
P R O B A B I L I S T I C R E I N F O R C E M E N T L E A R N I N G :
U S I N G D ATA T O D E F I N E D E S I R E D O U T C O M E S

A N D I N F E R R I N G H O W T O G E T T H E R E

benjamin eysenbach

July 2023

cmu-ml-23-103

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Ruslan Salakhutdinov (Chair)

Sergey Levine
Jeff Schneider

Leslie Kaelbling

Submitted in partial fulfillment of the requirements for
the Degree of Doctor of Philosophy.

Copyright © 2023 Benjamin Eysenbach

This research was funded by the National Science Foundation award DGE1745016, a
graduate fellowship from Google and a graduate fellowship from the Hertz Foundation.



Keywords: reinforcement learning, machine learning, probability in-
ference, decision making, planning, goal reaching, goal conditioned,
goal directed, outcomes, data-driven, probability



P U B L I C AT I O N S

The completed work in this thesis proposal is primarily based on the
following work. Additional completed work is cited inline.

[1] Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and
Ruslan Salakhutdinov. “Mismatched No More: Joint Model-
Policy Optimization for Model-Based RL.” In: Advances in Neu-
ral Information Processing Systems. 2022.

[2] Benjamin Eysenbach, Sergey Levine, and Ruslan Salakhutdinov.
“Replacing Rewards with Examples: Example-Based Policy
Search via Recursive Classification.” In: Advances in Neural
Information Processing Systems 35 (2021).

[3] Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine.
“Search on the replay buffer: Bridging planning and reinforce-
ment learning.” In: Advances in Neural Information Processing
Systems. 2019, pp. 15246–15257.

[4] Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine.
“C-Learning: Learning to Achieve Goals via Recursive Classifi-
cation.” In: International Conference on Learning Representations.
2021.

[5] Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov,
and Sergey Levine. “Contrastive Learning as Goal-Conditioned
Reinforcement Learning.” In: Advances in Neural Information
Processing Systems. 2022.

[6] Raj Ghugare, Homanga Bharadhwaj, Benjamin Eysenbach,
Sergey Levine, and Russ Salakhutdinov. “Simplifying Model-
based RL: Learning Representations, Latent-space Models, and
Policies with One Objective.” In: International Conference on
Learning Representations. 2023.

[7] Tianjun Zhang, Benjamin Eysenbach, Ruslan Salakhutdinov,
Sergey Levine, and Joseph E. Gonzalez. “C-Planning: An Au-
tomatic Curriculum for Learning Goal-Reaching Tasks.” In:
International Conference on Learning Representations. 2022.

iii





A C K N O W L E D G M E N T S

The work contained in this thesis is the result of five years of collab-
orations, with a fantastic team of students and researchers. I have
truly enjoyed these collaborations: they have not only improved the
work, but also made me a better researcher. Thanks to my family for
their continual support throughout the PhD. Thanks to my advisors
for teaching me how to do research, and for letting me explore some
strange corners of the ML ecosystem.

v





C O N T E N T S

1 Introduction 1

i Data-Directed Decision-Making
2 Learning to Achieve Goals via Recursive Classification 5

2.1 Introduction 5

2.2 Related Work 6

2.3 Preliminaries 7

2.4 Framing Goal Conditioned RL as Density Estimation 8

2.5 C-Learning 9

2.5.1 Learning the classifier 9

2.5.2 Goal-Conditioned RL via C-Learning 13

2.5.3 Implications for Q-learning and Hindsight Relabeling 15

2.6 Experiments 16

2.7 Extension to Fully-General RL Problems 19

2.8 Discussion 20

3 Contrastive Learning as Goal-Conditioned Reinforcement
Learning 21

3.1 Introduction 21

3.2 Related Work 22

3.3 Preliminaries 24

3.4 Contrastive Learning as an RL Algorithm 25

3.4.1 Relating the Q-function to probabilities 26

3.4.2 Contrastive Learning Estimates a Q-Function 26

3.4.3 Learning the Goal-Conditioned Policy 27

3.4.4 A Complete Goal-Conditioned RL Algorithm 28

3.4.5 Convergence Guarantees 29

3.4.6 C-learning as Contrastive Learning 30

3.5 Experiments 30

3.5.1 Comparing to prior goal-conditioned RL methods 30

3.5.2 Comparing to prior representation learning methods 32

3.5.3 Probing the dimensions of contrastive RL 33

3.5.4 Partial Observability and Moving Cameras 34

3.5.5 Contrastive RL for Offline RL 35

3.6 Extensionsion: Solving Fully-General RL Problems using
Contrastive Kernels 36

3.7 Discussion 36

ii Inferring Solutions to Complex Tasks
4 Search on the Replay Buffer 41

4.1 Introduction 41

4.2 Bridging Planning and Reinforcement Learning 42

4.2.1 Building Block: Goal-Conditioned RL 42

vii



viii contents

4.2.2 Distances from Goal-Conditioned Reinforcement
Learning 43

4.2.3 The Replay Buffer as a Graph 43

4.2.4 Algorithm Summary 44

4.3 Better Distance Estimates 45

4.3.1 Better Distances via Distributional Reinforcement
Learning 45

4.3.2 Robust Distances via Ensembles of Value Functions 46

4.4 Related Work 46

4.5 Experiments 48

4.5.1 Didactic Example: 2D Navigation 48

4.5.2 Planning over Images for Visual Navigation 49

4.5.3 Comparison with Semi-Parametric Topological
Memory 50

4.5.4 Better Distance Estimates 51

4.5.5 Generalizing to New Houses 52

4.6 Extensions 53

4.7 Discussion 54

5 Joint Model-Policy Optimization for Model-Based RL 55

5.1 Introduction 55

5.2 Related Work 56

5.3 A Unified Objective for Model-Based RL 57

5.4 Mismatched No More 60

5.4.1 Estimating the Augmented Reward Function 61

5.4.2 Updating the Model, Policy, and Classifier 62

5.5 Experiments 64

5.5.1 Understanding the Lower Bound and the Learned
Dynamics 64

5.5.2 Comparisons On Robotics Tasks 66

5.6 Extending MnM to Latent-Space Models 69

5.7 Discussion 69

6 Outlook 71

Appendix
a Learning to Achieve Goals via Recursive Classification 75

a.1 A Connection between Maximizing Probabilities and
Minimizing Distances 75

a.2 A Bellman Equation for C-Learning and Convergence
Guarantees 76

a.2.1 Bellman Equations for C-Learning 77

a.2.2 Off-Policy C-learning Converges 78

a.2.3 Goal-Conditioned C-Learning Converges 79

a.3 Mixing TD C-learning with MC C-learning 80

a.4 Additional Experiments 81

a.5 Predictions from C-Learning 83



contents ix

b Contrastive Learning as Goal-Conditioned Reinforcement
Learning 85

b.1 Additional Related Work 85

b.2 Discussion of the Representations as a Model 86

b.3 Proofs 86

b.3.1 Q-function are equivalent to the discounted state
occupancy measure 86

b.3.2 Contrastive RL is Policy Improvement 88

b.4 Contrastive RL (CPC) 88

b.5 Contrastive RL (NCE + C-learning) 89

b.6 Additional Experiments 91

b.6.1 Linear regression with the learned features 91

b.6.2 When is contrastive learning better than learning
a foreward model? 91

b.6.3 Goals used in the actor loss 92

b.6.4 Transferring representations to solve new tasks 93

b.6.5 Robustness to Environment Perturbations 94

b.6.6 Additional figures 94

c Search on the Replay Buffer 99

c.1 Efficient Shortest Path Computation 99

c.2 Environments 99

c.2.1 Visual Navigation 100

c.3 Ablation Experiments 100

d Joint Model-Policy Optimization for Model-Based RL 103

d.1 Proofs and Additional Analysis 103

d.1.1 VMBPO Maximizes an Upper Bound on Return 103

d.1.2 Helper Lemmas 103

d.1.3 Proof of Lemma 3 105

d.1.4 Proof of Lemma 4 105

d.1.5 A lower bound for goal-reaching tasks. 107

d.1.6 Derivation of Model Objective (Eq. 5.10) 108

d.2 Additional Experiments 109

Bibliography 113



L I S T O F F I G U R E S

Figure 2.1 Testing Hypothesis 1: As predicted, Q-values
often sum to less than 1. 16

Figure 2.2 Testing Hypothesis 2: The performance of Q-
learning is sensitive to the relabeling ratio. Our
analysis predicts that the optimal relabeling
ratio is approximately λ = 1

2 (1+ γ). C-learning
(dashed orange) does not require tuning this
ratio and outperforms Q-learning, even when
the relabeling ratio for Q-learning is optimally
chosen. 16

Figure 2.3 Predicting the Future: C-learning makes ac-
curate predictions of the expected future state
across a range of tasks and discount values. In
contrast, learning a 1-step dynamics model and
unrolling that model results in high error for
large discount values. 17

Figure 2.4 Goal-conditioned RL: C-learning is competi-
tive with prior goal-conditioned RL methods
across a suite of benchmark tasks, without re-
quiring careful tuning of the relabeling dis-
tribution. Transparent lines depict individual
random seeds. 18

Figure 2.5 Q-learning is sensitive to the relabeling ratio.
Our analysis predicts the optimal relabeling ra-
tio. 19

Figure 3.1 Reinforcement learning via contrastive learn-
ing. Our method uses contrastive learning to
acquire representations of state-action pairs (ϕ(s, a))
and future states (ψ(s f )), so that the repre-
sentations of future states are closer than the
representations of random states. We prove
that learned representation corresponds to a
value function for a certain reward function. To
select actions for reaching goal sg, the policy
chooses the action where ϕ(s, a) is closest to
ψ(sg). 22

Figure 3.2 Environments. We show a subset of the goal-
conditioned environments used in our experi-
ments. 31

x



list of figures xi

Figure 3.3 Goal-conditioned RL. Contrastive RL (NCE)
outperforms prior methods on most tasks. Base-
lines: HER [146] is a prototypical actor-critic
method that uses hindsight relabeling [10]; Goal-conditioned
behavioral cloning (GCBC) [43, 77, 152, 225]
performs behavior cloning on relabeled expe-
rience; model-based fits a density model to the
discounted state occupancy measure, similar
on [41, 45, 106]. 32

Figure 3.4 Representation learning for image-based tasks.
While adding data augmentation and auxiliary
representation objectives can boost the perfor-
mance of the TD3+HER baseline, replacing the
underlying goal-conditioned RL algorithm with
one that resembles contrastive representation
learning (i.e., ours) yields a larger increase in
success rates. Baselines: DrQ [261] augments
images and averages the Q-values across 4 aug-
mentations; auto encoder (AE) adds an aux-
iliary reconstruction loss [64, 164, 168, 262];
CURL [131] applies RL on top of representations
learned via augmentation-based contrastive learn-
ing. 33

Figure 3.5 Contrastive RL design decisions. Generalizing
C-learning to a family of contrastive RL algo-
rithms allowed us to identify algorithms that
are much simpler (contrastive RL (NCE)) and
that consistently achieve higher performance
(contrastive RL (NCE + C-learning)). 34

Figure 3.6 Partial observability and moving cameras. Con-
trastive RL can solve partially observed tasks. 34

Figure 4.1 Search on the Replay Buffer: (a) Goal-conditioned
RL often fails to reach distant goals, but can
successfully reach the goal if starting nearby
(inside the green region). (b) Our goal is to
use observations in our replay buffer (yellow
squares) as waypoints leading to the goal. (c)
We automatically find these waypoints by using
the agent’s value function to predict when two
states are nearby, and building the correspond-
ing graph. (d) We run graph search to find the
sequence of waypoints (blue arrows), and then
use our goal-conditioned policy to reach each
waypoint. 42



xii list of figures

Figure 4.2 The Bellman update for distributional RL is
simple when learning distances, simply corre-
sponding to a left-shift of the Q-values at every
step until the agent reaches the goal. 45

Figure 4.3 Simple 2D Navigation: (Left) Two simple nav-
igation environments. (Center) An agent that
combines a goal-conditioned policy with search
is substantially more successful at reaching dis-
tant goals in these environments than using the
goal-conditioned policy alone. (Right) A stan-
dard goal-conditioned policy (top) fails to reach
distant goals. Applying graph search on top of
that same policy (bottom) yields a sequence of
intermediate waypoints (yellow squares) that
enable the agent to successfully reach distant
goals. 48

Figure 4.4 Visual Navigation: Given an initial state and
goal state, our method automatically finds a
sequence of intermediate waypoints. The agent
then follows those waypoints to reach the goal. 49

Figure 4.5 Visual Navigation: We compare our method
(SoRB) to prior work on the visual navigation
environment (Fig. 4.4), using RGB images (Left)
and depth images (Right) . We find that only
our method succeeds in reaching distant goals.
Baselines: SPTM [200], C51 [19], VIN [235], HER [10].
Transparent lines depict individual random seeds. 50

Figure 4.6 SoRB vs SPTM: Our method and Semi-Parametric
Topological Memory [201] differ in the pol-
icy used and how distances are estimated. We
find (Left) that both methods learn comparable
policies, but (Right) our method learns more
accurate distances. Transparent lines depict in-
dividual random seeds. 51

Figure 4.7 Better Distance Estimates: (Left) Without dis-
tributional RL, our method performs poorly.
(Right) Ensembles contribute to a moderate
increase in success rate, especially for distant
goals. 52



list of figures xiii

Figure 4.8 Does SoRB Generalize? After training on 100

SUNCG houses, we collect random data in
held-out houses to use for search in those new
environments. Whether using depth images
or RGB images, SoRB generalizes well to new
houses, reaching almost 80% of goals 10 steps
away, while goal-conditioned RL reaches less
than 20% of these goals. Transparent lines corre-
spond to average success rate across 22 held-out
houses for each of three random seeds. 53

Figure 4.9 Developing a variant of SoRB for real-world
outdoor visual navigation [211]. 53

Figure 5.1 Mismatched No More is a model-based RL
algorithm that learns a policy, dynamics model,
and classifier. The classifier distinguishes real
transitions from model transitions. The pol-
icy and dynamics model are jointly optimized
to sample transitions that yield high return
and look realistic, as estimated by the classi-
fier. 61

Figure 5.2 Two Didactic Experiments. (Left) We apply
MnM to a navigation task with transition noise
that moves the agent to neighboring states with
equal probability. MnM solves this task more
quickly than Q-learning and VMBPO. The dy-
namics learned by MnM are different from the
real dynamics, changing the transition noise
(blue arrows) to point towards the goal. (Right)
We simulate function approximation by a learn-
ing model that is forced to make the same pre-
dictions for groups of 3× 3 states, resulting in a
model that is inaccurate around obstacles. The
classifier term compensates for this function
approximation error by penalizing the policy
for navigating near obstacles. 65

Figure 5.3 Testing for risk seeking behavior: On a sim-
ple 3-state MDP with stochastic transition in
one state (red arrows), MnM converges to the
reward-maximizing policy while VMBPO learns
a strategy with lower rewards and higher vari-
ance (as predicted by theory). 65



xiv list of figures

Figure 5.4 Comparing objectives: We apply value itera-
tion to the gridworld from Fig. 5.2a to analyti-
cally compute various objectives. As predicted
by our theory, the MnM objective is a lower
bound on the expected return, whereas the
VMBPO objective overestimates the expected
return. 66

Figure 5.5 Environments: Our experiments included tasks
from four benchmarks: (clockwise from top-
left) OpenAI Gym, DM Control, Metaworld,
and ROBEL. 66

Figure 5.6 Comparison on Robotics Tasks: We compare
MnM to MBPO and SAC on simulated control
tasks. On the benchmark locomotion tasks (top
left), MnM performs comparably with MBPO.
On many of the other tasks with sparse rewards
that pose an exploration challenge, MnM out-
performs both MBPO and the model-free base-
line. These experiments suggest that maximiz-
ing a well defined bound on expected return, as
done by our method, can lead to improved per-
formance on difficult tasks. Transparent lines
depict individual random seeds. 67

Figure 5.7 Model exploitation: The very large Q values of
MBPO suggest model exploitation, which our
method appears to avoid. Each line depicts a
separate random seed. 68

Figure 5.8 Optimistic Dynamics: (Left) On the Pusher-v2

task, the MnM dynamics model makes the puck
move towards the puck move towards the grip-
per before being grasped. (Right) On the HalfCheetah-v2
task, the MnM dynamics model helps the agent
stay upright after tripping. 68

Figure a.1 We use C-learning and Q-learning to predict
the future state distribution. (Right) In the on-
policy setting, both the Monte Carlo and TD
versions of C-learning achieve significantly lower
error than Q-learning. (Right) In the off-policy
setting, the TD version of C-learning achieves
lower error than Q-learning, while Monte Carlo
C-learning performs poorly, as expected. 82



list of figures xv

Figure a.2 The performance of Q-learning (blue line) is
sensitive to the relabeling ratio. Our analysis
accurately predicts that the optimal relabel-
ing ratio is approximately λ = 1

2 (1 + γ). Our
method, C-learning, does not require tuning
this ratio, and outperforms Q-learning, even
with the relabeling ratio for Q-learning is opti-
mally chosen. 82

Figure a.3 Predictions from C-learning 83

Figure a.4 More Predictions from C-learning 84

Figure b.1 Connecting related work. This work helps draw
connections between prior work, filling in a
missing link. 85

Figure b.2 Linear regression with the learned features.
Contrastive RL can produce better features for
predicting the shortest-path distance, indicating
that the learned features have captured highly
non-linear information about the environment
dynamics. 91

Figure b.3 Contrasive learning outperforms a forward model
when the goal is 4-dimensional or larger. Er-
ror bars show the standard deviation across 5

random seeds. 92

Figure b.4 Goals used for the actor loss. Goals are ei-
ther sampled from the distribution over future
states or from a distribution of random states.
Error bars show the standard deviation across
5 random seeds. 92

Figure b.5 Transferring representations to solve new tasks.
After training the representations on one task
for 1M environment steps, we used them to ini-
tialize a new agent for solving a new task. 93

Figure b.6 Perturbations to the image-based fetch push

environment. 94

Figure b.7 Filtered relabeling. We filter the relabeled ex-
perience so that the agent only trains on ex-
perience where the probability under the com-
manded goal is similar to the probability under
the actually-reached goal. While such filtering
is required to prove convergence, these results
suggest that good performance can be achieved
without this filtering step. 95



xvi list of figures

Figure b.8 Visualizing the learned representations. (Top)
We show five observations from the bin pick-
ing task, as well as the goal image. (Bottom)
A TSNE embedding of the image representa-
tions ϕ(s, a) learned by Contrastive RL (NCE).
Note that different parts of the task (e.g., reach-
ing, picking, placing) are well separated in the
learned representation space. 95

Figure b.9 Visualizing the image representations learned
by our method on the sawyer bin. We com-
pute a TSNE embedding of the representations,
and then align the embeddings to a grid using
RasterFairy [117]. 96

Figure b.10 TSNE embedding of representations ϕ(s, a).
(a) Using the point Spiral11x11 task, (b) we
generated image observations at 270 locations
throughout the maze. We computed the state-
action representations of these images, using
action = (0, 0). (c, d, e) A TSNE embedding of
these representations reveals that the untrained
encoder does not capture the structure of the
environment, whereas both our method and
the TD3 + HER baseline do capture the maze
structure. 96

Figure b.11 Analyzing the gradients. We plot the cosine
similarity between the (normalized) gradients
of the critic function with respect to the goal
images. An untrained network has high gra-
dient similarity, meaning that updates to one
state/task affect the networks predictions at
many other states/tasks, a phenomenon that
prior work has identified as being detrimen-
tal to learning [2, 122, 259, 264]. Our method
converges to a network where gradients at one
state have a low similarity with gradients at
other states. A similar plot showing gradients
with various state inputs shows a similar effect.
97

Figure c.1 Sensitivity to Hyperparameters: (Top) When
constructing our graph, we ignore edges that
are longer than some distance, MaxDist. We
find that this hyperparameter is important to
the success of our method. (Bottom) While we
used a buffer of 1000 observations for most of
our experiments, decreasing the buffer size has
little effect on the method’s success rate. 101



Figure d.1 Alternative Model Learning Objectives: Us-
ing the DClawScrewFixed-v0 task, we compare
MnM and MBPO [105] to two additional model
learning objectives suggested in the literature,
VAML [61] and value-weighted maximum like-
lihood [127]. MnM (our method) outperforms
these alternative approaches. 109

Figure d.2 Ablation Experiments: Compared with MBPO
(orange line), MnM uses a GAN-like model (red
line) with a model optimism term and modifies
the reward function. 110

Figure d.3 MnM trains stably. Despite resembling a GAN,
the MnM dynamics model trains stably, with
the validation MSE decreasing steadily through-
out training. Different colors correspond to dif-
ferent random seeds of MnM. The dashed line
corresponds to the minimum validation MSE of
a maximum likelihood dynamics model. 110

L I S T O F TA B L E S

Table 3.1 Offline RL on D4RL AntMaze [70]. Contrastive
RL outperforms all baselines in 5 out of 6 tasks.
TD3+BC and IQL report results on the -v0

tasks, but the change to -v2 has a negligible
effect on TD methods [102]. 36

Table 4.1 Four classes of model-based RL methods. Di-
mensions in the last column correspond to typ-
ical robotics tasks with image/lidar observa-
tions. 47

xvii





1
I N T R O D U C T I O N

This thesis studies algorithms for teaching autonomous agents to
complete tasks through trial and error learning. Typically, this problem
is posed as a reinforcement learning (RL) problem, wherein agents
attempt to maximize a user-provided reward function. The algorithms
studied here take a different approach, largely eschewing the reward
function and instead learning to achieve desired outcomes directly
from data. This approach allows users to employ algorithmic tools
from the supervised and unsupervised learning, while also surfacing
an interface that allows non-expert users to teach agents new tasks.

The main challenge in the design of these methods is predicting the
probability of desired outcomes, especially when the outcomes only
occur hundreds of steps into the future, and especially when using
off-policy data. To this end, the first part of this thesis develops an
algorithm based on recursive classification that estimates the probabil-
ity of future states via a temporal difference update (Chapter 2). This
method is directly applicable to environments with continuous states
and actions, does not require any hand-crafted distance metrics, and
leads to an algorithm for goal-conditioned RL that outperforms prior
methods. We then generalize this idea to tasks that can be solved in
many ways, allowing more flexible task specification and providing
broader generalization capabilities.

While framing control problems in terms of desired outcomes
provides an easy mechanism to specify what the task is, it leaves
no room for specifying how the task should be solved, raising the
question of whether these methods are restricted to simple tasks. To
lift this limitation, we consider inferring the structure of solutions to
complex tasks. Because the algorithms introduced in the first part
are probabilistic in nature, it is easy to incorporate this structure
as an unobserved latent variable. These new algorithms infer this
task structure; in doing so, they decompose the control problem into
a series of easier problems, thereby accelerating learning. We first
discuss the goal-conditioned setting, where this inferential perspective
leads to a simple and theoretically justified method for integrating
goal-conditioned RL into classical planning pipelines (Chapter 4). RL
is used to estimate distances and learn a local policy, while graph
search over observations (e.g., images) determines the high-level path
to the goal. This approach substantially outperforms standard goal-
conditioned RL algorithms. We then consider a different way of
structuring the task solution: as a composition of a learned dynamics
model and policy (Chapter 5). The result is an algorithm for model-

1



2 introduction

based RL where the model and policy are jointly optimized using the
same objective, which is a lower bound on expected returns.

This thesis builds upon the work presented in the initial thesis
proposal in two primary directions. First, we have explored a geo-
metric interpretation of recursive classification (Chapter 2), drawing a
close connection between representation learning and reinforcement
learning (Chapter 3). This connection has allowed us to extend re-
cursive classification to tasks specified post-hoc via a limited number
of reward-labeled states, and has allowed us to apply these methods
to real-world, image-based robotic manipulation tasks. Second, we
have extended the latent-variable perspective of RL (Chapters 4 and 5)
to perform inference over learned representations (Sec. 5.6). This
extension enables our approach to scale to higher dimensional tasks
and provides a substantial computational speedup.



Part I

D ATA - D I R E C T E D D E C I S I O N - M A K I N G

Reinforcement learning is typically studied through an the
lens of utility maximization, a lens that makes transparent
the field’s roots in behavioral science and explains why
much RL research is conducted in operations research
departments. However, this lens obscures the role of data
in decision making. RL is increasingly studied by ML
researchers, who take data as their bread and butter, re-
sulting in methods and analysis that often inadvertantly
highlight the disconnect between data and the standard
MDP formalism. It is easy to imagine a student in an
introductory RL class asking “What does RL have to do
with ML at all?”

In this Part, we describe decision-making algorithms that
treat data as a first-class citizen: data (not rewards) will
determine what makes an outcome good. We will focus on
learning goal-directed behavior, one of the long-standing
and important problems in AI and RL. Here, tasks will be
specified not with a scalar reward function, but instead by
a single observation of a goal state. Sec. 2.7 will describe
how similar ideas can solve fully-general RL problems
(e.g., by providing multiple observations (data!) of good
outcomes).

Our algorithms for learning goal-directed behavior are
one form of unsupervised pretraining: like pretraining
methods in NLP and computer vision, our methods learn
primitives (representations) without the need for (reward)
labels. However, there are alternative forms of unsuper-
vised pretraining for RL, often taking the form of of-
fline RL (which requires reward labels), representation
learning, and model-learning. In Chapter 3, we extend
our algorithms for goal-directed behavior in a way that
highlights the close connections between all these forms
of unsupervised pretraining. By parametrizing our goal-
directed algorithm in a certain way, we will see that value
estimation (as done in offline RL), representation learning,
and (implicit) model learning are three ways of interpreting
a single method. Beyond providing excellent empirical
results, this work may provide guidance on how algorithms
and ideas might be shared and unified across the RL
community.





2
L E A R N I N G T O A C H I E V E G O A L S V I A R E C U R S I V E
C L A S S I F I C AT I O N

2.1 introduction

In this work, we aim to reframe the goal-conditioned reinforcement
learning (RL) problem as one of predicting and controlling the future
state of the world. This reframing is useful not only because it suggests
a new algorithm for goal-conditioned RL, but also because it explains
a commonly used heuristic in prior methods, and suggests how to
automatically choose an important hyperparameter. The problem
of predicting the future amounts to learning a probability density
function over future states, agnostic of the time that a future state is
reached. The future depends on the actions taken by the policy, so
our predictions should depend on the agent’s policy. While we could
simply witness the future, and fit a density model to the observed
states, we will be primarily interested in the following prediction
question: Given experience collected from one policy, can we predict
what states a different policy will visit? Once we can predict the future
states of a different policy, we can control the future by choosing a
policy that effects a desired future.

While conceptually similar to Q-learning, our perspective is different
in that we make no reliance on reward functions. Instead, an agent
can solve the prediction problem before being given a reward function,
similar to models in model-based RL. Reward functions can require
human supervision to construct and evaluate, so a fully autonomous
agent can learn to solve this prediction problem before being provided
any human supervision, and reuse its predictions to solve many
different downstream tasks. Nonetheless, when a reward function
is provided, the agent can estimate its expected reward under the
predicted future state distribution. This perspective is different from
prior approaches. For example, directly fitting a density model to
future states only solves the prediction problem in the on-policy
setting, precluding us from predicting where a different policy will go.
Model-based approaches, which learn an explicit dynamics model, do
allow us to predict the future state distribution of different policies,
but require a reward function or distance metric to learn goal-reaching
policies for controlling the future. Methods based on temporal differ-
ence (TD) learning [229] have been used to predict the future state
distribution [18, 41, 233] and to learn goal-reaching policies [110, 202].
Section 2.3 will explain why these approaches do not learn a true
Q function in continuous environments with sparse rewards, and

5



6 learning to achieve goals via recursive classification

it remains unclear what the learned Q function corresponds to. In
contrast, our method will estimate a well defined classifier.

Since it is unclear how to use Q-learning to estimate such a density,
we instead adopt a contrastive approach, learning a classifier to
distinguish “future states” from random states, akin to Gutmann
and Hyvärinen [88]. After learning this binary classifier, we apply
Bayes’ rule to obtain a probability density function for the future state
distribution, thus solving our prediction problem. While this initial
approach requires on-policy data, we then develop a bootstrapping
variant for estimating the future state distribution for different policies.
This bootstrapping procedure is the core of our goal-conditioned RL
algorithm.

The main contribution of our work is a reframing of goal-conditioned
RL as estimating the probability density over future states. We derive a
method for solving this problem, C-learning, which we use to construct
a complete algorithm for goal-conditioned RL. Our reframing lends
insight into goal-conditioned Q-learning, leading to a hypothesis
for the optimal ratio for sampling goals, which we demonstrate
empirically. Experiments demonstrate that C-learning more accurately
estimates the density over future states, while remaining competitive
with recent goal-conditioned RL methods across a suite of simulated
robotic tasks.1

2.2 related work

Common goal-conditioned RL algorithms are based on behavior
cloning [43, 53, 76, 85, 152, 174, 228], model-based approaches [49,
167], Q-learning [110, 186, 202], and semi-parametric planning [29,
56, 169, 200]. Most prior work on goal-conditioned RL relies on
manually-specified reward functions or distance metric, limiting the
applicability to high-dimensional tasks. Our method will be most
similar to the Q-learning methods, which are applicable to off-policy
data. These Q-learning methods often employ hindsight relabeling [10,
110], whereby experience is modified by changing the commanded
goal. New goals are often taken to be a future state or a random state,
with the precise ratio being a sensitive hyperparameter. We emphasize
that our discussion of goal sampling concerns relabeling previously-
collected experience, not on the orthogonal problem of sampling goals
for exploration [60, 183, 186].

Our work is closely related to prior methods that use TD-learning to
predict the future state distribution, such as successor features [17, 18,
41, 233] and generalized value functions [202, 205, 232]. Our approach
bears a resemblance to these prior TD-learning methods, offering
insight into why they work and how hyperparameters such as the

1 Project website with videos and code: https://ben-eysenbach.github.io/c_
learning/

https://ben-eysenbach.github.io/c_learning/
https://ben-eysenbach.github.io/c_learning/


2.3 preliminaries 7

goal-sampling ratio should be selected. Our approach differs in that it
does not require a reward function or manually designed relabeling
strategies, with the corresponding components being derived from
first principles. While prior work on off-policy evaluation [149, 160]
also aims to predict the future state distribution, our work differs is
that we describe how to control the future state distribution, leading to
goal-conditioned RL algorithm.

Our approach is similar to prior work on noise contrastive estima-
tion [88], mutual-information based representation learning [162, 177],
and variational inference methods [22, 48, 101, 219, 243]. Like prior
work on the probabilistic perspective on RL [112, 137, 178, 194, 238,
240, 275], we treat control as a density estimation problem, but our
main contribution is orthogonal: we propose a method for estimating
the future state distribution, which can be used as a subroutine in
both standard RL and these probabilistic RL methods.

2.3 preliminaries

We start by introducing notation and prior approaches to goal-conditioned
RL. We define a controlled Markov process by an initial state distri-
bution p1(s1) and dynamics function p(st+1 | st, at). We control this
process by a Markovian policy πθ(at | st) with parameters θ. We use
πθ(at | st, g) to denote a goal-oriented policy, which is additionally
conditioned on a goal g ∈ S . We use st+ to denote the random
variable representing a future observation, defined by the following
distribution:

Definition 1. The future γ−discounted state density function is

pπ
+(st+ | st, at) ≜ (1− γ)

∞

∑
∆=1

γ∆ pπ
∆(st+∆ = st+ | st, at),

where st+∆ denotes the state exactly ∆ in the future, and constant (1− γ)

ensures that this density function integrates to 1.

This density reflects the states that an agent would visit if we
collected many infinite-length trajectories and weighted states in the
near-term future more highly. Equivalently, p(st+) can be seen as the
distribution over terminal states we would obtain if we (hypothetically)
terminated episodes at a random time step, sampled from a geometric
distribution. We need not introduce a reward function to define the
problems of predicting and controlling the future.

In discrete state spaces, we can convert the problem of estimating
the future state distribution into a RL problem by defining a reward
function rst+(st, at) = 1(st = st+), and terminating the episode
when the agent arrives at the goal. The Q-function, which typically



8 learning to achieve goals via recursive classification

represents the expected discounted sum of future rewards, can then
be interpreted as a (scaled) probability mass function:

Qπ(st, at, st+) = Eπ

[
∑

t
γtrst+(st, at)

]
= ∑

t
γt
Pπ(st = st+)

=
1

1− γ
pπ
+(st+ | st, at).

However, in continuous state spaces with some stochasticity in the
policy or dynamics, the probability that any state exactly matches the
goal state is zero.

Remark 1. In a stochastic, continuous environment, for any policy π the
Q-function for the reward function rst+ = 1(st = st+) is always zero:
Qπ(st, at, st+) = 0.

This Q-function is not useful for predicting or controlling the
future state distribution. Fundamentally, this problem arises because
the relationship between the reward function, the Q function, and
the future state distribution in prior work remains unclear. Prior
work avoids this issue by manually defining reward functions [10]
or distance metrics [186, 202, 205, 273]. An alternative is to use
hindsight relabeling, changing the commanded goal to be the goal
actually reached. This form of hindsight relabeling does not require a
reward function, and indeed learns Q-functions that are not zero [145].
However, taken literally, Q-functions learned in this way must be
incorrect: they do not reflect the expected discounted reward. An
alternative hypothesis is that these Q-functions reflect probability
density functions over future states. However, this also cannot be true:

Remark 2. For any MDP with the sparse reward function 1(st = st+)

where the episode terminates upon reaching the goal, Q-learning with hind-
sight relabeling acquires a Q-function in the range Qπ(st, at, st+) ∈ [0, 1],
but the probability density function pπ

+(st+ | st, at) has a range [0, ∞).

For example, if the state space is S = [0, 1
2 ], then there must exist

some state st+ such that Qπ(st, at, st+1) ≤ 1 < pπ
+(st+ = st+ | st, at).

Thus, Q-learning with hindsight relabeling also fails to learn the future
state distribution. In fact, it is unclear what quantity Q-learning with
hindsight relabeling optimizes. In the rest of this work, we will define
goal reaching in continuous state spaces in a way that is consistent and
admits well-defined solutions (Sec. 2.4), and then present a practical
algorithm for finding these solutions (Sec. 2.5).

2.4 framing goal conditioned rl as density estimation

This section presents a novel framing of the goal-conditioned RL
problem, which resolves the ambiguity discussed in the previous



2.5 c-learning 9

Algorithm 1 Monte Carlo C-learning

Input trajectories {τi}
Define p(s, a)← Unif({s, a}(s,a)∼τ), p(st+)← Unif({st}st∼τ,t>1)
while not converged do

Sample st, at ∼ p(s, a), s(0)t+ ∼ p(st+), ∆ ∼ Geom(1− γ).

Set goal s(1)t+ ← st+∆

F (θ)← log Cπ
θ (F = 1 | st, at, s(1)t+ ) + log Cπ

θ (F = 0 | st, at, s(0)t+ )
θ ← θ − η∇θF (θ)

Return classifier Cθ

section. Our main idea is to view goal-conditioned RL as a problem of
estimating the density pπ

+(st+ | st, at) over future states that a policy
π will visit, a problem that Q-learning does not solve (see Section 2.3).
Section 2.5 will then explain how to use this estimated distribution as
the core of a complete goal-conditioned RL algorithm.

Definition 2. Given policy π, the future state density estimation problem
is to estimate the γ−discounted state distribution of π: f π

θ (st+ | st, at) ≈
pπ
+(st+ | st, at).

The next section will show how to estimate f π
θ . Once we have

found f π
θ , we will use it to train a goal-conditioned policy, which will

maximize the probability of reaching a commanded goal under this
(estimated) discounted state occupancy measure:

max
π(·|·,g)

Eπ(at|st,g) [p
π
+(st+ = g | st, at)] .

In Appendix a.1, we discuss the connections between this “maximum
probability” objective and the common stochastic shortest path objec-
tive.

2.5 c-learning

We now derive an algorithm (C-learning) for solving the future state
density estimation problem (Def. 2). First (Sec. 2.5.1), we assume that
the policy is fixed, and present on-policy and off-policy solutions.
Based on these ideas, Section 2.5.2 builds a complete goal-conditioned
RL algorithm for learning an optimal goal-reaching policy. Our algo-
rithm bears a resemblance to Q-learning, and our derivation makes
two hypotheses about when and where Q-learning will work best
(Sec. 2.5.3).

2.5.1 Learning the classifier

Rather than estimating the future state density directly, we will es-
timate it indirectly by learning a classifier. Not only is classification



10 learning to achieve goals via recursive classification

generally an easier problem than density estimation, but also it will
allow us to develop an off-policy algorithm in the next section. We
will call our approach C-learning. We start by deriving an on-policy
Monte Carlo algorithm (Monte Carlo C-learning), and then modify it
to obtain an off-policy, bootstrapping algorithm (off-policy C-learning).
After learning this classifier, we can apply Bayes’ rule to convert
its binary predictions into future state density estimates. Given a
distribution over state action pairs, p(st, at), we define the marginal
future state distribution p(st+) =

∫
pπ
+(st+ | st, at)p(st, at)dstdat. The

classifier takes as input a state-action pair (st, at) together with another
state st+, and predicts whether st+ was sampled from the future state
density pπ

+(st+ | st, at) (F = 1) or the marginal state density p(st+)

(F = 0). The Bayes optimal classifier is

p(F = 1 | st, at, st+) =
pπ
+(st+ | st, at)

pπ
+(st+ | st, at) + p(st+)

. (2.1)

Thus, using Cπ
θ (F = 1 | st, at, st+) to denote our learned classifier,

we can obtain an estimate f π
θ (st+ | st, at) for the future state density

function using our classifier’s predictions as follows:

f π
θ (st+ | st, at) =

Cπ
θ (F = 1 | st, at, st+)

Cπ
θ (F = 0 | st, at, st+)

p(st+). (2.2)

While our estimated density fθ depends on the marginal density
p(st+), our goal-conditioned RL algorithm (Sec. 2.5.2) will not require
estimating this marginal density. In particular, we will learn a policy
that chooses the action at that maximizes this density, but the solution
to this maximization problem does not depend on the marginal p(st+).

We now present an on-policy approach for learning the classifier,
which we call Monte Carlo C-Learning. After sampling a state-action
pair (st, at) ∼ p(st, at), we can either sample a future state s(1)t+ ∼
pπ
+(st+ | st, at) with a label F = 1, or sample s(0)t+ ∼ p(st+) with a label

F = 0. We then train the classifier maximize log likelihood (i.e., the
negative cross entropy loss):

F (θ) ≜E st,at∼p(st,at)

s(1)t+∼pπ
+(st+|st,at)

[log Cπ
θ (F = 1 | st, at, s(1)t+ )]

+ Est,at∼p(st,at)

s(0)t+∼p(st+)

[log Cπ
θ (F = 0 | st, at, s(0)t+ )]. (2.3)



2.5 c-learning 11

To sample future states, we note that the density pπ
+(st+ | st, at) is a

weighted mixture of distributions p(st+∆ | st, at) indicating the future
state exactly ∆ steps in the future:

pπ
+(st+ | st, at) =

∞

∑
∆=0

p(st+∆ | st, at)p(∆)

where p(∆) = (1− γ)γ∆ = Geom(∆; 1− γ),

where Geom is the geometric distribution. Thus, we sample a future
state st+ via ancestral sampling: first sample ∆ ∼ Geom(1− γ) and
then, looking at the trajectory containing (st, at), return the state that
is ∆ steps ahead of (st, at). We summarize Monte Carlo C-learning in
Alg. 1.

While conceptually simple, this algorithm requires on-policy data,
as the distribution pπ

+(st+ | st, at) depends on the current policy
π and the commanded goal. Even if we fixed the policy parameters,
we cannot use experience collected when commanding one goal
to learn a classifier for another goal. This limitation precludes an
important benefit of goal-conditioned learning: the ability to readily
share experience across tasks. To lift this limitation, the next section
will develop a bootstrapped version of this algorithm that works with
off-policy data.

We now extend the Monte Carlo algorithm introduced above to
work in the off-policy setting, so that we can estimate the future state
density for different policies. In the off-policy setting, we are given a
dataset of transitions (st, at, st+1) and a new policy π, which we will
use to generate actions for the next time step, at+1 ∼ π(at+1 | st+1).
The main challenge is sampling from pπ

+(st+ | st, at), which depends
on the new policy π. We address this challenge in two steps. First, we
note a recursive relationship between the future state density at the
current time step and the next time step:

pπ
+(st+ = st+ | st, at)︸ ︷︷ ︸

future state density at current time step

= (1− γ) p(st+1 = st+ | st, at)︸ ︷︷ ︸
environment dynamics

+ γEp(st+1|st,at),
π(at+1|st+1)

[
pπ
+(st+ = st+ | st+1, at+1)︸ ︷︷ ︸

future state density at next time step

]
.

(2.4)

We can now rewrite our classification objective in Eq. 2.3 as

F (θ, π) =E p(st,at), p(st+1|st,at),
π(at+1|st+1), pπ

+(st+|st+1,at+1)

[(1− γ) log Cπ
θ (F = 1 | st, at, st+1)

+ γ log Cπ
θ (F = 1 | st, at, st+)]

+ Ep(st,at), p(st+) [log Cπ
θ (F = 0 | st, at, st+)] . (2.5)



12 learning to achieve goals via recursive classification

Algorithm 2 Off-Policy C-learning

Input transitions {st, a, st+1}, policy πϕ

while not converged do
Sample (st, at, st+1) ∼ p(st, at, st+1), st+ ∼ p(st+),

at+1 ∼ πϕ(at+1 | st, at)

w← stop_grad
(

Cπ
θ (F=1|st+1,at+1,st+)

Cπ
θ (F=0|st+1,at+1,st+)

)
F (θ, π)←(1− γ) log Cπ

θ (F = 1|st, at, st+1)

+ log Cπ
θ (F = 0|st, at, st+)

+γw log Cπ
θ (F=1|st, at, st+)

θ ← θ − η∇θF (θ, π)

Return classifier Cπ
θ

This equation is different from the Monte Carlo objective (Eq. 2.3)
because it depends on the new policy, but it still requires sampling
from pπ

+(st+ | st+1, at+1), which also depends on the new policy. Our
second step is to observe that we can estimate expectations that use
pπ
+(st+ | st, at) by sampling from the marginal st+ ∼ p(st+) and then

weighting those samples by an importance weight, which we can
estimate using our learned classifier:

w(st+1, at+1, st+) ≜
pπ
+(st+ | st+1, at+1)

p(st+)
=

Cπ
θ (F = 1 | st+1, at+1, st+)

Cπ
θ (F = 0 | st+1, at+1, st+)

.

(2.6)

The second equality is obtained by taking Eq. 2.2 and dividing both
sides by p(st+). In effect, these weights account for the effect of
the new policy on the future state density. We can now rewrite our
objective by substituting the identity in Eq. 2.6 for the p(st+) term in
the expectation in Eq. 2.5. The rewritten objective is

F (θ, π) = Ep(st ,at), p(st+1 |st ,at),
p(st+), π(at+1 |st+1)

[(1− γ) log Cπ
θ (F = 1 | st, at, st+1)

+ γ ⌊w(st+1, at+1, st+)⌋sg log Cπ
θ (F = 1 | st, at, st+)

+ log Cπ
θ (F = 0 | st, at, st+)]. (2.7)

We use ⌊·⌋sg as a reminder that the gradient of an importance-weighted
objective should not depend on the gradients of the importance
weights. Intuitively, this loss says that next states should be labeled as
positive examples, states sampled from the marginal should be labeled
as negative examples, but reweighted states sampled from the marginal
are positive examples.

algorithm summary. Alg 2 reviews off policy C-learning, which
takes as input a policy and a dataset of transitions. At each iteration,
we sample a (st, at, st+1) transition from the dataset, a potential future
state st+ ∼ p(st+) and the next action at+1 ∼ π(at+1 | st+1, st+).
We compute the importance weight using the current estimate from



2.5 c-learning 13

Algorithm 3 Goal-Conditioned C-learning

Input transitions {st, a, st+1}
while not converged do

Sample (st, at, st+1) ∼ p(st, at, st+1),
st+ ∼ p(st+), at+1 ∼ π(at+1 | st, at, st+)

w← stop_grad
(

Cπ
θ (F=1|st+1,at+1,st+)

Cπ
θ (F=0|st+1,at+1,st+)

)
F (θ, π)←(1− γ) log Cπ

θ (F = 1|st, at, st+1)

+ log Cπ
θ (F=0|st, at, st+)

+γw log Cπ
θ (F = 1|st, at, st+)

θ ← θ − η∇θF (θ, π)
G(ϕ)←Eπϕ(at|st,g=st+)[log Cπ

θ (F=1|st, at, st+)]

ϕ← ϕ + η∇ϕG(ϕ)
Return policy πϕ

the classifier, and then plug the importance weight into the loss
from Eq. 2.3. We then update the classifier using the gradient of
this objective.

c-learning bellman equations . In Appendix a.2.1, we pro-
vide a convergence proof for off-policy C-learning in the tabular
setting. Our proof hinges on the fact that the TD C-learning update
rule has the same effect as applying the following (unknown) Bellman
operator:

Cπ
θ (F = 1 | st, at, st+)

Cπ
θ (F = 0 | st, at, st+)

=(1− γ)
p(st+1 = st+ | st, at)

p(st+)

+ γEp(st+1|st,at),
π(at+1|st)

[
Cπ

θ (F = 1 | st+1, at+1, st+)

Cπ
θ (F = 0 | st+1, at+1, st+)

]
This equation tells us that C-learning is equivalent to maximizing the
reward function rst+(st, at) = p(st+1 = st+ | st, at)/p(st+), but does
so without having to estimate either the dynamics p(st+1 | st, at) or
the marginal distribution p(st).

2.5.2 Goal-Conditioned RL via C-Learning

We now build a complete algorithm for goal-conditioned RL based
on C-learning. When learning a goal-conditioned policy, commanding
different goals will cause the policy to visit different future states. In
this section, we describe how to learn a classifier that predicts the
future states of a goal-conditioned policy, and how to optimize the
corresponding policy to get better at reaching the commanded goal.

To acquire a classifier for a goal-conditioned policy, we need to apply
our objective function (Eq. 2.7) to all policies {πϕ(a | s, g) | g ∈ S}.
We therefore condition the classifier and the policy on the commanded



14 learning to achieve goals via recursive classification

goal g ∈ S . For learning a goal-reaching policy, we will only need to
query the classifier on inputs where st+ = g. Thus, we only need to
learn a classifier conditioned on inputs where st+ = g, resulting in the
following objective:

E p(st ,at), p(st+1 |st ,at),
p(st+), π(at+1 |st+1 ,g=st+)

[ (1− γ) log Cπ
θ (F = 1 | st, at, st+1)︸ ︷︷ ︸

(a)

+ log Cπ
θ (F = 0 | st, at, st+)︸ ︷︷ ︸

(b)

+ γ ⌊w(st+1, at+1, st+)⌋sg log Cπ
θ (F = 1 | st, at, st+)︸ ︷︷ ︸

(c)

].

(2.8)

The difference between this objective and the one derived in Sec-
tion 2.5.1 (Eq. 2.7) is that the next action is sampled from a goal-
conditioned policy. The density function obtained from this classifier
(Eq. 2.2) represents the future state density of st+, given that the
policy was commanded to reach goal g = st+: f π

θ (st+ = st+ | st, at) =

pπ
+(st+ = st+ | st, at, g = st+).
Now that we can estimate the future state density of a goal-conditioned

policy, our second step is to optimize the policy w.r.t. this learned
density function. We do this by maximizing the policy’s probability of
reaching the commanded goal: Eπϕ(at|st,g) [log pπ(F = 1 | st, at, st+ = g)].
Since pπ

+(st+ | st, at, g = st+) is a monotone increasing function of the
classifier predictions (see Eq. 2.2), we can write the policy objective in
terms of the classifier predictions:

G(ϕ) = max
ϕ

Eπϕ(at|st,g) [log Cπ
θ (F = 1 | st, at, st+ = g)] . (2.9)

If we collect new experience during training, then the marginal dis-
tribution p(st+) will change throughout training. While this makes
the learning problem for the classifier non-stationary, the learning
problem for the policy (whose solution is independent of p(st+))
remains stationary. In the tabular setting, goal-conditioned C-learning
converges to the optimal policy (proof in Appendix a.2.3).

Algorithm Summary: We summarize our approach, which we call
goal-conditioned C-learning, in Alg. 3. Instead of learning a Q function,
this method learns a future state classifier. The classifier is trained
using three types of examples: (a) the classifier is trained to predict
y = 1 when the goal is the next state; (b) y = 0 when the goal is
a random state; and (c) y = w when the goal is a random state,
where w depends on the classifier’s prediction at the next state (see
Eq. 2.6). Note that (b) and (c) assign different labels to the same goal
and can be combined (see Eq. 2.10 in Sec. 2.5.3). This algorithm is
simple to implement by taking a standard actor-critic RL algorithm



2.5 c-learning 15

and changing the loss function for the critic (a few lines of code). Code
to reproduce our experiments is online.2

2.5.3 Implications for Q-learning and Hindsight Relabeling

Off-policy C-learning (Alg. 2) bears a resemblance to Q-learning with
hindsight relabeling, so we now compare these two algorithms to make
hypotheses about Q-learning, which we will test in Section 2.6. We
start by writing the objective for both methods using the cross-entropy
loss, CE(·, ·):

FC-learning(θ, π) = (1− γ)CE(Cπ
θ (F | st, at, st+1), y = 1) (2.10)

+ (1 + γw)CE
(

Cπ
θ (F | st, at, st+), y =

γw
γw + 1

=
γCπ′

θ

γCπ′
θ + (1− Cπ′

θ )

)
,

FQ-learning(θ, π) = (1− λ)CE(Qπ
θ (st, at, g = st+1), y = 1) (2.11)

+ λCE
(

Qπ
θ (st, at, g = st+), y = γQπ

θ (st+1, at+1, st+)

)
,

where C′θ = Cπ
θ (F = 1 | st+1, at+1, st+) is the classifier prediction at the

next state and where λ ∈ [0, 1] denotes the relabeling ratio used in Q-
learning, corresponding to the fraction of goals sampled from p(st+).
There are two differences between these equations, which lead us to
make two hypotheses about the performance of Q-learning, which we
will test in Section 2.6. The first difference is how the predicted targets
are scaled for random goals, with Q-learning scaling the prediction by
γ while C-learning scales the prediction by γ/(γC′θ + (1− C′θ)). Since
Q-learning uses a smaller scale, we make the following hypothesis:

Hypothesis 1. Q-learning will predict smaller future state densities and
therefore underestimate the true future state density function.

This hypothesis is interesting because it predicts that prior methods
based on Q-learning will not learn a proper density function, and
therefore fail to solve the future state density estimation problem.
The second difference between C-learning and Q-learning is that Q-
learning contains a tunable parameter λ, which controls the ratio with
which next-states and random states are used as goals. This ratio is
equivalent to a weight on the two loss terms, and our experiments
will show that Q-learning with hindsight relabeling is sensitive to this
parameter. In contrast, C-learning does not require specification of
this hyperparameter. Matching the coefficients in the Q-learning loss
(Eq. 2.11) with those in our loss (Eq. 2.10) (i.e., [1− λ, λ] ∝ [1− γ, 1 +
γw]), we make the following hypothesis:

Hypothesis 2. Q-learning with hindsight relabeling will most accurately
solve the future state density estimation problem (Def. 2) when random future
states are sampled with probability λ = 1+γ

2 .

2 https://github.com/google-research/google-research/tree/master/c_learning

https://github.com/google-research/google-research/tree/master/c_learning


16 learning to achieve goals via recursive classification

Figure 2.1: Testing Hypothesis 1: As predicted, Q-values often sum to less
than 1.

Figure 2.2: Testing Hypothesis 2: The performance of Q-learning is sensitive
to the relabeling ratio. Our analysis predicts that the optimal rela-
beling ratio is approximately λ = 1

2 (1 + γ). C-learning (dashed
orange) does not require tuning this ratio and outperforms Q-
learning, even when the relabeling ratio for Q-learning is opti-
mally chosen.

Prior work has found that this goal sampling ratio is a sensitive
hyperparameter [10, 186, 273]; this hypothesis is useful because it
offers an automatic way to choose the hyperparameter. The next
section will experimentally test these hypotheses.

2.6 experiments

We aim our experiments at answering the following questions:
1. Do Q-learning and C-learning accurately estimate the future state

density (Problem 2)?

2. (Hypothesis 1) Does Q-learning underestimate the future state
density function (§ 2.5.3)?

3. (Hypothesis 2) Is the predicted relabeling ratio λ = (1 + γ)/2
optimal for Q-learning (§ 2.5.3)?

4. How does C-learning compare with prior goal-conditioned RL
methods on benchmark tasks?
Do Q-learning and C-learning accurately predict the future? Our

first experiment studies how well Q-learning and C-learning solve
the future state density estimation problem (Def. 2). We use a con-
tinuous version of a gridworld for this task and measure how close
the predicted future state density is to the true future state density
using a KL divergence. Since this environment is continuous and
stochastic, Q-learning without hindsight relabelling learns Q = 0



2.6 experiments 17

(a) Walker2d-v2 (b) Predicted future states

Figure 2.3: Predicting the Future: C-learning makes accurate predictions of
the expected future state across a range of tasks and discount val-
ues. In contrast, learning a 1-step dynamics model and unrolling
that model results in high error for large discount values.

on this environment. In the on-policy setting, MC C-learning and
TD C-learning perform similarly, while the prediction error for Q-
learning (with hindsight relabeling) is more than three times worse
(see Appendix H.1 of [57] for details). In the off-policy setting, TD C-
learning is more accurate than Q-learning (with hindsight relabeling),
achieving a KL divergence that is 14% lower than that of Q-learning.
As expected, TD C-learning performs better than MC C-learning in
the off-policy setting. In summary, C-learning yields a more accurate
solution to the future state density estimation problem, as compared
with Q-learning.

Our next experiment studies the ability of C-learning to predict the
future in higher-dimensional continuous control tasks. We collected a
dataset of experience from agents pre-trained to solve three locomotion
tasks from OpenAI Gym. We applied C-learning to each dataset, and
used the resulting classifier to predict the expected future state. As
a baseline, we trained a 1-step dynamics model on this same dataset
and unrolled this model autoregressively to obtain a prediction for
the expected future state. Varying the discount factor, we compared
each method on Walker2d-v2 in Fig. 2.3. The 1-step dynamics model
is accurate over short horizons but performance degrades for larger
values of γ, likely due to prediction errors accumulating over time.
In contrast, the predictions obtained by MC C-learning and TD C-
learning remain accurate for large values of γ.

Testing our hypotheses about Q-learning: We now test two hy-
potheses made in Section 2.5.3. The first hypothesis is that Q-learning
will underestimate the future state density function. To test this
hypothesis, we compute the sum over the predicted future state
density function,

∫
pπ
+(st+ = st+ | st, at)dst+, which in theory should

equal one. We compared the predictions from MC C-learning and
Q-learning using on-policy data. As shown in Fig. 2.1, the predictions
from C-learning summed to 1, but the predictions from Q-learning
consistently summed to less than one, especially for large values of λ.
However, our next experiment shows that Q-learning works best when
using large values of λ, suggesting that successful hyperparameters



18 learning to achieve goals via recursive classification

Figure 2.4: Goal-conditioned RL: C-learning is competitive with prior
goal-conditioned RL methods across a suite of benchmark tasks,
without requiring careful tuning of the relabeling distribution.
Transparent lines depict individual random seeds.

for Q-learning are ones for which Q-learning does not learn a proper
density function.

Our second hypothesis is that Q-learning will perform best when
the relabeling ratio is chosen to be λ = (1+ γ)/2. As shown in Fig. 2.2,
Q-learning is highly sensitive to the relabeling ratio: values of λ that
are too large or too small result in Q-learning performing poorly,
worse than simply predicting a uniform distribution. Our theoretical
hypothesis of λ = (1− γ)/2 almost exactly predicts the optimal value
of λ to use for Q-learning. C-learning, which does not depend on this
hyperparameter, outperforms Q-learning, even for the best choice of λ.
These experiments support our hypothesis for the choice of relabeling
ratio while reaffirming that our principled approach to future state
density estimation obtains a more accurate solution.

Goal-conditioned RL for continuous control tasks: Our last set of
experiments apply goal-conditioned C-learning (Alg. 3) to benchmark
continuous control tasks from prior work, shown in Fig. 2.4. These
tasks range in difficulty from the 6-dimensional Sawyer Reach task
to the 45-dimensional Pen task. The aim of these experiments is to
show that C-learning is competitive with prior goal-conditioned RL
methods, without requiring careful tuning of the goal sampling ratio.
We compare C-learning with a number of prior methods based on
Q-learning, which differ in how goals are sampled during training:
TD3 [75] does no relabeling, Lin, Baweja, and Held [145] uses 50%
next state goals and 50% random goals, and HER [10] uses final
state relabeling (we compare against both 100% and 50% relabel-
ing). None of these methods require a reward function or distance
function for training; for evaluation, we use the L2 metric between
the commanded goal and the terminal state (the average distance
to goal and minimum distance to goal show the same trends). As
shown in Fig. 2.4, C-learning is competitive with the best of these
baselines across all tasks, and substantially better than all baselines
on the Sawyer manipulation tasks. These manipulation tasks are more



2.7 extension to fully-general rl problems 19

Figure 2.5: Q-learning is sensitive to the relabeling ratio. Our analysis
predicts the optimal relabeling ratio.

complex than the others because they require indirect manipulation
of objects in the environment. Visualizing the learned policies, we
observe that C-learning has discovered regrasping and fine-grained
adjustment behaviors, behaviors that typically require complex reward
functions to learn [188].3 On the Sawyer Push and Sawyer Drawer
tasks, we found that a hybrid of TD C-learning and MC C-learning
performed better than standard C-learning. We describe this variant
in Appendix a.3. In summary, C-learning performs as well as prior
methods on simpler tasks and better on complex tasks, does not
depend on a sensitive hyperparameter (the goal sampling ratio), and
maximizes a well-defined objective function.

Goal sampling ratio for goal conditioned RL: While C-learning pre-
scribes a precise method for sampling goals, prior hindsight relabeling
methods are sensitive to these parameters. We varied the goal sampling
ratio used by Lin, Baweja, and Held [145] on the maze2d-umaze-v0

task. As shown in Fig. 2.5, properly choosing this ratio can result in a
50% decrease in final distance. Hypothesis 2 provides a good estimate
for the best value for this ratio.

2.7 extension to fully-general rl problems

In subsequent work [51], we extended this idea of recursive clas-
sification to fully general RL problems. Instead of specifying tasks
via a single goal state, we supposed that a human user provided
as input a list of success examples. Intuitively, the method then can
use these success examples to reason about what other states might
be successful, allowing the method to learn a generalized notion
of success. We proved that this framework is fully general, in the
sense that any reward maximization task can be represented (up
to arbitrary precision) by an appropriately chosen list of success
examples. Intuitively, the construction involved including each state
with frequency proportional to its reward.

3 See the project website for videos: https://ben-eysenbach.github.io/c_learning

https://ben-eysenbach.github.io/c_learning


20 learning to achieve goals via recursive classification

2.8 discussion

A goal-oriented agent should be able to predict and control the future
state of its environment. In this work, we used this idea to reformulate
the standard goal-conditioned RL problem as one of estimating and op-
timizing the future state density function. We showed that Q-learning
does not directly solve this problem in (stochastic) environments
with continuous states, and hindsight relabeling produces, at best, a
mediocre solution for an unclear objective function. In contrast, C-
learning yields more accurate solutions. Moreover, our analysis makes
two hypotheses about when and where hindsight relabeling will most
effectively solve this problem, both of which are validated in our
experiments. Our experiments also demonstrate that C-learning scales
to high-dimensional continuous controls tasks, where performance
is competitive with state-of-the-art goal conditioned RL methods
while offering an automatic and principled mechanism for hindsight
relabeling.

One limitation of C-learning is that it can struggle to scale to high-
dimensional tasks, which are especially important for real-world
problems: we expect ML-based decision making tools to be more
useful than their hard-coded counterparts precisely because they can
cope with large amounts of data. To lift this limitation, the subsequent
section extends C-learning by developing a connection between C-
learning and contrastive learning. In doing so, we will show that
many proposed strategies for learning from unlabeled data (offline RL,
representation learning, and model learning) can be seen as emerging
from a goal-directed algorithm.



3
C O N T R A S T I V E L E A R N I N G A S
G O A L - C O N D I T I O N E D R E I N F O R C E M E N T
L E A R N I N G

3.1 introduction

Representation learning is an integral part of reinforcement learning
(RL1) algorithms. While such representations might emerge from end-
to-end training [11, 143, 227, 247], prior work has found it necessary
to equip RL algorithms with perception-specific loss functions [64,
83, 128, 131, 162, 164, 193, 268] or data augmentations [131, 132,
226, 261], effectively decoupling the representation learning problem
from the reinforcement learning problem. Given what prior work has
shown about RL in the presence of function approximation and state
aliasing [2, 259, 264], it is not surprising that end-to-end learning
of representations is fragile [132, 261]: an algorithm needs good
representations to drive the learning of the RL algorithm, but the
RL algorithm needs to drive the learning of good representations. So,
can we design RL algorithms that do learn good representations without the
need for auxiliary perception losses?

Rather than using a reinforcement learning algorithm also to solve
a representation learning problem, we will use a representation learn-
ing algorithm to also solve certain types of reinforcement learning
problems, namely goal-conditioned RL. Goal-conditioned RL is widely
studied [10, 28, 43, 110, 146, 228], and intriguing from a representa-
tion learning perspective because it can be done in an entirely self-
supervised manner, without manually-specified reward functions. We
will focus on contrastive (representation) learning methods, using
observations from the same trajectory (as done in prior work [177,
210]) while also including actions as an additional input (See Fig. 3.1).
Intuitively, contrastive learning then resembles a goal-conditioned
value function: nearby states have similar representations and unreach-
able states have different representations. We make this connection
precise, showing that sampling positive pairs using the discounted
state occupancy measure results in learning representations whose
inner product exactly corresponds to a value function.

In this effort, we show how contrastive representation learning
can be used to perform goal-conditioned RL. We formally relate the
learned representations to reward maximization, showing that the
inner product between representations corresponds to a value function.
This framework of contrastive RL generalizes prior methods, such as

1 RL = reinforcement learning, not representation learning.

21



22 contrastive learning as goal-conditioned reinforcement learning

goal encoder, 
state-action 

encoder,              .

trajectory 1

trajectory 2

state,                   action,                      future state,                 random state,

: "Is this a future state or random state?"

Figure 3.1: Reinforcement learning via contrastive learning. Our method
uses contrastive learning to acquire representations of state-action
pairs (ϕ(s, a)) and future states (ψ(s f )), so that the representations
of future states are closer than the representations of random
states. We prove that learned representation corresponds to a
value function for a certain reward function. To select actions for
reaching goal sg, the policy chooses the action where ϕ(s, a) is
closest to ψ(sg).

C-learning [58], and suggests new goal-conditioned RL algorithms.
One new method achieves performance similar to prior methods but is
simpler; another method consistently outperforms the prior methods.
On goal-conditioned RL tasks with image observations, contrastive RL
methods outperform prior methods that employ data augmentation
and auxiliary objectives, and do so without data augmentation or aux-
iliary objectives. In the offline setting, contrastive RL can outperform
prior methods on benchmark goal-reaching tasks, sometimes by a
wide margin.

3.2 related work

This effort will draw a connection between RL and contrastive repre-
sentation learning, building upon a long line of contrastive learning
methods in NLP and computer vision, and deep metric learning [32,
96, 97, 99, 141, 153, 156, 158, 172, 177, 206, 210, 218, 239, 251, 256].
Contrastive learning methods learn representations such that similar
(“positive”) examples have similar representations and dissimilar
(“negative”) examples have dissimilar representations.2 While most
methods generate the “positive” examples via data augmentation,
some methods generate similar examples using different camera
viewpoints of the same scene [210, 239], or by sampling examples
that occur close in time within time series data [7, 177, 210, 226]. Our
analysis will focus on this latter strategy, as the dependence on time
will allow us to draw a precise relationship with the time dependence
in RL.

2 Our focus will not be on recent methods that learn representations without negative
samples [33, 81].



3.2 related work 23

Deep RL algorithms promise to automatically learn good represen-
tations, in an end-to-end fashion. However, prior work has found
it challenging to uphold this promise [11, 143, 227, 247], prompting
many prior methods to employ separate objectives for representation
learning and RL [64, 83, 128, 131, 162, 164, 190, 193, 226, 268, 272].
Many prior methods choose a representation learning objectives that
reconstruct the input state [64, 89, 91, 92, 128, 164, 168, 269] while
others use contrastive representation learning methods [131, 162, 177,
214, 226]. Unlike these prior methods, we will not use a separate
representation learning objective, but instead use the same objective for
both representation learning and reinforcement learning. Some prior
RL methods have also used contrastive learning to acquire reward
functions [27, 38, 65, 72, 111, 119, 166, 257, 258, 276], often in imitation
learning settings [71, 98]. In contrast, we will use contrastive learning
to directly acquire a value function, which (unlike a reward function)
can be used directly to take actions, without any additional RL.

This effort will focus on goal-conditioned RL problems, a problem
prior work has approached using temporal difference learning [10, 58,
110, 146, 198, 202], conditional imitation learning [43, 77, 152, 200, 228],
model-based methods [45, 203], hierarchical RL [161], and planning-
based methods [56, 168, 200, 222]. The problems of automatically
sampling goals and exploration [47, 67, 154, 185, 273] are orthogonal
to this work. Like prior work, we will parametrize the value function
as an inner product between learned representations [66, 100, 202].
Unlike these prior methods, we will learn a value function directly via
contrastive learning, without using reward functions or TD learning.

Our analysis will be most similar to prior methods [23, 28, 58, 198]
that view goal-conditioned RL as a data-driven problem, rather than as
a reward-maximization problem. Many of these methods employ hind-
sight relabeling [10, 53, 110, 142], wherein experience is relabeled with
an outcome that occurred in the future. Whereas hindsight relabeling is
typically viewed as a trick to add on top of an RL algorithm, this effort
can roughly be interpreted as showing that the hindsight relabeling
is a standalone RL algorithm. Many goal-conditioned methods learn
a value function that captures the similarity between two states [58,
110, 164, 245]. Such distance functions are structurally similar to the
critic function learned for contrastive learning, a connection we make
precisely in Sec. 3.4. In fact, our analysis shows that C-learning [58] is
already performing contrastive learning, and our experiments show
that alternative contrastive RL methods can be much simpler and
achieve higher performance.

Prior work has studied how representations related to reward func-
tions using the framework of universal value functions [24, 202] and
successor features [18, 94, 147]. While these methods typically require
additional supervision to drive representation learning (manually-
specified reward functions or features), our method is more similar



24 contrastive learning as goal-conditioned reinforcement learning

to prior work that estimates the discounted state occupancy mea-
sure as an inner product between learned representations [23, 255].
While these methods use temporal difference learning, ours is akin
to Monte Carlo learning. While Monte Carlo learning is often (but
not always [45]) perceived as less sampling efficient, our experiments
find that our approach can be as sample efficient as TD methods.
Other prior work has focused on learning representations that can
be used for planning [103, 148, 199, 200, 250]. Our method will learn
representations using an objective similar to prior work [200, 210], but
makes the key observation that the representation already encodes a
value function: no additional planning or RL is necessary to choose
actions.

Please see Appendix b.1 for a discussion of how our work relates to
unsupervised skill learning.

3.3 preliminaries

Goal-conditioned reinforcement learning. The goal-conditioned RL
problem is defined by states st ∈ S , actions at, an initial state distri-
bution p0(s), the dynamics p(st+1 | st, at), a distribution over goals
pg(sg), and a reward function rg(s, a) for each goal. This problem
is equivalent to a multi-task RL [9, 84, 237, 254, 265], where tasks
correspond to reaching goals states. Following prior work [23, 28, 58,
198], we define the reward as the probability (density) of reaching the
goal at the next time step:3

rg(st, at) ≜ (1− γ)p(st+1 = sg | st, at). (3.1)

This reward function is appealing because it avoids the need for a
human user to specify a distance metric (unlike, e.g., [10]). Even
though our method will not estimate the reward function, we will still
use the reward function for analysis. For a goal-conditioned policy
π(a | s, sg), we use π(τ | sg) to denote the probability of sampling an
infinite-length trajectory τ = (s0, a0, s1, a1, · · · ). We define the expected
reward objective and Q-function as

max
π

Epg(sg),π(τ|sg)

[
∞

∑
t=0

γtrg(st, at)

]
, (3.2)

Qπ
sg
(s, a) ≜ Eπ(τ|sg)

[
∞

∑
t′=t

γt′−trg(st′ , at′) | st=s,
at=a

]
. (3.3)

3 At the initial state, this reward also includes the probability that the agent started at
the goal: rg(s0, a0) = (1− γ)(p(s1 = sg | s0, a0) + p0(s0 = sg))



3.4 contrastive learning as an rl algorithm 25

Intuitively, this objective corresponds to sampling a goal sg and then
optimizing the policy to go to that goal and stay there. Finally, we
define the discounted state occupancy measure as [98, 270]

pπ(·|·,sg)(st+ = s) ≜ (1− γ)
∞

∑
t=0

γt pπ(·|·,sg)
t (st = s), (3.4)

where pπ
t (s) is the probability density over states that policy π visits

after t steps. Sampling from the discounted state occupancy measure
is easy: the first sample a time offset from a geometric distribution
(t ∼ Geom(1 − γ)), and then look at what state the policy visits
after exactly t steps. We will use st+ to denote states sampled from
the discounted state occupancy measure. Because our method will
combine experience collected from multiple policies, we also define
the average stationary distribution as

pπ(·|·)(st+ = s | s, a) ≜
∫

pπ(·|·,sg)(st+ = s | s, a)pπ(sg | s, a)dsg,

where pπ(sg | s, a) is the probability of the commanded goal given the
current state-action pair. This stationary distribution is equivalent to
that of the policy π(a | s) ≜

∫
π(a | s, sg)pπ(sg | s)dsg [275].

Contrastive representation learning. Contrastive representation
learning methods [32, 87, 96, 97, 108, 141, 153, 156, 158, 239, 242,
251] take as input pairs of positive and negative examples, and learn
representations so that positive pairs have similar representations and
negative pairs have dissimilar representations. We use (u, v) to denote
an input pair (e.g., u is an image, and v is an augmented version of
that image). Positive examples are sampled from a joint distribution
p(u, v), while negative examples are sampled from the product of
marginal distributions, p(u)p(v). We will use an objective based on
binary classification [141, 156, 158, 172]. Let f (u, v) = ϕ(u)Tψ(v) be
the similarity between the representations of u and v. We will call
f the critic function4 and note that its range is (−∞, ∞). We will use
NCE-binary [153] objective (also known as InfoMAX [97]):

max
f (u,v)

E(u,v+)∼p(u,v)
v−∼p(u)

[
log σ( f (u, v+)︸ ︷︷ ︸

ϕ(u)Tψ(v+)

) + log(1− σ( f (u, v−)︸ ︷︷ ︸
ϕ(u)Tψ(v−)

))

]
. (3.5)

3.4 contrastive learning as an rl algorithm

This section shows how to use contrastive representation to directly
perform goal-conditioned RL. The key idea (Lemma 1) is that con-

4 In contrastive learning, the critic function indicates the similarity between a pair of
inputs [187]; in RL, the critic function indicates the future expected returns [118]. Our
method combines contrastive learning and RL in a way that these meanings become
one and the same.



26 contrastive learning as goal-conditioned reinforcement learning

trastive learning estimates the Q-function for a certain policy and
reward function. To prove this result, we relate the Q-function to the
state occupancy measure (Sec. 3.4.1) and then relate the optimal critic
function to the state occupancy measure (Sec. 3.4.2).

This result allows us to propose a new algorithm for goal-conditioned
RL based on contrastive learning. Unlike prior work, this algorithm
is not adding contrastive learning on top of an existing RL algorithm.
This framework generalizes C-learning [58], offering a cogent expla-
nation for its good performance while also suggesting new methods
that are simpler and can achieve higher performance.

3.4.1 Relating the Q-function to probabilities

This section sets the stage for the main results of this section by
providing a probabilistic perspective on goal-conditioned RL. The
expected reward objective and associated Q-function in (Eq. 3.3) can
equivalently be expressed as the probability (density) of reaching a
goal in the future:

Proposition 1 (rewards → probabilities). The Q-function for the goal-
conditioned reward function rg (Eq. 3.1) is equivalent to the probability of
state sg under the discounted state occupancy measure:

Qπ
sg
(s, a) = pπ(·|·,sg)(st+ = sg | s, a). (3.6)

The proof is in Appendix b.3. Translating rewards into probabilities
not only makes it easier to analyze the goal-conditioned problem,
but also means that any method for estimating probabilities (e.g.,
contrastive learning) can be turned into a method for estimating this
Q-function.

3.4.2 Contrastive Learning Estimates a Q-Function

We will use contrastive learning to learn a value function by carefully
choosing the inputs u and v. The first input, u, will correspond to
a state-action pair, u = (st, at) ∼ p(s, a). In practice, these pairs are
sampled from the replay buffer. Including the actions in the input is
important because it will allow us to determine which actions to take
to reach a desired future state. The second variable, v, is a future state,
v = s f . For the “positive” training pairs, the future state is sampled
from the discounted state occupancy measure, s f ∼ pπ(·|·)(st+ | st, at).
For the “negative” training pairs, we sample a future state from a
random state-action pair: s f ∼ p(st+) ≜

∫
pπ(·|·)(st+ | s, a)p(s, a)dsda.



3.4 contrastive learning as an rl algorithm 27

With these inputs, the contrastive learning objective (Eq. 3.5) can be
written as

max
f

E(s,a)∼p(s,a),s−f ∼p(s f )

s+f ∼pπ(·|·)(st+|st,at)

[
L(s, a, s+f , s−f )

]
,

where

L(s, a, s+f , s−f ) ≜ log σ( f (s, a, s+f )︸ ︷︷ ︸
ϕ(s,a)Tψ(s+f )

) + log(1− σ( f (s, a, s−f )︸ ︷︷ ︸
ϕ(s,a)Tψ(s−f )

)). (3.7)

Intuitively, the critic function f (u = (st, at), v = s f ) now tells us the
correlation between the current state-action pair and future outcomes,
analogous to a Q-function. We therefore can use the critic function
in the same way as actor-critic RL algorithms [118], figuring out
which actions lead to the desired outcome. Because the Bayes-optimal
critic function is a function of the state occupancy measure [153],

f ∗(s, a, sg) = log
(

pπ(·|·)(st+=sg|s,a)
p(sg)

)
, it can be used to express the Q-

function:

Lemma 1. The critic function that optimizes Eq. 3.7 is a Q-function for the
goal-conditioned reward function (Eq. 3.1), up to a multiplicative constant

1
p(s f )

: exp( f ∗(s, a, s f )) =
1

p(s f )
·Qπ(·|·)

s f (s, a).

The critic function can be viewed as an unnormalized density model,
where p(sg) is the partition function. Much of the appeal of contrastive
learning is it avoids estimating the partition function [87], which can be
challenging; in the RL setting, it will turn out that this constant can be
ignored when selecting actions. Our experiments show that learning a
normalized density model works well when sg is low-dimensional, but
struggles to solve higher-dimensional tasks. Appendix b.2 discusses
how our learned representations can be interpreted as a latent-space
model.

This lemma relates the critic function to Qπ(·|·)
s f (s, a), not Q

π(·|·,s f )
s f (s, a).

The underlying reason is that the critic function combines together
experience collected when commanding different goals. Prior goal-
conditioned behavioral cloning methods [43, 77, 152, 228] perform
similar sharing, but do not analyze the relationship between the
learned policies and Q functions. Sec. 3.4.5 shows that this critic
function can be used as the basis for a convergent RL algorithm under
some assumptions.

3.4.3 Learning the Goal-Conditioned Policy

The learned critic function not only tells us the likelihood of future
states, but also tells us how different actions change the likelihood of



28 contrastive learning as goal-conditioned reinforcement learning

a state occurring in the future. Thus, to learn a policy for reaching a
goal state, we choose the actions that make that state most likely to
occur in the future:

max
π(a|s,sg)

Eπ(a|s,sg)p(s)p(sg)

[
f (s, a, s f = sg)

]
≈ Eπ(a|s,sg)p(s)p(sg)

[
log Qπ(·|·)

sg (s, a)− log p(sg)
]

. (3.8)

The approximation above reflects errors in learning the optimal critic,
and will allow us to prove that this policy loss corresponds to policy
improvement in Sec. 3.4.5, under some assumptions.

In practice, we parametrize the goal-conditioned policy as a neu-
ral network that takes as input the state and goal and outputs a
distribution over actions. The actor loss (Eq. 3.8) is computed by
sampling states and random goals from the replay buffer, sampling
actions from the policy, and then taking gradients on the policy using
a reparametrization gradient. On tasks with image observations, we
add an action entropy term to the policy objective.

3.4.4 A Complete Goal-Conditioned RL Algorithm

The complete algorithm alternates between fitting the critic function
using contrastive learning, updating the policy using Eq. 3.8, and
collecting more data. Alg. 4 provides a JAX [25] implementation of
the actor and critic losses. Note that the critic is parameterized as
an inner product between a representation of the state-action pair,
and a representation of the goal state: f (s, a, sg) = ϕ(s, a)Tψ(sg).
This parameterization allows for efficient computation, as we can
compute the goal representations just once, and use them both in the
positive pairs and the negative pairs. While this is common practice in
representation learning, it is not exploited by most goal-conditioned
RL algorithms. We refer to this method as contrastive RL (NCE). In
Appendix b.4, we derive a variant of this method (contrastive RL

(CPC)) that uses the infoNCE bound on mutual information.
Contrastive RL (NCE) is an on-policy algorithm because it only

estimates the Q-function for the policy that collected the data. However,
in practice, we take as many gradient steps on each transition as
standard off-policy RL algorithms [75, 90]. 5 On a single TPUv2,
training proceeds at 1100 batches

sec for state-based tasks and 105 batches
sec

for image-based tasks; for comparison, our implementation of DrQ on
the same hardware setup runs at 28 batches

sec (3.9× slower).6

5 Code and more results are available: https://ben-eysenbach.github.io/
contrastive_rl

6 The more recent DrQ-v2 [260] uses on 1 NVIDIA V100 GPU to achieve a training
speed of 96/4 = 24 batches

sec . The factor of 4 comes from an action repeat of 2 and an
update interval of 2.

https://ben-eysenbach.github.io/contrastive_rl
https://ben-eysenbach.github.io/contrastive_rl


3.4 contrastive learning as an rl algorithm 29

Algorithm 4 Contrastive RL (NCE): the actor and critic losses for our
method.

from jax.numpy import einsum, eye
from optax import sigmoid_binary_cross_entropy
def critic_loss(states, actions, future_states):

sa_repr = sa_encoder(states, actions) # (batch_dim, repr_dim)
g_repr = g_encoder(future_states) # (batch_dim, repr_dim)
logits = einsum('ik,jk->ij', sa_repr, g_repr) # <sa_repr[i], g_repr[j]> for all i,j
return sigmoid_binary_cross_entropy(logits=logits, labels=eye(batch_size))

def actor_loss(states, goals):
actions = policy.sample(states, goal=goals) # (batch_size, action_dim)
sa_repr = sa_encoder(states, actions) # (batch_dim, repr_dim)
g_repr = g_encoder(goals) # (batch_dim, repr_dim)
logits = einsum('ik,ik->i', sa_repr, g_repr) # <sa_repr[i], g_repr[i]>
return -1.0 * logits

3.4.5 Convergence Guarantees

In general, providing convergence guarantees for methods that per-
form relabeling is challenging. Most prior work offers no guaran-
tees [10, 43, 45] or guarantees under only restrictive assumptions [77,
228].

To prove that contrastive RL converges, we will introduce an ad-
ditional filtering step into the method, throwing away some training
examples. Precisely, we exclude training examples (s, a, s f ) if the prob-
ability of the corresponding trajectory τi:j = (si, ai, si+1, ai+1, · · · , sj, aj)

sampled from π(τ | sg) under the commanded goal sg is very different
from the trajectory’s probability under the actually-reached goal sj:

ExcludeTraj(τi:j) = δ

(∣∣∣∣π(τi:j | sg)

π(τi:j | sj)
− 1
∣∣∣∣ > ϵ

)
.

While this modification is necessary to prove convergence, ablation
experiments in Appendix Fig. b.7 show that the filtering step can
actually hurt performance in practice, so we do not include this
filtering step in the experiments in the main text. We can now prove
that contrastive RL performs approximate policy improvement.

Lemma 2 (Approximate policy improvement). Assume that states and
actions are tabular and assume that the critic is Bayes-optimal. Let π′(a |
s, sg) be the goal-conditioned policy obtained after one iteration of contrastive
RL with a filtering parameter of ϵ. Then this policy achieves higher rewards
than the initial goal-conditioned policy:

Eπ′(τ|sg)

[
∞

∑
t=0

γtrsg(st, at)

]
≥ Eπ(τ|sg)

[
∞

∑
t=0

γtrsg(st, at)

]
− 2γϵ

1− γ

for all goals sg ∈ {sg | pg(sg) > 0}.

The proof is in Appendix b.3. This result shows that performing
contrastive RL on static dataset results in one step of approximate pol-



30 contrastive learning as goal-conditioned reinforcement learning

icy improvement. Re-collecting data and then applying contrastive RL
over and over again corresponds to approximate policy improvement
(see [20, Lemma 6.2]).

In summary, we have shown that applying contrastive learning
to a particular choice of inputs results in an RL algorithm, one that
learns a Q-function and (under some assumptions) converges to the
reward-maximizing policy. Contrastive RL (NCE) is simple: it does
not require multiple Q-values [75], target Q networks [159], data
augmentation [132, 261], or auxiliary objectives [131, 262].

3.4.6 C-learning as Contrastive Learning

C-learning [58] is a special case of contrastive RL: it learns a critic func-
tion to distinguish future goals from random goals. Compared with
contrastive RL (NCE), C-learning learns the classifier using temporal
difference learning.7 Viewing C-learning as a special case of contrastive
RL suggests that contrastive RL algorithms might be implemented
in a variety of different ways, each with relative merits. For example,
contrastive RL (NCE) is much simpler than C-learning and tends
to perform a bit better. Appendix b.5 introduces another member of
the contrastive RL family (contrastive RL (NCE + C-learning)) that
tends to yield the best performance .

3.5 experiments

Our experiments use goal-conditioned RL problems to compare con-
trastive RL algorithms to prior non-contrastive methods, including
those that use data augmentation and auxiliary objectives. We then
compare different members of the contrastive RL family, and show
how contrastive RL can be effectively applied to the offline RL setting.
Appendix b.6 contain additional experiments and visualizations.

3.5.1 Comparing to prior goal-conditioned RL methods

baselines . We compare three baselines. “HER” [146] is a goal-
conditioned RL method that uses hindsight relabeling [10] with a high-
performance actor-critic algorithm (TD3). This baseline is representa-
tive of a large class of prior work that uses hindsight relabeling [10, 139,
195, 202]. Like contrastive RL, this baseline does not assume access to
a reward function. The second baseline is goal-conditioned behavioral
cloning (“GCBC”) [30, 43, 50, 77, 152, 182, 225, 228], which trains a
policy to reach goal sg by performing behavioral cloning on trajectories
that reach state sg. GCBC is a simple method that achieves excellent

7 The objectives are subtly different: C-learning estimates the probability that policy
π(· | ·, sg) visits state s f = sg, whereas contrastive RL (NCE) estimates the probability
that any of the goal conditioned policies visit state s f .



3.5 experiments 31

Figure 3.2: Environments. We show a subset of the goal-conditioned envi-
ronments used in our experiments.

results [30, 50] and has the same inputs as our method ((s, a, s f )

triplets). A third baseline is a model-based approach that fits a density
model to the future state distribution pπ(·|·)(st+ | s, a) and trains a goal-
conditioned policy to maximize the probability of the commanded
goal. This baseline is similar to successor representations [41] and
prior multi-step models [45, 106]. Both contrastive RL (Alg. 4) and
this model-based approach encode the future state distribution, but
the output dimension of this model-based method depends on the
state dimension. We, therefore, expect this approach to excel in low-
dimensional settings but struggle with image-based tasks. Where
possible, we use the same hyperparameters for all methods. We will
include additional representation learning baselines when studying
representations in the subsequent section.

tasks . We compare it to a suite of goal-conditioned tasks, mostly
taken from prior work. Four standard manipulation tasks include
fetch reach and fetch push from Plappert et al. [184] and sawyer

push and sawyer bin from Yu et al. [265]. We evaluate these tasks
both with state-based observations and (unlike most prior work)
image-based observations. The sawyer bin task poses an exploration
challenge, as the agent must learn to pick up an object from one bin
and place it at a goal location in another bin; the agent does not receive
any reward shaping or demonstrations. We include two navigation
tasks: point Spiral11x11 is a 2D maze task with image observations
and ant umaze [70] is a 111-dimensional locomotion task that presents
a challenging low-level control problem. Where possible, we use the
same initial state distribution, goal distribution, observations, and
definition of success as prior work. Goals have the same dimension
as the states, with one exception: on the ant umaze task, we used the
global XY position as the goal. We illustrate three of the tasks to the
right. The agent does not have access to any ground truth reward
function.

We report results in Fig. 3.3, using five random seeds for each
experiment and plotting the mean and standard deviation across those
random seeds. On the state-based tasks (Fig. 3.3a), most methods solve
the easiest task (fetch reach) while only our method solves the most
challenging task (sawyer bin). Our method also outperforms all prior



32 contrastive learning as goal-conditioned reinforcement learning

0 1 2
1e5

0.0

0.5

1.0

su
cc

es
s r

at
e

fetch_reach

0 1 2 3
1e6

fetch_push

0 1 2 3
1e6

sawyer_push

0.0 0.5 1.0

environment steps1e7

0.0

0.5

1.0

su
cc

es
s r

at
e

ant_umaze

0 1 2 3

environment steps1e6

sawyer_bin

contrastive RL (NCE)
TD3 + HER
GCBC
model-based

(a) State-based tasks

0 1 2
1e5

0.0

0.5

1.0

su
cc

es
s r

at
e

fetch reach

0.0 0.5 1.0
1e6

fetch push

0 1 2 3
1e6

sawyer push 

0 2 4

environment steps1e5

0.0

0.5

1.0

su
cc

es
s r

at
e

point Spiral11x11

0 2 4

environment steps1e6

sawyer bin

contrastive RL (NCE)
TD3 + HER
GCBC
model-based

(b) Image-based tasks

Figure 3.3: Goal-conditioned RL. Contrastive RL (NCE) outperforms
prior methods on most tasks. Baselines: HER [146] is a
prototypical actor-critic method that uses hindsight relabel-
ing [10]; Goal-conditioned behavioral cloning (GCBC) [43, 77,
152, 225] performs behavior cloning on relabeled experience;
model-based fits a density model to the discounted state occu-
pancy measure, similar on [41, 45, 106].

methods on the two pushing tasks. The model-based baseline performs
best on the ant umaze task, likely because learning a model is relatively
easy when the goal is lower-dimensional (just the XY location). On
the image-based tasks (Fig. 3.3b), most methods make progress on the
two easiest tasks (fetch reach and point Spiral11x11); our method
outperforms the baselines on the three more challenging tasks. Of
particular note is the success on sawyer push and sawyer bin: while
the success rate of our method remains below 50%, no baselines
make any progress on learning these tasks. These results suggest that
contrastive RL (NCE) is a competitive goal-conditioned RL algorithm.

3.5.2 Comparing to prior representation learning methods

We hypothesize that contrastive RL may automatically learn good
representations. To test this hypothesis, we compare contrastive RL
(NCE) to techniques proposed by prior work for representation learn-
ing. These include data augmentation [132, 260, 261] (“DrQ”) and
auxiliary objectives based on an autoencoder [64, 164, 168, 262] (“AE”)
and a contrastive learning objective (“CURL”) that generates positive
examples using data augmentation, similar to prior work [131, 162,
226]. Because prior work has demonstrated these techniques in combi-
nation with actor-critic RL algorithms, we will use these techniques in
combination with the actor-critic baseline from the previous section
(“TD3 + HER”). While contrastive RL (NCE) resembles a contrastive
representation learning method, it does not include any data augmen-
tation or auxiliary representation learning objectives.

We show results in Fig. 3.4, with error bars again showing the mean
and standard deviation across 5 random seeds. While adding the
autoencoder improves the baseline on the fetch reach and adding
DrQ improves the baseline on the sawyer push, contrastive RL (NCE)



3.5 experiments 33

0 1 2
1e5

0.0

0.5

1.0

su
cc

es
s r

at
e

fetch reach

0 1 2 3

environment steps1e6

sawyer push 

0.0 0.5 1.0
1e6

fetch push

0 2 4
1e6

sawyer bin

contrastive RL (NCE)
TD3+HER
TD3+HER + DrQ
TD3+HER + AE
TD3+HER + CURL

Figure 3.4: Representation learning for image-based tasks. While adding
data augmentation and auxiliary representation objectives can
boost the performance of the TD3+HER baseline, replacing the
underlying goal-conditioned RL algorithm with one that resem-
bles contrastive representation learning (i.e., ours) yields a larger
increase in success rates. Baselines: DrQ [261] augments images
and averages the Q-values across 4 augmentations; auto encoder
(AE) adds an auxiliary reconstruction loss [64, 164, 168, 262];
CURL [131] applies RL on top of representations learned via
augmentation-based contrastive learning.

outperforms the prior methods on all tasks. Unlike these methods,
contrastive RL does not use auxiliary objectives or additional domain
knowledge in the form of image-appropriate data augmentations.
These experiments do not show that representation learning is never
useful, and do not show that contrastive RL cannot be improved with
additional representation learning machinery. Rather, they show that
designing RL algorithms that structurally resemble contrastive repre-
sentation learning yields bigger improvements than simply adding
representation learning tricks on top of existing RL algorithms.

3.5.3 Probing the dimensions of contrastive RL

Up to now, we have focused on the specific instantiation of contrastive
RL spelled out in Alg. 4. However, there is a whole family of RL
algorithms with contrastive characteristics. C-learning is a contrastive
RL algorithm that uses temporal difference learning (Sec. 3.4.6). Con-
trastive RL (CPC) is a variant of Alg. 4 based on the infoNCE ob-
jective [177] that we derive in Appendix b.4 Contrastive RL (NCE +
C-learning) is a variant that combines C-learning with Alg. b.5 (see
Appendix b.5.). The aim of these experiments are to study whether
generalizing C-learning to a family of contrastive RL algorithms was
useful: do the simpler methods achieve similar performance, and do
other methods achieve better performance?

We present results in Fig. 3.5, again plotting the mean and standard
deviation across five random seeds. Contrastive RL (CPC) outper-
forms contrastive RL (NCE) on three, suggesting that swapping one
mutual information estimator for another can sometimes improve
performance, though both estimators can be effective. C-learning
outperforms contrastive RL (NCE) on three tasks but performs worse



34 contrastive learning as goal-conditioned reinforcement learning

0 1 2
1e5

0.0

0.5

1.0

su
cc

es
s r

at
e

fetch_reach

0 1 2 3
1e6

fetch_push

0 1 2 3
1e6

sawyer_push

0.0 0.5 1.0

environment steps1e7

0.0

0.5

1.0

su
cc

es
s r

at
e

ant_umaze

0 1 2 3

environment steps1e6

sawyer_bin

contrastive RL (NCE)
contrastive RL (CPC)
C-learning
contrastive RL 
(NCE + C-learning)

(a) state-based observations

0 1 2
1e5

0.0

0.5

1.0

su
cc

es
s r

at
e

fetch reach

0.0 0.5 1.0
1e6

fetch push

0 1 2 3
1e6

sawyer push 

0 2 4

environment steps1e5

0.0

0.5

1.0

su
cc

es
s r

at
e

point Spiral11x11

0 2 4

environment steps1e6

sawyer bin
contrastive RL (NCE)
contrastive RL (CPC)
C-learning
contrastive RL 
(NCE + C-learning)

(b) image-based observations

Figure 3.5: Contrastive RL design decisions. Generalizing C-learning to
a family of contrastive RL algorithms allowed us to identify
algorithms that are much simpler (contrastive RL (NCE)) and that
consistently achieve higher performance (contrastive RL (NCE +
C-learning)).

on other tasks. Contrastive RL (NCE + C-learning) consistently ranks
among the best methods. These experiments demonstrate that the prior
contrastive RL method, C-learning [58], achieves good results on most
tasks; generalizing C-learning to a family of contrastive RL algorithms
resulting in new algorithms that achieve higher performance and can
be much simpler.

3.5.4 Partial Observability and Moving Cameras

0 1 2 3 4 5
environment steps 1e6

0.0

0.1

0.2

0.3

0.4

re
tu

rn

Figure 3.6: Partial observability and moving cameras. Contrastive RL can
solve partially observed tasks.

Many realistic robotics tasks exhibit partial observability, and have
cameras that are not fixed but rather attached to moving robot parts.
Our next experiment tests if contrastive RL can cope with these sorts
of challenges. To study this question, we modified the sawyer push

task so that the camera tracks the hand at a fixed distance, as if it
were rigidly mounted to the arm. This means that, at the start of the
episode, the scene is occluded by the wall at the edge of the table,
so the agent cannot see the location of the puck (see Fig. 3.6 (left)).
Nonetheless, contrastive RL (NCE) successfully handles this partial



3.5 experiments 35

observability, achieving a success rate of around 35%. Fig. 3.6 (left)
shows an example rollout and Fig. 3.6 (right) shows the learning curve.
For comparison, the success rate when using the fixed static camera
was 75%. Taken together, these results suggest that contrastive RL
can cope with moving cameras and partial observability, while also
suggesting that improved strategies (e.g., non-Markovian architectures)
might achieve even better results.

3.5.5 Contrastive RL for Offline RL

Our final experiment studies whether the benefits from contrastive
RL (NCE) transfer to the offline RL setting, where the agent is prohib-
ited from interacting with the environment. We use the benchmark
AntMaze tasks from the D4RL benchmark [70], as these are goal-
conditioned tasks commonly studied in the offline setting.

We adapt contrastive RL (NCE) to the offline setting by adding an
additional (goal-conditioned) behavioral cloning term to the policy
objective (Eq. 3.8), using a coefficient of λ:

max
π(a|s,sg)

Eπ(a|s,sg)p(s,aorig,sg)

[
(1− λ) · f (s, a, s f = sg) + λ · log π(aorig | s, sg)

]
.

Note that setting λ = 1 corresponds to GCBC [30, 43, 50, 77, 152, 182,
225, 228], which we will include as a baseline. Following TD3+BC [73],
we learn multiple critic functions (2 and 5) and take the minimum
when computing the actor update. We also compare to prior offline RL
methods that eschew TD learning: (unconditional) behavioral cloning
(BC), the implementation of GCBC from [50] (which refers to GCBC
as RvS-G), and a recent method based on the transformer architecture
(DT [30]). Lastly, we compare with two more complex methods that
use TD learning: TD3+BC [73] and IQL [120]. Unlike contrastive RL
and GCBC, these TD learning methods do not perform goal relabeling.
We use the numbers reported for these baselines in prior work [50,
120].

As shown in Table 3.1, contrastive RL (NCE) outperforms all base-
lines on five of the six benchmark tasks. Of particular note are the
most challenging “-large” tasks, where contrastive RL achieves a 7%
to 9% absolute improvement over IQL. We note that IQL does not use
goal relabeling, which is the bedrock of contrastive RL. Compared
to baselines that do not use TD learning, the benefits are more
pronounced, with a median (absolute) improvement over GCBC of
15%. The performance of contrastive RL improves when increasing the
number of critics from 2 to 5, suggesting that the key to solving more
challenging offline RL tasks may be increased capacity, rather than TD
learning. Taken together, these results show the value of contrastive
RL for offline goal-conditioned tasks.



36 contrastive learning as goal-conditioned reinforcement learning

Table 3.1: Offline RL on D4RL AntMaze [70]. Contrastive RL outperforms
all baselines in 5 out of 6 tasks. TD3+BC and IQL report results on
the -v0 tasks, but the change to -v2 has a negligible effect on TD
methods [102].

no TD uses TD

BC DT GCBC Contrastive RL + BC TD3+BC∗ IQL∗

2 nets 5 nets

umaze-v2 54.6 65.6 65.4 81.9 (±1.7) 79.8 (±1.4) 78.6 87.5

umaze-diverse-v2 45.6 51.2 60.9 75.4(±3.5) 77.6 (±2.8) 71.4 62.2

medium-play-v2 0.0 1.0 58.1 71.5(±5.2) 72.6(±2.9) 10.6 71.2

medium-diverse-v2 0.0 0.6 67.3 72.5 (±2.8) 71.5 (±1.3) 3.0 70.0

large-play-v2 0.0 0.0 32.4 41.6 (±6.0) 48.6 (±4.4) 0.2 39.6

large-diverse-v2 0.0 0.2 36.9 49.3 (±6.3) 54.1 (±5.5) 0.0 47.5

3.6 extensionsion : solving fully-general rl problems

using contrastive kernels

While contrastive RL focuses on goal-reaching problems, the underly-
ing mathematics can allow us to solve fully general RL problems. In
particularly, these contrastive representations provide an immediate
solution to the example-based control problem mentioned in Sec. 2.7.
Precisely, estimating the Q function corresponds to kernel smoothing,
where the Q function is represented non-parametrically as a reward-
weighted sum of the distances to reward-labeled states (according to
the representations) [95].

3.7 discussion

In this work, we showed how contrastive representation learning can
be used for goal-conditioned RL. This connection not only lets us
re-interpret a prior RL method as performing contrastive learning,
but also suggests a family of contrastive RL methods, which includes
simpler algorithms, as well as algorithms that attain better overall
performance. While this work might be construed to imply that RL
is more or less important than representation learning [129, 134, 216,
223], we have a different takeaway: that it may be enough to build RL
algorithms that look like representation learning. Moreoever, this work
reveals close connections between various unsupervised pretraining
methods (representation learning, model learning, offline RL, and
goal-conditioned RL), suggesting that they may largely be different
interpretation of the same method.

In summary, both C-learning and its contrastive brethren have
lifted both practical and theoretical limitations of prior work. On the
practical front, unlike prior methods, they do not require manual
specification of reward functions or distance functions, and they



3.7 discussion 37

automatically suggest how relabeling hyperparameters should be
chosen. They also highlight how representation can emerge from goal-
conditioned RL. On the theoretical front, they show how hindsight
relabeling can be used in a principled manner, resulting in well-defined
value functions. Taken together, these methods underscore how data-
driven decision making algorithms are not only practically appealing,
but also open the door to theoretical inquiry.





Part II

I N F E R R I N G S O L U T I O N S T O C O M P L E X TA S K S

Directly solving difficult tasks, without any sort of plan,
can be exceedingly difficult. This section discusses RL
algorithms that infer a plan for solving a task. Like the
scaffolding of a building, this plan makes the subsequent
control problem easier, as the learned agent need only fill in
the gaps in the scaffolding. Different choices of scaffolding
result in different control algorithms. Chapter 4 uses a
coarse scaffold that consists of a sequence of waypoints
leading to a desired outcome. Chapter 5 uses a fine-grained
scaffold that models the dynamics at every time step.





4
S E A R C H O N T H E R E P L AY B U F F E R

4.1 introduction

How can agents learn to solve complex, temporally extended tasks?
Classically, planning algorithms give us one tool for learning such
tasks. While planning algorithms work well for tasks where it is easy
to determine distances between states and easy to design a local policy
to reach nearby states, both of these requirements become roadblocks
when applying planning to high-dimensional (e.g., image-based) tasks.
Learning algorithms excel at handling high-dimensional observations,
but reinforcement learning (RL) – learning for control – fails to reason
over long horizons to solve temporally extended tasks. In this work,
we propose a method that combines the strengths of planning and RL,
resulting in an algorithm that can plan over long horizons in tasks
with high-dimensional observations.

Recent work has introduced goal-conditioned RL algorithms [186,
202] that acquire a single policy for reaching many goals. In practice,
goal-conditioned RL succeeds at reaching nearby goals but fails to
reach distant goals; performance degrades quickly as the number
of steps to the goal increases [140, 161]. Moreover, goal-conditioned
RL often requires large amounts of reward shaping [34] or human
demonstrations [151, 165], both of which can limit the asymptotic
performance of the policy by discouraging the policy from seeking
novel solutions.

We propose to solve long-horizon, sparse reward tasks by decom-
posing the task into a series of easier goal-reaching tasks. We learn
a goal-conditioned policy for solving each of the goal-reaching tasks.
Our main idea is to reduce the problem of finding these subgoals to
solving a shortest path problem over states that we have previous
visited, using a distance metric extracted from our goal-conditioned
policy. We call this algorithm Search on Replay Buffer (SoRB), and
provide a simple illustration of the algorithm in Figure 4.1.

Our primary contribution is an algorithm that bridges planning and
deep RL for solving long-horizon, sparse reward tasks. We develop
a practical instantiation of this algorithm using ensembles of distri-
butional value functions, which allows us to robustly learn distances
and use them for risk-aware planning. Empirically, we find that our
method generates effective plans to solve long horizon navigation
tasks, even in image-based domains, without a map and without
odometry. Comparisons with state-of-the-art RL methods show that
SoRB is substantially more successful in reaching distant goals. We also

41



42 search on the replay buffer

Figure 4.1: Search on the Replay Buffer: (a) Goal-conditioned RL often
fails to reach distant goals, but can successfully reach the goal if
starting nearby (inside the green region). (b) Our goal is to use
observations in our replay buffer (yellow squares) as waypoints
leading to the goal. (c) We automatically find these waypoints by
using the agent’s value function to predict when two states are
nearby, and building the corresponding graph. (d) We run graph
search to find the sequence of waypoints (blue arrows), and then
use our goal-conditioned policy to reach each waypoint.

observe that the learned policy generalizes well to navigate in unseen
environments. In summary, graph search over previously visited states
is a simple tool for boosting the performance of a goal-conditioned
RL algorithm.

4.2 bridging planning and reinforcement learning

Planning algorithms must be able to (1) sample valid states, (2)
estimate the distance between reachable pairs of states, and (3) use
a local policy to navigate between nearby states. These requirements
are difficult to satisfy in complex tasks with high dimensional obser-
vations, such as images. For example, consider a robot arm stacking
blocks using image observations. Sampling states requires generating
photo-realistic images, and estimating distances and choosing actions
requires reasoning about dozens of interactions between blocks. Our
method will obtain distance estimates and a local policy using a RL
algorithm. To sample states, we will simply use a replay buffer of
previously visited states as a non-parametric generative model.

4.2.1 Building Block: Goal-Conditioned RL

A key building block of our method is a goal-conditioned policy
and its associated value function. We consider a goal-reaching agent
interacting with an environment. The agent observes its current state
s ∈ S and a goal state sg ∈ S . The initial state for each episode is
sampled s1 ∼ ρ(s), and dynamics are governed by the distribution
p(st+1 | st, at). At every step, the agent samples an action a ∼ π(a |
s, sg) and receives a corresponding reward r(s, a, sg) that indicates
whether the agent has reached the goal. The episode terminates as
soon as the agent reaches the goal, or after T steps, whichever occurs
first. The agent’s task is to maximize its cumulative, undiscounted,



4.2 bridging planning and reinforcement learning 43

reward. We use an off-policy algorithm to learn such a policy, as well
as its associated goal-conditioned Q-function and value function:

Q(s, a, sg) = Es1∼ρ(s),at∼π(at|st,sg)
st+1∼p(st+1|st,at)

[
T

∑
t=1

r(st, at, sg)

]
,

V(s, sg) = max
a

Q(s, a, sg).

We obtain a policy by acting greedily w.r.t. the Q-function: π(a |
s, sg) = arg maxa Q(s, a, sg). We choose an off-policy RL algorithm
with goal relabelling [10, 110] and distributional RL [19]) not only for
improved data efficiency, but also to obtain good distance estimates
(See Section 4.2.2). We will use DQN [159] for discrete action envi-
ronments and DDPG [144] for continuous action environments. Both
algorithms operate by minimizing the Bellman error over transitions
sampled from a replay buffer B.

4.2.2 Distances from Goal-Conditioned Reinforcement Learning

To ultimately perform planning, we need to compute the shortest
path distance between pairs of states. Following Kaelbling [110], we
define a reward function that returns -1 at every step: r(s, a, sg) ≜ −1.
The episode ends when the agent is sufficiently close to the goal, as
determined by a state-identity oracle. Using this reward function and
termination condition, there is a close connection between the Q values
and shortest paths. We define dsp(s, sg) to be the shortest path distance
from state s to state sg. That is, dsp(s, sg) is the expected number of
steps to reach sg from s under the optimal policy. The value of state s
with respect to goal sg is simply the negative shortest path distance:
V(s, sg) = −dsp(s, sg). We likewise define dsp(s, a, sg) as the shortest
path distance, conditioned on initially taking action a. Then Q values
also equal a negative shortest path distance: Q(s, a, sg) = −dsp(s, a, sg).
Thus, goal-conditioned RL on a suitable reward function yields a
Q-function that allows us to estimate shortest-path distances.

4.2.3 The Replay Buffer as a Graph

We build a weighted, directed graph directly on top of states in our
replay buffer, so each node corresponds to an observation (e.g., an
image). We add edges between nodes with weight (i.e., length) equal to
their predicted distance, using dπ(s1, s2) as our estimate of the distance
using our current Q-function. While, in theory, going directly to the
goal is always a shortest path, in practice the goal-conditioned policy
will fail to reach distant goals directly (See Fig. 4.5.). We will therefore



44 search on the replay buffer

ignore edges that are longer than MaxDist, a hyperparameter. The
graph is thus defined as G ≜ (V , E ,W) where

V = B, E = B × B = {es1→s2 | s1, s2 ∈ B}

W(es1→s2) =

dπ(s1, s2) if dπ(s1, s2) < MaxDist

∞ otherwise.

Given a start and goal state, we temporarily add each to the graph. We
add directed edges from the start state to every other state, and from
every other state to the goal state, using the same criteria as above. We
use Dijkstra’s Algorithm to find the shortest path. See Appendix c for
details.

Algorithm 5 Inputs are the current state s, the goal state sg, a buffer of
observations B, the learned policy π and its value function V. Returns
an action a.

function SearchPolicy(s, sg,B, V, π)
sw1 , · · · ← ShortestPath(s, sg,B, V)
ds→w1 ← −V(s, sw1)
ds→g ← −V(s, sg)
if ds→w1 < ds→g or ds→g > MaxDist then

a← π(a, | s, sw1)
else

a← π(a, | s, sg)

return a

4.2.4 Algorithm Summary

After learning a goal-conditioned Q-function, we perform graph
search to find a set of waypoints and use the goal-conditioned policy
to reach each. We view the combination of graph search and the
underlying goal-conditioned policy as a new SearchPolicy, shown
in Algorithm 5. The algorithm starts by using graph search to obtain
the shortest path sw1 , sw2 , · · · from the current state s to the goal state
sg, planning over the states in our replay buffer B. We then estimate
the distance from the current state to the first waypoint, as well as
the distance from the current state to the goal. In most cases, we then
condition the policy on the first waypoint, sw1 . However, if the goal
state is closer than the next waypoint and the goal state is not too far
away, then we directly condition the policy on the final goal. If the
replay buffer is empty or there is not a path in G to the goal, then
Algorithm 5 resorts to standard goal-conditioned RL.



4.3 better distance estimates 45

4.3 better distance estimates

The success of our SearchPolicy depends heavily on the accuracy of
our distance estimates. This section proposes two techniques to learn
better distances with RL.

4.3.1 Better Distances via Distributional Reinforcement Learning

Figure 4.2: The Bellman update for distributional RL is simple when learning
distances, simply corresponding to a left-shift of the Q-values at
every step until the agent reaches the goal.

Off-the-shelf Q-learning algorithms such as DQN [159] or DDPG [144]
will fail to learn accurate distance estimates using the −1 reward
function. The true value for a state and goal that are unreachable is−∞,
which cannot be represented by a standard, feed-forward Q-network.
Simply clipping the Q-value estimates to be within some range avoids
the problem of ill-defined Q-values, but empirically we found it
challenging to train clipped Q-networks. We adopt distributional
Q-learning [19], noting that is has a convenient form when used with
the −1 reward function. Distributional RL discretizes the possible
value estimates into a set of bins B = (B1, B2, · · · , BN). For learning
distances, bins correspond to distances, so Bi indicates the event that
the current state and goal are i steps away from one another. Our
Q-function predicts a distribution Q(st, sg, at) ∈ PN over these bins,
where Q(st, sg, at)i is the predicted probability that states st and sg

are i steps away from one another. To avoid ill-defined Q-values,
the final bin, BN is a catch-all for predicted distances of at least N.
Importantly, this gives us a well-defined method to represent large



46 search on the replay buffer

and infinite distances. Under this formulation, the targets Q∗ ∈ PN

for our Q-values have a simple form:

Q∗ =

(1, 0, · · · , 0) if st = g

(0, Q1, · · · , QN−2, QN−1 + QN) if st ̸= g

As illustrated in Figure 4.2, if the state and goal are equivalent, then the
target places all probability mass in bin 0. Otherwise, the targets are a
right-shift of the current predictions. To ensure the target values sum
to one, the mass in bin N of the targets is the sum of bins N− 1 and N
from the predicted values. Following Bellemare, Dabney, and Munos
[19], we update our Q function by minimizing the KL divergence
between our predictions Qθ and the target Q∗:

min
θ

DKL(Q∗ ∥ Qθ) (4.1)

4.3.2 Robust Distances via Ensembles of Value Functions

Since we ultimately want to use estimated distances to perform search,
it is crucial that we have accurate distances estimates. It is challenging
to robustly estimate the distance between all |B|2 pairs of states in our
buffer B, some of which may not have occurred during training. If we
fail and spuriously predict that a pair of distant states are nearby, graph
search will exploit this “wormhole” and yield a path which assumes
that the agent can “teleport” from one distant state to another. We
seek to use a bootstrap [21] as a principled way to estimate uncertainty
for our Q-values. Following prior work [126, 179], we implement an
approximation to the bootstrap. We train an ensemble of Q-networks,
each with independent weights, but trained on the same data using
the same loss (Eq. 4.1). When performing graph search, we aggregate
predictions from each Q-network in our ensemble. Empirically, we
found that ensembles were crucial for getting graph search to work
on image-based tasks, but we observed little difference in whether
we took the maximum predicted distance or the average predicted
distance.

4.4 related work

Planning Algorithms: Planning algorithms [36, 125] efficiently solve
long-horizon tasks, including those that stymie RL algorithms (see,
e.g., Kavraki, Svestka, and Overmars [113], Lau and Kuffner [133], and
Levine et al. [138]). However, these techniques assume that we can
(1) efficiently sample valid states, (2) estimate the distance between
two states, and (3) acquire a local policy for reaching nearby states,
all of which make it challenging to apply these techniques to high-
dimensional tasks (e.g., with image observations). Our method re-



4.4 related work 47

moves these assumptions by (1) sampling states from the replay buffer
and (2,3) learning the distance metric and policy with RL. Some prior
works have also combined planning algorithms with RL [34, 62, 200],
finding that the combination yields agents adept at reaching distant
goals. Perhaps the most similar work is Semi-Parametric Topological
Memory [200], which also uses graph search to find waypoints for a
learned policy. We compare to SPTM in Section 4.5.3.

Goal-Conditioned RL: Goal-conditioned policies [110, 186, 202] take as
input the current state and a goal state, and predict a sequence of ac-
tions to arrive at the goal. Our algorithm learns a goal-conditioned pol-
icy to reach waypoints along the planned path. Recent algorithms [10,
186] combine off-policy RL algorithms with goal-relabelling to improve
the sample complexity and robustness of goal-conditioned policies.
Similar algorithms have been proposed for visual navigation [8, 86,
157, 267, 274]. A common theme in recent work is learning distance
metrics to accelerate RL. While most methods [66, 201, 255] simply
perform RL on top of the learned representation, our method explicitly
performs search using the learned metric.

Hierarchical RL: Hierarchical RL algorithms automatically learn a
set of primitive skills to help an agent learn complex tasks. One class
of methods [14, 69, 109, 121, 161, 181, 189, 231, 246] jointly learn a
low-level policy for performing each of the skills together with a
high-level policy for sequencing these skills to complete a desired task.
Another class of algorithms [46, 68, 217] focus solely on automatically
discovering these skills or subgoals. SoRB learns primitive skills that
correspond to goal-reaching tasks, similar to Nachum et al. [161].
While jointly learning high-level and low-level policies can be unstable
(see discussion in Nachum et al. [161]), we sidestep the problem by
using graph search as a fixed, high-level policy.

Table 4.1: Four classes of model-based RL methods. Dimensions in the last
column correspond to typical robotics tasks with image/lidar
observations.

model real
states

multi-
step

prediction
dimen-
sion

state-space ✓ ✓ 1000s+
latent-space ✗ ✓ 10s

inverse ✓ ✗ 10s
SoRB ✓ ✓ 1

Model Based RL: RL methods are typically divided into model-
free [207–209, 253] and model-based [144, 249] approaches. Model-
based approaches all perform some degree of planning, from predict-
ing the value of some state [159, 215], obtaining representations by
unrolling a learned dynamics model [191], or learning a policy directly



48 search on the replay buffer

(a) (b) (c)

Figure 4.3: Simple 2D Navigation: (Left) Two simple navigation environ-
ments. (Center) An agent that combines a goal-conditioned policy
with search is substantially more successful at reaching distant
goals in these environments than using the goal-conditioned
policy alone. (Right) A standard goal-conditioned policy (top)
fails to reach distant goals. Applying graph search on top of that
same policy (bottom) yields a sequence of intermediate waypoints
(yellow squares) that enable the agent to successfully reach distant
goals.

on a learned dynamics model [3, 39, 63, 123, 163, 173, 230]. One line
of work [6, 135, 224, 235] embeds a differentiable planner inside a
policy, with the planner learned end-to-end with the rest of the policy.
Other work [136, 250] explicitly learns a representation for use inside
a standard planning algorithm. In contrast, SoRB learns to predict the
distances between states, which can be viewed as a high-level inverse
model. SoRB predicts a scalar (the distance) rather than actions or
observations, making the prediction problem substantially easier. By
planning over previously visited states, SoRB does not have to cope
with infeasible states that can be predicted by forward models in
state-space and latent-space.

4.5 experiments

We compare SoRB to prior methods on two tasks: a simple 2D envi-
ronment, and then a visual navigation task, where our method will
plan over images. Ablation experiments will illustrate that accurate
distances estimates are crucial to our algorithm’s success.

4.5.1 Didactic Example: 2D Navigation

We start by building intuition for our method by applying it to two
simple 2D navigation tasks, shown in Figure 4.3a. The start and
goal state are chosen randomly in free space, and reaching the goal
often takes over 100 steps, even for the optimal policy. We used
goal-conditioned RL to learn a policy for each environment, and
then evaluated this policy on randomly sampled (start, goal) pairs of
varying difficulty. To implement SoRB, we used exactly the same policy,
both to perform graph search and then to reach each of the planned
waypoints. In Figure 4.3b, we observe that the goal-conditioned policy



4.5 experiments 49

can reach nearby goals, but fails to generalize to distant goals. In
contrast, SoRB successfully reaches goals over 100 steps away, with
little drop in success rate. Figure 4.3c compares rollouts from the goal-
conditioned policy and our policy. Note that our policy takes actions
that temporarily lead away from the goal so the agent can maneuver
through a hallway to eventually reach the goal.

4.5.2 Planning over Images for Visual Navigation

Figure 4.4: Visual Navigation: Given an initial state and goal state, our
method automatically finds a sequence of intermediate waypoints.
The agent then follows those waypoints to reach the goal.

We now examine how our method scales to high-dimensional
observations in a visual navigation task, illustrated in Figure 4.4.
We use 3D houses from the SUNCG dataset [220], similar to the
task described by Shah et al. [212]. The agent receives either RGB
or depth images and takes actions to move North/South/East/West.
Following Shah et al. [212], we stitch four images into a panorama, so
the resulting observation has dimension 4× 24× 32× C, where C is
the number of channels (3 for RGB, 1 for Depth). At the start of each
episode, we randomly sample an initial state and goal state. We found
that sampling nearby goals (within 4 steps) more often (80% of the
time) improved the performance of goal-conditioned RL. We use the
same goal sampling distribution for all methods. The agent observes
both the current image and the goal image, and should take actions
that lead to the goal state. The episode terminates once the agent is
within 1 meter of the goal. We also terminate if the agent has failed to
reach the goal after 20 time steps, but treat the two types of termination
differently when computing the TD error (see Pardo et al. [180]). Note
that it is challenging to specify a meaningful distance metric and local
policy on pixel inputs, so it is difficult to apply standard planning
algorithms to this task.

On this task, we evaluate four state-of-the-art prior methods: hind-
sight experience replay (HER) [10], distributional RL (C51) [19], semi-
parametric topological memory (SPTM) [200], and value iteration net-



50 search on the replay buffer

Figure 4.5: Visual Navigation: We compare our method (SoRB) to prior work
on the visual navigation environment (Fig. 4.4), using RGB images
(Left) and depth images (Right) . We find that only our method
succeeds in reaching distant goals. Baselines: SPTM [200], C51 [19],
VIN [235], HER [10]. Transparent lines depict individual random
seeds.

works (VIN) [235]. SoRB uses C51 as its underlying goal-conditioned
policy. For VIN, we tuned the number of iterations as well as the num-
ber of hidden units in the recurrent layer. For SPTM, we performed
a grid search over the threshold for adding edges, the threshold
for choosing the next waypoint along the shortest path, and the
parameters for sampling the training data. In total, we performed over
1000 experiments to tune baselines, more than an order of magnitude
more than we used for tuning our own method. See Appendix c for
details.

We evaluated each method on goals ranging from 2 to 20 steps from
the start. For each distance, we randomly sampled 30 (start, goal) pairs,
and recorded the average success rate, defined as reaching within 1

meter of the goal within 100 steps. We then repeated each experiment
for 5 random seeds. In Figure 4.5, we plot each random seed as a
transparent line; the solid line corresponds to the average across the 5

random seeds. While all prior methods degrade quickly as the distance
to the goal increases, our method continues to succeed in reaching
goals with probability around 90%. SPTM, the only prior method that
also employs search, performs second best, but substantially worse
than our method.

4.5.3 Comparison with Semi-Parametric Topological Memory

To understand why SoRB succeeds at reaching distant goals more
frequently than SPTM, we examine the two key differences between
the methods: (1) the goal-conditioned policy used to reach nearby goals
and (2) the distance metric used to construct the graph. While SoRB
acquires a goal-conditioned policy via goal-conditioned RL, SPTM
obtains a policy by learning an inverse model with supervised learning.
First, we compared the performance of the RL policy (used in SoRB)
with the inverse model policy (used in SPTM). In Figure 4.6a, the solid
colored lines show that, without search, the policy used by SPTM is
more successful than the RL policy, but performance of both policies



4.5 experiments 51

(a) Goal-Conditioned Policy (b) Distance Predictions

Figure 4.6: SoRB vs SPTM: Our method and Semi-Parametric Topological
Memory [201] differ in the policy used and how distances are
estimated. We find (Left) that both methods learn comparable
policies, but (Right) our method learns more accurate distances.
Transparent lines depict individual random seeds.

degrades as the distance to the goal increases. We also evaluate a
variant of our method that uses the policy from SPTM to reach each
waypoint, and find (dashed-lines) no difference in performance, likely
because the policies are equally good at reaching nearby goals (within
MaxDist steps). We conclude that the difference in goal-conditioned
policies cannot explain the difference in success rate.

The other key difference between SoRB and SPTM is their learned
distance metrics. When using distances for graph search, it is critical
for the predicted distance between two states to reflect whether the
policy can successfully navigate between those states: the model
should be more successful at reaching goals which it predicts are
nearby. We can naturally measure this alignment using the area under
a precision recall curve. Note that while SoRB predicts distances in
the range [0, T], SPTM predicts whether two states are reachable, so
its predictions will be in the range [0, 1]. Nonetheless, precision-recall
curves1 only depend on the ordering of the predictions, not their
absolute values. Figure 4.6b shows that the distances predicted by
SoRB more accurately reflect whether the policy will reach the goal,
as compared with SPTM. The average AUC across five random seeds
is 22% higher for SoRB than SPTM. In retrospect, this finding is not
surprising: while SPTM employs a learned, inverse model policy, it
learns distances w.r.t. a random policy.

4.5.4 Better Distance Estimates

We now examine the ingredients in SoRB that contribute to its accurate
distance estimates: distributional RL and ensembles of value functions.
In a first experiment, evaluated a variant of SoRB trained without
distributional RL. As shown in Figure 4.7a, this variant performed

1 We negate the distance prediction from SoRB before computing the precision recall
curve because small distances indicate that the policy should be more successful.



52 search on the replay buffer

(a) Distributional RL

(b) Ensembles

Figure 4.7: Better Distance Estimates: (Left) Without distributional RL, our
method performs poorly. (Right) Ensembles contribute to a
moderate increase in success rate, especially for distant goals.

worse than the random policy, clearly illustrating that distributional
RL is a key component of SoRB. The second experiment studied
the effect of using ensembles of value functions. Recalling that we
introduced ensembles to avoid erroneous distance predictions for
distant pairs of states, we expect that ensembles will contribute most
towards success at reaching distant goals. Figure 4.7b confirms this
prediction, illustrating that ensembles provide a 10 – 20% increase
in success at reaching goals that are at least 10 steps away. We run
additional ablation analysis in Appendix c.

4.5.5 Generalizing to New Houses

We now study whether our method generalizes to new visual nav-
igation environments. We train on 100 SUNCG houses, randomly
sampling one per episode. We evaluated on a held-out test set of 22

SUNCG houses. In each house, we collect 1000 random observations
and fill our replay buffer with those observations to perform search.
We use the same goal-conditioned policy and associated distance
function that we learned during training. As before, we measure the
fraction of goals reached as we increase the distance to the goal. In
Figure 4.8, we observe that SoRB reaches almost 80% of goals that



4.6 extensions 53

Figure 4.8: Does SoRB Generalize? After training on 100 SUNCG houses,
we collect random data in held-out houses to use for search in
those new environments. Whether using depth images or RGB
images, SoRB generalizes well to new houses, reaching almost
80% of goals 10 steps away, while goal-conditioned RL reaches
less than 20% of these goals. Transparent lines correspond to
average success rate across 22 held-out houses for each of three
random seeds.

are 10 steps away, about four times more than reached by the goal-
conditioned RL agent. Our method succeeds in reaching 40% of goals
20 steps away, while goal-conditioned RL has a success rate near
0%. We repeated the experiment for three random seeds, retraining
the policy from scratch each time. Note that there is no discernible
difference between the three random seeds, plotted as transparent
lines, indicating the robustness of our method to random initialization.

4.6 extensions

Figure 4.9: Developing a variant
of SoRB for real-
world outdoor visual
navigation [211].

On the empirical side, we
worked together with collabora-
tors to develop a version of SoRB
that could drive a small robot
(Fig. 4.9) around a small out-
door campus, given only an im-
age of the desired location [211].
We demonstrated applications in-
cluded contact-free pizza deliv-
ery and autonomous mail deliv-
ery.

While the SoRB algorithm
worked well in practice, from a
theoretical perspective there re-
mained a few open questions.
First, SoRB requires an ϵ-ball for
defining whether the agent has
reached the goal state or not.
Specifying such balls requires
some intuition about what metrics make sense for the given task,



54 search on the replay buffer

and require tuning a hyperparameter ϵ. Second, SoRB does not take
into account the distribution of the waypoints; if the replay buffer
contains a non-uniform distribution of observations, then the graph
will be biased towards containing certain types of observations, and
the planning procedure does not take that distribution into account.

In subsequent work [271], we lift these two limitations by providing
a probabilistic treatment of SoRB. This required using C-learning
(Chapter 2) to learn the edges of the graph. In the end, we can prove
that this new method achieve even better empirical results while
retaining stronger theoretical guarantees.

4.7 discussion

We presented SoRB, a method that combines planning via graph
search and goal-conditioned RL. By exploiting the structure of goal-
reaching tasks, we can obtain policies that generalize substantially
better than those learned directly from RL. In our experiments, we
show that SoRB can solve temporally extended navigation problems,
traverse environments with image observations, and generalize to new
houses in the SUNCG dataset. Broadly, we expect SoRB to outperform
existing RL approaches on long-horizon tasks, especially those with
high-dimensional inputs. In addition, while the planning algorithm we
use is simple (namely, Dijkstra), we believe that the key idea of using
distance estimates obtained from RL algorithms for planning will open
doors to incorporating more sophisticated planning techniques into
RL.

One way of interpretating SoRB (see [271]) is that it infers a coarse
set of waypoints leading from one state to another. In the next chapter
we describe an alternative parametrizatoin, where we attempt to infer
the dense sequence of observations leading to high-reward states.



5
J O I N T M O D E L - P O L I C Y O P T I M I Z AT I O N F O R
M O D E L - B A S E D R L

5.1 introduction

Much of the appeal of model-based RL is that model learning is a
simple and scalable supervised learning problem. Unfortunately, the
accuracy of the learned model does not directly correlate with whether
the model-based RL algorithm will receive high reward [61, 127]. For
example, a model might make small mistakes in critical states that
cause a policy to take suboptimal actions. Alternatively, a model with
large errors may yield a policy that attains high return if the model
errors occur in states that the policy never visits.

The underlying problem is that dynamics models are trained differ-
ently from how they are used. Typical model-based methods train a
model using data sampled from the real dynamics (e.g., using maxi-
mum likelihood), but apply these models by using data sampled from
the learned dynamics [42, 91, 105, 252]. Prior work has identified this
objective mismatch issue [61, 127, 150]: the model is trained using one
objective, but the policy is trained using a different objective. Designing
an objective for model training that is guaranteed to improve the
expected reward remains an open problem. This work aims to answer
the following question: How should we train a dynamics model so that it
produces high-return policies when used for model-based RL?

In this work, we propose a model-based RL algorithm where the
model and policy are jointly optimized with respect to the same ob-
jective. Our objective is a lower bound on the expected return under
the true environment dynamics; a slightly more complicated version
of this lower bound becomes tight under certain assumptions. Struc-
turally, our algorithm resembles a generative adversarial network (a
GAN), in that the model is trained using a discriminator that distin-
guishes between real and fake transitions. This same discriminator is
included in the objective for the policy, and both the model and policy
are jointly trained to maximize reward and minimize discriminator
accuracy. Thus, the model and policy cooperate to produce realistic and
high-reward trajectories. Our method stands in contrast to standard
model-based RL methods, where it is more common to pit the model
against the policy [15, 171, 197]. An consequence of maximizing
the lower bound is that the dynamics model does not learn the
true dynamics, but rather learns optimistic dynamics that facilitate
exploration.

55



56 joint model-policy optimization for model-based rl

The main contribution of this work is an algorithm, Mismatched no
More (MnM), for model-based RL that provably maximizes a lower
bound on expected reward. Importantly, this bound becomes tight at
optimality under certain assumptions. To the best of our knowledge,
this is the first model-based RL objective that is a global lower bound
on expected return, and that involves optimizing the model and policy
using the same objective. Our algorithm has the unique property
of jointly optimizing the policy and model using the same objective.
Across a range of tasks, we demonstrate that our method is competitive
with prior state-of-the-art methods on benchmark tasks; on certain
hard exploration tasks, our method outperforms prior methods based
on maximum likelihood estimation.

5.2 related work

Model-based RL methods typically fit a dynamics model to observed
transitions, and then apply an RL method to that learned model. Most
of these methods use maximum likelihood to fit the dynamics model,
and then use RL to maximize the expected return under samples from
that model [39, 42, 91, 105, 252]. The observation that this maximum
likelihood objective is not aligned with the RL objective has been
noted in prior work [61, 127, 150, 234, 275]. This issue is referred to
as the objective mismatch problem: the model and policy (or planner)
are optimized using different objectives. This problem arises in almost
all model-based RL approaches, including those that train the model
to predict the value function [175, 204] or that perform planning [39,
204].

One strategy for mitigating this problem is to modify the model
training to improve model accuracy under multi-step rollouts [12,
13, 61, 107, 234, 244]. A second strategy is penalize the policy for
taking transitions where the model is inaccurate [115, 150, 221, 263,
266]. Similar to all these prior methods, our approach will also use a
modified reward function to train the policy, but it will also modify
how the model is trained such that the model and policy optimize the
same objective. A third strategy is to directly optimize the model such
that it produces good policies [6, 40, 170, 176, 224], as theoretically
analyzed in Grimm et al. [82]. While our aim is the same as these
prior methods, our approach will not require differentiating through
unrolled model updates or optimization procedures.

Our work builds on prior work that proposes model-based RL
objectives that are lower bounds on the true, expected returns. Kearns
and Singh [114] provide a lower bound that holds globally, but is only
computable in tabular settings. Luo et al. [150] provide a lower bound
that can be efficiently estimated, but which only holds for nearby
policies and models. Our lower bound combines the strengths of these
prior works, providing a lower bound that holds globally and can



5.3 a unified objective for model-based rl 57

be efficiently estimated in MDPs with continuous states and actions.
Unlike any lower bounds from prior work, ours mends the objective
mismatch problem.

Our theoretical derivation builds on prior work that casts model-
based RL as a two-player game between a model-player and a policy-
player [15, 171, 192, 196]. However, whereas prior work pits model and
policy compete against one another, our formulation will result in a
cooperative game, wherein the model and policy players cooperate in
optimizing the same objective (a lower bound on the expected return).
Our approach, though structurally resembling a GAN, is different
from prior work that simply replaces a maximum likelihood model
with a GAN model [16, 31, 124].

The most similar prior work is VMBPO [37]. The mechanics of our
method are similar, also learning a dynamics model using a classifier
that distinguishes real versus generated rollouts. However, while
our method maximizes a lower bound on expected return, VMBPO
maximizes a different, risk-seeking objective, which is an upper bound
on expected return. This different objective can be expressed as the
expected return plus the variance of the return, so VMBPO has the
undesirable property of preferring policies that receive slight lower
return if the variance of the return is much larger (see Appendix d.1.1).
Indeed, most of the components of our method, including classifiers
and GAN-like models, have been used in prior work, main contribu-
tion of our work is a precise recipe for combining these components
in a way that provably maximizes expected return.

5.3 a unified objective for model-based rl

Notation. We focus on the Markov decision process with states st,
actions at, initial state distribution p0(s0), positive reward function
r(st, at) > 0 , and dynamics p(st+1 | st, at). Our aim is to learn a control
policy πθ(at | st) with parameters θ that maximizes the expected
discounted return:

max
θ

Eπθ

[ ∞

∑
t=0

γtr(st, at)

]
. (5.1)

We use transitions (st, at, rt, st+1) collected from the (real) environment
to train the dynamics model qθ(st+1 | st, at), and use transitions
sampled from this learned model to train the policy. To simplify
notation, we will define a trajectory τ to be the sequence of states
and actions visited in an episode: τ ≜ (s0, a0, s1, a1, · · · ). We then
define R(τ) ≜ ∑∞

t=0 γtr(st, at) as the discounted return of a trajectory.
Finally, we define two distributions over trajectories. First, pπ(τ) is the
distribution over trajectories when policy πθ interacts with dynamics



58 joint model-policy optimization for model-based rl

p(s′ | s, a); qπ(τ) is the distribution over trajectories when policy πθ

interacts with the learned dynamics qθ(st+1 | st, at):

pπ(τ) = p0(s0)
∞

∏
t=0

p(st+1 | st, at)πθ(at | st),

qπ(τ) = p0(s0)
∞

∏
t=0

qθ(st+1 | st, at)πθ(at | st).

Desiderata. Our aim is to design an objective L(θ) that can be used
to jointly optimize both the policy (πθ(at | st)) and the dynamics model
(q(st+1 | st, at)), and which is a lower bound on the expected return in
the true environment.

An objective for model-based RL. We now introduce an objective
that achieves these aims. Our objective will be the policy’s reward
when interacting with the learned model, but using a different reward
function. The new reward function augments the task reward with
an additional term that measures the difference between the learned
model and the real environment. We define our objective

L(θ) ≜ Eqπθ (τ)

[ ∞

∑
t=0

γtr̃(st, at, st+1)

]
, (5.2)

where the modified reward function is defined as

r̃(st, at, st+1) ≜ (1−γ) log r(st, at)+ log
(

p(st+1 | st, at)

q(st+1 | st, at)

)
− (1−γ) log(1−γ).

(5.3)

This objective maximizes an augmented reward under the learned
dynamics. The augmented reward function r̃ penalizes the policy
for taking transitions that are unlikely under the true dynamics model,
similar to prior work [52, 263]. Later, we will show that we can estimate
this augmented reward without knowing the true environment dynamics
by using a GAN-like classifier. We will optimize this lower bound
with respect to both the policy πθ(at | st) and the dynamics model
qθ(st+1 | st, at). For the policy, this optimization entails performing
RL to maximize the modified reward using samples from the learned
model; the only difference from prior work is the modification to the
reward function. Training the dynamics model using this objective is
very different from standard maximum likelihood training, and in-
stead resembles a GAN. The model is optimized to sample trajectories
that both have high reward (i.e., log r is large) and are similar to real
dynamics (i.e., log p

q is large). This objective differs from VMBPO [37]
by taking the log(·) of the original reward functions; our experiments
demonstrate that excluding this component invalidates our lower
bound and results in learning suboptimal policies.



5.3 a unified objective for model-based rl 59

Our objective has two properties that make it particularly useful.
First, the model and the policy are trained using exactly the same
objective: updating the model not only increases the objective for the
model, but also increases the objective for the policy. Note that this
is very different from prior work, where training the model to be
more accurate (increase likelihood) can decrease the policy’s expected
return under that model. Second, our objective is a lower bound on the
expected return. This property gives us a guarantee on how well the
learned policy will perform when deployed on the real environment.
To state this result formally, we will take the logarithm of the expected
return. Of course, maximizing the log(·) of the expected return is
equivalent to maximizing the expected return.

Theorem 3. The following bound holds for any dynamics q(st+1 | st, at)

and policy π(at | st):

log Eπ

[ ∞

∑
t=0

γtr(st, at)

]
≥ L(θ).

The proof is presented in Appendix d.1.3. Note that the expected
return under the learned model, which most prior model-based RL
methods use to train the policy, is not a lower bound on the expected
return. To the best of our knowledge, this is the first global (unlike Luo
et al. [150]) and efficiently-computable (unlike Kearns and Singh [114])
lower bound for model-based RL.

Sec. 5.4 will introduce an algorithm to maximize this lower bound.
While this lower bound may not be tight, experiments in Sec. 5.5
demonstrate that optimizing this first lower bound yields policies that
achieve high reward across a wide range of tasks.

tightening the lower bound. We now introduce a modifica-
tion to our lower bound that does make the bound tight. This new
lower bound will be more complex than the one introduced above and
we have not yet successfully designed an algorithm for maximizing it.
Nonetheless, we believe that presenting the bound may prove useful
for the design of future model-based RL algorithms.

We will use Lγ(θ) to denote this new lower bound. In addition
to the policy and dynamics, this bound will also depend on a time-
varying discount, γθ(t), in place of the typical γt term. Similar learned
discount factors have been studied in previous work on model-free
RL [198]. We define this objective as follows:

Lγ(θ) ≜ Eqπθ (τ)

[ ∞

∑
t=0

γθ(t)r̃γ(st, at, st+1)

]
, (5.4)



60 joint model-policy optimization for model-based rl

where the augmented reward is now defined as

r̃γ(st, at, st+1) ≜ log r(st, at) +
1− Γθ(t− 1)

γθ(t)
log
(

p(st+1 | st, at, st−1, at−1, · · · )
qθ(st+1 | st, at, st−1, at−1, · · · )

)
+ log

(
γt

γθ(t)

)
,

and Γθ(t) = ∑t
t′=0 γθ(t′) is the CDF of the learned discount function

(i.e., γθ(t) is a probability distribution over t.). This new lower bound,
which differs from our main lower bound by the learnable discount
factor, does provide a tight bound on the expected return objective:

Lemma 4. Let an arbitrary policy π(at | st) be given. The objective Lγ(θ) is
also a lower bound on the expected return objective, log Eπ

[
∑∞

t=0 γtr(st, at)
]
≥

Lγ(θ), and this bound becomes tight at optimality:

log Eπ

[ ∞

∑
t=0

γtr(st, at)

]
= max

qπ(τ),γθ(t)
Lγ(θ).

The proof is presented in Appendix d.1.4. One important limitation
of this result is that the learned dynamics that maximize this lower
bound to make the bound tight may be non-Markovian. Intriguingly,
this analysis suggests that using non-Markovian models, such as
RNNs and transformers, may accelerate learning on Markovian tasks.
This work does not propose an algorithm for optimizing this more
complex lower bound.

the optimal dynamics are optimistic . We now return to
analyzing the simpler lower bound (L(θ) in Eq. 5.2). In stochas-
tic environments, the dynamics model that optimizes this lower
bound is not equal to the true environment dynamics. Rather, it
is biased towards sampling trajectories with high return. Ignoring
parametrization constraints, the dynamics model that optimizes our
lower bound is q∗(τ) = p(τ)R(τ)∫

p(τ′)R(τ′)dτ′
(proof in Appendix d.1.4.). We

hypothesize that the optimism in the dynamics model will accelerate
policy optimization, a hypothesis we test in Sec. 5.5.1.

Would the optimistic dynamics overestimate the policy’s return,
violating Lemma 3? This is not quite what our method does. Rather,
our method estimates the augmented reward using the optimistic
dynamics model, and the reward augmentation compensates for the
optimism in the dynamics model.

5.4 mismatched no more

The previous section presented a single (global) lower bound (L from
Eq. 5.2) for jointly optimizing the policy and the dynamics model.
In this section, we develop a practical algorithm for optimizing this



5.4 mismatched no more 61

policy Learned 
dynamics model

policy Learned 
dynamics model

policy Learned 
dynamics model… 

Classifier

Figure 5.1: Mismatched No More is a model-based RL algorithm that
learns a policy, dynamics model, and classifier. The classifier
distinguishes real transitions from model transitions. The policy
and dynamics model are jointly optimized to sample transitions
that yield high return and look realistic, as estimated by the
classifier.

lower bound. We call our method Mismatched no More (MnM)
because the policy and model optimize the same objective, thereby
resolving the objective mismatch problem noted in prior work. The
main challenge in optimizing this bound is that the augmented
reward function depends on the transition probabilities of the real
environment, p(st+1 | st, at), which are unknown. We address this
challenge by learning a classifier (Sec. 5.4.1), and then describe the
precise update rules for the policy, dynamics model, and classifier
(Sec. 5.4.2).

5.4.1 Estimating the Augmented Reward Function

To estimate the augmented reward function, which depends on the
transition probabilities of the real environment, we learn a classifier
that distinguishes real transitions from fake transitions. This approach
is similar to GANs [79] and similar to prior work in RL [52, 263]. We
use Cϕ(st, at, st+1) ∈ [0, 1] to denote the classifier. For an optimal clas-
sifier, we can use the classifier’s predictions to estimate the augmented
reward function:

r̃(st, at, st+1) = log r(st, at) + log
Cϕ(st, at, st+1)

1− Cϕ(st, at, st+1)︸ ︷︷ ︸
≈log p(st+1|st,at)−log qθ(st+1|st,at)

. (5.5)

The approximation above reflects function approximation error in
learning the classifier.

We now present our complete method, which trains three com-
ponents: a classifier, a policy, and a dynamics model. Our method
alternates between (1) updating the policy (by performing RL using
model experience with augmented rewards) and (2) updating the
dynamics model and classifier (using a GAN-like objective). In de-



62 joint model-policy optimization for model-based rl

scribing the loss functions below, we use the superscripts (·)real and
(·)model to denote transitions that have been sampled from the true
environment dynamics or the learned dynamics function. To reduce
clutter, we omit the superscripts when unambiguous.

5.4.2 Updating the Model, Policy, and Classifier

updating the policy. The policy is optimized to maximize the
augmented reward on transitions sampled from the learned dynamics
model. While this optimization can be done using any RL algorithm,
including on-policy methods, we will focus on an off-policy actor-critic
method.

We define the Q function as sum of augmented rewards under the
learned dynamics model:

Q(st, at) ≜ E π(at|st),
qθ(st+1|st ,at)

[
∞

∑
t′=t

γt′−tr̃(st′ , at′) | st = st, at = at

]
. (5.6)

We approximate the Q function using a neural network Qψ(st, at) with
parameters ϕ. We train the Q function using the TD loss on transitions
sampled from the learned dynamics model:

LQ(st, at, rt, smodel
t+1 ; ψ) =

(
Qψ(st, at)− ⌊yt⌋sg

)2 , (5.7)

where ⌊·⌋sg is the stop-gradient operator and yt = r̃(st, at, smodel
t+1 ) +

γEπ(at+1|smodel
t+1 )

[
Qψ(smodel

t+1 , at+1)
]
. The augmented reward, r̃, is esti-

mated using the learned classifier. To estimate the corresponding
value function, we use a 1-sample approximation: Vψ(st) = Qψ(st, at ∼
πθ(at | st)). The policy is trained to maximize the expected future
(augmented) return, as estimated by the Q function:

max
θ
Lπ(st; θ) ≜ Eπθ(at|st)

[
Q̃ψ(st, at)

]
. (5.8)

In our implementation, we regularize the policy by adding an addi-
tional entropy regularizer. Following prior work [74], we maintain two
Q functions and two target Q functions, use the minimum of the two
target Q functions to compute the TD target.

updating the classifier . We train the classifier to distinguish
real versus model transitions using the standard cross entropy loss:

max
ϕ
LC(sreal

t , areal
t ,sreal

t+1, smodel
t+1 ; ϕ) ≜ log Cϕ(sreal

t , areal
t , sreal

t+1)

+ log
(

1− Cϕ(sreal
t , areal

t , smodel
t+1 )

)
. (5.9)

Note that the real transition (sreal
t , areal

t , sreal
t+1) and model transition

(sreal
t , areal

t , smodel
t+1 ) have the same initial state and initial action.



5.4 mismatched no more 63

Algorithm 6 Mismatched no More (MnM) is an algorithm for model-
based RL. The method alternates between training the policy on
experience from the learned dynamics model with augmented rewards
and updating the model+classifier using a GAN-like loss. Updates are
gradient steps with the Adam optimizer.

1: while not converged do
2: Sample experience from learned model and modify rewards

using the classifier (Eq. 5.5).
3: Update policy and Q function using the model experience and

augmented rewards (Eq.s 5.8 and 5.7).
4: Update model and classifier using GAN-like losses (Eq.s 5.9

and 5.10).
5: (Infrequently) Sample experience from real model.
6: return policy πθ(at | st).

updating the dynamics model . To optimize the dynamics
model, we rewrite the lower bound in terms of a single transition
(derivation in Appendix d.1.6):

Lq(sreal
t , areal

t ; θ) = Esmodel
t+1 ∼qθ(st+1|sreal

t ,areal
t )

[
Vψ(smodel

t+1 ) + log
Cϕ(sreal

t , areal
t , smodel

t+1 )

1− Cϕ(sreal
t , areal

t , smodel
t+1 )

]
.

(5.10)

The approximation above reflects approximation error in learning
the optimal classifier. This approximation is standard in prior work
on GANs [79] and adversarial inference [44, 48]. The procedure
for optimizing the dynamics model and the classifier resembles a
GAN [79]: the classifier is optimized to distinguish real transitions
from model transitions, and the model is updated to fool the classifier
(and increase rewards). However, our method is not equivalent to simply
replacing a maximum likelihood model with a GAN model. Indeed, such
an approach would not optimize a lower bound on expected return.
Rather, our model objective includes an additional value term and our
policy objective includes an additional classifier term. These changes
enable the model and policy to optimize the same objective, which is
a lower bound on expected return.

algorithm summary. We summarize the method in Alg. 6 and
provide an illustration in Fig. 5.1. Implementing MnM on top of a
standard model-based RL algorithm is straightforward. First, create an
additional classifier network. Second, instead of using the maximum
likelihood objective to train the model, use the GAN-like objective in
Eq. 5.10 to update both the model and the classifier. Third, add the
classifier’s logits to the predicted rewards (Eq. 5.5). Following prior



64 joint model-policy optimization for model-based rl

work [105], we learn a neural network to predict the true environment
rewards.

5.5 experiments

We present two sets of experiments. Our first set of experiments
studies the importance of different components of MnM. Second, we
study how MnM compares with prior model-based RL algorithms
on challenging, robotic control tasks. To compare policies learned
by different algorithms, we will evaluate the policies using the true
environment dynamics, not the learned dynamics model.

5.5.1 Understanding the Lower Bound and the Learned Dynamics

In this section, we begin by studying the seemingly contradictory
attributes of our method: optimistic dynamics and pessimistic policies,
and end by confirming that together these components optimize an
increasingly tight lower bound on the expected return.

Our theory suggests that MnM should work best in settings with
stochastic dynamics and challenging exploration requirements, as the
dynamics model should tilt the true dynamics to make the stochasticity
more favorable for solving the task. We use a 10x10 gridworld with
highly stochastic dynamics and a sparse reward function. The results,
shown in Fig. 5.2a (Left), show that MnM outperforms both Q-learning
and VMBPO. In line with our theory, the dynamics learned by MnM
(Fig. 5.2a (Right)) alter the environment stochasticity to lead the agent
towards the goal, increasing the probability of collecting high-reward
experience. Of course, we use the true environment dynamics, not the
optimistic dynamics model, for evaluating the policies. While VMBPO
also learns optimistic dynamics, it omits log-transformation of the
reward function (which encourages pessimistic behavior), a difference
that has a large effect on this task.

Our augmented reward function contains two crucial components,
(1) the classifier term and (2) the logarithmic transformation of the
reward function. We test the importance of the classifier term in
correcting for inaccurate models. To do this, we limit the capacity of the
MnM dynamics model so that it makes “low-resolution” predictions,
forcing all states in 3× 3 blocks to have the same dynamics. We will
use the gridworld shown in Fig. 5.2b, which contains obstacles that
occur at a finer resolution than the model can detect. When the “low
resolution” dynamics model makes predictions for states near the
obstacle, it will average together some states with obstacles and some
states without obstacles. Thus, the model will (incorrectly) predict that
the agent always has some probability of moving in each direction,
even if that direction is actually blocked by an obstacle. However,
the classifier (whose capacity we have not limited) detects that the



5.5 experiments 65

(a) Stochastic Gridworld (b) Inaccurate Models

Figure 5.2: Two Didactic Experiments. (Left) We apply MnM to a navigation
task with transition noise that moves the agent to neighboring
states with equal probability. MnM solves this task more quickly
than Q-learning and VMBPO. The dynamics learned by MnM are
different from the real dynamics, changing the transition noise
(blue arrows) to point towards the goal. (Right) We simulate
function approximation by a learning model that is forced to
make the same predictions for groups of 3× 3 states, resulting in
a model that is inaccurate around obstacles. The classifier term
compensates for this function approximation error by penalizing
the policy for navigating near obstacles.

Figure 5.3: Testing for risk seeking behavior: On a simple 3-state MDP with
stochastic transition in one state (red arrows), MnM converges to
the reward-maximizing policy while VMBPO learns a strategy
with lower rewards and higher variance (as predicted by theory).

dynamics model is inaccurate in these states and so the augmented
reward is much lower at these states. Thus, MnM is able to solve this
task despite the inaccurate model; an ablation of MnM that removes
the classifier term attempts to navigate through the wall and fails to
reach the goal.

We then test the importance of the logarithmic transformation by
comparing MnM to VMBPO, which includes the classifier term but
omits the logarithmic transformation. We hypothesize that VMBPO’s
deviation from our lower bound will cause it to exhibit risk seeking
behavior. To test this hypothesis, we use the 3-state MDP in Fig. 5.3
(top) where numbers indicate the reward at each state. While moving
to the right state yields slightly higher rewards, “wind” knocks the
agent out of this state with probability 50% so the reward-maximizing
strategy is to move to the left state. While MnM MnM learns the
reward-maximizing strategy, VMBPO learns a policy that goes to the
right state and receives lower returns (with much higher variance).



66 joint model-policy optimization for model-based rl

Figure 5.4: Comparing objectives: We apply value iteration to the gridworld
from Fig. 5.2a to analytically compute various objectives. As
predicted by our theory, the MnM objective is a lower bound on
the expected return, whereas the VMBPO objective overestimates
the expected return.

Figure 5.5: Environments: Our experiments included tasks from four bench-
marks: (clockwise from top-left) OpenAI Gym, DM Control,
Metaworld, and ROBEL.

Finally, we study how the MnM objective compares to alternative
objectives. We use the gridworld from Fig. 5.2a and use a version of
MnM based on value iteration to avoid approximation error. Plotting
the MnM objective in Fig. 5.4, we observe that it is always a lower
bound on the (log) expected return, as predicted by our theory.
Ablations of MnM to omit the reward augmentation or even just the
log transformation (i.e., VMBPO) overestimate the expected return.

5.5.2 Comparisons On Robotics Tasks

Our next experiments use continuous-control robotic tasks to answer
two questions. We first investigate whether MnM performs at least
comparably with prior work. We then study tasks with sparse rewards
and more challenging exploration, where we suspect the optimistic
dynamics learned by MnM may be beneficial. We illustrate a subset
of the environments in Fig. 5.5. One detail of note is that we omit the
reward augmentation (Eq. 5.3) for MnM during these experiments, as
it hinders exploration leading to lower returns. We use MBPO [105]
as a baseline for model-based RL because it achieves state-of-the-art
results and is a prototypical example of model-based RL algorithms
that use maximum likelihood models.

Our first comparison uses three locomotion tasks from the OpenAI
Gym benchmark [26], which has become the standard benchmark
for model-based RL algorithms. Thes tasks have dense rewards and
pose no significant exploration challenge, so we do not expect MnM



5.5 experiments 67

Figure 5.6: Comparison on Robotics Tasks: We compare MnM to MBPO and
SAC on simulated control tasks. On the benchmark locomotion
tasks (top left), MnM performs comparably with MBPO. On many
of the other tasks with sparse rewards that pose an exploration
challenge, MnM outperforms both MBPO and the model-free
baseline. These experiments suggest that maximizing a well
defined bound on expected return, as done by our method, can
lead to improved performance on difficult tasks. Transparent lines
depict individual random seeds.

to outperform prior methods. The results (Fig. 5.6 (top left)) show
that MnM performs roughly on par with MBPO. For all the plots in
Fig. 5.6, the dark line indicates the average across random seeds, each
of which is shown as a transparent line. For the tasks comparing to
MBPO, we shade one standard deviation around the mean instead of
showing separate learning curves, as these are not available for the
MBPO baseline.

Tasks with sparse rewards, complex contact dynamics, and those
requiring hard exploration often present a challenge for model-based
RL algorithms, which are liable to exploit inaccuracies in the learned
dynamics model. Our next experiment evaluates MnM on control tasks
used in prior work that demonstrate these properties. These tasks the
sparse-reward cartpole task from the DM Control benchmark [236],
four manipulation tasks from the Metaworld benchmark [265], and
four dexterous manipulation tasks from the ROBEL benchmark [4].
The results shown in Fig. 5.6 indicate that the complex environment
dynamics of these tasks can cause prior model-based algorithms
(MBPO) to perform worse than model-free algorithms (SAC), both in
terms of asymptotic performance and sample complexity. Nonetheless,
we observe that MnM frequently outperforms all prior methods
and, more importantly, it consistently does well across all tasks. We
include ablation experiments, including a comparison to VAML [61],
in Appendix d.2.



68 joint model-policy optimization for model-based rl

Figure 5.7: Model exploitation: The very large Q values of MBPO suggest
model exploitation, which our method appears to avoid. Each
line depicts a separate random seed.

MnM Dynamics:

Real Dynamics:

Figure 5.8: Optimistic Dynamics: (Left) On the Pusher-v2 task, the MnM
dynamics model makes the puck move towards the puck move
towards the gripper before being grasped. (Right) On the
HalfCheetah-v2 task, the MnM dynamics model helps the agent
stay upright after tripping.

To investigate the benefits of MnM over prior model-based methods,
we logged the Q values throughout training and visualized them for
the metaworld-drawer-open-v2 task in Fig. 5.7. For fair comparison,
we use Q values corresponding to just the task reward, omitting the
logarithmic transformation and classifier term typically used by MnM.
Fig. 5.7 shows that MnM yields Q values that are more accurate and
more stable than MBPO. This figure suggests that MBPO may be
exploiting inaccuracies in the learned model.

Finally, we visualize the dynamics learned by MnM on two robotic
control tasks. These tasks have deterministic dynamics, so our theory
would predict that an idealized version of MnM would learn a dynam-
ics model exactly equal to the deterministic dynamics. However, our
implementation relies on function approximation (neural networks) to
learn the dynamics, and the limited capacity of function approximators
makes otherwise-deterministic dynamics appear stochastic. On the
Pusher-v2 task, the MnM dynamics cause the puck to move towards
the robot arm even before the arm has come in contact with the
puck. While this movement is not physically realistic, it may make
the exploration problem easier. On the HalfChetah-v2 task, the MnM
dynamics increase the probability that the agent remains upright after
tripping, likely making it easier for the agent to learn how to run. We
expect that the implicit stochasticity caused by function approximation
to be especially important for real-world tasks, where the complexity



5.6 extending mnm to latent-space models 69

of the real dynamics often dwarfs the capacity of the learned dynamics
model.

5.6 extending mnm to latent-space models

In subsequent work [78], we extended MnM to better handle high-
dimensional settings by developing a similar lower bound for latent-
space models. The key to this construction was to treat both the
observations and their representations as part of the latent variable,
which is inferred by maximizing an evidence lower bound. Impor-
tantly, instead of inferring this entire latent variable, which would
entail predicting high-dimensional observation, we used ideas similar
to adversarial inference [44, 48] to optimize this bound without ever
having to reconstruct the observations (i.e., our method does not
require a decoder). Results showed that this method not only achieves
good result, but does so at significantly lower computational costs
than MnM and other model-based methods.

5.7 discussion

The main contribution of this work is an approach to model-based
RL where the policy and dynamics model are jointly optimized using
the same objective. Unlike prior work, our objective is a global lower
bound on the standard expected return objective. Our approach not
only tells users how to train their dynamics model, but also guarantees
to them that updating their model (using our objective) will result
in a better policy. We therefore believe that this joint optimization will
ease and accelerate the design of future model-based RL algorithms.
We suspect that the tools presented in this work may prove useful
for solving tasks that require extensive exploration or long-horizon
planning.





6
O U T L O O K

Taken together, the main message of this thesis is to think about
decision making problems not in terms of scalar utility maximization,
as suggested by the standard MDP formalism, but in terms of data
and random variables. Outcomes can be specified via observations
(Chapter 2) or sets of observations (Sec. 2.7). In essence, we use
data to specify what at desired outcome looks like. This framing is
practically useful, allowing a means for non-expert users to convey
their intentions to ML systems (just snap a photo!). Moreover, it
makes it easy to incorporate ideas and machinery from other areas of
machine learning to accelerate and extend these methods. For example,
Chapter 3 shows how contrastive learning ideas developed in other
domains can readily be adapted into high-performance RL algorithms.
More broadly, this framing allows us to use tools from probabilistic
inference to reason about how to reach a desired outcome. What are the
states and actions that lead from here to there? This was the question
we explored in Part ii of the thesis.

As I write this, in the Spring of 2023, the machine learning commu-
nity sits at a peculiar juncture: large language models have demon-
strated such excellent results, yet require such high compute budgets,
that many researchers are rethinking how to conduct research. How
can academics build GPU clusters large enough to run these exper-
iments? Do students need to be more highly trained in software
engineering and computer systems to manage such experiments?
Without large compute resources individually, should academics pool
their resources into large, multi-institution collaborations? Should
academics leave the large-scale training to industrial labs, and focus
instead on different questions entirely (e.g., trust, dataset curation)?

Within the RL community, there are debates about whether language
modeling techniques can be directly used to solve sequential decision
making problems. Our preliminary analysis [59] suggests that it can (in
theory), as long as these methods are normalized properly to handle
hindsight bias. Regardless of their precise form, it seems likely that the
next generation of RL algorithms are going to be ones that leverage
massive datasets and massive compute. Likely, they will be built in
a two-stage fashion, with compute-intensive training done once (in
industry?) and lightweight, domain-specific adaptation performed
for each downstream task (in academia?). The algorithms presented
in Part i of this thesis are particularly amenable to this two-stage
decomposition: contrastive representations are fit on large quantities
of reward-free data, and then used to represent value functions using

71



72 outlook

one (or a handful) of observations from desired outcomes. If scaled
appropriately, these might be called “contrastive foundation models.”
Unlike existing foundation models for CV and NLP, such contrastive
foundation models might actually understand time. What effect does
making a decision have? Why do certain objects only move when
touched? Understanding time (and its close connection with causality)
may not only yield better reinforcement learning methods, but also
may provide representations that enable better supervised learning.
Representations with a causal understanding of the world may be
less likely to pick up on spurious features, and those representations
trained with temporal difference learning may make better predictions
about the distant future.

Scaling these methods, though, will likely require more than just
increasing the dataset size and batch size. For one, sequences of obser-
vations (i.e., videos) are much cheaper to collect than action-labeled
videos, so we likely will need to figure out how to extend these meth-
ods to make use of mixtures of action-free and action-labeled videos.
Second, the recent large language models have demonstrated how
large corpora of text contain vast amounts of information about the
physical world; figuring out how to distill or embed such knowledge
into contrastive foundation models remains an open question. Third,
and finally, solving decision-making problems from data requires, well,
data. Unlike language modeling, where even multi-lingual models
only have to contend with tens of different languages, the vast number
of possible decision making problems (from robotics to chemistry to
medicine) means that solving many decision making problems will
require active data collection. There has been much excellent work
on active learning and intelligent exploration, but I think the key
challenge here may be more societal than technical: collecting the scale
of data needed for training decision-making systems tomorrow will
likely require that these systems be widely deployed today. How can
we construct decision-making tools that are actually useful (or at least
not worse than their unlearned counterparts), so that we can start
collecting the data for tomorrow’s experiments? By making it easier
for users to apply RL algorithms to real-world problems, I hope that
this thesis takes a step towards this goal.



A P P E N D I X

73





a
L E A R N I N G T O A C H I E V E G O A L S V I A R E C U R S I V E
C L A S S I F I C AT I O N

a.1 a connection between maximizing probabilities and

minimizing distances

The overall objective of C-learning is to maximize the likelihood of
the goal state under the discounted state occupancy measure; it is
about maximizing a probability (density). This stands in contrast to
prior work on stochastic shortest path problems, where the aim is to
minimize the expected distance to the goal. Our motivation for using
probabilities, rather than distances, is that distances can be ill-defined
in settings where there is some probability of never reaching the goal.
However, in settings where the goal is reached with probability one,
we can directed relate these two objectives; this section explains this
connection.

Assume an infinite horizon, tabular MDP. Assume that the com-
manded commanded goal state is an absorbing state; once the agent
reaches the goal, it remains there indefinitely. Finally, assume that the
expected time to reach the goal is finite for every policy. One way to
ensure this condition is to assume that the MDP is ergodic, and to
restrict the class of policies to those that add a bit of noise to their
actions. Define ∆ as a random variable denoting the expected number
of steps to reach the goal; by construction, E[∆] is finite.

We can now use ∆ to express the maximum probability objective:

max
π
Lprob(π) = pπ(·|·,g(st+ = g | s, a) (maximum probability)

= (1− γ)Eπ

[
∞

∑
t=0

γtδ(st = g)

]

= (1− γ)E∆

[
∞

∑
t=∆

γt

]

=����(1− γ)E∆

[
γ∆

���1− γ

]
= E∆

[
γ∆
]

.

The shortest path objective can be expressed simply as

max
π
Ldist(π) = E∆[−∆]. (shortest path)

75



76 learning to achieve goals via recursive classification

We can use Jensen’s inequality to relate (the logarithm of) the
maximum probability objective to the shortest path objective:

logLprob(π) ≥ log(1/γ) ·E∆ [−∆] = log(1/γ) · Ldist(π).

This inequality becomes tight when the policy always takes the same
number of steps to reach the goal (e.g., deterministic policy with
deterministic dynamics); when this happens, finding the shortest path
is equivalent to the maximum probability objective.

In more general settings, this inequality means that the shortest
path objective is a lower bound on maximum probability objective. In-
tuitively, this makes sense: by incorporating the logarithm, the shortest
path objective effectively corresponds to a risk-sensitive objective [155].
For example, consider choosing between policy A (50% chance of
reaching the goal in 2 steps, 50% chance of taking 100 steps to reach
the goal) and policy B (always reaches the goal in 10 steps). For a
reasonable discount of γ = 0.9, the maximum probability objective
would prefer strategy A1, whereas the shortest path objective would
prefer strategy B.2

Should users prefer the maximum probability objective or the short-
est path objective? The maximum probability objective is practically
appealing because it avoids the need to manually define when the
goal is reached, suggests algorithms where an important hyperparam-
eter (the relabeling ratio) is determined by the theory, and suggests
new goal-conditioned algorithms based on contrastive learning. The
maximum probability objective is also theoretically appealing because
it remains well defined in continuous settings, and in settings where
the goal may never be reached. However, the analysis above shows
that the maximum probability objective can be seen as a risk-seeking
version of the the shortest path objective, assigning considerably lower
weight to outcomes where the goal is never reached.

a.2 a bellman equation for c-learning and convergence

guarantees

The aim of this section is to show that off-policy C-learning converges,
and that the fixed point corresponds to the Bayes-optimal classifier.
This result guarantees that C-learning will accurate evaluate the future
state density of a given policy. We then provide a policy improvement
theorem, which guarantees that goal-conditioned C-learning converges
to the optimal goal-conditioned policy.

1 Lprob(A) = (1− 0.9)(0.92 + 0.9100) = 0.081;Lprob(B) = (1− 0.9)0.910 = 0.035.
2 Ldist(A) = − 1

2 (2 + 100) = −51;Ldist(B) = −10.



a.2 a bellman equation for c-learning and convergence guarantees 77

a.2.1 Bellman Equations for C-Learning

We start by introducing a new Bellman equation for C-learning,
which will be satisfied by the Bayes optimal classifier. While actually
evaluating this Bellman equation requires privileged knowledge of
the transition dynamics and the marginal state density, if we knew
these quantities we could turn this Bellman equation into a convergent
value iteration procedure. In the next section, we will show that the
updates of off-policy C-learning are equivalent to this value iteration
procedure, but do not require knowledge of the transition dynamics
or marginal state density. This equivalence allows us to conclude that
C-learning converges to the Bayes-optimal classifier.

Our Bellman equation says that the future state density function
fθ induced by a classifier Cθ should satisfy the recursive relationship
noted in Eq. 2.4.

Lemma 5 (C-learning Bellman Equation). Let policy π(at | st), dynamics
function p(st+1 | st, at), and marginal distribution p(st+) be given. If a
classifier Cθ is the Bayes-optimal classifier, then it satisfies the follow identity
for all states st, actions at, and potential future states st+:

Cπ
θ (F = 1 | st, at, st+)

Cπ
θ (F = 0 | st, at, st+)

= (1−γ)
p(st+1 = st+ | st, at)

p(st+)
+γEp(st+1 |st ,at),

π(at+1 |st)

[
Cπ

θ (F = 1 | st+1, at+1, st+)

Cπ
θ (F = 0 | st+1, at+1, st+)

]
(a.1)

Proof. If Cθ is the Bayes-optimal classifier, then f π
θ (st+ | st, at) =

pπ
+(st+ | st, at). Substituting the definition of fθ (Eq. 2.2) into Eq. 2.4,

we obtain a new Bellman equation:

This Bellman equation is similar to the standard Bellman equation
with a goal-conditioned reward function rst+(st, at) = p(st+1 = st+ |
st, at)/p(st+), where Q functions represent the ratio f π

θ (st+ | st, at) =
pπ
+(st+ | st, at). However, actually computing this reward function to

evaluate this Bellman equation requires knowledge of the densities
p(st+1 | st, at) and p(st+), both of which we assume are unknown to
our agent.3 Nonetheless, if we had this privileged information, we
could readily turn this Bellman equation into the following assignment
equation:

Cπ
θ (F = 1 | st, at, st+)

Cπ
θ (F = 0 | st, at, st+)

←(1− γ)
p(st+1 = st+ | st, at)

p(st+)

+ γEp(st+1 |st ,at),
π(at+1 |st)

[
Cπ

θ (F = 1 | st+1, at+1, st+)

Cπ
θ (F = 0 | st+1, at+1, st+)

]
(a.2)

3 Interestingly, we can efficiently estimate this reward function by learning a next-state
classifier, qθ(F | st, at, st+1), which distinguishes st+1 ∼ p(st+1 | st, at) from st+1 ∼
p(st+1) = p(st+). This classifier is different from the future state classifier used in
C-learning. The reward function can then be estimated as rst+ (st, at) =

qθ(F=1|st ,at ,st+)
qθ(F=0|st ,at ,st+)

.
If we learned this next state classifier, we estimate the future state density and learn
goal-reaching policies by applying standard Q-learning to this reward function.



78 learning to achieve goals via recursive classification

Lemma 6. If we use a tabular representation for the ratio Cπ
θ (F=1|st,at,st+)

Cπ
θ (F=0|st,at,st+)

,
then iterating the assignment equation (Eq. a.2) converges to the optimal
classifier.

Proof. Eq. a.2 can be viewed as doing value iteration with a goal-
conditioned Q function parametrized as Q(st, at, st+) =

Cπ
θ (F=1|st,at,st+)

Cπ
θ (F=0|st,at,st+)

and a goal-conditioned reward function rst+(st, at) = p(st+1=st+|st,at)
p(st+)

.
We can then employ standard convergence proofs for Q-learning to
guarantee convergence [104, Theorem 1].

a.2.2 Off-Policy C-learning Converges

In this section we show that off-policy C-learning converges to the
Bayes-optimal classifier, and thus recovers the true future state density
function. The main idea is to show that the updates for off-policy
C-learning have the same effect as the assignment equation above
(Eq. a.2), without relying on knowledge of the dynamics function or
marginal density function.

Lemma 7. Off-policy C-learning results in the same updates to the classifier
as the assignment equations for the C-learning Bellman equation (Eq. a.2)

Proof. We start by viewing the off-policy C-learning loss (Eq. 2.10)
as a probabilistic assignment equation. A given triplet (st, at, st+) can
appear in Eq. 2.10 in two ways:

1. We sample a “positive” st+ = st+1, which happens with proba-
bility (1− γ)p(st+1 = st+ | st, at), and results in the label y = 1.

2. We sample a “negative” st+, which happens with probability
(1 + γw)p(st+) and results in the label y = γw

γw+1 .

Thus, conditioned on the given triplet containing st+, the expected
target value y is

E[y | st, at, st+] =
(1− γ)p(st+1 = st+ | st, at) · 1 + E

[
�����(1 + γw)p(st+) · γw

���γw+1

]
(1− γ)p(st+1 = st+ | st, at) + E [(1 + γw)p(st+)]

=
(1− γ) p(st+1=st+|st,at)

p(st+)
+ γE[w]

(1− γ) p(st+1=st+|st,at)
p(st+)

+ γE[w] + 1
. (a.3)

Note that w is a random variable because it depends on st+1 and
at+1, so we take its expectation above. We can write the assignment
equation for C as

Cπ
θ (F = 1 | st, at, st+)← E[y | st, at, st+].



a.2 a bellman equation for c-learning and convergence guarantees 79

Noting that the function C
1−C is strictly monotone increasing, the

assignment equation is equivalent to the following assignment for the
ratio Cπ

θ (F=1|st,at,st+)
Cπ

θ (F=0|st,at,st+)
:

Cπ
θ (F = 1 | st, at, st+)

Cπ
θ (F = 0 | st, at, st+)

← E[y | st, at, st+]

1−E[y | st, at, st+]
= (1−γ)

p(st+1 = st+ | st, at)

p(st+)
+γE[w].

The equality follows from substituting Eq. a.3 and then simplifying.
Substituting our definition of w, we observe that the assignment
equation for off-policy C-learning is exactly the same as the assignment
equation for the C-learning Bellman equation (Eq. a.1):

Cπ
θ (F = 1 | st, at, st+)

Cπ
θ (F = 0 | st, at, st+)

←(1− γ)
p(st+1 = st+ | st, at)

p(st+)

+ γ

[
Cπ

θ (F = 1 | st+1, at+1, st+)

Cπ
θ (F = 0 | st+1, at+1, st+)

]
.

Since the off-policy C-learning assignments are equivalent to the
assignments of the C-learning Bellman equation, any convergence
guarantee that applies to the later must apply to the former. Thus,
Lemma 6 tells us that off-policy C-learning must also converge to the
Bayes-optimal classifier. We state this final result formally:

Corollary 7.1. If we use a tabular representation for the classifier, then
off-policy C-learning converges to the Bayes-optimal classifier. In this case,
the predicted future state density (Eq. 2.2) also converges to the true future
state density.

a.2.3 Goal-Conditioned C-Learning Converges

In this section we prove that the version of policy improvement done
by C-learning is guaranteed to improve performance. We start by
noting a Bellman optimality equation for goal-conditioned C-learning,
which indicates whether a goal-conditioned policy is optimal:

Lemma 8 (C-learning Bellman Optimality Equation). Let dynamics
function p(st+1 | st, ca), and marginal distribution p(st+) be given. If a
classifier Cθ is the Bayes-optimal classifier, then it satisfies the follow identity
for all states st, actions at, and goals g = st+:

Cπ
θ (F = 1 | st, at, st+)

Cπ
θ (F = 0 | st, at, st+)

=(1− γ)
p(st+1 = st+ | st, at)

p(st+)

+ γEp(st+1 |st ,at)

[
max
at+1

Cπ
θ (F = 1 | st+1, at+1, st+)

Cπ
θ (F = 0 | st+1, at+1, st+)

]
.

(a.4)

We now apply the standard policy improvement theorem to C-
learning.



80 learning to achieve goals via recursive classification

Lemma 9. If the estimate of the future state density is accurate, then updating
the policy according to Eq. 2.9 guarantees improvement at each step.

Proof. We use π to denote the current policy and π′ to denote the
policy that acts greedily w.r.t. the current density function:

π′(at | st, st+) = 1(at = arg max
a

pπ(st+ | st, at))

The proof is similar to the standard policy improvement proof for
Q-learning.

pπ(st+ | st) = Eπ(at |st ,st+)[p
π(st+ | st, at)]

= Eπ(at |st ,st+)[(1− γ)p(st+1 = st+ | st, at) + γpπ(st+ | st+1, at+1)]

≤ Eß′(at |st ,st+)[(1− γ)p(st+1 = st+ | st, at) + γpπ(st+ | st+1, at+1)]

= Eπ′(at |st ,st+)[(1− γ)p(st+1 = st+ | st, at)

+ E p(st+1 |st ,at),
π(at+1 |st+1 ,st+)

[γ((1− γ)p(st+1 = st+ | st+1, at+1) + γpπ(st+ | st+2, at+2))]]

≤ Eπ′(at |st ,st+)[(1− γ)p(st+1 = st+ | st, at)

+ E p(st+1 |st ,at),
ß′(at+1 |st+1 ,st+)

[γ((1− γ)p(st+1 = st+ | st+1, at+1) + γpπ(st+ | st+2, at+2))]]

· · ·

≤ pπ′ (st+ | st)

Taken together with the convergence of off-policy C-learning, this
proof guarantees that goal-conditioned C-learning converges to the
optimal goal-reaching policy in the tabular setting.

a.3 mixing td c-learning with mc c-learning

Recall that the main challenge in constructing an off-policy proce-
dure for learning the classifier was getting samples from the future
state distribution of a new policy. Recall that TD C-learning (Alg. 3)
uses importance weighting to estimate expectations under this new
distribution, where the importance weights are computed using the
learned classifier. However, this approach can result in high-variance,
especially when the new policy has a future state distribution that is
very different from the background distribution. In this section we
describe how to decrease the variance of this importance weighting
estimator at the cost of increasing bias.

The main idea is to combine TD C-learning with MC C-learning.
We will modify off-policy C-learning to also use samples p̂(st+ | st, at)

from previous policies as positive examples. These samples will be
sampled from trajectories in the replay buffer, in the same way that
samples were generated for MC C-learning. We will use a mix of
these on-policy samples (which are biased because they come from a
different policy) and importance-weighted samples (which may have



a.4 additional experiments 81

higher variance). Weighting the TD C-learning estimator by λ and the
MC C-learning estimator by (1− λ), we get the following objective:

λEp(st+1|st,at),p(st+)[(1− γ) log C(F = 1 | st, at, st+1) + log C(F = 0 | st, at, st+)

+ γw log C(F = 1 | st, at, st+)

+ (1− λ)Ep̂(ŝt+|st,at),p(st+)[log C(F = 1 | st, at, ŝt+) + log C(F = 0 | st, at, st+)]

This method is surprisingly easy to implement. Given a batch of B
transitions (st, at), we label λ

2 B with the next state st+1, 1
2 B with a

random state st+ ∼ p(st+), and 1−λ
2 B with a state sampled from the

empirical future state distribution p̂(st+ | st, at). To make sure that
each term in the loss above receives the correct weight, we scale each
of the terms by the inverse sampling probability:

(Next states):
2
�λB

(�λ(1− γ) log C(F = 1 | st, at, st+1)

(Random states):
2
B
((�λ + 1−�λ) log C(F = 0 | st, at, st+) + λγw log C(F = 1 | st, at, st+))

(Future states):
2

����(1− λ)B����(1− λ) log C(F = 1 | st, at, st+)

Without loss of generality, we scale each term by B
2 . Since each of these

terms is a cross entropy loss, we can simply implement this loss as a
weighted cross entropy loss, where the weights and labels are given in
the table below.

Fraction of batch Label Weight

Next states λ
2 1 1− γ

Future states 1−λ
2 1 1

Random states 1
2

λγw
1+λγw (1 + λγw)

On many tasks, we observed that this approach performed no
differently than TD C-learning. However, we found this strategy to
be crucial for learning some of the sawyer manipulation tasks. In our
experiments we used λ = 0.6 for the Sawyer Push and Sawyer Drawer
tasks, and used λ = 1 (i.e., pure TD C-learning) for all other tasks.

a.4 additional experiments

comparing c-learning and c-learning for future state

density estimation Fig. a.1 shows the results of our compar-
ison of C-learning and Q-learning on the “continuous gridworld”
environment, in both the on-policy and off-policy setting. In both
settings, off-policy C-learning achieves lower error than Q-learning.
As expected, Monte Carlo C-learning performs well in the on-policy



82 learning to achieve goals via recursive classification

(a) On Policy (b) Off Policy

Figure a.1: We use C-learning and Q-learning to predict the future state
distribution. (Right) In the on-policy setting, both the Monte
Carlo and TD versions of C-learning achieve significantly lower
error than Q-learning. (Right) In the off-policy setting, the TD
version of C-learning achieves lower error than Q-learning, while
Monte Carlo C-learning performs poorly, as expected.

setting, but poorly in the off-policy setting, motivating the use of
off-policy C-learning.

Figure a.2: The performance of Q-learning (blue line) is sensitive to the
relabeling ratio. Our analysis accurately predicts that the optimal
relabeling ratio is approximately λ = 1

2 (1 + γ). Our method,
C-learning, does not require tuning this ratio, and outperforms Q-
learning, even with the relabeling ratio for Q-learning is optimally
chosen.

additional results on predicting the goal sampling

ratio To further test Hypothesis 2, we repeated the experiment
from Fig. 2.2 across a range of values for γ. As shown in Fig. a.2, our
Hypothesis accurately predicts the optimal goal sampling ratio across
a wide range of values for γ.



a.5 predictions from c-learning 83

a.5 predictions from c-learning

Figures a.3 and a.4 visualizes additional predictions from the C-
learning model in Sec. 2.6. In each image, the top half shows the
current state and the bottom half shows the predicted expected future
state. Animations of these results can be found on the project website.

(a) HalfCheetah-v2, γ = 0.9

(b) HalfCheetah-v2, γ = 0.9

(c) Ant-v2, γ = 0.5

(d) Ant-v2, γ = 0.9

(e) Ant-v2, γ = 0.99

Figure a.3: Predictions from C-learning



84 learning to achieve goals via recursive classification

(a) Walker2d-v2, γ = 0.5

(b) Walker2d-v2, γ = 0.9

(c) Walker2d-v2, γ = 0.99

(d) Hopper-v2, γ = 0.5

(e) Hopper-v2, γ = 0.9

Figure a.4: More Predictions from C-learning



b
C O N T R A S T I V E L E A R N I N G A S
G O A L - C O N D I T I O N E D R E I N F O R C E M E N T
L E A R N I N G

b.1 additional related work

Figure b.1: Connecting related work. This work helps draw connections
between prior work, filling in a missing link.

Our work is also related to unsupervised skill discovery [1, 35, 54,
80, 94, 130, 213], in that the algorithm learns multiple policies by inter-
acting in the environment without a reward function. Both these skill
learning algorithms and our contrastive algorithm optimize a lower
bound on mutual information. Indeed, prior work has discussed the
close connection between mutual information and goal-conditioned
RL [35, 248]. The key challenge in making this connection is grounding
the skills, so that each skill corresponds to a specific goal-conditioned
policy. While the skills can be grounded by manually-specifying
the critic used for maximizing mutual information [35], manually-
specifying the critic for high-dimensional tasks (e.g., images) would
be challenging. Our work takes a different approach to grounding,
one based on reasoning directly about continuous probabilities. In the
end, our method will learn skills that each corresponds to a specific
goal-conditioned policy and will be scalable to high-dimensional tasks.

Fig. b.1 highlights some of the connections between related work.
Prior work has thoroughly explained how many representation learn-
ing methods correspond to a lower bound on mutual information [153,
187]. Prior work in RL has proposed unsupervised skill learning
algorithms using similar mutual information objectives [1, 54, 80], and
more recent work has connected these unsupervised skills learning
algorithms to goal-reaching. The key contribution of this effort is to
connect representation learning to goal-conditioned RL.

85



86 contrastive learning as goal-conditioned reinforcement learning

b.2 discussion of the representations as a model

In contrastive RL, the critic predicts two representations ϕ(s), ψ(g)
whose inner product corresponds to the (goal-conditioned) value
function. One way of thinking about these representations is that they
form a sort of implicit model.1

One potential concern with these sorts of simple latent-space models
is that they might fail to capture highly non-linear dynamics. In theory
this is no object: if a non-linear latent-space model would perform
better, we can construct an equivalent critic that does use a linear latent-
space model (together with more expressive representations). One way
of viewing this is that it pushes all of the representational burden
onto the representations – it effectively turns the entire planning
problem into a representation learning problem. From a practical
perspective, our approach is appealing because representations are
often pre-trained: large compute budgets can be spent on pre-training
powerful representations on very large datasets, such that the resulting
representations can be used in a compute-efficient manner (only inner
products required).

Seen as a latent-space model, another potential concern with this
form of a critic is that it does not explicitly capture the stochasticity of
the dynamics – it only models the expected future representation,
not the full distribution over future outcomes. One argument in
favor of this is that only the expectation (not the full distribution) is
required for selecting actions. However, it seems plausible that a proper
distributional estimate might be easier to learn, or might be learned
with higher fidelity (reminiscent of the success of distributional value
functions for standard reward-maximization problems [19]). We leave
this investigation to future work.

b.3 proofs

b.3.1 Q-function are equivalent to the discounted state occupancy measure

This section proves Proposition 1. We start by recalling the definition
of the discounted state occupancy measure (Eq. 3.4):

p(st+ = sg) = (1− γ)
∞

∑
t=0

γt pπ(·|·,sg)
t (st = sg). (b.1)

1 This can be made precise by parameterizing ϕ(s) = Aψ(s) + b; the matrix A and
vector b now exactly correspond to a (linear) model of the representations.



b.3 proofs 87

We first analyze the term for t = 0, and then analyze the term for
t > 0. The probability of visiting a state at time t = 0 is just the initial
state distribution:

pπ(·|·,sg)
0 (st = sg) = p0(s0 = sg).

We can now rewrite Eq. b.1 as

p(st+ = sg) = (1− γ)p0(s0 = sg) + (1− γ)
∞

∑
t=1

γt pπ(·|·,sg)
t (st = sg).

(b.2)

For t > 1, we can write the term as follows:

pπ(·|·,sg)
t (st = sg) = E

p
π(·|·,sg)
t−1 (st−1)π(at−1|st−1,sg)

[
pt(st = sg | st−1, at−1)

]
= E

p
π(·|·,sg)
t−1 (st−1),π(at−1|st−1,sg)

[
p(st = sg | st−1, at−1)

]
= Eτ∼π(τ|st)

[
p(st = sg | st−1, at−1)

]
.

In the second line, we have used the Markov property to say that
the probability of visiting sg at time t depends only on dynamics,
p(st+1 | st, at). In the third line, we have rewritten the expectation over
trajectories, using st−1 and at−1 and the t− 1th state-action pair in the
trajectory. Substituting this into Eq. b.2, we get

p(st+ = sg) = (1− γ)p0(s0 = sg) + (1− γ)
∞

∑
t=1

γtEτ∼π(τ|sg)

[
p(st = sg | st−1, at−1)

]
= (1− γ)p0(s0 = sg) + (1− γ)

∞

∑
t=0

γtEτ∼π(τ|sg)

[
p(st+1 = sg | st, at)

]
= (1− γ)p0(s0 = sg) + (1− γ)Eτ∼π(τ|sg)

[
∞

∑
t=0

γt p(st+1 = sg | st, at)

]

= Eτ∼π(τ|sg)

[
(1− γ)p0(s0 = sg) + (1− γ)

∞

∑
t=0

γt p(st+1 = sg | st, at)

]

= Eτ∼π(τ|sg)

[
∞

∑
t=0

γtrg(st, at)

]
.

On the second line, we have changed the bounds of the summation
to start at 0, and changed the terms inside the summation accordingly.
On the third line, we applied linearity of expectation to move the
summation inside the expectation. On the fourth line, we applied
linearity of expectation again to move the term for t = 0 inside the
expectation. Finally, we substituted the definition of rg(s, a) to obtain
the desired result.



88 contrastive learning as goal-conditioned reinforcement learning

b.3.2 Contrastive RL is Policy Improvement

This section proves the Contrastive RL (NCE) corresponds to policy
improvement, yielding policies with higher rewards at each iteration
(Lemma 2).

Proof. The main idea of the proof is to relate the Q-values for the
average policy to the Q-values for the goal-conditioned policy. We do
this by employing the result from [59, Appendix C.2], where ϵ is the
parameter for filtered relabeling (Sec. 3.4.5):∣∣∣Qβ(·mid·,e)(s, a, e)−Qβ(·|·,e′)(s, a, e)

∣∣∣ ≤ ϵ.

This result means that we are doing policy improvement with ap-
proximate Q-values. Then, [20, Lemma 6.1] tells that doing policy
improvement using approximate Q-values gives us approximate policy
improvement:

Eπ′(τ|sg)

[
∞

∑
t=0

γtrsg(st, at)

]
≥ Eπ(τ|sg)

[
∞

∑
t=0

γtrsg(st, at)

]
− 2γϵ

1− γ
,

for all goals sg ∈ {sg | pg(sg) > 0}.

b.4 contrastive rl (cpc)

In this section, we derive a version of contrastive RL based on the
infoNCE objective [177]. Compared with the NCE objective used in
contrastive RL (NCE), this objective uses a categorical cross entropy
loss instead of a binary cross entropy loss. We replace Eq. 3.7 with the
following infoNCE objective [177]:

max
f

E
(s,a)∼p(s,a),s(1)f ∼pπ(·|·)(st+|s,a)

s(2:B)
f ∼p(s f )

[
log p(1)

]
,

where p(1) is the first coordinate of the softmax over the critic:

p = SoftMax([ f (s, a, s(1)f ), · · · , f (s, a, s(b)f )]).

The optimal critic for the infoNCE loss satisfies [153, 177, 187]

f ∗(s, a, s f ) = log

(
pπ(·|·)(st+ = s f | s, a)

p(s f )c(s, a)

)
,

where c(s, a) is an arbitrary function. Thus, there are many optimal
critics. Choosing actions that maximize the critic f ∗ does not necessar-
ily correspond to choosing actions that maximize the probability of



b.5 contrastive rl (nce + c-learning) 89

the future state. Thus, we need to regularize c(s, a) so that it does not
depend on a. We do this by introducing a regularizer, based on [241]:

min
f

E
s(1:B)

f ∼p(s f )
LogSumExp([ f (s, a, s(1)f ), · · · , f (s, a, s(b)f )])2.

To provide some intuition for this regularizer, consider applying
this regularizer to an optimal critic:

LogSumExp([ f ∗(s, a, s(1)f ), · · · , f ∗(s, a, s(b)f )])2

=

(
log

1
c(s, a) ∑

s f

pπ(·|·)(st+ = s f | s, a)
p(s f )c(s, a)

)2

=

log ∑
s f∈s(1:B)

f

pπ(·|·)(st+ = s f | s, a)
p(s f )

− log c(s, a)


2

≈

log ∑
s f∈s(2:B)

f

pπ(·|·)(st+ = s f | s, a)
p(s f )

− log c(s, a)


2

≈
(

log Es f∼p(s f )

[
pπ(·|·)(st+ = s f | s, a)

p(s f )

]
− log c(s, a)

)2

= (− log c(s, a))2 .

In the third line we ignore the positive term; this is reasonable if the
batch size is large enough. In the third line we replaced the sum with
an expectation; this is biased because log(·) is not a linear function.
Thus, this regularizer (approximately) regularizes c(s, a) to be close to
1 for all states and actions. By reducing the dependency of c(s, a) on
the actions a, we can ensure that actions that maximize the critic do
maximize the probability of reaching the desired goal. In practice, we
add this regularizer with the infoNCE objective, using a coefficient of
1e-2 on the regularizer.

b.5 contrastive rl (nce + c-learning)

In this section we describe contrastive RL (NCE + C-learning) the
combined NCE + C-learning method used in Sec. 3.5.3 (Fig. 3.5). Math-



90 contrastive learning as goal-conditioned reinforcement learning

ematically, the NCE + C-learning objective is a simple, unweighted
sum of the C-learning objective and the NCE objective:

L( f ) =(1− γ)E(s,a)∼p(s,a),s+f ∼p(st+1|st ,at)
[log σ( f (s, a, s+f ))]

+ γE sg∼pg(sg),(st ,at)∼p(s,a),
st+1∼p(st+1|st ,at),at+1∼π(at+1|st+1,sg)

[
p(st+ = sg | st, at)

p(s f = sg)︸ ︷︷ ︸
≈exp( f (st+1,at+1,sg))

log σ( f (s, a, s f = sg))

]

+ Esg∼pg(sg),(s,a)∼p(s,a)
[
log(1− σ( f (s, a, sg))

]
+ E(s,a)∼p(s,a),s+f ∼p(st+ |st ,at)

[log σ( f (s, a, s+f ))] + E(s,a)∼p(s,a),s−f ∼p(s f )
[log(1− σ( f (s, a, s−f )))].

While we could use half the batch to compute each of the loss terms,
we can increase the effective sample size by being careful with how
the terms are estimated. First, we note that the first two terms of each
loss are similar – sample a future state (either the next state or a future
state) and label it as a positive. We can thus combine these two terms
by sampling from a mixture of these two distributions,

p̃(s f | st, at) =
1− γ

1 + 1− γ
p(st+1 = s f | st, at)+

1
1 + 1− γ

p(st+ = s f | st, at),

and scaling the resulting loss by 1 + 1− γ = 2− γ:

L1( f ) ≜(1− γ)E(s,a)∼p(s,a),s+f ∼p(st+1|st,at)
[log σ( f (s, a, s+f ))]

+ E(s,a)∼p(s,a),s+f ∼p(st+|st,at)
[log σ( f (s, a, s+f ))]

=(2− γ)E(s,a)∼p(s,a),s+f ∼ p̃(s f |st,at)
[log σ( f (s, a, s+f ))]

This trick increases the effective sample size by 96% (130 → 256, as
measured using [116]).

Both losses also contain terms that are an expectation over random
goals. We can likewise combine those terms:

L2( f ) ≜γE sg∼pg(sg),(st ,at)∼p(s,a),
st+1∼p(st+1|st ,at),at+1∼π(at+1|st+1,sg)

[
⌊exp( f (st+1, at+1, sg))⌋sg log σ( f (s, a, s f = sg))

]
+ Esg∼pg(sg),(s,a)∼p(s,a)

[
log(1− σ( f (s, a, sg))

]
+ E(s,a)∼p(s,a),s−f ∼p(s f )

[log(1− σ( f (s, a, s−f )))]

= γE sg∼pg(sg),(st ,at)∼p(s,a),
st+1∼p(st+1|st ,at),at+1∼π(at+1|st+1,sg)

[
⌊exp( f (st+1, at+1, sg))⌋sg log σ( f (s, a, s f = sg))

]
+ 2Esg∼pg(sg),(s,a)∼p(s,a)

[
log(1− σ( f (s, a, sg))

]
.

Note that estimating the first term in L2 requires sampling an action
for each next state and goal pair. This prohibits us from using the
same outer product trick as in Sec. 3.4.4 to estimate this term. While
we could still use that trick to estimate the second term in L2, we
found that doing so hurt performance. We hypothesize that the reason
is that this creates an imbalance in the gradients – some goals are
labeled as negatives but are not also labeled as positives. Thus, we do
not use the outer product trick for this method. The final objective is
L( f ) = L1( f ) + L2( f ).



b.6 additional experiments 91

b.6 additional experiments

(a) Nine-Room environment.

Nine-Room Maze Task0.00

0.05

0.10

0.15

0.20

Te
st

 E
rro

r

Linear Regression with Learned Representation
Contrastive RL
TD3 + HER
Random

(b) Linear probe experiment.

Figure b.2: Linear regression with the learned features. Contrastive RL can
produce better features for predicting the shortest-path distance,
indicating that the learned features have captured highly non-
linear information about the environment dynamics.

b.6.1 Linear regression with the learned features

To study the learned representations in isolation we take the state-
action representations ϕ(s, a) trained on the image-based point NineRooms

task, and run a linear probe [5, 93] experiment to see whether the
representations have learned to encode task-relevant information (the
shortest path distance to the goal).

We use the task of nine-room navigation and run Contrastive RL
and TD3+HER on it. We visualize the environment in Fig. b.2a and the
agent randomly initialized in one of the nine rooms is commanded to
go to the goal position. We dump the replay buffer during training as
the dataset and run a linear regression to predict the shortest distance
between the agent and the goal. Note that this shortest path distance
is not the Euclidean distance since there are walls blocking the way.
Fig. b.2b shows that features learned by contrastive RL can predict
this distance better than all baselines.

As shown in Fig. b.2b, contrastive RL (NCE) learns representations
that achieve lower test error than those learned by TD3+HER and by
a random CNN encoder.

b.6.2 When is contrastive learning better than learning a foreward model?

In Fig. 3.3a, we observed that the model-based baseline performed
well on the ant umaze task, but poorly on many of the other tasks. One
explanation is that the model-based approach will perform well when
the goal is relatively low-dimensional, and that contrastive learning
will be more useful in settings with higher-dimensional goals. We
tested this experiment on the 7-dimensional sawyer push environment.
We applied both contrastive RL and the model-based baseline to



92 contrastive learning as goal-conditioned reinforcement learning

1 2 3 4 5 6 7
goal dimension

0.00

0.05

0.10

0.15

0.20

m
in

im
um

 d
ist

an
ce

 
to

 g
oa

l (
m

)

 is better

contrastive RL (NCE)
model based

Figure b.3: Contrasive learning outperforms a forward model when the goal
is 4-dimensional or larger. Error bars show the standard deviation
across 5 random seeds.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps 1e6

0.0

0.2

0.4

0.6

0.8

su
cc

es
s r

at
e

sawyer push

0.0 0.2 0.4 0.6 0.8 1.0
environment steps 1e7

0.0

0.2

0.4

0.6
ant umaze

0 1 2 3 4 5
environment steps 1e5

0.4

0.6

0.8

point Spiral11x11 (images)

0% random goals
50% random goals
100% random goals

Figure b.4: Goals used for the actor loss. Goals are either sampled from the
distribution over future states or from a distribution of random
states. Error bars show the standard deviation across 5 random
seeds.

versions of this task where the goal was varied from 1-dimensional
to 7-dimensional. Note that changing the goal dimension changes
the task: a 1-dimensional goal corresponds to moving the gripper to
the correct X position, whereas a 7-dimensional goal corresponds to
moving the object and gripper to the correct poses. We measured the
Euclidean distance to the goal (↓ is better). We show results in Fig. b.3.
As expected, higher-dimensional goals are a bit more challenging to
achieve. What we are really interested in is the gap between the model-
based approach and the contrastive RL, which opens up starting
with a 4-dimensional goal. Altogether, this experiment provides some
evidence that contrastive RL may be preferred over a forward model,
even for tasks with very low dimensional goals.

b.6.3 Goals used in the actor loss

In theory, the distribution of goals for the actor loss (Eq. 3.8) does not
affect the optimal policy, as long as the distribution has full support. In
our experiments, we sampled these goals randomly, in the same way
that we sampled negative examples for contrastive learning. We ran an



b.6 additional experiments 93

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps 1e6

0.0

0.2

0.4

0.6

0.8

su
cc

es
s r

at
e

fetch push

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps 1e6

sawyer push

0.0 0.5 1.0 1.5 2.0 2.5 3.0
environment steps 1e6

sawyer bin

representation 
initialization:

None
sawyer_push
sawyer_bin
fetch_push

Figure b.5: Transferring representations to solve new tasks. After training
the representations on one task for 1M environment steps, we
used them to initialize a new agent for solving a new task.

ablation experiment to study this decision, and show results in Fig. b.4.
These results show that sampling future goals consistently performs
poorly, perhaps because it results in only training the policy on how
to reach “easy” goals. A mixture of future goals and random goals
works much better, but the best results seem to come from training on
only random goals.

b.6.4 Transferring representations to solve new tasks

In this experiment, we studied whether the representations learned
by contrastive RL (NCE) for one task might be useful for solving
another task. We started by training contrastive RL (NCE) on three
image-based tasks: fetch push, sawyer push, and sawyer bin. The
observations for all tasks look different and the sawyer and fetch tasks
have different robots. The two sawyer tasks look the most similar
because they both come from the metaworld [265] benchmark suite.
We used the representations learned for each of these tasks to initialize
a second contrastive RL agent, which we used to solve this same set of
tasks. We were primarily interested in transfer – do the representations
from one task help in learning to solve another task? Intuitively, even
if the tasks are different, a good representation will capture some
structural properties (e.g., identifying the robot arm, and identifying
objects), which should transfer across the task.

We show results in Fig. b.5. After training on the first task for
1M environment steps, we used the learned representation as ini-
tialization for solving the new task. On the fetch push task, we see
little benefit from using pretrained representations, perhaps because
the task is relatively easy. On the sawyer push, we see the largest
benefit from pretraining the representations on the same task as the
target task. More interestingly, we see a small benefit from taking
the representations learned on the sawyer bin task and using those
to solve the sawyer push. On the most challenging task, sawyer bin,
using representations pretrained on either fetch push or sawyer bin

can accelerate the solving of this task. Taken together, these results
suggest that transferring the representations from one task to another
is sometimes useful.



94 contrastive learning as goal-conditioned reinforcement learning

b.6.5 Robustness to Environment Perturbations

Figure b.6: Perturbations to the image-based fetch push environment.

We ran an preliminary experiment to study whether the image-
based policies learned by contrastive RL (NCE) were robust to per-
turbations in the environment. We took an agent trained on the
fetch push with image-observations, and evaluated the agent on four
variants of the environment (see Fig. b.6):

• Original environment, without modification;

• Object color changed from black to red;

• Table color changed from white to yellow;

• Initial arm position moved towards the camera.

In each setting, we evaluate the success rate over 20 trials, and repeated
5 times to compute standard deviations (for a total of 100 trials). The
learned agent was robust to the object color, with the success rate
changing from 78± 5% to 73± 10%. The agent was also robust to
the change in initial position (87± 6%). However, changing the table
color caused the agent to fail (0± 0%), perhaps because the table color
consumes a large fraction of the image pixels.

b.6.6 Additional figures

This section presents additional figures.

• Fig. b.7 compares contrastive RL (NCE) with varying values of
the filtering parameter ϵ, described in Sec. 3.4.5.

• Fig. b.8 – This plot shows a TSNE embedding of the state-action
representations ϕ(s, a) for one trajectory of the bin picking task.
This experiment uses image observations.

• Fig. b.9 – This plot shows a TSNE embedding of the state-action
representations from the same bin picking task. We sampled
states and actions using a trained agent. After computing the
TSNE embedding, we used RasterFairy [117] to rectify the em-
beddings to a grid.



b.6 additional experiments 95

0 1 2 3
environment steps 1e6

0.0

0.5

1.0

su
cc

es
s r

at
e

fetch push

0.0 0.5 1.0
environment steps 1e7

ant umaze

=
= 100.0
= 1.0
= 0.01
= 0.0001

Figure b.7: Filtered relabeling. We filter the relabeled experience so that the
agent only trains on experience where the probability under
the commanded goal is similar to the probability under the
actually-reached goal. While such filtering is required to prove
convergence, these results suggest that good performance can be
achieved without this filtering step.

• Fig. b.10 – A TSNE embedding of image representations from
the point Spiral11x11 task.

• Fig. b.11 – Using the same representations for the point Spiral11x11

task, we measure the similarity between the critic gradients when
evaluated at the same state but different goals, ⟨ ∂ f

∂s |(s,g),
∂ f
∂s |(s,g′)⟩.

Figure b.8: Visualizing the learned representations. (Top) We show five
observations from the bin picking task, as well as the goal image.
(Bottom) A TSNE embedding of the image representations ϕ(s, a)
learned by Contrastive RL (NCE). Note that different parts of the
task (e.g., reaching, picking, placing) are well separated in the
learned representation space.



96 contrastive learning as goal-conditioned reinforcement learning

Figure b.9: Visualizing the image representations learned by our method
on the sawyer bin. We compute a TSNE embedding of the
representations, and then align the embeddings to a grid using
RasterFairy [117].

(a) (b)

(c) untrained encoder (d) contrastive RL (NCE) (e) TD3 + HER

Figure b.10: TSNE embedding of representations ϕ(s, a). (a) Using the point
Spiral11x11 task, (b) we generated image observations at 270

locations throughout the maze. We computed the state-action
representations of these images, using action = (0, 0). (c, d,
e) A TSNE embedding of these representations reveals that
the untrained encoder does not capture the structure of the
environment, whereas both our method and the TD3 + HER
baseline do capture the maze structure.



b.6 additional experiments 97

(a) Random neural net-
work

(b) C-learning (c) contrastive RL (NCE)

Figure b.11: Analyzing the gradients. We plot the cosine similarity between
the (normalized) gradients of the critic function with respect
to the goal images. An untrained network has high gradient
similarity, meaning that updates to one state/task affect the
networks predictions at many other states/tasks, a phenomenon
that prior work has identified as being detrimental to learning [2,
122, 259, 264]. Our method converges to a network where
gradients at one state have a low similarity with gradients at
other states. A similar plot showing gradients with various state
inputs shows a similar effect.





c
S E A R C H O N T H E R E P L AY B U F F E R

c.1 efficient shortest path computation

Our policy solves a shortest path problem every time it recomputes
a new waypoint. Naïvely running Dijkstra’s algorithm to compute a
shortest path among the states in our active set B requires O(|B|2)
queries of our value function. While the search algorithm itself is fast,
it is expensive to evaluate the value function on each pair of states at
every time step. In our implementation (Algorithm 7), we amortize
this computation across many calls to the policy. We periodically
periodically evaluate the value function on each pair of nodes in the
replay buffer, and then used the Floyd Warshall algorithm to compute
the shortest path between all pairs. This takes O(|B|3) time, but only
O(|B|2) calls to the value function. Let D ∈ R|B|×|B| be the resulting
matrix storing the shortest path distances between all pairs of states in
the active set. Now, given a start state s and goal state g, the shortest
path distance is

dsp(s, g) = min
(

min
u,v∈T

d(s, u) + D[u, v] + d(v, g), d(s, g)
)

This computation requires O(|B|) calls to the value function, substan-
tially better than the O(|B|2) calls required with the naïve implemen-
tation.

c.2 environments

We used two simple navigation environments, Point-U and Point-
FourRooms, shown in Figure 4.3a. In both environments, the obser-
vations are the location of the agent, s = (x, y) ∈ R2. The agent’s
actions a = (dx, dy) ∈ [−1, 1]2 are added to the agents current
position at every time step. We tuned the environments so that the
goal-conditioned algorithm (which we will use as a baseline) would
perform as well as possible. Observing that the agent would get
stuck at corners, we modified the environment to automatically add
Gaussian noise to the agents action. The resulting dynamics were

st+1 = proj(st + at + ϵt) where ϵt ∼ N (0, σ2)

where proj() handles collisions with walls by projecting the state to
the nearest free state. We used σ2 = 1.0 for Point-U, and σ2 = 0.1 for
the (larger) Point-FourRooms environment.

99



100 search on the replay buffer

Algorithm 7 Inputs are the current state s, the goal state g, the replay
buffer B, and the value function V. Returns the length and first
waypoint of the shortest path.

function ShortestPath(s, sg,B, V)
// Matrices: Dπ, DB→B , Ds→sg ∈ R|B|×|B|

// Vectors: Ds→B , DB→g ∈ R|B|

Dπ ← −V(B,B) ▷ cached
DB→B ← FloydWarshall(Dπ) ▷ cached
Ds→B ← −V(s,B)
DB→g ← −V(B, g)
Ds→g ← Ds→B + DB→B + (DB→g)

T

sw1 ← arg min
u,v∈B

Ds→g

return sw1

c.2.1 Visual Navigation

We ran most experiments on SUNCG house
0bda523d58df2ce52d0a1d90ba21f95c. We repeated all experiments
on SUNCG house 0601a680273d980b791505cab993096a, with nearly
identical results. We manually choose houses using the following
criteria (1) single story, (2) no humans, and (3) included multiple
rooms to make planning challenging. During training, we sampled
“nearby” goal states (within 4 steps) for 80% of episodes, and sampled
goals uniformly at random for the remaining 20% of episodes. We
tuned these parameters to make goal-conditioned RL work as well as
possible. We implemented goal-relabelling [10, 110], choosing between
the (1) originally sampled goal, the (2) current state, and (3) a future
state in the same trajectory, each with probability 33%. The agent’s
actions space was to move North/South/East/West. Observations
were panoramic images, created by concatenating the first-person
views from each of the cardinal directions. We used ensembles of
3 value functions, each with entirely independent weights. For all
neural networks conditioned on both the current observation and the
goal observation, we concatenated the current observation and goal
observation along their last channel. For RGB images, this resulted
in an input with dimensions H ×W × 6. For depth images, the
concatenated input had dimension H ×W × 2.

c.3 ablation experiments

Because SoRB plans over a fixed replay buffer, one potential concern
is that performance might degrade if the replay buffer is too small. To
test this concern, we ran an experiment varying the size of the replay
buffer. As shown in Figure c.1b, decreasing the replay buffer by a factor
of 10x led to no discernible drop on performance. While we do expect



c.3 ablation experiments 101

(a) Maximum edge length

(b) Replay buffer size

Figure c.1: Sensitivity to Hyperparameters: (Top) When constructing our
graph, we ignore edges that are longer than some distance,
MaxDist. We find that this hyperparameter is important to the
success of our method. (Bottom) While we used a buffer of 1000

observations for most of our experiments, decreasing the buffer
size has little effect on the method’s success rate.

performance to drop if we further decrease the size of the replay buffer,
the requirement of storing 100 states (even high-resolution images)
seems relatively minor. In a second ablation experiment, we varied
the MaxDist hyperparameter that governs when we stop adding new
edges to the graph. As shown in Figure c.1a, SoRB is sensitive to
this hyperparameter, with values too large and too smaller leading
to worse performance. When the MaxDist parameter is too small,
graph search fails to find a path to the goal state. As we increase
MaxDist, we increase the probability of underestimating the distance
between pairs of states. We expect that improvements in uncertainty
quantification in RL will improve the stability of our method w.r.t. this
hyperparameter.





d
J O I N T M O D E L - P O L I C Y O P T I M I Z AT I O N F O R
M O D E L - B A S E D R L

d.1 proofs and additional analysis

d.1.1 VMBPO Maximizes an Upper Bound on Return

While MnM aims to maximize the (log) of the expected return, VMBPO
aims to maximize the expected exponentiated return:

MnM: log Eπ

[
∞

∑
t=0

γtr(st, at)

]
, VMBPO: log Eπ

[
eη ∑∞

t=0 γtr(st,at)
]

,

where η > 0 is a temperature term used by VMBPO. Note that maxi-
mizing the log of the expected return, as done by MnM, is equivalent
to maximizing the expected return, as the function log(·) is monotone
increasing. However, maximizing the log of the expected exponentiated
return, as done by VMBPO, is not equivalent to maximizing the
expected return. Rather, it corresponds to maximizing a sum of the
expected return and the variance of the return [155, Page 272]:

1
η

log Eπ

[
eη ∑∞

t=0 γtr(st ,at)
]
= Eπ

[
∞

∑
t=0

γtr(st, at)

]
+

η

2
Varπ

[
∞

∑
t=0

γtr(st, at)

]
+O(η2).

Thus, in environments with stochastic dynamics or rewards (e.g.,
the didactic example in Fig. 5.3), VMBPO will prefer to receive lower
returns if the variance of the returns is much higher. We note that
the expected exponentiated return is an upper bound on the expected
return:

log Eπ

[
eη ∑∞

t=0 γtr(st,at)
]
≥ ηEπ

[
∞

∑
t=0

γtr(st, at)

]
.

This statement is a direct application of Jensen’s inequality. The bound
holds with a strict inequality in almost all MDPs. The one exception is
trivial MDPs where all trajectories have exactly the same return. Of
course, even a random policy is optimal for these trivial MDPs.

d.1.2 Helper Lemmas

We start by introducing a simple identity that will help handle discount
factors in our analysis.

103



104 joint model-policy optimization for model-based rl

Lemma 10. Define p(H) = Geom(1− γ) as the geometric distribution.
Let discount factor γ ∈ (0, 1) and random variable xt be given. Then the
following identity holds:

Ep(H)

[
H

∑
t=0

xt

]
=

∞

∑
t=0

γtxt.

The proof involves substituting the definition of the Geometric
distribution and then rearranging terms.

Proof.

Ep(H)

[
H

∑
t=0

xt

]
= (1− γ)

∞

∑
H=0

γH
H

∑
t=0

xt

= (1− γ)
(
x0 + γ(x0 + x1) + γ2(x0 + x1 + x2) + · · ·

)
= (1− γ)

(
x0(1 + γ + γ2 + · · · ) + x1(γ + γ2 + · · · ) + · · ·

)
= (1− γ)

(
x0

1
1− γ

+ x1
γ

1− γ
+ x2

γ2

1− γ
+ · · ·

)
=

∞

∑
t=0

γtxt.

The second helper lemma describes how the discounted expected
return objective can be written as the expected terminal reward of a
mixture of finite-length episodes.

Lemma 11. Define p(H) = Geom(1− γ) as the geometric distribution,
and p(τ | H) as a distribution over length-H episodes. We can then write
the expected discounted return objective as follows:

Ep(τ|H=∞)

[
∞

∑
t=0

γtr(st, at)

]
=

1
1− γ

Ep(H)

[
Ep(τ|H=H) [r(sH, aH)]

]
=

1
1− γ

∫∫
p(H)p(τ | H = H)r(sH, aH)dτdH.

Proof. The first identity follows from the definition of the geometric
distribution. The second identity writes the expectations as integrals,
which will make future analysis clearer.



d.1 proofs and additional analysis 105

d.1.3 Proof of Lemma 3

Proof.

log Eπ

[
∞

∑
t=0

γtr(st, at)

]
(a)
= log

1
1− γ

∫∫
p(H)p(τ | H = H)r(sH , aH)dτdH

= log
∫∫

p(H)
p(τ | H = H)

qθ(τ | H = H)
qθ(τ | H = H)r(sH , aH)dτdH − log(1− γ)

(b)
≥
∫

p(H)

(
log

∫ p(τ | H = H)

qθ(τ | H = H)
qθ(τ | H = H)r(sH , aH)dτ

)
dH − log(1− γ)

(c)
≥
∫∫

p(H)qθ(τ | H = H) (log p(τ | H = H)− log qθ(τ | H = H) + log r(sH , aH)) dτdH − log(1− γ)

(d)
=
∫∫

p(H)qθ(τ | H = H)

((
H

∑
t=0

log p(st+1 | st, at) +(((((log πθ(at | st)− log qθ(st+1 | st, at)−(((((log πθ(at | st)

)
+ log r(sH , aH)

)
dτdH

− log(1− γ)

(e)
=
∫∫

p(H)qθ(τ | H = ∞)

((
H

∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)

)
+ log r(sH , aH)

)
dτdH − log(1− γ)

( f )
=
∫

qθ(τ)
∫

p(H)

((
H

∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)

)
+ log r(sH , aH)

)
dHdτ − log(1− γ)

(g)
=
∫

qθ(τ)Ep(H)

[(
H

∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)

)
+ log r(sH , aH)

]
dτ − log(1− γ)

(h)
=
∫

qθ(τ)
∞

∑
t=0

γt (log p(st+1 | st, at)− log qθ(st+1 | st, at) + (1− γ) log r(sH , aH)) dτ − log(1− γ)

(i)
= Eqθ (τ)

[
∞

∑
t=0

γt (log p(st+1 | st, at)− log qθ(st+1 | st, at) + (1− γ) log r(sH , aH)− (1− γ) log(1− γ))

]
.

For (a), we applied Lemma 11. For (b), we applied Jensen’s inequality.
For (c), we applied Jensen’s inequality again. For (d), we substituted
the definitions of pθ(τ | H) and qθ(τ | H). For (e), we noted that
the term inside the summation only depends on the first H steps
of the trajectory, so collecting longer trajectories will not change the
result. This allows us to rewrite the integral as an expectation using
a single infinite-length trajectory. For (f), we recalled the definition
qθ(τ) = qθ(τ = H = ∞) and swap the order of integration. For (g),
we express the inner integral over p(H) as an expectation. For (h), we
applied the identity from Lemma 10. For (i), we moved the constant
log(1 − γ) back inside the integral and rewrote the integral as an
expectation. We have thus obtained the desired result.

d.1.4 Proof of Lemma 4

Before presenting the proof of Lemma 3 itself, we show how we
derived the lower bound in this more general case. While this step is
not required for the proof, we include it because it sheds light on how
similar lower bounds might be derived for other problems. We define



106 joint model-policy optimization for model-based rl

γθ(H) to be a learned distribution over horizons H. We then proceed,
following many of the same steps as for the proof of Lemma 3.

log Eπ

[
∞

∑
t=0

γtr(st, at)

]
(a)
= log

∫∫ p(τ, H)

qθ(τ, H)
qθ(τ, H)r(sH , aH)dτdH − log(1− γ)

(b)
≥
∫∫

qθ(τ, H) (log p(τ, H)− log qθ(τ, H) + log r(sH , aH)dτ) dH − log(1− γ) (d.1)

(c)
=
∫ ∞

∑
H=0

γθ(H)qθ(τ | H)

((
H

∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)

)
+ log p(H)− log γθ(H) + log r(sH , aH)dτ

)
− log(1− γ)

(d)
=
∫

qθ(τ | H = ∞)
∞

∑
H=0

γθ(H)

((
H

∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)

)
+ log p(H)− log γθ(H) + log r(sH , aH)dτ

)
− log(1− γ)

(e)
=
∫

qθ(τ)
∞

∑
H=0

γθ(H)

((
H

∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)

)
+ log p(H)− log γθ(H) + log r(sH , aH)dτ

)
− log(1− γ)

( f )
= Eqθ (τ)

[
∞

∑
H=0

γθ(H)

((
H

∑
t=0

log p(st+1 | st, at)− log qθ(st+1 | st, at)

)
+����log(1− γ) + H log γ− log γθ(H) + log r(sH , aH)

)]
−����log(1− γ)

(g)
= Eqθ (τ)

[
∞

∑
H=0

(
∞

∑
t=H

q(t)

)
(log p(sH+1 | sH , aH)− log qθ(sH+1 | sH , aH)) + γθ(H) (H log γ− log γθ(H) + log r(sH , aH))

]
(h)
= Eqθ (τ)

[
∞

∑
H=0

(
1−

H−1

∑
t=0

q(t)

)
(log p(sH+1 | sH , aH)− log qθ(sH+1 | sH , aH)) + γθ(H) (H log γ− log γθ(H) + log r(sH , aH))

]
(i)
= Eqθ (τ)

[
∞

∑
H=0

(1− Γθ(H − 1)) (log p(sH+1 | sH , aH)− log qθ(sH+1 | sH , aH)) + γθ(H) (H log γ− log γθ(H) + log r(sH , aH))

]
(j)
= Eqθ (τ)

[
∞

∑
H=0

γθ(H)

(
1− Γθ(H − 1)

γθ(H)
(log p(sH+1 | sH , aH)− log qθ(sH+1 | sH , aH)) + H log γ− log γθ(H) + log r(sH , aH)

)]
.

For (a), we applied Lemma 11 and multiplied the integrand by
qθ(τ|H=H)γθ(H)
qθ(τ|H=H)γθ(H)

= 1. For (b), we applied Jensen’s inequality. For (c),
we factored p(τ, H) = p(τ, H)p(H) and qθ(τ, H) = q(τ | H)γθ(H).
Note that under the joint distribution p(τ, H), the horizon H ∼
p(H) = Geom(1− γ) is independent of the trajectory, τ. For (d), we
rewrote the expectation as an expectation over a single infinite-length
trajectory and simplified the summand. For (e), we recall the definition
qθ(τ) = qθ(τ = H = ∞). For (f), we rewrote the integral as an
expectation and wrote out the definition of the geometric distribution,
p(H). For (g), we regrouped the difference of dynamics terms. For (h),
we noted used the fact that ∑H−1

t=0 γθ(t) + γ∞
t=Hγθ(t) = 1. For (i), we

substituted the definition of the CDF function. For (j), we rearranged
terms so that all were multiplied by the discount γθ(H). Thus, we
have obtained the desired result. We now prove Lemma 4, showing
that Eq. 5.4 becomes tight at optimality.

Proof.

Lγ(θ)
(a)
=
∫∫

qθ(τ, H) (log p(τ, H)− log qθ(τ, H) + log r(sH , aH)dτ) dH − log(1− γ)

(b)
=
∫∫

qθ(τ)γθ(H | τ) (log p(τ) + log p(H)− log qθ(τ)− log γθ(H | τ) + log r(sH , aH)dτ) dH − log(1− γ)

(d.2)

For (a), we undo some of the simplifications above, going back to
Eq. d.1 For (b), we factor qθ(τ, H) = qθ(τ)γθ(H | τ) and p(τ, H) =



d.1 proofs and additional analysis 107

p(τ)p(H). At this point, we can solve analytically for the optimal
discount distribution, γθ(H | τ):

γ∗θ (H | τ) =
p(H)r(sH, aH)

∑∞
H′=0 p(H′)r(sH′ , aH′)

=
p(H)r(sH, aH)

(1− γ)R(τ)
(d.3)

In the second equality, we substitute the definition of R(τ). We then
substitute Eq. d.3 into our expression for Lγ(θ) and simplify the
resulting expression.

Lγ(θ) =
∫∫

qθ(τ)γθ(H | τ) (log p(τ) +����log p(H)− log qθ(τ)−����log p(H)−(((((log r(sH , aH)

+����log(1− γ) + log R(τ) +(((((log r(sH , aH)dτ
)

dH −����log(1− γ)

=
∫∫

qθ(τ)γθ(H | τ) (log p(τ)− log qθ(τ) + log R(τ)dτ) dH

=
∫

qθ(τ) (log p(τ)− log qθ(τ) + log R(τ)) dτ.

In the final line we have removed the integral over H because none of
the integrands depend on H. At this point, we can solve analytically
for the optimal trajectory distribution, qθ(τ):

q∗(τ) =
p(τ)R(τ)∫

p(τ′)R(τ′)dτ′
. (d.4)

We then substitute Eq. d.4 into our expression for Lγ(θ), and simplify
the resulting expression:

Lγ(θ) =
∫

qθ(τ)

(
����log p(τ)−����log p(τ)−����log R(τ) + log

∫
p(τ′)R(τ′)dτ′ +����log R(τ)

)
dτ

= log
∫

p(τ)R(τ)dτ = log Eπ

[
∞

∑
t=0

γtr(st, at)

]
.

We have thus shown that the lower bound Lγ becomes tight when
we use the optimal distribution over trajectories qθ(τ) and optimal
learned discount γθ(H | τ).

d.1.5 A lower bound for goal-reaching tasks.

Many RL problems can be better formulated as goal-reaching prob-
lems, a formulation that does not require defining a reward function.
We now introduce a variant of our method for goal-reaching tasks.
Using ρπ(st+) to denote the discounted state occupancy measure of
policy π, we define the goal-reaching objective as maximizing the
probability density of reaching a desired goal sg:

max
θ

log ρπθ (st+ = sg). (d.5)

We refer the reader to [57] for a more detailed discussion of this
objective. For simplicity, we assume that the goal is fixed, noting that
the multi-task setting can be handled by conditioning the policy on



108 joint model-policy optimization for model-based rl

the commanded goal. Similar to Lemma 3, we can construct a lower
bound on the goal-conditioned RL problem:

Lemma 12. Let initial state distribution p1(s1), real dynamics p(st+1 |
st, at), reward function r(st, at) > 0, discount factor γ ∈ (0, 1), and goal g
be given. Then the following bound holds for any dynamics q(st+1 | st, at)

and policy π(at | st):

log pπθ (st+ = sg) ≥ Eqπθ (τ)

[
∞

∑
t=0

γtr(st, at)

]
,

where r̃g(st, at, st+1) ≜ (1 − γ) log p(st+1 = sg | st, at) + log p(st+1 |
st, at)− log q(st+1 | st, at).

The proof, presented below, is similar to the proof of Lemma 3.
The first term in the reward function, the log probability of reaching
the commanded goal one time step in the future, is similar to prior
work [198]. The correction term log p− log q incentivizes the policy to
avoid transitions where the model is inaccurate, and can be estimated
using a separate classifier. One important aspect of this goal-reaching
problem is that it is entirely data-driven, avoiding the need for any
manually-designed reward functions.

Proof.

log ρπθ (st+ = sg)
(a)
= log

∫∫
p(H)p(τ | H = H)p(sg | sH , aH )dτdH

= log
∫∫

p(H)
p(τ | H = H)

qθ (τ | H = H)
qθ (τ | H = H)

p(sg | sH , aH )

qθ (sg | sH , aH )
qθ (sg | sH , aH )dτdH − log(1− γ)

(c)
≥
∫∫

p(H)qθ (τ | H = H)
(
log p(τ | H = H)− log qθ (τ | H = H) + log p(sg | sH , aH )− log qθ (sg | sH , aH )

)
dτdH − log(1− γ)

(d)
=
∫∫

p(H)qθ (τ | H = ∞)

(
H
∑
t=0

log p(st+1 | st , at)− log qθ (st+1 | st , at)

)
+ log p(sg | sH , aH )− log qθ (sg | sH , aH )dτdH − log(1− γ)

(d)
=
∫

qθ (τ)
∫

p(H)

(
H
∑
t=0

log p(st+1 | st , at)− log qθ (st+1 | st , at)

)
+ log p(sg | sH , aH )− log qθ (sg | sH , aH )dHdτ − log(1− γ)

(d)
=
∫

qθ (τ)
∞

∑
t=0

γt (log p(st+1 | st , at)− log qθ (st+1 | st , at) + (1− γ)(log p(sg | st , at)− log qθ (sg | st , at)
)

dτ − log(1− γ)

(d)
= Eqθ (τ)

[
∞

∑
t=0

γt (log p(st+1 | st , at)− log qθ (st+1 | st , at) + (1− γ)(log p(sg | st , at)− log qθ (sg | st , at) + (1− γ) log(1− γ)
)]

.

Similar to the more complex lower bound presented in Eq. 5.4, this
lower bound on goal-reaching can be modified (by learning a discount
factor) to become a tight lower bound. The resulting objective would
resemble a model-based version of the algorithm from Rudner et al.
[198].

d.1.6 Derivation of Model Objective (Eq. 5.10)

Our lower bound depends on entirely trajectories sampled from the
learned dynamics. In this section, we show how the same objective
can be expressed as an expectation of transitions. This expression is



d.2 additional experiments 109

easier to optimize, as it does not require backpropagating gradients
through time. We start by writing our lower bound, conditioned on a
current state st.

E π(at|st),
qθ(st+1|st ,at)

[
∞

∑
t′=t

γt′−tr̃(st′ , at′) | st

]
= E π(at|st),

qθ(st+1|st ,at)

[r̃(st, at, st+1) + γV(st+1) | st]

(a)
= E π(at|st),

qθ(st+1|st ,at)

[
(1− γ) log r(st, at) + log

Cϕ(st, at, st+1)

1− Cϕ(st, at, st+1)

−(1− γ) log(1− γ) + γV(st+1) | st]

In (a), we substituted the definition of the augmented return. For the
purpose of optimizing the dynamics model, we can ignore all terms
that do not depend on st+1. Removing these terms, we arrive at our
model training objective (Eq. 5.10)

d.2 additional experiments

Figure d.1: Alternative Model Learning Objectives: Using the
DClawScrewFixed-v0 task, we compare MnM and MBPO [105]
to two additional model learning objectives suggested in
the literature, VAML [61] and value-weighted maximum
likelihood [127]. MnM (our method) outperforms these
alternative approaches.

We compare MnM to a number of alternative model learning
methods. MBPO [105] uses a standard maximum likelihood model.
We implement a version of VAML [61], which augments the maximum
likelihood loss with an additional temporal difference loss; the model
should predict next states that have low Bellman error. Finally, we
compare to a variant of the MBPO maximum likelihood model that
weights transitions based on the Q values, an idea discussed (but
not actually implemented) in Lambert et al. [127]. We implement this
value weighting method by computing the Q values for the current
states and computing a softmax over the batch dimension to obtain
per-example weights.



110 joint model-policy optimization for model-based rl

Figure d.2: Ablation Experiments: Compared with MBPO (orange line),
MnM uses a GAN-like model (red line) with a model optimism
term and modifies the reward function.

We use the DClawScrewFixed-v0 task for this experiment. The re-
sults, shown in Fig. d.1, show that MnM outperforms these alternative
approaches. We observe that the value-weighting performs slightly
better than the standard maximum likelihood model, while the VAML
method performs noticeable worse.

We next run an ablation experiment to study the importance of a
few key design decisions. We compare MnM with ablations that omit
the reward augmentation and the model optimism term. The results
shown in Fig. d.2 indicate that most of the benefit of MnM comes from
using a GAN-like model. Because the dynamics of these tasks are
nearly deterministic, it is not surprising that the optimistic dynamics
and the reward augmentation have only a small effect.

Figure d.3: MnM trains stably. Despite resembling a GAN, the MnM
dynamics model trains stably, with the validation MSE decreas-
ing steadily throughout training. Different colors correspond to
different random seeds of MnM. The dashed line corresponds to
the minimum validation MSE of a maximum likelihood dynamics
model.

With the implementation details described in [55], we found that
the MnM dynamics model trained stably, despite resembling a GAN.
In Fig. d.3, we plot the validation MSE of the MnM model throughout
training, observing that it decreases monotonically. Different lines
correspond to different random seeds, and the dashed line corresponds
to the minimum MSE of a maximum likelihood model (a MBPO
model). Note that the MnM model is not trained with this MSE
objective, but with the GAN-like objective in Eq. 5.10. It is therefore



d.2 additional experiments 111

not surprising that MnM does not perform as well on this objective as
the maximum likelihood model.





B I B L I O G R A P H Y

[1] Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter
Abbeel. “Variational option discovery algorithms.” In: arXiv
preprint arXiv:1807.10299 (2018).

[2] Joshua Achiam, Ethan Knight, and Pieter Abbeel. “Towards
characterizing divergence in deep Q-learning.” In: arXiv preprint
arXiv:1903.08894 (2019).

[3] Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik,
and Sergey Levine. “Learning to poke by poking: Experiential
learning of intuitive physics.” In: Advances in Neural Information
Processing Systems. 2016, pp. 5074–5082.

[4] Michael Ahn, Henry Zhu, Kristian Hartikainen, Hugo Ponte,
Abhishek Gupta, Sergey Levine, and Vikash Kumar. “ROBEL:
RObotics BEnchmarks for Learning with low-cost robots.” In:
Conference on Robot Learning. PMLR. 2020, pp. 1300–1313.

[5] Guillaume Alain and Yoshua Bengio. “Understanding interme-
diate layers using linear classifier probes.” In: arXiv preprint
arXiv:1610.01644 (2016).

[6] B Amos, I Rodriguez, J Sacks, B Boots, and Z Kolter. “Differen-
tiable MPC for End-to-end Planning and Control.” In: Advances
in neural information processing systems (2018).

[7] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio,
Marc-Alexandre Côté, and R Devon Hjelm. “Unsupervised
state representation learning in Atari.” In: Advances in Neural
Information Processing Systems 32 (2019).

[8] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark
Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and
Anton van den Hengel. “Vision-and-language navigation: In-
terpreting visually-grounded navigation instructions in real
environments.” In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2018, pp. 3674–3683.

[9] Jacob Andreas, Dan Klein, and Sergey Levine. “Modular multi-
task reinforcement learning with policy sketches.” In: Interna-
tional Conference on Machine Learning. PMLR. 2017, pp. 166–175.

[10] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider,
Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI
Pieter Abbeel, and Wojciech Zaremba. “Hindsight experience
replay.” In: Advances in neural information processing systems.
2017, pp. 5048–5058.

113



114 bibliography

[11] Raghuram Mandyam Annasamy and Katia Sycara. “Towards
better interpretability in deep Q-networks.” In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019,
pp. 4561–4569.

[12] Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L
Littman. “Combating the compounding-error problem with a
multi-step model.” In: arXiv preprint arXiv:1905.13320 (2019).

[13] Kavosh Asadi, Dipendra Misra, and Michael Littman. “Lips-
chitz continuity in model-based reinforcement learning.” In: In-
ternational Conference on Machine Learning. PMLR. 2018, pp. 264–
273.

[14] Pierre-Luc Bacon, Jean Harb, and Doina Precup. “The option-
critic architecture.” In: Thirty-First AAAI Conference on Artificial
Intelligence. 2017.

[15] J Andrew Bagnell, Andrew Y Ng, and Jeff G Schneider. “Solv-
ing uncertain Markov decision processes.” In: (2001).

[16] Xueying Bai, Jian Guan, and Hongning Wang. “A Model-Based
Reinforcement Learning with Adversarial Training for Online
Recommendation.” In: Advances in Neural Information Processing
Systems 32 (2019), pp. 10735–10746.

[17] André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici,
Eser Aygün, Philippe Hamel, Daniel Toyama, Shibl Mourad,
David Silver, Doina Precup, et al. “The option keyboard: Com-
bining skills in reinforcement learning.” In: Advances in Neural
Information Processing Systems. 2019, pp. 13052–13062.

[18] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt,
Tom Schaul, Hado P van Hasselt, and David Silver. “Successor
features for transfer in reinforcement learning.” In: Advances in
neural information processing systems. 2017, pp. 4055–4065.

[19] Marc G Bellemare, Will Dabney, and Rémi Munos. “A Distribu-
tional Perspective on Reinforcement Learning.” In: International
Conference on Machine Learning (ICML). 2017. url: https://
arxiv.org/pdf/1707.06887.pdf.

[20] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic pro-
gramming. Athena Scientific, 1996.

[21] Peter J Bickel, David A Freedman, et al. “Some asymptotic
theory for the bootstrap.” In: The annals of statistics 9.6 (1981),
pp. 1196–1217.

[22] Steffen Bickel, Michael Brückner, and Tobias Scheffer. “Discrim-
inative learning for differing training and test distributions.” In:
Proceedings of the 24th international conference on Machine learning.
2007, pp. 81–88.

https://arxiv.org/pdf/1707.06887.pdf
https://arxiv.org/pdf/1707.06887.pdf


bibliography 115

[23] Léonard Blier, Corentin Tallec, and Yann Ollivier. “Learning
successor states and goal-dependent values: A mathematical
viewpoint.” In: arXiv preprint arXiv:2101.07123 (2021).

[24] Diana Borsa, André Barreto, John Quan, Daniel Mankowitz,
Rémi Munos, Hado van Hasselt, David Silver, and Tom Schaul.
“Universal successor features approximators.” In: arXiv preprint
arXiv:1812.07626 (2018).

[25] James Bradbury et al. JAX: composable transformations of Python+NumPy
programs. Version 0.2.5. 2018. url: http://github.com/google/
jax.

[26] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schnei-
der, John Schulman, Jie Tang, and Wojciech Zaremba. “OpenAI
gym.” In: arXiv preprint arXiv:1606.01540 (2016).

[27] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott
Niekum. “Extrapolating beyond suboptimal demonstrations
via inverse reinforcement learning from observations.” In: Inter-
national conference on machine learning. PMLR. 2019, pp. 783–792.

[28] Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. “Goal-
Conditioned Reinforcement Learning with Imagined Subgoals.”
In: International Conference on Machine Learning. PMLR. 2021,
pp. 1430–1440.

[29] Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta,
and Saurabh Gupta. “Neural Topological SLAM for Visual Nav-
igation.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2020, pp. 12875–12884.

[30] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya
Grover, Misha Laskin, Pieter Abbeel, Aravind Srinivas, and
Igor Mordatch. “Decision transformer: Reinforcement learning
via sequence modeling.” In: Advances in neural information
processing systems 34 (2021).

[31] Song Chen, Junpeng Jiang, Xiaofang Zhang, Jinjin Wu, and
Gongzheng Lu. “GAN-Based Planning Model in Deep Rein-
forcement Learning.” In: International Conference on Artificial
Neural Networks. Springer. 2020, pp. 323–334.

[32] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey E. Hinton. “A Simple Framework for Contrastive Learning
of Visual Representations.” In: ArXiv abs/2002.05709 (2020).

[33] Xinlei Chen and Kaiming He. “Exploring Simple Siamese
Representation Learning.” In: 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2021), pp. 15745–
15753.

http://github.com/google/jax
http://github.com/google/jax


116 bibliography

[34] Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and
Anthony Francis. “Learning Navigation Behaviors End-to-End
With AutoRL.” In: IEEE Robotics and Automation Letters 4.2
(2019), pp. 2007–2014. issn: 2377-3766. doi: 10.1109/LRA.2019.
2899918.

[35] Jongwook Choi, Archit Sharma, Honglak Lee, Sergey Levine,
and Shixiang Shane Gu. “Variational Empowerment as Repre-
sentation Learning for Goal-Conditioned Reinforcement Learn-
ing.” In: International Conference on Machine Learning. PMLR.
2021, pp. 1953–1963.

[36] Howie M Choset, Seth Hutchinson, Kevin M Lynch, George
Kantor, Wolfram Burgard, Lydia E Kavraki, and Sebastian
Thrun. Principles of robot motion: theory, algorithms, and implemen-
tation. MIT press, 2005.

[37] Yinlam Chow, Brandon Cui, MoonKyung Ryu, and Moham-
mad Ghavamzadeh. “Variational model-based policy optimiza-
tion.” In: arXiv preprint arXiv:2006.05443 (2020).

[38] Paul Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane
Legg, and Dario Amodei. “Deep reinforcement learning from
human preferences.” In: arXiv preprint arXiv:1706.03741 (2017).

[39] Kurtland Chua, Roberto Calandra, Rowan McAllister, and
Sergey Levine. “Deep reinforcement learning in a handful
of trials using probabilistic dynamics models.” In: Advances in
Neural Information Processing Systems. 2018, pp. 4754–4765.

[40] Pierluca D’Oro, Alberto Maria Metelli, Andrea Tirinzoni, Mat-
teo Papini, and Marcello Restelli. “Gradient-aware model-based
policy search.” In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 34. 04. 2020, pp. 3801–3808.

[41] Peter Dayan. “Improving generalization for temporal difference
learning: The successor representation.” In: Neural Computation
5.4 (1993), pp. 613–624.

[42] Marc Peter Deisenroth and Carl Edward Rasmussen. “PILCO:
A model-based and data-efficient approach to policy search.”
In: International Conference on Machine Learning (ICML). 2011,
pp. 465–472.

[43] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano
Phielipp. “Goal-conditioned imitation learning.” In: Advances
in Neural Information Processing Systems. 2019, pp. 15324–15335.

[44] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. “Ad-
versarial feature learning.” In: arXiv preprint arXiv:1605.09782
(2016).

[45] Alexey Dosovitskiy and Vladlen Koltun. “Learning to act by
predicting the future.” In: arXiv preprint arXiv:1611.01779 (2016).

https://doi.org/10.1109/LRA.2019.2899918
https://doi.org/10.1109/LRA.2019.2899918


bibliography 117

[46] Chris Drummond. “Accelerating reinforcement learning by
composing solutions of automatically identified subtasks.” In:
Journal of Artificial Intelligence Research 16 (2002), pp. 59–104.

[47] Yilun Du, Chuang Gan, and Phillip Isola. “Curious represen-
tation learning for embodied intelligence.” In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2021,
pp. 10408–10417.

[48] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mas-
tropietro, Alex Lamb, Martin Arjovsky, and Aaron Courville.
“Adversarially learned inference.” In: arXiv preprint arXiv:1606.00704
(2016).

[49] Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex
Lee, and Sergey Levine. “Visual foresight: Model-based deep
reinforcement learning for vision-based robotic control.” In:
arXiv preprint arXiv:1812.00568 (2018).

[50] Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey
Levine. “RvS: What is Essential for Offline RL via Supervised
Learning?” In: arXiv preprint arXiv:2112.10751 (2021).

[51] Ben Eysenbach, Sergey Levine, and Russ R Salakhutdinov. “Re-
placing rewards with examples: Example-based policy search
via recursive classification.” In: Advances in Neural Information
Processing Systems 34 (2021).

[52] Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa, Sergey
Levine, and Ruslan Salakhutdinov. “Off-Dynamics Reinforce-
ment Learning: Training for Transfer with Domain Classifiers.”
In: International Conference on Learning Representations. 2020.

[53] Benjamin Eysenbach, Xinyang Geng, Sergey Levine, and Ruslan
Salakhutdinov. “Rewriting History with Inverse RL: Hindsight
Inference for Policy Improvement.” In: ArXiv abs/2002.11089

(2020).

[54] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey
Levine. “Diversity is All You Need: Learning Skills without
a Reward Function.” In: International Conference on Learning
Representations. 2018.

[55] Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and
Ruslan Salakhutdinov. “Mismatched No More: Joint Model-
Policy Optimization for Model-Based RL.” In: Advances in
Neural Information Processing Systems. 2022.

[56] Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine.
“Search on the Replay Buffer: Bridging Planning and Reinforce-
ment Learning.” In: Advances in Neural Information Processing
Systems 32 (2019).



118 bibliography

[57] Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine.
“C-Learning: Learning to Achieve Goals via Recursive Classifi-
cation.” In: International Conference on Learning Representations.
2021. url: https://openreview.net/forum?id=tc5qisoB-C.

[58] Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine.
“C-Learning: Learning to Achieve Goals via Recursive Classifi-
cation.” In: ArXiv abs/2011.08909 (2021).

[59] Benjamin Eysenbach, Soumith Udatha, Sergey Levine, and
Ruslan Salakhutdinov. “Imitating Past Successes can be Very
Suboptimal.” In: arXiv preprint arXiv:2206.03378 (2022).

[60] Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou
Zhang. “Curriculum-guided hindsight experience replay.” In:
Advances in Neural Information Processing Systems. 2019, pp. 12623–
12634.

[61] Amir-massoud Farahmand, Andre Barreto, and Daniel Nikovski.
“Value-aware loss function for model-based reinforcement learn-
ing.” In: Artificial Intelligence and Statistics. 2017, pp. 1486–1494.

[62] Aleksandra Faust, Oscar Ramirez, Marek Fiser, Ken Oslund,
Anthony Francis, James Davidson, and Lydia Tapia. “PRM-
RL: Long-range Robotic Navigation Tasks by Combining Rein-
forcement Learning and Sampling-based Planning.” In: Proc.
IEEE Int. Conf. Robot. Autom. (ICRA). Brisbane, Australia, 2018,
pp. 5113–5120. url: https://arxiv.org/abs/1710.03937.

[63] Chelsea Finn and Sergey Levine. “Deep visual foresight for
planning robot motion.” In: 2017 IEEE International Conference
on Robotics and Automation (ICRA). IEEE. 2017, pp. 2786–2793.

[64] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey
Levine, and Pieter Abbeel. “Deep spatial autoencoders for vi-
suomotor learning.” In: IEEE International Conference on Robotics
and Automation (ICRA). Vol. 2016-June. IEEE. 2016, pp. 512–519.
isbn: 9781467380263. doi: 10.1109/ICRA.2016.7487173. arXiv:
1509.06113.

[65] David Fischinger, Markus Vincze, and Yun Jiang. “Learning
grasps for unknown objects in cluttered scenes.” In: 2013 IEEE
international conference on robotics and automation. IEEE. 2013,
pp. 609–616.

[66] Carlos Florensa, Jonas Degrave, Nicolas Heess, Jost Tobias
Springenberg, and Martin Riedmiller. “Self-supervised Learn-
ing of Image Embedding for Continuous Control.” In: arXiv
preprint arXiv:1901.00943 (2019).

[67] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel.
“Automatic goal generation for reinforcement learning agents.”
In: International conference on machine learning. PMLR. 2018,
pp. 1515–1528.

https://openreview.net/forum?id=tc5qisoB-C
https://arxiv.org/abs/1710.03937
https://doi.org/10.1109/ICRA.2016.7487173
https://arxiv.org/abs/1509.06113


bibliography 119

[68] Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. “Multi-
level discovery of deep options.” In: arXiv preprint arXiv:1703.08294
(2017).

[69] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John
Schulman. “Meta learning shared hierarchies.” In: arXiv preprint
arXiv:1710.09767 (2017).

[70] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and
Sergey Levine. “D4rl: Datasets for deep data-driven reinforce-
ment learning.” In: arXiv preprint arXiv:2004.07219 (2020).

[71] Justin Fu, Katie Luo, and Sergey Levine. “Learning Robust
Rewards with Adverserial Inverse Reinforcement Learning.”
In: International Conference on Learning Representations. 2018.

[72] Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey
Levine. “Variational Inverse Control with Events: A General
Framework for Data-Driven Reward Definition.” In: NeurIPS.
2018.

[73] Scott Fujimoto and Shixiang Shane Gu. “A minimalist approach
to offline reinforcement learning.” In: Advances in Neural Infor-
mation Processing Systems 34 (2021).

[74] Scott Fujimoto, Herke van Hoof, and David Meger. “Address-
ing Function Approximation Error in Actor-Critic Methods.”
In: International Conference on Machine Learning (ICML) (2018).

[75] Scott Fujimoto, Herke Van Hoof, and David Meger. “Address-
ing function approximation error in actor-critic methods.” In:
arXiv preprint arXiv:1802.09477 (2018).

[76] Dibya Ghosh, Abhishek Gupta, Justin Fu, Ashwin Reddy,
Coline Devin, Benjamin Eysenbach, and Sergey Levine. “Learn-
ing to reach goals without reinforcement learning.” In: arXiv
preprint arXiv:1912.06088 (2019).

[77] Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu,
Coline Manon Devin, Benjamin Eysenbach, and Sergey Levine.
“Learning to Reach Goals via Iterated Supervised Learning.”
In: International Conference on Learning Representations. 2020.

[78] Raj Ghugare, Homanga Bharadhwaj, Benjamin Eysenbach,
Sergey Levine, and Russ Salakhutdinov. “Simplifying Model-
based RL: Learning Representations, Latent-space Models, and
Policies with One Objective.” In: The Eleventh International
Conference on Learning Representations. 2023. url: https : / /

openreview.net/forum?id=MQcmfgRxf7a.

[79] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. “Generative Adversarial Nets.” In: Advances in
Neural Information Processing Systems (NIPS). 2014. url: https:
//arxiv.org/pdf/1406.2661.pdf.

https://openreview.net/forum?id=MQcmfgRxf7a
https://openreview.net/forum?id=MQcmfgRxf7a
https://arxiv.org/pdf/1406.2661.pdf
https://arxiv.org/pdf/1406.2661.pdf


120 bibliography

[80] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra.
“Variational intrinsic control.” In: arXiv preprint arXiv:1611.07507
(2016).

[81] Jean-Bastien Grill et al. “Bootstrap Your Own Latent: A New
Approach to Self-Supervised Learning.” In: ArXiv abs/2006.07733

(2020).

[82] Christopher Grimm, André Barreto, Satinder Singh, and David
Silver. “The value equivalence principle for model-based rein-
forcement learning.” In: arXiv preprint arXiv:2011.03506 (2020).

[83] Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot,
Bernardo A Pires, and Rémi Munos. “Neural predictive belief
representations.” In: arXiv preprint arXiv:1811.06407 (2018).

[84] Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-
Bastien Grill, Florent Altché, Rémi Munos, and Mohammad
Gheshlaghi Azar. “Bootstrap latent-predictive representations
for multitask reinforcement learning.” In: International Confer-
ence on Machine Learning. PMLR. 2020, pp. 3875–3886.

[85] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine,
and Karol Hausman. “Relay Policy Learning: Solving Long-
Horizon Tasks via Imitation and Reinforcement Learning.” In:
arXiv preprint arXiv:1910.11956 (2019).

[86] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-
thankar, and Jitendra Malik. “Cognitive mapping and planning
for visual navigation.” In: arXiv preprint arXiv:1702.03920 3

(2017).

[87] Michael U Gutmann and Aapo Hyvärinen. “Noise-Contrastive
Estimation of Unnormalized Statistical Models, with Applica-
tions to Natural Image Statistics.” In: Journal of machine learning
research 13.2 (2012).

[88] Michael Gutmann and Aapo Hyvärinen. “Noise-contrastive
estimation: A new estimation principle for unnormalized sta-
tistical models.” In: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics. 2010, pp. 297–
304.

[89] David Ha and Jürgen Schmidhuber. “World Models.” In: arXiv
preprint arXiv:1803.10122 (2018).

[90] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. “Soft actor-critic: Off-policy maximum entropy deep re-
inforcement learning with a stochastic actor.” In: arXiv preprint
arXiv:1801.01290 (2018).

[91] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad
Norouzi. “Dream to Control: Learning Behaviors by Latent
Imagination.” In: International Conference on Learning Representa-
tions. 2019.



bibliography 121

[92] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas,
David Ha, Honglak Lee, and James Davidson. “Learning latent
dynamics for planning from pixels.” In: International Conference
on Machine Learning. PMLR. 2019, pp. 2555–2565.

[93] Tengda Han, Weidi Xie, and Andrew Zisserman. “Self-supervised
co-training for video representation learning.” In: Advances in
Neural Information Processing Systems 33 (2020), pp. 5679–5690.

[94] Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele,
David Warde-Farley, and Volodymyr Mnih. “Fast task inference
with variational intrinsic successor features.” In: arXiv preprint
arXiv:1906.05030 (2019).

[95] Kyle Beltran Hatch, Sarthak J Shetty, Benjamin Eysenbach,
Tianhe Yu, Rafael Rafailov, Ruslan Salakhutdinov, Sergey Levine,
and Chelsea Finn. “Contrastive Example-Based Control.” In:
2023.

[96] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. “Momentum contrast for unsupervised visual repre-
sentation learning.” In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2020, pp. 9729–9738.

[97] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,
Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua Ben-
gio. “Learning deep representations by mutual information es-
timation and maximization.” In: arXiv preprint arXiv:1808.06670
(2018).

[98] Jonathan Ho and Stefano Ermon. “Generative adversarial im-
itation learning.” In: Advances in neural information processing
systems 29 (2016), pp. 4565–4573.

[99] Elad Hoffer and Nir Ailon. “Deep metric learning using triplet
network.” In: International workshop on similarity-based pattern
recognition. Springer. 2015, pp. 84–92.

[100] Zhang-Wei Hong, Ge Yang, and Pulkit Agrawal. “Bilinear value
networks.” In: arXiv preprint arXiv:2204.13695 (2022).

[101] Ferenc Huszár. “Variational inference using implicit distribu-
tions.” In: arXiv preprint arXiv:1702.08235 (2017).

[102] IQL Authors. Private Communication. 2022.

[103] Brian Ichter, Pierre Sermanet, and Corey Lynch. “Broadly-
exploring, local-policy trees for long-horizon task planning.”
In: arXiv preprint arXiv:2010.06491 (2020).

[104] Tommi Jaakkola, Michael I Jordan, and Satinder P Singh. “On
the convergence of stochastic iterative dynamic programming
algorithms.” In: Neural computation 6.6 (1994), pp. 1185–1201.



122 bibliography

[105] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine.
“When to trust your model: Model-based policy optimization.”
In: Advances in Neural Information Processing Systems. 2019,
pp. 12519–12530.

[106] Michael Janner, Igor Mordatch, and Sergey Levine. “gamma-
models: Generative temporal difference learning for infinite-
horizon prediction.” In: Advances in Neural Information Process-
ing Systems 33 (2020), pp. 1724–1735.

[107] Joshua Joseph, Alborz Geramifard, John W Roberts, Jonathan P
How, and Nicholas Roy. “Reinforcement learning with mis-
specified model classes.” In: 2013 IEEE International Conference
on Robotics and Automation. IEEE. 2013, pp. 939–946.

[108] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer,
and Yonghui Wu. “Exploring the limits of language modeling.”
In: arXiv preprint arXiv:1602.02410 (2016).

[109] Leslie Pack Kaelbling. “Hierarchical learning in stochastic
domains: Preliminary results.” In: Proceedings of the tenth interna-
tional conference on machine learning. Vol. 951. 1993, pp. 167–173.

[110] Leslie Pack Kaelbling. “Learning to achieve goals.” In: IJCAI.
Citeseer. 1993, pp. 1094–1099.

[111] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin
Swanson, Rico Jonschkowski, Chelsea Finn, Sergey Levine,
and Karol Hausman. “MT-Opt: Continuous Multi-Task Robotic
Reinforcement Learning at Scale.” In: ArXiv abs/2104.08212

(2021).

[112] Hilbert J Kappen. “Path integrals and symmetry breaking for
optimal control theory.” In: Journal of statistical mechanics: theory
and experiment 2005.11 (2005), P11011.

[113] Lydia Kavraki, Petr Svestka, and Mark H Overmars. “Proba-
bilistic roadmaps for path planning in high-dimensional config-
uration spaces.” In: IEEE transactions on robotics and automation
12.4 (1996), pp. 566–580.

[114] Michael Kearns and Satinder Singh. “Near-optimal reinforce-
ment learning in polynomial time.” In: Machine learning 49.2-3
(2002), pp. 209–232.

[115] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and
T. Joachims. “MOReL : Model-Based Offline Reinforcement
Learning.” In: ArXiv abs/2005.05951 (2020).

[116] Leslie Kish. “Survey Sampling.” In: John Wiley & Sons (1965).

[117] Mario Klingemann. Raster Fairy. https://github.com/bmcfee/
RasterFairy. 2016.

[118] Vijay Konda and John Tsitsiklis. “Actor-critic algorithms.” In:
Advances in neural information processing systems 12 (1999).

https://github.com/bmcfee/RasterFairy
https://github.com/bmcfee/RasterFairy


bibliography 123

[119] Ksenia Konyushkova, Konrad Zolna, Yusuf Aytar, Alexander
Novikov, Scott Reed, Serkan Cabi, and Nando de Freitas.
“Semi-supervised reward learning for offline reinforcement
learning.” In: arXiv preprint arXiv:2012.06899 (2020).

[120] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. “Offline Rein-
forcement Learning with Implicit Q-Learning.” In: International
Conference on Learning Representations. 2021.

[121] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and
Josh Tenenbaum. “Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation.” In:
Advances in neural information processing systems. 2016, pp. 3675–
3683.

[122] Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey
Levine. “Implicit under-parameterization inhibits data-efficient
deep reinforcement learning.” In: arXiv preprint arXiv:2010.14498
(2020).

[123] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and
Pieter Abbeel. “Model-ensemble trust-region policy optimiza-
tion.” In: arXiv preprint arXiv:1802.10592 (2018).

[124] Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J Russell, and
Pieter Abbeel. “Learning plannable representations with causal
InfoGAN.” In: Advances in Neural Information Processing Systems.
2018, pp. 8733–8744.

[125] Steven M LaValle. Planning algorithms. Cambridge university
press, 2006.

[126] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blun-
dell. “Simple and scalable predictive uncertainty estimation
using deep ensembles.” In: Advances in Neural Information
Processing Systems. 2017, pp. 6402–6413.

[127] Nathan Lambert, Brandon Amos, Omry Yadan, and Roberto
Calandra. “Objective Mismatch in Model-based Reinforcement
Learning.” In: Learning for Dynamics and Control. PMLR. 2020,
pp. 761–770.

[128] Sascha Lange and Martin A Riedmiller. “Deep learning of
visual control policies.” In: European Symposium on Artificial Neu-
ral Networks (ESANN). Citeseer. 2010. url: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.226.6898{\&

}rep=rep1{\&}type=pdf.

[129] John Langford. Specializations of the master problem. 2010. url:
https://hunch.net/?p=1167.

[130] Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind
Rajeswaran, and Pieter Abbeel. “CIC: Contrastive Intrinsic Con-
trol for Unsupervised Skill Discovery.” In: Deep RL Workshop
NeurIPS 2021. 2021.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.6898{\&}rep=rep1{\&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.6898{\&}rep=rep1{\&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.226.6898{\&}rep=rep1{\&}type=pdf
https://hunch.net/?p=1167


124 bibliography

[131] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. “Curl:
Contrastive unsupervised representations for reinforcement
learning.” In: International Conference on Machine Learning. PMLR.
2020, pp. 5639–5650.

[132] Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter
Abbeel, and Aravind Srinivas. “Reinforcement learning with
augmented data.” In: Advances in Neural Information Processing
Systems 33 (2020), pp. 19884–19895.

[133] Manfred Lau and James J Kuffner. “Behavior planning for
character animation.” In: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. ACM.
2005, pp. 271–280.

[134] Yann LeCun. Predictive learning. https://www.youtube.com/
watch?v=Ount2Y4qxQo. Keynote Talk. 2016.

[135] Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing,
and Ruslan Salakhutdinov. “Gated path planning networks.”
In: arXiv preprint arXiv:1806.06408 (2018).

[136] Ian Lenz, Ross Knepper, and Ashutosh Saxena. “DeepMPC:
Learning Deep Latent Features for Model Predictive Control.”
In: Robotics: Science and Systems (RSS). 2015.

[137] Sergey Levine. “Reinforcement learning and control as proba-
bilistic inference: Tutorial and review.” In: arXiv preprint arXiv:1805.00909
(2018).

[138] Sergey Levine, Yongjoon Lee, Vladlen Koltun, and Zoran Popović.
“Space-time planning with parameterized locomotion controllers.”
In: ACM Transactions on Graphics (TOG) 30.3 (2011), p. 23.

[139] Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko.
“Learning multi-level hierarchies with hindsight.” In: arXiv
preprint arXiv:1712.00948 (2017).

[140] Andrew Levy, Robert Platt, and Kate Saenko. “Hierarchical Re-
inforcement Learning with Hindsight.” In: International Confer-
ence on Learning Representations. 2019. url: https://openreview.
net/forum?id=ryzECoAcY7.

[141] Omer Levy and Yoav Goldberg. “Neural word embedding as
implicit matrix factorization.” In: Advances in neural information
processing systems 27 (2014).

[142] Alexander C Li, Lerrel Pinto, and Pieter Abbeel. “General-
ized Hindsight for Reinforcement Learning.” In: arXiv preprint
arXiv:2002.11708 (2020).

[143] Yitao Liang, Marlos C Machado, Erik Talvitie, and Michael
Bowling. “State of the art control of Atari games using shallow
reinforcement learning.” In: arXiv preprint arXiv:1512.01563
(2015).

https://www.youtube.com/watch?v=Ount2Y4qxQo
https://www.youtube.com/watch?v=Ount2Y4qxQo
https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=ryzECoAcY7


bibliography 125

[144] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nico-
las Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wier-
stra. “Continuous control with deep reinforcement learning.”
In: ICLR (Poster). 2016.

[145] Xingyu Lin, Harjatin Singh Baweja, and David Held. “Rein-
forcement Learning without Ground-Truth State.” In: arXiv
preprint arXiv:1905.07866 (2019).

[146] Xingyu Lin, Harjatin Singh Baweja, and David Held. “Rein-
forcement Learning without Ground-Truth State.” In: ArXiv
abs/1905.07866 (2019).

[147] Hao Liu and Pieter Abbeel. “Aps: Active pretraining with suc-
cessor features.” In: International Conference on Machine Learning.
PMLR. 2021, pp. 6736–6747.

[148] Kara Liu, Thanard Kurutach, Christine Tung, Pieter Abbeel,
and Aviv Tamar. “Hallucinative topological memory for zero-
shot visual planning.” In: International Conference on Machine
Learning. PMLR. 2020, pp. 6259–6270.

[149] Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou.
“Breaking the curse of horizon: Infinite-horizon off-policy esti-
mation.” In: Advances in Neural Information Processing Systems.
2018, pp. 5356–5366.

[150] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor
Darrell, and Tengyu Ma. “Algorithmic Framework for Model-
based Deep Reinforcement Learning with Theoretical Guaran-
tees.” In: ICLR (Poster). 2019.

[151] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan
Tompson, Sergey Levine, and Pierre Sermanet. “Learning La-
tent Plans from Play.” In: arXiv preprint arXiv:1903.01973 (2019).

[152] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan
Tompson, Sergey Levine, and Pierre Sermanet. “Learning la-
tent plans from play.” In: Conference on Robot Learning. 2020,
pp. 1113–1132.

[153] Zhuang Ma and Michael Collins. “Noise Contrastive Estimation
and Negative Sampling for Conditional Models: Consistency
and Statistical Efficiency.” In: EMNLP. 2018.

[154] Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar
Hafner, and Deepak Pathak. “Discovering and achieving goals
via world models.” In: Advances in Neural Information Processing
Systems 34 (2021).

[155] Oliver Mihatsch and Ralph Neuneier. “Risk-sensitive reinforce-
ment learning.” In: Machine learning 49.2 (2002), pp. 267–290.



126 bibliography

[156] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. “Distributed representations of words and phrases
and their compositionality.” In: Advances in neural information
processing systems 26 (2013).

[157] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer,
Andrew J Ballard, Andrea Banino, Misha Denil, Ross Goroshin,
Laurent Sifre, Koray Kavukcuoglu, et al. “Learning to navigate
in complex environments.” In: arXiv preprint arXiv:1611.03673
(2016).

[158] Andriy Mnih and Yee Whye Teh. “A fast and simple algorithm
for training neural probabilistic language models.” In: ICML.
2012.

[159] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller.
“Playing atari with deep reinforcement learning.” In: arXiv
preprint arXiv:1312.5602 (2013).

[160] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. “Dualdice:
Behavior-agnostic estimation of discounted stationary distribu-
tion corrections.” In: Advances in Neural Information Processing
Systems. 2019, pp. 2318–2328.

[161] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey
Levine. “Data-Efficient Hierarchical Reinforcement Learning.”
In: Advances in Neural Information Processing Systems 31 (2018),
pp. 3303–3313.

[162] Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine.
“Near-optimal representation learning for hierarchical rein-
forcement learning.” In: arXiv preprint arXiv:1810.01257 (2018).

[163] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and
Sergey Levine. “Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning.” In:
2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2018, pp. 7559–7566.

[164] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl,
Steven Lin, and Sergey Levine. “Visual Reinforcement Learn-
ing with Imagined Goals.” In: Advances in Neural Information
Processing Systems 31 (2018), pp. 9191–9200.

[165] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. “Overcoming exploration in re-
inforcement learning with demonstrations.” In: 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE.
2018, pp. 6292–6299.



bibliography 127

[166] Suraj Nair, Eric Mitchell, Kevin Chen, Silvio Savarese, Chelsea
Finn, et al. “Learning language-conditioned robot behavior
from offline data and crowd-sourced annotation.” In: Conference
on Robot Learning. PMLR. 2022, pp. 1303–1315.

[167] Suraj Nair, Silvio Savarese, and Chelsea Finn. “Goal-Aware
Prediction: Learning to Model What Matters.” In: arXiv preprint
arXiv:2007.07170 (2020).

[168] Soroush Nasiriany, Vitchyr H. Pong, Steven Lin, and Sergey
Levine. “Planning with Goal-Conditioned Policies.” In: NeurIPS.
2019.

[169] Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine.
“Planning with goal-conditioned policies.” In: Advances in Neu-
ral Information Processing Systems. 2019, pp. 14843–14854.

[170] Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and Pierre-
Luc Bacon. “Control-Oriented Model-Based Reinforcement
Learning with Implicit Differentiation.” In: arXiv preprint arXiv:2106.03273
(2021).

[171] Arnab Nilim and Laurent El Ghaoui. “Robustness in Markov
Decision Problems with Uncertain Transition Matrices.” In:
NIPS. Citeseer. 2003, pp. 839–846.

[172] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. “f-
GAN: Training generative neural samplers using variational
divergence minimization.” In: Advances in neural information
processing systems 29 (2016).

[173] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard Lewis, and
Satinder Singh. “Action-Conditional Video Prediction using
Deep Networks in Atari Games.” In: Advances in Neural Infor-
mation Processing Systems (NIPS). 2015. url: https://arxiv.
org/pdf/1507.08750v1.pdf.

[174] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. “Self-
imitation learning.” In: arXiv preprint arXiv:1806.05635 (2018).

[175] Junhyuk Oh, Satinder Singh, and Honglak Lee. “Value predic-
tion network.” In: arXiv preprint arXiv:1707.03497 (2017).

[176] Masashi Okada, Luca Rigazio, and Takenobu Aoshima. “Path
integral networks: End-to-end differentiable optimal control.”
In: arXiv preprint arXiv:1706.09597 (2017).

[177] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Represen-
tation learning with contrastive predictive coding.” In: arXiv
preprint arXiv:1807.03748 (2018).

[178] Pedro A Ortega and Daniel A Braun. “Thermodynamics as a
theory of decision-making with information-processing costs.”
In: Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 469.2153 (2013), p. 20120683.

https://arxiv.org/pdf/1507.08750v1.pdf
https://arxiv.org/pdf/1507.08750v1.pdf


128 bibliography

[179] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin
Van Roy. “Deep exploration via bootstrapped DQN.” In: Ad-
vances in neural information processing systems. 2016, pp. 4026–
4034.

[180] Fabio Pardo, Arash Tavakoli, Vitaly Levdik, and Petar Kormu-
shev. “Time limits in reinforcement learning.” In: arXiv preprint
arXiv:1712.00378 (2017).

[181] Ronald Parr and Stuart J Russell. “Reinforcement learning with
hierarchies of machines.” In: Advances in neural information
processing systems. 1998, pp. 1043–1049.

[182] Keiran Paster, Sheila A McIlraith, and Jimmy Ba. “Planning
from pixels using inverse dynamics models.” In: arXiv preprint
arXiv:2012.02419 (2020).

[183] Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and
Jimmy Ba. “Maximum Entropy Gain Exploration for Long
Horizon Multi-goal Reinforcement Learning.” In: arXiv preprint
arXiv:2007.02832 (2020).

[184] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob Mc-
Grew, Bowen Baker, Glenn Powell, Jonas Schneider, Josh Tobin,
Maciek Chociej, Peter Welinder, et al. “Multi-goal reinforcement
learning: Challenging robotics environments and request for
research.” In: arXiv preprint arXiv:1802.09464 (2018).

[185] Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair,
Shikhar Bahl, and Sergey Levine. “Skew-fit: State-covering self-
supervised reinforcement learning.” In: arXiv preprint arXiv:1903.03698
(2019).

[186] Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine.
“Temporal difference models: Model-free deep rl for model-
based control.” In: arXiv preprint arXiv:1802.09081 (2018).

[187] Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi,
and George Tucker. “On variational bounds of mutual infor-
mation.” In: International Conference on Machine Learning. PMLR.
2019, pp. 5171–5180.

[188] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner,
Gabriel Barth-Maron, Matej Vecerik, Thomas Lampe, Yuval
Tassa, Tom Erez, and Martin Riedmiller. “Data-efficient deep
reinforcement learning for dexterous manipulation.” In: arXiv
preprint arXiv:1704.03073 (2017).

[189] Doina Precup. Temporal abstraction in reinforcement learning.
University of Massachusetts Amherst, 2000.



bibliography 129

[190] Shuang Qiu, Lingxiao Wang, Chenjia Bai, Zhuoran Yang, and
Zhaoran Wang. “Contrastive UCB: Provably Efficient Con-
trastive Self-Supervised Learning in Online Reinforcement
Learning.” In: International Conference on Machine Learning. PMLR.
2022, pp. 18168–18210.

[191] Sébastien Racanière, Théophane Weber, David Reichert, Lars
Buesing, Arthur Guez, Danilo Jimenez Rezende, Adria Puig-
domenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li, et
al. “Imagination-augmented agents for deep reinforcement
learning.” In: Advances in neural information processing systems.
2017, pp. 5690–5701.

[192] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. “A
game theoretic framework for model based reinforcement learn-
ing.” In: International Conference on Machine Learning. PMLR.
2020, pp. 7953–7963.

[193] Kate Rakelly, Abhishek Gupta, Carlos Florensa, and Sergey
Levine. “Which Mutual-Information Representation Learning
Objectives are Sufficient for Control?” In: ArXiv abs/2106.07278

(2021).

[194] Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. “On
stochastic optimal control and reinforcement learning by ap-
proximate inference.” In: Twenty-third international joint confer-
ence on artificial intelligence. 2013.

[195] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael
Neunert, Jonas Degrave, Tom Wiele, Vlad Mnih, Nicolas Heess,
and Jost Tobias Springenberg. “Learning by playing solving
sparse reward tasks from scratch.” In: International conference
on machine learning. PMLR. 2018, pp. 4344–4353.

[196] Stéphane Ross, Geoffrey J Gordon, and J Andrew Bagnell. “A
Reduction of Imitation Learning and Structured Prediction
to No-Regret Online Learning.” In: International Conference on
Artificial Intelligence and Statistics (AISTATS). 2011.

[197] Stéphane Ross and Drew Bagnell. “Agnostic System Identifi-
cation for Model-Based Reinforcement Learning.” In: ICML.
2012.

[198] Tim GJ Rudner, Vitchyr H Pong, Rowan McAllister, Yarin Gal,
and Sergey Levine. “Outcome-Driven Reinforcement Learning
via Variational Inference.” In: arXiv preprint arXiv:2104.10190
(2021).

[199] Oleh Rybkin, Chuning Zhu, Anusha Nagabandi, Kostas Dani-
ilidis, Igor Mordatch, and Sergey Levine. “Model-based rein-
forcement learning via latent-space collocation.” In: Interna-
tional Conference on Machine Learning. PMLR. 2021, pp. 9190–
9201.



130 bibliography

[200] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun.
“Semi-parametric topological memory for navigation.” In: arXiv
preprint arXiv:1803.00653 (2018).

[201] Nikolay Savinov, Anton Raichuk, Raphaël Marinier, Damien
Vincent, Marc Pollefeys, Timothy Lillicrap, and Sylvain Gelly.
“Episodic Curiosity through Reachability.” In: arXiv preprint
arXiv:1810.02274 (2018).

[202] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver.
“Universal value function approximators.” In: International
conference on machine learning. 2015, pp. 1312–1320.

[203] Karl Schmeckpeper, Annie Xie, Oleh Rybkin, Stephen Tian,
Kostas Daniilidis, Sergey Levine, and Chelsea Finn. “Learning
predictive models from observation and interaction.” In: Euro-
pean Conference on Computer Vision. Springer. 2020, pp. 708–725.

[204] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen
Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward
Lockhart, Demis Hassabis, Thore Graepel, et al. “Mastering
atari, go, chess and shogi by planning with a learned model.”
In: Nature 588.7839 (2020), pp. 604–609.

[205] Yannick Schroecker and Charles Isbell. “Universal value den-
sity estimation for imitation learning and goal-conditioned
reinforcement learning.” In: arXiv preprint arXiv:2002.06473
(2020).

[206] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “FaceNet:
A unified embedding for face recognition and clustering.” In:
2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015), pp. 815–823.

[207] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan,
and Philipp Moritz. “Trust region policy optimization.” In:
International Conference on Machine Learning. 2015, pp. 1889–
1897.

[208] John Schulman, Philipp Moritz, Sergey Levine, Michael Jor-
dan, and Pieter Abbeel. “High-dimensional continuous control
using generalized advantage estimation.” In: arXiv preprint
arXiv:1506.02438 (2015).

[209] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. “Proximal policy optimization algorithms.”
In: arXiv preprint arXiv:1707.06347 (2017).

[210] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu,
Eric Jang, Stefan Schaal, Sergey Levine, and Google Brain.
“Time-contrastive networks: Self-supervised learning from video.”
In: 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2018, pp. 1134–1141.



bibliography 131

[211] Dhruv Shah, Benjamin Eysenbach, Gregory Kahn, Nicholas
Rhinehart, and Sergey Levine. “ViNG: Learning Open-World
Navigation with Visual Goals.” In: arXiv preprint arXiv:2012.09812
(2020).

[212] Pararth Shah, Marek Fiser, Aleksandra Faust, J Chase Kew, and
Dilek Hakkani-Tur. “Follownet: Robot navigation by following
natural language directions with deep reinforcement learning.”
In: arXiv preprint arXiv:1805.06150 (2018).

[213] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and
Karol Hausman. “Dynamics-Aware Unsupervised Discovery
of Skills.” In: International Conference on Learning Representations.
2019.

[214] Rui Shu, Tung Nguyen, Yinlam Chow, Tuan Pham, Khoat Than,
Mohammad Ghavamzadeh, Stefano Ermon, and Hung Bui.
“Predictive coding for locally-linear control.” In: International
Conference on Machine Learning. PMLR. 2020, pp. 8862–8871.

[215] David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al.
“Mastering the game of Go with deep neural networks and tree
search.” In: nature 529.7587 (2016), p. 484.

[216] David Silver, Satinder Singh, Doina Precup, and Richard S
Sutton. “Reward is enough.” In: Artificial Intelligence 299 (2021),
p. 103535.

[217] Özgür Şimşek, Alicia P Wolfe, and Andrew G Barto. “Identify-
ing useful subgoals in reinforcement learning by local graph
partitioning.” In: Proceedings of the 22nd international conference
on Machine learning. ACM. 2005, pp. 816–823.

[218] Kihyuk Sohn. “Improved Deep Metric Learning with Multi-
class N-pair Loss Objective.” In: NeurIPS. 2016.

[219] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe
Shi, and Ferenc Huszár. “Amortised map inference for image
super-resolution.” In: arXiv preprint arXiv:1610.04490 (2016).

[220] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis
Savva, and Thomas Funkhouser. “Semantic scene comple-
tion from a single depth image.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017,
pp. 1746–1754.

[221] Jonathan Sorg, Satinder P Singh, and Richard L Lewis. “Internal
rewards mitigate agent boundedness.” In: ICML. 2010.

[222] A. Srinivas, A. Jabri, P. Abbeel, Sergey Levine, and Chelsea
Finn. “Universal Planning Networks.” In: ArXiv abs/1804.00645

(2018).



132 bibliography

[223] Aravind Srinivas and Pieter Abbeel. Unsupervised Learning for
Reinforcement Learning. Tutorial. 2021.

[224] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. “Universal planning networks: Learning general-
izable representations for visuomotor control.” In: International
Conference on Machine Learning. PMLR. 2018, pp. 4732–4741.

[225] Rupesh Kumar Srivastava, Pranav Shyam, Filipe Mutz, Woj-
ciech Jaśkowski, and Jürgen Schmidhuber. “Training agents
using upside-down reinforcement learning.” In: arXiv preprint
arXiv:1912.02877 (2019).

[226] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin.
“Decoupling representation learning from reinforcement learn-
ing.” In: International Conference on Machine Learning. PMLR.
2021, pp. 9870–9879.

[227] Felipe Petroski Such, Vashisht Madhavan, Rosanne Liu, Rui
Wang, Pablo Samuel Castro, Yulun Li, Jiale Zhi, Ludwig Schu-
bert, Marc G Bellemare, Jeff Clune, et al. “An atari model zoo
for analyzing, visualizing, and comparing deep reinforcement
learning agents.” In: arXiv preprint arXiv:1812.07069 (2018).

[228] Hao Sun, Zhizhong Li, Xiaotong Liu, Bolei Zhou, and Dahua
Lin. “Policy Continuation with Hindsight Inverse Dynamics.”
In: Advances in Neural Information Processing Systems. 2019,
pp. 10265–10275.

[229] Richard S Sutton. “Learning to predict by the methods of
temporal differences.” In: Machine learning 3.1 (1988), pp. 9–44.

[230] Richard S Sutton. “Integrated architectures for learning, plan-
ning, and reacting based on approximating dynamic program-
ming.” In: Machine Learning Proceedings 1990. Elsevier, 1990,
pp. 216–224.

[231] Richard S Sutton, Doina Precup, and Satinder Singh. “Between
MDPs and semi-MDPs: A framework for temporal abstraction
in reinforcement learning.” In: Artificial intelligence 112.1-2
(1999), pp. 181–211.

[232] Richard S Sutton and Brian Tanner. “Temporal-difference net-
works.” In: Advances in neural information processing systems.
2005, pp. 1377–1384.

[233] Csaba Szepesvari, Richard S Sutton, Joseph Modayil, Shalabh
Bhatnagar, et al. “Universal option models.” In: Advances in
Neural Information Processing Systems. 2014, pp. 990–998.

[234] Erik Talvitie. “Model Regularization for Stable Sample Roll-
outs.” In: UAI. 2014, pp. 780–789.



bibliography 133

[235] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter
Abbeel. “Value iteration networks.” In: Advances in Neural
Information Processing Systems. 2016, pp. 2154–2162.

[236] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe
Li, Diego de Las Casas, David Budden, Abbas Abdolmaleki,
Josh Merel, Andrew Lefrancq, et al. “Deepmind control suite.”
In: arXiv preprint arXiv:1801.00690 (2018).

[237] Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James
Kirkpatrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu.
“Distral: Robust multitask reinforcement learning.” In: Advances
in Neural Information Processing Systems. 2017, pp. 4496–4506.

[238] Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. “A
generalized path integral control approach to reinforcement
learning.” In: The Journal of Machine Learning Research 11 (2010),
pp. 3137–3181.

[239] Yonglong Tian, Dilip Krishnan, and Phillip Isola. “Contrastive
multiview coding.” In: Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XI 16. Springer. 2020, pp. 776–794.

[240] Emanuel Todorov. “General duality between optimal control
and estimation.” In: 2008 47th IEEE Conference on Decision and
Control. IEEE. 2008, pp. 4286–4292.

[241] Y-H Tsai, H Zhao, M Yamada, L-P Morency, and R Salakhutdi-
nov. “Neural Methods for Point-wise Dependency Estimation.”
In: Proceedings of the Neural Information Processing Systems Con-
ference (Neurips). 2020.

[242] Michael Tschannen, Josip Djolonga, Paul K Rubenstein, Sylvain
Gelly, and Mario Lucic. “On mutual information maximization
for representation learning.” In: arXiv preprint arXiv:1907.13625
(2019).

[243] Masatoshi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama,
and Yutaka Matsuo. “Generative adversarial nets from a density
ratio estimation perspective.” In: arXiv preprint arXiv:1610.02920
(2016).

[244] Arun Venkatraman, Roberto Capobianco, Lerrel Pinto, Martial
Hebert, Daniele Nardi, and J Andrew Bagnell. “Improved
learning of dynamics models for control.” In: International
Symposium on Experimental Robotics. Springer. 2016, pp. 703–713.

[245] Srinivas Venkattaramanujam, Eric Crawford, Thang Van Doan,
and Doina Precup. “Self-supervised Learning of Distance Func-
tions for Goal-Conditioned Reinforcement Learning.” In: ArXiv
abs/1907.02998 (2019).



134 bibliography

[246] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul,
Nicolas Heess, Max Jaderberg, David Silver, and Koray Kavukcuoglu.
“Feudal networks for hierarchical reinforcement learning.”
In: International Conference on Machine Learning. PMLR. 2017,
pp. 3540–3549.

[247] Han Wang, Erfan Miahi, Martha White, Marlos C Machado,
Zaheer Abbas, Raksha Kumaraswamy, Vincent Liu, and Adam
White. “Investigating the Properties of Neural Network Rep-
resentations in Reinforcement Learning.” In: arXiv preprint
arXiv:2203.15955 (2022).

[248] David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin
Ionescu, Steven Hansen, and Volodymyr Mnih. “Unsupervised
control through non-parametric discriminative rewards.” In:
arXiv preprint arXiv:1811.11359 (2018).

[249] Christopher JCH Watkins and Peter Dayan. “Q-learning.” In:
Machine learning 8.3-4 (1992), pp. 279–292.

[250] Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker,
and Martin Riedmiller. “Embed to Control: A Locally Linear
Latent Dynamics Model for Control from Raw Images.” In:
Advances in Neural Information Processing Systems (NIPS). 2015,
pp. 2728–2736. arXiv: 1506.07365. url: https://arxiv.org/
pdf/1506.07365.pdfhttp://arxiv.org/abs/1506.07365.

[251] Kilian Q. Weinberger and Lawrence K. Saul. “Distance Metric
Learning for Large Margin Nearest Neighbor Classification.”
In: NIPS. 2005.

[252] Grady Williams, Nolan Wagener, Brian Goldfain, Paul Drews,
James M Rehg, Byron Boots, and Evangelos A Theodorou.
“Information Theoretic MPC for Model-Based Reinforcement
Learning.” In: International Conference on Robotics and Automation
(ICRA). 2017.

[253] Ronald J Williams. “Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning.” In: Machine
learning 8.3-4 (1992), pp. 229–256.

[254] Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli.
“Multi-task reinforcement learning: a hierarchical bayesian
approach.” In: Proceedings of the 24th international conference
on Machine learning. 2007, pp. 1015–1022.

[255] Yifan Wu, George Tucker, and Ofir Nachum. “The Laplacian in
RL: Learning Representations with Efficient Approximations.”
In: arXiv preprint arXiv:1810.04586 (2018).

[256] Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin.
“Unsupervised Feature Learning via Non-parametric Instance
Discrimination.” In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2018), pp. 3733–3742.

https://arxiv.org/abs/1506.07365
https://arxiv.org/pdf/1506.07365.pdf http://arxiv.org/abs/1506.07365
https://arxiv.org/pdf/1506.07365.pdf http://arxiv.org/abs/1506.07365


bibliography 135

[257] Annie Xie, Avi Singh, Sergey Levine, and Chelsea Finn. “Few-
shot goal inference for visuomotor learning and planning.” In:
Conference on Robot Learning. PMLR. 2018, pp. 40–52.

[258] Danfei Xu and Misha Denil. “Positive-unlabeled reward learn-
ing.” In: arXiv preprint arXiv:1911.00459 (2019).

[259] Ge Yang, Anurag Ajay, and Pulkit Agrawal. “Overcoming The
Spectral Bias of Neural Value Approximation.” In: International
Conference on Learning Representations. 2021.

[260] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto.
“Mastering visual continuous control: Improved data-augmented
reinforcement learning.” In: arXiv preprint arXiv:2107.09645
(2021).

[261] Denis Yarats, Ilya Kostrikov, and Rob Fergus. “Image aug-
mentation is all you need: Regularizing deep reinforcement
learning from pixels.” In: International Conference on Learning
Representations. 2020.

[262] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos,
Joelle Pineau, and Rob Fergus. “Improving Sample Efficiency
in Model-Free Reinforcement Learning from Images.” In: AAAI.
2021.

[263] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran,
Sergey Levine, and Chelsea Finn. “Combo: Conservative offline
model-based policy optimization.” In: arXiv preprint arXiv:2102.08363
(2021).

[264] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. “Gradient surgery for multi-
task learning.” In: Advances in Neural Information Processing
Systems 33 (2020), pp. 5824–5836.

[265] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol
Hausman, Chelsea Finn, and Sergey Levine. “Meta-world:
A benchmark and evaluation for multi-task and meta rein-
forcement learning.” In: Conference on Robot Learning. 2020,
pp. 1094–1100.

[266] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James
Zou, Sergey Levine, Chelsea Finn, and Tengyu Ma. “MOPO:
Model-based Offline Policy Optimization.” In: arXiv preprint
arXiv:2005.13239 (2020).

[267] Amy Zhang, Adam Lerer, Sainbayar Sukhbaatar, Rob Fergus,
and Arthur Szlam. “Composable planning with attributes.” In:
arXiv preprint arXiv:1803.00512 (2018).

[268] Amy Zhang, Rowan Thomas McAllister, Roberto Calandra,
Yarin Gal, and Sergey Levine. “Learning Invariant Representa-
tions for Reinforcement Learning without Reconstruction.” In:
International Conference on Learning Representations. 2020.



136 bibliography

[269] Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel,
Matthew J. Johnson, and Sergey Levine. “SOLAR: Deep Struc-
tured Representations for Model-Based Reinforcement Learn-
ing.” In: International Conference on Machine Learning (ICML).
2019. arXiv: 1808.09105. url: http://arxiv.org/abs/1808.
09105.

[270] Shangtong Zhang, Bo Liu, and Shimon Whiteson. “Gradient-
dice: Rethinking generalized offline estimation of stationary
values.” In: International Conference on Machine Learning. PMLR.
2020, pp. 11194–11203.

[271] Tianjun Zhang, Benjamin Eysenbach, Ruslan Salakhutdinov,
Sergey Levine, and Joseph E Gonzalez. “C-Planning: An Au-
tomatic Curriculum for Learning Goal-Reaching Tasks.” In:
International Conference on Learning Representations.

[272] Tianjun Zhang, Tongzheng Ren, Mengjiao Yang, Joseph Gonza-
lez, Dale Schuurmans, and Bo Dai. “Making Linear MDPs Prac-
tical via Contrastive Representation Learning.” In: International
Conference on Machine Learning. PMLR. 2022, pp. 26447–26466.

[273] Rui Zhao, Xudong Sun, and Volker Tresp. “Maximum entropy-
regularized multi-goal reinforcement learning.” In: arXiv preprint
arXiv:1905.08786 (2019).

[274] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Ab-
hinav Gupta, Li Fei-Fei, and Ali Farhadi. “Target-driven vi-
sual navigation in indoor scenes using deep reinforcement
learning.” In: 2017 IEEE international conference on robotics and
automation (ICRA). IEEE. 2017, pp. 3357–3364.

[275] Brian D Ziebart. “Modeling purposeful adaptive behavior with
the principle of maximum causal entropy.” In: (2010).

[276] Konrad Zolna, Scott Reed, Alexander Novikov, Sergio Gomez
Colmenarej, David Budden, Serkan Cabi, Misha Denil, Nando
de Freitas, and Ziyu Wang. “Task-relevant adversarial imitation
learning.” In: arXiv preprint arXiv:1910.01077 (2019).

https://arxiv.org/abs/1808.09105
http://arxiv.org/abs/1808.09105
http://arxiv.org/abs/1808.09105

	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	 Data-Directed Decision-Making
	2 Learning to Achieve Goals via Recursive Classification
	2.1 Introduction
	2.2 Related Work
	2.3 Preliminaries
	2.4 Framing Goal Conditioned RL as Density Estimation
	2.5 C-Learning
	2.5.1 Learning the classifier
	2.5.2 Goal-Conditioned RL via C-Learning
	2.5.3 Implications for Q-learning and Hindsight Relabeling

	2.6 Experiments
	2.7 Extension to Fully-General RL Problems
	2.8 Discussion

	3 Contrastive Learning as Goal-Conditioned Reinforcement Learning
	3.1 Introduction
	3.2 Related Work
	3.3 Preliminaries
	3.4 Contrastive Learning as an RL Algorithm
	3.4.1 Relating the Q-function to probabilities
	3.4.2 Contrastive Learning Estimates a Q-Function
	3.4.3 Learning the Goal-Conditioned Policy
	3.4.4 A Complete Goal-Conditioned RL Algorithm
	3.4.5 Convergence Guarantees
	3.4.6 C-learning as Contrastive Learning

	3.5 Experiments
	3.5.1 Comparing to prior goal-conditioned RL methods
	3.5.2 Comparing to prior representation learning methods
	3.5.3 Probing the dimensions of contrastive RL
	3.5.4 Partial Observability and Moving Cameras
	3.5.5 Contrastive RL for Offline RL

	3.6 Extensionsion: Solving Fully-General RL Problems using Contrastive Kernels
	3.7 Discussion


	 Inferring Solutions to Complex Tasks
	4 Search on the Replay Buffer
	4.1 Introduction
	4.2 Bridging Planning and Reinforcement Learning
	4.2.1 Building Block: Goal-Conditioned RL
	4.2.2 Distances from Goal-Conditioned Reinforcement Learning
	4.2.3 The Replay Buffer as a Graph
	4.2.4 Algorithm Summary

	4.3 Better Distance Estimates
	4.3.1 Better Distances via Distributional Reinforcement Learning
	4.3.2 Robust Distances via Ensembles of Value Functions

	4.4 Related Work
	4.5 Experiments
	4.5.1 Didactic Example: 2D Navigation
	4.5.2 Planning over Images for Visual Navigation
	4.5.3 Comparison with Semi-Parametric Topological Memory
	4.5.4 Better Distance Estimates
	4.5.5 Generalizing to New Houses

	4.6 Extensions
	4.7 Discussion

	5 Joint Model-Policy Optimization for Model-Based RL
	5.1 Introduction
	5.2 Related Work
	5.3 A Unified Objective for Model-Based RL
	5.4 Mismatched No More
	5.4.1 Estimating the Augmented Reward Function
	5.4.2 Updating the Model, Policy, and Classifier

	5.5 Experiments
	5.5.1 Understanding the Lower Bound and the Learned Dynamics
	5.5.2 Comparisons On Robotics Tasks

	5.6 Extending MnM to Latent-Space Models
	5.7 Discussion

	6 Outlook

	Appendix
	a Learning to Achieve Goals via Recursive Classification
	a.1 A Connection between Maximizing Probabilities and Minimizing Distances
	a.2 A Bellman Equation for C-Learning and Convergence Guarantees
	a.2.1 Bellman Equations for C-Learning
	a.2.2 Off-Policy C-learning Converges
	a.2.3 Goal-Conditioned C-Learning Converges

	a.3 Mixing TD C-learning with MC C-learning
	a.4 Additional Experiments
	a.5 Predictions from C-Learning

	b Contrastive Learning as Goal-Conditioned Reinforcement Learning
	b.1 Additional Related Work
	b.2 Discussion of the Representations as a Model
	b.3 Proofs
	b.3.1 Q-function are equivalent to the discounted state occupancy measure
	b.3.2 Contrastive RL is Policy Improvement

	b.4 Contrastive RL (CPC)
	b.5 Contrastive RL (NCE + C-learning)
	b.6 Additional Experiments
	b.6.1 Linear regression with the learned features
	b.6.2 When is contrastive learning better than learning a foreward model?
	b.6.3 Goals used in the actor loss
	b.6.4 Transferring representations to solve new tasks
	b.6.5 Robustness to Environment Perturbations
	b.6.6 Additional figures


	c Search on the Replay Buffer
	c.1 Efficient Shortest Path Computation
	c.2 Environments
	c.2.1 Visual Navigation

	c.3 Ablation Experiments

	d Joint Model-Policy Optimization for Model-Based RL
	d.1 Proofs and Additional Analysis
	d.1.1 VMBPO Maximizes an Upper Bound on Return
	d.1.2 Helper Lemmas
	d.1.3 Proof of Lemma 3
	d.1.4 Proof of Lemma 4
	d.1.5 A lower bound for goal-reaching tasks.
	d.1.6 Derivation of Model Objective (Eq. 5.10)

	d.2 Additional Experiments

	 Bibliography


