting with 43, 000 diverse assistance actions (e.g., hints
and explanatory paragraphs) designed by human domain experts in six science courses.

• Chapter 4: We evaluate the effects of individual assistance actions on a variety learning out-
come measures (e.g., reattempt correctness, session success), study relationships between
different measures and assess trade-offs that can occur when training assistance policies
to optimize different learning outcomes. We identify questions where assistance content
functions effectively and questions that present targets for future content refinements.

• Chapter 4: We develop an offline reinforcement learning methodology to train assistance
policies that optimize learners’ success at their second attempt to the current question,
as well as their overall practice session performance. An evaluation of trained policies
in live use in over 166,000 practice sessions verified significant improvement in learning
outcomes. The system now supports thousands of students studying science concepts daily.
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• Chapter 5: We study how the benefits of assistance actions vary across individual learners
via statistical and causal machine learning methodologies. Our findings suggest that while
some assistance actions exhibit treatment effect heterogeneity, the magnitude of these ef-
fects is often not sufficient for contextual policies to yield substantial improvements over
actions optimized for the average learner.

• Chapter 6: We introduce Ruffle&Riley, a conversational tutoring system (CTS) that lever-
ages LLMs for AI-assisted content authoring and facilitating free-form conversations fol-
lowing the ITS-typical inner and outer loop structure in a learning-by-teaching format. We
bridge between generative AI and prior research on CTSs and content authoring tools.

• Chapter 6: We evaluate Ruffle&Riley in two online user studies (N = 200) evaluating
effects on learning outcomes and user experience, comparing the system two simpler QA
chatbot and one reading activity baseline. We study system usage patterns and providing
various insights for the design of future learning technologies.
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Part I

Directions in Student Performance
Modeling
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Chapter 2
Performance Modeling Beyond
Response-Correctness

This Chapter is based on work published as:
Schmucker, Robin, Wang, Jingbo, Hu, Shijia, and Mitchell, Tom (2022). Assessing the Perfor-
mance of Online Students - New Data, New Approaches, Improved Accuracy. In Journal of
Educational Data Mining (JEDM), 14(1), 1–45

In this chapter, we focus on the problem of assessing the changing performance levels of
individual students as they go through courses inside online tutoring systems. More specifically,
we present a study of how to utilize diverse types and large amounts of sequence-log data from
earlier students to train accurate machine learning models that predict performance levels of fu-
ture students. We present several methodological advancements that enhance the state of the art
in student performance modeling: First, we achieve improved accuracy by introducing new fea-
tures that can be easily computed from conventional question-response logs (e.g., features such
as the pattern in the student’s most recent answers). Second, we take advantage of features of
the student history that go beyond conventional question-response pairs (e.g., features such as
which video the student watched, or skipped) as well as background information about prerequi-
site structure in the curriculum. Third, we train multiple specialized student performance models
for different aspects of the curriculum (e.g., specializing in early versus later segments of the stu-
dent history), then combine these specialized models to create a group prediction of the student
performance. Taken together, these innovations yield an average AUC score across four recent
large-scale student datasets of 0.808 compared to the previous best logistic regression approach
score of 0.767, and also outperform state-of-the-art deep learning approaches. Importantly, we
observe consistent improvements from each of our three methodological innovations, in each
dataset, suggesting that our methods are of general utility across diverse tutoring systems.

2.1 Introduction

Intelligent online tutoring systems (ITSs) enable access to quality teaching materials and to cus-
tomized instruction to millions of students worldwide. These systems depend critically on their
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ability to track the evolving ability level of the student, in order to deliver the most effective
instructional material at each point in time. Because the problem of assessing the student’s
evolving ability to solve different questions (also referred to as student performance modeling,
or knowledge tracing (KT)) is so central to successfully customizing instruction to the individual
student, it has received significant attention in recent years.

The state of the art that has emerged for this student performance modeling problem involves
applying machine learning algorithms to historical student log data. The result produced by
the machine learning algorithm is a model, or computer program, that outputs the estimated
likelihood of correct response of any future student for any particular question at any point in
the lesson, given the sequence of steps they have taken up to this point in the lesson (e.g., [50,
72, 164, 174, 179, 213]). These systems typically represent the student knowledge state as a list
of probabilities that the student will correctly answer a particular list of questions that cover the
key concepts (also known as "knowledge components" (KC’s)) in the curriculum. Most current
approaches estimate the student’s state by considering only the log of questions asked and the
student’s answers, though recent datasets provide considerably more information such as the
length of time taken by the student to provide answers, specific videos the student watched and
whether they watched the entire video, and what hints they were given as they worked through
specific practice problems.

In this chapter we seek to answer the question of which machine learning approach produces
the most accurate estimates of students’ ability to solve different questions. To answer this re-
search question, we perform an empirical study using data from over 750,000 students taking a
variety of courses, to study several aspects including (1) which types of machine learning algo-
rithms work best? (2) which features of a student’s previous and current interactions with the ITS
are most useful for predicting their current ability to solve a certain question? (3) how valuable
is background information about curriculum prerequisites for improving accuracy? and (4) can
accuracy be improved by training specialized models for different portions of the curriculum?
We measure the quality of alternative approaches by how accurately they predict which future
questions the student answers correctly.

More specifically, we present here the first comparative analysis of recent state-of-the-art al-
gorithms for student performance modeling across four very large student log datasets that have
recently become available, which are each approximately 10 times larger than earlier publicly
available datasets, which cover a variety of courses in elementary mathematics, as well as teach-
ing English as a second language, and which range across different teaching objectives such
as initial assessment of student knowledge state, test preparation, and extra-curricular tutoring
complementing K-12 schooling. We show that accuracy of student performance modeling can be
improved beyond the current state of the art through a combination of techniques including in-
corporating new features from student logs (e.g., time spent on previously answered questions),
incorporating background information about prerequisite/post-requisite topics in the curriculum,
and training multiple specialized models for different parts of the student experience (e.g., train-
ing distinct models to assess new students during the first 10 steps of their lesson, versus students
taking the post-lesson quiz). The fact that we see consistent improvements in accuracy across all
four datasets suggests the lessons gained from our experiments are fairly general, and not tied to
a specific type of course or specific tutoring system.

To summarize, the key contributions of this chapter include:
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• Cross-ITS study on modern datasets. We present the first comparative analysis of state-
of-the-art approaches to student performance modeling across four recently published,
large and diverse student log datasets taken from four distinct intelligent tutoring systems
(ITS’s), resulting in the largest empirical study to date of student performance modeling.
These four systems teach various topics in elementary mathematics or English as a sec-
ond language, and the combined data covers approximately 200,000,000 observed actions
taken by approximately 750,000 students. Three of these datasets have been made publicly
available over the past few years.

• Improved student performance modeling by incorporating prerequisite and hierar-
chical structure across knowledge components. All four of the datasets we consider
provide a vocabulary of knowledge components (KCs) taught by the system. Two datasets
provide meta-information about which KCs are prerequisites for which others (e.g., Add
and subtract negative numbers is a prerequisite for Multiply and divide negative num-
bers), and one provides a hierarchical structure (e.g., the KC Add and subtract vectors
falls hierarchically under Basic vectors). We found that incorporating the prerequisite and
post-requisite information into the model resulted in substantial improvements in accuracy
predicting which future questions the student would answer correctly (e.g., by including
features such as the counts of correctly answered questions related to prerequisite and post-
requisite topics). Features derived from the hierarchical structure led to improvements as
well, but to a lesser degree than the ones extracted from the prerequisite structures.

• Improved student performance modeling by incorporating log data features beyond
which questions were answered correctly. Although earlier work has focused on student
performance models that consider only the sequence of questions asked and which were
answered correctly, modern log data includes much more information. We found that in-
corporating this information yields accuracy improvements over the current state of the art.
For example, we found that features such as the length of time the student took to answer
previous questions, the number of videos watched on the KC, and whether the student is
currently answering a question in a pre-test, post-test, or a practice session were all useful
features for predicting whether a student would correctly answer the next question.

• Improved student performance modeling by training multiple models for specialized
contexts, then combining them. We introduce a new approach of training multiple dis-
tinct student assessment models for distinct learning contexts. For example, training a
distinct model for the "cold start" problem of assessing students who have just begun the
course and have little log data at this point, yields significant improvements in the accu-
racy of student performance predictions. Furthermore, combining predictions of multiple
specialized models (e.g., one trained for the current study module type, and one trained for
students that have answered at least n questions in the course) yields further improvements.

• The above improvements can be combined. The above results show improvements
in student performance modeling due to multiple innovations. By combining these we
achieve overall improvements over state-of-the-art logistic regression methods that reduce
AUC error by 17.5% on average over these four datasets, as summarized in Table 2.1.
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Table 2.1: Improvements to state of the art (SOTA) in student performance modeling, due to
innovations introduced in this chapter. The previous logistic regression state-of-the-art approach
is Best-LR. Performance across each of the four diverse datasets improves with each of our
three suggested extensions to the Best-LR algorithm. Best-LR+ extends Best-LR by adding new
features calculated from the question-response (Q-R) data available in most student logs. Aug-
mentedLR further adds a variety of novel features that go beyond question-response data (e.g.,
video watching and skipping behavior). Combined-AugmentedLR further extends the approach
by training multiple logistic regression models (Multimodel) on different subsets of the training
data (e.g., based on how far into the course the student is currently). Together, these extensions to
the previous state of the art produce substantial improvements across each of these four datasets.

ElemMath2021 EdNet KT3 Eedi Junyi15 Average
ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC

Prev. SOTA: Best-LR 0.7569 0.7844 0.7069 0.7294 0.7343 0.7901 0.8425 0.7620 0.7602 0.7665
Add Q-R features: Best-LR+ 0.7623 0.7935 0.7169 0.7465 0.7455 0.8040 0.8505 0.7912 0.7688 0.7838
Add novel features: AugmLR 0.7659 0.7987 0.7189 0.7500 0.7496 0.8096 0.8635 0.8603 0.7745 0.8047
Multimodel: Comb-AugmLR 0.7676 0.8016 0.7211 0.7548 0.7504 0.8111 0.8646 0.8634 0.7759 0.8077
percent error reduction 4.40% 7.98% 4.84% 9.39% 6.06% 10.00% 14.03% 42.61% 7.33% 17.50%

2.2 Related Work

Student performance modeling techniques estimate a student’s likelihood to solve different prob-
lems based on their interactions with the tutoring system. These performance models and the
estimates of student proficiency they produce are a key component which allow current ITSs to
adapt to each student’s personal ability level at each point in the curriculum. In the literature,
performance modeling is also sometimes referred to as knowledge tracing, proficiency modeling,
or student assessment. There are three main categories of performance modeling techniques: (i)
Markov process-based probabilistic modeling, (ii) logistic regression, and (iii) deep learning-
based approaches.

Markov process-based techniques, such as Bayesian Knowledge Tracing (BKT) [50] and its
various extensions [17, 97, 114, 168, 169, 185, 200, 253] have a long history in the educational
data mining (EDM) community. Most approaches in this family determine a student proficiency
by performing probabilistic inference using a two state Hidden Markov Model containing one
state representing that the student has mastered a particular concept, and one state representing
non-mastery. A recent study comparing various performance modeling algorithms across nine
real-world datasets [72] found that when applied to large-scale datasets, BKT and its extension
BKT+ [97] are slow to train and their predictive performance is not competitive with more re-
cent logistic regression- and deep learning-based approaches. The Python package pyBKT was
released and promises faster training times for Bayesian Knowledge Tracing models [15].

Logistic regression models take as input a vector of manually specified features calculated
from a student’s interaction history, then output a predicted probability that the student has
mastered a particular concept or KC (often implemented as the probability that they will cor-
rectly answer a given question). Common approaches include IRT [229], AFM [36], PFA [174],
DASH [75, 126, 149] and its extension DAS3H [44] as well as Best-LR [72]. While there exists
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a variety of logistic regression models, they mainly rely on two types of features: (i) One-hot
encodings1 of question and KC identifiers; and (ii) count features capturing the student’s num-
ber of prior attempts to answer questions, and the number of correct and incorrect responses.
R-PFA [68] augments PFA with features that represent the recency-weighted count of prior in-
correct responses and the recency-weighted proportion of correct responses. PPE [235] considers
the timing of individual practice sessions to describe spacing effects impacting memorization in
the context of learning word pairs via power functions. DAS3H incorporates a temporal aspect
into its predictions by computing count features for different time windows. LKT [173] has been
introduced as a flexible framework for logistic regression-based student performance modeling
which offers a variety of features based on question-answering behavior. Among others it of-
fers decay functions to capture recency effects as well as features based on the ratio of correct
and incorrect responses. Section 2.4 discusses multiple regression models in detail and proposes
alternative features which are able to incorporate rich information from various types of log data.

Deep learning-based models, like logistic regression models, take as input the student log
data, and output a predicted probability that the student will answer a specific question cor-
rectly. However, unlike logistic regression, deep learning models have the ability to automati-
cally define useful features computable from the sequence of log data, without relying on human
feature engineering. A wide range of neural architectures have been proposed for student per-
formance modeling. DKT [179] is an early work that uses Long Short Term Memory (LSTM)
networks [84] processing student interactions step-by-step. DKVNM [256] is a memory aug-
mented architecture that can capture multi-KC dependencies. CKT [209] uses a convolutional
neural network [118] to model individualized learning rates. Inspired by recent advances in
the natural language processing (NLP) community, multiple transformer-based approaches have
been proposed (SAKT, [164]; AKT, [73]; SAINT, [45]; SAINT+, [213]). Graph-based modeling
approaches infer the likelihood with which a certain problem is answered correctly based on the
structure induced by question-KC relations (GKT, [152]; HGKT, [225]; GIKT, [250]). Unlike
BKT techniques and certain logistic regression-based approaches such as IRT, deep learning-
based models often do not provide interpretable parameters or predictions which allow users to
quantify a learner’s knowledge related to a particular KC. To mitigate this shortcoming recent
works have proposed more interpretable network architectures [211, 212, 227, 251] and tech-
niques to derive knowledge estimates directly from performance predictions [207]. For an in
detail survey on recent student performance modeling approaches we refer to Shen et al. [210].

Most student performance modeling approaches focus exclusively on question-answering
behavior. A student’s sequence of past interactions with the tutoring system is modelled as
x1:t = (x1, . . . , xt). The tth response is represented by a tuple xt = (qt, at), where qt is the
question (item) identifier and at ∈ {0, 1} is binary response correctness. While this formalism
has yielded many effective performance modeling techniques, it is limiting in that it assumes
the student log data contains only a single type of user interaction: answering questions posed
by the ITS. Many aspects of student behavior such as interactions with learning materials (e.g.,
videos and instructional text), hint usage, and information about the current learning context can
provide a useful signal, but fall outside the scope of this formalism.

1A one-hot encoding of the question ID, for example, is a vector whose length is equal to the number of questions
in the content pool (n). The vector contains n−1 zeros, and a single 1 to indicate which question ID is being encoded.

13



More recently, the EDM community has started exploring alternative types of log data, in an
attempt to improve the accuracy of student performance modeling. Zhang et al. [257] augment
DKT with information on response time, attempt number and type of first interaction with the
ITS. Later, Yang and Cheung [249] enhanced DKT predictions by incorporating more than 10
additional features related to learning context, interaction times and hint usage provided by the
ASSISTment 2009 [64] and Junyi15 [38] datasets. While that work employs most infor-
mation contained in the Junyi15 dataset, it fails to utilize the prerequisite structure among
topics in the curriculum, and does not evaluate the potential benefit of those features for logistic
regression models. EKT [127] uses the question text to learn exercise embeddings which are then
used for downstream performance predictions. Eglington and Pavlik [61] use student response
times and correctness rates to cluster the user population into multiple groups each representing
a different student phenotype. They then incorporate a set of cluster specific model parameters
into a modified PFA model to capture variations between the individual groups leading to im-
proved performance predictions. MVKM [261] uses a multi-view tensor factorization to model
knowledge acquisition from different types of learning materials (e.g., quizzes, videos, . . . ). A
recent line of research identified a Doer effect which is associated with the finding that interactive
problem solving is more indicative for learning outcomes than more passive study activities such
as reading and watching lecture videos [102, 108, 109, 228]. SAINT+ [213] and MUSE [254]
augment transformer models with interaction time features to capture short-term memorization
and forgetting. Closest to the spirit of this manuscript is an early work by Feng et al. [64]. That
work integrates features related to accuracy, response time, attempt-usage and help-seeking be-
havior into a logistic regression model to enhance exam score predictions. However, their exam
score prediction problem is inherently different from our problem of continuous performance
modeling because it focuses only on the final learning outcome and does not capture user profi-
ciency on the question and KC level. Unlike our work, Feng et al. [64] do not evaluate features
related to lecture video and reading material consumption, prerequisite structure and learning
context. Their study is also limited to two small-scale datasets (< 1000 students) collected by
the ASSISTment system.

Here we offers the first systematic study of a wide variety of features extracted from alter-
native types of log data. It analyzes four recent large-scale datasets which capture the learning
process at different levels of granularity and focus on various aspects of student behavior. Our
study identifies a set of features which can improve the accuracy of student performance model-
ing techniques and we give recommendations regarding which types of user interactions should
be captured in log data of future tutoring systems. Further, our feature evaluation led us to novel
logistic regression models achieving a new state-of-the-art performance on all four datasets.

2.3 Datasets

In recent years multiple education companies released large-scale ITS datasets to promote re-
search on novel educational data mining techniques. Compared to earlier sizable datasets such
as Bridge to Algebra 2006 [220] and ASSISTment 2012 [64], these new datasets
capture an order of magnitude more student responses making them attractive for data intensive
modeling approaches. Table 2.2 provides an overview of the four recent large-scale student log

14



Table 2.2: Dataset summary. Here KC refers to a knowledge component in the curriculum of the
respective system, average correctness refers to the fraction of questions that were correctly an-
swered across all students, question ID refers to whether each distinct question (item) had an ID,
and KC ID indicates that each item is linked to at least one KC, platform indicates if the system
logs how students access materials (e.g., mobile app or web browser), social support indicates if
there is information about a student’s socioeconomic status, question bundle indicates if the sys-
tem groups multiple items into sets which are asked together, elapsed/lag time indicates whether
the data includes detailed timing information allowing the calculation of how long the student
took to respond to each question, and the time between presentations of successive questions.
Question difficulty indicates whether the dataset includes ITS-defined difficulties for each ques-
tion. Videos, reading, and hints indicate whether the dataset provides information about which
videos and explanations the student watched or read, and which hints were delivered to them as
they worked on practice questions.

ElemMath2021 EdNet KT3 Eedi Junyi15
# of students 125,246 297,915 118,971 247,606
# of unique questions 59,892 13,169 27,613 835
# of KCs 4,191 293 388 41
# of logged actions 62,570,009 89,270,654 19,834,813 25,925,992
# of student responses 23,447,961 17,954,718 19,834,813 25,925,992
average correctness 68.52% 66.19% 64.30% 82.99%
subject Mathematics English Mathematics Mathematics
timestamp ✓ ✓ ✓ ✓

question ID ✓ ✓ ✓ ✓

KC ID ✓ ✓ ✓ ✓

age/gender ✓

social support ✓

platform ✓ ✓

teacher/school ✓ ✓

study module ✓ ✓ ✓ ✓

pre-requisite graph ✓ ✓

KC hierarchy ✓

question bundle ✓ ✓

elapsed/lag time ✓ ✓ ✓

question difficulty ✓

videos ✓ ✓

reading ✓ ✓

hints ✓

datasets, from different ITS systems, we use in this chapter. Taken together, these datasets cap-
ture over 197 million lines of log data from over 789,000 students, including correct/incorrect
responses to over 87 million questions. While each ITS collects the conventional timestamp for
each question (item) presented to the student, the correctness of their answer, and knowledge
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component (KC) attributes associated with the question, they also contain additional interaction
data. Going beyond pure question-solving activities multiple datasets provide information about
how and when students utilize reading materials, lecture videos and hints. In addition there are
various types of meta-information about the individual students (e.g., age, gender, . . . ) as well
as the current learning context (e.g., school, topic number, . . . ). All four tutoring systems exhibit
a modular structure in which learning activities are assigned to distinct categories (e.g., pre-test,
effective learning, review, . . . ). Further, three of the datasets provide meta-information indicating
which questions, videos, etc. are related to which KCs.

Figure 2.2 visualizes the distribution of the number of responses per student for each dataset
(i.e., the number of answered questions per user). All datasets follow a power-law distribution.
The EdNet KT3 and Junyi15 datasets contain many users with less than 50 completed ques-
tions and only a small proportion of users answer more than 100. The Eedi dataset filters out
students and questions with less than 50 responses. The ElemMath2021 dataset exhibits the
largest median response number, and many users answer several hundreds of questions.

Another interesting ITS property is the degree to which all students progress through the
study material in a fixed sequence, versus how different and adaptive is the presented sequence
across different students. We can get insight into this for each of our datasets by asking how
predictable the next question item (or the next KC) is from the previous one, across all students
in the dataset. We determine predictability by evaluating the accuracy of a simple model which
takes as input the ID of the current question or KC and outputs the ID of the next question or KC
which is most likely based on the empirical successor distribution as captured by the log data for
the input ID. Figure 2.1 shows how accurately the current question/KC predicts the following
question/KC. The Junyi15 data exhibits very low variability in its KC sequencing and also
tends to present questions in the same order across all students. Eedi logs show more variability
in the KC sequence, but the question order is still rather predictable. ElemMath2021 exhibits
moderate KC sequence variations and a highly variable question order. EdNet KT3 exhibits
the most variation in question and KC order.

Some of the differences between the individual datasets can be traced back to the distinct
structures and objectives of the underlying tutoring systems. They teach different subjects, assist
students in different ways (K-12 tutoring, standardized test preparation, knowledge diagnosis),
and provide students with varying levels of autonomy. We next discuss the individual datasets
and corresponding ITS in more detail.

EdNet Dataset

EdNet was introduced as a large-scale benchmarking dataset for student performance model-
ing algorithms [47]. The data was collected over two years by Riiid’s Santa tutoring system
which prepares students in South Korea for the Test of English for International Communica-
tion (TOEIC©) Listening & Reading. Each test is split into seven distinct parts, four assessing
listening and three assessing reading proficiency. Following this structure Santa categorizes its
questions into seven parts (additional fine-grained KCs are provided). Santa is a multi-platform
system available on Android, iOS and the web and users have autonomy regarding which test
parts they want to focus on. There exist four versions of this dataset (KT1, . . . , KT4) capturing
student behavior at increasing levels of detail ranging from pure question answering activity to
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Figure 2.2: Distribution of the number of responses per stu-
dent. All four datasets follow a power-law distribution. The
EdNet KT3 and Junyi15 dataset both contain many users
with few responses. The Eedi and ElemMath2021 users
have more responses on average.

comprehensive UI interactions. In this chapter we analyze the EdNet KT3 dataset which con-
tains logs of 297,915 students and provides access to reading and video consumption behavior.
We omit the use of the KT4 dataset which augments KT3 with in-app purchasing behavior.

Junyi15 Dataset

The Junyi Academy Foundation is a philanthropic organization located in Taiwan. It runs the
Junyi Academy online learning platform which offers various educational resources designed
for K-12 students. In 2015 the foundation released log data from their mathematics curriculum
capturing activities of 247,606 students collected over 2 years [38]. Users of Junyi Academy can
choose from a large variety of topics, are able to submit multiple answers to a single question,
and can request hints. The system registers an answer as correct if no hints are used and the
correct answer is submitted on the first attempt. The dataset provides a prerequisite graph which
captures semantic dependencies between the individual questions. In addition to a single KC
each question is annotated with an area identifier (e.g., algebra, geometry, . . . ). In 2020 Junyi
Academy shared a newer mathematics dataset on Kaggle [180]. Unfortunately, in that dataset
each timestamp is rounded to the closest quarter hour which prevents exact reconstruction of
the response sequence making it difficult to evaluate student performance modeling algorithms.
Because of this we perform our analysis using the Junyi15 dataset.

Eedi Dataset

Eedi is an UK based online education company which offers a knowledge assessment and mis-
conception diagnosis service. Unlike other ITS which are designed to teach new skills, the Eedi
system confronts each student with a series of diagnostic questions – i.e., multiple choice ques-
tions in which each incorrect answer is indicative of a common misconception [236]. This pro-
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cess results in a report that helps school teachers to adapt to student specific needs. In 2020 Eedi
released a dataset for the NeurIPS Education Challenge [237]. It contains mathematics question
logs of 118,971 students (primary to high school) and was collected over a 2-year period. Stu-
dent age and gender as well as information on whether a student qualifies for England’s pupil
premium grant (a social support program for disadvantaged students) is provided. In contrast to
the Junyi15 and ElemMath2021 datasets which have a prerequisite graph, the Eedi dataset
organizes its KCs via a 4-level topic ontology tree. For example, the KC Add and Subtract Vec-
tors falls under the umbrella of Basic Vectors which itself is assigned to Geometry and Measure
which is connected to the subject Mathematics. While analyzing this dataset we noticed that the
timestamp information is rounded to the closest minute which prevents exact reconstruction of
the interaction sequences. Upon request, the authors provided us with an updated version of the
dataset that allows exact recovery of the interaction sequences.

Squirrel Ai ElemMath2021 Dataset

Squirrel Ai Learning (SQ-Ai) is a K-12 education company located in China which offers indi-
vidualized after-school tutoring services. SQ-Ai provides their ITS as mobile and Web applica-
tions, but also deploys it in over 3,000 physical tutoring centers. The centers provide a unique
setting in which students can study under the supervision of human teachers that offer additional
advice and support which augments the ITS’s capabilities. Students also have the social expe-
rience of working alongside their peers. The Squirrel Ai ElemMath2021 dataset pro-
vides three months of behavioral data of 125,246 K-12 students completing various mathematics
courses and captures observational data at fine granularity. ElemMath2021 gives insight into
reading material and lecture video consumption. It also provides meta-information on which
learning center and teacher a student is associated with. Each question has a manually assigned
difficulty rating ranging from 10 to 90. A prerequisite graph captures dependencies between the
individual KCs. Most student learning sessions have a duration of about one hour and the ITS
selects a session topic. Each learning process is assigned one of six categories and learning ses-
sions usually follow a pre-test, learning, post-test structure. This makes this dataset particularly
interesting because it allows to quantify the learning success of each individual session as the
difference between pre-test and post-test performance.

We conclude this section with a few summarizing remarks. Recent years have yielded large-
scale educational datasets which have the potential to fuel future EDM research. The individual
datasets exhibit large heterogeneity with regards to the structure and objectives of the underlying
tutoring systems as well as captured aspects of the learning process. Motivated by these obser-
vations we perform the first comparative evaluation of various student performance modeling
techniques across these four large-scale datasets. Further, we use the rich log data to evaluate
potential benefits of a variety of alternative features to provide recommendations on which types
of observational data is informative for future performance modeling techniques. Our feature
evaluation leads us to multiple novel logistic regression models achieving state-of-the-art per-
formance even when compared to deep learning-based approaches. Given the size of available
training data and the structure of the learning processes we also address the question if it is
beneficial to train a set of different assessment modules specialized on different parts of the ITS.
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2.4 Methodology

We examine diverse student performance modeling algorithms using diverse sets of features,
across four recent large-scale ITS datasets. Our goals are (1) to discover the features of rich
student log data that lead to the most accurate performance models of students, (2) to discover the
degree to which the most useful features are task-independent versus dependent on the particular
tutoring system, and (3) to discover which types of machine learning algorithms produce the
most accurate student models using this log data. We start this Section with a formal definition
of the student performance modeling problem. We then discuss prior work on logistic regression-
based modeling approaches and analyze which types of features they employ. From there, we
introduce a set of alternative features leveraging alternative types of log data to offer a foundation
for novel student performance prediction algorithms. We conclude this Section with the proposal
of two additional features which capture long-term and short-term student performance and only
rely on response correctness. Appendix A provides precise definitions of all features used in our
experiments, including implementations details and ITS specific considerations.

The Student Performance Modeling Problem

Student performance modeling is a supervised sequence learning task which traces a student’s
likelihood to solve different questions over time. Reliable performance predictions are crucial
to enabling ITSs to sequence learning activities effectively and to provide targeted feedback
to users. More formally, we denote a student’s sequence of past interactions with the tutoring
system as x1:t = (x1, . . . , xt). The tth interaction with the system is represented by the tuple
xt = (It, ct), where It indicates the interaction type and ct is a dataset dependent aggregation
of information related to the interaction. In this chapter we consider interaction types connected
to question answering, video and reading material consumption as well as hint usage. Exam-
ples of attributes contained in ct are timestamp, learning material identifiers, information about
the current learning context and student specific features. Question answering is the most basic
interaction type which is monitored by all ITSs. If the tth interaction is a question response, ct
provides the question (item) identifier qt+1 and binary response correctness at ∈ {0, 1}. Given
a user’s history of past interaction with the ITS, the student performance modeling problem is
to predict p(at+1 = 1 | qt+1,x1:t) – the probability that the student’s response will be correct if
they are next asked question qt+1, given their history x1:t. In addition to interaction logs, all four
datasets provide a knowledge component model which associates each question qt with a set
KC(qt) containing one or more knowledge components (KCs). Each KC represent a concrete
skill which can be targeted by questions and other learning materials. User interactions are dis-
crete and observed at irregular time intervals. To capture short-term memorization and forgetting
it is necessary to utilize additional temporal features. We denote the dependence of variables on
the individual student with the subscript s.
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Logistic Regression for Student Performance Modeling
Logistic regression models enjoy great popularity in the EDM community. At their core each
trained regression model takes as input a real-valued feature vector (ϕ1, . . . , ϕd) that describes
the student s and their log data up to this point in the course, along with a question ID. Note
different logistic regression approaches can summarize the student and their history in terms
of different features. Each approach calculates its features using its own feature calculation
function, Φ (i.e., (ϕ1, . . . , ϕd) = Φ(qs,t+1xs,1:t). The trained logistic regression model then uses
this feature vector as input, and outputs the probability that the student will correctly answer
question qs,t+1 if they are asked it at this point in time. The full logistic regression model is
therefore of the form

p(as,t+1 = 1 | qs,t+1,xs,1:t) = σ
(
w⊤Φ(qs,t+1,xs,1:t)

)
. (2.1)

Here w ∈ Rd represents the vector of learned regression weights and σ(x) = 1/(1 + e−x) is the
sigmoid function which outputs a value between 0 and 1, which is interpreted as the probability
that student s will answer question qt+1 correctly. A suitable set of weights can be determined
by maximizing the likelihood function on the training set. The corresponding maximization
problem is usually solved using gradient-based optimization algorithms.

Over the years various logistic regression models have been proposed, each employing a
distinct feature mapping Φ to extract a suitable feature set. Here we consider Item Response
Theory (IRT) [229], in particular a one-parameter version of IRT known as Rasch model [188],
Performance Factor Analysis (PFA [174]), Recent-Performance Factors Analysis (R-PFA [68]),
Predictive Performance Equation (PPE [235]), DAS3H [44] and Best-LR [72]. We now discuss
the individual models focusing on how the available interaction data is utilized for their predic-
tions. First, IRT as a regression model well established in the standardized testing literature. IRT
employs a parameter αs which represents the ability of student s as well as a separate difficulty
parameter δq for each individual question (item) q. The IRT prediction is defined as

pIRT(as,t+1 = 1 | qs,t+1,xs,1:t) = σ
(
αs − δqs,t+1

)
. (2.2)

Unlike IRT, PFA extracts features based on a student’s history of past interactions. It computes
the number of correct (cs,k) and incorrect responses (fs,k) prior to the current attempt and intro-
duces a difficulty parameter βk for each individual KC k. The PFA prediction is defined as

pPFA(as,t+1 = 1 | qs,t+1,xs,1:t) = σ

αs +
∑

k∈KC(qs,t+1)

βk + γkcs,k + ρkfs,k

 . (2.3)

R-PFA is motivated by the idea that more recently observed student responses are more in-
dicative for future performance than older ones. R-PFA builds on PFA by introducing two fea-
tures which for each KC k look at all interactions of student s with k up to time t and computes:
(i) A recency-weighted count of previous failures Fs,k,t using exponential decay. (ii) A recency-
weighted proportion of past successes Rs,k,t using normalized exponential decay. The degree
of decay is controlled by the hyperparameters dF and dR ∈ [0, 1]. To allow the computation of
Rs,k,t when a student visits a KC for the first time, R-PFA appends their interaction history with

20



k with g = 3 incorrect “ghost attempt”. We denote the total number of responses of student s
related to KC k as as,k and use a correctness indicator as,k,i which is 1 when s’s i-th attempt on
KC k was correct and 0 otherwise. The R-PFA prediction is defined as

pR-PFA(as,t+1 = 1 | qs,t+1,xs,1:t) = σ

αs +
∑

k∈KC(qs,t+1)

βk + γkFs,k,t + ρkRs,k,t


Fs,k,t =

as,k∑
i=1

d
(as,k+1)−i
F (1− as,k,i), Rs,k,t =

as,k∑
i=(1−g)

d
as,k−i
R∑as,k

j=(1−g) d
as,k−i
R

as,k,i .

(2.4)

In the context of word pair learning, PPE was proposed to capture the spacing effect [37] – the
phenomena that spaced out practice repetitions slow down learning but increase retention rates –
by introducing a weighting scheme that considers the delay between individual practice sessions.
PPE assumes a multiplicative relationship between the number of prior attempts as,k with a time
variable Tk. The model has a learning rate parameter c and the forgetting rate is controlled by
parameters x, b and m. These four parameters need to be set by the user. We define ∆s,k,i to be
the real time passed since student s’s i-th response to KC k. The PPE prediction is defined as

pPPE(as,t+1 = 1 | qs,t+1,xs,1:t) = σ

 ∑
k∈KC(qs,t+1)

βk + γk
(
acs,kT

−dt
k

)
Tk =

(
as,k∑
i=1

∆1−x
s,k,i

)(
as,k∑
i=1

1

∆−x
s,k,j

)
, dt = b+m

(
1

as,k

as,k∑
i=1

1

ln(∆s,k,i −∆s,k,i+1 + e)

)
.

(2.5)

DAS3H is a more recent model which combines aspects of IRT and PFA and extends them with
time window-based count features. It defines a set of time windows W = {1/24, 1, 7, 30,+∞}
measured in days. For each window w ∈ W , DAS3H determines the number of prior correct
responses (cs,k,w) and overall attempts (as,k,w) of student s on KC k which fall into the window. A
scaling function ϕ(x) = log(1 + x) is applied to avoid features of large magnitude. The DAS3H
prediction is defined as

pDAS3H(as,t+1 = 1 | qs,t+1,xs,1:t) =σ

(
αs − δqs,t+1 +

∑
k∈KC(qs,t+1)

βk+

∑
k∈KC(qs,t+1)

W−1∑
w=0

θk,2w+1ϕ(cs,k,w)− θk,2w+2ϕ(as,k,w)

)
.

(2.6)

Gervet et al. [72] performed a comparative evaluation of student performance modeling algo-
rithms across nine real-world datasets. They also evaluated the effects of question, KC and total
count as well as time window based count features leading them to a new logistic regression
model referred to as Best-LR. Best-LR is similar to DAS3H, but does not use time window fea-
tures and uses cs and fs as additional features that capture the total number of prior correct and
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incorrect responses. The Best-LR prediction is defined as

pBest-LR(as,t+1 = 1 | qs,t+1,xs,1:t) =σ

(
αs − δqs,t+1 + ϕ(cs) + ϕ(fs)+

∑
k∈KC(qs,t+1)

βk + γkϕ(cs,k) + ρkϕ(fs,k)

)
.

(2.7)

Overall, we can see that these four logistic regression models are mainly based on two types
of features: (i) one-hot encodings that allow the models to infer question- and KC-specific dif-
ficulty; (ii) count-based features that summarize a student’s past interaction history with the
system computed at various level of granularity (total/KC/question-level) potentially augmented
with time windows and time-based weighting schemes to introduce a temporal dimension in the
predictions. Looking back at the dataset discussion provided in Section 2.3, we note that the cur-
rent feature sets only use a small fraction of the information collected by the tutoring systems. In
the following, we aim at increasing the amount of utilized information by exploring alternative
types of features that can be extracted from the log data and that can serve as foundation for
future student performance modeling algorithms.

Features Based on Rich Observational Data
Tutoring systems collect a wide variety of observational data during the learning process. Here
we discuss a range of alternative features leveraging alternative types of log data. The individual
features can be used to augment the logistic regression models discussed in Section 2.4, but
might also be combined with deep learning-based modeling techniques. As shown by Table 2.2,
each dataset captures different aspects of the learning process and supports a different subset of
the discussed features.

Temporal Aspects

Many performance modeling techniques treat student interactions as discrete tokens and omit
timestamp information which can be indicators of cognitive processes such as short-term mem-
orization and forgetting. DAS3H uses time window based count features to summarize the user
history. Here we discuss two additional types of temporal features: (i) one-hot encoded date-
time and (ii) the interaction time based features introduced by Shin et al. [213]. By providing
the model with information about the specific week and month of interaction we try to capture
effects of school work outside the ITS on student learning. The hour and day encodings aim
at tracing temporal effects on a smaller timescale. For example, students might produce more
incorrect responses when studying late at night. Recently, Shin et al. [213] introduced a deep
learning approach which employs elapsed time and lag time features to capture temporal aspects
of student behavior during question solving activities. Elapsed time measures the time span from
question display to response submission. The idea is that a faster response is correlated with
student proficiency. Lag time measures the time passed between the completion of the previous
exercise until the next question is received. Lag time can be indicative for short-term mem-
orization and forgetting. The lag time between questions can be affected by student behavior
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and system design choices. Some examples are displayed explanations after incorrect responses,
pop-up messages, and study breaks. For our experiments we convert elapsed time and lag time
values, x, to scaled values ϕ(x) = log(1 + x) and also use the categorical one-hot encodings
from Shin et al. [213]. There, elapsed time is capped off at 300 seconds and categorized based
on the integer second. Lag time is rounded to integer minutes and assigned to one of 150 cat-
egories (0, 1, 2, 3, 4, 5, 10, 20, 30, . . . , 1440). We evaluate two variations of the features. In the
first version we compute elapsed time and lag time values based on interactions with the current
question. In the second version we compute them based on interactions with the prior question.
Because it is unknown how long a student will take to answer a question before the question is
asked, we cannot realistically use this elapsed time feature for predicting correctness in answer-
ing a new question. Therefore, we omit the elapsed time feature for the current question in our
experiments described in Section 2.5.

Learning Context

Knowledge about the context a learning activity is placed in can be informative for performance
predictions. For example, all four considered datasets group learning activities into distinct con-
text categories we call study modules (e.g., pre-test, effective learning, review, . . . ). Here ef-
fective learning study modules try to teach novel KCs, whereas review study modules aim at
deepening proficiency related to KCs the student is already familiar with. Providing a student
performance model with information about the corresponding study module can help adapt its
predictions to these different contexts. Additional context information is provided by the exercise
structure. For example, the ElemMath2021 dataset marks each interaction with a course and
topic identifier and offers a manually curated question difficulty score. The EdNet dataset labels
questions based on which part of the TOIEC© exam they address and groups them into bundles–a
bundle is a set of questions which is asked together. Large parts of the ElemMath2021 dataset
were collected in physical learning centers where students can study under the supervision of
human teachers and each interaction contains school and teacher identifiers. This information
can be useful because students visiting the same learning center might exhibit similar strengths
and weaknesses. In Section 2.5 we evaluate the potential benefits of learning context information
for student performance modeling by encoding the categorical information into one-hot vectors
and passing it into logistic regression models. Additionally, we evaluate count features defined
for the individual study modules and EdNet parts.

Personal Context

By collecting a student’s personal attributes a tutoring system can offer a curriculum adapted to
their individual needs. For example, information about a student’s age and grade can be used
to select suitable learning materials. Further, knowledge about personal attributes can enable
an ITS to serve as a vehicle for research on educational outcomes. For example, it is a well-
studied phenomena that socioeconomic background correlates with educational attainment (see
for example [3, 233, 240]). A related research question is how ITSs can be used to narrow the
achievement gap [87]. While both ElemMath2021 and EdNet datasets indicate which modal-
ity students use to access the ITS, the Eedi dataset is the only one that provides more detailed
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personal information in form of age, gender, and socioeconomic status. Features extracted from
these sensitive attributes need to be handled with care to avoid discrimination against individual
groups of students. Outside of student performance modeling these features might be used to
detect existing biases in the system. We evaluate one-hot encodings related to age, gender, and
socioeconomic status.

KC Graph Features

In addition to a KC model three of the datasets provide a graph structure capturing semantic
dependencies between individual KCs and questions. We can leverage these structures by defin-
ing prerequisite and post-requisite count features. These features compute a student’s number
of prior attempts and correct responses on KCs which are prerequisite and post-requisite to the
KCs of the current question. The motivation for these features is that the mastery of related KCs
can carry over to the current question. For example, it is very likely that a user that is proficient
in multi-digit multiplication can solve single-digit multiplication exercises as well. The Eedi
dataset provides a 4-level KC ontology tree which associates each question with a leaf. Here we
compute a prerequisite feature by counting the number of interactions related to the direct parent
node. We also investigate the use of sparse vectors taken from the KC graph adjacency matrix as
an alternative way to incorporate the semantic information into our models.

Learning material consumption

Modern tutoring system offer a rich variety of learning materials in form of video lectures, audio
recordings and written explanations. Information on how students interact with the available re-
sources can benefit performance predictions. For example, watching a video lecture introducing
a new KC can foster a student’s understanding before they enter the next exercise session. The
ElemMath2021 and Ednet KT3 datasets record interactions with lecture video and written
explanations. Count features capture the number of videos and texts a user has interacted with
prior to the current question and can be computed on a per KC and an overall level. Video and
reading time in minutes might also provide a useful signal. Another feature which can be indica-
tive for proficiency is the number of videos a student skips. The Junyi15 datasets provides us
with information on hint usage. We experiment with features capturing the number of used hints
as well as minutes spent on reading hints aggregated on a per KC and an overall level.

Features Based on Response Correctness

Smoothed Average Correctness

The performance of logistic regression models relies on a feature set which offers a suitable
representation of the problem domain. Unlike neural network based approaches, linear and linear
logistic regression models are unable to recover higher-order dependencies between individual
features on their own. For example, given two separate features describing a student’s number of
prior correct responses, c, and overall attempts, a, the linear logistic model is unable to infer the
ratio r = c/a of average correctness which can be a valuable indicator of a student’s long-term
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Figure 2.3: A response pattern rt is a one-hot encoding vector which represents the binary se-
quence wt formed by a student’s n most recent correct and incorrect responses. Regression
models can use response patterns to infer aspects of a student’s short-term behavior.

performance. To mitigate this particular issue, we introduce an additional feature, rs capturing
average correctness of student s over time as

rs =
cs + ηr̄

as + η
(2.8)

where as is the number of questions attempted by student s, and cs is the number of questions
the student answered correctly. Here, r̄ is the average correctness rate over all other students in
the dataset, and η ∈ N is a smoothing parameter which biases the estimated average correct-
ness rate, r̄s of student s towards this all-students average r̄. The use of smoothing reduces the
feature variance during a student’s initial interactions with the ITS. Related to our approach R-
PFA [68] introduced a feature that computes a recency-weighted proportion of correct responses
for each individual KC via an exponential decay function. The LKT framework [173] provides
multiple features that can trace the ratio of correct student responses. By implementing mul-
tiple recency-based decay functions LKT extends R-PFA and introduces features that capture
the overall correctness rate of each individual student. Unlike our formulation, LKT does not
allow the use of a smoothing parameter to reduce the feature variance by biasing towards the
all-student average. We calibrated the smoothing parameter for our experiments by evaluation
η ∈ {0, 1, 5, 10, 25, 50, 100, 250} using the ElemMath2021 dataset. Smoothing yielded bene-
fits and we settled on η = 5 for which we observed the largest accuracy improvements.

Response Patterns

Student performance modeling approaches that employ recurrent or transformer based neural
networks take interaction sequences describing multiple student responses as input (e.g., the
most recent 100). Provided this time-series data, deep learning algorithms are able to discover
patterns and temporal dependencies in student behavior without requiring additional human fea-
ture engineering. Among the logistic regression models discussed in Section 2.4 only DAS3H
incorporates temporal information in form of time window based count features to summarize
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student interactions over time scales from one hour to one months. While DAS3H can cap-
ture effects of cognitive processes such as long-term memorization and forgetting, it is still at
disadvantage compared to deep learning approaches that can also infer aspects of student be-
havior occurring on smaller time-scales. Indeed, it has been shown that a student’s most recent
responses have large effects on DKT performance predictions [56, 57].

Here, inspired by the use of n-gram models in the NLP community (e.g., [135]), we propose
response patterns as a feature which allows logistic regression models to infer aspects impact-
ing short-term student performance. At time t, a response pattern rt ∈ R2n is defined as a
one-hot encoded vector that represents a student’s sequence of n ∈ N most recent responses
wt = (at−n, . . . , at−1) formed by binary correctness indicators at−n, . . . , at−1 ∈ {0, 1}. The en-
coding process is visualized by Figure 2.3. For our experiments we calibrated the pattern length
by evaluating n ∈ {1, 2, 3, . . . , 14} using the ElemMath2021 dataset. We settled on n = 10
for which we observed the largest accuracy improvements. Response patterns are designed to
allow logistic regression models to capture momentum in student performance. They allow the
model to infer how challenging the current exercise session is for the user and can also be in-
dicative for question skipping behavior. In Section 2.5 we combine response patterns, smoothed
average correctness and DAS3H time window features to propose Best-LR+, a regression model
which offers performance competitive to deep learning-based techniques while only relying on
information related to response correctness.

2.5 Experiments

We evaluate the benefit of alternative features extracted from different types of log data for stu-
dent performance modeling using the four large-scale datasets discussed in Section 2.3. After
an initial feature evaluation, we combine helpful features to form novel state-of-the-art logistic
regression models. Motivated by the size of the recent datasets, we also investigate two ways of
partitioning the individual datasets to train multiple assessment models targeting different parts
of the learning process. First, we show how partitioning a student’s interaction sequence by re-
sponse number can be used to train time-specialized models – focusing on responses submitted
earlier or later in the interaction sequence – to mitigate the new user cold start problem [72, 255].
We then analyze how features describing the learning context (e.g., study module, topic, course,
. . . ) can be used to train multiple context-specialized models whose individual predictions can
be combined to improve overall prediction quality even further.

Evaluation Methodology
To be in line with prior work, we start data preparation by filtering out students with less than
ten answered questions [44, 72, 164, 179]. The Ednet KT3 and Eedi dataset both contain
questions annotated with multiple KCs which yields difficulties for some of the deep learning
baselines (DKT and SAKT). In those cases we introduce new artificial KCs to represent each
unique combination of original KCs. In all our experiments we perform a 5-fold cross-validation
on the student level. In each fold 80% of the students are used for training and parameter se-
lection and 20% are used for testing. Thus, all test results are obtained only from predictions
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Figure 2.4: Accuracy, true positive rate and
false positive rate of a Best-LR model trained
on the ElemMath2021 dataset for different
classification thresholds. The threshold con-
verts the probability output by the model into
a binary correct/incorrect prediction.
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Figure 2.5: The receiver operating charac-
teristic (ROC) curve captures the relationship
between true and false positive rates as the
classification threshold is swept from 0 to 1.
The AUC score stands for Area Under the
Curve. A perfect system has an AUC of 1.0.

over students who were not observed during model training. We report performance in terms of
prediction accuracy (ACC) and area under curve (AUC). The AUC score captures the area under
the receiver operating characteristic (ROC) curve and is a popular evaluation metric for knowl-
edge tracing algorithms. The ROC curve plots the true-positive rate against the false-positive
rate at all decision thresholds. One way of interpreting the AUC score is viewing it as the prob-
ability of assigning a random correct student response a higher probability of correctness than a
random incorrect response. As concrete examples we visualize the predictive performance and
ROC curve for a Best-LR model trained on the ElemMath2021 dataset in Figures 2.4 and 2.5.

For the computation of average correctness and response pattern features we set smoothing
parameter η = 5 and sequence length n = 10 respectively (discussed in Sections 2.4 and 2.4).
For R-PFA we followed [68] by fixing the number of ghost attempts g = 3 and determined decay
rate parameters dF and dR by selecting the best value in {0.1, . . . , 0.9, 1.0} for each dataset. For
PPE we followed [235] by fixing c = 0.1 and x = 0.6 and evaluated 20 equally-spaced decay
parameters b ∈ [0.01, 0.05] and m ∈ [0.02, 0.04] for each dataset. Additional implementation de-
tails of the different features as well as ITS-specific considerations are provided in Appendix A.
For the evaluation of the deep learning models, we performed a grid-search and defined hyperpa-
rameter search spaces which extend the hyperparameters selected in the cited references (DKT,
[179]; SAKT, [164]; SAINT, [45]; SAINT+, [213]). A detailed list of the used hyperparameter
search spaces is provided in Table 2.3. All models were trained for 100 epochs without learn-
ing rate decay. For our logistic regression experiments we rely on Scikit-learn [175] and all
deep learning architectures were implemented using PyTorch [171]. Our implementation of the
regression models uses combinations of attempt and correct count features which is a slight de-
viation from the original PFA and Best-LR formulations which count the number of prior correct
and incorrect responses. While the individual features have a different interpretation, the two
feature pairs are collinear to each other and provide identical information to the model. The code
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Table 2.3: Hyperparameter search spaces for deep learning-based performance models.

Model DKT SAKT SAINT SAINT+
Hidden & Embedding Size {50, 100, 200, 500} {50, 100, 200, 500} {64, 128, 256, 512} {64, 128, 256, 512}
Number of Layers {1, 2} {1, 2} {2, 4, 6} {2, 4, 6}
Dropout Rate {0, 0.2, 0.5} {0, 0.2, 0.5} - -
Truncated Sequence Length - 200 100 100
Number of Heads - 5 8 8
Learning Rate 1× 10−3 1× 10−3 1× 10−3 1× 10−3

Batch Size {128, 256} {128, 256} {128, 256} {128, 256}

to reproduce our experiments as well as links to used datasets are shared on GitHub2.

Utility of Individual Features with Logistic Regression
To evaluate the effectiveness of the different features discussed in Section 2.4 we perform two
experiments in the context of logistic regression modeling. In the first experiment we analyze
each feature by training a logistic regression model using only that feature and a bias (constant)
term. This allows us to quantify the predictive power of each feature in isolation. In the second
experiment we evaluate the marginal utility gained from each feature by training an augmented
Best-LR model (Eq. 2.7) based on the Best-LR feature set plus the additional feature. This is
particularly interesting because the Best-LR feature set was created by combining features pro-
posed by various prior regression models and it achieves state-of-the-art performance on multiple
educational datasets [72]. If a feature can provide marginal utility on top of the Best-LR feature
set it is likely that it can contribute to other student performance modeling techniques as well
and should be captured by the ITS.

ACC and AUC scores achieved by the logistic regression models trained on the individual
features in isolation are shown in Table 2.4. Somewhat unsurprisingly, the question (item) iden-
tifier – representing the main feature used by IRT (EQ 2.2) – is effective for all datasets and is the
single most predictive feature for ElemMath2021 and EdNet KT3. KC identifiers are very
informative as well, but to a lesser extent than the question identifiers. This indicates varying
difficulty among questions targeting the same KC. The PFA model (EQ 2.3) which only esti-
mates KC difficulties is unable to capture these variations on the question-level. The attempt
and correct count features are informative for all datasets and there is benefit in using total-,
KC- and question-level counts in combination. Question-level count features are informative for
Junyi15 which is the only dataset that frequently presents users previously encountered ques-
tions. Combined R-PFA’s two recency-weighted features deliver more accurate performance
predictions than PPE’s spacing feature. DAS3H introduced count features computed for dif-
ferent time windows (TWs). TW based count features are an extension of the standard count
features and yield additional benefits for all four settings. The elapsed time and lag time features
are based on user interaction times and are both informative. The datetime features describing
month, week, day and hour of interaction yield little signal on their own.

Looking at the individual learning context features we observe varying utility. The study
module feature is informative for all datasets, as are the counts of student correct responses

2https://github.com/rschmucker/Large-Scale-Knowledge-Tracing
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Table 2.4: Individual feature performance. Each entry reports ACC and AUC scores achieved by a logistic regres-
sion model trained using only the corresponding feature and a bias term. The first row provides a baseline, where
no features are considered and the model predicts that all responses are correct. Dashed lines indicate this feature is
not available. Maximum ACC and AUC variances over the five-fold test data are 0.17% and 0.3% respectively.

ElemMath2021 EdNet KT3 Eedi Junyi15
Feature \ in % ACC AUC ACC AUC ACC AUC ACC AUC
always correct (baseline) 68.52 50.00 66.19 50.00 64.30 50.00 82.99 50.00
question ID 72.30 72.81 69.40 70.30 67.21 68.50 83.18 72.05
KC ID 69.64 66.63 66.29 58.87 64.29 57.46 83.02 64.06
total counts 70.14 64.86 66.43 59.54 69.03 72.00 83.21 64.62
KC counts 70.71 66.58 66.17 60.29 68.36 69.74 83.72 68.89
question counts 68.52 50.32 66.19 52.54 64.30 50.00 84.19 73.11
combined counts 72.05 71.05 66.65 62.63 70.28 73.94 84.35 74.57
total TW counts 70.64 65.96 66.48 60.62 70.42 74.32 83.60 68.27
KC TW counts 70.72 66.76 66.25 61.22 68.78 70.35 83.99 71.23
question TW counts 68.53 50.32 66.19 53.04 64.30 50.00 84.25 73.86
combined TW counts 72.30 71.66 66.79 64.09 71.11 75.18 84.39 75.41
R-PFA F 69.95 59.97 66.22 54.72 67.92 65.55 83.74 68.15
R-PFA R 68.57 63.56 66.18 60.28 64.30 61.94 83.37 72.71
R-PFA F + R 70.42 66.55 66.37 61.69 68.70 70.35 84.16 73.78
PPE Count 69.22 63.43 66.19 59.03 64.31 56.40 83.03 64.66
current elapsed time 69.72 61.50 66.18 57.36 - - 83.22 66.23
current lag time 68.52 51.57 66.19 51.78 - - 82.99 70.69
prior elapsed time 69.44 55.85 66.18 52.49 - - 83.00 60.17
prior lag time 68.52 50.58 66.19 52.00 - - 82.99 53.79
month 68.52 51.39 66.19 50.73 64.30 52.62 82.99 51.44
week 68.52 52.06 66.19 50.71 64.30 53.07 82.99 51.69
day 68.52 50.51 66.19 50.26 64.30 51.55 82.99 51.21
hour 68.52 50.36 66.19 50.62 64.30 51.63 82.99 52.13
study module ID 68.52 55.28 66.29 54.44 64.64 58.34 82.99 66.40
study module counts 70.35 62.76 66.18 54.00 68.13 68.82 83.17 65.85
teacher/group 68.37 56.52 - - 66.85 66.84 - -
school 68.50 55.62 - - - - - -
course 68.53 54.56 - - - - - -
topic 68.54 59.27 - - - - - -
difficulty 68.55 54.73 - - - - - -
bundle/quiz - - 68.70 68.21 65.05 62.99 - -
part/area ID - - 66.19 56.21 - - 83.02 57.06
part/area counts - - 66.53 61.01 - - 83.48 66.16
age - - - - 64.30 53.30 - -
gender - - - - 64.30 51.51 - -
social support - - - - 64.30 55.13 - -
platform 68.52 50.17 66.19 51.73 - - - -
prereq IDs 69.64 66.63 - - 64.29 57.46 83.18 72.05
prereq counts 71.73 69.72 - - 69.25 71.88 84.42 75.97
postreq IDs 69.63 66.63 - - - - 83.18 72.05
postreq counts 71.12 69.25 - - - - 84.34 76.03
videos watched counts 68.52 53.44 66.19 54.24 - - - -
videos skipped counts 68.59 57.23 66.19 53.27 - - - -
videos watched time 68.52 53.29 66.19 54.05 - - - -
reading counts 68.90 58.92 66.19 55.28 - - - -
reading time 68.50 54.92 66.19 51.48 - - - -
hint counts - - - - - - 82.99 60.00
hint time - - - - - - 82.98 59.73
smoothed avg correct 70.18 65.14 66.49 59.89 69.16 72.10 82.99 66.40
response pattern 70.86 64.98 66.39 59.75 69.67 72.71 84.02 70.51
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and attempts associated with different study modules. Predictions for the Eedi dataset benefit
largely from information about the specific group a student belongs to. Reasons for this could
be varying group proficiency levels and differences in diagnostic test difficulty. Bundle and part
identifiers both provide a useful signal for EdNet KT3 and Eedi. Features describing personal
information have little predictive power on their own. Among this family of features, social
support yields the largest AUC score improvement over the always correct baseline. Features
extracted from the prerequisite graph are effective for the three datasets that support them. The
logistic regression models trained on prerequisite and post-requisite count features exhibit the
best AUC scores on Junyi15. The features describing study material consumption all provide
a predictive signal, but do not yield enough information for accurate performance predictions
on their own. The smoothed average correctness and response pattern features lead to good
performance on all four datasets.

Moving forward we evaluate the marginal utility of each feature by evaluating the perfor-
mance of logistic regression models trained using the Best-LR feature set augmented with this
particular feature. Table 2.5 shows the results of this experiment. The combination of the two
R-PFA features is beneficial for all four datasets and increases the AUC score for Junyi15 by
1.75%. The PPE feature is also helpful, but to a lesser extent than the R-PFA features. Time
window based count features lead to improved predictions for all datasets. In combination, they
improve the AUC scores of EdNet KT3 and Junyi by 1.29% and 2.2% respectively. The
elapsed time and lag time features offer a useful signal for the three datasets which capture tem-
poral interaction data. The datetime features provide little utility in all cases (the best observed
value is a 0.08% AUC improvement for Junyi15).

Context information about the study module a question is placed in is beneficial in all set-
tings and leads to the largest AUC score improvement over the Best-LR baseline model for
Junyi15. Indication of the group a student belongs to improves model performance for Eedi.
Knowing which topic a student is currently visiting is a useful signal for ElemMath2021. In-
formation related to bundle and part structure improves EdNet KT3 and Eedi predictions.
ElemMath2021’s manually assigned difficulty ratings lead to no substantial improvements
likely due to the fact that the Best-LR feature set allows the model to learn question difficulty on
its own. The features describing a student’s personal information provide little marginal utility.
Count features derived from the question/KC prerequisite graphs yield a sizeable improvement
in assessment quality. Features targeting study material consumption yield some marginal util-
ity when available. Discrete learning material consumption counts lead to larger improvements
than the continuous time features. The smoothed average correctness feature leads to notice-
able improvements for all four datasets. The response pattern feature enhances assessments in
all cases and yields the largest improvements for the ElemMath2021 and Eedi dataset (over
0.5% AUC). This shows that the last few most recent student responses yield a valuable signal
for performance prediction.

Overall, we observe that a variety of alternative features derived from different types of log
data can enhance student performance modeling. Tutoring systems that track temporal aspects of
student behavior in detail can employ elapsed time and lag time features. Additional information
about the current learning context is valuable and should be captured. While the study module
features improve predictions for all datasets, other ITS-specific context features such as group,
topic and bundle identifiers vary in utility. The count features derived from the provided prereq-
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Table 2.5: Augmented Best-LR performance. Each entry reports average ACC and AUC scores
achieved by a logistic regression model trained using the Best-LR feature set augmented with
a single feature. Maximum ACC and AUC variances over the five-fold test data are 0.15% and
0.13% respectively. The marker ✗ is used to indicate features that are used for the AugmentedLR
models. Dashed lines indicate this feature is not available in this dataset.

ElemMath2021 EdNet KT3 Eedi Junyi15
Feature \ in % ACC AUC ACC AUC ACC AUC ACC AUC
Best-LR (baseline) 75.69 78.44 ✗ 70.69 72.94 ✗ 73.43 79.01 ✗ 84.25 76.20 ✗

question counts 75.70 78.45 71.24 73.53 73.43 79.01 84.74 77.76
total TW counts 75.90 78.78 70.75 73.07 73.94 79.73 84.37 76.68
KC TW counts 75.72 78.54 70.94 73.27 73.64 79.30 84.47 76.98
question TW counts 75.71 78.47 71.41 74.05 73.43 79.01 84.78 78.27
combined TW counts 75.95 78.88 ✗ 71.51 74.23 ✗ 73.99 79.79 ✗ 84.84 78.40 ✗

R-PFA F 75.73 78.50 70.77 73.14 73.71 79.36 84.56 77.23
R-PFA R 75.72 78.49 70.75 73.10 73.57 79.15 84.72 77.88
R-PFA F + R 75.74 78.51 ✗ 70.80 73.25 ✗ 73.73 79.38 ✗ 84.77 77.95 ✗
PPE Count 75.73 78.53 ✗ 70.73 73.07 ✗ 73.44 79.02 ✗ 84.34 76.75 ✗

current elapsed time 76.07 78.97 71.01 74.14 - - 84.38 77.62
current lag time 75.79 78.54 ✗ 70.71 73.01 ✗ - - 84.34 76.65 ✗
prior elapsed time 75.88 78.67 ✗ 70.77 73.11 ✗ - - 84.26 76.42 ✗
prior lag time 75.76 78.52 70.75 73.10 - - 84.26 76.45
month 75.70 78.45 70.69 72.95 73.43 79.02 84.25 76.21
week 75.70 78.45 70.69 72.95 73.44 79.02 84.26 76.21
day 75.70 78.45 70.69 72.94 73.43 79.02 84.26 76.24
hour 75.70 78.45 70.69 72.94 73.44 79.01 84.27 76.28 ✗

study module ID 75.77 78.60 ✗ 71.40 73.88 ✗ 73.52 79.10 ✗ 84.56 82.39 ✗
study module counts 75.74 78.54 70.76 73.01 73.52 79.10 84.27 76.30
teacher/group 75.68 78.39 - - 74.00 79.63 ✗ - -
school 75.72 78.48 - - - - - -
course 75.72 78.49 - - - - - -
topic 75.74 78.53 ✗ - - - - - -
difficulty 75.70 78.45 - - - - - -
bundle/quiz ID - - 70.69 72.94 73.76 79.43 ✗ - -
part/area ID - - 70.69 72.94 - - 84.25 76.20
part/area counts - - 70.73 73.05 ✗ - - 84.26 76.23
age - - - - 73.45 79.03 - -
gender - - - - 73.43 79.01 - -
social support - - - - 73.44 79.02 - -
platform 75.70 78.45 70.68 72.94 - - - -
prereq IDs 75.70 78.45 - - 73.43 79.01 84.25 76.20
prereq counts 75.91 78.77 ✗ - - 73.54 79.15 ✗ 84.91 78.20 ✗
postreq IDs 75.69 78.45 - - - - 84.25 76.20
postreq counts 75.81 78.64 ✗ - - - - 84.83 78.02 ✗

videos watched counts 75.75 78.51 ✗ 70.70 73.04 ✗ - - - -
videos skipped counts 75.72 78.49 70.70 73.00 ✗ - - - -
videos watched time 75.72 78.48 70.68 72.99 - - - -
reading counts 75.75 78.58 ✗ 70.69 72.95 - - - -
reading time 75.70 78.45 70.69 72.96 - - - -
hint counts - - - - - - 84.31 76.59 ✗
hint time - - - - - - 84.27 76.40 ✗

smoothed avg correct 75.78 78.62 ✗ 70.81 73.22 ✗ 73.49 79.13 ✗ 84.28 76.42 ✗
response pattern 76.03 78.99 ✗ 70.82 73.24 ✗ 74.32 80.10 ✗ 84.72 77.65 ✗

uisite and hierarchical graph structures increased prediction quality in all cases. Log data related
to study material consumption also provides a useful signal. Beyond student performance mod-
eling, this type of log data might also prove itself useful for evaluating the effects of individual
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video lectures and written explanations in future work. Lastly, the smoothed average correctness
and response pattern features that only require answer correctness improve predictions for all
four tutoring systems substantially.

Integrating Features into Performance Predictions
We have seen how individual features can be integrated into the Best-LR model to increase
prediction quality. We now experiment with augmented regression models that incorporate com-
binations of multiple beneficial features. The number of parameters learned by the different
approaches is provided in Table 2.7. Because each dataset provides different types of data it only
supports a subset of the explored features. The first model we propose and evaluate is Best-LR+.

Best-LR+ method. This method augments the Best-LR method (the current state-
of-the-art logistic regression method (EQ 2.7)) by adding R-PFA’s two recency-
weighted features, PPE’s spacing time feature and DAS3H’s time window-based
count features on total-, KC- and question-level as well as smoothed average cor-
rectness and response pattern features. All of these features can be calculated using
only the raw question-response information from the student log data.

Note that because the features used in Best-LR+ rely only on question-response log data,
this method can be applied to all four datasets, as well as many earlier datasets that lack new
features available in the datasets we study here. We define Best-LR+ in this way, to explore
whether tutoring systems that log only this question-response data can improve the accuracy of
the student performance modeling by calculating and adding in these count features.

We further propose dataset specific augmented logistic regression models (AugmentedLR)
by combining the helpful features marked in Table 2.5.

AugmentedLR method. This logistic regression method uses all of the features em-
ployed in the Best-LR model and adds in all of the marked features from Table 2.5,
which were found to individually provide AUC score improvements of more than
0.05% over the state-of-the-art results of Best-LR.

Note that the AugmentedLR method employs a superset of the features used by Best-LR+.
Because the features used in AugmentedLR go beyond simple logs of questions and responses,
this method can only be applied to datasets that capture this additional information. We define
AugmentedLR in this way, to explore whether ITS systems that do not yet log these augmented
features can improve the accuracy of their student performance modeling by capturing and utiliz-
ing these additional features in their student log data. Some of the features marked in Table 2.5
and used by AugmentedLR are available in only a subset of our four datasets. During our Aug-
mentedLR feature selection we made two additions to the over 0.05% AUC improvement rule to
mitigate redundancy: (i) In cases where count and ID feature target the same attribute, we select
the one yielding the larger AUC improvements. (ii) Information about the current lag time is
preferred over prior lag time.

Experimental results for these two proposed logistic regression models are presented in Ta-
ble 2.6, along with results for previously published logistic regression-based approaches IRT,
PFA, R-PFA, PPE, DAS3H, Best-LR and previously published deep learning-based approaches
DKT, SAKT, SAINT and SAINT+. Examining the results, first compare the results for Best-LR+
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Table 2.6: Comparative evaluation of student performance modeling algorithms across four
large-scale datasets. The first six table rows correspond to previously studied logistic regres-
sion methods, the next four to previously studied deep neural network approaches, and the final
two rows correspond to the two new logistic regression methods introduced in this paper. Maxi-
mum ACC and AUC variances over the five-fold test data are 0.16% and 0.17% respectively.

ElemMath2021 EdNet KT3 Eedi Junyi15
Model \ in % ACC AUC ACC AUC ACC AUC ACC AUC
IRT 72.30 72.81 69.40 70.30 67.21 68.50 83.18 72.05
PFA 71.68 70.80 66.48 61.95 68.44 70.28 83.85 70.19
R-PFA 71.60 70.80 66.60 62.92 68.90 71.01 84.35 74.13
PPE 70.08 67.59 66.51 59.93 64.32 57.95 83.09 64.81
DAS3H 74.08 75.82 70.31 72.16 71.64 76.13 84.43 76.73
Best-LR 75.69 78.44 70.69 72.94 73.43 79.01 84.25 76.20
DKT 76.46 79.71 71.77 74.92 75.41 81.55 85.50 80.62
SAKT 75.90 78.44 71.53 74.11 74.51 80.31 85.16 79.59
SAINT 75.87 77.88 71.40 73.69 74.56 80.38 85.10 79.51
SAINT+ 76.04 78.15 71.54 73.94 - - 85.18 79.71
Best-LR+ 76.23 79.35 71.69 74.65 74.55 80.40 85.05 79.12
AugmentedLR 76.59 79.87 71.89 75.00 74.96 80.96 86.35 86.03

Table 2.7: Number of parameters learned by different student performance models. The number
of parameters is heavily dependent on the number of questions and KCs used by each ITS.

ElemMath2021 EdNet KT3 Eedi Junyi15
# of unique questions 59,892 13,169 27,613 835
# of KCs 4,191 293 388 41
IRT 59,571 11,556 27,614 723
PFA 12,574 904 1,165 124
R-PFA 12,574 904 1,165 124
PPE 8,383 603 777 83
DAS3H 105,672 14,867 31,882 1,174
Best-LR 72,146 12,461 28,780 848
DKT 21,529,751 526,526 10,676,751 184,801
SAKT 6,730,901 1,033,051 3,191,301 125,101
SAINT 16,727,873 8,026,049 7,666,497 1,618,049
SAINT+ 4,194,241 1,349,889 - 148,865
Best-LR+ 119,291 16,816 34,092 2,343
AugmentedLR 137,602 17,297 64,076 6,170
Combined-AugmentedLR 10,595,355 242,159 4,164,941 86,381

to the previous state of the art in logistic regression methods, Best-LR. Notice that Best-LR+ ben-
efits from its additional question-response features and outperforms Best-LR in all four datasets.
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On EdNet KT3 and Juni15 Best-LR+ improves the AUC scores of the previous best logistic
regression models (Best-LR) by more than 1.7%. These results suggest that the additional fea-
tures used by Best-LR+ should be incorporated into student performance modeling in any ITS,
even those for which the student log data contains only the sequence of question-response pairs.

Examining the results for AugmentedLR, it is apparent that this provides the most accurate
method for student modeling across these four diverse datasets, among the logistic regression
methods considered here. Even when considering recent deep learning-based models, the Aug-
mentedLR models outperform all logistic regression and deep neural network methods on all
datasets except Eedi where the deep network method DKT leads to the best performance pre-
dictions. Especially on the Junyi15 dataset AugmentedLR increases ACC by 2.1% and AUC
by over 9.8%, compared to Best-LR. These results strongly suggest that all ITSs might benefit
from logging the alternative features of AugmentedLR to improve the accuracy of their student
performance modeling.

The New Student Cold Start Problem
Student performance modeling techniques use a student’s interaction history to make predictions
about their ability to solve different problems over time. When a new student starts using the ITS,
little or no interaction history is yet available, resulting in a "cold start" problem for estimating
the performance of new students. Most performance models therefore require a burn-in period of
student use of the ITS before they can accurately estimate student performance [72, 255]. Here,
to ensure a gratifying user experience and to improve early on retention rates, we show how one
can mitigate this cold start problem by training multiple time-specialized assessment models. We
start by splitting the question-response sequence of each student into multiple distinct partitions
based on their ordinal position in the student’s learning process (i.e., partition 50-100 will contain
the 50th to 100th response of each student). We then train a separate time-specialized model for
each individual partition. The motivation for this is that the way observational data needs to be
interpreted can change over time. For example, during the beginning of the learning process
one might put more focus on question and KC identifiers, while later on count features provide
a richer signal. With this approach a student’s proficiency is evaluated by different specialized
models depending on the length of their prior interaction history.

We evaluate the technique of training multiple time-specialized logistic regression models us-
ing the Best-LR and Best-LR+ feature sets using the four educational datasets (additional results
for AugmentedLR are provided by Table 2.9). In particular we induce the partitions using the
splitting points {0, 10, 50, 100, 250, 500,∞}. Figures 2.6 [Top] visualizes the results of a 5-fold
cross-validation and compares predictive performance with a single generalist Best-LR model
trained using all available data. Figure 2.6 [Bottom] shows the corresponding experiment for
Best-LR+. For both Best-LR and Best-LR+ feature sets the use of time-specialized assessment
models substantially improves prediction accuracy early on (i.e., during their first 10 question-
response pairs) and mitigates the cold-start problem successfully for all four datasets. For EdNet
KT3 and Junyi we observe AUC improvements of over 2% and 0.8% in early on predictions
compared to the generalist Best-LR and Best-LR+ models respectively. Also, for the same two
datasets the overall Best-LR performance (shown in Table 2.8) achieved by combining the pre-
dictions of the individual time-specialized models yields an over 0.5% increase in overall AUC
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Figure 2.6: [Top] Comparison in AUC performance between a single Best-LR model trained us-
ing the entire training set (blue), and a collection of time-specialized Best-LR models trained on
partitions of the response sequences (orange). The horizontal axis shows the subset of question-
response pairs used to train the specialized model. For example, the leftmost orange point in
each plot shows the AUC performance of a specialized model trained using only the first 10
question-response pairs of each student, then tested on the first 10 responses of other students. In
contrast, the leftmost blue point shows the performance of the Best-LR model trained using all
available data, and still tested on the first 10 responses of other students. The time-specialized
models are able to mitigate the cold start problem for all four tutoring systems. On the EdNet
KT3 and Junyi15 datasets the combined predictions of the specialized models increase overall
performance substantially. [Bottom] Analogous findings for the Best-LR+ model.
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scores and the time-specialized models consistently outperform the generalist model in each indi-
vidual partition. For ElemMath2021 and Eedi datasets the time-specialized Best-LR models
do not outperform the baseline consistently in each partition, but we still observe minor gains in
predictive performance overall. Looking at the overall performance achieved by time-specialized
Best-LR+ (Figure 2.6) [Bottom] and time-specialized AugmentedLR models (Table 2.9) we ob-
serve mixed results. While we observe consistent benefits for EdNet KT3 and Junyi15 the
time-specialized models sometimes harm overall performance for ElemMath2021 and Eedi.
This might be due to the increased data intensity of the more complex Best-LR+ and Augment-
edLR models which we will discuss in more detail in Section 2.5.

Combining Multiple Specialized Models
The large-scale datasets discussed in this chapter are aggregations of learning trajectories col-
lected from users of varying ages and grade levels who complete a range of different courses.
The internal heterogeneity of the datasets paired with the large number of recorded interactions
naturally leads to the question of whether it is more advantageous to pursue a monolithic or a
composite modeling approach. Conventional student performance modeling techniques follow a
monolithic approach in which they train a single model using all available training data, but the
results in the previous section show that with sufficiently large datasets it can be useful to par-
tition the training data to train multiple time-specialized models. The idea of learning different
classification rules for different parts of the dataset is a popular technique in the machine learn-
ing literature and a core principle behind decision tree algorithms [32]. A related EDM question
is whether it is more beneficial to model KCs in separation or in combination. For example,
while BKT partitions the student interaction sequences by KC to infer KC-specific knowledge
estimates, DKT takes in entire sequences to output a single vector which describes student profi-
ciency for all KCs. Starting from this observation Montero et al. [144] explore a modified DKT
approach called DKT-SM-SS. Analogous to BKT, DKT-SM-SS partitions the student interaction
sequences by KC and trains a separate KC-specific DKT model for each partition. Comparing
the performance of DKT-SM-SS with conventional DKT they found that DKT benefits from
modeling the KCs in combination. When partitioning the dataset per KC our logistic regression
modeling approach has an advantage over DKT-SM-SS in that the underlying feature set still
captures information about interactions with all KCs.

In this section we explore the potential benefits of (1) training specialized models for specific
questions, KCs, study modules, etc., and (2) combining the predictions from several of these
models to obtain a final prediction of student performance. The motivation for considering par-
titioning the data to train models specialized to these different contexts is that it has the potential
to recover finer nuances in the training data, just as the time-specialized models in the previous
section did. For example, two algebra courses might teach the same topics, but employ different
analogies to promote conceptual understanding, allowing students to solve certain types of ques-
tions more easily than others. Training a separate specialized model for each course can allow
the trained models to capture these differences and improve overall assessment quality.

Table 2.8 shows performance metrics for sets of logistic regression models trained using the
Best-LR features. As baselines we use a single Best-LR model trained on the entire dataset
as well as a set of time-specialized Best-LR models (described in Section 2.5). Note that even
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Table 2.8: Composite Best-LR performance for different partitioning schemes. The first two
rows of the table give as baseline scores the ACC and AUC for the previously discussed Best-
LR model and time-specialized Best-LR models. The next 10 rows show results when training
specialized models that partition the data based on single features such as question ID, KC ID,
etc.. The final row shows the result of combining several of these models by taking a weighted
vote of their predictions as described in the text. The marker ✗ indicates the inputs used for this
combination model for each dataset. Maximum ACC and AUC variances over the five-fold test
data are 0.14% and 0.12% respectively.

ElemMath2021 EdNet KT3 Eedi Junyi15
Feature \ in % ACC AUC ACC AUC ACC AUC ACC AUC
Best-LR 75.69 78.45 70.69 72.94 ✗ 73.43 79.01 84.25 76.20 ✗

Best-LR (time-spec.) 75.71 78.47 71.04 73.53 ✗ 73.51 79.08 ✗ 84.33 76.81 ✗

question ID specific 75.73 78.31 70.90 73.18 73.69 79.12 ✗ 84.37 76.76 ✗

KC ID specific 75.81 78.63 ✗ 70.80 73.11 ✗ 73.50 79.08 84.26 76.26
study module specific 75.96 78.94 ✗ 71.65 74.43 ✗ 73.73 79.30 84.69 82.67 ✗

teacher/group specific 70.62 66.91 - - 72.99 78.15 - -
school specific 72.17 71.33 - - - - - -
course specific 75.79 78.59 ✗ - - - - - -
topic specific 75.82 78.68 - - - - - -
bundle/quiz specific - - 70.92 73.24 ✗ 73.95 79.49 ✗ - -
part/area specific - - 70.71 73.01 - - 84.25 76.23 ✗

platform specific 75.67 78.39 ✗ 70.71 72.98 ✗ - - - -
Combined-Best-LR 76.08 79.13 71.75 74.65 74.13 79.83 84.71 82.90

though question and KC identifiers are already part of the Best-LR feature set they can still be
effective splitting criteria. As shown in the table, training question specialized models improves
predictive performance for all datasets except ElemMath2021 and KC specialized models are
beneficial for all four datasets. Partitioning the data on the value of the study module feature
and training specialized models for each study module yields the greatest improvements for
ElemMath2021, EdNet KT3 and Junyi15, and also leads to substantial improvements on
Eedi. It is interesting that training multiple specialized models for different study modules is
more effective than augmenting the Best-LR feature set directly with the study module feature
(Table 2.5). Topic and course specific data partitions improve performance predictions for the
ElemMath2021 dataset. On the other hand, school and teacher specific splits are detrimental
and we observe large overfitting to the training data. Splits on the bundle/quiz level are effective
for EdNet KT3 and Eedi. While Eedi benefits from incorporating the group identifiers into
the Best-LR model, group specialized models harm overall performance.

While fitting the question specific models on ElemMath2021, we observed severe overfit-
ting behavior, where accuracy on the training data is much higher than on the test set. This is
likely caused by the fact that ElemMath2021 contains the smallest number of responses per
question among the four datasets. Table 2.10 provides information about the average and median
number of responses per model for the different data partitioning schemes.

We repeat the same experiment, but this time train logistic regression models using the ITS-
specific AugmentedLR feature sets. Performance metrics are provided by Table 2.9. Unlike
when using the Best-LR features, the question and KC specific AugmentedLR models have lower
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Table 2.9: Composite AugmentedLR performance for different partitioning schemes. The first
two rows of the table give as baseline scores the ACC and AUC for the previously discussed
AugmentedLR model and time-specialized AugmentedLR models. The next ten rows show re-
sults when training specialized models that partition the data based on single features such as
question ID, KC ID, etc.. The final row shows the result of combining several of these models
by taking a weighted vote of their predictions as described in the text. The marker ✗ indicates
the inputs used for this combination model for each dataset. Maximum ACC and AUC variances
over the five-fold test data are 0.19% and 0.14% respectively.

ElemMath2021 EdNet KT3 Eedi Junyi15
Feature \ in % ACC AUC ACC AUC ACC AUC ACC AUC
AugmentedLR 76.59 79.87 71.89 74.99 74.96 80.96 86.37 86.03
AugmentedLR (time-spec.) 76.41 79.51 71.92 75.01 ✗ 74.83 80.80 ✗ 86.38 86.16 ✗

question ID specific 75.09 77.37 70.16 72.36 74.33 80.14 86.12 85.72
KC ID specific 75.73 78.49 71.21 73.86 74.59 80.57 86.16 85.82
study module specific 76.71 80.03 ✗ 72.02 75.34 ✗ 74.92 80.93 ✗ 86.42 86.19 ✗

teacher/group specific 66.96 61.16 - - 72.53 77.62 - -
school specific 70.03 66.82 - - - - - -
course specific 76.49 79.69 ✗ - - - - - -
topic specific 75.98 78.89 - - - - - -
bundle/quiz specific - - 70.22 72.44 73.96 79.65 - -
part/area specific - - 71.91 75.09 - - 86.29 85.99
platform 76.55 79.78 71.92 75.04 - - - -
Combined-AugmentedLR 76.76 80.16 72.11 75.48 75.04 81.11 86.46 86.34

overall prediction quality than the original AugmentedLR model. These specialized Augment-
edLR models contain many more parameters than their Best-LR counterparts due to the fact that
they use more features to describe the student history (Table 2.7). This larger number of parame-
ters requires a larger training dataset, which makes them more prone to overfitting. Still, splits on
the study module, course, and part features yield benefits on multiple datasets. Even though the
AugmentedLR models benefit less from training specialized models, these specialized models
still exhibit higher performance than the ones based on the Best-LR feature set.

Finally, we discuss combining the strengths of the different models described in this section
by combining their predictions into a final group prediction via a machine learning technique
called Stacking [245]. We do so by training a higher-order logistic regression model that takes as
input the predictions of the different models, and outputs the final predicted probability that the
student will answer the question correctly. The learned weight parameters in this higher-order
logistic regression model essentially create a weighted voting scheme that combines the predic-
tions of the different models. We determined which models to include in this group prediction
by evaluating all different combinations using the first data split of the 5-fold validation scheme
and selecting the one yielding the highest AUC. The results of the best-performing combination
models are shown in the final rows of Table 2.8 (Combined-Best-LR) and Table 2.9 (Combined-
AugmentedLR). Both tables also mark which models were used for this combination model, for
each of the four datasets.

The combination models outperform the baselines as well as each individual set of special-
ized models for both Best-LR and AugmentedLR feature sets on all datasets. These combination
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Table 2.10: Average and median number of training examples (i.e., question responses) available
for different partitioning schemes. For example, when a specialized model is trained for each
different question ID in the ElemMath2021 dataset, the average number of training examples
available per question-specific model is 393.

ElemMath2021 EdNet KT3 Eedi Junyi15
Feature Avg Med Avg Med Avg Med Avg Med
question ID specific 393 118 1,445 930 718 351 35,207 8,380
KC ID specific 5,801 2,031 11,694 2,956 18,485 613 635,487 200,284
study module specific 3,901,401 2,487,865 2,385,616 810,120 336,183 29,589 5,083,895 3,421,938
teacher/group specific 1,370 297 - - 1,674 554 - -
school specific 11,992 5,620 - - - - - -
course specific 329,695 69,125 - - - - - -
topic specific 21,614 4809 - - - - - -
bundle/quiz specific - - 1,970 1,265 1,146 120 - -
part/area specific - - 2,385,616 1,344,293 - - 2,824,386 605,666
platform 11,704,204 11,704,204 8,349,656 8,349,656 - - - -

models are the most accurate of all the logistic regression models discussed in this chapter, and
they also outperform all the deep learning baselines (Table 2.6) on all datasets except on Eedi
where DKT is the only model that produces more accurate predictions. Looking at the Best-LR
based combination models (Combined-Best-LR) we observe large AUC improvements of more
than 0.65% over the baseline models. For EdNet KT3 and Junyi15 there is an increase in
AUC scores of 1.12% and 6.09% respectively. The minimum number of individual predictions
used by a combination model is 3 (for Eedi) and the maximum number is 6 (for EdNet KT3).
For the AugmentedLR based combination models (Combined-AugmentedLR) we observe AUC
score improvements between 0.15% (for Eedi) and 0.47% (for EdNet KT3) compared to the
baseline models. The AugmentedLR models already contain many of the features used for par-
titioning and are more data intensive then the Best-LR based models which is likely to be the
reason for the smaller performance increment. The predictions of the combined AugmentedLR
models rely mainly on the predictions of time- and study module-specialized models. Only the
combination model for ElemMath2021 uses course- instead of time-specialized models as its
second signal. We note that while we were able to enhance prediction quality using only simple
single feature partitioning schemes, future work on better strategies to partition the training data
to train specialized models is likely to yield even larger benefits.

2.6 Discussion

The main results of this chapter show that the state of the art of student performance modeling
can be advanced through new machine learning approaches, yielding more accurate assessments
and in particular more accurate predictions of which questions a student will be able to answer
correctly at any given point in time as they move through the course. In particular we show:

• State-of-the-art logistic regression approaches to student performance modeling can be fur-
ther improved by incorporating a set of new features that can be easily calculated from the
question-response pairs that appear in student log data from nearly all ITSs. For example,
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these include counts and smoothed ratios of correctly answered questions and overall at-
tempts, partitioned by question, by knowledge component, and by time window, as well as
specific sequences of correct/incorrect responses over the most recent student responses.
We refer to the previous state-of-the-art logistic regression model as Best-LR [72] and
to the logistic regression model that incorporates these additional features as Best-LR+.
Our experiments show that Best-LR+ yields more accurate student modeling than Best-LR
across all four diverse ITS logs considered in this chapter. We conclude that most tutoring
systems that perform student modeling should benefit by incorporating these features.

• A second way of improving over the state of the art in student modeling is to incorpo-
rate new types of features that go beyond the traditional question-response data typically
logged in all ITSs. For example, accuracy is improved by incorporating features such as
the time students took to answer the previous questions, student performance on earlier
questions associated with prerequisites to the knowledge component of the current ques-
tion, and information about the study module (e.g., does the question appear in a pre-test,
post-test, or as a practice problem). We conclude that future tutoring systems should log
the information needed to provide these features to their student modeling algorithms.

• A third way to improve on the state of the art is to train multiple, specialized student per-
formance models and then combine their predictions to form a final group prediction. For
example, we found that training distinct logistic regression models on different partitions
of the data (e.g., partitioning the data by its position in the sequential log) leads to improved
accuracy. Furthermore, combining the predictions of different specialized models leads to
additional accuracy improvements (e.g., combining the predictions of specialized models
trained on different question bundles, with predictions of specialized models trained on
different periods of time in the sequential log). We conclude that time-specialized models
can help ameliorate the problem of assessing new students who have not yet created a long
sequence of log data. Furthermore, we feel that as future tutoring systems are adopted by
more and more students, the increasing size of student log datasets will make this approach
of training and combining specialized models increasingly effective.

• Although our primary focus here is on logistic regression models, we also considered top-
performing neural network approaches including DKT [179], SAKT [164], SAINT [45]
and SAINT+ [213] as additional state-of-the-art systems against which we compare. Our
experiments show that among these neural network approaches, DKT consistently outper-
forms the others across our four diverse datasets. However, we also find that our logis-
tic regression model Combined-AugmentedLR, which combines the three above points,
outperforms all of these neural network models on average across the four datasets, and
outperforms them all on three of the four individual datasets (DKT outperforms Combined-
AugmentedLR on the Eedi dataset). We do find that neural network approaches are
promising, however, especially due to their ability in principle to automatically discover
additional features that logistic regression cannot discover on its own. Furthermore, we be-
lieve this ability of neural networks will be increasingly important as available student log
datasets continue to increase both in size and in diversity of logged features. We conclude
that a promising direction for future research is to explore the integration of our above
three approaches into DKT and other neural network approaches.
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Table 2.11: AUC scores achieved by student performance models with and without personal
student history. The first row represents a baseline model that predicts response correctness by
random guessing. The second row shows a model that ignores student-specific data and uses only
average question difficulty. The third row highlights our best model (Combined-AugmentedLR),
which incorporates student history. While question difficulty provides valuable information,
learning to interpret student-specific data is crucial for effective performance predictions.

ElemMath2021 EdNet KT3 Eedi Junyi15
Random Guessing 0.50 0.50 0.50 0.50
Without student history 0.73 0.70 0.69 0.72
With student history 0.80 0.75 0.81 0.86

It is useful to consider how our results relate to previously published results. We found that
the time window feature sets proposed by DAS3H [44] enhanced Best-LR predictions for all four
datasets, showing that these features can also improve other student performance models besides
the DASH model considered in the original DAS3H paper. Note that when Gervet et al. [72]
introduced the Best-LR model they also experimented with time window features, but unlike us
did not observe consistent benefits. This might be due to the number of additional parameters
that must be trained when incorporating these time window features, and the corresponding need
for larger training datasets. Recall the datasets we used in this manuscript are about one order of
magnitude larger than the ones used by Gervet et al. [72]. Our algorithm comparison (Table 2.6)
revealed that the prediction quality of PPE [235] is worse than all other considered student per-
formance modeling techniques. This is likely due to the fact that PPE was designed to model
cognitive processes during word pair learning over longer periods of time. This is a very different
setting then the learning experiences offered by the four studied tutoring systems. Three of them
focus on mathematics and EdNet KT3 prepares students for the TOEIC© examination which
goes beyond conventional retrieval practice. The elapsed and lag time features introduced by
SAINT+ [213] also improve Best-LR predictions substantially in our experiments. Interestingly,
the performance increment for the Best-LR model produced by these features is comparable to
and sometimes even greater than the performance difference between SAINT and SAINT+. Note
SAINT+ is an improved version of SAINT that uses the two interaction time based features. This
suggests it might not require a deep learning-based approach to leverage these elapsed time and
lag time features optimally.

Considering features that require augmented student logs that contain more than question-
response pairs, we found these augmented features vary in utility. We found the feature "current
study module" to be a particularly useful signal for all datasets. During preliminary analysis we
observed differences in student performance between different parts of the learning sessions (i.e.,
pre-test, learning, post-test, . . . ), which are captured by the study module feature. Even though
post-tests tend to contain more difficult questions on average, the highest level of student perfor-
mance is observed during post-test session in which users’ overall performance is evaluated.

Importantly, we also found that introducing background knowledge about prerequisites and
post-requisites among the knowledge components (KCs) in the curriculum is very useful. As
summarized in Table 2.4, counts of correctly answered questions and attempts associated with
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pre- and post-requisite KCs are among the most informative features. Importantly, these fea-
tures can be easily incorporated even into pre-existing ITSs and datasets that log only question-
response pairs, because calculating these features requires no new log data – only annotating it
using background knowledge about their prerequisite structure.

We compared different types of machine learning algorithms for student performance mod-
eling in Section 2.5. One limitation is that we did not refit IRT’s student ability parameter after
each user response, which limits modeling accuracy because predictions rely solely on question
difficulty and without using student-specific data (Figure 2.11). Wilson et al. [243] showed that
refitting the ability parameter after each interaction makes IRT more competitive on multiple
smaller datasets. While our feature selection for the AugmentedLR models solely focused on
achieving accurate performance predictions, the inclusion of certain contextual features can lead
to reductions in generalizability to unseen data. For example, the use of school or teacher specific
parameters requires us to refit the model periodically as new schools and teachers start working
with the system. When selecting a feature set for real world applications one might want to
trade a small reduction in predictive performance in favor of enhanced generalizability to new
users. While the technique of using multiple time-specialized performance models can improve
the overall prediction accuracy when using the Best-LR and Best-LR+ feature sets, the approach
can also harm the predictive performance of some of the models that use the higher-parametric
AugmentedLR feature set. This is likely due to the overfitting problem associated with more ex-
pressive modeling approaches. The proposed technique represents a first step towards mitigating
the performance modeling cold-start problem for new students and we see a lot of potential for
future research in this direction.

Recently, multiple intricate deep learning based techniques have been proposed and yield
state-of-the-art performance for specific datasets (e.g., [213, 254, 264]). Unfortunately, many of
these works only employ one or two datasets, which raises the question of how suitable they are
for other tutoring systems. The code and new data released alongside this manuscript increases
the usability of multiple large-scale educational datasets. We hope that future works will lever-
age these available datasets to test whether novel student performance modeling algorithms are
effective across different tutoring systems.
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Chapter 3
Addressing the New Course Cold-Start
Problem via Transfer Learning

This Chapter is based on work published as:
Schmucker, Robin, and Mitchell, Tom (2022). Transferable Student Performance Modeling for
Intelligent Tutoring Systems. In Proceedings of the 30th International Conference on Computers
in Education (ICCE’22), 13–23, Kuala Lumpur, MY, APSCE

As online tutoring systems are becoming part of everyday life, student performance models
(SPMs) need to become flexible enough to support frequent releases of new courses. SPMs are
trained on interaction sequence data of previous learners to provide proficiency estimates for fu-
ture learners. This induces a cold-start problem when a course is first introduced, because no
students have yet taken the course and hence there is no data available for SPM training. While
Chapter 2 focused on settings where large-scale data is available, this chapter focuses on new
course settings with limited or no training data. We propose transfer learning to enable accurate
SPMs in new courses by leveraging log data from existing courses. We study two settings: (i)
In the naive transfer setting, we first train SPMs on existing course data and then apply these
SPMs to new courses without modification. (ii) In the inductive transfer setting, we fine tune
these SPMs using small amounts of training data from the new course (e.g., collected during a
pilot study). Our evaluations on student log data from five different mathematics courses show
how both approaches mitigate the cold-start problem successfully. The naive transfer models
that use features provided by human domain experts (e.g., question difficulty ratings) but no new
course student data, achieve accuracy on par with common SPMs trained on data from thousands
of students in the new course (i.e., Bayesian Knowledge Tracing (BKT) and Performance Factor
Analysis (PFA)). In the inductive setting our transfer approach yields more accurate predictions
than conventional SPMs when only limited student interaction training data (<100 students) is
available to both. We hope that transfer learning techniques will enable effective adaptive in-
struction for early adopter students.
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Figure 3.1: How can we use log data from existing courses to train an accurate student model for
performance predictions in a new course? In the naive transfer setting, we define course-agnostic
models which can be trained on data from existing courses and deployed to new courses without
modification. In the inductive transfer setting, we fine-tune these pre-trained course-agnostic
models to new courses using small-scale student data (e.g., collected during a pilot study).

3.1 Introduction

Intelligent tutoring systems (ITSs) rely on student performance models (SPMs), to trace each
student’s changing ability level over time [176]. This enables the ITS to adapt the curriculum to
the user’s personal needs and to provide tailored feedback. Relatedly, the widespread adoption
of online ITSs induces a need for performance modeling techniques that are flexible enough to
support frequent releases of new courses, as well as changes to existing courses. The cold-start
problem, that arises when a new course is released for which no learner log data is available
for SPM training, prevents us from applying conventional performance modeling approaches
employing supervised machine learning algorithms. In practice this means that the first batch
of students does not enjoy the full benefits offered by the ITS. Future students then have the
advantage that the log data generated by the early students can be used to train an accurate SPM.

In this chapter we consider transfer learning (TL) techniques to improve the learning expe-
rience of early adopter students by mitigating the performance modeling cold-start problem for
new courses. We show that TL can be used to train accurate SPMs for new courses by leveraging
student log data collected from existing courses (Figure 3.1). We study two settings: (i) In the
naive transfer setting where no data is available for the new course, we learn course-agnostic
SPMs – i.e., models whose parameters can be trained using student interaction sequence data
from existing courses and that can be applied to any new course. (ii) In the inductive trans-
fer setting where small-scale new course data is available, we tune pre-trained course-agnostic
SPMs to the new course by learning new course-specific question and knowledge component
(KC) (i.e., skill) difficulty parameters. This inductive transfer setting mimics the case where the
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course designer can run a pilot with a small number of students before large-scale deployment.
We evaluate the proposed TL methodology using log data collected from five different math-

ematics courses describing learning trajectories from over 47,000 students in a real world large-
scale ITS. In both settings, we find that the proposed techniques mitigate the cold-start problem
for all courses. We hope that TL methods will become a standard tool for ITS designers and
improve the learning experience of early students. The key contributions of this chapter include:

• Course-agnostic student performance modeling. We present the first course-agnostic
modeling techniques for predicting student performance on future questions in newly in-
troduced courses where no previous students have yet taken this course. Even though our
agnostic models have no access to training data logs of students taking the new course,
they exhibit predictive performance comparable to conventional BKT [50] and PFA [174]
performance models – found in many real world ITSs – which were trained on data from
thousands of students taking the new course.

• Inductive transfer learning for effective tuning. We use transfer learning techniques
to efficiently tune our pre-trained course-agnostic performance models to individual new
courses by learning question- and KC-specific parameters. Our experiments show how
our approach leads to more accurate performance predictions than conventional model-
ing techniques in settings in which only limited student log data from the new course is
available (< 100 students).

• Guidance for practice. By analyzing data from five different courses offered by a large-
scale ITS this work provides various insights which can inform the design of future ITSs.
Among others, our experiments show how manually assigned difficulty ratings and infor-
mation about distinct learning contexts provided by human domain experts during content
creation can be used to boost the prediction accuracy of course-agnostic SPMs. Further,
going against common guidance, our study of various existing SPM approaches reveals
that large logistic regression models can outperform classical lower dimensional SPMs
even in data starved settings (e.g., when training on log data from <10 students)

3.2 Related Work

Here we start with a description of the transfer learning framework and discuss how it has been
previously applied to tasks in educational data mining (EDM) literature. We then provide an
overview of existing SPM approaches and discuss the new course cold-start problem.

Transfer Learning
Transfer learning techniques are a class of machine learning (ML) algorithms which aim to im-
prove model performance in a target domain (e.g., a new course) by leveraging data from a
different but related source domain (e.g., existing courses) [265]. Transfer learning is partic-
ularly attractive when only limited target domain data is available, but source domain data is
abundant. Via pre-training on source data, transfer learning can acquire a model for the target
domain even when no target domain data is available. Transfer learning techniques enjoy great
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popularity in domains such as image classification [252] and machine translation [137], but have
also been applied to various educational data mining (EDM) problems.

In the context of learning management systems (LMS), transfer learning techniques that com-
bine data from multiple different courses or from multiple offerings of the same course have been
explored for predicting academic performance [10, 130, 131, 148, 187, 226, 247]. Going beyond
predictions for individual courses there has been research on analysing data collected from mul-
tiple courses to predict the likelihood of passing future courses [91] and whether students will
complete their degree program [90]. Gašević et al. [70] studied the transferability of different
models of academic success trained on LMS data collected by different courses and emphasize
the importance that student models consider the course-specific context and its instructional con-
ditions. In the setting of massive open online courses (MOOCs) transfer learning techniques that
use data from previous offerings have been used to improve student dropout predictions in other
offerings [31, 55] and the bias-variance trade-off of individual features has been studied [98].

Unlike the above-mentioned transfer approaches mentioned above, in this work we do not
predict a single attribute related to the current course (i.e., pass/fail, student grade or dropout),
but rather trace the changing likelihood with which students answer individual questions inside
an ITS correctly over time based on their interaction history.

More related to the ITS setting considered in this chapter, there have been multiple works that
investigate how models that detect student gaming behaviour can be transferred between different
courses and ITSs [16, 165, 166]. Using simulated students, Spaulding et al. [219] investigate a
Gaussian Process-based approach for transferring cognitive models that describe learning word
rhyming and spelling between different educational games for language learning. Multi-task
learning techniques have been proposed to learn useful representations via pre-training on tasks
related to response correctness and interaction time predictions for which large-scale training
data is available [46, 99]. The learned representations are beneficial for the downstream TOIEC
exam score predictions task which suffers from label scarcity.

Baker et al. [20] framed the problem of porting different types of student models (e.g., gam-
ing detection models, performance models, . . . ) between different tutoring systems as an open
challenge during a Keynote at the EDM2019 conference. In a recent update Baker et al. [19]
survey related work and discuss potential directions for future research on sharing models across
tutoring systems. While our work does not consider the transfer of student performance mod-
els across different ITSs, it focuses on the question of transferring performance models between
different courses inside the same ITS. While the content of individual courses is disjoint, using
multiple courses from the same ITS is beneficial because student data is in a consistent format,
interfaces are uniform, and individual content authors follow similar protocols.

Student Performance Modeling
SPMs estimate a student’s ability to solve different questions based on sequential log data that
describes their prior interactions with the system. The student proficiency estimates produced
by such performance models are a key component, which allows the ITS to adapt to each stu-
dent’s personal needs as they go through the curriculum [54]. In the literature there are three
major categories of SPMs: (i) Markov process-based inference, (ii) logistic regression and (iii)
deep learning-based approaches. Markov process-based techniques, such as Bayesian Knowl-
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edge Tracing (BKT) [50] and BKT+ [97], are well established and can for example be found
in the Cognitive Tutor [104] and the ASSISTments system [64]. Most probabilistic approaches
determine a student’s proficiency level by performing inference in a two state Hidden Markov
Model – one state to represent mastery and one for non-mastery. Logistic regression models rely
on a set of manually specified features which summarizes the student’s interaction sequence.
Given an input vector with feature values, the regression-based performance models estimate the
probability that the student is proficient in a certain question or KC. Some approaches in this class
are IRT [188], PFA [174], DAS3H [44], Best-LR [72] and its recent extension Best-LR+ [204].
Deep learning-based approaches take as input the same interaction sequence data, but unlike
logistic regression techniques can learn suitable features on their own without requiring human
feature engineering. Deep learning models benefit from large-scale training data and might in the
future also include additional video and text data into their performance predictions. As of today,
BKT and logistic regression models are still competitive with deep learning-based approaches
in multiple domains [72, 97, 204]. Two comprehensive surveys on recent deep learning-based
performance models are provided by Liu et al. [128] and Sarsa et al. [201].

Importantly, all of the above mentioned SPM approaches rely on course-specific parameters
(e.g., parameters that represent the difficulty of individual questions and KCs in the target course)
that need to be learned from target course data. This makes these models inapplicable in our
cold-start setting where a new course is first introduced and there is no training data available. In
Section 3.4 we define a set of course-agnostic features which avoid any dependencies on course-
specific attributes. This naive transfer approach allows us to learn course-agnostic SPMs using
log data from existing courses that can be applied to any future courses.

Lastly, we want to mention recent works [72, 204, 255] which investigated another cold-
start problem related to student performance modeling. There, the question is how accurate
are performance estimates of existing SPMs for new students for which we have only observed
a few interactions. This is different from the cold-start problem studied in this chapter – it
addresses the question of how to handle a new cold-start student in an existing course, whereas
we address the question of how to handle a new cold-start course. Related to the inductive
transfer setting studied in this chapter, is a short-paper by Zhao et al. [260] which addresses the
cold-start problem by proposing an Attentive Neural Turing Machine architecture that requires
less training data than an LSTM-based approach. Unlike our study, they only experiment with
small-scale student log data (<30 students, <1000 responses) and do not leverage data collected
from existing courses for knowledge transfer.

3.3 Background

Here, we start by providing a formal definition of student performance modeling as well as a
description of the corresponding machine learning problem. We then introduce the multi-course
dataset we use for our study, explain its student population and the properties which make the
dataset suitable for our transfer modeling analysis.
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Table 3.1: Overview of mathematical notation.

Notation Description
s student index
t time-step index
qs,t question answered by student s at time t

ys,t ∈ {0, 1} binary correctness of s at time t
cs,t additional context data for s at time t

xs,t = (ys,t, qs,t, cs,t) data for s logged at time t
xs,1:t = (xs,1, . . . , xs,t) all data for s up to time t

D = {xs1,1:t1 , . . . ,xsn,1:tn} dataset containing logs from n students
KC(q) knowledge components targeted by q
fw(·) performance model parameterized by w
L(·, ·) neg. log likelihood L(a, b) = − log(a · b)

Formal Problem Statement

We define a student performance model (SPM) to be a function that takes as input the sequential
log data from any student up to some point in the course, and that produces as output a set
of probabilities, where each probability is an estimate of how likely this student would answer
correctly a specific question if asked that question at this point in the course. Taken together,
this collection of predicted probabilities for a particular collection of questions can be used as
an estimate of the current knowledge state of the student. Accurate estimates allow the ITS to
provide students with individualized feedback and enable adaptive learning activity sequencing.

This chapter considers the problem of learning such SPMs for a target course. If many
students have already completed the target course, we have a supervised learning problem in
which we can use the log data from those students to train the SPM. If no students have yet
taken the target course, we have a cold-start learning problem in which no such student data is
available. Here we consider training the SPM using student data from other courses.

Formally, we denote the sequence of student’s s past interaction with the system as xs,1:t =
(xs,1, . . . , xs,t). The tuple xs,t = (ys,t, qs,t, cs,t) represents the data collected for student s at time-
step t. Variable qs,t indicates the answered question, ys,t ∈ {0, 1} is binary response correctness
and cs,t is an aggregation of additional information about question difficulty, learning context,
read materials, watched videos and timestamp. Provided a student’s interaction history xs,1:t and
a question identifier qs,t+1, a SPM fw estimates p(ys,t+1 = 1 | qs,t+1,xs,1:t) – i.e. the probability
that s will respond correctly to qs,t+1 if it were asked next.

All performance models considered in this paper are parametric and defined by a weight
vector w ∈ Rd. Using training data D = {xs1,1:t1 , . . . ,xsn,1:tn} capturing interaction logs
from previous students one can determine a vector wD for predicting the performance of future
students by solving the minimization problem

wD = arg min
w∈Rd

∑
s∈D

ts∑
t=1

L(fw(qs,t,xs,1:t−1), ys,t). (3.1)
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Here, L(ŷs,t, ys,t) = −(ys,t log(ŷs,t) + (1 − ys,t) log(1 − ŷs,t)) is the negative conditional log-
likelihood of observed student response correctness ys,t given prediction ŷs,t = fw(qs,t,xs,1:t−1)
and student history xs1,1:t−1. This function penalizes predictions ŷs,t that deviate from observa-
tion ys,t. A summary of the mathematical notation is provided by Table 3.1.

Following transfer learning nomenclature, DS = {DS1 , . . . , DSk
} is used to denote the

source data collected from existing courses S1, . . . , Sk and DT is the target dataset from a new
course T . When a new course is released a cold-start problem arises because DT either con-
tains no or only very little student interaction sequence data which prevents us from learning an
accurate performance model fwT

for the target course. In Section 3.4 we will propose transfer
learning techniques that leverage log data from the existing source courses S = {S1, . . . , Sk} as
a way to mitigate the cold-start problem for a new target course T .

Dataset
For our analysis we rely on the Squirrel Ai ElemMath2021 dataset [204] which provides
log data from multiple mathematics courses for elementary school students collected over a 3-
month period. Overall, the dataset describes about 62,500,000 interactions from over 125,000
students. Going beyond pure question-solving activities, ElemMath2021 provides insights into
how students interact with learning materials. During content creation human domain experts
assign each question a difficulty rating between 10 and 90 and specify a prerequisite graph to de-
scribe dependencies between individual KCs. ElemMath2021 further records information about
the learning context by assigning each learning activity to one of six categories of study modules
(e.g., pre-test, post-test, review, . . . ).

Our study of the transferability of SPMs makes use of the fact that ElemMath2021 is a
combination of log data originating from different courses. Each student interaction is labeled
with a course identifier which allows us to partition the logs into multiple course-specific datasets.
For our analysis we selected the five courses with the most students, which we refer to as courses
C6, C7, C8, C9 and C40. Together, these five courses capture approximately 26,300,000 in-
teractions from over 47,000 students. Table 3.2 shows statistics for the individual courses. On
average, students answer about 200 questions in a single course and the correctness rate varies
from course to course between 62.4% and 71.3%. Each ElemMath2021 student only partic-
ipates in a single course which implies disjoint student populations across courses. In terms of
covered KCs and used questions the courses are also disjoint with the exception of C9 and C40
which have an overlap of less than 5%. These properties allow us to measure the transferability
of SPMs to different courses involving disjoint students and disjoint questions and KCs.

3.4 Methodology

We investigate two transfer learning approaches to mitigate the performance modeling problem
for new courses by leveraging student log data from existing courses. First, in the naive transfer
setting we identify a set of course-agnostic features that can be used to train general SPMs that
can predict student ability for any course. Second, in the inductive transfer setting we show how
one can tune a pre-trained course-agnostic SPM to a specific target course using only very limited
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Table 3.2: Five largest ElemMath2021 courses by number of students.

course C6 C7 C8 C9 C40
# of students 11,864 9,423 10,296 8,531 7,487
# of questions 2,483 2,226 2,438 2,407 1,307
# of KCs 164 145 159 157 87
# of logs 8,212k 5,576k 5,112k 3,767k 3,614k
# of responses 3,262k 1,934k 2,142k 1,407k 1,228k
avg. resp. 275 227 187 165 164
avg. correct 71.30% 69.62% 69.47% 68.68% 62.39%

student log data. The inductive transfer setting captures the case where the course designer can
run a pilot study with a small number of students before large-scale deployment.

Naive Transfer

The naive transfer setting is concerned with leveraging student log data DS from existing source
courses S = {S1, . . . , Sk} to learn a SPM that is general enough to be applied to any future target
course T . Crucially, such a course-agnostic performance modeling approach cannot rely on any
parameters that describe course-specific elements. Because existing SPMs rely on parameters
that capture properties of individual questions and KCs, they require access to target course data
DT for training and are thus not applicable when such training data is not available.

As a first step in the design of course-agnostic SPMs we identify a set of features which
induces model parameters that do not require target course data for training. For this we study
existing logistic regression-based SPMs. Each regression model relies on a distinct feature func-
tion Φ = (ϕ1, . . . , ϕd) which outputs a real-valued feature vector that describes student s’s prior
interaction history xs,1:t and information about the next question qs,t+1. The trained model then
uses this feature vector as input to estimate the probability that student s will respond correctly
to question qs,t+1 if it were asked next as

p(ys,t+1 = 1 | qs,t+1,xs,1:t) = σ
(
w⊤Φ(qs,t+1,xs,1:t)

)
. (3.2)

Here w ∈ Rd is the learned weight vector that defines the model and σ(x) = 1/(1+e−x) ∈ [0, 1]
is the sigmoid function whose output can be interpreted as the probability of correct response.
A suitable set of regression weights can be learned using training data from previous students as
described in Section 3.3.

Because conventional SPMs employ feature functions that produce course-specific elements
they do not generalize to new courses. As an example consider the Best-LR model by Gervet
et al. [72]. Best-LR features an ability parameter αs for each individual student and difficulty
parameters δq and βk for each individual question q and KC k. Further, Best-LR uses count
features to track the number of prior correct (cs) and incorrect (fs) responses of student s overall
and for each individual KC k (i.e., cs,k and fs,k). Defining scaling function ϕ(x) = log(1 + x),
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the Best-LR prediction is

pBest-LR(ys,t+1 = 1 | qs,t+1,xs,1:t) = σ(αs − δqs,t+1 + τcϕ(cs)+

τfϕ(fs) +
∑

k∈KC(qs,t+1)

βk+γkϕ(cs,k) + ρkϕ(fs,k)). (3.3)

One can interpret the Best-LR feature function as a tuple Φ = (ΦA,ΦT ) where ΦA is course-
agnostic (i.e., total response counts) and ΦT is target course-specific (i.e., question and KC dif-
ficulty and KC counts). Because – to the best of our knowledge – this is the first work that
investigates the problem of course-agnostic SPMs we introduce simple but reasonable baselines
by taking conventional SPM approaches and reducing them to their respective course-agnostic
feature sets. We note that the avoidance of course-specific features reduces model expressiveness
and predictive performance considerably (discussed in Section 3.4).

Focusing again at the Best-LR example we derive a course-agnostic SPM called A-Best-LR.
A-Best-LR only relies on student ability and overall count features cs and fs. In addition, it
employs two parameters γ and ρ to consider the number of prior correct (cs,k) and incorrect
responses (fs,k) related to the current KC k – the same γ and ρ parameters are used for all KCs.
The A-Best-LR prediction is defined as

pA-Best-LR(ys,t+1 = 1 | qs,t+1,xs,1:t) =

σ(αs + τcϕ(cs) + τfϕ(fs) + γϕ(cs,k) + ρϕ(fs,k)).
(3.4)

By avoiding course-specific features the A-Best-LR model can be trained on source data DS

from existing courses and then be used for any new course T . Giving a similar treatment to other
common SPMs we define:

• A-BKT: We train a single BKT [50] parameter set shared for all KCs. We then estimate
student performance by using this parameter set to initialize a separate BKT model for
each individual KC.

• A-IRT: We train an IRT (Rasch) model [188] that uses the same difficulty parameter (δ)
for all questions. We then use this single difficulty parameter to trace each student’s ability
over time for each KC and derive performance predictions. The student ability parameters
are updated after each response.

• A-PFA: We train a reduced 3-parameter PFA model [174] that uses the same difficulty (δ),
correctness (γ), and incorrectness count (ρ) parameters for all KCs.

• A-DAS3H: We train a reduced DAS3H model [44] that uses a shared difficulty parameter
(δ) for all questions and KCs, a shared constant ability term (α) for all students, and one
set of time-window-based correctness and incorrectness count parameters for all KCs.

• A-Best-LR+: We train a reduced Best-LR+ model [204] that augments the A-Best-LR
feature set (EQ 3.4) with response pattern and smoothed average correctness features. In
addition, the model learns a single set of DAS3H time-window [44] and R-PFA [68] and
PPE [235] count parameters for all KCs.

Related to A-BKT, Corbett and Anderson [50] evaluated a version of BKT which uses a
single set of BKT parameters for all KCs that is trained and tested on data from the same course.
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Table 3.3: When training data is available, adding target course-specific features ΦT to the
course-agnostic features ΦA yields much higher accuracy, as shown in this table. The A-
AugLR row shows average performance of the AugmentedLR model when it uses only course-
agnostic features. A-AugLR+KC shows performance when KC-specific difficulty parameters are
added, A-AugLR+quest shows performance when question-specific parameters are added, and
A-AugLR+KC+quest shows performance when added both. To make appropriate training data
available here, models were trained and tested on the same course using a 5-fold cross validation.

ACC AUC
Always correct 68.29 50.00
A-AugLR 72.02 69.48
A-AugLR+KC 74.00 74.99
A-AugLR+quest. 76.34 79.39
A-AugLR+KC+quest. 76.37 79.39

Related to A-PFA, Maier et al. [133] proposed to learn PFA parameters for KCs with enough
training data and to use the average of the parameters to model KCs with insufficient data in the
same course. A-BKT and A-PFA are different in that they train on data from existing courses
and then make predictions for a new course.

Conventional SPMs – including all the above – base their estimates solely on log data that
describes the student’s question-answering behavior. Recently, it has been shown how alternative
types of log data collected by ITSs can be incorporated into logistic regression models to improve
performance predictions [204]. The use of such alternative types of features is particularly inter-
esting in the naive transfer setting because most conventional SPM features are course-specific
and are thus not transferable. The ElemMath2021 dataset (Section 3.3) dataset captures vari-
ous types of student interaction data. In our experiments (Section 3.5) we consider information
related to student video and reading material consumption, learning context, question difficulty
ratings assigned by human domain experts during content creation, KC prerequisite structure and
response- and lag-time features introduced by SAINT+ [213].

Inductive Transfer
Common SPMs rely on parameters that capture question- and KC-specific attributes. By train-
ing and testing on target course data DT using a 5-fold cross validation, Table 3.3 compares
the performance of course-agnostic performance models with models that use the same course-
agnostic feature set, but which are allowed to learn additional course-specific parameters to cap-
ture question- and KC-difficulty. We observe that the inclusion of question- and KC-specific
parameters leads to large improvements in prediction accuracy and closes the gap to conven-
tional SPM algorithms (Table 3.4).

Motivated by this, we propose an inductive transfer learning approach that uses small-scale
target course data DT to tune a pre-trained course-agnostic SPM to a new course T by learning
additional question- and KC-specific parameters. Formally, the agnostic and the target model are
defined by weight vectors wS ∈ R|ΦS | and wT ∈ R|ΦS |+|ΦT | respectively. We use L2 regular-
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ization to subject the target weight vector wT to a Gaussian prior N ((wS,0)
⊤, 1). We control

the degree of regularization using a penalty parameter λ ∈ R≥0. The corresponding regularized
maximum likelihood objective is

wT = arg min
w∈Rd

λ

2
∥w −

(
wS

0

)
∥22 +

∑
s∈DT

ts∑
t=1

L(fw(qs,t,xs,1:t), ys,t). (3.5)

By using a prior for wT that is based on the previously learned wS , we can mitigate over-
fitting and can learn a suitable target model using only very limited training data DT . With
increasing amounts of recorded learning histories in DT the optimization objective focuses in-
creasingly on model fit. For our experiments we determine the penalty parameter value by eval-
uating λ ∈ {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 100} using the first split of a 5-fold cross validation on
the C6 training data. We found λ = 5 to be most effective for different amounts of tuning data
and use it for all our experiments.

Evaluation Methodology
As is common in prior work [44, 72, 179, 204] we filter out students with less than ten answered
questions. In the naive transfer setting, we use each course once to simulate a new target course
T ∈ {C6,C7,C8,C9,C40}. For each target T we train one course-agnostic performance model
using data from the other four courses and then evaluate prediction on unseen target dataset DT .
For the inductive transfer experiments we perform a 5-fold cross-validation on the student level
where in each fold 80% of students are used as training set DT,train and the remaining 20% are
used as test set DT,test. To simulate small-scale training data we sample a limited number of
students (5, 10, . . . ) from training set DT,train. Because the ElemMath2021 courses tend to
introduce topics in the same sequential order we only select students that reached the last topic
– sampled students might have skipped or revisited individual topics. This approach mimics
the case where the course designer can collect interaction log data from a small number of stu-
dents during a pilot study before large-scale deployment. We report model performance using
accuracy (ACC) and area under curve (AUC) metrics. AUC is a common evaluation metric for
SPMs which can be interpreted as the probability that the model ranks a random correct student
response higher than a random incorrect response.

Our code builds on the public GitHub repository by Schmucker et al. [204] which implements
various SPMs. We build on their regression models and leave their hyperparameter choices un-
changed. We implemented the BKT experiments using pyBKT [15]. For our naive and inductive
transfer experiments we rely on PyTorch [171] and train each regression model for 200 epochs
using the Adam optimizer [100] with learning-rate α = 0.001. As a reference, Table 3.4 provides
average performance metrics of conventional SPM approaches that were trained and tested on
the same course using a 5-fold cross-validation.

3.5 Experiments

We evaluate the proposed transfer learning techniques using student interaction sequence data
from five different mathematics courses taken from the ElemMath2021 dataset (Section 3.3).
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Table 3.4: Reference model performance. Average ACC and AUC metrics achieved by conven-
tional course-specific student performance models that were trained and tested on data from the
same course. Largest observed ACC and AUC variances over five-fold test data are both 0.01%.

C6 C7 C8 C9 C40 Average
model \ in % ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC
Always correct 71.30 50.00 69.62 50.00 69.47 50.00 68.68 50.00 62.38 50.00 68.29 50.00
BKT 74.89 73.39 71.66 69.35 72.24 70.43 72.01 70.09 68.09 71.00 71.78 70.85
PFA 74.66 73.02 71.52 69.19 72.13 70.21 71.87 69.94 67.85 70.87 71.61 70.65
IRT 75.52 75.66 73.05 73.22 73.28 73.21 72.40 72.36 68.66 72.05 72.58 73.30
DAS3H 77.31 78.15 74.59 76.06 75.05 76.18 74.09 75.38 70.87 75.20 74.38 76.19
Best-LR 78.42 80.30 75.95 78.44 76.58 78.97 76.33 79.08 73.10 78.07 76.08 78.97
Best-LR+ 78.75 80.85 76.18 78.83 76.90 79.39 76.69 79.58 73.62 78.81 76.43 79.49
A-AugLR 74.40 69.90 72.05 67.80 72.45 68.49 72.83 70.80 68.38 70.42 72.02 69.48
A-AugLR+KC+quest 78.66 80.74 76.08 78.69 76.86 79.25 76.68 79.54 73.57 78.72 76.37 79.39

Table 3.5: Naive transfer feature evaluation. We used each of the five courses to simulate a
new target course and trained course-agnostic student performance models using the A-BestLR+
feature set augmented with one additional feature on data from the other four courses. We then
evaluated AUC and ACC performance on the new target course. The marker ✗ indicates which
additional features yielded the largest improvements and were included in the A-AugLR model.

C6 C7 C8 C9 C40 Average
feature \ in % ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC Imprv
A-BestLR+ (baseline) 73.86 67.33 71.62 65.41 71.92 65.79 72.36 68.92 67.59 68.31 71.47 67.15
current lag time 73.91 67.48 71.55 65.42 72.00 66.00 72.40 69.02 67.65 68.38 71.50 67.26 ✗

prior resp time 73.94 67.61 71.57 65.39 72.02 65.98 72.39 69.12 67.46 68.41 71.48 67.30 ✗

learn. context one-hot 73.83 67.24 71.65 65.56 71.94 65.95 72.38 69.02 67.65 68.70 71.49 67.29 ✗

learn. context counts 73.87 67.38 71.53 65.33 72.04 65.79 72.41 69.09 67.71 68.54 71.51 67.23 ✗

difficulty one-hot 74.09 68.63 71.88 66.80 72.22 67.21 72.54 69.71 67.82 68.84 71.71 68.24 ✗

difficulty counts 73.84 67.34 71.60 65.56 71.93 66.00 72.33 69.00 67.59 68.52 71.46 67.28 ✗

prereq counts 73.88 67.27 71.58 65.44 71.91 65.83 72.31 68.92 67.55 68.28 71.45 67.15
postreq counts 73.61 66.48 71.68 65.03 71.98 65.96 72.38 69.22 67.39 68.15 71.41 66.97
videos watched counts 73.84 67.32 71.59 65.41 71.95 65.75 72.30 68.91 67.52 68.20 71.44 67.12
reading counts 73.83 67.41 71.60 65.48 71.96 65.82 72.37 68.93 67.53 68.19 71.46 67.17

In the naive transfer setting we first evaluate the utility of different features and then identify a
set of features that can be used to train accurate course-agnostic SPMs. In the inductive transfer
setting we show our approach yields more accurate performance predictions than conventional
modeling approaches when only small-scale student data is available to both.

Naive Transfer

Feature Evaluation

We evaluate the benefits of different features for course-agnostic performance modeling. For
each feature, we train an augmented A-Best-LR+ model using the A-Best-LR+ feature set plus
one of several possible additional features, described below. We use A-Best-LR+ because it
combines features that were found most useful in earlier SPMs and it yields the most accurate
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Table 3.6: Naive transfer performance. We used each of the five courses to simulate a new target
course and trained course-agnostic performance models using student interaction data from the
other four courses. We then evaluated AUC and ACC performance on the new target course.
We highlight the fact that these models are stripped from all course-specific parameters (e.g.,
question- and KC- difficulty) and can be used to analyze student interaction data from any course.

C6 C7 C8 C9 C40 Average
model \ in % ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC
Always correct 71.30 50.00 69.62 50.00 69.47 50.00 68.68 50.00 62.38 50.00 68.29 50.00
A-BKT 73.25 63.29 70.58 60.87 71.04 60.85 70.93 62.30 65.56 63.87 70.27 62.57
A-PFA 73.27 63.54 70.75 60.59 71.13 61.23 70.92 62.29 65.55 63.13 70.32 62.16
A-IRT 59.50 61.82 58.36 59.55 57.50 59.45 58.04 60.96 58.33 62.72 58.35 60.90
A-DAS3H 73.29 63.70 70.81 60.84 71.15 61.31 70.98 62.41 65.59 63.54 70.36 62.36
A-Best-LR 73.55 66.38 71.35 64.17 71.74 65.01 71.99 67.87 67.13 66.86 71.15 66.06
A-Best-LR+ 73.86 67.33 71.62 65.41 71.92 65.79 72.36 68.92 67.59 68.31 71.47 67.15
A-AugLR 74.28 69.11 71.80 67.21 72.35 68.19 72.76 70.52 68.05 69.52 71.85 68.91

predictions among all considered course-agnostic baseline models in our experiments (Table 3.6).
Table 3.5 shows the ACC and AUC scores when adding each of several additional features to

A-Best-LR+. The most useful additions are the one-hot features that encode question difficulty
ratings assigned by human domain experts during content creation – these improve performance
on average over all five courses by 0.24% for ACC and 1.07% for AUC. The one-hot features that
encode the learning context a question is placed in, improve the average AUC score by 0.14%.
The count features that track the number of prior correct and incorrect responses to questions of
a certain difficulty or learning context, lead to smaller improvements compared to their one-hot
counterparts. The lag time and response time features improve AUC scores on average by 0.15%
and 0.11%. The post- and pre-requisite features derived from the KC dependency graph did not
benefit the course-agnostic SPMs. Similarly, the count features that summarize the students’
video and reading material usage did not improve the performance predictions. One limitation of
these two count features is that they do not capture the relationship between the content covered
by individual learning materials and questions.

Agnostic AugmentedLR

We have identified a set of features that individually improve the performance predictions made
by the A-Best-LR+ model (highlighted in Table 3.5). Inspired by the recent AugmentedLR
paper [204], we propose a course-agnostic A-AugLR model by augmenting the A-Best-LR+
feature set with these highlighted features: lag and response time, learning context and question
difficulty features. Performance metrics for A-AugLR and the naive transfer baselines defined in
Section 3.4 are provided by Table 3.6. We observe that the course-agnostic models derived from
BKT, PFA, IRT and DAS3H struggle in the naive transfer setting and yield low AUC scores.
Our A-IRT implementation that only uses a single question difficulty parameter suffers from
fluctuating student ability estimates and low prediction accuracy. The A-Best-LR feature set
contains count features that describe the student’s overall number of prior correct and incorrect
responses which provides an advantage over the A-DAS3H model. A-Best-LR+ uses various
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Table 3.7: A-AugLR Evaluation: ACC and AUC metrics achieved by A-AugLR models when
trained and tested on different source and target course pairings.

ACC AUC
train / test C6 C7 C8 C9 C40 C6 C7 C8 C9 C40
C6 74.43 71.82 72.25 72.53 67.83 70.00 66.91 67.70 69.88 69.26
C7 73.98 72.09 72.32 72.61 67.96 68.75 67.95 67.99 70.16 69.45
C8 74.25 71.92 72.55 72.73 67.86 68.90 67.05 68.68 70.49 68.80
C9 74.23 71.88 72.43 72.93 68.03 68.76 66.73 67.90 71.07 69.28
C40 73.87 71.77 71.97 72.41 68.54 67.81 66.54 66.69 69.60 70.68

additional features to capture aspects of long- and short-term student performance over time. On
average, its predictions yield 0.37% higher ACC and 1.09% higher AUC scores compared to the
A-Best-LR model it builds upon.

The A-AugLR model yields the best predictions in the naive transfer setting. Compared to
A-Best-LR+, the A-AugLR models are on average 0.38% more accurate and their AUC scores
are 1.76% higher. This shows how additional information provided by domain experts during
content creation can enable accurate performance predictions on cold start courses in the naive
transfer setting. Importantly, even though our course-agnostic A-AugLR models were fitted
using data from different source courses their prediction accuracy is on par with course-specific
BKT and PFA models which were trained on target course data (compare the A-AugLR row in
Table 3.6 to the BKT and PFA rows from Table 3.4). This shows how A-AugLR can mitigate the
cold-start problem for new courses even for the very first student.

Single Course Transfer

So far we learned course-agnostic SPMs for each target course T ∈ {C6,C7,C8,C9,C40} by
training on combined log data from the other four courses. This raises the question if instead of
using data from multiple courses, one should try to identify and train on the single course that is
most similar to the target domain. Table 3.7 tries to answer this question by training and testing
course-agnostic A-AugLR models on different pairs of courses.

Unsurprisingly, the A-AugLR models that are trained and tested on the same course exhibit
the highest ACC and AUC scores (diagonal entries). Compared to these optimal A-AugLR
models – which require target course data for training – the accuracy gaps between the most
and least compatible course pairs vary between 0.12% (C8/C9) and 0.71% (C6/C40). The AUC
score gaps are larger and vary between 0.58% (C8/C9) and 2.19% (C6/C40). The C6/C40 pair
is least compatible for naive transfer. One possible reason for this is the fact that C6 and C40
exhibit the highest (71.3%) and lowest (62.4%) average correctness rates among all courses. The
C8/C9 pair is most compatible for naive transfer. Both exhibit similar average correctness rates
(69.5%/68.7%), number of KCs (159/157) and students answer a similar number of questions on
average (187/165).

Next, we compare the predictive performance of the A-AugLR models that were trained and
tested on the target course (diagonals of Table 3.7 with the A-AugLR models that were trained
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Figure 3.2: Relationship between the amount of available training data (measured in number of
students) and ACC/AUC metrics achieved by the learned student performance models for each
of the five courses. The dashed red line indicates the performance of a course-agnostic A-AugLR
model that was pre-trained on student data from the other four courses and did not use any target
course data. The dot-dashed red line indicates the performance of our inductive transfer approach
(I-AugLR) which uses the additional data to tune the A-AugLR model to the target course. The
course-specialized S-AugLR model is identical to I-AugLR, but does not leverage a pre-trained
A-AugLR model. All results are averaged using a 5-fold cross validation.
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using data from the other four courses (Table 3.6). Here the average ACC and AUC performance
gaps are 0.26% and 0.77% respectively. Overall, we conclude that for the courses considered in
this chapter the exact course pairing tends to make make little difference in naive transfer perfor-
mance. There is no clear criterion for selecting the single best course for transfer, also because
we do not know the target course correctness rate before deployment. Combining the data from
all non-target courses for training proved itself to be an effective strategy. We emphasize that all
considered courses cover mathematics topics for elementary school students. One might observe
larger differences in transfer performance when analysing more diverse courses.

Inductive Transfer
As discussed in Section 3.4, extending the course-agnostic A-AugLR feature set with features
that capture question- and KC-difficulty parameters improves performance predictions substan-
tially (Table 3.3). Here, we evaluate our inductive transfer learning approach (I-AugLR) which
uses small-scale target course data DT to tune a course-agnostic A-AugLR model – pre-trained
on log data from the other courses – to the target course by learning course-specific difficulty pa-
rameters. We also evaluate the performance of a course-specific model (S-AugLR) which use the
same feature set as I-AugLR, but does not leverage a pre-trained A-AugLR model. We measure
the amount of target course data used for tuning in number of students who reached the end of
the course. We experiment with student numbers in {0, 5, 10, 25, 50, 100, 250, 500, 1000}. The 0
student case is equivalent to the naive transfer setting.

Figure 3.2 compares the performance of our inductive transfer learning method (I-AugLR)
with conventional SPM approaches and S-AugLR approach which were trained using only target
course data DT . By tuning a pre-trained A-AugLR model, I-AugLR is able to mitigate the
cold-start problem for all courses and benefits from small-scale log data. Given as little as data
from 10 students, the I-AugLR models consistently outperform standard BKT and PFA models
that were trained on log data from thousands of target course students (Table 3.4). Among all
considered performance models, I-AugLR yields the most accurate performance prediction up
to 25 students for C7, up to 100 students for C6 and C8 and up to 250 students for C9 and C40.
Among the non-transfer learning approaches, Best-LR is most data efficient and yields the best
performance predictions when training on up to 500 students. Best-LR+ builds upon Best-LR
by using various additional features. While Best-LR+ outperforms Best-LR when training on
thousands of students (Table 3.4), it performs worse when only limited training data is available.

3.6 Discussion

Our experiments have shown that the proposed transfer learning techniques are able to miti-
gate the SPM cold-start problem for new courses by leveraging student interaction data from
existing courses (Figure 3.8). In the naive transfer setting where no target course data is avail-
able, the course-agnostic A-AugLR models that were trained on log data from existing courses
yielded prediction accuracy on par with standard BKT and PFA models that use training data
from thousands of students in the new course. One key ingredient of our course-agnostic models
is additional information about question difficulty and learning context provided by human do-
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Table 3.8: Overview of data types utilized by each student performance model. Depending on
the available data types, different course-agnostic models can be employed (e.g., A-Best-LR,
A-AugLR). Inductive transfer models (e.g., I-AugLR) efficiently leverage new course data by
fine-tuning pre-trained course-agnostic models, thereby enhancing prediction accuracy through
the learning of KC- and question-specific parameters.

Data Source
Model Data Types Prior Course New Course

A-Best-LR KC Model ✓ ✗

Question-Response Data
A-AugLR KC Model ✓ ✗

Question-Response Data
Response Time Data
Learning Context Data
Expert Difficulty Labels

I-AugLR KC Model ✓ ✓

Question-Response Data
Response Time Data
Learning Context Data
Expert Difficulty Labels

main experts during content creation. While these features improve SPM predictions, the need
for manual annotations puts an additional load on the content creators. Further, the success of our
transfer approach depends to a degree on the domain expert’s ability to assign accurate question
difficulty labels. As an alternative to manual annotations, multiple techniques for inferring ques-
tion difficulty estimates directly from the question text have been proposed [27, 28, 89, 129].
Count features derived from manually specified KC pre-requisite graphs are beneficial when
training and testing performance models on data from the same course [204], but they did not
improve the course-agnostic performance predictions in our naive transfer setting. KC prereq-
uisite information is highly domain specific and simple count features are likely not enough for
knowledge transfer between courses. Future work on learning higher-order prerequisite graph
features using deep learning techniques [263] might improve transfer performance.

To be applicable to any course, the naive transfer learning models discussed in this chapter
avoid features that capture course-specific attributes. One inherent limitation of the naive transfer
learning setting is that our models cannot learn parameters related to the difficulty of individual
questions and KCs in the target course and only have access to discrete difficulty labels as-
signed by human domain experts. Table 3.3 trains and tests on target-course data to compare the
performance of course-agnostic A-AugLR models with A-AugLR models that learn additional
course-specific question- and KC- difficulty parameters. On average across the five courses, the
A-AugLR models which were allowed to learn course-specific parameters yielded 4.5% higher
ACC and 7.9% higher AUC scores than their course-agnostic counterparts. This emphasizes the
importance of learning difficulty parameters from log data in addition to the difficulty ratings
provided by human experts. Future work might compare the utility of difficulty ratings provided
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by domain experts with difficulty ratings derived from the question text [27, 28, 89, 129].
In the inductive transfer setting we use small-scale target course data (e.g., collected during

a pilot study) to tune pre-trained course-agnostic SPMs. This allows us to overcome the limita-
tions of the naive transfer setting by learning target course specific question- and KC- difficulty
parameters. Our parameter regularized transfer approach yields better performance predictions
than conventional modeling approaches when only limited target course data (<100 students) is
available (Section 3.5). This makes the inductive transfer approach an attractive option when one
can run a pilot study with a small number of students before large-scale deployment. Surpris-
ingly, we found that among the non-transfer learning approaches, Best-LR [72] yielded the most
accurate predictions when training on less than 500 students for all five courses. This is inter-
esting because low-parametric models such as BKT [50], PFA [174] or IRT [188] are commonly
believed to be more data efficient than more complex logistic regression models that contain
many more parameters that must be learned. What sets Best-LR apart from these three models,
is that its parameters describe student performance using multiple levels of abstraction (question-
level, KC-level and overall-level). Future work might investigate this phenomenon further using
log data from multiple ITSs covering different subjects and grade levels.

One limitation of our study is that it focuses on a set of five courses offered by the same
ITS. This has advantages because the course log data is of consistent format and content authors
follow similar protocols. Still, it prevents us from answering the question of whether SPMs
are transferable between different tutoring systems [20]. Another related limitation is that all
considered courses cover mathematics topics for elementary school students. Our study did
not investigate the transferability of SPMs across different subjects or grade levels (i.e, middle
school, high school, . . . ). While our experiments indicate that our naive transfer approach is
robust towards the choice of source and target course pairing (Section 3.5), results may vary in
settings with larger differences between individual courses.
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Chapter 4
Learning to Select Useful Hints

This Chapter is based on work published as:
Schmucker, Robin, Pachapurkar Nimish, Bala, Shanmuga, Shah, Miral, Mitchell, Tom (2023).
Learning to Give Useful Hints: Assistance Action Evaluation and Policy Improvements. In
Proceedings of the 18th European Conference on Technology Enhanced Learning (ECTEL’23),
383–398, Aveiro, PT, Springer

In this chapter we describe a fielded online tutoring system that learns which of several can-
didate assistance actions (e.g., one of multiple hints) to provide to students when they answer
a practice question incorrectly before they submit a second attempt. The system learns, from
large-scale data of prior students, which assistance action to give for each of thousands of ques-
tions, to maximize measures of student learning outcomes. Using data from about one million
students in six online science courses, we quantify the impact of different assistance actions for
each question on a variety of outcome measures (e.g., response correctness, practice completion),
framing the machine learning task as a multi-armed bandit problem. Employing offline policy
evaluation, we study relationships among the different measures of learning outcomes, leading
us to design an algorithm that for each question decides on the most suitable assistance policy
training objective to optimize the students’ success at their second attempt answering the cur-
rent question, as well as their overall performance for the current practice session. We evaluate
the trained policies for providing assistance actions, comparing them to randomized assistance
policies in live use in over 166,000 practice sessions, showing significant improvements resulting
from the system’s ability to learn to teach better based on data from earlier students in the course.
We discuss our design process and challenges we faced when fielding data-driven technology,
providing insights to designers of future learning systems. The assistance policies learned by our
system now support thousands of students studying science concepts each day.

4.1 Introduction

In their effort to create effective learning systems, ITS designers are confronted with a plethora
of design decisions. These decisions range from the specification of general instructional design
principles [106] to the creation of individual learning and practice materials. Designers rely on
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their domain expertise and consider effects of different design choices, but in many cases it is
difficult to predict which exact choice will benefit students the most [153]. Often, thousands of
design decisions have to be made on a case-by-case basis (e.g., which exact hint is most effective
for this specific question). In this context, the promise of data-driven design approaches is that
they can leverage system usage data to evaluate the effects of different design choices inside the
ITS on student learning to improve outcomes by refining the ITS automatically over time [107].

Here we describe an online tutoring system that embraces a data-driven design approach by
using large-scale student data to learn which of several candidate assistance actions to provide
to students after they answer a practice questions incorrectly. We report results from a study–
analysing data from one million students in six online science courses–evaluating the impact of
individual assistance actions and assistance policies on different measures of learning outcomes.
We discuss rationales behind our methodology and provide generalizable insights for the design
of future tutoring systems. The main contributions of this work include:

• Quantifying effects of assistance. We evaluate effects of over 43,000 individual assis-
tance actions on a variety of learning outcome measures (e.g., practice completion). We
study the relationships among different measures and design an assistance policy training
algorithm that for each question decides on the most suitable training objective to optimize
student success at the current question as well as overall session performance.

• Offline policy optimization. We compute statistically significant estimates on the effects
of multi-armed bandit policies trained to optimize different learning outcome measures.
Studying assistance actions selected by these policies, we find that there is no single best
assistance type (e.g., hint, definitions of keywords in the question text). We further find that
assistance actions that benefit students the most when reattempting the current question are
not always best for promoting performance on future questions.

• Live A/B evaluation. We evaluate the assistance policy trained using our algorithm in
comparison to a randomized assistance policy in live use in over 166,000 learning ses-
sions. The system’s ability to learn to teach better using data from prior students improves
learning outcomes of future students significantly.

4.2 Related Work

Here we start with an overview on recent works that focus on quantifying the effects of individual
learning materials inside learning systems based on student interaction log data. We further
discuss how these works relate to continuous research efforts on learning effective assistance
policies via bandit and reinforcement learning (RL) algorithms.

Evaluating Treatment Effects inside ITSs
Initially the effects of ITSs on student learning were evaluated at the system level by comparing
a group of students that uses an ITS to a control group in a post-test [112]. Later research
focuses on studying the effects of individual instructional design choices [106] and conducts
experiments with students that interact with different configurations of the same learning system
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(e.g., [139, 151, 184, 208, 231]). With the increasing adoption of online tutoring systems, large-
scale student log data becomes available which enables investigating the effects of increasingly
detailed system design choices, up to the choice of individual practice questions and hints.

As part of this development, the ASSISTments ecosystem [81] introduced AXIS [241], the
E-TRIALS TestBed [161] and the TeacherASSSIST system [172] to allow educators and re-
searchers to create and evaluate the effectiveness of different problem sets and on-demand assis-
tance materials. In the context of massive open online courses (MOOCs), DynamicProblem [242]
was introduced as a proof-of-concept system that supports the deployment of bandit algorithms
to collect feedback from students by asking them about the helpfulness of individual assistance
materials. Relatedly, the MOOClet framework [191] allows instructors to specify multiple ver-
sions of educational resources and to evaluate them in A/B tests using randomization and bandit
algorithms. Carnegie Learning introduced the UpGrade system [63] as a flexible A/B testing
framework designed to allow easy integration into various learning systems.

In this chapter we describe a fielded online tutoring system at CK12.org, that learns to pro-
vide effective assistance actions (e.g., choose one of multiple available hints) to support students
after they answer a practice question incorrectly, but before they reattempt the question. We use
offline policy evaluation techniques [122] to leverage log data capturing over 23,800,000 assis-
tance requests from about one million students in six online science courses. The unprecedented
scale of this data enables us to produce statistically significant and unbiased estimates regarding
the effects of individual assistance actions on different measures of student learning outcomes.
Using insights from these analyses, we design a reward function and train multi-armed bandit
policies [117] that optimize the student’s success at answering the current question as well as
their overall practice session performance. We evaluate the effectiveness of the learned bandit
policy in live use in over 166,000 practice sessions, showing significant improvements in the
system’s ability to provide students with effective assistance during practice activities.

Data-Driven Assistance Policies
The idea of using bandit and RL algorithms to learn effective instructional policies has a long
history [59]. Here, we provide a concise overview of research that uses data-driven algorithms to
support students in the problem solving process (i.e., the ITS’s inner loop). For a comprehensive
review of RL for education we refer to surveys by Doroudi et al. [59] and Singla et al. [214].

Barnes and Stamper [24] induced a Markov decision process (MDP) based on hundreds of
student solution paths and used RL to generate new hints inside a logic ITS. Chi et al. [41,
42] modeled a physics tutor via an MDP with 16 states and learned a RL policy to improve
student learning outcomes in a classroom setting by deciding whether to ask the student to reflect
on a problem or to provide them with additional information. Georgila et al. [71] used Least-
Squares Policy Iteration [116] to learn a feedback policy for an interpersonal skill training system
using data describing over 500 features from 72 participants. Ju et al. [94] identified critical
pedagogical decisions based on Q-value and reward function estimates derived from logs of 1,148
students inside a probability ITS. Relatedly, Ausin et al. [13, 14] explored Gaussian Process- and
inverse RL-based approaches to address the credit assignment problem inside a logic ITS. A
recent series of works [62, 217, 218] used a random policy to collect data from 500 students in
an operational command course and explored offline RL techniques to learn adaptive scaffolding
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Figure 4.1: Example views from the biology concept Human Chromosomes. [Left] In the Les-
son section the student interacts with multi-modal learning materials. [Right] During Adaptive
Practice the student develops and tests their understanding by answering practice questions. In
the shown example the system displays a paragraph with illustration to assist the student after an
initial incorrect response before the student reattempts the question.

policies based on the ICAP [39] framework.

In contrast to the above works which largely focus on personalized assistance action selec-
tion, this chapter employs a multi-armed bandit approach that for each of 10,210 questions learns
to select the teaching action that is most effective for the average student, given their first answer
to this particular question was incorrect. We use offline policy evaluation techniques [122] to
quantify the impact of each of 43,355 assistance actions on different learning outcome measures
(e.g., response correctness, practice completion) and study relationships among individual mea-
sures. While we will explore the potential of personalized assistance policies and heterogeneous
treatment effects in Chapter 5, here we combine a multi-armed bandit approach with large-scale
student log data to estimate the effects of individual assistance actions with high confidence.

Closely related is a recent study by Prihar et al. [183] that conducted a two-month long ex-
periment inside the ASSISTments platform to compare a multi-armed bandit algorithm based on
Thompson Sampling to a randomized assistance policy with respect to their ability to increase
students’ success on the next question by choosing effective support materials. The policies were
trained to select from a content pool featuring hints and explanations some of which included
images and videos. In their experiment with 2,923 questions they found the multi-armed bandit
algorithm to be only slightly more effective than the random policy and argued that this is due
to sample size limitations (on average 6.5 samples per assistance action). In contrast, our work
described in this chapter is able to accurately estimate the impact of individual assistance actions
on different measures of learning outcomes by having access to hundreds of samples for individ-
ual actions (Figure 4.3). Further, in contrast to Prihar et al. [183] we quantify treatment effects
by automatically displaying assistance in response to incorrect student responses (Figure 4.2)
which avoids self-selection effects when assistance is only provided upon student request.
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4.3 Flexbook 2.0 System

The CK-12 Foundation is a US-based non-profit company that provides millions of students
worldwide with access to free educational resources aligned to state curriculum standards. CK-
12 actively develops and hosts the Flexbook 2.0 system1, a web-based ITS that offers a variety
of courses targeting different subjects and grade levels. Each individual course consists of a se-
quence of concepts. Each individual concept has a Lesson section which offers learning materials
in the form of texts, illustrations, videos and interactive elements as well as an Adaptive Practice
(AP) section that allows students to practice and test their understanding (Figure 4.1).

From a high-level perspective, the AP section features an item response theory (IRT)-driven
question sequencing system (outer loop) that tries to select practice questions that match the stu-
dent’s current ability level (Goldilocks principle [106]). After the system selects a question, the
student enters a problem solving workflow (inner loop) illustrated by Figure 4.2. In the problem
solving workflow the student has the option to request a hint before submitting a first response
to the question. If the first response is incorrect, the system provides immediate feedback and
support by displaying one assistance action (e.g., a hint or important keyword definitions) and
asks the student to reattempt the question. Afterwards, the system uses the student’s first re-
sponse to update the student’s IRT-based ability estimate and selects the next practice question.
This process repeats until the student completes the AP session successfully by achieving ten
correct responses or until the question pool is exhausted in which case the student can reset and
reattempt the AP session. The Flexbook 2.0 system further uses the ability estimates to offer
dashboard functionalities that allow students to reflect on their personal performance and that
allow teachers to monitor the progress of their students.

This chapter centers on the question of how we can employ data-driven techniques to learn
an assistance policy that selects the most effective assistance action for each individual practice
question (Figure 4.2) with the goal of enhancing the AP system’s ability to provide students with
effective feedback. We consider six of CK-12’s science courses each used by hundreds of thou-
sands of middle and high school students each year and whose content has been developed and
refined for over 10 years. The courses cover hundreds of concepts related to biology, chemistry,
physics and earth science and practice questions each fall into one of five distinct categories:

• Multiple-choice: Questions with three or four different options and a single correct answer.
• Select-all-that-apply: Questions that require the student to select the correct subset of dis-

played response options.
• Fill-in-the-blank: Questions that require the student to fill in missing words in a sentence

or short paragraph.
• Short-answer: Questions that require the student to write a free-form answer typically

consisting of at most three words.
• True-false: Multiple-choice questions with two options. Students cannot reattempt this

type of question. The AP system selects non-true-false questions when available.
The AP system associates each practice question with a set of assistance actions that can

be used to provide feedback to incorrect student responses. All content was created by human

1https://www.ck12.org
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Figure 4.2: Problem solving workflow. The system learns an assistance policy that decides which
of several candidate assistance actions (e.g., one of multiple hints) to provide to a student after
they answer a practice question incorrectly before they reattempt the question.

domain experts employed by the CK-12 foundation. Most non-true-false question are associated
with 3 to 7 different assistance actions with some variations between the individual courses (Ta-
ble 4.1). Individual actions vary in information content and fall into one of six distinct categories:

• Hint: Typically a one or two sentence text or a relevant illustration designed to help the
student reflect on the question.

• Paragraph: A paragraph from the Lesson section that is relevant for the question. Can also
contain a related illustration.

• Vocabulary: Definitions of important keywords in the question text.
• Remove distractor: Removes one possible option before asking the student to reattempt

the question (only available for multiple-choice and select-all-that-apply questions).
• First letter: Displays first letter of the correct solution (only available for fill-in-the-blank

and short-answer questions).
• No assistance: Prompts the student to reattempt the question without providing additional

feedback. Serves as baseline for computing treatment effects of other assistance actions.

4.4 Methodology

We start by defining the task of learning to select effective assistance actions for different prac-
tice questions as a multi-armed bandit problem. We then describe the student log data collection
process that allows us to use offline policy evaluation techniques to estimate the effectiveness
of individual assistance actions. Finally, we describe different measures of learning outcomes
which we track in the experiments and we define a reward function to train assistance policies
that optimize students’ success at answering the current question, as well as their overall prac-
tice session performance. From a system design perspective we provide details on the software
architecture underlying our system in Appendix B.
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Table 4.1: Data collection overview. Shown questions refers to the number of times a ques-
tion was shown to a student. Student responses refers to the number of responses submitted by
students. Shown actions refers to the number of times an assistance action was shown to a stu-
dent after an first incorrect response. Average correctness indicates the fraction of correct first
responses across all students. Average completion indicates the fraction of practice sessions in
which students achieved ten correct responses.

Biology Chemistry Physics Life Sci Earth Sci Phys Sci
# of questions 12,496 7,538 1,780 4,833 4,797 5,018
# of assist. acts. 36,354 24,980 6,190 17,464 17,505 16,714
# of concepts 470 406 112 266 325 297
# of students 191,554 143,958 52,284 191,370 212,324 203,686
# of sessions 1,274,072 1,467,654 329,125 1,113,518 2,008,530 1,834,723
# of shown quests. 15,582,835 16,247,815 3,420,751 12,703,418 21,608,431 19,563,538
# of responses 20,425,691 21,049,821 4,367,063 16,713,933 26,399,756 23,994,522
# of shown acts. 4,842,856 4,802,006 946,312 4,010,515 4,791,325 4,430,984
avg. correctness 63.3% 66.0% 68.5% 63.1% 68.4% 69.0%
avg. completion 75.1% 61.8% 53.3% 60.6% 49.1% 51.6%
# of eval. quests. 1,336 2,355 551 1,815 2,107 2,046
# of eval. acts. 7,707 8,451 1,786 7,351 9,821 8,239
# acts./question 5.77 3.59 3.24 4.05 4.66 4.03

Formal Problem Statement
We denote the set of practice questions inside the system as Q = {q1, . . . , qk}. Each question
q ∈ Q is associated with a set of nq assistance actions Aq = {aq,1, . . . , aq,nq} that the system can
use to support students after their first incorrect response. In this work, we approach the problem
of learning one effective assistance policy for the entire practice system by learning one question-
specific multi-armed bandit policy πq for each practice question q ∈ Q. During deployment, πq

responds to each assistance query for question q by selecting one assistance action aq ∈ Aq and
in return receives a real-valued reward raq ∈ R which is assumed to be sampled from an action-
specific and time-invariant distribution Raq . The optimal question-specific assistance policy π∗

q

maximizes the expected reward by always selecting assistance action a∗q = arg maxaq∈Aq
E[raq ].

For us, multi-armed bandits are a framework that enables our system to automatically make
design decisions by learning from the observed behavior of earlier students. It is difficult for
experts to predict the most effective design ahead of time [153] and the bandit framework enables
the system to estimate the effects of potential design choices using student data to refine the ITS
automatically over time. Section 4.6 discusses benefits and limitations of our bandit formulation.

Data Collection
This study centers around six online science courses frequented by hundreds of thousands of
middle and high school students each year. Because these courses have been in continuous
refinement for over ten years, the course content bases contain multiple assistance actions for
individual questions. This raises the question of what type of assistance is most effective (e.g.,
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Figure 4.3: [Left] Cumulative distribution showing how incorrect student responses are dis-
tributed over all non-true-false questions (n = 7, 599) in the biology course. The x-axis indicates
the proportion of questions sorted in ascending order based on number of incorrect responses.
The y-axis indicates the cumulative proportion of incorrect responses for a subset of questions.
We observe that 80% of incorrect responses occur on only 15.4% of questions. [Right] His-
togram showing the number of samples available per assistance action for each of the 1, 336
biology questions studied in the offline evaluation experiments.

targeted hints or related keyword definitions?). On a more fine-granular basis, even if the domain
experts decide to configure the system with a specific type of assistance, it is still open which
action in the candidate pool is most effective (e.g., which exact hint among the available ones?).

Responding to these questions, we conduct a large-scale evaluation to quantify the impact
of individual assistance actions on different measures of student learning outcomes. In a first
step, from August 23rd, 2022 to January 11th, 2023, a randomized assistance policy was in-
troduced into the problem solving workflow of the biology course (Figure 4.2). Each time this
policy is queried to provide assistance for a question q ∈ Q, it uniformly (with same chance)
chooses one action at random from the set Aq. In the second step, after confirming the real world
benefits of our methodology, we applied the same methodology to evaluate assistance actions
inside the other five science courses from January 19th, 2023 to May 11th, 2023. An overview
of the data collected for each individual course, is provided by Table 4.1. Overall, we collected
logs from about one million students, that interacted with over 36,000 questions and more than
119,000 assistance actions. Overall, the randomized policy responded to over 23,800,000 assis-
tance queries. One interesting observation we made during the data collection process is that the
majority of observed student errors occur on a rather small number of questions. For example,
in the biology course 80% of incorrect responses occur on only 15.4% of questions (Figure 4.3).
This shows that we can respond to the majority of assistance queries that occur during student
practice by learning policies for a smaller number of questions.
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Measures of Learning Outcomes

A central decision in our data-driven design process is the definition of a reward function that
takes as input log data generated by a student practice session and that outputs a reward value
that quantifies the degree to which the assistance provided by the system promoted successful
learning. The reward function guides the assistance policy training process by formally defining
which learning outcome measures to focus on and shapes the experience of future students.

In conversations the designers of the practice system mentioned promoting growth in student
knowledge as well as student engagement as their primary objectives. Unfortunately, student
knowledge and engagement are both unobservable variables and the system is limited in that it
can only access data that describes the student’s observable interactions with the website inter-
face. Because of this, we compiled–in close collaboration with domain experts–a list specifying
different measures of learning outcomes that can be computed from observed student log data:

• Reattempt correct: Binary indicator ({0, 1}) of whether the student is correct when they
reattempt the question after an assistance action.

• Student ability: 3PL-IRT student ability estimate based on all first attempt responses com-
puted at end of session [51].

• Session success: Binary indicator ({0, 1}) of whether the student achieves 10 correct re-
sponses in the practice session overall.

• Future correct rate: Proportion of student’s correct responses on first attempts on questions
after an assistance action.

• Next quest. correct: Binary indicator ({0, 1}) of whether the student is correct on the next
question after the assistance action [183].

• Future response time: Measures the student’s average response time on questions after an
assistance action in seconds (individual question response time values are capped at 60
seconds (95% percentile) to mitigate outliers).

• Student confidence: Tertiary indicator ({1, 2, 3}) of the student’s self-reported confidence
level at the end of the practice session.

We use student log data to evaluate the effects of individual assistance actions and policies
on these different measures of learning outcomes. We further study the relationships between
the individual measures to understand synergies and potential trade-offs. Based on insights from
these analyses–discussed in detail in Section 4.5–we define our final reward function R as

R(s, q) = 0.4 · reattemt_correct(s, q) + 0.6 · student_ability(s). (4.1)

Here, s represents information collected during a student’s entire practice session and q indicates
the question for which assistance was provided to the student. The reward value is computed as
a weighted sum that considers the student’s success at reattempting question q as well as their
overall performance in the practice session. The main motivation behind this function is that we
want to provide assistance in a way that keeps the student engaged by aiding them in solving the
current question, and that also conveys generalizable insights, that help the student solve other
questions in the practice session.
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Offline Policy Optimization and Evaluation

Data Preprocessing

Before assistance policy optimization and evaluation we perform the following preprocessing
steps: (i) To avoid early dropouts, we only consider practice sessions in which students respond
to at least five different questions. (ii) To avoid memorization effects, we only consider each
student’s first practice attempt for each concept. (iii) To avoid confounding, we estimate the
effects of individual assistance actions using only practice sessions in which the student did not
request a hint before their first attempt on that question. (iv) To achieve high confidence in our
effect estimates we focus on practice questions with at least 100 samples per assistance action. As
a result, we consider a set of 10,210 unique questions associated with 43,355 actions (Table 4.1).

Policy Optimization

To train and evaluate the effects of different assistance policies without conducting repeated live
experiments we rely on offline policy optimization [122] and leverage the log data collected by
the randomized exploration policy. First, we estimate the effectiveness of individual assistance
actions by computing the mean value for each of the learning outcome measure across all rel-
evant practice sessions. From there, our experiments study various multi-armed bandit policies
trained to optimize different learning outcome measures. In preliminary experiments, we found
that when using measures with high variance as training objectives (i.e., student ability and ses-
sion success), the conventional policy optimization approach–that for each question selects the
assistance action estimated to be optimal–struggles to reliably identify actions that perform well
in evaluations on separate test data. For the average question we found optimizing policies for
reattempt correctness–a measure with focus on a single question and thus lower variance–to
be the most effective way to also boost student ability and session success due to its positive
correlations to the other measures (Figure 4.6 left).

Still, for a sizeable number of questions the conventional approach yielded better policies
when directly optimizing for the measure of interest. These tended to be questions with more
available data or with larger differences in the effects of individual assistance actions. This
motivated the design of a training algorithm that for each question automatically decides whether
we have sufficient data to optimize the measure of interest (e.g., reward) directly or whether we
should use the low variance reattempt correctness measure. We first use the training data to
identify the two actions that optimize the measure of interest and reattempt correctness. We then
conduct a one-sided Welch T-Test to decide whether the former has a significantly larger effect
on the measure of interest than the reattempt correctness action and if not select the low variance
reattempt correctness measure as the question-specific training objective.

Policy Evaluation

In the offline evaluation experiments we report mean performance estimates derived from a 20
times repeated 5-fold cross validation. In each fold 80% of practice sessions are used for policy
training and the remaining 20% are used for testing. This process yields a statistically unbiased
estimate of the bandit policy’s performance as it simulates a series of interactions with different
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students inside the system and avoids overfitting effects of sampling with replacement-based
approaches [122]. For the significance test we determine a suitable p-value for each individual
outcome measure by evaluating p ∈ {0.01, 0.02, . . . , 0.1} via cross-validation. The final policy
used in live A/B evaluation is trained using data from all practice sessions and optimizes our
reward function as defined by Equation 4.1.

4.5 Results

Assistance Action Evaluation

We estimate the effects of individual assistance actions on different measures of student learning
outcomes by leveraging the log data collected by the randomized assistance policy (details in
Section 4.4). This allows us to quantify for each question how the different ways of supporting
students with assistance after an incorrect response impact students’ overall practice experience.

One example of the results of this evaluation process is illustrated by Figure 4.4. The fig-
ure shows question text, the set of available assistance actions as well as estimates of how each
individual action affects different outcome measures. We observe that the paragraph that pro-
vides detailed information leads to the highest reattempt correctness rate. In comparison, hint 1
leads to a lower reattempt correctness rate, but conveys insights that yield better overall session
performance as captured by the student ability score. Further, we can identify assistance actions
that are not helpful to students. For example, hint 2 and vocabulary both provide information
that is relevant for the question, but lead to worse outcome measures than showing no assistance.
Overall, these estimates are very compelling for the content creators, as they allow them to reflect
on how the individual learning resources they designed affect the student learning experience. In
their work, the designers can refer to questions where assistance has large effects on learning
outcomes, and they can identify cases where assistance content should be revised.

To gain insight into the relationships between the different learning outcome measures we
analyse average within question correlations across the 1, 336 biology questions (Figure 4.6).
The focus on within question correlation instead of total correlation makes us more robust to-
wards effects caused by systematic differences between individual questions (e.g., due to varying
difficulty levels). We find reattempt correctness rate to be most correlated with the IRT-based
student ability estimates (r = 0.27) and mostly uncorrelated with next question correctness
(r = 0.04). This highlights that while assistance actions can improve students’ overall ses-
sion performance, due to differences between individual questions, one needs to consider more
than just the next question. Matching our intuition, we observe that student ability estimates
are correlated with other performance indicators including session success (r = 0.35), future
correctness (r = 0.64) and next question correctness rates (r = 0.36) which all consider first at-
tempt response correctness. Student response time exhibits a low positive correlation to student
ability (r = 0.23) which might be due to different problem solving strategies (e.g., some stu-
dents rely more on assistance actions). We find that the self-reported student confidence measure
shows very low correlations with other measures. This might be due to the system’s IRT-based
question sequencing strategy that assigns more difficult questions to students exhibiting higher
performance levels.
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(A) Practice Question

(B) Assistance Actions

• hint 1: The prefix mono- means single or alone.

• hint 2: The word integral means essential or necessary to make whole.

• paragraph: Transmembrane proteins span the entire plasma membrane. Trans-
membrane proteins are found in all types of biological membranes. Integral mono-
topic proteins are permanently attached to the membrane from only one side.
• vocabulary:
- cytoplasm: Material inside the cell membrane, including the watery cytosol and other
cell structures except the nucleus if one is present.
- protein: A peptide that is greater than one hundred amino acids in length.

(C) Assistance Action Performance Estimates
n Reward Reatt. Cor. Stud. Abil. Sess. Succ.

no assist. 872 0.025 ±.079 0.313 ±.031 -0.167 ±.125 0.925 ±.017
hint 1 986 0.394 ±.077 0.693 ±.029 0.195 ±.121 0.934 ±.015
hint 2 940 -0.029 ±.081 0.255 ±.028 -0.219 ±.130 0.920 ±.017
paragraph 940 0.363 ±.078 0.774 ±.027 0.088 ±.121 0.935 ±.016
vocabulary 936 -0.033 ±.078 0.259 ±.028 -0.228 ±.126 0.929 ±.016

Figure 4.4: Example of assistance action evaluation for one individual question. By showing
different assistance actions to different students we can quantify the effects of each assistance
action on various measures of learning outcomes, as summarized in panel (C).
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Figure 4.5: Histogram visualizing effect differences between individual assistance actions and no
assistance baselines for different measures of learning outcomes for each of the 1, 336 biology
questions. On average each question is associated with 5.8 different actions.

To gauge the degree to which assistance policies can impact the student learning experi-
ence we estimate the treatment effects of individual assistance actions in the biology course by
comparing the outcomes of students that received a particular assistance action to students that
received no assistance (Figure 4.5). Across the 1, 336 biology questions we observe an average
treatment effect of 6.1% on reattempt correctness rates, of 0.030 on student ability estimates and
of 0.6% on practice session success rates. Even though the assistance content was curated by
human domain experts, we find that a substantial number of actions do no perform better than
the no assistance baseline. This underscores the need for data-driven evaluations and shows that
learned assistance policies have the potential to improve learning outcomes significantly.

Lastly, before optimizing assistance policies we study the degree to which the available stu-
dent log data (Table 4.1) allows us to differentiate between the effects of assistance actions for
individual questions via analysis of variance (ANOVA). Compared to the multi-armed bandit
problem which focuses on identifying the single most effective action, ANOVA asks the sim-
pler question of whether there are statistically significant differences in mean effects between the
available assistance actions–a precondition for any successful intervention. On average across
the six science courses, ANOVA rejects the null hypothesis (p < 0.05) for reattempt correctness
for 70.5%, for student ability for 11.0% and for session success for 10.9% of practice questions.
The exact rejection rates for the individual courses are provided in Table 4.2. First, we observe
that courses with more available assistance content (e.g., biology and earth science) have higher
rejection rates compared to courses with less content (e.g., chemistry and physics) highlighting
that a rich base of assistance content is a precondition for learning effective assistance policies
(compare Table 4.1). Second, we observe that ANOVA rejects the null hypothesis significantly
more often for reattempt correctness compared to student ability and session success measures.
This can be explained by studying the relationship between sample variance and effect size gaps
between the most and least effective assistance action for the different measures. Formally, for
question q we define the effect size gap as δq := maxaq∈Aq E[raq ] − minaq∈Aq E[raq ] where raq
is a reward measure of interest (e.g., reattempt correctness). On average across the 1, 336 bi-
ology questions, reattempt correctness has better ratio between action effect gaps and sample
variance (δ = 0.230, σ2 = 0.221) compared to student ability (δ = 0.302, σ2 = 3.621) and
session completion (δ = 0.042, σ2 = 0.084). This is because reattempt correctness focuses on
students’ immediate interactions with the current question, while the two latter measures gauge
overall session performance over a longer time horizon. For our goal of learning effective assis-
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Figure 4.6: [Left] Average within question correlations between individual measures of learning
outcomes across 1, 336 questions. From top to bottom, the considered measures are reattempt
correctness, student ability, session success, future correct rate, next question correct, future
response time, and student confidence. [Right] Pareto front visualizing the estimated average
performance of policies optimized to increase the final student ability estimates (x-axis) and
reattempt correctness rate (y-axis) across 178 questions. Each bandit policy is marked with a
number that indicates how it weights the two objectives.

Table 4.2: Proportion of questions for which ANOVA detects significant differences (p < 0.05).

measure/subject Biology Chemistry Physics Life Sci. Earth Sci. Phys. Sci.
Reatt. Cor. 83.2% 61.8% 50.5% 75.9% 74.2% 77.5%
Stud. Abil. 13.3% 8.5% 8.2% 11.8% 11.6% 12.9%
Sess. Succ. 9.6% 7.9% 10.5% 11.2% 13.3% 13.2%

tance policies, this implies that one requires more data to learn policies that optimize students’
long-term performance compared to short-term outcomes.

Offline Policy Evaluation
While ANOVA finds significant differences in mean action effects on reattempt correctness for
most questions, it only detects differences in student ability and session completion for a smaller
subset of questions. For our offline policy evaluation process this suggests that it is difficult to
reliably identify the optimal assistance actions for the latter two measures even when having ac-
cess to hundreds of samples per action. Indeed, in preliminary experiments we found that action
effect rankings based on training data often deviate from rankings based on separate test data.
For the average question we found training assistance policies based on reattempt correctness
estimates to be the most effective way to boost all three outcome measures. This is due to its
lower variance and the fact that improvements in reattempt correctness are positively correlated
with improvements in student ability and session completion rates (Figure 4.6 left).

Still, for 11% of questions ANOVA detected significant differences in action effects on stu-
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Table 4.3: Offline evaluation of different multi-armed bandit policies across the 178 biology
questions for which ANOVA indicated significant differences (p < 0.05) in mean action effects
on student ability. The first two rows are two baselines policies, one which does not show assis-
tance at all and one which selects assistance actions for each question at random. The following
three rows are multi-armed bandit policies trained to optimize different measures of learning out-
comes. The last row is the policy learned using our reward function which considers reattempt
correctness and student ability. We report mean values and 95% confidence intervals.

policy/measure Reward Reatt. Cor. Stud. Abil. Sess. Succ.
random 0.288 ±.067 0.501 ±.021 0.146 ±.109 0.806 ±.039
reattempt correct 0.419 ±.071 0.672 ±.020 0.250 ±.115 0.816 ±.038
student ability 0.442 ±.068 0.606 ±.025 0.332 ±.109 0.819 ±.038
session success. 0.371 ±.068 0.573 ±.025 0.237 ±.109 0.817 ±.037
reward 0.454 ±.068 0.637 ±.023 0.332 ±.108 0.820 ±.038

dent ability, which is a central measure of interest–it captures overall session performance, in-
cluding responses to questions after assistance. For example, in the biology course we detected
significant differences for 178 (13.3%) of the 1,366 questions. To study the relationship be-
tween reattempt correctness and student ability, we train bandit policies for different objectives
for these 178 questions. Analog to the reward function (Equation 4.1), we assign each policy
a weight w1 ∈ {0, 0.1, . . . , 1.0} and compute its reward values by linearly weighting reattempt
correctness with w1 and student ability with 1 − w1. We visualize the Pareto front defined by
the resulting policies (Figure 4.6 right) and observe performance estimates that range in reat-
tempt correctness rates from 60.6% to 67.2% and in student ability from 0.250 to 0.332. All
learned policies outperform the random policy significantly. In collaboration with domain ex-
perts we select w1 = 0.4 as reward function to train the assistance policy for live evaluation as
it improves both measures substantially. Table 4.3 provides detailed performance statistics for
policies trained to optimize different outcome measures.

To train an assistance policy for all questions in the different courses we designed an algo-
rithm that for each question decides whether we have sufficient data to optimize the measure of
interest (e.g., reward) directly or whether we should use the lower variance reattempt correctness
measure (Section 4.4). Relatedly, Table 4.4 shows average performance metrics across the 1, 336
biology questions for a policy that always selects the no assistance action, the random policy, and
four policies trained using our algorithm to optimize reattempt correctness rates, student ability,
successful session completion rates, and reward function. The algorithm resolves the variance
issue and the trained policies enhance the student experience in different ways.

Lastly, we study for which types of questions the final policy offers which types of assistance
actions to maximize the reward objective. Table 4.5 shows for each question type for what
proportion of questions the policy finds a certain assistance type to be most effective. We find that
the policy utilizes a diverse blend of different assistance types for each type of question and that
paragraph actions are selected most frequently overall. Because of this, we compare the effects
of a policy that always selects paragraph actions to the trained reward policy in an additional
experiment. Across the 1, 175 biology questions with paragraphs, we find that the reward policy
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Table 4.4: Offline evaluation of different multi-armed bandit policies across 1, 336 biology ques-
tions using data from 3, 266, 171 instances where assistance was provided. The first two rows
are two baselines policies, one which does not show assistance at all and one which selects as-
sistance actions for each question at random. The following three rows are multi-armed bandit
policies trained to optimize different measures of learning outcomes. The last row is the policy
learned using our reward function which considers reattempt correctness and student ability. We
report mean values and 95% confidence intervals.

policy/measure Reward Reatt. Cor. Stud. Abil. Sess. Succ.

random 0.255 ±.026 0.551 ±.007 0.058 ±.042 0.820 ±.013

reattempt correct 0.327 ±.026 0.666 ±.007 0.101 ±.043 0.827 ±.013
student ability 0.327 ±.026 0.660 ±.007 0.105 ±.043 0.827 ±.013
session success 0.326 ±.026 0.663 ±.007 0.101 ±.043 0.827 ±.013
reward 0.328 ±.026 0.664 ±.007 0.104 ±.043 0.827 ±.013

Table 4.5: Types of assistance actions selected by the multi-armed bandit policy learned using
our reward function. The individual columns show how the policy focuses on different types of
assistance actions for different types of questions in the biology course.

action/question Mult.-Choice All-That-Apply Fill-Blank Short-Answ.
no assistance 5.0% 7.3% 1.8% 3.4%
hint 11.4% 15.6% 6.6% 5.6%
paragraph 51.2% 43.1% 57.9% 55.1%
vocabulary 5.7% 16.5% 1.8% 3.4%
hide distractor 26.8% 17.4% - -
first letter - - 31.7% 32.6%

outperforms the paragraph policy in all measures (reward: 0.336/0.299, reattempt correctness:
67.3%/61.5%, student ability: 0.112/0.089, session success: 84.0%/83.7%). Thus, the data-
driven approach benefits by selecting effective teaching actions on a question-by-question basis.

Online Policy Evaluation

To evaluate the policies optimized using our training algorithm and reward function we compare
their ability to provide students with effective assistance to the randomized assistance policies.
The initial A/B evaluation centered on the high school biology course (April 5th to April 13th,
2023) featuring a large diversity of assistance actions. In a second step we expanded the evalua-
tion to the other five science courses (June 7th to July 10th, 2023). In both evaluations practice
sessions were randomly assigned either to the bandit policy or to the randomized policy condi-
tion. Overall, we collected log data describing over 166,000 student practice sessions.

Table 4.6 reports average outcome measures achieved by the different assistance policies for
each of the science courses. The trained assistance policies outperform the randomized policies
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Table 4.6: Live policy evaluation. We randomly assign student practice sessions to the random-
ized policy and the learned multi-armed bandit policy condition, track various outcome measures
and report mean values and 95% confidence intervals. Overall, 34, 279 students were assigned to
the randomized policy and 33, 957 students were assigned to the multi-armed bandit policy.

Subject Policy Num. Sessions Reward Reatt. Cor. Stud. Abil. Sess. Succ.

Life Sci.
random 6,655 0.783 ±.037 0.559 ±.008 0.933 ±.059 0.608 ±.012
learned 6,831 0.933 ±.035 0.642 ±.008 1.126 ±.056 0.651 ±.011

Earth Sci.
random 9,559 0.576 ±.030 0.593 ±.007 0.566 ±.048 0.441 ±.010
learned 9,557 0.694 ±.030 0.658 ±.007 0.718 ±.047 0.476 ±.010

Phys. Sci.
random 10,035 0.645 ±.028 0.552 ±.007 0.707 ±.045 0.509 ±.010
learned 10,208 0.706 ±.027 0.626 ±.007 0.759 ±.043 0.535 ±.010

Biology
random 31,527 0.753 ±.016 0.585 ±.004 0.866 ±.026 0.676 ±.005
learned 30,937 0.881 ±.015 0.683 ±.004 1.013 ±.024 0.712 ±.005

Chemistry
random 21,689 0.813 ±.020 0.547 ±.005 0.991 ±.032 0.581 ±.007
learned 21,675 0.882 ±.020 0.592 ±.005 1.075 ±.031 0.604 ±.007

Physics
random 3,871 0.894 ±.048 0.528 ±.011 1.139 ±.077 0.475 ±.016
learned 3,816 0.946 ±.049 0.568 ±.012 1.197 ±.078 0.486 ±.016

in all subjects in all outcome measures, achieving for individual courses average improvements
in reattempt correctness rates between 5.2% and 15.0%, in student ability estimates between
0.052 and 0.193, and in session success rates between 1.1% and 4.3%. In biology, the session
success rate improvement from 67.6% to 71.2% corresponds to a 11.1% reduction in sessions in
which students did not achieve the practice target. We observe that the optimized policies are
particularly effective in subjects featuring a larger variety of assistance content (Table 4.1). We
note that in contrast to the prior offline evaluation experiments where we estimate effects based
on individual assistance queries, here we compute metrics based on the session level.

4.6 Discussion

The results show how the offline evaluation approach can leverage large-scale student log data to
quantify the impact of individual assistance actions (e.g., hints and keyword definitions) for each
question on different measures of student learning outcomes (e.g., reattempt correctness, practice
completion). This allows ITS designers to monitor and reflect on fine-grained design decisions
inside the system (e.g., which assistance action for which question) and enables a data-driven
design process in which the designers can specify a reward function to train an assistance policy
that promotes the desired student learning experience. Our study of the relationships among
individual learning outcome measures leads us to defining a reward function to train an assistance
policy that optimizes the student’s success at their second attempt on the current question, as well
as their overall performance for the current practice session. The live use evaluation confirms that
this process provides the system with the ability to learn to teach better automatically over time,
by showing how the actions selected by the learned multi-armed bandit policies lead to significant
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improvements in learning outcomes compared to a randomized assistance policy.
By studying the assistance actions selected by our optimized policy (Figure 4.5) we observe

that there is no single best type of assistance actions (e.g., hint, keyword definitions) that is
most effective for each of the different practice questions types (e.g., multiple-choice, short-
answer). This emphasizes the importance of algorithms that can identify the most effective
teaching action for each individual practice question based on observational data. Interestingly,
the policy blends more informative (e.g., paragraphs) with less informative assistance actions
(e.g., hints) and decides for some questions to provide no additional help at all. This indicates
a trade-off between giving and withholding information during the learning process which is a
phenoma that has been described as assistance dilemma in prior research [103].

Our methodology combines multi-armed bandit and offline policy evaluation techniques [122]
with large-scale student log data to compute unbiased, high confidence estimates on the effects
of individual assistance actions on various measures of student learning outcomes. One inherent
property of our multi-armed bandit formulation of the problem is that it focuses on selecting the
teaching action that is most effective for the average student and does not attempt to provide
assistance conditioned on the individual student, and does not capture synergies that could oc-
cur when certain combinations of assistance actions are shown to a student in the same practice
session. While a reinforcement learning approach could be used to address both of these short-
comings, the volume of training data required for such an approach would increase dramatically,
and it would be much harder to compute robust estimates on the effects of individual policies
before deployment. Relatedly, Chapter 5 explores the potential of personalized assistance poli-
cies [62, 182] and heterogeneous treatment effects [121, 221] via a contextual bandit framework.

In this chapter the system learned question-specific multi-armed bandit policies in a two-stage
process. First, log data was collected for each question by employing a randomized policy that
samples assistance actions uniformly. Second, after collecting a sufficient amount of samples
for a question, offline evaluation was used to learn a bandit policy that optimizes the reward
function. This process allowed us to estimate the effects of different assistance actions and
policies before live deployment. In future work we will explore online bandit algorithms [117]
to learn assistance policies that adaptively sample individual actions based on evolving effect
estimates in live deployment. Adaptive sampling is of particular interest to us as the pool of
questions and assistance actions inside the system is continuously evolving. In this effort we
will have to consider that online bandit algorithms can exhibit higher false discovery rates than
conventional randomized experiments [186]. Another interesting direction for future research
is the question of whether one can train a machine learning model to estimate the effects of
individual assistance actions for individual practice questions using natural language processing
techniques without needing to refer to additional student data [259]. Such predictions could serve
as initial priors and improve the efficiency of adaptive sampling techniques.
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Chapter 5
Effect Heterogeneity in Hint Selection

In this chapter, we study the extent to which the effects of hints provided to students after they
answer a practice problem incorrectly vary from student to student. This contrasts with Chap-
ter 4, which employed a multi-armed bandit framework to optimize assistance policies tailored
to the needs of the average student. Specifically, we adopt the potential outcomes framework
to assess treatment effect heterogeneity of individual assistance actions (e.g., hints, explanatory
paragraphs). We consider multiple measures of learning outcomes (e.g., reattempt correctness,
practice completion) and student covariates (e.g., ability level, prior system usage). Determining
effect heterogeneity is an integral step towards personalized assistance policies because, without
heterogeneity, what is best for the average student is best for the individual. Employing statstical
and causal machine learning methodologies, we analyze data from over 420,000 students inter-
acting with 7,458 assistance actions within a large-scale online tutoring system. In a first step,
we identify assistance actions exhibiting effect heterogeneity. We then assess the degree to which
assistance policies can leverage these effects to improve student learning outcomes over a set of
multi-armed bandit policies. Overall, our analysis suggests that while some assistance actions
exhibit treatment effect heterogeneity, the magnitude of these effects is often not sufficient to
yield significant improvements over actions optimized for the average student.

5.1 Introduction

Intelligent tutoring systems (ITSs) employ instructional policies designed to enhance learning
outcomes for individual users. These policies guide instructional decisions throughout the learn-
ing process, structured by the ITS into an inner loop—focusing on feedback and assistance—and
an outer loop—focusing on activity sequencing [230]. Mastery Learning is a prominent exam-
ple of an outer-loop policy that utilizes knowledge tracing to estimate students’ proficiency and
employs selection rules designed to develop students’ skills one at a time [193]. On the other
hand, assistance policies act in the inner-loop and select assistance actions (e.g., one of multi-
ple hints) to support students after an incorrect response—as previously discussed in Chapter 4.
Moving away from expert-defined rules, these policies were optimized using multi-armed bandit
algorithms [117], leveraging system usage data to identify the instructional decisions (i.e., as-

81



student covariate

ou
tc

om
e

(A) No Treatment Heterogeneity
Control Group (W=0)
Treatment Group (W=1)

student covariate

ou
tc

om
e

(B) Heterogeneous Treatment Effect (HTE)
Control Group (W=0)
Treatment Group (W=1)

student covariate

ou
tc

om
e

(C) Heterogeneity with Policy Learning
Control Group (W=0)
Treatment Group (W=1)

Figure 5.1: Illustration of heterogeneous treatment effect (HTE). (A) The treatment effect is
constant for all students. (B) We observe HTE in that the effects of the treatment vary based
on the student covariate. The conditional treatment effect is positive for all students. (C) We
observe HTE and the treatment is beneficial only for a subset of students. The optimal policy
maximizes learning outcomes by making treatment decisions informed by the student covariate.

sistance action) that optimize learning outcomes for the average student. Beyond optimizing for
the average student, contextual bandit algorithms can personalize instructional decisions based
on student attributes (e.g., current proficiency levels), and reinforcement learning algorithms can
further identify potential synergies between individual instructional decisions [59].

While modern machine learning has yielded powerful algorithms capable of learning instruc-
tional policies purely from student log data, it has also confronted researchers and educators with
complex choices regarding the type of modeling to employ—be it contextual, non-contextual, se-
quential, or myopic. Although contextual and sequential models offer the promise of effective
personalization, they often demand substantial data [222], posing significant challenges in many
domains. While non-contextual and myopic models, can make meaningful improvements with
much smaller data, they can miss potential benefits of personalized instruction. Therefore, the
choice of model type is a complex issue involving balancing the desire for personalization and
long-term efficacy with the practicalities of data availability and computational resources.

Relatedly, this chapters explores potential trade-offs between contextual bandit and multi-
armed bandit policies–i.e., contextual myopic and non-contextual myopic decision making–when
choosing which assistance action to provide to a student after they answer a practice question
incorrectly. In particular, we explore the extent to which effects of individual assistance actions
vary across individual students based on various covariates (e.g., ability levels and response
times). Establishing this type of effect heterogeneity is crucial because it is a prerequisite for
effective personalization (see Figure 5.1). The main contributions of this chapter include:

• Study of Effect Heterogeneity in Problem-solving Assistance: Utilizing statistical and
causal machine learning methodologies, we assess heterogeneous treatment effects (HTEs)
of 7, 538 assistance actions using data from 420, 000 students collected in randomized ex-
periments. Considering various measures of learning outcomes (e.g., reattempt correct-
ness, session success), we gauge the prevalence of HTEs with respect to student covariates
ranging from ability estimates, to response times to overall ITS usage.

• Assessment of Effect Heterogeneity for Personalized Assistance: We explore whether
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contextual bandit (CB) policies, which consider individual student covariates, can lever-
age HTE to improve outcomes over multi-armed bandit (MAB) policies. Employing the
potential outcomes framework we study the effects of CB policies that decide whether to
assign an assistance action that deviates from the action best for the average student.

5.2 Related Work

Driven by the idea of optimizing instructional policies based on log data from previous students,
reinforcement learning (RL) has found application in various educational contexts [59, 214]. Re-
lated algorithms learn to make effective instructional decisions by considering effects of available
instructional choices (e.g., providing a specific hint or a practice question) and present learning
context (e.g., student knowledge and prior interactions). Multiple empirical studies have con-
firmed the potential of RL to enhance human learning outcomes within education technologies
(e.g., [43, 134, 205]). From a pedagogical perspective, RL policies are appealing because they
can enable personalized learning by discovering when one instructional decision is more effec-
tive for a particular type of learner than another (e.g., [189, 232]).

While RL policies are trained to optimize outcomes for the average student, recent research
started exploring how the effects of these policies can vary across users. Ausin et al. [13] ob-
served varying effects among high and low competency learners when training policies that se-
lect between worked examples and problem solving activities in a logic tutor. Abdelshiheed et al.
[1] optimized instructional policies to promote the adoption of meta-cognitive strategies and ob-
served effect differences based on students’ prior familiarity with these strategies. Leite et al.
[121] employed the causal random forest (CRF) algorithm [234] to study video recommendation
policies within an algebra course unveiling heterogeneous treatment effects (HTEs) related to
prior knowledge and socioeconomic factors. In the context of a narrative-based math learning
environment, Nie et al. [157] proposed a methodology for analyzing decisions and effects of an
RL policy across student subgroups with varying pre-test scores and math-anxiety levels.

Unlike the above, the focus of this Chapter is to (i) understand the extent to which the effects
of individual assistance actions vary across students and to (ii) gauge the degree to which con-
textual policies can leverage these variations to improve learning outcomes over non-contextual
policies (Figure 5.1). We study these questions by evaluating 7, 458 diverse assistance actions
(e.g., hints and explanatory paragraphs) designed to support students after an incorrect response
to a practice problem. Our analysis draws from statistical and causal machine learning method-
ologies and utilizes data from 420, 000 students within a fielded online tutoring system.

While not centered on treatment effect heterogeneity in problem-solving assistance, the au-
thors are aware of two prior studies comparing effects of contextual and non-contextual bandit
policies on learning outcomes [123, 183]. While these works suggest that personalization can
be beneficial in certain settings, both rely on simulation studies using resampling techniques.
This can increase risk of false discovery and findings might not be representative of the true
prevalence of effect heterogeneity within assistance selection decisions.
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Table 5.1: Dataset overview.

CK-12 Data
# of eval. quests. 1,753
# of eval. acts. 7,458
# acts./question 5.25
# eval. responses 4,049,180
# of students 419,598
# of concepts 402
# of questions 8,326
# of sessions 1,504,654
# of shown quests. 19,314,452

Figure 5.2: Samples per action overview.
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5.3 Dataset

Our study of effect heterogeneity in problem-solving assistance leverages the CK-12 assistance
dataset [205] describing logs from a large-scale evaluation of effects of individual assistance ac-
tions (e.g., hints and paragraphs) on different measures of learning outcomes (e.g., reattempt cor-
rectness, student ability). The CK-12 online tutoring system, data collection and pre-processing
are described in detail in Chapter 4, Section 4.1. More specifically, here we focus on a subset
of the CK-12 dataset by considering 1, 753 practice questions with at least 100 samples per as-
sistance action including the no assistance action. This subset captures 7, 458 assistance actions
together with problem-solving data from 420, 000 students (details in Table 5.1 and Figure 5.2).
The inclusion of a “no assistance” baseline together with the randomized assistance assignment
mechanism used to collect the CK-12 dataset, enables us to compute unbiased treatment effect
estimates of each assistance actions by comparing learning outcomes of students that received a
particular assistance action and students that received “no assistance”.

Further, to assess how individual assistance actions affect different students we consider a
range of features derived from the raw practice log data (Table 5.2). These features capture as-
pects of a student’s interactions with the current question (e.g., response time), current practice
session (e.g., ability estimate) as well as their general system usage (e.g., average performance
metrics). In terms of outcome measures we focus on reattempt correctness, IRT student ability
estimates [51], successful session completion as well as a reward function weighting between
reattempt correctness and student ability (details in Chapter 4). For each assistance action and
outcome measure, our methodology explores effect heterogeneity by testing for potential inter-
actions between student features (covariates) and effectiveness of that assistance action.

5.4 Methodology

We present the causal machine learning methodology underlying our investigations. First, we
introduce the potential outcomes framework [198] describing relationships between learning per-
sonalized assistance policies and treatment effect estimation. From there, we discuss hypothesis
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Table 5.2: Overview of context features.

Feature Description
student ability IRT ability estimate at first attempt.
resp. time Response time at first attempt.
prev. resp. cor. Response to prior question correct.
quest. num Question number in current session.
cor. rate First attempt correct rate in current session.
assigned Teacher assigned current session.
confidence Student confidence level ({1, 2, 3}) for current session.
weekend Current session occurs on a weekend.
num sess. total Number of practice sessions completed overall.
num quest. total Number of questions answered overall.
num assist. total Number assistance actions received overall.
avg quest. num Average number of questions answered per session.
avg sess. succ. Average session success rate (≥ 10 correct responses).
avg 1st cor. Average first attempt correct rate.
avg 2nd cor. Average second attempt correct rate.
avg 1st assists. Average number of assistance actions on first attempts.
avg 2nd assists. Average number of assistance actions on second attempts.
med 1st resp. time Median response time on first attempts.
med 2nd resp. time Median response time on second attempts.
med assist. time Median time spent on assistance actions.

tests for the detection of linear and non-linear treatment effect heterogeneity in our data. Lastly,
we describe a procedure for assessing the degree to which contextual assistance policies can
leverage effect heterogeneity to improve outcomes over non-contextual policies.

Formal Problem Statement

In this chapter we seek to understand how the decisions we make about providing a particular as-
sistance action affects the individual student. To study this question we employ the potential out-
comes framework [198]. Formally, we model each sample in our dataset as a triple (Xi,Wi, Yi).
Here Xi ∈ Rd is the covariate vector for student i, Wi ∈ {0, 1} is an indicator describing whether
i received treatment or control and Yi ∈ R is the learning outcome (e.g., session success or stu-
dent ability) . For us Wi = 1 marks students receiving the assistance action and Wi = 0 marks
students receiving a control intervention (e.g., “no assistance”). Estimating causal effects is chal-
lenging because each student is only observed in one treatment state, i.e., they either received
the treatment or the control. To reason about causal effects, the potential outcomes framework
associates each individual with two random variables (Yi(1), Yi(0)). Depending on the treatment
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state, the outcome for student i is observed as

Yi := Yi(Wi) =

{
Yi(1) if Wi = 1 (treated)
Yi(0) if Wi = 0 (control).

(5.1)

Because we never observe both Yi(1) and Yi(0) for the same student, we cannot estimate
individual treatment effects Yi(1) − Yi(0) directly. Instead, our analysis utilizes the fact that
our assistance dataset was collected in a randomized experiment which ensures independence of
the observed outcomes and the treatment assignments (Yi(1), Yi(0) ⊥ Wi). This enables us to
estimate the average treatment effect (ATE), defined as

τ := E [Yi(1)− Yi(0)] , (5.2)

by computing the difference in mean outcomes between students in the treatment and the control
group. Reflecting on Chapter 4, the multi-armed bandit (MAB) framework focused on evaluating
a set of available assistance actions A = {a1, . . . , an} to learn a policy that selects action a∗ =
arg maxa∈AE[Ya,i(1)] optimizing learning outcomes for the average student. This is equivalent to
selecting the action with highest ATE τa in the potential outcomes framework (assuming equal
controls). Here, we center on the question of whether what is best for the average student is
also best for the individual student. Hence, we study heterogeneous treatment effects (HTEs) by
estimating the conditional average treatment effect (CATE) function defined as

τ(x) := E [Yi(1)− Yi(0) |Xi = x] . (5.3)

More specifically, CATE describes the treatment effect for each student by considering their per-
sonal covariate vector x ∈ Rd. Importantly, estimating the CATE function enables us to address
two central questions: (i) Does the effectiveness of individual assistance actions vary across the
students population (does HTE exist)? (ii) Can assistance policies that consider potential HTEs
improve learning outcomes over assistance policies that only consider ATEs (MAB policies)?

In the following we will approach these questions by studying two types of treatment deci-
sions. First, we focus on assessing the existence of HTE in our decisions by analyzing outcomes
of students that received a particular assistance action (treatment) and students that received
“no assistance” (control). Second, we gauge the degree to which we can improve outcomes by
learning contextual assistance policies that deviate from the multi-armed bandit (MAB) policies
optimized in Chapter 4. Here, we study the decision whether a student should receive a particular
assistance action (treatment) different from the action best for the average student (control).

Study of Heterogeneous Treatment Effect (HTE)
We introduce our methodology for detecting HTE in assistance decisions–a prerequisite for ef-
fective personalization. For each assistance action in our dataset, we study outcomes of students
receiving that assistance action (treatment) and students receiving “no asistance” (control). We
perform hypothesis tests related to linear and non-linear interactions between student covari-
ates and learning outcomes via regression and non-parametric causal machine learning algo-
rithms [234]. Because our study involves thousands of hypothesis tests we control the false
discovery rate (FDR) at 0.2 via Benjamini-Hochberg adjustment [29].
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Testing for Linear Effect Heterogeneity

We assess linear interactions between assistance outcomes and student covariates via regression
analysis. For each individual assistance action and student covariate Xi ∈ R (e.g., ability value,
response time) we fit a regression model predicting learning outcomes as

τ̂(Yi |Xi) = β0 + βwWi + βxXi + βwxWiXi. (5.4)

Here parameter β0 ∈ R models the average outcome for students in the control condition, βw ∈ R
is average treatment effect, βx ∈ R captures potential effects attributed to the covariate but not
the treatment, and βwx ∈ R captures effects attributed to interactions between the covariate and
the treatment (i.e., effect heterogeneity). To test for HTE we fit the regression model to student
data and assess whether βwx is significantly different from zero. Note, that while Equation 5.4
describes a linear regression, we employ an analog logistic regression formulation to study binary
outcome variables (i.e., reattempt correctness, session success).

Testing for Non-linear Effect Heterogeneity

To assess non-linear treatment effect heterogeneity, we employ the causal random forest (CRF)
algorithm, proposed by Wager and Athey [234]. CRF extends the traditional random forest
method to provide unbiased CATE estimates and valid confidence intervals, enabling insights
into treatment effects across a heterogeneous population. The key idea behind the algorithm is
honest estimation through sample splitting. The data is divided into two disjoint subsets–one
for constructing the tree structure (the training sample) and another for estimating treatment
effects within each leaf (the estimation sample). The CRF algorithm constructs an ensemble
of such trees, each partitioning the student population into groups with similar covariates. By
separating the data used for tree splitting (group identification) from the data used for estimation,
the algorithm can produce unbiased CATE estimates.

For each assistance action we fit a CRF modeling learning outcomes of students that received
that particular actions and student that received “no assistance”. For this we employ the ‘grf’
package [224] and optimize hyperparameters in random search over 100 parameter configuration
via cross-validation. Using these CRF models we assess HTE in two ways:

Calibration Test We conduct a calibration test to determine whether the treatment effects es-
timated by the CRF model are predictive of observed outcomes beyond the average treatment
effect (ATE) [35]. Specifically, we tests the null hypothesis that the estimated treatment effects
are uncorrelated with the residuals of the outcome model. This is done by regressing the resid-
uals on both the mean CRF prediction and the individual heterogeneous treatment effects. If
the slope of this regression is significantly different from zero, it indicates that the estimated
treatment effects capture real variations in assistance effects across the student population, thus
providing evidence for treatment effect heterogeneity.

RATE The rank-weighted average treatment effect (RATE) method [248] assesses a model’s
ability to rank individuals based on their predicted benefits from a treatment. To compute RATE,
we first rank individuals based on their estimated CATEs from the CRF model. We then calculate
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a weighted average of the observed treatment effects, where the weights are a function of the
individuals’ ranks. Specifically, higher-ranked individuals (those with higher estimated CATEs)
receive greater weight in the calculation. The RATE metric effectively measures the expected
treatment effect among individuals who are most likely to benefit from the treatment according
to the model. We test for non-linear effect heterogeneity by comparing the RATE obtained
from the CRF model to that from a model assuming uniform treatment effects. A significantly
higher RATE from the CRF model indicates that it successfully identifies individuals with higher
treatment effects, thus providing evidence for treatment effect heterogeneity.

Study of Contextual Assistance Policies
Heterogeneity in treatment effects is a necessary condition for effective personalization, but the
existence of HTEs does not necessarily imply that what is best for the individual student differs
from what is best for the average student. Comparing panels (B) and (C) of Figure 5.1) one can
observe that a contextual policy that considers effect heterogeneity can only improve outcomes
upon a non-contextual (MAB) policy if the CATE function is sign-changing – i.e., depending on
the student covariates the expected effect of the treatment can be negative and positive.

More formally, an assistance policy is a function π : Rd → {0, 1} mapping student covariate
vectors to treatment decisions. The value of a policy π is defined as v(π) := E[Y (π(x))]. In
the space of possible policy functions Π the optimal policy is π∗ := argmaxπ∈Π v(π). Provided
CATE function τ : Rd → R, we can characterize the optimal policy as

π∗(x) =

{
1 if τ(x) > 0

0 otherwise
(5.5)

which implies,

τ(x) > 0, ∀x ∈ Rd =⇒ π∗(x) = 1,∀x ∈ Rd =⇒ v(π∗) = E[Y (1)] (5.6)

and analogously

τ(x) < 0, ∀x ∈ Rd =⇒ π∗(x) = 0,∀x ∈ Rd =⇒ v(π∗) = E[Y (0)]. (5.7)

Thus, non-contextual policies that optimize for ATE and make the same decision for all students
achieve optimal outcomes whenever the CATE function is not sign-changing. To assess whether
assistance policies that consider student covariates can improve outcomes over non-contextual
policies we implement the following procedure: First, for each question in our dataset we identify
the assistance action that yields optimal outcomes for the average student. These actions resem-
ble the MAB policies discussed in Chapter 4. Second, we construct action-specific datasets to
study causal effects associated with the decision of providing that particular action (treatment)
over the action optimal for the average student (control). Third, for each dataset we train an
estimator τ̂ predicting the CATE function using the CRF algorithm. Using estimator τ̂ we define
an approximation of the optimal contextual policy as

π̂(x) =

{
1 if τ̂(x) > 0

0 otherwise.
(5.8)
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Fourth, we assess whether τ̂ improves learning outcomes over the always control policy by es-
timating policy values and testing for significant differences via a one-sided t-test. By imple-
menting this methodology for each individual assistance action and outcome measure, we aim
to evaluate the degree to which contextual assistance policies that account for individual student
differences can yield significant improvements in outcomes over non-contextual policies.

5.5 Results

Assessment of Heterogeneous Treatment Effect (HTE)

We present findings from hypothesis tests detecting potential HTE in decisions about providing
a student with a particular assistance action (treatment) or “no assistance” (control). Following
the methodology described in Section 5.4 we test for linear and non-linear HTE. Additionally,
we illustrate examples of assistance actions for which effects on reattempt correctness outcomes
vary across student groups whose IRT ability estimate is above/below median (Figure 5.3).

Linear HTE For each assistance action, learning outcome measure and student covariate (de-
tails Table 5.2) we perform regression analysis to assess linear interactions between treatment
effect and student covariate. Table 5.3 reports average detection rates across the 7, 548 indi-
vidual assistance actions for each outcome-covariate combination. The position of the current
question in the learning process (quest. num.) is the covariate associated with the highest HTE
detection rates for reward (9.8%), student ability (10.3%) and session success (0.4%) outcome
measures. The covariate with second highest HTE detection rates is the student’s IRT ability
estimate at time of first attempt (7.3% for reward and 8.0% for student ability outcomes). Stu-
dent ability outcomes are an aggregated measure of student performance. Time of assistance
provision as well as current student ability likely modulate the degree to which future responses
can impact the final ability outcome. We detect little HTE for reattempt correctness and session
success outcome measures where the covariates with highest detection rates are second attempt
correctness rate (1.1%) and question number (0.4%).

Non-Linear HTE We test for non-linear HTE via CRF-based residual and RATE analysis.
Unlike the regression approach which tests for HTE considering one student covariate at a time,
CRF estimates the CATE function using complete covariate vectors as input. Table 5.4 reports
average HTE detection rates for CRF-based residual and RATE analysis across the the 7, 458
assistance actions. The residuals analysis rejects the null hypothesis for 0.2% of actions for
reward and student ability measures and for 2.1% of actions for reattempt correctness. RATE
analysis yields rejection rates of 0.2%, 0.1% and 0.8% for reward, student ability and reattempt
correctness outcomes respectively. For the session success outcome measure, residual analysis
detected HTE for one action and RATE analysis for three actions.
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Question: The exoskeleton of a grasshopper is made up of
what? a) glycogen; b) chitin; c) cellulose; d) starch

Assistance: cellulose: complex carbohydrate that is a polymer
of glucose and that makes up the cell wall of plants. chitin:
tough carbohydrate that makes up the cell walls of fungi and
the exoskeletons of insects and other arthropods. exoskeleton:
a hard covering that supports and protects an animal’s body.
starch: large, complex carbohydrate found in foods such as
grains and vegetables that the body uses for energy.
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Question: What is a wave in which particles of matter
vibrate parallel to the direction the wave travels called?
longitudinal wave (short-answer)

Assistance: In an earthquake, what type of wave is a P wave?
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Question: Santa Cruz Island off the California coastline
includes steep cliffs, coves, gigantic caves, and sandy beaches.
What are these physical environments where organisms live
known as? a) niche; b) habitat; c) ecology; d) biotic factors

Assistance: ecology: branch of biology that studies of how liv-
ing things interact with each other and with their environment.
niche: an organism’s “job” within its community. organism:
an individual living thing. habitat: physical environment in
which a species lives and to which it has become adapted.
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Figure 5.3: Examples of heterogeneous treatment effects (HTEs) of assistance actions on reat-
tempt correctness outcomes. We study reattempt correctness of students receiving a particular
assistance actions to students receiving the “no assistance” baseline for three practice questions.
We assign students into “high” and “low” ability groups based on whether their current IRT abil-
ity estimate places them above or below the median and estimate reattempt correctness rates.
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Table 5.3: Study of Linear Heterogeneous Treatment Effects (HTEs). For each of 7, 458 as-
sistance actions, we fit regression models predicting outcomes of students receiving assistance
(treatment) and students receiving “no assistance” (control). For each covariate/outcome com-
bination, the regression model fits three parameters capturing average treatment effect (ATE),
student covariate effect and heterogeneous treatment effect (HTE). We report the proportion of
actions for which significant HTE was detected (p < 0.05, FDR controlled at 0.2).

covariate/measure Reward Reatt. Cor. Stud. Abil. Sess. Succ.
stud. ability 7.3% 0.9% 8.0% 0.0%
resp. time 0.3% 0.1% 0.3% 0.0%
prev. resp. cor. 0.8% 0.0% 0.6% 0.2%
quest. num 9.8% 0.3% 10.3% 0.4%
cor. rate 1.8% 0.1% 1.8% 0.0%
assigned 0.0% 0.0% 0.0% 0.0%
confidence 0.0% 0.0% 0.0% 0.0%
weekend 0.0% 0.0% 0.0% 0.0%
num sess. total 0.2% 0.0% 0.2% 0.0%
num quest. total 0.4% 0.0% 0.4% 0.0%
num assist. total 1.4% 0.0% 1.6% 0.0%
avg quest. num 5.6% 0.0% 6.2% 0.0%
avg sess. succ. 0.1% 0.1% 0.2% 0.0%
avg 1st cor. 2.5% 0.7% 2.1% 0.0%
avg 2nd cor. 0.5% 1.1% 0.4% 0.0%
avg 1st assists. 0.0% 0.0% 0.0% 0.0%
avg 2nd assists. 0.2% 0.0% 0.3% 0.0%
med 1st resp. time 0.6% 0.0% 0.4% 0.1%
med 2nd resp. time 2.5% 0.0% 2.9% 0.1%
med assist. time 0.7% 0.0% 0.4% 0.0%

Assessment of Contextual Assistance Policies

To assess potential benefits of personalized assistance selection we study effects of assigning
individual students assistance actions (treatment) that deviates from what is best for the average
student (control). In particular, we test whether contextual policies defined via CRF-based CATE
function estimates achieve significant improvements in learning outcomes over non-contextual
policies. In reinforcement learning terminology, this experiment corresponds to a comparison of
contextual bandit and multi-armed bandit policies in a decision-problem with two actions.

Table 5.5 reports the result of this experiment. Among all 7, 548 individual assistance actions,
we detected significant benefits of personalization on reattempt correctness for three actions
and on student ability for one action. The methodology did not reveal any actions for which
personalization led to significant benefits for reward and session success outcome measures.

91



Table 5.4: Study of Non-Linear Heterogeneous Treatment Effects (HTEs). For each of 7, 458
assistance actions, we fit causal random forest (CRF) models predicting outcomes of students
receiving assistance (treatment) and students receiving “no assistance” (control). We report the
proportion of actions for which significant HTE was detected (p < 0.05, FDR controlled at 0.2)
based on residual and rank-weighted average treatment effect (RATE) analysis.

test/measure Reward Reatt. Cor. Stud. Abil. Sess. Succ.
Residual Analysis 0.2% 2.1% 0.2% 0.0%
RATE 0.2% 0.8% 0.1% 0.0%

Table 5.5: Number of assistance actions for which significant outcome benefits were detected
when comparing contextual assistance policies that leverage HTEs and non-contextual policies.

Reward Reatt. Cor. Stud. Abil. Sess. Succ.
0 3 1 0

5.6 Discussion

In this chapter, we employed statistical and causal machine learning to develop a methodological
framework. This framework aimed to (i) assess how the effects of instructional decisions vary
among students and (ii) test whether policies leveraging heterogeneous treatment effects (HTEs)
significantly outperform non-contextual policies. In the context of a large-scale online ITS, we
implemented this framework to analyze how effects of individual assistance actions (e.g., hints
and explanatory paragraphs) provided to students after answering a practice questions incor-
rectly, vary across students. Leveraging data from 420, 000 students collected in randomized
experiments, we evaluate the effects of 7, 548 assistance actions on different measures of learn-
ing outcomes (e.g., session success). While results revealed HTEs for some assistance actions,
findings suggest that the magnitude of these effects is often insufficient for contextual policies to
significantly improve over non-contextual policies.

From a machine learning perspective, the implication of these finding is that assistance poli-
cies that are optimal for the average student may, in many cases, also be optimal for the individ-
ual student (Figure 5.1). This suggests that multi-armed bandit (MAB) algorithms may achieve
similar outcomes to contextual bandit (CB) algorithms that make personalized instructional deci-
sions. Compared to CB algorithms, MAB algorithms can be more data-efficient, especially when
context and outcome distributions are uncorrelated [117]. Within the CK-12 system MAB algo-
rithms may arrive at effective instructional policies faster than CB algorithms. Looking back,
Chapter 4 identified various questions for which none of the available actions yielded significant
outcome improvements over the “no assistance” baseline (Table 4.2). Combined, these find-
ings suggest that rather than focusing on learning more complex policies, future iterations of the
CK-12 system are likely to benefit from a focus on assistance content refinements.

From a learning science perspective, the present work motivates future explorations tar-
geted towards understanding how individual student characteristics affect sensitivity to differ-
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ent instructional conditions and interventions [106]. Features of student behavior such as help-
seeking [5] and gaming behavior [21] are predictive of learning outcomes, but how these fea-
tures should inform instructional policies is still topic of ongoing research. For example, Nie
et al. [157] employed offline evaluation to compare the effects of instructional policies that re-
spond to users’ questions by choosing among four support strategies (e.g., hinting and providing
encouragement). Using data from 270 participants, Nie et al. estimated the effects of a rein-
forcement learning policy making decisions based on student features (e.g., pre-test scores and
math-anxiety levels) and a non-contextual static policy to be similar. One fundamental limitation
of reinforcement learning within ITSs is that related algorithms can only select among a limited
number of actions predefined by human domain experts. Limitations in the pool of available
interventions are likely to be an obstacle to effective personalization. In this context, future work
will explore the potential of generative AI to expand the instructional design space [96].

We conclude by highlighting limitations of the present study. The studied practice ques-
tions originate from six online science courses for middle and high school students. Despite this
diversity most question within these courses can be classified as shallow forms of knowledge
assessment focused on recall. Effect heterogeneity might be more prevalent in domains featuring
deep understanding questions [232]. Despite the large-scale of this study we only considered a
limited number of student covariates. Future work might consider additional factors such as self-
regulation strategies [7], mind-wandering [141] and gaming behavior [21]. While larger sample
sizes can increase HTE detection rates, they are unobtainable in most practical settings. In future
work we will explore whether all students in our dataset interacted with the provided assistance
in a meaningful way [5]. If a student does not process the provided support on a cognitive level
their behavior may not be indicative of content quality adding noise to our evaluations. Another
direction is to study heterogeneity on an aggregated level, moving the focus from individual as-
sistance actions to subsets exhibiting similar characteristics–e.g., by comparing hints to keyword
definitions or comparing paragraphs with and without visual illustrations.
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Part III

From Generative AI to Intelligent Tutoring
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Chapter 6
Towards the Automated Induction of
Conversational Tutoring Systems

This Chapter is based on work published as:
Schmucker, Robin, Xia, Meng, Azaria, Amos and Mitchell, Tom (2024), Ruffle&Riley: Insights
from Designing and Evaluating a Large Language Model-Based Conversational Tutoring Sys-
tem. In Proceedings of the 25th International Conference on Artificial Intelligence in Education
(AIED’24), 75–90, Recife, BR, Springer

Conversational tutoring systems (CTSs) offer learning experiences through interactions based
on natural language. They are recognized for promoting cognitive engagement and improving
learning outcomes, especially in reasoning tasks. Nonetheless, the cost associated with authoring
CTS content is a major obstacle to widespread adoption and to research on effective instructional
design. In this chapter, we discuss and evaluate a novel type of CTS that leverages recent ad-
vances in large language models (LLMs) in two ways: First, the system enables AI-assisted
content authoring by inducing an easily editable tutoring script automatically from a lesson text.
Second, the system automates the script orchestration in a learning-by-teaching format via two
LLM-based agents (Ruffle&Riley) acting as a student and a professor. The system allows for
free-form conversations that follow the ITS-typical inner and outer loop structure. We evaluate
Ruffle&Riley’s ability to support biology lessons in two online user studies (N = 200) compar-
ing the system to simpler QA chatbots and reading activity. Analyzing system usage patterns,
pre/post-test scores and user experience surveys, we find that Ruffle&Riley users report high
levels of engagement, understanding and perceive the offered support as helpful. Even though
Ruffle&Riley users require more time to complete the activity, we did not detect significant dif-
ferences in short-term learning gains over the reading activity. Our system architecture, user
studies and analyses provide various insights for designers of future CTSs.

6.1 Introduction

Intelligent tutoring systems (ITSs) are an transformative technology providing millions of learn-
ers with access to learning materials and adaptive instruction. ITSs can, in certain contexts, be as
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effective as human tutors [112] and can take on an important role in mitigating the educational
achievement gap [87]. However, despite their potential, one major obstacle to the widespread
adoption of ITS technologies, is the large costs associated with content development. Depending
on the depth of instructional design and available authoring tools, preparing one hour of ITS con-
tent can take designers hundreds of hours [8]. This significant investment often necessitates that
ITSs focus on core subject areas and cater to larger demographic groups, limiting the breadth of
topics covered and the diversity of learners adequately served.

Conversational tutoring systems (CTSs) are a type of ITS that engages with learners in nat-
ural language. Various studies have confirmed the benefits of CTSs, across multiple domains,
particularly on learning outcomes in reasoning tasks [163]. Still, many existing CTSs struggle
to maintain coherent free-form conversations and understand the learners’ responses due to lim-
itations imposed by their underlying natural language processing (NLP) techniques [159]. In
this chapter, we introduce and evaluate a new type of CTS that draws inspiration from design
principles of earlier CTSs [120, 159] while leveraging recent advances in large language mod-
els (LLMs) to accelerate content authoring and to facilitate coherent free-form conversational
tutoring. Our main contributions include:

• LLM-based CTS Architecture: We leverage LLMs to enable AI-assisted content author-
ing by generating an easily editable tutoring script from a lesson text, and to automate
script orchestration in free-form conversation. The CTS features a learning-by-teaching
format with two agents taking on the roles of a student (Ruffle) and a professor (Riley).
The human learner engages with these agents, teaching Ruffle with support from Riley.

• Evaluation of Learning Performance/Experience: We report findings from two online
user studies (N = 200) evaluating the effects of our LLM-driven CTS workflow on learn-
ing outcomes and user experience, comparing the system to two simpler QA chatbot and
one reading activity baseline.

• Evaluation of Interaction/Conversation: We study usage patterns and conversations and
assess their relationships to learning outcomes. We further discuss directions for future
system refinements and provide various insights related to the design and evaluation of
LLM-based learning technologies.

6.2 Related Work

Conversational Tutoring Systems
Dialog-based learning activities have been found to lead to high levels of cognitive engage-
ment [39], and various studies have confirmed their benefits on learning outcomes (e.g., [40, 49]),
particularly in reasoning tasks. This motivated the integration of conversational activities into
learning technologies. In their systematic review, Paladines and Ramirez [163] categorized the
design principles underlying existing CTSs into three major categories: (i) expectation miscon-
ception tailoring (EMT) [58, 159], (ii) model-tracing (MT) [82, 192, 196]) and (iii) constraint-
based modeling (CBM) [143, 238]. While all three frameworks can promote learning, they
require instructional designers to spend substantial effort configuring the systems for each indi-
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Figure 6.1: User interface of Ruffle&Riley. (a) Learners are asked to teach Ruffle (student agent)
in a free-form conversation and request help as needed from Riley (professor agent). (b) The
learner can navigate the lesson material during the conversation. (c) Ruffle encourages the learner
to explain the content. (d) Riley responds to a help request. (e) Riley detected a misconception
and prompts the learner to revise their response.

vidual lesson and domain. Further, due to limitations of underlying NLP algorithms, many CTSs
struggle to maintain coherent free-form conversations, answer learners’ questions, and under-
stand learners’ responses reliably [159]. In this context, here we employ recent advances in NLP
as the foundation for a novel type of LLM-driven CTS to facilitate free-form adaptive dialogues
and to alleviate the burdens associated with content authoring.

Content Authoring Tools

One major obstacle to the widespread adoption of CTSs and other types of ITSs is the complex-
ity and cost associated with content authoring [6, 53, 78]. For early ITSs, the development ratio
(i.e., the number of hours required by a domain expert to prepare one hour of instructional con-
tent) was estimated to vary between 200:1 and 300:1 [6]. Content authoring tools (CATs) [150]
were developed to facilitate ITS creation, often with an emphasis on making the process acces-
sible to educators without programming background (e.g., [8, 105, 244]). For a comprehensive
overview of CATs we refer to surveys by Dermeval et al. [53] and Sottilare et al. [216]. Here we
focus on highlighting prior studies that illustrate the ability of existing CATs to reduce authoring
times. ASSISTment Builder [190] was developed to support content authoring in a math ITS
and enabled a development ratio of 40:1. For model tracing-based ITSs, example tracing [8]
has proven itself as an effective authoring technique that depending on the instructional context
enables development ratios between 50:1 and 100:1. Recently, apprentice learner models were
evaluated as an authoring technique that in certain cases can be more efficient than example trac-
ing [132, 239]. In the context of CTSs, multiple CATs have been developed for AutoTutor [33],
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and while we were not able to find concrete development ratio estimates, the authoring of CTS
content is still considered to be a complex and labor intensive process.

Alternative approaches explored the use of learner log data to enhance ITS components such
as skill models and hints (e.g., [23, 24, 36]) as well as machine learning-based techniques for au-
tomated questions and feedback generation (e.g., [79, 113]). Recent advances in large language
models (LLMs) [262] sparked a new wave of research that explores ways in which LLM-based
technologies can benefit learners [96], for example via conversational agents [115]. Settings in
which LLMs already have been found to be effective include question generation and quality
assessment [2, 92, 146, 155, 197], feedback generation [2, 93, 124, 156, 167, 197, 266], answer-
ing students’ questions [119, 215], automated grading [30, 83], and helping teachers reflect on
their teaching [52, 125, 136]. What sets the present study apart from the aforementioned works
is that it does not focus on the generation of individual ITS components; instead, we propose a
system that can automatically induce a complete ITS workflow, exhibiting the prototypical inner
and outer loop structure [230], directly from a lesson text. Our work represents a step towards
LLM-driven ITS authoring tools that can generate entire workflows automatically from existing
learning materials and reduce system development times by an order of magnitude potentially.

6.3 System Design

Design Considerations
We approached the design of Ruffle&Riley with two specific goals in mind: (i) Facilitate an ITS
workflow that provides users with a sequence of questions (outer loop) and meaningful feedback
in the problem-solving process (inner loop); (ii) Streamline the process of configuring the con-
versational agents for different lesson materials. We reviewed existing CTSs and identified ex-
pectation misconception tailoring (EMT) as a suitable design framework. EMT mimics teaching
strategies employed by human tutors [76] by associating each question with a list of expecta-
tions and anticipated misconceptions. After presenting a question and receiving an initial user
response, EMT-based CTSs provide inner loop support (goal (i)) by guiding the conversation via
a range of dialogue moves to correct misconceptions and to help the user articulate the expecta-
tions before moving on to the next question (outer loop). For an in-depth description of the EMT
framework we refer to [77]. While EMT-based CTSs have been shown to be effective in various
domains [159], they need to be configured in a labor-intensive process that requires instructional
designers to define a tutoring script that specifies questions, expectations, misconceptions and
other information for each lesson [33]. For us, tutoring scripts serve as a standardized format for
CTS configuration that is easy to read and modify (goal (ii)).

User Interface
An overview of our user interface, together with descriptions of its key elements, is provided by
Figure 6.1. Inspired by the success of learning-by-teaching activities [60, 65, 120], we decided
to orchestrate the conversation in a learning-by-teaching format via two conversational agents
taking on the roles of a student (Ruffle) and a professor (Riley). The user’s task is to teach
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Figure 6.2: System architecture. Ruffle&Riley generates a tutoring script automatically from a
lesson text by executing three separate prompts that induce questions, solutions and expectations
for the EMT-based dialog. During the learning process, the script is orchestrated via two LLM-
based conversational agents in a free-form conversation that follows the ITS-typical inner and
outer loop structure.

the topics in the tutoring script to Ruffle, with guidance and support from Riley. While our
design is similar to some CTSs in the AutoTutor family that follow a trialogue format [159], one
notable difference is that Riley solely serves as an assistant to the user by offering assistance and
correcting misconceptions. Riley never communicates with Ruffle directly. In the following, we
describe the system architecture underlying Ruffle&Riley in more detail (Figure 6.2).

AI-Assisted Tutoring Script Authoring
Ruffle&Riley is capable of generating a tutoring script fully automatically from a lesson text
by leveraging GPT-4 [160] (Figure 6.2). This involves a 4-step process: (i) A list of review
questions is generated from the lesson text; (ii) For each question, a solution is generated based
on question and lesson texts; (iii) For each question, a list of expectations is generated based on
question and solution texts; (iv) The final tutoring script is compiled as a list of questions together
with related expectations (Figure 6.4). The first three steps are implemented via three separate
prompts written in a way general enough to support a wide range of lesson materials (Figure 6.3).
The resulting script can be easily modified and revised by instructional designers to meet their
needs. Unlike traditional EMT-based CTSs, our tutoring scripts do not attempt to anticipate
misconceptions users might exhibit ahead of time (this is a difficult task even for human domain
experts). Instead, we rely on GPT-4’s ability to detect and respond to misconceptions in the
user’s responses during the active teaching process.

Tutoring Script Orchestration
EMT-based CTSs require the definition of dialog moves and conversational turn management
to facilitate coherent conversations, which in itself is a complex authoring process [33]. Ruf-
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Question Generation: You are a {subject} professor that
prepares review/guiding questions to help your students learn
a lesson. Write at least 5 free-response questions designed
to help your students understand the lesson material.
Overall, the questions you write should promote comprehensive
learning and cover all the lesson material. Please try to
avoid writing questions that overlap in content. The lesson
material is provided below delimited by triple backticks.
Write the questions in the following format:
Question 1: <Question 1 text>
...
Question N: <Question N text>
Lesson Material: ```{lesson_text}```

Solution Generation: You are a {subject} professor that
prepares solutions for a range of review/guiding questions
designed to help your students learn a lesson. The questions
and lesson text are provided below delimited by triple
backticks. The solutions should be focused and explain only
the most important information from the lesson material. Do
not just copy sentences from the lesson text. Write the
solutions in the following format:
Solution 1: <Question 1 solution text>
...
Solution N: <Question N solution text>
Question List: ```{question}```
Lesson Material: ```{content}```

Expectation Generation: You are a {subject} professor that
creates lists summarizing the key facts contained in the
solutions to review/guiding questions designed to help your
students learn a lesson. The questions and solutions are
provided below delimited by triple backticks. You want to
keep the lists brief and focused. Write the lists in the
following format:
List 1: <Question 1 fact 1; ...; Question 1 fact m1>
...
List N: <Question N fact 1; ...; Question N fact mN>
Questions and Solutions: ```{questions}```

Figure 6.3: Tutoring script generation pipeline. The system takes as input an existing lesson text
and induces questions and expectations for the tutoring workflow by executing three consecutive
prompts. Curly braces mark information slots used to configure the individual prompts.
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Topic 1: What does the principle “form follows function”
mean in the context of cell biology? Provide an example to
illustrate your answer.

Fact 1.1: “Form follows function” in cell biology means
the structure of cell organelles supports their specialized
functions.

Fact 1.2: An example is the high number of ribosomes in
pancreas cells that produce digestive enzymes, supporting
the cell’s function of producing proteins.

Figure 6.4: Tutoring script. To structure the conversational activity, Ruffle&Riley relies on a pre-
generated script featuring a list of questions and related expectations for the EMT-based dialog.
Tutoring scripts can be generated automatically from existing lessons text and offer instructional
designers a convenient interface for system configuration.

fle&Riley automates the tutoring script orchestration by including descriptions of desirable prop-
erties of EMT-based conversations into the agents’ prompts and captures the user’s state solely
via the chat log. The student agent receives the tutoring script as part of its prompt and is in-
structed to let the user explain the individual questions and to ask follow-ups until all specified
expectations are covered (Figure 6.5). Ruffle reflects on user responses to show understanding,
provides encouragement to the user, and keeps the conversation on topic. In parallel, Riley’s
prompt contains the lesson text and instructions to offer relevant information after help requests,
and to prompt the user to revise their response after detecting incorrect information (Figure 6.6).
Both agents are instructed to keep the conversation positive and encouraging and to not refer to
information outside the tutoring script and lesson text. The turn manager coordinates the sys-
tem’s queries to GPT-4. For details on design and function of Ruffle&Riley–including the exact
prompts and logic of the conversational agents and tutoring script generation pipeline–we refer
readers to our public GitHub repository1. By open-sourcing an extendable implementation of
the CTS we aim to contribute to ongoing research efforts on effective instructional design of
LLM-based learning technologies.

6.4 Experimental Design

We describe the experimental design underlying our two user studies. Studies and participant
recruitment were approved by CMU’s Institutional Review Board (STUDY2023_00000293).

Learning Material We adapted a Biology lesson on eukaryotic cell organelles from the Open-
Stax project [48]. We decided on this particular lesson because we expected participants to have
low prior familiarity with the material to allow for a learning process. The lesson text is written
to be accessible to a general audience and covers 640 words.

1https://github.com/rschmucker/ruffle-and-riley
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Student Agent: You are an enthusiastic 18-year-old student
who is trying to learn. You need the user (who is a teacher)
to teach you all topics in the material. You have access to
a list of topics and facts that the teacher needs to convey
to you, but not to the material itself. You must learn one
topic at a time, never more than that. This is the list of
topics and facts you found from the internet that you need
the user to slowly teach you (in order): {tutoring_script}

Ask the user (who is the teacher) to teach you the material,
little by little. If the teacher gives an answer, you must
(a) show appreciation and summarize answer; (b) insert
[SMILE]; and then (c) ask a follow-up question that does
not give the solution away if the teacher has not touched
all facts about the current topic OR ask a question about
the next topic. Do not move on to the next topic or fact
before getting an answer for your current question. Do not
ask follow-up questions about facts that are not on the list
or the teacher has explained in a prior response. If the
teacher doesn’t know something, tell the teacher you will
be thrilled if the teacher can check it and get back to you.
If the teacher still doesn’t know encourage them to request
help from the professor. Focus on learning by very small
portions, so ask short questions, and ask questions that
require short answers. You do not know anything other than
what the user teaches you. You never say that the teacher
is not correct, but you might say you are not sure if their
answer is correct. You do not know anything that the teacher
does not know. When all the topics are covered, thank the
teacher, say I’ve asked all the questions I want to learn.
Remember to add transitional words when asking questions.
All responses must use the following format: ```Student (to
the teacher): <what the student says>```

Figure 6.5: Prompt for student agent (Ruffle). The student agent’s prompt contains the tutor-
ing script (“what to teach”) as well as written specifications of instructional strategies (“how to
teach”). The student agent structures conversational tutoring by asking questions together and
targeted follow-up to nudge the user articulate all expectations outlined in the tutoring script.
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Hint Prompt: You are a friendly and encouraging {subject}
professor who supervises interactions between a new teacher
and an 18-year old student. You only provide brief advice
to the teacher and always keep things positive. The material
the teacher needs to explain is delimited by triple backticks
and you must not refer to any information that is not
explained in the material.
Material: ```{lesson_text}```
In their most recent response the teacher addressed you
directly for help. Formulate a polite and brief comment
for the teacher’s with a hint to help the teacher answer the
student’s question. Use the following format: Comment for
teacher: <comment for teacher>

Screening Prompt: You are a {subject} professor that
evaluates whether a teacher’s answer to a student’s question
contains factually incorrect information. You do not count
typos as incorrect information. Fully irrelevant responses
count as incorrect. The student’s question and the teacher’s
answer are provided below, delimited by three backticks:
Student Question: ```{question_text}```
Teacher Answer: ```{user_answer}```
Use the following format: Teacher answer contains factually
incorrect information: <YES or NO>

Correction Prompt: You are a friendly and encouraging
{subject} professor who supervises interactions between a new
teacher and an 18-year old student. You only provide brief
advice to the teacher and always keep things positive. The
material the teacher needs to explain is delimited by three
backticks and you must not refer to any information that is
not explained in the material.
Material: ```{lesson_text}```
You detected some incorrect information or a typo in the
teacher’s most response. Formulate a polite and brief
comment for the teacher to point it out and ask the teacher
to revise their response. Use the following format: Comment
for teacher: <comment for teacher>

Figure 6.6: The professor agent uses three prompts to offer hints, screen for incorrect user re-
sponses, and correct them as necessary. By requiring users to revise their incorrect responses
before proceeding in the workflow, the agent ensures a factually accurate chat log, mitigating
hallucination in LLM outputs. Each prompt has access to a chat log that describes all prior inter-
actions between the user and the student agent.
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Conditions Similar to prior work studying the effects of CTS-based learning activities [111],
we construct experimental conditions to compare the efficacy of our EMT-based CTS to reading
alone and to a QA chatbot with limited dialog. To study potential differences, we equip the
QA chatbot with content from different sources under two distinct conditions: one using content
designed by a biology teacher and the other using LLM-generated content.

1. Reading: Participants study the material without additional support solely by reading.

2. Teacher QA (TQA): Participants study the material and can answer review questions pre-
sented by the QA chatbot. After submitting an answer, participants receive brief feedback
about the correctness of their response and a sample solution. Questions and answers were
designed by a human biology teacher.

3. LLM QA (LQA): Same as TQA, but questions and answers were generated automatically
by the LLM (Section 6.3).

4. Ruffle&Riley (R&R): Participants study the material while being supported by the two
LLM-based conversational agents. The system is equipped with a LLM-generated tutoring
script featuring the same questions as LQA.

Surveys/Questionnaires We evaluate system efficacy from two perspectives: learning perfor-
mance and learning experience. The first study gauges performance via a multiple-choice post-
test after the learning session, consisting of five questions written by a second biology teacher
recruited via Upwork and two questions from OpenStax [48]. To evaluate the system more ac-
curately and comprehensively, we conducted the second study. In particular, (1) we added a
pre-test to assess students’ prior knowledge and counterbalanced pre-test and post-test forms
for different students to ensure that potential difficulty variations between the tests do not affect
our results; (2) we enriched the test questions from only multiple-choice to two multiple-choice,
three fill-in-the-blank and one free-form response question created to assess participants’ deeper
understanding of the taught concepts. This revision of the question format was informed by prior
work which found the effects of CTSs to be less pronounced in recall-based test formats [77].

For both evaluations, learning experience is captured after post-test via a 7-point Likert scale
survey that queries participants’ perception of engagement, intrusiveness, and helpfulness of the
agents, based on prior work [177]. To ensure data quality, we use two attention checks and one
question asking whether participants searched for test answers online. Lastly, we included a de-
mographics questionnaire to understand participants’ age, gender, and educational background.
Appendix C provides additional details on learning experiences and performance surveys.

Recruitment We recruited participants online via Prolific. Our criteria were: (i) located in the
USA; (ii) fluent in English; (iii) possess at least a high-school (HS) degree. Participants were
randomly assigned to conditions and free to drop out at any point. For each of the two studies,
100 participants completed the task by submitting the final demographics survey. The study
workflow was designed to take about 20 min and participants received $4.00 upon completion.
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6.5 Evaluation 1: Initial System Validation

In the first user study we assess Ruffle&Riley’s (R&R) ability to facilitate a coherent and struc-
tured conversational learning activity. By comparing multiple conditions (Section 6.4), we ex-
plore hypotheses related to R&R’s effects on learning performance and learning experience.

Hypotheses We explore the following hypothesis. H1: Learning Outcomes: R&R users achieve
higher test scores than reading, TQA and LQA condition users (H1a); There are no significant
differences in test scores between TQA and LQA users (H1b). H2: Learning experience: R&R
users report higher ratings than than reading, TQA and LQA condition users in terms of learn-
ing experience metrics (H2a); There are no significant differences in experience ratings between
TQA and LQA users (H2b).

Participation As shown in Table 6.1, 30 participants finished the reading condition, 17 finished
TQA, 23 finished LQA, and 30 finished R&R. This imbalance was caused by the rotating condi-
tion assignment mechanism and participant drop-offs. After filtering participants who failed any
of the attention check questions, or who did not rate “strongly disagree” when asked whether
they looked up test answers online, we were left with 58 (male: 33, female: 21, other: 4) out of
the 100 participants (15 in reading, 7 in TQA, 15 in LQA, and 21 in R&R). The age distribution
is: 18-25 (8), 26-35 (20), 36-45 (18), 46-55 (9), over 55 (3). The degree distribution is: HS or
Equiv. (22), Bachelor’s/Prof. Degree (25), Master’s or Higher (11).

Learning Performance The post-test consists of seven questions, each worth one point. The
mean and standard error in post-test scores for participants’ in each condition are provided by
Table 6.1. A one-way ANOVA did not detect significant differences in test scores among the four
conditions. Therefore, we find support for H1b but not for H1a. Even though not significantly
different, we observed that participants in R&R achieved somewhat higher scores (5.19± 0.25)
than in TQA (4.14± 0.83). We find no significant differences in self-reported prior knowledge.

Learning Experience Table 6.2 shows participants’ learning experience and chatbot interac-
tion ratings. We tested for significance (p < 0.05) using one-way ANOVA, followed by Bonfer-
roni post-hoc analysis. We found no significant differences in self-reported engagement levels
between the four conditions. However, among the three chatbot conditions, R&R was rated as
significantly more helpful in aiding participants in understanding, remembering the lesson, and
providing the support needed to learn. Further, R&R participants expressed more enjoyment
than TQA and LQA participants. In addition, participants found R&R provided a significantly
more coherent conversation than LQA. Interestingly, even though we expected R&R to be rated
as more interrupting, we found no significant differences in perceived interruption among the
chatbot conditions. Therefore, H2a is partially supported. In addition, we detected no significant
differences in learning experience ratings between LQA and TQA. Thus, we cannot reject H2b.

Insights and Refinements Overall, we found that R&R is positively received by its users (Ta-
ble 6.2). Most importantly, the LLM-based system was able to facilitate coherent free-form
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Table 6.1: Learning performance across different learning conditions.

Table 6.2: Learning experience across different conditions. The marker "*" indicates p < 0.05.
The marker "-" indicates that the aspect was not asked in the respective condition.

conversations based on an LLM-generated tutoring script featuring 5 questions and 17 expecta-
tions. Even though users were free to end the conversational activity at any point, 17/21 users
completed the entire script explaining all expectations to the student agent. Further, R&R yielded
significant learning experience improvements over the more limited QA chatbots (TQA/LQA).

On the other side, R&R did not lead to significant improvements in learning performance
over the reading activity. The mean learning times varied largely between the four conditions:
reading (4 min), TQA (11 min), LQA (12 min), and R&R (18 min). Together, this motivated the
second evaluation focused on R&R and reading with three revisions: (i) We addressed feedback
about the student agent requesting similar information at different points in the conversation
by pruning the tutoring script down to 4 questions and 12 expectations; (ii) we employed test
forms with deep understanding questions (see Section 6.4); (iii) we employed adaptive condition
assignment probabilities to account for potential online participant drop-offs.

6.6 Evaluation 2: Efficacy and Conversation Analysis

This second user study focuses on R&R and reading–i.e., the two conditions exhibiting the high-
est post-test scores in the first study. We further conduct an in-depth analysis of conversations
within R&R to explore participants usage patterns and their relations to learning performance.

Hypotheses We explore the following hypothesis. H1: Learning Outcomes: R&R users achieve
higher test scores than users in the reading condition; H2: R&R users report higher ratings than
reading condition users in terms of engagement, understanding, remembering, and perceived
difficulty of the learning activity.
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Table 6.3: Learning performance for Ruffle&Riley and reading condition.

Table 6.4: Learning experience for Ruffle&Riley and reading ("*" indicates p < 0.05).

Participation As shown in Table 6.3, reading condition and R&R condition were each com-
pleted by 50 participants. After applying the same filter criteria as in the first evaluation, we were
left with 72 (male: 29, female: 43) out of the 100 participants (38 in reading and 34 in R&R).
The age distribution is: 18-25 (12), 26-35 (25), 36-45 (15), 46-55 (9), over 55 (11). The degree
distribution is: HS or Equiv. (23), Bachelor’s/Prof. Degree (33), Master’s or Higher (16).

Learning Performance The post-test consists of six questions, each worth one point. The
mean and standard error in pre-test and post-test scores as well as derived absolute (scorepost −
scorepre) and normalized learning gain (scorepost − scorepre)/(6− scorepre) measures are pro-
vided by Table 6.3. Comparing outcomes of R&R and reading condition users via one-sided
t-tests, we do not detect significant differences (p < 0.05) for any of the four learning perfor-
mance measures. Thus, we do not find support for H1.

Learning Experience Participants’ learning experience ratings collected after the post-test are
shown in Table 6.4. Different from the tested learning performance, the one-sided t-test unveiled
that R&R users rated their pre- and post-activity knowledge (i.e., perceived knowledge) signif-
icantly higher than participants in the reading conditions. While R&R received advantageous
scores in terms of overall engagement, remembering, and task difficulty, these differences could
not be established as statistically significant. Together, H2 is partially supported. Engagement
scores might not be directly comparable due to large differences in learning times between the
two conditions (R&R (20.8min), reading (5.5min)). Corroborating findings from Evaluation 1,
the chatbot-specific ratings for R&R were positive for understanding (5.21), remembering (4.76),
interruption (2.41), coherence (6.15), support (5.59), and enjoyment (5.18).

Analyzing Interaction and Conversations
Interactions We analyze interaction log data in R&R. First, 31/34 participants completed the
full conversational workflow. Users submitted on average 1.71± 0.45 help requests and received
1.77± 0.23 revision requests from Riley. Second, by evaluating temporal usage of conversation,
scrolling, and help request features, we observe four distinct system usage patterns among the 31
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Figure 6.7: Interaction patterns of Ruffle&Riley users. By visualizing usage of text navigation,
chat response, and help request features over time, we observe four distinct usage patterns.

Table 6.5: Learning performance of Ruffle&Riley users for each usage patterns.

Usage pattern Num Users Pre-Test Post-Test Absolute Gain Relative Gain
Balanced 11 1.64 ± 0.48 3.27 ± 0.57 1.64 ± 0.32 0.45 ± 0.10

Read + Conv. 13 1.62 ± 0.35 3.77 ± 0.47 2.15 ± 0.37 0.53 ± 0.09
Conv. Focused 4 0.62 ± 0.24 4.12 ± 0.52 3.50 ± 0.46 0.65 ± 0.09
Help Focused 3 0.67 ± 0.33 2.17 ± 0.44 1.50 ± 0.50 0.28 ± 0.09

completing participants (Figure 6.7): (I) balanced feature usage; (II) conversation and reading
only; (III) focus on conversation; (IV) focus on requesting help. Table 6.5 provides learning
performance measures for each group. While sample sizes are too small to draw conclusions,
we observe that the conversation-focused users (group (III)) achieve the highest learning gains.
Further, the non-help seeking users (group (II) and (III)) achieve higher performance measures
than the help-seeking users (group (I) and (IV)).

Conversations We analyze conversation log data in R&R. First, we evaluate the correct exe-
cution of the EMT-based dialogues. While all 31 participants went through all four questions in
the tutoring script, we noticed that 7 conversations omitted 1 or 2 two expectations. Further, in 9
conversations, the student agent requested similar information at different points in the session,
often when users wrote long responses covering multiple expectations at once. Another issue
uncovered was that the system was often lenient towards user responses that only covered parts
of one expectation (e.g., mention cellular respiration but do not explain its in- and outputs, Fig-
ure 6.8). An evaluation of all conversations verified the factual correctness of the GPT-4-based
agents’ responses. While we find that R&R facilitates coherent free-form conversational tutoring,
future revisions need to enhance the system’s ability to provide users with targeted feedback.

Second, we assess correlations between conversation features and participants’ learning per-
formance (Table 6.6). Learning time and the number of words in user explanations both show
positive correlations to the performance measures. The number of submitted help and received
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Table 6.6: Pearson correlation analysis between conversation features and learning performance.

Feeature Pre-Test Post-Test Absolute Gain Relative Gain
# User Messages -0.06 (p = 0.75) 0.12 (p = 0.54) 0.22 (p = 0.24) 0.11 (p = 0.54)
# Help Requests -0.14 (p = 0.44) -0.35 (p = 0.05) -0.32 (p = 0.08) -0.34 (p = 0.06)
# Revisions -0.35 (p < 0.05) -0.20 (p = 0.27) 0.10 (p = 0.58) -0.13 (p = 0.50)
# Words 0.24 (p = 0.19) 0.38 (p = 0.04) 0.26 (p = 0.17) 0.40 (p = 0.02)
Learning Time (min) -0.17 (p = 0.34) 0.16 (p = 0.35) 0.39 (p = 0.02) 0.26 (p = 0.13)

revision requests exhibit negative correlations. We observe no significant correlations between
number of user responses and performance measures. In summary, the above analyses suggests
that the way participants’ engage with the system affects their learning outcomes. Appendix C
provides examples of dialogues generated during the conversational tutoring workflow.

6.7 Discussion

Ruffle&Riley is a conversational tutoring system (CTS) that leverages recent advances in large
language models (LLMs) to generate tutoring scripts automatically based on existing lessons
texts. These tutoring scripts define structured conversational learning activities which are or-
chestrated via two LLM-based agents taking on the role of a student (Ruffle) and a professor
(Riley). The human learner engages with the system by explaining the topics specified in the tu-
toring script to the student agent while receiving support and feedback from the professor agent.
Our user studies verified Ruffle&Riley’s ability to facilitate coherent free-form conversational
tutoring. This highlights the potential of generative-AI-assisted content authoring tools for low-
ering resource requirements of CTS content development [33], promoting the design of learning
activities meeting the needs of a wider diversity of learners across a broader range of subjects.

Our first user study (N = 100), evaluates Ruffle&Riley’s ability to support a biology lesson
comparing the system to QA chatbots offering limited feedback and a conventional reading ac-
tivity. In terms of learning experience, Ruffle&Riley users reported significantly higher ratings in
terms of understanding, remembering, helpfulness of support and enjoyment. Still, corroborating
prior research, the recall-focused multiple-choice post-test did not detect significant differences
in learning outcomes between the conversational tutoring and the reading condition [77]. A sec-
ond user study (N = 100) compared Ruffle&Riley and reading via test questions designed to
assess deeper levels of understanding. Again, we detected no significant differences in learning
outcomes between the two conditions even though Ruffle&Riley users required on average more
time (20.8 min) than participants in the reading condition (5.5 min).

We performed an in-depth evaluation of interaction and conversation log data to better under-
stand how usage of Ruffle&Riley relates to observed learning outcomes. By studying temporal
usage of conversation, scrolling and help request features we were able to identify four distinct
system usage patterns. Interestingly, we found that users who focused on conversation and that
did not request help achieved the highest learning gains, indicating a Doer effect [108]. The
worst performing group, exhibited gaming behavior requesting help before each response. We
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Topic 3: Explain the role of mitochondria in cells. Why do
muscle cells have a high concentration of mitochondria?
Fact 3.1: Mitochondria are organelles that produce ATP, the
cell’s main energy-carrying molecule.
Fact 3.2: Mitochondria conduct cellular respiration, a
process that uses oxygen and glucose to produce ATP, carbon
dioxide, and water.
Fact 3.3: Muscle cells have a high concentration of
mitochondria because they require a significant amount of
energy, provided by the ATP produced by the mitochondria.

[Dialogue Topic 3 Start]
Ruffle: Now, could you please explain the role of mitochondria in cells?
User: The mitochondria is responsible for cellular respiration, which produces ATP (the
main energy source for the cell).
Ruffle: Thank you for your explanation! So, mitochondria are organelles that produce ATP,
the cell’s main energy-carrying molecule, through cellular respiration.
Ruffle: Could you explain why muscle cells have a high concentration of mitochondria?
User: This is because muscle cells need to use a lot of energy to keep the body moving, so
they need more ATP.
Ruffle: I see, so muscle cells have a high concentration of mitochondria because they
require a significant amount of energy, provided by the ATP produced by the mitochondria.
[Dialogue Topic 3 End]

Figure 6.8: Example of tutoring script and user dialogue. Comparing the information conveyed
in the dialogue with the tutoring script reveals that the user’s answers cover all main points but
omit important details. Future revisions will focus on providing targeted feedback to encourage
the user to articulate all expected information.

further identified positive correlations between learning performance and number of words in
users’ explanations and overall learning time. These analyses indicate that the way participants’
engage with the system is predictive of their learning performance. Future work will explore
revisions to nudge users towards active practice and to mitigate gaming behavior [22].

Reviewing the conversational logs, we found Ruffle&Riley to be receptive for partial expla-
nations that miss important information (e.g., mention cellular respiration without explaining its
in- and outputs) moving the conversation ahead too quickly. Future work will focus on enhanc-
ing the system’s ability to provide feedback to help users elicit all important information. While
hallucination and biased outputs are well documented problems for LLM-based learning tech-
nologies [96], we highlight affirmation of imprecise user responses as an additional challenge.

The present study is subject to several limitations: First, the system was evaluated via online
user studies conducted on Prolific with adult participants exhibiting diverse demographics (e.g.,
age and education). Current findings focus on a broad population of online users and might not
generalize to more specific populations (e.g., K-12 students). Still, this environment enabled us

112



to identify limitations of our system emphasizing the need for future research on instructional de-
sign principles [106] for LLM-based CTSs to improve learning performance and efficiency [111]
before running large-scale evaluations. Evaluations with larger participant groups are required to
validate the efficacy across demographics. Second, before evaluating Ruffle&Riley with younger
users, we need to certify safe and trustworthy system behavior adding to the system’s existing
mechanisms designed to ensure factual correctness of information surfacing during conversa-
tions [96]. Relatedly, although initial investigations found the system able to facilitating coher-
ent conversations on psychology and economics related lessons, future work is needed to assess
its ability support different subjects. Third, participants only took part in a single learning ses-
sion and might require time to adapt to the workflow. Fourth, while generative AI-based learning
technologies like our GPT-4 based system show promise, they also incur regular costs due to API
calls, raising important questions about equity and accessibility in educational contexts [96].

There are multiple exciting directions for extending Ruffle&Riley in future work: (i) Having
the student agent take a test after the lesson can be an effective way to provide feedback on
users’ teaching [120]. (ii) Adaptive learning activity sequencing and personalization of agents
and materials will become increasingly important when facilitating courses featuring multiple
lessons. (iii) Multimodal generative-AI can serve as foundation for audio-visual interactions
with the conversational agents and augment learning materials with illustrations and animations.
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Chapter 7
Conclusions

This dissertation illustrated how modern machine learning can leverage the data that is avail-
able in today’s learning systems to give those systems better methods for student assessment and
for choosing the right teaching action for the individual student. We provided evidence via a
series of case studies, developing methodologies using data from millions of students and im-
plementing a novel tutoring system that integrates generative AI to address limitations of prior
technologies. The work focused on three key components of intelligent tutoring systems (ITSs):
(i) computational models to estimate students’ knowledge state; (ii) data-driven policies for in-
structional decision-making; and (iii) implementation of pedagogical strategies. First, for infer-
ring student states, we utilized rich interaction data, such as hint usage and learning context,
to enhance the accuracy of performance modeling and employed transfer learning to address
the new course cold-start problem. Second, we applied reinforcement learning to optimize in-
structional decision-making in a large-scale online tutoring system, yielding significant gains
in learning outcomes and further analyzed how effects of these policies vary across individual
students. Third, we developed a new ITS that uses generative AI to enable AI-assisted content
authoring and free-form conversational tutoring workflows, facilitating scalable implementation
of adaptive pedagogical strategies. The following discusses the function of machine learning and
generative AI in the design and operation of ITSs and thesis contributions. A concise contribu-
tions summary is provided in Section 1.2.

ITSs adapt instruction to students in different ways. Aleven et al. [9] organized the ways in
which instruction can vary into three categories operating on different time scales: design-loop
adaptivity, task-loop adaptivity, and step-loop adaptivity. Design-loop adaptivity refers to the
iterative process of updating an ITS based on student data to better adapt to the instructional do-
main. Task-loop adaptivity involves adapting the sequencing of instructional tasks for individual
students. Step-loop adaptivity refers to dynamically adjusting instructional support or feedback
in response to a student’s actions within a task. Within this framework, machine learning and gen-
erative AI contribute to design and operation of ITSs in different functions (Table 7.1). Machine
learning enables ITSs to infer latent student states from observable data (e.g., knowledge [50]
and affect [34]), optimize teaching policies that control task- and step-loop adaptivity [59] and
generate insights that help domain experts understand how to refine system design [88]. While
machine learning can learn to make effective instructional decisions it requires domain experts
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Table 7.1: Function of machine learning and generative AI in the design and operation of intel-
ligent tutoring systems (ITSs). Machine learning enhances the functionality of ITSs by inferring
student states, executing teaching policies, and assessing their impacts on learning outcomes.
Although machine learning can refine teaching policies, it relies on human domain experts to
predefine all teaching actions. In contrast, generative AI can create new teaching actions based
on high-level specifications of teaching principles. Generative AI refines teaching by optimizing
predefined actions and by enhancing its capacity to dynamically generate learning tasks and pro-
vide tailored student support in real time through prompt engineering and parameter tuning.

Machine Learning Generative AI
Design
Loop

Teaching actions and policies defined by
human domain experts.

Teaching principles defined by human
domain experts via prompting.

Evaluates effects of teaching actions and
policies using data.

Teaching principles encoded into model
parameters via model training.

Refines teaching by identifying targets
for design improvements.

Refines teaching via teaching action gen-
eration, prompt and parameter tuning.

Task Infers student state using data. Interprets student input/lesson content.
Loop Inferences support expert policies. Generates tasks for each students.

Optimizes teaching policies using data. e.g., lesson texts, practice problems, . . .
Step Infers student state using data. Interprets student input/lesson content.
Loop Inferences support expert policies. Generates support for each students.

Optimizes teaching policies using data. e.g., targeted feedback, explanations . . .

to define all potential teaching actions (e.g., practice questions and hints) ahead of time.
Recently, generative AI has emerged as a new approach that can facilitate design-, task-,

and step-loop adaptivity, enabling ITSs to operate beyond the boundaries of predefined teaching
actions. Traditionally, ITSs were designed and implemented as expert systems [158, 230] that
structured teaching by combining tasks and feedback mechanisms curated by ITS authors with
expert teaching policies–for example, task selectors based on mastery learning [193]. In con-
trast, generative AI can interpret student inputs and lesson contexts within task- and step-loops
to adapt instruction by generating new teaching actions during live ITS usage [206]. Further-
more, in the design-loop, system refinements can be performed by domain experts who define
pedagogical principles via prompting, or automatically by optimizing neural network parameters
using techniques such as instruction tuning [258] and reinforcement learning from human feed-
back (RLHF)[162]. While generative AI facilitates tutoring workflows without explicit student,
domain or tutoring models [95], questions remain about how best to combine its flexibility with
the structured approach of traditional ITSs. Hybrid systems might address this by using machine
learning to evaluate predefined teaching actions (e.g., hints as feedback to incorrect responses
[205]) while employing generative AI to continuously refine the pool of teaching actions.

Directions in Student Performance Modeling

Tutoring systems employ instructional strategies, such as Mastery Learning [193], that adapt
the sequencing of learning activities to each student’s evolving proficiency levels [230]. To
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implement these strategies effectively, ITSs must infer the student’s latent knowledge state based
on observable data. From a machine learning perspective, this presents a supervised sequence
learning task, often referred to as student performance modeling or knowledge tracing. While
various algorithms have been developed [210], most approaches base their predictions solely
on the sequencing and correctness of problems answered by the student. More recently, large-
scale ITS datasets have become available [47, 180, 204, 237], expanding the size of student data
available for algorithmic modeling by an order of magnitude [72]. Furthermore, these datasets
capture increasingly detailed information about various aspects of the learning process, such as
interactions with individual lesson texts and videos as well as hint usage.

Responding to these developments, Chapter 2 and Chapter 3 introduced methodological
advancements that make use of diverse and large-scale student data to enhance the accuracy
and flexibility of performance modeling algorithms. These explorations involved data from
over 750, 000 students taking courses across four different tutoring systems. We first evalu-
ated which features of a student’s interactions with the ITS, derived from diverse types of log
data—including learning material usage, learning context, and interaction times—are most ben-
eficial for performance prediction. We then combined features computed from these diverse data
types with new features from conventional question-response data (e.g., patterns in the student’s
most recent responses) to improve the accuracy of performance predictions. Additionally, we
verified the benefits of training multiple specialized models for different aspects of the curricu-
lum (e.g., specializing in earlier and later segments of the practice sequence) and employing
combined predictions. Collectively, these innovations led to significant improvements over prior
logistic regression approaches, outperforming the prediction accuracy of multiple state-of-the-art
deep learning approaches [45, 164, 179, 213]. Our findings provide guidance to ITS designers
considering which aspects of student-ITS interactions to record. Moreover, they underscore
the necessity for future studies comparing traditional regression-based methodologies and deep
learning-based student performance modeling. In many educational contexts, simpler models
might be preferable because they are often easier to interpret and require less training data.

Student performance modeling encounters a cold-start problem whenever a new course is in-
troduced, as algorithms rely on data from previous students to make predictions for new students.
To address this issue, Chapter 3 introduced the first course-agnostic performance modeling al-
gorithms. Trained exclusively on data from existing courses, these agnostic models achieve pre-
diction accuracy comparable to that of conventional Bayesian Knowledge Tracing (BKT) [50]
and Performance Factor Analysis (PFA) [174] models, which are trained on large datasets from
new courses and used by many current tutoring systems. The generalizability of agnostic per-
formance models across courses, corroborates more recent findings highlighting consistencies
in knowledge acquisition in various domains [110]. We further introduced a transfer learning
methodology that enhances the data efficiency of existing performance modeling approaches via
fine-tuning of pre-trained course-agnostic models to new courses. This approach significantly
improves prediction accuracy compared to other models [44, 50, 72, 174, 204] when only small-
scale new course data is available (fewer than 100 students). These contributions offer new
tools to ITS designers to enhance adaptive instruction, particularly for early adopter students.
Pre-trained course-agnostic models, combined with AI-generated knowledge component (KC)
models [147], represent potent building blocks to enhance ITS authoring tools [6], enabling ITS
designers to conduct knowledge tracing with minimal labeling effort and without student data.
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Data-Driven Assistance Policy Improvements

The process of building ITSs involves many deliberate design decisions, ranging in granularity
from specifying general instructional principles [106] (e.g., interleaved vs. focused practice) to
curating lesson materials, to writing practice questions and crafting hints. Domain experts con-
sider the effects of multiple design choices (e.g., different hints for a given question) but often
find it difficult to predict what is best for students ahead of time [153]. In this context, reinforce-
ment learning offers a data-driven methodology that can refine teaching policies by leveraging
student interaction data within ITSs [59]. The second part of this dissertation presented a case
study of data-driven design [107] that deploys reinforcement learning methodologies within a
fielded online tutoring system used by millions of students. In particular, we optimized teaching
policies that decide which assistance action (e.g., one of multiple hints) to provide as feedback
to students after they answer a practice question incorrectly.

Chapter 4 approached this task as a multi-armed bandit problem [117]. We collected and
analyzed a dataset that captures over 23, 800, 000 logs from 1, 000, 000 students interacting with
43, 000 randomly assigned assistance actions (e.g., hints and explanatory paragraphs) designed
by human domain experts across six science courses. This dataset represents the largest evalu-
ation of feedback content to date. We evaluated the effects of individual assistance actions on
different measures of learning outcomes, such as reattempt correctness and session success, and
explored the relationships among these measures. Corroborating the assistance dilemma [103],
our analysis unveiled a trade-off between optimizing assistance policies for long-term outcomes
(i.e., student ability) and short-term outcomes (i.e., reattempt correctness). To address this issue,
we developed an algorithm that decides on the most suitable policy training objective for each
question to enhance students’ long- and short-term learning outcomes. Our findings showed
that no single assistance action format (e.g., hint, keyword definition) is universally best for any
type of question (e.g., multiple-choice, fill-in-the-blank). We further identified questions where
assistance actions functions effectively and pinpointed targets for future content refinements.
An evaluation of optimized assistance policies in live use in over 166,000 practice sessions
confirmed significant improvements in student learning outcomes compared to the data collec-
tion policy—verifying how the method enhances the tutoring system’s ability to teach students
automatically based on interaction log data. Our methodology and system design, detailed in
Appendix B, provide valuable insights for future integration of reinforcement learning method-
ologies within ITSs. The deployed system and its optimized assistance policies now support
thousands of students daily.

Moving forward, Chapter 5 explored whether personalized assistance policies that consider
features of individual students, such as students’ current ability level and average response time,
can achieve further improvements in learning outcomes. In particular, we investigated whether
contextual bandit algorithms [117], which consider features of individual students, can learn
more effective assistance policies than the optimized multi-armed bandit policies currently de-
ployed. Using statistical and causal machine learning methodologies [234], we examined the
extent to which the effects of individual assistance actions vary from one student to another. Our
findings suggest that although some assistance actions show variable treatment effects across stu-
dents, the magnitude of these effects may often not be significant enough for contextual policies
to outperform those optimized for the average student. Within the confines of the assistance con-
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tent available in the present tutoring system, what is best for the average student may, in many
cases, also be best for the individual student. Combined with the findings from Chapter 4, this
suggests that future iterations of the tutoring system may benefit more from refining the assis-
tance content rather than from learning more complex teaching policies. These findings together
with the large-scale dataset collected during our studies provide a basis for future research on
asking what are features of affective feedback elements and what are interactions between these
features, individual student attributes and different measures of learning outcomes [9].

Generative AI-enabled Learning Technologies

Generative AI expands the range of pedagogical strategies available to intelligent tutoring sys-
tems (ITSs) and addresses long-standing challenges in their development. Traditionally, creating
just one hour of adaptive instruction required hundreds of hours from domain experts [8], limiting
tutoring systems to a narrow range of core subject areas. Further, earlier natural language pro-
cessing (NLP) techniques struggled to interpret student inputs and personalize responses [159].
By providing capabilities that enhance the ability of ITSs to adapt teaching to individual students’
needs and supporting system authoring, generative AI is poised to bring about a new generation
of more effective, scalable, and personalized learning experiences.

Chapter 6 introduced Ruffle&Riley, a new type of conversational tutoring system (CTS) that
combines the capabilities of large language models (LLMs) [160] with the design principles of
earlier ITSs [120, 159]. This system facilitates AI-assisted content authoring by automatically
inducing a tutoring script from existing lesson text. The script provides a high-level description
of a structured ITS workflow, including guiding questions and discussion points aligned with
learning objectives, which instructional designers can easily edit. Ruffle&Riley uses these scripts
along with textual descriptions of teaching strategies to configure its conversational agents. By
automating the orchestration of free-form conversational tutoring, the system leverages LLMs
to translate instructional content into a dynamic learning workflow. This presents a paradigm
shift from earlier ITSs that placed intensive demands on instructional designers to manually craft
workflows for every conceivable teaching scenario.

The coming years bring potential for a paradigm shift within the AIED community. Tradi-
tionally, ITSs operated as expert systems that taught students using teaching actions and strate-
gies predefined by instructional designers [230]. Today, generative AI offers a flexible building
block that enables ITSs to break out of this static structure, for example, by generating answers
to students’ personal questions or by creating new problems to provide more tailored practice
opportunities on-demand. These types of modifications to the pool of teaching actions used to
be reserved for design-loop adaptations performed by human experts employing data to reflect
on student learning and revise ITS design accordingly [9]. The combination of machine learning
and generative AI has the potential to automate aspects of design-loop adaptivity, enabling ITSs
to continuously refine their teaching as they support individual students.

Ethics of Artificial Intelligence in Education

Education as a fundamental human right carries inherent ethical responsibilities [11]. These
include promoting equal access to education, ensuring integrity and fairness in teaching methods
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and assessments, and safeguarding student safety and privacy. From a humanistic perspective, it
is crucial to treat students with respect and to recognize their unique needs and backgrounds. This
fosters an inclusive environment that embraces diversity and empowers all students to reach their
full potential [178]. While AI in education (AIED) has the transformative potential to facilitate
widespread access to personalized instruction and equitable learning opportunities, it also raises
numerous ethical questions regarding its design, development, and deployment [85, 154].

AIED demands a thoughtful approach to ensure that technological advancements support,
rather than undermine, educational quality and equity. A major concern is that machine learn-
ing algorithms, reliant on potentially biased data, can amplify societal disparities, potentially
disadvantaging specific groups unfairly [18, 101]. This risk is compounded by potential for ero-
sion of human agency, as technology might overshadow human judgment and diminish personal
educational experiences [4, 140]. Privacy concerns are common, given that intelligent learning
systems frequently assess student behaviors and performance using log data. While such assess-
ments allow systems to personalize instruction for the individual student, it also raises concerns
about surveillance and misuse of sensitive information [86, 154]. Additionally, ensuring the va-
lidity and reliability of educational measurements and their use in decision-making processes
remains an ongoing concern [25, 26, 199]. Furthermore, it is crucial that AI builds upon sound
pedagogical practices to foster safe, trustworthy, and effective learning experiences [85, 154].
Lastly, ensuring the accessibility of educational technologies is essential for providing inclusive
and equitable learning opportunities that counteract existing inequalities [96, 154].

To ensure ethical AIED, it is crucial to prioritize transparency, accountability, and stakeholder
participation throughout the design, development, and deployment stages [85, 138]. Throughout
all chapters, this dissertation protected individual students’ privacy by relying on datasets that
underwent strict anonymization procedures. Chapter 4 and Chapter 5 conducted data collection
within an online tutoring platform and deployed reinforcement learning-based assistance poli-
cies providing feedback such as hints and explanatory paragraphs after incorrect responses. Both
studies were conducted in close collaboration with educational experts at the CK-12 Foundation.
We minimized risks by exclusively relying on feedback actions that were carefully curated by
subject matter experts within the CK-12 content team. To assess the impacts of reinforcement
learning policies before deployment, we conducted rigorous evaluations of the effects on dif-
ferent measures of learning outcomes using offline reinforcement learning methodologies. Our
analysis of heterogeneous treatment effects did not find evidence of adverse effects for any par-
ticular subgroup of students. Chapter 6 designed and evaluated a new type of conversational
tutoring system that leverages LLMs to facilitate free-form conversational learning. To minimize
risks of exposing users to hallucinations, toxic, and biased outputs, we grounded conversational
agents in textbook content, implemented self-verification, and conducted internal testing and
red-teaming [69]. User studies and recruitment were further reviewed and approved by the In-
stitutional Review Board (IRB). While online studies are no replacement for evaluations across
diverse demographics, they yielded initial insights into the strengths and limitations of the LLM-
based system and highlighted important directions for system refinements.
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Table 7.2: Examples of Hint Evaluation (HE) Rubrics [194, 246]. Rubrics are a distilled rep-
resentation of expert domain knowledge that is commonly used in various educational contexts.
Machine learning can automate the application of rubrics to educational content elements and
help us understand their relationships to student learning outcomes by analyzing empirical data.

HE Rubric Description
Appropriate Does the hint suggest a suitable next step to construct a solution to the

current problem?
Specific Is the hint specific to the current problem?
Comprehensible Is the hint understandable?
Encouragement Does the hint provide any form of encouragement?
Level-of-detail Is the hint a bottom-out hint or a high-level description?
Misleading Does the hint contain misleading information?

7.1 Future Research Directions

The contributions outlined in this dissertation lay the foundation for various research directions
aimed at developing data-driven systems that enhance their teaching capabilities while support-
ing individual students. This involves: (i) inferring students’ personal needs in the learning
process, (ii) adapting instructional decisions to promote academic and personal well-being, and
(iii) exploring new ways technology can benefit students. Below is an overview of the directions
the author finds particularly compelling.

Principles of Effective Instruction from Large-Scale Data

The design and implementation of intelligent tutoring systems (ITSs) involves making deliberate
design choices [106] that vary in granularity from general instructional strategies, such as Mas-
tery Learning for activity sequencing [193], to the curation of individual practice questions and
hints. The integration of tutoring systems with large-scale student interaction data creates a rich
environment for research on effective instructional design principles.

This dissertation utilized reinforcement learning as a data-driven methodology to assess the
effects of various feedback actions (e.g., hints and explanatory paragraphs) on student learn-
ing outcomes. These actions were designed to support students when they answered practice
questions incorrectly, and their impacts were quantified across multiple outcome measures (e.g.,
session success). While these algorithms enhanced outcomes by optimizing teaching policies
within the CK-12 practice system, introducing new feedback actions requires live evaluations.
Future work will aim to reduce the need for such evaluations by developing methods to estimate
the effectiveness of new feedback actions using insights from previous evaluations. Initial find-
ings highlight the potential deep learning approaches that use existing log data to differentiate
between more and less effective feedback actions based on their textual content [259].

From a learning science perspective, evaluation rubrics present a distilled representation of
expert knowledge commonly employed to assess the quality of educational materials, such as
practice questions (e.g., [145, 146]) and hints (e.g., [194, 246]) (Table 7.2). Future work will
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focus on strengthening our understanding of the relationships between expert evaluation rubrics
and student learning. Another promising avenue is the discovery of novel evaluation rubrics
directly from empirical student data. As AI-based tutoring systems are increasingly becoming
reliant on textual descriptions of effective pedagogical strategies, ensuring the validity and effec-
tiveness of instructional design principles is becoming increasingly important [95].

Mechanisms for Self-Improving Learning Systems

Chapter 4 and Chapter 5 of this dissertation explored how reinforcement learning can be used to
optimize teaching policies based on student interaction data within the CK-12 platform. While
this approach enhanced learning outcomes, several critical limitations emerged: current methods
are confined to selecting among a limited set of teaching actions predefined by human domain
experts. In particular, our evaluations identified practice questions for which we are unable
to learn effective teaching policies because none of the available feedback actions (e.g., hints)
improve learning outcomes over a “no assistance” baseline. Furthermore, even when effective
feedback actions are available, teaching policy optimization encounters ceiling effects due to the
finite pool of teaching actions.

To overcome these limitations, future research will draw inspiration from prior work on
Never-ending Learning systems [142] and equip educational technologies with the ability to
perform Continuous Instructional Refinement (CIR). CIR uses student data to evaluate teaching
actions, optimize teaching policies, and identify targets for teaching action refinements (Fig-
ure 7.1). CIR leverages generative AI to iteratively refine the set of actions in the content pool,
thereby transforming how learning systems adapt and improve their teaching automatically over
time. The CIR framework encompasses multiple research questions: (i) How can we make accu-
rate inferences on the effects of teaching actions on individual students’ academic performance
and personal well-being? (ii) How can we learn effective teaching policies over large numbers
of potential teaching actions when student log data is limited? (iii) How can insights from stu-
dent assessments and policy optimization guide incremental expansions to the space of available
teaching actions? By addressing these three questions, CIR research will contribute to the devel-
opment of novel machine learning methodologies and yield valuable insights into the attributes
of effective instructional design for learning science.

Towards Automated Induction of Intelligent Learning Technologies

As we look ahead, numerous open questions remain about the role of generative AI in creating
safe, trustworthy, and effective learning experiences. AI-based authoring tools are poised to em-
power educators and researchers by enabling them to focus more on refining instructional design
and less on content generation and technical execution. This shift is expected to accelerate the
evaluation and enhancement of instructional design principles [106], thus improving the efficacy
of tutoring systems and generating broader insights for the field of learning science [202]. My
research has contributed to these developments by: (i) creating algorithms that enable accurate
knowledge assessments in new courses [203]; (ii) designing methodologies that automate the or-
ganization of practice problems by relevant skills [147]; (iii) introducing an LLM-based tutoring
system that generates entire ITS workflows from existing lesson texts [206].
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Figure 7.1: Continuous Instructional Refinement (CIR) proposes a framework for refining teach-
ing policies and actions automatically over time. CIR achieves this by using student data to
evaluate the effects of teaching actions, optimize teaching policies, and identify targets for action
refinements. The process further aims to discover design principles of effective teaching actions.

Generative AI has the capability to transform written specifications of instructional strategies
into ITS (Intelligent Tutoring System) content components, including questions [92, 197] and
hints [2, 167], as well as functional components such as automated grading [30, 83] and question
answering [119, 215]. Future work will develop new types of generative AI-enabled technologies
that can support learning in diverse educational domains by enabling dynamic workflows that
adapt to the individual needs of students. One day, AI might enable us to induce entire ITS
courses based on high-level descriptions of course curricula and learning objectives, such as
those outlined in the US Common Core Standards [181]. Alongside technical and algorithmic
challenges, this will require tutoring systems to increasingly focus on human factors—such as
student motivation and engagement—to ensure sustained learning success.
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Appendix A
Extended Feature Descriptions

This Appendix provides a reference with additional implementation details for the features de-
scribed in Section 2.4. The individual ITSs capture similar information in different ways and we
discuss necessary system specific adaptions. While we are already sharing the complete code
base that was used to generate the experimental results in Chapter 2 on GitHub, this Appendix is
intended to guide independent re-implementations.

Question (Item) ID
All four of our datasets assign each question (i.e., item) a unique identifier. To make a perfor-
mance prediction for a question our implementation converts the corresponding question identi-
fier into a sparse one-hot vector which is then passed to the machine learning algorithm. Note
a one-hot vector refers to a vector where all values are zero except for a single value of 1. For
example, given a dataset with n different questions, our one-hot vector representation contains
n values, of which n − 1 are zeros, and just a single value of 1 to indicate the current ques-
tion. Knowledge about question identifiers allows a model to learn question specific difficulty
parameters.

Knowledge Component (KC) ID
Knowledge about KC identifiers allows a model to learn skill specific difficulty parameters.
While ElemMath2021 and Junyi15 only assign a single KC identifier per question, Ednet
KT3 and Eedi can assign multiple KC identifiers to the same question. To make a performance
prediction for a question our implementation uses a sparse-vector which is 0 everywhere except
in the entries which mark the corresponding KC identifiers with a 1 value.

Total/KC/Question Counts
Count features summarize a student’s history of past interaction with the ITS and are an impor-
tant component of PFA [174] and Best-LR [72]. In our experiments we evaluate three ways of
counting the number of prior correct responses and overall attempts:
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1. Total counts: Here we compute two features capturing the total number of prior correct
responses and overall attempts.

2. KC counts: For each individual KC we compute two features capturing the number of
prior correct responses and attempts related to questions that target the respective KC. A
vector containing the counts for all KCs related to the current question is then passed to
the machine learning algorithm.

3. Question counts: Here we compute two features capturing the total number of prior correct
responses and attempts on the current question.

All count features are subjected to scaling function ϕ(x) = log(1+x) before being passed to the
machine learning algorithm. This avoids features of large magnitude.

Total/KC/Question Time-Window (TW) Counts

Time-window based count features summarize student history over different periods of time and
provide the model with temporal information [44]. Following the original DAS3H implemen-
tation we define a set of time windows W = {1/24, 1, 7, 30,+∞} measured in days. For each
window w ∈ W , we count the number of prior correct responses and overall attempts of the stu-
dent which fall into the window. We evaluate three ways of counting the number of prior correct
responses and overall attempts:

1. Total TW counts: For each time-window, we compute two features capturing the total
number of prior correct responses and overall attempts.

2. KC TW counts: For each time-window and each individual KC, we compute two features
capturing the number of prior correct responses and attempts related to questions that target
the respective KC. A vector containing the counts for all time-windows and KCs related to
the current question is then passed to the machine learning algorithm.

3. Question TW counts: For each time-window, we compute two features capturing the total
number of prior correct responses and attempts on the current question.

All count features are subjected to scaling function ϕ(x) = log(1+x) before being passed to the
machine learning algorithm. This avoids features of large magnitude.

R-PFA F & R

Motivated by the idea that more recently observed student responses are more indicative for
future performance than older ones, R-PFA [68] augments PFA [174] by introducing two new
features. For each KC k R-PFA considers all interactions of student s with k up to time t and
computes: (i) A recency-weighted count of previous failures Fs,k,t using exponential decay. (ii)
A recency-weighted proportion of past successes Rs,k,t using normalized exponential decay. The
degree of decay is controlled by the hyperparameters dF and dR ∈ [0, 1]. To allow the computa-
tion of Rs,k,t when a student visits a KC k for the first time, their interaction history is appended
with g = 3 incorrect “ghost attempt”. The total number of responses of student s related to KC
k is as,k and correctness indicator as,k,i is 1 when s’s i-th attempt on KC k was correct and 0
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otherwise. With this the two R-PFA features are defined as

Fs,k,t =

as,k∑
i=1

d
(as,k+1)−i
F (1− as,k,i), Rs,k,t =

as,k∑
i=(1−g)

d
as,k−i
R∑as,k

j=(1−g) d
as,k−i
R

as,k,i . (A.1)

PPE Count
In the context of vocabulary learning, PPE [235] was proposed to capture the spacing effect [37].
PPE does so by introducing a weighting scheme which considers the delay between individual
practice session and by assuming a multiplicative relationship between the number of prior at-
tempts as,k with a time variable Tk. Further, the model uses a learning rate parameter c and three
forgetting rate parameters x, b and m. These four hyperparameters need to be set by the user.
Let ∆s,k,i be the real time passed since student s’s i-th response to KC k. For our feature evalua-
tion define a weighted count feature Bs,k = acs,kT

−dt
k by using PPE’s multiplicative relationship

between as,k and Tk which are defined as

Tk =

(
as,k∑
i=1

∆1−x
s,k,i

)(
as,k∑
i=1

1

∆−x
s,k,j

)
, dt = b+m

(
1

as,k

as,k∑
i=1

1

ln(∆s,k,i −∆s,k,i+1 + e)

)
.

(A.2)

Current/Prior Elapsed Time
Elapsed time measures the time span from question display to response submission [213]. The
idea is that a faster response is correlated with student proficiency. For our experiments we
subject elapsed time values to scaling function ϕ(x) = log(1 + x) and also use the categorical
one-hot encodings from [213]. There, elapsed time is capped off at 300 seconds and categorized
based on the integer second. We evaluate two variations of this feature. In the first version we
compute elapsed time based on interactions with the current question. In the second version
we compute elapsed time based on interactions with the prior question. Because it is unknown
how long a student will take to answer a question ahead of time the elapsed time value of the
current question is not available for question scheduling purposes and is excluded from the model
comparison in Section 2.5.

Current/Prior Lag Time
Lag time measures the time passed between the completion of the previous exercise until the
next question is received [213]. Lag time can be indicative for short-term memorization and
forgetting. For our experiments we subject lag time values to scaling function ϕ(x) = log(1+x)
and also use the categorical one-hot encodings from [213]. There, lag time is rounded to integer
minutes and assigned to one of 150 categories (0, 1, 2, 3, 4, 5, 10, 20, 30, . . . , 1440). Because
we cannot compute a lag time value for the very first question a student encounters we use
an additional indicator flag. We evaluate two variations of this feature. In the first version we
compute lag time based on interactions with the current question. In the second version we
compute lag time based on interactions with the prior question.
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Date-Time: Month, Week, Day, Hour
Date-time features provide information related to the temporal context a learning activity is
placed in. Here we consider the month, week, day and hour of interaction. We pass each of
these four attributes to the algorithm using one-hot encodings.

Study Module: One-Hot/Counts
All four datasets group study activities into distinct categories or modules (e.g., pre-test, ef-
fective learning, review, . . . ). Providing a machine learning model with information about the
corresponding study module can help with adapting the predictions to the different learning con-
texts. ElemMath2021 indicates different modules with the s_module attribute. EdNet KT3
indicates different modules with the source attribute. Eedi indicates different modules with the
SchemeOfWorkId attribute. For Junyi15 we can derive 8 study module identifiers correspond-
ing to the unique combinations of topic_mode, review_mode and suggested flags. We encode
these study module attribute values into one-hot vectors before passing them to the algorithm.

Teacher/Group ID
The ElemMath2021 dataset annotates each student response with the identifier of the super-
vising teacher. Similarly, the Eedi dataset annotates each student response with their group
identifier. Both attributes provide information about the current learning context. We encode the
identifiers into one-hot to allow the machine learning algorithm to learn teacher/group specific
parameters.

School ID
The ElemMath2021 dataset associates each student with a physical or virtual tutoring cen-
ter. Each tutoring center is assigned a unique school identifier. To capture potential differences
between the various schools we allow the machine learning algorithm to learn school specific
parameters by encoding the school identifiers into one-hot.

Course
The ElemMath2021 dataset contains logs from a variety of different mathematics courses.
While each course is assigned a unique course identifier, the KCs and questions treated in the
individual courses can overlap. To capture differences in the context set by the individual courses
we allow the machine learning algorithm to learn course specific parameters by encoding the
course identifiers into one-hot.

Topic
The ElemMath2021 dataset organizes learning activities into courses which itself are split
into multiple topics. Each topic is assigned a unique topic identifier. The ITS can deploy the
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same question in multiple topics and the differences in learning context might affect student
performance. We allow the machine learning algorithm to learn topic specific parameters by
encoding the topic identifiers into one-hot.

Difficulty
The ElemMath2021 dataset associates each question with a manually assigned difficulty score
from the set {10, 20, 30, 40, 50, 60, 70, 80, 90}. We learn a model parameter for each distinct
difficulty value by using a one-hot encoding.

Bundle/Quiz ID
The EdNet KT3 datasets annotates each response with a bundle identifier and the Eedi dataset
annotates each response with a quiz identifier. Both bundles and quizzes mark sets of multiple
questions which are asked together. The ITS can decide to assign a bundle/quiz to the student
which then needs to respond to all associated questions. To capture the learning context provided
by the current bundle/quiz we encode the corresponding identifiers into one-hot.

Part/Area one-hot/counts

The Ednet KT3 dataset assigns each question one label based on which of the seven TOEIC©

exam parts it addresses. Similarly, the Junyi15 dataset assigns each questions one of nine area
identifiers which marks the area of mathematics the question addresses. We allow the machine
learning algorithm to learn part/area specific parameters by encoding the part/area identifiers into
one-hot. In addition, we experiment with two count features capturing the total number of prior
correct responses and attempts on questions related to the current part/area. Before passing the
count features to the algorithm we subject them to scaling function ϕ(x) = log(1 + x).

Age
The Eedi dataset provides an attribute which captures students’ birth date. We learn a model
parameter for each distinct age by using a one-hot encoding. Students without a specified age
are assigned a separate parameter.

Gender
The Eedi dataset categorizes student gender into female, male, other, and unspecified. We learn
a model parameter for each attribute value by using one-hot vectors of dimension four.

Social Support
The Eedi dataset provides information on whether students qualify for England’s pupil premium
grant (a social support program for disadvantaged students). The attribute categorizes students
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into qualified, unqualified, and unspecified. We learn a model parameter for each attribute value
by using one-hot vectors of dimension three.

Platform

The ElemMath2021 dataset contains an attribute which indicates if a question was answered
from a physical tutoring center or the online system. Similarly, the EdNet KT3 dataset indicates
if a question was answered using the mobile app or a web browser. To pass this information to
the model we use a two-dimensional one-hot encoding.

Prerequisite: one-hot/counts

In addition to a KC model three of the datasets provide a graph structure that captures seman-
tic dependencies between individual KCs and questions. ElemMath2021 offers a prerequisite
graph that marks relationships between KCs. Junyi15 provides a prerequisite graph that de-
scribes dependencies between questions. In contrast, Eedi organizes its KCs via a 4-level topic
ontology tree. For example the KC Add and Subtract Vectors falls under the umbrella of Basic
Vectors which itself is assigned to Geometry and Measure which is connected to the tree root
Mathematics. To extract prerequisite features from Eedi’s KC ontology we derive a pseudo
prerequisite graph by first taking the two lower layers of the ontology tree and then using the
parent nodes as prerequisites to the leaf nodes. We evaluate two ways of utilizing prerequisite
information for student performance modeling:

1. Prerequisite IDs: For each question we employ a sparse vector that is zero everywhere
except in the entries that mark the relevant prerequisite KCs (for ElemMath2021 and
Eedi) or questions (for Junyi15).

2. Prerequisite counts: For each question we look at its prerequisite KCs (for ElemMath2021
and Eedi) or prerequisite questions (for Junyi15). For each prerequisite we then com-
pute two features capturing the number of prior correct responses and attempts related
to the respective prerequisite KC or question. After being subjected to scaling function
ϕ(x) = log(1+x), a vector containing the counts for all relevant prerequisite KCs/questions
is passed to the machine learning algorithm.

Post-requisite: one-hot/counts

By inverting the directed edges of the prerequisite graph, we derive a post-requisite graph. Anal-
ogous to the prerequisite case we encode post-requisite information in two ways: (i) As sparse
vectors that are zero everywhere except in the entries that mark the post-requisite KCs/questions
with a 1; (ii) As correct and attempt count features computed for each KC/question that is post-
requisite to the current question. For further details refer to the above prerequisite feature de-
scription.
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Video: count/skipped/time
The ElemMath2021 and EdNet KT3 dataset both provide information on how students in-
teract with lecture videos. We evaluate three ways of utilizing video consumption behavior for
performance modeling:

1. Videos watched count: Here we compute two features: (i) The total number of videos a
student has interacted with before; (ii) The number of videos a student has interacted with
before related to the KCs of the current question.

2. Videos skipped count: ElemMath2021 captures video skipping events directly. For
EdNet KT3 we count a video as skipped if the student watches less than 90%. Again
we compute two features: (i) The total number of videos a student has skipped before;
(ii) The number of videos a student has skipped before related to the KCs of the current
question.

3. Videos watched time: Here we compute two features: (i) The total time a student has spent
watching videos in minutes; (ii) The time a student has spent watching videos related to
the KCs of the current question in minutes.

All count and time features are subjected to scaling function ϕ(x) = log(1 + x) before being
passed to the machine learning algorithm. This avoids features of large magnitude.

Reading: count/time
The ElemMath2021 and EdNet KT3 dataset both provide information on how users interact
with reading materials. ElemMath2021 captures when a student goes through a question anal-
ysis and EdNet KT3 creates a log whenever a student enters a written explanation. We evaluate
two ways of utilizing reading behavior for student performance modeling:

1. Reading count: Here we compute two features: (i) The total number of reading materials
a student has interacted with before; (ii) The number of reading materials a student has
interacted with before related to the KCs of the current question.

2. Reading time: Here we compute two features: (i) The total time a student has spent on
reading materials in minutes; (ii) The time a student has spent on reading materials related
to the KCs of the current question in minutes.

The count and time features are subjected to scaling function ϕ(x) = log(1 + x) before being
passed to the machine learning algorithm. This avoids features of large magnitude.

Hint: count/time
The Junyi15 dataset captures how students make use of hints. Whenever a student answers
a question the system logs how many hints were used and how much time was spent on each
individual hint. Students are allowed to submit multiple answers to the same question, though a
correct response is only registered if it is the first attempt and no hints are used. We evaluate two
ways of utilizing hint usage for student performance modeling:

1. Hint count: Here we compute two features: (i) The total number of hints a student has used
before; (ii) The number of hints a student has used before related to the KCs of the current
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question.

2. Hint time: Here we compute two features: (i) The total time a student has spent on hints
in minutes; (ii) The time a student has spent on hints related to the KCs of the current
question in minutes.

The count and time features are subjected to scaling function ϕ(x) = log(1 + x) before being
passed to the machine learning algorithm. This avoids features of large magnitude.

Smoothed Average Correctness
Let cs and as be the number of prior correct responses and overall attempts of student s respec-
tively. Let r̄ be the average correctness rate over all other students in the dataset. The linear
logistic model is unable to infer the ratio cs/as of average student correctness on its own. Be-
cause of this we introduce the smoothed average correctness feature rs to capture the average
correctness of student s over time as

r̃s =
cs + ηr̄

as + η
.

Here, η ∈ N is a smoothing parameter which biases the estimated average correctness rate,
r̄s of student s towards this all-students average r̄. The use of smoothing reduces the feature
variance during a student’s initial interactions with the ITS. A prior work by Pavlik et al. [173]
proposed, but did not evaluate, an average correctness feature without the smoothing parameter
for student performance modeling. While calibrating this parameter for our experiments, we
observed benefits from smoothing and settled on η = 5.

Response Pattern
Inspired by the use of n-gram models in the NLP community (e.g., Manning and Schütze [135]),
we propose response patterns as a feature which allows logistic regression models to infer factors
impacting short-term student performance. At time t, a response pattern rt ∈ R2n is defined as
a one-hot encoded vector that represents a student’s sequence of n ∈ N most recent responses
wt = (at−n, . . . , at−1) formed by binary correctness indicators at−n, . . . , at−1 ∈ {0, 1}. The
encoding process is visualized by Figure 2.3 in Chapter 2.
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Appendix B
SmartAssistance System Architecture

Here we provide additional details about the software implementation underlying the SmartAs-
sistance system and explain related design considerations. Figure B.1 illustrates the overall sys-
tem architecture as UML class diagram. SmartAssistance supports the adaptive practice work-
flow (described in Section 4.3) by providing a service that recommends suitable assistance con-
tent in response to user-driven and automated assistance queries. SmartAssistance coordinates
training, evaluation and deployment of assistance policies and handles related communication
with a central database. The modular architecture facilitates the deployment of multi-armed
bandit and contextual bandit algorithms and is designed to support reinforcement learning al-
gorithms optimizing sequential instructions in future iterations. All types of assistance policies
can be queried via a standardized interface. In the following, we describe the individual system
components.

AssistanceInterface

The AsistanceInterface is an interface class that handles assistance queries from the
adaptive practice workflow. To determine an assistance action recommendation, the interface
takes as input identifiers describing the lesson and question the learner is currently interacting
with. The interface then passes this information to the MetaPolicy object which determines
an assistance action identifier. After each assistance action recommendation, the interface writes
policy log data relevant for assistance policy training and evaluation to the database.

DataManager

The DataManager is a helper class that coordinates interactions with a central database hosting
student log data, assistance content and trained assistance policies. The DataManager saves
assistance policies trained by the PolicyGenerator and records policy log data whenever
the AssistanceInterace responds to an assistance query. The DataManager further
implements functions to retrieve existing log data for individual learners to provide assistance
policies with the necessary information for making personalized assistance recommendations.
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Figure B.1: System architecture underlying the SmartAssistance system illustrated as UML class
diagram. The system implements a service for the adaptive practice workflow that is called when-
ever a student requires support. The architecture handles policy training, evaluation, deployment
as well as the computation of context features by communicating with a central database.

The DataManager provides the PolicyGenerator with batch access to student log data
available for a particular concept to facilitate offline policy optimization and evaluation.

AssistancePolicy
The AssistancePolicy is an abstract parent class that implements a standardized signature
for other assistance policy classes. Each assistance policy object features a unique policy identi-
fier and a get_action function which takes as input an assistance action query and that in response
returns an assistance action identifier.

MetaPolicy
The MetaPolicy is a class that serves as an abstraction layer that handles interactions between
the AssistanceInterface and one or more CompositePolicy objects. Internally, the
MetaPolicy features a policy distribution attribute. Whenever the MetaPolicy is queried
for an assistance action it randomly selects one of the CompositePolicies objects based
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on the distribution specified by this attribute. The user-to-policy mapping is implementing via a
hash function that operates on an unique practice session identifier which ensures that the policy
a student interacts with stays constant during each session. Overall, this enables the orchestration
of A/B evaluations by deploying multiple assistance policies in parallel to each other.

CompositePolicy

The CompositePolicy is a class that manages a set of ConceptPolicy objects. At ini-
tialization time the CompositePolicy loads a policy specification file pre-generated from
the PolicyGenerator defining one ConceptPolicy for each concept taught by the Flex-
Books system into memory. The individual ConceptPolicies can implement different bandit and
reinforcement learning algorithms (e.g., multi-armed bandit and contextual bandit algorithms).
Whenever the CompositePolicy receives a query for assistance it uses the associated concept
identifier to forward the query to the relevant ConceptPolicy to determine and return an assis-
tance action identifier.

ConceptPolicy

The ConceptPolicy is an abstract class that implements a unified interface inherited by
different assistance policy classes (e.g., BanditPolicy and ContextualPolicy). Each
ConceptPolicy object features attributes that specify the associated algorithm name and im-
plementation version. The abstract class further defines function signatures for policy training
and evaluation as well as related helper functions for retrieval and screening of student log data
from the DataManager. Internally, the current implementation of ConceptPolicies fea-
tures one random or bandit policy for each question tagged to the respective concept. In future
work, we want to explore the potential of reinforcement learning algorithms which might be able
to leverage synergies between individual assistance actions and questions when making sequen-
tial action recommendations.

RandomPolicy

The RandomPolicy implements a ConceptPolicy class that when queried to recommend
assistance for a particular question, uniformly samples an action from the content pool. The
RandomPolicy class was used to perform initial data collection for offline policy evaluations.

BanditPolicy

The BanditPolicy implements a ConceptPolicy class that when queried to recommend
assistance for a particular question, determines an action based on a learned multi-armed bandit
policy [117]. The multi-armed bandit policies presented in this paper are optimized using offline
policy optimization techniques (details in Section 4.4), but future extensions may consider online
learning algorithms.
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ContextualPolicy
The ContextualPolicy implements a ConceptPolicy class that when queried to rec-
ommend assistance for a particular question, determines an action based on a learned contextual
bandit policy [117]. Each ContextualPolicy object hosts an attribute specifying a list of
context features required for selecting assistance. In deployment, the ContextualPolicy re-
trieves the related student log data from the DataManager and passes it to the FeatureManager
to compute the context vector. The contextual bandit policies presented in this paper are opti-
mized using offline policy optimization techniques (details in Section 4.4), but future extensions
may consider online learning algorithms.

FeatureManager
The FeatureManager is a helper class that implements a series of functions which take as
input student log data to compute different features that provide context for recommending as-
sistance actions. In particular, the FeatureManager plays a central role in the training and
evaluation of ContextualPolicy specifications.

PolicyGenerator
The PolicyGenerator is a helper class that handles the generation of CompositePolicy
specification files. In this process, The PolicyGenerator receives a subject and an algo-
rithm name as well as a reward function that guides the policy optimization process (details in
Section 4.4). The PolicyGenerator trains one ConceptPolicy for each concept. For this
the PolicyGenerator communicates with the DataManager to retrieve relevant log data
and to store resulting policy specification files for later deployment. Policy files are computed
at regular intervals as more student log data is observed by the system. Future extensions may
consider online learning algorithms for continuous policy refinements during live deployments.
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Appendix C
Study Materials and Conversation Samples

This Appendix provides additional details regarding the study materials (e.g., survey and test
forms) employed in our evaluation of the Ruffle&Riley system discussed in Chapter 6. We
further present example dialogues between study participants and conversational agents to further
illustrate the function of the system. The tutoring script was generated based on a lesson on
Eukaryotic cells from the OpenStax project [48].

Tutoring Script
Figure C.1 provides the complete tutoring script, which includes four questions and twelve ex-
pectations generated based on the biology lesson text. As described in Section 6.3, the tutoring
script enables the LLM-based system to orchestrate structured conversational tutoring workflows.
For this purpose, Ruffle&Riley copies the tutoring script into the prompt of the student agent, as
shown in Figure 6.5.

Dialog Samples
Here, we illustrate two examples of dialogues generated by study participants and conversational
agents during the tutoring workflow. Both participants completed all four questions within the
tutoring script. While we did not observe any erroneous information in the responses from the
GPT-4-based agents, we noted that the system can be lenient toward user responses that only
partially meet individual expectations (e.g., they mention cellular respiration but do not explain
its inputs and outputs).

Dialog 1

RUFFLE: Hello! I’m eager to learn about cell biology. Could you please explain to me
what the principle “form follows function” means in this context?

USER: It means that the structure of organelles support their specialized functions.
RUFFLE: Thank you for your explanation! So, the structure of cell organelles is designed

in a way that supports their specific functions.
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Topic 1: What does the principle ”form follows function”
mean in the context of cell biology? Provide an example to
illustrate your answer.
Fact 1.1: ”Form follows function” in cell biology means
the structure of cell organelles supports their specialized
functions.
Fact 1.2: An example is the high number of ribosomes in
pancreas cells that produce digestive enzymes, supporting
the cell’s function of producing proteins.

Topic 2: Describe the structure and function of ribosomes.
Explain the different steps in the protein synthesis process.
Fact 2.1: Ribosomes are cell organelles responsible for
protein synthesis.
Fact 2.2: Ribosomes receive instructions for protein
synthesis from the nucleus, which transcribes DNA into mRNA.
Fact 2.3: The mRNA travels to the ribosomes in the
cytoplasm, where they translate the code into a specific
order of amino acids to form proteins.

Topic 3: Explain the role of mitochondria in cells. Why do
muscle cells have a high concentration of mitochondria?
Fact 3.1: Mitochondria are organelles that produce ATP, the
cell’s main energy-carrying molecule.
Fact 3.2: Mitochondria conduct cellular respiration, a
process that uses oxygen and glucose to produce ATP, carbon
dioxide, and water.
Fact 3.3: Muscle cells have a high concentration of
mitochondria because they require a significant amount of
energy, provided by the ATP produced by the mitochondria.

Topic 4: What are peroxisomes and what is their function in
cells? How does their structure support their function?
Fact 4.1: Peroxisomes carry out oxidation reactions that
break down fatty acids and amino acids.
Fact 4.2: These oxidation reactions are crucial for
detoxifying poisons.
Fact 4.3: Many of these reactions produce hydrogen peroxide,
which is safely confined within the peroxisome’s membrane.
Fact 4.4: Inside the peroxisome enzymes break down the
hydrogen peroxide into oxygen and water.

Figure C.1: Tutoring script with 4 questions and 12 expectations.
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RUFFLE: Could you please provide an example to illustrate this principle?
USER: Pancreas cells have a high number of ribosomes because they need to produce a

large amount of enzymes.
RUFFLE: I see, so the high number of ribosomes in pancreas cells supports their function

of producing a lot of enzymes.
RUFFLE: That’s really interesting! Now, could you please describe the structure and func-

tion of these ribosomes?
USER: Ribosome have two main subunits that sandwich mRNA. The large one is respon-

sible for producing the amino acid chain that will eventually become a protein.
RUFFLE: Thank you for explaining that! So, ribosomes have two main subunits and the

larger one is responsible for producing the chain of amino acids that will become a
protein.

RUFFLE: Could you please explain how ribosomes receive instructions for protein synthe-
sis?

USER: They receive mRNA which contains the instructions for which amino acids to pro-
duce in which order.

RUFFLE: Ah, I see! So, the nucleus transcribes DNA into mRNA, which carries the in-
structions for protein synthesis to the ribosomes.

RUFFLE: Could you please explain the steps of the protein synthesis process in the ribo-
somes?

USER: They first attach to mRNA which they then translate into tRNA which is used to
produce the amino acids.

RILEY (REQUESTS CORRECTION): Your explanation of the protein synthesis process is
slightly incorrect. Ribosomes do not translate mRNA into tRNA. Instead, they use
the sequence of the mRNA to guide the assembly of amino acids into a protein. The
tRNA brings the appropriate amino acids to the ribosome during this process. Could
you please revise your response?

USER: Ribosomes translate the mRNA into a sequence of specific amino acids.
RUFFLE: Thank you for explaining that! So, the ribosomes translate the code from the

mRNA into a specific order of amino acids to form proteins.
RUFFLE: Now, could you please explain the role of mitochondria in cells?
USER: The mitochondria is responsible for cellular respiration, which produces ATP (the

main energy source for the cell).
RUFFLE: Thank you for your explanation! So, mitochondria are organelles that produce

ATP, the cell’s main energy-carrying molecule, through cellular respiration.
RUFFLE: Could you please explain why muscle cells have a high concentration of mito-

chondria?
USER: This is because muscle cells need to use a lot of energy to keep the body moving,

so they need more ATP.
RUFFLE: : I see, so muscle cells have a high concentration of mitochondria because they

require a significant amount of energy, provided by the ATP produced by the mito-
chondria.

RUFFLE: : That’s really interesting! Now, could you please explain what peroxisomes are
and what their function is in cells?
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USER: Peroxisomes are small organelles that break down fatty acids and amino acids. This
is important for detoxifying poisons that enter the body.

RUFFLE: Thank you for explaining that! So, peroxisomes carry out oxidation reactions
that break down fatty acids and amino acids, which is crucial for detoxifying poisons.

RUFFLE: Could you please explain how the structure of peroxisomes supports their func-
tion?

RILEY (HINT REQUEST): Sure, I’d be happy to help. You could explain that peroxisomes
are enclosed by a single membrane which safely confines the oxidation reactions
inside. This structure allows them to carry out their function of breaking down fatty
acids and amino acids without causing damage to the rest of the cell.

USER: Peroxisomes are enclosed by a single membrane that safely keeps the oxidation
reactions inside. This allows them to carry out their functions without damaging the
rest of the cell.

RUFFLE: Ah, I see! So, the oxidation reactions that produce hydrogen peroxide are safely
confined within the peroxisome’s membrane.

RUFFLE: Could you please explain what happens to the hydrogen peroxide inside the per-
oxisome?

USER: Enzymes inside the peroxisome break down hydrogen peroxide into water and oxy-
gen.

RUFFLE: Thank you for explaining that! So, inside the peroxisome, enzymes break down
the hydrogen peroxide into oxygen and water.

RUFFLE: I’ve asked all the questions I wanted to learn. Thank you so much for your help!

Dialog 2

RUFFLE: Hi! Iḿ eager to learn about cell biology. Could you please explain to me what
the principle "form follows function" means in this context?

RILEY (HINT REQUEST): Of course! You might want to explain that in cell biology, the
principle "form follows function" means that the structure of an organelle or cell
component is directly related to its function. For instance, the high number of ri-
bosomes in pancreas cells supports their function of producing digestive enzymes.
Similarly, the double membrane structure of mitochondria allows them to produce
ATP efficiently.

USER: In cell biology, the principle "form follows function" means that the structure of an
organelle or cell component is directly related to its function.

RUFFLE: Thank you for the explanation! So, the structure of cell organelles supports their
specialized functions. That’s fascinating!

RUFFLE: Could you provide an example to illustrate this principle?
USER: An example is that the structure of cell organelles evolve in order to support their

specialized functions.
RILEY (REQUESTS CORRECTION): Your response is correct, but it might be more helpful

to provide a specific example. For instance, you could mention how the high num-
ber of ribosomes in pancreas cells supports their function of producing digestive
enzymes.
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USER: An example is that the structure of cell organelles evolves to support their spe-
cialized functions. For example, the high number of ribosomes in pancreas cells
supports their function of producing digestive enzymes.

RUFFLE: That’s a great example! So, the high number of ribosomes in pancreas cells
supports the cell’s function of producing proteins.

RUFFLE: Now, could you describe the structure and function of ribosomes for me?
USER: Ribosomes are responsible for the protein synthesis. Inside the cell, ribosomes

may group together into clusters or individual ribosomes may float freely in the
cytoplasm.

RUFFLE: Thank you for the explanation! So, ribosomes are cell organelles responsible for
protein synthesis.

RUFFLE: Could you explain the different steps in the protein synthesis process?
RILEY (HINT REQUEST): Sure, remember to explain that the process starts with the nu-

cleus transcribing DNA into mRNA. The mRNA then exits the nucleus and travels
to the ribosomes in the cytoplasm. The ribosomes translate the code provided by the
mRNA into a specific order of amino acids to form proteins.

USER: Protein synthesis starts from the nucleus and transcribes the DNA into messenger
RNA. The mRNA then exits the nucleus and travels to the ribosomes located in the
cytoplasm. The ribosomes then translate the code provided by the sequence of the
nitrogenous bases in the mRNA into a specific order of amino acids to form proteins.

RUFFLE: That’s very clear, thank you! So, ribosomes receive instructions for protein syn-
thesis from the nucleus, which transcribes DNA into mRNA. Then, the mRNA trav-
els to the ribosomes in the cytoplasm, where they translate the code into a specific
order of amino acids to form proteins.

RUFFLE: Now, could you explain the role of mitochondria in cells?
USER: Mitochondria are often called powerhouses of the cells because they make adeno-

sine triphosphate which is the cell’s main energy-carrying molecule.
RUFFLE: Thank you for the explanation! So, mitochondria are organelles that produce

ATP, the cell’s main energy-carrying molecule.
RUFFLE: Could you explain how mitochondria produce ATP?
USER: The cellular respiration process takes in oxygen to break down glucose and outputs

ATP plus the side products of carbon dioxide and water.
RUFFLE: That’s very clear, thank you! So, mitochondria conduct cellular respiration, a

process that uses oxygen and glucose to produce ATP, carbon dioxide, and water.
RUFFLE: Now, why do muscle cells have a high concentration of mitochondria?
USER: Muscle cells have a very high concertation of mitochondria because it needs con-

siderable energy to keep your body moving.
RUFFLE: Thank you for the explanation! So, muscle cells have a high concentration of

mitochondria because they require a significant amount of energy, provided by the
ATP produced by the mitochondria.

RUFFLE: Now, could you explain what peroxisomes are and what is their function in cells?
USER: Peroxisomes are small, round organelles enclosed by single membranes. They

carry out oxidation reactions that break down fatty acids and amino acids.
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RUFFLE: Thank you for the explanation! So, peroxisomes carry out oxidation reactions
that break down fatty acids and amino acids.

RUFFLE: Could you explain how these oxidation reactions are crucial for detoxifying poi-
sons?

USER: The oxidation reactions are crucial for detoxifying poisons because they break
down the H2O2 into oxygen and water, mitigating potential damage.

RUFFLE: That’s very clear, thank you! So, many of these reactions produce hydrogen
peroxide, which is safely confined within the peroxisome’s membrane. Then, inside
the peroxisome enzymes break down the hydrogen peroxide into oxygen and water.

RUFFLE: I think I’ve asked all the questions I wanted to learn. Thank you so much for
your help!

Learning Performance Survey
Here, we present the performance test questions used to assess participants’ knowledge before
and after the learning activity. We counterbalanced the pre-test and post-test forms across differ-
ent participants to ensure that any potential variations in test difficulty do not affect our results.

Test Form A

1. Which of the following best explains the role of ribosomes in eukaryotic cells?
a) They are the primary site of lipid synthesis
b) They play a key role in the detoxification of drugs and poisons in the liver
c) They contribute to the synthesis of proteins by translating mRNA
d) They generate ATP through the process of oxidative phosphorylation

2. Which of the following best explains the role of peroxisomes in eukaryotic cells?
a) They synthesize proteins and enzymes crucial for cellular processes
b) They play a key role in the transcription process of DNA into RNA
c) They catalyze oxidation reactions to break down harmful substances
d) They modify and package proteins for secretion outside of the cell

3. Complete the equation of cellular respiration:

glucose + oxygen → carbon dioxide + water + ATP

4. During the initial steps of protein synthesis, the nucleus is the organelle responsible for prepar-
ing the instruction for protein assembly in the form of mRNA.

5. The hydrogen peroxide (H2O2) is confined inside the peroxisome by its membrane. Inside the
peroxisome, enzymes break down the H2O2 into its molecular components.

6. Explain the principle “form follows function” in the context of cell biology based on the
example of organelle structure of muscle cells adapted to long-distance running.
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Test Form B

1. Which of the following best explains the role of mitochondria in eukaryotic cells?
a) They are involved in the synthesis of messenger RNA (mRNA)
b) They break down fatty acids and detoxify substances like formaldehyde
c) They produce ATP by breaking down glucose
d) They group into clusters for efficient protein synthesis

2. Which of the following best explains the role of the nucleus in eukaryotic cells?
a) It synthesizes amino acids that are used to build proteins
b) It is the site where ribosomes are assembled
c) It processes genetic information to produce messenger RNA
d) It synthesizes new proteins by linking amino acids together

3. Complete the equation of cellular respiration:

glucose + oxygen → carbon dioxide + water + ATP

4. In the protein synthesis process, the ribosome is the organelle responsible for translating the
instruction encoded by the mRNA into a specific order of amino acids.

5. Hydrogen peroxide is released by the organelle peroxisome during oxidation reactions that
break down fatty acids and detoxify poisons.

6. Explain the principle “form follows function” in the context of cell biology based on the
example of organelle structure of pancreas cells adapted to producing digestive enzymes.

Learning Experience Survey
Here, we present the learning experience questions shown to participants after the post-test. Re-
sponses were captured using a 7-point Likert scale with the following options: strongly disagree,
disagree, somewhat disagree, neutral, somewhat agree, agree, and strongly agree. Participants in
the reading condition were only shown questions 1-7. The survey assesses participants’ percep-
tions of engagement, intrusiveness, and the helpfulness of the agents, based on prior work [177].

Experience Survey

1. I already knew most of this material before the session.
2. It was difficult to learn this lesson.
3. I now have a deep understanding of the concepts in the lesson.
4. I remember what I learned in the lesson.
5. I felt engaged in the learning process.
6. I searched for test answers on other websites.
7. I found the student chatbot interrupting my learning process.
8. I found the professor chatbot interrupting my learning process.
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9. Interacting with the chatbots improved my understanding of the lesson.
10. Interacting with the chatbots helped me remember the lesson.
11. I got the support I needed from the chatbots to learn the lesson.
12. The conversations with the chatbots were coherent.
13. I enjoyed interacting with the chatbots.
14. I would like to interact with the chatbots again in the future when learning new lessons.

144



Bibliography

[1] Mark Abdelshiheed, John Wesley Hostetter, Tiffany Barnes, and Min Chi. Leveraging
deep reinforcement learning for metacognitive interventions across intelligent tutoring
systems. In International Conference on Artificial Intelligence in Education, pages 291–
303. Springer, 2023. 5.2

[2] Faruk Ahmed, Keith Shubeck, and Xiangen Hu. Chatgpt in the generalized intelligent
framework for tutoring. In Proceedings of the 11th Annual Generalized Intelligent Frame-
work for Tutoring (GIFT) Users Symposium (GIFTSym11), page 109. US Army Combat
Capabilities Development Command–Soldier Center, 2023. 6.2, 7.1

[3] Nikki L Aikens and Oscar Barbarin. Socioeconomic differences in reading trajectories:
The contribution of family, neighborhood, and school contexts. Journal of Educational
Psychology, 100(2):235, 2008. 2.4

[4] Selin Akgun and Christine Greenhow. Artificial intelligence in education: Addressing
ethical challenges in k-12 settings. AI and Ethics, 2(3):431–440, 2022. 7

[5] Vincent Aleven, Elmar Stahl, Silke Schworm, Frank Fischer, and Raven Wallace. Help
seeking and help design in interactive learning environments. Review of educational re-
search, 73(3):277–320, 2003. 5.6

[6] Vincent Aleven, Bruce M McLaren, Jonathan Sewall, and Kenneth R Koedinger. The cog-
nitive tutor authoring tools (ctat): Preliminary evaluation of efficiency gains. In Intelligent
Tutoring Systems: 8th Int. Conf., Jhongli, Taiwan. Proceedings 8, pages 61–70. Springer,
2006. 6.2, 7

[7] Vincent Aleven, IDO Roll, Bruce M McLaren, and Kenneth R Koedinger. Automated,
unobtrusive, action-by-action assessment of self-regulation during learning with an intel-
ligent tutoring system. Educational Psychologist, 45(4):224–233, 2010. 5.6

[8] Vincent Aleven, Bruce M McLaren, Jonathan Sewall, Martin Van Velsen, Octav Popescu,
Sandra Demi, Michael Ringenberg, and Kenneth R Koedinger. Example-tracing tutors:
Intelligent tutor development for non-programmers. Int. J. of Artificial Intelligence in
Education, 26:224–269, 2016. 6.1, 6.2, 7

[9] Vincent Aleven, Elizabeth A McLaughlin, R Amos Glenn, and Kenneth R Koedinger.
Instruction based on adaptive learning technologies. Handbook of research on learning

145



and instruction, pages 522–560, 2016. 7, 7

[10] Jose Luis Arroyo-Barrigüete, Susana Carabias-López, Tomas Curto-González, and Adolfo
Hernández. Portability of predictive academic performance models: An empirical sensi-
tivity analysis. Mathematics, 9(8):870, 2021. 3.2

[11] United Nations. General Assembly. Universal declaration of human rights, volume 3381.
Department of State, United States of America, 1949. 7

[12] Karl Johan Åström. Optimal control of markov processes with incomplete state informa-
tion. Journal of mathematical analysis and applications, 10(1):174–205, 1965. 1

[13] Markel Sanz Ausin, Hamoon Azizsoltani, Tiffany Barnes, and Min Chi. Leveraging deep
reinforcement learning for pedagogical policy induction in an intelligent tutoring system.
In Proceedings of the 12th International Conference on Educational Data Mining, pages
168–177, Montréal, QC, Canada, 2019. EDM. 4.2, 5.2

[14] Markel Sanz Ausin, Mehak Maniktala, Tiffany Barnes, and Min Chi. Tackling the credit
assignment problem in reinforcement learning-induced pedagogical policies with neural
networks. In Artificial Intelligence in Education, pages 356–368, Cham, 2021. Springer.
4.2

[15] Anirudhan Badrinath, Frederic Wang, and Zachary Pardos. pyBKT: An accessible python
library of bayesian knowledge tracing models. In Proceedings of the 14th International
Conference on Educational Data Mining, pages 468–474, Paris, France, 2021. EDM. 2.2,
3.4

[16] Vedant Bahel, Seth A Adjei, and Ryan S Baker. Transferring an existing gaming detection
model to different system using semi-supervised approach. In International Conference
on Educational Data Mining (Workshops), pages 1–5, 2021. 3.2

[17] Ryan Baker, Albert T Corbett, and Vincent Aleven. More accurate student modeling
through contextual estimation of slip and guess probabilities in bayesian knowledge trac-
ing. In Proceedings of the 9th International Conference on Intelligent Tutoring Systems,
pages 406–415, Berlin, Germany, 2008. Springer. 2.2

[18] Ryan S Baker and Aaron Hawn. Algorithmic bias in education. International Journal of
Artificial Intelligence in Education, pages 1–41, 2022. 7

[19] Ryan S Baker, Bruce M McLaren, Stephen Hutt, J Elizabeth Richey, Elizabeth Rowe,
Ma Victoria Almeda, Michael Mogessie, and Juliana M AL Andres. Towards sharing
student models across learning systems. In International Conference on Artificial Intelli-
gence in Education, pages 60–65. Springer, 2021. 3.2

[20] Ryan S Baker et al. Challenges for the future of educational data mining: The baker
learning analytics prizes. Journal of Educational Data Mining, 11(1):1–17, 2019. 3.2, 3.6

[21] Ryan Shaun Baker, Albert T Corbett, Kenneth R Koedinger, and Angela Z Wagner. Off-
task behavior in the cognitive tutor classroom: When students" game the system". In
Proceedings of the SIGCHI conference on Human factors in computing systems, pages
383–390, 2004. 5.6

[22] Ryan SJ d Baker, Albert T Corbett, Kenneth R Koedinger, Shelley Evenson, Ido Roll, An-

146



gela Z Wagner, Meghan Naim, Jay Raspat, Daniel J Baker, and Joseph E Beck. Adapting
to when students game an intelligent tutoring system. In Intelligent Tutoring Systems: 8th
Int. Conf., Jhongli, Taiwan. Proceedings 8, pages 392–401. Springer, 2006. 6.7

[23] Tiffany Barnes. The q-matrix method: Mining student response data for knowledge. In
American association for artificial intelligence 2005 educational data mining workshop,
pages 1–8. AAAI Press, Pittsburgh, PA, USA, 2005. 6.2

[24] Tiffany Barnes and John Stamper. Toward automatic hint generation for logic proof tutor-
ing using historical student data. In Intelligent Tutoring Systems, pages 373–382, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. 4.2, 6.2

[25] Frederik Baucks, Robin Schmucker, Conrad Borchers, Zachary A. Pardos, and Laurenz
Wiskott. Gaining insights into group-level course difficulty via differential course func-
tioning. In Proceedings of the Eleventh ACM Conference on Learning @ Scale, L@S ’24,
page 165–176, New York, NY, USA, 2024. Association for Computing Machinery. 7

[26] Frederik Baucks, Robin Schmucker, and Laurenz Wiskott. Gaining insights into course
difficulty variations using item response theory. In Proceedings of the 14th Learning
Analytics and Knowledge Conference, LAK ’24, page 450–461, New York, NY, USA,
2024. Association for Computing Machinery. 7

[27] Luca Benedetto, Andrea Cappelli, Roberto Turrin, and Paolo Cremonesi. Introducing a
framework to assess newly created questions with natural language processing. In Inter-
national Conference on Artificial Intelligence in Education, pages 43–54. Springer, 2020.
3.6, 3.6

[28] Luca Benedetto, Andrea Cappelli, Roberto Turrin, and Paolo Cremonesi. R2de: a nlp
approach to estimating irt parameters of newly generated questions. In Proceedings of
the Tenth International Conference on Learning Analytics & Knowledge, pages 412–421,
2020. 3.6, 3.6

[29] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal statistical society: series B
(Methodological), 57(1):289–300, 1995. 5.4

[30] Anthony Botelho, Sami Baral, John A Erickson, Priyanka Benachamardi, and Neil T Hef-
fernan. Leveraging natural language processing to support automated assessment and
feedback for student open responses in mathematics. J. of Computer Assisted Learning,
2023. 6.2, 7.1

[31] Sebastien Boyer and Kalyan Veeramachaneni. Transfer learning for predictive models
in massive open online courses. In International conference on artificial intelligence in
education, pages 54–63. Springer, 2015. 3.2

[32] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001. 2.5

[33] Zhiqiang Cai, Xiangen Hu, and Arthur C Graesser. Authoring conversational intelligent
tutoring systems. In Adaptive Instructional Systems: First Int. Conf., AIS 2019, Orlando,
FL, USA, pages 593–603. Springer, 2019. 6.2, 6.3, 6.3, 6.7

[34] Rafael A Calvo and Sidney D’Mello. Affect detection: An interdisciplinary review of

147



models, methods, and their applications. IEEE Transactions on affective computing, 1(1):
18–37, 2010. 7

[35] A Colin Cameron and Douglas L Miller. A practitioner’s guide to cluster-robust inference.
Journal of human resources, 50(2):317–372, 2015. 5.4

[36] Hao Cen, Kenneth Koedinger, and Brian Junker. Learning factors analysis – a general
method for cognitive model evaluation and improvement. In Mitsuru Ikeda, Kevin D.
Ashley, and Tak-Wai Chan, editors, Intelligent Tutoring Systems, pages 164–175, Berlin,
Heidelberg, 2006. Springer. 2.2, 6.2

[37] Nicholas J Cepeda, Edward Vul, Doug Rohrer, John T Wixted, and Harold Pashler. Spac-
ing effects in learning: A temporal ridgeline of optimal retention. Psychological science,
19(11):1095–1102, 2008. 1, 2.4, A

[38] Haw-Shiuan Chang, Hwai-Jung Hsu, and Kuan-Ta Chen. Modeling exercise relationships
in e-learning: A unified approach. In Proceedings of the 12th International Conference
on Educational Data Mining, pages 532–535, Madrid, Spain, 2015. EDM. 2.2, 2.3

[39] Michelene TH Chi and Ruth Wylie. The icap framework: Linking cognitive engagement
to active learning outcomes. Educational psychologist, 49(4):219–243, 2014. 4.2, 6.2

[40] Michelene TH Chi, Stephanie A Siler, Heisawn Jeong, Takashi Yamauchi, and Robert G
Hausmann. Learning from human tutoring. Cognitive science, 25(4):471–533, 2001. 6.2

[41] Min Chi, Pamela W. Jordan, Kurt VanLehn, and Diane J. Litman. To elicit or to tell: Does
it matter? In Proceedings of the 14th International Conference on Artificial Intelligence
in Education, volume 200 of Frontiers in Artificial Intelligence and Applications, pages
197–204, Brighton, UK, 2009. IOS Press. 4.2

[42] Min Chi, Kurt VanLehn, and Diane Litman. Do micro-level tutorial decisions matter:
Applying reinforcement learning to induce pedagogical tutorial tactics. In Intelligent Tu-
toring Systems, pages 224–234, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. 4.2

[43] Min Chi, Kurt VanLehn, Diane Litman, and Pamela Jordan. Empirically evaluating the ap-
plication of reinforcement learning to the induction of effective and adaptive pedagogical
strategies. User Modeling and User-Adapted Interaction, 21:137–180, 2011. 5.2

[44] Benoît Choffin, Fabrice Popineau, Yolaine Bourda, and Jill-Jênn Vie. DAS3H: Model-
ing student learning and forgetting for optimally scheduling distributed practice of skills.
In Proceedings of the 12th International Conference on Educational Data Mining, page
29–38, Montréal, QC, Canada, 2019. EDM. 2.2, 2.4, 2.5, 2.6, 3.2, 3.4, 3.4, 7, A

[45] Youngduck Choi, Youngnam Lee, Junghyun Cho, Jineon Baek, Byungsoo Kim, Yeongmin
Cha, Dongmin Shin, Chan Bae, and Jaewe Heo. Towards an appropriate query, key, and
value computation for knowledge tracing. In Proceedings of 7th ACM Conference on
Learning @ Scale, L@S ’20, page 341–344, New York, NY, USA, 2020. ACM. 2.2, 2.5,
2.6, 7

[46] Youngduck Choi, Youngnam Lee, Junghyun Cho, Jineon Baek, Dongmin Shin, Seewoo
Lee, Jonghun Shin, Chan Bae, Byungsoo Kim, and Jaewe Heo. Assessment model-
ing: fundamental pre-training tasks for interactive educational systems. arXiv preprint

148



arXiv:2002.05505, 2020. 3.2

[47] Youngduck Choi, Youngnam Lee, Dongmin Shin, Junghyun Cho, Seoyon Park, Seewoo
Lee, Jineon Baek, Chan Bae, Byungsoo Kim, and Jaewe Heo. EdNet: A large-scale
hierarchical dataset in education. In Proceedings of the 21st International Conference
on Artificial Intelligence in Education, pages 69–73, Cham, Switzerland, 2020. Springer
International Publishing. 2.3, 7

[48] Mary A Clark, Matthew Douglas, and Jung Choi. Biology 2e. OpenStax, 2018. 6.4, 6.4,
C

[49] Peter A Cohen, James A Kulik, and Chen-Lin C Kulik. Educational outcomes of tutoring:
A meta-analysis of findings. American educational research J., 19(2):237–248, 1982. 6.2

[50] Albert T Corbett and John R Anderson. Knowledge tracing: Modeling the acquisition
of procedural knowledge. User Modeling and User-Adapted Interaction, 4(4):253–278,
1994. 1, 1.2, 2.1, 2.2, 3.1, 3.2, 3.4, 3.6, 7, 7

[51] Rafael Jaime De Ayala. The theory and practice of item response theory. Guilford, New
York, NY, USA, 2013. 4.4, 5.3

[52] Dorottya Demszky, Jing Liu, Heather C Hill, Dan Jurafsky, and Chris Piech. Can auto-
mated feedback improve teachers’ uptake of student ideas? evidence from a randomized
controlled trial in a large-scale online course. Educational Eval. and Policy Analysis,
2023. 6.2

[53] Diego Dermeval, Ranilson Paiva, Ig Ibert Bittencourt, Julita Vassileva, and Daniel Borges.
Authoring tools for designing intelligent tutoring systems: a systematic review of the
literature. Int. J. of Artificial Intelligence in Education, 28:336–384, 2018. 6.2

[54] Michel C Desmarais and Ryan SJ d Baker. A review of recent advances in learner and
skill modeling in intelligent learning environments. User Modeling and User-Adapted
Interaction, 22(1):9–38, 2012. 1, 3.2

[55] Mucong Ding, Yanbang Wang, Erik Hemberg, and Una-May O’Reilly. Transfer learning
using representation learning in massive open online courses. In Proceedings of the 9th
international conference on learning analytics & knowledge, pages 145–154, 2019. 3.2

[56] Xinyi Ding and Eric C Larson. Why deep knowledge tracing has less depth than antici-
pated. In Proceedings of the 12th International Conference on Educational Data Mining,
pages 282–287, Montréal, QC, Canada, 2019. EDM. 2.4

[57] Xinyi Ding and Eric C. Larson. On the interpretability of deep learning based models for
knowledge tracing. CoRR, abs/2101.11335, 2021. URL https://arxiv.org/abs/
2101.11335. 2.4

[58] Sidney D’Mello, Andrew Olney, Claire Williams, and Patrick Hays. Gaze tutor: A gaze-
reactive intelligent tutoring system. Int. J. of human-computer studies, 70(5):377–398,
2012. 6.2

[59] Shayan Doroudi, Vincent Aleven, and Emma Brunskill. Where’s the reward? Interna-
tional Journal of Artificial Intelligence in Education, 29(4):568–620, 2019. 1, 4.2, 5.1,
5.2, 7, 7

149

https://arxiv.org/abs/2101.11335
https://arxiv.org/abs/2101.11335


[60] David Duran. Learning-by-teaching. evidence and implications as a pedagogical mecha-
nism. Innovations in Education and Teaching International, 54(5):476–484, 2017. 6.3

[61] Luke Glenn Eglington and Philip I. Pavlik, Jr. Predictiveness of prior failures is improved
by incorporating trial duration. Journal of Educational Data Mining, 11(2):1–19, 9 2019.
doi: 10.5281/zenodo.3554675. 2.2

[62] Fahmid Morshed Fahid, Jonathan P. Rowe, Randall D. Spain, Benjamin S. Goldberg,
Robert Pokorny, and James Lester. Adaptively scaffolding cognitive engagement with
batch constrained deep q-networks. In Artificial Intelligence in Education, pages 113–
124, Cham, CH, 2021. Springer. 4.2, 4.6

[63] Stephen Fancsali, April Murphy, and Steven Ritter. “closing the loop” in educational data
science with an open source architecture for large-scale field trials. In Proceedings of
the 15th International Conference on Educational Data Mining, pages 834–838, Durham,
UK, July 2022. International Educational Data Mining Society. 4.2

[64] Mingyu Feng, Neil Heffernan, and Kenneth Koedinger. Addressing the assessment chal-
lenge with an online system that tutors as it assesses. User modeling and user-adapted
interaction, 19(3):243–266, 2009. 2.2, 2.3, 3.2

[65] Logan Fiorella and Richard E Mayer. The relative benefits of learning by teaching and
teaching expectancy. Contemporary Educational Psychology, 38(4):281–288, 2013. 6.3

[66] Gerhard Fischer. Lifelong learning—more than training. Journal of Interactive Learning
Research, 11(3):265–294, 2000. 1

[67] Market Research Future. Online education market research report,
2020. URL https://www.marketresearchfuture.com/reports/
online-education-market-3957. Accessed: 04-21-2022". 1.1

[68] April Galyardt and Ilya Goldin. Move your lamp post: Recent data reflects learner knowl-
edge better than older data. Journal of Educational Data Mining, 7(2):83–108, 2015. 2.2,
2.4, 2.4, 2.5, 3.4, A

[69] Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Ka-
davath, Ben Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming
language models to reduce harms: Methods, scaling behaviors, and lessons learned. arXiv
preprint arXiv:2209.07858, 2022. 7
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