
Collaborative learning by
leveraging siloed data

Sebastian Caldas

July 2023
CMU-ML-23-106

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Artur Dubrawski, Chair

Virginia Smith
Gilles Clermont (University of Pittsburgh)

Martin Jaggi (EPFL)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2023 Sebastian Caldas

This research was sponsored by: Air Force Research Laboratory award FA87501720130; Defense Advanced Research Projects Agency award
HR00111830004; National Institutes of Health awards R01GM117622, R01NR013912, R01HL144692, R01HL141916, R01EB029751 and R01NR013912;
National Science Foundation awards IIS1705121 and IIS1838017; United States Army awards W911NF1820218 and W81XWH19C0101.
The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: machine learning, collaborative learning, federated learning, machine learning for
healthcare, model compression, interpretability, weak supervision.

Para mi madre

Abstract

Regulations can often limit stakeholders’ modeling capabilities by preventing data shar-
ing. For example, in order to protect patient privacy, clinical centers may be unable to share
their data and thus lack representative records to learn about a rare condition. To address
this challenge, previous work in machine learning has shown that these stakeholders benefit
from training models in a collaborative fashion, improving their predictive performance. How-
ever, as we start training these collaborative models in real-world settings, and in order to be
truly useful, they need to provide utility along dimensions beyond predictive performance. In
this thesis, we propose methods and algorithms to improve collaborative models that leverage
siloed data along three dimensions. In the first part, we propose methods to reduce the com-
munication footprint of models learned by mobile devices cooperating over edge networks,
allowing for higher capacity models to be trained. Then, in the second part, we introduce an al-
gorithm that provides explanations about predictions of models trained across clinical centers,
thus improving their clinical utility. Finally, in the third part, we address the need to encode
expert supervision into collaborative models trained using on-device data, increasing the class
of problems we can tackle in these scenarios.

Acknowledgements

I want to thank my advisor, Artur: for answering every question with the utmost patience,
for giving me space to explore ideas at my own pace, and for teaching me what great mentorship
can look like. I strive to create spaces as impactful as your lab. I also want to thank Ginger, for
her compassionate guidance, support and example, especially in the early stages of my PhD.
Finally, I would also like to thank the rest of my committee, Dr. Clermont and Professor Jaggi,
for their invaluable advice. It has had a profound impact on my work.

I am very grateful to have grown as a researcher alongside extraordinary collaborators
in academia, industry and healthcare. The list includes but is probably not limited to Jakub
Konečnỳ, Brendan McMahan, Michael Pinsky, Joo Yoon, Keith Dufendach, Jieshi Chen, Vivek
Natarajan, Yuan Liu, Christopher Choquette, Mikhail Khodak, Tian Li, Mononito Goswami,
Jeffrey Li, Karthik Duddu, Peter Wu, Vincent Jeanselme, Willa Potosnak, and Kyle Miller.

I am thankful to Ameet Talwalkar and Rayid Ghani, for allowing me to teach in their class-
rooms. At the time, I did not articulate how much that opportunity meant to me. I also want to
highlight the kindness and passion of Diane Stidle. I thank my undergraduate mentors, Marcela
Hernandez and Rubby Casallas, for going out of their way to let me pursue machine learning
research.

I am incredibly lucky to have landed in the AutonLab, and I am thankful for the friends
I found there: Ceci, Ifi, Cristian, Ian, Angela, Jack, Roman, Rachel, Youngseog, Ben, Chirag,
Aleeya and Nick. I am also thankful for the friends I have found in CMU: Nicholay, Mandy,
Devendra, Jin, Jen, Ken, Kanthashree, Sid, Biswa, Shaojie, Kin, Stef, Eyan, Liam, Greg, Giulio,
Jason, Lisa, Conor and David. Thanks to Mariya Toneva, because her advice kept me going
during tumultuous times. Finally, I’m grateful to my office-mates: Leqi, Brandon and Helen.
Thank you all for sharing your joy and your depth and your company.

I also want to acknowledge the support of my Pittsburgh friends. The improv teams at SCIT
always had my back: All in One Peel, That New Jersey Smell, Updates Pending, The Unnamed
Harold Team, among many others. I’m thankful to the friends that had my back beyond improv:
Miguelina, Emma, Oisin, Maia, Nick, Cam, Kelly, Quinn, Ray, Robin, Patrick and Nat. You made
me feel at home in Pittsburgh, something I struggled to do for a while.

Para finalizar, quiero agradecer a mi familia. A mi hermana, por su apoyo y su consejo. A
mi madre y a mi padre, por cultivar mi amor por el aprendizaje. Y a mi abuela y a mis tı́as, por
su constante afecto.

Contents

1 Introduction 8
1.1 Problem Statement . 8
1.2 Thesis Statement and Overview . 10
1.3 Summary of Contributions . 11
1.4 Bibliographic Notes . 12
1.5 Open-Source Contributions . 12

I Communication Constraints 13

2 Reducing Client Resource Requirements 14
2.1 Related Work . 16
2.2 Methods . 17

2.2.1 Lossy Compression . 17
2.2.2 Federated Dropout . 17

2.3 Experimental Results . 19
2.3.1 Experimental Setup . 19
2.3.2 Lossy Compression . 20
2.3.3 Federated Dropout . 21
2.3.4 Reducing the overall communication cost 22

2.4 Conclusions, Impact and Open Questions . 23

II Explanations 25

3 Understanding Clinical Collaborations Through Federated Classifier Selection 26
3.1 Related work . 28
3.2 Federated Classifier Selection . 29

3.2.1 Dynamic selection of candidate classifiers 29
3.2.2 Limitations . 31

3.3 Results: Early prediction of sepsis . 31
3.3.1 Experimental setup . 31
3.3.2 Results of local classifiers . 32
3.3.3 Results of competence threshold strategy 33
3.3.4 Results of decision list strategy . 33

2

3.4 Extensions . 36
3.5 Conclusions . 37

4 Using Machine Learning to Support Transfer of Best Practices in Healthcare 38
4.1 Motivating example . 38
4.2 Identifying practice gaps . 41
4.3 Results: Detection of overly-long hospital stays 42
4.4 Discussion . 45

III Expert Supervision 47

5 Encoding Expert Knowledge Into On-Device Data Using Weak Supervision 48
5.1 Related Work . 50
5.2 Weak Supervision Heuristics for Federated Learning 51

5.2.1 Problem Formulation . 51
5.2.2 Automatic Mining of LFs . 51
5.2.3 Training of the PWS Model . 53

5.3 Labeling Function Generation . 54
5.3.1 Text LFs . 54
5.3.2 Time-series LFs . 55

5.4 Experimental Setup . 56
5.5 Results and Discussion . 57

5.5.1 Automatic Mining of LFs . 58
5.5.2 Training of the PWS Model . 59
5.5.3 Putting It All Together . 60
5.5.4 Societal Impact and Future Work . 62

IV Open-Source Contributions 63

6 LEAF: A Benchmark for Cross-Device Settings 64
6.1 LEAF . 65
6.2 LEAF in action . 67
6.3 Conclusions and Impact . 68

Conclusions 71

7 Conclusions 72

Appendix 75

A Reducing Client Resource Requirements 76

3

A.1 Kashin’s Representation . 76
A.1.1 Theoretical Overview . 76
A.1.2 Practical Considerations . 77
A.1.3 Dominance over Hadamard . 77

A.2 MNIST Experimental Results . 79

B Understanding Clinical Collaborations Through Federated Classifier Selection 80
B.1 Tuning the Number of Neighbors in FRCLS . 80
B.2 Data Description for Early Prediction of Sepsis 80

C Using Machine Learning to Support Transfer of Best Practices in Healthcare 84

D Encoding Expert Knowledge Into On-Device Data Using Weak Supervision 85
D.1 Datasets and Models . 85

D.1.1 Amazon . 86
D.1.2 IMDb . 86
D.1.3 MIT BIH . 86
D.1.4 Additional Models . 87

D.2 Experiment Hyperparameters . 88
D.2.1 Automatic Mining of LFs . 88
D.2.2 Training of the PWS Model . 88
D.2.3 Baselines . 89

D.3 Labeling Functions used for Federated Weasel 91
D.4 Labeling Function Seeds . 93
D.5 Examples of Inspected Labeling Functions . 94
D.6 Ablations . 98
D.7 Proposed Candidates Distribution . 98

E LEAF: A Benchmark for Cross-Device Settings 101
E.1 Synthetic Dataset . 101
E.2 Experiment Details . 102

4

List of Figures

2.1 Combination of proposed strategies for communication savings. 15
2.2 Federated Dropout applied to two fully-connected layers. 18
2.3 Effect of varying our lossy compression parameters on CIFAR-10 and EMNIST. . 21
2.4 Results for Federated Dropout. 22
2.5 Effect of using compression and Federated Dropout on CIFAR-10 and EMNIST. . 23

3.1 Illustration of inter-center population heterogeneity. 27
3.2 Illustration of FRCLS’s strategies . 30
3.3 AUC ROC for our classifiers on each hospital system. 33
3.4 Rules learned by Federated Classifier Selection (FRCLS)’s decision list strategy. . 35

4.1 ROC curves for our motivating example. 40
4.2 Score distributions for our motivating example. 41
4.3 TNR @ 90% TPR for the trained models. 43
4.4 Differences in performance and entropy when models are transferred. 44
4.5 Differences in performance and entropy when models are transferred, controlled

for size. 45

5.1 Visualization of WSHFL’s strategy for generating Labeling Functions (LFs). . . . 49
5.2 Example of a labeling function. 50
5.3 Example of a time-series labeling function representing an arrhythmia. 55
5.4 Results for a majority vote classifier given mined LFs. 58
5.5 Results of training a PWS model in a federated setting given a set of curated LFs. 59
5.6 Results of varying class proportions on the IMDb dataset. 60
5.7 Results for WSHFL on Amazon, IMDb and MIT BIH. 60
5.8 Training accuracies vs. coverages for LFs found by WSHFL. 61

6.1 LEAF modules . 66
6.2 Convergence behavior of FedAvg on Shakespeare. 68
6.3 Statistical and Systems analyses for Sent140 and FEMNIST. 69

A.1 Kashin’s representation dominates over the Hadamard transform. 78
A.2 Effect of varying our lossy compression parameters on the convergence MNIST. 79
A.3 Effect of varying the percentage of neurons kept in each layer on MNIST. 79
A.4 Effect of using both lossy compression and Federated Dropout on MNIST. 79

D.1 Histogram of local class balances for the IMDb dataset. 86

5

D.2 Visualization of a time-series LF parameterization. 87
D.3 Visualization of LFs used in our MIT BIH experiments. 92
D.4 Visualization of the seeds used in our MIT BIH experiments. 93
D.5 Visualization of time-series candidates inspected by the expert using WSHFL. . 95
D.6 Visualization of time-series candidates inspected using our greedy baseline. . . . 96
D.7 Visualization of time-series candidates inspected using our random baseline. . . 97
D.8 WSHFL ablations varying the threshold of the oracle used as an expert 98
D.9 Training accuracies vs. coverages for the LFs aggregated at the server. 99
D.10 Definition of our MIT BIH model. 100

6

List of Tables

1.1 Dimensions of utility studied in collaborative learning settings. 9

2.1 Summary of datasets used in our compression experiments. 19
2.2 Settings for each of our proposed compression schemes. 23

3.1 Results for FRCLS’s competence threshold strategy. 34
3.2 Results for FRCLS’s decision list strategy. 34
3.3 Percentage of instances explained by our decision lists. 35
3.4 Instances whose predictions get flipped. 36
3.5 Decision list lengths from Potosnak (2022). 37
3.6 Mean ROC AUC from Potosnak (2022) . 37

4.1 FRCLS’s results for Diagnosis Related Groups (DRG) 291. 39
4.2 Conclusions before inspecting for statistical artifacts. 44
4.3 Results of FRCLS as a stop-gap solution. 46

5.1 Percentage and coverage of useful LFs. 57

6.1 Statistics of datasets in LEAF. 67
6.2 Demonstration of LEAF’s modularity. 69

B.1 Number of instances in each hospital system. 81
B.2 Numerical features in the sepsis data. 81
B.3 Categorical features in the sepsis data. 82
B.4 List of features for instances whose predictions get flipped. 83

C.1 Details for each selected DRG. 84

D.1 Details for the datasets used in our experiments. 85
D.2 Hyperparameters chosen to train the PWS model. 89
D.3 Hyperparameters chosen for our baselines. 90

7

Chapter 1
Introduction

1.1 Problem Statement
Data is essential for modern machine learning systems (Gebru et al., 2021). However, misaligned
incentives and privacy regulations often prevent data holders from sharing their data (Van Pan-
huis et al., 2014; Rieke et al., 2020), limiting our modeling capabilities in scenarios such as health-
care and mobile computing. For example, a hospital may lack representative records to learn
about a new or rare condition (Wiens et al., 2014), or a single mobile device may not have
enough input to train a useful language model about its user. In both of these cases, each siloed
data holder would benefit from collaborating with others in order to leverage their data.

In recent years, the machine learning community has taken an interest in learning collab-
orative models from siloed data. Previous work has shown these models to be performant in
domains such as healthcare (Andreux et al., 2020a; Caldas et al., 2020; Sadilek et al., 2021), fi-
nance (Zheng et al., 2020) and mobile computing (Hard et al., 2018; Ramaswamy et al., 2019).
However, due to their nature as a collaboration, these models are part of systems that provide
utility along axes beyond predictive performance, such as confidentiality (Bonawitz et al., 2017),
fairness (Li et al., 2020c) and privacy (McMahan et al., 2018; Li et al., 2019a).

In this thesis, we are interested in the axes of utility that allow collaborative learning to
tackle tasks of real-world importance (see Table 1.1). This implies satisfying the practical con-
straints of these settings, e.g., adhering to a communication budget over a mobile network.
Furthermore, this requires understanding and satisfying users’ requirements over the collabo-
rative learning systems. For example, for clinicians to regularly use a model, they may require
both clinical-grade performance and explanations for the given predictions.

This dissertation addresses methodological and algorithmic challenges of learning in set-
tings where there are multiple data holders who wish to leverage each other’s data. The base
constraint is that each holder cannot share its own data. However, in each part of this thesis we
confront and address additional practical constraints with the objective of making these models
truly practical and useful.

8

Dimension of utility Related Work

Communication constraints
(Part I)

Konečný et al. (2016); Caldas et al. (2019b);
Vogels et al. (2019); Horvath et al. (2021)

Explanations
(Part II)

Caldas et al. (2021b,a); Potosnak et al. (2021);
Bárcena et al. (2022)

Expert Supervision
(Part III)

Jeong et al. (2020); Wu et al. (2021);
Liu et al. (2021); Li et al. (2022)

Privacy McMahan et al. (2018); Li et al. (2019a);
Adnan et al. (2022); Bonawitz et al. (2022)

Personalization Smith et al. (2017); Khodak et al. (2019a);
Mansour et al. (2020); Paulik et al. (2021)

Fairness Mohri et al. (2019); Li et al. (2020c);
Haghtalab et al. (2022)

Table 1.1: Examples of dimensions of utility studied in the context of collaborative learning
systems that leverage siloed data. For each dimension, we provide a limited list of related work.

Collaborative Learning by Leveraging Siloed Data
In collaborative learning, k stakeholders with distributions D1, . . . , Dk are labeled according to
an unknown function f ∗ ∈ F . The goal is then to collaboratively learn a model to approximate
f ∗ up to an error ϵ on each stakeholder’s distribution (Blum et al., 2017; Haghtalab et al., 2022).

Blum et al. (2017) show that collaborative learning is more sample efficient than naive al-
gorithms that do not exchange information among stakeholders. This follows the vein of other
frameworks that exploit structure across multiple tasks in order to decrease sample complex-
ity and facilitate learning, e.g., multi-task learning (Ben-David & Schuller, 2003), multi-source
domain adaptation (Mansour et al., 2008, 2009) and hypothesis transfer learning (Kuzborskij &
Orabona, 2013). Data siloing, however, is not an explicit restriction in Blum et al. (2017).

In this thesis, we will formalize the notions of collaboration and siloing using the framework
provided by federated learning: a collaborative learning setting that keeps the data siloed (McMa-
han et al., 2017; Caldas et al., 2019a). This siloing allows federated learning to follow the prin-
ciples of focused data collection and minimization, opting instead to communicate focused up-
dates intended for aggregation (Kairouz et al., 2021; Bonawitz et al., 2022).

Using this framework, we will distinguish between two federated learning scenarios that
will contextualize the work in this thesis (Kairouz et al., 2021):

• Cross-device: Refers to scenarios such as mobile computing in which the collabora-
tors have limited learning resources, e.g., compute and data. The small per-collabotor
resources are offset by a massive number or collaborators.

• Cross-silo: In these setting, the per-collaborator learning resources are not an issue. This
setting is usually characterized by a small number of collaborators (< 100).

9

1.2 Thesis Statement and Overview
This thesis focuses on improving the practical utility of collaborative learning systems that
leverage siloed data. With this in mind, this dissertation is centered around the following thesis
statement:

Practical utility in collaborative learning systems requires attributes beyond predictive
performance. In particular, when leveraging siloed data, practical utility improves
when including attributes such as a reduced communication footprint, explanations,
and the ability to encode expert supervision.

To substantiate this idea, we organize this thesis into three main parts:

Part I: Communication Constraints
In this part, we support our claim by studying a collaborative learning setting where commu-
nication is a fundamental bottleneck: cross-device federated learning over heterogeneous edge
networks (Caldas et al., 2019b). We argue how this bottleneck restricts both the capacity of
the model being trained, and the collaborators who can actively participate in the training pro-
cedure. We then propose two novel strategies to reduce communication costs based on lossy
compression and federated dropout. Lastly, we empirically show that these strategies provide
a reduction in communication without degrading the accuracy of the final model.

Part II: Explanations
In this part, we substantiate our central ideal by studying cross-silo clinical collaborations,
where stakeholders require both explanations and predictive power to derive true clinical util-
ity (Caldas et al., 2021b). We introduce FRCLS1, an algorithm that explicitly identifies when
a new prediction is using knowledge from an external collaborator, and provides interpretable
rules delineating subpopulations for which that external knowledge is useful. We evaluate this
algorithm on a variety of clinical tasks (Potosnak et al., 2021) and propose a connection with
the literature on transferring best practices across clinical centers (Caldas et al., 2021a).

Part III: Expert Supervision
This part provides support for our thesis statement by highlighting how expert annotations are
often needed yet unavailable in cross-device collaborative settings. We tackle this challenge by
proposing WSHFL2, an algorithms that uses feedback from an expert situated at the server to
learn heuristics which can label the devices’ data (Caldas et al., 2023). Later on, WSHFL trains
a weak supervision model using those heuristics. We validate our approach on datasets across
data modalities, showing we are competitive against a fully supervised baseline.

1pronounced as in freckles.
2pronounced as in wishful.

10

1.3 Summary of Contributions
We summarize the contributions in this thesis:

• Part I: We address the open question as to whether lossy compression approaches are amenable
for server-to-client exchanges in the context of cross-device federated learning.

• Part I: We introduce Federated Dropout, a technique that enables each collaborator to locally
operate on a small sub-section of a larger global model being trained. This technique reduces
communication costs by allowing for these sub-models to be exchanged.

• Part I: We empirically show that lossy compression and Federated Dropout are compatible
with one another, reducing the communication footprint without degrading the model’s ac-
curacy.

• Part II: We argue that clinical utility for collaborative systems requires explaining how the
collaboration itself is affecting a center’s predictions, i.e., whether a decision is being made
based on knowledge from an external center.

• Part II: We introduce an algorithm that produces rules that clearly delineate the regions of
the feature space where external centers are more competent than the local one, providing
interpretable rationale for decisions made by local stakeholders.

• Part II: We test our proposed approach on a benchmark sepsis prediction task in two hos-
pital systems, showing that it is capable of providing both a boost in predictive power and
interpretable insights into the types of patients most benefited by the collaboration. Further
extensions also show the benefits of our method on tasks such as prediction of hypotension
and early prediction of mortality across ICUs.

• Part II: We use our approach to propose a methodology that identifies apparent practice gaps
between clinical centers, and provides a stop-gap solution while the practice transfer takes
place. We demonstrate the potential of our methodology in the context of predicting overly
long lengths of stay.

• Part III: We introduce Programmatic Weak Supervision (PWS) into the cross-device federated
setting, encoding domain knowledge into on-device data by interactively querying an expert
to inspect candidate Labeling Functions (LFs) mined from the data.

• Part III: We propose approaches for two components of a standard PWS workflow in a fed-
erated set-up: the generation of candidate LFs, and the training of a PWS model given LFs
selected by the expert.

• Part III: We validate the feasibility of our approach on on three datasets across two data
modalities, demonstrating competitive performance compared to a fully supervised baseline
while reducing the need for direct data annotations. In particular, we are amongst the first to
learn classification models from unlabeled distributed time-series data.

11

1.4 Bibliographic Notes
Most of the work in this thesis has been published or has been presented at the following venues:

Part I, Chapter 2 is partially based on:
• Sebastian Caldas, Jakub Konečnỳ, H Brendan McMahan, and Ameet Talwalkar. Expanding the

reach of federated learning by reducing client resource requirements. Workshop on Federated
Learning for Data Privacy and Confidentiality at NeurIPS, 2019b. URL https://arxiv.org/abs/
1812.07210.

Part II, Chapter 3 is partially based on:
• Sebastian Caldas, Joo Heung Yoon, Michael R. Pinsky, Gilles Clermont, and Artur Dubrawski.

Understanding clinical collaborations through federated classifier selection. In Ken Jung,
Serena Yeung, Mark Sendak, Michael Sjoding, and Rajesh Ranganath (eds.), Proceedings of
the 6th Machine Learning for Healthcare Conference, volume 149 of Proceedings of Machine
Learning Research, pp. 126–145. PMLR, 06–07 Aug 2021b. URL https://proceedings.mlr.press/
v149/caldas21a.html.

Part II, Chapter 4 is partially based on:
• Sebastian Caldas, Jieshi Chen, and Artur Dubrawski. Using machine learning to support

transfer of best practices in healthcare. In AMIA Annual Symposium Proceedings, volume
2021, pp. 265. American Medical Informatics Association, 2021a. URL https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC8861698/.

Part III, Chapter 5 is partially based on:
• Sebastian Caldas, Mononito Goswami, and Artur Dubrawski. Encoding expert knowledge

into federated learning using weak supervision. ICLR 2023 workshop on Machine Learning for
IoT: Datasets, Perception, and Understanding, 2023.

Since Parts I to III concern previously presented results, the work on this thesis unifies their
discussion, and presents new research ideas. In particular, we expand on the work that we have
previously presented for Part III.

1.5 Open-Source Contributions
We argue that the developments made in cross-device federated learning should be grounded
with realistic benchmarks. In Part IV, we take a step in this direction by introducing LEAF, a
benchmarking framework for learning with on-device data.

Part IV, Chapter 6 is thus partially based on:
• Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan

McMahan, Virginia Smith, and Ameet Talwalkar. LEAF: A benchmark for federated settings.
Workshop on Federated Learning for Data Privacy and Confidentiality at NeurIPS, 2019a. URL
https://arxiv.org/abs/1812.01097.

12

https://arxiv.org/abs/1812.07210
https://arxiv.org/abs/1812.07210
https://proceedings.mlr.press/v149/caldas21a.html
https://proceedings.mlr.press/v149/caldas21a.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861698/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861698/
https://arxiv.org/abs/1812.01097

Part I

Communication Constraints

Communication on heterogeneous edge networks is a fundamental bottleneck when
learning collaborative models from on-device data, restricting both model capac-
ity and user participation. To address this issue, we introduce two novel strategies
to reduce communication costs when learning in these scenarios: (1) the use of
lossy compression on models downloaded by the users; and (2) Federated Dropout,
which allows users to exchange smaller subsets of the global model. We empirically
show that these strategies, combined with existing compression approaches for the
gradients uploaded by the users, collectively provide a reduction in the commu-
nication and computation footprint of collaborative models, all without degrading
the quality of the final model. Thus, we thus comprehensively reduce the impact of
collaborative training on client device resources, allowing higher capacity models
to be trained, and a more diverse set of users to be reached.

13

Chapter 2
Expanding the Reach of Federated Learning
by Reducing Client Resource Requirements

We aim to reap the benefits of collaborative models trained from the rich yet sensitive data
captured by mobile devices, without the need to centrally store such data (McMahan et al., 2017).
To learn these models, we leverage the cross-device Federated Learning (FL) paradigm, in which
devices collaborate by performing training on samples available locally and only communicate
intermediate model updates with a central server (Kairouz et al., 2021; Wang et al., 2021).

Network speed and number of nodes are two of the core systems aspects that differentiate
cross-device FL from traditional distributed learning in data centers, with network bandwidth
being potentially orders of magnitude slower and the number of worker nodes orders of mag-
nitude larger. Together, these issues exacerbate the communication bottlenecks usually associ-
ated with distributed learning, increasing both the number of stragglers and the probability of
devices dropping out altogether.

This communication bottlenecks are further aggravated when working with high capacity
models with large numbers of parameters. Insisting on training these large models using naive
federated optimization methods can lead to the systematic exclusion of clients with restricted
bandwidth or limited network access, which tend to be older users in rural areas (Anzilotti,
2016; Pew Research Center, 2018). Naive training will thus lead to a degraded user experience
once the resulting models are served to these populations.

One possible solution involves training low capacity collaborative models with smaller com-
munication footprints, but this comes at the expense of model accuracy. As a middle ground, we
could develop strategies to reduce the communication footprint of larger, high-capacity mod-
els. Recent work (Konečný et al., 2016) has in fact taken this approach, but only in the context
of the information exchanged client-to-server. Their success with lossy compression strategies
is perhaps not surprising, as the clients’ lossy, yet unbiased, updates are eventually averaged
over many users. However, server-to-client exchanges do not benefit from such averaging. As
such, they remain a bottleneck in our goal of truly reaping the benefits of collaborative models
trained from on-device data.

In this chapter, we propose two novel strategies to mitigate the server-to-client commu-
nication footprint, and empirically demonstrate their efficacy and seamless integration with

14

1

2 4

3

6

5

Server ServerClient

Figure 2.1: Combination of our proposed strategies during FL training. We reduce the size of
the model to be communicated by (1) constructing a sub-model via Federated Dropout, and by
(2) lossily compressing the resulting object. This compressed model is then sent to the client,
who (3) decompresses and trains it using local data, and (4) compresses the final update. This
update is sent back to the server, where it is (5) decompressed and finally, (6) aggregated into
the global model.

existing client-to-server strategies. The specific contributions of this chapter are as follows:

1. We study lossily compressing the models downloaded by the clients, thus addressing the
open question as to whether these approaches are amenable in the context of server-to-client
exchanges. We also introduce the use of the theoretically motivated Kashin’s representation
to reduce the error associated with the lossy compression (Lyubarskii & Vershynin, 2010;
Kashin, 1977).

2. We introduce Federated Dropout, a technique that builds upon the popular idea of dropout (Sri-
vastava et al., 2014), yet is primarily motivated by systems-related concerns. Our approach
enables each device to locally operate on a smaller sub-model (i.e. with smaller weight ma-
trices) while still providing updates that can be applied to the larger global model on the
server. It thus reduces communication costs by allowing for these smaller sub-models to be
exchanged between server and clients, while also reducing the computational cost of local
training.

3. We empirically show that not only are these approaches compatible with one another, but
with existing client-to-server compression. Combining these approaches during FL training
(see Figure 2.1) reduces the size of the downloaded models, the size of the corresponding
updates, and the required local computations, all without degrading the model’s accuracy
and only at the expense of a slightly slower convergence rate (in terms of number of com-
munication rounds).

15

2.1 Related Work
Federated Learning. FL is a technique that aims to learn a global model over data distributed
across multiple edge devices (usually mobile phones) without the data ever leaving the device
on which it was generated (McMahan et al., 2017; Kairouz et al., 2021). It brings along a set of
statistical (non-IID, unbalanced data) and systems (stragglers, communication bottlenecks, etc.)
challenges which differentiate it from traditional distributed learning in the data center.

In this work we study Federated Averaging (FedAvg), an algorithm proposed by McMahan
et al. (2017). In its canonical form, this algorithm works by (1) sending the global model to a
subset of the available devices, (2) training the model on each device using the available local
data, and (3) averaging the local updates to thus end a round of training. FedAvg is part of a
family of local SGD methods (Wang & Joshi, 2021) that learn collaborative models from on-
device data (Reddi et al., 2020) by continually exchanging information across a potentially slow
network.

Communication-efficient distributed learning. Distributed learning is known to suf-
fer from communication overheads associated with the frequent gradient updates exchanged
among nodes (Wang et al., 2018; Dean et al., 2012; Smith et al., 2018; Reddi et al., 2016). To
reduce these bottlenecks, previous studies have communicated a sparsified (Stich et al., 2018;
Alistarh et al., 2018) or quantized (Alistarh et al., 2017; Suresh et al., 2017a; Wu et al., 2018)
version of the updates. Although these operations introduce noise, they have been shown both
empirically and theoretically to maintain the quality of the trained models.

In the context of FL, Konečný et al. (2016); Haddadpour et al. (2021); Wang et al. (2022) study
lossy compression on the client-to-server exchanges (i.e. the model updates). Of particular
interest is the use of the randomized Hadamard transform by Konečný et al. (2016) to reduce
the error incurred by the subsequent quantization, as it spreads a vector’s information more
evenly across its components (Suresh et al., 2017b; Konečný & Richtárik, 2016).

Previous work in FL does not consider compressing the server-to-client exchanges. Nev-
ertheless, downloading a large model can still be a considerable burden for users, particularly
for those in regions with network constraints. Furthermore, as FL is expected to deal with a
large number of devices, communicating the global model may even become a bottleneck for
the server, as it would send the model to the clients in parallel. Previous work in distributed
learning that researches this bi-directional compression includes Tang et al. (2019); Zheng et al.
(2019); Horvóth et al. (2022).

Model compression. Deep models tend to demand significant computational resources
for training and inference. Using them on edge devices is thus not a straightforward task.
Hence, several recent works have proposed compressing the models before deploying them
on-device, e.g., via pruning (Han et al., 2016; Fang et al., 2023), weight quantization (De Sa
et al., 2018; Xiao et al., 2023), and distillation (Hinton et al., 2015; Dennis et al., 2023). Many
of these approaches, however, are not applicable for the problems addressed in this chapter, as
they are either ingrained in the training procedure or are mostly optimized for inference. In the
context of FL, we need an algorithm that is computationally light, can be efficiently applied in
every round, and allows for subsequent local training. We do note, however, that some of the
previously mentioned approaches can be leveraged at inference time in the federated setting.

16

2.2 Methods
In this section, we present our proposed strategies for reducing FL’s server-to-client communi-
cation costs, namely lossy compression techniques (Section 2.2.1) and Federated Dropout (Sec-
tion 2.2.2). We introduce the strategies separately, but they are fully compatible with one an-
other (as we show in Section 2.3.4).

2.2.1 Lossy Compression
Our first approach at reducing bandwidth usage consists of using lightweight lossy compression
techniques that can be applied to an already trained model and that, when reversed (i.e. after
decompression), maintain the model’s quality. The particular set of techniques we propose are
inspired by those successfully used by Konečný et al. (2016) to compress the client-to-server
updates. We apply them, however, to the server-to-client exchanges, meaning we do not get
the benefit of averaging the noisy decompressions over many updates.

Our method works as follows: we reshape each to-be-compressed weight matrix in our
model into a vector w and (1) apply a basis transform to it. We then (2) subsample and (3)
quantize the resulting vector and finally send it through the network. Once received, we simply
execute the respective inverse transformations to finally obtain a noisy version of w.

Basis transform. Previous work (Lyubarskii & Vershynin, 2010; Konečný et al., 2016) has
explored the idea of using a basis transform to reduce the error that will later be incurred by per-
turbations such as quantization. In particular, Konečný et al. (2016) use the random Hadamard
transform to more evenly spread out a vector’s information among its dimensions. We go even
further and also apply the classical results of Kashin (1977) to spread a vector’s information as
much as possible in every dimension (Lyubarskii & Vershynin, 2010). Thus, Kashin’s represen-
tation mitigates the error incurred by subsequent quantization compared to using the random
Hadamard transform. For a more detailed discussion, we refer the reader to Section A.1.3 in the
Appendix.

Subsampling. For s ∈ [0, 1), we zero out a 1 − s fraction of the elements in each weight
matrix, appropriately re-scaling the remaining values. The elements to zero out are picked
uniformly at random. Thus, we only communicate the non-zero values and a random seed
which allows recovery of the corresponding indices.

Probabilistic quantization. For a vectorw = (w1, . . . , wn), let us denotewmin = minj{wj}nj=1

and wmax = maxj{wj}nj=1. Uniform probabilistic 1-bit quantization replaces every element wi

by wmin with probability wmax−wi

wmax−wmin
, and by wmax otherwise. It is straightforward to verify this

yields an unbiased estimate of w. Now, for q-bit uniform quantization, we first equally divide
[wmin, wmax] into 2q intervals. If wi falls in the interval bounded by w′ and w′′, the quantiza-
tion operates by replacing wmin and wmax in step two of the above algorithm by w′ and w′′,
respectively.

2.2.2 Federated Dropout
To further reduce communication costs, we propose an algorithm in which each client, instead
of locally training an update to the whole global model, trains an update to a smaller sub-model.

17

u11 u12 u13

u21 u22 u23

u31 u32 u33

a1 a2 a3

v11 v12 v13

v21 v22 v23

v31 v32 v33

b1 b2 b3

c1

c2

c3

u12 u13

u32 u33

a2 a3

v11 v13

v21 v23

c1

c2

(i) Original network, with a1, b2, and c3 marked for dropout (ii) On-device network after Federated Dropout

b1 b3

σ
σ

σ
σ

Figure 2.2: Federated Dropout applied to two fully-connected layers. Notices activation vectors
a, b = σ(Ua) and c = σ(V b) in (I). In this example, we randomly select exactly one activation
from each layer to drop, namely a1, b2, and c3, producing a sub-model with 2×2 dense matrices,
as in (II).

These sub-models are subsets of the global model and, as such, the computed local updates have
a natural interpretation as updates to the larger global model. We call this technique Federated
Dropout as it is inspired by the well known idea of dropout (Srivastava et al., 2014), albeit
motivated primarily by systems-level concerns rather than as a strategy for regularization.

In traditional dropout, hidden units are multiplied by a random binary mask in order to
drop an expected fraction of neurons during each training pass through the network. Because
the mask changes in each pass, each pass is effectively computing a gradient with respect to
a different sub-model. These sub-models can have different sizes (architectures) depending on
how many neurons are dropped in each layer. Now, even though some units are dropped, in
all implementations we are aware of, activations are still multiplied with the original weight
matrices, they just have some useless rows and columns.

To extend this idea to FL and realize communication and computation savings, we instead
zero out a fixed number of activations at each fully-connected layer, so all possible sub-models
have the same reduced architecture; see Figure 2.2. The server can map the necessary values
into this reduced architecture, meaning only the necessary coefficients are transmitted to the
client, re-packed as smaller dense matrices. The client (which may be fully unaware of the
original model’s architecture) trains its sub-model and sends its update, which the server then
maps back to the global model1. For convolutional layers, zeroing out activations would not
realize any space savings, so we instead drop out a fixed percentage of filters.

This technique brings two additional benefits beyond savings in server-to-client communi-
cation. First, the size of the client-to-server updates is also reduced. Second, the local training
procedure now requires a smaller number of FLOPS per gradient evaluation, either because all
matrix-multiplies are now of smaller dimensions (for fully-connected layers) or because less
filters have to be applied (for convolutional ones). Thus, we reduce local computational costs.

1This can be done by communicating a single random seed to the client and back, or via state on the server.

18

Dataset # of users IID Training samples per user Test samples per user
mean σ mean σ

MNIST 100 Yes 600 0 100 0
CIFAR-10 100 Yes 500 0 100 0
EMNIST 3550 No 181.46 71.15 45.37 17.79

Table 2.1: Summary of datasets used in the experiments.

2.3 Experimental Results
In this section, we first present our experimental setup (Section 2.3.1) before presenting results
for our lossy compression (Section 2.3.2) and Federated Dropout (Section 2.3.3) strategies. Fi-
nally, we show experiments that use both of these strategies in tandem with those proposed
in Konečný et al. (2016) to also compress client-to-server exchanges (Section 2.3.4).

2.3.1 Experimental Setup
Optimization Algorithm. We focus on testing our strategies against already established FL
benchmarks. In particular, we restrict our experiments to the use of Federated Averaging (Fe-
dAvg) (McMahan et al., 2017).

Datasets. We use three datasets in our experiments: MNIST (LeCun et al., 1998), CIFAR-
10 (Krizhevsky & Hinton, 2009) and Extended MNIST or EMNIST (Cohen et al., 2017). The first
two were used to benchmark the performance of FedAvg and of lossy compression for client-to-
server updates (Konečný et al., 2016). For these two datasets, we use the artificial IID partition
proposed by these previous works. Meanwhile, EMNIST is a dataset that has only recently
been introduced as a useful benchmark for FL. Derived from the same source as MNIST, it also
includes the identifier of the user that wrote the character (digit, lower or upper case letter),
creating a natural and much more realistic partition of the data. Table 2.3.1 summarizes the basic
dataset properties. Due to space constraints, we relegate the MNIST results to Appendix A.2,
though all conclusions presented here also qualitatively hold for these experiments.

Models. For MNIST’s digit recognition task we use the same model as McMahan et al.
(2017): a CNN with two 5x5 convolution layers (the first with 32 channels, the second with 64,
each followed by 2x2 max pooling), a fully connected layer with 512 units and ReLu activation,
and a final softmax output layer, for a total of more than 106 parameters. For CIFAR-10, we use
the all convolutional model taken from what is described as “Model C” in Springenberg et al.
(2015), which also has a total of over 106 parameters. Finally, for EMNIST we use a variant of
the MNIST model with 2048 units in the final fully connected layer. While none of these models
is the state-of-the-art, they are sufficient for evaluating our methods, as we wish to measure
accuracy degradation against a baseline and not to achieve the best possible accuracy on these
tasks.

Hyperparameters. We do not optimize our experiments for FedAvg’s hyperparameters,
always using those that proved to work reasonably well in our baseline setting which involves

19

no compression and no Federated Dropout. For local training at each client we use static learning
rates of 0.15 for MNIST, 0.05 for CIFAR-10 and 0.035 for EMNIST. We select 10 random clients
per round for MNIST and CIFAR-10, and 35 for EMNIST. Finally, each selected client trains for
one epoch per round using a batch size of 10.

2.3.2 Lossy Compression
We focus on testing how the compression strategies presented in Section 2.2.1 impact the global
model’s accuracy. Like Konečný et al. (2016), we don’t compress all variables of our models.
As they mention, compressing smaller variables causes significant accuracy degradation but
translates into minuscule communication savings. As such, we don’t compress biases for any
of the models2.

In our experiments, we vary three parameters:

1. The type of basis transform applied: no transform or identity (I), randomized Hadamard
transform (HD) and Kashin’s representation (K).

2. The subsampling rate s, which refers to the fraction of weights that are kept (i.e. 1− s of the
weights are zeroed out).

3. The number of quantization bits q.

Figure 2.3 shows the effect of varying these parameters for CIFAR-10 and EMNIST. We re-
peat each experiment 10 times and report the mean accuracy among these repetitions. The three
main takeaways from these experiments are: (1) for every model, we are able find a setting of
compression parameters that at the very least matches our baseline; (2) Kashin’s representation
proves to be most useful for aggressive quantization values; and (3) it appears that subsampling
is not all that helpful in the server-to-client setting. We proceed to give more details about these
highlights.

The first takeaway is that, for every model, we are indeed able find a setting of compression
parameters that matches or, in some cases, slightly outperforms our baseline. In particular, we
are able to quantize every model to 4 bits, which translates to a reduction in communication of
nearly 8×.

The second takeaway is that Kashin’s representation proves to be most useful for aggressive
quantization values, i.e. for low values of q. In our experiments, gains were observed only in
regimes where the overall accuracy had already degraded, but we hypothesize that the use
of Kashin’s representation may provide clearer benefits in the compression of client-to-server
gradient updates, where more aggressive quantization is admissible. We also highlight that
using Kashin’s representation may be beneficial for other datasets. Indeed, its computational
costs are comparable to that of the random Hadamard transform while also providing better
theoretical error rates (see Section A.1.1). We refer the reader to Section A.1.3 in the Appendix,
where we show preliminary results that demonstrate Kashin’s potential to dominate over the
randomized Hadamard transform in compressing fully-trained models, particularly for small
values of q.

2Unlike Konečný et al. (2016), we do compress all 9 convolutional layers in the CIFAR-10 model, not just the 7
in the middle.

20

0 1000 2000 3000 4000 5000

Number of rounds

0.75

0.80

0.85

0.90
A

cc
u
ra

cy

CIFAR-10: q = 2

0 1000 2000 3000 4000 5000

Number of rounds

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

CIFAR-10: q = 4

0 1000 2000 3000 4000 5000

Number of rounds

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

CIFAR-10: q = 8

repr = I, s = 0.5

repr = I, s = 1.0

repr = HD, s = 0.5

repr = HD, s = 1.0

repr = K, s = 0.5

repr = K, s = 1.0

no compression

0 2000 4000 6000 8000 10000

Number of rounds

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

EMNIST: q = 2

0 2000 4000 6000 8000 10000

Number of rounds

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

EMNIST: q = 4

0 2000 4000 6000 8000 10000

Number of rounds

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

EMNIST: q = 8

repr = I, s = 0.5

repr = I, s = 1.0

repr = HD, s = 0.5

repr = HD, s = 1.0

repr = K, s = 0.5

repr = K, s = 1.0

no compression

Figure 2.3: Effect of varying our lossy compression parameters on CIFAR-10 and EMNIST.

Finally, it appears that subsampling is not all that helpful in this server-to-client setting.
This contrasts with the results presented by Konečný et al. (2016) for compressed client-to-
server updates, where aggressive values of s were admissible. This trend extends to the other
compression parameters: server-to-client compression of global models requires much more
conservative settings than client-to-server compression of model updates. For example, for
CIFAR-10, Konečný et al. (2016) get away with using s = 0.25 and q = 8 under a random
Hadamard transform representation3. Meanwhile, in Figure 2.3 we can see that, for the same q
and representation, s = 0.5 already causes an unacceptable degradation of the accuracy. This is
not surprising, since it is expected that the updates’ error will cancel out once several of them
get aggregated at the server, which is not true for model downloads.

2.3.3 Federated Dropout
We focus on testing how the global model’s accuracy deteriorates once we use the strategy
proposed in Section 2.2.2. In these experiments, we vary the percentage of neurons (or filters
for the case of convolutional layers) that are kept on each layer of our models (we call this the
federated dropout rate). We always keep the totality of the input and logits layers, and never
drop the neuron that can be associated to the bias term.

Figure 2.4 shows how the convergence of our three models behaves under different fed-
erated dropout rates. We repeat each experiment 10 times and report the mean among these
repetitions. The main takeaway from these experiments is that, for every model, it is possible
to find a federated dropout rate less than 1.0 that matches or, in some cases, even improves on
the final accuracy of the model.

A federated dropout rate of 0.75 seems to work across the board. This corresponds to drop-
ping 25% of the rows and columns of the weight matrices of fully-connected layers (which

3The updates for CIFAR-10 can actually be compressed up to 2 bits.

21

0 2000 4000 6000 8000 10000

Number of rounds

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

CIFAR-10

0 2000 4000 6000 8000 10000

Number of rounds

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

EMNIST

fed. dropout = 0.500

fed. dropout = 0.625

fed. dropout = 0.750

fed. dropout = 0.875

fed. dropout = 1.000

Figure 2.4: Results for Federated Dropout, varying the percentage of neurons kept in each layer.

translates to a ∼ 43% reduction in size), and to dropping the same percentage of filters of each
convolutional layer. Now, because fully connected layers correspond to most of the parameters
of the MNIST and EMNIST models, the ∼ 43% reduction will apply to them both in terms of
the amount of data that has to be communicated and of the number of FLOPS required for local
training. Meanwhile, because our CIFAR model is fully convolutional, gains will be of 25%.

As a final comment, we note that more aggressive federated dropout rates tend to slow
down the convergence rate of the model, even if they sometimes result in a higher accuracy.

2.3.4 Reducing the overall communication cost
Our final set of experiments shows how our models behave once we combine our two strategies,
lossy compression and Federated Dropout, with existing client-to-server compression schemes (Konečný
et al., 2016), in order to explore how the different components of this end-to-end, communica-
tion efficient framework interact. To do this, we evaluate how our models behave under 3 dif-
ferent compression schemes (aggressive, moderate and conservative) and 4 different federated
dropout rates (0.5, 0.625, 0.75 and 0.875). The values for these schemes and rates were picked
based on the observed behavior during the previous experiments, being somewhat more con-
servative as we are now combining different sources of noise. Table 2.3.4 describes the settings
for each scheme.

Figure 2.5 shows how our CIFAR-10 and EMNIST models behave under each of the previ-
ously mentioned conditions. We repeat each experiment 5 times and report the mean among
these repetitions. For all three models, a federated dropout rate of 0.75 resulted in models with
no accuracy degradation under all compression schemes except for the most aggressive. For
MNIST and EMNIST, this translates into server-to-client communication savings of 14×, client-
to-server savings of 28× and a reduction of 1.7× in local computation, all without degrading
the accuracy of the final global model (and sometimes even improving it). For CIFAR-10, we
provide server-to-client communication savings of 10×, client-to-server savings of 21× and
local computation savings of 1.3×.

Based on these results, we also hypothesize that a federated dropout rate of 0.75 combined
with a moderate or conservative compression scheme will be a good starting point when setting
these parameters in practice.

22

Scheme Client-to-Server Server-to-Client
transf. s q transf. s q

Aggressive Kashin’s 0.4 2 Kashin’s 1.0 3
Moderate Kashin’s 0.5 4 Kashin’s 1.0 5
Conservative Kashin’s 1.0 8 Kashin’s 1.0 8

Table 2.2: Settings for each of our proposed compression schemes.

0 2000 4000 6000 8000 10000

Number of rounds

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

CIFAR-10: Aggressive

0 2000 4000 6000 8000 10000

Number of rounds

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

CIFAR-10: Moderate

0 2000 4000 6000 8000 10000

Number of rounds

0.75

0.80

0.85

0.90

A
cc

u
ra

cy

CIFAR-10: Conservative

fed. dropout = 0.500

fed. dropout = 0.625

fed. dropout = 0.750

fed. dropout = 0.875

no dropout
no compression

0 2000 4000 6000 8000 10000

Number of rounds

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

EMNIST: Aggressive

0 2000 4000 6000 8000 10000

Number of rounds

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

EMNIST: Moderate

0 2000 4000 6000 8000 10000

Number of rounds

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

EMNIST: Conservative

fed. dropout = 0.500

fed. dropout = 0.625

fed. dropout = 0.750

fed. dropout = 0.875

no dropout
no compression

Figure 2.5: Effect of using both compression and Federated Dropout on CIFAR-10 and EMNIST.

2.4 Conclusions, Impact and OpenQuestions
The ecosystem we target is marked by heterogeneous edge networks that can potentially be or-
ders of magnitude slower than the ones in datacenters. At the same time, collaborative learning
can be quite demanding in terms of bandwidth, particularly when used to train deep models.
We are thus at risk of either restricting the type of models we are able to train using tech-
niques such as FL, or of excluding large groups of users from the collaboration. Both issues are
problematic, but because access to high-end networks also appears to be correlated to sensitive
factors such as income and age (Anzilotti, 2016; Pew Research Center, 2018), the latter may have
implications related to fairness, making it particularly sensitive as we continue the adoption of
collaborative systems.

Our work reduces the communication overheads in FL by (1) using lossy compression tech-
niques on the server-to-client exchanges and by (2) using Federated Dropout, a technique that
only communicates subsets of the global model to each client. Immediate future work can study
the effectiveness of other compression techniques in conjunction with Federated Dropout, such
as natural compression (Horvóth et al., 2022) and sparsification via thresholding (M Abdel-
moniem et al., 2021). Future work can also study the effect of adaptively using these strategies
(i.e. using more aggressive compression and federated dropout rates for some users) to prevent

23

unfairly biased models.
Finally, we note that the success of Federated Dropout suggests a new avenue of research

in collaborative learning in which smaller, perhaps personalized, sub-models are eventually
aggregated into a more complex model. Subsequent works that follow this avenue include:
• Horvath et al. (2021) structure the order in which activations are dropped from the layers,

ensuring some weights reliably learn across clients. They leverage the systems heterogene-
ity of the participating devices, dropping a different percentage of activations depending on
devices’ capacity.

• Guliani et al. (2022) study this avenue in the context of speech recognition models, achieving a
size reduction between 6−22% with performance improvements of 34−3%. They determine
the percentage of neurons to drop in each layer depending on the importance of that layer
for learning.

• Alam et al. (2022) use a rolling window to determine which sub-model will be sent in each
round. They show their technique works under different amounts of heterogeneity and when
clients have diverse systems requirements.

These works suggest that structuring the sub-models results in a better accuracy-communication
trade-off over randomly generated sub-models. Moreover, we see that this structure has been
explored in ways that depend on the systems requirements, model architecture, and round of
communication. Still, an open question remains: whether we can find an optimal structure for
the sub-models in a data-dependent manner. Answering this question could help understand
the different components of the model, and the different contributions of each collaborator,
taking us closer to transparent and modular collaborative systems.

24

Part II

Explanations

Deriving true clinical utility from models trained on multiple hospitals’ data is a key
challenge in the adoption of collaborative models in clinical settings. When utility
is equated to predictive power, population heterogeneity between centers becomes
a key bottleneck in training performant models. Nevertheless, there are other as-
pects to clinical utility that have frequently been overlooked in this context. Among
them, we argue for the importance of understanding how a collaboration may be
affecting the quality of a center’s predictions. In Chapter 3, we take a step towards
deriving this utility by introducing FedeRated CLassifier Selection (FRCLS4): an al-
gorithm that reuses classifiers trained in outside institutions and identifies regions
of the feature space where collaborators outperform the local center. Most impor-
tantly, FRCLS provides interpretable rules to describe these regions of beneficial
expertise. Meanwhile, in Chapter 4, we derive further utility from FRCLS by using
it to enable the transfer of best practices across healthcare institutions, identifying
and supporting opportunities for knowledge transfer.

4pronounced as in freckles.

25

Chapter 3
Understanding Clinical Collaborations
Through Federated Classifier Selection

When training Machine Learning (ML) models for healthcare applications, previous studies
have shown the advantages of using multiple centers’ data. This strategy augments the sample
size available for data-intensive models, increases the availability of rare and new events, and
potentially improves model performance (Lee et al., 2012; Wiens et al., 2014; Sheller et al., 2018;
Curth et al., 2019; Li et al., 2019b). This collaborative approach, however, faces several obstacles
that can prevent it from delivering true clinical utility:

• Limits on data sharing: Hospitals are responsible for protecting their patients’ confiden-
tiality. As such, legal constraints, organizational policies, and ethical barriers often impede
centers from sharing patient-level data (Van Panhuis et al., 2014).

• Heterogeneity: Data in different centers is inherently heterogeneous. They collect data in
different ways, have different laboratory procedures, and have varying care styles and orga-
nizational cultures. Of most interest to us, different hospitals serve different populations. As a
consequence of this natural population diversity, data from different centers is not identically
distributed. However, sharing intelligence across centers, in spite of these misalignments,
is a worthwhile effort that can bring improvements in quality of care and reductions in its
cost (Lee et al., 2012; Curth et al., 2019). Naive collaborative models will fail to recognize and
leverage this variation.

• Overemphasis on Predictive Power: ML engineering has traditionally focused on optimiz-
ing predictive power, measured through some metric such as empirical accuracy. Nonethe-
less, clinical utility encompasses other aspects, e.g., eliciting trust in the model through ex-
planations of its predictions or inner mechanisms. In the context of clinical collaborative
strategies, we are interested in explaining how the collaboration itself is affecting a center’s
predictions, e.g., whether a decision is being made based on knowledge from an external
center. Concrete rationale of this type can incentivize further cooperation, identify local bot-
tlenecks and inform local resource allocation, or even help identify external best practices.

In this chapter, we introduce FRCLS, a classification algorithm that tackles all three obstacles
outlined above. To overcome the data sharing obstacle, we adopt the strategy of traditional FL

26

Hospital A

Group 1

Patient Groups

Hospital B

90%

10%

60%

40%

Group 2

Figure 3.1: Illustration of inter-center population heterogeneity. We hypothesize that a model
trained on the data from Hospital B will be a relative expert on patients from Group 2, while a
model trained on Hospital A may underperform for that group. It will thus be beneficial to use
model B on Group 2 in Hospital A.

techniques: training distributed models through the exchange of their associated parameters
instead of the data they are being trained on (Kairouz et al., 2021; Li et al., 2020a; Rieke et al.,
2020). To tackle inter-center heterogeneity, FRCLS is designed to adapt its models to the data
distribution of a particular hospital, instead of training a single shared model. Finally, FRCLS’s
focus goes beyond predictive performance, being able to identify groups of patients for which
the collaboration is particularly useful.

FRCLS is driven by the intuition that inter-center population heterogeneity makes each hos-
pital an expert on different patient subpopulations. It follows that each center could be an expert
in a different region of the feature space, as we illustrate in Figure 3.1. FRCLS leverages this di-
versity of competence among classifiers and dynamically picks the model that is best for each
incoming instance. Other works on FL for healthcare that recognize the challenge of hetero-
geneity of data address it through techniques such as domain adaptation (Curth et al., 2019;
Andreux et al., 2020a) and clustering (Huang et al., 2019). However, they all suffer from the
third obstacle above: clinicians cannot judge the utility of the collaboration itself beyond the
predictive performance of the resulting models.

We address this last obstacle by explicitly recognizing when FRCLS is leveraging knowledge
from an external center. To do this, FRCLS produces rules that clearly delineate the regions of
the feature space where external centers are more competent than the local center, providing
an interpretable rationale for decisions made by local stakeholders. By optimizing for both
accuracy and interpretability simultaneously, and by targeting a deeper understanding of the
collaborative predictions, we hope to optimize for our actual goal: clinical utility.

27

3.1 Related work
We review relevant work in three key directions: (i) Dataset shifts in healthcare, which is a
crucial motivation for our work, (ii) FL, to situate our work in the broader context of this field,
and (iii) Dynamic Classification, the underlying technique behind FRCLS.

Dataset Shifts in Healthcare. At a high level, dataset shift refers to a scenario in which
a ML model is tested on data drawn from a different distribution than the one it was trained
on (Subbaswamy et al., 2021). Usual performance guarantees don’t apply to this setting, as they
refer to how the model will perform on data drawn from the training distribution. Dataset shift
may cause the deterioration of clinical prediction models when they are validated on an external
distribution and when a collaboratively trained model is applied to individual centers (Lee et al.,
2012; Zech et al., 2018; AlBadawy et al., 2018; McKinney et al., 2020). Different works have tried
to prevent this degradation by using techniques such as domain adaptation (Curth et al., 2019)
and transfer learning (McKinney et al., 2020; Mustafa et al., 2021). FRCLS exploits the model
heterogeneity that such a shift causes through its dynamic classifier approach.

On the clinical side, recent efforts to offset dataset shifts include developing and imple-
menting common data models across collaborating institutions. Nevertheless, these are only
partially successful, as other considerations, such as local workflows and treatment protocols,
are also contributing factors (Matheny et al., 2019).

Federated Learning. Traditional FL algorithms coordinate the training of ML models
through a central server, which iteratively broadcasts the current model to participating col-
laborators and aggregates the updates it receives in return (Li et al., 2020a; Kairouz et al., 2021).
Different algorithms vary in terms of how they perform the local updates and the central ag-
gregation (McMahan et al., 2017; Li et al., 2020b; Karimireddy et al., 2020). Previous work has
shown the feasibility of using federated techniques of this kind on healthcare problems (Sheller
et al., 2018; Li et al., 2019b; Andreux et al., 2020b,a; Caldas et al., 2020), while others have fo-
cused particularly on FL’s fairness challenges (Li et al., 2020c; Mohri et al., 2019). FRCLS’s focus,
however, is on the interpretability of its predictions. Its algorithmic approach is also different
in that it performs one single exchange between all collaborators instead of several exchanges
with a central server.

Dynamic Classification. Our method is related to the Dynamic Classifier Selection (DCS)
and the Regression-based Informative Projection Recovery (RIPR) frameworks (Cruz et al., 2018;
Fiterau & Dubrawski, 2012), both of which make use of a heterogeneous pool of classifiers and
serve a different model for each test instance. Both frameworks select the classifier to be served
by estimating the competence of each candidate model on the region of the feature space where
the new instance resides. DCS methods estimate the models’ performance on the instance’s k-
nearest neighbors, while RIPR derives a local entropy measure. FRCLS takes a similar approach
to the one used by DCS methods, but provides strategies to explaining the selection of the
served classifier.

28

3.2 Federated Classifier Selection
At a high level, FRCLS proceeds in three stages: the local training of classifiers, the exchange of
fully trained classifiers between centers, and the dynamic selection of classifiers in each center.
We first give a high-level overview of each stage before further detailing the third one, which
is the focus of our contributions.

1. Training of local classifiers: Each clinical center can independently choose its own type
of model, hyperparameter tuning strategy, etc.

2. Exchange of classifiers: In this stage, clinical centers exchange both their fully trained
classifiers and the local imputation/standardization parameters used during training. We
assume an honest-but-curious threat model and thus consider it safe to share this informa-
tion among clinical centers. A central authority may also anonymize the exact source of the
external classifiers. In the end, each hospital is left with a local classifier cL and a pool of
candidate external classifiers C = {c1, . . . , cM}.

3. Dynamic selection of candidate classifiers: This stage takes place at each center inde-
pendently. The ultimate goal is, for each new incoming instance, to select the most com-
petent classifier among all candidates. We explain the details on how FRCLS does this in
Section 3.2.1.

3.2.1 Dynamic selection of candidate classifiers

We are given a local classifier cL and a set of M external classifiers C = {cm}Mm=1. Our objective
is to determine, for each new instance x, whether to use cL or one of the elements of C . To
make this decision, we set out to quantify the utility of the external classifiers in C relative to
cL. Define

Lc(x, k) =
1

k

∑
j∈nn(x,k)

ℓ(c(xj), yj),

ρm(x, k) =
LcL(x, k)

Lcm(x, k)
,

where nn(x, k) returns indices of the k-nearest neighbors of x, ℓ is the cross-entropy loss, and
c(x) is the score that classifier c assigns to x.

Notice that Lc(x, k) estimates classifier c’s competence on a given point x by averaging
c’s loss on the point’s k-nearest known neighbors. Because it looks at the classifier’s loss, Lc

is inversely related to c’s competence. Meanwhile, ρm(x, k) takes the ratio of Lc for the local
cL and an external cm. Because of Lc’s inverse relation to competence, a higher value of ρm
translates into a higher competence for the external classifier cm.1

We now construct the greedy external classifier cE which solves

cE(x) = argmax
cm∈C

cm(x)

1For computational stability, the quantity we use in our experiments is ρ′m(x, k) = log
LcL

(x,k)+ϵ

Lcm (x,k)+ϵ for some
small ϵ.

29

vs.

Calculate
ϱE(, k)

IF ϱE(, k) > ϱ0:
Use cE

ELSE:
Use cL

IF IN Group :
Use cE

ELIF IN Group :
Use cE

ELSE:
Use cL

Threshold Decision List

Figure 3.2: Illustration of FRCLS’s strategies to select between the local and the external classi-
fiers.

for each new instance x. The final step is to pick between cL and cE . A naive strategy would
choose cE whenever ρE(x, k) > 1. However, this strategy won’t be necessarily optimal, as ρE
quantifies relative competence in terms of loss, which is just a proxy for actual clinical utility.
Instead, we propose two data-driven strategies that we illustrate in Figure 3.2.

Competence threshold

Our first strategy finds a threshold ρ0 such that cE will be used whenever ρE(x, k) > ρ0. We
optimize this threshold by minimizing the p-value of a statistical test whose null hypothesis
states that cL’s utility is greater than cE’s, where we measure utility in terms of a classifier’s
correct predictions.

More precisely, we define

F (ρ0) = |{xi : ρE(xi, k) > ρ0, c
∗
L(xi) ̸= c∗E(xi), c

∗
E(xi) ̸= yi}|,

S(ρ0) = |{xi : ρE(xi, k) > ρ0, c
∗
L(xi) ̸= c∗E(xi).c

∗
E(xi) = yi}|

where c∗(x) is the label that classifier c assigns to x. Notice that S is the number of instances
where using cE actually changes the prediction made by cL, and the new prediction is correct.
Meanwhile F is the number of instances that changed predictions to an incorrect one.

Having these quantities, we perform a one-tailed binomial test to check for the statistical
significance of S(ρ0)

S(ρ0)+F (ρ0)
< 0.5. In our experiments, we use a simple grid search strategy to

look for the threshold ρ0 that lets us reject this null hypothesis with the most confidence.

Decision lists

Our second strategy uses cE if the instance satisfies a set of interpretable rules, and otherwise
defaults to cL. To build these rules, FRCLS uses a rule learning algorithm to create a decision

30

list that maximizes a lower bound on the mean of ρE . Then, we iterate over the list and choose
the rule that minimizes the p-value of our binomial test when applied to the instances selected
by all rules so far on the list. This will be the last rule that prescribes the use of cE . Our
approach is agnostic to the implementations of the rule learning algorithm. The one we use in
our experiments is the one proposed by Moore & Schneider (2002).

3.2.2 Limitations
After we find the threshold or rule that maximizes cE’s utility relative to cL’s, the optimal p-
value of our binomial test may still be higher than a satisfying confidence level. In this scenario,
both of FRCLS strategies would default to the local model for all instances and there would be no
gains in predictive power due to the collaboration. However, the knowledge that the external
models do not outperform the local one for any patient subpopulation is still a valuable insight
into the limited utility of the collaboration. Additionally, our k-nearest neighbors estimator
for Lc is known to suffer from the curse of dimensionality. We also need to tune an extra
hyperparameter for it: the number of neighbors or k. We propose a heuristic to perform this
tuning in Appendix B.1. We expect other methods, such as cross -validation, to also work.

3.3 Results: Early prediction of sepsis
In this section, we first present the details of our experimental setup before presenting and
discussing the results of the local classifiers and FRCLS’s competence threshold and decision
list strategies.

3.3.1 Experimental setup
We demonstrate our method on an early sepsis prediction task. Sepsis is linked with high
mortality, morbidity, and cost of care in hospitalized patients. To mitigate this burden, early
identification of risk for sepsis and timely treatment are recommended (Angus et al., 2001). It
follows that systems for early and accurate identification of sepsis are of crucial interest for the
community (Nemati et al., 2018; Reyna et al., 2019).

Data source. We use the data shared by Reyna et al. (2019) as part of the 2019 PhysioNet/-
Computing in Cardiology Challenge. The released data corresponds to ICUs in two geograph-
ically distinct hospital systems with different Electronic Medical Record systems. In the rest
of the document, we refer to these as hospital system A and hospital system B, matching the
nomenclature used by Reyna et al. (2019). The public data accounts for 40, 336 patients and
over 1.5 million instances.

ML task. Our ML task is to predict sepsis 6 hours before its onset time, according to the
definition used by Reyna et al. (2019). Due to the nature of this task, the label distribution
is skewed: only 1.80% of the given labels correspond to the positive class. To facilitate the
predictive task and to focus our study on its federated aspects, we randomly undersample the
negative labels in order to match the number of negative and positive labels. We are left with

31

55.8 thousand instances from 20, 779 patients. Table B.1 shows the number of instances per
hospital system.

Feature choices. We use the features provided by the 2019 PhysioNet Challenge. These
consist of a mixture of hourly vital signs, laboratory values, and patient descriptors. Table B.2
and Table B.3 describe the numerical and categorical features provided, respectively. We also
use the standard deviations of the mean arterial pressure and the respiration rate (Nemati et al.,
2018).

Data splits. We split each hospital system’s data into three disjoint sets. First, a training
set used for training and tuning the local classifier. Second, a validation set used to either find
the optimal ρ0 or to train FRCLS’s decision list. This set is used to measure Lc for all candidate
classifiers, i.e., the operator nn(x, k) is restricted to returning instances from this set. Third, we
have a test set for estimating FRCLS’s performance. We perform the split in a 40/30/30 fashion.

Predictive models. Our local classifiers are logistic regression models with ridge penalty.
We tune the regularization hyperparameter using 5-way cross-validation to optimize for loss.
We locally impute missing values, using the mean for numerical features and the mode for
categorical ones. Finally, we locally standardize numerical features.

These models are not state-of-the-art for a sepsis prediction task, but they are sufficient
for evaluating our method, as our purpose is to selectively use cE to successfully change local
predictions and not to achieve the best possible accuracy on the task.

Evaluation metrics. We are interested in comparing the utility of classifiers cE and cL on
the instances where FRCLS decides to use cE over cL. We measure this relative utility as we did
in Section 3.2: by looking at the instances (x, y) for whom c∗L(x) ̸= c∗E(x). We refer to these
predictions as flipped, and we consider them as successful flips if c∗E(x) = y. If the number of
successful flips represents more than 50% of the total number of flips, then we consider the
method successful.

Our metric requires crisp predictions from the classifiers. As such, we focus on two con-
straints that optimize for complementary objectives and allow us to obtain crisp classifiers:
holding the true positive rate at 90% (@90% TPR), and holding the false positive rate at 10%
(@10% FPR). Given our sepsis prediction task, a center would likely prefer guaranteeing a high
recall (@90% TPR), but we show both constraints for the sake of completeness.

Finally, this metric only measures cE’s performance on those instances in which cE’s pre-
dictions differ from cL’s. To quantify cE’s performance both when it agrees and disagrees with
cL, we also measure the accuracy of the crisp classifiers on all instances where FRCLS uses cE
over cL.

3.3.2 Results of local classifiers
We show the performance of our sepsis prediction models trained independently in Hospitals
Systems A and B in Figure 3.3. We plot the Receiver Operating Characteristic (ROC) curve
for both models when evaluated in the test data of each hospital system. In both cases, cL
either outperforms or matches the performance of cE , a consistent behaviour throughout the
curve. Judging by these results, both hospital systems may have deemed cE’s utility as lim-
ited. However, in Section 3.3.3 and Section 3.3.4, we’ll show that, by comparing the models’

32

10 3 10 2 10 1 100

False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te
Tested on Hospital System A
Random
Model A (cL) (0.68 +/- 0.01)
Model B (cE) (0.64 +/- 0.01)

10 3 10 2 10 1 100

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

Tested on Hospital System B
Random
Model A (cE) (0.68 +/- 0.01)
Model B (cL) (0.68 +/- 0.01)

Figure 3.3: AUC ROC for the classifiers when tested on each hospital system. Confidence bands
reflect Wilson scores. We plot the false positive rate in logarithmic scale for better visibility of
models’ performance at clinically relevant low error settings.

local behaviour, these hospital systems do yield utility from their external models cE , doing so
selectively on a subset of their instances.

3.3.3 Results of competence threshold strategy
Table 3.1 presents the results for our competence threshold strategy. For three out of the four
scenarios we consider, we obtained an optimal p-value lower than 0.05 in both our validation
and test sets, a confidence level we consider satisfying for our experiments. These results speak
to FRCLS’s generalization ability. We note that, in the one scenario in which FRCLS did not
generalize (Hospital System A @90% TPR), the validation set p-value was several orders of
magnitude higher than for the other scenarios.

Given our data splits, our test sets consist of over 9.5 and 7.3 thousand instances for hospital
systems A and B, respectively. With this strategy, FRCLS ends up using cE on 15− 35% of the
data. Out of this data, 5− 18% correspond to successful flips. This translates into the hospital
systems reaping real utility out of cE in most cases, as evidenced in the p-values of our binomial
test. Finally, in all cases in which we observe utility in terms of successful flips, we also observe
utility in terms of an increase in accuracy.

3.3.4 Results of decision list strategy
To generate our decision lists, we use an implementation of the computationally efficient algo-
rithm proposed by Moore & Schneider (2002). We limit each rule to have a maximum of two
features in order to make their interpretation easy, and restrict the minimum support of each
rule to at least 1.5% of the validation sample size in each hospital system, to safeguard against
overfitting. These hyperparameter settings work well in the presented examples, but they may
need to be optimized for other applications.

33

Hospital
System

Val
p-value p-value

Instances
handled
by cE

Successful
Flips

(% of flips)

Local
Accuracy

External
Accuracy

A (@90% TPR) 1.69e−3 9.99e−1 1058 26 (32.91%) 63.71% 61.15%
A (@10% FPR) 3.21e−42 1.52e−9 1525 280 (64.22%) 53.64% 61.77%
B (@90% TPR) 7.26e−31 9.04e−11 1243 195 (68.90%) 49.64% 58.25%
B (@10% FPR) 1.51e−7 1.90e−2 2548 128 (57.14%) 57.50% 58.75%

Table 3.1: Results for our competence threshold strategy for one run. All results are measured
on the test set unless specified. In bold, p-values higher than 0.05.

Hospital
System

Val
p-value p-value

Instances
handled
by cE

Successful
Flips

(% of flips)

Local
Accuracy

External
Accuracy

A (@90% TPR) 2.52e−1 - 0 - - -
A (@10% FPR) 1.12e−6 3.07e−5 1925 299 (58.97%) 57.92% 62.65%
B (@90% TPR) 1.35e−3 1.25e−8 700 134 (70.16%) 51.43% 62.43%
B (@10% FPR) 8.04e−2 - 0 - - -

Table 3.2: Results for our decision list strategy. Notice that, when Val p-value is greater than
0.05 (bolded), no instances are handled by cE .

Just as in the previous section, we show our results in Table 3.2. Meanwhile, in Figure 3.4, we
illustrate the decision lists learned for each of the hospital systems. This time, we encounter two
situations in which the optimal p-value in the validation set is lower than 0.05. In these cases,
FRCLS defaults to cL. In the other two situations, Hospital System A @10% FPR and Hospital
System B @90% TPR, FRCLS generalizes well, using cE on 10 − 20% of the test instances, out
of which 15 − 19% are successful flips. Compared to our competence threshold strategy, we
observe a degradation in our p-values, which are now tens of orders of magnitude greater. This
translates into lower ratios of successful flips. This is an expected trade-off, as we can now easily
interpret FRCLS’s decisions. Conversely, with respect to the previous strategy, the difference
in p-values between the validation and test sets has decreased by several orders of magnitude.
This is also expected, as the use of a decision list with short rules prevents overfitting.

Finally, we look at the relation between strategies in terms of the instances FRCLS selects
to use cE . We argue that our competence threshold strategy selects two types of instances:
some that can be explained with the type of rules we desire, with at most two attributes, and
some that are not. Our decision list strategy picks out the former group. In Table 3.3, we show
that these easy-to-explain instances correspond to 20− 40% of the instances selected through
competence thresholding.

Using FRCLS’s rules

We turn our attention into demonstrating how clinical centers can use the rules learned by
FRCLS’s decision learning strategy, and into showing possible ways to derive strategic utility
from them.

34

IF PTT > 84.55 AND Phosphate <= 8.42:
Use cE

ELIF BUN > 83.56 AND Calcium <= 9.66:
Use cE

ELIF Hct > 40.31:
Use cE

ELIF Calcium > 9.66:
Use cE

ELIF Hgb > 12.14:
Use cE

ELSE:
Use cL

IF BaseExcess > -0.92:
Use cE

ELIF FiO2 > 0.65:
Use cE

ELSE:
Use cL

Hospital System A Hospital System B

Figure 3.4: Rules learned by FRCLS’s decision list strategy for our early sepsis prediction task.
Instances satisfying these rules will use cE instead of cL.

Hospital System Set % Explained
by Rules

A (@10% FPR) Val 40.54%
Test 38.75%

B (@90% TPR) Val 21.23%
Test 20.68%

Table 3.3: Percentage of instances selected by our competence threshold strategy that are suc-
cessfully explained by our decision list strategy.

In Table 3.4 we show two instances corresponding to two different patients, one from each
hospital system. We refer to them as Patient A and Patient B. These are instances for whom
the rules of their respective hospital system apply and for whom the use of cE proves beneficial
when holding the appropriate constraints, i.e., @10% FPR for hospital system A and @90% TPR
for hospital system B, as shown in Table 3.2. In the case of Patient A, FRCLS uses cE because
his hemoglobin is greater than the found threshold. For patient B, it’s because his fraction of
inspired oxygen is higher than 0.65.

We propose a simple argument to explain why cE does better than cL for these two cases:
the external hospital center sees relatively more instances that satisfy the relevant rules, i.e.,
Hgb > 12.14 for hospital system A, and FiO2 > 0.65 for hospital system B. To check for this, we
construct a one-tailed z-test to compare the proportion of instances that satisfy the rule in the
local and external hospital systems. We call these pL and pE , respectively. Our null hypothesis
states that pL − pE > 0. For the two rules in question we obtain p-values of 5.60e−4 and
4.38e−10, meaning we have enough evidence to conclude that pE > pL in these cases2.

We recognize that the utility of cE for a group of patients may be due to different factors,
2We note that this z-test shares more information across hospital systems than mere model parameters. How-

ever, no raw data is being shared.

35

Variable Patient A
Age 69
Gender Male
BUN 13
Calcium 8.6
Hct 38.5
Hgb 13.1
PTT 28.2
Phosphate 2.5
True Label 1

Variable Patient B
Age 54
Gender Male
Base Excess -3.2
FiO2 1
True Label 0

Table 3.4: Instances whose predictions get flipped with the use of cE . We present one instance
per hospital system. The complete list of features for both instances is shown in Table B.4.

with sample size being just one of many. However, to derive strategic utility, clinical centers
do have to explore why others are doing better. If it is just an issue of differing subpopulation
sizes, then strengthening institutional cooperation would make obvious sense. However, it
could also be due to issues in data capturing, or even differences in the consistency and quality
of the clinical practices themselves. Different conclusions could lead to different decisions by
stakeholders. We further investigate this question in Chapter 4.

3.4 Extensions
In this section, we briefly describe the work by Potosnak (2022) and Potosnak et al. (2021), which
extend FRCLS to learn more robust and interpretable rule.

Motivation. As presented in Caldas et al. (2021b), FRCLS generates decision lists that max-
imize a lower bound on the mean competence of the external classifier, which we estimate
through the proxy variable ρE . To obtain this lower bound, the algorithm approximates the
distribution of ρE as normal, an approximation that falls apart for rules with small support.
This phenomenon may lead to FRCLS selecting rules that overfit to the training data, with fea-
tures that don’t correlate with the medical output, or too long to be clinically interpretable.

Method. Potosnak (2022) and Potosnak et al. (2021) propose a rule pruning step using per-
mutation testing and a novel k-nearest neighbor approach to probability estimation. Intuitively,
the idea is to discard rules that could not be differentiated from those that would be generated
from a dataset where the response variable were randomly shuffled.

Data andML task. The work uses two different datasets, CH (1, 563 examples) and MIMIC-
II (1, 776 examples). For each dataset, a different ML task was targeted: prediction of hypoten-
sion (CH), and early prediction of mortality (MIMIC-II). Finally, each dataset had two silos:
medical ICU (MICU) and surgical ICU (SICU).

Results. Tables 3.5 and 3.6 show some of the results in Potosnak (2022). In particular, they
obtain consistently shorter decision lists while still improving over purely local models.

36

Local Silo Dataset Number of rules

Without pruning With pruning

SICU CH 1.8(1.2) 1.7(0.5)
MIMIC-II 7.8(9.2) 1.8(1.3)

MICU CH 6.8(4.3) 1.7(0.5)
MIMIC-II 14.8(7.2) 4.2(2.8)

Table 3.5: Decision list lengths presented by Potosnak (2022) for their method. They present
the mean (standard deviation) of 5-fold cross validation.

Local Silo Dataset ROC-AUC

Local FRCLS with pruning

SICU CH 0.875(0.021) 0.879(0.028)
MIMIC-II 0.851(0.034) 0.830(0.051)

MICU CH 0.888(0.012) 0.893(0.002)
MIMIC-II 0.708(0.022) 0.761(0.050)

Table 3.6: Mean ROC AUC results from Potosnak (2022) for their rule pruning method. They
present the mean (standard deviation) of 5-fold cross validation.

3.5 Conclusions
We proposed an approach to derive clinical utility from Federated Learning (FL) systems that
goes beyond an increase in predictive power. Compared to previous works in FL for healthcare
applications, we argued for a deeper understanding of potential benefits of the clinical collab-
orations supported by these systems, particularly of when external knowledge was affecting
local predictions, as this understanding can lead to strategic decisions by stakeholders.

We used a dynamic classification framework to contextually leverage models trained at dif-
ferent clinical institutions, and produced simple rules to clearly outline regions of the feature
space where one model outperformed the others. We tested our proposed approach on a bench-
mark sepsis prediction task in two hospital systems, showing that it was capable of providing
both a boost in predictive power and interpretable insights into the types of patients most ben-
efited by the collaboration. Such insights can be used to motivate follow up investigations into
specifics of clinical practice that may lead to such differences in model performance. These in-
vestigations could help identify the most effective practices for industry-wide proliferation, as
well as create awareness of potential inefficiencies of organizational culture or processes that
may be addressable at local institutions.

Additional research can improve our work. First, designing a feedback mechanism between
collaborators could result in further gains: specializing external models to local needs. A more
immediate next step is to hybridize both of FRCLS’s current strategies, using a competence
threshold on those instances not picked out by learned rules. Finally, future work can study the
interplay between adding privacy to the shared models, and the rules learned by FRCLS.

37

Chapter 4
Using Machine Learning to Support Transfer
of Best Practices in Healthcare

When a set of practices an institution has developed over time is known to systematically
lead to positive outcomes, it is an enticing target for implementation at other similar orga-
nizations (Berta & Baker, 2004; Tsoukas & Vladimirou, 2001). However, endeavors aimed at
transferring such best practices can be inefficient and prone to failure, with common reasons
being the difficulty to codify tacit knowledge and lack of adequate motivation for the trans-
fer (Berta & Baker, 2004; Guzman et al., 2015; Elwyn et al., 2007). Just as problematic is the
inability to even identify a practice gap between organizations, as it prevents the whole transfer
process from taking place. In the context of healthcare, transferring best practices can be done
to increase the efficiency and effectiveness of health services, and to improve patient outcomes:
goals that healthcare organizations are under continuous pressure to pursue (Berta & Baker,
2004; Perleth et al., 2001). Alas, because of the inherent complexity of healthcare facilities, it is
also inherently complex to identify and share best practices among them.

Research into the transfer of best practices in healthcare has been overlooked (Guzman
et al., 2015), and thus the community has a limited understanding of which mechanisms could
work best in practice. Previous work has focused on theoretically understanding the transfer
mechanisms, mostly borrowing tools from other disciplines. For example, Guzman et al. (2015)
combined tools from organizational learning and knowledge management with a practice-based
perspective, laying down a theoretical framework that aligns the complexity of the practice to
be transferred with appropriate transfer strategies. Meanwhile, Berta & Baker (2004) described
the types of environments and knowledge where a transfer is possible. Finally, Elwyn et al.
(2007) outlined different reasons that could make the transfer process fail in a hypothetical
clinical setting using Szulanski (2002)’s sticky knowledge framework.

4.1 Motivating example
In this section, we present an example to motivate our methodology. In this example, we work
backwards from a scenario in which FRCLS proves useful, and arrive at the existence of a prac-

38

Organization Test instances
Instances
handled
by cE

Successful
flips

(% of flips)

Test
p-value

A 1118 111 178 (41.59%) 0.99
B 1883 860 102 (68.00%) 3.94e−7

Table 4.1: FRCLS’s results for DRG 291.

tice gap that can explain the apparent utility of the algorithm. We use this to propose a method-
ology to identify this gap before applying FRCLS.

We consider the task of detecting long lengths of hospital stays in medical inpatient claims.
Our claims data comes from the year 2016 Patient Discharge Database (PDD) from California’s
Office of Statewide Health Planning and Development (OSHPD), and we solve our task using
regularized logistic regression models. We define a long stay as one greater than the national
average length of stay for the DRG associated with the claim. We perform the analysis sep-
arately for each DRG and for two distinct hospital groups, treating each DRG as a different
practice and each hospital group as a different organization. We refer to these organizations as
Organization A and B. We provide more specific information about our data and ML models in
Section 4.3.

For this motivating example, we focus on the DRG 291 associated with heart failure and
shock with major complications or comorbidity. The results of using FRCLS for this DRG are
shown in Table 4.1. These results indicate an asymmetrical relation between Organizations A
and B in terms of knowledge sharing: Organization B observes significant gains from using
Organization A’s model, but the reverse is not true. In light of this asymmetry, it is natural to
inquire about possible causes of the apparent discrepancy. We explore three hypotheses that
could explain it:

• Difference in sample sizes: If Organization A were to have a larger data sample to train its
model than Organization B, then we could explore the possibility that the observed asymme-
try is due to this difference. However, for DRG 291, Organization B has 20% more of these
claims than Organization A, as seen in Table C.1. As a result, we discard this hypothesis.

• Difference in model performance: An inherent difference in model performance could
explain the asymmetrical relationship observed in Table 4.1. If this hypothesis were to hold,
we would expect the model trained in Organization A to outperform the model trained in
B when evaluated on B’s data, and we should observe similar effects when evaluating these
models on A’s data. In Figure 4.1, we see however that the Receiver Operating Characteris-
tic (ROC) curve performances of these models are within each other’s error bands. For a more
detailed analysis, we focus on comparing the true negative rates at a fixed 90% true positive
rate and construct 95% confidence intervals for the difference in performance between mod-
els. Both intervals, which are plotted later on in Figure 4.4 (left), end up containing 0, further
indicating lack of evidence to support the hypothesis that the observed trade-off in utility of
these models can be attributed to difference in their predictive power.

• Difference in consistency and quality of care in patient treatment practice: Having
discarded perhaps the most obvious candidate explanations for the observed discrepancy, we

39

Figure 4.1: ROC curves for our motivating example. We plot the false positive rate in logarithmic
scale for visibility.

turn our attention to the actual practice being modeled. With the available data we cannot
directly evaluate consistency of clinical decisions, but we can rely on a proxy: the entropy
of the distribution of scores produced by each classifier. We consider a higher entropy to
be indicative of a more ambiguous practice in an organization - this happens when a model
trained on operational data from this organization yields predictions that are less crisp at
discriminating, for example, long and short stays in the hospital (to refer back to our working
example). Such differences in the apparent crispiness of the decision making process between
organizations can exist even if the predictive performances of the models trained to automate
such decisions do not differ when measured with common means such as ROC analysis.

We plot the score distributions for both models, evaluated on data from Organization B,
in Figure 4.2. Here, we see that the entropy resulting from model A applied to data in B is
indeed lower than the one resulting from applying model B to its own test data. We check
that this difference is statistically significant by constructing 95% confidence intervals for the
differences in entropy, which we’ll plot later on in Figure 4.4 (right).

Not having insight into actual operations of each organization, we cannot definitely con-
clude that there indeed exists a practice gap by just using medical claims records to support such
judgement. But we propose that the presented result could motivate a thorough investigation
and, if warranted, a properly designed intervention in organizations that show an opportunity
for improving crispiness of their practice, unless additional evidence could provide simpler ex-
planations for the results in Table 4.1.

In our proposed methodology, we are interested in first identifying the apparent practice
gaps. These gaps will motivate organizational audits and adjustments to existing processes to
align performance of the target organization up to the apparent levels of their peers demon-
strating a more consistent, crispier decision-making practice. Such organizational change may
be, however, effortful and time consuming to prepare and implement. As a result, we also pro-
pose using FRCLS as a stop-gap solution. It will selectively apply the crispier decisions from a
better-practice organization when assessing an opportunistically selected subset of all cases for

40

Figure 4.2: Score distributions for our motivating example. Model A is more confident in its
predictions than model B when evaluating both models at Organization B. This is reflected in a
lower entropy for model A.

which the external model is expected to confidently outperform the model trained on the local
data. This strategy aligns with the transfer process steps outlined by Elwyn et al. (2007), and it
mitigates or at least postpones the effort of implementing a solution that may not be necessary
if such algorithmic work-around is acceptable.

4.2 Identifying practice gaps
Given a machine learning task, we propose that a well-performing and confident model is in-
dicative of a robust and consistent practice. Consequently, if a model trained in an external
organization shows a greater performance or confidence than a locally trained model, this sug-
gests that there is a practice gap between the institutions. The models should be evaluated on
the same set of data for conclusions to be valid. As such, we could imagine that organizations
share their trained classifiers, perhaps through an arbiter, and then test and evaluate external
models on their own local data. This siloing is a restriction often imposed in the healthcare
industry (Van Panhuis et al., 2014).

We outline two possible scenarios that can occur when comparing two models, one local
and one external, on data from one organization of interest:

• The case in which one model dominates in terms of some performance metric (for example,
Area Under the ROC Curve (ROC AUC), or recall rate at a fixed low false positive rate) is
straightforward: if the local model dominates, no adverse gap exists; if the external model
dominates, there is a possible practice gap. The latter case, however, may not be very common
in reality due to the usual degradation of clinical models whenever they are used outside of
the institutions they were trained in (Siontis et al., 2015).

• The case where the models are similarly well-performing, but show a different degree of
confidence in their predictions. In this case, if Organization B produces a more confident
model than A, as measured on data from A, then this could be indicative of a more consistent

41

practice implemented in organization B. This is the case we encounter the most often in our
experiments. To tackle these situations, we quantify model confidence through the entropy
of the distribution of scores generated by the model. This is the same proxy we used in
our motivating example to quantify consistency of practice. Note that alternative proxies of
quality of practice can also be used instead without changing the proposed framework.

Regardless of the scenario that led to the identification of the potential practice gap, it is
important to verify that this conclusion is not the product of statistical artifacts. In particular,
one should be aware of whether the organizations have different amounts of data to work
with. More data is usually associated with better-performing models, so it is crucial to control
for this effect before making any recommendations that will consume resources and impact
organizations in the long-term.

4.3 Results: Detection of overly-long hospital stays
Data description. We use the data from the year 2016 Patient Discharge Database (PDD)
from California’s Office of Statewide Health Planning and Development (OSHPD). This dataset
consists of over 3.8 million inpatient medical claims, with associated information about the
diagnoses and procedures reported in each claim. We limit our study to the top 20 diagnosis
related groups (DRGs) with the highest volume of claims, which we model separately as differ-
ent practices that could be improved. Out of these, we exclude DRGs relevant to newborns to
further focus our analysis.

Moreover, for clarity of presentation, we focus on data pertaining to only two hospital
groups. Nevertheless, our analyses can be directly applied to larger numbers of organizations,
and to entities at different levels of organizational granularity, for instance individual hospitals
or practices within a hospital system. Throughout the rest of this text, we refer to these selected
hospital groups as Organization A and Organization B. We are left with 14 DRGs representing
over 240 thousand inpatient claims. Table C.1 shows descriptions of the considered DRGs as
well as sample sizes for each DRG in each organization.

Machine learning models. To demonstrate our method, we propose a machine learning
task that predicts whether a claim will be associated with an unusually long length of hospital
stay. To fulfill this task, we binarize the traditional length of stay prediction task, using the na-
tional average length of stay of each DRGas a threshold to determine the labels: a positive label
represents a stay longer than the national average while a negative label represents a shorter
stay. We consider a scenario in which our defined organizations could not share their data,
replicating the realistic setting in which institutions are constrained by patient confidentiality.
We end up with one model per DRG, per organization.

We solve the task using regularized logistic regression, but our methodology admits any
type of model with an ability to estimate loss of predictions made on individual query data
instances. We use 5-way cross-validation to pick the regularization hyperparameter, perform-
ing a grid-search over 1, 000 settings. We train our models using 70% of available data, and
report our results on the remaining 30% held out for testing. We use the true negative rate at
a fixed 90% true positive rate (TNR @ 90% TPR) as our evaluation metric. This performance

42

Figure 4.3: TNR @ 90% TPR for the trained models. Each model is tested on data from the
organization where it was trained. The error bars reflect 95% bootstrap confidence intervals,
for which we performed 1, 000 resamplings. Note that except for a couple of DRGs, results of
these models on their own data are not statistically discernible.

indicator quantifies the desired trade-off between predicting lengths of stay in a normal range
while maintaining high sensitivity, but alternative performance metrics can surely be used in
its stead as well. We present the performance of the resulting models in Figure 4.3. We refer to
the model trained at Organization A as model A, and similarly for model B.

Identification of practice gaps. We begin by observing the differences in performance
between model A and model B once both models are used in the same organization. We plot
these differences in Figure 4.4 (left). We observe that most of our confidence intervals include
zero difference, and in these cases we cannot claim the prevalence of one model over another.
We see only two intervals that do not contain zero: DRG 392, Organization A and DRG 765,
Organization B. Both of these are composed exclusively of positive differences, which indicates
that the local model outperforms the external. For these cases, we have enough evidence to
discard a possible existence of a practice gap, as it is defined in our approach.

Next, we proceed to identify models that are similarly performant on data from a given
organization, but show a difference in entropy of the distribution of their prediction scores.
Figure 4.4 (right) shows these results. Here, we are interested in intervals composed exclusively
of positive differences, as they indicate that the entropy of the local model is greater than the
entropy of the external one, and a sought-after gap may indeed exist. Table 4.2 summarizes the
DRGs and organizations where we have identified potential practice gaps.

Inspection of statistical artifacts. As previously mentioned, we need to verify that the
potential gaps we identified are not products of statistical artifacts. In particular, we want to
make sure that they are not by-products of the differing sample sizes between organizations.
To do this, for each DRG, we subsample the training dataset in the organization with the most

43

Figure 4.4: Differences in performance (left) and entropy (right) when model A and model B
are used in the same organization. The presented differences correspond to the the local model
minus the external one. Error bars correspond to bootstrap confidence intervals. We maintain
an overall confidence coefficient of 95%, using Bonferroni’s method to correct for making mul-
tiple comparisons.

DRG 189 194 291 292 392 470 603 690 765 766 774 775 871 872

A E ⋆ E E P E ⋆ E E E ⋆ ⋆ ⋆ ⋆

B ⋆ E ⋆ E ⋆ ⋆ E ⋆ P ⋆ E E E E

Table 4.2: Conclusions before inspecting for statistical artifacts. A star (⋆) indicates a potential
practice gap, as defined by our framework. A “P” indicates the evidence to discard the potential
gap came from the difference in model performance, while an “E” indicates the evidence came
from the difference in score entropies.

data until it has the same volume as the other organization. We repeat this random subsampling
process ten times and train a completely new model each time. The results of this exercise are
shown in Figure 4.5.

Controlling for size, we see some of our conclusions change: some performance differences
we thought were negligible, i.e., the confidence interval contained zero, turn out not to be. This
happens for Organization A, DRGs 603, 774 and 775. In these cases, our confidence intervals
are composed exclusively of positive differences. We take this as evidence to discard a practice
gap.

FRCLS Evaluation. Table 4.3 shows our results for the DRGs and organizations where we
identified a practice gap. We pay close attention to the columns Train p-value and Test p-value.
They both relate to how confident we are that the percentage of correct flips is lower than 50%,
but the latter is only available after evaluation. It follows that if Train p-value is too large, we
will be discouraged from using this framework at test time, recommending the use of only the
local model instead. This happens for three of our identified scenarios: DRG 470, 690 and 766,
all for Organization B. As a confidence threshold we used an alpha of 0.05 and corrected for
multiple comparisons using Bonferroni’s method. For all other scenarios, we observe both a

44

Figure 4.5: Differences in performance (left) and entropy (right) when model A and model B
are used in the same organization. The presented differences correspond to the the local model
minus the external one. Error bars correspond to bootstrap confidence intervals. We maintain
an overall confidence coefficient of 95%, using Bonferroni’s method to correct for making mul-
tiple comparisons.

statistically significant Train p-value and Test p-value. This means we are both confident about
using the method and have enough evidence to claim the method is beneficial on our test data.

4.4 Discussion
We discuss our results on the inpatient claims dataset and our limitations.

ML-aided practice transfer for inpatient claims. Table 4.3 enumerates the nine DRGs
and organizations where our methodology identified a potential practice gap. If these orga-
nizations were to undertake transfer processes for these practices, FRCLS could support six of
these processes, allowing the local organization to reap benefits from the external knowledge,
codified through the external model, sooner. In the other three cases (DRG 470, 690 and 766,
all for Organization B), our suggested solution recommended using only the local model. All
these three cases had a difference in entropy that suggested a more ambiguous local practice,
but had some of the lowest absolute differences identified, as observed most clearly in Figure
7. A more robust approach could establish a threshold for the difference in entropy, but this
threshold may end up being application dependent.

Knowledge gaps as practice gaps. Our exercise points towards a relationship between
the gaps found by FRCLS, which we refer to as “knowledge” gaps, and “practice” gaps between
institutions. In rough terms, we showed that the knowledge gap could act as a proxy for an
identified practice gap. However, we cannot establish complete equivalence as the scope of this
study does not allow us to fully observe the best practice being modeled.

Limitations. There exist even further possible differences between institutions, besides
those explored in this chapter, that can explain apparent practice gaps, e.g., differing ML ca-
pabilities, in terms of the adoption and incorporation of ML practices. Future research efforts

45

DRG Org. Train
p-value

Test
instances

Instances
handled
by cE

Successful
Flips

(% of flips)

Test
p-value

189 B 1.03e−8 1,561 791 84 (78.50%) 1.20e−9
194 A 1.30e−45 595 594 329 (81.43%) 2.47e−39
291 B 3.94e−7 1,883 860 102 (68.00%) 6.15e−6
392 B 5.61e−5 1,353 501 54 (65.06%) 4.02e−3
470 B 0.86 6,305 - - -
690 B 0.87 527 - - -
766 B 0.30 3,013 - - -
871 A 2.42e−67 4,116 3,869 886 (73.59%) 1.11e−62
872 A 7.28e−94 1,570 962 402 (78.51%) 2.17e−40

Table 4.3: Results of FRCLS as a stop-gap solution.

should be made to develop and test methods that differentiate between differences in these axes
and practice gaps. Future work can also validate the generalizability of the proposed approach
by extending it to new multi-source datasets. A more ambitious next step would, ideally, ob-
serve the identified practices and validate both the existence of a gap and the utility of the stop-
gap solution. Such a research study could be impractical, requiring coordination from multiple
institutions and the undertaking of an actual transfer process, which is resource-intensive. An-
other avenue with a more restricted scope is the identification of more desirable model qualities
correlated with best practices attributes that have been identified in knowledge management
work, beyond high performance and low entropy.

46

Part III

Expert Supervision

Learning from on-device data has enabled intelligent mobile applications ranging
from smart keyboards to apps that predict abnormal heartbeats. However, due to
the sensitive and distributed nature of this data, expert annotations are often un-
available. Consequently, existing federated learning techniques that learn from on-
device data mostly rely on unsupervised approaches, and are unable to capture ex-
pert knowledge via data annotations. In this chapter, we explore one specific way
to codify this expert knowledge: using programmatic weak supervision, a prin-
cipled framework that leverages labeling functions (i.e., heuristic rules) in order
to label vast quantities of data, without direct access to the data itself. We intro-
duce Weak Supervision Heuristics for Federated Learning (WSHFL1), a method that
interactively mines and leverages labeling functions to annotate on-device data
in cross-device federated settings. Our experiments across two data modalities
demonstrate that WSHFL achieves competitive performance compared to a fully
supervised baseline while reducing the need for direct data annotations.

1pronounced as in wishful.

47

Chapter 5
Encoding Expert Knowledge Into
On-Device Data Using Weak Supervision

Learning from on-device data has the potential to enable increasingly intelligent mobile appli-
cations (McMahan et al., 2017): from smart keyboards that boost usability (Hard et al., 2018)
to health apps that improve patient outcomes (Fitzpatrick et al., 2017; Bui & Liu, 2021). Nev-
ertheless, due to its sensitive and distributed nature, on-device data cannot be annotated by
external experts (Wang et al., 2021). Thus, previous efforts to train models on this type of data
have mostly relied on unsupervised methods (Hard et al., 2018; Lu et al., 2021) or have used user
contextual signals as supervision (Yang et al., 2018). However, for some critical applications,
these approaches may fall short.

As a motivating example, consider training an arrhythmia detection model using electro-
cardiogram (ECG) data generated in smart watches. This task requires both respecting the sen-
sitive nature of the data and capturing clinicians’ expertise, e.g., via annotations of the ECGs.
In this work, we consider federated learning methods to accomplish the former: keeping the
data isolated on-device and instead exchanging model parameters (McMahan et al., 2017; Wang
et al., 2021). However, the question of how to capture the clinicians’ expertise into the federated
model is an active area of research (Jeong et al., 2020; Liu et al., 2021; Zhuang et al., 2021; Wu
et al., 2021).

In this chapter, we explore a particular strategy for codifying this expert knowledge: us-
ing LFs, functions that assign imperfect labels to subsets of the data and that can be used to
automatically label training data (Ratner et al., 2017; Rühling Cachay et al., 2021). Encoding
supervision through LFs is referred to as Programmatic Weak Supervision (PWS) (Ratner et al.,
2016; Zhang et al., 2022), and it has had success in centralized settings (Fries et al., 2019; Dun-
nmon et al., 2020; Goswami et al., 2021; Dey et al., 2022). To the best of our knowledge, PWS
has not been explored in federated scenarios, where the focus for encoding expert supervision
has been on semi-supervised and self-supervised approaches (Jeong et al., 2020; Liu et al., 2021;
Zhuang et al., 2021; Wu et al., 2021).

We introduce Weak Supervision Heuristics for Federated Learning (WSHFL), a method for
mining and leveraging LFs in a cross-device federated setting. WSHFL proceeds in two stages:

48

Generation of candidate LFs
and accuracy estimation

IF nice
THEN positive

0.6

Devices Server

a
Aggregation of

candidatesb

IF nice
THEN positive

0.8

0.3IF nice
THEN negative

Expert
feedbackd

IF nice
THEN positive

0.6

IF nice
THEN negative

0.3

IF nice
THEN positive

0.6

IF nice
THEN positive

0.8 IF nice
THEN positive

0.7

Selection of
candidate to inspectc

Have a nice day!

IF nice
THEN positive

IF nice
THEN negative

0.3IF nice
THEN negative

0.3

nice :)

Figure 5.1: Visualization of WSHFL’s strategy for generating LFs. Based on on-device data,
(a) candidate LFs are generated alongside an estimate û of how probable an expert would find
them useful. These candidates and estimates are then sent over to the server, where they are
(b) aggregated before (c) one candidate is selected to be inspected by an expert. This (d) expert
feedback is then used to generate future estimates û.

1. Mining of LFs (or heuristics): WSHFL automates the crafting of LFs (Varma & Ré, 2018;
Boecking et al., 2020), incorporating expert feedback on which ones they consider useful.
Only parameterized LFs are exchanged while the data is kept isolated on-device. Figure 5.1
presents a brief overview of this strategy.

2. Training of the PWS model: Once we have a set of LFs, we can use them to train a PWS
model. WSHFL leverages the architecture proposed by Rühling Cachay et al. (2021), training
it in a federated manner.

We argue that the main challenge of adopting PWS into cross-device federated methods is
the crafting of LFs. In practice, crafting these functions is a data-dependent process, as experts
rely on available data in order to extract dataset-specific heuristics (Varma & Ré, 2018; Boecking
et al., 2020; Zhang et al., 2022). In federated learning, however, experts cannot freely explore
the on-device data. To tackle this obstacle, we extend the work of Boecking et al. (2020) in
automatic generation of LFs to the particulars of cross-device federated learning.

The contributions of this chapter are as follows:

1. We introduce PWS into the federated setting, with the objective of encoding expert knowl-
edge into federated models through their inspection of candidate LFs that are mined from
the on-device data. To this end, we propose approaches for two components of a standard
PWS workflow in a federated set-up: the generation of candidate LFs, and the training of a
model given LFs selected by the expert (Zhang et al., 2022).

2. We conduct experiments on three datasets across two data modalities, demonstrating the
feasibility of our approach compared to a fully supervised baseline. We also investigate each
of our components, demonstrating their independent utility.

49

Figure 5.2: Example of a labeling function. If the unigram “nice” appears in a review, then it
votes for the positive class, otherwise it abstains from voting.

3. Our work is amongst the first to learn classification models from unlabeled distributed time-
series data. Previous similar work has assumed access to labels (Zhang et al., 2020; Xu et al.,
2021; Choudhury et al., 2019), while we only consider expert supervision over LFs.

5.1 Related Work
Programmatic Weak Supervision. Programmatic weak supervision (PWS) has been pro-
posed as an alternative framework to the expensive and time-consuming process of point-by-
point labeling used for supervised machine learning. PWS leverages multiple sources of noisy
supervision, expressed as LFs, to label large quantities of data (Zhang et al., 2022). LFs, such as
the one presented in Fig. 5.2, are imperfect and may generate conflicting labels on certain data
points. Thus, a label model (Ratner et al., 2016; Rühling Cachay et al., 2021) is used to aggregate
the noisy votes of labeling functions into training labels. These labels are then used to train an
end model, which learns to generalize the relationship between features and the learned labels.
Recent studies have also explored end-to-end approaches that couple the label and end mod-
els, leading to state-of-the-art performance (Rühling Cachay et al., 2021). To the best of our
knowledge, the PWS literature has only focused on centralized settings.

Automatic Mining of LFs. Hand-crafting LFs requires expertise and data exploration,
which can be resource-intensive (Boecking et al., 2020; Varma & Ré, 2018). To address this, pre-
vious methods have aimed to automate the creation of LFs given some extra supervision such
as seed LFs (Li et al., 2021), labeled data (Varma & Ré, 2018; Awasthi et al., 2020), class descrip-
tors (Gao et al., 2022), or instance-wise expert feedback (Nashaat et al., 2020). Boecking et al.
(2020) introduce Interactive Weak Supervision (IWS), an algorithm that learns useful heuristics
from user feedback at the LF level. WSHFL leverages this particular type of expert supervision
while tackling challenges inherent to the federated scenario.

Semi-supervised and Self-supervised methods in Federated Learning. We can also
codify expert knowledge into federated models by using self-supervised and semi-supervised
learning. Recent works that have studied this alternative rely on a centralized dataset available
for annotation by the experts, and augment the federated learning procedure with techniques
such as consistency regularization (Jeong et al., 2020; Liu et al., 2021) and contrastive learn-
ing (Zhuang et al., 2021; Wu et al., 2021). However, these techniques usually rely on the ability
to augment their data at scale, and have thus been mostly used on image data (Jeong et al., 2020;
Zhuang et al., 2021; Wu et al., 2021; Liu et al., 2021).

50

Time-series federated learning with expert supervision. Federated learning from
time-series data is an active area of research (Ding et al., 2022). Nevertheless, prior work on
federated learning with time-series is limited to unsupervised classification such as anomaly
detection (Liu et al., 2020; Huong et al., 2021), regression (Brophy et al., 2021) and forecast-
ing (Tonellotto et al., 2021). While some studies have considered supervised classification in a
cross-silo setting, they assume access to labels with a primary emphasis on privacy preservation
(Zhang et al., 2020; Xu et al., 2021; Choudhury et al., 2019).

5.2 Weak Supervision Heuristics for Federated Learning

5.2.1 Problem Formulation
We aim to train an end model f from unlabeled data distributed across devices or clients, as
they are commonly called in federated learning. These clients communicate with a server that
has no access to the clients’ data and orchestrates training. We assume stateless clients as is the
norm in cross-device federated learning.

Inputs: For each client k, let (xk, yk) ∼ Dk,Dk ∼ P be the data generating distribution,
where xk

i ∈ X = Rd and the labels belong to one of C classes: yk ∈ Y = {1, . . . , C}. As
is common in the federated setting, we assume the data between clients is not identically dis-
tributed, but all clients share the same feature and label space, i.e. ∀k, xk

i ∈ X , yk ∈ Y . Each
client only observes a sample Xk = {xk

i }
nk
i=1 of nk unlabeled data points. We also have access to

an expert located at the server who is able to determine the utility of a given LF. In Section 5.2.2,
we formalize a notion of utility.

Goals: Our ultimate goal is to collaboratively train an end model f : X → Y using unla-
beled data from all clients and expert feedback at the server. To this end, WSHFL first uses the
distributed data to generate candidate LFs λ = λ(x) ∈ {0} ∪ Y , where 0 means that the LF
abstained from labeling any class. Then, WSHFL identifies a set of useful LFs L∗ based on the
expert’s feedback (Boecking et al., 2020). Finally, WSHFL uses L∗ to train a PWS model on the
clients’ data, obtaining the resulting end model f .

5.2.2 Automatic Mining of LFs
In this step, WSHFL sequentially shows candidate LFs to the expert at the server. In each step
t, the expert inspects a given candidate λt and assign it a label ut ∈ {0, 1} corresponding to
whether they believe its accuracy

αt = P (λt(x) = y|λt(x) ̸= 0)

is better than random, i.e., αt > 0.5. This step finally returns those LFs that the expert believed
were accurate: L∗ = {λj ∈ QT : uj = 1}.

51

Algorithm 1: WSHFL mining of labeling func-
tions
Input: Number of expert queries T , seeds S.

1 Q0 ← S
2 for t = 1, . . . , T do
3 λt ← FederatedAcquisition(Qt−1)
4 ut ← ExpertQuery(λt)
5 Qt ← Qt−1 ∪ (λt, ut)

Output: {λj ∈ QT : uj = 1}
6 Function FederatedAcquisition(Q)
7 L0 ← ∅
8 for r = 1, . . . , R do
9 Select K clients at random.

10 retrieve from each client
11 Lk ← TrainClient(Q)

12 Lr = Lr−1 ∪
⋃K

k=1 Lk
13 L′ ← Aggregate(LR).
14 λ← SelectBest(L′).
15 Return λ

16 Function TrainClient(Q)
17 Train neural network hk : τk(λ)→ u using Q.
18 Generate candidate LFs Lk = {λk

j }
pk
j=1.

19 Use hk to estimate ûkj for λk
j ∈ Lk.

20 Return {(λk
j , û

k
j)}

pk
j=1

Algorithm 1 describes our general procedure. The main challenges to highlight are (1) the
generation of candidates LFs in a federated scenario (lines 18 and 13), and (2) the selection of
the LFs we show to the expert (line 14).

Generation of candidate LFs

To generate candidate LFs in a federated setting, WSHFL leverages two domain specific pro-
cesses:

• A client process that takes the unlabeled data {xk
i }

nk
i=1 and produces candidate heuristicsLk =

{λk
j}

pk
j=1 in each individual client. See line 18 in Algorithm 1.

• A server process that aggregates similar candidates proposed across clients into G LFs L′ =
{λ′

j}Gj=1. See line 13 in Algorithm 1.

Notice that a parameterization of the Lk generated at the clients is shared with the server.
In Section 5.3, we describe this parameterization, as well propose different generation and ag-
gregation methods for the two data modalities we work with.

52

Selection of next LF to inspect

We cast this task as an active search problem (Boecking et al., 2020), where we sequentially
inspect data (candidates) in order to discover members of a desired class (uj = 1) (Garnett
et al., 2012). Thus, at time step t, we require access to the posterior probabilityP (u = 1|λ,Qt−1),
where Qt−1 = {(λj, uj)}t−1

j=1 correspond to the previously inspected candidates and their expert
feedback.

To estimate this probability, WSHFL trains a model hk : τk(λj) → uj in each client that
predicts uj given the client-specific representation

τk(λj) = (λj(x
k
1), . . . , λj(x

k
nk
)),

for all elements of Qt−1. This model is then used to obtain estimates of ûk
j = h(τk(λ

k
j)) for the

candidates that the client generates, which are shared with the server alongside the proposed
candidates. See function TrainClient in Algorithm 1.

When WSHFL aggregates similar candidates at the server into λ′ ∈ L′, it also aggregates
the accuracy estimates ûj of the candidates being aggregated, treating them as sample estimates
of P (u′ = 1|λ′, Qt−1). More concretely, let A be the collection of candidates being aggregated,
to estimate our posterior probability, we use a 1− δ lower confidence bound on the mean

P (u′ = 1|λ′, Qt−1) =
1

|A|
∑
j∈A

ûj −

√
log(2

δ
)

2|A|
.

We use a lower bound to account for the high variance of the simple mean when we are ag-
gregating a low number of candidates. Finally, we use a one-step look-ahead search strategy,
picking the aggregate λ′ ∈ L′ with the highest P (u′ = 1|λ′, Qt−1).

5.2.3 Training of the PWS Model
Once we have L∗, we can use these LFs to train label model g and the resulting end model f
on the clients’ unlabeled data. In this work, we leverage the Weakly Supervised End-to-end
Learner (WeaSEL) proposed by Rühling Cachay et al. (2021), a state-of-the-art PWS model.
Like most PWS models, WeaSELwas proposed for centralized data. However, it’s architecture
makes it amenable to be learned in a distributed setting.

The key idea of WeaSEL is to use a two-player cooperative game between two models
with different views of the unobserved label through the lens of the features and the LF votes,
minimizing a pair of objectives of the form

Lf (D) = ED[L(yf ,stop-grad(yg))] and Lg(D) = ED[L(yg,stop-grad(yf))]

where L is a noise-aware loss (e.g., cross-entropy), yf = f(x) and yg = P (y|λ) are probabilis-
tic labels generated by the label model g that takes both features x, LF outputs λ(x) and class
balances P (y) as input. To intuitively understand this game, first assume that the probabilis-
tic labels supplied by g are accurate. WeaSEL can then train end model f to generalize the
relationship between these labels and the features of the data. On the other hand, assume end

53

model f already provides accurate predictions for our data. These predictions can thus be used
as supervision to train g to output correct probabilistic labels. The stop-grad operation
naturally encodes this interpretation i.e. each model treats the other’s prediction as the target.

In this work, we train WeaSEL in a federated setting, where the objectives become

LF = EDk∼P [Lf (Dk)] and LG = EDk∼P [Lg(Dk)].

Because we have access to a finite number of clients, and a finite sample of examples per client,
we use empirical risk minimization to solve for these objectives.

We exchange f , g and L∗ throughout training. We assume global class balances P (y) to be
known, as is frequent in related work (Boecking et al., 2020; Ratner et al., 2019; Fu et al., 2020;
Chen et al., 2021). Other works in centralized settings have proposed ways of estimating this
quantity from validation data or from LF responses (Ratner et al., 2019). We leave the problem of
estimating P (y) from federated data as a direction of future work, and explore the interaction
between a global class balance P (y) and local client balances Pk(y) in Section 5.5.2.

Assumptions
WSHFL relies on the ability to generate candidate LFs of varying quality, for which we use
domain-specific processes. Previous work in mining LFs has observed that this generation pro-
cess is possible for several applications (Varma & Ré, 2018; Boecking et al., 2020). We also rely
on the ability of experts to determine whether a given LF is accurate. Once again, prior work
has shown that domain experts are able to exercise this judgment, either while providing feed-
back of this type (Boecking et al., 2020), or while crafting LFs from scratch (Goswami et al.,
2021; Dey et al., 2022; Fries et al., 2019; Dunnmon et al., 2020).

In this work we assume that the parameterized LFs can be freely shared with the server and,
after aggregation and inspection by the expert, with other clients. We also assume estimates
ûj, j ∈ A, for a givenA to be independent in order to construct our lower bound on the posterior
P (u′ = 1|λ′, Q). This independence will not hold, for example, if the distribution over clients
P changes over time (Kairouz et al., 2021).

5.3 Labeling Function Generation
We discuss two data modalities: text and time-series. For each modality, we parameterize LFs
differently and use different strategies to generate and aggregate them.

5.3.1 Text LFs
For text data, we propose LFs parameterized by a unigram and label, assigning the label if the
unigram is present in the data point (see Figure 5.2). Otherwise, the LF abstains. Previous
studies applying programmatic weak supervision to text data have found n-grams to be excel-
lent sources of supervision (Gao et al., 2022; Boecking et al., 2020). This is particularly true for
unigrams due to their larger support in data.

54

p = 0.25

Labeling function ()
Data point (x)

p = 0.5 p = 0.75 p = 1.0

Figure 5.3: Example of a time-series labeling function representing an arrhythmia. We show 4
data points with increasing probabilities of belonging to the given class. These examples will
be labeled as arrhythmias as we vary our probability threshold p.

Given this parameterization, a client can automatically generate Lk from the cross product
of the set of possible labels and the unigrams in its vocabulary within a document frequency
range1. Meanwhile, in the server, we can aggregate candidates with the same unigram and
label.

5.3.2 Time-series LFs
For time-series data, our LFs are fully-parameterized using a three-tuple (τ, dτ , l), where τ ∈
Rd is a time-series template, dτ ∈ R is a distance threshold, and l ∈ Y denotes the label. Given
these parameters, a distance function d : Rd × Rd → R, and a probability threshold p, each
time-series LF has the following functional form:

λ(x; τ, dτ , l) =

{
l, F(dτ ,d(x, τ)) ≥ p

0, otherwise
, where F(x, x0) =

1

1 + exp−{x− x0}
.

Intuitively, the more a time-series x looks like template τ , the higher the probability it has of
being assigned label l. p is a fixed user-defined parameter which transforms distance into a more
interpretable notion of probability. We present an example of our time-series LFs in Figure 5.3.
In this study, we use normalized euclidean distance as the distance function d, since it is widely
used in time-series data mining, can be easily computed in O(d), and has been empirically
shown to be competitive with other complex distance measures across several domains (Ding
et al., 2008; Mueen et al., 2009).

To generate Lk, each client can use the k-means algorithm with normalized euclidean dis-
tance to findm clusters in its data. Each of them centroids can then be a template form different
labeling functions. We define dτ to be the distance of the cluster member farthest from the cen-
troid (template). Finally, each client can finish constructing Lk by taking the cross-product of
the set of possible labels and these templates.

1The document frequency of a unigram is defined as the fraction of documents which contain at least one
occurrence of the unigram.

55

To aggregate these candidates on the server, we cluster LFs from multiple clients. Specifi-
cally, we cluster templates of LFs with the same label using the k-means clustering algorithm.
Each cluster then represents an aggregate LF: the cluster centroid serves as the template τ , and
the maximum dτ of any cluster member serves as the distance threshold of the aggregate.

5.4 Experimental Setup
Datasets. We demonstrate our method on two data modalities: text and time-series data. In
Appendix D.1, we provide further details about our datasets. In our experiments, we consider
binary classification tasks, but WSHFL is also formulated to solve multi-class problems.

For text, we use two datasets frequently used to benchmark text classification models: the
Amazon product reviews dataset (Ni et al., 2019) and the IMDb movie reviews dataset (Maas
et al., 2011). In both of these datasets we solve a binary sentiment analysis task. On the Amazon
dataset, we treat each unique reviewer as a different client, whereas on the IMDb dataset, we
split reviews uniformly at random between clients.

For time-series, we use the Massachusetts Institute of Technology – Beth Israel Hospital
Arrhythmia Database (MIT BIH) dataset (Moody & Mark, 2001; Goldberger et al., 2000). It
consists of 48 half-hour excerpts from 47 subjects and contains beat-level annotations for a
wide range of heart beats. We solve a binary classification task of discriminating normal heart
beats from arrhythmias and treat each patient as a different client.

Methods and Models. We featurize our text data using a pre-trained open-source sentence
transformer (Reimers & Gurevych, 2019). Meanwhile, for our arrhythmia detection task, we use
the raw ECG data2 (sampled at 360Hz) and output a prediction for each window of 256 samples
around given peaks. Client models hk and label model g are always two-layer perceptrons. For
our text datasets, the end model f is also a two-layer perceptron, while for our time-series data
we use a one-dimensional convolutional neural network. We optimize our parameters on our
validation dataset, and report the area under the receiver operating characteristics curve (ROC
AUC) on the test dataset. We provide further details about our models and hyper-parameters
in Appendix D.1 and Appendix D.2.

Expert. As an expert, we use an oracle that labels a LF as useful if it has an accuracy in the
training data of at least 0.7. We perform experiments with different thresholds in Appendix D.6.

Baselines. We compare the predictive performance of WSHFL using δ = 0.05 against three
baselines:

1. Random: We show random aggregated LFs to the expert. This corresponds to changing line
14 in Algorithm 1 to λ← SelectRandom(L′).
2We only use the Modified Limb lead II (MLII) obtained by placing electrodes on the chest, as is done in prior

work (Goswami et al., 2021).

56

2. Naive Greedy: At each time-step t, we show the expert the λ′ ∈ L′ with the highest

P (u′ = 1|λ′, Qt−1) =
1

|A|
∑
j∈A

ûj.

Simple mean estimates are natural in federated settings, but they may have high variance in
this particular scenario.

3. Supervised: We also present a baseline that uses all ground truth labels and is trained using
FedAvg (McMahan et al., 2017).

5.5 Results and Discussion
In this section, we investigate the following three hypothesis:

1. We can mine LFs with desireable properties in a federated setting.
2. Given good LFs and unlabeled distributed data, we can learn a performant federated model.
3. We can combine both of these steps in WSHFL, i.e., mining good LFs and training a perfor-

mant end model using on-device data.

uj = 1

Percentage Coverage

Amazon
WSHFL 30.13 +/- 5.27 % 1.94 +/- 2.28 %
Greedy 20.93 +/- 4.70 % 0.04 +/- 0.04 %
Random 9.20 +/- 3.55 % 0.03 +/- 0.06 %

IMDb
WSHFL 34.13 +/- 8.33 % 3.47 +/- 3.40 %
Greedy 43.07 +/- 3.63 % 0.03 +/- 0.03 %
Random 21.20 +/- 3.55 % 0.07% +/- 0.37 %

MIT BIH
WSHFL 97.80 +/- 1.40 % 2.41 +/- 3.87 %
Greedy 96.40 +/- 2.50 % 3.83 +/- 6.46 %
Random 44.20 +/- 6.60 % 0.63 +/- 2.47 %

Table 5.1: Percentage of LFs labeled as uj = 1 out of those inspected by the expert, and their
mean coverage. We can see how WSHFL mines both high accuracy and high coverage LFs for
all of our datasets. We present the mean and standard deviation across five repetitions. In bold,
the highest mean per dataset.

57

0 50 100 150
Number of LFs inspected

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
 A

U
C

Amazon
Supervised
WSHFL
Random
Greedy

0 50 100 150
Number of LFs inspected

0.5

0.6

0.7

0.8

0.9

1.0 IMDb

0 25 50 75 100
Number of LFs inspected

0.70

0.75

0.80

0.85

0.90

0.95

1.00 MIT BIH

Figure 5.4: Results for a majority vote classifier given mined LFs. We observe how, as we present
more LFs to the expert, WSHFL outperforms our baselines on our text datasets, and performs
comparably to greedy on MIT BIH. Time-step 0 corresponds to an initialization as described in
Appendix D.4. We repeat each experiment five times with different random seeds and show the
mean (line) and standard deviation (shaded).

5.5.1 Automatic Mining of LFs
Previous work on automatic mining of LFs has shown the importance of obtaining candidates
with both high coverage and a high accuracy gap above chance (Boecking et al., 2020), where the
coverage lj = P (λj(x) ̸= 0) is the frequency at which λj does not abstain. We plot these two
quantities for the LFs inspected by the expert in Figure 5.8. Likewise, in Table 5.1, we present
the percentage of LFs labeled as uj = 1 out of those inspected, and their mean coverage. We
observe how WSHFL promotes the mining of both high accuracy and high coverage heuristics
across data modalities. Meanwhile, our greedy baseline fails to find high coverage LFs for our
text dataset, successfully mining high coverage LFs only in our time-series experiments with
the MIT BIH dataset.

To understand this behaviour, in Appendix D.7 we sketch the distribution of the proposed
candidates’ accuracies and coverages for our datasets. We observe how, for Amazon and IMDb,
high accuracy candidates tend to have low coverage. Thus, if our posterior estimates are correct,
the naive greedy baseline will end up with low coverage LFs. However, this is not the case for
MIT BIH, where candidates with high accuracy also have good coverage. Thus, we expect
greedy to be a competitive baseline for this dataset.

In Figure 5.4, we also test the mined LFs on a simple downstream task: a centralized majority
vote classifier, which is a competitive baseline in the PWS literature (Rühling Cachay et al., 2021;
Gao et al., 2022; Dey et al., 2022). We see how onlyWSHFL shows any meaningful improvement
for our text datasets (Amazon and IMDb) while it performs comparably to our greedy baseline
on the MIT BIH dataset.

58

0 1000 2000 3000
Number of rounds

0.5

0.6

0.7

0.8

0.9

1.0
R

O
C

 A
U

C
Amazon

Centralized
Supervised
FedAvg
FedProx
FedAdam

0 500 1000 1500 2000
Number of rounds

0.5

0.6

0.7

0.8

0.9

1.0 IMDb

0 200 400
Number of rounds

0.5

0.6

0.7

0.8

0.9

1.0 MIT BIH

Figure 5.5: Results of training WeaSEL in a federated setting given a set of curated LFs. We
observe that, given enough rounds of communication, we can match or come close to the per-
formance of a centralized training scheme. We repeat each experiment five times with different
random seeds.

5.5.2 Training of the PWS Model
We validate that we can successfully train a WeaSEL model as proposed by Rühling Cachay
et al. (2021) (Section 5.2.3) in a federated manner. For these experiments, we use a pre-curated
set of LFs which we describe in Appendix D.3. In Figure 5.5, we show the results of our ex-
periments. We present two baselines: the fully supervised baseline described above and an
additional baseline corresponding to training WeaSEL in a centralized manner. With the lat-
ter, we aim to corroborate the utility of the used LFs in a previously studied setting of reduced
complexity.

We study the behavior of federated training with three different algorithms: FedAvg,
FedProx, andFedAdam. We observe how, for Amazon and IMDb, all three algorithms match
the centralized performance after sufficient number of communication rounds. For the MIT BIH
dataset, the best performing algorithm (FedAvg) achieves an ROC AUC of 82.66% vs. 92.08%
of the centralized performance.

We also explore the effects of class imbalance on the performance of federated training. We
use the method proposed by Hsu et al. (2019), which parameterizes the class distribution on a
client by a vector q ∼ Dir(αp), where p is a uniform prior and α > 0 controls how much the
class distributions across clients resemble each other. In Figure 5.6, we show results for training
WeaSEL using FedAvg on the IMDb dataset. We observe how our results are consistent as
we vary α: when clients have identical class distributions (α → ∞), when clients have only
one class each (α → 0), and for intermediate values. These results also suggest that it may be
sufficient to specify the global class balance P (y) even when the clients’ Pk(y) differ.

59

0 1000 2000
Number of rounds

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
 A

U
C

IMDb

= 1
0

Figure 5.6: Results of training WeaSEL in a federated setting on the IMDb dataset, given a set
of curated LFs. We achieve consistent results as we vary the class distributions in each client,
with α→∞ corresponding to balanced classes, and α→ 0 corresponds to one class per client.
We present the test ROC AUC of the end model vs. the number of rounds of federated training.
We repeat each experiment five times with different random seeds.

5.5.3 Putting It All Together
Finally, we demonstrate that we both mine the LFs and use these LFs to train a federated model
using FedAvg. We show our results in Figure 5.7. In our text datasets (Amazon and IMDb),
we see how WSHFL is both more effective and efficient than our baselines at leveraging the
expert’s supervision. Meanwhile, for the MIT BIH dataset, it performs comparably to our greedy
baseline.

0 50 100 150
Number of LFs inspected

0.80

0.85

0.90

0.95

1.00

R
O

C
 A

U
C

Amazon
Supervised
WSHFL
Random
Greedy

0 100 200 300
Number of LFs inspected

0.70

0.75

0.80

0.85

0.90

0.95

1.00 IMDb

0 25 50 75 100
Number of LFs inspected

0.80

0.85

0.90

0.95

1.00 MIT BIH

Figure 5.7: Results for WSHFL on our datasets. We observe how, as we present more LFs to the
expert, WSHFL outperforms our baselines on our text datasets, and performs comparably to
greedy on MIT BIH. Time-step 0 corresponds to an initialization as described in Appendix D.4.
We repeat each experiment five times with different random seeds and show the mean (line)
and standard deviation (shaded).

60

0.0 0.1 0.2 0.3
LF Coverage

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 L
F

Ac
cu

ra
cy

Amazon - WSHFL

0.0 0.1 0.2 0.3
LF Coverage

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 L
F

Ac
cu

ra
cy

Amazon - Greedy

uj = 1
uj = 0
Oracle

0.0 0.1 0.2 0.3
LF Coverage

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 L
F

Ac
cu

ra
cy

Amazon - Random

0.0 0.1 0.2 0.3
LF Coverage

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 L
F

Ac
cu

ra
cy

IMDb - WSHFL

0.0 0.1 0.2 0.3
LF Coverage

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 L
F

Ac
cu

ra
cy

IMDb - Greedy

0.0 0.1 0.2 0.3
LF Coverage

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 L
F

Ac
cu

ra
cy

IMDb - Random

0.00 0.25 0.50 0.75 1.00
LF Coverage

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 L
F

Ac
cu

ra
cy

MIT BIH - WSHFL

0.00 0.25 0.50 0.75 1.00
LF Coverage

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 L
F

Ac
cu

ra
cy

MIT BIH - Greedy

0.00 0.25 0.50 0.75 1.00
LF Coverage

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 L
F

Ac
cu

ra
cy

MIT BIH - Random

Figure 5.8: Training accuracies vs. coverages for all LFs inspected by the expert across five
repetitions. We qualitatively observe how WSHFL promotes high accuracy and high coverage
LFs across our three datasets. The black dotted line is the threshold at which our oracle starts
labeling uj = 1 in a LF, which we set to 0.7.

61

5.5.4 Societal Impact and Future Work
Societal Impact. As with most federated learning algorithms, WSHFL makes frequent ex-
changes between clients and a central server. These exchanges come in the form of parameter-
ized models and LFs. Through these parameters, some information may leak from the clients.
Understanding and mitigating the harms of exchanging model parameters is an active area of
study (McMahan & Ramage, 2017; Li et al., 2019a; Bonawitz et al., 2022). However, these harms
may not be fully understood depending on the LF parameterization, e.g., unigrams extracted
from client data may leak private information or contain terms that the expert deems offensive.
Future work must understand the potential risks and harms of sharing a particular type of LF,
and develop mechanisms to mitigate these harms.

Studies in specific application domains. To further establish the utility of the proposed
approach, future work should study its performance and viability in applications and modalities
beyond those explored in this chapter, e.g., clinical tabular or image data. A salient challenge in
these studies will be the definition of LFs that can be easily inspected by experts. This research
direction will also benefit from conducting user studies to evaluate proposed LF generation
mechanisms (Boecking et al., 2020). Immediate future work could conduct a study with clinical
experts to evaluate our proposed time-series LFs.

Improve selection of LFs. We validate that WSHFL’s selection strategy finds both accu-
rate and high coverage LFs. However, there are ways in which this selection strategy could
improve. For example, future work could extend the active search formulation presented in
this chapter using non-myopic strategies (Jiang et al., 2017) in the federated setting. Future
studies could also equip the selection strategy with exploration capabilities, as is common in
other sequential decision making settings (Sutton & Barto, 2018). Finally, we could conceive an
active search formulation that is aligned with the performance of the end model itself, or with
other properties of LFs, e.g., LF overlaps.

62

Part IV

Open-Source Contributions

Modern networks of wearable devices, mobile phones, or autonomous vehicles,
generate massive amounts of data each day. This wealth of data can help to learn
models that can improve the user experience on each device. However, the scale
and heterogeneity of this data presents new challenges in research areas such as
collaborative learning, federated learning, meta-learning, and multi-task learning.
As the machine learning community tackles these challenges, we need to ensure
that developments made in these areas are grounded with realistic benchmarks. To
this end, we propose LEAF, a modular benchmarking framework for learning in
cross-device settings. LEAF includes a suite of open-source datasets, a rigorous
evaluation framework, and a set of reference implementations, all geared towards
capturing the obstacles and intricacies of practical mobile device environments.

63

Chapter 6
LEAF: A Benchmark for Cross-Device
Settings

With data increasingly being generated on networks of remote devices, there is growing interest
in empowering on-device applications with models that make use of such data (McMahan et al.,
2017; Smith et al., 2017; Kairouz et al., 2021; Wang et al., 2021). Learning on data generated in
these networks, however, introduces several new obstacles:

Statistical: Data is generated on each device in a heterogeneous manner, with each device
associated with a different, though perhaps related, underlying data generating distribution.
Moreover, the number of data points typically varies significantly across devices.

Systems: The number of devices in these networks is typically order of magnitudes larger
than the number of nodes in a typical distributed setting, such as datacenter computing. In
addition, each device may have significant constraints in terms of storage, computational, and
communication capacities. Furthermore, these capacities may also differ across devices due to
variability in hardware, network bandwidth, and power. Thus, these settings may suffer from
communication bottlenecks that dwarf those encountered in traditional datacenter settings, and
may require faster on-device inference.

Privacy and Security: Finally, the sensitive nature of personally-generated data requires
methods that operate on on-device data to balance privacy and security concerns with more tra-
ditional considerations such as statistical accuracy, scalability, and efficiency (McMahan et al.,
2018; Li et al., 2019a; Bonawitz et al., 2022).

Previous works propose ways of dealing with these challenges and train collaborative mod-
els from this data. However, they fall short when it comes to their experimental evaluation. As
an example, consider the federated learning paradigm, which focuses on training collaborative
models directly on the devices’ networks (McMahan et al., 2017; Kairouz et al., 2021). Experi-
mental works focused on federated learning broadly utilize three types of datasets, each with
their own shortcoming: (1) datasets that are commonly used and yet do not provide a realistic
model of a federated scenario, e.g., artificial partitions of MNIST, fashion-MNIST or CIFAR-
10 (Konečný et al., 2016; McMahan et al., 2017; Geyer et al., 2017; Bagdasaryan et al., 2020;
Kamp et al., 2019; Ulm et al., 2018; Wang et al., 2019); (2) realistic but proprietary federated
datasets, e.g., data from an unnamed social network in (McMahan et al., 2017), crowdsourced

64

voice commands in (Leroy et al., 2019), and proprietary data by Huawei in (Chen et al., 2018);
and (3) realistic federated datasets that are derived from publicly available data, but which are
not straightforward to reproduce, e.g., FaceScrub in Melis et al. (2018), Shakespeare in McMa-
han et al. (2017) and Reddit in Konečný et al. (2016); McMahan et al. (2018); Bagdasaryan et al.
(2020).

As a second example, consider meta-learning, a related learning paradigm proposed by Chen
et al. (2018); Khodak et al. (2019b) as a way to tackle the statistical challenges of cross-device
networks. The paradigm is indeed a natural fit for these settings, as the heterogeneous devices
can be interpreted as meta-learning tasks. However, popular meta-learning benchmarks such
as Omniglot (Lake et al., 2011; Finn et al., 2017; Vinyals et al., 2016; Snell et al., 2017) and miniIm-
ageNet (Ravi & Larochelle, 2016; Finn et al., 2017; Vinyals et al., 2016; Snell et al., 2017) focus on
k-shot learning where all tasks have the same number of samples and each class has the same
number of samples in each task, failing to capture the real-world challenges that on-device data
would bring to meta-learning solutions. In fact, all of the previously mentioned datasets could
thus be categorized as the first type mentioned above: popular yet unrealistic for our purposes.

As a final example, consider multi-task learning (MTL). This paradigm is also amenable to
cross-device settings (Smith et al., 2017) but, contrary to realistic networks of devices, it is usu-
ally explored in regimes with small numbers of tasks and samples, e.g., the popular Landmine
Detection (Zhang & Schneider, 2010; Murugesan & Carbonell, 2017; Xue et al., 2007; Smith et al.,
2017), Computer Survey (Argyriou et al., 2008; Agarwal et al., 2010; Kumar & Daumé III, 2012)
and Inner London Education Authority School (Murugesan & Carbonell, 2017; Lee et al., 2016;
Agarwal et al., 2010; Argyriou et al., 2008; Kumar & Daumé III, 2012) datasets have at most 200
tasks each. We highlight that, while federated learning, meta-learning, and multi-task learn-
ing are the presented applications for LEAF, the framework in fact encompasses a wide range
of potential learning settings, such as collaborative learning, on-device learning or inference,
transfer learning, life-long learning, and the development of personalized learning models.

Our work aims to bridge the gap between artificial datasets that are popular and accessi-
ble for benchmarking, and those that realistically capture the characteristics of a network of
devices. Moreover, beyond establishing a suite of cross-device datasets, we propose a clear
methodology for evaluating methods and reproducing results. To this end, we present LEAF, a
modular benchmarking framework geared towards learning in massively distributed networks
of remote devices.

6.1 LEAF

LEAF is an open-source benchmark for cross-device settings. 1 It consists of (1) a suite of
open-source datasets, (2) an array of statistical and systems metrics, and (3) a set of reference
implementations. As shown in Figure 6.1, LEAF’s modular design allows these three com-
ponents to be easily incorporated into diverse experimental pipelines. We proceed to detail
LEAF’s core components.

Datasets: We have curated a suite of realistic cross-device datasets for LEAF. We focus on
1All code and documentation can be found at https://github.com/TalwalkarLab/leaf/.

65

https://github.com/TalwalkarLab/leaf/

Datasets Reference
Implementations Metrics

Figure 6.1: LEAFmodules. The “Datasets” module preprocesses the data and transforms it into
a standardized format, which can integrate into an arbitrary ML pipeline. LEAF’s “Reference
Implementations” module is a growing repository of common collaborative methods used in
cross-device settings, with each implementation producing a log of various different statistical
and systems metrics. Any log generated in an appropriate format can then be used to aggregate
and analyze these metrics in various ways through LEAF’s “Metrics” module.

datasets where (1) the data has a natural keyed generation process (where each key refers to
a particular device/user); (2) the data is generated from networks of thousands to millions of
devices; and (3) the number of data points is skewed across devices. Currently, LEAF consists
of six datasets:

• Federated Extended MNIST (FEMNIST), which is built by partitioning the data in Extended
MNIST (LeCun, 1998; Cohen et al., 2017) based on the writer of the digit/character.

• Sentiment140 (Go et al., 2009), an automatically generated sentiment analysis dataset that
annotates tweets based on the emoticons present in them. Each device is a different twitter
user.

• Shakespeare, a dataset built from The Complete Works of William Shakespeare (William Shake-
speare. The Complete Works of William Shakespeare, n.d.; McMahan et al., 2017). Here, each
speaking role in each play is considered a different device.

• CelebA, which partitions the Large-scale CelebFaces Attributes Dataset 2 (Liu et al., 2015) by
the celebrity on the picture.

• Reddit, where we preprocess comments posted on the social network on December 2017.
• A Synthetic dataset, which modifies the synthetic dataset presented in Li et al. (2020c) to make

it more challenging for current meta-learning methods. See Appendix E.1 for details.

We provide statistics on these datasets (except the Synthetic one, as these vary depending
on the user’s settings) in Table 6.1. In LEAF, we provide all necessary pre-processing scripts for
each dataset, as well as small/full versions for prototyping and final testing. Moving forward,
we plan to add datasets from different domains (e.g. audio, video) and to increase the range of
machine learning tasks (e.g. text to speech, translation, compression, etc.).

2The original CelebA data is hosted in http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

66

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Dataset Number of devices Total samples Samples per device

mean stdev
FEMNIST 3, 550 805, 263 226.83 88.94

Sent140 660, 120 1, 600, 498 2.42 4.71

Shakespeare 1, 129 4, 226, 158 3, 743.28 6, 212.26

CelebA 9, 343 200, 288 21.44 7.63

Reddit 1, 660, 820 56, 587, 343 34.07 62.95

Table 6.1: Statistics of datasets in LEAF.

Metrics: Rigorous evaluation metrics are required to appropriately assess how a learning
solution behaves in cross-device scenarios. Currently, LEAF establishes an initial set of met-
rics chosen specifically for this purpose. For example, we introduce metrics that better capture
the entire distribution of performance across devices: performance at the 10th, 50th and 90th
percentiles and performance stratified by natural hierarchies in the data (e.g. “play” in the case
of the Shakespeare dataset or “subreddit” for Reddit). We also introduce metrics that account
for the amount of computing resources needed from the edge devices in terms of number of
FLOPS and number of bytes downloaded/uploaded. Finally, LEAF also recognizes the impor-
tance of specifying how the accuracy is weighted across devices, e.g., whether every device is
equally important, or every data point equally important (implying that power users/devices
get preferential treatment).

Reference implementations: In order to facilitate reproducibility, LEAF also contains
a set of reference implementations of algorithms geared towards cross-device scenarios. Cur-
rently, this set is limited to the federated learning paradigm, and in particular includes reference
implementations of minibatch SGD and FedAvg (McMahan et al., 2017).

6.2 LEAF in action
We now show a glimpse of LEAF in action. In particular, we highlight three of LEAF’s char-
acteristics3:

LEAF enables reproducible science: To demonstrate the reproducibility enabled via
LEAF, we focus on qualitatively reproducing the results that (McMahan et al., 2017) obtained
on the Shakespeare dataset for a next character prediction task. In particular, it was noted
that for this particular dataset, the FedAvg method diverges as the number of local epochs
increases. Results are shown in Figure 6.2, where we indeed see similar divergence behavior in
terms of the training loss as we increase the number of epochs.

LEAF provides granular metrics: As illustrated in Figure 6.3, our proposed systems and
statistical metrics are important to consider when serving multiple clients simultaneously. For
statistical metrics, we show the effect of varying the minimum number of samples per user in

3For experiment details, see Appendix E.2.

67

Figure 6.2: Convergence behavior of FedAvg on a subsample of the Shakespeare dataset. We
are able to achieve a per sample test accuracy comparable to the results obtained in McMahan
et al. (2017). We also qualitatively replicate the divergence in training loss that is observed for
large numbers of local epochs (E).

Sentiment140 (which we denote as k). We see that, while median performance degrades only
slightly with data-deficient users (i.e., k = 3), the 25th percentile degrades dramatically. Mean-
while, for systems metrics, we run minibatch SGD and FedAvg for FEMNIST and calculate the
systems budget needed to reach a per sample accuracy threshold of 0.75. We characterize the
budget in terms of total number of FLOPS across all devices and total number of bytes uploaded
to network. Our results demonstrate the improved systems profile of FedAvg when it comes
to the communication vs. local computation trade-off, though we note that in general methods
may vary across these two dimensions.

LEAF ismodular: To demonstrateLEAF’s modularity, we incorporate its “Datasets” mod-
ule into three new experimental pipelines: one that trains purely local models for each device
(on CelebA and our Synthetic dataset), one that disregards the natural partition between de-
vices, i.e., it mixes all the data (on Reddit), and one in which we use the popular meta-learning
method Reptile (Nichol et al., 2018) (on FEMNIST). Results for these experiments are presented
in Table 6.2. These particular pipelines shed light on how different modeling approaches may
be more or less appropriate for different datasets (Jiang et al., 2019; Khodak et al., 2019b).

6.3 Conclusions and Impact
We present LEAF, a modular framework for learning in ecosystems marked by massively dis-
tributed networks of devices. Learning paradigms applicable in such settings include collab-
orative learning, federated learning, meta-learning and multi-task learning. LEAF allows re-
searchers and practitioners in these domains to reason about new proposed solutions under
realistic assumptions of on-device data.

68

Figure 6.3: Statistical and Systems analyses for Sent140 and FEMNIST. For Sent140: k is the
minimum number of samples per user. Orange lines represent the median device accuracy,
green triangles represent the mean, boxes cover the 25th and 75th percentile, and whiskers
cover the 10th to the 90th percentile. For FEMNIST: C is the number of clients selected per
round, and E is the number of epochs each client trained locally for FedAvg. For minibatch
SGD we report the percentage of data used per client.

Dataset FedAvg (baseline) Additional Pipeline

description accuracy
CelebA 89.46% Local Models 65.29%

Synthetic 71.89% 87.34%

Reddit 13.35% Global IID model 12.60%

FEMNIST 74.72% Reptile 80.24%

Table 6.2: Demonstration of LEAF’s modularity. We incorporate LEAF’s datasets into new
experimental pipelines (beyond FedAvg) and report the resulting sample test accuracies.

Since its inception, LEAF has had a wide impact in the federated learning community. Its
open-source implementations have facilitated reproducible research (Laguel et al., 2021; Pil-
lutla et al., 2022) and its datasets have become a reference for cross-device federated learn-
ing (Ogier du Terrail et al., 2022). In particular, other popular federated learning benchmarks
and frameworks have adopted LEAF’s datasets for experimentation. For example, Tensorflow
Federated (TFF) (Bonawitz et al., 2019) hosts the FEMNIST, Shakespeare and CelebA datasets.
Meanwhile, FLSim (Meta AI Research, 2022) and Flower (Beutel et al., 2022) define explicit ports
to conduct studies with LEAF datasets.

We can also quantify LEAF’s impact through the usage of its github repository, which
has over 200 forks and 700 stars at the time of writing. However, these statistics probably
underestimate its actual usage, as some of LEAF’s more popular datasets are hosted by TFF.

69

https://github.com/TalwalkarLab/leaf

Moving forward, we hope to keep updating LEAF to reflect the realities and findings of the
research community. For example, we want to add:
• Reference implementations in different machine learning frameworks, e.g., PyTorch (Paszke

et al., 2019) and JAX (Bradbury et al., 2018).
• Principled ways to vary the heterogeneity of the datasets (Hsu et al., 2019).
• Datasets, implementations and metrics for semi-supervised tasks (Jeong et al., 2020; Caldas

et al., 2023) and broader collaborative learning tasks Mittal et al. (2022).
Our hope is to expand the number of scenarios in which LEAF can facilitate reproducible and
grounded research, contributing to the healthy development of the fields of collaborative and
federated learning.

70

Conclusions

71

Chapter 7
Conclusions

This dissertation studies how to improve the practical utility of collaborative learning systems
that leverage siloed data. We do this by studying requirements imposed on these systems by
applications of real-world interest. In particular, we focus on three settings:

• Collaborative models learned on heterogeneous networks, where communication con-
straints are a crucial bottleneck.

• Healthcare models learned across clinical collaborators, where explanations are an im-
portant component of clinical utility.

• Collaborative systems that use unlabeled on-device data, where encoding expert knowl-
edge is an ongoing challenge.

In each of these settings we propose methods and algorithms to tackle each of the identified
requirements. Furthermore, we examine the interplay of the studied dimension with predictive
performance, as it continues to be a critical functional attribute by which learning systems
are evaluated. Lastly, we discuss the impact of our work and future directions that study the
relation between each dimension and other properties of collaborative learning systems, e.g.,
privacy and fairness. As particular motivators and case studies, we used clinical and on-device
data, but the proposed techniques can be extended to different application domains.

This dissertation also introduces a benchmark for collaborative learning in cross-device set-
tings, e.g., when the collaborators are mobile devices. The benchmark addresses shortcomings
of previous experimental evaluations in the field, particularly in regard to the datasets used. We
examine the impact of this contribution in the field of federated learning, and discuss possible
extensions that would expand its reach.

One of the main themes of this dissertation is collaboration. In particular, collaboration
among parties that cannot share data and must rely on other forms of information exchange. In
each part, we rely on a different type of information exchange: gradients in Part I, fully trained
models in Part II, and labeling functions in Part III. To turn this information into actionable
knowledge, we train a collaborative model to make predictions. Still, this knowledge could be
exploited even further by keeping track of what is learned, when is it learned, and by whom.
This type of management requires both explicit tracking tools and a deeper understanding of
dynamic collaborative systems, e.g., where the client distribution changes over time.

72

Another central theme of this thesis is utility, in the sense of training models that will be
truly used in practice. For a given setting, this implies understanding the constraints of the
model and the users that will interact with it. We wish to highlight the latter: the users inter-
acting with the collaborative system. Throughout this dissertation, we progressively mature
our tools to capture our information about users. In Part II we motivate our work on explana-
tions based on clinician feedback. Meanwhile, in Part III we use tools from sequential decision
to explicitly build a model of the expert’s beliefs. A later stage of maturity would draw tools
from the social sciences in order to design better user models, validate their assumptions and
conduct user studies.

Adoption of Collaborative Learning Systems
This dissertation focuses on two particular types of collaboration: between mobile devices and
among clinical centers. Throughout the thesis, we have highlighted differences and similarities
between collaborative learning in the two scenarios, e.g., formalizing them as cross-device and
cross-silo federated learning, respectively. Now, we wish to further contrast these settings along
a new axis: the barriers to adoption of these collaborative systems.

On one hand, learning collaborative models from on-device data is gaining traction in prac-
tice with products such as Google’s Gboard and Google Assistant already deploying federated
learning solutions (McMahan & Thakurta, 2022). This adoption has been facilitated by factors
characteristic of this ecosystem, including:

• A central entity (e.g., Google, Apple) that bears the burden of development.
• Clear incentives for adoption, e.g., data privacy and generating user trust.
• An existing network over which devices can communicate with a central server.
On the other hand, adoption of collaborative learning among clinical collaborators can prove

more challenging, as it is an ecosystem marked by:
• Multiple entities sharing the responsability of development, i.e., the centers.
• The possibility of misaligned incentives, as some centers may benefit differently from the

collaboration.
• The absence of a common network over which centers can communicate.
These issues manifest into additional practical considerations that may not be the focus

of current research in collaborative learning. For example, research into scalable methods for
data harmonization would remove a major bottleneck for multi-center studies (Nan et al., 2022;
Williams et al., 2023), who need to unify data models and distributions among collaborators.
Previous work has shown that harmonization leads to better performing collaborative mod-
els (Shukla et al., 2018; Raghu et al., 2019; Marzi et al., 2022), yet the sources of disharmony are
multiple and diverse, e.g., device and laboratory variability.

Ultimately, however, the adoption of collaborative learning methods in clinical settings
hinges on showing that they lead to actual improvements in patient outcomes. Thus, we be-
lieve that current studies should focus on demonstrating these meaningful improvements for
concrete applications, as these success stories can later materialize into concrete incentives to
overcome the mentioned bottlenecks.

73

Future Work and OpenQuestions
This thesis used the framework of federated learning to contextualize its contributions. Still,
there are other recent collaborative learning frameworks studied by the machine learning com-
munity (Raffel, 2023; Blum et al., 2017). In particular, we wish to highlight the study of modular
architectures (Mittal et al., 2022; Rosenbaum et al., 2019) as an avenue to allow stakeholders to
train specialized modules, leading to more maintainable and transparent collaborative systems.
This would be useful in healthcare settings, where probing the model has been shown to be of
special interest.

It is also timely to study the relationship between collaborative learning and large language
models. In one direction, researchers can study how to use these pre-trained models to facili-
tate collaborative learning, using them to improve the utility trade-offs of cross-device federated
learning (Wang et al., 2023), or leveraging in-context learning (Xie et al., 2021) to produce la-
beling functions for unlabeled, siloed data. In the opposite direction, we can study how to use
collaborative learning to train these large models on user compute (Borzunov et al., 2022; Yuan
et al., 2022) in order to allow new stakeholders to train these complex models. This relates to
our previous ideas on modularity, as we may need to understand how to distribute the differ-
ent components of these models, e.g., how to generate sub-models for these new architectures.
The community will also need to study users’ incentives to share data and compute, and create
practical mechanisms to account for these.

We outline more specific future work in each of our chapters. An underlying theme of the
proposed directions is to research the interplay of the different dimensions of collaborative sys-
tems, outside of predictive performance, e.g., understand how differential privacy can affect the
explanations presented in Part II. Another recurrent theme is understanding and mitigating the
harms of exchanging information among collaborators. Siloing the data follows the principles
of focused data collection and minimization (Kairouz et al., 2021), but the parameter exchanges
we work with in this thesis still leak information about the stakeholders.

Finally, we want to mention the need to study ways to regulate collaborative models. Going
forward, the community will have to think carefully about questions such as: how to build test
sets if the data is distributed, sensitive and unlabeled? how to ensure stakeholders are properly
compensated if their data is used? how to compensate them if their compute is used? how can
they withdraw consent from participation? Timely work in this direction will help shape the
ecosystem of collaborative models.

74

Appendix

75

Appendix A
Expanding the Reach of Federated Learning
by Reducing Client Resource Requirements

A.1 Kashin’s Representation
For reasons of space, we have relegated a more detailed discussion of Kashin’s representation
(see Section 2.2) to the Appendix. In this section, we briefly discuss Kashin’s representation both
from a theoretical (Section A.1.1) and practical (Section A.1.2) standpoints. Finally, we present
some preliminary results that argue the potential of Kashin’s representation to dominate over
the random Hadamard transform with respect to the size vs. accuracy trade-off (Section A.1.3).

A.1.1 Theoretical Overview
The idea of using the classical results of Kashin (1977) to increase the robustness of coefficients
to perturbations was first introduced by Lyubarskii & Vershynin (2010). Their result states that,
given a tight frame satisfying a form of uncertainty principle, a weaker notion of the RIP (Can-
des et al., 2006), it is possible to convert the frame representation of every vector into the more
robustKashin’s representation, whose coefficients will have the smallest possible dynamic range.

Error rates. Since the results of Suresh et al. (2017b) (who quantified the reduction in quan-
tization error due to the Hadamard transform) rely on exactly this notion of dynamic range, and
assuming the subsampled randomized Hadamard transform satisfies the uncertainty principle,
Theorem 3.5 of Lyubarskii & Vershynin (2010) can be directly used as a drop-in replacement for
Lemma 7 in Suresh et al. (2017b), removing the logarithmic dependence on dimension from The-
orem 3 therein, matching the lower bounds. We do not provide the complete proof as, beyond
drawing this connection, it does not imply any novelty whatsoever. However, an open question
remains, as we are not aware of a result showing what are the parameters of the uncertainty
principle guaranteed by the subsampled randomized Hadamard transform. They exist how-
ever, as the transform is known to satisfy the RIP (Foucart & Rauhut, 2013), which is a stronger
notion.

76

A.1.2 Practical Considerations
In practice, given a tight frame, the algorithm for computing Kashin’s representation is straight-
forward. It runs for n iterations, and takes parameters η, δ as input. In a single iteration, one
first computes the frame coefficients, projects them onto a L∞ ball, and reconstructs the error
in the original domain. Another iteration proceeds starting with the reconstructed error and a
smaller ball. We refer the reader to Lyubarskii & Vershynin (2010) for more details regarding
η, δ and their relationship with the uncertainty principle.

In our work, we use the randomized Hadamard transform as the initial tight frame (see
Section A.1.1 for details on why this is possible). We also run the algorithm for just n = 2
iterations (as very often this provides most of the benefit), fixed δ = 1, and used a variant
of the algorithm which yields an exact representation (omitting the L∞ projection in the last
iteration). Given this, the choice of η is irrelevant. The dominant part of the computation is then
three applications of the fast Walsh-Hadamard transform, as opposed to a single one in Konečný
et al. (2016)).

As a particular example, say we are to compress an 80-dimensional vector. We first pad
the vector with zeros, so that its dimension is 128 (the closest larger power of 2). Then, we
multiply the vector by a diagonal matrix with independent Rademacher random variables (D ∈
R128×128), followed by the application of the fast Walsh-Hadamard transform (H ∈ R128×128).
The first 80 columns of the matrix HD correspond to the tight frame used to find the Kashin’s
representation. Nonetheless, we avoid representing this explicitly.

Finally, note that, if the initial dimension was a power of 2, we need to pad zeros to the next
power of 2 in order to realize any benefit over just using the Hadamard transform.

A.1.3 Dominance over Hadamard
Given the theoretical properties of Kashin’s representation, we hypothesize it should dominate
the random Hadamard transform when it comes to the size vs. accuracy trade-off. A preliminary
experiment to corroborate this hypothesis is the following:

1. We train an MNIST model until we get an accuracy of around 99.3%.
2. We compress the original model using some linear transform, some subsampling ratio and

some number of quantization bits.
3. We decompress the model and evaluate both its new accuracy and its L2 distance to the

original model.
4. We repeat the previous two steps for different linear transforms (identity, random Hadamard

transform and Kashin’s representation), subsampling ratios (0.25, 0.5 and 1.0) and quanti-
zation bits (1, 2, 4, 8, 16).

An important detail is that, whenever we use Kashin’s representation, we do a grid search over
the best values for n (from 1 to 10) and η. However, δ is kept fixed as 1.

The results of this experiment are shown in Figure A.1. In the legend, R corresponds to
rotation — I for identity, HD for randomized Hadamard, Kashin for Kashin based on the ran-
domized Hadamard; and SR corresponds to subsampling ratio — the fraction of elements to be

77

kept non-zero. In the top row, the figure shows the relationship of the accuracy of the com-
pressed model vs. the number of bits used for quantization, and vs. the model’s size (in MB).
In the bottom row, the L2 error incurred is plotted against the same. It is very clear then that
Kashin’s representation does dominate the other two representations when it comes to the size
vs. accuracy trade-off, making up the Pareto frontier for all combinations of subsampling ra-
tio and quantization bits. Nevertheless, we did optimize over the parameters associated with
Kashin’s algorithm, something that does not need to be done for the random Hadamard trans-
form. In Section A.1.2, we propose a set of values that worked well enough for our experiments,
but further exploration on how to easily determine these values is in order.

Figure A.1: Compressing an already trained MNIST model with linear transform + subsampling
+ uniform quantization.

78

A.2 MNIST Experimental Results
For reasons of space, we have relegated the experimental results using MNIST (see Section 2.3)
(Section A.1) to the Appendix.

Figure A.2 shows the results of using our lossy compression on MNIST under the exper-
imental setup presented in Section 2.3.2. Meanwhile, Figure A.3 shows the results of using
Federated Dropout (see Section 2.3.3 for details). Finally, Figure A.4 shows the results of per-
forming both lossy compression for downloads and uploads, as well as Federated Dropout, as
described in Section 2.3.4.

0 200 400 600 800 1000

Number of rounds

0.990

0.991

0.992

0.993

0.994

0.995

0.996

A
cc

u
ra

cy

MNIST: q = 2

0 200 400 600 800 1000

Number of rounds

0.990

0.991

0.992

0.993

0.994

0.995

0.996
A

cc
u
ra

cy
MNIST: q = 4

0 200 400 600 800 1000

Number of rounds

0.990

0.991

0.992

0.993

0.994

0.995

0.996

A
cc

u
ra

cy

MNIST: q = 8

repr = I, s = 0.5

repr = I, s = 1.0

repr = HD, s = 0.5

repr = HD, s = 1.0

repr = K, s = 0.5

repr = K, s = 1.0

no compression

Figure A.2: Effect of varying our lossy compression parameters on the convergence MNIST.

0 200 400 600 800 1000

Number of rounds

0.990

0.991

0.992

0.993

0.994

0.995

0.996

A
cc

u
ra

cy

MNIST

fed. dropout = 0.500

fed. dropout = 0.625

fed. dropout = 0.750

fed. dropout = 0.875

fed. dropout = 1.000

Figure A.3: Effect of varying the percentage of neurons kept in each layer on MNIST.

0 200 400 600 800 1000

Number of rounds

0.990

0.991

0.992

0.993

0.994

0.995

0.996

A
cc

u
ra

cy

MNIST: Aggressive

0 200 400 600 800 1000

Number of rounds

0.990

0.991

0.992

0.993

0.994

0.995

0.996

A
cc

u
ra

cy

MNIST: Moderate

0 200 400 600 800 1000

Number of rounds

0.990

0.991

0.992

0.993

0.994

0.995

0.996

A
cc

u
ra

cy

MNIST: Conservative

fed. dropout = 0.500

fed. dropout = 0.625

fed. dropout = 0.750

fed. dropout = 0.875

no dropout
no compression

Figure A.4: Effect of using both lossy compression and Federated Dropout on MNIST.

79

Appendix B
Understanding Clinical Collaborations
Through Federated Classifier Selection

We present additional details relating to the experiments presented in Chapter 3.2.

B.1 Tuning the Number of Neighbors in FRCLS

We expand on how to tune the number of neighbors k used to estimate Lc(x, k). Through k
we control how useful our estimates are: too high and we loose the local information on which
FRCLS relies, too low and we overfit to noise. To avoid these scenarios, we propose a heuristic
to tune k on our validation set.

For this tuning, we use ℓc(x, y) = ℓc(c(x), y), where ℓ is the cross-entropy loss, as a surro-
gate for the utility of classifier c. This way, it is easy to differentiate two groups of instances:
those for which ℓcE < ℓcL , and those for which ℓcE ≥ ℓcL . If k is chosen correctly, then we
expect the distribution of ρE in each one of these groups to not change drastically between val-
idation and test sets. Our heuristic aims to minimize this change but instead uses two disjoint
splits of the validation set.

To measure changes in distribution, we use the Rényi divergence (Póczos & Schneider, 2011).
For each group of instances defined above, we explore a grid of possible values for k and plot the
resulting divergences. Finally, we find the knee of each curve and choose the highest k between
them. In our experiments we explore the range of values k = {2, 7, 15, 50, 100, 150, 500, 1000}
and end up using k = 100.

B.2 Data Description for Early Prediction of Sepsis
We present additional details on the data used in the experiments presented in Chapter 3. Ta-
ble B.1 shows the dataset size for each hospital system. Tables B.2 and B.3 describe the features
in our data. Finally, Table B.4 provides a complete description of the instances we use to exem-
plify how to use FRCLS’s rules.

80

Hospital System Number of Instances
A 31, 253
B 24, 579

Table B.1: Number of instances in each hospital system.

Variable System A System B
AST 43.0 (24.0/91.0) 33.0 (21.0/67.0)
Age 65.1 (52.4/75.8) 62.0 (50.0/72.0)
Alkalinephos 78.0 (56.0/116.0) 70.0 (53.0/99.0)
BUN 19.0 (13.0/32.0) 19.0 (12.0/32.0)
Base Excess 0.0 (-2.0/3.0) -3.5 (-5.7/-0.8)
Bilirubin Total 0.7 (0.4/1.5) 0.9 (0.6/1.5)
Calcium 8.3 (7.8/8.7) 8.3 (7.5/8.8)
Chloride 106.0 (102.0/109.0) 106.0 (103.0/110.0)
Creatinine 0.9 (0.7/1.4) 1.0 (0.8/1.7)
DBP 59.0 (52.0/68.0) 64.0 (55.5/74.0)
FiO2 0.5 (0.4/0.5) 0.4 (0.4/0.6)
Glucose 125.0 (105.0/152.0) 123.0 (104.0/150.0)
HCO3 24.0 (22.0/27.0) 22.1 (20.1/24.7)
HR 87.0 (75.0/100.0) 86.0 (74.0/99.0)
Hct 30.5 (27.7/34.0) 30.8 (26.5/35.8)
Hgb 10.4 (9.3/11.6) 10.0 (8.6/11.7)
Lactate 1.4 (1.1/2.1) 1.6 (1.2/2.3)
MAP 77.0 (68.0/87.0) 83.0 (73.0/96.0)
Magnesium 2.0 (1.8/2.2) 2.0 (1.9/2.3)
O2Sat 98.0 (96.0/99.0) 98.0 (95.0/99.5)
PTT 31.0 (27.0/38.2) 31.6 (28.2/38.1)
PaCO2 40.0 (36.0/45.0) 38.0 (34.0/44.0)
Phosphate 3.3 (2.7/4.1) 3.4 (2.7/4.2)
Platelets 193.0 (137.0/267.0) 180.0 (123.0/248.0)
Potassium 4.0 (3.7/4.4) 4.0 (3.7/4.4)
Resp 19.0 (16.0/23.0) 18.0 (16.0/22.0)
RR 0.7 (0.6/0.8) 0.7 (0.6/0.8)
SBP 118.0 (104.0/135.0) 122.0 (106.0/141.5)
SaO2 97.0 (93.0/98.0) 97.5 (95.7/98.8)
Temp 37.1 (36.6/37.6) 36.8 (36.4/37.5)
WBC 11.3 (8.3/15.0) 10.3 (7.5/14.1)
pH 7.4 (7.4/7.4) 7.4 (7.3/7.5)

Table B.2: Numerical features in our data. We show the median (Q1/Q3) for each one of our
hospital systems.

81

Variable (Value) System A System B
Gender (0) 40.48% 44.47%
Gender (1) 59.52% 55.53%
Unit1 (0) 18.85% 36.88%
Unit1 (1) 29.29% 34.42%

Table B.3: Categorical features in our data. We show the percentage of the specified value in
each one of our hospital systems. Unit1 is an administrative reference to a medical ICU (as
opposed to a surgical one). A Gender of 0 refers to female.

82

Variable Patient A Patient B
Age 69 54
Gender 1 1
AST - 23
Alkalinephos - 58
BUN 13 13
Base Excess - -3.2
Bilirubin total - 2.1
Calcium 8.6 4.39
Chloride 110 113
Creatinine 1 0.8
DBP 43 60
FiO2 - 1
Glucose 140 116
HCO3 27 22.4
HR 51 80
Hct 38.5 31.7
Hgb 13.1 10.9
Lactate - 1.25
MAP 63 75
Magnesium 2.4 1.9
O2Sat 97 98
PTT 28.2 38.4
PaCO2 - 42
Phosphate 2.5 2.1
Platelets 107 140
Potassium 4 4.4
Resp 16 18
RR 1.17647 0.75
SBP 123 126
SaO2 - 95.9
Temp 36.06 37.4
Unit1 - 1
WBC 25.2 14.9
pH - 7.34
True Label 1 0

Table B.4: Complete list of features for instances whose predictions get flipped with the use of
cE . We present one instance per hospital system.

83

Appendix C
Using Machine Learning to Support Transfer
of Best Practices in Healthcare

In Table C.1, we show description for the DRG that were selected for the experiments in Chap-
ter 4.

DRG Description # of Claims
Org. A Org. B

189 Pulmonary Edema & Respiratory Failure 2,989 4,665
194 Simple Pneumonia & Pleurisy W Cc 1,883 2,206
291 Heart Failure & Shock W Mcc 4,624 5,593
292 Heart Failure & Shock W Cc 2,775 4,705
392 Esophagitis, Gastroent & Misc Digest Disorders W/o Mcc 3,837 4,432

470 Major Joint Replacement Or Reattachment Of
Lower Extremity W/o Mcc 8,299 19,728

603 Cellulitis W/o Mcc 3,369 2,832
690 Kidney & Urinary Tract Infections W/o Mcc 2,109 1,729
765 Cesarean Section W Cc/mcc 4,387 13,019
766 Cesarean Section W/o Cc/mcc 7,840 10,278
774 Vaginal Delivery W Complicating Diagnoses 3,165 10,903
775 Vaginal Delivery W/o Complicating Diagnoses 22,531 44,080
871 Septicemia Or Severe Sepsis W/o Mv 96+ Hours W Mcc 12,375 23,278
872 Septicemia Or Severe Sepsis W/o Mv 96+ Hours W/o Mcc 4,927 11,710

Table C.1: Details for each selected DRG.

84

Appendix D
Encoding Expert Knowledge Into
On-Device Data Using Weak Supervision

D.1 Datasets and Models
We provide a description of the datasets and models used in our work. We use federated versions
of three different datasets: the Amazon product reviews dataset (Ni et al., 2019), the IMDb movie
reviews dataset (Maas et al., 2011) and the Massachusetts Institute of Technology – Beth Israel
Hospital Arrhythmia Database (MIT BIH) dataset (Moody & Mark, 2001; Goldberger et al., 2000).
Statistics on the number of clients and examples in the different splits of these datasets are given
in Table D.1.

Num.
Examples

Num.
Clients

Mean Examples
per Client (std)

Fraction of
Positive Class

Amazon
Train 119,725 738 162.22 (73.36) 0.54
Val 20,090 123 - 0.54
Test 60,366 369 - 0.55

IMDb
Train 20,000 1000 20.0 (0.0) 0.50
Val 5,000 - - 0.49
Test 25,000 - - 0.50

MIT BIH
Train 21,008 36 583.55 (461.72) 0.58
Val 2,939 4 - 0.72
Test 4,153 8 - 0.60

Table D.1: Details for datasets and partitions used in our experiments. We treat the validation
and test partition as if it were centralized in the server.

85

0.0 0.5 1.0
Pk(y = 1)

0

200

400

N
um

be
r o

f c
lie

nt
s

0
= 1

Figure D.1: Histogram of local class balances Pk(y) as we vary α for the IMDb dataset.

D.1.1 Amazon
We use a subset of the Amazon product reviews dataset (Ni et al., 2019), solving a binary sen-
timent classification task. To construct our federated dataset, we first aggregate all categories
with more than 100k, and constructed each client k based on the available reviewer ids. We
then sampled reviewers in ascending order based on quantity |Pk(y = 1) − 0.5| until we had
more than 200k reviews. Intuitively, we looked for reviewers with class balances close to 0.5.
Finally, we performed a 60/10/30 train/val/test split. We featurize this data using a pre-trained
open-source sentence transformer (Reimers & Gurevych, 2019; Sentence Transformers, 2019),
which outputs a feature vector of 768 dimensions. Our end model is a multilayer perceptron
with two hidden layers of size 20 and RELU activations.

D.1.2 IMDb
We use the IMDb movie reviews dataset (Maas et al., 2011). This dataset has 25k training exam-
ples and 25k test examples. We further split the training set into 20k examples for training and
5k examples for validation, and create 1k training clients by splitting the reviews in the train-
ing set uniformly at random. We use the same featurization and end model as for the Amazon
dataset. Finally, in Figure D.1, we show the distribution of local class balances Pk(y) as we vary
the parameter α (see Section 5.5.2).

D.1.3 MIT BIH
The MIT BIH dataset comprises of 48 half-hour excerpts of two-lead ambulatory ECG record-
ings from 47 subjects. The dataset contains beat-level annotations for a wide range of heart
beats, ranging from normal to arrhythmia (e.g., left bundle branch block, premature ventricular
contraction, etc). Since detecting all varieties of arrhythmia is challenging and not the primary
goal of our study, we solved a simpler binary classification task of discriminating normal heart
beats from arrhythmias.

86

Figure D.2: A time-series LF λ is parameterized using a three-tuple (τ, dτ , l). The template τ
shown in red is the centroid of a cluster, represented using the dashed lines−−. dτ is the radius
of the cluster and corresponds to the distance of the cluster member farthest from τ . Depending
on the probability threshold p, this LF λ will label data points x as belonging to class l, or it will
abstain from voting. This labeling threshold is denoted by the outer concentric circle · · · .

On the MIT BIH dataset, we treat each patient as a different client. The patients used in
each of the partitions in Table D.1 are as follows:

Validation: 102, 115, 123, 202
Test: 101, 105, 114, 118, 124, 201, 210, 217

Train: All other patients

In Figure D.2, we illustrate the parameterization of the LFs we use for this dataset. As an
end model, we train a one-dimensional convolutional neural network. Figure D.10 shows the
definition of the model we use. As input into our model, we use the Modified Limb lead II (MLII)
obtained by placing electrodes on the chest, as is done in prior work (Goswami et al., 2021). We
output a prediction for each window of 256 samples (sampled at 360Hz) around peaks given by
previous preprocessing. Finally, we use early stopping based on our validation ROC AUC to
avoid overfitting when training WeaSEL (Figure 5.5, Figure 5.7) and as the expert inspects the
LFs (Figure 5.7).

D.1.4 Additional Models
Our label model is always a multi-layer perceptron with two hidden layers of size 20 and ReLU
activations. When training this model, we set the class balanceP (y) to 0.5. Models hk : τk(λ)→
u are multilayer perceptrons with two hidden layers of size 10 and ReLU activations.

87

D.2 Experiment Hyperparameters
We describe the hyperparameters used for our experiments in Section 5.5. Section D.2.1 presents
the parameters used in the experiments presented in Table 5.1, Figure 5.4, Figure 5.7 and Fig-
ure 5.8. Meanwhile, Section D.2.2 presents the parameters used in Figure 5.5 and Figure 5.7.

D.2.1 Automatic Mining of LFs
When generating time-series LFs as described in Section 5.3, we use the following parameters:

Probability threshold (p) : 0.2
Number of clusters in client k : 3 if nk < 20 else ⌊nk/5⌋

Number of clusters in server : 500

When running Algorithm 1 to mine LFs, we train model hk in each client k with the Adam
optimizer (Kingma & Ba, 2014), using early stopping on the training loss. The hyperparameters
that we use for this algorithm are as follow:

Delta (δ) : 0.05
Clients per round (K) : 10

Batch size : 64
Maximum number of epochs : 200

Learning rate : 1e−3
Weight decay : 1e−4

Due to the difference in the total number of clients between datasets, we use a different
number of rounds R per data modality. For text, we set R to 10, while for time-series we use 1.

D.2.2 Training of the PWS Model
Throughout these experiments, we compare the performance of training a federated version of
WeaSEL using FedAvg, FedProx and FedAdam. For FedAvg and FedAdam, the client
optimizer is mini-batch SGD, while for FedProx it includes a proximal term with weighted
by µ > 0. For all algorithms, we tune the hyperparameters using random search, exploring 20
sets of parameters and choosing the set with the best ROC AUC on the validation dataset. We
perform this tuning once using the pre-curated set of LFs presented in Appendix D.3.

The hyperparameters that we explore are the following:

log10(client learning rate) : Unif[−2,−1]
Temperature of WeaSEL model : Unif[10, 25]

Number of client epochs : Unif{1, 3, 5}

For FedProx we tune µ in Unif{1e−3, 1e−2, 1e−1, 1}. For FedAvg and FedProx, we
explore a log10(server learning rate) in Unif{−2,−1, 0}. For FedAdam, we explore the same

88

hyperparameter in the range Unif[−5,−4] for Amazon and IMDb, and in the range Unif{−4,−3,−2}
for MIT BIH. We set the client and server momentums to 0.9, the batch size to 64 and the clients
per round to 10.

In Table D.2 we present the hyperparameters chosen after tuning.

client lr server lr temperature epochs µ

FedAvg
Amazon 3.35e−2 0.01 14.37 5 -
IMDb 4.15e−2 1.00 24.75 1 -
MIT BIH 2.66e−2 0.10 18.20 3 -

FedProx
Amazon 3.70e−2 0.01 24.54 3 0.01
IMDb 4.60e−2 0.10 16.38 3 0.01
MIT BIH 6.81e−2 1.00 23.64 3 1.00

FedAdam
Amazon 8.12e−2 1.81e−5 19.94 3 -
IMDb 4.82e−2 4.07e−5 22.50 5 -
MIT BIH 2.66e−2 1.00e−3 18.20 3 -

Table D.2: Hyperparameters chosen after performing random search over the grids presented
in Appendix D.2.2.

D.2.3 Baselines
We tune the hyperparameters for two baselines in our experiments: a fully supervised baseline
that we train usingFedAvg, and a centralized version ofWeaSEL. For both baselines, we tune
their hyperparameters using random search, exploring 10 sets of parameters and choosing the
set with the best ROC AUC on the validation dataset. For the WeaSEL baseline, we perform
this tuning using the pre-curated set of LFs presented in Appendix D.3.

For our supervised (FedAvg) baseline, the hyperparameters that we explore are the fol-
lowing:

log10(client learning rate) : Unif[−4,−2]
log10(server learning rate) : Unif{−2,−1, 0}

Number of client epochs : Unif{1, 3, 5}
Client momentum : 0.9
Server momentum : 0.9

Batch size : 64
Clients per round : 10

89

For our centralized (WeaSEL) baseline, the hyperparameters that we explore are the fol-
lowing:

log10(learning rate) : Unif[−4,−3]
Temperature of WeaSEL model : Unif[10, 25]

Momentum : 0.9
Number of epochs : 200

Batch size : 64

In Table D.3 we present the hyperparameters chosen after tuning.

Supervised (FedAvg)
client lr server lr epochs

Amazon 5.26e−3 1.00 3
IMDb 5.26e−3 1.00 3
MIT BIH 2.15e−3 1.00 1

Centralized (WeaSEL)
lr temperature

Amazon 3.06e−4 18.89
IMDb 8.75e−4 22.99
MIT BIH 8.75e−4 22.99

Table D.3: Hyperparameters chosen after performing random search over the grids presented
in Appendix D.2.3.

90

D.3 Labeling Functions used for Federated Weasel
For our experiments in Section 5.5.2, we use a set of pre-curated LFs. For Amazon and IMDb,
we use the LFs reported by Boecking et al. (2020), which correspond to examples of heuristics
that real users found useful when asked for the same type of feedback as the one described in
this work. Meanwhile, for MIT BIH, we adopted an automated procedure to identify these LFs:
using the method proposed by Boecking et al. (2020) in a centralized setting, using the same
oracle as our experiments. The LFs used are detailed below.

• Amazon:
– Positive: amazing, awesome, beautiful, beautifully, best, captivating, comfy, com-

pliments, delightful, durable, easy, excellent, expected, fantastic, favorite, gorgeous,
great, interesting, love, loves, perfect, perfectly, pleasantly, stars, strong, value, won-
derful.

– Negative: awful, bad, beware, boring, crap, disappointing, garbage, horrible, joke,
junk, mess, money, poor, poorly, refund, sent, terrible, unusable, useless, waste,
wasted, worse, worthless, worst, yuck, zero.

• IMDb:
– Positive: amazing, art, beautiful, beautifully, breathtaking, brilliant, captures, de-

light, delightful, enjoyed, excellent, masterpiece, fantastic, favorites, finest, flaw-
less, intelligent, joy, light, perfect, perfection, refreshing, superb, superbly, terrific,
underrated, wonderful, wonderfully.

– Negative: atrocious, awful, bad, boring, crap, decent, dreck, dull, failed, horrible,
lame, laughable, lousy, mistake, pointless, poor, reason, redeeming, ridiculous, stinker,
stupid, terrible, unfunny, unwatchable, waste, worst.

• MIT BIH: Figure D.3 shows the LFs we use for our MIT-BIH experiments.

91

Arrhythmia

distance: 16.6

Arrhythmia

distance: 5.8

Arrhythmia

distance: 15.7

Arrhythmia

distance: 42.4

Arrhythmia

distance: 17.2

Arrhythmia

distance: 10.0

Arrhythmia

distance: 20.0

Arrhythmia

distance: 40.4

Arrhythmia

distance: 11.1

Arrhythmia

distance: 28.3

Arrhythmia

distance: 13.0

Arrhythmia

distance: 18.8

Arrhythmia

distance: 16.2

Normal Heartbeat

distance: 8.9

Normal Heartbeat

distance: 11.9

Normal Heartbeat

distance: 14.3

Normal Heartbeat

distance: 10.2

Normal Heartbeat

distance: 15.6

Normal Heartbeat

distance: 10.9

Normal Heartbeat

distance: 8.9

Normal Heartbeat

distance: 9.6

Figure D.3: Visualization of the LFs used when training WeaSEL in a federated manner, using
the MIT BIH dataset.

92

D.4 Labeling Function Seeds
In our experiments, we initialize Algorithm 1 at time-step 0 with a set S of seed LFs. We use
four seeds, two for each class, with a training accuracy above 0.7 and thus labeled with u = 1.
Furthermore, for our text datasets, in each repetition, we randomly sample four additional seeds
in hopes of discovering LFs marked with u = 0. We don’t perform this random sampling for
the time-series modality as it heavily increased the variance of the ROC AUC at time-step 0.

The seeds that were used throughout the experiments were:

• Amazon:
– Positive: adorable, thoughtful.
– Negative: stereotypical, horrible.

• IMDb:
– Positive: adorable, witty.
– Negative: stereotypical, hated.

• MIT BIH: Figure D.4 shows LFs we use as seeds for our MIT-BIH experiments. These LFs
were chosen by the authors from the pool in Appendix D.3 based on visual inspection.

Arrhythmia

distance: 17.2

Arrhythmia

distance: 15.7

Normal Heartbeat

distance: 10.2

Normal Heartbeat

distance: 8.9

Figure D.4: Visualization of the seeds used in our MIT BIH experiments. In our set up, arrhyth-
mia corresponds to the positive class.

93

D.5 Examples of Inspected Labeling Functions
We show examples of LFs considered useful by our simulated oracle, i.e., labeled with u = 1,
on our three datasets. For Amazon and IMDb, we show the five heuristics most frequently
annotated as useful, and break ties at random. For MIT BIH, we show the most accurate LFs
found useful by the oracle, and break ties by selecting candidates that are visually dissimilar.
The list of example heuristics is presented below:

• Amazon:
– WSHFL:

∗ Positive: size, love, recommend, perfect, highly.
∗ Negative: poor, worse, boring, total, worst.

– Greedy:
∗ Positive: pastiche, pointofview, preschool, leveling, elm.
∗ Negative: inarticulate, purchases, catnip, dart, selfabsorbed.

– Random:
∗ Positive: guitars, cliffhanger, break, domicile, define.
∗ Negative: capable, tend, whichfacilitate, itunes, notable.

• IMDb:
– WSHFL:

∗ Positive: shows, performance, perfect, fun, excellent.
∗ Negative: money, annoying, badly, awful, lame.

– Greedy:
∗ Positive: wordplay, caps, adoree, accelerated, ardour.
∗ Negative: cadet, appendage, accuses, blueprints, beanies.

– Random:
∗ Positive: poltergeist, conversation, brawny, damages, 30mins.
∗ Negative: critiquing, approved, effortless, completely, banner.

• MIT BIH:
– WSHFL: We plot three labeling functions inspected by the expert using WSHFL in

Figure D.5.
– Greedy: We plot three labeling functions inspected by the expert using our greedy

baseline in Figure D.6.
– Random: We plot three labeling functions inspected by the expert using our random

baseline in Figure D.7.

94

Arrhythmia

distance: 3.0

Arrhythmia

distance: 3.7

Arrhythmia

distance: 3.9

Normal Heartbeat

distance: 1.9

Normal Heartbeat

distance: 2.2

Normal Heartbeat

distance: 2.5

MIT BIH - WSHFL

Figure D.5: Visualization of the most accurate candidates inspected by the expert when using
WSHFL with the MIT BIH dataset. We present the three top candidates per class and break ties
by selecting candidates that are visually dissimilar.

95

Arrhythmia

distance: 3.5

Arrhythmia

distance: 3.8

Arrhythmia

distance: 3.9

Normal Heartbeat

distance: 1.8

Normal Heartbeat

distance: 2.2

Normal Heartbeat

distance: 3.5

MIT BIH - Greedy

Figure D.6: Visualization of the most accurate candidates inspected by the expert when using
our greedy baseline with the MIT BIH dataset. We present the three top candidates per class
and break ties by selecting candidates that are visually dissimilar.

96

Arrhythmia

distance: 0.0

Arrhythmia

distance: 0.0

Arrhythmia

distance: 0.0

Normal Heartbeat

distance: 0.0

Normal Heartbeat

distance: 0.0

Normal Heartbeat

distance: 1.3

MIT BIH - Random

Figure D.7: Visualization of the most accurate candidates inspected by the expert when using
our random baseline with the MIT BIH dataset. We present the three top candidates per class
and break ties by selecting candidates that are visually dissimilar.

97

D.6 Ablations
We investigate the behavior of our end-to-end WSHFL experiments with experts of different
confidence levels. To do this, we vary the threshold at which our oracle labels a LF with u = 1.
In Figure D.8, we observe how WSHFL is robust to experts with different confidence levels,
starting to degrade for Amazon and IMDb once the expert starts accepting LFs with accuracies
close to random.

0 50 100 150
Number of LFs inspected

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

R
O

C
 A

U
C

Amazon

0 100 200 300
Number of LFs inspected

0.70

0.75

0.80

0.85

0.90

0.95 IMDb

t = 0.55
t = 0.60
t = 0.70
t = 0.80

0 25 50 75 100
Number of LFs inspected

0.800

0.825

0.850

0.875

0.900

0.925

0.950 MIT BIH

Figure D.8: Results of our ablation experiments on WSHFL, where we vary the threshold of the
oracle we use as an expert. We observe how our experiments are robust to a range of thresholds,
yet may start to degrade when experts accept LFs too close to random.

D.7 Proposed Candidates Distribution
In Figure D.9, we plot the accuracies and coverages for all the aggregated candidates at the
server. This illustrates the distribution of LFs over which our method and baselines are sam-
pling over. For all datasets, we intuitively observe a bimodal distribution of LFs based on their
accuracy. This is because we exhaustively assign all classes to keyword/templates to generate
LFs, hence for every accurate LF, we also have an equally inaccurate LF candidate. However,
we found that the distribution of the accuracy of candidate LFs is different for text and time-
series datasets. In particular, time-series LF candidates either had high or low accuracy, with
few intermediate values.

98

Figure D.9: Training accuracies vs. coverages for the LFs aggregated at the server. We plot the
candidates for the last time-step in one repetition chosen at random.

99

class ConvNet(nn.Module):
def init (self, input dim , output dim):
super(). init ()
self.output dim = output dim
self.input dim = input dim

self.conv = nn.Sequential (∗ self.build conv())
self.output = nn.Sequential (∗ self.build output())

def build conv(self):
return [
nn.Conv1d(
in channels=self.input dim , out channels=4,
kernel size=8, stride=1, padding=’same’),

nn.BatchNorm1d(num features=4),
nn.ReLU(inplace=True),
nn.Conv1d(
in channels=4, out channels=4,
kernel size=5, stride=1, padding=’same’),

nn.BatchNorm1d(num features=4),
nn.ReLU(inplace=True),
nn.Conv1d(
in channels=4, out channels=4,
kernel size=3, stride=1, padding=’same’),

nn.BatchNorm1d(num features=4),
nn.ReLU(inplace=True)]

def build output(self):
return [
nn.Linear(in features=4, out features=self.output dim),
nn.Softmax(dim=1)]

def forward(self, x):
output conv = self.conv(torch.unsqueeze(x, dim=1))
output avg = nn.AvgPool1d(
kernel size=output conv block.shape[2],
stride=1)(output conv block).squeeze()
return self.output(output avg)

Figure D.10: Definition of the one-dimensional convolutional network used for the MIT BIH
dataset.

100

Appendix E
LEAF: A Benchmark for Cross-Device
Settings

E.1 Synthetic Dataset
Our synthetic dataset (introduced in Section 6.1) is inspired by the one presented in Li et al.
(2020c), but has possible additional heterogeneity designed to make current meta-learning meth-
ods (such as Reptile Nichol et al. (2018)) fail. The high-level goal is to create tasks whose true
models are (1) task-dependant, and (2) clustered around more than just one center.

To start, the user must input the desired number of devices T ≥ 1 and a vector (p1, . . . , pk)
such that pj > 0, j ∈ 1, . . . , k and

∑k
j=1 pj = 1. As preparation to generate the tasks:

1. Sample cluster means µj ∈ Rs, j ∈ 1, . . . , k. To do this, draw µj ∼ N(Bj, I), Bj ∼ N(0, I).
2. Draw matrix Q ∈ Rd+1×s by sampling Q ∼ N(0, I).
3. Create diagonal matrix Σ such that Σi,i = i−1.2.

Now, for each task t ∈ 1, . . . , T :

1. Sample a cluster center µt according to the input probabilities (p1, . . . , pk).
2. Draw ut ∼ N(µt, I) and set wt = Qut, wt ∈ Rd+1.
3. Now, draw mt from a log-normal distribution with mean 3 and sigma 2. We then set the

number of samples nt = min(mt + 5, 1000) (to put a lower and an upper bound on the
number of samples per task).

4. Sample vt ∼ N(Ct, I), Ct ∼ N(0, I).
5. Now, for i ∈ 1, . . . , nt, sample xi

t ∈ Rd by drawing xi
t ∼ N(vt,Σ).

6. Finally, set yit = argmax(sigmoid(wtx
i
t +N(0, 0.1 · I))) after adding the necessary padding

to xi
t to account for the intercept.

101

E.2 Experiment Details
In this section, we provide details for the experiments presented in Section 6.2.

Shakespeare convergence. For the experiment presented in Figure 6.2, we subsample 118
devices (around 5% of the total) in our Shakespeare data. Our model first maps each character
to an embedding of dimension 8 before passing it through an LSTM of two layers of 256 units
each. The LSTM emits an output embedding, which is scored against all items of the vocabulary
via dot product followed by a softmax. We use a sequence length of 80 for the LSTM. We
evaluate using AccuracyTop1. We use a learning rate of 0.8 and 10 devices per round for
all experiments.

Statistical and systems analyses. For all the Sent140 experiments presented in Figure 6.3,
we use a bag of words model with logistic regression, and a learning rate of 3 · 10−4. For the
FEMNIST experiments in the same figure, we subsample 5% of the data, and use a model with
two convolutional layers followed by pooling, and a final dense layer with 2048 units. We use
a learning rate of 4 · 10−3 for FedAvg and of 6 · 10−2 for minibatch SGD.

Additional pipelines. For the experiments presented in Table 6.2 we use a split of 60%
training, 20% validation and 20% test per user, and report results on the test set. The hyperpa-
rameters that vary per experiment are the following:

• For the CelebA experiments, we use 10% of the total clients and the same model we de-
scribed above for FEMNIST. For the local models, each device explored learning rates in
[0.1, 0.01, 0.001, 0.0001]. The FedAvg model uses 10 clients per round for 100 rounds, training
locally for one epoch with a batch size of 5, and a best learning rate of 0.001. Both results are
averaged over 5 runs.

• For the experiments with the Synthetic dataset, we use 1, 000 devices, only one cluster, 60
features and 5 classes. Our model is a perceptron with sigmoid activations. For the local
models, each device explored learning rates in [10−3, 10−2, 10−1, 1, 10, 102, 103]. The FedAvg
model used 10 clients per round for 100 rounds, trained locally for one epoch with a batch
size of 5, and found a best learning rate of 0.1.

• For the Reddit experiments, we use 819 devices and a model similar to the one we described
for Shakespeare. The main differences are: the size of the embedding is now 200, and we
build the vocabulary from the tokens in the training set with a fixed length of 10, 000. We
use a sequence length of 10, evaluate using AccuracyTop1 and consider all predictions of
the unknown and padding tokens as incorrect. For the global iid model, we train for 3 epochs
over all the devices’ data using a learning rate of 4 ·

√
2. For FedAvg, we use 10 clients per

round for 100 rounds, training locally for one epoch using a batch size of 5. We use a learning
rate of 8. Both results are averaged over 5 runs.

• For the FEMNIST experiments we use the same model as described before and run each al-
gorithm for 1, 000 rounds, use 5 clients per round, a local learning rate of 10−3, a training
mini-batch size of 10 for 5 mini-batches, and evaluate on an unseen set of test devices. Fur-
thermore, for Reptile we use a linearly decaying meta-learning rate that goes from 2 to 0, and
evaluate by fine-tuning each test device for 50 mini-batches of size 5.

102

Bibliography

Mohammed Adnan, Shivam Kalra, Jesse C Cresswell, Graham W Taylor, and Hamid R Tizhoosh.
Federated learning and differential privacy for medical image analysis. Scientific reports, 12
(1):1–10, 2022.

Arvind Agarwal, Samuel Gerber, and Hal Daume. Learning multiple tasks using manifold reg-
ularization. In Advances in neural information processing systems, 2010.

Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. Fedrolex: Model-heterogeneous feder-
ated learning with rolling sub-model extraction. Advances in Neural Information Processing
Systems, 35:29677–29690, 2022.

Ehab A AlBadawy, Ashirbani Saha, and Maciej A Mazurowski. Deep learning for segmentation
of brain tumors: Impact of cross-institutional training and testing. Medical physics, 45(3):
1150–1158, 2018.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances in neural
information processing systems, 30, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and
Cédric Renggli. The convergence of sparsified gradient methods. Advances in Neural In-
formation Processing Systems, 31, 2018.

Mathieu Andreux, Jean Ogier du Terrail, Constance Beguier, and Eric W Tramel. Siloed feder-
ated learning for multi-centric histopathology datasets. In Domain Adaptation and Represen-
tation Transfer, and Distributed and Collaborative Learning, pp. 129–139. Springer, 2020a.

Mathieu Andreux, Andre Manoel, Romuald Menuet, Charlie Saillard, and Chloé Simpson. Fed-
erated survival analysis with discrete-time Cox models. arXiv preprint arXiv:2006.08997,
2020b.

Derek C Angus, Walter T Linde-Zwirble, Jeffrey Lidicker, Gilles Clermont, Joseph Carcillo, and
Michael R Pinsky. Epidemiology of severe sepsis in the united states: analysis of incidence,
outcome, and associated costs of care. Critical Care Medicine, 29(7):1303–1310, 2001.

103

Eillie Anzilotti. Visualizing the state of global internet connectivity, Aug 2016. URL
https://www.citylab.com/life/2016/08/visualizing-the-state-of-global-internet-connectivity/
496328/.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task feature
learning. Machine Learning, 73(3):243–272, 2008.

Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal, and Sunita Sarawagi. Learning from rules
generalizing labeled exemplars. In International Conference on Learning Representations, 2020.

Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly Shmatikov. How to
backdoor federated learning. In International Conference on Artificial Intelligence and Statis-
tics, pp. 2938–2948. PMLR, 2020.

José Luis Corcuera Bárcena, Mattia Daole, Pietro Ducange, Francesco Marcelloni, Alessandro
Renda, Fabrizio Ruffini, and Alessio Schiavo. Fed-xai: Federated learning of explainable arti-
ficial intelligence models. Italian Workshop on Explainable Artificial Intelligence, 2022.

Shai Ben-David and Reba Schuller. Exploiting task relatedness for multiple task learning. In
Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th
Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings,
pp. 567–580. Springer, 2003.

Whitney Blair Berta and Ross Baker. Factors that impact the transfer and retention of best
practices for reducing error in hospitals. Health Care Management Review, 29(2):90–97, 2004.

Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao,
Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pedro Porto Buarque de Gusmão, et al. Flower:
A friendly federated learning framework. hal-03601230, 2022.

Avrim Blum, Nika Haghtalab, Ariel D Procaccia, and Mingda Qiao. Collaborative pac learning.
Advances in Neural Information Processing Systems, 30, 2017.

Benedikt Boecking, Willie Neiswanger, Eric Xing, and Artur Dubrawski. Interactive weak su-
pervision: Learning useful heuristics for data labeling. In International Conference on Learning
Representations, 2020.

Kallista Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1175–1191, 2017.

Kallista Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloé M Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan McMahan,
Timon Van Overveldt, David Petrou, Daniel Ramage, and Jason Roselander. Towards fed-
erated learning at scale: System design. In Conference on Systems and Machine Learning,
2019.

104

https://www.citylab.com/life/2016/08/visualizing-the-state-of-global-internet-connectivity/496328/
https://www.citylab.com/life/2016/08/visualizing-the-state-of-global-internet-connectivity/496328/

Kallista Bonawitz, Peter Kairouz, Brendan Mcmahan, and Daniel Ramage. Federated learning
and privacy. Communications of the ACM, 65(4):90–97, 2022.

Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes Belkada, Artem
Chumachenko, Pavel Samygin, and Colin Raffel. Petals: Collaborative inference and fine-
tuning of large models. arXiv preprint arXiv:2209.01188, 2022.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs. Software, 2018. URL
http://github.com/google/jax.

Eoin Brophy, Maarten De Vos, Geraldine Boylan, and Tomas Ward. Estimation of continuous
blood pressure from ppg via a federated learning approach. Sensors, 21(18):6311, 2021.

Peggy Bui and Yuan Liu. Using ai to help find answers to common skin conditions. online, 2021.
URL https://blog.google/technology/health/ai-dermatology-preview-io-2021/.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. LEAF: A benchmark for federated settings.
Workshop on Federated Learning for Data Privacy and Confidentiality at NeurIPS, 2019a. URL
https://arxiv.org/abs/1812.01097.

Sebastian Caldas, Jakub Konečnỳ, H Brendan McMahan, and Ameet Talwalkar. Expanding the
reach of federated learning by reducing client resource requirements. Workshop on Federated
Learning for Data Privacy and Confidentiality at NeurIPS, 2019b. URL https://arxiv.org/abs/
1812.07210.

Sebastian Caldas, Vincent Jeanselme, Gilles Clermont, Michael R. Pinsky, and Artur Dubrawski.
A case for federated learning: Enabling and leveraging inter-hospital collaboration. In Amer-
ican Thoracic Society International Conference. American Thoracic Society, 2020.

Sebastian Caldas, Jieshi Chen, and Artur Dubrawski. Using machine learning to support trans-
fer of best practices in healthcare. In AMIA Annual Symposium Proceedings, volume 2021, pp.
265. American Medical Informatics Association, 2021a. URL https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC8861698/.

Sebastian Caldas, Joo Heung Yoon, Michael R. Pinsky, Gilles Clermont, and Artur Dubrawski.
Understanding clinical collaborations through federated classifier selection. In Ken Jung,
Serena Yeung, Mark Sendak, Michael Sjoding, and Rajesh Ranganath (eds.), Proceedings of
the 6th Machine Learning for Healthcare Conference, volume 149 of Proceedings of Machine
Learning Research, pp. 126–145. PMLR, 06–07 Aug 2021b. URL https://proceedings.mlr.press/
v149/caldas21a.html.

Sebastian Caldas, Mononito Goswami, and Artur Dubrawski. Encoding expert knowledge into
federated learning using weak supervision. ICLR 2023 workshop on Machine Learning for IoT:
Datasets, Perception, and Understanding, 2023.

105

http://github.com/google/jax
https://blog.google/technology/health/ai-dermatology-preview-io-2021/
https://arxiv.org/abs/1812.01097
https://arxiv.org/abs/1812.07210
https://arxiv.org/abs/1812.07210
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861698/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8861698/
https://proceedings.mlr.press/v149/caldas21a.html
https://proceedings.mlr.press/v149/caldas21a.html

Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery from incom-
plete and inaccurate measurements. Communications on Pure and Applied Mathematics: A
Journal Issued by the Courant Institute of Mathematical Sciences, 59(8):1207–1223, 2006.

Fei Chen, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated meta-learning for recom-
mendation. arXiv preprint arXiv:1802.07876, 2018.

Mayee Chen, Benjamin Cohen-Wang, Stephen Mussmann, Frederic Sala, and Christopher Ré.
Comparing the value of labeled and unlabeled data in method-of-moments latent variable
estimation. In International Conference on Artificial Intelligence and Statistics, pp. 3286–3294.
PMLR, 2021.

Olivia Choudhury, Aris Gkoulalas-Divanis, Theodoros Salonidis, Issa Sylla, Yoonyoung Park,
Grace Hsu, and Amar Das. Differential privacy-enabled federated learning for sensitive
health data. CoRR, abs/1910.02578, 2019. URL http://arxiv.org/abs/1910.02578.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. EMNIST: Extend-
ing MNIST to handwritten letters. In 2017 international joint conference on neural networks
(IJCNN), pp. 2921–2926. IEEE, 2017.

Rafael MO Cruz, Robert Sabourin, and George DC Cavalcanti. Dynamic classifier selection:
Recent advances and perspectives. Information Fusion, 41:195–216, 2018.

Alicia Curth, Patrick Thoral, Wilco van den Wildenberg, Peter Bijlstra, Daan de Bruin, Paul
Elbers, and Mattia Fornasa. Transferring clinical prediction models across hospitals and
electronic health record systems. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 605–621. Springer, 2019.

Christopher De Sa, Megan Leszczynski, Jian Zhang, Alana Marzoev, Christopher R Aberger,
Kunle Olukotun, and Christopher Ré. High-accuracy low-precision training. arXiv preprint
arXiv:1803.03383, 2018.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Andrew Se-
nior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep networks. In
Advances in neural information processing systems, pp. 1223–1231, 2012.

Don Kurian Dennis, Abhishek Shetty, Anish Sevekari, Kazuhito Koishida, and Virginia Smith.
Progressive knowledge distillation: Building ensembles for efficient inference. arXiv preprint
arXiv:2302.10093, 2023.

Arnab Dey, Mononito Goswami, Joo Heung Yoon, Gilles Clermont, Michael Pinsky, Marilyn
Hravnak, and Artur Dubrawski. Weakly supervised classification of vital sign alerts as real
or artifact. In AMIA Annual Symposium Proceedings, volume 2022. American Medical Infor-
matics Association, 2022.

Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. Querying
and mining of time series data: experimental comparison of representations and distance
measures. Proceedings of the VLDB Endowment, 1(2):1542–1552, 2008.

106

http://arxiv.org/abs/1910.02578

Jie Ding, Eric Tramel, Anit Kumar Sahu, Shuang Wu, Salman Avestimehr, and Tao Zhang. Fed-
erated learning challenges and opportunities: An outlook. In ICASSP 2022-2022 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8752–8756. IEEE,
2022.

Jared A Dunnmon, Alexander J Ratner, Khaled Saab, Nishith Khandwala, Matthew Markert,
Hersh Sagreiya, Roger Goldman, Christopher Lee-Messer, Matthew P Lungren, Daniel L Ru-
bin, et al. Cross-modal data programming enables rapid medical machine learning. Patterns,
1(2):100019, 2020.

Glyn Elwyn, Mark Taubert, and Jenny Kowalczuk. Sticky knowledge: a possible model for
investigating implementation in healthcare contexts. Implementation Science, 2(1):1–8, 2007.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16091–16101, 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. In International Conference on Machine Learning, 2017.

Madalina Fiterau and Artur Dubrawski. Projection retrieval for classification. In Advances in
Neural Information Processing Systems, pp. 3023–3031, 2012.

Kathleen Kara Fitzpatrick, Alison Darcy, and Molly Vierhile. Delivering cognitive behavior
therapy to young adults with symptoms of depression and anxiety using a fully automated
conversational agent (woebot): A randomized controlled trial. JMIR Ment Health, 4(2):e19,
Jun 2017. ISSN 2368-7959. doi: 10.2196/mental.7785. URL http://www.ncbi.nlm.nih.gov/
pubmed/28588005.

Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing, vol-
ume 1. Birkhäuser Basel, 2013.

Jason A Fries, Paroma Varma, Vincent S Chen, Ke Xiao, Heliodoro Tejeda, Priyanka Saha, Jared
Dunnmon, Henry Chubb, Shiraz Maskatia, Madalina Fiterau, et al. Weakly supervised clas-
sification of aortic valve malformations using unlabeled cardiac mri sequences. Nature com-
munications, 10(1):1–10, 2019.

Daniel Fu, Mayee Chen, Frederic Sala, Sarah Hooper, Kayvon Fatahalian, and Christopher Ré.
Fast and three-rious: Speeding up weak supervision with triplet methods. In International
Conference on Machine Learning, pp. 3280–3291. PMLR, 2020.

Chufan Gao, Mononito Goswami, Jieshi Chen, and Artur Dubrawski. Classifying unstructured
clinical notes via automatic weak supervision. In Proceedings of the Machine Learning for
Healthcare Conference, Proceedings of Machine Learning Research. PMLR, 2022.

Roman Garnett, Yamuna Krishnamurthy, Xuehan Xiong, Jeff Schneider, and Richard Mann.
Bayesian optimal active search and surveying. In Proceedings of the 29th International Cofer-
ence on International Conference on Machine Learning, pp. 843–850, 2012.

107

http://www.ncbi.nlm.nih.gov/pubmed/28588005
http://www.ncbi.nlm.nih.gov/pubmed/28588005

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wal-
lach, Hal Daumé Iii, and Kate Crawford. Datasheets for datasets. Communications of the
ACM, 64(12):86–92, 2021.

Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
level perspective. arXiv preprint arXiv:1712.07557, 2017.

Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant super-
vision. Project Report, Stanford, 2009.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Phys-
iobank, physiotoolkit, and physionet: components of a new research resource for complex
physiologic signals. circulation, 101(23):e215–e220, 2000.

Mononito Goswami, Benedikt Boecking, and Artur Dubrawski. Weak supervision for affordable
modeling of electrocardiogram data. In AMIA Annual Symposium Proceedings, volume 2021,
pp. 536. American Medical Informatics Association, 2021.

Dhruv Guliani, Lillian Zhou, Changwan Ryu, Tien-Ju Yang, Harry Zhang, Yonghui Xiao,
Françoise Beaufays, and Giovanni Motta. Enabling on-device training of speech recognition
models with federated dropout. In ICASSP 2022 - 2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 8757–8761, 2022. doi: 10.1109/ICASSP43922.
2022.9746226.

Gustavo Guzman, Janna Anneke Fitzgerald, Liz Fulop, Kathryn Hayes, Arthur Poropat, Mark
Avery, Steve Campbell, Ron Fisher, Rod Gapp, Carmel Herington, et al. How best practices
are copied, transferred, or translated between health care facilities: a conceptual framework.
Health care management review, 40(3):193–202, 2015.

Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad Mahdavi. Fed-
erated learning with compression: Unified analysis and sharp guarantees. In International
Conference on Artificial Intelligence and Statistics, pp. 2350–2358. PMLR, 2021.

Nika Haghtalab, Michael Jordan, and Eric Zhao. On-demand sampling: Learning optimally
from multiple distributions. Advances in Neural Information Processing Systems, 35:406–419,
2022.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. International Conference on
Learning Representations, 2016.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise Beaufays, Sean
Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ramage. Federated learning for mo-
bile keyboard prediction. arXiv preprint arXiv:1811.03604, 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2(7), 2015.

108

Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and
Nicholas Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with
ordered dropout. Advances in Neural Information Processing Systems, 34:12876–12889, 2021.

Samuel Horvóth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. In Mathematical and Scientific
Machine Learning, pp. 129–141. PMLR, 2022.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Li Huang, Andrew L Shea, Huining Qian, Aditya Masurkar, Hao Deng, and Dianbo Liu. Patient
clustering improves efficiency of federated machine learning to predict mortality and hospital
stay time using distributed electronic medical records. Journal of biomedical informatics, 99:
103291, 2019.

Truong Thu Huong, Ta Phuong Bac, Dao Minh Long, Tran Duc Luong, Nguyen Minh Dan,
Bui Doan Thang, Kim Phuc Tran, et al. Detecting cyberattacks using anomaly detection in
industrial control systems: A federated learning approach. Computers in Industry, 132:103509,
2021.

Wonyong Jeong, Jaehong Yoon, Eunho Yang, and Sung Ju Hwang. Federated semi-supervised
learning with inter-client consistency & disjoint learning. In International Conference on
Learning Representations, 2020.

Shali Jiang, Gustavo Malkomes, Geoff Converse, Alyssa Shofner, Benjamin Moseley, and Roman
Garnett. Efficient nonmyopic active search. In International Conference on Machine Learning,
pp. 1714–1723. PMLR, 2017.

Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488, 2019.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner,
Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Har-
chaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara
Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushan-
far, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock,
Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova,
Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian
Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu,
Han Yu, and Sen Zhao. Advances and open problems in federated learning. Foundations and
Trends® in Machine Learning, 14(1–2):1–210, 2021. ISSN 1935-8237. doi: 10.1561/2200000083.
URL http://dx.doi.org/10.1561/2200000083.

109

http://dx.doi.org/10.1561/2200000083

Michael Kamp, Linara Adilova, Joachim Sicking, Fabian Hüger, Peter Schlicht, Tim Wirtz, and
Stefan Wrobel. Efficient decentralized deep learning by dynamic model averaging. InMachine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2018,
Dublin, Ireland, September 10–14, 2018, Proceedings, Part I 18, pp. 393–409. Springer, 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Boris Sergeevich Kashin. Diameters of some finite-dimensional sets and classes of smooth
functions. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 41(2):334–351, 1977.

Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. Adaptive gradient-based
meta-learning methods. Advances in Neural Information Processing Systems, 32, 2019a.

Mikhail Khodak, Maria Florina-Balcan, and Ameet Talwalkar. Adaptive gradient-based meta-
learning methods. Advances in Neural Information Processing Systems, 2019b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jakub Konečný and Peter Richtárik. Randomized distributed mean estimation: Accuracy vs
communication. arXiv preprint arXiv:1611.07555, 2016.

Jakub Konečný, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency.
arXiv preprint arXiv:1610.05492, 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Abhishek Kumar and Hal Daumé III. Learning task grouping and overlap in multi-task learn-
ing. In Proceedings of the 29th International Coference on International Conference on Machine
Learning, pp. 1723–1730, 2012.

Ilja Kuzborskij and Francesco Orabona. Stability and hypothesis transfer learning. In Interna-
tional Conference on Machine Learning, pp. 942–950. PMLR, 2013.

Yassine Laguel, Krishna Pillutla, Jérôme Malick, and Zaid Harchaoui. A superquantile approach
to federated learning with heterogeneous devices. In 55th Annual Conference on Information
Sciences and Systems, CISS 2021, Baltimore, MD, USA, March 24-26, 2021, pp. 1–6. IEEE, 2021.

Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning
of simple visual concepts. In Annual Meeting of the Cognitive Science Society, 2011.

Yann LeCun. The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/ ,
1998.

110

http://yann.lecun.com/exdb/mnist/

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Giwoong Lee, Eunho Yang, and Sung Hwang. Asymmetric multi-task learning based on task
relatedness and loss. In International Conference on Machine Learning, 2016.

Gyemin Lee, Ilan Rubinfeld, and Zeeshan Syed. Adapting surgical models to individual hospitals
using transfer learning. In 2012 IEEE 12th international conference on data mining workshops,
pp. 57–63. IEEE, 2012.

David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gisselbrecht, and Joseph Dureau. Federated
learning for keyword spotting. In IEEE International Conference on Acoustics, Speech and
Signal Processing, 2019.

Jeffrey Li, Mikhail Khodak, Sebastian Caldas, and Ameet Talwalkar. Differentially private meta-
learning. In International Conference on Learning Representations, 2019a.

Jiacheng Li, Haibo Ding, Jingbo Shang, Julian McAuley, and Zhe Feng. Weakly supervised
named entity tagging with learnable logical rules. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 4568–4581, 2021.

Jingtao Li, Lingjuan Lyu, Daisuke Iso, Chaitali Chakrabarti, and Michael Spranger. Mocosfl: en-
abling cross-client collaborative self-supervised learning. In Workshop on Federated Learning:
Recent Advances and New Challenges (in Conjunction with NeurIPS 2022), 2022.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Chal-
lenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020a.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In I. Dhillon, D. Papailiopoulos, and
V. Sze (eds.), Proceedings of Machine Learning and Systems, volume 2, pp. 429–450, 2020b.

Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. Fair resource allocation in feder-
ated learning. In International Conference on Learning Representations, 2020c.

Wenqi Li, Fausto Milletar̀ı, Daguang Xu, Nicola Rieke, Jonny Hancox, Wentao Zhu, Maximilian
Baust, Yan Cheng, Sébastien Ourselin, M Jorge Cardoso, et al. Privacy-preserving feder-
ated brain tumour segmentation. In International Workshop on Machine Learning in Medical
Imaging, pp. 133–141. Springer, 2019b.

Quande Liu, Hongzheng Yang, Qi Dou, and Pheng-Ann Heng. Federated semi-supervised med-
ical image classification via inter-client relation matching. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pp. 325–335. Springer, 2021.

Yi Liu, Sahil Garg, Jiangtian Nie, Yang Zhang, Zehui Xiong, Jiawen Kang, and M Shamim
Hossain. Deep anomaly detection for time-series data in industrial iot: A communication-
efficient on-device federated learning approach. IEEE Internet of Things Journal, 8(8):6348–
6358, 2020.

111

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In International Conference on Computer Vision, 2015.

Nan Lu, Zhao Wang, Xiaoxiao Li, Gang Niu, Qi Dou, and Masashi Sugiyama. Federated learning
from only unlabeled data with class-conditional-sharing clients. In International Conference
on Learning Representations, 2021.

Yurii Lyubarskii and Roman Vershynin. Uncertainty principles and vector quantization. IEEE
Transactions on Information Theory, 56(7):3491–3501, 2010.

Ahmed M Abdelmoniem, Ahmed Elzanaty, Mohamed-Slim Alouini, and Marco Canini. An
efficient statistical-based gradient compression technique for distributed training systems.
Proceedings of Machine Learning and Systems, 3:297–322, 2021.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting
of the association for computational linguistics: Human language technologies, pp. 142–150,
2011.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation with multiple
sources. Advances in neural information processing systems, 21, 2008.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning
bounds and algorithms. arXiv preprint arXiv:0902.3430, 2009.

Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. Three approaches for
personalization with applications to federated learning. arXiv preprint arXiv:2002.10619, 2020.

Chiara Marzi, Marco Giannelli, Andrea Barucci, Carlo Tessa, Mario Mascalchi, and Stefano
Diciotti. Efficacy of mri data harmonization in the age of machine learning. a multicenter
study across 36 datasets. arXiv preprint arXiv:2211.04125, 2022.

Michael Matheny, S Thadaney Israni, Mahnoor Ahmed, and Danielle Whicher. Artificial intel-
ligence in health care: The hope, the hype, the promise, the peril. NAM Special Publication.
Washington, DC: National Academy of Medicine, pp. 154, 2019.

Scott Mayer McKinney, Marcin Sieniek, Varun Godbole, Jonathan Godwin, Natasha Antropova,
Hutan Ashrafian, Trevor Back, Mary Chesus, Greg S Corrado, Ara Darzi, et al. International
evaluation of an ai system for breast cancer screening. Nature, 577(7788):89–94, 2020.

Brendan McMahan and Abhradeep Thakurta. Federated Learning with Formal Dif-
ferential Privacy Guarantees, February 2022. URL https://ai.googleblog.com/2022/02/
federated-learning-with-formal.html.

H Brendan McMahan and Daniel Ramage. Federated learning: Collaborative machine learn-
ing without centralized training data. online, 2017. URL https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html.

112

https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2022/02/federated-learning-with-formal.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, 2017.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially
private recurrent language models. In International Conference on Learning Representations,
2018.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Inference attacks
against collaborative learning. arXiv preprint arXiv:1805.04049, 2018.

Meta AI Research. Federated Learning Simulator (FLSim), 2022. URL https://github.com/
facebookresearch/FLSim/.

Sarthak Mittal, Yoshua Bengio, and Guillaume Lajoie. Is a modular architecture enough? In
Advances in Neural Information Processing Systems, 2022.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. In
International Conference on Machine Learning, pp. 4615–4625. PMLR, 2019.

George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database. IEEE
engineering in medicine and biology magazine, 20(3):45–50, 2001.

Andrew Moore and Jeff Schneider. Real-valued all-dimensions search: Low-overhead rapid
searching over subsets of attributes. In Proceedings of the Eighteenth conference on Uncertainty
in artificial intelligence, pp. 360–369. Morgan Kaufmann Publishers Inc., 2002.

Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, and Brandon Westover. Exact
discovery of time series motifs. In Proceedings of the 2009 SIAM international conference on
data mining, pp. 473–484. SIAM, 2009.

Keerthiram Murugesan and Jaime Carbonell. Multi-task multiple kernel relationship learning.
In SIAM International Conference on Data Mining, 2017.

Basil Mustafa, Aaron Loh, Jan Freyberg, Patricia MacWilliams, Alan Karthikesalingam, Neil
Houlsby, and Vivek Natarajan. Supervised transfer learning at scale for medical imaging.
arXiv preprint arXiv:2101.05913, 2021.

Yang Nan, Javier Del Ser, Simon Walsh, Carola Schönlieb, Michael Roberts, Ian Selby, Kit
Howard, John Owen, Jon Neville, Julien Guiot, et al. Data harmonisation for information
fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future
research directions. Information Fusion, 82:99–122, 2022.

Mona Nashaat, Aindrila Ghosh, James Miller, and Shaikh Quader. Asterisk: Generating large
training datasets with automatic active supervision. ACM Transactions on Data Science, 1(2):
1–25, 2020.

113

https://github.com/facebookresearch/FLSim/
https://github.com/facebookresearch/FLSim/

Shamim Nemati, Andre Holder, Fereshteh Razmi, Matthew D Stanley, Gari D Clifford, and Tim-
othy G Buchman. An interpretable machine learning model for accurate prediction of sepsis
in the ICU. Critical care medicine, 46(4):547, 2018.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods
in natural language processing and the 9th international joint conference on natural language
processing (EMNLP-IJCNLP), pp. 188–197, 2019.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg, Chaoyang He, Regis
Loeb, Paul Mangold, Tanguy Marchand, Othmane Marfoq, Erum Mushtaq, et al. Flamby:
Datasets and benchmarks for cross-silo federated learning in realistic healthcare settings.
Advances in Neural Information Processing Systems, 35:5315–5334, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Sys-
tems 32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Matthias Paulik, Matt Seigel, Henry Mason, Dominic Telaar, Joris Kluivers, Rogier van Dalen,
Chi Wai Lau, Luke Carlson, Filip Granqvist, Chris Vandevelde, et al. Federated evalua-
tion and tuning for on-device personalization: System design & applications. arXiv preprint
arXiv:2102.08503, 2021.

Matthias Perleth, Elke Jakubowski, and Reinhard Busse. What is ‘best practice’in health care?
state of the art and perspectives in improving the effectiveness and efficiency of the european
health care systems. Health policy, 56(3):235–250, 2001.

Pew Research Center. Mobile fact sheet, Feb 2018. URL http://www.pewinternet.org/fact-sheet/
mobile/.

Krishna Pillutla, Sham M. Kakade, and Zaid Harchaoui. Robust Aggregation for Federated
Learning. IEEE Transactions on Signal Processing, 70:1142–1154, 2022. doi: 10.1109/TSP.2022.
3153135.

Barnabás Póczos and Jeff Schneider. On the estimation of alpha-divergences. In Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 609–617.
JMLR Workshop and Conference Proceedings, 2011.

Willa Potosnak. Robust rule learning for reliable and interpretable insight into expertise transfer
opportunities. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence.
Research Summary, 2022.

114

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.pewinternet.org/fact-sheet/mobile/
http://www.pewinternet.org/fact-sheet/mobile/

Willa Potosnak, Sebastian Caldas, Keith. A. Dufendach, Gilles Clermont, Kyle Miller, and Artur
Dubrawski. Robust interpretable rule learning to identify expertise transfer opportunities in
healthcare. In Bridging the Gap: FromMachine Learning Research to Clinical Practice. NeurIPS
Workshop, 2021.

Colin Raffel. Building machine learning models like open source software. Communications of
the ACM, 66(2):38–40, 2023.

Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Transfusion: Understanding
transfer learning for medical imaging. Advances in neural information processing systems, 32,
2019.

Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise Beaufays. Federated learn-
ing for emoji prediction in a mobile keyboard. arXiv preprint arXiv:1906.04329, 2019.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher
Ré. Snorkel: Rapid training data creation with weak supervision. In Proceedings of the VLDB
Endowment. International Conference on Very Large Data Bases, volume 11, pp. 269. NIH Public
Access, 2017.

Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash Pandey, and
Christopher Ré. Training complex models with multi-task weak supervision. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 4763–4771, 2019.

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
programming: Creating large training sets, quickly. Advances in neural information processing
systems, 29, 2016.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. https://
openreview.net/pdf?id=rJY0-Kcll, 2016.

Sashank J Reddi, Jakub Konečný, Peter Richtárik, Barnabás Póczós, and Alex Smola. Aide: fast
and communication efficient distributed optimization. arXiv preprint arXiv:1608.06879, 2016.

Sashank J Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In Interna-
tional Conference on Learning Representations, 2020.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/
1908.10084.

Matthew A Reyna, Chris Josef, Salman Seyedi, Russell Jeter, Supreeth P Shashikumar, M Bran-
don Westover, Ashish Sharma, Shamim Nemati, and Gari D Clifford. Early prediction of
sepsis from clinical data: the physionet/computing in cardiology challenge 2019. In 2019
Computing in Cardiology (CinC), pp. Page–1. IEEE, 2019.

115

https://openreview.net/pdf?id=rJY0-Kcll
https://openreview.net/pdf?id=rJY0-Kcll
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi Albarqouni, Spyri-
don Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-Hein, et al. The future of
digital health with federated learning. NPJ digital medicine, 3(1):1–7, 2020.

Clemens Rosenbaum, Ignacio Cases, Matthew Riemer, and Tim Klinger. Routing networks and
the challenges of modular and compositional computation. arXiv preprint arXiv:1904.12774,
2019.

Salva Rühling Cachay, Benedikt Boecking, and Artur Dubrawski. End-to-end weak supervision.
Advances in Neural Information Processing Systems, 34, 2021.

Adam Sadilek, Luyang Liu, Dung Nguyen, Methun Kamruzzaman, Stylianos Serghiou, Ben-
jamin Rader, Alex Ingerman, Stefan Mellem, Peter Kairouz, Elaine O Nsoesie, et al. Privacy-
first health research with federated learning. NPJ digital medicine, 4(1):1–8, 2021.

Sentence Transformers. Hugging Face Sentence Transformers. https://huggingface.co/
sentence-transformers/all-mpnet-base-v2, 2019. Accessed: 2023-06-07.

Micah J Sheller, G Anthony Reina, Brandon Edwards, Jason Martin, and Spyridon Bakas.
Multi-institutional deep learning modeling without sharing patient data: A feasibility study
on brain tumor segmentation. In International MICCAI Brainlesion Workshop, pp. 92–104.
Springer, 2018.

Martin Rozycki Shukla et al. Saima rathore, spyridon bakas, hamed akbari, gaurav. In Proc. of
SPIE Vol, volume 10575, pp. 1057509–1, 2018.

George CM Siontis, Ioanna Tzoulaki, Peter J Castaldi, and John PA Ioannidis. External validation
of new risk prediction models is infrequent and reveals worse prognostic discrimination.
Journal of clinical epidemiology, 68(1):25–34, 2015.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. Federated multi-task
learning. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 4427–4437, 2017.

Virginia Smith, Simone Forte, Ma Chenxin, Martin Takáč, Michael I Jordan, and Martin Jaggi.
Cocoa: A general framework for communication-efficient distributed optimization. Journal
of Machine Learning Research, 18:230, 2018.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, 2017.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving
for simplicity: The all convolutional net. International Conference on Learning Representations
(workshop track), 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

116

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory.
Advances in Neural Information Processing Systems, 31, 2018.

Adarsh Subbaswamy, Roy Adams, and Suchi Saria. Evaluating model robustness and stability to
dataset shift. In International Conference on Artificial Intelligence and Statistics, pp. 2611–2619.
PMLR, 2021.

Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar, and H Brendan McMahan. Distributed mean
estimation with limited communication. In International conference on machine learning, pp.
3329–3337. PMLR, 2017a.

Ananda Theertha Suresh, Felix X Yu, Sanjiv Kumar, and H Brendan McMahan. Distributed mean
estimation with limited communication. In International Conference on Machine Learning, pp.
3329–3337, 2017b.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

Gabriel Szulanski. Sticky knowledge: Barriers to knowing in the firm. Sage, 2002.

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochastic
gradient descent with double-pass error-compensated compression. In International Confer-
ence on Machine Learning, pp. 6155–6165. PMLR, 2019.

Nicola Tonellotto, Alberto Gotta, Franco Maria Nardini, Daniele Gadler, and Fabrizio Silvestri.
Neural network quantization in federated learning at the edge. Information Sciences, 575:
417–436, 2021.

Haridimos Tsoukas and Efi Vladimirou. What is organizational knowledge? Journal of man-
agement studies, 38(7):973–993, 2001.

Gregor Ulm, Emil Gustavsson, and Mats Jirstrand. Functional federated learning in erlang (ffl-
erl). In International Workshop on Functional and Constraint Logic Programming, 2018.

Willem G Van Panhuis, Proma Paul, Claudia Emerson, John Grefenstette, Richard Wilder, Abra-
ham J Herbst, David Heymann, and Donald S Burke. A systematic review of barriers to data
sharing in public health. BMC public health, 14(1):1–9, 2014.

Paroma Varma and Christopher Ré. Snuba: Automating weak supervision to label training
data. In Proceedings of the VLDB Endowment. International Conference on Very Large Data
Bases, volume 12, pp. 223. NIH Public Access, 2018.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In Advances in Neural Information Processing Systems, 2016.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gra-
dient compression for distributed optimization. Advances in Neural Information Processing
Systems, 32, 2019.

117

Boxin Wang, Yibo Jacky Zhang, Yuan Cao, Bo Li, H Brendan McMahan, Sewoong Oh, Zheng
Xu, and Manzil Zaheer. Can public large language models help private cross-device federated
learning? arXiv preprint arXiv:2305.12132, 2023.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and
Stephen Wright. Atomo: Communication-efficient learning via atomic sparsification. Ad-
vances in Neural Information Processing Systems, 31, 2018.

Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis
of local-update sgd algorithms. The Journal of Machine Learning Research, 22(1):9709–9758,
2021.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H Brendan McMahan, Maruan Al-
Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, et al. A field
guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian Makaya, Ting He,
and Kevin Chan. Adaptive federated learning in resource constrained edge computing sys-
tems. IEEE Journal on Selected Areas in Communications, 2019.

Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning.
In International Conference on Machine Learning, pp. 22802–22838. PMLR, 2022.

Jenna Wiens, John Guttag, and Eric Horvitz. A study in transfer learning: leveraging data from
multiple hospitals to enhance hospital-specific predictions. Journal of the American Medical
Informatics Association, 21(4):699–706, 2014.

William Shakespeare. The Complete Works of William Shakespeare. Publicly available at //
www.gutenberg.org/ebooks/100, n.d.

Elena Williams, Manuel Kienast, Evelyn Medawar, Janis Reinelt, Alberto Merola, Sophie
Anne Ines Klopfenstein, Anne Rike Flint, Patrick Heeren, Akira-Sebastian Poncette, Felix
Balzer, et al. A standardized clinical data harmonization pipeline for scalable ai application
deployment (fhir-dhp): Validation and usability study. JMIR Medical Informatics, 11:e43847,
2023.

Jiaxiang Wu, Weidong Huang, Junzhou Huang, and Tong Zhang. Error compensated quantized
sgd and its applications to large-scale distributed optimization. In International Conference
on Machine Learning, pp. 5325–5333. PMLR, 2018.

Yawen Wu, Dewen Zeng, Zhepeng Wang, Yi Sheng, Lei Yang, Alaina J James, Yiyu Shi, and Jing-
tong Hu. Federated contrastive learning for dermatological disease diagnosis via on-device
learning. In 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp.
1–7. IEEE, 2021.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In International Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

118

//www.gutenberg.org/ebooks/100
//www.gutenberg.org/ebooks/100

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-
context learning as implicit bayesian inference. In International Conference on Learning Rep-
resentations, 2021.

Xiaohang Xu, Hao Peng, Lichao Sun, Md Zakirul Alam Bhuiyan, Lianzhong Liu, and Lifang
He. Fedmood: Federated learning on mobile health data for mood detection. arXiv preprint
arXiv:2102.09342, 2021.

Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. Multi-task learning for clas-
sification with dirichlet process priors. Journal of Machine Learning Research, 8(Jan):35–63,
2007.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas Kong, Daniel
Ramage, and Françoise Beaufays. Applied federated learning: Improving google keyboard
query suggestions. arXiv preprint arXiv:1812.02903, 2018.

Binhang Yuan, Yongjun He, Jared Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy S Liang,
Christopher Re, and Ce Zhang. Decentralized training of foundation models in heteroge-
neous environments. Advances in Neural Information Processing Systems, 35:25464–25477,
2022.

John R Zech, Marcus A Badgeley, Manway Liu, Anthony B Costa, Joseph J Titano, and Eric Karl
Oermann. Variable generalization performance of a deep learning model to detect pneumonia
in chest radiographs: a cross-sectional study. PLoS medicine, 15(11):e1002683, 2018.

Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and Alexander Ratner. A survey on pro-
grammatic weak supervision. arXiv preprint arXiv:2202.05433, 2022.

Mufeng Zhang, Yining Wang, and Tao Luo. Federated learning for arrhythmia detection of non-
iid ecg. In 2020 IEEE 6th International Conference on Computer and Communications (ICCC),
pp. 1176–1180. IEEE, 2020.

Yi Zhang and Jeff G Schneider. Learning multiple tasks with a sparse matrix-normal penalty.
In Advances in Neural Information Processing Systems, 2010.

Fanglan Zheng, Kun Li, Jiang Tian, Xiaojia Xiang, et al. A vertical federated learning method for
interpretable scorecard and its application in credit scoring. arXiv preprint arXiv:2009.06218,
2020.

Shuai Zheng, Ziyue Huang, and James Kwok. Communication-efficient distributed blockwise
momentum sgd with error-feedback. Advances in Neural Information Processing Systems, 32,
2019.

Weiming Zhuang, Xin Gan, Yonggang Wen, Shuai Zhang, and Shuai Yi. Collaborative unsuper-
vised visual representation learning from decentralized data. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4912–4921, 2021.

119

	Introduction
	Problem Statement
	Thesis Statement and Overview
	Summary of Contributions
	Bibliographic Notes
	Open-Source Contributions

	I Communication Constraints
	Reducing Client Resource Requirements
	Related Work
	Methods
	Lossy Compression
	Federated Dropout

	Experimental Results
	Experimental Setup
	Lossy Compression
	Federated Dropout
	Reducing the overall communication cost

	Conclusions, Impact and Open Questions

	II Explanations
	Understanding Clinical Collaborations Through Federated Classifier Selection
	Related work
	Federated Classifier Selection
	Dynamic selection of candidate classifiers
	Limitations

	Results: Early prediction of sepsis
	Experimental setup
	Results of local classifiers
	Results of competence threshold strategy
	Results of decision list strategy

	Extensions
	Conclusions

	Using Machine Learning to Support Transfer of Best Practices in Healthcare
	Motivating example
	Identifying practice gaps
	Results: Detection of overly-long hospital stays
	Discussion

	III Expert Supervision
	Encoding Expert Knowledge Into On-Device Data Using Weak Supervision
	Related Work
	Weak Supervision Heuristics for Federated Learning
	Problem Formulation
	Automatic Mining of LFs
	Training of the PWS Model

	Labeling Function Generation
	Text LFs
	Time-series LFs

	Experimental Setup
	Results and Discussion
	Automatic Mining of LFs
	Training of the PWS Model
	Putting It All Together
	Societal Impact and Future Work

	IV Open-Source Contributions
	LEAF: A Benchmark for Cross-Device Settings
	LEAF
	LEAF in action
	Conclusions and Impact

	Conclusions
	Conclusions

	Appendix
	Reducing Client Resource Requirements
	Kashin's Representation
	Theoretical Overview
	Practical Considerations
	Dominance over Hadamard

	MNIST Experimental Results

	Understanding Clinical Collaborations Through Federated Classifier Selection
	Tuning the Number of Neighbors in FRCLS
	Data Description for Early Prediction of Sepsis

	Using Machine Learning to Support Transfer of Best Practices in Healthcare
	Encoding Expert Knowledge Into On-Device Data Using Weak Supervision
	Datasets and Models
	Amazon
	IMDb
	MIT BIH
	Additional Models

	Experiment Hyperparameters
	Automatic Mining of LFs
	Training of the PWS Model
	Baselines

	Labeling Functions used for Federated Weasel
	Labeling Function Seeds
	Examples of Inspected Labeling Functions
	Ablations
	Proposed Candidates Distribution

	LEAF: A Benchmark for Cross-Device Settings
	Synthetic Dataset
	Experiment Details

