
Learning DAGs with Continuous Optimization

Xun Zheng

August 2020
CMU-ML-20-110

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee

Eric Xing, Co-Chair
Pradeep Ravikumar, Co-Chair

Clark Glymour
Kun Zhang

Raquel Urtasun (University of Toronto)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2020 Xun Zheng

This research was sponsored by the National Science Foundation under award numbers IIS1218282, IIS1563887 and IIS1617583; the National
Institutes of Health award numbers P30DA035778 and R01GM117594; the Defense Advanced Research Projects Agency award numbers FA8721-
05-C-0003 and FA8702-15-D-0002; the Air Force Research Laboratory award number FA87501720152; a CURE grant from the Pennsylvania
Department of Health (Big Data for Better Health); a grant from the University of Pittsburgh Medical Center; and a fellowship from the Siebel
Scholars Program.

Keywords: bayesian network, structure learning, causal discovery

To my grandparents.

Abstract

Learning the structure of directed acyclic graphs (DAGs, also known as
Bayesian networks) from data is an important and classical problem in machine
learning, with prominent applications in causal inference, fairness, interpretability,
and biology, etc. This is a challenging problem since the search space of DAGs is
combinatorial and scales superexponentially with the number of nodes. Existing
approaches often rely on various local heuristics for enforcing the acyclicity
constraint. By contrast, structure learning for undirected graphical models (e.g.
Gaussian MRF) is recognized as a tractable optimization problem nowadays, and
achieved huge success in various practical domains such as bioinformatics.

In this thesis, we take a first step towards bridging this gap between directed
and undirected graphical models. We begin by introducing a fundamentally differ-
ent strategy for Bayesian network structure learning: We formulate the problem
as a purely continuous optimization program over real matrices that avoids the
combinatorial constraint entirely. This is achieved by a novel characterization
of acyclicity that is not only smooth but also exact. The resulting problem can
be efficiently solved by standard numerical algorithms, without imposing any
structural assumptions on the graph such as bounded treewidth or in-degree.

We then study the generalization of the above continuous algorithm to learning
nonparametric DAGs. We extend the algebraic characterization of acyclicity to
nonparametric structural equation model (SEM) by leveraging nonparametric
sparsity based on partial derivatives, resulting in a continuous optimization
problem that can be applied to a variety of nonparametric and semiparametric
models including GLMs, additive noise models, and index models as special cases.

Lastly, we introduce a unified view of score-based and ICA-based methods
based on the proposed continuous optimization framework. In particular, we
show that the popular ICA-based methods that exploits non-Gaussianity of the
independent noise distribution can be handled by the continuous optimization
framework, which is conceptually clearer and easier to incorporate prior knowledge,
and has the potential to be generalized to allow for models with hidden confounders
and feedback loops.

Acknowledgments

Working towards a Ph.D. can be a tough journey. I was fortunate to have
many people extending help throughout.

First and foremost, I would like to thank my two awesome advisors, Eric Xing
and Pradeep Ravikumar, who have always been tremendously supportive and
understanding. I am grateful for the exceptional freedom they allowed, as well
as the guidance they provided when I was facing difficulties. I would also like to
thank the committee members Clark Glymour, Kun Zhang, and Raquel Urtasun,
for providing excellent feedback and encouraging me to pursue this direction.

Many thanks to the great people I met at CMU. The biggest one of course goes
to Diane Stidle, who makes the department such a lovely place. Also thanks to
Amy Protos and Sharon Cavlovich for all the support. Big shout-out to past and
current members of SAILING and RAIL for constantly providing inspirations. It
was a privilege to work with such a talented group of people with diverse interests.
I learned a lot from them both academically and personally. Special thanks to
former postdoc Yaoliang Yu and Bryon Aragam, who influenced me in many ways.
This thesis could not have been written without their help. Also thanks to Chen
Dan, a good friend and collaborator who is always delightful to talk to. I also
appreciate Biwei Huang for introducing me to her group, and Joseph Ramsey for
the hot coffee. Thanks to Yichong Xu for generously helping with the moving,
and Mr. and Mrs. Hovy for the Italian food.

Thanks as well to my officemates for sparkling endless distraction and joy; to
the “sam’s blue gpu” group for existing; to the “morons” group for the funny
random chats; to the Chinese and Korean friends for hunting for good Asian food.
Special thanks to Jisu Kim for inviting me to the Wednesday dinner, and Seojin
Bang for helping with the job search. Thanks to the entire 8th floor people for
our random encounters in the corridor. As we are entering the 6th month of
remote working, I increasingly miss every one of you. Hopefully, for now we see
only a reflection as in a mirror; then we shall see face to face.

Lastly and most importantly, I would like to thank my family and Dr. Hong
for the unconditional love and support. Thank you for being there throughout
the whole time.

viii

Contents

1 Introduction 1
1.1 Background . 2
1.2 Previous works . 3
1.3 Why Bayesian networks? . 4
1.4 Overview . 5

2 Learning Linear DAGs with Continuous Optimization 7
2.1 Our contributions . 8
2.2 Background . 8

2.2.1 Score functions and SEM . 8
2.2.2 Previous work . 9
2.2.3 Comparison . 11

2.3 A new characterization of acyclicity . 12
2.3.1 Special case: Binary adjacency matrices 12
2.3.2 General case: Weighted adjacency matrices 13

2.4 Optimization . 14
2.4.1 Solving the ECP with augmented Lagrangian 15
2.4.2 Solving the unconstrained subproblem 16
2.4.3 Details of proximal quasi-Newton . 16
2.4.4 Thresholding . 18

2.5 Experiments . 18
2.5.1 Parameter estimation . 20
2.5.2 Structure learning . 21
2.5.3 Sensitivity of threshold . 21
2.5.4 Sensitivity of weight scale . 22
2.5.5 Real-data . 23

2.6 Discussion . 23

3 Learning Nonparametric DAGs with Continuous Optimization 29
3.1 Our contributions . 30
3.2 Background . 30

3.2.1 Score-based learning of nonparametric SEM 30
3.2.2 Identifiability . 31

ix

3.2.3 Related works . 32
3.2.4 Comparison to existing approaches 32

3.3 Characterizing acyclicity in nonparametric SEM 33
3.3.1 A notion of nonparametric acyclicity 33
3.3.2 Special cases . 34

3.4 Optimization . 35
3.4.1 Multilayer perceptrons . 36
3.4.2 Basis expansions . 38
3.4.3 Solving the continuous program . 38

3.5 Experiments . 39
3.5.1 Structure learning . 41
3.5.2 Sensitivity to number of hidden units 42
3.5.3 Real data . 42
3.5.4 Additional results . 43

3.6 Discussion . 44

4 Learning Non-Gaussian DAGs with Continuous Optimization 49
4.1 Our contributions . 49
4.2 Background . 50

4.2.1 Two variables: How to distinguish cause from effect? 50
4.2.2 Beyond two variables: Linear non-Gaussian acyclic model (LiNGAM) 50
4.2.3 Practical issues with finite data . 52
4.2.4 Previous works . 55

4.3 Single-step ICA-LiNGAM . 56
4.3.1 Maximum likelihood for ICA . 56
4.3.2 Maximum likelihood for LiNGAM . 57
4.3.3 Optimization . 58

4.4 Experiments . 58
4.4.1 Structure recovery under different noise distributions 60
4.4.2 Structure recovery on different graph types 61
4.4.3 Model misspecification: supergaussian vs subgaussian 62

4.5 Discussion . 63
4.5.1 Latent variable models . 64
4.5.2 Cyclic models . 65
4.5.3 Time series . 66

5 Summary and Discussion 69
5.1 Faithfulness, equal noise variance, and global optimum 69
5.2 Scalability and real data . 70
5.3 Identifiability . 71

Bibliography 83

x

List of Figures

1.1 Examples of conditional independence relations that cannot be expressed by
each other. 4

1.2 An overview of the model classes this thesis focuses on. For simplicity the
bivariate case x→ y is illustrated. 6

2.1 Visual comparison of the learned weighted adjacency matrix on a 20-node graph
with n = 1000 (large samples) and n = 20 (insufficient samples): W̃ECP(λ)
is the proposed NOTEARS algorithm with `1-regularization λ, and BFGS is
the binary estimate of the baseline (Ramsey et al., 2017). The proposed
algorithms perform well on large samples, and remains accurate on small n
with `1 regularization. 20

2.2 Parameter estimates of W̃ECP on a scale-free graph. Without the additional
thresholding step in Algorithm 1, NOTEARS still produces consistent estimates
of the true graph. The proposed method estimates the weights very well with
large samples even without regularization, and remains accurate on insufficient
samples when `1-regularization is introduced. See also Figure 2.1. 20

2.3 Visual comparison of the learned weighted adjacency matrix on a 20-node graph
with n = 1000 (large samples) and n = 20 (insufficient samples): W̃ECP(λ) is
the proposed NOTEARS algorithm with `1-regularization λ, and BFGS is the
binary estimate of the baseline (Ramsey et al., 2017). Top row: ER1, bottom
row: ER4. 21

2.4 Structure recovery in terms of SHD and FDR to the true graph (lower is
better). Rows: random graph types, {ER,SF}-k = {Erdös-Rényi, scale-free}
graphs with kd expected edges. Columns: noise types of SEM. Error bars
represent standard errors over 10 simulations. 22

2.5 Structure recovery results for n = 1000. Lower is better, except for TPR
(lower left), for which higher is better. Rows: random graph types, {ER,SF}-k
= {Erdös-Rényi, scale-free} graphs with kd expected edges. Columns: noise
types of SEM. Error bars represent standard errors over 10 simulations. . . . 25

2.6 Structure recovery results for n = 20. Lower is better, except for TPR (lower
left), for which higher is better. Rows: random graph types, {ER,SF}-k =
{Erdös-Rényi, scale-free} graphs with kd expected edges. Columns: noise
types of SEM. Error bars represent standard errors over 10 simulations. . . . 26

xi

2.7 Illustration of the effect of the threshold with d = 20 and λ = 0.1. For
each subfigure, ROC curve (left) shows FDR and TPR with varying level of

threshold, and sorted weights (right) plots the entries of W̃ECP in decreasing
order. 27

2.8 Varying weight scale α ∈ {1.0, . . . , 0.1} with d = 20 and n = 1000 on an

ER-2 graph. (Left) Smallest threshold ω such that Ŵ is a DAG. (Right)
SHD between ground truth and NOTEARS, lower the better. The minimum ω
remains stable, while the accuracy of NOTEARS drops as expected since the
SNR decreases with α. 27

3.1 Structure recovery measured by SHD (lower is better) to ground truth. Left:
n = 1000. Middle: n = 200. Right: Average over all configurations. Rows:
random graph model (Erdos-Renyi and scale-free). Columns: different types
of SEM. DAG-MLP performs well on a wide range of settings, while DAG-Sob
shows good accuracy on additive models. 39

3.2 Structure recovery measured by SHD (lower is better) to ground truth. Left:
n = 1000. Middle: n = 200. Right: Average over all configurations. Rows:
random graph model (Erdos-Renyi and scale-free). Columns: different types
of SEM. Either DAG-MLP or DAG-MLP++ (i.e. DAG-MLP with neighborhood
selection and pruning) achieves competitive accuracy compared to CAM. . . 40

3.3 SHD (lower is better) with varying hidden layer size in DAG-MLP. 42

3.4 Structure recovery measured by SHD (lower is better) to ground truth. . . . 44

3.5 Structure recovery measured by FDR (lower is better) to ground truth. . . . 45

3.6 Structure recovery measured by TPR (higher is better) to ground truth. . . . 46

3.7 Structure recovery measured by FPR (lower is better) to ground truth. . . . 46

3.8 Structure recovery measured by SHD (lower is better) to ground truth, com-
pared with CAM. 47

3.9 Structure recovery measured by FDR (lower is better) to ground truth, com-
pared with CAM. 47

3.10 Structure recovery measured by TPR (higher is better) to ground truth,
compared with CAM. 48

3.11 Structure recovery measured by FPR (lower is better) to ground truth, com-
pared with CAM. 48

4.1 Data generated from linear SEM y = 1.2x + e, where x ∼ Uniform(−1, 1)
and e ∼ Uniform(−1, 1). In both regression directions, regression residual is
uncorrelated with the input variable. However, only the true direction has
regression residual independent of the input variable. 51

4.2 Data generated from linear SEM y = 1.2x + e, where x ∼ N(0, 1) and
e ∼ N(0, 1). In both regression directions, regression residual is uncorrelated
with the input variable. However, by Gaussianity, both directions have residual
independent of the input variable, hence they are indistinguishable. 52

xii

4.3 Data generated from linear SEM x1 = e1, x2 = 1.2x1 + e2, x3 = −0.8x2 + e3,
where e1, e2, e3 ∼ Uniform(−1, 1). 53

4.4 Structure recovery under different non-Gaussian noise distributions: Exponen-
tial, Laplace, and Gumbel. Lower SHD and FDR are better. The proposed
NOTEARS-ICA (green) performs decently in general, especially when the
sample size is small. 60

4.5 Structure recovery with different graph types: top row is ER graph with 20
edges, and bottom row is scale-free graph with 40 edges. Lower SHD and FDR
are better. The proposed NOTEARS-ICA (green) performs stably for different
graph types. 61

4.6 Structure recovery with misspecified noise distribution. Lower SHD and FDR
are better. True noise follows Uniform distribution, which is subgaussian.
Both baselines (blue and orange) perform well given enough samples. However,
when the proposed model incorrectly assumes supergaussian noise (green),
the performance degrades substantially. Good accuracy is achieved if we use
subgaussian noise model (red) instead. 62

5.1 Simulation result with non-faithful data. 70
5.2 Sublevel set S (shaded) with different values of |a|. If the ground truth

parameters (a, ω1, ω2) fall into the shaded region, the global minimizer of the
least squares score is the ground truth. Otherwise, the global minimizer is in
the wrong direction. 73

xiii

xiv

List of Tables

1.1 A non-exhaustive history of structure learning. 5

3.1 Runtime (in seconds) of various algorithms on ER2 graph with n = 1000 samples. 43
3.2 ER4, d = 40, n = 200 with λ = 0.03 and threshold = 0.5. 44

xv

xvi

Chapter 1

Introduction

Directed acyclic graphical models (DAGs, also known as Bayesian networks) are one of
the foundational ideas in probabilistic models, with numerous applications in machine
learning (Koller and Friedman, 2009), causal inference (Spirtes et al., 2000; Pearl, 2000),
medicine (Heckerman et al., 1992), biology (Sachs et al., 2005), genetics (Zhang et al., 2013),
fairness and accountability (Chiappa and Isaac, 2019), and finance (Sanford and Moosa,
2012), just to list a few. In addition to their undirected counterparts, DAG models offer a
parsimonious, interpretable representation of a joint distribution that is useful in practice.

Bayesian networks are often designed to encode domain knowledge. In fact, many
probabilistic expert systems are built using the language of Bayesian networks. One classic
example is the ALARM network (Beinlich et al., 1989), where nodes represent 37 variables
measured in an intensive care unit (ICU), such as breathing rate and blood pressure, and
edges are designed by human experts to reflect direct causal relationship between variables.
Even outside expert systems, many commonly used Bayesian networks in machine learning
are about explicitly expressing conditional independence assumptions. For instance the
hidden Markov model (HMM) is designed so that the hidden states only directly depend on
the previous state and the observations are independent conditioned on the hidden states.

However, in many other cases, we are interested in extracting knowledge from the data,
rather than encoding them. For instance, we would like to understand how different regions
of brains interact with each other, by analyzing the patterns of fMRIs. In bioinformatics,
estimating gene-regulatory networks from gene expression data is another important topic
that requires extracting knowledge. In a machine learning language, given data drawn from
a distribution induced by a DAG model, we are interested in recovering the underlying DAG
from the observations. This is known as the Bayesian network structure learning (BNSL)
problem.

Unfortunately, the BNSL problem is challenging since the search space of DAGs is
combinatorial and scales super-exponentially with the number of nodes (Robinson, 1977), and
it should not be a surprise that BNSL turns out to be NP-hard (Chickering, 1996; Chickering
et al., 2004). Although for moderately sized problems one can still afford an exact search such
as GOBNILP (Cussens, 2011; Cussens et al., 2017), many interesting real world problems are
larger than what they can handle. For instance, the gene networks can have thousands of

1

variables, if not more, making the exact solvers impractical. The main difficulty comes from
the acyclicity constraint, and many existing approaches rely on various local heuristics to
satisfy this combinatorial constraint.

In this thesis, we propose a continuous optimization framework for score-based learning
of Bayesian networks. We begin by introducing a fundamentally different strategy for
Bayesian network structure learning: We formulate the structure learning problem as a purely
continuous optimization problem, circumventing the combinatorial constraint entirely. This
is achieved by a novel characterization of acyclicity that is not only smooth but also exact.
The resulting problem can be efficiently solved by standard numerical algorithms, which also
makes implementation effortless. We also study the generalization of the above continuous
algorithm to learning nonparametric DAGs. We extend the algebraic characterization of
acyclicity to nonparametric structural equation model (SEM) by leveraging nonparametric
sparsity based on partial derivatives, resulting in a continuous optimization problem that
can be applied to a variety of nonparametric and semiparametric models including GLMs,
additive noise models, and index models as special cases. We explore the use of neural
networks and orthogonal basis expansions to model nonlinearities for general nonparametric
models. We further explore the special model class of linear non-Gaussian SEM, which is
one of the basic cases the graph is uniquely identifiable from the observational data. We
extend the continuous optimization algorithm to this model class to avoid the use of ICA
in traditional algorithms. Overall, this work serves as a bridge between optimization and
Bayesian networks literature, and we believe it can open up possibility for new directions.

1.1 Background

Consider a d-dimensional random vector x = (x1, . . . , xd) ∼ P (x), whose distribution
factorizes according to a Bayesian network structure G:

P (x;G) =
d∏

j=1

P (xj|xpa(j)) (1.1)

where pa(j) is the set of parent nodes of the j-th node in G. The conditional distributions
can be equivalently expressed through the language of structural equation model (SEM):

xj ∼ P (xj|xpa(j)) ⇐⇒ xj = fj(xpa(j), zj) (1.2)

where fj is a deterministic transformation and zj is a random noise independent of xpa(j). In
the most basic setting, when the transformation is linear, the noise is additive, the resulting
set of equations defines a linear SEM:

xj =
∑

i∈pa(j)

wijxi + zj, zj ∼ pj(zj), j = 1, . . . , d. (1.3)

Let X be an n× d matrix that contains n realizations of the d-dimensional random vector
x. We are interested in the Bayesian network structure learning (BNSL) problem: Given
observational data X, how can we recover the graph G?

2

1.2 Previous works

It is instructive to compare the historic development of structure learning in Bayesian
networks with their undirected counterparts, Markov networks. Although there are a number
of different approaches to graphical model structure learning, here we focus on the two major
directions: constraint-based methods and score-based methods.

Constraint-based methods use repeated conditional independence tests to decide whether
to include an edge in the graph. The idea is to construct a graph whose induced conditional
independence set is compatible with what is detected from the data. The use of constraint-
based method in Markov networks can be traced back to at least Dempster (1972) for
Gaussian graphical models. The pioneers of constraint-based method in Bayesian network
include the PC algorithm (Spirtes and Glymour, 1991; Kalisch and Bühlmann, 2007) and the
MMPC algorithm (Tsamardinos et al., 2006). Although it is often computationally efficient,
the multiple testing problem makes constraint-based methods sensitive to individual failures
of tests. Moreover, the algorithm relies on the faithfulness assumption: the set of conditional
independencies induced by the graph is the same as the conditional independencies induced
by the distribution. This tend to be a strong assumption in practice as finite data may exhibit
many spurious conditional independence that the underlying graph does not contain.

Score-based methods optimize a score function that measures the model fit of the candidate
graph to the data. Early form of score-based method performs local search: at each step,
a single edge that increases the score most is included in the graph, or conversely a single
best edge is chosen to be removed until the score does not improve. In Markov networks,
Pietra et al. (1997) proposed to use single-feature gain as a criterion for feature selection
for structure learning. For Bayesian networks, greedy hill-climbing (Heckerman et al., 1995)
and the later greedy equivalence search (GES) (Chickering, 2002; Ramsey, 2015; Ramsey
et al., 2017) are prominent examples of this category. Popular score functions include BDe(u)
(Heckerman et al., 1995), BGe (Kuipers et al., 2014), BIC (Chickering and Heckerman, 1997),
and MDL (Bouckaert, 1993). One should not forget that for local search in Bayesian networks,
edges and parent sets are added sequentially, while checking the DAG constraint. This is
efficient as long as each node has only a few parents, but as the number of possible parents
grows, local search rapidly becomes intractable. Furthermore, such strategies typically rely
on severe structural assumptions such as bounded in-degree, bounded tree-width, or edge
constraints.

In 2000s, a breakthrough took place in structure learning for Markov networks. It began
by the observation that the problem of score-based learning for some classes of graphs
can be written as a continuous (even convex) optimization programs, such as penalized
log-determinant or least-squares (Meinshausen and Bühlmann, 2006; Friedman et al., 2008;
Banerjee et al., 2008; Ravikumar et al., 2010, 2011). The significance of this realization
is that one can now leverage the entire arsenal of convex and numerical optimization in
solving the structure learning problem efficiently. The invention of these more efficient
algorithms contributed to a huge success of undirected graphical models in various fields like
bioinformatics. Unlike greedy local search, these methods optimize over the entire parameter
space at once, hence they perform global search.

3

One natural question is whether this breakthrough in Markov networks can be applied to
Bayesian networks. There are two immediate challenges:

1. We are dealing with directed graphs, whose adjacency matrices are asymmetric. It is
known that symmetric matrices are more structured and possess nice properties such
as having real eigenvalues. This is a challenge to the optimization.

2. We have to satisfy the acyclicity constraint, which is a combinatorial by nature. How
can we optimize a smooth function over a combinatorial constraint using continuous
optimization methods?

In this thesis, we would like to take the first step towards addressing these challenges.
Table 1.1 summarizes the above review of the historical development, and locates this thesis
in the literature.

A

B C

D

(a) A diamond Markov network

A B

C

(b) A v-structure

Figure 1.1: Examples of conditional independence relations that cannot be expressed by each
other.

1.3 Why Bayesian networks?

As we will see shortly, the problem of Bayesian network structure learning is substantially
harder than their undirected counterpart. What is the reward then, if there is any, given the
increased difficulty? Why are we not satisfied by Markov networks alone?

First, Markov networks and Bayesian networks in general represent different set of
conditional independence relations. For instance, there is no Bayesian network that can
represent the same set of conditional independence as a diamond Markov network. Similarly,
there is no Markov network that can represent the same conditional independence relations
as a v-structure. See Figure 1.1 for an illustration. Only for chordal (triangular) graphs both
Markov network and Bayesian network can have the equal representation power (Koller and
Friedman, 2009). Therefore, Bayesian networks provides a different model class than Markov
networks.

Second, with the help of additional assumptions one can interpret Bayesian networks as
causal graphs. This gives one the opportunity to answer a much richer set of queries, such
as interventional queries (e.g. distribution of X when intervening on Y) and counterfactual
queries (e.g. What could have happened if this variable took another value for this individual?),
in addition to the usual statistical queries based on correlation. Answering these causal

4

Markov networks Bayesian networks

constraint-based Dempster (1972) Spirtes and Glymour (1991)

score-based
(combinatorial, local search)

Pietra et al. (1997) Heckerman et al. (1995)

score-based
(continuous, global search)

Meinshausen and Bühlmann (2006)
Friedman et al. (2008)
Banerjee et al. (2008)

Ravikumar et al. (2010)

This Thesis

Table 1.1: A non-exhaustive history of structure learning.

queries has tremendous importance in e.g. policy making, medical diagnosis and treatment,
and scientific discovery. Typical statistical methods such as regression-based variable selection
will only recover the Markov blanket (the smallest set that can separate a variable from the
rest), however this has no implication in answering the causal queries.

Of course, one should always pay attention to the assumptions when claiming something
ambitious, such as causality. For instance, in the presence of unobserved confounders, many
methods developed for fully observed scenarios will lead to incorrect answers. Therefore, it is
crucial to be clear about the assumptions before applying to real problems.

For interested readers we refer to excellent textbooks such as Spirtes et al. (2000); Pearl
(2000); Peters et al. (2017) for extensive review on causal inference and discovery.

1.4 Overview

The rest of the document is organized as follows (see also Figure 1.2):

• In Chapter 2, we start with the simplest setting: score-based learning of linear DAGs
using continuous optimization. We show how to convert a combinatorial constraint on
the graph into an smooth constraint on the adjacency matrix, while retaining their
equivalence. This chapter is based on Zheng et al. (2018).

• In Chapter 3, we move beyond the linear case to extend the framework to general
nonparametric DAGs. We show how to use flexible function classes such as neural
networks and orthogonal basis expansions to detect nonlinear dependencies. This
chapter is based on Zheng et al. (2020).

• In Chapter 4, we extend the differentiable causal discovery to ICA-based approaches.
We show how ICA-based algorithms can be expressed as a single optimization problem
instead of separate stages, and how this new formulation benefits the search result.

5

SCM
y = f(x, ε)

Canonical
models

Time series

Latent
variables

Cyclic models

ANM
y = f(x) + ε

Linear
y = βx+ ε

Linear
non-Gaussian

IIIII IV

Figure 1.2: An overview of the model classes this thesis focuses on. For simplicity the
bivariate case x→ y is illustrated.

6

Chapter 2

Learning Linear DAGs with
Continuous Optimization

Learning directed acyclic graphs (DAGs) from data is an NP-hard problem (Chickering,
1996; Chickering et al., 2004), owing mainly to the combinatorial acyclicity constraint that is
difficult to enforce efficiently. At the same time, DAGs are popular models in practice, with
applications in biology (Sachs et al., 2005), genetics (Zhang et al., 2013), machine learning
(Koller and Friedman, 2009), and causal inference (Spirtes et al., 2000). For this reason,
the development of new methods for learning DAGs remains a central challenge in machine
learning and statistics.

In this work, we propose a new approach for score-based learning of DAGs by converting
the traditional combinatorial optimization problem (left) into a continuous program (right):

max
G

score(G;X)

s.t. G ∈ DAGs
⇐⇒

max
W

score(W ;X)

s.t. h(W) = 0
(2.1)

where G is the d-node graph and W is the corresponding d× d weighted adjacency matrix,
the score function evaluates the model fit of a graph for a dataset X (see Section 2.2.1 for
details), and our key technical device h : Rd×d → R is a smooth function over real matrices,
whose level set at zero exactly characterizes acyclic graphs. Although the two problems
are equivalent, the continuous program on the right eliminates the need for specialized
algorithms that are tailored to search over the combinatorial space of DAGs. Instead, we
are able to leverage standard numerical algorithms for constrained problems, which makes
implementation particularly easy, not requiring any knowledge about graphical models. This
is similar in spirit to the situation for undirected graphical models, in which the formulation of
a continuous log-det program (Banerjee et al., 2008) sparked a series of remarkable advances
in structure learning for undirected graphs (Section 2.2.2). Unlike undirected models, which
can be reduced to a convex program, however, the program (2.1) is nonconvex. Nonetheless,
as we will show, even naive solutions to this program yield state-of-the-art results for learning
DAGs.

7

2.1 Our contributions

The main thrust of this work is to re-formulate score-based learning of DAGs so that standard
smooth optimization schemes such as L-BFGS (Nocedal and Wright, 2006) can be leveraged.
To accomplish this, we make the following specific contributions:

• We explicitly construct a smooth function over Rd×d with computable derivatives that
encodes the acyclicity constraint. This allows us to replace the combinatorial constraint
G ∈ DAGs in (2.4) with a smooth equality constraint.

• We develop an equality-constrained program for simultaneously estimating the structure
and parameters of a sparse DAG from possibly high-dimensional data, and show how
standard numerical solvers can be used to find stationary points.

• We demonstrate the effectiveness of the resulting method in empirical evaluations
against existing state-of-the-arts.

• We compare our output to the exact global minimizer (Cussens, 2011), and show that
our method attains scores that are comparable to the globally optimal score in practice,
although our methods are only guaranteed to find stationary points.

Most interestingly, our approach is very simple and can be implemented in about 50 lines
of Python code. As a result of its simplicity and effortlessness in its implementation, we call
the resulting method NOTEARS: Non-combinatorial Optimization via Trace Exponential and
Augmented lagRangian for Structure learning. The implementation is publicly available at
https://github.com/xunzheng/notears.

2.2 Background

The basic DAG learning problem is formulated as follows: Let X ∈ Rn×d be a data matrix
consisting of n i.i.d. observations of the random vector x = (x1, . . . , xd) and let Gd denote
the (discrete) space of directed acyclic graphs G = (V,E) on d nodes. Given X, we seek to
learn a DAG G ∈ Gd (also called a Bayesian network) for the joint distribution P(x) (Spirtes
et al., 2000; Koller and Friedman, 2009). We model x via a structural equation model (SEM)
defined by a weighted adjacency matrix W ∈ Rd×d. Thus, instead of operating on the discrete
space Gd, we will operate on Rd×d, the continuous space of d× d real matrices.

2.2.1 Score functions and SEM

Any W ∈ Rd×d defines a graph on d nodes in the following way: Let A(W) ∈ {0, 1}d×d be the
binary matrix such that [A(W)]ij = 1 ⇐⇒ wij 6= 0 and zero otherwise; then A(W) defines
the adjacency matrix of a directed graph G(W). In a slight abuse of notation, we will thus
treat W as if it were a (weighted) graph. In addition to the graph G(W), W = [w1| · · · |wd]
defines a linear SEM by xj = wT

j x + zj, where x = (x1, . . . , xd) is a random vector and
z = (z1, . . . , zd) is a random noise vector. We do not assume that z is Gaussian. More
generally, we can model xj via a generalized linear model (GLM) E[xj|xpa(j)] = g(wT

j x),

8

https://github.com/xunzheng/notears

where g is the link function. For example, if xj ∈ {0, 1}, we can model the conditional
distribution of xj given its parents via logistic regression.

In this chapter, we focus on linear SEM and the least-squares (LS) loss `(W ;X) =
1
2n
‖X −XW‖2F , although everything in the sequel applies to any smooth loss function `

defined over Rd×d. The statistical properties of the LS loss in scoring DAGs have been
extensively studied: The minimizer of the LS loss provably recovers a true DAG with high
probability on finite-samples and in high-dimensions (n� d), and hence is consistent for both
Gaussian SEM (van de Geer and Bühlmann, 2013; Aragam et al., 2015) and non-Gaussian
SEM (Loh and Bühlmann, 2014).1 Note also that these results imply that the faithfulness
assumption is not required in this set-up. Given this extensive previous work on statistical
issues, our focus for now is entirely on the computational problem of finding an SEM that
minimizes the LS loss.

This translation between graphs and SEM is central to our approach. Since we are
interested in learning a sparse DAG, we add `1-regularization ‖W‖1 = ‖vec(W)‖1 resulting
in the regularized (negative) score function

F (W) = `(W ;X) + λ ‖W‖1 =
1

2n
‖X −XW‖2F + λ ‖W‖1 . (2.2)

Thus we seek to solve

min
W∈Rd×d

F (W)

s.t. G(W) ∈ Gd.
(2.3)

Unfortunately, although F (W) is continuous, the DAG constraint G(W) ∈ Gd remains a
challenge to enforce. In Section 2.3, we show how this discrete constraint can be replaced by
a smooth equality constraint.

2.2.2 Previous work

Traditionally, score-based learning seeks to optimize a discrete score Q : G→ R over the set
of DAGs G; note that this is distinct from our score F (W) whose domain is Rd×d instead of
Gd. This can be written as the following combinatorial optimization problem:

max
G

Q(G)

s.t. G ∈ G
(2.4)

Popular score functions include BDe(u) (Heckerman et al., 1995), BGe (Kuipers et al.,
2014), BIC (Chickering and Heckerman, 1997), and MDL (Bouckaert, 1993). Unfortunately,
(2.4) is NP-hard to solve Chickering (1996); Chickering et al. (2004) owing mainly to the
nonconvex, combinatorial nature of the optimization problem. This is the main drawback of

1Due to nonconvexity, there may be more than one minimizer: These and other technical issues such as
parameter identifiability are addressed in detail in the cited references.

9

existing approaches for solving (2.4): The acyclicity constraint is a combinatorial constraint
with the number of acyclic structures increasing super-exponentially in d (Robinson, 1977).
Notwithstanding, there are algorithms for solving (2.4) to global optimality for small problems
(Ott and Miyano, 2003; Singh and Moore, 2005; Silander and Myllymäki, 2006; Xiang and
Kim, 2013; Cussens, 2011; Cussens et al., 2017). There is also a wide literature on approximate
algorithms based on order search (Teyssier and Koller, 2005; Schmidt et al., 2007; Scanagatta
et al., 2015, 2016), greedy search (Heckerman et al., 1995; Chickering, 2002; Ramsey et al.,
2017), and coordinate descent (Fu and Zhou, 2013; Aragam et al., 2015; Gu et al., 2018). By
searching over the space of topological orderings, the former order-based methods trade-off
the difficult problem of enforcing acyclicity with a search over d! orderings, whereas the latter
methods enforce acyclicity one edge at a time, explicitly checking for acyclicity violations
each time an edge is added. Other approaches that avoid optimizing (2.4) directly include
constraint-based methods (Spirtes and Glymour, 1991; Spirtes et al., 2000), hybrid methods
(Tsamardinos et al., 2006; Gámez et al., 2011), and Bayesian methods (Ellis and Wong, 2008;
Zhou, 2011; Niinimäki et al., 2016).

The intractable form of the program (2.4) has led to a host of heuristic methods, often
borrowing tools from the optimization literature, but always resorting to clever heuristics to
accelerate algorithms. Here we briefly discuss some of the pros and cons of existing methods.
While not all methods suffer from all of the problems highlighted below, we are not aware of
any methods that simultaneously avoid all of them.

Exact vs. approximate. Broadly speaking, there are two camps: Approximate algorithms
and exact algorithms, the latter of which are guaranteed to return a globally optimal solution.
Exact algorithms form an intriguing class of methods, but as they are based around an NP-
hard combinatorial optimization problem, these methods remain computationally intractable
in general. For example, recent state-of-the-art work (Cussens et al., 2017; Chen et al., 2016)
only scale to problems with a few dozen nodes (van Beek and Hoffmann, 2015).2 Older
methods based on dynamic programming methods (Ott and Miyano, 2003; Singh and Moore,
2005; Silander and Myllymäki, 2006; Xiang and Kim, 2013; Loh and Bühlmann, 2014) also
scale to roughly a few dozen nodes. By contrast, state-of-the-art approximate methods can
scale to thousands of nodes (Ramsey et al., 2017; Aragam et al., 2015; Scanagatta et al.,
2015, 2016).

Local vs. global search. Arguably the most popular approaches to optimizing (2.4)
involve local search, wherein edges and parent sets are added sequentially, one node at a time.
This is efficient as long as each node has only a few parents, but as the number of possible
parents grows, local search rapidly becomes intractable. Furthermore, such strategies typically
rely on severe structural assumptions such as bounded in-degree, bounded tree-width, or edge
constraints. Since real-world networks often exhibit scale-free and small-world topologies
(Watts and Strogatz, 1998; Barabási and Albert, 1999) with highly connected hub nodes,
these kinds of structural assumptions are not only difficult to satisfy, but impossible to check.

2Cussens (2011) reports experiments with d > 60 under a constraint on the maximum parent size.

10

We note here promising work towards relaxing this assumption for discrete data (Scanagatta
et al., 2015). By contrast, our method uses global search wherein the entire matrix W is
updated in each step.

Model assumptions. The literature on DAG learning tends to be split between methods
that operate on discrete data vs. methods that operate on continuous data. When viewed
from the lens of (2.3), the reasons for this are not clear since both discrete and continuous data
can be considered as special cases of the general score-based learning framework. Nonetheless,
many (but not all) of the methods cited already only work under very specific assumptions
on the data, the most common of which are categorical (discrete) and Gaussian (continuous).
Since (2.3) is agnostic to the form of the data and loss function, there is significant interest
in finding general methods that are not tied to specific model assumptions.

Conceptual clarity. Finally, on a higher level, a significant drawback of existing methods
is their conceptual complexity: They are not straightforward to implement, require deep
knowledge of concepts from the graphical modeling literature, and accelerating them involves
many clever tricks. By contrast, the method we propose in this work is conceptually very
simple, requires no background on graphical models, and can be implemented in just a few
lines of code using existing black-box solvers.

2.2.3 Comparison

It is instructive to compare existing methods for learning DAGs against other methods in
the machine learning literature. We focus here on two popular models: Undirected graphical
models and deep neural networks. Undirected graphical models, also known as Markov
networks, is recognized as a convex problem (Yuan and Lin, 2007; Banerjee et al., 2008)
nowadays, and hence can be solved using black-box convex optimizers such as CVX (Grant
and Boyd, 2014). However, one should not forget score-based methods based on discrete
scores similar to (2.4) proliferated in the early days for learning undirected graphs (Pietra
et al., 1997). More recently, extremely efficient algorithms have been developed for this
problem using coordinate descent (Friedman et al., 2008) and Newton methods (Hsieh et al.,
2014; Schmidt et al., 2009). As another example, deep neural networks are often learned
using various descendants of stochastic gradient descent (SGD) (Bottou and Bousquet,
2008; Kingma and Ba, 2015; Bottou et al., 2016), although recent work has proposed other
techniques such as ADMM (Taylor et al., 2016) and Gauss-Newton (Botev et al., 2017).
One of the keys to the success of both of these models—and many other models in machine
learning—was having a closed-form, tractable program for which existing techniques from the
extensive optimization literature could be applied. In both cases, the application of principled
optimization techniques led to significant breakthroughs. For undirected graphical models
the major technical tool was convex optimization, and for deep networks the major technical
tool was SGD.

Unfortunately, the general problem of DAG learning has not benefited in this way, and

11

one of our main goals in the current work is to formulate score-based learning similarly as a
closed-form, continuous program. Arguably, the challenges with existing approaches stem
from the intractable form of the program (2.4). One of our main goals in the current work is
to formulate score-based learning via a similar closed-form, continuous program. The key
device in accomplishing this is a smooth characterization of acyclicity that will be introduced
in the next section.

2.3 A new characterization of acyclicity

In order to make (2.3) amenable to black-box optimization, we propose to replace the
combinatorial acyclicity constraint G(W) ∈ Gd in (2.3) with a single smooth equality
constraint h(W) = 0. Ideally, we would like a function h : Rd×d → R that satisfies the
following desiderata:

(a) h(W) = 0 if and only if W is acyclic (i.e. G(W) ∈ Gd);

(b) The values of h quantify the “DAG-ness” of the graph;

(c) h is smooth;

(d) h and its derivatives are easy to compute.

Property (b) is useful in practice for diagnostics. By “DAG-ness”, we mean some
quantification of how severe violations from acyclicity become as W moves further from G.
Although there are many ways to satisfy (b) by measuring some notion of “distance” to
G, typical approaches would violate (c) and (d). For example, h might be the minimum `2
distance to G or it might be the sum of edge weights along all cyclic paths of W , however,
these are either non-smooth (violating (c)) or hard to compute (violating (d)). If a function
that satisfies desiderata (a)-(d) exists, we can hope to apply existing machinery for constrained
optimization such as Lagrange multipliers. Consequently, the DAG learning problem becomes
equivalent to solving a numerical optimization problem, which is agnostic about the graph
structure.

We proceed in two steps: First, we consider the simpler case of binary adjacency matrices
B ∈ {0, 1}d×d (Section 2.3.1). Note that since {0, 1}d×d is a discrete space, we cannot take
gradients or do continuous optimization. For this we need the second step, in which we relax
the function we originally define on binary matrices to real matrices (Section 2.3.2).

2.3.1 Special case: Binary adjacency matrices

When does a matrix B ∈ {0, 1}d×d correspond to an acyclic graph? Recall the spectral radius
ρ(B) of a matrix B is the largest absolute eigenvalue of B. One simple characterization of
acyclicity is the following:

Proposition 1 (Infinite series) Suppose B ∈ {0, 1}d×d and ρ(B) < 1. Then B is a DAG
if and only if

tr(I −B)−1 = d. (2.5)

12

Proof: It essentially boils down to the fact that trBk counts the number of length-k closed
walks in a directed graph. Clearly an acyclic graph will have trBk = 0 for all k = 1, . . . ,∞.
In other words, B has no cycles if and only if f(B) =

∑∞
k=1

∑d
i=1(B

k)ii = 0, then

tr(I −B)−1 = tr
∞∑

k=0

Bk = tr I +
∞∑

k=1

trBk = d+
∞∑

k=1

d∑

i=1

(Bk)ii = d+ f(B).

The desired result follows.

Unfortunately, the condition that ρ(B) < 1 is strong: although it is automatically satisfied
when B is a DAG, it is generally not true otherwise, and furthermore the projection is
nontrivial. Alternatively, instead of the infinite series, one could consider the characterization
based on finite series

∑d
k=1 trBk = 0, which does not require ρ(B) < 1. However, this is

impractical for numerical reasons: The entries of Bk can easily exceed machine precision for
even small values of d, which makes both function and gradient evaluations highly unstable.
Therefore it remains to find a characterization that not only holds for all possible B, but also
has numerical stability. Luckily, such function exists.

Proposition 2 (Matrix exponential) A binary matrix B ∈ {0, 1}d×d is a DAG if and
only if

tr eB = d. (2.6)

Proof: Similar to Proposition 1 by noting that B has no cycles if and only if (Bk)ii = 0 for
all k ≥ 1 and all i, which is true if and only if

∑∞
k=1

∑d
i=1(B

k)ii/k! = tr eB − d = 0.

It is worth pointing out that matrix exponential is well-defined for all square matrices. In
addition to everywhere convergence, this characterization has an added bonus: As the number
of edges in B increases along with the number of nodes d, the number of possible closed
walks grows rapidly, so the trace characterization tr(I −B)−1 rapidly becomes ill-conditioned
and difficult to manage. By re-weighting the number of length-k closed walks by k!, this
becomes much easier to manage. While this is a useful characterization, it does not satisfy
all of our desiderata since—being defined over a discrete space—it is not a smooth function.
The final step is to extend Proposition 2 to all of Rd×d.

2.3.2 General case: Weighted adjacency matrices

Unfortunately, the characterization (2.6) fails if we replace B with an arbitrary weighted
matrix W . However, we can replace B with any nonnegative weighted matrix, and the same
argument use to prove Proposition 2 shows that (2.6) will still characterize acyclicity. Thus,
to extend this to matrices with both positive and negative values, we can simply use the
Hadamard product W ◦W , which leads to our main result.

Theorem 1 A matrix W ∈ Rd×d is a DAG if and only if

h(W) = tr
(
eW◦W

)
− d = 0, (2.7)

13

where ◦ is the Hadamard product and eA is the matrix exponential of A. Moreover, h(W) has
a simple gradient

∇h(W) =
(
eW◦W

)T ◦ 2W, (2.8)

and satisfies all of the desiderata (a)-(d).

The proof of (2.7) is similar to (2.6), and desiderata (c)-(d) follow from (2.8). To see
why desiderata (b) holds, note that the proof of Proposition 1 shows that the power series
tr(B +B2 + · · ·) simply counts the number of closed walks in B, and the matrix exponential
simply re-weights these counts. Replacing B with W ◦W amounts to counting weighted
closed walks, where the weight of each edge is w2

ij. Thus, larger h(W) > h(W ′) means either
(a) W has more cycles than W ′ or (b) The cycles in W are more heavily weighted than in W ′.

Moreover, notice that h(W) ≥ 0 for all W since each term in the series is nonnegative.
This gives another interesting perspective of the space of DAGs as the set of global minima
of h(W).

A key conclusion from Theorem 1 is that h and its gradient only involve evaluating the
matrix exponential, which is a well-studied function in numerical analysis, and whose O(d3)
algorithm (Al-Mohy and Higham, 2009) is readily available in many scientific computing
libraries. Although the connection between trace of matrix power and number of cycles
in the graph is well-known Harary and Manvel (1971), to the best of our knowledge, this
characterization of acyclicity has not appeared in the DAG learning literature previously. We
defer the discussion of other possible characterizations in the appendix. In the next section,
we apply Theorem 1 to solve the program (2.3) to stationarity by treating it as an equality
constrained program.

2.4 Optimization

Theorem 1 establishes a smooth, algebraic characterization of acyclicity that is also computable.
As a consequence, the following equality-constrained program (ECP) is equivalent to (2.3):

(ECP)
min

W∈Rd×d
F (W)

s.t. h(W) = 0.
(2.9)

The main advantage of (2.9) compared to both (2.3) and (2.4) is its amenability to classical
techniques from the mathematical optimization literature. Nonetheless, since {W | h(W) = 0}
is a nonconvex set, (2.9) is a nonconvex program, hence we still inherit the difficulties
associated with nonconvex optimization. In particular, we will be content to find stationary
points of (2.9);

In the follows, we outline the algorithm for solving (2.9). It consists of three steps:
(i) converting the constrained problem into a sequence of unconstrained subproblems, (ii)
optimizing the unconstrained subproblems, and (iii) thresholding. The full algorithm is
outlined in Algorithm 1.

14

Algorithm 1 NOTEARS algorithm

1. Input: Initial guess (W0, α0), progress rate c ∈ (0, 1), tolerance ε > 0, threshold ω > 0.

2. For t = 0, 1, 2, . . . :

(a) Solve primal Wt+1 ← argminW Lρ(W,αt) with ρ such that h(Wt+1) < ch(Wt).

(b) Dual ascent αt+1 ← αt + ρh(Wt+1).

(c) If h(Wt+1) < ε, set W̃ECP = Wt+1 and break.

3. Return the thresholded matrix Ŵ := W̃ECP ◦ 1(|W̃ECP| > ω).

2.4.1 Solving the ECP with augmented Lagrangian

We will use the augmented Lagrangian method (e.g. Nemirovski, 1999) to solve (ECP), which
solves the original problem augmented by a quadratic penalty:

min
W∈Rd×d

F (W) +
ρ

2
|h(W)|2

s.t. h(W) = 0
(2.10)

with a penalty parameter ρ > 0. A nice property of the augmented Lagrangian method is that
it approximates well the solution of a constrained problem by the solution of unconstrained
problems without increasing the penalty parameter ρ to infinity (Nemirovski, 1999). The
algorithm is essentially a dual ascent method for (2.10). To begin with, the dual function
with Lagrange multiplier α is given by

D(α) = min
W∈Rd×d

Lρ(W,α), (2.11)

where Lρ(W,α) = F (W) +
ρ

2
|h(W)|2 + αh(W) (2.12)

is the augmented Lagrangian. The goal is to find a local solution to the dual problem

max
α∈R

D(α). (2.13)

Let W ?
α be the local minimizer of the Lagrangian (2.11) at α, i.e. D(α) = Lρ(W ?

α, α). Since
the dual objective D(α) is linear in α, the derivative is simply given by ∇D(α) = h(W ?

α).
Therefore one can perform dual gradient ascent to optimize (2.13):

α← α + ρh(W ?
α), (2.14)

where the choice of step size ρ comes with the following convergence rate:

Proposition 3 (Corollary 11.2.1, Nemirovski, 1999) For ρ large enough and the start-
ing point α0 near the solution α?, the update (2.14) converges to α? linearly.

In our experiments, typically fewer than 10 steps of the augmented Lagrangian scheme
are required.

15

2.4.2 Solving the unconstrained subproblem

The augmented Lagrangian converts a constrained problem (2.10) into a sequence of uncon-
strained problems (2.11). We now discuss how to solve these subproblems efficiently. Let
w = vec(W) ∈ Rp, with p = d2. The unconstrained subproblem (2.11) can be considered as
a typical minimization problem over real vectors:

min
w∈Rp

f(w) + λ ‖w‖1 , (2.15)

where f(w) = `(W ;X) +
ρ

2
|h(W)|2 + αh(W) (2.16)

is the smooth part of the objective. Our goal is to solve the above problem to high accuracy
so that h(W) can be sufficiently suppressed.

In the special case of λ = 0, the nonsmooth term vanishes and the problem simply becomes
an unconstrained smooth minimization, for which a number of efficient numerical algorithms
are available, for instance the L-BFGS (Byrd et al., 1995). To handle the nonconvexity, a
slight modification (Nocedal and Wright, 2006, Procedure 18.2) needs to be applied.

When λ > 0, the problem becomes composite minimization, which can also be efficiently
solved by the proximal quasi-Newton (PQN) method (Zhong et al., 2014). At each step k,
the key idea is to find the descent direction through a quadratic approximation of the smooth
term:

dk = argmin
d∈Rp

gTk d+
1

2
dTBkd+ λ ‖wk + d‖1 , (2.17)

where gk is the gradient of f(w) and Bk is the L-BFGS approximation of the Hessian. Note
that for each coordinate j, problem (2.17) has a closed form update d← d+ z?ej given by

z? = argmin
z

1

2
Bjj︸︷︷︸
a

z2 + (gj + (Bd)j︸ ︷︷ ︸
b

)z + λ|wj + dj︸ ︷︷ ︸
c

+z| = −c+ S

(
c− b

a
,
λ

a

)
. (2.18)

Moreover, the low-rank structure of Bk enables fast computation for coordinate update. The
precomputation time is only O(m2p+m3) where m� p is the memory size of L-BFGS, and
each coordinate update is O(m). Furthermore, since we are using sparsity regularization, we
can further speed up the algorithm by aggressively shrinking the active set of coordinates
based on their subgradients (Zhong et al., 2014), and exclude the remaining dimensions
from being updated. With the updates restricted to the active set S, all dependencies of
the complexity on O(p) becomes O(|S|), which is substantially smaller. Hence the overall
complexity of L-BFGS update is O(m2|S|+m3 +m|S|T), where T is the number of inner
iterations, typically T = 10.

2.4.3 Details of proximal quasi-Newton

Recall Bk ∈ Rp×p is the low-rank approximation of the Hessian matrix given by L-BFGS
updates. Let the memory size of L-BFGS be m, which is taken to be m� p. The compact

16

Algorithm 2 Proximal Quasi-Newton for unconstrained problem (Zhong et al., 2014)

1. Input: w0, g0 = ∇f(w0), active set S = [p].

2. For k = 0, 1, 2, . . . :

(a) Shrink S to rule out j with wj = 0 or small subgradient |∂jL(w)|
(b) If shrinking stopping criteria is satisfied

i. Reset S = [p] and L-BFGS memory

ii. Update shrinking stopping criteria and continue

(c) Solve (2.17) for descent direction dk using coordinate update (2.18) on active set

(d) Line search for step size η ∈ (0, 1] until Armijo rule is satisfied:

f(wk + ηdk) ≤ f(wk) + ηc1(λ ‖wk + dk‖1 − λ ‖wk‖+ gTk dk), (2.21)

where c1 is some small constant, typically set to 10−3 or 10−4.

(e) Generate new iterate wk+1 ← wk + ηdk

(f) Update g, s,y, Q,R, Q̂ restricted to S

form of L-BFGS update can be written as

Bk = γkI −QQ̂, (2.19)

where

Q =
[
γkSk Yk

]
, R =

[
γkS

T
k Sk Lk
LTk −Dk

]−1
, Q̂ = RQT ,

Sk =
[
sk−m · · · sk−1

]
, Yk =

[
yk−m · · · yk−1

]
,

sk = wk+1 −wk, yk = gk+1 − gk, γk = yTk−1yk−1/s
T
k−1yk−1,

Dk = diag
[
sTk−myk−m · · · sTk−1yk−1

]
, (2.20)

(Lk)ij =

{
sTk−m+i−1yk−m+j−1 if i > j

0 otherwise
.

The low rank structure of Bk enables fast computation of subsequent coordinate de-
scent procedure. Specifically, notice that all Q,R, Q̂, and diag(B) can be precomputed in
O(m2p+m3) time, which is significantly smaller than naive Hessian inversion O(p3). After
precomputation, in each coordinate update, both a and c in (2.18) can be computed and

updated in O(1) time. Moreover, let d̂ = Q̂d ∈ R2m, we have (Bd)j = γdj − Qj,:d̂, which
suggests b in (2.18) only requires O(m) to compute and update. Therefore each coordinate
update is O(m).

The detailed procedure of PQN is outlined in Algorithm 2.

17

2.4.4 Thresholding

In regression problems, it is known that post-processing estimates of coefficients via hard
thresholding provably reduces the number of false discoveries (Zhou, 2009; Wang et al., 2016).
Motivated by these encouraging results, we threshold the edge weights as follows: After
obtaining a stationary point W̃ECP of (2.10), given a fixed threshold ω > 0, set any weights
smaller than ω in absolute value to zero. This strategy also has the important effect of
“rounding” the numerical solution of the augmented Lagrangian (2.10), since due to numerical

precisions the solution satisfies h(W̃ECP) ≤ ε for some small tolerance ε near machine precision

(e.g. ε = 10−8), rather than h(W̃ECP) = 0 strictly. However, since h(W̃ECP) explicitly quantifies

the “DAG-ness” of W̃ECP (see desiderata (b), Section 2.3), a small threshold ω suffices to rule
out cycle-inducing edges.

2.5 Experiments

We compared our method against greedy equivalent search (GES) (Chickering, 2002; Ramsey
et al., 2017), the PC algorithm (Spirtes and Glymour, 1991), and LiNGAM (Shimizu et al.,
2006). For GES, we used the fast greedy search (FGS) implementation from Ramsey et al.
(2017). Since the accuracy of PC and LiNGAM was significantly lower than either FGS or
NOTEARS, we only report the results against FGS here. This is consistent with previous work
on score-based learning (Aragam et al., 2015), which also indicates that FGS outperforms
other techniques such as hill-climbing and MMHC (Tsamardinos et al., 2006). FGS was
chosen since it is a state-of-the-art algorithm that scales to large problems.

Datasets We used simulated graphs from two well-known ensembles of random graphs:

• Erdös-Rényi (ER). Random graphs whose edges are added independently with equal
probability p. We simulated models with d, 2d, and 4d edges (in expectation) each,
denoted by ER-1, ER-2, and ER-4, respectively.

• Scale-free networks (SF). Networks simulated according to the preferential attachment
process described in Barabási and Albert (1999). We simulated scale-free networks
with 4d edges and β = 1, where β is the exponent used in the preferential attachment
process.

Scale-free graphs are popular since they exhibit topological properties similar to real-world
networks such as gene networks, social networks, and the Internet. Given a random acyclic
graph B ∈ {0, 1}d×d from one of these two ensembles, we assigned edge weights independently
from Unif

(
[−2,−0.5] ∪ [0.5, 2]) to obtain a weight matrix W = [w1 | · · · |wd] ∈ Rd×d. Given

W , we sampled x = W Tx + z ∈ Rd according to the following three noise models:

• Gaussian noise (Gauss). z ∼ N(0, Id×d).

• Exponential noise (Exp). zj ∼ Exp(1), j = 1, . . . , d.

• Gumbel noise (Gumbel). zj ∼ Gumbel(0, 1), j = 1, . . . , d.

18

Based on these models, we generated random datasets X ∈ Rn×d by generating the rows
i.i.d. according to one of the models above. For each simulation, we generated n samples for
graphs with d ∈ {10, 20, 50, 100} nodes. To study both high- and low-dimensional settings,
we used n ∈ {20, 1000}.

Methods For each dataset, we ran FGS, PC, and LinGAM and NOTEARS to compare the
performance in reconstructing the DAG B. We used the following implementations:

• FGS and PC were implemented through the py-causal package, available at https:

//github.com/bd2kccd/py-causal. Both of these methods are written in highly
optimized Java code.

• LinGAM was implemented using the author’s Python code: https://sites.google.
com/site/sshimizu06/lingam.

Since the accuracy of PC and LiNGAM was significantly lower than either FGS or
NOTEARS, we only report the results against FGS. A few comments on FGS are in order:
1) FGS estimates a graph, so it does not output any parameter estimates; 2) Instead of
returning a DAG, FGS returns a CPDAG (Chickering, 2002), which contains undirected
edges; 3) FGS has a single tuning parameter that controls the strength of regularization.
Thus, in our evaluations, we treated FGS favourably by treating undirected edges as true
positives as long as the true graph had a directed edge in place of the undirected edge. For
tuning parameters, we used the values suggested by the authors of the FGS code.

Denote the estimate returned by FGS by BFGS. We fix the threshold at ω = 0.3 (see below
for sensitivity analysis). Having fixed ω, when there is no regularization, NOTEARS requires
no tuning. With `1-regularization, NOTEARS-`1 requires a choice of λ which was selected
as follows: Based on the estimate returned by FGS, we tuned λ so that the selected graph
(after thresholding) had the same number of edges as BFGS (or as close as possible). This
ensures that the results are not influenced by hyperparameter tuning, and fairly compares
each method on graphs of roughly the same complexity. Denote this estimate by Ŵ and the
resulting adjacency matrix by B̂ = A(Ŵ).

Metrics We evaluated the learned graphs on four common graph metrics: 1) False discovery
rate (FDR), 2) True positive rate (TPR), 3) False positive rate (FPR), and 4) Structural
Hamming distance (SHD). Recall that SHD is the total number of edge additions, deletions,
and reversals needed to convert the estimated DAG into the true DAG. Since we consider
directed graphs, a distinction between True Positives (TP) and Reversed edges (R) is needed:
the former is estimated with correct direction whereas the latter is not. Likewise, a False
Positive (FP) is an edge that is not in the undirected skeleton of the true graph. In addition,
Positive (P) is the set of estimated edges, True (T) is the set of true edges, False (F) is the
set of non-edges in the ground truth graph. Finally, let (E) be the extra edges from the
skeleton, (M) be the missing edges from the skeleton. The four metrics are then given by:

1. FDR = (R + FP)/P

2. TPR = TP/T

19

https://github.com/bd2kccd/py-causal
https://github.com/bd2kccd/py-causal
https://sites.google.com/site/sshimizu06/lingam
https://sites.google.com/site/sshimizu06/lingam

0 5 10 15

0
5

10
15

W

(a) true graph

0 5 10 15

0
5

10
15

W̃ECP(0)

0 5 10 15

W̃ECP(0.1)

0 5 10 15

BFGS

-2

0

+2

(b) estimate with n = 1000

0 5 10 15

0
5

10
15

W̃ECP(0)

0 5 10 15

W̃ECP(0.1)

0 5 10 15

BFGS

-2

0

+2

(c) estimate with n = 20

Figure 2.1: Visual comparison of the learned weighted adjacency matrix on a 20-node
graph with n = 1000 (large samples) and n = 20 (insufficient samples): W̃ECP(λ) is the
proposed NOTEARS algorithm with `1-regularization λ, and BFGS is the binary estimate of
the baseline (Ramsey et al., 2017). The proposed algorithms perform well on large samples,
and remains accurate on small n with `1 regularization.

0 5 10 15

0
5

10
15

W

(a) true graph

0 5 10 15

0
5

10
15

W̃ECP(0)

0 5 10 15

W̃ECP(0.1)

0 5 10 15

BFGS

-2

0

+2

(b) estimate with n = 1000

0 5 10 15

0
5

10
15

W̃ECP(0)

0 5 10 15

W̃ECP(0.1)

0 5 10 15

BFGS

-2

0

+2

(c) estimate with n = 20

Figure 2.2: Parameter estimates of W̃ECP on a scale-free graph. Without the additional
thresholding step in Algorithm 1, NOTEARS still produces consistent estimates of the true
graph. The proposed method estimates the weights very well with large samples even
without regularization, and remains accurate on insufficient samples when `1-regularization is
introduced. See also Figure 2.1.

3. FPR = (R + FP)/F

4. SHD = E + M + R.

2.5.1 Parameter estimation

We first performed a qualitative study of the solutions obtained by NOTEARS without
thresholding by visualizing the weight matrix W̃ECP obtained by solving (ECP) (i.e. ω = 0).
This is illustrated in Figures 2.1 (ER-2) and 2.2 (SF-4). The key takeaway is that our method
provides (empirically) consistent parameter estimates of the true weight matrix W . The final
thresholding step in Algorithm 1 is only needed to ensure accuracy in structure learning. It
also shows how effective is `1-regularization in small n regime.

Figure 2.3 shows learned weighted adjacency matrices for ER1 and ER4. One can observe
the same trend: with large n, both regularized and unregularized NOTEARS works well
compared to FGS, and with small n, due to identifiability, the unregularized NOTEARS
suffers significantly, yet with the help of `1-regularization we can still accurately recover the
true underlying graph.

20

0 5 10 15

0
5

10
15

W

0 5 10 15

0
5

10
15

W̃ECP(0)

0 5 10 15

W̃ECP(0.1)

0 5 10 15

BFGS

-2

0

+2

0 5 10 15

0
5

10
15

W̃ECP(0)

0 5 10 15

W̃ECP(0.1)

0 5 10 15

BFGS

-2

0

+2

0 5 10 15

0
5

10
15

W

(a) true graph

0 5 10 15

0
5

10
15

W̃ECP(0)

0 5 10 15

W̃ECP(0.1)

0 5 10 15

BFGS

-2

0

+2

(b) estimate with n = 1000

0 5 10 15

0
5

10
15

W̃ECP(0)

0 5 10 15

W̃ECP(0.1)

0 5 10 15

BFGS

-2

0

+2

(c) estimate with n = 20

Figure 2.3: Visual comparison of the learned weighted adjacency matrix on a 20-node
graph with n = 1000 (large samples) and n = 20 (insufficient samples): W̃ECP(λ) is the
proposed NOTEARS algorithm with `1-regularization λ, and BFGS is the binary estimate of
the baseline (Ramsey et al., 2017). Top row: ER1, bottom row: ER4.

2.5.2 Structure learning

We now examine our method for structure recovery, which is shown in Figure 3.1. For brevity,
we only report the numbers for the structural Hamming distance (SHD) here, but complete
figures and tables for additional metrics can be found in the supplement. Consistent with
previous work on greedy methods, FGS is very competitive when the number of edges is
small (ER-2), but rapidly deteriorates for even modest numbers of edges (SF-4). In the latter
regime, NOTEARS shows significant improvements. This is consistent across each metric
we evaluated, and the difference grows as the number of nodes d gets larger. Also notice
that our algorithm performs uniformly better for each noise model (Exp, Gauss, and Gumbel),
without leveraging any specific knowledge about the noise type. Again, `1-regularizer helps
significantly in the small n setting.

Figure 2.5 and Figure 2.6 shows structure recovery results for n = 1000 and n = 20
for various random graphs and SEM noise types. Other than fixed ω, we also included the
optimal choice of thresholding, marked as “best”. The trend is consistent with the main text:
our method in general outperforms FGS, without tuning ω to the optimum for each setting.

2.5.3 Sensitivity of threshold

We demonstrate the effect of threshold in Figure 2.7. For each setting, we computed the
“ROC” curve for FDR and TPR with varying level of threshold, while ensuring the resulting
graph is indeed a DAG. On the right, we also present the estimated edge weights of W̃ECP in
decreasing order. One can first observe that in all cases most of the edge weights are equal or
close to zero as expected. The remaining question is how to choose a threshold that separates
out these (near zero) from signals (away from zero) so that best performance can be achieved.
With enough samples, one can often notice a sudden change in the weight distribution as

21

●
●

●

●

●● ●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●
●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

exp gauss gumbel

E
R

2
S

F
4

25 50 75 100 25 50 75 100 25 50 75 100

0

25

50

75

0

100

200

300

d (Number of nodes)S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

exp gauss gumbel

E
R

2
S

F
4

25 50 75 100 25 50 75 100 25 50 75 100

0.0

0.2

0.4

0.6

0.0

0.2

0.4

d (Number of nodes)

Fa
ls

e
di

sc
ov

er
y

ra
te

 (
F

D
R

)

Method ● ● ●FGS NOTEARS NOTEARS−L1

(a) SHD with n = 1000

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

exp gauss gumbel
E

R
2

S
F

4

25 50 75 100 25 50 75 100 25 50 75 100

0

100

200

300

400

0
100
200
300
400
500

d (Number of nodes)S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

exp gauss gumbel

E
R

2
S

F
4

25 50 75 100 25 50 75 100 25 50 75 100

0.3

0.5

0.7

0.9

0.2

0.4

0.6

d (Number of nodes)

Fa
ls

e
di

sc
ov

er
y

ra
te

 (
F

D
R

)

Method ● ● ●FGS NOTEARS NOTEARS−L1

(b) SHD with n = 20

Figure 2.4: Structure recovery in terms of SHD and FDR to the true graph (lower is better).
Rows: random graph types, {ER,SF}-k = {Erdös-Rényi, scale-free} graphs with kd expected
edges. Columns: noise types of SEM. Error bars represent standard errors over 10 simulations.

in Figure 2.7(a)(c). With insufficient samples, the breakpoint is less clear, and the optimal
choice that balances between TPR and FDR is depends on the specific settings. Nonetheless,
the predictive performance is less sensitive to threshold value as one can see from the slope of
the decrease in the weights before getting close to zero. Indeed, in our experiments, we found
a fixed threshold ω = 0.3 is a suboptimal yet reasonable choice across many different settings.

2.5.4 Sensitivity of weight scale

We investigate the effect of weight scaling to the NOTEARS algorithm in Figure 2.8. In par-
ticular, we run experiments with wij ∈ α · [0.5, 2]∪−α · [0.5, 2] with α ∈ {1.0, 0.9, 0.8, . . . , 0.1}.
On the left, we plot the smallest threshold ω required to obtain a DAG (see Section 4.3) for
different scale α. Overall, across different values of α, the variation in the smallest ω required
is minimal. We also hasten to point out that this also decreases the signal to noise ratio
(SNR), which more directly affects the accuracy. Indeed, in the figure on the right, we can
observe (as expected) some performance drop when using smaller value of α.

22

2.5.5 Real-data

We also compared FGS and NOTEARS on a real dataset provided by Sachs et al. (2005). This
dataset consists of continuous measurements of expression levels of proteins and phospholipids
in human immune system cells (n = 7466 d = 11, 20 edges). This dataset is a common
benchmark in graphical models since it comes with a known consensus network, that is, a
gold standard network based on experimental annotations that is widely accepted by the
biological community. In our experiments, FGS estimated 17 total edges with an SHD of 22,
compared to 16 for NOTEARS with an SHD of 22.

2.6 Discussion

We have proposed a new method for learning DAGs from data based on a continuous
optimization program. This represents a significant departure from existing approaches that
search over the discrete space of DAGs, resulting in a difficult optimization program. We
also proposed two optimization schemes for solving the resulting program to stationarity, and
illustrated its advantages over existing methods such as greedy equivalence search. Crucially,
by performing global updates (e.g. all parameters at once) instead of local updates (e.g. one
edge at a time) in each iteration, our method is able to avoid relying on assumptions about
the local structure of the graph. To conclude, let us discuss some of the limitations of our
method and possible directions for future work.

First, it is worth emphasizing once more that the equality constrained program (2.9) is a
nonconvex program. Thus, although we overcome the difficulties of combinatorial optimization,
our formulation still inherits the difficulties associated with nonconvex optimization. In
particular, black-box solvers can at best find stationary points of (2.9). With the exception
of exact methods, however, existing methods suffer from this drawback as well.3 The main
advantage of NOTEARS then is smooth, global search, as opposed to combinatorial, local
search; and furthermore the search is delegated to standard numerical solvers.

Second, the current work relies on the smoothness of the score function, in order to
make use of gradient-based numerical solvers to guide the graph search. However it is also
interesting to consider non-smooth, even discrete scores such as BDe (Heckerman et al.,
1995). Off-the-shelf techniques such as Nesterov’s smoothing (Nesterov, 2005) could be useful,
however more thorough investigation is left for future work.

Third, since the evaluation of the matrix exponential is O(d3), the computational complex-
ity of our method is cubic in the number of nodes, although the constant is small for sparse
matrices. In fact, this is one of the key motivations for our use of second-order methods (as
opposed to first-order), i.e. to reduce the number of matrix exponential computations. By
using second-order methods, each iteration make significantly more progress than first-order
methods. Furthermore, although in practice not many iterations (t ∼ 10) are required, we
have not established any worst-case iteration complexity results. Notwithstanding, NOTEARS

3GES (Chickering, 2002) is known to find the global minimizer in the limit n → ∞ under certain
assumptions, but this is not guaranteed for finite samples.

23

already outperforms existing methods when the in-degree is large, which is known difficult
spot for existing methods. We leave it to future work to study these cases in more depth.

Lastly, in our experiments, we chose a fixed, suboptimal value of ω > 0 for thresholding
(Section 2.4.4). Clearly, it would be preferable to find a data-driven choice of ω that adapts
to different noise-to-signal ratios and graph types. It is an interesting direction for future to
study such choices.

The code is publicly available at https://github.com/xunzheng/notears.

24

https://github.com/xunzheng/notears

●●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●
●
●

●

●●

●

●
● ●

●

●
●

●

●●

●

●

●

●●●●
● ●●●●

●

●
●
●
●

●

●
●

●

●

●

●●●●
● ●●●

●

●

●●

●
●

●

●●

●

●

●

●

●

●●●

●●
●●

●

●
●●
●
●

●

●

●

●

●

●●●●

●

●●
●●

●
●●

●
●
●

●●

●

●

●

●●●●
● ●●●●

●
●
●
●
●

●

●
●

●

●

●

●●●●
● ●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●
●●

●

●●
●
●

●
●
●
●
●
●

●
●

●

●

●

●●●●
● ●●

●●

●
●
●
●
●

●

●
●

●

●

●

●●●●
● ●●

●●

●

●

●

●●

●

●●

●

●

●

exp gauss gumbel

E
R

1
E

R
2

E
R

4
S

F
4

25 50 75 100 25 50 75 100 25 50 75 100

0
5

10
15
20

0

25

50
75

0

200

400

600

0

100

200

300

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

●●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●
●●

●

●

●
●
●

●
●
●

●
●

●

●●

●●
●●

●

●●●●

●

●
●

●

●
● ●●

●

●

●

●
●
●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●
●
●

●
●
●

●

●●

●
●
●●

●

●●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

exp gauss gumbel

E
R

1
E

R
2

E
R

4
S

F
4

25 50 75 100 25 50 75 100 25 50 75 100

0.0
0.1
0.2
0.3
0.4

0.0

0.2

0.4

0.6

0.0
0.2
0.4
0.6

0.0

0.2

0.4

d (Number of nodes)

Fa
ls

e
di

sc
ov

er
y

ra
te

 (
F

D
R

)

●

●

●●
●

●

●

●
●

●

●

●

●●
●

●●●

●

●

●
●

●

●

●

●●

●
●

●

●●●●

●

●●
●
●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●●

● ●

●

●●

●

●

●

●●●

●
●●●

●

●

●
●●

●
●●
●

●

●

●

●

●

●

●

●●

●●

●

●●●●

●

●●
●
●

●

●

●

●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●●

●
●

●

●●

●
●
●

●●

●

●

●

●●
●

●
●

●●

●

●
●

●●●

●●●

●

●

●
●

●
●

●

●●

●●

●

●●

●●
●

●●
●
●

●

●

●

●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●●

●

●

●

●●

●

exp gauss gumbel

E
R

1
E

R
2

E
R

4
S

F
4

25 50 75 100 25 50 75 100 25 50 75 100

0.7

0.8

0.9

1.0

0.6
0.7
0.8
0.9
1.0

0.25

0.50

0.75

1.00

0.4
0.6
0.8
1.0

d (Number of nodes)

Tr
ue

 p
os

iti
ve

 r
at

e
(T

P
R

) ●●

●

●

●

●

●

●

●

● ●●●●● ●●●●●

●

●

●

●

●

●●

●
●
●

●●●●● ●●●●●

●

●●●

●

●●●●

●

●●●●
●

●●●●●

●●
●

●

●

●

●

●

●

●

●
●●●

●

●●●●●

●
●

●●●
●●

●
●

● ●●●●● ●●●●●

●●
●●

●

●●●●

●

●●●●● ●●●●●

●
●
●●

●

●●●●

●

●●●●
●

●●●●●

●●

●●

●

●

●
●●

●

●
●
●●

●

●●●●●

●

●

●
●
●

●
●

●

●

● ●●●●● ●●●●●

●
●
●●

●

●●
●
●
●

●●●●● ●●●●●

●

●

●

●

●

●●●●

●

●●●●
●

●●●●●

●
●

●
●

●

●

●
●●

●

●
●●●

●

●●●●●

exp gauss gumbel

E
R

1
E

R
2

E
R

4
S

F
4

25 50 75 100 25 50 75 100 25 50 75 100

0.00
0.03
0.06
0.09

0.0
0.2
0.4
0.6
0.8

0
1
2
3

0.0
0.2
0.4
0.6
0.8

d (Number of nodes)

Fa
ls

e
po

si
tiv

e
ra

te
 (

F
P

R
)

Method ● ● ● ● ●FGS NOTEARS (best) NOTEARS (fixed) NOTEARS−L1 (best) NOTEARS−L1 (fixed)

Figure 2.5: Structure recovery results for n = 1000. Lower is better, except for TPR (lower
left), for which higher is better. Rows: random graph types, {ER,SF}-k = {Erdös-Rényi,
scale-free} graphs with kd expected edges. Columns: noise types of SEM. Error bars represent
standard errors over 10 simulations.

25

●●
●
●● ●●

●

●●

●
●

●

●●
●●

●

●
●

●●●●●

●●

●

●●

●
●

●

●●

●
●

●

●●

●●
●●
●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●

●

●●

●●

●

●●

●●

●

●

●

●●
●
●● ●●

●

●●
●●

●

●●
●●

●

●●

●●●●
●

●●

●

●●

●
●

●

●●

●
●

●

●●

●●
●●
●

●●
●
●
●

●
●

●

●

●

●

●

●

●

●

●●●●
●

●●
●

●●

●●

●

●●

●●

●

●

●

●●
●
●● ●●

●

●●
●●

●

●●
●●

●

●
●

●●●●
●

●●

●

●●

●
●

●

●●

●
●

●

●●

●●
●●
●

●●
●
●
●

●
●

●

●

●

●

●

●

●

●

●●●●
●

●●

●

●●

●●

●

●●

●●

●

●

●

exp gauss gumbel

E
R

1
E

R
2

E
R

4
S

F
4

25 50 75 100 25 50 75 100 25 50 75 100

0

200

400

0
100
200
300
400

0
100
200
300
400

0
100
200
300
400
500

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

exp gauss gumbel

E
R

1
E

R
2

E
R

4
S

F
4

25 50 75 100 25 50 75 100 25 50 75 100

0.00
0.25
0.50
0.75
1.00

0.25

0.50

0.75

0.2
0.4
0.6
0.8

0.2

0.4

0.6

d (Number of nodes)

Fa
ls

e
di

sc
ov

er
y

ra
te

 (
F

D
R

)

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●●

●

●

● ●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●● ●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●

● ●●

●

●

●

exp gauss gumbel

E
R

1
E

R
2

E
R

4
S

F
4

25 50 75 100 25 50 75 100 25 50 75 100

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75

0.25
0.50
0.75
1.00

0.25

0.50

0.75

d (Number of nodes)

Tr
ue

 p
os

iti
ve

 r
at

e
(T

P
R

)

●

●

●

●

●

●
●

●

●
●

●
●

●

●
● ●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●●●●●

●

●

●

●

●

●●

●

●

●

●●

●

●● ●●

●

●●

●●

●

●
●

●●

●

●
●

●●

●

●
● ●●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●●●●●

●

●

●

●

●

●
●

●

●
●

●●

●

●● ●●

●
●●

●
●

●

●
●

●●

●

●
●

●●

●

●
● ●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●
●
●●

●

●

●

●

●

●
●

●

●●

●●

●

●
●

●●●●●

●

●

●

●

●

●●

●

●
●

●●

●

●● ●●

●

●●

exp gauss gumbel

E
R

1
E

R
2

E
R

4
S

F
4

25 50 75 100 25 50 75 100 25 50 75 100

0.0
0.2
0.4
0.6

0.0

0.2

0.4

0.6

0.0
0.5
1.0
1.5
2.0

0.00

0.25

0.50

0.75

d (Number of nodes)

Fa
ls

e
po

si
tiv

e
ra

te
 (

F
P

R
)

Method ● ● ● ● ●FGS NOTEARS (best) NOTEARS (fixed) NOTEARS−L1 (best) NOTEARS−L1 (fixed)

Figure 2.6: Structure recovery results for n = 20. Lower is better, except for TPR (lower
left), for which higher is better. Rows: random graph types, {ER,SF}-k = {Erdös-Rényi,
scale-free} graphs with kd expected edges. Columns: noise types of SEM. Error bars represent
standard errors over 10 simulations.

26

(a) ER2, n = 1000 (b) ER2, n = 20

(c) SF4, n = 1000 (d) SF4, n = 20

Figure 2.7: Illustration of the effect of the threshold with d = 20 and λ = 0.1. For each
subfigure, ROC curve (left) shows FDR and TPR with varying level of threshold, and sorted

weights (right) plots the entries of W̃ECP in decreasing order.

Figure 2.8: Varying weight scale α ∈ {1.0, . . . , 0.1} with d = 20 and n = 1000 on an ER-2

graph. (Left) Smallest threshold ω such that Ŵ is a DAG. (Right) SHD between ground
truth and NOTEARS, lower the better. The minimum ω remains stable, while the accuracy
of NOTEARS drops as expected since the SNR decreases with α.

27

28

Chapter 3

Learning Nonparametric DAGs with
Continuous Optimization

In the previous chapter we established continuous optimization for linear structural equation
models (SEM). However, linearity in practice can be a strong assumption, and can potentially
lead to incorrect structure recovery. In fact, many existing methods for learning DAGs typically
rely on specific model assumptions (e.g. linear or additive) and specialized algorithms (e.g.
constraint-based or greedy optimization) that are not broadly applicable to different data. As
a result, the burden is on the user to choose amongst many possible models and algorithms,
which requires significant expertise. Thus, there is a need for a general framework for learning
different DAG models—subsuming, for example, linear, parametric, and nonparametric—that
does not require specialized algorithms. Ideally, the problem could be formulated as a
conventional optimization problem that can be tackled with general purpose solvers, much
like the current state-of-the-art for undirected graphical models (e.g. Suggala et al., 2017;
Yang et al., 2015; Liu et al., 2009; Hsieh et al., 2014; Banerjee et al., 2008).

In this chapter, we develop such a general algorithmic framework for score-based learning
of DAG models. This framework is flexible enough to learn general nonparametric dependence
while also easily adapting to parametric and semiparametric models, including nonlinear
models. The framework follows our approach for the linear SEM where we recast the score-
based optimization problem as a continuous problem, instead of the traditional combinatorial
approach. This allows generic optimization routines to be used in minimizing the score,
providing a clean conceptual formulation of the problem that can be approached using any of
the well-known algorithms from the optimization literature. However, the previous approach
developed for the linear SEM relies heavily on the parametrization in terms of a weighted
adjacency matrix W ∈ Rd×d of the problem, which can be seen to be a stringent restriction
on the class of models, and one of the key technical contributions of this chapter is extending
this to general nonparametric problems, where no such parametrization in terms of a weighted
adjacency matrix exists.

29

3.1 Our contributions

Our main contributions can be summarized as follows:
• We develop a generic optimization problem that can be applied to nonlinear and

nonparametric SEM and discuss various special cases including additive models and
index models. In contrast to existing work, we show how this optimization problem can
be solved to stationarity with generic solvers, eliminating the necessity for specialized
algorithms and models.

• We extend the existing smooth characterization of acyclicity to general nonparametric
models, and apply this to several popular examples for modeling nonlinear dependencies
(Section 3.3).

• We consider in detail two classes of nonparametric estimators defined through 1) Neural
networks and 2) Orthogonal basis expansions, and study their properties (Section 3.4).

• We run extensive empirical evaluations on a variety of nonparametric and semiparametric
models against recent state-of-the-art methods in order to demonstrate the effectiveness
and generality of our framework (Section 3.5).

As with all score-based approaches to learning DAGs, ours relies on a nonconvex optimiza-
tion problem. Despite this, we show that off-the-shelf solvers return stationary points that
outperform other state-of-the-art methods. Finally, the algorithm itself can be implemented
in standard machine learning libraries such as PyTorch, which should help the community to
extend our approach to richer models moving forward.

3.2 Background

We briefly review the notations. Norms will always be explicitly subscripted to avoid confusion:
‖·‖p is the `p-norm on vectors, ‖·‖Lp is the Lp-norm on functions, ‖·‖p,q is the (p, q)-norm on
matrices, and ‖·‖F = ‖·‖2,2 is the matrix Frobenius norm. For functions f : Rs → R and a
matrix A ∈ Rn×s, we adopt the convention that f(A) ∈ Rn is the vector whose ith element is
f(ai), where ai is the ith row of A. We use G to denote the set of directed acyclic graphs
(DAGs).

3.2.1 Score-based learning of nonparametric SEM

Our approach is based on (acyclic) structural equation models as follows. Let x = (x1, . . . , xd)
be a random vector and G = (V,E) a DAG with V = x. We assume that there exist functions
fj : Rd → R 1 and gj : R→ R such that

E[xj|xpa(j)] = gj(fj(x)), Efj(x) = 0, and

fj(u1, . . . , ud) does not depend on uk if k /∈ pa(j).
(3.1)

1The reason for writing fj(x) instead of fj(xpa(j)) is to simplify notation by ensuring each fj is defined
on the same space.

30

Here, pa(j) denotes the parents of xj in G. Formally, the second line in (3.1) means that for
any k /∈ pa(j), the function a(u) := fj(x1, . . . , xk−1, u, xk+1, . . . , xd) is constant for all u ∈ R.
Thus, G encodes the conditional independence structure of x. The functions gj, which are
typically known, allow for possible non-additive errors such as in generalized linear models
(GLMs). The model (3.1) is quite general and includes additive noise models, linear and
generalized linear models, and additive models as special cases (Section 3.3.2).

In this setting, the DAG learning problem can be stated as follows: Given a data matrix
X = [X·1| · · · |X·d] ∈ Rn×d consisting of n i.i.d. observations of the model (3.1), we seek to
learn the DAG G(x) that encodes the dependency between the variables in x. Our approach
is to learn f = (f1, . . . , fd) such that G(f) = G(x) using a score-based approach. Given a loss
function `(y, ŷ) such as least squares or the negative log-likelihood, we consider the following
program:

min
f

L(f) s.t. G(f) ∈ G, where L(f) =
1

n

d∑

j=1

`(X·j, fj(X)). (3.2)

There are two challenges in this formulation: 1) How to enforce the acyclicity constraint
that G(f) ∈ G, and 2) How to enforce sparsity in the learned DAG G(f)? Previous work
using linear and generalized linear models rely on a parametric representation of G via a
weighted adjacency matrix W ∈ Rd×d, which is no longer well-defined in the model (3.1). To
address this, we develop a suitable surrogate of W defined for general nonparametric models,
to which we can apply the previous trace exponential regularizer.

3.2.2 Identifiability

Existing papers approach this problem as follows: 1) Assume a specific model for (3.1),
2) Prove identifiability for this specific model, and 3) Develop a specialized algorithm for
learning this specific model. By contrast, our approach is generic: We do not assume any
particular model form or algorithm, and instead develop a general framework that applies to
any model that is identifiable. By now, there is a well-cataloged list of identifiability results
for various linear, parametric, and nonlinear models, which we review briefly below (see also
Section 3.3.2).

When the model (3.1) holds, the graph G is not necessarily uniquely defined: A well-known
example is when X is jointly normally distributed, in which case the fj are linear functions,
and where it can be shown that the graph G is not uniquely specified. Fortunately, it is known
that this case is somewhat exceptional: Assuming additive noise, as long as the fj are linear
with non-Gaussian errors (Kagan et al., 1973; Shimizu et al., 2006; Loh and Bühlmann, 2014)
or the functions fj are nonlinear (Hoyer et al., 2008a; Zhang and Hyvärinen, 2009; Peters
et al., 2014), then the graph G is generally identifiable. We refer the reader to Peters et al.
(2014) for details. Another example are so-called quadratic variance function models, which
are parametric models that subsume many generalized linear models (Park and Raskutti,
2017; Park and Park, 2018). In the sequel, we assume that the model is chosen such that the
graph G is uniquely defined from (3.1), and this dependence will be emphasized by writing

31

G = G(X). Similarly, any collection of functions f = (f1, . . . , fd) defines a graph G(f) in the
obvious way. See Section 3.3.2 for specific examples with discussion on identifiability.

3.2.3 Related works

The problem of learning nonlinear and nonparametric DAGs from data has generated
significant interest in recent years, including additive models (Bühlmann et al., 2014; Voorman
et al., 2014; Rothenhäusler et al., 2018), generalized linear models (Park and Park, 2018; Park
and Raskutti, 2017; Park and Park, 2019; Gu et al., 2018), additive noise models (Hoyer et al.,
2008a; Peters et al., 2014; Blöbaum et al., 2018; Mooij et al., 2016), post-nonlinear models
(Zhang and Hyvärinen, 2009; Zhang et al., 2016) and general nonlinear SEM (Monti et al.,
2019; Goudet et al., 2018; Kalainathan et al., 2018; Sgouritsa et al., 2015). Recently, Yu et al.
(2019) proposed to use graph neural networks for nonlinear measurement models and Huang
et al. (2018) proposed a generalized score function for general SEM. The latter work is based
on recent work in kernel-based measures of dependence (Gretton et al., 2005; Fukumizu et al.,
2007; Zhang et al., 2011). Another line of work uses quantile scoring (Tagasovska et al., 2018).
Also of relevance is the literature on nonparametric variable selection (Bertin and Lecué,
2008; Lafferty and Wasserman, 2008; Miller and Hall, 2010; Rosasco et al., 2013; Gregorová
et al., 2018) and approaches based on neural networks (Feng and Simon, 2017; Ye and Sun,
2018; Abid et al., 2019). The main distinction between our work and previous work is that
our framework is not tied to a specific model—as in Yu et al. (2019); Bühlmann et al. (2014);
Park and Park (2018)—as our focus is on a generic formulation of an optimization problem
that can be solved with generic solvers (see Section 3.2 for a more detailed comparison). This
also distinguishes this work from concurrent work by Lachapelle et al. (2019) that focuses
on neural network-based nonlinearities in the local conditional probabilities. Furthermore,
compared to Huang et al. (2018) and Yu et al. (2019), our approach can be much more
efficient. As such, we hope that this work is able to spur future work using more sophisticated
nonparametric estimators and optimization schemes.

3.2.4 Comparison to existing approaches

It is instructive at this point to highlight the main distinction between our approach and
existing approaches. A common approach is to assume the fj are easily parametrized (e.g.
linearity) (Zheng et al., 2018; Aragam et al., 2015; Gu et al., 2018; Park and Park, 2018; Park
and Raskutti, 2017; Chen et al., 2019; Ghoshal and Honorio, 2017). In this case, one can
easily encode the structure of G via, e.g. a weighted adjacency matrix, and learning G reduces
to a parametric estimation problem. Nonparametric extensions of this approach include
additive models (Bühlmann et al., 2014; Voorman et al., 2014), where the graph structure is
easily deduced from the additive structure of the fj. More recent work (Lachapelle et al.,
2019; Yu et al., 2019) uses specific parametrizations via neural networks to encode G. An
alternative approach relies on exploiting the conditional independence structure of x, such as
the post-nonlinear model (Zhang and Hyvärinen, 2009; Yu et al., 2019), the additive noise
model (Peters et al., 2014), and kernel-based measures of conditional independence (Huang

32

et al., 2018). Our framework can be viewed as a substantial generalization of these approaches:
We use partial derivatives to measure dependence in the general nonparametric model (3.1)
without assuming a particular form or parametrization, and do not explicitly require any of
the machinery of nonparametric conditional independence (although we note in some places
this machinery is implicit). This allows us to use nonparametric estimators such as multilayer
perceptrons and basis expansions, for which these derivatives are easily computed. As a
result, the score-based learning problem is reduced to an optimization problem that can be
tackled using existing techniques, making our approach easily accessible.

3.3 Characterizing acyclicity in nonparametric SEM

In this section, we discuss how to extend the trace exponential regularizer beyond the linear
setting, and then discuss several special cases.

3.3.1 A notion of nonparametric acyclicity

Recall in the linear case, i.e. gj(s) = s and fj(x) = wT
j x for some wj ∈ Rd, we had the

weighted adjacency matrix W = [w1| · · · |wd] ∈ Rd×d of graph G(f). Then we can formulate
the entire problem in terms of W : If L(W) = ‖X −XW‖2F /(2n), then optimizing L(W) is
equivalent to optimizing L(f) over linear functions. Define the function h(W) = tr eW◦W − d,
where [W ◦W]kj = w2

kj, then (3.2) is equivalent to

min
W∈Rd×d

L(W) s.t. h(W) = 0, (3.3)

Our goal is to define a suitable surrogate of W for general nonparametric models, so that the
same continuous program can be used to optimize (3.2).

Unfortunately, for general models of the form (3.1), there is no W , and hence the trace
exponential formulation seems to break down. To remedy this, we use partial derivatives
to measure the dependence of fj on the kth variable, an idea that dates back to at least
Rosasco et al. (2013). First, we need to make precise the spaces we are working on: Let
H1(Rd) ⊂ L2(Rd) denote the usual Sobolev space of square-integrable functions whose
derivatives are also square integrable (for background on Sobolev spaces see Tsybakov (2003)).
Assume hereafter that fj ∈ H1(Rd) and denote the partial derivative with respect to xk by
∂kfj. It is then easy to show that fj is independent of xk if and only if ‖∂kfj‖L2 = 0, where
‖·‖L2 is the usual L2-norm. This observation implies that the following matrix precisely
encodes the dependency structure amongst the xj:

W (f) = W (f1, . . . , fd) ∈ Rd×d, [W (f)]kj := ‖∂kfj‖L2 . (3.4)

Thus the program (3.2) is equivalent to

min
f :fj∈H1(Rd),∀j∈[d]

L(f) s.t. h(W (f)) = 0. (3.5)

33

This implies an equivalent continuous formulation of the program (3.2). Moreover, when the
functions fj are all linear, W (f) is the same as the weighted adjacency matrix W . Thus,
(3.5) is a genuine generalization of the linear case (3.3).

3.3.2 Special cases

In addition to applying to general nonparametric models of the form (3.2) and linear models,
the program (3.5) applies to a variety of parametric and semiparametric models including
additive noise models, generalized linear models, additive models, and index models. In this
section we discuss these examples along with identifiability results for each case.

Additive noise models The nonparametric additive noise model (ANM) (Hoyer et al.,
2008a; Peters et al., 2014) assumes that

xj = fj(x) + zj, zj ∼ Pj, Efj(x) = 0, zj ⊥ fj(x). (3.6)

Clearly this is a special case of (3.1) with gj(s) = s. In contrast to the remaining examples
below, without additional assumptions, it is not possible to simplify the condition for
[W (f)]kj = 0 in (3.4). Assuming the fj are three times differentiable and not linear in any of
its arguments, this model is identifiable (Peters et al., 2014, Corollary 31).

Generalized linear models A traditional GLM assumes that E[xj|xpa(j)] = gj(w
T
j x) for

some known link functions gj : R → R and wj ∈ Rd. For example, we can use logistic
regression for xj ∈ {0, 1} with gj(s) = es/(1 + es). This is easily generalized to nonparametric
mean functions fj ∈ H1(Rd) by setting

E[xj|xpa(j)] = gj(fj(x)). (3.7)

Clearly, (3.6) is a special case of (3.7). Furthermore, for linear mean functions, [W (f)]kj = 0
if and only if wjk = 0, recovering the parametric approach in the previous chapter. Several
special cases of GLMs are known to be identifiable: Linear Gaussian with equal variances
(Peters and Bühlmann, 2014), linear non-Gaussian models (Shimizu et al., 2006), Poisson
models (Park and Park, 2019), and quadratic variance function models (Park and Raskutti,
2017).

Polynomial regression In polynomial regression, we assume that fj(x) is a polynomial
in x1, . . . , xd. More generally, given a known dictionary of functions η`(u1, . . . , ud), we require
that fj(x) =

∑
` βj` η`(x). Then it is easy to check that [W (f)]kj = 0 if and only if βj` = 0

whenever η` depends on uk. For each k, define ajk(u) := fj(x1, . . . , xk−1, u, xk+1, . . . , xd). As
long as ajk(u) is not a linear function (i.e. each fj is a degree-2 polynomial or higher in xk)
for all k and j, then Corollary 31 in Peters et al. (2014) implies identifiability of this model.

34

Additive models In an additive model (Hastie and Tibshirani, 1987; Ravikumar et al.,
2009), we assume that fj(x) =

∑
k 6=j fjk(xk) for some fjk ∈ H1(R). Then it is straightforward

to show that ‖∂kfj‖L2 = 0 if and only if fjk = 0. In other words, [W (f)]kj = 0 if and only
if ‖fjk‖L2 = 0. Assuming the fjk are three times differentiable and not linear in any of its
arguments, this model is identifiable (Peters et al., 2014, Corollary 31, see also Bühlmann
et al., 2014).

Index models The multiple index model (Alquier and Biau, 2013; Yuan, 2011) assumes
fj(x) =

∑M
m=1 hjm(βTjmx) for some hjm ∈ H1(R) and βjm ∈ Rd. As long as M is sufficiently

large, these functions are universal approximators (Diaconis and Shahshahani, 1984). When
M = 1, this is known as a single-index model. As long as the functions hjm (m = 1, . . . ,M)
are linearly independent, it is straightforward to show that ‖∂kfj‖L2 = 0 if and only if

βjmk = 0 for each m. In other words, [W (f)]kj = 0 if and only if
∑M

m=1 β
2
jmk = 0. Once again,

assuming three-times differentiability and nonlinearity of hjm, Corollary 31 in Peters et al.
(2014) implies identifiability of this model.

Among these examples, both polynomial regression and GLMs with linear mean function
are nonlinear but finite-dimensional, and hence the problem (3.5) is straightforward to solve
(see Section 3.4.3).

3.4 Optimization

In general, the program (3.5) is infinite-dimensional. In this section we discuss different
ways to reduce this to a tractable, finite-dimensional optimization problem. One of the
advantages of encoding dependence via W (f) is that it provides a plug-and-play framework
for plugging in various nonparametric estimators whose derivatives can be computed. We
will illustrate two examples using multilayer perceptrons and orthogonal basis expansions,
however, we emphasize that it is straightforward to implement other differentiable models for
the fj. These flexible nonparametric estimators will help reduce (3.5) to a straightforward
optimization problem, as we discuss at the end of this section.

The basic recipe is the following:

1. Choose a model family for the conditional expectations E[xj|xpa(j)] (e.g. general
nonparametric, additive, index, etc.);

2. Choose a suitable family of approximations (e.g. neural networks, orthogonal series,
etc.);

3. Translate the loss function L(f) and constraint W (f) into parametric forms L(θ) and
W (θ) using the approximating family;

4. Solve the resulting finite-dimensional problem.

Step 3 above is the key step that enables transforming (3.5) into a tractable optimization
problem. By approximating the fj with a flexible family of functions parametrized by θ, we
can replace the infinite-dimensional quantity W (f) with the simpler W (θ). As is standard in

35

the literature on nonparametric estimation, the dimension of θ is allowed to depend on n,
although this dependence will be suppressed.

3.4.1 Multilayer perceptrons

We first consider the use of neural networks to approximate the fj, as in an ANM (3.6)
or GLM (3.7). Consider a multilayer perceptron (MLP) with h hidden layers and a single
activation σ : R→ R, given by

MLP(u;A(1), . . . , A(h)) = σ(A(h)σ(· · ·A(2)σ(A(1)u))),

A(`) ∈ Rm`×m`−1 , m0 = d.

By increasing the capacity of the MLP (e.g. increasing the number of layers h or the number
of hidden units m` in each layer), we can approximate any fj ∈ H1(Rd) arbitrarily well.

First, we must determine under what conditions MLP(u;A(1), . . . , A(h)) is independent
of uk—this is important both for enforcing acyclicity and sparsity. It is not hard to see
that if the kth column of A(1) consists of all zeros (i.e. A

(1)
bk = 0 for all b = 1, . . . ,m1), then

MLP(u;A(1), . . . , A(h)) will be independent of uk. In fact, we have the following proposition,
which implies that this constraint precisely identifies the set of MLPs that are independent
of uk:

Proposition 4 Consider the function class F of all MLPs that are independent of uk and
the function class F0 of all MLPs such that the kth column of A(1) consists of all zeros. Then
F = F0.

Proof: For completeness, note that

F = {f | f(u) = MLP(u;A(1), . . . , A(h)), f independent of uk}

and

F0 = {f | f(u) = MLP(u;A(1), . . . , A(h)), A
(1)
bk = 0,∀b = 1, . . . ,m1}.

We omit the bias terms in each layer as it does not affect the statement.
We will show that F ⊆ F0 and F0 ⊆ F .
(1) F0 ⊆ F : for any f0 ∈ F0, we have f0(u) = MLP(u;A(1), . . . , A(h)), where A

(1)
bk = 0 for

all b = 1, . . . ,m1. Hence the linear function A(1)u is independent of uk. Therefore,

f0(u) = MLP(u;A(1), . . . , A(h))

= σ(A(h)σ(· · ·A(2)σ(A(1)u)))

is also independent of uk, which means f0 ∈ F .
(2) F ⊆ F0: for any f ∈ F , we have f(u) = MLP(u;A(1), . . . , A(h)) and f is independent

of uk. We will show that f ∈ F0 by constructing a matrix Ã(1), such that

f(u) = MLP(u; Ã(1), A(2), . . . , A(h)) (3.8)

36

and Ã
(1)
bk = 0 for all b = 1, . . . ,m1.

Let ũ be the vector such that ũk = 0 and ũk′ = uk for all k′ 6= k. Since ũ and u differ only
on the kth dimension, and f is independent of uk, we have

f(u) = f(ũ) = MLP(ũ;A(1), . . . , A(h)). (3.9)

Now define Ã(1) be the matrix such that Ã
(1)
bk = 0 and Ã

(1)
bk′ = A

(1)
bk for all k′ 6= k. Then we

have the following observation: for each entry s ∈ {1, . . . ,m1},

(Ã(1)u)s =
d∑

k′=1

Ãsk′uk′ =
∑

k′ 6=k

Ask′uk′ =
d∑

k′=1

Ask′ũk′ = (A(1)ũ)s. (3.10)

Hence,

Ã(1)u = A(1)ũ. (3.11)

Therefore, by (3.9)

f(u) = f(ũ)

= MLP(ũ;A(1), . . . , A(h))

= σ(A(h)σ(· · ·A(2)σ(A(1)ũ)))

= σ(A(h)σ(· · ·A(2)σ(Ã(1)u)))

= MLP(u; Ã(1), A(2), . . . , A(h))

By definition of F0, we know that MLP(u; Ã(1), A(2), . . . , A(h)) ∈ F0. Thus, f ∈ F0 and we
have completed the proof.

This important proposition provides a rigorous way to enforce that an MLP approximation
depends only on a few coordinates. Indeed, it is clear that constraining A

(1)
bk = 0 for each b will

remove the dependence on k, however, there is a concern that we could lose the expressivity
of multiple hidden layers in doing so. Fortunately, this proposition implies that there is in
fact no loss of expressivity or approximating power. Furthermore, it follows that [W (f)]kj = 0

if
∑

b(A
(1)
j,bk)

2 = 0. This result enables us to characterize acyclicity independent of the depth
of the neural network, as opposed to handling individual paths through the entire neural
network as in Lachapelle et al. (2019), which depends linearly on the depth.

Let θj = (A
(1)
j , . . . , A

(h)
j) denote the parameters for the jth MLP and θ = (θ1, . . . , θd).

Define [W (θ)]kj = [
∑

b(A
(1)
j,bk)

2]1/2. The problem (3.2) is now reduced to

min
θ

1

n

d∑

j=1

`(X·j,MLP(X; θj)) + λ‖θj,1‖1,1

s.t. h(W (θ)) = 0.

(3.12)

37

3.4.2 Basis expansions

As an alternative to neural networks, we also consider the use of orthogonal basis expansions
(Schwartz, 1967; Wahba, 1981; Hall, 1987; Efromovich, 1999). While many techniques are
valid here, we adopt an approach based on Ravikumar et al. (2009). Let {φr}∞r=1 be an
orthonormal basis of H1(Rd) such that Eφr(X) = 0 for each r. Then any f ∈ H1(Rd) can be
written uniquely

f(u) =
∞∑

r=1

αrφr(u), αr =

∫

Rd
φr(u)f(u) du. (3.13)

As long as the coefficients αr decay sufficiently fast, f can be well-approximated by the finite
series f̂R :=

∑R
r=1 αrφr. Similar claims are true for one-dimensional Sobolev functions, which

applies to both additive (i.e. for fjk) and index (i.e. for hjm) models.
We illustrate here an application with additive models and one-dimensional expansions.

It is straightforward to extend these ideas to more general models using a tensor product
basis, though this quickly becomes computationally infeasible. For more on high-dimensional
orthogonal series, see Lee and Izbicki (2016). Thus,

fj(u1, . . . , ud) =
∑

k 6=j

fjk(uk) =
∑

k 6=j

∞∑

r=1

αjkrφr(uk). (3.14)

Given integers Rk and assuming fjk is sufficiently smooth, we have ‖fjk − f̂Rkjk ‖L2 = O(1/Rk)
(Efromovich, 1999), so that the overall approximation error is on the order O(d/mink Rk).
Furthermore, [W (f)]kj = 0 ⇐⇒ ‖fjk‖L2 = 0 ⇐⇒ αjkr = 0 for all r. Since we are
discarding terms for r > Rk, in practice it suffices to check that αjkr = 0 for r = 1 . . . , Rk, or∑Rk

r=1 α
2
jkr = 0.

Letting θ denote the parameters αjkr for all j, k, r, it thus suffices to define [W (θ)]kj =

[
∑Rk

r=1 α
2
jkr]

1/2 for the purposes of checking acyclicity. Let Φk be the matrix [Φk]ir = φr(X
(i)
k).

To estimate the coefficients αjkr, we solve

min
1≤j,k≤d
k 6=j

min
ajk∈RRk

1

n

d∑

j=1

`
(
X·j,

∑

k 6=j

Φkajk

)
+ λ1

∑

k 6=j

1

n
aTjkΦ

T
kΦkajk + λ2

∑

k 6=j

‖ajk‖1

s.t. h(W (θ)) = 0.

(3.15)

This is similar to Ravikumar et al. (2009) with the addition of an explicit `1 constraint.

3.4.3 Solving the continuous program

Having converted L(f) and W (f) to their finite-dimensional counterparts, we are now ready
to solve (3.5) by applying standard optimization techniques. We emphasize that the hard
work went into formulating the programs (3.12) and (3.15) as generic problems for which

38

●
●

●

●

●
●

●●

●

●

●●
●
●

●

●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

Additive GP Index Model MLP GP

E
R

2
S

F
2

10 20 30 4010 20 30 4010 20 30 4010 20 30 40

0

25

50

75

0

20

40

60

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

●●

●

●
●●

●
●

●

●

●●

●

●
●

●

●●

●
●
●
●
●●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●
●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●
●

●

●●

●
●
●

●

●●

●●

●

●

●
●

●●●●
●●

●●
●

●

●●

●

●
●
●●●

Additive GP Index Model MLP GP

E
R

2
S

F
2

10 20 30 4010 20 30 4010 20 30 4010 20 30 40

25

50

75

20

40

60

80

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20

40

60

10 20 30 40

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

method
●

●

●

●

●

●

FGS

GNN

GS−GES

NOTEARS

DAG−MLP

DAG−Sob

Figure 3.1: Structure recovery measured by SHD (lower is better) to ground truth. Left:
n = 1000. Middle: n = 200. Right: Average over all configurations. Rows: random graph
model (Erdos-Renyi and scale-free). Columns: different types of SEM. DAG-MLP performs
well on a wide range of settings, while DAG-Sob shows good accuracy on additive models.

off-the-shelf solvers can be used. Importantly, since in both (3.12) and (3.15) the term W (θ)
is differentiable w.r.t. θ, the optimization program is an `1-penalized smooth minimization
under a differentiable equality constraint. As before, the standard machinery of augmented
Lagrangian can be applied, resulting in a series of unconstrained problems:

min
θ

F (θ) + λ ‖θ‖1 , F (θ) = L(θ) +
ρ

2
|h(W (θ))|2 + αh(W (θ)) (3.16)

where ρ is a penalty parameter and α is a dual variable.

A number of optimization algorithms can be applied to the above unconstrained `1-
penalized smooth minimization problem. A natural choice is the L-BFGS-B algorithm (Byrd
et al., 1995), which can be directly applied by casting (3.16) into a box-constrained form:

min
θ

F (θ) + λ ‖θ‖1 ⇐⇒ min
θ+≥0,θ−≥0

F (θ+ − θ−) + λ1T (θ+ + θ−) (3.17)

where 1 is a vector of all ones. We note that as in the linear case, (3.16) is a nonconvex
program, and at best can be solved to stationarity. Our experiments indicate that this
nonetheless leads to competitive and often superior performance in practice.

3.5 Experiments

We study the empirical performance of two instances of the general framework: MLP (3.4.1)
and Sobolev basis expansion (3.4.2), denoted as DAG-MLP and DAG-Sob respectively. For
DAG-MLP we use an MLP with one hidden layer with 10 hidden units and sigmoid activation
function. For DAG-Sob we use Sobolev basis φr(u) = sr sin(u/sr), sr = 2/((2r − 1)π) for
r = 1, . . . , 10.

39

●●●

●
●

●●
●

●● ●

●

●

●
●

●
●●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●
●

●

●

●

●●

●●●
●●

●
●●

●●

●
●
●

●●

Additive GP Index Model MLP GP

E
R

2
S

F
2

10 20 30 4010 20 30 4010 20 30 4010 20 30 40

0

25

50

75

0

20

40

60

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

●
●
●

●●
●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●●
●

●
●
●

●
●

●●

●

●●

●●●
●●

●
●●

●
●

●
●●

●

●

Additive GP Index Model MLP GP

E
R

2
S

F
2

10 20 30 4010 20 30 4010 20 30 4010 20 30 40

0

25

50

75

0

20

40

60

80

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20

40

60

10 20 30 40

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

method ● ● ● ● ●DAG−MLP DAG−Sob CAM DAG−MLP++ DAG−Sob++

Figure 3.2: Structure recovery measured by SHD (lower is better) to ground truth. Left:
n = 1000. Middle: n = 200. Right: Average over all configurations. Rows: random graph
model (Erdos-Renyi and scale-free). Columns: different types of SEM. Either DAG-MLP or
DAG-MLP++ (i.e. DAG-MLP with neighborhood selection and pruning) achieves competitive
accuracy compared to CAM.

Baselines We consider the following baselines.
• Fast greedy equivalence search (FGS)2 (Ramsey et al., 2017) is based on greedy search

and assumes linear dependency between variables.

• Greedy equivalence search with generalized scores (GSGES)3 (Huang et al., 2018) is
also based on greedy search, but uses generalized scores without assuming a particular
model class.

• DAG-GNN (GNN)4 (Yu et al., 2019) learns a (noisy) nonlinear transformation of a
linear SEM using neural networks.

• NOTEARS (Linear)5 (Chapter 2) learns a linear SEM using continuous optimization.

• Causal additive model (CAM)6 (Bühlmann et al., 2014) learns an additive SEM by
leveraging efficient nonparametric regression techniques and greedy search over edges.

For all experiments, default parameter settings are used, except for CAM where both prelimi-
nary neighborhood selection and pruning are applied.

Simulation Given the graph G, we simulate the SEM xj = fj(xpa(j)) + zj for all j ∈ [d] in
the topological order induced by G. We consider the following instances of fj:
• Additive GP: fj(xpa(j)) =

∑
k∈pa(j) fjk(xk), where each fjk is a draw from Gaussian

process with RBF kernel with length-scale one.

• Index model: fj(xpa(j)) =
∑3

m=1 hm(
∑

k∈pa(j) θjmkxk), where h1 = tanh, h2 = cos,

h3 = sin, and each θjmk is drawn uniformly from range [−2,−0.5] ∪ [0.5, 2].

2https://github.com/bd2kccd/py-causal
3https://github.com/Biwei-Huang/Generalized-Score-Functions-for-Causal-Discovery/
4https://github.com/fishmoon1234/DAG-GNN
5https://github.com/xunzheng/notears
6https://cran.r-project.org/package=CAM

40

https://github.com/bd2kccd/py-causal
https://github.com/Biwei-Huang/Generalized-Score-Functions-for-Causal-Discovery/
https://github.com/fishmoon1234/DAG-GNN
https://github.com/xunzheng/notears
https://cran.r-project.org/package=CAM

• MLP: fj is a randomly initialized MLP with one hidden layer of size 100 and sigmoid
activation.

• GP: fj is a draw from Gaussian process with RBF kernel with length-scale one.

In all settings, zj is i.i.d. standard Gaussian noise.

Metrics We evaluate the estimated DAG structure using the following common metrics:
false discovery rate (FDR), true positive rate (TPR), false positive rate (FPR), and structural
Hamming distance (SHD). Note that both FGS and GSGES return a CPDAG that may
contain undirected edges, in which case we evaluate them favorably by assuming correct
orientation for undirected edges whenever possible.

3.5.1 Structure learning

In this experiment we examine the structure recovery of different methods by comparing
the DAG estimates against the ground truth. We simulate {ER1, ER2, ER4, SF1, SF2,
SF4} graphs with d = {10, 20, 40} nodes. For each graph, n = {1000, 200} data samples are
generated. The above process is repeated 10 times and we report the mean and standard
deviations of the results. For DAG-MLP and DAG-Sob, λ = {0.01, 0.03} are used for n =
{1000, 200} respectively.

Figure 3.1 shows the SHD in various settings; the complete set of results for the remaining
metrics are deferred to the supplement. Overall, the proposed DAG-MLP method attains
the best SHD (lower the better) across a wide range of settings, particularly when the
data generating mechanism is an MLP or an index model. One can also observe that the
performance of DAG-MLP stays stable for different graph types with varying density and
degree distribution, as it does not make explicit assumptions on the topological properties of
the graph such as density or degree distribution. Not surprisingly, DAG-Sob performs well
when the underlying SEM is additive GP. On the other hand, when the ground truth is not
an additive model, the performance of DAG-Sob degrades as expected. Finally, we observe
that GSGES outperforms DAG-MLP and DAG-Sob on GP, which is a nonparametric setting in
which a kernel-based dependency measure can excel, however, we note that the kernel-based
approach accompanies an O(n3) time complexity, compared to linear dependency on n in
DAG-MLP and DAG-Sob. For instance, the average runtime of GSGES on ER2 with d = 40,
n = 1000 is over 90 minutes, whereas DAG-MLP takes less than five minutes on average.
Also, with by properly tuning the regularization parameter, the performance of DAG-MLP for
each individual setting can be improved considerably, for example in the GP setting. Since
such hyperparameter tuning is not the main focus of this work, we fix a reasonable λ for all
settings (see Appendix 3.5.4 for more discussion on runtime and hyperparameters).

Figure 3.2 shows the SHD compared with CAM. We first observe that DAG-MLP outper-
forms CAM in multiple index models and MLP models, on the other hand, CAM achieves
better accuracy on additive GP and the full GP setting. Recall that the CAM algorithm
involves three steps: 1) Preliminary neighborhood search (PNS), 2) Order search by greedy
optimization of the likelihood, and 3) Edge pruning. By comparison, our methods effectively

41

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

15

20

25

30

0 25 50 75 100

Number of neurons

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)
n ● ●200 1000

Figure 3.3: SHD (lower is better) with varying hidden layer size in DAG-MLP.

only perform the second step, and can easily be pre- and post-processed with the first (PNS)
and third (edge pruning) steps. To further investigate the efficacy of these additional steps, we
applied both preliminary neighborhood selection and edge pruning to DAG-MLP and DAG-Sob
on additive GP and GP settings, denoted as DAG-MLP++ and DAG-Sob++. Noticeably, the
output from PNS simply translates to a set of constraints in the form of θj = 0 that can be
easily incorporated into the L-BFGS-B algorithm for (3.17), demonstrating the flexibility of
the proposed approach. The performance improves in both settings, matching or improving
upon CAM.

3.5.2 Sensitivity to number of hidden units

We also investigated the effect of number of hidden units in the DAG-MLP estimate. It is
well-known that as the size of the hidden layer increases, the functions representable by an
MLP become more flexible. On the other hand, larger networks require more samples to
estimate the parameters. Indeed, Figure 3.3 confirms this intuition. We plot the SHD with
varying number of hidden units ranging from zero (i.e. linear function) to 100 units, using
n = 1000 and n = 200 samples generated from the additive GP model on SF2 graph with
d = 20 nodes. One can first observe a sharp phase transition between zero and very few
hidden units, which suggests the power of nonlinearity. Moreover, as the number of hidden
units increases to 20, the performance for both n = 1000 and n = 200 steadily improves,
in which case the increased flexibility brings benefit. However, as we further increase the
number of hidden units, while SHD for n = 1000 remains similar, the SHD for n = 200
deteriorates, hinting at the lack of samples to take advantage of the increased flexibility.

3.5.3 Real data

Finally, we evaluated DAG-MLP on a real dataset from Sachs et al. (2005) that is commonly
used as a benchmark as it comes with a consensus network that is accepted by the biological

42

DAG-MLP DAG-Sob FGS Linear GNN GSGES

d = 20 92.12 ± 22.51 62.90 ± 16.83 0.55 ± 0.43 10.95 ± 4.52 498.32 ± 43.72 1547.42 ± 109.83
d = 40 282.64 ± 67.46 321.88 ± 57.33 0.59 ± 0.17 43.15 ± 12.43 706.35 ± 64.49 6379.98 ± 359.67

Table 3.1: Runtime (in seconds) of various algorithms on ER2 graph with n = 1000 samples.

community. The dataset consists of n = 7466 continuous measurements of expression levels
of proteins and phospholipids in human immune system cells for d = 11 cell types. We report
an SHD of 16 with 13 edges estimated by DAG-MLP. In comparison, NOTEARS predicts 16
edges with SHD of 22 and GNN predicts 18 edges that attains SHD of 19. (Due to the large
number of samples, we could not run GSGES on this dataset.) Among the 13 edges predicted
by DAG-MLP, 7 edges agree with the consensus network: raf → mek, mek → erk, PLCg →
PIP2, PIP3 → PLCg, PIP3 → PIP2, PKC → mek, PKC → jnk; and 3 edges are predicted
but in a reversed direction: raf ← PKC, akt ← erk, p38 ← PKC. Among the true positives,
3 edges are not found by other methods: mek → erk, PIP3 → PLCg, PKC → mek.

3.5.4 Additional results

Full comparison We show {SHD, FDR, TPR, FPR} results on all {ER1, ER2, ER4, SF1,
SF2, SF4} graphs in Figure 3.4, 3.5, 3.6, 3.7 respectively. Similarly, see Figure 3.8, 3.9, 3.10,
3.11 for full comparison with CAM. As in Figure 3.1, each row is a random graph model,
each column is a type of SEM. Overall DAG-MLP has low FDR/FPR and high TPR, and
same for DAG-Sob on additive GP. Also observe that in most settings GNN has low FDR as
well as low TPR, which is a consequence of only predicting a small number of edges.

Runtime comparison Table 3.1 contains runtime comparison of different algorithms
on ER2 graph with n = 1000 samples. Recall that the kernel-based approach of GSGES
comes with a O(n3) computational complexity, whereas DAG-MLP and DAG-Sob has O(n)
dependency on n. This can be confirmed from the table, which shows GSGES has a significantly
longer runtime.

Comments on hyperparameter tuning The experiments presented in this work were
conducted under a fixed (and therefore suboptimal) value of λ and weight threshold across all
graph types, sparsity levels, and SEM types, despite the fact that each configuration may prefer
different regularization strengths. Indeed, we observe substantially improved performance
by choosing different values of hyperparameters in some settings. As our focus is not on
attaining the best possible accuracy in all settings by carefully tuning the hyperparameters,
we omit these results in the main text and only include here as a supplement. For instance,
for ER4 graph with d = 40 variables and n = 200 samples, when the SEM is additive GP
and MLP, setting λ = 0.03 and threshold = 0.5 gives results summarized in Table 3.2.

43

SEM Method SHD FDR TPR FPR Predicted #

Additive-GP DAG-MLP 124.3 ± 6.65 0.30 ± 0.07 0.35 ± 0.04 0.04 ± 0.01 81.70 ± 10.49
GSGES 121.3 ± 5.02 0.36 ± 0.05 0.28 ± 0.03 0.04 ± 0.00 69.30 ± 5.01

MLP DAG-MLP 88.40 ± 11.29 0.18 ± 0.08 0.57 ± 0.06 0.03 ± 0.02 111.70 ± 15.97
GSGES 121.60 ± 11.95 0.33 ± 0.09 0.33 ± 0.06 0.04 ± 0.01 77.10 ± 7.13

Table 3.2: ER4, d = 40, n = 200 with λ = 0.03 and threshold = 0.5.

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●
●

●●

●

●

●●
●
●

●

●

●

●

●●

●
●

●●
●
●

●

●

●●

●

●

●

●

●●

●●

●

●
●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●
●
●●

●
●

●

●
●●

●

●

●

●

●●

●
●

●●
●●

●

●

●
●
●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●●
●
●
●●

●●

●

●

●
●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●●
●
●
●
●

●●

●

●

●
●

●●

●

●

●

●

●●
●
●
●●

●●
●

●

●●

●●

●

●

●
●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0
10
20
30
40

0

25

50

75

0

50

100

150

0
10
20
30
40

0
20
40
60

0

50

100

150

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

●●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●
●●

●
●

●

●

●●

●

●
●

●

●●

●●
●●●●

●
●
●
●●
●

●

●

●

●
●●

●
●
●
●●
●

●

●

●
●●
●

●●

●

●●
●

●●
●●●
●

●
●

●
●●

●

●
●
●

●

●

●

●
●
●●●
●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●
●

●

●
●
●

●

●

●
●
●●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●●
●●

●

●

●●
●
●

●

●

●

●●●

●

●

●

●●●

●

●

●●
●●

●

●

●
●
●●

●

●

●
●●
●

●

●

●
●●●

●

●

●●●●

●

●

●
●●●

●

●

●
●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●
●●
●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●
●

●●●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●
●
●

●

●

●
●●●

●●
●

●
●●

●
●

●

●

●●

●
●
●

●

●
●

●
●●
●
●●

●
●●

●

●●

●●
●

●

●
●

●●●●●●

●●
●
●
●●

●●
●
●
●●

●●
●
●
●●

●
●●●
●●

●

●
●

●

●
●

●●●●●●

●●●
●
●●

●

●
●
●●●

●●●●●●

●●●●●●

●
●●
●
●●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

10
20
30
40
50

25

50

75

0
50

100
150
200

10
20
30
40
50

20
40
60
80

0
40
80

120

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

25

50

75

10 20 30 40

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

method
●

●

●

●

●

●

FGS

GNN

GS−GES

NOTEARS

DAG−MLP

DAG−Sob

Figure 3.4: Structure recovery measured by SHD (lower is better) to ground truth.

3.6 Discussion

We present a framework for score-based learning of sparse directed acyclic graphical models
that subsumes many popular parametric, semiparametric, and nonparametric models as
special cases. The key technical device is a notion of nonparametric acyclicity that leverages
partial derivatives in the algebraic characterization of DAGs. With a suitable choice of the
approximation family, the estimation problem becomes a finite-dimensional differentiable
program that can be solved by standard optimization algorithms. The resulting continuous
optimization algorithm updates the entire graph (i.e. all edges simultaneously) in each
iteration using global information about the current state of the network, as opposed to
traditional local search methods that update one edge at a time based on local information.
Notably, our approach is generally more efficient and more accurate than existing approaches,
despite relying on generic algorithms. This out-of-the-box performance is desirable, especially
when noting that future improvements and specializations can be expected to improve the
approach substantially.

We would like to report a practical issue as well: When choosing MLP as the approximation
class, it is possible that even if the k-th column of the first layer A(1) is close to zero, the
subsequent layers of MLP can be highly non-smooth to the extent that the dependence
between xk and f(x) is amplified away from zero. Therefore in practice it is often desired to

44

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●
●
●

●

●

●
●

●
●

●

●
●
●

●

●

●●

●● ●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0.0
0.2
0.4
0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0
0.2
0.4
0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

d (Number of nodes)

Fa
ls

e
di

sc
ov

er
y

ra
te

 (
F

D
R

)

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●

●

●●

●●
●

●

●
●

●

●●
●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0.0
0.2
0.4
0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0
0.2
0.4
0.6
0.8

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

d (Number of nodes)

Fa
ls

e
di

sc
ov

er
y

ra
te

 (
F

D
R

)

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1

0.2

0.3

0.4

0.5

10 20 30 40

d (Number of nodes)

Fa
ls

e
di

sc
ov

er
y

ra
te

 (
F

D
R

)

method
●

●

●

●

●

●

FGS

GNN

GS−GES

NOTEARS

DAG−MLP

DAG−Sob

Figure 3.5: Structure recovery measured by FDR (lower is better) to ground truth.

restrict the function class further, for instance by restricting the depth of MLP to be small,
or having strong regularization parameters.

An interesting direction for future work is to study the nonconvex landscape of (3.16)
in order to provide rigorous guarantees on the optimality of the solutions found by our
approach. It would also be interesting to study alternative loss functions (e.g. the maximum
mean discrepancy loss as in (Goudet et al., 2018)) as well as more specialized optimization
algorithms for solving (3.16).

45

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●
●

●●

●

●

●
●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0.25
0.50
0.75
1.00
1.25

0.25
0.50
0.75

0.00
0.25
0.50
0.75

0.25
0.50
0.75

0.00

0.25

0.50

0.75

0.00
0.25
0.50
0.75

d (Number of nodes)

Tr
ue

 p
os

iti
ve

 r
at

e
(T

P
R

)

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●●●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●
●

● ●

●

●●
●

●
●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●●

●●

●

●

●●

●
●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●●

●

●●

●

●●

●●

●

●

●
●

●●
●

●

●●

●●
●

●

●●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0.25

0.50

0.75

0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.0
0.2
0.4
0.6
0.8

d (Number of nodes)

Tr
ue

 p
os

iti
ve

 r
at

e
(T

P
R

)
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.2

0.4

0.6

10 20 30 40

d (Number of nodes)

Tr
ue

 p
os

iti
ve

 r
at

e
(T

P
R

)

method
●

●

●

●

●

●

FGS

GNN

GS−GES

NOTEARS

DAG−MLP

DAG−Sob

Figure 3.6: Structure recovery measured by TPR (higher is better) to ground truth.

●

●
●

●

●
●

●●
●
●

●●
●●●
●
●●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●
●
●

●
●

●
●
●●●●

●
●
●

●

●
● ●●

●

●

●● ●●●
●

●●

●
●

●

●

●
●

●●●

●

●
●

●
●●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●
●
●

●

●

●
●

●
● ●

●●
●

●
● ●●●

●
●●

●

●

●

●

●

●

●

●●

●

●

● ●
●●
●
●
●

●

●●

●

●

●

●
●●
●
●● ●●●●●●

●

●

●
●

●●
●
●
●●
●●

●
●●
●
●●

●

●

●
●

●

● ●

●
●
●

●
● ●

●●
●
●●

●

●

●

●

●

●

●

●
●
●

●
● ●

●●
●
●●

●

●

●

●●

●

●

●

●

●●●
●
●
●
●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●●●●● ●●●●●●

●

●

●

●
●

●

●

●

●

●

●●
●
●
●
●
●●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●●
●
●

●

●

●

●●
●

●

●

●
●

●

●

●
●●●●
●

●
●
●

●

●● ●●●
●
●● ●●●●●●

●
●
●

●

●
● ●●●

●

●● ●●●●●●

●
●
●

●

●
●

●●●●●● ●●●●●●

●●●
●
●● ●●●

●
●● ●●●●●●

●
●●

●

●● ●●●
●
●● ●●●●●●

●
●
●

●

●● ●●●●●● ●●●●●●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0.0

0.1

0.2

0.3

0.0
0.1
0.2
0.3
0.4

0.0
0.5
1.0
1.5
2.0

0.0

0.1

0.2

0.3

0.0
0.1
0.2
0.3
0.4

0.0
0.2
0.4
0.6

d (Number of nodes)

Fa
ls

e
po

si
tiv

e
ra

te
 (

F
P

R
)

●●

●

●

●●

●
●
●●

●●
●●
●
●
●●

●

●

●

●

●
●

●●●
●

●●
●●
●●●●

●

●

●

●

●
●

●

●

●●●● ●

●

●●●●

●

●
●●

●●

●
●●●

●●

●●
●●●●

●

●

●
●

●
●

●
●
●●

●●
●●●
●
●●

●

●
●

●

●●
●

●

●

●

●●
●

●

●●●
●

●

●

●
●

●
●

●
●
●
●

●●

●●

●
●
●●

●

●

●

●

●
●

●

●
●

●

●●

●
●
●
●
●●

●

●●

●

●
●

●●
●●●●

●●
●●●●

●

●

●

●

●●

●
●●●
●●

●●
●
●
●●

●

●

●

●
●●

●

●●
●
●●

●
●●●●●

●

●

●
●

●
●

●

●●●
●●

●●

●●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●

●

●

●

●

●●

●
●
●●●
● ●

●

●●●●

●
●

●

●

●

●

●●

●

●●
●

●●●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●●
●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●●●
●

●

●●
●

●●

●
●●
●

●●

●●
●
●
●●

●

●
●

●

●●

●
●●
●

●●
●
●●
●
●●

●●

●

●

●● ●●●●●● ●●●●●●

●

●●●
●●

●
●●
●
●●

●
●●●●●

●

●●
●

●●

●

●●
●
●●

●
●●
●
●●

●

●

●

●

●●

●
●●●●●

●
●●●●●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0.0

0.1

0.2

0.3

0.0
0.1
0.2
0.3
0.4

0.0
0.5
1.0
1.5
2.0

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4

0.0
0.1
0.2
0.3
0.4
0.5

d (Number of nodes)

Fa
ls

e
po

si
tiv

e
ra

te
 (

F
P

R
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

0.0

0.1

0.2

0.3

0.4

10 20 30 40

d (Number of nodes)

Fa
ls

e
po

si
tiv

e
ra

te
 (

F
P

R
)

method
●

●

●

●

●

●

FGS

GNN

GS−GES

NOTEARS

DAG−MLP

DAG−Sob

Figure 3.7: Structure recovery measured by FPR (lower is better) to ground truth.

46

●
●●

●● ●●

●

●
●

●

●

●

●
●

●●●

●●
●●
●

●● ●

●
●

●
●

●●●
●●

●
●●

●
●

●

●●

●

●

●
●●

●
●

●

●
●

●●

●

●
●

●●

●
●●

●●

●

●●

●
●

●

●
●

●

●

●●●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●
●
●

●●

●

●

●

●●

●●●

●
●

●●
●

●●

●
●

●

●●

●●●
●●

●●●
●●

●
●
●

●●

●●●
●●

●●
●

●●

●

●
●

●●

●●●
●●

●
●●
●●

●
●
●

●●

●●●
●●

●●●
●●

●●●
●●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0
10
20
30
40

0

25

50

75

0

50

100

150

0

10

20

30

0

20

40

60

0

50

100

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

●●●

●●
●
●
●

●
●

●

●

●

●

●

●
●●

●●
●
●
●

●
●

●

●

●

●

●

●●●
●
●

●
●●

●
● ●

●
●

●

●

●●●

●
●

●
●
●

●

●

●

●
●

●●

●
●●

●●

●

●●

●
●

●

●
●

●
●

●
●●

●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●
●●

●●●

●
●

●●
●

●
●

●●●●
●

●
●●

●
●

●●
●

●●

●●●●●

●●●●●

●●●
●●

●●●
●●

●●●

●
●

●●●

●

●

●●●●
●

●●●
●●

●●●

●

●

●●●●●

●●●●●

●●●

●
●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0
10
20
30
40
50

0

25

50

75

0
50

100
150
200

0
10
20
30
40
50

0
20
40
60
80

0

40

80

120

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

25

50

75

10 20 30 40

d (Number of nodes)

S
tr

uc
tu

ra
l H

am
m

in
g

di
st

an
ce

 (
S

H
D

)

method ● ● ● ● ●DAG−MLP DAG−Sob CAM DAG−MLP++ DAG−Sob++

Figure 3.8: Structure recovery measured by SHD (lower is better) to ground truth, compared
with CAM.

●

●
●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●
●

●
●

●

●
●

●
●

●
●●
●
●

●
●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●
●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●
●

●●

●

●●

●

●
●

●

●

●

● ●

●
●

●●

●

●

●
●

● ●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●

●
●
●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

d (Number of nodes)

Fa
ls

e
di

sc
ov

er
y

ra
te

 (
F

D
R

)

●

●●

●

●
●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●
●●

●
●

●
●●

●

●

●
●●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

● ●
●●

●●

●

●●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

● ●

●●

●●

●
●●

●

●

●

●

●

●
●

●

●●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0
0.2
0.4
0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

d (Number of nodes)

Fa
ls

e
di

sc
ov

er
y

ra
te

 (
F

D
R

)

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

0.5

10 20 30 40

d (Number of nodes)

Fa
ls

e
di

sc
ov

er
y

ra
te

 (
F

D
R

)

method ● ● ● ● ●DAG−MLP DAG−Sob CAM DAG−MLP++ DAG−Sob++

Figure 3.9: Structure recovery measured by FDR (lower is better) to ground truth, compared
with CAM.

47

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●
●

●

●
●
●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●●

●●

●

●

● ●●

●

●
●

●

●

●

●●

●●
●

●●
●
●
●

●●
●
●

●

●●

●
●
●

●
●

●●

●

●
●

●

●
●

●●

●

●●

●
●

●
●
●

●●
●
●
●

●●

●
●
●

●

●
●
●●

●
● ●●

●
●●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0.4
0.6
0.8
1.0

0.4

0.6

0.8

1.0

0.25

0.50

0.75

0.2

0.4

0.6

0.8

1.0

0.25

0.50

0.75

1.00

0.25

0.50

0.75

d (Number of nodes)

Tr
ue

 p
os

iti
ve

 r
at

e
(T

P
R

)

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●
●
●

●

●

●

●
●●
●

●

●
●

●

●

●

●
●

●

●

●

●
●●
●
● ●●

●●●
●●
●
●
●

●●
●

●

● ●

●●
●

●

●
●
●●

●

●
●
●
●

●

●

●●
●

●

●
●
●
●

●

●●
●●●

●●●●● ●●●●●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0.4

0.6

0.8

0.25

0.50

0.75

0.2
0.4
0.6
0.8

0.25

0.50

0.75

0.2
0.4
0.6
0.8

0.2
0.4
0.6
0.8

d (Number of nodes)

Tr
ue

 p
os

iti
ve

 r
at

e
(T

P
R

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.3

0.4

0.5

0.6

0.7

10 20 30 40

d (Number of nodes)

Tr
ue

 p
os

iti
ve

 r
at

e
(T

P
R

)

method ● ● ● ● ●DAG−MLP DAG−Sob CAM DAG−MLP++ DAG−Sob++

Figure 3.10: Structure recovery measured by TPR (higher is better) to ground truth, compared
with CAM.

●

●
●

●

●

●●●
●
●

●●●
●●

●

●
●

●

●

●●●

●●

●●●
●●

●

●●

●

●

●●●
●
●

●●●●
●

●

●
●

●

●

●

●●

●
●

●
●●●
●

●

●
●

●

●

●

●●
●● ●●●●

●

●

●●

●

● ●

●●
●● ●●●●

●

●

●

●

●

●

●
●
●
●

●

●

● ●

●

● ●●
●

●●

●
●●

● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●●
●

●

●

●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●
●

●

●

●

●
● ●

●●
●● ●●●●●

●

●●

●
●

●●●
●● ●●●●●

●
●

●●
●

●●●●● ●●●●●

●

●●

●

● ●
●●●●

●●●●●

●

●
●●
● ●

●●●● ●●●●●

●

●●

●
●

●●●●● ●●●●●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0.00
0.05
0.10
0.15
0.20

0.0
0.1
0.2
0.3
0.4

0.0
0.5
1.0
1.5
2.0

0.000
0.025
0.050
0.075
0.100

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

d (Number of nodes)

Fa
ls

e
po

si
tiv

e
ra

te
 (

F
P

R
)

●

●●

●
●

●
●●

●

●

●●●

●●

●

●
●

●

●

●
●●

●●

●●●

●
●

●
●●

●

●

●●●
●

●

●●●●

●

●

●●

●

●
●

●●

●

●

●●●

●
●

●

●

●

●

● ●

●●

●

●
●●●

●
●

●

●●

●

●

●
●●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●
●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●●●

●
●

●

●
●

●

●
●●●

●

●
●●●

●
●

●

●
●

●●

●●●●● ●●●●●

●

●

●

●

●
●
●
●

●

●
●●
●

●

●

●

●
●

●

● ●
●
●

●

● ●●●

●

●

●
●

●

●

●
●●●

●
● ●●●

●
●

Additive GP Index Model MLP GP

E
R

1
E

R
2

E
R

4
S

F
1

S
F

2
S

F
4

10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.3

0.0
0.5
1.0
1.5
2.0

0.00
0.03
0.06
0.09

0.00
0.05
0.10
0.15
0.20

0.0
0.1
0.2
0.3
0.4
0.5

d (Number of nodes)

Fa
ls

e
po

si
tiv

e
ra

te
 (

F
P

R
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

0.0

0.1

0.2

0.3

10 20 30 40

d (Number of nodes)

Fa
ls

e
po

si
tiv

e
ra

te
 (

F
P

R
)

method ● ● ● ● ●DAG−MLP DAG−Sob CAM DAG−MLP++ DAG−Sob++

Figure 3.11: Structure recovery measured by FPR (lower is better) to ground truth, compared
with CAM.

48

Chapter 4

Learning Non-Gaussian DAGs with
Continuous Optimization

So far we have discussed linear Bayesian networks and nonlinear Bayesian networks. In
this chapter, let’s zoom into a special subclass of linear Bayesian networks, namely the
linear non-Gaussian acyclic models (LiNGAM). Unlike general linear Bayesian networks
which typically can only identified up to Markov equivalence class, LiNGAM can be uniquely
identified from observations without assuming faithfulness as in PC (Spirtes and Glymour,
1991) or GES (Chickering, 2002). Because of this nice property, it has been extended to
many other scenarios such as latent variable models (Hoyer et al., 2008b), cyclic Bayesian
networks (Lacerda et al., 2008), and time series models (Hyvärinen et al., 2010).

In addition to the the identifiability result, Shimizu et al. (2006) introduces a two-step
algorithm ICA-LiNGAM that consistently recovers the true graph given infinite samples.
However, in practice, its performance with finite data can be far from being optimal. The
initial step, ICA (Hyvärinen et al., 2001) may suffer from multiple sources of error: 1)
statistical error from finite data; 2) suboptimality of local solution in nonconvex problems;
and 3) numerical error in iterative algorithms. As we discuss in detail below, the error in
ICA can potentially mislead the subsequent steps, resulting in suboptimal solution.

Motivated by the recent development in continuous optimization for DAG learning, we
explore a single-step optimization algorithm for the ICA-LiNGAM, and show that it has
certain advantages over the original two-step approach.

4.1 Our contributions

• We frame ICA-LiNGAM as a single continuous optimization problem, hence jointly
performing ICA and permutation search.

• This algorithm falls into the NOTEARS framework, requiring only minimal change.

• The proposed algorithm can be easily extended to have structural regularization (e.g.
sparsity) and can incorporate prior knowledge.

49

4.2 Background

We introduce some background on the non-Gaussian models and related literature.

4.2.1 Two variables: How to distinguish cause from effect?

The linear SEM for two variables (x, y) can be conveniently expressed in one line:

y = βx+ e (4.1)

where β is the weight coefficient on x and e is the noise term with an important property
x ⊥⊥ e. The problem of structure learning is then essentially reduced to distinguishing between
the two models x→ y and x← y, given i.i.d. samples (x, y) ∼ p(x, y).

Noticing the familiar linear regression form, one might conjecture that the correct regression
direction will lead to an estimate of the noise ê that is independent of the corresponding
input variable x. Indeed, this intuition holds true under non-Gaussianity assumption. More
precisely, if at most one of x and e is Gaussian, only in the true direction the regression
residual will be statistically independent of the input variable.

This can be more easily seen from examples. Figure 4.1 and Figure 4.2 plots two examples
with the same underlying graph: x → y. The only difference is that Figure 4.1 has non-
Gaussian x and e, whereas in Figure 4.2 both x and e are drawn from standard Gaussian
distribution. Notice that in any ground truth model, in any regression direction, the regression
residual is uncorrelated with the input variable by definition. However, in the non-Gaussian
case (Figure 4.1), the regression residual is independent of the input variable only in the
correct direction. For the incorrect direction, it is clear that the value of y is indicative of
the range of the residual ryx, hence they are statistically dependent. On the other hand,
recall that under Gaussianity, uncorrelatedness implies independence. Hence in the Gaussian
case (Figure 4.2), both directions will conclude that the residual is independent of the input,
making them indistinguishable from this standpoint.

4.2.2 Beyond two variables: Linear non-Gaussian acyclic model
(LiNGAM)

More generally, the linear SEM for d variables x ∈ Rd is given by:

x = Bx + e (4.2)

where B is the adjacency matrix1 of the underlying DAG, whose (j, i)-th entry βji represents
the coefficient from xi to xj , and importantly the noise variables e = (e1, . . . , ed) are mutually
independent.

1Note that we use matrix B to denote the adjacency matrix in this chapter instead of W in previous
chapters. Moreover the edge direction has changed from j → i to j ← i, i.e. B = WT . This change of
notation is to follow the convention in the ICA and LiNGAM literature.

50

(a) Scatter plot of (x, y) (b) Correct: x→ y (c) Incorrect: x← y

Figure 4.1: Data generated from linear SEM y = 1.2x + e, where x ∼ Uniform(−1, 1) and
e ∼ Uniform(−1, 1). In both regression directions, regression residual is uncorrelated with
the input variable. However, only the true direction has regression residual independent of
the input variable.

Rearranging the above equation, we can express the random variables x as a linear
transformation of independent noise terms e:

x = (I −B)−1e = Ae (4.3)

where A = (I − B)−1 is also known as the total effect matrix, whose (j, i)-th entry aji
represents the accumulated effect size of the noise variable ei to the random variable xj.

Notice that the system x = Ae forms an instance of the independent component analysis
(ICA) (Hyvärinen et al., 2001) model, if the noise terms follow non-Gaussian distributions.
Based on this observation, the identifiability of the linear non-Gaussian acyclic model
(LiNGAM) can be established:

Theorem 2 (Identifiability of LiNGAM (Shimizu et al., 2006)) If x follows linear
acyclic SEM (4.2) where at most one of the independent noise variables e = (e1, . . . , ed) is
Gaussian, then B is uniquely identifiable from the joint distribution p(x).

The identifiability result is a direct consequence of the identifiability of ICA (Hyvärinen
et al., 2001), which is in turn based on the Darmois-Skitovich theorem (Darmois, 1953;
Skitovich, 1953) on the characterization of independence of linear combinations of random
variables. Noticeably, it does not require faithfulness assumption as in many previous
methods (Spirtes and Glymour, 1991; Chickering, 2002).

Not only it is interesting from a theoretical perspective, the identifiability result also sug-
gests an ICA-based algorithm to recover the structure of B, known as ICA-LiNGAM (Shimizu
et al., 2006), described in Algorithm 3. The algorithm proceeds in two steps. First, given
samples x(1), . . .x(n), it estimates the mixing matrix Â (or equivalently the demixing matrix

51

(a) Scatter plot of (x, y) (b) Correct: x→ y (c) Incorrect: x← y

Figure 4.2: Data generated from linear SEM y = 1.2x+ e, where x ∼ N(0, 1) and e ∼ N(0, 1).
In both regression directions, regression residual is uncorrelated with the input variable.
However, by Gaussianity, both directions have residual independent of the input variable,
hence they are indistinguishable.

Algorithm 3 ICA-LiNGAM algorithm (Shimizu et al., 2006)

1. Estimate demixing matrix Ŵ = Â−1 for ICA model x = Ae.

2. Find the unique row permutation of Ŵ such that diag(perm(Ŵ)) 6= 0.

3. Rescale each row of Ŵ such that diag(scale(perm(Ŵ))) = I.

4. Return B̂ = I − scale(perm(Ŵ)).

Ŵ = Â−1) for the ICA model x = Ae. Since W = I −B by definition, one might be tempted
to directly estimate B by B̂ = I − Ŵ , however due to permutation and scaling indeterminacy
in ICA, W is only known up to row permutation and scaling. Fortunately, Shimizu et al.
(2006) shows that there is a unique row permutation of Ŵ such that all diagonal elements
are nonzero, which is necessary for B̂ to be a DAG. Hence in the second step we find such
permutation and corresponding row scaling of Ŵ , and finally estimate the adjacency matrix
B̂. This procedure is shown to be consistent in the population setting.

4.2.3 Practical issues with finite data

With finite data, however, each step above may suffer from statistical or numerical error.
Therefore in practice Algorithm 3 requires some modifications and additional steps in order
to be applicable. For an illustration, consider the following toy example with three variables:

52

Figure 4.3: Data generated from linear SEM x1 = e1, x2 = 1.2x1 + e2, x3 = −0.8x2 + e3,
where e1, e2, e3 ∼ Uniform(−1, 1).

x1 → x2 → x3, with ground truth adjacency matrix

B =




0 0 0
1.2 0 0
0 −0.8 0


 (4.4)

and each noise variable ej ∼ Uniform(−1, 1). We first simulate n = 1000 samples from the
ground truth model, shown in Figure 4.3.

A typical FastICA (Hyvärinen et al., 2001) estimate of the demixing matrix is2

Ŵ =



−0.0548 −0.0001 −0.0001
0.0031 −0.046 −0.0564
−0.0663 0.0532 −0.0009


 (4.5)

Notice that Ŵ contains many small values close to zero. This is not only due to numerical
error in the optimization algorithm but also because of the inevitable statistical error when
learning with finite data. Since the matrix is fully dense, any row permutation will lead
to nonzero diagonal. To resolve this issue, in practice ICA-LiNGAM performs bipartite

2Note that due to nonconvexity of ICA and randomness of the optimization algorithm, different runs may
lead to different results. Nonetheless, in most cases they are just row permutations of the matrix shown here.

53

matching using for instance the Hungarian algorithm to find the row permutation that leads
to the most significantly nonzero diagonals:

min
all row permutations

∑

j

1∣∣∣[perm(Ŵ)]jj

∣∣∣
(4.6)

In this example, the best row permutation is given by π = (1, 3, 2), i.e. switching the last
two rows:

perm(Ŵ) =



−0.0548 −0.0001 −0.0001
−0.0663 0.0532 −0.0009
0.0031 −0.046 −0.0564


 (4.7)

We can now obtain unit diagonals by rescaling each row by its diagonal entry:

scale(perm(Ŵ)) =




1 0.0024 0.0026
−1.2457 1 −0.0164
−0.0542 0.8145 1


 (4.8)

The initial estimate for the adjacency matrix is:

B̂ = I − scale(perm(Ŵ)) =




0 −0.0024 −0.0026
1.2457 0 0.0164
0.0542 −0.8145 0


 (4.9)

However, notice that even though the estimate B̂ appears to be close to the ground truth
B in Frobenius norm, however the support of B̂ is far from being a DAG, due to many small
entries in B̂. Hence, in practice ICA-LiNGAM further prunes edges with small weights until
B̂ becomes a DAG. In this example, the entries in the upper triangular part of B̂ can be
removed, which leads to a DAG estimate:

threshold(B̂) =




0 0 0
1.2457 0 0
0.0542 −0.8145 0


 (4.10)

Although the thresholded estimate of the adjacency matrix satisfies the acyclicity, it still
contains an insignificant edge x1 → x3, which is absent in the true model. To further prune
out these edges, in practice ICA-LiNGAM adopts an additional step of significance test, e.g.
the Wald test, for each estimated edge. The final pruned estimate is

prune(threshold(B̂)) =




0 0 0
1.2457 0 0

0 −0.8145 0


 (4.11)

which correctly recovers the support of the ground truth B, and the recovered parameters
are close to the true values.

54

As we have seen, even with n = 1000 samples, which is typically considered sufficient
for d = 3 variables, many practical modifications and additional steps are required to make
the algorithm applicable. Even worse is when the sample size is small, in which case the
statistical error in ICA may be so large that later steps cannot correct from it. For instance,
with smaller sample size n = 100, a bad estimate given by FastICA is3

Ŵn=100 =



−0.1431 −0.0253 0.0131
0.1128 −0.204 −0.1276
−0.198 0.0287 −0.1183


 (4.12)

which leads to an estimate of the adjacency matrix:

B̂n=100 =




0 0 0
0.5529 0 −0.6255
−1.6735 0 0


 (4.13)

Clearly, this estimate with n = 100 is significantly different from the ground truth, and
more importantly such error in ICA cannot be easily corrected by subsequent pruning and
significance tests as in the large sample case.

Similar observation have been made for other two-step methods in the literature (Margaritis
and Thrun, 1999; Tsamardinos et al., 2006; Schmidt et al., 2007; Pellet and Elisseeff, 2008).
Albeit not based on ICA, these methods first estimates a superstructure such as a moralized
graph or a skeleton, and then prune or orient the initial estimate. It has been argued (Huang
et al., 2013; Xiang and Kim, 2013) that these methods are prone to error, since they are
built on the assumption that the output of the early steps does not mislead future steps. In
practice, this is often violated due to inevitable statistical error from finite data, let alone
potential suboptimality of the local solution in nonconvex problems.

4.2.4 Previous works

It is not surprising that constraint-based learning methods such as PC (Spirtes and Glymour,
1991) output a Markov equivalence class – the set of graphs that satisfy the same conditional
independence relations, since the algorithm is based on detecting conditional independencies
in the data, which also explains the necessity of the faithfulness assumption. Many score-based
learning methods like GES (Chickering, 2002) also work with Markov equivalence class under
similar assumption, albeit for a seemingly different reason: they optimize score-equivalent
functions that attain the same value for all graphs in the Markov equivalence class.

A number of studies have been on reducing the output space while relaxing the assumptions.
One salient line of works started from the discovery of LiNGAM (Shimizu et al., 2006), where
a unique DAG can be identified from observations without making faithfulness assumption. At
the core of this result is the identifiability of ICA (Hyvärinen et al., 2001), which in turn follows

3This is by no means a typical case. Indeed, there are many more correct ICA estimates than this failure
case. However, we would like to point out such error can mislead subsequent steps of ICA-LiNGAM without
being corrected. In contrast, our method presented later is able to correctly estimate B on the same dataset.

55

from the Darmois-Skitovich theorem (Darmois, 1953; Skitovich, 1953) on the independence of
linear combinations of random variables. The identifiability result of LiNGAM paved road for
many subsequent works on various extensions, including latent variable models (Hoyer et al.,
2008b), cyclic models (Lacerda et al., 2008), and time series models (Hyvärinen et al., 2010),
just to name a few. By solving the original LiNGAM problem, we would like to improve
these subsequent extensions as well.

On the algorithmic side, motivated by the ICA theory, the original discovery algorithm for
LiNGAM (Shimizu et al., 2006) employs ICA as a subroutine. Later, various algorithms that
do not rely on ICA have been proposed for LiNGAM. For instance, DirectLiNGAM (Shimizu
et al., 2011) iteratively finds the root node in the DAG by performing regression for all variable
pairs and then independence test between residuals and the input variable, in a similar manner
the Kanh’s algorithm work for topological sort. Pairwise DirectLiNGAM (Hyvärinen and
Smith, 2013) follows the same approach, but identifies the root by pairwise likelihood ratio
instead of independence test. Note that both DirectLiNGAM and Pairwise DirectLiNGAM
are multi-step methods, in a sense that a mistake in the early root-finding step can significantly
affect later steps without being able to be corrected. We focus on ICA-LiNGAM since it can
be converted into a single optimization program as we show below.

4.3 Single-step ICA-LiNGAM

In this section, we describe how to solve ICA-LiNGAM in a single step.

4.3.1 Maximum likelihood for ICA

For completeness, let us first consider the vanilla ICA model x = Ae. Let p̃j(e) be the density
of the j-th independent source, and denote W = A−1 as the demixing matrix. Since the data
is a linear transformation of independent sources, the ICA negative log-likelihood for a single
data point x can be written as

LICA(W ; x) := − log p(x) = − log p(e) + log |detA| (4.14)

= − log
d∏

j=1

p̃j(ej) + log |detA| (4.15)

=
d∑

j=1

− log p̃j([Wx]j)− log |detW | (4.16)

whose gradient is given by

∇LICA(W ; x) = −g(Wx)xT −W−T (4.17)

56

where g(s) = (g1(sj), . . . , gd(sd)) is a vector-valued function with elements defined as the
sensitivity of the log-density:

gj(s) := (log p̃j(s))
′ =

p̃′j(s)

p̃j(s)
(4.18)

In order to perform gradient-based optimization, we need to choose the form of the
function gj, which in turn defines our choice of the independent source distribution. On the
other hand, it has been shown that the maximum likelihood estimate is locally consistent
even in the presence of small misspecification error on p̃j (Amari et al., 1997). Hence even
without knowing the exact form of the true p̃j , approximate distribution families can be used
for gj and p̃j , as long as the model and the truth are both supergaussian or both subgaussian.

A classical choice for supergaussian distribution is given by

gj(s) = −2 tanh(s) (4.19)

log p̃j(s) = −2 log cosh(s) + constant (4.20)

The corresponding distribution p̃j is also known as the hyperbolic secant, which is a super-
gaussian distribution. It is also used in the original Infomax (Bell and Sejnowski, 1995) for
blind source separation.

Another choice of gj leads to a subgaussian distribution:

gj(s) = tanh(s)− s (4.21)

log p̃j(s) = log cosh(s)− s2

2
+ constant (4.22)

We refer to Hyvärinen et al. (2001) for a more extensive discussion on the choice of
independent component distribution and furthermore how to adaptively decide on the
approximation family.

4.3.2 Maximum likelihood for LiNGAM

Having established the likelihood of ICA, we can write down the negative log-likelihood of
LiNGAM w.r.t. B:

L(B; x) := − log p(x;B) =
d∑

j=1

− log p̃j(xj − βTj x)− log |det(I −B)| (4.23)

= 〈− log p̃(x−Bx),1〉 − log |det(I −B)| (4.24)

where 1 is the vector of all ones. The gradient is given by

∇L(B; x) = g(x−Bx)xT + (I −B)−T (4.25)

The choice of the density p̃j often assumes unit variance of independent sources in ICA,
which does not hold for the noise variable ej for general SEM. Therefore a normalized

57

likelihood for standardized noise variable ej/σj is preferable, as noted in (Hyvärinen et al.,
2010):

L̃(B; x) =
d∑

j=1

− log p̃j

(xj − βTj x

σ̂j

)
+ log σ̂j − log |det(I −B)| (4.26)

where σ2
j = Var(ej) and its empirical version is σ̂2

j = 1
n

∑n
i=1(xj − βTj x)2.

Let X ∈ Rn×d be the collection of n samples. Using the smooth characterization of
DAGs (Zheng et al., 2018), we can express the maximum likelihood estimation problem of
ICA-LiNGAM (left) as a single optimization program (right):

min
B

L̃(B;X)

s.t. G(B) ∈ DAGs
⇐⇒

min
B

L̃(B;X)

s.t. h(B) = 0
(4.27)

4.3.3 Optimization

The original Infomax (Bell and Sejnowski, 1995) for ICA uses stochastic gradient descent for
the objective (4.16). Over the years, a number of more advanced algorithms for ICA have
been proposed. For instance, instead of performing gradient descent in the Euclidean space of
parameters, one can perform steepest descent in the Fisher metric. The resulting algorithm,
namely natural gradient descent, is known to converge faster than ordinary gradient descent.
Another algorithm is the FastICA (Hyvärinen et al., 2001), which is regarded as one of the
state-of-the-art algorithms for ICA. It can be viewed as a fixed-point update for the maximum
likelihood estimate.

In maximum likelihood for ICA-LiNGAM, however, we would like to solve a constrained
optimization problem. Since the augmented Lagrangian algorithm solves a sequence of
regularized subproblem, it is not straightforward to directly apply advanced ICA algorithms
in our framework. Nonetheless, we demonstrate that the simple L-BFGS algorithm that uses
the Euclidean gradient works well enough in practice. We leave the improvement on the
optimization algorithm for future work.

4.4 Experiments

In this section, we demonstrate some experimental results on simulated dataset. Each
experiment is repeated for 20 random instantiations, and we report the box plot as the
aggregated result.

Dataset We simulate the data from the LiNGAM model x = Bx + e. Two types of
random graph models are used: Erdös-Rényi(ER) and scale-free (SF). In ER graphs, edges
are instantiated independently with the same probability p. The SF graph is generated
according to the preferential attachment process in (Barabási and Albert, 1999). Given the
graph structure, the edge weights βji are drawn uniformly from (−2,−0.5) ∪ (0.5, 2). We use
four different noise non-Gaussian distributions:

58

• Exponential distribution: ej ∼ Exp(1)

• Laplace distribution: ej ∼ Laplace(0, 1)

• Gumbel distribution: ej ∼ Gumbel(0, 1)

• Uniform distribution: ej ∼ Uniform(−1, 1)

All of the distributions are supergaussian, except for the last one which is subgaussian. For
each experiment, we simulated n = 50, 100, 200, 500, 1000 samples of x.

Proposed method If not explicitly mentioned, we choose gj(s) = −2 tanh(s) as the
nonlinearity. The resulting algorithm is named NOTEARS-ICA. In all settings, we use an `1
regularization with parameter λ1 = 0.1.

Baselines We use ICA-LiNGAM (Shimizu et al., 2006) and DirectLiNGAM (Shimizu et al.,
2011) for comparison. In both methods, we use the default hyperparameter settings if there
is any.
• ICA-LiNGAM is the original LiNGAM method that uses ICA to identify independent

noise terms. We use the MATLAB implementation from the author’s website: https:
//sites.google.com/site/sshimizu06/lingam.

• DirectLiNGAM is a new algorithm for LiNGAM that is based on simple regression and
independence test instead of ICA. The implementation is available from the author’s
website: https://sites.google.com/site/sshimizu06/Dlingamcode.

Metrics We evaluate the structure recovery using two common graph metric: structural
Hamming distance (SHD) and false discovery rate (FDR) against the ground truth graph.
SHD is the total number of edge addition, removal, and reversals needed to convert one
graph to another. FDR is defined as the fraction of incorrect edges among the predicted ones,
where incorrect edges include extra edges and edges with opposite direction.

59

https://sites.google.com/site/sshimizu06/lingam
https://sites.google.com/site/sshimizu06/lingam
https://sites.google.com/site/sshimizu06/Dlingamcode

Figure 4.4: Structure recovery under different non-Gaussian noise distributions: Exponential,
Laplace, and Gumbel. Lower SHD and FDR are better. The proposed NOTEARS-ICA
(green) performs decently in general, especially when the sample size is small.

4.4.1 Structure recovery under different noise distributions

Figure 4.4 shows structure recovery result as the sample size increases from n = 50 to
n = 1000, under different non-Gaussian noise distributions. In this experiment, we simulated
ER graph with d = 20 variables and s0 = 40 edges.

In all figures, the general trend is clear: the proposed NOTEARS-ICA performs well
compared to baseline methods, especially when the sample size n is small, for instance when
n = 50 or n = 100. This clearly shows the advantage of jointly solving both ICA and
permutation search at the same time. By contrast, for both Exponential and Laplace noise
ICA-LiNGAM is less accurate at the beginning but achieves good accuracy with sufficient

60

Figure 4.5: Structure recovery with different graph types: top row is ER graph with 20 edges,
and bottom row is scale-free graph with 40 edges. Lower SHD and FDR are better. The
proposed NOTEARS-ICA (green) performs stably for different graph types.

samples, although for Gumbel noise the improvement over increased sample size is not
significant. On the other hand, DirectLiNGAM performs the best when supplied with large
samples, however it also suffers the most when sample size is small, e.g. n = 50. We conjecture
this is because the sensitivity of independence test with insufficient data. We would also
like to point out that this shows a single nonlinearity gj(s) = −2 tanh(s) for approximate
supergaussian family can successfully adapt to different types of non-Gaussian distributions.
Overall, the proposed method exhibits nice performance especially with small sample size.

4.4.2 Structure recovery on different graph types

Figure 4.5 contains similar results but with different random graphs: sparse graphs and
scale-free graphs. Both graphs use ej ∼ Exp(1) as the non-Gaussian noise distribution.

In the top row we simulated a sparse ER graph with d = 20 variables and s0 = 20
edges. We can observe that ICA-LiNGAM performance gradually improves as the sample
size increases, however does not reach the ground truth even with n = 1000 samples. On the
other hand, DirectLiNGAM can reach near optimal SHD against the ground truth in large
sample regime. However, its performance suffer significantly when the sample size is small,
e.g. when n = 50. In contrast, the proposed NOTEARS-ICA performs stably for all sample
sizes.

61

Figure 4.6: Structure recovery with misspecified noise distribution. Lower SHD and FDR
are better. True noise follows Uniform distribution, which is subgaussian. Both baselines
(blue and orange) perform well given enough samples. However, when the proposed model
incorrectly assumes supergaussian noise (green), the performance degrades substantially.
Good accuracy is achieved if we use subgaussian noise model (red) instead.

The bottom row shows results for scale-free graphs, with d = 20 variables and s0 = 40
edges. This result can be contrasted with the top row in Figure 4.4, as they have the same
graph density. Both ICA-LiNGAM and DirectLiNGAM perform worse when n = 50 than in
the ER graph, whereas NOTEARS-ICA still performs decently in this setting. As the sample
size increases, DirectLiNGAM quickly becomes accurate, and ICA-LiNGAM catches up at
n = 500. Across all sample sizes, the proposed NOTEARS-ICA performs stably well.

4.4.3 Model misspecification: supergaussian vs subgaussian

We report a failure case in Figure 4.6. As before, we simulated ER graph with d = 20
and s0 = 40 edges, however with a subgaussian noise distribution ej ∼ Uniform(−1, 1). We
experiment with two versions of NOTEARS-ICA, one assumes supergaussian noise (4.19)
and the other assumes subgaussian noise (4.21).

We can first observe that both ICA-LiNGAM and DirectLiNGAM perform similar to
previous experiments with supergaussian noise. This is expected because 1) ICA-LiNGAM
often uses FastICA (Hyvärinen et al., 2001) algorithm as subroutine, which can adapt to
supergaussian or subgaussian independent component distributions; and 2) DirectLiNGAM
uses least squares regression and kernel-based nonparametric independence test, none of
which makes any parametric assumptions about the noise distribution.

On the other hand, when the proposed method NOTEARS-ICA assumes supergaussian
noise (4.19), the accuracy is substantially lower than other cases, and moreover does not
improve with increased sample size. By contrast, if the model correctly assumes subgaussian
noise (4.21), the structure recovery becomes accurate as before. To summarize, this shows
that the algorithm can be affected by model misspecification.

We note a potential solution here. As suggested in Hyvärinen et al. (2001), if the noise

62

distribution cannot be determined a priori, one can empirically test the stability quantity

Es[sgj(s)− g′j(s)] > 0 (4.28)

at each iteration, and change to the opposite distribution class if the sign flips. We leave it
as a future work to adaptively choose the noise distribution types.

4.5 Discussion

In this chapter we presented a continuous optimization approach for the linear non-Gaussian
SEM. This model class is interesting because the true graph can be uniquely identified
from the joint distribution, i.e. observational data. We showed that original procedure
of ICA followed by permutation-finding step can lead to unsatisfactory result due to the
propagation of error from the first step to subsequent steps, especially when the sample size
is small. Instead, we propose to perform joint optimization by expressing the steps in a
single optimization algorithm. Moreover, the new algorithm is in fact a special case of the
linear NOTEARS in Chapter 2, which makes implementation particularly straightforward.
Experiments suggest that the proposed joint optimization algorithm outperforms in most
cases, especially with fewer samples.

Aside from empirical performance, the proposed algorithm also has some advantages:
• It is easy to incorporate structure regularization such as the `1 penalty while respecting

the DAG structure of the underlying graph.

• It is easy to incorporate prior knowledge, for instance in the form of x1 6→ x2. These
“not-parent” constraints can be expressed as a box constraint 0 ≤ B21 ≤ 0, which can
be readily handled by numerical optimization algorithms such as L-BFGS-B Byrd et al.
(1995).

• It opens new possibilities in other more complicated model classes, such as latent
variable models, cyclic models, and time series.

Of course, the proposed algorithm has a number of limitations as well.
• The experiments are all using the linear non-Gaussian SEM with equal noise variance.

However, as we said before, this can be a restrictive setting. The normalized likelihood
L̃(B; x) makes gradient expression complicated for non-Gaussian p̃j , hence it remains a
challenge to address the non-equal noise variance case.

• There are a number of ICA algorithms proposed since (Bell and Sejnowski, 1995), most
noticeably the FastICA algorithm (Hyvärinen et al., 2001). In this work we only used
the original MLE (Bell and Sejnowski, 1995), but is is known in the ICA literature that
MLE alone does not have a good convergence property. Moreover, MLE has to choose
a distributional form for the noise density p̃j, which could be another disadvantage
compared to e.g. kurtosis minimization algorithm, which does not require distributional
assumption.

• This naturally leads to another issue of MLE, which is supergaussian vs subgaussian.
In the current work we simply prescribe one of the classes. Although stability theory

63

suggests minor misspecification of p̃j is okay within a class (Amari et al., 1997), it leads
to worse result if the class is wrong, as shown in Figure 4.6. Therefore there is a need
to adaptively choose between supergaussian and subgaussian distributions.

We expand the discussion on the possible extensions in the follows.

4.5.1 Latent variable models

All of the above presentation are based on the assumption that there is no unobserved
confounders. In practice, it is rarely safe to assume this is the case. Fortunately, there are
methods developed to deal with latent variables, for instance the FCI (Spirtes et al., 2000)
which is based on independence test as in PC but considers the possibility of unobserved
confounders when orienting the edges.

Later, Hoyer et al. (2008b) considered an extension of LiNGAM to hidden confounders,
and used overcomplete ICA to estimate the graph. In particular, suppose the full data
x̃ = (x1, . . . , xd) including latent variables follow a linear non-Gaussian SEM:

x̃ = B̃x̃ + e (4.29)

for a directed acyclic graph B̃. As usual, using the non-Gaussianity, we can cast the above
equation into an ICA:

x̃ = (I − B̃)−1e = Ãe (4.30)

where Ã is the total effect matrix that contains all variables. If we only focus on a subset of
[d] observed variables, then the resulting system is

x = Ae (4.31)

where A only contains the rows of Ã corresponding to the observed variables. To estimate
the graph, Hoyer et al. (2008b) uses overcomplete ICA to estimate an initial A. To find the
permutation, it simply enumerates all possible hidden and observed variable split, and for
each split, try to find a permutation and scaling that satisfies the condition.

We propose to avoid this permutation step by jointly optimizing overcomplete ICA and
permutation:

min
B

LOICA(B;X) (4.32)

s.t. h(block(B)) = 0 (4.33)

where LOICA is the objective for overcomplete ICA, and we force lower right block of B to
be a DAG. Promising objectives for the overcomplete ICA include the Reconstruction ICA
(RICA) (Le et al., 2011), and the likelihood-free overcomplete ICA (Ding et al., 2019). One
downside of this approach is that it requires to specify beforehand the number of hidden
variables.

64

4.5.2 Cyclic models

Even though this thesis is almost exclusively on how to enforce acyclicity, it is also helpful to
look back and examine the necessity of such constraint. Indeed, acyclicity accompanies neat
theoretical properties such as allowing for a topological order, and hence many polynomial
time algorithms can be developed. On the other hand, however, there are many real world
networks that exhibits feedback loops, such as brain connectivity, or even simply the supply-
demand relationship in economy. It turns out one can also establish notions of d-separation
and Markov equivalence on cyclic graphs Richardson (1996a,b), therefore it is not at all a
weird object to study.

While Richardson (1996a) extends the PC algorithm to cyclic graphs, Lacerda et al. (2008)
is the first to extend ICA-LiNGAM to cyclic graphs. In particular, the SEM is given by

x = Bx + e, (4.34)

where the noise terms e are mutually independent and non-Gaussian, with an important
distinction now that B does not necessarily represent a DAG. Instead, a weaker assumption
is imposed: B does not represent self-loops, i.e. diag(B) = 0.

Regardless of the acyclicity, thanks to the independence and non-Gaussianity, one can
still write the above SEM as an ICA instance:

x = (I −B)−1e = Ae (4.35)

for a mixing matrix A. However, problem occurs after obtaining Â (or equivalently Ŵ = Â−1).
The permutation step in ICA-LiNGAM entirely relies on the fact that there is a unique row
permutation such that perm(Ŵ) is a DAG. If there is no such restriction, how to find the
right permutation?

It turns out in the cyclic case all permutations that lead to zeroless diagonals are considered
“admissible”, which comprise a distribution-entailment equivalence class (Lacerda et al., 2008).
In the acyclic case, the admissible permutation is unique, however it is not unique anymore
for cyclic models. Therefore Lacerda et al. (2008) finds all permutations that has zeroless
diagonals, and then scale each row of Ŵ accordingly, thereby forming the equivalence class.
Lacerda et al. (2008) also describes a sufficient condition to further identify a single graph
from the equivalence class: if the cycles are disjoint, then there is at most one graph in the
equivalence class that is stable, i.e. the maximum cycle product is bounded below 1.

Another method based on ICA is from Sanchez-Romero et al. (2019), who proposes a
two-step algorithm: 1) estimate undirected graph with adaptive lasso; then 2) perform ICA
only on the free parameters selected by the previous step. It relies on the shrinkage estimate
of adaptive lasso to select the most stable solution.

We propose to solve a similar problem as in NOTEARS-ICA, with a change in the
constraint. Notice that the stability condition

g(B) = max
j∈[d]

max
cycle πjj

∏

(p,c)∈πjj

|βcp| < 1 (4.36)

65

is reminiscent of the acyclicity constraint

h(B) =
∑

j∈[d]

∑

cycle πjj

∏

(p,c)∈πjj

|βcp| = 0 (4.37)

with the only difference that the sum is replaced with maximum. To incorporate g(B) into
the continuous optimization framework, we can consider a “soft” version of the stability
condition:

g̃(B) = smax
j∈[d]

smax
cycle πjj

∏

(p,c)∈πjj

|βcp| < 1 (4.38)

where smax is the smooth max operation such as the log-sum-exp:

smax(a) = log
∑

i

exp(ai) (4.39)

Since log-sum-exp upper bounds the maximum function, it is valid to restrict g̃(B) < 1.

The proposed optimization algorithm is therefore

min
B

L̃(B;X) (4.40)

s.t. g̃(B) < 1 (4.41)

4.5.3 Time series

There are many time series model that relaxes the iid assumption in the general SEM. We
introduce one instance here.

Structural vector autoregressive model (SVAR) (Hyvärinen et al., 2010) extends LiNGAM
to time series by modeling both instantaneous and lagged effects in the vector autoregressive
(VAR) framework:

x(t) =
k∑

τ=0

Bτx(t− τ) + e(t) (4.42)

where k is the time delay, {Bτ} are the autoregressive parameters, and e(t) is the innovation
process. The difference to conventional VAR is that the system also contains B0, which
represents the instantaneous effect just as in an ordinary SEM.

In order to make the model identifiable, it makes a few assumptions similar to LiNGAM:

• The components of innovation process {ej(t)} are mutually independent of each other
and over time. Furthermore, they have non-Gaussian distributions.

• The instantaneous effect matrix B0 encodes an directed acyclic graph.

66

Define shorthand

Mτ := (I −B0)
−1Bτ (4.43)

W := I −B0 (4.44)

r(t) := x(t)−
k∑

τ=1

Mτx(t− τ) (4.45)

Then by moving the instantaneous effect on one side, we can recover a form similar to ICA:

Wr(t) = e(t) (4.46)

Hence one can write the (normalized) likelihood as

L̃({Bτ}; x) := − log p(x; {Bτ}) (4.47)

=
T∑

t=1

d∑

j=1

− log p̃j

(wT
j [x(t)−

∑k
τ=1Mτx(t− τ)]

σ̂j

)
+ log σ̂j − log |det(W)|

(4.48)

where σ̂2
j = 1

t

∑T
t=1(w

T
j [x(t) −

∑k
τ=1Mτx(t − τ)])2 is the empirical variance. The MLE is

solving the following constrained problem:

min
{Bτ}

L̃({Bτ}; x) (4.49)

s.t. B0 ∈ DAGs (4.50)

As always, the hardest part is the combinatorial constraint of acyclicity. In Hyvärinen
et al. (2010), the authors propose a two-step method that estimates a classical VAR first and
then treat the estimated residual r̂(t) as the LiNGAM samples with B0 as the graph. Similar
to ICA-LiNGAM, this procedure is asymptotically consistent. The authors also provide
another algorithm that utilizes non-Gaussianity better, based on a convolutive version of ICA
called multi-channel blind deconvolution (MBD). This method can be thought of as a direct
ICA-LiNGAM extension to SVAR, in a sense that it replaces ICA with MBD and follows
similar permutation/scaling procedures.

We propose to solve the continuous version of the original MLE problem, similar to
NOTEARS-ICA. In particular, the optimization problem now becomes

min
{Bτ}

L̃({Bτ}; x) (4.51)

s.t. h(B0) = 0 (4.52)

This avoids invoking ICA as subroutine, and it is straightforward to incorporate structural or
prior knowledge in the form of additional regularizers or constraints.

67

68

Chapter 5

Summary and Discussion

In this thesis, we present a continuous optimization approach for the Bayesian network
structure learning. We focus on three main classes of models: linear models, nonparametric
additive noise models, and linear non-Gaussian models. We show a complete recipe that
can convert these combinatorial problems into continuous ones. The key technical device is
the smooth characterization of directed acyclic graphs (DAGs), which is not only exact but
also easy to evaluate and optimize. We then generalize this to nonparametric setting, where
nonparametric sparsity is extended to the nonparametric acyclicity. Lastly, we look into the
special case of linear non-Gaussian models, which has nice identifiability result and serves as
the basis for many other models. With minimal change, we show that our framework can be
extended to non-Gaussian models, which is equivalent to a joint optimization of ICA and
permutation finding.

As mentioned in the introduction, this thesis took motivation from the Markov network
literature, where global search algorithms based on continuous optimization gained massive
practical success in areas like bioinformatics. This thesis can hopefully serves as the first step
towards achieving the same goal for the Bayesian networks. Of course, there are still many
limitations and open questions left to address. We outline just a few in the follows.

5.1 Faithfulness, equal noise variance, and global opti-

mum

One might wonder how the proposed class of methods perform for non-faithful data. We
simulated an instance of such case where the ground truth has parameters that leads to
cancellation in total effect, as shown in Figure 5.1(a). We use a linear Gaussian model with
equal noise variance of 1, and simulated n = 10000 samples. Figure 5.1(b-d) shows the results
on PC (Spirtes and Glymour, 1991), GES (Chickering, 2002), and the proposed NOTEARS.
First notice that PC correctly identified the chain A→ B → C up to Markov equivalence,
however missed the edge between A→ C. This is not surprising since due to the cancellation
A ⊥⊥ C from the data, hence the edge is removed. The remaining graph is not a v-structure,
hence it returns a CPDAG A−B − C. On the other hand, GES not only missed the edge

69

A B C

−1

2 0.5

(a) Ground truth

A B C

(b) PC

A B C

(c) GES

A B C

(d) NOTEARS

Figure 5.1: Simulation result with non-faithful data.

A→ C but also incorrectly returned a v-structure. This is also expected, since this is the
only DAG that satisfies the conditional independence set A ⊥⊥ C shown by the data, whereas
the ground truth graph has none. These are classic examples of faithfulness assumptions
for PC and GES. In contrast, the proposed NOTEARS can recover the correct DAG in the
absence of faithfulness.

This leads to the next question: Why does NOTEARS work? One might conjecture that
NOTEARS might be implicitly exploiting additional structure in the problem, such as the
equal noise variance. In fact, most of the experiments on linear SEM in this manuscript so
far are based on equal noise variance, with least squares loss as the score function. Granted,
equal noise variance is a favorable setting for least squares as it correctly specifies the model.
However, even if we run with unequal noise variances, e.g. with (0.52, 12, 1.52) in this example,
the result stays the same as long as the ground truth parameters are identifiable (more in the
next section). This is also supported by the theoretical results on the penalized least squares
estimator (Aragam et al., 2019) showing high-dimensional consistency for linear Gaussian
SEM without the faithfulness assumption in the case when the model is identifiable.

However it is important to note that the above result is based on the analysis on the
global optimum of the penalized least squares problem. In contrast, since the smooth
characterization of DAGs is exact, it also inherits the hard nonconvexity of the DAG space.
By relying solely on the gradient information, our augmented Lagrangian solver is only
attaining stationary points instead of global optimum. Nonetheless, the empirical results
suggest that this problem might have a nicer landscape than we expected. The study on the
nonconvex landscape is a popular topic in optimization and it would be exciting if we can
explain the performance of NOTEARS, or even further improve the algorithm.

5.2 Scalability and real data

There two sources of computational inefficiencies in the NOTEARS framework.

First, the underlying matrix exponential operation takesO(d3) time to evaluate for a matrix
of size d× d. Note that evaluating least squares loss 1

n
‖X −XW‖2F = tr[(I −W)T Σ̂(I −W)]

for a n×d matrix X also takes O(min(n, d)d2), if one can precompute the empirical covariance

70

matrix Σ̂. Therefore if O(n) ≥ O(d), then from the complexity point of view O(d3) is not
a big problem. However, often times the constant associated with matrix exponential is
very large, especially when the matrix is dense. Hence there is still a need to speed up this
operation. Indeed, more computationally efficient alternatives that has a better constant term
than the h(W) = tr eW◦W − d have been proposed (Yu et al., 2019). Furthermore one can
potentially take advantage of the sparsity of the matrix to greatly reduce the computational
complexity.

Second source of inefficiency comes from solving a sequence of Lagrange subproblems,
instead of just one. Since we are solving a constrained optimization problem with a nontrivial
projection to the constraint set, we have to resort to iterative methods such as the augmented
Lagrangian. However, in some special cases this might not be needed, for instance Ng et al.
(2020), which solves a single (possibly just two) optimization problems by simply regularizing
instead of constraining to the DAG. Although this work only focuses on Gaussian case, it
would be interesting to see if it can be extended to other cases.

Once the scalability issue is resolved, we are ready to use the extended models to many
real datasets with latent variables, cycles, and time indices such as fMRI (Sanchez-Romero
et al., 2019) or gene expression data.

5.3 Identifiability

What classes of models are identifiable? Identifiability of DAG from observational data
has been a long-standing problem in the literature. The conventional understanding of the
identifiable model classes can be summarized as follows.
• Linear non-Gaussian models (Shimizu et al., 2006)

• Linear Gaussian models with equal noise variance (Peters and Bühlmann, 2014)

• Linear models with arbitrary noise distribution with equal noise variance (Loh and
Bühlmann, 2014)

• Linear models with arbitrary noise distribution with unequal noise variance, if the noise
variances are known up to a multiplicative constant or approximated close enough (Loh
and Bühlmann, 2014)

• Most of nonlinear additive noise models (ANM) (Hoyer et al., 2008a; Zhang and
Hyvärinen, 2009; Peters et al., 2014)

Recently, a number of interesting works try to provide milder identifiability conditions
that are dependent on the parameter values. Ghoshal and Honorio (2018) provides an
identifiability condition for the linear model with arbitrary noise distribution where the noise
variances satisfy some minimal precision criteria. Chen et al. (2019) provides another angle
to the identifiability of linear model with equal noise variance, by studying the minimal
conditional variances. When identifiable, these two works are in fact dual to each other since
the former identifies variables bottom-up whereas the latter is top-down. Park and Kim
(2020) gives an identifiability condition for the linear Gaussian models with unequal noise
variance, based on the ordering of conditional variances. This condition is strictly milder

71

than Loh and Bühlmann (2014) in the same setting. Park (2020) further generalizes the
conditional variance condition for ANM with unequal noise variances, and show that in the
linear case it includes Chen et al. (2019) and Ghoshal and Honorio (2018) as special cases.

The general trend is clear: the identifiability for linear models seem to hold in much more
generality than what is traditionally known. On the other hand, however, all of the works
above give sufficient conditions of identifiability. It would be interesting to find necessary
conditions as well, so that we can completely characterize the identifiable region.

One way to show this is to look at the global minimum of the score. For an appetizer,
consider a linear SEM with two variables x1 → x2:

x1 = z1 (5.1)

x2 = ax1 + z2 (5.2)

where z1 and z2 are independent noise terms with mean 0 and variance ω1 and ω2 respectively,
i.e. the true graph and true noise covariance are given by

W =

[
0 a
0 0

]
, Ω =

[
ω1 0
0 ω2

]
(5.3)

Then the true covariance of x = (x1, x2) is

Σ = Cov(x) = (I −W)−TΩ(I −W)−1 (5.4)

=

[
ω1 aω1

aω1 a2ω1 + ω2

]
(5.5)

Now let W̃ be any matrix with the following form:

W̃ = W̃ (b, c) =

[
0 b
c 0

]
(5.6)

Consider the global optimum of the following problem:

min
W̃

R(W̃) (5.7)

s.t. G(W̃) ∈ DAG (5.8)

where R(W̃) is the population least squares risk

R(W̃) = tr
(

(I − W̃)TΣ(I − W̃)
)

(5.9)

= ω1b
2 − 2aω1b+ ω1 + (a2ω1 + ω2)c

2 − 2aω1c+ a2ω1 + ω2 (5.10)

= ω1(b− a)2︸ ︷︷ ︸
Rb

+ω1(ac− 1)2 + ω2(c
2 + 1)︸ ︷︷ ︸

Rc

(5.11)

72

ω1

ω2 |a| = 0.01

ω1

ω2 |a| = 0.5

ω1

ω2 |a| = 0.99

Figure 5.2: Sublevel set S (shaded) with different values of |a|. If the ground truth parameters
(a, ω1, ω2) fall into the shaded region, the global minimizer of the least squares score is the
ground truth. Otherwise, the global minimizer is in the wrong direction.

Notice that it decomposes into two terms, Rb and Rc, which involves only b and c respectively.
On the other hand, due to the DAG constraint, one of (b, c) should be zero at the optimum.
From the optimality condition, we have only one of the following holds true:

∂bR(W̃) = R′b = 2ω1(b− a) = 0 =⇒ b∗ = a (5.12)

∂cR(W̃) = R′c = 2ω1a(ac− 1) + 2ω2c = 0 =⇒ c∗ =
aω1

a2ω1 + ω2

(5.13)

Plug back in, we have the optimal population risks in each cases:

R∗b = R(W̃ (b∗, 0)) = ω1 + ω2 (5.14)

R∗c = R(W̃ (0, c∗)) = a2ω1 + ω2 +
ω1ω2

a2ω1 + ω2

(5.15)

When does the global optimum equal W? In other words, when does R∗b < R∗c? Essentially,
we want the sublevel set S = {(a, ω1, ω2) : g(a, ω1, ω2) < 0} for

g(a, ω1, ω2) := R∗b −R∗c =
−a2ω1(a

2ω1 + ω2 − ω1)

a2ω1 + ω2

(5.16)

This is a nonlinear function. Let’s consider some special cases.

Example 1 (Equal variance) If ω1 = ω2 = ω, then g(a, ω1, ω2) = − a4ω
a2+1

≤ 0 for all a ∈ R,
equality holds when a = 0.

Example 2 (Large a) If |a| ≥ 1, then g(a, ω1, ω2) < 0 for all ω1, ω2 > 0.

Example 3 (Small a) If |a| < 1, then g(a, ω1, ω2) < 0 for all ω2 > (1 − a2)ω1. See
Figure 5.2 for some examples.

To summarize, if ω2

ω1
> 1− a2, then g(a, ω1, ω2) < 0. This region is much larger than the

mere equal variance case that is known to be identifiable. Therefore we can explain the nice
empirical performance based on Aragam et al. (2019).

73

Interestingly, this condition coincides with the sufficient conditions in (Ghoshal and
Honorio, 2018; Chen et al., 2019; Park and Kim, 2020; Park, 2020), hinting that these
sufficient conditions have the potential to be also necessary, at least in bivariate settings, for
the least squares loss. In the future, it would be interesting to generalize the above reasoning
to general dimensions.

74

Bibliography

A. Abid, M. F. Balin, and J. Zou. Concrete Autoencoders for Differentiable Feature Selection
and Reconstruction. In International Conference on Machine Learning, 2019.

A. H. Al-Mohy and N. J. Higham. A New Scaling and Squaring Algorithm for the Matrix
Exponential. SIAM Journal on Matrix Analysis and Applications, 2009.

P. Alquier and G. Biau. Sparse Single-Index Model. Journal of Machine Learning Research,
2013.

S.-I. Amari, T.-P. Chen, and A. Cichocki. Stability analysis of learning algorithms for blind
source separation. Neural Networks, 1997.

B. Aragam, A. A. Amini, and Q. Zhou. Learning Directed Acyclic Graphs With Penalized
Neighbourhood Regression. arXiv preprint arXiv:1511.08963, 2015.

B. Aragam, A. A. Amini, and Q. Zhou. Globally optimal score-based learning of directed
acyclic graphs in high-dimensions. In Advances in Neural Information Processing Systems,
2019.

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model Selection Through Sparse Maximum
Likelihood Estimation for Multivariate Gaussian or Binary Data. Journal of Machine
Learning Research, 2008.

A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 1999.

I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM Monitoring
System: A Case Study with two Probabilistic Inference Techniques for Belief Networks. In
European Conference on Artificial Intelligence in Medicine, 1989.

A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separation
and blind deconvolution. Neural Computation, 1995.

K. Bertin and G. Lecué. Selection of variables and dimension reduction in high-dimensional
non-parametric regression. Electronic Journal of Statistics, 2008.

P. Blöbaum, D. Janzing, T. Washio, S. Shimizu, and B. Schölkopf. Cause-Effect Inference by
Comparing Regression Errors. In International Conference on Artificial Intelligence and
Statistics, 2018.

A. Botev, H. Ritter, and D. Barber. Practical Gauss-Newton Optimisation for Deep Learning.
In International Conference on Machine Learning, 2017.

L. Bottou and O. Bousquet. The Tradeoffs of Large Scale Learning. In Advances in Neural

75

Information Processing Systems, 2008.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization Methods for Large-Scale Machine
Learning. arXiv preprint arXiv:1606.04838, 2016.

R. R. Bouckaert. Probabilistic Network Construction Using the Minimum Description Length
Principle. In European Conference on Symbolic and Quantitative Approaches to Reasoning
and Uncertainty, 1993.

P. Bühlmann, J. Peters, and J. Ernest. CAM: Causal additive models, high-dimensional
order search and penalized regression. Annals of Statistics, 2014.

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific Computing, 1995.

E. Y.-J. Chen, Y. Shen, A. Choi, and A. Darwiche. Learning Bayesian networks with ancestral
constraints. In Advances in Neural Information Processing Systems, 2016.

W. Chen, M. Drton, and Y. S. Wang. On causal discovery with an equal-variance assumption.
Biometrika, 2019. ISSN 0006-3444.

S. Chiappa and W. S. Isaac. A causal bayesian networks viewpoint on fairness. IFIP Advances
in Information and Communication Technology, 2019. ISSN 18684238.

D. M. Chickering. Learning Bayesian networks is NP-complete. In Learning from Data:
Artificial Intelligence and Statistics V. Springer, 1996.

D. M. Chickering. Optimal structure identification with greedy search. Journal of Machine
Learning Research, 2002.

D. M. Chickering and D. Heckerman. Efficient approximations for the marginal likelihood of
Bayesian networks with hidden variables. Machine Learning, 1997.

D. M. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks
is NP-hard. Journal of Machine Learning Research, 2004.

J. Cussens. Bayesian network learning with cutting planes. In Uncertainty in Artificial
Intelligence, 2011.

J. Cussens, D. Haws, and M. Studený. Polyhedral aspects of score equivalence in Bayesian
network structure learning. 2017.

G. Darmois. Analyse générale des liaisons stochastiques. Revue de l’Institut International de
Statistique, 1953.

A. P. Dempster. Covariance Selection. Biometrics, 1972.

P. Diaconis and M. Shahshahani. On Nonlinear Functions of Linear Combinations. SIAM
Journal on Scientific and Statistical Computing, 1984.

C. Ding, M. Gong, K. Zhang, and D. Tao. Likelihood-Free Overcomplete ICA and Applications
in Causal Discovery. In Advances in Neural Information Processing Systems, 2019.

S. Efromovich. Nonparametric Curve Estimation. Springer, 1999.

B. Ellis and W. H. Wong. Learning causal Bayesian network structures from experimental

76

data. Journal of the American Statistical Association, 2008.

J. Feng and N. Simon. Sparse-Input Neural Networks for High-dimensional Nonparametric
Regression and Classification. arXiv preprint arXiv:1711.07592, 2017.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 2008.

F. Fu and Q. Zhou. Learning sparse causal Gaussian networks with experimental intervention:
Regularization and coordinate descent. Journal of the American Statistical Association,
2013.

K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. Kernel Measures of Conditional
Dependence. In Advances in Neural Information Processing Systems, 2007.

J. A. Gámez, J. L. Mateo, and J. M. Puerta. Learning Bayesian networks by hill climbing:
Efficient methods based on progressive restriction of the neighborhood. Data Mining and
Knowledge Discovery, 2011.

A. Ghoshal and J. Honorio. Learning Identifiable Gaussian Bayesian Networks in Polynomial
Time and Sample Complexity. In Advances in Neural Information Processing Systems,
2017.

A. Ghoshal and J. Honorio. Learning linear structural equation models in polynomial time
and sample complexity. In International Conference on Artificial Intelligence and Statistics,
2018.

O. Goudet, D. Kalainathan, P. Caillou, I. Guyon, D. Lopez-Paz, and M. Sebag. Learning Func-
tional Causal Models with Generative Neural Networks. In Explainable and Interpretable
Models in Computer Vision and Machine Learning. Springer, 2018.

M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Programming, version
2.1, 2014. URL http://cvxr.com/cvx.

M. Gregorová, A. Kalousis, and S. Marchand-Maillet. Structured nonlinear variable selection.
In Uncertainty in Artificial Intelligence, 2018.

A. Gretton, O. Bousquet, A. J. Smola, and B. Schölkopf. Measuring Statistical Dependence
with Hilbert-Schmidt Norms. In International Conference on Algorithmic Learning Theory,
2005.

J. Gu, F. Fu, and Q. Zhou. Penalized Estimation of Directed Acyclic Graphs From Discrete
Data. Statistics and Computing, 2018.

P. Hall. Cross-validation and the smoothing of orthogonal series density estimators. Journal
of Multivariate Analysis, 1987.

F. Harary and B. Manvel. On the number of cycles in a graph. Matematický časopis, 1971.

T. Hastie and R. Tibshirani. Generalized Additive Models: Some Applications. Journal of
the American Statistical Association, 1987.

D. Heckerman, E. Horvitz, and B. N. Nathwani. Toward Normative Expert Systems: Part I.
The Pathfinder Project. Methods of Information in Medicine, 1992.

77

http://cvxr.com/cvx

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian Networks: The Combi-
nation of Knowledge and Statistical Data. Machine Learning, 1995.

P. O. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal discovery
with additive noise models. In Advances in Neural Information Processing Systems, 2008a.

P. O. Hoyer, S. Shimizu, A. J. Kerminen, and M. Palviainen. Estimation of causal effects
using linear non-Gaussian causal models with hidden variables. International Journal of
Approximate Reasoning, 2008b.

C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar. QUIC: Quadratic Approximation
for Sparse Inverse Covariance Estimation. Journal of Machine Learning Research, 2014.

B. Huang, K. Zhang, Y. Lin, B. Schölkopf, and C. Glymour. Generalized Score Functions for
Causal Discovery. In International Conference on Knowledge Discovery and Data Mining,
2018.

S. Huang, J. Li, J. Ye, A. Fleisher, K. Chen, T. Wu, and E. Reiman. A Sparse Structure
Learning Algorithm for Gaussian Bayesian Network Identification from High-Dimensional
Data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013.

A. Hyvärinen and S. M. Smith. Pairwise likelihood ratios for estimation of non-Gaussian
structural ecuation models. Journal of Machine Learning Research, 2013.

A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley &
Sons, Inc, 2001.

A. Hyvärinen, K. Zhang, S. Shimizu, and P. O. Hoyer. Estimation of a Structural Vector
Autoregression Model Using Non-Gaussianity. Journal of Machine Learning Research,
2010.

A. M. Kagan, C. R. Rao, and Y. V. Linnik. Characterization problems in mathematical
statistics. Wiley, 1973.

D. Kalainathan, O. Goudet, I. Guyon, D. Lopez-Paz, and M. Sebag. SAM: Structural
Agnostic Model, Causal Discovery and Penalized Adversarial Learning. arXiv preprint
arXiv:1803.04929, 2018.

M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the
PC-algorithm. Journal of Machine Learning Research, 2007.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In International
Conference on Learning Representations, 2015.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

J. Kuipers, G. Moffa, and D. Heckerman. Addendum on the scoring of Gaussian directed
acyclic graphical models. Annals of Statistics, 2014.

G. Lacerda, P. Spirtes, J. Ramsey, and P. O. Hoyer. Discovering Cyclic Causal Models by
Independent Components Analysis. In Uncertainty in Artificial Intelligence, 2008.

S. Lachapelle, P. Brouillard, T. Deleu, and S. Lacoste-Julien. Gradient-Based Neural DAG

78

Learning. arXiv preprint arXiv:1906.02226, 2019.

J. Lafferty and L. Wasserman. Rodeo: Sparse, greedy nonparametric regression. Annals of
Statistics, 2008.

Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng. ICA with reconstruction cost for efficient
overcomplete feature learning. In Advances in Neural Information Processing Systems,
2011.

A. B. Lee and R. Izbicki. A spectral series approach to high-dimensional nonparametric
regression. Electronic Journal of Statistics, 2016.

H. Liu, J. Lafferty, and L. Wasserman. The Nonparanormal: Semiparametric Estimation of
High Dimensional Undirected Graphs. Journal of Machine Learning Research, 2009.

P.-L. Loh and P. Bühlmann. High-Dimensional Learning of Linear Causal Networks via
Inverse Covariance Estimation. Journal of Machine Learning Research, 2014.

D. Margaritis and S. Thrun. Bayesian network induction via local neighborhoods. In Advances
in Neural Information Processing Systems, 1999.

N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the
lasso. Annals of Statistics, 2006.

H. Miller and P. Hall. Local polynomial regression and variable selection. In Borrowing
Strength: Theory Powering Applications–A Festschrift for Lawrence D. Brown. Institute of
Mathematical Statistics, 2010.

R. P. Monti, K. Zhang, and A. Hyvärinen. Causal Discovery with General Non-Linear
Relationships Using Non-Linear ICA. In Uncertainty in Artificial Intelligence, 2019.

J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Schölkopf. Distinguishing Cause
from Effect Using Observational Data: Methods and Benchmarks. Journal of Machine
Learning Research, 2016.

A. Nemirovski. Optimization II: Standard Numerical Methods for Nonlinear Continuous
Optimization. 1999.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
2005.

I. Ng, A. Ghassami, and K. Zhang. On the Role of Sparsity and DAG Constraints for
Learning Linear DAGs. arXiv preprint arXiv:2006.10201, 2020.

T. Niinimäki, P. Parviainen, and M. Koivisto. Structure Discovery in Bayesian Networks by
Sampling Partial Orders. Journal of Machine Learning Research, 2016.

J. Nocedal and S. J. Wright. Numerical Optimization. 2006.

S. Ott and S. Miyano. Finding Optimal Gene Networks Using Biological Constraints. Genome
Informatics, 2003.

G. Park. Identifiability of Additive Noise Models Using Conditional Variances. Journal of
Machine Learning Research, 2020. ISSN 1533-7928.

79

G. Park and Y. Kim. Identifiability of Gaussian Structural Equation Models with Homo-
geneous and Heterogeneous Error Variances. Journal of the Korean Statistical Society,
2020.

G. Park and H. Park. Identifiability of Generalized Hypergeometric Distribution (GHD)
Directed Acyclic Graphical Models. arXiv preprint arXiv:1805.02848, 2018.

G. Park and S. Park. High-Dimensional Poisson Structural Equation Model Learning via
`1-regularized Regression. Journal of Machine Learning Research, 2019.

G. Park and G. Raskutti. Learning Quadratic Variance Function (QVF) DAG models via
OverDispersion Scoring (ODS). arXiv preprint arXiv:1704.08783, 2017.

J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University Press, 2000.

J.-P. Pellet and A. Elisseeff. Using Markov blankets for causal structure learning. Journal of
Machine Learning Research, 2008.

J. Peters and P. Bühlmann. Identifiability of Gaussian structural equation models with equal
error variances. Biometrika, 2014.

J. Peters, J. M. Mooij, D. Janzing, and B. Schölkopf. Causal Discovery with Continuous
Additive Noise Models. Journal of Machine Learning Research, 2014.

J. Peters, D. Janzing, and B. Schölkopf. Elements of Causal Inference. The MIT Press, 2017.

S. D. Pietra, V. D. Pietra, and J. Lafferty. Inducing Features on Random Fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1997.

J. Ramsey. Scaling up Greedy Causal Search for Continuous Variables. arXiv preprint
arXiv:1507.07749, 2015.

J. Ramsey, M. Glymour, R. Sanchez-Romero, and C. Glymour. A million variables and more:
the Fast Greedy Equivalence Search algorithm for learning high-dimensional graphical
causal models, with an application to functional magnetic resonance images. International
Journal of Data Science and Analytics, 2017.

P. Ravikumar, J. Lafferty, H. Liu, and L. Wasserman. Sparse additive models. Journal of the
Royal Statistical Society: Series B, 2009.

P. Ravikumar, M. J. Wainwright, and J. Lafferty. High-dimensional ising model selection
using `1-regularized logistic regression. Annals of Statistics, 2010.

P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance
estimation by minimizing `1-penalized log-determinant divergence. Electronic Journal of
Statistics, 2011.

T. S. Richardson. A discovery algorithm for directed cyclic graphs. In Uncertainty in Artificial
Intelligence, 1996a.

T. S. Richardson. A Polynomial-Time Algorithm for Deciding Markov Equivalence of Directed
Cyclic Graphical Models. In Uncertainty in Artificial Intelligence, 1996b.

R. W. Robinson. Counting unlabeled acyclic digraphs. Combinatorial mathematics V, 1977.

80

L. Rosasco, S. Villa, S. Mosci, M. Santoro, and A. Verri. Nonparametric sparsity and
regularization. Journal of Machine Learning Research, 2013.

D. Rothenhäusler, J. Ernest, and P. Bühlmann. Causal inference in partially linear structural
equation models. Annals of Statistics, 2018.

K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan. Causal Protein-Signaling
Networks Derived from Multiparameter Single-Cell Data. Science, 2005.

R. Sanchez-Romero, J. Ramsey, K. Zhang, M. Glymour, B. Huang, and C. Glymour. Esti-
mating feedforward and feedback effective connections from fMRI time series: Assessments
of statistical methods. Network Neuroscience, 2019.

A. D. Sanford and I. A. Moosa. A Bayesian network structure for operational risk modelling
in structured finance operations. Journal of the Operational Research Society, 2012.

M. Scanagatta, C. P. de Campos, G. Corani, and M. Zaffalon. Learning Bayesian Networks
with Thousands of Variables. In Advances in Neural Information Processing Systems, 2015.

M. Scanagatta, G. Corani, C. P. de Campos, and M. Zaffalon. Learning Treewidth-Bounded
Bayesian Networks with Thousands of Variables. In Advances in Neural Information
Processing Systems, 2016.

M. Schmidt, A. Niculescu-Mizil, and K. Murphy. Learning Graphical Model Structure using
L1-Regularization Paths. In AAAI Conference on Artificial Intelligence, 2007.

M. Schmidt, E. Berg, M. Friedlander, and K. Murphy. Optimizing Costly Functions with
Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm Mark. In
International Conference on Artificial Intelligence and Statistics, 2009.

S. C. Schwartz. Estimation of Probability Density by an Orthogonal Series. Annals of
Mathematical Statistics, 1967.

E. Sgouritsa, D. Janzing, P. Hennig, and B. Schölkopf. Inference of Cause and Effect with
Unsupervised Inverse Regression. In International Conference on Artificial Intelligence
and Statistics, 2015.

S. Shimizu, P. O. Hoyer, A. Hyvärinen, and A. Kerminen. A Linear Non-Gaussian Acyclic
Model for Causal Discovery. Journal of Machine Learning Research, 2006.

S. Shimizu, T. Inazumi, Y. Sogawa, A. Hyvärinen, Y. Kawahara, T. Washio, P. O. Hoyer, and
K. Bollen. DirectLiNGAM: A direct method for learning a linear non-Gaussian structural
equation model. Journal of Machine Learning Research, 2011.

T. Silander and P. Myllymäki. A simple approach for finding the globally optimal Bayesian
network structure. In Uncertainty in Artificial Intelligence, 2006.

A. P. Singh and A. W. Moore. Finding Optimal Bayesian Networks by Dynamic Programming.
Technical report, 2005.

V. P. Skitovich. On a property of the normal distribution. Doklady Akademii nauk SSSR,
1953.

P. Spirtes and C. Glymour. An algorithm for fast recovery of sparse causal graphs. Social

81

Science Computer Review, 1991.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT Press,
2000.

A. S. Suggala, M. Kolar, and P. Ravikumar. The Expxorcist: Nonparametric Graphical Models
Via Conditional Exponential Densities. In Advances in Neural Information Processing
Systems, 2017.

N. Tagasovska, T. Vatter, and V. Chavez-Demoulin. Nonparametric Quantile-Based Causal
Discovery. arXiv preprint arXiv:1801.10579, 2018.

G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Goldstein. Training Neural
Networks Without Gradients: A Scalable ADMM Approach. In International Conference
on Machine Learning, 2016.

M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for
learning bayesian networks. In Uncertainty in Artificial Intelligence, 2005.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network
structure learning algorithm. Machine Learning, 2006.

A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2003.

P. van Beek and H.-F. Hoffmann. Machine learning of Bayesian networks using constraint
programming. In Principles and Practice of Constraint Programming, 2015.

S. van de Geer and P. Bühlmann. `0-Penalized maximum likelihood for sparse directed acyclic
graphs. Annals of Statistics, 2013.

A. Voorman, A. Shojaie, and D. Witten. Graph estimation with joint additive models.
Biometrika, 2014.

G. Wahba. Data-based Optimal Smoothing of Orthogonal Series Density Estimates. Annals
of Statistics, 1981.

X. Wang, D. Dunson, and C. Leng. No penalty no tears: Least squares in high-dimensional
linear models. In International Conference on Machine Learning, 2016.

D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature, 1998.

J. Xiang and S. Kim. A* Lasso for Learning a Sparse Bayesian Network Structure for
Continuous Variables. In Advances in Neural Information Processing Systems, 2013.

E. Yang, P. Ravikumar, G. I. Allen, and Z. Liu. Graphical Models via Univariate Exponential
Family Distributions. Journal of Machine Learning Research, 2015.

M. Ye and Y. Sun. Variable Selection via Penalized Neural Network: a Drop-Out-One Loss
Approach. In International Conference on Machine Learning, 2018.

Y. Yu, J. Chen, T. Gao, and M. Yu. DAG-GNN: DAG Structure Learning with Graph Neural
Networks. In International Conference on Machine Learning, 2019.

M. Yuan. On the identifiability of additive index models. Statistica Sinica, 2011.

M. Yuan and Y. Lin. Model selection and estimation in the Gaussian graphical model.

82

Biometrika, 2007.

B. Zhang, C. Gaiteri, L. G. Bodea, Z. Wang, J. McElwee, A. A. Podtelezhnikov, C. Zhang,
T. Xie, L. Tran, R. Dobrin, E. Fluder, B. Clurman, S. Melquist, M. Narayanan, C. Suver,
H. Shah, M. Mahajan, T. Gillis, J. Mysore, M. E. MacDonald, J. R. Lamb, D. A. Bennett,
C. Molony, D. J. Stone, V. Gudnason, A. J. Myers, E. E. Schadt, H. Neumann, J. Zhu,
and V. Emilsson. Integrated systems approach identifies genetic nodes and networks in
late-onset Alzheimer’s disease. Cell, 2013.

K. Zhang and A. Hyvärinen. On the Identifiability of the Post-Nonlinear Causal Model. In
Uncertainty in Artificial Intelligence, 2009.

K. Zhang, J. Peters, and B. Schölkopf. Kernel-based Conditional Independence Test and
Application in Causal Discovery. In Uncertainty in Artificial Intelligence, 2011.

K. Zhang, Z. Wang, J. Zhang, and B. Schölkopf. On Estimation of Functional Causal Models:
General Results and Application to Post-Nonlinear Causal Model. ACM Transactions on
Intelligent Systems and Technology, 2016.

X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing. DAGs with NO TEARS: Continuous
Optimization for Structure Learning. In Advances in Neural Information Processing
Systems, 2018.

X. Zheng, C. Dan, B. Aragam, P. Ravikumar, and E. P. Xing. Learning Sparse Nonparametric
DAGs. In International Conference on Artificial Intelligence and Statistics, 2020.

K. Zhong, I. E. H. Yen, I. S. Dhillon, and P. Ravikumar. Proximal Quasi-Newton for
Computationally Intensive `1-regularized M -estimators. In Advances in Neural Information
Processing Systems, 2014.

Q. Zhou. Multi-domain sampling with applications to structural inference of Bayesian
networks. Journal of the American Statistical Association, 2011.

S. Zhou. Thresholding Procedures for High Dimensional Variable Selection and Statistical
Estimation. In Advances in Neural Information Processing Systems, 2009.

83

	Introduction
	Background
	Previous works
	Why Bayesian networks?
	Overview

	Learning Linear DAGs with Continuous Optimization
	Our contributions
	Background
	Score functions and SEM
	Previous work
	Comparison

	A new characterization of acyclicity
	Special case: Binary adjacency matrices
	General case: Weighted adjacency matrices

	Optimization
	Solving the ECP with augmented Lagrangian
	Solving the unconstrained subproblem
	Details of proximal quasi-Newton
	Thresholding

	Experiments
	Parameter estimation
	Structure learning
	Sensitivity of threshold
	Sensitivity of weight scale
	Real-data

	Discussion

	Learning Nonparametric DAGs with Continuous Optimization
	Our contributions
	Background
	Score-based learning of nonparametric SEM
	Identifiability
	Related works
	Comparison to existing approaches

	Characterizing acyclicity in nonparametric SEM
	A notion of nonparametric acyclicity
	Special cases

	Optimization
	Multilayer perceptrons
	Basis expansions
	Solving the continuous program

	Experiments
	Structure learning
	Sensitivity to number of hidden units
	Real data
	Additional results

	Discussion

	Learning Non-Gaussian DAGs with Continuous Optimization
	Our contributions
	Background
	Two variables: How to distinguish cause from effect?
	Beyond two variables: Linear non-Gaussian acyclic model (LiNGAM)
	Practical issues with finite data
	Previous works

	Single-step ICA-LiNGAM
	Maximum likelihood for ICA
	Maximum likelihood for LiNGAM
	Optimization

	Experiments
	Structure recovery under different noise distributions
	Structure recovery on different graph types
	Model misspecification: supergaussian vs subgaussian

	Discussion
	Latent variable models
	Cyclic models
	Time series

	Summary and Discussion
	Faithfulness, equal noise variance, and global optimum
	Scalability and real data
	Identifiability

	Bibliography

