
Machine Learning and

Multiagent Preferences

Ritesh Noothigattu

August 2020
CMU-ML-20-109

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Ariel D. Procaccia (Chair), Harvard University

Maria-Florina Balcan, Carnegie Mellon University
Nihar B. Shah, Carnegie Mellon University

Milind Tambe, Harvard University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2020 Ritesh Noothigattu

This research was sponsored by the National Science Foundation award numbers CCF1525932 and IIS1714140, the Office of the
Naval Research award number N000141712428, and the United States Army Research Office award number W911NF1320045.



Keywords: machine learning, multiagent preferences, fairness, social choice, axioms,
pooling, reinforcement learning.



To everyone who helps me keep my smile :)





Abstract

One of the most well known settings dealing with multiagent preferences is
voting and social choice. In classical social choice, each of the n agents presents
a ranking over the m candidates, and the goal is to find a winning candidate
(or a consensus ranking) that is the most “fair” outcome. In this thesis, we con-
sider several variants of this standard setting. For instance, the domain may
have an uncountably infinite number of alternatives, and we need to learn each
voter’s preferences from a few pairwise comparisons among them. Or, we have
a markov decision process, and each voter’s preferences are represented by its
reward function. Can we find a consensus policy that everyone would be happy
with? Another example is the setting of a conference peer review system, where
the agents are the reviewers, and their preferences are given by the defining
characteristics they use to accept a paper. Our goal is then to use these prefer-
ences to make consensus decisions for the entire conference. We also consider
the setting where agents have utility functions over a given set of outcomes,
and our goal is to learn a classifier that is fair with respect to these preferences.
Broadly speaking, this thesis tackles problems in three areas: (i) fairness in
machine learning, (ii) voting and social choice, and (iii) reinforcement learning,
each of them handling multiagent preferences with machine learning.
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Chapter 1
Introduction

Multiagent preferences are the basic ingredient in some of the most well-studied areas of
algorithmic game theory — computational social choice and fair division. In classical social
choice and voting, there are n agents and m candidates, and each of these agents has a
preference ordering or ranking over these m alternatives. Given the rankings of all the
n agents, the goal is to find a winning candidate (or a consensus ranking) that is the
most “fair” outcome. In this thesis, we look into several variants of this standard setting.
For instance, we consider when there are an uncountably infinite number of alternatives,
but each of them is defined by a set of d features. In such a setting, we cannot elucidate
the entire ranking over the alternatives for any given voter, and hence need to learn this
ranking by collecting a few pairwise comparisons from them, followed by generalizing to
the rest of the alternative space. We also look into whether it is meaningful to pool all
the comparisons together and learn a single community wide ranking directly, instead of
learning individual rankings for the voters, followed by aggregating them.

Other variants we consider are settings where agents’ preferences are very different
from the realm of rankings over candidates. For instance, we consider the setting of a
markov decision process, where we have multiple agents, but each of them with a different
reward function (representing their preferences for this problem). Our goal is then to find
a single policy that everyone would be “happy” with. Yet another example is the setting of
a conference peer review system, where the agents are the reviewers of the conference, and
their preferences are given by the defining characteristics they use to choose which papers
are to be accepted at the conference. Finally, we also consider the setting where agents’
preferences are defined by utility functions over a given set of outcomes, and our goal is
to learn a classifier that is fair with respect to these preferences. Broadly speaking, this
thesis tackles problems in three areas: (i) fairness in machine learning, (ii) voting and social
choice, and (iii) reinforcement learning, each of them handling multiagent preferences with
machine learning.

Fairness in Machine Learning. Machine learning models can inherit biases from the
data they have been trained on. These biases in the data could arise because of a sample
bias in how the data was collected, discrimination that occured in the past or because of
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unconscious human bias. To handle these cases, machine learning is performed with certain
fairness constraints imposed to make it “fair.” The two most common notions of fairness
are individual and group fairness. Group fairness is quite practical, but only guarantees
very weak properties. On the other hand, individual fairness offers strong guarantees but
is generally difficult to operationalize. This is because its most common form requires the
existence and knowledge of a “magical” task-specific distance function. Hence, we propose
a new measure of individual fairness, called envy-freeness. Envy-freeness is a well-known
property in the fair division literature, but we argue is a compelling notion of fairness for
classification tasks as well, especially when individuals have very heterogeneous preferences.
Our technical focus is the generalizability of envy-free classification, i.e., we study the
conditions under which a classifier that is envy free on a sample would be almost envy free
with respect to the underlying distribution with high probability.

Voting and Social Choice. In this part, we study four problems, each at the intersec-
tion of machine learning and social choice. For the first, consider a setting with repeated
aggregation of objective opinions. For example, suppose a group of engineers are trying
to decide which prototype to develop, based on an objective measure of success such as
projected market share. Standard voting systems treat all voters equally. We argue that
perhaps this can be improved: Voters who have supported good choices in the past, and
hence objectively have more expertise on the matter, should be given higher weight than
voters who have supported bad ones – leading to better choices overall. To be able to design
such weighting schemes, we draw on no-regret learning.

Second, we present a general approach to automating societal decisions, drawing on
machine learning and computational social choice. The aim is to be able to predict what
society would have chosen given a particular delimma at hand. In such a setting, the space of
alternatives may be uncountably infinite, each alternative defined by a set of d features. The
learning to rank literature studies algorithms to predict the ranking over the whole space of
alternatives, given only a few comparisons between them. In our setting, this is additionally
coupled with the fact that we have multiple voters, each with their own preferences. Our
general approach to solving this problem, which we term virtual democracy, involves four
steps: (i) collecting pairwise comparisons from voters, (ii) learning a model of preferences
for each voter, (iii) summarizing all the models into a concise summary model and finally
(iv) aggregating these preferences to make a decision. We provide a concrete algorithm
that instantiates our approach; some of its crucial steps are informed by a new theory of
swap-dominance efficient voting rules.

Third, we aim to improve the conference peer review system by tackling one of the sub-
jective aspect of reviewing: mapping of criteria scores of papers to final recommendations.
It is common to see a handful of reviewers reject a highly novel paper, because they view,
say, extensive experiments as far more important than novelty, whereas the community as
a whole would have embraced the paper. We define this mapping of criteria scores to final
recommendations as the preference of the reviewer, and aim to find a consensus decision
for the entire conference. In this work, we present a framework — based on L(p, q)-norm
empirical risk minimization — for learning the community’s aggregate mapping. And we
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draw on computational social choice to identify desirable values of p and q.

Finally, we study axioms satisfied by learning from pairwise comparisons, and, its im-
plications when these comparisons are obtained by pooling them from multiple agents.
Our virtual demoncracy framework to automating societal decisions involved four steps.
Crucially, the learning step (step ii) can be sample inefficient, as we are learning a different
model for each voter independently. In particular, with only a few comparisons to learn
from, we could either succumb to overfitting, or be forced to use a model with very low
model complexity. This can be avoided by pooling all the pairwise comparisons together,
leading to a much larger dataset, and directly learning an aggregate model from this pooled
dataset. This work studies whether this is meaningful even from a social choice perspective.
In particular, we show that for a large class of random utility models, the MLE satisfies a
Pareto efficiency condition and a strong monotonicity property. While on the other hand,
these models fail certain other consistency conditions like pairwise majority consistency
and separability.

Reinforcement Learning. In this part, we study three problems dealing with multia-
gent preferences arising in reinforcement learning settings. First, we study the problem of
influence maximization in social networks in the presence of contingencies. Specifically, we
focus on using influence maximization in public health domains for assisting low-resource
communities, like spreading HIV awareness among homeless youth networks, where con-
tingencies are common. It is very difficult in these domains to ensure that the seed nodes
are influenced, as these nodes correspond to homeless youth, and influencing them requires
contacting them, followed by convincing them to attend training sessions. Unfortunately,
previous work on influence maximization assumes that chosen influencers can be influenced
with certainty, and hence are fairly suboptimal in this setting. In this work, we propose
the Contingency Aware Influence Maximization problem to model this problem, cast it as
a partially observable markov decision process, and propose a custom POMDP planner to
solve it.

Second, we look into the problem of incorporating morality into reinforcement learning
agents. To ensure that these agents behave in ways aligned with the values of society,
we need to develop techniques that allow these agents to maximize their reward in the
environment, while at the same time following these implicit constraints of society. In cases
where we have access to the exact list of all the possible rules to follow, or a reward function
of said morality, one could enforce these as constraints on the agent, or couple it with the
reward function. But, in general, it may be extremely difficult to list them exactly and in its
entirely. Hence, in this work we learn these constraints from moral demonstrations of the
task (which may be imperfect from the standpoint of optimizing environmental rewards)
via inverse reinforcement learning. Then, a contextual bandit-based orchestrator chooses
between the learned moral policy and the environment reward maximizing policy at each
point of time, depending on the context of the state. This additionally provides us with a
layer of transparency, as we know which policy is being played at each point of time.

Finally, we consider a variant of this setting, where we have a markov decision process,
and multiple agents, each with a different reward function. This reward function can be
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viewed as the preference of the agent. Unlike previous work mentioned above, instead of
picking between the different optimal policies (albeit, based on the context at each point of
time), our goal is to learn a more truly “aggregate” policy that aligns with these preferences.
In this work, we assume that the agents are like-minded, in the sense that their reward
functions could be seen as random perturbations of an underlying reward function. Under
this assumption, we demonstrate that by pooling the optimal trajectories from all the
agents, followed by applying inverse reinforcement learning algorithms satisfying certain
properties, we are able to learn a policy that is approximately optimal, and, no algorithm
can have a better performance than this in the worst case. Next, we study the same problem
but in the bandit setting – that is, we have access to the optimal arms of all the agents,
and need to learn the optimal arm w.r.t. the underlying reward function – we term this
the inverse bandit problem.

1.1 Overview of Thesis Contributions

This section presents an overview of each of the chapters of the thesis.

1.1.1 Fairness in Machine Learning

Chapter 2: Envy-Free Classification. In classic fair division problems such as cake
cutting and rent division, envy-freeness requires that each individual (weakly) prefer his
allocation to anyone else’s. In this chapter, we argue that envy-freeness also provides a
compelling notion of fairness for classification tasks, especially when individuals have het-
erogeneous preferences. Our technical focus is the generalizability of envy-free classification,
i.e., understanding whether a classifier that is envy free on a sample would be almost envy
free with respect to the underlying distribution with high probability. Our main result
establishes that a small sample is sufficient to achieve such guarantees, when the classifier
in question is a mixture of deterministic classifiers that belong to a family of low Natarajan
dimension. We also design and implement an algorithm that learns such envy-free classifiers
on the sample.

1.1.2 Voting and Social Choice

Chapter 3: Weighted Voting Via No-Regret Learning. Voting systems typically
treat all voters equally. In this chapter, we argue that perhaps they should not: Voters who
have supported good choices in the past should be given higher weight than voters who have
supported bad ones. To develop a formal framework for desirable weighting schemes, we
draw on no-regret learning. Specifically, given a voting rule, we wish to design a weighting
scheme such that applying the voting rule, with voters weighted by the scheme, leads to
choices that are almost as good as those endorsed by the best voter in hindsight. We derive
possibility and impossibility results for the existence of such weighting schemes, depending
on whether the voting rule and the weighting scheme are deterministic or randomized, as
well as on the social choice axioms satisfied by the voting rule.
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Chapter 4: Virtual Democracy: A Voting-Based Framework for Automating
Decisions. In this chapter, we present a general approach to automating decisions, draw-
ing on machine learning and computational social choice. In a nutshell, we propose to learn
a model of societal preferences, and, when faced with a specific dilemma at runtime, ef-
ficiently aggregate those preferences to identify a desirable choice. We provide a concrete
algorithm that instantiates our approach; some of its crucial steps are informed by a new
theory of swap-dominance efficient voting rules. Finally, as a proof of concept, we imple-
ment and evaluate a system for decision making in the autonomous vehicle domain, using
preference data collected from 1.3 million people through the Moral Machine website.

Chapter 5: Loss Functions, Axioms, and Peer Review. It is common to see a
handful of reviewers reject a highly novel paper, because they view, say, extensive experi-
ments as far more important than novelty, whereas the community as a whole would have
embraced the paper. More generally, the disparate mapping of criteria scores to final rec-
ommendations by different reviewers is a major source of inconsistency in peer review. In
this chapter, we present a framework inspired by empirical risk minimization (ERM) for
learning the community’s aggregate mapping. The key challenge that arises is the specifi-
cation of a loss function for ERM. We consider the class of L(p, q) loss functions, which is
a matrix-extension of the standard class of Lp losses on vectors; here the choice of the loss
function amounts to choosing the hyperparameters p, q ∈ [1,∞]. To deal with the absence
of ground truth in our problem, we instead draw on computational social choice to identify
desirable values of the hyperparameters p and q. Specifically, we characterize p = q = 1 as
the only choice of these hyperparameters that satisfies three natural axiomatic properties.
Finally, we implement and apply our approach to reviews from IJCAI 2017.

Chapter 6: Axioms for Learning from Pairwise Comparisons. To be well-behaved,
systems that process preference data must satisfy certain conditions identified by economic
decision theory and by social choice theory. In ML, preferences and rankings are commonly
learned by fitting a probabilistic model to noisy preference data. The behavior of this
learning process from the view of economic theory has previously been studied for the
case where the data consists of rankings. In practice, it is more common to have only
pairwise comparison data, and the formal properties of the associated learning problem are
more challenging to analyze. In this chapter, we show that a large class of random utility
models (including the Thurstone–Mosteller Model), when estimated using the MLE, satisfy
a Pareto efficiency condition. These models also satisfy a strong monotonicity property,
which implies that the learning process is responsive to input data. On the other hand, we
show that these models fail certain other consistency conditions from social choice theory,
and in particular do not always follow the majority opinion. Our results inform existing
and future applications of random utility models for societal decision making.
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1.1.3 Reinforcement Learning

Chapter 7: Please be an Influencer? Contingency-Aware Influence Maximiza-
tion. Most previous work on influence maximization in social networks assumes that the
chosen influencers (or seed nodes) can be influenced with certainty (i.e., with no contingen-
cies). In this chapter, we focus on using influence maximization in public health domains
for assisting low-resource communities, where contingencies are common. It is very diffi-
cult in these domains to ensure that the seed nodes are influenced, as influencing them
entails contacting/convincing them to attend training sessions, which may not always be
possible. Unfortunately, previous state-of-the-art algorithms for influence maximization are
unusable in this setting. This chapter tackles this challenge via the following four contribu-
tions: (i) we propose the Contingency Aware Influence Maximization problem and analyze
it theoretically; (ii) we cast this problem as a Partially Observable Markov Decision Pro-
cess and propose CAIMS (a novel POMDP planner) to solve it, which leverages a natural
action space factorization associated with real-world social networks; and (iii) we provide
extensive simulation results to compare CAIMS with existing state-of-the-art influence
maximization algorithms. Finally, (iv) we provide results from a real-world feasibility trial
conducted to evaluate CAIMS, in which key influencers in homeless youth social networks
were influenced in order to spread awareness about HIV.

Chapter 8: Teaching AI Agents Ethical Values Using Reinforcement Learning
and Policy Orchestration. Autonomous cyber-physical agents play an increasingly
large role in our lives. To ensure that they behave in ways aligned with the values of
society, we must develop techniques that allow these agents to not only maximize their
reward in an environment, but also to learn and follow the implicit constraints of society.
In this chapter, we detail a novel approach that uses inverse reinforcement learning to learn
a set of unspecified constraints from demonstrations and reinforcement learning to learn
to maximize environmental rewards. A contextual bandit-based orchestrator then picks
between the two policies: constraint-based and environment reward-based. The contextual
bandit orchestrator allows the agent to mix policies in novel ways, taking the best actions
from either a reward-maximizing or constrained policy. In addition, the orchestrator is
transparent on which policy is being employed at each time step. We test our algorithms
using Pac-Man and show that the agent is able to learn to act optimally, act within the
demonstrated constraints, and mix these two functions in complex ways.

Chapter 9: Inverse Reinforcement Learning from Like-Minded Teachers. In
this chapter, we study the problem of learning a policy in a Markov decision process
(MDP) based on observations of the actions taken by multiple teachers. We assume that
the teachers are like-minded in that their reward functions — while different from each
other — are random perturbations of an underlying reward function. Under this assump-
tion, we demonstrate that inverse reinforcement learning algorithms that satisfy a certain
property — that of matching feature expectations — yield policies that are approximately
optimal with respect to the underlying reward function, and that no algorithm can do
better in the worst case. We also show how to efficiently recover the optimal policy when
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the MDP has one state — a setting that is akin to multi-armed bandits. Finally, we support
this with experiments on non-trivial bandit problems, with varying parameters.
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Fairness in Machine Learning
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Chapter 2
Envy-Free Classification

In classic fair division problems such as cake cutting and rent division, envy-freeness re-
quires that each individual (weakly) prefer his allocation to anyone else’s. On a conceptual
level, we argue that envy-freeness also provides a compelling notion of fairness for classifica-
tion tasks, especially when individuals have heterogeneous preferences. Our technical focus
is the generalizability of envy-free classification, i.e., understanding whether a classifier that
is envy free on a sample would be almost envy free with respect to the underlying distri-
bution with high probability. Our main result establishes that a small sample is sufficient
to achieve such guarantees, when the classifier in question is a mixture of deterministic
classifiers that belong to a family of low Natarajan dimension.

2.1 Introduction

The study of fairness in machine learning is driven by an abundance of examples where
learning algorithms were perceived as discriminating against protected groups [Swe13;
DTD15]. Addressing this problem requires a conceptual — perhaps even philosophical
— understanding of what fairness means in this context. In other words, the million dol-
lar question is (arguably1) this: What are the formal constraints that fairness imposes on
learning algorithms?

In this paper, we propose a new measure of algorithmic fairness. It draws on an extensive
body of work on rigorous approaches to fairness, which — modulo one possible exception
(see Section 2.1.2) — has not been tapped by machine learning researchers: the literature on
fair division [BT96b; Mou03]. The most prominent notion is that of envy-freeness [Fol67;
Var74], which, in the context of the allocation of goods, requires that the utility of each
individual for his allocation be at least as high as his utility for the allocation of any other
individual; for six decades, it has been the gold standard of fairness for problems such as
cake cutting [RW98; Pro13] and rent division [Su99; Gal+17]. In the classification setting,
envy-freeness would simply mean that the utility of each individual for his distribution
over outcomes is at least as high as his utility for the distribution over outcomes assigned

1Certain papers take a somewhat different view [Kil+17].
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to any other individual.
It is important to say upfront that envy-freeness is not suitable for several widely-

studied problems where there are only two possible outcomes, one of which is ‘good’ and
the other ‘bad’; examples include predicting whether an individual would default on a loan,
and whether an offender would recidivate. In these degenerate cases, envy-freeness would
require that the classifier assign each and every individual the exact same probability of
obtaining the ‘good’ outcome, which, clearly, is not a reasonable constraint.

By contrast, we are interested in situations where there is a diverse set of possible out-
comes, and individuals have diverse preferences for those outcomes. For example, consider a
system responsible for displaying credit card advertisements to individuals. There are many
credit cards with different eligibility requirements, annual rates, and reward programs. An
individual’s utility for seeing a card’s advertisement will depend on his eligibility, his ben-
efit from the rewards programs, and potentially other factors. It may well be the case that
an envy-free advertisement assignment shows Bob advertisements for a card with worse
annual rates than those shown to Alice; this outcome is not unfair if Bob is genuinely
more interested in the card offered to him. Such rich utility functions are also evident in
the context of job advertisements [DTD15]: people generally want higher paying jobs, but
would presumably have higher utility for seeing advertisements for jobs that better fit their
qualifications and interests.

A second appealing property of envy-freeness is that its fairness guarantee binds at
the level of individuals. Fairness notions can be coarsely characterized as being either
individual notions, or group notions, depending on whether they provide guarantees to
specific individuals, or only on average to a protected subgroup. The majority of work on
fairness in machine learning focuses on group fairness [LRT11; Dwo+12; Zem+13; HPS16;
Jos+16; Zaf+17].

There is, however, one well-known example of individual fairness: the influential fair
classification model of Dwork, Hardt, Pitassi, Reingold, and Zemel [Dwo+12]. The model
involves a set of individuals and a set of outcomes. The centerpiece of the model is a
similarity metric on the space of individuals; it is specific to the classification task at
hand, and ideally captures the ethical ground truth about relevant attributes. For example,
a man and a woman who are similar in every other way should be considered similar for
the purpose of credit card offerings, but perhaps not for lingerie advertisements. Assuming
such a metric is available, fairness can be naturally formalized as a Lipschitz constraint,
which requires that individuals who are close according to the similarity metric be mapped
to distributions over outcomes that are close according to some standard metric (such as
total variation).

As attractive as this model is, it has one clear weakness from a practical viewpoint: the
availability of a similarity metric. Dwork, Hardt, Pitassi, Reingold, and Zemel [Dwo+12]
are well aware of this issue; they write that justifying this assumption is “one of the most
challenging aspects” of their approach. They add that “in reality the metric used will
most likely only be society’s current best approximation to the truth.” But, despite recent
progress on automating ethical decisions in certain domains [Noo+18; Fre+20], the task-
specific nature of the similarity metric makes even a credible approximation thereof seem
unrealistic. In particular, if one wanted to learn a similarity metric, it is unclear what type
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of examples a relevant dataset would consist of.

In place of a metric, envy-freeness requires access to individuals’ utility functions, but —
by contrast — we do not view this assumption as a barrier to implementation. Indeed, there
are a variety of techniques for learning utility functions [CKO01; NJ04; Bal+12]. Moreover,
in our running example of advertising, one can use standard measures like expected click-
through rate (CTR) as a good proxy for utility.

It is worth noting that the classification setting is different from classic fair division
problems in that the “goods” (outcomes) are non-excludable. In fact, one envy-free solution
simply assigns each individual to his favorite outcome. But this solution may be severely
suboptimal according to another (standard) component of our setting, the loss function,
which, in the examples above, might represent the expected revenue from showing an ad to
an individual. Typically the loss function is not perfectly aligned with individual utilities,
and, therefore, it may be possible to achieve smaller loss than the näıve solution without
violating the envy-freeness constraint.

In summary, we view envy-freeness as a compelling, well-established, and, importantly,
practicable notion of individual fairness for classification tasks with a diverse set of out-
comes when individuals have heterogeneous preferences. Our goal is to understand its
learning-theoretic properties.

2.1.1 Our Results

The challenge is that the space of individuals is potentially huge, yet we seek to provide uni-
versal envy-freeness guarantees. To this end, we are given a sample consisting of individuals
drawn from an unknown distribution. We are interested in learning algorithms that min-
imize loss, subject to satisfying the envy-freeness constraint, on the sample. Our primary
technical question is that of generalizability, that is, given a classifier that is envy free on a
sample, is it approximately envy free on the underlying distribution? Surprisingly, Dwork,
Hardt, Pitassi, Reingold, and Zemel [Dwo+12] do not study generalizability in their model,
and we are aware of only one subsequent paper that takes a learning-theoretic viewpoint
on individual fairness and gives theoretical guarantees (see Section 2.1.2).

In Section 2.3, we do not constrain the classifier. Therefore, we need some strategy to
extend a classifier that is defined on a sample; assigning an individual the same outcome
as his nearest neighbor in the sample is a popular choice. However, we show that any
strategy for extending a classifier from a sample, on which it is envy free, to the entire
set of individuals is unlikely to be approximately envy free on the distribution, unless the
sample is exponentially large.

For this reason, in Section 2.4, we focus on structured families of classifiers. On a
high level, our goal is to relate the combinatorial richness of the family to generalization
guarantees. One obstacle is that standard notions of dimension do not extend to the analysis
of randomized classifiers, whose range is distributions over outcomes (equivalently, real
vectors). We circumvent this obstacle by considering mixtures of deterministic classifiers
that belong to a family of bounded Natarajan dimension (an extension of the well-known
VC dimension to multi-class classification). Our main theoretical result asserts that, under
this assumption, envy-freeness on a sample does generalize to the underlying distribution,
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even if the sample is relatively small (its size grows almost linearly in the Natarajan
dimension).

Finally, in Section 2.5, we design and implement an algorithm that learns (almost)
envy-free mixtures of linear one-vs-all classifiers. We present empirical results that validate
our computational approach, and indicate good generalization properties even when the
sample size is small.

2.1.2 Related Work

Conceptually, our work is most closely related to work by Zafar, Valera, Gomez-Rodriguez,
Gummadi, and Weller [Zaf+17]. They are interested in group notions of fairness, and advo-
cate preference-based notions instead of parity-based notions. In particular, they assume
that each group has a utility function for classifiers, and define the preferred treatment
property, which requires that the utility of each group for its own classifier be at least its
utility for the classifier assigned to any other group. Their model and results focus on the
case of binary classification where there is a desirable outcome and an undesirable out-
come, so the utility of a group for a classifier is simply the fraction of its members that are
mapped to the desirable outcome. Although, at first glance, this notion seems similar to
envy-freeness, it is actually fundamentally different.2 Our paper is also completely different
from that of Zafar, Valera, Gomez-Rodriguez, Gummadi, and Weller in terms of technical
results; theirs are purely empirical in nature, and focus on the increase in accuracy obtained
when parity-based notions of fairness are replaced with preference-based ones.

Concurrent work by Rothblum and Yona [RY18] provides generalization guarantees for
the metric notion of individual fairness introduced by Dwork, Hardt, Pitassi, Reingold,
and Zemel [Dwo+12], or, more precisely, for an approximate version thereof. There are two
main differences compared to our work: first, we propose envy-freeness as an alternative
notion of fairness that circumvents the need for a similarity metric. Second, they focus on
randomized binary classification, which amounts to learning a real-valued function, and so
are able to make use of standard Rademacher complexity results to show generalization. By
contrast, standard tools do not directly apply in our setting. It is worth noting that several
other papers provide generalization guarantees for notions of group fairness, but these are
more distantly related to our work [Zem+13; Woo+17; Don+18; Kea+18; Hb+18].

2.2 The Model

We assume that there is a space X of individuals, a finite space Y of outcomes, and a utility
function u : X × Y → [0, 1] encoding the preferences of each individual for the outcomes
in Y . In the advertising example, individuals are users, outcomes are advertisements, and
the utility function reflects the benefit an individual derives from being shown a particular

2On a philosophical level, the fair division literature deals exclusively with individual notions of fairness.
In fact, even in group-based extensions of envy-freeness [MS17] the allocation is shared by groups, but
individuals must not be envious. We subscribe to the view that group-oriented notions (such as statistical
parity) are objectionable, because the outcome can be patently unfair to individuals.
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advertisement. For any distribution p ∈ ∆(Y) (where ∆(Y) is the set of distributions over
Y) we let u(x, p) = Ey∼p[u(x, y)] denote individual x’s expected utility for an outcome
sampled from p. We refer to a function h : X → ∆(Y) as a classifier, even though it can
return a distribution over outcomes.

2.2.1 Envy-Freeness

Roughly speaking, a classifier h : X → ∆(Y) is envy free if no individual prefers the
outcome distribution of someone else over his own.

Definition 2.2.1. A classifier h : X → ∆(Y) is envy free (EF) on a set S of individuals
if u(x, h(x)) ≥ u(x, h(x′)) for all x, x′ ∈ S. Similarly, h is (α, β)-EF with respect to a
distribution P on X if

Pr
x,x′∼P

(
u(x, h(x)) < u(x, h(x′))− β

)
≤ α.

Finally, h is (α, β)-pairwise EF on a set of pairs of individuals S = {(xi, x′i)}ni=1 if

1

n

n∑
i=1

I{u(xi, h(xi)) < u(xi, h(x′i))− β} ≤ α.

Any classifier that is EF on a sample S of individuals is also (α, β)-pairwise EF on any
pairing of the individuals in S, for any α ≥ 0 and β ≥ 0. The weaker pairwise EF condition
is all that is required for our generalization guarantees to hold.

2.2.2 Optimization and Learning

Our formal learning problem can be stated as follows. Given sample access to an unknown
distribution P over individuals X and their utility functions, and a known loss function
` : X × Y → [0, 1], find a classifier h : X → ∆(Y) that is (α, β)-EF with respect to
P minimizing expected loss Ex∼P [`(x, h(x))], where for x ∈ X and p ∈ ∆(Y), `(x, p) =
Ey∼p[`(x, y)].

We follow the empirical risk minimization (ERM) learning approach, i.e., we collect
a sample of individuals drawn i.i.d from P and find an EF classifier with low loss on
the sample. Formally, given a sample of individuals S = {x1, . . . , xn} and their utility
functions uxi(·) = u(xi, ·), we are interested in a classifier h : S → ∆(Y) that minimizes∑n

i=1 `(xi, h(xi)) among all classifiers that are EF on S.
Recall that we consider randomized classifiers that can assign a distribution over out-

comes to each of the individuals. However, one might wonder whether the EF classifier that
minimizes loss on a sample happens to always be deterministic. Or, at least, the optimal
deterministic classifier on the sample might incur a loss that is very close to that of the
optimal randomized classifier. If this were true, we could restrict ourselves to classifiers of
the form h : X → Y , which would be much easier to analyze. Unfortunately, it turns out
that this is not the case. In fact, there could be an arbitrary (multiplicative) gap between
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the optimal randomized EF classifier and the optimal deterministic EF classifier. The in-
tuition behind this is as follows. A deterministic classifier that has very low loss on the
sample, but is not EF, would be completely discarded in the deterministic setting. On the
other hand, a randomized classifier could take this loss-minimizing deterministic classifier
and mix it with a classifier with high “negative envy”, so that the mixture ends up being
EF and at the same time has low loss. This is made concrete in the following example.

Example 2.2.2. Let S = {x1, x2} and Y = {y1, y2, y3}. Let the loss function be such that

`(x1, y1) = 0 `(x1, y2) = 1 `(x1, y3) = 1

`(x2, y1) = 1 `(x2, y2) = 1 `(x2, y3) = 0

Moreover, let the utility function be such that

u(x1, y1) = 0 u(x1, y2) = 1 u(x1, y3) =
1

γ

u(x2, y1) = 0 u(x2, y2) = 0 u(x2, y3) = 1

where γ > 1. The only deterministic classifier with a loss of 0 is h0 such that h0(x1) = y1

and h0(x2) = y3. But, this is not EF, since u(x1, y1) < u(x1, y3). Furthermore, every other
deterministic classifier has a total loss of at least 1, causing the optimal deterministic EF
classifier to have loss of at least 1.

To show that randomized classifiers can do much better, consider the randomized clas-
sifier h∗ such that h∗(x1) = (1− 1/γ, 1/γ, 0) and h∗(x2) = (0, 0, 1). This classifier can be
seen as a mixture of the classifier h0 of 0 loss, and the deterministic classifier he, where
he(x1) = y2 and he(x2) = y3, which has high “negative envy”. One can observe that this
classifier h∗ is EF, and has a loss of just 1/γ. Hence, the loss of the optimal randomized EF
classifier is γ times smaller than the loss of the optimal deterministic one, for any γ > 1.

2.3 Arbitrary Classifiers

An important (and typical) aspect of our learning problem is that the classifier h needs
to provide an outcome distribution for every individual, not just those in the sample. For
example, if h chooses advertisements for visitors of a website, the classifier should still
apply when a new visitor arrives. Moreover, when we use the classifier for new individuals,
it must continue to be EF. In this section, we consider two-stage approaches that first
choose outcome distributions for the individuals in the sample, and then extend those
decisions to the rest of X .

In more detail, we are given a sample S = {x1, . . . , xn} of individuals and a classifier
h : S → ∆(Y) assigning outcome distributions to each individual. Our goal is to extend
these assignments to a classifier h : X → ∆(Y) that can be applied to new individuals as
well. For example, h could be the loss-minimizing EF classifier on the sample S.

For this section, we assume that X is equipped with a distance metric d. Moreover, we
assume in this section that the utility function u is L-Lipschitz on X . That is, for every
y ∈ Y and for all x, x′ ∈ X , we have |u(x, y)− u(x′, y)| ≤ L · d(x, x′).
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Under the foregoing assumptions, one natural way to extend the classifier on the sam-
ple to all of X is to assign new individuals the same outcome distribution as their near-
est neighbor in the sample. Formally, for a set S ⊂ X and any individual x ∈ X , let
NNS(x) ∈ arg minx′∈Sd(x, x′) denote the nearest neighbor of x in S with respect to the
metric d (breaking ties arbitrarily). The following simple result (whose proof is relegated
to Appendix A.2) establishes that this approach preserves envy-freeness in cases where the
sample is exponentially large.

Theorem 2.3.1. Let d be a metric on X , P be a distribution on X , and u be an L-
Lipschitz utility function. Let S be a set of individuals such that there exists X̂ ⊂ X with
P (X̂ ) ≥ 1 − α and supx∈X̂ d(x,NNS(x)) ≤ β/(2L). Then for any classifier h : S → ∆(Y)

that is EF on S, the extension h : X → ∆(Y) given by h(x) = h(NNS(x)) is (α, β)-EF on
P .

The conditions of Theorem 2.3.1 require that the set of individuals S is a β/(2L)-net
for at least a (1 − α)-fraction of the mass of P on X . In several natural situations, an
exponentially large sample guarantees that this occurs with high probability. For example,
if X is a subset of Rq, d(x, x′) = ‖x − x′‖2, and X has diameter at most D, then for any

distribution P on X , if S is an i.i.d. sample of size O( 1
α

(
LD
√
q

β
)q(q log

LD
√
q

β
+ log 1

δ
)), it will

satisfy the conditions of Theorem 2.3.1 with probability at least 1−δ. This sampling result
is folklore, but, for the sake of completeness, we prove it in Lemma A.2.1 of Appendix A.2.

However, the exponential upper bound given by the nearest neighbor strategy is as far
as we can go in terms of generalizing envy-freeness from a sample (without further assump-
tions). Specifically, our next result establishes that any algorithm — even randomized —
for extending classifiers from the sample to the entire space X requires an exponentially
large sample of individuals to ensure envy-freeness on the distribution P . The proof of
Theorem 2.3.2 can be found in Appendix A.2.

Theorem 2.3.2. There exists a space of individuals X ⊂ Rq, and a distribution P over
X such that, for every randomized algorithm A that extends classifiers on a sample to X ,
there exists an L-Lipschitz utility function u such that, when a sample of individuals S
of size n = 4q/2 is drawn from P without replacement, there exists an EF classifier on
S for which, with probability at least 1 − 2 exp(−4q/100) − exp(−4q/200) jointly over the
randomness of A and S, its extension by A is not (α, β)-EF with respect to P for any
α < 1/25 and β < L/8.

We remark that a similar result would hold even if we sampled S with replacement; we
sample here without replacement purely for ease of exposition.

2.4 Low-Complexity Families of Classifiers

In this section we show that (despite Theorem 2.3.2) generalization for envy-freeness is
possible using much smaller samples of individuals, as long as we restrict ourselves to
classifiers from a family of relatively low complexity.

In more detail, two classic complexity measures are the VC-dimension [VC71] for binary
classifiers, and the Natarajan dimension [Nat89] for multi-class classifiers. However, to
the best of our knowledge, there is no suitable dimension directly applicable to functions
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ranging over distributions, which in our case can be seen as |Y|-dimensional real vectors.
One possibility would be to restrict ourselves to deterministic classifiers of the type h :
X → Y , but we have seen in Section 2.2 that envy-freeness is a very strong constraint
on deterministic classifiers. Instead, we will consider a family H consisting of randomized
mixtures of m deterministic classifiers belonging to a family G ⊂ {g : X → Y} of low
Natarajan dimension. This allows us to adapt Natarajan-dimension-based generalization
results to our setting while still working with randomized classifiers. The definition and
relevant properties of the Natarajan dimension are summarized in Appendix A.1.

Formally, let ~g = (g1, . . . , gm) ∈ Gm be a vector of m functions in G and η ∈ ∆m be
a distribution over [m], where ∆m = {p ∈ Rm : pi ≥ 0,

∑
i pi = 1} is the m-dimensional

probability simplex. Then consider the function h~g,η : X → ∆(Y) with assignment proba-
bilities given by Pr(h~g,η(x) = y) =

∑m
i=1 I{gi(x) = y}ηi. Intuitively, for a given individual

x, h~g,η chooses one of the gi randomly with probability ηi, and outputs gi(x). Let

H(G,m) = {h~g,η : X → ∆(Y) : ~g ∈ Gm, η ∈ ∆m}

be the family of classifiers that can be written this way. Our main technical result shows
that envy-freeness generalizes for this class.

Theorem 2.4.1. Suppose G is a family of deterministic classifiers of Natarajan dimension
d, and let H = H(G,m) for m ∈ N. For any distribution P over X , γ > 0, and δ > 0, if
S = {(xi, x′i)}ni=1 is an i.i.d. sample of pairs drawn from P of size

n ≥ O

(
1

γ2

(
dm2 log

dm|Y| log(m|Y|/γ)

γ
+ log

1

γ

))
,

then with probability at least 1− δ, every classifier h ∈ H that is (α, β)-pairwise-EF on S
is also (α + 7γ, β + 4γ)-EF on P .

The proof of Theorem 2.4.1 is relegated to Appendix A.3. In a nutshell, it consists of
two steps. First, we show that envy-freeness generalizes for finite classes. Second, we show
that H(G,m) can be approximated by a finite subset.

We remark that the theorem is only effective insofar as families of classifiers of low
Natarajan dimension are useful. Fortunately, several prominent families indeed have low
Natarajan dimension [DSS12], including one vs. all, multiclass SVM, tree-based classifiers,
and error correcting output codes.

2.5 Implementation and Empirical Validation

So far we have not directly addressed the problem of computing the loss-minimizing envy-
free classifier from a given family on a given sample of individuals. We now turn to this
problem. Our goal is not to provide an end-all solution, but rather to provide evidence that
computation will not be a long-term obstacle to implementing our approach.

In more detail, our computational problem is to find the loss-minimizing classifier h
from a given family of randomized classifiers H that is envy free on a given a sample
of individuals S = {x1, . . . , xn}. For this classifier h to generalize to the distribution P ,
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Theorem 2.4.1 suggests that the family H to use is of the form H(G,m), where G is a
family of deterministic classifiers of low Natarajan dimension.

In this section, we let G be the family of linear one-vs-all classifiers. In particular,
denoting X ⊂ Rq, each g ∈ G is parameterized by ~w = (w1, w2, . . . , w|Y|) ∈ R|Y|×q, where
g(x) = argmaxy∈Y

(
w>y x

)
. This class G has a Natarajan dimension of at most q|Y|. The

optimization problem to solve in this case is

min
~g∈Gm,η∈∆m

n∑
i=1

m∑
k=1

ηkL(xi, gk(xi))

s.t.
m∑
k=1

ηku(xi, gk(xi)) ≥
m∑
k=1

ηku(xi, gk(xj)) ∀(i, j) ∈ [n]2. (2.1)

2.5.1 Algorithm

Observe that optimization problem (2.1) is highly non-convex and non-differentiable as
formulated, because of the argmax computed in each of the gk(xi). Another challenge is
the combinatorial nature of the problem, as we need to find m functions from G along with
their mixing weights. In designing an algorithm, therefore, we employ several tricks of the
trade to achieve tractability.
Learning the mixture components. We first assume predefined mixing weights η̃, and
iteratively learn mixture components based on them. Specifically, let g1, g2, . . . gk−1 denote
the classifiers learned so far. To compute the next component gk, we solve the optimization
problem (2.1) with these components already in place (and assuming no future ones). This
induces the following optimization problem.

min
gk∈G

n∑
i=1

L(xi, gk(xi))

s.t. USF
(k−1)
ii + η̃ku(xi, gk(xi)) ≥ USF

(k−1)
ij + η̃ku(xi, gk(xj)) ∀(i, j) ∈ [n]2, (2.2)

where USF
(k−1)
ij denotes the expected utility i has for j’s assignments so far, i.e., USF

(k−1)
ij =∑k−1

c=1 η̃cu(xi, gc(xj)).
Solving the optimization problem (2.2) is still non-trivial because it remains non-convex

and non-differentiable. To resolve this, we first soften the constraints3. Writing out the
optimization problem in the form equivalent to introducing slack variables, we obtain

min
gk∈G

n∑
i=1

L(xi, gk(xi))

+ λ
∑
i 6=j

max
(
USF

(k−1)
ij + η̃ku(xi, gk(xj))− USF (k−1)

ii − η̃ku(xi, gk(xi)), 0
)
, (2.3)

3This may lead to solutions that are not exactly EF on the sample. Nonetheless, Theorem 2.4.1 still
guarantees that there should not be much additional envy on the testing data.
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where λ is a parameter that defines the trade-off between loss and envy-freeness. This
optimization problem is still highly non-convex as gk(xi) = argmaxy∈Yw

>
y xi, where ~w

denotes the parameters of gk. To solve this, we perform a convex relaxation on several
components of the objective using the fact that w>gk(xi)

xi ≥ w>y′xi for any y′ ∈ Y . Specifically,
we have

L(xi, gk(xi)) ≤ max
y∈Y

{
L(xi, y) + w>y xi − w>yixi

}
,

−u(xi, gk(xi)) ≤ max
y∈Y

{
−u(xi, y) + w>y xi − w>bixi

}
, and

u(xi, gk(xj)) ≤ max
y∈Y

{
u(xi, y) + w>y xj − w>sixj

}
,

where yi = argminy∈YL(xi, y), si = argminy∈Yu(xi, y) and bi = argmaxy∈Y u(xi, y). While
we provided the key steps here, complete details and the rationale behind these choices
are given in Appendix A.4. On a very high-level, these are inspired by multi-class SVMs.
Finally, plugging these relaxations into (2.3), we obtain the following convex optimization
problem to compute each mixture component.

min
~w∈R|Y|×q

n∑
i=1

max
y∈Y

{
L(xi, y) + w>y xi − w>yixi

}
+ λ

∑
i 6=j

max
(
USF

(k−1)
ij (2.4)

+η̃k max
y∈Y

{
u(xi, y) + w>y xj − w>sixj

}
− USF (k−1)

ii + η̃k max
y∈Y

{
−u(xi, y) + w>y xi − w>bixi

}
, 0

)
.

Learning the mixing weights. Once the mixture components ~g are learned (with respect
to the predefined mixing weights η̃), we perform an additional round of optimization to
learn the optimal weights η for them. This can be done via the following linear program

min
η∈∆m,ξ∈Rn×n≥0

n∑
i=1

m∑
k=1

ηkL(xi, gk(xi)) + λ
∑
i 6=j

ξij

s.t.
m∑
k=1

ηku(xi, gk(xi)) ≥
m∑
k=1

ηku(xi, gk(xj))− ξij ∀(i, j). (2.5)

2.5.2 Methodology

To validate our approach, we have implemented our algorithm. However, we cannot rely
on standard datasets, as we need access to both the features and the utility functions of
individuals. Hence, we rely on synthetic data. All our code is included as supplementary
material. Our experiments are carried out on a desktop machine with 16GB memory and
an Intel Xeon(R) CPU E5-1603 v3 @ 2.80GHz×4 processor. To solve convex optimization
problems, we use CVXPY [DB16; Agr+18].

In our experiments, we cannot compute the optimal solution to the original optimization
problem (2.1), and there are no existing methods we can use as benchmarks. Hence, we
generate the dataset such that we know the optimal solution upfront.

Specifically, to generate the whole dataset (both training and test), we first generate
random classifiers ~g? ∈ Gm by sampling their parameters ~w1, . . . ~wm ∼ N (0, 1)|Y|×q, and
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Figure 2.1: The algorithm’s running time.
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Figure 2.2: Training and test loss. Shaded
error bands depict 95% confidence inter-
vals.

generate η? ∈ ∆m by drawing uniformly random weights in [0, 1] and normalizing. We use
h~g?,η? as the optimal solution of the dataset we generate. For each individual, we sample
each feature value independently and u.a.r. in [0, 1]. For each individual x and outcome
y, we set L(x, y) = 0 if y ∈ {g?k(x) : k ∈ [m]} and otherwise we sample L(x, y) u.a.r. in
[0, 1]. For the utility function u, we need to generate it such that the randomized classifier
h~g?,η? is envy free on the dataset. For this, we set up a linear program and compute each
of the values u(x, y). Hence, h~g?,η? is envy free and has zero loss, so it is obviously the
optimal solution. The dataset is split into 75% training data (to measure the accuracy of
our solution to the optimization problem) and 25% test data (to evaluate generalizability).

For our experiments, we use the following parameters: |Y| = 10, q = 10, m = 5,
and λ = 10.0. We set the predefined weights to be η̃ =

[
1
2
, 1

4
, . . . , 1

2m−1 ,
1

2m−1

]
.4 In our

experiments we vary the number of individuals, and each result is averaged over 25 runs.
On each run, we generate a new ground-truth classifier h~g∗,η∗ , as well as new individuals,
losses, and utilities.

2.5.3 Results

Figure 2.1 shows the time taken to compute the mixture components ~g and the optimal
weights η, as the number of individuals in the training data increases. As we will see
shortly, even though the η computation takes a very small fraction of the time, it can lead
to non-negligible gains in terms of loss and envy.

Figure 2.2 shows the average loss attained on the training and test data by the al-
gorithm immediately after computing the mixture components, and after the round of η
optimization. It also shows the average loss attained (on both the training and test data)

4The reason for using an exponential decay is so that the subsequent classifiers learned are different
from the previous ones. Using smaller weights might cause consecutive classifiers to be identical, thereby
‘wasting’ some of the components.
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Figure 2.3: Training and test envy, as
a function of the number of individuals.
Shaded error bands depict 95% confidence
intervals.
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Figure 2.4: CDF of training and test envy
for 100 training individuals

by a random allocation, which serves as a näıve benchmark for calibration purposes. Recall
that the optimal assignment h~g?,η? has loss 0. For both the training and testing individuals,
optimizing η improves the loss of the learned classifer. Moreover, our algorithms achieve
low training errors for all dataset sizes, and as the dataset grows the testing error converges
to the training error.

Figure 2.3 shows the average envy among pairs in the training data and test data,
where, for each pair, negative envy is replaced with 0, to avoid obfuscating positive envy.
The graph also depicts the average envy attained (on both the training and test data) by
a random allocation. As for the losses, optimizing η results in lower average envy, and as
the training set grows we see the generalization gap decrease.

In Figure 2.4 we zoom in on the case of 100 training individuals, and observe the
empirical CDF of envy values. Interestingly, the optimal randomized classifier h~g?,η? shows
lower negative envy values compared to other algorithms, but as expected has no positive
envy pairs. Looking at the positive envy values, we can again see very encouraging results.
In particular, for at least a 0.946 fraction of the pairs in the train data, we obtain envy of
at most 0.05, and this generalizes to the test data, where for at least a 0.939 fraction of
the pairs, we obtain envy of at most 0.1.

In summary, these results indicate that the algorithm described in Section 2.5.1 solves
the optimization problem (2.1) for linear one-vs-all classifiers almost optimally, and that
its output generalizes well even when the training set is small.

2.6 Conclusion

In this paper we propose EF as a suitable fairness notion for learning tasks with many
outcomes over which individuals have heterogeneous preferences. We provide generalization
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guarantees for a rich family of classifiers, showing that if we find a classifier that is envy-free
on a sample of individuals, it will remain envy-free when we apply it to new individuals from
the same distribution. This result circumvents an exponential lower bound on the sample
complexity suffered by any two-stage learning algorithm that first finds an EF assignment
for the sample and then extends it to the entire space. Finally, we empirically demonstrate
that finding low-envy and low-loss classifiers is computationally tractable. These results
show that envy-freeness is a practical notion of fairness for machine learning systems.
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Part II

Voting and Social Choice
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Chapter 3
Weighted Voting Via No-Regret Learning

Voting systems typically treat all voters equally. We argue that perhaps they should not:
Voters who have supported good choices in the past should be given higher weight than
voters who have supported bad ones. To develop a formal framework for desirable weight-
ing schemes, we draw on no-regret learning. Specifically, given a voting rule, we wish to
design a weighting scheme such that applying the voting rule, with voters weighted by the
scheme, leads to choices that are almost as good as those endorsed by the best voter in
hindsight. We derive possibility and impossibility results for the existence of such weighting
schemes, depending on whether the voting rule and the weighting scheme are deterministic
or randomized, as well as on the social choice axioms satisfied by the voting rule.

3.1 Introduction

In most elections, voters are entitled to equal voting power. This principle underlies the
one person, one vote doctrine, and is enshrined in the United States Supreme Court ruling
in the Reynolds v. Sims (1964) case.

But there are numerous voting systems in which voters do, in fact, have different weights.
Standard examples include the European Council, where (for certain decisions) the weight
of each member country is proportional to its population; and corporate voting procedures
where stockholders have one vote per share. Some historical voting systems are even more
pertinent: Sweden’s 1866 system weighted voters by wealth, giving especially wealthy voters
as many as 5000 votes; and a Belgian system, used for a decade at the end of the 19th
Century, gave (at least) one vote to each man, (at least) two votes to each educated man,
and three votes to men who were both educated and wealthy [Con11].

The last two examples can be seen as (silly, from a modern viewpoint) attempts to
weight voters by merit, using wealth and education as measurable proxies thereof. We
believe that the basic idea of weighting voters by merit does itself have merit. But we
propose to measure a voter’s merit by the quality of his past votes. That is, a voter who
has supported good choices in the past should be given higher weight than a voter who
has supported bad ones.
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This high-level scheme is, arguably, most applicable to repeated aggregation of objective
opinions. For example, consider a group of engineers trying to decide which prototype to
develop, based on an objective measure of success such as projected market share. If an
engineer supported a certain prototype and it turned out to be a success, she should be
given higher weight compared to her peers in future decisions; if it is a failure, her weight
should lower. Similar examples include a group of investors selecting companies to invest
in; and a group of decision makers in a movie studio choosing movie scripts to produce.
Importantly, the recently launched, not-for-profit website RoboVote.org already provides
public access to voting tools for precisely these situations, albeit using methods that always
treat all voters equally [PSZ16].

Our goal in this paper, therefore, is to augment existing voting methods with weights,
in a way that keeps track of voters’ past performance, and guarantees good choices over
time. The main conceptual problem we face is the development of a formal framework in
which one can reason about desirable weighting schemes.1 To address this problem, we
build on the no-regret learning literature, but depart from the classic setting in several
ways — some superficial, and some fundamental.

Specifically, instead of experts, we have a set of n voters. In each round, each voter
reveals a ranking over a set of alternatives, and the loss of each alternative is determined.
In addition, we are given a (possibly randomized) voting rule, which receives weighted
rankings as input, and outputs the winning alternative. The voting rule is not part of
our design space; it is exogenous and fixed throughout the process. The loss of a voter in
round t is given by assigning his ranking all the weight (equivalently, imagining that all
voters have that ranking), applying the voting rule, and measuring the loss of the winning
alternative (or the expected loss, if the rule is randomized). As in the classic setting, our
benchmark is the best voter in hindsight (but we also discuss the stronger benchmark of
best voter weights in hindsight in Section 3.6).

At first glance, it may seem that our setting easily reduces to the classic one, by treating
voters as experts. But our loss is computed by applying the given voting rule to the entire
profile of weighted rankings, and therein lies the rub.2 This leads to our main research
question:

For which voting rules is there a weighting scheme such that the difference
between our average per-round loss and that of the best voter goes to zero as the
number of rounds goes to infinity?

In Section 3.4, we devise no-regret weighting schemes for any voting rule, under two
classic feedback models — full information and partial information. While these results
make no assumptions on the voting rule, the foregoing weighting schemes heavily rely on
randomization. By contrast, deterministic weighting schemes seem more desirable, as they
are easier to interpret and explain. In Section 3.5, therefore, we restrict our attention to
deterministic weighting schemes. We find that if the voting rule is itself deterministic, it

1In that sense, our work is related to papers in computational social choice [Bra+16] that study weighted
voting, in the context of manipulation, control, and bribery in elections [CSL07; ZPR09; FEL09; FEL15].

2For the same reason, our work is quite different from papers on online learning algorithms for ranking,
where the algorithm chooses a ranking of objects at each stage, and suffers a loss based on the “relevance”
of the ranking [RKJ08; CT15].
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admits a no-regret weighting scheme if and only if it is constant on unanimous profiles.
Because this property is not satisfied by any reasonable rule, the theorem should be in-
terpreted as a strong impossibility result. We next consider randomized voting rules, and
find that they give rise to much more subtle results, which depend on the properties of the
voting rule in question.

3.2 Preliminaries

Our work draws on social choice theory and online learning. In this section we present
important concepts and results from each of these areas in turn.

3.2.1 Social Choice

We consider a set [n] , {1, . . . , n} of voters and a set A of m alternatives. A vote σ :
A → [m] is a linear ordering — a ranking or permutation — of the alternatives. That is,
for any vote σ and alternative a, σ(a) denotes the position of alternative a in vote σ. For
any a, b ∈ A, σ(a) < σ(b) indicates that alternative a is preferred to b under vote σ. We
also denote this preference by a �σ b. We denote the set of all m! possible votes over A by
L(A).

A vote profile σ ∈ L(A)n denotes the votes of n voters. Furthermore, given a vote
profile σ ∈ L(A)n and a weight vector w ∈ Rn

≥0, we define the anonymous vote profile

corresponding to σ and w, denoted π ∈ [0, 1]|L(A)|, by setting

πσ ,
1

‖w‖1

n∑
i=1

wi1(σi=σ), ∀σ ∈ L(A).

That is, π is an |L(A)|-dimensional vector such that for each vote σ ∈ L(A), πσ is the
fraction of the total weight on σ. When needed, we use πσ,w to clarify the vote profile
and weight vector to which the anonymous vote profile corresponds. Note that πσ,w only
contains the anonymized information about σ and w, i.e., the anonymous vote profile
remains the same even when the identities of the voters change.

To aggregate the (weighted) votes into a distribution over alternatives, we next in-
troduce the concept of (anonymous) voting rules. Let ∆(L(A)) be the set of all possible
anonymous vote profiles. Similarly, let ∆(A) denote the set of all possible distributions
over A. An anonymous voting rule is a function f : ∆(L(A))→ ∆(A) that takes as input
an anonymous vote profile π and returns a distribution over the alternatives indicated by
a vector f(π), where f(π)a is the probability that alternative a is the winner under π. We
say that a voting rule f is deterministic if for any π ∈ ∆(L(A)), f(π) has support of size
1, i.e., there is a unique winner.

An anonymous voting rule f is called strategyproof if, informally, voters can never
achieve a better outcome by misreporting their preferences (see Appendix B.1 for formal
definitions). While strategyproofness is a natural property to be desired in a voting rule,
the celebrated Gibbard-Satterthwaite Theorem [Gib73; Sat75] shows that non-dictatorial
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strategyproof deterministic voting rules do not exist.3 Subsequently, Gibbard [Gib77] ex-
tended this result to a characterization of strategyproof randomized voting rules. The next
proposition is a direct corollary of his result for the case of anonymous rules.

Proposition 3.2.1. Any strategyproof randomized rule is a distribution over a collection
of the following types of rules:

1. Anonymous Unilaterals: g is an anonymous unilateral if there exists a function h :
L(A)→ A for which

g(π) =
∑

σ∈L(A)

πσeh(σ),

where ea is the unit vector that has 1 in the coordinate corresponding to a ∈ A, and
0 in all other coordinates.

2. Duple: g is a duple rule if

|{a ∈ A | ∃π such that g(π)a 6= 0}| ≤ 2.

Examples of strategyproof randomized voting rules include randomized positional scor-
ing rules and the randomized Copeland rule, which were previously studied in this con-
text [CS06; Pro10]. The reader is referred to Appendix B.1 for more details.

3.2.2 Online Learning

We next describe the general setting of online learning, also known as learning from experts.
We consider a game between a learner and an adversary. There is a set of actions (a.k.a
experts) X available to the learner, a set of actions Y available to the adversary, and a
loss function c : X × Y → [0, 1] that is known to both parties. In every time step t ∈ [T ],
the learner chooses a distribution, denoted by a vector pt ∈ ∆(X ), over the actions in X ,
and the adversary chooses an action yt from the set Y . The learner then receives a loss of
c(xt, yt) for xt ∼ pt. At this point, the learner receives some feedback regarding the action
of the adversary. In the full information setting, the learner observes yt before proceeding
to the next time step. In the partial information setting, the learner only observes the loss
c(xt, yt).

The regret of the algorithm is defined as the difference between its total expected loss
and that of the best fixed action in hindsight. The goal of the learner is to minimize its
expected regret, that is, minimize

E[RegT ] , E

[
T∑
t=1

c(xt, yt)−min
x∈X

T∑
t=1

c(x, yt)

]
,

where the expectation is taken over the choice of xt ∼ pt, and any other random choices
made by the algorithm and the adversary. An online algorithm is called a no-regret algo-
rithm if E[RegT ] ∈ o(T ). In words, the average regret of the learner must go to 0 as T →∞.
In general, deterministic algorithms, for which ‖pt‖∞ = 1, can suffer linear regret, because

3The theorem also requires a range of size at least 3.
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the adversary can choose a sequence of actions y1, . . . , yT on which the algorithm makes
sub-optimal decisions at every round. Therefore, randomization is one of the key aspects
of no-regret algorithms.

Many online no-regret algorithms are known for the full information and the partial
information settings. In particular, the Hedge algorithm [FS95] is one of the earliest results
in this space for the full information setting. At time t+1, Hedge picks each action x with
probability pt+1

x ∝ exp(−ηCt(x)), for Ct(x) =
∑t

s=1 c(x, y
s) and η = Θ(

√
2 ln(|X |) / T ).

Proposition 3.2.2 (Freund and Schapire 1995). Hedge has regret

E[RegT ] ≤ O
(√

T ln(|X |)
)
.

For the partial information setting, the EXP3 algorithm of Auer, Cesa-Bianchi, Freund,
and Schapire [Aue+02] can be thought of as a variant of the Hedge algorithm with im-
portance weighting. In particular, at time t+1, EXP3 picks each action x with probability
pt+1
x ∝ exp(−ηC̃t(x)), for η = Θ(

√
2 ln(|X |) / T |X |) and

C̃t(x) =
t∑

s=1

1(xs=x)c(x, y
s)

psx
. (3.1)

In other words, EXP3 is similar to Hedge, except that instead of taking into account the
total loss of an action, Ct(x), it takes into account an estimate of the loss, C̃t(x).

3.3 Problem Formulation

In this section, we formulate the question of how one can design a weighting scheme that
effectively weights the rankings of voters based on the history of their votes and the per-
formance of the selected alternatives.

We consider a setting where n voters participate in a sequence of elections that are
decided by a known voting rule f . In each election, voters submit their rankings over a
different set of m alternatives so as to elect a winner. Given an adversarial sequence of
voters’ rankings σ1:T and alternative losses `1:T over a span of T elections, the best voter
is the one whose rankings lead to the election of the winners with smallest loss overall. We
call this voter the best voter in hindsight. (See Section 3.6 for a discussion of a stronger
benchmark: best weight vector in hindsight.)

When the sequence of elections is not known a priori, the best voter is not known
either. In this case, the weighting scheme has to take an online approach to weighting the
voters’ rankings. That is, at each time step t ≤ T , the weighting scheme chooses a weight
vector wt, possibly at random, to weight the rankings of the voters. After the election is
held, the weighting scheme receives some feedback regarding the quality of the alternatives
in that election, typically in the form of the loss of the elected alternative or that of all
alternatives. Using the feedback, the weighting scheme then re-weights the voters’ rankings
based on their performance so far. Our goal is to design a weighting scheme that weights
the rankings of the voters at each time step, and elects winners with overall expected loss
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that is almost as small as that of the best voter in hindsight. We refer to the expected
difference between these losses as the expected regret. Formally, let

Lf (π, `) ,
∑
a∈A

f(π)a · `a

be the expected loss of the (possibly randomized) voting rule f under the anonymous
preference profile π and loss vector `. Then the expected regret is

E[RegT ] , E

[
T∑
t=1

Lf (πσt,wt , `t)−min
i

T∑
t=1

Lf (πσt,ei , `
t)

]
,

where the expectation is taken over any additional source of randomness in the adversarial
sequence or the algorithm. In particular, we seek a weighting scheme for which the average
expected regret goes to zero as the time horizon T goes to infinity, at a rate that is
polynomial in the number of voters and alternatives. That is, we wish to achieve E[RegT ] =
poly(n,m) · o(T ). This is our version of a no-regret algorithm.

The type of the feedback is an important factor in designing a weighting scheme. Anal-
ogously to the online learning models described in Section 3.2.2, we consider two types
of feedback, full information and partial information. In the full information case, after a
winner is selected at time t, the quality of all alternatives and rankings of the voters at
that round are revealed to the weighting scheme. Note that this information is sufficient
for computing the loss of each voter’s rankings so far. This would be the case, for example,
if the alternatives are companies to invest in. On the other hand, in the partial information
setting only the loss of the winner is revealed. This type of feedback is appropriate when
the alternatives are product prototypes: we cannot know how successful an undeveloped
prototype would have been, but obviously we can measure the success of a prototype that
was selected for development. More formally, in the full information setting the choice of
wt+1 can depend on σ1:t and `1:t, while in the partial information setting it can only depend
on σ1:t and `sas for s ≤ t, where as is the alternative that won the election at time s.

No doubt the reader has noted that the above problem formulation is closely related to
the general setting of online learning. Using the language of online learning introduced in
Section 3.2.2, the weight vector wt corresponds to the learner’s action xt, the vote profile
and alternative losses (σt, `t) correspond to the adversary’s action yt, the expected loss
of the weighting scheme Lf (πσt,wt , `t) corresponds to the loss of the learning algorithm
c(xt, yt), and the best-in-hindsight voter — or weight vector ei — refers to the best-in-
hindsight action.

3.4 Randomized Weights

In this section, we develop no-regret algorithms for the full information and partial infor-
mation settings. We essentially require no assumptions on the voting rule, but also impose
no restrictions on the weighting scheme. In particular, the weighting scheme may be ran-
domized, that is, the weights can be sampled from a distribution over weight vectors. This
allows us to obtain general positive results.
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As we just discussed, our setting is closely related to the classic online learning setting.
Here, we introduce an algorithm analogous to Hedge that works in the full information
setting of Section 3.3 and achieves no-regret guarantees.

Algorithm 3.1: Full information setting, using randomized weights.

Input: Adversarial sequences σ1:T and `1:T , and parameter η =
√

2 lnn/T
1 for t = 1, . . . , T do
2 Play weight vector ei with probability

pti ∝ exp

(
−η

t−1∑
s=1

Lf (πσs,ei , `
s)

)
.

3 Observe `t and σt.

4 end

Theorem 3.4.1. For any anonymous voting rule f and n voters, Algorithm 3.1 has regret
O(
√
T ln(n)) in the full information setting.

Proof sketch. At a high level, this algorithm only considers weight vectors that correspond
to a single voter. At every time step, the algorithm chooses a distribution over such weight
vectors and applies the voting rule to one such weight vector that is drawn at random from
this distribution. This is equivalent to applying the Hedge algorithm to a set of actions,
each of which is a weight vector that corresponds to a single voter. In addition, the loss of
the benchmark weighting scheme is the smallest loss that one can get from following one
such weight vector. Therefore, the theorem follows from Proposition 3.2.2.

Let us now address the partial information setting. One may wonder whether the above
approach, i.e., reducing our problem to online learning and using a standard algorithm,
directly extends to the partial information setting (with the EXP3 algorithm). The answer
is that it does not. In particular, in the classic setting of online learning with partial
information feedback, the algorithm can compute the estimated loss of the action it just
played, that is, the algorithm can compute c(xt, yt). In our problem setting, however, the
weighting scheme only observes σt and `tat for the specific alternative at that was elected
at this time. Since the losses of other alternatives remain unknown, the weighting scheme
cannot even compute the expected loss of the specific voter it it selected at time t, i.e.,
Lf (πσt,eit , `

t). Therefore, we cannot directly use the EXP3 algorithm by imagining that
the voters are actions, as we do not obtain the partial information feedback that the
algorithm requires. Nevertheless, we can design a new algorithm inspired by EXP3.

Theorem 3.4.2. For any anonymous voting rule f and n voters, Algorithm 3.2 has regret
O(
√
Tn ln(n)) in the partial information setting.

To prove the theorem, we show that certain properties, which are necessary for the
performance of EXP3, still hold in our setting. Specifically, Lemma 3.4.3 asserts that ˜̀t

creates an unbiased estimator of the expected loss of the weighting scheme. Moreover, it
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Algorithm 3.2: Partial information setting, using randomized weights.

Input: An adversarial sequences of σ1:T and `1:T , and parameter η =
√

2 lnn/Tn.

1 Let L̃0 = 0.
2 for t = 1, . . . , T do
3 for i = 1, . . . , n do

4 Let pti ∝ exp(−ηL̃t−1
i ).

5 end
6 Play weight vector eit from distribution pt, and observe the vote profile σt, the

alternative at ∼ f(πσt,eit ), and its loss `tat .

7 Let ˜̀t be the vector such that ˜̀t
it = `tat/p

t
it and ˜̀t

i = 0 for i 6= it.

8 Let L̃t = L̃t−1 + ˜̀t.

9 end

states that for any voter i∗, L̃ti∗ is an unbiased estimator for the loss that the weighting
scheme would have received if it followed the rankings of voter i∗ throughout the sequence
of elections. Lemma 3.4.4 then establishes that the variance of this estimator is small.

Lemma 3.4.3. For any t, any i∗, it ∼ pt, and at ∼ f(πσt,eit ), we have

Eit,at
[

n∑
i=1

pti
˜̀t
i

]
= Eit

[
Lf (πσt,eit , `

t)
]

and

Eit,at
[
L̃Ti∗
]

=
T∑
t=1

Lf (πσt,ei∗ , `
t).

Proof. For ease of notation, we suppress t when it is clear from the context. First note that
˜̀ is zero in all of its elements, except for ˜̀

it . So,

n∑
i=1

pi ˜̀i = pit ˜̀it = pit
`at

pit
= `at .

Therefore, we have

Eit,at
[

n∑
i=1

pi ˜̀i

]
= Eit,at [`at ] = Eit

[
Lf (πσ,eit , `)

]
.

For clarity of presentation, let ˜̀i,a be an alternative representation of ˜̀ when it = i and
at = a. Note that `i,ai∗ 6= 0 only if i∗ = i. We have

Eit,at
[
L̃Ti∗
]

=
T∑
t=1

Eit,at
[
˜̀it,at
i∗

]
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=
T∑
t=1

n∑
i=1

pti Ea∼f(πσt,ei
)

[
˜̀i,a
i∗

]
=

T∑
t=1

pti∗ Ea∼f(πσt,ei∗
)

[
`ta
pti∗

]

=
T∑
t=1

Ea∼f(πσt,ei∗
)

[
`ta
]

=
T∑
t=1

Lf (πσt,ei∗ , `
t).

Lemma 3.4.4. For any t, it ∼ pt, and at ∼ f(πσt,eit ), we have

Eit,at
[

n∑
i=1

pti(
˜̀t
i)

2

]
≤ n.

Proof. For ease of notation, we suppress t when it is clear from the context. Since ˜̀ is zero
in all of its elements, except for ˜̀

it , we have

n∑
i=1

pi(˜̀
i)

2 = pit(˜̀
it)

2 = pit

(
`at

pit

)2

=
(`at)

2

pit
.

Therefore,

Eit,at
[

n∑
i=1

pi(˜̀
i)

2

]
= Eit,at

[
(`at)

2

pit

]
=

n∑
i=1

pi Ea∼f(πσ,ei )

[
(`a)

2

pi

]
=

n∑
i=1

Ea∼f(πσ,ei )

[
(`a)

2
]

≤ n.

We are now ready to prove the theorem.

Proof of Theorem 3.4.2. We use a potential function, given by Φt , − 1
η

ln
(∑n

i=1 exp(−ηL̃t−1
i )
)
.

We prove the claim by analyzing the expected increase in this potential function at every
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time step. Note that

Φt+1 − Φt = −1

η
ln

(∑n
i=1 exp(−ηL̃t−1

i − η ˜̀t
i)∑n

i=1 exp(−ηL̃t−1
i )

)

= −1

η
ln

(
n∑
i=1

pti exp(−η ˜̀t
i)

)
.

(3.2)

Taking the expected increase in the potential function over the random choices of it and
at for all t = 1, . . . , T , we have

E [ΦT+1 − Φ1]

=
T∑
t=1

Eit,at [Φt+1 − Φt]

≥
T∑
t=1

Eit,at

[
−1

η
ln

(
n∑
i=1

pti

(
1− η ˜̀t

i +
1

2

(
η ˜̀t
i

)2
))]

=

T∑
t=1

Eit,at

[
−1

η
ln

(
1− η

(
n∑
i=1

pti
˜̀t
i −

η

2

n∑
i=1

pti

(
˜̀t
i

)2
))]

≥
T∑
t=1

Eit,at

[
n∑
i=1

pti
˜̀t
i −

η

2

n∑
i=1

pti

(
˜̀t
i

)2
]

≥ E

[
T∑
t=1

Lf (πσt,eit , `
t)

]
− ηTn

2
, (3.3)

where the second transition follows from Equation (3.2) because for all x ≥ 0, e−x ≤
1 − x + x2

2
, the fourth transition follows from ln(1 − x) ≤ −x for all x ∈ R, and the last

transition holds by Lemmas 3.4.3 and 3.4.4. On the other hand, Φ1 = − 1
η

lnn and for any
i∗,

ΦT+1 ≤ −
1

η
ln
(

exp(−ηL̃Ti∗)
)

= L̃Ti∗ .

Therefore,

E [ΦT+1 − Φ1] ≤ E
[
L̃Ti∗ +

1

η
lnn

]
= E

[
T∑
t=1

Lf (πσt,ei∗ , `
t) +

1

η
lnn

]
.

(3.4)

We can now prove the theorem by using Equations (3.3) and (3.4), and the parameter
value η =

√
2 lnn/Tn:

E

[
T∑
t=1

Lf (πσt,eit , `
t)−min

i∈[n]

T∑
t=1

Lf (πσt,ei , `
t)

]
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≤ 1

η
lnn+

ηTn

2

≤
√

2Tn lnn.

3.5 Deterministic Weights

One of the key aspects of the weighting schemes we used in the previous section is ran-
domization. In such weighting schemes, the weights of the voters not only depend on their
performance so far, but also on the algorithm’s coin flips. In practice, voters would most
likely prefer weighting schemes that depend only on their past performance, and are there-
fore easier to interpret.

In this section, we focus on designing weighting schemes that are deterministic in na-
ture. Formally, a deterministic weighting scheme is an algorithm that at time step t + 1
deterministically chooses one weight vector wt+1 based on the history of play, i.e., sequences
σ1:t, `1:t, and a1:t. In this section, we seek an answer to the following question: For which
voting rules is there a no-regret deterministic weighting scheme? In contrast to the results
established in the previous section, we find that the properties of the voting rule play an
important role here. In the remainder of this section, we show possibility and impossibility
results for the existence of such weighting schemes under randomized and deterministic
voting rules.

We begin our search for deterministic weighting schemes by considering deterministic
voting rules. Note that in this case the winning alternatives are induced deterministically
by the weighting scheme, so the weight vector wt+1 should be deterministically chosen
based on the sequences σ1:t and `1:t. We establish an impossibility result: Essentially no
deterministic weighting scheme is no-regret for a deterministic voting rule. Specifically, we
show that a deterministic no-regret weighting scheme exists for a deterministic voting rule
if and only if the voting rule is constant on unanimous profiles.

Definition 3.5.1. A voting rule f is constant on unanimous profiles if and only if for all
σ, σ′ ∈ L(A), f(eσ) = f(eσ′), where eσ denotes the anonymous vote profile that has all of
its weight on ranking σ.

Theorem 3.5.2. For any deterministic voting rule f , a deterministic weighting scheme
with regret o(T ) exists if and only if f is constant on unanimous profiles. This is true in
both the full information and partial information settings.

Proof. We first prove that for any voting rule that is constant on unanimous profiles there
exists a deterministic weighting scheme that is no-regret. Consider such a voting rule f
and a simple deterministic weighting scheme that uses weight vector wt = e1 for every
time step t ≤ T (so it does not use feedback — whether full or partial — at all). Note that
at each time step t and for any voter i ∈ [n],

f(πσt,wt) = f(eσt1) = f(eσti ) = f(πσt,ei),
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where the second transition holds because f is constant on unanimous profiles. As a result,

Lf (πσt,wt , `t) = Lf (πσt,ei , `
t).

In words, the total loss of the weighting scheme is the same as the total loss of any individual
voter — this weighting scheme has 0 regret.

Next, we prove that if f is not constant on unanimous profiles then for any deterministic
weighting scheme there is an adversarial sequence of σ1:T and `1:T that leads to regret of
Ω(T ), even in the full information setting. Take any such voting rule f and let τ, τ ′ ∈ L(A)
be such that f(eτ ) 6= f(eτ ′). At time t, the adversary chooses σt and `t based on the
deterministic weight vector wt as follows: The adversary sets σt to be such that σt1 = τ and
σtj = τ ′ for all j 6= 1. Let alternative at be the winner of profile πσt,wt , i.e., f(πσt,wt) = eat .
The adversary sets `tat = 1 and `tx = 0 for all x 6= at. Therefore, the weighting scheme
incurs a loss of 1 at every step, and its total loss is

T∑
t=1

Lf (πσt,wt , `t) =
T∑
t=1

`tat = T.

Let us consider the total loss that the ranking of any individual voter incurs. By design,
for any j > 1,

f(πσt,e1) = f(eτ ) 6= f(eτ ′) = f(πσt,ej).

Therefore, for at least one voter i ∈ [n], f(πσt,ei) 6= eat . Note that such a voter receives
loss of 0, so the combined loss of all voters is at most n− 1. Over all time steps, the total
combined loss of all voters is at most T (n− 1). As a result, the best voter incurs a loss of

at most (n−1)T
n

, i.e., the average loss. We conclude that the regret of the weighting scheme
is

RegT =
T∑
t=1

Lf (πσt,wt , `t)−min
i∈[n]

T∑
t=1

Lf (πσt,ei , `
t)

≥ T − (n− 1)T

n

=
T

n
.

Theorem 3.5.2 indicates that we need to allow randomness (either in the weighting
scheme or in the voting rule) if we wish to have no-regret guarantees. As stated before,
we would like to have a deterministic weighting scheme so that the weights of voters are
not decided by coin flips. This leaves us with no choice other than having a randomized
voting rule. Nonetheless, one might argue in favor of having a deterministic voting rule and
a randomized weighting scheme, claiming that it is equivalent because the randomness has
simply been shifted from the voting rule to the weights. To that imaginary critic we say that
allowing the voting rule to be randomized makes it possible to achieve strategyproofness
(see Section 3.2.1), which cannot be satisfied by a deterministic voting rule.
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We next show that for any voting rule that is a distribution over unilaterals there exist
deterministic weighting schemes that are no-regret. An important family of strategyproof
randomized voting rules — randomized positional scoring rules (see Appendix B.1) — can
be represented as distributions over unilaterals, hence the theorem allows us to design a
no-regret weighting scheme for any randomized positional scoring rule.

The weighting schemes that we use build on Algorithms 3.1 and 3.2 directly. In more
detail, we consider deterministic weighting schemes that at time t use weight vector pt

and a randomly drawn candidate at ∼ f(πσt,pt), where pt is computed according to Al-
gorithms 3.1 or 3.2. The key insight behind these weighting schemes is that, if f is a
distribution over unilaterals, we have

Ei∼pt [f(πσt,ei)] = f(πσt,pt), (3.5)

where the left-hand side is a vector of expectations. That is, the outcome of the voting
rule f(πσt,pt) can be alternatively implemented by applying the voting rule on the ranking
of voter i that is drawn at random from the distribution pt. This is exactly what Algo-
rithms 3.1 and 3.2 do. Therefore, the deterministic weighting schemes induce the same
distribution over alternatives at every time step as their randomized counterparts, and
achieve the same regret. The next theorem, whose full proof appears in Appendix B.2,
formalizes this discussion.

Theorem 3.5.3. For any voting rule that is a distribution over unilaterals, there exist
deterministic weighting schemes with regret of O(

√
T ln(n)) and O(

√
Tn ln(n)) in the full-

information and partial-information settings, respectively.

The theorem states that there exist no-regret deterministic weighting schemes for any
voting rule that is a distribution over unilaterals. It is natural to ask whether being a
distribution over unilaterals is, in some sense, also a necessary condition. While we do not
give a complete answer to this question, we are able to identify a sufficient condition for
not having no-regret deterministic weighting schemes.

To this end, we introduce a classic concept. Alternative a ∈ A is a Condorcet winner in
a given vote profile if for every b ∈ A, a majority of voters rank a above b. A deterministic
rule is Condorcet consistent if it selects a Condorcet winner whenever one exists in the given
vote profile; see Appendix B.1 for formal definitions. We extend the notion of Condorcet
consistency to randomized rules.

Definition 3.5.4. For a set of alternatives A such that |A| = m, a randomized voting
rule f : ∆(L(A)) → ∆(A) is probabilistically Condorcet consistent with gap δ(m) if for
any anonymous vote profile π that has a Condorcet winner a, and for all alternatives
x ∈ A \ {a}, f(π)a ≥ f(π)x + δ(m).

In words, a randomized voting rule is probabilistically Condorcet consistent if the Con-
dorcet winner has strictly higher probability of being selected than any other alternative,
by a gap of δ(m). As an example, a significant strategyproof randomized voting rule —
the randomized Copeland rule, defined in Appendix B.1 — is probabilistically Condorcet
consistent with gap δ(m) = Ω(1/m2).

Theorem 3.5.5. For a set of alternatives A such that |A| = m, let f be a probabilistically
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Condorcet consistent voting rule with gap δ(m), and suppose there are n voters for

n ≥ 2

(
3

2δ(m)
+ 1

)
.

Then any deterministic weighting scheme will suffer regret of Ω(T ) under f (in the worst
case), even in the full information setting.

The theorem’s proof is relegated to Appendix B.3. It is interesting to note that Theo-
rems 3.5.3 and 3.5.5 together imply that distributions over unilaterals are not probabilis-
tically Condorcet consistent. This is actually quite intuitive: Distributions over unilaterals
are “local” in that they look at each voter separately, whereas Condorcet consistency is a
global property. In fact, these theorems can be used to prove — in an especially convoluted
and indirect way — a simple result from social choice theory [Mou83]: No positional scoring
rule is Condorcet consistent!

3.6 Discussion

We conclude by discussing several conceptual points.

A natural, stronger benchmark. In our model (see Section 3.3), we are competing
with the best voter in hindsight. But our action space consists of weight vectors. It is
therefore natural to ask whether we can compete with the best weight vector in hindsight
(hereinafter, the stronger benchmark). Clearly the stronger benchmark is indeed at least
as hard, because the best voter i∗ corresponds to the weight vector ei∗ . Therefore, our
impossibility results for competing against the best voter in hindsight (Theorems 3.5.2
and 3.5.5) extend to the stronger benchmark. Moreover, voting rules that are distributions
over unilaterals demonstrate a certain linear structure where the outcome of the voting rule
nicely decomposes across individual voters. Under such voting rules, the benchmark of best
weights in hindsight is equivalent to the benchmark of best voter in hindsight. Therefore,
Theorem 3.5.3 also holds for the stronger benchmark, and, in summary, each and every
result of Section 3.5 extends to the stronger benchmark. By contrast, Theorems 3.4.1
and 3.4.2 do not hold for the stronger benchmark; the question of identifying properties
of voting rules (beyond distributions over unilaterals) that admit randomized no-regret
weighting schemes under the stronger benchmark remains open. We describe the stronger
benchmark in more detail, and formalize the above arguments, in Appendix B.4.

Changing the sets of alternatives and voters over time. We wish to emphasize that
the set of alternatives at each time step, i.e., in each election, can be completely different.
Moreover, the number of alternatives could be different. In fact, our positive results do
not even depend on the number of alternatives m, so we can simply set m to be an upper
bound. By contrast, we do need the set of voters to stay fixed throughout the process,
but this is consistent with our motivating examples (e.g., a group of partners in a small
venture capital firm would face different choices at every time step, but the composition of
the group rarely changes).
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Optimizing the voting rule. Throughout the paper, the voting rule is exogenous. One
might ask whether it makes sense to optimize the choice of voting rule itself, in order
to obtain good no-regret learning results. Our answer is “yes and no”. On the one hand,
we believe our results do give some guidance on choosing between voting rules. For ex-
ample, from this viewpoint, one might prefer randomized Borda (which admits no-regret
algorithms under a deterministic weighting scheme) to randomized Copeland (which does
not). On the other hand, many considerations are factored into the choice of voting rule:
social choice axioms, optimization of additional objectives [PSZ16; Bou+15; EFS09; CS05],
and simplicity. It is therefore best to think of our approach as augmenting voting rules that
are already in place.
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Chapter 4
Virtual Democracy: A Voting-Based
Framework for Automating Decisions

We present a general approach to automating decisions, drawing on machine learning
and computational social choice. In a nutshell, we propose to learn a model of societal
preferences, and, when faced with a specific dilemma at runtime, efficiently aggregate those
preferences to identify a desirable choice. We provide a concrete algorithm that instantiates
our approach; some of its crucial steps are informed by a new theory of swap-dominance
efficient voting rules. Finally, as a proof of concept, we implement and evaluate a system
for decision making in the autonomous vehicle domain, using preference data collected
from 1.3 million people through the Moral Machine website.

4.1 Introduction

One of the most basic ideas underlying democracy is that complicated decisions can be
made by asking a group of people to vote on the alternatives at hand. As a decision-making
framework, this paradigm is versatile, because people can express a sensible opinion about
a wide range of issues. One of its seemingly inherent shortcomings, though, is that voters
must take the time to cast a vote — hopefully an informed one — every time a new
dilemma arises.

Consider the following example. A group of friends have to decide where to have lunch
every day. They achieve this by voting on the set of restaurants available each day, and
then aggregating these votes to pick the winning restaurant. But, this can be tedious if it
has to be repeated every single day, as each voter would have to reconsider all the available
choices that day, take into account where they ate the previous day, what cuisines they
have eaten in the previous week, how far or expensive each option is, and so on, and
then construct a complete ranking over all the available options. What if we could instead
predict the preferences of the voters — instead of explicitly asking them to vote — and
then aggregate those predicted preferences to arrive at a decision? In particular, we could
learn a virtual model for each of the voters, and let these models vote on the voters’ behalf.
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This would automate the system and help us make decisions more efficiently.

Even though the example illustrates the automation of a voting scenario, this approach
can be used much more generally to automate decision making whenever aggregating peo-
ple’s opinions is justifiable. Further, this is especially useful when there is a lack of a formal
specification of ground-truth principles to be followed in order to make the decision. In such
cases, the decision can be automated by aggregating people’s opinions on the specific de-
limmas at hand. And the key idea behind this approach is that instead of consulting each of
the voters on each decision (which would have been the ideal scenario), we could automate
these decisions by learning a model for each of the voters, and then using these models as
a proxy for the flesh and blood voters. In other words, the models serve as virtual voters,
which is why we refer to this paradigm as virtual democracy.

As a proof of concept, we also apply this approach to an enormous dataset collected
through the website Moral Machine.1 This website presents a modern variant of the classic
trolley problem [Jar85]: An autonomous vehicle has a brake failure, leading to an accident
with inevitably tragic consequences; due to the vehicle’s superior perception and computa-
tion capabilities, it can make an informed decision. Should it stay its course and hit a wall,
killing its three passengers, one of whom is a young girl? Or swerve and kill a male athlete
and his dog, who are crossing the street on a red light? A notable paper by Bonnefon,
Shariff, and Rahwan [BSR16] has shed some light on how people address such questions,
and even former US President Barack Obama has weighed in.2

More concretely, our approach for automating decision making consists of four steps,
drawing on machine learning and computational social choice [Bra+16]:3

I Data collection: Ask human voters to compare pairs of alternatives (say a few dozen
per voter). In the autonomous vehicle domain, an alternative is determined by a
vector of features such as the number of victims and their gender, age, health —
even species!

II Learning: Use the pairwise comparisons to learn a model of the preferences of each
voter over all possible alternatives.

III Summarization: Combine the individual models into a single model, which approxi-
mately captures the collective preferences of all voters over all possible alternatives.

IV Aggregation: At runtime, when encountering a dilemma involving a specific subset
of alternatives, use the summary model to deduce the preferences of all voters over
this particular subset, and apply a voting rule to aggregate these preferences into a
collective decision. In the autonomous vehicle domain, the selected alternative is the
outcome that society (as represented by the voters whose preferences were elicited in
Step I) views as the least catastrophic among the grim options the vehicle currently
faces.

Note that we are not advocating the use of this approach as is for the autonomous
vehicle domain in real life, but only using the corresponding dataset as a proof of concept

1http://moralmachine.mit.edu
2https://www.wired.com/2016/10/president-obama-mit-joi-ito-interview/
3which deals with algorithms for aggregating individual preferences towards collective decisions
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for the approach. More on this in Section 4.6.
For Step I, the pairwise comparisons would generally be collected from voters who would

be affected or involved in the whole decision making process at hand. For the autonomous
vehicle domain, we note that it is possible to collect an adequate dataset through, say,
Amazon Mechanical Turk. But we actually perform this step on a much larger scale. Indeed,
we use, for the first time, a unique dataset that consists of 18,254,285 pairwise comparisons
between alternatives in the autonomous vehicle domain, obtained from 1,303,778 voters,
through the website Moral Machine.

Subsequent steps (namely Steps II, III, and IV) rely on having a model for preferences.
There is a considerable line of work on distributions over rankings over a finite set of al-
ternatives. A popular class of such models is the class of random utility models [APX12;
APX14b; MG15; GS09; RA14], which use random utilities for alternatives to generate rank-
ings over the alternatives. We require a slightly more general notion, as we are interested
in situations where the set of alternatives is infinite, and any finite subset of alternatives
might be encountered (c.f. Caron and Teh 2012). For example, there are uncountably many
scenarios an autonomous vehicle might face, because one can choose to model some features
(such as the age of, say, a passenger) as continuous, but at runtime the vehicle will face a
finite number of options. We refer to these generalized models as permutation processes.

In Section 4.3, we focus on developing a theory of aggregation of permutation pro-
cesses, which is crucial for Step IV. Specifically, we assume that societal preferences are
represented as a single permutation process. Given a (finite) subset of alternatives, the
permutation process induces a distribution over rankings of these alternatives. In the spirit
of distributional rank aggregation [PPR15], we view this distribution over rankings as an
anonymous preference profile, where the probability of a ranking is the fraction of voters
whose preferences are represented by that ranking. This means we can apply a voting rule
in order to aggregate the preferences — but which voting rule should we apply? And how
can we compute the outcome efficiently? These are some of the central questions in com-
putational social choice, but we show that in our context, under rather weak assumptions
on the voting rule and permutation process, they are both moot, in the sense that it is easy
to identify alternatives chosen by any “reasonable” voting rule. In slightly more detail, we
define the notion of swap dominance between alternatives in a preference profile, and show
that if the permutation process satisfies a natural property with respect to swap dominance
(standard permutation processes do), and the voting rule is swap-dominance efficient (all
common voting rules are), then any alternative that swap dominates all other alternatives
is an acceptable outcome.

Armed with these theoretical developments, our task can be reduced to: learning a
permutation process for each voter (Step II); summarizing these individual processes into
a single permutation process that satisfies the required swap-dominance property (Step
III); and using any swap-dominance efficient voting rule, which is computationally efficient
given the swap-dominance property (Step IV).

In Section 4.4, we present a concrete algorithm that instantiates our approach, for
a specific permutation process, namely the Thurstone-Mosteller (TM) Process [Thu27;
Mos51], and with a specific linear parametrization of its underlying utility process in terms
of the alternative features. While these simple choices have been made to illustrate the
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framework, we note that, in principle, the framework can be instantiated with more general
and complex permutation processes.

Finally, in Section 4.5, we implement and evaluate our algorithm. We first present simu-
lation results from synthetic data that validate the accuracy of its learning and summariza-
tion components. More importantly, we implement our algorithm on the aforementioned
Moral Machine dataset, and empirically evaluate the resultant system for choosing among
alternatives in the autonomous vehicle domain. Taken together, these results suggest that
our approach, and the algorithmic instantiation thereof, provide a computationally and
statistically attractive method for automating decision making.

4.2 Preliminaries

Let X denote a potentially infinite set of alternatives. Given a finite subset A ⊆ X , we are
interested in the set SA of rankings over A. Such a ranking σ ∈ SA can be interpreted as
mapping alternatives to their positions, i.e., σ(a) is the position of a ∈ A (smaller is more
preferred). Let a �σ b denote that a is preferred to b in σ, that is, σ(a) < σ(b). For σ ∈ SA
and B ⊆ A, let σ|B denote the ranking σ restricted to B. And for a distribution P over
SA and B ⊆ A, define P |B in the natural way to be the restriction of P to B, i.e., for all
σ′ ∈ SB,

P |B(σ′) =
∑

σ∈SA: σ|B=σ′

P (σ).

A permutation process {Π(A) : A ⊆ X , |A| ∈ N} is a collection of distributions over SA
for every finite subset of alternatives A. We say that a permutation process is consistent
if Π(A)|B = Π(B) for any finite subsets of alternatives B ⊆ A ⊆ X . In other words, for
a consistent permutation process Π, the distribution induced by Π over rankings of the
alternatives in B is nothing but the distribution obtained by marginalizing out the extra
alternatives A \B from the distribution induced by Π over rankings of the alternatives in
A. This definition of consistency is closely related to the Luce Choice Axiom [Luc59].

A simple adaptation of folklore results [Mar95] shows that any permutation process that
is consistent has a natural interpretation in terms of utilities. Specifically (and somewhat in-
formally, to avoid introducing notation that will not be used later), given any consistent per-
mutation process Π over a set of alternatives X (such that |X | ≤ ℵ1), there exists a stochas-
tic process U (indexed by X ) such that for any A = {x1, . . . , xm} ⊆ X , the probability of
drawing σ ∈ SA from Π(A) is equal to the probability that sort(Ux1 , Ux2 , · · · , Uxm) = σ,
where (perhaps obviously) sort(·) sorts the utilities in non-increasing order. We can allow
ties in utilities, as long as sort(·) is endowed with some tie-breaking scheme, e.g., ties are
broken lexicographically, which we will assume in the sequel. We refer to the stochastic
process corresponding to a consistent permutation process as its utility process, since it is
semantically meaningful to obtain a permutation via sorting by utility.

As examples of natural permutation processes, we adapt the definitions of two well-
known random utility models. The (relatively minor) difference is that random utility mod-
els define a distribution over rankings over a fixed, finite subset of alternatives, whereas
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permutation processes define a distribution for each finite subset of alternatives, given a
potentially infinite space of alternatives.

� Thurstone-Mosteller (TM) Process [Thu27; Mos51]. A Thurstone-Mosteller Pro-
cess (adaptation of Thurstones Case V model) is a consistent permutation process,
whose utility process U is a Gaussian process with independent utilities and identi-
cal variances. In more detail, given a finite set of alternatives {x1, x2, · · · , xm}, the
utilities (Ux1 , Ux2 , · · · , Uxm) are independent, and Uxi ∼ N (µxi ,

1
2
), where µxi denotes

the mode utility of alternative xi.

� Plackett-Luce (PL) Process [Pla75; Luc59]. A Plackett-Luce Process is a consis-
tent permutation process with the following utility process U : Given a finite set of
alternatives {x1, x2, · · · , xm}, the utilities (Ux1 , Ux2 , · · · , Uxm) are independent, and
each Uxi has a Gumbel distribution with identical scale, i.e. Uxi ∼ G(µxi , γ), where
G denotes the Gumbel distribution, and µxi denotes the mode utility of alternative
xi. We note that Caron and Teh [CT12] consider a further Bayesian extension of the
above PL process, with a Gamma process prior over the mode utility parameters.

4.3 Aggregation of Permutation Processes

In social choice theory, a preference profile is typically defined as a collection σ = (σ1, . . . , σN)
of N rankings over a finite set of alternatives A, where σi represents the preferences of voter
i. However, when the identity of voters does not play a role, we can instead talk about
an anonymous preference profile π ∈ [0, 1]|A|!, where, for each σ ∈ SA, π(σ) ∈ [0, 1] is the
fraction of voters whose preferences are represented by the ranking σ. Equivalently, it is the
probability that a voter drawn uniformly at random from the population has the ranking
σ.

How is this related to permutation processes? Given a permutation process Π and a
finite subset A ⊆ X , the distribution Π(A) over rankings of A can be seen as an anonymous
preference profile π, where for σ ∈ SA, π(σ) is the probability of σ in Π(A). As we shall
see in Section 4.4, Step II (learning) gives us a permutation process for each voter, where
π(σ) represents our confidence that the preferences of the voter over A coincide with σ;
and after Step III (summarization), we obtain a single permutation process that represents
societal preferences.

Our focus in this section is the aggregation of anonymous preference profiles induced by
a permutation process (Step IV), that is, the task of choosing the winning alternative(s).
To this end, let us define an anonymous social choice correspondence (SCC) as a function f
that maps any anonymous preference profile π over any finite and nonempty subset A ⊆ X
to a nonempty subset of A. For example, under the ubiquitous plurality correspondence,
the set of selected alternatives consists of alternatives with maximum first-place votes,
i.e., arg maxa∈A

∑
σ∈SA:σ(a)=1 π(σ); and under the Borda count correspondence, denoting

|A| = m, each vote awards m − j points to the alternative ranked in position j, that
is, the set of selected alternatives is arg maxa∈A

∑m
j=1(m − j)

∑
σ∈SA:σ(a)=j π(σ). We work

with social choice correspondences instead of social choice functions, which return a single
alternative in A, in order to smoothly handle ties.
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4.3.1 Efficient Aggregation

Our main goal in this section is to address two related challenges. First, which (anonymous)
social choice correspondence should we apply? There are many well-studied options, which
satisfy different social choice axioms, and, in many cases, lead to completely different
outcomes on the same preference profile. Second, how can we apply it in a computationally
efficient way? This is not an easy task because, in general, we would need to explicitly
construct the whole anonymous preference profile Π(A), and then apply the SCC to it.
The profile Π(A) is of size |A|!, and hence this approach is intractable for a large |A|.
Moreover, in some cases (such as the TM process), even computing the probability of a
single ranking may be hard. The machinery we develop below allows us to completely
circumvent these obstacles.

Since stating our general main result requires some setup, we first state a simpler
instantiation of the result for the specific TM and PL permutation processes (we will
directly use this instantiation in Section 4.4). Before doing so, we recall a few classic social
choice axioms. We say that an anonymous SCC f is monotonic if the following conditions
hold:

1. If a ∈ f(π), and π′ is obtained by pushing a upwards in the rankings, then a ∈ f(π′).

2. If a ∈ f(π) and b /∈ f(π), and π′ is obtained by pushing a upwards in the rankings,
then b /∈ f(π′).

In addition, an anonymous SCC is neutral if f(τ(π)) = τ(f(π)) for any anonymous pref-
erence profile π, and any permutation τ on the alternatives; that is, the SCC is symmetric
with respect to the alternatives (in the same way that anonymity can be interpreted as
symmetry with respect to voters).

Theorem 4.3.1. Let Π be the TM or PL process, let A ⊆ X be a nonempty, finite subset
of alternatives, and let a ∈ arg maxx∈A µx. Moreover, let f be an anonymous SCC that is
monotonic and neutral. Then a ∈ f(Π(A)).

To understand the implications of the theorem, we first note that many of the common
voting rules, including plurality, Borda count (and, in fact, all positional scoring rules),
Copeland, maximin, and Bucklin (see, e.g., Brandt, Conitzer, Endriss, Lang, and Procaccia
2016), are associated with anonymous, neutral, and monotonic SCCs. Specifically, all of
these rules have a notion of score, and the SCC simply selects all the alternatives tied for
the top score (typically there is only one).4 The theorem then implies that all of these rules
would agree that, given a subset of alternatives A, an alternative a ∈ A with maximum
mode utility is an acceptable winner, i.e., it is at least tied for the highest score, if it is not
the unique winner. As we will see in Section 4.4, such an alternative is very easy to identify,
which is why, in our view, Theorem 4.3.1 gives a satisfying solution to the challenges posed
at the beginning of this subsection. We emphasize that this is merely an instantiation of
Theorem 4.3.7, which provides our result for general permutation processes.

The rest of this subsection is devoted to building the conceptual framework, and stating

4Readers who are experts in social choice have probably noted that there are no social choice functions
that are both anonymous and neutral [Mou83], intuitively because it is impossible to break ties in a neutral
way. This is precisely why we work with social choice correspondences.
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the lemmas, required for the proof of Theorem 4.3.1, as well as the statement and proof of
Theorem 4.3.7. We relegate all proofs to Appendix C.1.

Starting off, let π denote an anonymous preference profile (or distribution over rankings)
over alternatives A. We define the ranking σab as the ranking σ with alternatives a and b
swapped, i.e. σab(x) = σ(x) if x ∈ A \ {a, b}, σab(b) = σ(a), and σab(a) = σ(b).

Definition 4.3.2. We say that alternative a ∈ A swap-dominates alternative b ∈ A in
anonymous preference profile π over A — denoted by a .π b — if for every ranking σ ∈ SA
with a �σ b it holds that π(σ) ≥ π(σab).

In words, a swap-dominates b if every ranking that places a above b has at least as
much weight as the ranking obtained by swapping the positions of a and b, and keeping
everything else fixed. This is a very strong dominance relation, and, in particular, implies
existing dominance notions such as position dominance [CPS16]. Next we define a property
of social choice correspondences, which intuitively requires that the correspondence adhere
to swap dominance relations, if they exist in a given anonymous preference profile.

Definition 4.3.3. An anonymous SCC f is said to be swap-dominance-efficient (SwD-
efficient) if for every anonymous preference profile π and any two alternatives a and b, if
a swap-dominates b in π, then b ∈ f(π) implies a ∈ f(π).

Because swap-dominance is such a strong dominance relation, SwD-efficiency is a very
weak requirement, which is intuitively satisfied by almost any “reasonable” voting rule.
This intuition is formalized in the following lemma.

Lemma 4.3.4. Any anonymous SCC that satisfies monotonicity and neutrality is SwD-
efficient.

So far, we have defined a property, SwD-efficiency, that any SCC might potentially
satisfy. But why is this useful in the context of aggregating permutation processes? We
answer this question in Theorem 4.3.7, but before stating it, we need to introduce the
definition of a property that a permutation process might satisfy.

Definition 4.3.5. Alternative a ∈ X swap-dominates alternative b ∈ X in the permutation
process Π — denoted by a .Π b — if for every finite set of alternatives A ⊆ X such that
{a, b} ⊆ A, a swap-dominates b in the anonymous preference profile Π(A).

We recall that a total preorder is a binary relation that is transitive and total (and
therefore reflexive).

Definition 4.3.6. A permutation process Π over X is said to be SwD-compatible if the
binary relation .Π is a total preorder on X .

We are now ready to state our main theorem.

Theorem 4.3.7. Let f be an SwD-efficient anonymous SCC, and let Π be an SwD-
compatible permutation process. Then for any finite subset of alternatives A, there exists
a ∈ A such that a .Π b for all b ∈ A. Moreover, a ∈ f(Π(A)).

This theorem asserts that for any SwD-compatible permutation process, any SwD-
efficient SCC (which, as noted above, include most natural SCCs, namely those that are
monotonic and neutral), given any finite set of alternatives, will always select a very natu-
ral winner that swap-dominates other alternatives. A practical use of this theorem requires
two things: to show that the permutation process is SwD-compatible, and that it is com-
putationally tractable to select an alternative that swap-dominates other alternatives in
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a finite subset. The next few lemmas provide some general recipes for establishing these
properties for general permutation processes, and, in particular, we show that they indeed
hold under the TM and PL processes. First, we have the following definition.

Definition 4.3.8. Alternative a ∈ X dominates alternative b ∈ X in utility process U if
for every finite subset of alternatives containing a and b, {a, b, x3, . . . xm} ⊆ X , and every
vector of utilities (u1, u2, u3 . . . um) ∈ Rm with u1 ≥ u2, it holds that

p(Ua,Ub,Ux3 ,...Uxm )(u1, u2, u3 . . . um)

≥ p(Ua,Ub,Ux3 ,...Uxm )(u2, u1, u3 . . . um),
(4.1)

where p(Ua,Ub,Ux3 ,...Uxm ) is the density function of the random vector (Ua, Ub, Ux3 , . . . Uxm).

Building on this definition, Lemmas 4.3.9 and 4.3.10 directly imply that the TM and
PL processes are SwD-compatible, and complete the proof of Theorem 4.3.1 (see Ap-
pendix C.1).

Lemma 4.3.9. Let Π be a consistent permutation process, and let U be its corresponding
utility process. If alternative a dominates alternative b in U , then a swap-dominates b in
Π.

Lemma 4.3.10. Under the TM and PL processes, alternative a dominates alternative b
in the corresponding utility process if and only if µa ≥ µb.

4.3.2 Stability

It turns out that the machinery developed for the proof of Theorem 4.3.1 can be leveraged
to establish an additional desirable property.

Definition 4.3.11. Given an anonymous SCC f , and a permutation process Π over X , we
say that the pair (Π, f) is stable if for any nonempty and finite subset of alternatives A ⊆ X ,
and any nonempty subset B ⊆ A, f(Π(A)) ∩B = f(Π(B)) whenever f(Π(A)) ∩B 6= φ.

Intuitively, stability means that applying f under the assumption that the set of alter-
natives is A, and then reducing to its subset B, is the same as directly reducing to B and
then applying f . This notion is related to classic axioms studied by Sen [Sen71], specif-
ically his expansion and contraction properties. In our setting, stability seems especially
desirable, as our algorithm would potentially face decisions over many different subsets of
alternatives, and the absence of stability may lead to glaringly inconsistent choices.

Theorem 4.3.12. Let Π be the TM or PL process, and let f be the Borda count or Copeland
SCC. Then the pair (Π, f) is stable.

The definition of the Copeland SCC, and the proof of the theorem, are relegated to
Appendix C.2. Among other things, the proof requires a stronger notion of SwD-efficiency,
which, as we show, is satisfied by Borda count and Copeland, and potentially by other
appealing SCCs.

4.4 Instantiation of Our Approach

In this section, we instantiate our approach for ethical decision making, as outlined in
Section 4.1. In order to present a concrete algorithm, we consider a specific permutation
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process, namely the TM process with a linear parameterization of the utility process pa-
rameters as a function of the alternative features.

Let the set of alternatives be given by X ⊆ Rd, i.e. each alternative is represented by a
vector of d features. Furthermore, let N denote the total number of voters. Assume for now
that the data-collection step (Step I) is complete, i.e., we have some pairwise comparisons
for each voter; we will revisit this step in Section 4.5.

Step II: Learning. For each voter, we learn a TM process using his pairwise comparisons
to represent his preferences. We assume that the mode utility of an alternative x depends
linearly on its features, i.e., µx = βᵀx. Note that we do not need an intercept term, since
we care only about the relative ordering of utilities. Also note that the parameter β ∈ Rd

completely describes the TM process, and hence the parameters β1,β2, · · ·βN completely
describe the models of all voters.

Next we provide a computationally efficient method for learning the parameter β for a
particular voter. Let (X1, Z1), (X2, Z2), · · · , (Xn, Zn) denote the pairwise comparison data
of the voter. Specifically, the ordered pair (Xj, Zj) denotes the jth pair of alternatives
compared by the voter, and the fact that the voter chose Xj over Zj. We use maximum
likelihood estimation to estimate β. The log-likelihood function is

L(β) = log

[
n∏
j=1

P (Xj � Zj;β)

]

=
n∑
j=1

logP (UXj > UZj ;β)

=
n∑
j=1

log Φ (βᵀ(Xj − Zj)) ,

where Φ is the cumulative distribution function of the standard normal distribution, and
the last transition holds because Ux ∼ N (βᵀx, 1

2
). Note that the standard normal CDF Φ is

a log-concave function. This makes the log-likelihood concave in β, hence we can maximize
it efficiently.

Step III: Summarization. After completing Step II, we haveN TM processes represented
by the parameters β1,β2, · · ·βN . In Step III, we bundle these individual models into a
single permutation process Π̂, which, in the current instantiation, is also a TM process with
parameter β̂ (see Section 4.6 for a discussion of this point). We perform this step because
we must be able to make decisions fast, in Step IV. For example, in the autonomous vehicle
domain, the AI would only have a split second to make a decision in case of emergency;
aggregating information from millions of voters in real time will not do. By contrast, Step
III is performed offline, and provides the basis for fast aggregation.

Let Πβ denote the TM process with parameter β. Given a finite subset of alternatives
A ⊆ X , the anonymous preference profile generated by the model of voter i is given by
Πβi(A). Ideally, we would like the summary model to be such that the profile generated by
it, Π̂(A), is as close as possible to Π∗(A) = 1

N

∑N
i=1 Πβi(A), the mean profile obtained by
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giving equal importance to each voter. However, there does not appear to be a straightfor-
ward method to compute the “best” β̂, since the profiles generated by the TM processes do
not have an explicit form. Hence, we use utilities as a proxy for the quality of β̂. Specifically,
we find β̂ such that the summary model induces utilities that are as close as possible to
the mean of the utilities induced by the per-voter models, i.e., we want U β̂x to be as close as
possible (in terms of KL divergence) to 1

N

∑N
i=1 U

βi
x for each x ∈ X , where Uβx denotes the

utility of x under TM process with parameter β. This is achieved by taking β̂ = 1
N

∑N
i=1 βi,

as shown by the following proposition (whose proof appears in Appendix C.3).

Proposition 4.4.1. The vector β = 1
N

∑N
i=1 βi minimizes KL

(
1
N

∑N
i=1 U

βi
x

∥∥Uβx ) for any

x ∈ X .

Step IV: Aggregation. As a result of Step III, we have exactly one (summary) TM pro-
cess Π̂ (with parameter β̂ = β̄) to work with at runtime. Given a finite set of alternatives
A = {x1, x2, · · · , xm}, we must aggregate the preferences represented by the anonymous
preference profile Π̂(A). This is where the machinery of Section 4.3 comes in: We simply
need to select an alternative that has maximum mode utility among β̂ᵀx1, β̂

ᵀx2, · · · , β̂ᵀxm.
Such an alternative would be selected by any anonymous SCC that is monotonic and neu-
tral, when applied to Π̂(A), as shown by Theorem 4.3.1. Moreover, this aggregation method
is equivalent to applying the Borda count or Copeland SCCs (due to Lemmas C.2.5, C.2.7).
Hence, we also have the desired stability property, as shown by Theorem 4.3.12.

4.5 Implementation and Evaluation

In this section, we implement the algorithm presented in Section 4.4, and empirically eval-
uate it. We start with an implementation on synthetic data, which allows us to effectively
validate both Steps II and III of our approach. We then describe the Moral Machine dataset
mentioned in Section 4.1, present the implementation of our algorithm on this dataset, and
evaluate the resultant system for ethical decision making in the autonomous vehicle domain
(focusing on Step III).

4.5.1 Synthetic Data

Setup. We represent the preferences of each voter using a TM process. Let βi denote
the true parameter corresponding to the model of voter i. We sample βi from N (m, Id)
(independently for each voter i), where each mean mj is sampled independently from the
uniform distribution U(−1, 1), and the number of features is d = 10.

In each instance (defined by a subset of alternatives A with |A| = 5), the desired winner
is given by the application of Borda count to the mean of the profiles of the voters. In more
detail, we compute the anonymous preference profile of each voter Πβi(A), and then take
a mean across all the voters to obtain the desired profile 1

N

∑N
i=1 Πβi(A). We then apply

Borda count to this profile to obtain the winner. Note that, since we are dealing with
TM processes, we cannot explicitly construct Πβi(A); we therefore estimate it by sampling
rankings according to the TM process of voter i.
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Figure 4.1: Accuracy of Step II (synthetic
data)
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Figure 4.2: Accuracy of Step III (synthetic
data)

Evaluation of Step II (Learning). In practice, the algorithm does not have access to
the true parameter βi of voter i, but only to pairwise comparisons, from which we learn
the parameters. Thus we compare the computation of the winner (following the approach
described above) using the true parameters, and using the learned parameters as in Step
II. We report the accuracy as the fraction of instances, out of 100 test instances, in which
the two outcomes match.

To generate each pairwise comparison of voter i, for each of N = 20 voters, we first
sample two alternatives x1 and x2 independently from N (0, Id). Then, we sample their
utilities Ux1 and Ux2 from N (βᵀi x1,

1
2
) and N (βᵀi x2,

1
2
), respectively. Of course, the voter

prefers the alternative with higher sampled utility. Once we have the comparisons, we learn
the parameter βi by computing the MLE (as explained in Step II of Section 4.4). In our
results, we vary the number of pairwise comparisons per voter and compute the accuracy to
obtain the learning curve shown in Figure 4.1. Each datapoint in the graph is averaged over
50 runs. Observe that the accuracy quickly increases as the number of pairwise comparisons
increases, and with just 30 pairwise comparisons we achieve an accuracy of 84.3%. With
100 pairwise comparisons, the accuracy is 92.4%.

Evaluation of Step III (Summarization). To evaluate Step III, we assume that we
have access to the true parameters βi, and wish to determine the accuracy loss incurred
in the summarization step, where we summarize the individual TM models into a single
TM model. As described in Section 4.4, we compute β̄ = 1

N

∑N
i=1 βi, and, given a subset

A (which again has cardinality 5), we aggregate using Step IV, since we now have just
one TM process. For each instance, we contrast our computed winner with the desired
winner as computed previously. We vary the number of voters and compute the accuracy
to obtain Figure 4.2. The accuracies are averaged over 50 runs. Observe that the accuracy
increases to 93.9% as the number of voters increases. In practice we expect to have access
to thousands, even millions, of votes (see Section 4.5.2). We conclude that, surprisingly,
the expected loss in accuracy due to summarization is quite small.

Robustness. Our results are robust to the choice of parameters, as we demonstrate in
Appendix C.4.
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Figure 4.3: Moral Machine — Judge interface [Awa+18]. This particular choice is between
a group of pedestrians that includes a female doctor and a cat crossing on a green light,
and a group of passengers including a woman, a male executive, an elderly man, an elderly
woman, and a girl.

4.5.2 Moral Machine Data

As mentioned in Section 4.1, we apply our approach on the Moral Machine dataset only as
a proof of concept. Moral Machine is a platform for gathering data on human perception
of the moral acceptability of decisions made by autonomous vehicles faced with choosing
which humans to harm and which to save [Awa+18]. The main interface of Moral Machine
is the Judge mode. This interface generates sessions of random moral dilemmas. In each
session, a user is faced with 13 instances. Each instance features an autonomous vehicle
with a brake failure, facing a moral dilemma with two possible alternatives, that is, each
instance is a pairwise comparison. Each of the two alternatives corresponds to sacrificing
the lives of one group of characters to spare those of another group of characters. Figure 4.3
shows an example of such an instance. Respondents choose the outcome that they prefer
the autonomous vehicle to make.

Each alternative is characterized by 22 features: relation to the autonomous vehicle
(passengers or pedestrians), legality (no legality, explicitly legal crossing, or explicitly ille-
gal crossing), and counts of 20 character types, including ones like man, woman, pregnant
woman, male athlete, female doctor, dog, etc. When sampling from the 20 characters, some
instances are generated to have an easy-to-interpret tradeoff with respect to some dimen-
sion, such as gender (males on one side vs. females on the other), age (elderly vs. young),
fitness (large vs. fit), etc., while other instances have groups consisting of completely ran-
domized characters being sacrificed in either alternative. Alternatives with all possible
combinations of these features are considered, except for the legality feature in cases when
passengers are sacrificed. In addition, each alternative has a derived feature, “number of
characters,” which is simply the sum of counts of the 20 character types (making d = 23).
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Figure 4.4: Accuracy of Step III (Moral Machine data)

As mentioned in Section 4.1, the Moral Machine dataset consists of preference data from
1,303,778 voters, amounting to a total of 18,254,285 pairwise comparisons. We used this
dataset to learn the β parameters of all 1.3 million voters (Step II, as given in Section 4.4).
Next, we took the mean of all of these β vectors to obtain β̂ (Step III). This gave us
an implemented system, which can be used to make real-time choices between any finite
subset of alternatives.

Importantly, the methodology we used, in Section 4.5.1, to evaluate Step II on the
synthetic data cannot be applied to the Moral Machine data, because we do not know
which alternative would be selected by aggregating the preferences of the actual 1.3 million
voters over a subset of alternatives. However, we can apply a methodology similar to that
of Section 4.5.1 in order to evaluate Step III. Specifically, as in Section 4.5.1, we wish to
compare the winner obtained using the summarized model, with the winner obtained by
applying Borda count to the mean of the anonymous preference profiles of the voters.

An obstacle is that now we have a total of 1.3 million voters, and hence it would take
an extremely long time to calculate the anonymous preference profile of each voter and
take their mean (this was the motivation for having Step III in the first place). So, instead,
we estimate the mean profile by sampling rankings, i.e., we sample a voter i uniformly
at random, and then sample a ranking from the TM process of voter i; such a sampled
ranking is an i.i.d. sample from the mean anonymous profile. Then, we apply Borda count
as before to obtain the desired winner (note that this approach is still too expensive to
use in real time). The winner according to the summarized model is computed exactly as
before, and is just as efficient even with 1.3 million voters.

Using this methodology, we computed accuracy on 3000 test instances, i.e., the fraction
of instances in which the two winners match. Figure 4.4 shows the results as the number
of alternatives per instance is increased from 2 to 10. Observe that the accuracy is as high
as 98.2% at 2 alternatives per instance, and gracefully degrades to 95.1% at 10.

55



4.6 Discussion

As mentioned in Section 4.4, we have made some specific choices to instantiate our ap-
proach. We discuss two of the most consequential choices.

First, we assume that the mode utilities have a linear structure. This means that,
under the TM model, the estimation of the maximum likelihood parameters is a convex
program (see Section 4.4), hence we can learn the preferences of millions of voters, as in the
Moral Machine dataset. Moreover, a straightforward summarization method works well.
However, dealing with a richer representation for utilities would require new methods for
both learning and summarization (Steps II and III).

Second, the instantiation given in Section 4.4 summarizes the N individual TM models
as a single TM model. While the empirical results of Section 4.5 suggest that this method
is quite accurate, even higher accuracy can potentially be achieved by summarizing the
N models as a mixture of K models, for a relatively small K. This leads to two technical
challenges: What is a good algorithm for generating this mixture of, say, TM models?
And, since the framework of Section 4.3 would not apply, how should such a mixture
be aggregated — does the (apparently mild) increase in accuracy come at great cost to
computational efficiency?

Finally, we would like to emphasize that our approach has been applied to the Moral
Machine dataset mainly as a proof of concept, and we are not advocating the use of this
approach as is for this domain in real life. We believe that the implementation of our
algorithm on the Moral Machine dataset has yielded a system which, arguably, can make
credible decisions on ethical dilemmas in the autonomous vehicle domain (when all other
options have failed), but this work is clearly not the end-all solution. To be usable in
the real world, the framework would have to be extended to incorporate ethical and legal
principles that come in to play. Further, a more careful study of ethics is needed to confirm
whether this approach is justifiable for such a domain — as people’s lives are on the line,
and we do not want mob rule to come into play.

For a real world application and deployment of this approach, we would like to point
the reader to follow up work by Lee et al. [Lee+19]. The goal in this work is to design
and deploy an algorithm that would assist a food bank in automating decisions they most
frequently face: given an incoming food donation, which recipient organization (such as
a housing authority or food pantry) should receive it? The voters in the implementation
are stakeholders: donors, recipients, volunteers (who pick up the food from the donor
and deliver it to the recipient), and employees. They have collected roughly 100 pairwise
comparisons from each voter, and apply the virtual democracy framework to automate
decisions. This approach has been deployed to assist 412 Food Rescue, a nonprofit in
Pittsburgh, PA, that aims to fight food waste, and received highly positive reception and
feedback from the several stakeholders involved. Finally, for technical problems that arise
when trying to use this framework for such a domain, we would like to point the reader to
another follow up work by Kahng, Lee, Noothigattu, Procaccia, and Psomas [Kah+19].
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Chapter 5
Loss Functions, Axioms, and Peer Review

It is common to see a handful of reviewers reject a highly novel paper, because they view,
say, extensive experiments as far more important than novelty, whereas the community as
a whole would have embraced the paper. More generally, the disparate mapping of criteria
scores to final recommendations by different reviewers is a major source of inconsistency in
peer review. In this chapter, we present a framework inspired by empirical risk minimization
(ERM) for learning the community’s aggregate mapping. The key challenge that arises is
the specification of a loss function for ERM. We consider the class of L(p, q) loss functions,
which is a matrix-extension of the standard class of Lp losses on vectors; here the choice of
the loss function amounts to choosing the hyperparameters p, q ∈ [1,∞]. To deal with the
absence of ground truth in our problem, we instead draw on computational social choice
to identify desirable values of the hyperparameters p and q. Specifically, we characterize
p = q = 1 as the only choice of these hyperparameters that satisfies three natural axiomatic
properties. Finally, we implement and apply our approach to reviews from IJCAI 2017.

5.1 Introduction

The essence of science is the search for objective truth, yet scientific work is typically
evaluated through peer review1 — a notoriously subjective process [Chu05; Lam09; BMS87;
HGC03; Mah77; KTP77]. One prominent source of subjectivity is the disparity across
reviewers in terms of their emphasis on the various criteria used for the overall evaluation
of a paper. Lee [Lee15] refers to this disparity as commensuration bias, and describes it as
follows:

“In peer review, reviewers, editors, and grant program officers must make in-
terpretive decisions about how to weight the relative importance of qualitatively
different peer review criteria — such as novelty, significance, and methodologi-
cal soundness — in their assessments of a submission’s final/overall value. Not
all peer review criteria get equal weight; further, weightings can vary across
reviewers and contexts even when reviewers are given identical instructions.”

1Even papers about peer review are subject to peer review, the irony of which has not escaped us.
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Lee [Lee15] further argues that commensuration bias “illuminates how intellectual priorities
in individual peer review judgments can collectively subvert the attainment of community-
wide goals” and that it “permits and facilitates problematic patterns of publication and
funding in science.” There have been, however, very few attempts to address this problem.

A fascinating exception, which serves as a case in point, is the 27th AAAI Conference
on Artificial Intelligence (AAAI 2013). Reviewers were asked to score papers, on a scale
of 1–6, according to the following criteria: technical quality, experimental analysis, formal
analysis, clarity/presentation, novelty of the question, novelty of the solution, breadth
of interest, and potential impact. The admirable goal of the program chairs was to select
“exciting but imperfect papers” over “safe but solid” papers, and, to this end, they provided
detailed instructions on how to map the foregoing criteria to an overall recommendation.
For example, the preimage of ‘strong accept’ is “a 5 or 6 in some category, no 1 in any
category,” that is, reviewers were instructed to strongly accept a paper that has a 5 or
6 in, say, clarity, but is below average according to each and every other criterion (i.e.,
a clearly boring paper). It turns out that the handcrafted mapping did not work well,
and many of the reviewers chose to not follow these instructions. Indeed, handcrafting
such a mapping requires specifying an 8-dimensional function, which is quite a non-trivial
task.2 Consequently, in this paper we do away with a manual handcrafting approach to
this problem.

Instead, we propose a data-driven approach based on machine learning, designed to
learn a mapping from criteria scores to recommendations capturing the opinion of the entire
(reviewer) community. From a machine learning perspective, the examples are reviews, each
consisting of criteria scores (the input point) and an overall recommendation (the label).
We make the innocuous assumption that each reviewer has a monotonic mapping in mind,
in the sense that a paper whose scores are at least as high as those of another paper on
every criterion would receive an overall recommendation that is at least as high; the reviews
submitted by a particular reviewer can be seen as observations of that mapping. Given this
data, our goal is to learn a single monotonic mapping that minimizes a loss function (which
we discuss momentarily). We can then apply this mapping to the criteria scores associated
with each review to obtain new overall recommendations, which replace the original ones.

Our approach to learn this mapping is inspired by empirical risk minimization (ERM).
In more detail, for some loss function, our approach is to find a mapping that, among all
monotonic mappings from criteria scores to the overall scores, minimizes the loss between
its outputs and the overall scores given by reviewers across all reviews. However, the choice
of loss function may significantly affect the final outcome, so that choice is a key issue.

Specifically, we focus on the family of L(p, q) loss functions, with hyperparameters
p, q ∈ [1,∞], which is a matrix-extension of the more popular family of Lp losses on
vectors. Our question, then, is:

What values of the hyperparameters p ∈ [1,∞] and q ∈ [1,∞] in the specifica-

2See also [MA08] for a similar case in the peer-review process of the OSDI conference – OSDI 2006 did
not allow reviewers to report an overall score, but instead, the PC co-chairs synthesized this score from
a weighted combination of criteria scores. Here, we instead take a community-based approach and learn
a mapping common to the community of reviewers. Further, we do not assume linear aggregation of the
criteria scores, but allow a more general monotonic mapping.
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tion of the L(p, q) loss function should be used?

A challenge we must address is the absence of any ground truth in peer review. To this
end, take the perspective of computational social choice [Bra+16], since our framework ag-
gregates individual opinions over mappings into a consensus mapping. From this viewpoint,
it is natural to select the loss function so that the resulting aggregation method satisfies
socially desirable properties, such as consensus (if all reviewers agree then the aggregate
mapping should coincide with their recommendations), efficiency (if one paper dominates
another then its overall recommendation should be at least as high), and strategyproofness
(reviewers cannot pull the aggregate mapping closer to their own recommendations by
misreporting them).

With this background, the main contributions of this paper are as follows. We first
provide a principled framework for addressing the issue of subjectivity regarding the various
criteria in peer review.

Our main theoretical result is a characterization theorem that gives a decisive answer
to the question of choosing the loss function for ERM: the three aforementioned properties
are satisfied if and only if the hyperparameters are set as p = q = 1. This result singles out
an instantiation of our approach that we view as particularly attractive and well grounded.

We also provide empirical results, which analyze properties of our approach when ap-
plied to a dataset of 9197 reviews from IJCAI 2017. One vignette is that the papers selected
by L(1, 1) aggregation have a 79.2% overlap with actual list of accepted papers, suggesting
that our approach makes a significant difference compared to the status quo (arguably for
the better).

Finally, we note that the approach taken in this paper may find other applications.
Indeed, the problem of selecting a loss function is ubiquitous in machine learning [Ros+04;
MV08; MBM18], and the axiomatic approach provides a novel way of addressing it. Go-
ing beyond loss functions, machine learning researchers frequently face the difficulty of
picking an appropriate hypothesis class or values for certain hyperparameters.3 Thus, in
problem settings where such choices must be made — particularly in emerging applications
of machine learning (such as peer review) — the use of natural axioms can help guide these
choices.

5.2 Our Framework

Suppose there are n reviewers R = {1, 2, . . . , n}, and a set P of m papers, denoted using
letters such as a, b, c. Each reviewer i reviews a subset of papers, denoted by P (i) ⊆ P .
Conversely, let R(a) denote the set of all reviewers who review paper a. Each reviewer
assigns scores to each of their papers on d different criteria, such as novelty, experimental
analysis, and technical quality, and also gives an overall recommendation. We denote the
criteria scores given by reviewer i to paper a by xia, and the corresponding overall recom-
mendation by yia. Let X1,X2, . . . ,Xd denote the domains of the d criteria scores, and let
X = X1 × X2 × · · · × Xd. Also, let Y denote the domain of the overall recommendations.

3Popular techniques such as cross-validation for choosing hyperparameters also in turn depend on
specification of a loss function.
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For concreteness, we assume that each Xk as well as Y is the real line. However, our results
hold more generally, even if these domains are non-singleton intervals in R, for instance.

We further assume that each reviewer has a monotonic function in mind that they use
to compute the overall recommendation for a paper from its criteria scores. By a monotonic
function, we mean that given any two score vectors x and x′, if x is greater than or equal
to x′ on all coordinates, then the function’s value on x must be at least as high as its value
on x′. Formally, for each reviewer i, there exists g?i ∈ F such that yia = g?i (xia) for all
a ∈ P (i), where

F = {f : X→ Y | ∀x,x′ ∈ X,x ≥ x′ ⇒ f(x) ≥ f(x′)}

is the set of all monotonic functions.

5.2.1 Loss Functions

Recall that our goal is to use all criteria scores, and their corresponding overall recom-
mendations, to learn an aggregate function f̂ that captures the opinions of all reviewers
on how criteria scores should be mapped to recommendations. Inspired by empirical risk
minimization, we do this by computing the function in F that minimizes the L(p, q) loss
on the data. In more detail, given hyperparameters p, q ∈ [1,∞], we compute

f̂ ∈ argmin
f∈F


∑
i∈R

 ∑
a∈P (i)

|yia − f(xia)|p

q
p


1
q

. (5.1)

In words, for a function f , the L(p, q) loss is the Lq norm taken over the loss associated
with individual reviewers, where the latter loss is defined as the Lp norm computed on
the error of f with respect to the reviewer’s overall recommendations. The L(p, q) loss is
a matrix-extension of the more popular Lp losses on vectors, and relates to the L(p, q)
norm of a matrix which has had many applications in machine learning [Din+06; KDH11;
Nie+10]. We refer to aggregation by minimizing L(p, q) loss as defined in Equation (5.1)
as L(p, q) aggregation.

Equation (5.1) does not specify how to break ties between multiple minimizers. For

concreteness, we select the minimizer f̂ with minimum empirical L2 norm. Formally, letting

F̂ = argmin
f∈F


∑
i∈R

 ∑
a∈P (i)

|yia − f(xia)|p

q
p


1
q

be the set of all L(p, q) loss minimizers, we break ties by choosing

f̂ ∈ argmin
f∈F̂

√∑
i∈R

∑
a∈P (i)

f(xia)2. (5.2)

Observe that since the L(p, q) loss and constraint set are convex, F̂ is also a convex set.

Hence, f̂ as defined by Equation (5.2) is unique. We emphasize that although we use
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minimum L2 norm for tie-breaking, all of our results hold under any reasonable tie-breaking
method, such as the minimum Lk norm for any k ∈ (1,∞).

Once the function f̂ has been computed, it can be applied to every review (for all

reviewers i and papers a) to obtain a new overall recommendation f̂(xia). There is a sep-
arate — almost orthogonal — question of how to aggregate the overall recommendations of
several reviewers on a paper into a single recommendation (typically this is done by taking
the average). In our theoretical results we are agnostic to how this additional aggregation
step is performed, but we return to it in our experiments in Section 5.4.

We remark that an alternative approach would be to learn a monotonic function ĝi :
X→ Y for each reviewer (which best captures their recommendations), and then aggregate

these functions into a single function f̂ . We chose not to pursue this approach, because in
practice there are very few examples per reviewer, so it is implausible that we would be
able to accurately learn the reviewers’ individual functions.

5.2.2 Axiomatic Properties

In social choice theory, the most common approach — primarily attributed to Arrow
[Arr51] — for comparing different aggregation methods is to determine which desirable
axioms they satisfy. We take the same approach in order to determine the values of the
hyperparameters p and q for the L(p, q) aggregation in Equation (5.1).

We stress that axioms are defined for aggregation methods and not aggregate func-
tions. Informally, an aggregation method is a function that takes as input all the reviews
{(xia, yia)}i∈R,a∈P (i), and outputs an aggregate function f̂ : X → Y. We do not define an
aggregation method formally to avoid introducing cumbersome notation that will largely
be useless later. It is clear that for any choice of hyperparameters p, q ∈ [1,∞], L(p, q)
aggregation (with tie-breaking as defined by Equation 5.2) is an aggregation method.

Social choice theory essentially relies on counterfactual reasoning to identify scenarios
where it is clear how an aggregation method should behave. To give one example, the
Pareto efficiency property of voting rules states that if all voters prefer alternative a to
alternative b, then b should not be elected; this situation is extremely unlikely to occur,
yet Pareto efficiency is obviously a property that any reasonable voting must satisfy. With
this principle in mind, we identify a setting in our problem where the requirements are
very clear, and then define our axioms in that setting.

For all of our axioms, we restrict attention to scenarios where every reviewer reviews
every paper, that is, P (i) = P for every i. Moreover, we assume that the papers have
‘objective’ criteria scores, that is, the criteria scores given to a paper are the same across
all reviewers, so the only source of disagreement is how the criteria scores should be mapped
to an overall recommendation. We can then denote the criteria scores of a paper a simply as
xa, as opposed to xia, since they do not depend on i. We stress that our framework does not
require these assumptions to hold — they are only used in our axiomatic characterization,
namely Theorem 5.3.1 in the next section.

An axiom is satisfied by an aggregation method if its statement holds for every possible
number of reviewers n and number of papers m, and for all possible criteria scores and
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overall recommendations. We start with the simplest axiom, consensus, which informally
states that if there is a paper such that all reviewers give it the same overall recommenda-
tion, then f̂ must agree with the reviewers; this axiom is closely related to the unanimity
axiom in social choice.

Axiom 5.2.1 (Consensus). For any paper a ∈ P, if all reviewers report identical overall

recommendations y1a = y2a = · · · = yma = r for some r ∈ Y, then f̂(xa) = r.

Before presenting the next axiom, we require another definition: we say that paper
a ∈ P dominates paper b ∈ P if there exists a bijection σ : R → R such that for all i ∈ R,
yia ≥ yσ(i)b. Equivalently (and less formally), paper a dominates paper b if the sorted overall
recommendations given to a pointwise-dominate the sorted overall recommendations given
to b. Intuitively, in this situation, a should receive a (weakly) higher overall recommendation
than b, which is exactly what the axiom requires; it is similar to the classic Pareto efficiency
axiom mentioned above.

Axiom 5.2.2 (Efficiency). For any pair of papers a, b ∈ P, if a dominates b, then f̂(xa) ≥
f̂(xb).

Our positive result, which will be presented shortly, satisfies this notion of efficiency. On
the other hand, we also use this axiom to prove a negative result; an important note is that
the negative result requires a condition that is significantly weaker than the aforementioned
definition of efficiency. We revisit this point at the end of Section 5.3.2.

Our final axiom is strategyproofness, a game-theoretic property that plays a major role
in social choice theory [Mou83]. Intuitively, strategyproofness means that reviewers have
no incentive to misreport their overall recommendations: They cannot bring the aggregate
recommendations — the community’s consensus about the relative importance of various
criteria — closer to their own through strategic manipulation.

Axiom 5.2.3 (Strategyproofness). For each reviewer i ∈ R, and all possible manipulated
recommendations y′i ∈ Ym, if yi = (yi1, yi2, . . . , yim) is replaced with y′i, then

‖(f̂(x1), . . . , f̂(xm))− yi‖2 ≤ ‖(ĝ(x1), . . . , ĝ(xm))− yi‖2, (5.3)

where f̂ and ĝ are the aggregate functions obtained from the original and manipulated
reviews, respectively.

The implicit ‘utilities’ in this axiom (5.3) are defined in terms of the L2 norm. This
choice is made only for concreteness, and all our results hold for any norm L`, ` ∈ [1,∞],
in the definition (5.3).

5.3 Main Result

In Section 5.2, we introduced L(p, q) aggregation as a family of rules for aggregating in-
dividual opinions towards a consensus mapping from criteria scores to recommendations.
But that definition, in and of itself, leaves open the question of how to choose the values
of p and q in a way that leads to the most socially desirable outcomes. The axioms of
Section 5.2.2 allow us to give a satisfying answer to this question. Specifically, our main
theoretical result is a characterization of L(p, q) aggregation in terms of the three axioms.
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Theorem 5.3.1. L(p, q) aggregation, where p, q ∈ [1,∞], satisfies consensus, efficiency,
and strategyproofness if and only if p = q = 1.

We remark that for p = q, Equation (5.1) does not distinguish between different review-
ers, that is, the aggregation method pools all reviews together. We find this interesting,
because the L(p, q) aggregation framework does have enough power to make that distinc-
tion, but the axioms guide us towards a specific solution, L(1, 1), which does not.

Turning to the proof of the theorem, we start from the easier ‘if’ direction.

5.3.1 p = q = 1 Satisfies All Three Axioms

Lemma 5.3.2. L(p, q) aggregation with p = q = 1 satisfies consensus, efficiency and
strategyproofness.

Proof. The key idea of the proof lies in the form taken by the minimizer of L(1, 1) loss.
When each reviewer reviews every paper and the papers have objective criteria scores,
L(1, 1) aggregation reduces to computing

f̂ ∈ argmin
f∈F

{∑
i∈R

∑
a∈P
|yia − f(xa)|

}
, (5.4)

where ties are broken by picking the minimizer with minimum L2 norm. We claim that the
aggregate function is given by

f̂(xa) = left-med({yia}i∈R) ∀a ∈ P ,

where left-med(·) of a set of points is their left median. We prove this claim by showing
four parts:

(i) f̂ is a valid function,

(ii) f̂ is an unconstrained minimizer of the objective in (5.4),

(iii) f̂ satisfies the constraints of (5.4), i.e., f̂ ∈ F , and

(iv) f̂ has the minimum L2 norm among all minimizers of (5.4).

We start by proving part (i). This part can only be violated if there are two papers a

and b such that xa = xb, but left-med({yia}i∈R) 6= left-med({yib}i∈R), leading to f̂ having
two function values for the same x-value. However, we assumed that each reviewer i has
a function g?i used to score the papers. So, for the two papers a and b, we would have
yia = g?i (xa) = g?i (xb) = yib for every i, giving us left-med({yia}i∈R) = left-med({yib}i∈R).

Therefore, f̂ is a valid function.
For part (ii), consider the optimization problem (5.4) without any constraints. Denote

the objective function as G(f). Rearranging terms, we obtain

G(f) =
∑
a∈P

∑
i∈R
|yia − f(xa)| . (5.5)
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Consider the inner summation
∑

i∈R |yia − f(xa)|; it is obvious that this quantity is mini-
mized when f(xa) is any median of the {yia}i∈R values. Hence, we have

G(f) =
∑
a∈P

∑
i∈R
|yia − f(xa)|

≥
∑
a∈P

∑
i∈R
|yia − left-med({yia}i∈R)|

= G(f̂),

(5.6)

where f is an arbitrary function. Therefore, f̂ minimizes the objective function even in the
absence of any constraints, proving part (ii).

Turning to part (iii), we show that f̂ satisfies the monotonicity constraints, i.e., f̂ ∈ F .
Suppose a, b ∈ P are such that xa ≥ xb. Using the fact that each reviewer i scores papers
based on the function g?i , we have yia = g?i (xa) and yib = g?i (xb). And since g?i ∈ F
obeys monotonicity constraints, we obtain yia ≥ yib for every i. This trivially implies that
left-med({yia}i∈R) ≥ left-med({yib}i∈R), i.e., f̂(xa) ≥ f̂(xb), completing part (iii).

Finally, we prove part (iv). Observe that Equation (5.6) is a strict inequality if there is
a paper a for which f(xa) is not a median of the {yia}i∈R values. In other words, the only

functions f that have the same objective function value as f̂ are of the form

f(xa) ∈ med({yia}i∈R) ∀a ∈ P , (5.7)

where med(·) of a collection of points is the set of all points between (and including) the
left and right medians. Hence, all other minimizers of (5.4) must satisfy Equation (5.7).

Observe that f̂ is pointwise smaller than any of these functions, since it computes the left
median at each of the x-values. Therefore, f̂ has the minimum L2 norm among all possible
minimizers of (5.4), completing the proof of part (iv).

Combining all four parts proves that f̂ is indeed the aggregate function chosen by L(1, 1)
aggregation. We use this to prove that L(1, 1) aggregation satisfies consensus, efficiency and
strategyproofness.

Consensus. Let a ∈ P be a paper such that y1a = y2a = · · · = yma = r for some r.
Then, left-med({yia}i∈R) = r. Hence, f̂(xa) = r, satisfying consensus.

Efficiency. Let a, b ∈ P be such that a dominates b. In other words, the sorted overall
recommendations given to a pointwise-dominate the sorted overall recommendations given
to b. So, by definition, left-med({yia}i∈R) is at least as large as left-med({yib}i∈R). That is,

f̂(xa) ≥ f̂(xb), satisfying efficiency.
Strategyproofness. Let i be an arbitrary reviewer. Observe that in this setting, the aggre-

gate score f̂(xa) of a paper a depends only on the score yia and not on other scores {yib}b6=a
given by reviewer i. In other words, the only way to manipulate f̂(xa) = left-med({yi′a}i′∈R)

is by changing yia. Consider three cases. Suppose yia < f̂(xa). In this case, if reviewer i

reports y′ia ≤ f̂(xa), then there is no change in the aggregate score of a. On the other hand,

if y′ia > f̂(xa), then either the aggregate score of a remains the same or increases, making

things only worse for reviewer i. The other case of yia > f̂(xa) is symmetric to yia < f̂(xa).
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Consider the third case, yia = f̂(xa). In this case, manipulation can only make things

worse since we already have |yia − f̂(xa)| = 0. In summary, reporting y′ia instead of yia
cannot help decrease |yia− f̂(xa)|. Also, recall that yia does not affect the aggregate scores
of other papers, and hence manipulation of yia does not help them either. Therefore, by
manipulating any of the yia scores, reviewer i cannot bring the aggregate recommendations
closer to her own, proving strategyproofness.

5.3.2 Violation of the Axioms When (p, q) 6= (1, 1)

We now tackle the harder ‘only if’ direction of Theorem 5.3.1. We do so in three steps:
efficiency is violated by p ∈ (1,∞) and q = 1 (Lemma 5.3.3), strategyproofness is violated
by L(p, q) aggregation for all q > 1 (Lemma 5.3.4), and consensus is violated by p = ∞
and q = 1 (Lemma 5.3.5). Together, the three lemmas leave p = q = 1 as the only option.
Below we state the lemmas and give some proof ideas; the theorem’s full proof is relegated
to Appendix D.1.

It is worth noting that, although we have presented the lemmas as components in the
proof of Theorem 5.3.1, they also have standalone value (some more than others). For
example, if one decided that only strategyproofness is important, then Lemma 5.3.4 below
would give significant guidance on choosing an appropriate method.

Violation of efficiency

In our view, the following lemma presents the most interesting and counter-intuitive result
in the paper.

Lemma 5.3.3. L(p, q) aggregation with p ∈ (1,∞) and q = 1 violates efficiency.

It is quite surprising that such reasonable loss functions violate the simple requirement
of efficiency. In what follows we attempt to explain this phenomenon via a connection
between our problem and the notion of the ‘Fermat point’ of a triangle [Spa96]. The
explanation provided here demonstrates the negative result for L(2, 1) aggregation. The
complete proof of the lemma for general values of p ∈ (1,∞) is quite involved, as can be
seen in Appendix D.1.

Consider a setting with 3 reviewers and 2 papers, where each reviewer reviews both
papers. We let x1 and x2 denote the respective objective criteria scores of the two papers.
Assume that no score in {x1,x2} is pointwise greater than or equal to the other score in
that set. Let the overall recommendations given by the reviewers be y11 = z, y21 = 0,
y31 = 0 to the first paper and y12 = 0, y22 = 1 and y23 = 0 to the second paper. Under
these scores, let f̂ denote the aggregate function that minimizes the L(2, 1) loss.

The Fermat point of a triangle is a point such that the sum of its (Euclidean) distances
from all three vertices is minimized. Consider a triangle in R2 with vertices (z, 0), (0, 1)
and (0, 0). Setting z = 2, one can use known algorithms to compute the Fermat point of
this triangle as (0.25, 0.30). More generally, when the vertex (z, 0) is moved away from the
rest of the triangle (by increasing z), the Fermat point paradoxically biases towards the
other (second) coordinate.
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Connecting back to our original problem, by definition, the Fermat point of this triangle
is exactly (f̂(x1), f̂(x2)). When z = 2, paper 1 receives scores (2, 0, 0) in sorted order, which

dominates the sorted scores (1, 0, 0) of paper 2. However the aggregate score f̂(x1) = 0.25

of paper 1 is strictly smaller than f̂(x2) = 0.30 of paper 2, thereby violating efficiency for
the L(2, 1) loss.

As a final but important remark, the proof of Lemma 5.3.3 only requires a significantly
weaker notion of efficiency. In this weaker notion, we consider two papers a and b such that
their reviews are symmetric (formally, switching the labels a and b and switching the labels
of some reviewers leaves the data unchanged). In this case, reducing the review scores of

paper b must lead to f̂(xa) ≥ f̂(xb).

Violation of strategyproofness

Lemma 5.3.4. L(p, q) aggregation with q ∈ (1,∞] violates strategyproofness.

We prove the lemma via a simple construction with just one paper and two reviewers,
who give the paper overall recommendations of 1 and 0, respectively. For q ∈ (1,∞), the
aggregate score is

f̂ = argmin
f∈R

{
|1− f |q + |f |q

}
,

and for q =∞, it is
f̂ = argmin

f∈R
max

(
|1− f |, |f |

)
.

Either way, the unique minimum is obtained at an aggregate score of 0.5. If reviewer
1 reported an overall recommendation of 2, however, the aggregate score would be 1,
which matches her ‘true’ recommendation, thereby violating strategyproofness. See Ap-
pendix D.1.2 for the complete proof.

Violation of consensus

Lemma 5.3.5. L(p, q) aggregation with p =∞ and q = 1 violates consensus.

Lemma 5.3.5 is established via another simple construction: two papers, two reviewers,
and overall recommendations

y =

[
0 1
2 1

]
,

where yia denotes the overall recommendation given by reviewer i to paper a. Crucially,
the two reviewers agree on an overall recommendation of 1 for paper 2, hence the aggregate
score of this paper must also be 1. But we show that L(∞, 1) aggregation would not return
an aggregate score of 1 for paper 2. The formal proof appears in Appendix D.1.3.

5.4 Implementation and Experimental Results

In this section, we provide an empirical analysis of a few aspects of peer review through
the approach of this paper. We employ a dataset of reviews from the 26th International
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# of reviews by a reviewer 1 2 3 4 5 6 7 8 ≥ 9
Frequency 238 96 92 120 146 211 628 187 7

Table 5.1: Distribution of number of papers reviewed by a reviewer.

Joint Conference on Artificial Intelligence (IJCAI 2017), which was made available to us
by the program chair. To our knowledge, we are the first to use this dataset.

At submission time, authors were asked if review data for their paper could be included
in an anonymized dataset, and, similarly, reviewers were asked whether their reviews could
be included; the dataset provided to us consists of all reviews for which permission was
given. Each review is tagged with a reviewer ID and paper ID, which are anonymized for
privacy reasons. The criteria used in the conference are ‘originality’, ‘relevance’, ‘signifi-
cance’, ‘quality of writing’ (which we call ‘writing’), and ‘technical quality’ (which we call
‘technical’), and each is rated on a scale from 1 to 10. Overall recommendations are also
on a scale from 1 to 10. In addition, information about which papers were accepted and
which were rejected is included in the dataset.

The number of papers in the dataset is 2380, of which 649 were accepted, which amounts
to 27.27%. This is a large subset of the 2540 submissions to the conference, of which 660
were accepted, for an actual acceptance rate of 25.98%. The number of reviewers in the
dataset is 1725, and the number of reviews is 9197. All but nine papers in the dataset
have three reviews (485 papers), four reviews (1734 papers), or five reviews (152) papers.
Table 5.1 shows the distribution of the number of papers reviewed by reviewers.

We apply L(1, 1) aggregation (i.e., p = q = 1), as given in Equation (5.1), to this dataset

to learn the aggregate function. Let us denote that function by f̃ . The optimization problem
in Equation (5.1) is convex, and standard optimization packages can efficiently compute
the minimizer. Hence, importantly, computational complexity is a nonissue in terms of
implementing our approach.

Once we compute the aggregate function f̃ , we calculate the aggregate overall recom-
mendation of each paper a by taking the median of the aggregate reviewer scores for that
paper obtained by applying f̃ to the objective scores:

yf̃ (a) = median({f̃(xia)}i∈R(a)) ∀a ∈ P . (5.8)

Recalling that 27.27% of the papers in the dataset were actually accepted to the conference,
in our experiments we define the set of papers accepted by the aggregate function f̃ as
the the top 27.27% of papers according to their respective yf̃ values. We now present the
specific experiments we ran, and their results.

5.4.1 Varying Number of Reviewers

In our first experiment, for each value of a parameter k ∈ {1, . . . , 5}, we subsampled k
distinct reviews for each paper uniformly at random from the set of all reviews for that
paper (if the paper had fewer than k to begin with then we retained all the reviews). We

then computed an aggregate function, f̂k, via L(1, 1) aggregation applied only to these
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Figure 5.1: Fraction overlap as number of
reviews per paper is restricted. Error bars
depict 95% confidence intervals, but may be
too small to be visible for k = 4, 5.
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Figure 5.2: Frequency of losses of the re-
viewers for L(1, 1) aggregation, normalized
by the number of papers reviewed by the
respective reviewers.

subsampled reviews. Next, we found the set of top 27.27% papers as given by f̂k applied
to the subsampled reviews. Finally, we compared the overlap of this set of top papers for
every value of k with the set of top 27.27% papers as dictated by the overall aggregate
function f̃ .

The results from this experiment are plotted in Figure 5.1, and lead to several obser-
vations. First, the incremental overlap from k = 4 to 5 is very small because there are
very few papers that had 5 or more reviews. Second, we see that the amount of overlap
monotonically increases with the number of reviewers per paper k, thereby serving as a
sanity check on the data as well as our methods. Third, we observe the overlap to be quite
high (≈ 60%) even with a single reviewer per paper.

5.4.2 Loss Per Reviewer

Next, we look at the loss of different reviewers, under f̃ (obtained by L(1, 1) aggregation).
In order for the losses to be on the same scale, we normalize each reviewer’s loss by the
number of papers reviewed by them. Formally, the normalized loss of reviewer i (for p = 1)
is

1

|P (i)|
∑
a∈P (i)

|yia − f̃(xia)|.

The normalized loss averaged across reviewers is found to be 0.470, and the standard devi-
ation is 0.382. Figure 5.2 shows the distribution of the normalized loss of all the reviewers.
Note that the normalized loss of a reviewer can fall in the range [0, 9]. These results thus

indicate that the function f̃ is indeed at least a reasonable representation of the mapping
of the broader community.
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5.4.3 Overlap of Accepted Papers

We also compute the overlap between the set of top 27.27% papers selected by L(1, 1)

aggregation f̃ with the actual 27.27% accepted papers. It is important to emphasize that
we believe the set of papers selected by our method is better than any hand-crafted or
rule-based decision using the scores, since this aggregate represents the opinion of the
community. Hence, to be clear, we do not have a goal of maximizing the overlap. Never-
theless, a very small overlap would mean that our approach is drastically different from
standard practice, which would potentially be disturbing. We find that the overlap is 79.2%,
which we think is quite fascinating — our approach does make a significant difference, but
the difference is not so drastic as to be disconcerting.

Out of intellectual curiosity, we also computed the pairwise overlaps of the papers
accepted by L(p, q) aggregation, for p, q ∈ {1, 2, 3}. We find that the choice of the reviewer-
norm hyperparameter q has more influence than the paper-norm hyperparameter p; we
refer the reader to Appendix D.2.1 for details. Finally, in Appendix D.2.2 we present
visualizations of L(1, 1) aggregation, which provide insights into the preferences of the
community.

5.5 Discussion

We address the problem of subjectivity in peer review by combining approaches from
machine learning and social choice theory. A key challenge in the setting of peer review
(e.g., when choosing a loss function) is the absence of ground truth, and we overcome this
challenge via a principled, axiomatic approach.

One can think of the theoretical results of Section 5.3 as supporting L(1, 1) aggregation
using the tools of social choice theory, whereas the empirical results of Section 5.4 focus
on studying its behavior on real data. Understanding this helps clear up another possible
source of confusion: are we not overfitting by training on a set of reviews, and then ap-
plying the aggregate function to the same reviews? The answer is negative, because the
process of learning the function f̂ amounts to an aggregation of opinions about how cri-
teria scores should be mapped to overall recommendations. Applying it to the data yields
recommendations in Y, whereas this function from X to Y lives in a different space.

That said, it is of intellectual interest to understand the statistical aspects of estimating
the community’s consensus mapping function, assuming the existence of a ground truth. In
more detail, suppose that each reviewer’s true function g?i is a noisy version of some under-
lying function f ?? that represents the community’s beliefs. Then can L(1, 1) aggregation
recover the function f ?? (in the statistical consistency sense)? If so, then with what sam-
ple complexity? At a conceptual level, this non-parametric estimation problem is closely
related to problems in isotonic regression [Sha+16; GW07; CGS18]. The key difference is
that the observations in our setting consist of evaluations of multiple functions, where each
such function is a noisy version of the original monotonic function. In contrast, isotonic
regression is primarily concerned with noisy evaluations of a common function. Neverthe-
less, the insights from isotonic regression suggest that the naturally occurring monotonicity
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assumption of our setting can yield attractive — and sometimes near-parametric [Sha+16;
SBW18] — rates of estimation.

Our work focuses on learning one representative aggregate mapping for the entire com-
munity of reviewers. Instead, the program chairs of a conference may wish to allow for
multiple mappings that represent the aggregate opinions of different sub-communities (e.g.,
theoretical or applied researchers). In this case, one can modify our framework to also learn
this (unknown) partition of reviewers and/or papers into multiple sub-communities with
different mapping functions, and frame the problem in terms of learning a mixture model.
The design of computationally efficient algorithms for L(p, q) aggregation under such a
mixture model is a challenging open problem.

As a final remark, we see our work as an unusual synthesis between computational
social choice and machine learning. We hope that our approach will inspire exploration of
additional connections between these two fields of research, especially in terms of view-
ing choices made in machine learning — often in an ad hoc fashion — through the lens of
computational social choice.
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Chapter 6
Axioms for Learning from Pairwise
Comparisons

To be well-behaved, systems that process preference data must satisfy certain conditions
identified by economic decision theory and by social choice theory. In ML, preferences and
rankings are commonly learned by fitting a probabilistic model to noisy preference data.
The behavior of this learning process from the view of economic theory has previously been
studied for the case where the data consists of rankings. In practice, it is more common to
have only pairwise comparison data, and the formal properties of the associated learning
problem are more challenging to analyze. We show that a large class of random utility
models (including the Thurstone–Mosteller Model), when estimated using the MLE, satisfy
a Pareto efficiency condition. These models also satisfy a strong monotonicity property,
which implies that the learning process is responsive to input data. On the other hand, we
show that these models fail certain other consistency conditions from social choice theory,
and in particular do not always follow the majority opinion. Our results inform existing
and future applications of random utility models for societal decision making.

6.1 Introduction

More than two centuries ago, the marquis de Condorcet [Con85] suggested a statistical
interpretation of voting. Each vote, Condorcet argued, can be seen as a noisy estimate
of a ground-truth ranking of the alternatives. A voting rule should aggregate votes into
a ranking that is most likely to coincide with the ground truth. Although Condorcet put
forward a specific noise model, his reasoning applies to any random noise model, which is
a distribution over votes parameterized by a ground truth ranking [CS05; CPS16].

Until NeurIPS 2014, this statistical approach to voting was studied in parallel to the
more common normative approach, which evaluates voting rules based on axiomatic prop-
erties. But the two approaches converged in a paper by Azari Soufiani et al. [APX14a],
whose key idea was to determine whether maximum likelihood estimators (MLEs) for two
noise models satisfy basic axiomatic properties. Their results were sharpened and extended

71



by Xia [Xia16].

Our point of departure is that instead of random noise models we consider random
utility models, where each alternative x has a utility βx, and the probability of drawing a
pairwise comparison that puts x above y depends on βx and βy. For example, under the
well-known Thurstone–Mosteller Model [Thu27; Mos51], this pairwise comparison would
be generated by sampling u(x) and u(y) from normal distributions with means βx and βy,
respectively, and the same variance.

Our research question, then, is this:

For a given random utility model, consider the aggregation rule that takes pair-
wise comparisons between alternatives as input and returns the ranking over
alternatives defined by the MLE; which axioms does it satisfy?

6.1.1 Why Is the Research Question Important?

The MLE, as an aggregation rule, is statistically well-motivated. From a voter’s perspective,
though, it is not immediately clear the the MLE is a good rule that adequately aggregates
preferences. In particular, in case the statistical assumptions of a random utility fail to
capture reality, the MLE may give a bad result. However, if we can show that the MLE
satisfies standard axioms from voting theory, this implies a certain degree of robustness.
It also provides reassurance that the statistical process cannot fall prey to pathological
behavior in edge cases.

A string of recent papers [Fre+20; Noo+18; Kah+19; Lee+19] proposes a sequence of
systems for automated societal decision making through social choice and machine learning.
They all aggregate pairwise comparisons, by fitting them to random utility models. As these
systems are being deployed to support decisions in non-profits and government, it becomes
crucial to understand normative properties of this framework.1

The work of Freedman et al. [Fre+20] provides a concrete illustration. The paper deals
with prioritization of patients in kidney exchange. They asked workers on Amazon Me-
chanical Turk to decide which of each given pair of patients with chronic kidney disease
(defined by their medical profiles) should receive a kidney, and computed the MLE utilities
assuming the pairwise comparisons were generated by a Bradley–Terry model [Bra84]. The
resulting ranking over profiles was used to help a kidney exchange algorithm prioritize some
patients over others. As is common, the authors pooled pairwise comparisons reported by
many different voters, and fit a single random utility model to the pool, as opposed to
fitting models to individual voters. This move is usually done to improve statistical accu-
racy, but, to an extent, it invalidates the underlying motivation of the noise model, which
imagines a single decision maker with imprecise perception of utilities. Pooling assumes
that a group of agents can be captured by the same model. Given this leap of faith, we
believe that a normative analysis of the process becomes especially important.

Other papers apply an emerging approach called virtual democracy [Kah+19] to auto-
mate decisions in two domains, autonomous vehicles [Noo+18] and food allocation [Lee+19].

1Previous work [APX14a; Xia16] does not apply as it focuses on the aggregation of input rankings (a
special case of pairwise comparisons) through random noise models.
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Lee et al. [Lee+19] asked stakeholders in a nonprofit food rescue organization to report
which of each given pair of recipient organizations should be allocated an incoming food
donation. Unlike Freedman et al. [Fre+20], they fit a random utility model (Thurstone–
Mosteller) to the pairwise comparisons provided by each stakeholder individually, and used
the Borda voting rule to aggregate the predictions given by each of the individual models.
On the one hand, our axiomatic results may justify a move to the pooled approach of Freed-
man et al. [Fre+20], which could improve accuracy. On the other hand, even when learning
individual models, axiomatics can convince voters that their preferences are learned using
a sensible method.

6.1.2 Our Results

We examine four axiomatic properties, suitably adapted to our setting. Informally, they
are:

� Pareto efficiency: If x dominates y in the input dataset, x should be above y in the
MLE ranking.

� Monotonicity: Adding a � b comparisons to the input dataset can only help a and
harm b in the MLE ranking.

� Pairwise majority consistency: If the input dataset is consistent with a ranking over
the alternatives, that ranking must coincide with the MLE ranking.

� Separability: If a is preferred to b in the MLE rankings of two different datasets, a
must also be preferred to b in the MLE ranking of the combined dataset.

The first two properties, Pareto efficiency and monotonicity, have immediate appeal
and seem crucial: a system violating these is not faithful to input preferences. In Sections
6.3 and 6.4 we show that both properties are satisfied by a large class of random utility
models when fitted using MLEs. For monotonicity, our main result, the proof is surprisingly
involved, since we need to reason about the optimum utility values of all alternatives si-
multaneously. (In contrast, for random noise models, monotonicity is a simple consequence
of the definition [APX14a; Xia16].)

The latter two properties are not satisfied by MLEs, for all random utility models sat-
isfying mild conditions. In a way, these negative results illuminate the behavior of random
utility models: The case of pairwise majority consistency illustrates a trade-off, where ran-
dom utility models ensure that a strong preference is respected, even if this leads them to
override a majority preference elsewhere. While negative, we do not see the counterexam-
ples in Sections 6.5 and 6.6 as pathological, though they may suggest contexts in which
the use of random utility models is not appropriate.

6.2 Model

Let X be a finite set of alternatives. For notational simplicity, we let X 2 = {(x, y) : x, y ∈
X , x 6= y} denote the set of distinct pairs of alternatives. Let # : X 2 → N be a dataset of
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pairwise comparisons between alternatives: For x, y ∈ X , #{x � y} is the number of times
x beat y in the dataset.

The (pairwise) comparison graph G# = (X , E) with respect to dataset # is the directed
graph with the alternatives X as the vertices, and edges E such that there exists a directed
edge (u, v) ∈ E iff #{u � v} > 0. We say that G# is connected if its undirected form is
connected, and we call it strongly connected if for all (x, y) ∈ X 2, there is a directed path
from x to y in G#.

Given a dataset, our goal is to learn a random utility model (RUM). A random utility
model specifies, for any two distinct alternatives x, y ∈ X , the probability that when asking
the decision maker to compare x and y, the answer will be x > y. (Due to noise, when
repeatedly querying the same pair, we may see different answers.) For us, a random utility
model is parameterized by a vector β ∈ RX , where βx is an unknown utility value for
x ∈ X . When we ask for a comparison between two alternatives x, y ∈ X , we model the
decision maker as sampling noisy utilities u(x) and u(y) from distributions parameterized
by (and typically centered at) βx and βy. Then, the decision maker reports the comparison
x > y iff u(x) > u(y).

In this paper, we focus on random utility models with i.i.d. noise, so that u(x) = βx +
ζ(x), where ζ(x) ∼ P is i.i.d. across all alternatives. Let F be the CDF of a random variable
which is the difference between two independent random variables with distribution P .
Then the probability that alternative x beats y when they are compared is2

Pr(x � y) = Pr(u(x) > u(y)) = Pr(ζ(y)− ζ(x) < βx − βy) = F (βx − βy). (6.1)

We derived Equation (6.1) from a specific noise model, but it makes sense for any function
F : R→ [0, 1] with CDF-like properties, even if it does not correspond to a noise distribu-
tion P . Indeed, we can take any F which is non-decreasing, satisfies F (∆u) +F (−∆u) = 1
for all ∆u ∈ R, and is such that lim∆u→−∞ F (∆u) = 0 and lim∆u→∞ F (∆u) = 1. We adopt
Equation (6.1) as the general definition of a random utility model for our technical results.

Two of the most common random utility models are

� the Thurstone–Mosteller (TM) model : We sample utility as u(x) = βx+ζ(x), with i.i.d.
noise ζ(x) ∼ N (0, 1/2). This is equivalent to Equation (6.1) with F as the Gaussian
CDF Φ.

� the Bradley–Terry model (equivalent to the Plackett–Luce model restricted to pairwise

comparisons), where Pr(x � y) = eu(x)

eu(x)+eu(y) . This is Equation (6.1) with F as the
logistic function.

We usually assume that F is strictly log-concave, and that it is strictly monotonic
and continuous,3 so that F has an inverse on (0, 1). These conditions hold for Thurstone–
Mosteller and Bradley–Terry.

For a random utility model, given a dataset #, our goal is to find parameters (βx)x∈X
that best fit #. We find these parameters by maximum likelihood estimation. The log-

2We assume P to be a continuous distribution, and so we do not have to worry about ties.
3Continuity of F is guaranteed when the corresponding noise distribution P is continuous.
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likelihood is given by

L(β) =
∑

(x,y)∈X 2

#{x � y} logF (βx − βy).

When the dataset # is clear from the context, we write β̂ ∈ RX for a parameter vector
that maximizes log-likelihood, and say that β̂ is the MLE. Note that if c ∈ R is a scalar,
then L(β) = L(β + c) for all β ∈ RX (since Pr(x � y) depends only on the difference
βx − βy), so the MLE is only defined up to an additive shift. For concreteness, we pick
some r ∈ X , call it the reference alternative, and fix βr = 0; then, we maximize L over
D = {β ∈ RX : βr = 0}.

A random utility model is particularly appropriate when the dataset # consists of
pairwise comparisons which are all reported by a single decision maker. However, in many
cases the dataset is obtained by pooling reports from many agents, for instance to minimize
the labeling effort of each individual agent, or if we have the explicit aim to aggregate
preferences from different agents. Some of the axioms we study are explicitly motivated
by cases where # =

∑
i∈R#i, i.e., the dataset is obtained by pooling individual datasets,

where R is the set of agents. It then seems natural to assume that each agent behaves in
accordance with some random utility model with unknown parameters βi and unknown
CDF-like function Fi. Then the dataset #i is generated by repeatedly querying the agent’s
random utility model for a comparison.

6.2.1 Existence and Boundedness of MLE

Before turning to our main results, we briefly state conditions that guarantee the existence
of a finite MLE, and that guarantee uniqueness (up to a shift).

In some scenarios, no finite β maximizes likelihood, and thus the MLE may not exist.
For instance, if some alternative a beats other alternatives, but is not beaten even a single
time in the dataset, the likelihood can always be strictly increased by increasing βa (when
F is strictly monotonic). Lemma 6.2.1 states a condition under which an MLE exists (i.e.
L(β) has a maximizer). Its proof also provides a weak bound on one such maximizer. The
proofs of the results in this section are in Appendix E.1.

Lemma 6.2.1 (MLE exists). Suppose F is strictly monotonic and continuous. Then the
MLE exists if and only if every connected component of the comparison graph G# is strongly
connected.

For alternative x, y ∈ X , we define the perfect-fit distance between x and y as

δ(x, y) := F−1

(
#{x � y}

#{x � y}+ #{y � x}

)
.

This is the difference in utilities of x and y required for the model to exactly match the
observed frequencies of #{x � y} and #{y � x} in the data. We can check that the MLE
will respect this perfect-fit distance when an alternative has only a single neighbor in the
comparison graph.
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Lemma 6.2.2. Let F be strictly monotonic and continuous. Suppose that for alternative a
there is exactly one alternative b for which #{a � b}+#{b � a} > 0. If both #{a � b} > 0
and #{b � a} > 0, then any MLE β̂ satisfies β̂a − β̂b = δ(a, b).

We can use this result to provide a stronger bound on the MLE than the one from
Lemma 6.2.1, which holds under slightly stronger conditions.

Lemma 6.2.3. Suppose that #{x � y} > 0 and #{y � x} > 0 for all x and y, and that
F is continuous and strictly monotonic. Then for every MLE β̂ we have the bound

‖β̂‖∞ ≤ |X | · max
(x,y)∈X 2

δ(x, y).

6.2.2 Uniqueness of MLE

Under mild conditions on the function F and the comparison graph G#, we have seen that
a bounded MLE exists. When is the MLE unique? Note that if F is a strictly log-concave,
this implies that the log-likelihood L(β) is concave. If we additionally require that the
comparison graph G# is connected, then L(β) is in fact strictly concave, and thus the MLE
is unique, as we prove in Appendix E.2.

Lemma 6.2.4. Suppose that F is strictly log-concave. Then L(β) is strictly concave and
the MLE is unique (assuming it exists), if and only if the comparison graph G# is connected.

6.3 Pareto Efficiency

A minimal requirement in economic theory is Pareto efficiency : if all agents prefer a to
b, then in aggregate, a should be preferred to b. A first attempt at defining this notion
for the environment of pairwise comparisons would be to say that if #{a � b} > 0 but
#{b � a} = 0, then the MLE should satisfy β̂a ≥ β̂b. However, this property is too
restrictive. Consider a dataset with

#{a � b} = 100,#{b � c} = 1,#{c � a} = 1,

and all other comparisons 0. To satisfy the mentioned property, the MLE would need to
satisfy β̂a ≥ β̂b ≥ β̂c ≥ β̂a, so they are all equal; however it seems better to have β̂a > β̂b.

A more sensible version of Pareto efficiency is motivated by the multi-agent setting
described in Section 6.2, where # =

∑
i∈R#i, and each individual dataset #i is generated

by a random utility model with unknown parameters βi. In this case, Pareto efficiency
should say that if βia > βib for all i ∈ R, then the MLE β̂ applied to dataset # should

satisfy β̂a > β̂b as well. Our official definition of Pareto efficiency implies this, but is
phrased more generally.

Definition 6.3.1 (Pareto efficiency). Suppose a, b ∈ X satisfy #{a � b} > #{b � a}, and
are such that for every other alternative x ∈ X \ {a, b}, we have

#{a � x} > #{b � x} and #{x � a} < #{x � b}.

Then, Pareto efficiency requires that β̂a ≥ β̂b.
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To see that this definition captures the desired behavior in the multi-agent case, note
that if βia > βib, then the dataset #i satisfies the condition of Definition 6.3.1 with high
probability as we grow the number of comparisons in #i, and similarly the condition holds
for the pooled dataset # =

∑
i∈R#i.

This version of Pareto efficiency is feasible; in fact, it is satisfied by most random utility
models.

Theorem 6.3.2. Maximum likelihood estimation satisfies Pareto efficiency if F is strictly
monotonic.

The key idea behind the proof (given in Appendix E.3) is that if a, b ∈ X satisfy the
condition of Definition 6.3.1 but some MLE β̂ puts β̂a < β̂b, then the parameter vector β
equal to β̂ except that βa = β̂b and βb = β̂a has strictly higher log-likelihood.

6.4 Monotonicity

If we add a pairwise comparison a � b to a dataset, we should deduce that a is stronger
and b is weaker relative to our previous estimates. It would be paradoxical if, upon seeing
evidence that a is strong and b is weak, we decided to lower a’s utility or increase b’s
utility. Monotonicity requires that this can never happen. We consider a strong form of
this axiom, which requires that a is strengthened relative to every other alternative, and
not just relative to b.

Definition 6.4.1 (Monotonicity). Suppose that # and #̃ are two datasets with unique
MLEs β̂ and β̃. Suppose that #̃{x � y} = #{x � y} for all x, y ∈ X except that
#̃{a � b} > #{a � b}. Then, monotonicity requires that for all x ∈ X ,

β̃a − β̃x ≥ β̂a − β̂x and β̃b − β̃x ≤ β̂b − β̂x.

Equivalently, monotonicity requires that if #{a � b} decreases, then a becomes weaker
relative to other alternatives, and b becomes stronger. We can interpret monotonicity as
guaranteeing a kind of participation incentive: If we ask an agent to compare a to b, the
agent is assured that the answer can only influence our inferred utilities in the desired
direction.

Monotonicity is foundational to the idea of aggregating pairwise comparisons; in a sense,
it encodes the proper meaning of a comparison “a � b”. It may be surprising, then, that
it is difficult to prove that MLEs of random utility models satisfy monotonicity.4 While it
is easy to check that the difference β̂a− β̂b is increasing in #{a � b}, it is much trickier to
analyze the behavior of the log-likelihood for the positioning of alternatives other than a
and b. However, it turns out that random utility models do satisfy the strong monotonicity
axiom. Our proof depends crucially on the assumption that F is log-concave. Due to the
conceptual importance of monotonicity, we consider this our main result.

Theorem 6.4.2. Maximum likelihood estimation satisfies monotonicity if F is strictly
monotonic, log-concave, and differentiable.

4For the Bradley–Terry model, monotonicity is easier to check, since the first-order conditions of likeli-
hood maximization in that model are well-behaved [GHL14, Prop. 6.3]; that proof does not generalize to
other models.
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The proof, given in Appendix E.4, is relatively unwieldy. For intuition, let us provide an
outline of a proof for the special case of three alternatives a, b, c. Let # and #̃ be datasets
that are identical except that #{a � b} < #̃{a � b}, and let β̂ and β̃ be the respective
MLEs, which are unique by Lemma 6.2.4. We take a as reference, so β̂a = β̃a = 0. It is
easy to see that β̂b ≥ β̃b, since otherwise β̂ would have greater log-likelihood than β̃ for the
dataset #̃, as β̂ performs better on the a vs b comparisons, and performs no worse on other
comparisons by optimality for #. To see that also β̂c ≥ β̃c, consider first the dataset # and
associated log-likelihood L(βb, βc) (with βa fixed to 0). Now, for x ∈ R, let ψ(x) denote the
value of βc that maximizes L(x, βc), i.e., maximizes likelihood among parameters β with
βa = 0 and βb = x. One can show that, since F is strictly log-concave, ψ(x) is increasing in
x.5 Notice that the number of comparisons between a and b in a dataset does not influence
the optimum position of βc, once βa and βb are fixed. Hence, the function ψ is the same
whether defined for # or for #̃, since they only differ in a vs b comparisons. We have
already seen that β̃b ≤ β̂b. Since ψ is increasing, we have β̃c = ψ(β̃b) ≤ ψ(β̂b) = β̂c, proving
monotonicity.

To visualize monotonicity, consider the three examples in Figure 6.1. For four alterna-
tives, we generated random datasets by choosing #{x � y} uniformly at random between
1 and 100, and picked three examples. In each case, we let #{b � c} vary from 0 to 100
(going horizontally from left to right), and show how the MLE of the Thurstone–Mosteller
model changes as the number of b � c comparisons grows; we fix β̂a = 0 as reference. As
predicted by Theorem 6.4.2, the orange line of β̂b is increasing, while the green line of β̂c
is decreasing. Note that the change in #{b � c} can affect other alternatives; in the middle
figure, the relative positions of a and d swap.

In the pooled setting # =
∑

i∈R#i of Section 6.2, where each agent i ∈ R is described
by a random utility model with parameters βi that generates #i, a natural notion of
monotonicity is this: Suppose we calculate the MLE β̂ for # and suppose we increase the
utility βia for some agent i and some alternative a while keeping all other parameters fixed.
Then the updated MLE β̃ should satisfy β̃a− β̃x ≥ β̂a− β̂x for all x ∈ X : the learned utility
of a increases relative to other alternatives. Theorem 6.4.2 implies that random utility
models (subject to the theorem’s conditions) satisfy this pooled monotonicity notion with
high probability, when #i consists of many samples and when the number of comparisons is
uniform across pairs. The reason is this: with high probability, the increase of βia increases
the number of a � x comparisons in #i for all x. Assuming for now that no other dataset
#j and no other pairs in #i are affected, then successively invoking Theorem 6.4.2 on
a � x pairs yields the result. Now, with some probability, other parts will be affected, but
not too much. Since the MLE is continuous in # (see Appendix E.5), this noise will not
invalidate monotonicity.

5Assume that F is twice differentiable. Since logF is strictly concave, its second derivative is strictly
negative. A straightforward calculation shows that then ∂2L/∂βc∂βc < 0 and that ∂2L/∂βc∂βb > 0. By
definition of ψ, for each x, (∂L/∂βc)(x, ψ(x)) = 0. Since ∂2L/∂βc∂βb > 0, the function ∂L/∂βc is increasing
in its first argument, and so (∂L/∂βc)(x+ ∆, ψ(x)) > 0 for all ∆ > 0. Since ∂2L/∂βc∂βc < 0, the function
∂L/∂βc is decreasing in its second argument, and hence ψ(x+ ∆) > ψ(x), as desired.
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Figure 6.1: The MLE for Thurstone–Mosteller models is monotonic: with more b � c
comparisons, b’s utility increases, while c’s decreases. The vector shows the dataset # with
X 2 in lexic order.

6.5 Pairwise Majority Consistency

Social choice theory has its root in the analysis of politics, where in many cases it is im-
portant to use aggregation rules that respect the wishes of a majority. A famous issue is
that the “majority will” may not be coherent and in particular fail to be transitive. A min-
imal majoritarian requirement, thus, would be what we call pairwise majority consistency
(PMC): in cases where the majority produces a definite ranking, the aggregate should
respect it.

Definition 6.5.1. Suppose it is possible to label alternatives as X = {x1, . . . , xm} such
that whenever i < j, it holds that #{xi � xj} > #{xj � xi}. Then, pairwise majority

consistency (PMC) requires that for every MLE β̂, it holds that β̂xi ≥ β̂xj for all i < j.

In contrast to our previous properties, PMC is violated by random utility models.

Example 6.5.2. Consider X = {a, b, c}, and consider the dataset

#{a � b} = 3,#{b � a} = 2,#{a � c} = 3,#{c � a} = 2,#{b � c} = 10,#{c � b} = 1.

This dataset conforms to Definition 6.5.1 if we label x1, x2, x3 = a, b, c. However, the unique
MLE in the Thurstone–Mosteller model is β̂a = 0, β̂b ≈ 0.217 and β̂c ≈ −0.751, so that
β̂b > β̂a > β̂c. The same example works for Bradley–Terry, which has MLE β̂a = 0,
β̂b ≈ 0.316 and β̂c ≈ −1.256.

� � � � ��
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-���

���

��� b↑

a

c↓

Why does the MLE not respect the majority ordering on
this example? If the number #{b � c} was slightly above 1, we
would obtain an MLE respecting the majority ordering, with
a � b � c. However, as #{b � c} increases, due to the mono-
tonicity of MLEs (Theorem 6.4.2), we find that β̂b increases
and β̂c decreases. When #{b � c} becomes sufficiently large, β̂b
crosses β̂a. Thus, we find that the MLE has the ordering b � a � c, which violates PMC.
The figure on the right shows this behavior in the style of Figure 6.1, as #{b � c} increases
from 1 to 10; we can see that PMC is violated from about 4.

This reasoning applies more generally to other random utility models beyond Thurstone–
Mosteller, and we can construct similar counterexamples for a large class of such models;
see Appendix E.5.
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Figure 6.2: The cube shows all datasets in the space T , in which pairwise majority con-
sistency requires that β̂a > β̂b > β̂c. The MLE for Thurstone-Mosteller models fails the
condition in the shaded areas.

Theorem 6.5.3. Maximum likelihood estimation violates pairwise majority consistency
whenever F is strictly monotonic, strictly log-concave, and differentiable.

How frequent are PMC violations? Write %{x � y} = #{x � y}/(#{x � y}+ #{y �
x}) for the fraction of x vs y comparisons that x wins. For X = {a, b, c}, let T be the space
of datasets with

0.5 < %{a � b},%{a � c},%{b � c} ≤ 1.

For all datasets in T , PMC requires that β̂a > β̂b > β̂c. In Figure 6.2, we draw the cube T
and show the regions where the MLE for Thurstone–Mosteller fails PMC. Example 6.5.2,
suitably normalized, falls in the upper orange region. Sampling uniformly over T , we find
that Thurstone–Mosteller fails PMC in 17.8% of datasets, while Bradley–Terry fails in
16.6% of datasets.

6.6 Separability

We close by considering the separability axiom [Smi73; You75]. It requires that when we
merge two datasets, then wherever the MLE agreed on the datasets, this agreement is
preserved in the combined dataset.

Definition 6.6.1. Consider two datasets #1 and #2, and let β̂1 and β̂2 be MLEs. Suppose
there exist two alternatives a, b ∈ X such that β̂1

a > β̂1
b and β̂2

a > β̂2
b . Separability requires

that for every MLE β̂ for the pooled dataset # = #1 + #2, it also holds that β̂a > β̂b.

Separability is also called consistency, and seems particularly desirable in cases where
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we combine pairwise comparisons from different sources. While perhaps on first glance
innocuous, separability is an extremely strong requirement, and few rules satisfy it; one
can prove in general that separability constrains rules to be linear [Mye95]. Since likelihood
maximization is not linear, it is no surprise that MLEs for random utility models fail
separability.

Example 6.6.2. Let X = {a, b, c}, and consider the two datasets

#1{a � c} = 6, #1{c � a} = 4, #1{c � b} = 100,#1{b � c} = 1, and

#2{a � c} = 6, #2{c � a} = 4, #2{b � a} = 100,#2{a � b} = 1,

with 0 counts on all unspecified pairs. The unique MLEs for Thurstone–Mosteller on #1

and #2 are

β̂1
a = 0, β̂1

b ≈ −2.58, β̂1
c ≈ −0.253; and β̂2

a = 0, β̂2
b ≈ 2.330, β̂2

c ≈ −0.253.

We have both β̂1
a > β̂1

c and β̂2
a > β̂2

c . However, the unique MLE on # = #1 + #2 is
β̂a = 0, β̂b ≈ 0.987 and β̂c ≈ 1.973. Thus. β̂a < β̂c, and so Thurstone–Mosteller violates
separability. (The same example shows that Bradley–Terry violates separability.)

Intuitively, in both #1 and #2 there is a weak tendency to rank a above c, and the MLE
can implement this tendency without incurring any cost on other pairs (since Lemma 6.2.2
applies). However, once we combine the datasets, a strong consensus for c � b � a emerges,
and overriding this consensus to ensure a � c is not worth it. While failing separability, the
MLE’s behavior seems perfectly sensible, and we prove in Appendix E.6 that all random
utility model do the same on this kind of example.

Theorem 6.6.3. Maximum likelihood estimation violates separability whenever F is strictly
monotonic, strictly log-concave, and differentiable.

Like for PMC, we can again ask on what percentage of (pairs of) datasets the MLE
fails separately. Since we sample over pairs, we might guess the answer to be of lower
order than in the case of PMC, and this is borne out by the data. For m = 3 alternatives,
sampling uniformly over the space of datasets for which each pair of distinct alternatives is
compared equally often, we find that on about 1.5% of dataset pairs, Thurstone–Mosteller
fails separability. This fraction increases as m increases, since there are more pairs of
alternatives for which separability can be violated.

6.7 Discussion

To recap, we have established (under very mild assumptions) that the aggregation of pair-
wise comparisons via the MLE of a random utility model satisfies Pareto efficiency and
monotonicity, and does not satisfy pairwise majority consistency and separability.

Our positive results deal with central properties that are required for an aggregation
procedure: it does not override unanimous opinions (Pareto efficiency) and it incorporates
new information (monotonicity). The latter property can be seen as a participation incen-
tive, guaranteeing agents that each additional pairwise comparison will move the aggregate.
Separability and pairwise majority consistency are not satisfied by random utility models,
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but arguably these properties are not as universally desirable. An analogy to the world of
ranking-based voting rules is instructive, where separability characterizes a specific class of
aggregators (positional scoring rules) [You75], but none of them satisfies pairwise majority
consistency [Mou83].

Overall, we view our results as lending normative support to — and a more nuanced
understanding of — existing and future applications of random utilities models for societal
decision making.
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Reinforcement Learning
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Chapter 7
Please be an Influencer? Contingency-Aware
Influence Maximization

Most previous work on influence maximization in social networks assumes that the chosen
influencers (or seed nodes) can be influenced with certainty (i.e., with no contingencies).
In this chapter, we focus on using influence maximization in public health domains for
assisting low-resource communities, where contingencies are common. It is very difficult
in these domains to ensure that the seed nodes are influenced, as influencing them entails
contacting/convincing them to attend training sessions, which may not always be possible.
Unfortunately, previous state-of-the-art algorithms for influence maximization are unusable
in this setting. This chapter tackles this challenge via the following four contributions:
(i) we propose the Contingency Aware Influence Maximization problem and analyze it
theoretically; (ii) we cast this problem as a Partially Observable Markov Decision Process
and propose CAIMS (a novel POMDP planner) to solve it, which leverages a natural
action space factorization associated with real-world social networks; and (iii) we provide
extensive simulation results to compare CAIMS with existing state-of-the-art influence
maximization algorithms. Finally, (iv) we provide results from a real-world feasibility trial
conducted to evaluate CAIMS, in which key influencers in homeless youth social networks
were influenced in order to spread awareness about HIV.

7.1 Introduction

The influence maximization problem is an NP-Hard combinatorial optimization problem
[KKT03], which deals with finding a set of K influential seed nodes in a social network to
optimally spread influence in the network according to some pre-specified diffusion model.
It is a practically relevant problem with numerous potential applications in the real world,
especially in public health domains involving low-resource communities. For example, it has
been used to prevent smoking among teenagers [VP07], and to promote healthier lifestyles
among risky populations [Ric10]. Recently, influence maximization algorithms were used
to spread awareness about HIV among homeless youth with great results [Yad+17].
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Recently, several efficient algorithms have been proposed (and deployed in the real-
world) to solve influence maximization problems [Bor+14; TXS14; Coh+14; Wil+17]. Most
of these algorithms rely on the following key assumption: seed nodes can be influenced with
certainty. Unfortunately, in most public health domains, this assumption does not hold as
“influencing” seed nodes entails training them to be “peer leaders” [VP07]. For example,
seed nodes promoting HIV awareness among homeless youth need to be trained so that they
can communicate information about supposedly private issues in a safe manner [SZL15].
This issue of training seed nodes leads to two practical challenges. First, it may be difficult
to contact seed nodes in a timely manner (e.g., contacting homeless youth is challenging
since they rarely have fixed phone numbers, etc). Second, these seed nodes may decline to
be influencers (e.g., they may decline to show up for training sessions). In this paper, we
refer to these two events as contingencies in the influence maximization process.

Unsurprisingly, these contingencies result in a wastage of valuable time/money spent in
unsuccessfully contacting/convincing the seed nodes to attend the training. Moreover, the
resulting influence spread achieved is highly sub-optimal, as very few seed nodes actually
attend the training session, which defeats the purpose of conducting these interventions.
Clearly, contingencies in the influence maximization process need to be considered very
carefully.

In this paper, we propose a principled approach to handle these inevitable contingen-
cies via the following contributions. First, we introduce the Contingency Aware Influence
Maximization (or CAIM) problem to handle cases when seed nodes may be unavailable,
and analyze it theoretically. The principled selection of alternate seed nodes in CAIM (when
the most preferred seed nodes are not available) sets it apart from any other previous work
in influence maximization, which mostly assumes that seed nodes are always available for
activation. Second, we cast the CAIM problem as a Partially Observable Markov Decision
Process (POMDP) and solve it using CAIMS (CAIM Solver), a novel POMDP planner
which provides an adaptive policy which explicitly accounts for contingency occurrences.
CAIMS is able to scale up to real-world network sizes by leveraging the community struc-
ture (present in most real-world networks) to factorize the action space of our original
POMDP into several smaller community-sized action spaces. Further, it utilizes insights
from social network literature to represent belief states in our POMDP in a compact, yet
accurate manner using Markov networks. Our simulations show that CAIMS outperforms
state-of-the-art influence maximization algorithms by ∼60%. Finally, we evaluate CAIMS’s
usability in the real-world by using it to train a small set of homeless youth (the seed nodes)
to spread awareness about HIV among their peers. This domain is an excellent testbed for
CAIMS, as the transient nature of homeless youth increases the likelihood of the occurrence
of contingencies [RR13].

7.2 Related Work

In addition to the work on influence maximization highlighted in the introduction, [Sin12] is
related to our work as it solves an orthogonal problem: how to incentivize people in order
to be influencers? Unlike us, they solve a mechanism-design problem where nodes have
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private costs, which need to be paid for them to be influencers. However, in our domains of
interest, monetary gains/losses are not the reason behind nodes getting influenced or not.
Instead, nodes do not get influenced because of contingencies.

We also discuss work in POMDP planning, since we cast CAIM as a POMDP. SARSOP
[KHL08] is a state-of-the-art offline POMDP solver but it does not scale up to larger state
spaces. [SV10] proposed POMCP which use Monte-Carlo tree search in online planning,
but it does not scale up to larger action spaces. As a result, FV-POMCP [AO15; SOA17]
was proposed which relies on a factorized action space to scale up to larger problems. In
our work, we complement their advances to build CAIMS, which leverages insights from
social network theory to factorize action spaces in a provably “lossless” manner, and to
represent beliefs in an accurate manner.

7.3 CAIM Model & Problem

We motivate our discussion of the CAIM problem by focusing on a particular public health
domain: preventing HIV spread among homeless youth. In this domain, youth are highly
susceptible to HIV infection due to high-risk activities that they engage in, e.g., unpro-
tected sex, etc. [CDC13]. To reduce the spread of HIV, non-profit agencies called “homeless
shelters” conduct intervention training camps to train influential homeless youth as “peer
leaders”, so that they can spread awareness about HIV in the friendship based social net-
work of homeless youth, via peers in their social circles [Ric10].

Unfortunately, homeless shelters do not have the resources to train all homeless youth
in the social network as peer leaders. Moreover, as behavioral problems of homeless youth
makes managing larger groups difficult [Ric+12a], intervention training camps (interven-
tions for short) can only include a small number (∼5-6) of youth.

In practice, the shelter officials typically only have 4-5 days to locate/invite the desired
youth to be trained. However, the transient nature of homeless youth (i.e., no fixed postal
address, phone number, etc) makes contacting the chosen peer leaders difficult for homeless
shelters. Further, most youth are distrustful of adults, and thus, they may decline to be
trained as peer leaders [Mil+09]. As a result of these “contingencies”, the shelter officials
are often forced to conduct their intervention with very few peer leaders in attendance,
despite each official spending 4-5 days worth of man hours in trying to find the chosen
peer leaders [Yad+17]. Moreover, the peer leaders who finally attend the intervention are
usually not influential seed nodes. This has been the state of operations even though peer-
led interventions have been conducted by social workers for almost a decade now.

To avoid this outcome, ad-hoc measures have been proposed [Yad+17], e.g., contacting
many more homeless youth than they can safely manage in an intervention. However, one
then runs the risk that lots of youth may agree to be peer leaders, and shelter officials would
have to conduct the intervention with all these youth (since it’s unethical to invite a youth
first and then ask him/her not to come to the intervention), even if the total number of
such participants exceeds their maximum capacity [Ric+12b]. This results in interventions
where the peer leaders may not be well trained, as insufficient attention is given to any
one youth in the training. Note that if contingencies occurred infrequently, then inviting a
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(a) Social Network 1 (b) Social Network 2

Figure 7.1: Examples illustrating harm in overprovisioning

few extra nodes (over the maximum capacity) may be a reasonable solution. However, as
we show in the real-world feasibility trial conducted by us, contingencies are very common
(∼80%, or 14 out of 18 invitations in the real-world study resulted in contingencies), and
thus, overprovisioning by a small number of nodes is not an option. An ad-hoc fix for
this over-attendance, is to first select (say) twice the desired number of homeless youth,
invite them one at a time, and stop as soon as the desired number of homeless youth have
accepted the invitation. However, we will show that this intuitive ad-hoc overprovisioning
based solution performs poorly. First, we describe our influence model, followed by faults
with overprovisioning.

Influence Model We represent friendship based social networks as undirected graphs
G = (V ,E), where each node v ∈ V represents a person in the social network and an
edge e = (A,B) ∈ E between two nodes A and B (say) represents that nodes A and B
are friends. Each edge e ∈ E has a propagation probability p(e) associated with it, which
represents the probability that a node which is influenced (has information) will pass on
that influence to their neighbor. Influence spreads using the independent cascade model
[KKT03], in which all nodes that get influenced at time t get a single chance to influence
their un-influenced neighbors at time t + 1. This graph G with all relevant p(e) values
represents a friendship based social network and serves as an input to the CAIM problem.

Overprovisioning May Backfire Let K denote the number of nodes (or homeless
youth) we want at the intervention. Now, suppose we overprovision by a factor of 2 and use
the algorithm mentioned before. This means that instead of searching for the optimal set of
K seed nodes, the algorithm finds the optimal set of 2K seed nodes and then influences the
first K of these nodes that accept the invitation. Naturally, this algorithm should perform
better (under contingencies) than the algorithm without overprovisioning. Surprisingly, we
show that overprovisioning may make things worse. This happens because of two key ideas:
(i) No K-sized subset of the optimal set of 2K nodes may be as good as the optimal set
of K nodes (this indicates that we may not be looking for the right nodes when we search
for the optimal set of 2K nodes), and (ii) An arbitrary K-sized subset of the optimal set
of 2K nodes (obtained because we stick to the first K nodes that accept the invitation)
may perform arbitrarily bad.

We now provide two examples that concretize these facts. For simplicity of the examples,
we assume that influence spreads only for one round, number of nodes required for the

88



intervention is K = 1 and the propagation probability p(e) is 0.5 for every edge. We use
I(S) to denote the expected influence in the network when nodes of set S are influenced.
Firstly, consider the example social network graph in Figure 7.1a. Suppose C and C1 are
nodes that are regularly available, and are likely to accept the invitation. Now, let’s find
the best single node to influence for maximum influence spread. We don’t need to consider
nodes other than {C1, C, C2} since they’re obviously suboptimal. For the remaining nodes,
we have I(C1) = 5 ∗ 0.5 = 2.5, I(C) = 6 ∗ 0.5 = 3 and I(C2) = 5 ∗ 0.5 = 2.5, and so the
best single node to influence is C. Now, suppose we overprovision by a factor of 2, and try
to find the optimal set of 2 nodes for maximum influence spread. The influence values are
I({C1, C}) = I({C2, C}) = 5 ∗ 0.5 + 3 ∗ 0.75 = 4.75 and I({C1, C2}) = 10 ∗ 0.5 = 5. So,
the optimal set of 2 nodes to influence is {C1, C2}. But, since we need only one node, we
would eventually be influencing either C1 or C2, giving us an expected influence of 2.5.
On the other hand, if we did not overprovision, we would go for node C (the best single
node to influence) and have an expected influence of 3. This example demonstrates that
no K-sized subset of the optimal set of 2K nodes may be as good as the optimal set of K
nodes. Note that, for clarity, the example considered here was small and made simple, and
hence the difference between 3 and 2.5 may seem small. But, the example can be extended
such that the difference is arbitrarily larger.

Secondly, consider the example social network graph of Figure 7.1b. Again, for sim-
plicity, we assume that influence spreads only for one round, number of nodes required
for the intervention is K = 1 and the propagation probability p(e) is 0.5 for every edge.
Like before, let’s find the best single node to influence for maximum influence spread.
We don’t need to consider nodes other than {C1, C2, C3} since they’re obviously subop-
timal. For the remaining nodes, we have I(C1) = 6 ∗ 0.5 = 3, I(C2) = 5 ∗ 0.5 = 2.5
and I(C3) = 3 ∗ 0.5 = 1.5, and so the best single node to influence is C1. Now, suppose
we overprovision by a factor of 2, and try to find the optimal set of 2 nodes for maxi-
mum influence spread. The influence values are I({C1, C2}) = 1 ∗ 0.5 + 5 ∗ 0.75 = 4.25,
I({C2, C3}) = 8 ∗ 0.5 = 4 and I({C1, C3}) = 9 ∗ 0.5 = 4.5. So, the optimal set of 2 nodes
is {C1, C3}, and it would be selected by the overprovisioning algorithm. But, as mentioned
before, we stop once we find the first node that accepts the invitation. Therefore, in case
C1 is the first node encountered and it accepts the invitation, then there’s an expected
influence of 3, but if C3 is the first such node, the expected influence would be as low as
1.5. On the other hand, the standard algorithm (without overprovisioning) would directly
go for C1 giving an expected influence of 3.

On a different note, suppose in this second example, node C1 is unavailable (because
say it declines the invitation). In this case, the overprovisioning algorithm would have to go
for C3 (the only other node in the optimal set of 2 nodes), leading to an expected influence
of 1.5. However, an adaptive solution, would look for node C1 and after finding that its
unavailable, would go for the next best node which is node C2. This gives an adaptive
solution an expected influence of 2.5.

Having provided examples which provide intuition as to why simple ad-hoc overprovi-
sioning based algorithms may backfire, we now provide empirical support for this intuition
by measuring the performance of the Greedy algorithm [KKT03] (the gold standard in
influence maximization) under varying levels of overprovisioning. Figures 7.2a and 7.2b
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(a) SBM Networks (b) PA Networks

Figure 7.2: The Harm in Overprovisioning

compare influence spread achieved by Greedy on stochastic block model (SBM) and pref-
erential attachment (PA) networks [SKP12], respectively, as it finds the optimal set of
m ∗K nodes (K = 2) to invite (i.e., overprovision by factor m) and influence the first K
nodes that accept the invitation (the order in which nodes are invited is picked uniformly
at random). The x-axis shows increasing m values and the y-axis shows influence spread.
This figure shows that in both SBM and PA networks of different sizes, overprovision-
ing hurts, i.e., optimizing for larger seed sets in anticipation of contingencies actually hurts
influence spread, which confirms our intuition outlined above. Overprovisioning’s poor per-
formance reveals that simple solutions do not work, thereby necessitating careful modeling
of contingencies, as we do in CAIM.

Problem Setup Given a friendship based social network, the goal in CAIM is to invite
several network nodes for the intervention until we get K nodes who agree to attend
the intervention. The problem proceeds in T sequential sessions, where T represents the
number of days that are spent in trying to invite network nodes for the intervention. In
each session, we assume that nodes are either available or unavailable for invitation. This
is because on any given day (session), homeless youth may either be present at the shelter
(i.e., available) or not (i.e., unavailable). We assume that only nodes which are available
in a given session can accept invitations in that session. This is because homeless youth
frequently visit shelters, hence we utilize this opportunity to issue invitations to them if
we see them at the shelter.

Let φt ∈ {0, 1}N (called a realization) be a binary vector which denotes the availability
or unavailability (for invitation) of each network node in session t ∈ [1, T ]. We take a
Bayesian approach and assume that there is a known prior probability distribution Φ over
realizations φt such that p(φt) := P [Φ = φt]. In our domain, this prior distribution is
represented using a Markov Network. We assume that the realization φt for each session
t ∈ [1, T ] is drawn i.i.d. from the prior distribution Φ, i.e., the presence/absence of homeless
youth at the shelter in every session t ∈ [1, T ] is assumed to be an i.i.d. sample from Φ.
We further assume that while the prior distribution Φ is provided to the CAIM problem as
input, the complete i.i.d. draws from this distribution (i.e., the realizations φt ∀t ∈ [1, T ])
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are not observable. This is because while querying the availability of a small number of
nodes (∼3-4) is feasible, querying each node in the social network (which can have 150-160
nodes) for each session/day (to completely observe φt) requires a lot of work which is not
possible with the shelters limited resources [Ric10].

In each session t ∈ [1, T ], a maximum of L actions can be taken, each of which can be
of three possible types: queries, invites and end-session actions. Query action qa in session
t ∈ [1, T ] ascertains the availability/unavailability of a subset of nodes a (‖a‖ 6 Qmax, the
maximum query size) in session t with certainty. Thus, query actions in session t provide
partial observations about the realization of nodes φt in session t. On the other hand, invite
action ma invites a subset of nodes a ⊂ V (‖a‖ 6 K) to the intervention. Upon taking an
invite action, we observe which invited nodes are present (according to φt) in the session
and which of them accepted our invitation. Each invited node that is present accepts the
invitation with a probability ε. We refer to the nodes that accept our invitation as “locked
nodes” (since they are guaranteed to attend the intervention). Finally, we can also take an
end-session action, if we choose not to invite/query any more nodes in that session.

The observations received from query and invite actions (end-session action provides
no observation) taken in a session allows us to update the original prior distribution Φ
to generate a posterior distribution Φpos

t (i) ∀i ∈ [0, L] for session t (where i actions have
been taken in session t so far). These posteriors can then be used to decide future actions
that need to be taken in a session. Note that for every session t, Φpos

t (0) = Φ, i.e., at the
beginning of each session, we start from the original prior distribution Φ and then get new
posteriors every time we take an action in the session.

Note that even though query actions provide strictly lesser information than invite
actions (for the same subset of nodes), their importance in CAIM is highlighted as follows:
recall that the optimal set of 2 nodes in Figure 7.1b is {C1, C3}. If we remove the ability
to query, we would invite nodes C1 and C3. In case C1 is not present and C3 accepts our
invitation, we would be stuck with conducting intervention with only node C3 (since invited
nodes who accept the invitation cannot be un-invited). Thus, we realize that inviting C3 is
desirable only if C1 is present and accepts our invitation. Query actions allow us to query
the presence or absence of both nodes C1 and C3 (so that we don’t waste an invite action
in case node C1 is found to be not present according to the query action’s observation).

Informally then, given a friendship based social network G = (V ,E), the integers T , K,
L, Qmax and ε, and prior distribution Φ, the goal of CAIM is to find a policy for choosing
L sequential actions for T sessions s.t. the expected influence spread (according to our
influence model) achieved by the set of locked nodes (i.e., nodes which finally attend the
intervention) is maximized.

Let Q = {qa s.t. 1 6 ‖a‖ 6 Qmax} denote the set of all possible query actions that can
be taken in any given session t ∈ [1, T ]. Similarly, let M = {ma s.t. 1 6 ‖a‖ 6 K} denote
the set of all possible invite actions that can be taken in any given session t ∈ [1, T ]. Also,
let E denote the end-session action. Let Ati ∈Q∪M∪ E denote the ith action (i ∈ [1, L])
chosen by CAIM’s policy in session t ∈ [1, T ].

Upon taking action Ati (i ∈ [1, L], t ∈ [1, T ]), we receive observations which allow
us to generate posterior distribution Φpos

t (i). Denote by M t
i the set of all locked nodes

after the ith action is executed in session t. Denote by ∆ the set of all possible posterior
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distributions that we can obtain during the CAIM problem. Denote by Γ all possible sets
of locked nodes that we can obtain during the CAIM problem. Finally, we define CAIM’s
policy Π : ∆ × Γ × [0, L] × [1, T ] → Q ∪M ∪ E as a function that takes in a posterior
distribution, a set of locked nodes, the number of actions taken so far in the current session,
and the session-id as input, and outputs an action Ati for the current timestep.

Problem 7.3.1. CAIM Problem Given as input a social network G = (V ,E) and
integers T , K, L, Qmax and ε, and a prior distribution Φ (as defined above), denote by
R(MT

L ) the expected total influence spread (i.e., number of nodes influenced) achieved
by nodes in MT

L (i.e., locked nodes at the end of T sessions). Let EMT
L∼Π[R(MT

L )] de-

note the expectation over the random variable MT
L , where MT

L is updated according to
actions recommended by policy Π(Φpos

T (L − 1),MT
L−1, L − 1, T ). More generally, in ses-

sion t ∈ [1, T ], M t
i ∀i ∈ [0, L] is updated according to actions recommended by policy

Π(Φpos
t (i − 1),M t

i−1, i − 1, t). Then, the objective of CAIM is to find an optimal policy
Π∗ = argmaxΠEMT

L∼Π[R(MT
L )].

We now theoretically analyze the CAIM problem. Some proofs are in Appendix F.

Lemma 7.3.2. The CAIM problem is NP-Hard.

Some NP-Hard problems exhibit nice properties that enable approximation guarantees
for them. [GK11] introduced adaptive submodularity, the presence of which would ensure
that a simple greedy algorithm provides a (1 − 1/e) approximation w.r.t. the optimal
CAIM policy. However, we show that while CAIM can be cast into the adaptive stochastic
optimization framework of [GK11], our objective function is not adaptive submodular,
because of which their Greedy algorithm does not have a (1−1/e) approximation guarantee.

Lemma 7.3.3. The objective function of CAIM is not adaptive submodular.

These theorems show that CAIM is a computationally hard problem and it is difficult
to even obtain any good approximate solutions for it. In this paper, we model CAIM as a
POMDP.

7.4 POMDP Model

We cast the CAIM problem using POMDPs [Put09], as the uncertainty about the real-
ization of nodes φt is similar to partial state observability in POMDPs. Finally, actions
(queries and invites) that are chosen for the current session depend on the actions that
are taken in future sessions (for e.g., influencing node A might be really important, but
he/she may not be available in session t, therefore invite actions in session t can focus on
other nodes, and influencing node A can be left to future sessions). This suggests the need
to do lookahead search, which is the main motivation behind solving a POMDP. We now
explain how we map CAIM onto a POMDP.

States A POMDP state consists of four entities s = 〈φ,M , numAct, sessID〉. Here,
sessID ∈ [1, T ] identifies the session we are in. Also, numAct ∈ [0, L] determines the
number of actions that have been taken so far in session sessID. M denotes the set of
locked nodes so far (starting from the first session). Finally, φ is the node realization φsessID

in session sessID. In our POMDP model, states with sessID = T and numAct = L are
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terminal states, since they represent the end of all sessions.

Actions A POMDP action is a tuple a = 〈S, type〉. Here, type is a symbolic character
which determines whether a is a query action (i.e., type = q), an invite action (i.e., type = i)
or an end-session action (i.e., type = e). Also, S ⊂ V denotes the subset of nodes that is
queried (type = q) or invited (type = i). If type = q, the size of subset ‖S‖ ∈ [1, Qmax].
Similarly, if type = i, ‖S‖ ∈ [1, K] . Finally, if type = e, subset S is empty.

Observations Upon taking a query action a = 〈S, q〉 in state s =
〈φ,M , numAct, sessID〉, we receive an observation that is completely determined by
state s. In particular, we receive the observation oq = {φ(v) ∀v ∈ S}, i.e., the avail-
ability status of each node in S. And, by taking an invite action a = 〈S, i〉 in state
s = 〈φ,M , numAct, sessID〉, we receive two kinds of observations. Let Γ = {v ∈
S s.t. φ(v) = 1} denote the set of available nodes in invited set S. First, we get observation
o1
i = {φ(v) ∀v ∈ S} which specifies the availability status of each node in invited set S. We

also get an observation o2
i = {b(v) ∀v ∈ Γ} for each available node v ∈ Γ, which denotes

whether node v accepted our invitation and joined the locked set of nodes (b(v) = 1) or
not (b(v) = 0). Finally, the end-session action does not generate any observations.

Rewards We only get rewards when we reach terminal states s′ =
〈φ,M , numAct, sessID〉 with sessID = T , numAct = L. The reward attained in ter-
minal state s′ is the expected influence spread (as per our influence model) achieved by
influencing nodes in the locked set M of s′.

Transition And Observation Probabilities Due to our exponential sized state and
action spaces, maintaining transition and observation probability matrices is not feasible.
Hence, we follow the paradigm of large-scale online POMDP solvers [SV10] by using a gen-
erative model Λ(s, a) ∼ (s′, o, r) of the transition and observation probabilities. This gener-
ative model allows generating on-the-fly samples from the exact distributions T (s′|s, a) and
Ω(o|a, s′) at very low computational costs. In our generative model, the state undergoes
transitions as follows. On taking a query action, we reach a state s′ which is the same as s
except that s′.numAct = s.numAct+1. On taking an invite action 〈S, i〉, we reach s′ which
is the same as s except that s′.numAct = s.numAct+ 1, and s′.M is s.M appended with
nodes of S that accept the invitation. Note that binary vector φ stays unchanged in either
case (since the session does not change). Finally, on taking the end-session action, we start
a new session by transitioning to state s′ s.t., s′.numAct = 0, s′.sessID = s.sessID + 1,
s′.M = s.M and s′.φ is resampled i.i.d. from the prior distribution Φ. Note that the
components M , numAct and sessID of a state are fully observable. The observations (ob-
tained on taking any action) are deterministically obtained as given in the “Observations”
sub-section given above.

Initial Belief State The prior distribution Φ, along with other completely observable
state components (such as sessID = 1, numAct = 0, and an empty locked set M = {})
forms our initial belief state.
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7.5 CAIMS: CAIM Solver

Our POMDP algorithm is motivated by the design of FV-POMCP, a recent online POMDP
algorithm [AO15]. Unfortunately, FV-POMCP has several limitations which make it un-
suitable for solving the CAIM problem. Thus, we propose CAIMS, a Monte-Carlo (MC)
sampling based online POMDP algorithm which makes key modifications to FV-POMCP,
and solves the CAIM problem for real-world sized networks. Next, we provide a brief
overview of POMCP, and its extension FV-POMCP.

POMCP POMCP [SV10] uses UCT based Monte-Carlo tree search (MCTS) [Bro+12]
to solve POMDPs. At every stage, given the current belief state b, POMCP incrementally
builds a UCT tree that contains statistics that serve as empirical estimators (via MC
samples) for the POMDP Q-value function Q(b, a) = R(b, a) +

∑
z

P (z|b, a)maxa′Q(b′, a′).

The algorithm avoids expensive belief updates by maintaining the belief at each UCT tree
node as an unweighted particle filter (i.e., a collection of all states that were reached at
that UCT tree node via MC samples). In each MC simulation, POMCP samples a start
state from the belief at the root node of the UCT tree, and then samples a trajectory
that first traverses the partially built UCT tree, adds a node to this tree if the end of
the tree is reached before the desired horizon, and then performs a random rollout to
get one MC sample estimate of Q(b, a). Finally, this MC sample estimate of Q(b, a) is
propagated up the UCT tree to update Q-value statistics at nodes that were visited during
this trajectory. Note that the UCT tree grows exponentially large with increasing state and
action spaces. Thus, the search is directed to more promising areas of the search space by
selecting actions at each tree node h according to the UCB1 rule [KS06], which is given by:
a = argmaxaQ̂(bh, a) + c

√
log(Nh + 1)/nha. Here, Q̂(bh, a) represents the Q-value statistic

(estimate) that is maintained at node h in the UCT tree. Also, Nh is the number of times
node h is visited, and nha is the number of times action a has been chosen at tree node h
(POMCP maintains statistics for Nh and nha∀a ∈ A at each tree node h). While POMCP
handles large state spaces (using MC belief updates), it is unable to scale up to large
action sizes (as the branching factor of the UCT tree blows up). We validate POMCP’s
poor scale-up performance in our experiments.

FV-POMCP FV-POMCP extends POMCP to deal with large action spaces. It as-
sumes that the action space of the POMDP can be factorized into a set of ` factors, i.e.,
each action a can be decomposed into a set of sub-actions al∀l ∈ [1, `]. Under this assump-
tion, the value function of the original POMDP is decomposable into a set of overlapping
factors. i.e., Q(b, a) =

∑
l∈[1,`]

αlQl(b, al), where αl (∀l ∈ [1, `]) are factor-specific weights. FV-

POMCP maintains a single UCT tree (similar to standard POMCP), but it differs in the
statistics that are maintained at each node of the UCT tree. Instead of maintaining Q̂(bh, a)
and nha statistics for every action in the global (unfactored) action space at tree node h,
it maintains a set of statistics that estimates the values Q̂l(bh, al) and nhal ∀l ∈ [1, `].

Joint actions are selected by the UCB1 rule across all factored statistics, i.e., a =
argmaxa

∑
l∈[1,`]

Q̂l(bh, al) + c
√
log(Nh + 1)/nhal . This maximization is efficiently done using

variable elimination (VE) [GKP02], which exploits the action factorization appropriately.
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Thus, FV-POMCP achieves scale-up by maintaining fewer statistics at each tree node h,
and by using VE to find the maximizing joint action.

However, there are two limitations which makes FV-POMCP unsuitable for solving
CAIM. First, the VE procedure used in FV-POMCP (as described above) may return an
action (i.e., a set of nodes) which is infeasible in the CAIM problem (e.g., the action may
have more than K nodes). We elaborate on this point later. Second, FV-POMCP uses
unweighted particle filters to represent belief states, which becomes highly inaccurate with
exponentially sized state spaces in CAIM. We address these limitations in CAIMS.

7.5.1 CAIMS

CAIMS is an online Monte-Carlo sampling based POMDP solver that uses UCT based
Monte-Carlo tree search to solve the CAIM problem. Similar to FV-POMCP, CAIMS also
exploits action factorization to scale up to large action spaces. We now explain CAIMS’s
action factorization.

Action Factorization Real world social networks generally exhibit a lot of community
structure, i.e., these networks are composed of several tightly-knit communities (partitions),
with very few edges going across these communities [SKP12]. This community structure
dictates the action factorization in CAIMS. As stated before, the POMDP model has
each action of the form 〈S, type〉, where S is a subset of nodes (that are being queried

or invited). This (sub)set S can be represented as a boolean vector ~S (denoting which

nodes are included in the set). Let Qq(~S) denote the Q-value of the query action 〈S, q〉,
Qi(~S) denote the Q-value of the invite action 〈S, i〉 and let Qe denote the Q-value of the
end-session action 〈{}, e〉. Now, suppose the real-world social network is partitioned into `

partitions (communities) P1, P2, · · ·P`. Let ~SPx denote the sub-vector of ~S corresponding

to the xth partition. Then, the action factorization used is: Qq(~S) =
∑`

x=1Q
Px
q (~SPx) for

query actions and Qi(~S) =
∑`

x=1Q
Px
i (~SPx) for invite actions.

Intuitively, QPx
i (~SPx) can be seen as the Q-value of inviting only nodes given by ~SPx

(and no other nodes). Now, if querying/inviting nodes of one partition has negligible effec-
t/influence on the other partitions, then the Q-value of the overall invite action 〈S, i〉 can
be approximated by the sum of the Q-values of the sub-actions 〈SPx , i〉. The same holds
for query actions. We now show that this action factorization is appropriate for CAIM as it
introduces minimal error into the influence spread calculations for stochastic block model
(SBM) networks, which mimic many properties of real-world networks [SKP12]. Note that
we consider a single round of influence spread (T=1) as empirical research by Goel, Watts,
and Goldstein [GWG12] shows that influence usually does not spread beyond the first hops
(T=1) in real-world social networks.

Theorem 7.5.1. Let I(S) denote the expected influence in the whole network when
nodes of set S are influenced, and we have one round of influence spread. For an
SBM network with n nodes and parameters (p, q) that is partitioned into ` communi-
ties, the difference between the true and factored expected influences can be bounded as

E
[
maxS

∣∣∣I(S)−
∑`

x=1 I(SPx)
∣∣∣] ≤ qn2

(
1− 1

`

)
pm, where pm = maxe∈E p(e) is the maxi-

mum propagation probability. Note that the (outer) expectation is over the randomness in
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the SBM network model.

This action factorization allows maintaining separate Q-value statistics
(Q̂Px

type(~SPx) ∀type ∈ {q, i, e}) for each factor (i.e., network community) at each node
of the UCT tree maintained by CAIMS. However, upon running MC simulations in
this UCT tree, we acquire samples of only Qtype (i.e., rewards of the joint un-factored
actions). We learn factored estimates QPx

type from estimates Qtype of the un-factored
actions by using mixture of experts optimization [AO15], i.e. we estimate the factors

as Q̂Px
type(~SPx) = αPxE[Qtype(~S)|~SPx ], where this expectation is estimated by using the

empirical mean. Please refer to [AO15] for more details. We now describe action selection
in the UCT tree.

Action Selection At each node in the UCT tree, we use the UCB1 rule (over all fac-
tors) to find the best action. Let nq

h~SPx
(or ni

h~SPx
) denote the number of times a query

(or invite) action with sub-action ~SPx has been taken from node h of the UCT tree.
Let Nh denote the number of times tree node h has been visited. The best query ac-
tion to be taken is given as 〈Sq, q〉, where ~Sq = argmax‖~S‖1≤Qmax

∑`
x=1 Q̂

Px
q (bh, ~SPx) +

c
√
log(Nh + 1)/nq

h~SPx
. Similarly, the best invite action to be taken is given as 〈Si, i〉, where

~Si = argmax‖~S‖1≤K−|M |
∑`

x=1 Q̂
Px
i (bh, ~SPx) + c

√
log(Nh + 1)/ni

h~SPx
(where M is the set of

locked nodes at tree node h). Let Vq and Vi denote the value attained at the maximizing
query and invite actions, respectively. Finally, let Ve denote the value of the end-session
action, i.e. Ve = Q̂e + c

√
log(Nh + 1)/neh where neh is the number of times the end-session

action has been taken from tree node h. Then, the values Vq, Vi and Ve are compared and
the action corresponding to max(Vq, Vi, Ve) is chosen.

Improved VE Note that the UCB1 equations to find maximizing query/invite actions
(as described above) are of the form argmax‖~a‖1≤z

∑`
x=1 fx(~ax) (where ~a ∈ {0, 1}n). Unfor-

tunately, plain application of VE (like FV-POMCP) to this results in infeasible solutions
which may violate the L-1 norm constraint. Thus, FV-POMCP’s VE procedure may not
produce feasible solutions for CAIM.

CAIMS addresses this limitation by using two adjustments. First, we incorpo-
rate this L-1 norm constraint as an additional factor in the objective function:
argmax~a∈{0,1}n

∑`
x=1 fx(~ax) + fc(~a). This constraint factor fc’s scope is all the n vari-

ables (as it represents a global constraint connecting actions selected across all factors),
and hence it can be represented using a table of size O(2n) in VE. Unfortunately, the
exponentially sized table of fc eliminates any speed-up benefits that VE provides, as the
induced width of the tree formed (on running VE) will be n, leading to a worst possible
time-complexity of O(2n).

To resolve this, CAIMS leverages a key insight which allows VE to run efficiently
even with the additional factor fc. The key idea is that, if all variables of a community
are eliminated at once, then both (i)fc; and (ii) the factors derived from a combination
of fc and other community-specific factors during such elimination, can be represented
very concisely (using just tables of size z + 1 elements), instead of using tables of size
O(2n). This fact is straightforward to see for the original constraint factor fc (as fc’s table
only depends on ‖~a‖1, it has value 0 if ‖~a‖1 ≤ z and −∞ otherwise). However, it is not
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obvious why this holds for derived factors, which need to maintain optimal assignments
to community-specific variables, for every possible combination of un-eliminated variable
values (thereby requiring O(2n) elements). However, it turns out that we can still represent
the derived factors concisely. The key insight is that even for these derived factors, all
variable assignments with the same L-1 norm have the same value (Lemma 7.5.2). This
allows us to represent each of these derived factor as a table of only z + 1 elements (as we
need to store one unique value when the L-1 norm is at most z, and we use −∞ otherwise).

Lemma 7.5.2. Let ψi(~v) denote the ith factor generated during CAIMS’s VE. Then,
ψi(~v1) = ψi(~v2) if ‖v1‖1 = ‖v2‖1. Further ψi(~v) = −∞ if ‖v‖1 > z.

These compact representations allow CAIMS to efficiently run VE in time
∑`

i=1 O (2si)
(si = size of ith community) even after adding the global constraint factor fc (Lemma 7.5.3).
This is the best one can do, because any algorithm will have to look at all values of each
community-specific factor in order to solve the problem.

Lemma 7.5.3. CAIMS’s VE has time-complexity
∑`

i=1O (2si), where si is the size of the
ith factor (community). There exists no procedure with better time complexity.

Markov Net Beliefs FV-POMCP uses unweighted particle filters to represent beliefs,
i.e. a belief is represented by a collection of states (also known as particles), wherein each
particle has an equal probability of being the true state. Unfortunately, due to CAIM’s
exponential state-space, this representation of beliefs becomes highly inaccurate which
leads to losses in solution quality.

To address this limitation, CAIMS makes the following assumption: availability of net-
work nodes is positively correlated with the availability of their neighboring nodes in the
social network. This assumption is reasonable because homeless youth usually go to shelters
with their friends [RR13]. Thus, the confirmed availability of one homeless youth increases
the likelihood of the availability of his/her friends (and vice versa). Under this assumption,
the belief state in CAIM can be represented using a Markov Network. Formally, the belief
is given as b = 〈N ,M , numAct, sessID〉, where N is a Markov Network representing our
belief of the true realization φ (note that the other three components of a state are observ-
able). With the help of this Markov Network, we maintain exact beliefs throughout the
POMCP tree of CAIMS. As mentioned before, the prior distribution Φ that serves as part
of the initial belief state is also represented using a Markov Network N0. This prior can
be elicited from field observations made by homeless shelter officials, and can be refined
over multiple runs of CAIMS. In our simulations, the social network structure G = (V ,E)
is used as a surrogate for the Markov network structure, i.e., the Markov network only
has potentials over two variables/nodes (one potential for each pair of nodes connected by
an edge in social network G). Thus, we start with the initial belief as 〈N0, {}, 0, 1〉. Upon
taking actions a = 〈S, type〉 and receiving observations o, the belief state can be updated
by conditioning the Markov network on the observed variables (i.e., by conditioning the
presence/absence of nodes based on observations received from past query actions taken
in the current session). This helps us maintain exact beliefs throughout the POMCP tree
efficiently, which helps CAIMS take more accurate decisions.
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7.6 Evaluation

We show simulation results on artificially generated (and real-world) networks to validate
CAIMS’s performance in a variety of settings. We also provide results from a real-world fea-
sibility study involving 54 homeless youth which shows the real-world usability of CAIMS.
For our simulations, all the networks were generated using NetworkX library [HSS08]. All
experiments are run on a 2.4 GHz 8-core Intel machine having 128 GB RAM. Unless oth-
erwise stated, we set L = 3, Qmax = 2, K = 2, and all experiments are averaged over 50
runs. All simulation results are statistically significant under t-test (α = 0.05).

Baselines We use two different kinds of baselines. For influence maximization solvers,
we use Greedy [KKT03], the gold-standard in influence maximization as a benchmark. We
subject Greedy’s chosen nodes to contingencies drawn from the same prior Φ distribu-
tion that CAIMS uses. We also compare against the overprovisioning variant of Greedy
(Greedy+) where instead of selecting K nodes, we select 2K nodes and influence the first
K nodes that accept the invitation. This was proposed as an ad-hoc solution in [Yad+17]
to tackle contingencies, and hence, we compare CAIMS against this. We also compare
CAIMS against state-of-the-art POMDP solvers such as SARSOP and POMCP. Unfortu-
nately, FV-POMCP cannot be used for comparison as its VE procedure is not guaranteed
to satisfy the K budget constraint used inside CAIMS.

Solution Quality Comparison Figures 7.3a, 7.3b and 7.6a compares influence spread
of CAIMS, Greedy, Greedy+ and POMCP on SBM (p = 0.4, q = 0.1), Preferential At-
tachment (PA) (n = 5) and real-world homeless youth networks (used in [Yad+16]), re-
spectively. We select K = 2 nodes, and set T = 6, L = 3 for CAIMS. The X-axis shows
the size of the networks and the Y-axis shows the influence spread achieved. Figures 7.3a
and 7.3b show that on SBM and PA networks, POMCP runs out of memory on networks
of size 120 nodes. Further, these figures also show that CAIMS significantly outperforms
Greedy and Greedy+ on both SBM (by ∼73%) and PA networks (by ∼58%). Figure
7.6a shows that even on real-world networks of homeless youth (which had ∼160 nodes
each) , POMCP runs out of memory, while CAIMS outperforms Greedy and Greedy+ by
∼25%. This shows that state-of-the-art influence maximization solvers perform poorly in
the presence of contingencies, and a POMDP based method (CAIMS) outperforms them
by explicitly accounting for contingencies. Figures 7.3a and 7.3b also show that Greedy+
performs worse than Greedy.

Scale up Having established the value of POMDP based methods, we now compare
CAIMS’s scale-up performance against other POMDP solvers. Figures 7.4a and 7.4b com-
pares the runtime of CAIMS, POMCP and SARSOP on a 100 node SBM network with
increasing values of T and K respectively. The X-axis shows T (or K) values and the Y-axis
shows the influence spread. Figure 7.4a shows that both POMCP and SARSOP run out
of memory at T = 2 sessions. On the other hand, CAIMS scales up gracefully to increas-
ing number of sessions. Similarly, Figure 7.4b (T = 10) shows that SARSOP runs out of
memory at K = 1, whereas POMCP runs out memory at K = 2, whereas CAIMS scales
up to larger values of K. These figures show the superiority of CAIMS over its baselines
as it outperforms them over a multitude of parameters and network classes.

Markov Nets We illustrate the value of Markov networks to represent belief states
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(a) SBM Networks (b) PA Networks

Figure 7.3: Influence Spread Comparison

(a) Scale up in T (b) Scale up in K

Figure 7.4: Scale Up Results

in CAIMS. We compare CAIMS with and without Markov nets (in this case, belief states
are represented using unweighted particle filters) on SBM networks of increasing size.
Figure 7.5a shows influence spread comparison between CAIMS and CAIMS-Particle (the
version which uses unweighted particle filters to represent belief states). Figure 7.5b shows
runtime comparison of CAIMS and CAIMS-Particle on the same SBM networks. These
figures shows that using a more accurate representation for the belief state (using Markov
networks) improved solution qualities by∼15% at the cost of∼3X slower runtime. However,
the loss in speed due to Markov networks is not a concern (as even on 160 node networks,
CAIMS with Markov networks runs in ∼75 seconds).

Real World Trial We conducted a real-world feasibility trial to test out CAIMS with
a homeless shelter in Los Angeles. We enrolled 54 homeless youth from this shelter into our
trial and constructed a friendship based social network for these youth (using social media
contacts). The prior Φ was constructed using field observations made by shelter officials. We
then executed policies generated by CAIMS, Greedy and Greedy+ on this network (K = 4,
Qmax = 4 and L = 3) on three successive days (T = 3) in the shelter to invite homeless
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(a) Influence Spread (b) Runtime

Figure 7.5: Value of using Markov Networks

(a) Homeless Youth Networks (b) Feasibility Trial

Figure 7.6: Real World Experiments

youth to attend the intervention. In reality, 14 out of 18 invitations (∼80%) resulted in
contingency events, which illustrates the importance of accounting for contingencies in
influence maximization. Figure 7.6b compares influence spread (in simulation) achieved by
nodes in invited sets selected by CAIMS, Greedy and Greedy+. This figure shows that
CAIMS is able to spread 31% more influence as compared to Greedy and Greedy+.

7.7 Conclusion

Most previous influence maximization algorithms rely on the following assumption: seed
nodes can be influenced with certainty. Unfortunately, this assumption does not hold in
most real-world domains. This paper presents CAIMS, a contingency-aware influence maxi-
mization algorithm for selecting key influencers in a social network. Specifically, this paper
makes the following five contributions: (i) we propose the Contingency-Aware Influence
Maximization problem and provide a theoretical analysis of the same; (ii) we cast this
problem as a Partially Observable Markov Decision Process (POMDP); (iii) we propose
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CAIMS, a novel POMDP planner which leverages a natural action space factorization as-
sociated with real-world social networks; (iv) we provide extensive simulation results to
compare CAIMS with existing state-of-the-art influence maximization algorithms; and (v)
we test CAIMS in a real-world feasibility trial which confirms that CAIMS is indeed a
usable algorithm in the real world.
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Chapter 8
Teaching AI Agents Ethical Values Using
Reinforcement Learning and Policy
Orchestration

Autonomous cyber-physical agents play an increasingly large role in our lives. To ensure
that they behave in ways aligned with the values of society, we must develop techniques that
allow these agents to not only maximize their reward in an environment, but also to learn
and follow the implicit constraints of society. We detail a novel approach that uses inverse
reinforcement learning to learn a set of unspecified constraints from demonstrations and
reinforcement learning to learn to maximize environmental rewards. A contextual bandit-
based orchestrator then picks between the two policies: constraint-based and environment
reward-based. The contextual bandit orchestrator allows the agent to mix policies in novel
ways, taking the best actions from either a reward-maximizing or constrained policy. In
addition, the orchestrator is transparent on which policy is being employed at each time
step. We test our algorithms using Pac-Man and show that the agent is able to learn to
act optimally, act within the demonstrated constraints, and mix these two functions in
complex ways.

8.1 Introduction

Concerns about the ways in which autonomous decision making systems behave when
deployed in the real world are growing. Stakeholders worry about systems achieving goals
in ways that are not considered acceptable according to values and norms of the impacted
community, also called “specification gaming” behaviors [RM19]. Thus, there is a growing
need to understand how to constrain the actions of an AI system by providing boundaries
within which the system must operate. To tackle this problem, we may take inspiration
from humans, who often constrain the decisions and actions they take according to a
number of exogenous priorities, be they moral, ethical, religious, or business values [Sen74;
Lor+18a; Lor+18b], and we may want the systems we build to be restricted in their actions
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by similar principles [AKS17]. The overriding concern is that the agents we construct may
not obey these values while maximizing some objective function [Sim18; RM19].

The idea of teaching machines right from wrong has become an important research topic
in both AI [Yu+18] and related fields [WA08]. Much of the research at the intersection of
artificial intelligence and ethics falls under the heading of machine ethics, i.e., adding ethics
and/or constraints to a particular system’s decision making process [AA11]. One popular
technique to handle these issues is called value alignment, i.e., restrict the behavior of an
agent so that it can only pursue goals which follow values that are aligned to human values
[RDT15; Lor+18b; Lor+18a].

Another important notion for these autonomous decision making systems is the idea of
transparency or interpretability, i.e., being able to see why the system made the choices it
did. Theodorou, Wortham, and Bryson [TWB16] observe that the Engineering and Physical
Science Research Council (EPSRC) Principles of Robotics dictates the implementation of
transparency in robotic systems. The authors go on to define transparency in a robotic or
autonomous decision making system as “a mechanism to expose the decision making of
the robot”.

While giving a machine a code of morals or ethics is important, there is still the question
of how to provide the behavioral constraints to the agent. A popular technique is called the
bottom-up approach, i.e., teaching a machine what is right and wrong by example [ASW05;
Bal+19a; Bal+18]. In this paper, we adopt this approach as we consider the case where
only examples of the correct behavior are available to the agent, and it must therefore
learn from only these examples.

We propose a framework which enables an agent to learn two policies: (1) πR, a reward
maximizing policy obtained through direct interaction with the world, and (2) πC , obtained
via inverse reinforcement learning over demonstrations by humans or other agents of how to
obey a set of behavioral constraints in the domain. Our agent then uses a contextual-bandit-
based orchestrator [BR19; Bou+17] to learn to blend the policies in a way that maximizes
a convex combination of the rewards and constraints. Within the RL community this can
be seen as a particular type of apprenticeship learning [AN04b] where the agent is learning
how to be safe, rather than only maximizing reward [Lei+17].

One may argue that we should employ πC for all decisions as it will be more ‘safe’
than employing πR. Indeed, although one could use πC exclusively for the agent, there
are a number of reasons to employ the orchestrator. First, while the humans or other
demonstrators may be good at demonstrating the constrained behavior, they may not
provide good examples of how best to maximize reward. Second, the demonstrators may
not be as creative as the agent when mixing the two policies [VG18]. By allowing the
orchestrator to learn when to apply which policy, the agent may be able to devise better
ways to blend the policies, leading to behavior which both follows the constraints and
achieves higher reward than any of the human demonstrations. Third, we may not want
to obtain demonstrations of what to do in all parts of the domain e.g., there may be
dangerous or hard-to-model regions, or there may be mundane parts of the domain in which
human demonstrations are too costly or boring to obtain. In this case, having the agent
learn what to do in the non-demonstrated parts through RL is complementary. Finally,
as we have argued, interpretability is an important feature to have. Although the policies
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themselves may not be directly interpretable (though there is recent work in this area
[Ver+18; Liu+18]), our proposed explicit orchestrator captures the notion of transparency
and interpretability as we can see which policy is being applied in real time.

Contributions. We propose and test a novel approach to teach machines to act in ways
that achieve and compromise multiple objectives in a given environment. One objective
is the desired goal and the other one is a set of behavioral constraints, learnt from ex-
amples. Our technique uses aspects of both traditional reinforcement learning and inverse
reinforcement learning to identify policies that both maximize rewards and follow partic-
ular constraints within an environment. Our agent then blends these policies in novel and
interpretable ways using an orchestrator based on the contextual bandits framework. We
demonstrate the effectiveness of these techniques on the Pac-Man domain where the agent
is able to learn both a reward-maximizing and a constrained policy, and select between
these policies in a transparent way based on context, to employ a policy that achieves high
reward and obeys the demonstrated constraints.

8.2 Related Work

Ensuring that autonomous systems act in line with our values while achieving their objec-
tives is a major research topic in AI. These topics have gained popularity among a broad
community including philosophers [WA08] and non-profits [RDT15]. Yu, Shen, Miao, Le-
ung, Lesser, and Yang [Yu+18] provide an overview of much of the recent research at major
AI conferences on ethics in AI.

Agents may need to balance objectives and feedback from multiple sources when mak-
ing decisions. One prominent example is the case of autonomous cars. There is extensive
research from multidisciplinary groups into the questions of when autonomous cars should
make lethal decisions [BSR16], how to aggregate societal preferences to make these deci-
sions [Noo+18], and how to measure distances between these notions [Lor+18a; Lor+18b].
In a recommender systems setting, a parent or guardian may want the agent to not recom-
mend certain types of movies to children, even if this recommendation could lead to a high
reward [Bal+18; Bal+19a]. Recently, as a compliment to their concrete problems in AI
saftey which includes reward hacking and unintended side effects [Amo+16], a DeepMind
study has compiled a list of specification gaming examples, where very different agents
game the given specification by behaving in unexpected (and undesired) ways.1

Within the field of reinforcement learning there has been specific work on ethical and
interpretable RL. Wu and Lin [WL18] detail a system that is able to augment an existing
RL system to behave ethically. In their framework, the assumption is that, given a set of
examples, most of the examples follow ethical guidelines. The system updates the overall
policy to obey the ethical guidelines learned from demonstrations using IRL. However, in
this system only one policy is maintained so it has no transparency. Laroche and Feraud
[LF17] introduce a system that is capable of selecting among a set of RL policies depending
on context. They demonstrate an orchestrator that, given a set of policies for a particular

138 AI “specification gaming” examples are available at: https://docs.google.com/spreadsheets/d/e/

2PACX-1vRPiprOaC3HsCf5Tuum8bRfzYUiKLRqJmbOoC-32JorNdfyTiRRsR7Ea5eWtvsWzuxo8bjOxCG84dAg/pubhtml
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domain, is able to assign a policy to control the next episode. However, this approach use
the classical multi-armed bandit, so the state context is not considered.

Interpretable RL has received significant attention in recent years. Luss and Petrik
[LP16] introduce action constraints over states to enhance the interpretability of policies.
Verma, Murali, Singh, Kohli, and Chaudhuri [Ver+18] present a reinforcement learning
framework, called Programmatically Interpretable Reinforcement Learning (PIRL), that
is designed to generate interpretable and verifiable agent policies. PIRL represents poli-
cies using a high-level, domain-specific programming language. Such programmatic policies
have the benefit of being more easily interpreted than neural networks, and being amenable
to verification by symbolic methods. Additionally, Liu, Schulte, Zhu, and Li [Liu+18] in-
troduce Linear Model U-trees to approximate neural network predictions. An LMUT is
learned using a novel on-line algorithm that is well-suited for an active play setting, where
the mimic learner observes an ongoing interaction between the neural net and the environ-
ment. The transparent tree structure of an LMUT facilitates understanding the learned
knowledge by analyzing feature influence, extracting rules, and highlighting the super-pixels
in image inputs.

8.3 Background

8.3.1 Reinforcement Learning

Reinforcement learning defines a class of algorithms solving problems modeled as a Markov
decision process (MDP) [SB98b]. An MDP is usually denoted by the tuple (S,A, T ,R, γ),
where: S is a set of possible states; A is a set of actions; T is a transition function defined
by T (s, a, s′) = Pr(s′|s, a), where s, s′ ∈ S and a ∈ A; R : S × A × S 7→ R is a reward
function; γ is a discount factor that specifies how much long term reward is kept. The
goal in an MDP is to maximize the discounted long term reward received. Usually the
infinite-horizon objective is considered: max

∑∞
t=0 γ

tR(st, at, st+1).
Solutions come in the form of policies π : S 7→ A, which specify what action the agent

should take in any given state deterministically or stochastically. One way to solve this
problem is through Q-learning with function approximation [BT96a]. The Q-value of a
state-action pair, Q(s, a), is the expected future discounted reward for taking action a ∈ A
in state s ∈ S. A common method to handle very large state spaces is to approximate the
Q function as a linear function of some features. Let ψ(s, a) denote relevant features of
the state-action pair 〈s, a〉. Then, we assume Q(s, a) = θ ·ψ(s, a), where θ is an unknown
vector to be learned by interacting with the environment. Every time the RL agent takes
action a from state s, obtains immediate reward r, and reaches new state s′, the parameter
θ is updated using

difference =
[
r + γmax

a′
Q(s′, a′)

]
−Q(s, a)

θi ← θi + α · difference · ψi(s, a),
(8.1)

where α is the learning rate. A common strategy used for exploration is ε-greedy: during
the training phase, a random action is played with a probability of ε and the action with
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maximum Q-value is played otherwise. The agent follows this strategy and updates the
parameter θ according to (8.1) until either the Q-values converge or a maximum number
of time-steps is met.

8.3.2 Inverse Reinforcement Learning

IRL seeks to find the most likely reward function RE, which an expert E is executing
[AN04b; NR00b]. IRL methods assume the presence of an expert that solves an MDP,
where the MDP is fully known and observable by the learner except for the reward function.
Since the state and action of the expert is fully observable by the learner, it has access to
trajectories executed by the expert. A trajectory consists of a sequence of state and action
pairs, Tr = (s0, a0, s1, a1, . . . , sL−1, aL−1, sL), where st is the state of the environment at
time t, at is the action played by the expert at the corresponding time and L is the length of
this trajectory. The learner is given access tom such trajectories {Tr(1), T r(2), . . . , T r(m)} to
learn the reward function. Since the space of all possible reward functions is extremely large,
it is common to represent the reward function as a linear combination of ` > 0 features.
R̂w(s, a, s′) =

∑`
i=1 wiφi(s, a, s

′), where wi are weights to be learned, and φi(s, a, s
′) → R

is a feature function that maps a state-action-state tuple to a real value, denoting the value
of a specific feature of this tuple. Current state-of-the-art IRL algorithms utilize feature
expectations as a way of evaluating the quality of the learned reward function [SB17]. For
a policy π, the feature expectations starting from state so are defined as

µ(π) = E

[ ∞∑
t=0

γtφ(st, at, st+1)
∣∣∣π] ,

where the expectation is taken with respect to the state sequence achieved on taking actions
according to π starting from s0. One can compute an empirical estimate of the feature
expectations of the expert’s policy with the help of the trajectories {Tr(1), T r(2), . . . , T r(m)},
using

µ̂E =
1

m

m∑
i=1

L−1∑
t=0

γtφ
(
s

(i)
t , a

(i)
t , s

(i)
t+1

)
. (8.2)

Given a weight vector w, one can compute the optimal policy πw for the corresponding
reward function R̂w, and estimate its feature expectations µ̂(πw) in a way similar to (8.2).
IRL compares this µ̂(πw) with expert’s feature expectations µ̂E to learn best fitting weight
vectors w.

8.3.3 Contextual Bandits

Following Langford and Zhang [LZ08], the contextual bandit problem is defined as follows.
At each time t ∈ {0, 1, . . . , (T − 1)}, the player is presented with a context vector c(t) ∈ Rd

and must choose an arm k ∈ [K] = {1, 2, . . . , K}. Let r = (r1(t), . . . , rK(t)) denote a reward
vector, where rk(t) is the reward at time t associated with the arm k ∈ [K]. We assume
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that the expected reward is a linear function of the context, i.e. E[rk(t)|c(t)] = µTk c(t),
where µk is an unknown weight vector (to be learned from the data) associated with the
arm k.

The purpose of a contextual bandit algorithm A is to minimize the cumulative re-
gret. Let H : C → [K] where C is the set of possible contexts and c(t) is the con-
text at time t, ht ∈ H a hypothesis computed by the algorithm A at time t and
h∗t = argmax

ht∈H
rht(c(t))(t) the optimal hypothesis at the same round. The cumulative re-

gret is: R(T ) =
∑T

t=1 rh∗t (c(t))(t)− rht(c(t))(t).
One widely used way to solve the contextual bandit problem is the Contextual

Thompson Sampling algorithm (CTS) [AG13] given as Algorithm 8.1. In CTS, the

Algorithm 8.1: Contextual Thompson Sampling Algorithm

1 Initialize: Bk = Id, µ̂k = 0d, fk = 0d for k ∈ [K].
2 for t = 0, 1, 2, . . . , (T − 1) do
3 Sample µ̃k(t) from N(µ̂k, v

2B−1
k ).

4 Play arm kt = argmax
k∈[K]

c(t)>µ̃k(t).

5 Observe rkt(t).
6 Bkt = Bkt + c(t)c(t)>, fkt = fkt + c(t)rkt(t), µ̂kt = B−1

kt
fkt .

7 end

reward rk(t) for choosing arm k at time t follows a parametric likelihood function
Pr(r(t)|µ̃). Following Agrawal and Goyal [AG13], the posterior distribution at time t+ 1,
Pr(µ̃|r(t)) ∝ Pr(r(t)|µ̃)Pr(µ̃) is given by a multivariate Gaussian distribution N (µ̂k(t+1),
v2Bk(t + 1)−1), where Bk(t) = Id +

∑t−1
τ=1 c(τ)c(τ)>, d is the size of the context vec-

tors c, v = R
√

24
z
d · ln( 1

γ
) and we have R > 0, z ∈ [0, 1], γ ∈ [0, 1] constants, and

µ̂(t) = Bk(t)
−1(
∑t−1

τ=1 c(τ)rk(τ)).
Every step t consists of generating a d-dimensional sample µ̃k(t) from N (µ̂k(t),

v2Bk(t)
−1) for each arm. We then decide which arm k to pull by solving for

argmaxk∈[K] c(t)
>µ̃k(t). This means that at each time step we are selecting the arm that

we expect to maximize the observed reward given a sample of our current beliefs over the
distribution of rewards, c(t)>µ̃k(t). We then observe the actual reward of pulling arm k,
rk(t) and update our beliefs.

8.3.4 Problem Setting

In our setting, the agent is in multi-objective Markov decision processes (MOMDPs). In-

stead of the usual scalar reward function R(s, a, s′), a reward vector ~R(s, a, s′) is present.

The vector ~R(s, a, s′) consists of l dimensions or components representing the different

objectives, i.e., ~R(s, a, s′) = (R1(s, a, s′), . . . , Rl(s, a, s
′)). However, not all components of

the reward vector are observed in our setting. There is an objective v ∈ [l] that is hidden,
and the agent is only allowed to observe expert demonstrations to learn this objective.
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IRL for Constraints

RL for Game Rewards

Orchestrator
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Policy
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Reward Maxi-
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s(t+ 1)
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Figure 8.1: Overview of our system. At each time step the Orchestrator selects between
two policies, πC and πR depending on the observations from the Environment. The two
policies are learned before engaging with the environment. πC is obtained using IRL on the
demonstrations to learn a reward function that captures demonstrated constraints. The
second, πR is obtained by the agent through RL on the environment.

These demonstrations are given in the form of trajectories {Tr(1), T r(2), . . . , T r(m)}. To
summarize, for some objectives, the agent has rewards observed from interaction with the
environment, and for some objectives the agent has only expert demonstrations. The aim
is still the same as single objective reinforcement learning, which is trying to maximize∑∞

t=0 γ
tRi(st, at, st+1) for each i ∈ [l].

8.4 Proposed Approach

The overall approach we propose, aggregation at the policy phase, is depicted by Fig-
ure 8.1. It has three main components. The first is the IRL component to learn the desired
constraints (depicted in green in Figure 8.1). We apply IRL to the demonstrations depict-
ing desirable behavior, to learn the underlying constraint rewards being optimized by the
demonstrations. We then apply RL on these learned rewards to learn a strongly constraint-
satisfying policy πC . Next, we augment this with a pure reinforcement learning component
(depicted in red in Figure 8.1). For this, we directly apply reinforcement learning to the
original environment rewards to learn a domain reward maximizing policy πR.

Now we have two policies: the constraint-obeying policy πC and the reward-maximizing
policy πR. To combine these two, we use the third component, the orchestrator (depicted
in blue in Figure 8.1). This is a contextual bandit algorithm that orchestrates the two
policies, picking one of them to play at each point of time. The context is the state of the
environment; the bandit decides which arm (policy) to play at each step. We use a modified
CTS algorithm to train the bandit. The context of the bandit is given by features of the
current state (for which we want to decide which policy to choose), i.e., c(t) = Υ(st) ∈ Rd.

The exact algorithm used to train the orchestrator is given in Algorithm 8.2. Apart
from the fact that arms are policies (instead of atomic actions), the main difference from
the CTS algorithm is the way rewards are fed into the bandit. For simplicity, we call
the constraint policy πC as arm 0 and the reward policy πR as arm 1. We now go over
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Algorithm 8.2. First, all the parameters are initialized as in the CTS algorithm (Line 1).
For each time-step in the training phase (Line 3), we do the following. Pick an arm kt
according to the Thompson Sampling algorithm and the context Υ(st) (Lines 4 and 5).
Play the action according to the chosen policy πkt (Line 6). This takes us to the next
state st+1. We also observe two rewards (Line 7): (i) the original reward in environment,
rRat(t) = R(st, at, st+1) and (ii) the constraint rewards according to the rewards learnt by

inverse reinforcement learning, i.e., rCat(t) = R̂C(st, at, st+1). rCat(t) can intuitively be seen
as the predicted reward (or penalty) for any constraint satisfaction (or violation) in this
step.

Algorithm 8.2: Orchestrator Based Algorithm

1 Initialize: Bk = Id, µ̂k = 0d, fk = 0d for k ∈ {0, 1}.
2 Observe start state s0.
3 for t = 0, 1, 2, . . . , (T − 1) do
4 Sample µ̃k(t) from N(µ̂k, v

2B−1
k ).

5 Pick arm kt = arg max
k∈{0,1}

Υ(st)
>µ̃k(t).

6 Play corresponding action at = πkt(st).
7 Observe rewards rCat(t) and rRat(t), and the next state st+1.

8 Define rkt(t) = λ
(
rCat(t) + γV C(st+1)

)
+ (1− λ)

(
rRat(t) + γV R(st+1)

)
.

9 Update Bkt = Bkt + Υ(st)Υ(st)
>, fkt = fkt + Υ(st)rkt(t), µ̂kt = B−1

kt
fkt .

10 end

To train the contextual bandit to choose arms that perform well on both metrics (envi-
ronment rewards and constraints), we feed it a reward that is a linear combination of rRat(t)
and rCat(t) (Line 8). Another important point to note is that rRat(t) and rCat(t) are immediate
rewards achieved on taking action at from st, they do not capture long term effects of
this action. In particular, it is important to also look at the “value” of the next state st+1

reached, since we are in the sequential decision making setting. Precisely for this reason,
we also incorporate the value-function of the next state st+1 according to both the re-
ward maximizing component and constraint component (which encapsulate the long-term
rewards and constraint satisfaction possible from st+1). This gives exactly Line 8, where
V C is the value-function according the constraint policy πC , and V R is the value-function
according to the reward maximizing policy πR.

In this equation, λ is a hyperparameter chosen by a user to decide how much to trade
off environment rewards for constraint satisfaction. For example, when λ is set to 0, the
orchestrator would always play the reward policy πR, while for λ = 1, the orchestrator
would always play the constraint policy πC . For any value of λ in-between, the orchestrator
is expected to pick policies at each point of time that would perform well on both metrics
(weighed according to λ). Finally, for the desired reward rkt(t) and the context Υ(st), the
parameters of the bandit are updated according to the CTS algorithm (Line 9).
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8.4.1 Alternative Approaches

Observe that in the proposed approach, we combine or “aggregate” the two objectives at
the highest level, i.e., at the policy stage. Alternative approaches could be to combine the
two objectives at lower levels, i.e., the reward stage or the demonstrations stage itself.

� Aggregation at reward phase. As before, we can perform inverse reinforcement
learning to learn the underlying rewards capturing the desired constraints. Now, in-
stead of learning a policy for each of the two reward functions (environment rewards
and constraint rewards) followed by aggregating them, we could just combine the
reward functions themselves. And then, we could learn a policy on these “aggre-
gated” rewards that performs well on both the objectives, environment reward, and
constraints. This process captures the intuitive idea of “incorporating the constraints
into the environment rewards.” Hence, if we were explicitly given the penalty of vio-
lating constraints this would be ideal. However, note that this is a top-down approach
and in this study we want to focus on the example driven, or bottoms-up approach.

� Aggregation at data phase. Moving another step backward, we could aggregate
the two objectives of play at the data phase. This could be performed as follows.
We perform pure reinforcement learning as in the proposed approach given in Fig-
ure 8.1 (depicted in red). Once we have our reward maximizing policy πR, we use it
to generate numerous reward-maximizing demonstrations. Then, we combine these
environment reward trajectories with the original constrained demonstrations, aggre-
gating the two objectives in the process. And once we have the combined data, we
can perform inverse reinforcement learning to learn the appropriate rewards, followed
by reinforcement learning to learn the corresponding policy.

Aggregation at the policy phase is the proposed approach in the main paper, where we
go all the way to the end of the pipeline, learning a policy for each of the objectives followed
by aggregation. A similar parameter to λ there can be used by the reward aggregation and
data aggregation approaches as well, to decide how to weigh the two objectives while
performing the corresponding aggregation.

The question now is, “which of these aggregation procedures is the most useful?”.
The reason we use aggregation at the policy stage is to gain interpretability. Using an
orchestrator to pick a policy at each point of time helps us identify which policy is being
played at each point of time and also the reason for which it is being chosen (in the case
of an interpretable orchestrator, which it is in our case).

8.5 Demonstration on Pac-Man

We demonstrate the applicability of the proposed algorithm using the classic game of
Pac-Man.

8.5.1 Details of the Domain

The layout of Pac-Man we use is given in Figure 8.2. The rules for the environment (adopted
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Figure 8.2: Layout of Pac-Man

from Berkeley AI Pac-Man2) are as follows. The goal of the agent is to eat all the dots in
the maze, known as Pac-Dots, as soon as possible while simultaneously avoiding collision
with ghosts. On eating a Pac-Dot, the agent obtains a reward of +10. On successfully
eating all the Pac-Dots, the agent obtains a reward of +500. In the meantime, the ghosts
roam the maze trying to kill Pac-Man. On collision with a ghost, Pac-Man loses the game
and gets a reward of −500. The game also has two special dots called Power Pellets in
the corners of the maze, which on consumption, give Pac-Man the temporary ability of
“eating” ghosts. During this phase, the ghosts are in a “scared” state for 40 frames and
move at half their speed. On eating a ghost, the agent gets a reward of +200, the ghost
returns to the center box and returns to its normal “unscared” state. Finally, there is a
constant time-penalty of −1 for every step taken.

For the sake of demonstration of our approach, we define not eating ghosts as the
desirable constraint in the game of Pac-Man. However, recall that this constraint is not
given explicitly to the agent, but only through examples. To play optimally in the original
game one should eat ghosts to earn bonus points, but doing so is being demonstrated as
undesirable. Hence, the agent has to combine the goal of collecting the most points while
not eating ghosts.

8.5.2 Details of the Pure RL

For the reinforcement learning component, we use Q-learning with linear function approx-
imation as described in Section 8.3.1. Some of the features we use for an 〈s, a〉 pair (for the
ψ(s, a) function) are: “whether food will be eaten”, “distance of the next closest food”,
“whether a scared (unscared) ghost collision is possible” and “distance of the closest scared
(unscared) ghost”.

2 http://ai.berkeley.edu/project_overview.html
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For the layout of Pac-Man we use (shown in Figure 8.2), an upper bound on the
maximum score achievable in the game is 2170. This is because there are 97 Pac-Dots, each
ghost can be eaten at most twice (because of two capsules in the layout), Pac-Man can
win the game only once and it would require more than 100 steps in the environment. On
playing a total of 100 games, our reinforcement learning algorithm (the reward maximizing
policy πR) achieves an average game score of 1675.86, and the maximum score achieved is
2144. We mention this here, so that the results in Section 8.6 can be seen in appropriate
light.

8.5.3 Details of the IRL

For inverse reinforcement learning, we use the linear IRL algorithm as described in Sec-
tion 8.3.2. For Pac-Man, observe that the original reward function R(s, a, s′) depends
only on the following factors: “number of Pac-Dots eating in this step (s, a, s′)”, “whether
Pac-Man has won in this step”, “number of ghosts eaten in this step” and “whether Pac-
Man has lost in this step”. For our IRL algorithm, we use exactly these as the features
φ(s, a, s′). As a sanity check, when IRL is run on environment reward optimal trajec-
tories (generated from our policy πR), we recover something very similar to the original
reward function R. In particular, the weights of the reward features learned is given by
1/1000[+2.44,+138.80,+282.49,−949.17], which when scaled is almost equivalent to the true
weights [+10,+500,+200,−500] in terms of their optimal policies. The number of trajec-
tories used for this is 100.

Ideally, we would prefer to have the constrained demonstrations given to us by humans,
but for the sake of simplicity we generate them synthetically as follows. We learn a policy
π?C by training it on the game with the original reward function R augmented with a
very high negative reward (−1000) for eating ghosts. This causes π?C to play well in the
game while avoiding eating ghosts as much as possible.3 Now, to emulate erroneous human
behavior, we use π?C with an error probability of 3%. That is, at every time step, with 3%
probability we pick a completely random action, and otherwise follow π?C . This gives us our
constrained demonstrations, on which we perform inverse reinforcement learning to learn
the rewards capturing the constraints. The weights of the reward function learned is given
by 1/1000[+2.84,+55.07,−970.59,−234.34], and it is evident that it has learned that eating
ghosts strongly violates the favorable constraints. The number of demonstrations used for
this is 100. We scale these weights to have a similar L1 norm as the original reward weights
[+10,+500,+200,−500], and denote the corresponding reward function by R̂C .

Finally, running reinforcement learning on these rewards R̂C , gives us our constraint
policy πC . On playing a total of 100 games, πC achieves an average game score of 1268.52
and eats just 0.03 ghosts on an average. Note that, when eating ghosts is prohibited in the
domain, an upper bound on the maximum score achievable is 1370.

3We do this only for generating demonstrations. In real domains, we would not have access to the exact
constraints that we want to be satisfied, and hence a policy like π?

C cannot be learned; learning from human
demonstrations would then be essential.
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Figure 8.3: Both performance metrics as λ is varied. The red curve depicts the average
game score achieved, and the blue curve depicts the average number of ghosts eaten.

8.5.4 Details of the Contextual Bandit

The features of the state we use for context c(t) are: (i) A constant 1 to represent the bias
term, and (ii) The distance of Pac-Man from the closest scared ghost in st. One could use
a more sophistical context with many more features, but we use this restricted context to
demonstrate a very interesting behavior (shown in Section 8.6).

8.6 Evaluation

We measure performance on two metrics, (i) the total score achieved in the game (the
environment rewards) and (ii) the number of ghosts eaten (the constraint violation). We
also observe how these metrics vary with λ. For each value of λ, the orchestrator is trained
for 100 games. The results are shown in Figure 8.3. Each point in the graph is averaged
over 100 test games.

The graph shows a very interesting pattern. When λ is at most than 0.215, the agent
eats a lot of ghosts, but when it is above 0.22, it eats almost no ghosts. In other words,
there is a value λo which behaves as a tipping point, across which there is drastic change
in behavior. Beyond the threshold, the agent learns that eating ghosts is not worth the
score it is getting and so it avoids eating as much as possible. On the other hand, when λ
is smaller than λo, it learns the reverse and eats as many ghosts as possible.

Policy-switching. As mentioned before, one important property of our approach is in-
terpretability, we know exactly which policy is being played at each time. For moderate
values of λ > λo, the orchestrator learns a very interesting policy-switching technique:
whenever at least one of the ghosts in the domain is scared, it plays πC , but if no ghosts
are scared, it plays πR. In other words, it starts the game playing πR until a capsule is
eaten. As soon as the first capsule is eaten, it switches to πC until the scared timer runs
off. Then it switches back to πR until another capsule is eaten, and so on. It has learned a
very intuitive behavior: when there is no scared ghost, there is no possibility of violating
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constraints. Hence, the agent is as greedy as possible (i.e., play πR). However, when there
are scared ghosts, it is better to be safe (i.e., play πC).

8.7 Discussion and Extensions

In this paper, we have considered the problem of autonomous agents learning policies that
are constrained by implicitly-specified norms and values while still optimizing their policies
with respect to environmental rewards. We have taken an approach that combines IRL
to determine constraint-satisfying policies from demonstrations, RL to determine reward-
maximizing policies, and a contextual bandit to orchestrate between these policies in a
transparent way. This proposed architecture and approach for the problem is novel. It also
requires a novel technical contribution in the contextual bandit algorithm because the arms
are policies rather than atomic actions, thereby requiring rewards to account for sequential
decision making. We have demonstrated the algorithm on the Pac-Man video game and
found it to perform interesting switching behavior among policies.

We feel that the contribution herein is only the starting point for research in this di-
rection. We have identified several avenues for future research, especially with regards to
IRL. We can pursue deep IRL to learn constraints without hand-crafted features, develop
an IRL that is robust to noise in the demonstrations, and research IRL algorithms to learn
from just one or two demonstrations (perhaps in concert with knowledge and reasoning).
In real-world settings, demonstrations will likely be given by different users with different
versions of abiding behavior; we would like to exploit the partition of the set of traces
by user to improve the policy or policies learned via IRL. Additionally, the current or-
chestrator selects a single policy at each time, but more sophisticated policy aggregation
techniques for combining or mixing policies is possible. Lastly, it would be interesting to
investigate whether the policy aggregation rule (λ in the current proposal) can be learned
from demonstrations.
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Chapter 9
Inverse Reinforcement Learning From
Like-Minded Teachers

We study the problem of learning a policy in a Markov decision process (MDP) based on
observations of the actions taken by multiple teachers. We assume that the teachers are
like-minded in that their reward functions — while different from each other — are random
perturbations of an underlying reward function. Under this assumption, we demonstrate
that inverse reinforcement learning algorithms that satisfy a certain property — that of
matching feature expectations — yield policies that are approximately optimal with respect
to the underlying reward function, and that no algorithm can do better in the worst case.
We also show how to efficiently recover the optimal policy when the MDP has one state — a
setting that is akin to multi-armed bandits. Finally, we support this with experiments on
non-trivial bandit problems, with varying parameters.

9.1 Introduction

A Markov decision process (MDP) is a formal specification of a sequential decision making
environment, which consists of a set of states, a set of actions, a reward function, and a
stochastic transition function. Reinforcement learning (RL) deals with learning a policy in
an MDP — which specifies a possibly randomized action that is taken in each state — to
maximize cumulative reward.

RL has long history in AI [SB98a; KLM96], as well as in many other disciplines. But
in recent years, interest in the area has exploded, in part due to breakthroughs in game
playing [Mni+15; Sil+16] and fast-growing applications to robotics [KBP13]. It is safe to
say that, nowadays, RL is widely considered to be one of the basic building blocks in the
construction of intelligent agents.

While most work in the area focuses on maximizing a given reward function, some
settings require the AI system to emulate the behavior of an expert or teacher [NR00a;
AN04a] — this is known as inverse reinforcement learning (IRL). The idea is to observe an
agent executing a policy in an MDP, where everything is known to the learner except
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the reward function, and extract a reward function that is most likely to be the one
being optimized by the agent. Using this reward function — and knowledge of the other
components of the MDP — the agent can easily compute an optimal policy to follow.

Our point of departure is that we are interested in IRL from multiple agents rather than
a single agent. Specifically, we observe n different agents executing policies that are optimal
for their individual reward functions. Our approach is to aggregate these observations into
a single policy, by applying an inverse reinforcement learning algorithm to the set of all
observations.

However, if individual agents have wildly divergent reward functions then the aggregate
policy may not represent coherent behavior. In addition, to formally reason about the
quality of the optimal policy, we need to relate it to some notion of ground truth. For these
reasons, we assume that the agents are like-minded, in that individual reward functions are
nothing but noisy versions of an underlying reward function.

In summary, our research challenge is this: Given observations from policies that are
optimal with respect to different reward functions, each of which is a perturbation of an
underlying reward function, identify IRL algorithms that can recover a good policy with
respect to the underlying reward function.

We believe that this problem is both natural and general. To further motivate it, though,
let us briefly instantiate it in the context of beneficial AI. One of the prominent approaches
in this area is to align the values of the AI system with the values of a human through
IRL [RDT15; Had+16]. Our extension to multiple agents would allow the alignment of the
system with the values of society.

A compelling aspect of this instantiation is that, if we think of the underlying reward
function as embodying a common set of moral propositions, then our technical assumption
of like-minded agents can be justified through the linguistic analogy, originally introduced
by Rawls [Raw71]. It draws on the work of Chomsky [Cho65], who argued that compe-
tent speakers have a set of grammatical principles in mind, but their linguistic behavior
is hampered by “grammatically irrelevant conditions such as memory limitations, distrac-
tions, shifts of attention and interest, and errors.” Analogously, Rawls claimed, humans
have moral rules — a common “moral grammar” — in our minds, but, due to various lim-
itations, our moral behavior is only an approximation thereof. Interestingly, this theory
lends itself to empirical experimentation, and, indeed, it has been validated through work
in moral psychology [Mik11].

Our Model and Results. We start from a common IRL setup: each reward function is
associated with a weight vector w, such that the reward for taking a given action in a given
state is the dot product of the weight vector and the feature vector of that state-action
pair. The twist is that there is an underlying reward function represented by a weight
vector w?, and each of the agents is associated with a weight vector wi, which induces an
optimal policy πi. We observe a trajectory from each πi.

In Section 9.3, we focus on competing with a uniform mixture over the optimal policies
of the agents, π1, . . . , πn (for reasons that we explicate momentarily). We can do this be-
cause the observed trajectories are “similar” to the uniform mixture, in the sense that their
feature vectors — the discounted frequencies of the features associated with the observed
state-action pairs — are close to that of the uniform mixture policy. Therefore, due to
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the linearity of the reward function, any policy whose feature expectations approximately
match those of the observed trajectories must be close to the uniform mixture with respect
to w?. We formalize this idea in Theorem 9.3.2, which gives a lower bound on the number
of agents and length of observed trajectories such that any policy that ε/3-matches feature
expectations is ε-close to the uniform mixture. Furthermore, we identify two well-known
IRL algorithms, Apprenticeship Learning [AN04a] and Max Entropy [Zie+08], which in-
deed output policies that match the feature expectations of the observed trajectories, and
therefore enjoy the guarantees provided by this theorem.

Needless to say, competing with the uniform mixture is only useful insofar as this bench-
mark exhibits “good” performance. We show that this is indeed the case in Section 9.4,
assuming (as stated earlier) that each weight vector wi is a noisy perturbation of w?.
Specifically, we first establish that, under relatively weak assumptions on the noise, it is
possible to bound the difference between the reward of the uniform mixture and that of the
optimal policy (Theorem 9.4.1). More surprisingly, Theorem 9.4.3 asserts that in the worst
case it is impossible to outperform the uniform mixture, by constructing an MDP where
the optimal policy cannot be identified — even if we had an infinite number of agents and
infinitely long trajectories! Putting all of these results together, we conclude that directly
running an IRL algorithm that matches feature expectations on the observed trajectories
is a sensible approach to our problem.

Nevertheless, it is natural to ask whether it is possible to outperform the uniform
mixture in typical instances. In Section 9.5 we show that this is indeed the case; in fact,
we are able to recover the optimal policy whenever it is identifiable, albeit under stringent
assumptions — most importantly, that the MDP has only one state. This leads to challenge
that we call the inverse multi-armed bandit problem. To the best of our knowledge, this
problem is novel; its study contributes to the (relatively limited) understanding of scenarios
where it is possible to outperform teacher demonstrations.

Related work. The most closely related work deals with IRL when the observations come
from an agent who acts according to multiple intentions, each associated with a different
reward function [Bab+11; CK12]. The main challenge stems from the need to cluster the
observations — the observations in each cluster are treated as originating from the same
policy (or intention). By contrast, clustering is a nonissue in our framework. Moreover,
our assumption that each wi is a noisy perturbation of w? allows us to provide theoretical
guarantees.

Further afield, there is a body of work on robust RL and IRL under reward uncer-
tainty [GLD00; RB09; RB10], noisy rewards [ZLN14], and corrupted rewards [Eve+17]. Of
these papers the closest to ours is that of Zheng et al. [ZLN14], who design robust IRL
algorithms under sparse noise, in the sense that only a small fraction of the observations
are anomalous; they do not provide theoretical guarantees. Our setting is quite different,
as very few observations would typically be associated with a near-perfect policy.
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9.2 MDP Terminology

We assume the environment is modeled as an MDP {S,A, T, γ,D} with an unknown reward
function. S is a finite set of states; A is a finite set of actions; T (s, a, s′) is the state transition
probability of reaching state s′ from state s when action a is taken; γ ∈ [0, 1) is the discount
factor; and D the initial-state distribution, from which the start state s0 is drawn for every
trajectory.

As is standard in the literature [AN04a], we assume that there is a function φ : S×A→
Rd that maps state-action pairs to their real-valued features. We also overload notation,
and say that the feature vector of a trajectory τ = {(s0, a0), (s1, a1), . . . , (sL, aL)} is defined
as φ(τ) =

∑L
t=0 γ

tφ(st, at).
We make the standard assumption that the immediate reward of executing action a

from state s is linear in the features of the state-action pair, i.e. rw(s, a) = wᵀφ(s, a).
This has a natural interpretation: φ represents the different factors, and w weighs them in
varying degrees.

Let µ denote the feature expectation of policy π, that is, µ(π) = E[
∑∞

t=0 γ
tφ(st, at)|π],

where π defines the action at taken from state st, and the expectation is taken over the
transition probabilities T (st, at, st+1). Hence, the cumulative reward of a policy π under
weight w can be rewritten as:

Rw(π) = Es0∼D[V π(s0)] = E

[ ∞∑
t=0

γtrw(st, at)

∣∣∣∣π
]

= wᵀ · E

[ ∞∑
t=0

γtφ(st, a)

∣∣∣∣π
]

= wᵀµ(π).

Let Pπ(s, t) denote the probability of getting to state s at time t under policy π. Then, the
cumulative reward Rw is

Rw(π) =
∞∑
t=0

γt
∑
s∈S

Pπ(s, t)rw(s, π(s)).

9.3 Approximating the Uniform Mixture

We consider an environment with n agents N = {1, . . . , n}. Furthermore, the reward
function of each agent i ∈ N is associated with a weight vector wi, and, therefore, with
a reward function rwi . This determines the optimal policy πi executed by agent i, from
which we observe the trajectory τi, which consists of L steps. We observe such a trajectory
for each i ∈ N , giving us trajectories {τ1, ..., τn}.

As we discussed in Section 9.1, we assume that the reward function associated with
each agent is a noisy version of an underlying reward function. Specifically, we assume that
there exists a ground truth weight vector w?, and for each agent i ∈ N we let wi = w?+ηi,
where ηi is the corresponding noise vector; we assume throughout that η1, . . . ,ηn are i.i.d.
Following Abbeel and Ng [AN04a], we also assume in some of our results (when stated
explicitly) that ‖w?‖2 ≤ 1 and ‖φ(s, a)‖∞ ≤ 1.

Let us denote by πu the uniform mixture over the policies π1, . . . , πn, that is, the
(randomized) policy that, in each trajectory, selects one of these policies uniformly at
random and executes it throughout the trajectory.
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Our goal in this section is to “approximate” the uniform mixture (and we will justify
this choice in subsequent sections). To do so, we focus on IRL algorithms that “match
feature expectations.” Informally, the property of interest is that the feature expectations
of the policy match the (discounted) feature vectors of observed trajectories. This idea is
already present in the IRL literature, but it is helpful to define it formally, as it allows us
to identify specific IRL algorithms that work well in our setting.

Definition 9.3.1. Given n trajectories τ1, ..., τn, a (possibly randomized) policy π ε-
matches their feature expectations if and only if ‖µ(π)− 1

n

∑n
i=1 φ(τi)‖2 ≤ ε.

In a nutshell, due to the linearity of the reward function, two policies that have the same
feature expectations have the same reward. Therefore, if the observed trajectories closely
mimic the feature expectations of πu, and a policy π̃ matches the feature expectations of
the observed trajectories, then the reward of π̃ would be almost identical to that of πu.
This is formalized in the following theorem, whose proof is relegated to Appendix G.2.

Theorem 9.3.2. Assume that ‖φ(s, a)‖∞ ≤ 1 for all s ∈ S, a ∈ A. Let w? such that
‖w?‖2 ≤ 1, fix any w1, . . . ,wn, and, for all i ∈ N , let τi be a trajectory of length L
sampled by executing πi. Let π̃ be a policy that ε/3−matches the feature expectation of
these trajectories. If

n ≥
72 ln

(
2
δ

)
d

ε2(1− γ)2
and L ≥ log1/γ

3
√
d

(1− γ)ε

then, with probability at least 1− δ, it holds that
∣∣Rw?

(π̃)−Rw?
(πu)

∣∣ ≤ ε.

Note that the required number of agents n may be significant; fortunately, we can expect
access to data from many agents in applications of interest. For example, Noothigattu et
al. [Noo+18] built a system that decides ethical dilemmas based on data collected from 1.3
million people.

To apply Theorem 9.3.2, we need to use IRL algorithms that match feature expec-
tations. We have identified two algorithms that satisfy this property: the Apprenticeship
Learning algorithm of Abbeel and Ng [AN04a], and the Max Entropy algorithm of Ziebart
et al. [Zie+08]. For completeness we present these algorithms, and formally state their
feature-matching guarantees, in Appendix G.1.

9.4 How Good is the Uniform Mixture?

In Section 9.3 we showed that it is possible to (essentially) match the performance of
the uniform mixture with respect to the ground truth reward function. In this section we
justify the idea of competing with the uniform mixture in two ways: first, we show that the
uniform mixture approximates the optimal policy under certain assumptions on the noise,
and, second, we prove that in the worst case it is actually impossible to outperform the
uniform mixture.
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9.4.1 The Uniform Mixture Approximates the Optimal Policy

Recall that for all i ∈ n, wi = w? + ηi. It is clear that without imposing some structure
on the noise vectors ηi, no algorithm would be able to recover a policy that does well with
respect to w?.

Let us assume, then, that the noise vectors ηi are such that the ηik are independent
and each η2

ik is sub-exponential. Formally, a random variable X with mean u = E[X] is
sub-exponential if there are non-negative parameters (ν, b) such that E [exp (λ(X − u))] ≤
exp (ν2λ2/2) for all |λ| < 1/b. This flexible definition simply means that the moment
generating function of the random variable X is bounded by that of a Gaussian in a
neighborhood of 0. Note that if a random variable is sub-Gaussian, then its square is
sub-exponential. Hence, our assumption is strictly weaker than assuming that each ηik is
sub-Gaussian.

Despite our assumption about the noise, it is a priori unclear that the uniform mixture
would do well. The challenge is that the noise operates on the coordinates of the individual
weight vectors, which in turn determine individual rewards, but, at first glance, it seems
plausible that relatively small perturbations of rewards would lead to severely suboptimal
policies. Our result shows that this is not the case: πu is approximately optimal with respect
to Rw?

, in expectation.

Theorem 9.4.1. Assume that ‖φ(s, a)‖∞ ≤ 1 for all s ∈ S, a ∈ A. Let w? such that
‖w?‖2 ≤ 1, and suppose that w1, ...,wn are drawn from i.i.d. noise around w?, i.e., wi =
w? + ηi, where each of its coordinates is such that η2

ik is an independent sub-exponential
random variable with parameters (ν, b). Then

E[Rw?

(πu)] ≥ Rw?

(π?)−O

(
d
√
u+ ν

√
d

u
+

b√
u

)
,

where u = 1
d

∑d
k=1 E [η2

ik], and the expectation is taken over the noise.

The exact expression defining the gap between E[Rw?
(πu)] and Rw?

(π?) can be found
in the proof of Theorem 9.4.1, which appears in Appendix G.3; we give the asymptotic
expression in the theorem’s statement because it is easier to interpret. As one might expect,
this gap increases as ν or b is increased (and, in a linear fashion). This is intuitive because
a smaller ν or b imposes a strictly stronger assumption on the sub-exponential random
variable (and its tails).

To gain more insight, we analyze the upper bound on the gap when ηik follows a
Gaussian distribution, that is, ηik ∼ N (0, σ2). Note that this implies that η2

ik follows a χ2
1

distribution scaled by σ2; a χ2
1 distributed random variable is known to be sub-exponential

with parameters (2, 4), and hence this implies that η2
ik is sub-exponential with parameters

(2σ2, 4σ2). Further, in this case, u = E [η2
ik] = σ2. Plugging these quantities into the upper

bound of Theorem 9.4.1 shows that the gap is bounded by O(dσ).
Theorem 9.4.1 shows that the gap depends linearly on the number of features d. An

example given in Appendix G.4 shows that this upper bound is tight. Nevertheless, the
tightness holds in the worst case, and one would expect the practical performance of the
uniform mixture to be very good. To corroborate this intuition, we provide (unsurprising)
experimental results in Appendix G.5.
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9.4.2 It is Impossible to Outperform the Uniform Mixture in the
Worst Case

An ostensible weakness of Theorem 9.4.1 is that even as the number of agents n goes to
infinity, the reward of the uniform mixture may not approach that of the optimal policy,
that is, there is a persistent gap. The example given in Section 9.4.1 shows the gap is not
just an artifact of our analysis. This is expected, because the data contains some agents
with suboptimal policies πi, and a uniform mixture over these suboptimal policies must
itself be suboptimal.

It is natural to ask, therefore, whether it is generally possible to achieve performance
arbitrarily close to π? (at least in the limit that n goes to infinity). The answer is negative.
In fact, we show that — in the spirit of minimax optimality [HL50; PM02] — one cannot
hope to perform better than πu itself in the worst case. Intuitively, there exist scenarios
where it is impossible to tell good and bad policies apart by looking at the data, which
means that the algorithm’s performance depends on what can be gleaned from the “average
data”.

This follows from a surprising1 result that we think of as “non-identifiability” of the op-
timal policy. To describe this property, we introduce some more notation. The distribution
over the weight vector of each agent i, wi = w? + ηi, in turn induces a distribution over
the optimal policy πi executed by each agent. Denote this distribution by P(w?).2 Hence,
each agent’s optimal policy πi is just a sample from this distribution P(w?). In particular,
as the number of agents goes to infinity, the empirical distribution of their optimal policies
would exactly converge to P(w?).

For the rest of this section, we make minimal assumptions on the noise vector ηi. In
particular, we merely assume that ηi follows a continuous distribution and that each of its
coordinates is i.i.d. We are now ready to state our non-identifiability lemma.

Lemma 9.4.2 (non-identifiability). For every continuous distribution D over R, if ηik is
independently sampled from D for all i ∈ N and k ∈ [d], then there exists an MDP and
weight vectors w?

a, w?
b with optimal policies π?a, π?b , respectively, such that π?a 6= π?b but

P(w?
a) = P(w?

b).

Even if we had an infinite number of trajectories in our data, and even if we knew the
exact optimal policy played by each player i, this information would amount to knowing
P(w?). Hence, if there exist two weight vectors w?

a, w?
b with optimal policies π?a, π

?
b such

that π?a 6= π?b and P(w?
a) = P(w?

b), then we would not be able to identify whether the
optimal policy is π?a or π?b regardless of how much data we had.

The proof of Lemma 9.4.2 is relegated to Appendix G.6. Here we provide a proof sketch.

Proof sketch of Lemma 9.4.2. The intuition for the lemma comes from the construction of
an MDP with three possible policies, all of which have probability 1/3 under P(w?), even
though one is better than the others. This MDP has a single state s, and three actions
{a, b, c} that lead back to s. Denote the corresponding policies by πa, πb, πc. Let the feature

1At least it was surprising for us — we spent significant effort trying to prove the opposite result!
2Note that this distribution does not depend on i itself since the noise ηi is i.i.d. across the different

agents.
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Figure 9.1: Regions of each optimal policy for different values of δ. Blue depicts the region
where πa is optimal, orange is where πb is optimal, and green is where πc is optimal.

expectations be φ(s, a) = [0.5, 0.5], φ(s, b) = [1,−δ/2], φ(s, c) = [−δ/2, 1], where δ > 0 is a
parameter. Let the ground truth weight vector be w? = (vo, vo), where vo is such that the
noised weight vector w = w? + η has probability strictly more than 1/3 of lying in the
first quadrant; such a value always exists for any noise distribution that is continuous and
i.i.d. across coordinates.

Let us look at weight vectors w for which each of the three policies πa, πb and πc are
optimal. πa is the optimal policy when wᵀµa > wᵀµb and wᵀµa > wᵀµc, which is the
intersection of the half-spaces wᵀ(−1, 1 + δ) > 0 and wᵀ(1 + δ,−1) > 0. Similarly, we
can reason about the regions where πb and πc are optimal. These regions are illustrated in
Figure 9.1 for different values of δ. Informally, as δ is decreased, the lines separating (πa, πc)
and (πa, πb) move closer to each other (as shown for δ = 0.25), while as δ is increased, these
lines move away from each other (as shown for δ = 10). By continuity and symmetry, there
exists δ such that the probability of each of the regions (with respect to the random noise)
is exactly 1/3, showing that the MDP has the desired property.

To complete the proof of the lemma, we extend the MDP by adding two more features
to the existing two. By setting these new features appropriately (in particular, by cycling
the two original features across the arms), we can show that the two weight vectors w?

a =
(vo, vo, 0, 0) and w?

b = (0, 0, vo, vo) lead to P(w?
a) = (1

3
, 1

3
, 1

3
) = P(w?

b), even though their
corresponding optimal policies are πa and πb, respectively.

For the next theorem, therefore, we can afford to be “generous:” we will give the al-
gorithm (which is trying to compete with πu) access to P(w?), instead of restricting it to
sampled trajectories. Formally, the theorem holds for any algorithm that takes a distribu-
tion over policies as input, and returns a randomized policy.

Theorem 9.4.3. For every continuous distribution D over R, if ηik is independently sam-
pled from D for all i ∈ N and k ∈ [d], then there exists an MDP such that for any algorithm
A from distributions over policies to randomized policies, there exists a ground truth weight
vector w? such that Rw?

(A(P(w?)) ≤ Rw?
(πu) < Rw?

(π?).

In words, the constructed instance is such that, even given infinite data, no algorithm
can outperform the uniform mixture, and, moreover, the reward of the uniform mixture is
bounded away from the optimum. The theorem’s proof is given in Appendix G.7.
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9.5 An Algorithm for the Inverse Multi-Armed Ban-

dit Problem

In Section 9.4, we have seen that it is impossible to outperform the uniform mixture in the
worst case, as the optimal policy is not identifiable. However, it is natural to ask whether
the optimal policy can be practically recovered when it is identifiable. In this section we
give a positive answer, albeit in a restricted setting.

Specifically, we focus on the multi-armed bandit problem, which is an MDP with a
single state. Note that the non-identifiability result of Lemma 9.4.2 still holds in this
setting, as the example used in its proof is an MDP with a single state. Hence, even in
this setting of bandits, it is impossible to outperform the uniform mixture in the worst
case. However, we design an algorithm that can guarantee optimal performance when the
problem is identifiable, under some additional conditions.

Like the more general setting of the previous sections, there exists a ground truth weight
vector w?, and for each agent i ∈ N , wi = w? + ηi. For this section, we assume the noise
vector ηi to be Gaussian, and i.i.d. across agents as well as coordinates. In particular,
ηi ∼ N (0, σ2Id), and independent across i.

The bandit setting is equivalent to a single-state MDP, and hence the components S, T ,
γ and D are moot. Instead, there are m arms to pull, denoted by A = {1, 2, . . . ,m}. Similar
to our original feature function φ, we now have features xj ∈ Rd associated with arm j, for
each j ∈ A. Although in standard stochastic bandit problems we have a reward sampled
from a distribution when we pull an arm, we care only about its mean reward in this section.
For weight vector w, the (mean) reward of pulling arm j is given by rw(j) = wᵀxj. For
each agent i (with weight vector wi), we assume that we observe the optimal arm being
played by this agent, i.e., ãi = argmaxj∈Awᵀixj.

We observe the dataset D = {ã1, ã2, . . . , ãn} which is the set of optimal arms played
by the agents. Define Q(w?) to be the distribution over optimal arms induced when the
ground truth weight vector is w?. In particular, ground truth weight vector w? induces a
distribution over the noised weight vector of each agent (via w = w? + η), which in turn
induces a distribution over the optimal arm that would be played, which we call Q(w?) —
analogously to the P(w?) of Section 9.4. Observe that the dataset D could be rewritten
as a distribution over arms, Q̃ = (Q̃1, Q̃2, . . . , Q̃m), which is the observed distribution of
optimal arms. Moreover, as each agent’s optimal arm played is an i.i.d. sample from Q(w?),
the empirical distribution Q̃ is an unbiased estimate of Q(w?).

The inverse multi-armed bandit problem is to recover w? given the distribution Q̃, which
allows us to identify the optimal arm. In order to achieve this, we aim to find w such that
Q(w) = Q̃, or matches it as closely as possible. Ideally, we’d want to find w such that
Q(w) = Q(w?),3 but since we don’t have access to Q(w?), we use the unbiased estimate
Q̃ in its place.4

3Note that there might be multiple w such that Q(w) = Q(w?). However, since we care only about
the corresponding optimal arm, and identifiability tells us that all weight vectors with the same Q value
have the same optimal arm, we just need to find one such weight vector.

4In most cases, we would have collected sufficient data such that the optimal arm corresponding to Q̃
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Since the constraint Q(w) = Q̃ is far from being convex in w, we reformulate the
problem such that the new problem is convex, and all its optimal solutions satisfy the
required constraint (and vice versa). The new objective we use is the cross entropy loss
between Q̃ and Q(w). That is, the optimization problem to solve is

min
w
−
∑
k∈A
Q̃k logQ(w)k. (9.1)

It is obvious that this objective is optimized at points with Q(w) = Q̃, if the original
problem was feasible. Otherwise, it finds w whose Q is as close to Q̃ as possible in terms of
cross-entropy. Furthermore, this optimization problem is convex under a simple condition,
which requires the definition of Xk as an (m−1)×d matrix with rows of the form (xk−xj)

ᵀ,
for each j ∈ A \ {k}.
Theorem 9.5.1. Optimization problem (9.1) is convex if XkX

ᵀ
k is invertible for each k ∈

A.

The proof of the theorem appears in Appendix G.8. An exact characterization of when
XkX

ᵀ
k is full rank is rank(XkX

ᵀ
k ) = rank(Xk) = m − 1, i.e. when Xk is full row rank. For

this to be true, a necessary condition is that d ≥ m − 1 as rank(Xk) ≤ min(d,m − 1).5

And under this condition, the requirement for Xk to to be full row rank is that the rows
(xk − xj)

ᵀ are linearly independent, which is very likely to be the case, unless the feature
vectors were set up adversarially. One potential scenario where the condition d ≥ m − 1
would arise is when there are many features but feature vectors xj are sparse.

As the optimization problem (9.1) is convex, we can use gradient descent to find a
minimizer. And for this, we need to be able to compute the gradient accurately, which we
show is possible (the calculation is given in Appendix G.9). In particular, suppose XkX

ᵀ
k

is invertible for each k ∈ A, and let f(w) denote the objective function of optimization
problem (9.1). Then, its gradient is given as

∇wf(w) = −
∑
k∈A

Q̃k
Fk(Xkw)

[
m−1∑
i=1

pk,i((Xkw)i) · Fk,Z−i|Zi=(Xkw)i((Xkw)−i) ·X(i)
k

]
, (9.2)

where Fk and pk denote the CDF and PDF of the distribution N (0, σ2XkX
ᵀ
k ) respectively,

Fk,Z−i|Zi=zi is the conditional CDF of the distribution Fk given the ith coordinate is zi, pk,i is

the PDF of the marginal distribution of this ith coordinate, and X
(i)
k denotes the ith row of

Xk. Note that, the conditional distribution Fk,Z−i|Zi=zi is also a Gaussian distribution with
known parameters, and hence it can be estimated efficiently. Hence, we can use gradient
descent updates defined by

w+ = w + α
∑
k∈A

Q̃k
Fk(Xkw)

[
m−1∑
i=1

pk,i((Xkw)i) · Fk,Z−i|Zi=(Xkw)i((Xkw)−i) ·X(i)
k

]
,

coincides with the optimal arm corresponding to Q(w?). It is possible that they may not coincide, but this
probability goes to zero as the size of the dataset D increases.

5Intuitively, this is because Xk is taking a d-dimensional Gaussian η and transforming it into (m− 1)
Gaussians via linear transformations.
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where α is a suitable step size, to find an optimal solution of (9.1).
Importantly, we can also use our procedure to determine whether the optimal arm is

identifiable. Given Q̃, we solve the optimization problem (9.1) to first find a wo such that
Q(wo) = Q̃. Let wo have the optimal arm ao ∈ A. Now, our goal is to check if there exists
any other weight w that has Q(w) = Q̃ but whose corresponding optimal arm is not ao.
To do this, we can build a set of convex programs, each with the exact same criterion
(taking care of the Q(w) = Q̃ requirement), but with the constraint that arm ai 6= ao
is the optimal arm (or at least beats ao) with respect to w. In particular, the constraint
for program i could be wᵀxi > wᵀxao . As this is a simple affine constraint, solving the
convex program would be very similar to running gradient descent as before. If any of these
convex programs outputs an optimal solution that satisfies Q(w) = Q̃, then the problem
is not identifiable, as it implies that there exist weight vectors with different optimal arms
leading to the same Q̃. On the other hand, if none of them satisfies Q(w) = Q̃, we can
conclude that ao is the desired unique optimal arm.

9.5.1 Experiments

In this section, we present the empirical performance of using optimization problem (9.1) to
find the ground truth weight vector w?. We demonstrate this on bandit problems inspired
from the counter-example from Lemma 9.4.2. The reason for this is as follows. In purely
randomly generated bandit problems, the optimal arm a? ends up being the mode of Q(w?)
with high probability, making the mode of Q̃ a very good estimator of a?. This is because,
for each arm a, the region Ra = {w : wᵀxa ≥ wᵀxj for each j}, corresponding to where
arm a is optimal, forms a polytope, and the optimal arm’s region Ra? contains w?. Hence,
as long as Ra? has enough volume around w?, it would capture a majority of the density
of the noise η, and a? would be the mode of the distribution Q(w?). In order to avoid
such “simple” instances of the problem, we consider more difficult ones inspired from our
counter-example from Lemma 9.4.2.

In particular, the bandit instances we consider are as follows. There are two features
(d = 2) and three arms A = {1, 2, 3}, and their features are defined as

x1 = [1, 1],x2 = [2,−δ] and x3 = [−δ, 2],

where δ > 0 is a positive constant. The ground truth weight vector is given as w? = [1, 1].
Hence, for any δ > 0, the optimal arm is arm 1. The noise is η ∼ N (0, σ2). Such an instance
is very similar to the one of Lemma 9.4.2, except that the features are not replicated to
extend from two to four features, and hence the problem remains identifiable. In order to
see this, recall that the regions where each arm is optimal is given by Figure 9.1. The blue,
orange and green regions denote where arms 1, 2 and 3 are optimal respectively. Hence,
when w? = [1, 1], the orange and green regions have equal probability, and the probability
of the blue region depends on the value of σ and δ. Therefore, given the value of Q(w?),
one can decipher w? as follows. First, as arms 2 and 3 have the same probability, it implies
that w? lies on the w1 = w2 line (because if it did not, either the orange or green would
have a higher probability, depending on which side w? falls in). Next, for a given value of σ
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Figure 9.2: Performance as δ is varied.
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Figure 9.3: Performance as σ is varied.

and δ, any point on the w1 = w2 would lead to a unique probability of the blue region (as
the noise is η ∼ N (0, σ2)). In particular, one could invert the value of Q(w?)1 to obtain
where exactly w? lies on the w1 = w2 line. Hence, the problem is identifiable (with arm 1
being the corresponding identifiable optimal arm).

Observe that when the value of δ is small enough, the blue region becomes a sliver
(Figure 9.1), capturing a very small density of the noise η, and causing arm 1 to not be
the mode of Q(w?). Alternatively, for a given value of δ, if σ is large enough, most of the
noise’s density escapes the blue region, again causing arm 1 to not be the mode of Q(w?).
In the following experiments, we vary both δ and σ, and show that even when the optimal
arm appears negligibly in Q(w?), solving optimization problem (9.1) is able to recover it.

Varying parameter δ. In the first set of experiments, we fix the noise standard deviation
σ to 1, generate n = 500 agents according to the noise η ∼ N (0, σ2), and vary parameter
δ from 0.01 to 3. Figure 9.2 shows the percentage of times optimization problem (9.1) and
the mode recover the optimal arm 1. This graph is averaged over 1000 runs. When δ is
extremely close to 0, the optimal arm’s region becomes a sliver and almost vanishes. Hence,
small differences between Q̃ and Q(w?) could have a substantial effect, and unless w? is
numerically recovered within this sliver, the optimal arm would not be recovered. But as
we move to even slightly larger values of δ, the performance of the algorithm improves
substantially and it ends up recovering the optimal arm 100% of the time.

On the other hand, as δ is varied from 0 to ∞, the density of the noise η captured by
the blue region increases continuously from 0 to that of the first quadrant. In particular,
there is a point where Q(w?) has probability tied across the three arms, beyond which
arm 1 is always the mode (i.e. mode has 100% performance), and before which arms 2 and
3 are the modes (i.e the mode has 0% performance). This tipping point is evident from
the graph and occurs around δ = 1. The transition in this graph is smoother than a step
function because we use the empirical mode from Q̃ whose performance varies smoothly
as the distance between probabilities of arms 1 and {2, 3} changes.6 Observe that the

6the transition would be a sharp step function if we used the mode directly from Q(w?).
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performance of the algorithm rises to 100% much before this tipping point, serving as
evidence that it can perform really well even if the optimal arm bearly appears in the
dataset. Appendix G.10.1 shows how the graph changes as δ is varied, but while the
parameters are set to σ ∈ {0.5, 2.0} or n ∈ {250, 1000} instead.

Varying noise parameter σ. Here, we fix the parameter δ to 1 and generate n = 500
agents according to noise η ∼ N (0, σ2), while varying the noise parameter σ from 0.01
to 5. Figure 9.3 shows the percentage of times optimization problem (9.1) and the mode
recover the optimal arm 1. This graph is also averaged over 1000 runs. The results are
similar in spirit to Figure 9.2. When σ is extremely large (relative to the ground truth
vector w? = [1, 1]), the weight space becomes less and less distinguishable w.r.t. their
corresponding Q values. In particular, small differences between Q̃ and Q(w?) could again
have a substantial effect on the corresponding optimal arms, causing a suboptimal arm
to be recovered. At more reasonable levels of noise though, we can see that the algorithm
recovers the optimal arm 1 100% of the time.

The mode’s performance also has a similar flavor to Figure 9.2. For a given value of δ,
the regions of Figure 9.1 are completely decided. When σ is close to zero, the noise is almost
negligible, and hence the blue region captures most of the density of the noise η, and the
optimal arm is the mode. But as σ is varied from 0 to ∞, the density captured by this
region decreases continuously from 1 to a ratio of the volumes of the regions. In particular,
we again come across a point where Q(w?) has probability tied across the three arms, but
this time, before which arm 1 is always the mode (i.e. mode has 100% performance), and
beyond which arms 2 and 3 are the modes (i.e. the mode has 0% performance). Note that,
for σ = 1, this point was achieved around δ = 1 (Figure 9.2). Hence, when we vary σ
while fixing δ = 1, the tipping point is expected to be achieved around σ = 1, which is
indeed the case, as evident from Figure 9.3. Again, observe that the performance of the
algorithm is still around 100% even much after this tipping point. Appendix G.10.2 shows
how the graph changes as σ is varied, but while the parameters are set to δ ∈ {0.5, 2.0} or
n ∈ {250, 1000} instead.

9.6 Discussion

We have shown that it is possible to match the performance of the uniform mixture πu,
or that of the average agent. In Section 9.5 we then established that it is possible to
learn policies from demonstrations with superior performance compared to the teacher,
albeit under simplifying assumptions. An obvious challenge is to relax the assumptions,
but this is very difficult, and we do not know of existing work that can be applied directly
to our general setting. Indeed, the most relevant theoretical work is that of Syed and
Schapire [SS08]. Their approach can only be applied if the sign of the reward weight is
known for every feature. This is particularly problematic in our setting as some agents
may consider a feature to be positive, while others consider it to be negative. A priori,
it is unclear how the sign can be determined, which crucially invalidates the algorithm’s
theoretical guarantees. Furthermore, it is unclear under which cases the algorithm would
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produce a policy with superior performance, or even if such cases exist.
We also remark that, although in the general setting we seek to compete with πu, we are

actually doing something quite different. Indeed, ex post (after the randomness has been
instantiated) the uniform mixture πu simply coincides with one of the individual policies.
By contrast, IRL algorithms pool the feature expectations of the trajectories τ1, . . . , τn
together, and try to recover a policy that approximately matches them. Therefore, we
believe that IRL algorithms do a much better job of aggregating the individual policies
than πu does, while giving almost the same optimality guarantees.

Apropos aggregation, one could make it more explicit. Specifically, suppose that we have
learned (via IRL) a reward function and an optimal policy for each agent. Note that this
would require a significant amount of data for each agent. Still, how should these policies be
aggregated into a single policy? We can cast this as a problem of allocating public goods. A
näıve approach would compute each agent’s reward for each possible policy, and choose the
policy that, say, maximizes the Nash social welfare [FMS18]; but this is a pipe dream, due
to seemingly insurmountable computational barriers. The discovery of tractable methods
for this policy aggregation problem may provide attractive alternatives to the approach
presented in this paper.
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Appendix A
Omitted Proofs for Chapter 2

A.1 Natarajan Dimension Primer

We briefly present the Natarajan dimension. For more details, we refer the reader to [SB14].

We say that a family G multi-class shatters a set of points x1, . . . , xn if there exist
labels y1, . . . yn and y′1, . . . , y

′
n such that for every i ∈ [n] we have yi 6= y′i, and for any

subset C ⊂ [n] there exists g ∈ G such that g(xi) = yi if i ∈ C and g(xi) = y′i otherwise.
The Natarajan dimension of a family G is the cardinality of the largest set of points that
can be multi-class shattered by G.

For example, suppose we have a feature map Ψ : X×Y → Rq that maps each individual-
outcome pair to a q-dimensional feature vector, and consider the family of functions that
can be written as g(x) = arg maxy∈Yw

>Ψ(x, y) for weight vectors w ∈ Rq. This family has
Natarajan dimension at most q.

For a set S ⊂ X of points, we let G
∣∣
S

denote the restriction of G to S, which is any

subset of G of minimal size such that for every g ∈ G there exists g′ ∈ G
∣∣
S

such that

g(x) = g′(x) for all x ∈ S. The size of G
∣∣
S

is the number of different labelings of the sample
S achievable by functions in G. The following Lemma is the analogue of Sauer’s lemma for
binary classification.

Lemma A.1.1 (Natarajan). For a family G of Natarajan dimension d and any subset
S ⊂ X , we have

∣∣G∣∣
S

∣∣ ≤ |S|d|Y|2d.
Classes of low Natarajan dimension also enjoy the following uniform convergence guar-

antee.

Lemma A.1.2. Let G have Natarajan dimension d and fix a loss function ` : G×X → [0, 1].
For any distribution P over X , if S is an i.i.d. sample drawn from P of size O( 1

ε2
(d log |Y|+

log 1
δ
)), then with probability at least 1−δ we have supg∈G

∣∣Ex∼P [`(g, x)]− 1
n

∑
x∈S `(g, x)

∣∣ ≤
ε.
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A.2 Appendix for Section 2.3

Theorem 2.3.1. Let d be a metric on X , P be a distribution on X , and u be an L-
Lipschitz utility function. Let S be a set of individuals such that there exists X̂ ⊂ X with
P (X̂ ) ≥ 1 − α and supx∈X̂ d(x,NNS(x)) ≤ β/(2L). Then for any classifier h : S → ∆(Y)

that is EF on S, the extension h : X → ∆(Y) given by h(x) = h(NNS(x)) is (α, β)-EF on
P .

Proof. Let h : S → ∆(Y) be any EF classifier on S and h : X → ∆(Y) be the nearest neigh-
bor extension. Sample x and x′ from P . Then, x belongs to the subset X̂ with probability
at least 1− α. When this occurs, x has a neighbor within distance β/(2L) in the sample.
Using the Lipschitz continuity of u, we have |u(x, h(x)) − u(NNS(x), h(NNS(x)))| ≤ β/2.
Similarly, |u(x, h(x′)) − u(NNS(x), h(NNS(x′)))| ≤ β/2. Finally, since NNS(x) does not
envy NNS(x′) under h, it follows that x does not envy x′ by more than β under h.

Lemma A.2.1. Suppose X ⊂ Rq, d(x, x′) = ‖x − x′‖2, and let D = supx,x′∈X d(x, x′) be
the diameter of X . For any distribution P over X , β > 0, α > 0, and δ > 0 there exists
X̂ ⊂ X such that P (X̂ ) ≥ 1 − α and, if S is an i.i.d. sample drawn from P of size |S| =
O( 1

α
(
LD
√
q

β
)q(d log

LD
√
q

β
+log 1

δ
)), then with probability at least 1−δ, supx∈X̂ d(x,NNS(x)) ≤

β/(2L).

Proof. Let C be the smallest cube containing X . Since the diameter of X is D, the side-
length of C is at most D. Let s = β/(2L

√
q) be the side-length such that a cube with

side-length s has diameter β/(2L). It takes at most m = dD/seq cubes of side-length s to
cover C. Let C1, . . . , Cm be such a covering, where each Ci has side-length s.

Let Ci be any cube in the cover for which P (Ci) > α/m. The probability that a sample
of size n drawn from P does not contain a sample in Ci is at most (1− α/m)n ≤ e−nα/m.
Let I = {i ∈ [m] : P (Ci) ≥ α/m}. By the union bound, the probability that there exists
i ∈ I such that Ci does not contain a sample is at most me−nα/m. Setting

n =
m

α
ln
m

δ

= O

(
1

α

(
LD
√
q

β

)q(
q log

LD
√
q

β
+ log

1

δ

))
results in this upper bound being δ. For the remainder of the proof, assume this high
probability event occurs.

Now let X̂ =
⋃
i∈I Ci. For each j 6∈ I, we know that P (Cj) < α/m. Since there at most

m such cubes, their total probability mass is at most α. It follows that P (X̂ ) ≥ 1 − α.
Moreover, every point x ∈ X̂ belongs to one of the cubes Ci with i ∈ I, which also contains
a sample point. Since the diameter of the cubes in our cover is β/(2L), it follows that
dist(x,NNS(x)) ≤ β/(2L) for every x ∈ X̂ , as required.

Theorem 2.3.2. There exists a space of individuals X ⊂ Rq, and a distribution P over
X such that, for every randomized algorithm A that extends classifiers on a sample to X ,
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there exists an L-Lipschitz utility function u such that, when a sample of individuals S
of size n = 4q/2 is drawn from P without replacement, there exists an EF classifier on
S for which, with probability at least 1 − 2 exp(−4q/100) − exp(−4q/200) jointly over the
randomness of A and S, its extension by A is not (α, β)-EF with respect to P for any
α < 1/25 and β < L/8.

Proof. Let the space of individuals be X = [0, 1]q and the outcomes be Y = {0, 1}. We
partition the space X into cubes of side length s = 1/4. So, the total number of cubes
is m = (1/s)q = 4q. Let these cubes be denoted by c1, c2, . . . cm, and let their centers
be denoted by µ1, µ2, . . . µm. Next, let P be the uniform distribution over the centers
µ1, µ2, . . . µm. For brevity, whenever we say “utility function” in the rest of the proof, we
mean “L-Lipschitz utility function.”

To prove the theorem, we use Yao’s minimax principle [Yao77]. Specifically, consider
the following two-player zero sum game. Player 1 chooses a deterministic algorithm D that
extends classifiers on a sample to X , and player 2 chooses a utility function u on X . For
any subset S ⊂ X , define the classifier hu,S : S → Y by assigning each individual in S to
his favorite outcome with respect to the utility function u, i.e. hu,S(x) = arg maxy∈Yu(x, y)
for each x ∈ S, breaking ties lexicographically. Define the cost of playing algorithm D
against utility function u as the probability over the sample S (of size m/2 drawn from P
without replacement) that the extension of hu,S by D is not (α, β)-EF with respect to P
for any α < 1/25 and β < L/8. Yao’s minimax principle implies that for any randomized
algorithm A, its expected cost with respect to the worst-case utility function u is at least
as high as the expected cost of any distribution over utility functions that is played against
the best deterministic algorithm D (which is tailored for that distribution). Therefore, we
establish the desired lower bound by choosing a specific distribution over utility functions,
and showing that the best deterministic algorithm against it has an expected cost of at
least 1− 2 exp(−m/100)− exp(−m/200).

To define this distribution over utility functions, we first sample outcomes y1, y2, . . . , ym
i.i.d. from Bernoulli(1/2). Then, we associate each cube center µi with the outcome yi, and
refer to this outcome as the favorite of µi. For brevity, let ¬y denote the outcome other
than y, i.e. ¬y = (1− y). For any x ∈ X , we define the utility function as follows. Letting
cj be the cube that x belongs to,

u(x, yj) = L
[s

2
− ‖x− µj‖∞

]
; u(x,¬yj) = 0. (A.1)

See Figure A.1 for an illustration.
We claim that the utility function of Equation (A.1) is indeed L-Lipschitz with respect

to any Lp norm. This is because for any cube ci, and for any x, x′ ∈ ci, we have

|u(x, yi)− u(x′, yi)| = L |‖x− µi‖∞ − ‖x′ − µi‖∞|
≤ L‖x− x′‖∞ ≤ L‖x− x′‖p.

Moreover, for the other outcome, we have u(x,¬yi) = u(x′,¬yi) = 0. It follows that u is
L-Lipschitz within every cube. At the boundary of the cubes, the utility for any outcome
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Figure A.1: Illustration of X and an example utility function u for d = 2. Red shows
preference for 1, blue shows preference for 0, and darker shades correspond to more intense
preference. (The gradients are rectangular to match the L∞ norm, so, strangely enough,
the misleading X pattern is an optical illusion.)

is 0, and hence u is also continuous throughout X . Because it is piecewise Lipschitz and
continuous, u must be L-Lipschitz throughout X , with respect to any Lp norm.

Next, let D be an arbitrary deterministic algorithm that extends classifiers on a sample
to X . We draw the sample S of size m/2 from P without replacement. Consider the
distribution over favorites of individuals in S. Each individual in S has a favorite that is
sampled independently from Bernoulli(1/2). Hence, by Hoeffding’s inequality, the fraction
of individuals in S with a favorite of 0 is between 1

2
− ε and 1

2
+ ε with probability at

least 1− 2 exp(−mε2). The same holds simultaneously for the fraction of individuals with
favorite 1.

Given the sample S and the utility function u on the sample (defined by the instan-
tiation of their favorites), consider the classifier hu,S, which maps each individual µi in
the sample S to his favorite yi. This classifier is clearly EF on the sample. Consider the
extension hDu,S of hu,S to the whole of X as defined by algorithm D. Define two sets Z0 and
Z1 by letting Zy = {µj /∈ S | hDu,S(µj) = y}, and let y∗ denote an outcome that is assigned
to at least half of the out-of-sample centers, i.e., an outcome for which |Zy∗| ≥ |Z¬y∗|.
Furthermore, let θ denote the fraction of out-of-sample centers assigned to y∗. Note that,
since |S| = m/2, the number of out-of-sample centers is also exactly m/2. This gives us
|Zy∗| = θm

2
, where θ ≥ 1

2
.

Consider the distribution of favorites in Zy∗ (these are independent from the ones in
the sample since Zy∗ is disjoint from S). Each individual in this set has a favorite sampled
independently from Bernoulli(1/2). Hence, by Hoeffding’s inequality, the fraction of indi-
viduals in Zy∗ whose favorite is ¬y∗ is at least 1

2
−ε with probability at least 1−exp(−m

2
ε2).

We conclude that with a probability at least 1− 2 exp(−mε2)− exp(−m
2
ε2), the sample S

and favorites (which define the utility function u) are such that: (i) the fraction of individ-
uals in S whose favorite is y ∈ {0, 1} is between 1

2
− ε and 1

2
+ ε, and (ii) the fraction of
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individuals in Zy∗ whose favorite is ¬y∗ is at least 1
2
− ε.

We now show that for such a sample S and utility function u, hDu,S cannot be (α, β)-EF
with respect to P for any α < 1/25 and β < L/8. To this end, sample x and x′ from P .
One scenario where x envies x′ occurs when (i) the favorite of x is ¬y∗, (ii) x is assigned to
y∗, and (iii) x′ is assigned to ¬y∗. Conditions (i) and (ii) are satisfied when x is in Zy∗ and
his favorite is ¬y∗. We know that at least a 1

2
− ε fraction of the individuals in Zy∗ have

the favorite ¬y∗. Hence, the probability that conditions (i) and (ii) are satisfied by x is at
least (1

2
− ε)|Zy∗| 1

m
= (1

2
− ε) θ

2
. Condition (iii) is satisfied when x′ is in S and has favorite

¬y∗ (and hence assigned ¬y∗), or, if x′ is in Z¬y∗ . We know that at least a
(

1
2
− ε
)

fraction
of the individuals in S have the favorite ¬y∗. Moreover, the size of Z¬y∗ is (1 − θ)m

2
. So,

the probability that condition (iii) is satisfied by x′ is at least(
1
2
− ε
)
|S|+ |Z¬y∗|
m

=
1

2

(
1

2
− ε
)

+
1

2
(1− θ).

Since x and x′ are sampled independently, the probability that all three conditions are
satisfied is at least (

1

2
− ε
)
θ

2
·
[

1

2

(
1

2
− ε
)

+
1

2
(1− θ)

]
.

This expression is a quadratic function in θ, that attains its minimum at θ = 1 irrespective

of the value of ε. Hence, irrespective of D, this probability is at least
[

1
2

(
1
2
− ε
)]2

. For
concreteness, let us choose ε to be 1/10 (although it can be set to be much smaller). On
doing so, we have that the three conditions are satisfied with probability at least 1/25. And
when these conditions are satisfied, we have u(x, hDu,S(x)) = 0 and u(x, hDu,S(x′)) = Ls/2,
i.e., x envies x′ by Ls/2 = L/8. This shows that, when x and x′ are sampled from P ,
with probability at least 1/25, x envies x′ by L/8. We conclude that with probability at
least 1 − 2 exp(−m/100) − exp(−m/200) jointly over the selection of the utility function
u and the sample S, the extension of hu,S by D is not (α, β)-EF with respect to P for any
α < 1/25 and β < L/8.

To convert the joint probability into expected cost in the game, note that for two
discrete, independent random variables X and Y , and for a Boolean function E(X, Y ), it
holds that

PrX,Y (E(X, Y ) = 1) = EX [PrY (E(X, Y ) = 1)] . (A.2)

Given sample S and utility function u, let E(u, S) be the Boolean function that equals 1 if
and only if the extension of hu,S by D is not (α, β)-EF with respect to P for any α < 1/25
and β < L/8. From Equation (A.2), Pru,S(E(u, S) = 1) is equal to Eu [PrS(E(u, S) = 1)].
The latter term is exactly the expected value of the cost, where the expectation is taken
over the randomness of u. It follows that the expected cost of (any) D with respect to the
chosen distribution over utilities is at least 1− 2 exp(−m/100)− exp(−m/200).

A.3 Appendix for Section 2.4

This section is devoted to proving our main result:
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Theorem 2.4.1. Suppose G is a family of deterministic classifiers of Natarajan dimension
d, and let H = H(G,m) for m ∈ N. For any distribution P over X , γ > 0, and δ > 0, if
S = {(xi, x′i)}ni=1 is an i.i.d. sample of pairs drawn from P of size

n ≥ O

(
1

γ2

(
dm2 log

dm|Y| log(m|Y|/γ)

γ
+ log

1

γ

))
,

then with probability at least 1− δ, every classifier h ∈ H that is (α, β)-pairwise-EF on S
is also (α + 7γ, β + 4γ)-EF on P .

We start with an observation that will be required later.

Lemma A.3.1. Let G = {g : X → Y} have Natarajan dimension d. For g1, g2 ∈ G,
let (g1, g2) : X → Y2 denote the function given by (g1, g2)(x) = (g1(x), g2(x)) and let
G2 = {(g1, g2) : g1, g2 ∈ G}. Then the Natarajan dimension of G2 is at most 2d.

Proof. Let D be the Natarajan dimension of G2. Then we know that there exists a collection
of points x1, . . . , xD ∈ X that is shattered by G2, which means there are two sequences
q1, . . . , qn ∈ Y2 and q′1, . . . , q

′
n ∈ Y2 such that for all i we have qi 6= q′i and for any subset

C ⊂ [D] of indices, there exists (g1, g2) ∈ G2 such that (g1, g2)(xi) = qi if i ∈ C and
(g1, g2)(xi) = q′i otherwise.

Let n1 =
∑D

i=1 I{qi1 6= q′i1} and n2 =
∑D

i=1 I{qi2 6= q′i2} be the number of pairs on
which the first and second labels of qi and q′i disagree, respectively. Since none of the n
pairs are equal, we know that n1 + n2 ≥ D, which implies that at at least one of n1 or n2

must be ≥ D/2. Assume without loss of generality that n1 ≥ D/2 and that qi1 6= q′i1 for
i = 1, . . . , n1. Now consider any subset of indices C ⊂ [n1]. We know there exists a pair
of functions (g1, g2) ∈ G2 with (g1, g2)(xi) evaluating to qi if i ∈ C and q′i if i 6∈ C. But
then we have g1(xi) = qi1 if i ∈ C and g1(xi) = q′i1 if i 6∈ C, and qi1 6= q′i1 for all i ∈ [n1].
It follows that G shatters x1, . . . , xn1 , which consists of at least D/2 points. Therefore, the
Natarajan dimension of G2 is at most 2d, as required.

We now turn two the theorem’s two main steps, presented in the following two lemmas.

Lemma A.3.2. Let H ⊂ {h : X → ∆(Y)} be a finite family of classifiers. For any
γ > 0, δ > 0, and β ≥ 0 if S = {(xi, x′i)}ni=1 is an i.i.d. sample of pairs from P of size

n ≥ 1
2γ2 ln |H|

δ
, then with probability at least 1 − δ, every h ∈ H that is (α, β)-pairwise-EF

on S (for any α) is also (α + γ, β)-EF on P .

Proof. Let f(x, x′, h) = I{u(x, h(x)) < u(x, h(x′)) − β} be the indicator that x is envious
of x′ by at least β under classifier h. Then f(xi, x

′
i, h) is a Bernoulli random variable

with success probability Ex,x′∼P [f(x, x′, h)]. Applying Hoeffding’s inequality to any fixed
hypothesis h ∈ H guarantees that PrS(Ex,x′∼P [f(x, x′, h)] ≥ 1

n

∑n
i=1 f(xi, x

′
i, h) + γ) ≤

exp(−2nγ2). Therefore, if h is (α, β)-EF on S, then it is also (α + γ, β)-EF on P with
probability at least 1 − exp(−2nγ2). Applying the union bound over all h ∈ H and using
the lower bound on n completes the proof.

Next, we show that H(G,m) can be covered by a finite subset. Since each classifier in
H is determined by the choice of m functions from G and mixing weights η ∈ ∆m, we will
construct finite covers of G and ∆m. Our covers Ĝ and ∆̂m will guarantee that for every
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g ∈ G, there exists ĝ ∈ Ĝ such that Prx∼P (g(x) 6= ĝ(x)) ≤ γ/m. Similarly, for any mixing
weights η ∈ ∆m, there exists η̂ ∈ ∆m such that ‖η − η̂‖1 ≤ γ. If h ∈ H(G,m) is the
mixture of g1, . . . , gm with weights η, we let ĥ be the mixture of ĝ1, . . . , ĝm with weights η̂.
This approximation has two sources of error: first, for a random individual x ∼ P , there is
probability up to γ that at least one gi(x) will disagree with ĝi(x), in which case h and ĥ
may assign completely different outcome distributions. Second, even in the high-probability
event that gi(x) = ĝi(x) for all i ∈ [m], the mixing weights are not identical, resulting in a
small perturbation of the outcome distribution assigned to x.

Lemma A.3.3. Let G be a family of deterministic classifiers with Natarajan dimension d,
and let H = H(G,m) for some m ∈ N. For any γ > 0, there exists a subset Ĥ ⊂ H of size

O
( (dm|Y|2 log(m|Y|/γ))dm

γ(d+1)m

)
such that for every h ∈ H there exists ĥ ∈ H satisfying:

1. Prx∼P (‖h(x)− ĥ(x)‖1 > γ) ≤ γ.

2. If S is an i.i.d. sample of individuals of size O(m
2

γ2 (d log |Y|+log 1
δ
)) then w.p. ≥ 1−δ,

we have ‖h(x)− ĥ(x)‖1 ≤ γ for all but a 2γ-fraction of x ∈ S.

Proof. As described above, we begin by constructing finite covers of ∆m and G. First, let
∆̂m ⊂ ∆m be the set of distributions over [m] where each coordinate is a multiple of γ/m.
Then we have |∆̂m| = O((m

γ
)m) and for every p ∈ ∆m, there exists q ∈ ∆̂m such that

‖p− q‖1 ≤ γ.
In order to find a small cover of G, we use the fact that it has low Natarajan dimension.

This implies that the number of effective functions in G when restricted to a sample S ′

grows only polynomially in the size of S ′. At the same time, if two functions in G agree on
a large sample, they will also agree with high probability on the distribution.

Formally, let S ′ be an i.i.d. sample drawn from P of size O(m
2

γ2 d log |Y|), and let Ĝ = G
∣∣
S′

be any minimal subset of G that realizes all possible labelings of S ′ by functions in G.
We now argue that with probability 0.99, for every g ∈ G there exists ĝ ∈ Ĝ such that
Prx∼P (g(x) 6= ĝ(x)) ≤ γ/m. For any pair of functions g, g′ ∈ G, let (g, g′) : X → Y2 be
the function given by (g, g′)(x) = (g(x), g′(x)), and let G2 = {(g, g′) : g, g′ ∈ G}. The
Natarajan dimension of G2 is at most 2d by Lemma A.3.1. Moreover, consider the loss
c : G2 × X → {0, 1} given by c(g, g′, x) = I{g(x) 6= g′(x)}. Applying Lemma A.1.2 with
the chosen size of |S ′| ensures that with probability at least 0.99 every pair (g, g′) ∈ G2

satisfies ∣∣∣∣∣ Ex∼P [c(g, g′, x)]− 1

|S ′|
∑
x∈S′

c(g, g′, x)

∣∣∣∣∣ ≤ γ

m
.

By the definition of Ĝ, for every g ∈ G, there exists ĝ ∈ Ĝ for which c(g, ĝ, x) = 0 for all
x ∈ S ′, which implies that Prx∼P (g(x) 6= ĝ(x)) ≤ γ/m.

Using Lemma A.1.1 to bound the size of Ĝ, we have that

|Ĝ| ≤ |S ′|d|Y|2d = O

((
m2

γ2
d|Y|2 log |Y|

)d)
.

Since this construction succeeds with non-zero probability, we are guaranteed that such a
set Ĝ exists. Finally, by an identical uniform convergence argument, it follows that if S
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is a fresh i.i.d. sample of the size given in Item 2 of the lemma’s statement, then, with
probability at least 1 − δ, every g and ĝ will disagree on at most a 2γ/m-fraction of S,
since they disagree with probability at most γ/m on P .

Next, let Ĥ = {h~g,η : ~g ∈ Ĝm, η ∈ ∆̂m} be the same family as H, except restricted to

choosing functions from Ĝ and mixing weights from ∆̂m. Using the size bounds above and
the fact that

(
N
m

)
= O((N

m
)m), we have that

|Ĥ| =
(
|Ĝ|
m

)
· |∆̂m| = O

(
(dm2|Y|2 log(m|Y|/γ))dm

γ(2d+1)m

)
.

Suppose that h is the mixture of g1, . . . , gm ∈ G with weights η ∈ ∆m. Let ĝi be the
approximation to gi for each i, let η̂ ∈ ∆̂m be such that ‖η − η̂‖1 ≤ γ, and let ĥ be the
random mixture of ĝ1, . . . , ĝm with weights η̂. For an individual x drawn from P , we have
gi(x) 6= ĝi(x) with probability at most γ/m, and therefore they all agree with probability
at least 1− γ. When this event occurs, we have ‖h(x)− ĥ(x)‖1 ≤ ‖η − η̂‖1 ≤ γ.

The second part of the claim follows by similar reasoning, using the fact that for the
given sample size |S|, with probability at least 1 − δ, every g ∈ G disagrees with its
approximation ĝ ∈ Ĝ on at most a 2γ/m-fraction of S. This means that ĝi(x) = gi(x) for
all i ∈ [m] on at least a (1 − 2γ)-fraction of the individuals x in S. For these individuals,
‖h(x)− ĥ(x)‖1 ≤ ‖η − η̂‖1 ≤ γ.

Combining the generalization guarantee for finite families given in Lemma A.3.2 with
the finite approximation given in Lemma A.3.3, we are able to show that envy-freeness
also generalizes for H(G,m).

Proof of Theorem 2.4.1. Let Ĥ be the finite approximation to H constructed in
Lemma A.3.3. If the sample is of size |S| = O( 1

γ2 (dm log(dm|Y| log |Y|/γ) + log 1
δ
)), we

can apply Lemma A.3.2 to this finite family, which implies that for any β′ ≥ 0, with
probability at least 1 − δ/2 every ĥ ∈ Ĥ that is (α′, β′)-pairwise-EF on S (for any α′)
is also (α′ + γ, β′)-EF on P . We apply this lemma with β′ = β + 2γ. Moreover, from
Lemma A.3.3, we know that if |S| = O(m

2

γ2 (d log |Y| + log 1
δ
)), then with probability at

least 1 − δ/2, for every h ∈ H, there exists ĥ ∈ Ĥ satisfying ‖h(x) − ĥ(x)‖1 ≤ γ for
all but a 2γ-fraction of the individuals in S. This implies that on all but at most a 4γ-
fraction of the pairs in S, h and ĥ satisfy this inequality for both individuals in the pair.
Assume these high probability events occur. Finally, from Item 1 of the lemma we have
that Prx1,x2∼P (maxi=1,2 ‖h(xi)− ĥ(xi)‖1 > γ) ≤ 2γ.

Now let h ∈ H be any classifier that is (α, β)-pairwise-EF on S. Since the utilities are
in [0, 1] and maxx=xi,x′i

‖h(x) − ĥ(x)‖1 ≤ γ for all but a 4γ-fraction of the pairs in S, we

know that ĥ is (α+4γ, β+2γ)-pairwise-EF on S. Applying the envy-freeness generalization
guarantee (Lemma A.3.2) for Ĥ, it follows that ĥ is also (α+ 5γ, β+ 2γ)-EF on P . Finally,
using the fact that

Pr
x1,x2∼P

(
max
i=1,2
‖h(xi)− ĥ(xi)‖1 > γ

)
≤ 2γ,

it follows that h is (α + 7γ, β + 4γ)-EF on P .

140



It is worth noting that the (exponentially large) approximation Ĥ is only used in the
generalization analysis; importantly, an ERM algorithm need not construct it.

A.4 Appendix for Section 2.5

Here we describe details of the transformation of the optimization problem from (2.2)
to (2.4). Firstly, softening constraints of (2.2) with slack variables, we obtain

min
gk∈G,ξ∈Rn×n≥0

n∑
i=1

L(xi, gk(xi)) + λ
∑
i 6=j

ξij

s.t. USF
(k−1)
ii + η̃ku(xi, gk(xi)) ≥ USF

(k−1)
ij + η̃ku(xi, gk(xj))− ξij ∀(i, j).

Here, ξij basically captures how much i envies j under the selected assignments (note that,
ξij is 0 if the pair is non-envious, so that the algorithm does not go increasing negative
envy at the cost of positive envy for someone else). Plugging in optimal values of the slack
variables, we obtain

min
gk∈G

n∑
i=1

L(xi, gk(xi))

+ λ
∑
i 6=j

max
(
USF

(k−1)
ij + η̃ku(xi, gk(xj))− USF (k−1)

ii − η̃ku(xi, gk(xi)), 0
)
. (A.3)

Next, we perform convex relaxation of different components of this objective function.
For this, let’s observe the term L(xi, gk(xi)). And, let ~w denote the parameters of gk. By
definition, we have

w>gk(xi)
xi ≥ w>y′xi

for any y′ ∈ Y . This implies that

L(xi, gk(xi)) ≤ L(xi, gk(xi)) + w>gk(xi)
xi − w>y′xi

≤ max
y∈Y

{
L(xi, y) + w>y xi − w>y′xi

}
,

giving us a convex upper bound on the loss L(xi, gk(xi)). As this holds for any y′ ∈ Y ,
we choose y′ = yi as defined in the main body, since it leads to the lowest achievable loss
value. Therefore, we have

L(xi, gk(xi)) ≤ max
y∈Y

{
L(xi, y) + w>y xi − w>yixi

}
.

This right hand side is basically an upper bound which apart from encouraging ~w to have
the highest dot product with xi at yi, also penalizes if the margin by which this is higher
is not enough (where the margin depends on other losses L(xi, y)). This surrogate loss is
very similar to multi-class support vector machines. We perform similar relaxations for the
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other two components of the objective function. In particular, for the u(xi, gk(xi)) term,
we have

−u(xi, gk(xi)) ≤ max
y∈Y

{
−u(xi, y) + w>y xi − w>bixi

}
,

where bi is as defined in the main body. Finally, for the remaining term, we have

u(xi, gk(xj)) ≤ max
y∈Y

{
u(xi, y) + w>y xj − w>sixj

}
,

where si is as defined in the main body1. On plugging in the convex surrogates of all three
terms in Equation (A.3), we obtain the optimization problem (2.4).

1Note that, instead of using si, an alternative to use in this equation is bj . In particular, for a pair
(i, j), using si encourages the assignment to give i their favorite outcome while j the outcome that i likes
the least (and hence causing i to envy j as less as possible), while using bj encourages the assignment
to give both i and j their favorite outcomes (pushing the assignment to just give everyone their favorite
outcomes).
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Appendix B
Omitted Proofs and Results for Chapter 3

B.1 Voting Rules

This appendix provides additional background on social choice theory. It is not required
to understand the rest of the paper, but may be helpful in putting our results in context.

B.1.1 Examples of Anonymous Voting Rules

One class of anonymous voting rules uses the positions of the individual alternatives in
order to determine the winners. These rules, collectively called positional scoring rules, are
defined by a scoring vector s such that s1 ≥ s2 ≥ · · · ≥ sm ≥ 0. Given a vote σ, the score
of alternative a ∈ A in σ is the score of its position in σ, i.e., sσ(a). Given an anonymous
vote profile π, the score of an alternative is its overall score in the rankings of π, that is,

s-scoreπ(a) ,
∑

σ∈L(A)

πσsσ(a).

A deterministic positional scoring rule chooses the alternative with the highest score, i.e.,
f(π) = ea∗ , where a∗ ∈ arg maxa∈A s-scoreπ(a) (tie breaking may be needed). On the
other hand, a randomized positional scoring rule chooses each alternative with probability
proportional to its score, i.e., f(π)a ∝ s-scoreπ(a) for all a ∈ A. Examples of positional
scoring rules include plurality with s = (1, 0, . . . , 0), veto with s = (1, . . . , 1, 0), and Borda
with s = (m− 1,m− 2, . . . , 0).

Another class of anonymous voting rules uses pairwise comparisons between the alter-
natives to determine the winners. We are especially interested in the Copeland rule, which
assigns a score to each alternative based on the number of pairwise majority contests it
wins. In an anonymous vote profile π, we denote by a>π b the event that a beats b in a
pairwise competition, i.e., a is preferred to b in rankings in π that collectively have more
than half the weight. More formally,

∑
σ∈L(A) πσ1(a�σb) > 1/2. We also write a =π b if they
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are tied, i.e.,
∑

σ∈L(A) πσ1(a�σb) = 1/2. The Copeland score1 of an alternative is defined by

C-scoreπ(a) , |{b ∈ A | a>π b}|+
1

2
· |{b ∈ A | a =π b}| .

The deterministic Copeland rule chooses the alternative that has the highest Copeland
score (possibly breaking ties), and the randomized Copeland rule chooses each alternative
with probability proportional to its Copeland score.

These notations allow us to formally define the notion of Condorcet consistency (in-
formally introduced in Section 3.5). We say that a ∈ A is a Condorcet winner in the vote
profile π if a>π b for all b ∈ A \ {a}. A voting rule is Condorcet consistent if it selects a
Condorcet winner whenever one exists in the given vote profile. Note that the Copeland
score of a Condorcet winner is m − 1, whereas the Copeland score of any other alterna-
tive must be strictly smaller, so a Condorcet winner (if one exists) indeed has maximum
Copeland score.

B.1.2 Strategyproofness, More Formally

An anonymous deterministic voting rule f is called strategyproof if for any voter i ∈ [n],
any two vote profiles σ and σ′ for which σj = σ′j for all j 6= i, and any weight vector w, it
holds that either a = a′ or a �σi a′, where a and a′ are the winning alternatives in f(πσ,w)
and f(πσ′,w) respectively. In words, whenever a voter reports σ′i instead of σi, the outcome
does not improve according to the true ranking σi.

To extend this definition to randomized rules, we require some additional definitions.
Given a loss function over the alternatives denoted by a vector ` ∈ [0, 1]m, the expected
loss of the alternative chosen by the rule f under an anonymous vote profile π is

Lf (π, `) , Ea∼f(π)[`a] = f(π) · `.

The higher the loss, the worse the alternative. We say that the loss function ` is consistent
with vote σ ∈ L(A) if for all a, b ∈ A, a �σ b⇔ `a < `b. An anonymous randomized rule f
is strategyproof if for any voter i ∈ [n], any two vote profiles σ and σ′ for which σj = σ′j
for all j 6= i, any weight vector w, and any loss function ` that is consistent with σi, we
have Lf (πσ,w, `) ≤ Lf (πσ′,w, `).

As noted in Section 3.2.1, randomized positional scoring rules, and the randomized
Copeland rule, are known to be strategyproof. To see why they satisfy Gibbard’s necessary
condition (Proposition 3.2.1), a randomized positional scoring rule with score vector s
is a distribution with probabilities proportional to s1, . . . , sm over anonymous unilateral
rules g1, . . . , gm, where each gi corresponds to the function hi(σ) that returns the alternative
ranked at position i of σ. Similarly, the randomized Copeland rule is a uniform distribution
over duples ga,b for any two different a, b ∈ A, where ga,b(π) = ea if a>π b, ga,b(π) = eb if
b>π a, and (ga,b(π))a = (ga,b(π))b = 1/2 if a =π b.

1Some refer to this variant of Copeland as Copeland1/2 [FHS08].
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B.2 Proof of Theorem 3.5.3

Let f be a distribution over unilaterals g1, . . . , gk with corresponding probabilities
q1, . . . , qk. Also, let hj : L(A)→ A denote the function corresponding to gj, for j ∈ [k]. We
first prove Equation (3.5). For ease of exposition we suppress t in the notations, when it is
clear from the context. Furthermore, let πi = πσt,ei . It holds that

Ei∼pt [f(πσt,ei)] =
n∑
i=1

ptif(πi)

=
n∑
i=1

pti

k∑
j=1

qj
∑

τ∈L(A)

πiτehj(τ)

=
n∑
i=1

pti

k∑
j=1

qjehj(σi),

where the last equality follows by the fact that πiσi = 1 and πiτ = 0 for any τ 6= σi. Moreover,
let π = πσt,pt , then

f(πσt,pt) =
k∑
j=1

qj
∑

τ∈L(A)

πτehj(τ)

=
k∑
j=1

qj
∑

τ∈L(A)

ehj(τ)

n∑
i=1

pti1(σi=τ)

=
n∑
i=1

pti

k∑
j=1

qjehj(σi).

Now that we have established Equation (3.5), we use it to conclude that

T∑
t=1

Lf (πσt,pt , `
t)−min

i∈[n]

T∑
t=1

Lf (πσt,ei , `
t)

= E

[
T∑
t=1

Lf (πσt,ei , `
t)−min

i∈[n]

T∑
t=1

Lf (πσt,ei , `
t)

]
,

where the expectation is taken over choice of i ∼ pt for all t. Therefore, the deterministic
weighting schemes that use weight vector pt achieve the same regret bounds as those
established in Theorems 3.4.1 and 3.4.2.

B.3 Proof of Theorem 3.5.5

We start by proving the following technical lemma.
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Lemma B.3.1. Let x1, x2, · · ·xn be n real numbers such that xi ≥ xi+1 for all i ∈ [n− 1],
and denote S =

∑n
i=1 xi. Then for any j ∈ [n],

∑j
i=1 xi ≥ j S

n
.

Proof. Assume for the sake of contradiction that there exists j ∈ [n−1] such that
∑j

i=1 xi <
j S
n

. It follows that there is i ∈ [j] such that xi <
S
n

. In addition, it must be the case that∑n
i=j+1 xi > (n − j)S

n
, which implies that there is i′ ∈ {j + 1, . . . , n} such that xi′ >

S
n

.
This contradicts the fact that xi ≥ xi′ .

Proof of Theorem 3.5.5. Fix an arbitrary deterministic weighting scheme. We will show
that the loss of this weighting scheme is strictly higher than the average loss of the voters
(for appropriately chosen vote profiles and loss functions) at every time step t, which
directly leads to linear regret.

Consider an arbitrary time step t ≤ T , and let wt denote the weights chosen by the
weighting scheme. To construct the vote profile σt, the adversary first partitions the voters
into two sets N t

1 and N t
2, as follows: It sorts the weights wt in non-increasing order, and

then it adds voters to N t
1 by their sorted weight (largest to smallest) until

W t
1 ,

∑
i∈Nt

1

wti >
1

2
‖wt‖1,

that is, until the voters in N t
1 have more than half the total weight. The remaining voters

form set N t
2.

Now, let τx,y ∈ L(A) denote a ranking that places x at the top (i.e., τx,y(x) = 1) and
y in second place (i.e., τx,y(y) = 2). Let a and b be two alternatives such that f(eτb,a)b −
f(eτb,a)a ≥ f(eτa,b)a − f(eτa,b)b, i.e., the gap between the probabilities of picking the top
two alternatives in eτb,a is at least the corresponding gap in eτa,b . The adversary sets the
vote profile σt such that σti = τa,b for all i ∈ N t

1 and σti = τ b,a for all i ∈ N t
2. Also, it sets

the loss function `t to be `ta = 1, `tb = 0, and `tx = 1/2 for all x ∈ A \ {a, b}.
Observe that for all i ∈ N t

1, a �σi x for all x ∈ A \ {a}. Since the total weight of
voters in N t

1 is more than 1/2, a is a Condorcet winner in πσt,wt . Therefore, because f is
probabilistically Condorcet consistent with gap δ(m), it holds that

f(πσt,wt)a ≥ f(πσt,wt)b + δ(m).

It follows that the loss of the weighting scheme is

Lf (πσt,wt , `t) = 1 · f(πσt,wt)a

+
1

2
· (1− f(πσt,wt)a − f(πσt,wt)b)

=
1

2
+

1

2
(f(πσt,wt)a − f(πσt,wt)b)

≥ 1

2
+

1

2
δ(m).

(B.1)

Similarly, the loss of voter i is

Lf (πσt,ei , `
t) = Lf (eσti , `

t)

=
1

2
+

1

2

(
f(eσti )a − f(eσti )b

)
.

(B.2)
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Let q1 denote f(eτa,b), i.e. the distribution over the alternatives for the votes of voters
in N t

1, and let q2 denote f(eτb,a), i.e. the distribution over the alternatives for the votes of
voters in N t

2. Using these notations and Equation (B.2), the loss of a voter i ∈ N t
1 is

Lf (πσt,ei , `
t) =

1

2
+

1

2

(
q1
a − q1

b

)
,

and the loss of a voter i ∈ N t
2 is

Lf (πσt,ei , `
t) =

1

2
+

1

2

(
q2
a − q2

b

)
=

1

2
− 1

2
(q2
b − q2

a).

Hence, the average loss over all voters is

Ltavg =
|N t

1|
(

1
2 + 1

2

(
q1
a − q1

b

))
+ (n− |N t

1|)
(

1
2 −

1
2(q2

b − q2
a)
)

n

=
1

2
+

1

2n

(
|N t

1|(q1
a − q1

b )− (n− |N t
1|)(q2

b − q2
a)
)
.

But we chose a and b such that q1
a − q1

b ≤ q2
b − q2

a. We conclude that

Ltavg ≤
1

2
+

1

2n

(
|N t

1|(q2
b − q2

a)− (n− |N t
1|)(q2

b − q2
a)
)

=
1

2
+

1

2
(q2
b − q2

a)
(2|N t

1| − n)

n
.

(B.3)

Our goal is to derive an upper bound on the expression 1
2
(q2
b − q2

a)
(2|Nt

1|−n)

n
. Specifically,

we wish to prove that
1

2
(q2
b − q2

a)
(2|N t

1| − n)

n
≤ δ(m)

3
. (B.4)

We do this by examining two cases.

Case 1: W t
1 ≥

(
1
2

+ δ(m)
3

)
‖wt‖1. Informally, this is the case when the weights of N t

1

overshot ‖wt‖1/2 by a fraction of at least δ(m)/3. This means that the last voter added

to N t
1 has a weight of at least W t

1 −
‖wt‖1

2
. Since the weights were added in non-increasing

order, it follows that each voter in N t
1 has a weight of at least W t

1 −
‖wt‖1

2
. Therefore,

W t
1 =

∑
i∈Nt

1

wti ≥
∑
i∈Nt

1

(
W t

1 −
‖wt‖1

2

)

= |N t
1|
(
W t

1 −
‖wt‖1

2

)
,

or equivalently,

|N t
1| ≤

1

1− ‖wt‖1
2W t

1

. (B.5)
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We have also assumed that
W t

1

‖wt‖1 ≥
(

1
2

+ δ(m)
3

)
. Using Equation (B.5), we obtain

|N t
1| ≤

1

1− 1

1+
2δ(m)

3

=
3

2δ(m)
+ 1. (B.6)

Let us now examine the expression on the left-hand side of Equation (B.4). Note that
b is a Condorcet winner in eτb,a . Hence, q2

b ≥ q2
a + δ(m), and, in particular, q2

b − q2
a > 0. In

addition, we have assumed that n ≥ 2( 3
2δ(m)

+ 1), which implies (by Equation (B.6)) that

n ≥ 2|N t
1|. It follows that

1

2
(q2
b − q2

a)
(2|N t

1| − n)

n
≤ 0 ≤ δ(m)

3
,

thereby establishing Equation (B.4) for this case.

Case 2: W t
1 <

(
1
2

+ δ(m)
3

)
‖wt‖1. Since N t

1 contains voters who have the largest |N t
1|

weights, Lemma B.3.1 implies that

W t
1 =

∑
i∈Nt

1

wti ≥ |N t
1|
‖wt‖1

n
.

We have also assumed that W t
1 < (1

2
+ δ(m)

3
)‖wt‖1. Combining the last two inequalities, we

obtain

|N t
1| < n

(
1

2
+
δ(m)

3

)
. (B.7)

Let us examine, once again, the left-hand side of Equation (B.4). Recall that q2
b−q2

a > 0,
because b is a Condorcet winner in τ b,a. So, if 2|N t

1| − n ≤ 0, then Equation (B.4) clearly
holds, as in Case 1. And if 2|N t

1| − n > 0, the equation also holds, because

1

2
(q2
b − q2

a)
(2|N t

1| − n)

n
≤ 1

2
· 1 · (2|N t

1| − n)

n

=
|N t

1|
n
− 1

2

<
δ(m)

3
,

where the last inequality follows from Equation (B.7).

To complete the proof, we combine Equations (B.1), (B.3), and (B.4), to obtain

Lf (πσt,wt , `t) ≥ Ltavg +
δ(m)

6
.

The best voter in hindsight incurs loss that is at most as high as the average voter. There-
fore, the overall regret is

RegT =
T∑
t=1

Lf (πσt,wt , `t)−min
i

T∑
t=1

Lf (πσt,ei , `
t)
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≥
T∑
t=1

Lf (πσt,wt , `t)−
T∑
t=1

Ltavg

≥ T
δ(m)

6
.

In words, the weighting scheme suffers linear regret.

B.4 The Stronger Benchmark: Best Weights in Hind-

sight

In this section, we discuss our results as they apply to the stronger benchmark of competing
with the best voter weights in hindsight.

Our goal is to design a weighting scheme that weights the rankings of the voters at
each time step, and elects winners with overall expected loss that is almost as small as
that of the best voter weights in hindsight. We refer to the expected difference between
these losses as the expected regret with respect to the best weight in hindsight benchmark.
That is,

E[RegT ] , E

[
T∑
t=1

Lf (πσt,wt , `t)− min
w:‖w‖1=1

T∑
t=1

Lf (πσt,w, `
t)

]
.

We wish to formalize the claim, made in Section 3.6, that Theorem 3.5.3 holds under the
stronger benchmark. We do this by showing that, indeed, for distributions over unilaterals,
the best-weights-in-hindsight benchmark is equivalent to the best voter in hindsight.

Theorem B.4.1. For any voting rule that is a distribution over unilaterals, there exist
deterministic weighting schemes with regret of O(

√
T ln(n)) and O(

√
Tn ln(n)) with respect

to the best weight in hindsight benchmark, in the full-information and partial-information
settings, respectively.

Proof. It suffices to show that

min
w:‖w‖1=1

T∑
t=1

Lf (πσt,w, `
t) = min

i∈[n]

T∑
t=1

Lf (πσt,ei , `
t), (B.8)

as then the theorem follows from Theorem 3.5.3. In turn, to prove Equation (B.8) it is
sufficient to show that Lf (πσ,w, `) is a linear function in w, because any linear function is
optimized at an extreme point of the convex set {w | ‖w‖1 = 1}.

Let f be a distribution over unilaterals g1, . . . , gk with corresponding probabilities
q1, . . . , qk. Also, let hj : L(A) → A denote the function corresponding to gj, for j ∈ [k].
Given a weight vector w such that ‖w‖1 = 1 and σ, let π = πσ,w. It holds that

f(πσ,w) =
k∑
j=1

qj
∑

τ∈L(A)

πτehj(τ)
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=
k∑
j=1

qj
∑

τ∈L(A)

ehj(τ)

n∑
i=1

wi1(σi=τ)

=
n∑
i=1

wi

k∑
j=1

qjehj(σi).

Therefore,

Lf (πσ,w, `) =
n∑
i=1

wi

k∑
j=1

qj
(
ehj(σi) · `

)
=

n∑
i=1

wi

k∑
j=1

qj`hj(σi);

the right hand side is clearly linear in w.
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Appendix C
Omitted Proofs and Results for Chapter 4

C.1 Proof of Theorem 4.3.1 and Omitted Lemmas

C.1.1 Proof of Lemma 4.3.4

Let f be an anonymous SCC that satisfies monotonicity and neutrality. Let π be an ar-
bitrary anonymous preference profile, and let a, b be two arbitrary alternatives such that
a .π b. Now, suppose for the sake of contradiction that b ∈ f(π) but a /∈ f(π).

Consider an arbitrary ranking σ with a �σ b. Since a .π b, π(σ) ≥ π(σab). In other
words, we have an excess weight of π(σ)− π(σab) on σ. For this excess weight of σ, move
b upwards and place it just below a. By monotonicity, b still wins and a still loses in this
modified profile. We repeat this procedure for every such σ (i.e. for its excess weight, move
b upwards, until it is placed below a). In the resulting profile, a still loses. Now, for each
of the modified rankings, move a down to where b originally was. By monotonicity, a still
loses in the resulting profile π′, i.e., a /∈ f(π′).

On the other hand, this procedure is equivalent to shifting the excess weight π(σ) −
π(σab) from σ to σab (for each σ with a �σ b). Hence, the profile π′ we end up with is
such that π′(σ) = π(σab) and π′(σab) = π(σ), i.e. the new profile is the original profile
with a and b swapped. Therefore, by neutrality, it must be the case that a ∈ f(π′). This
contradicts our conclusion that a /∈ f(π′), thus completing the proof.

C.1.2 Proof of Theorem 4.3.7

Let f , Π, and A as in the theorem statement. Since Π is SwD-compatible, .Π is a total
preorder on X . In turn, the relation .Π restricted to A is a total preorder on A. Therefore,
there is a ∈ A such that a .Π b for all b ∈ A.

Suppose for the sake of contradiction that a /∈ f(Π(A)), and let b ∈ A \ {a}. Then it
holds that a .Π b. In particular, a .Π(A) b. But, because f is SwD-efficient and a /∈ f(Π(A)),
we have that b /∈ f(Π(A)). This is true for every b ∈ A, leading to f(Π(A)) = φ, which
contradicts the definition of an SCC.
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C.1.3 Proof of Lemma 4.3.9

Let a and b be two alternatives such that a dominates b in U . In addition, let A be a finite
set of alternatives containing a and b, let π denote the anonymous preference profile Π(A),
and let m = |A|. Consider an arbitrary ranking σ such that a �σ b. Now, let x` = σ−1(`)
denote the alternative in position ` of σ, and let i = σ(a), j = σ(b), i.e.,

x1 �σ x2 · · · �σ xi(= a) �σ · · · �σ xj(= b) �σ · · · �σ xm.

Then,

π(σ) = P (Ux1 > Ux2 > · · · > Uxi > · · · > Uxj > · · · > Uxm)

=

∫ ∞
−∞

∫ u1

−∞
· · ·
∫ ui−1

−∞
· · ·
∫ uj−1

−∞
· · ·
∫ um−1

−∞
p(u1, u2, · · · , ui, · · ·uj, · · · , um)dum · · · du1.

In this integral, because of the limits, we always have ui ≥ uj. Moreover, since xi = a
dominates xj = b in U , we have

π(σ) ≥
∫ ∞
−∞

∫ u1

−∞
· · ·
∫ ui−1

−∞
· · ·
∫ uj−1

−∞
· · ·
∫ um−1

−∞
p(u1, u2, · · · , uj, · · ·ui, · · · , um)dum · · · du1.

The right-hand side of this equation is exactly π(σab). Hence, we have π(σ) ≥ π(σab). It
follows that a .π b, i.e., a .Π(A) b. Also, this is true for any finite A containing a and b. We
conclude that a .Π b.

C.1.4 Proof of Lemma 4.3.10

We establish the property separately for the TM and PL processes.

TM process. Let a and b be two alternatives such that µa ≥ µb. Since we are dealing with
a TM process, Ua ∼ N (µa,

1
2
) and Ub ∼ N (µb,

1
2
). Let A be any finite set of alternatives

containing a and b. Since utilities are sampled independently in a TM process, the difference
between the two sides of Equation (4.1) is that the left-hand side has pUa(u1)pUb(u2), while
the right-hand side has pUa(u2)pUb(u1). It holds that

pUa(u1)pUb(u2)

=
1√
π

exp
(
−(u1 − µa)2

) 1√
π

exp
(
−(u2 − µb)2

)
.

=
1

π
exp

(
−u2

1 − µ2
a − u2

2 − µ2
b + 2u1µa + 2u2µb

)
.

(C.1)

We have u1 ≥ u2 and µa ≥ µb. Therefore,

u1µa + u2µb = u1µb + u1(µa − µb) + u2µb
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≥ u1µb + u2(µa − µb) + u2µb

= u1µb + u2µa

Substituting this into Equation (C.1), we obtain

pUa(u1)pUb(u2)

≥ 1

π
exp

(
−u2

1 − µ2
a − u2

2 − µ2
b + 2u1µb + 2u2µa

)
=

1

π
exp

(
−(u2 − µa)2 − (u1 − µb)2

)
= pUa(u2)pUb(u1)

It follows that Equation (4.1) holds true. Hence, a dominates b in the corresponding utility
process.

To show the other direction, let a and b be such that µa < µb. If we choose u1, u2

such that u1 > u2, using a very similar approach as above, we get pUa(u1)pUb(u2) <
pUa(u2)pUb(u1). And so, a does not dominate b in the corresponding utility process.

PL process. Let a and b be two alternatives such that µa ≥ µb. Since we are dealing
with a PL process, Ua ∼ G(µa, γ) and Ub ∼ G(µb, γ). Let A be any finite set of alternatives
containing a and b. Since utilities are sampled independently in a PL process, the difference
between the two sides of Equation (4.1) is that the left-hand side has pUa(u1)pUb(u2), while
the right-hand side has pUa(u2)pUb(u1). It holds that

pUa(u1)pUb(u2)

=
1

γ
exp

(
−u1 − µa

γ
− e−

u1−µa
γ

)
1

γ
exp

(
−u2 − µb

γ
− e−

u2−µb
γ

)
=

1

γ2
exp

(
−u1 − µa

γ
− e−

u1−µa
γ − u2 − µb

γ
− e−

u2−µb
γ

)
=

1

γ2
exp

(
−u1 − µa + u2 − µb

γ
−
(
e−

u1
γ e

µa
γ + e−

u2
γ e

µb
γ

))
.

(C.2)

We also know that e−
u2
γ ≥ e−

u1
γ and e

µa
γ ≥ e

µb
γ . Similar to the proof for the TM process,

we have
e−

u2
γ e

µa
γ + e−

u1
γ e

µb
γ ≥ e−

u1
γ e

µa
γ + e−

u2
γ e

µb
γ .

Substituting this into Equation (C.2), we obtain

pUa(u1)pUb(u2)

≥ 1

γ2
exp

(
−u1 − µa + u2 − µb

γ
−
(
e−

u2
γ e

µa
γ + e−

u1
γ e

µb
γ

))
=

1

γ
exp

(
−u2 − µa

γ
− e−

u2−µa
γ

)
1

γ
exp

(
−u1 − µb

γ
− e−

u1−µb
γ

)
= pUa(u2)pUb(u1)
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It follows that Equation (4.1) holds true. Hence, a dominates b in the corresponding utility
process.

To show the other direction, let a and b be such that µa < µb. If we choose u1, u2

such that u1 > u2, using a very similar approach as above, we get pUa(u1)pUb(u2) <
pUa(u2)pUb(u1). And so, a does not dominate b in the corresponding utility process.

C.1.5 Proof of Theorem 4.3.1

By Lemma 4.3.4, the anonymous SCC f is SwD-efficient. Lemmas 4.3.9 and 4.3.10 directly
imply that when Π is the TM or PL process, .Π is indeed a total preorder. In particular,
a .Π b if µa ≥ µb. So, an alternative a in A with maximum mode utility satisfies a .Π b for
all b ∈ A. By Theorem 4.3.7, if a ∈ A is such that a .Π b for all b ∈ A, then a ∈ f(Π(A));
the statement of the theorem follows.

C.2 More on Stability and Proof of Theorem 4.3.12

Before proving Theorem 4.3.12, we examine some examples that illustrate stability (or the
lack thereof).

Example C.2.1. Let f be the Borda count SCC, and let the set of alternatives be
X = {u, v, w, x, y}. Also, let Π be a consistent permutation process, which, given all the
alternatives, gives a uniform distribution on the two rankings (x � u � v � y � w)
and (y � w � x � u � v). The outcome of applying f on this profile is {x}
(since x has the strictly highest Borda score). But, the outcome of applying f on the
profile Π({w, x, y}) is {y} (since y now has the strictly highest Borda score). Hence,
f(Π({u, v, w, x, y}))∩{w, x, y} 6= f(Π(w, x, y)), even though the left-hand side is nonempty.
We conclude that the tuple (Π, f) does not satisfy stability.

For the next example (and the statement of Theorem 4.3.12), we need to define the
Copeland SCC. For an anonymous preference profile π over A, we say that a ∈ A beats
b ∈ A in a pairwise election if ∑

σ∈SA: a�σb
π(σ) >

1

2
.

The Copeland score of an alternative is the number of other alternatives it beats in pairwise
elections; the Copeland SCC selects all alternatives that maximize the Copeland score.

Example C.2.2. Consider the permutation process of Example C.2.1, and let f be the
Copeland SCC. Once again, it holds that f(Π(u, v, w, x, y)) = {x} and f(Π(w, x, y)) = {y}.
Hence the pair (Π, f) is not stable.

Now, in the spirit of Theorem 4.3.7, let us see whether the pair (Π, f) satisfies stability
when f is an SwD-efficient anonymous SCC, and Π is an SwD-compatible permutation
process. Example C.2.3 constructs such a Π that is not stable with respect to the plurality
SCC (even though plurality is SwD-efficient).

Example C.2.3. Let f be the plurality SCC and the set of alternatives be X = {a, b, c}.
Also, let Π be the consistent permutation process, which given all alternatives, gives the
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following profile: 0.35 weight on (a � b � c), 0.35 weight on (b � a � c), 0.1 weight on
(c � a � b), 0.1 weight on (a � c � b) and 0.1 weight on (b � c � a). All the swap-
dominance relations in this permutation process are: a .Π b, b .Π c and a .Π c. Hence, .Π is
a total preorder on X , and Π is SwD-compatible.
Now, for this permutation process Π and the plurality SCC f , we have: f(Π({a, b, c})) =
{a, b} and f(Π({a, b})) = {a}. Therefore, (Π, f) is not stable.

This happens because Plurality is not strongly SwD-efficient, as defined below (Exam-
ple C.2.3 even shows why plurality violates this property).

Definition C.2.4. An anonymous SCC f is said to be strongly SwD-efficient if for every
anonymous preference profile π over A, and any two alternatives a, b ∈ A such that a .π b,

1. If b 7π a, then b /∈ f(π).

2. If b .π a, then b ∈ f(π)⇔ a ∈ f(π).

It is clear that any strongly SwD-efficient SCC is also SwD-efficient.

Lemma C.2.5. The Borda count and Copeland SCCs are strongly SwD-efficient.

Proof. Let π be an arbitrary anonymous preference profile over alternatives A, and let
a, b ∈ A such that a.πb. This means that for all σ ∈ SA with a �σ b, we have π(σ) ≥ π(σab).
We will examine the two conditions (of Definition C.2.4) separately.

Case 1: b 7π a. This means that there exists a ranking σ∗ ∈ SA with b �σ∗ a such that
π(σ∗) < π(σab∗ ). Below we analyze each of the SCCs mentioned in the theorem.

Borda count. SA can be partitioned into pairs of the form (σ, σab), where σ is such
that a �σ b. We reason about how each pair contributes to the Borda scores of a and
b. Consider an arbitrary pair (σ, σab) with a �σ b. The score contributed by σ to a is
(m − σ(a))π(σ), and the score contributed to b is (m − σ(b))π(σ). That is, it gives an
excess score of (σ(b) − σ(a))π(σ) to a. Similarly, the score of a contributed by σab is
(m−σab(a))π(σab) = (m−σ(b))π(σab), and the score contributed to b is (m−σ(a))π(σab).
So, b gets an excess score of (σ(b) − σ(a))π(σab) from σab. Combining these observations,
the pair (σ, σab) gives a an excess score of (σ(b)−σ(a))(π(σ)−π(σab)), which is at least 0.
Since this is true for every pair (σ, σab), a has Borda score that is at least as high as that
of b. Furthermore, the pair (σab∗ , σ∗) is such that π(σab∗ ) − π(σ∗) > 0, so, this pair gives a
an excess score that is strictly positive. We conclude that a has strictly higher Borda score
than b, hence b is not selected by Borda count.

Copeland. Let c ∈ A \ {a, b}. In a pairwise election between b and c, the total weight of
rankings that place b over c is∑

σ∈SA: b�σc
π(σ) =

∑
σ∈SA: (b�σc)∧(a�σc)

π(σ) +
∑

σ∈SA: (b�σc)∧(c�σa)

π(σ).

For the rankings in the second summation (on the right-hand side), we have b �σ a by
transitivity. Hence, π(σ) ≤ π(σab) for such rankings. Therefore,∑

σ∈SA: b�σc
π(σ) ≤

∑
σ∈SA: (b�σc)∧(a�σc)

π(σ) +
∑

σ∈SA: (b�σc)∧(c�σa)

π(σab)
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=
∑

σ∈SA: (b�σc)∧(a�σc)
π(σ) +

∑
σ′∈SA: (a�σ′c)∧(c�σ′b)

π(σ′)

=
∑

σ∈SA: a�σc
π(σ).

In summary, we have ∑
σ∈SA: b�σc

π(σ) ≤
∑

σ∈SA: a�σc
π(σ).

Hence, if b beats c in a pairwise competition, then so does a. Therefore, the Copeland score
of a (due to all alternatives other than a and b) is at least as high as that of b. Further,
in a pairwise competition between a and b, the weight of rankings that position a above b
is
∑

σ∈SA: a�σb π(σ) and the weight of those that prefer b over a is
∑

σ∈SA: b�σa π(σ). But,

because π(σ) ≥ π(σab) for any σ with a �σ b, and π(σab∗ ) > π(σ∗), a beats b. Therefore, a
has a strictly higher Copeland score than b, and b is not selected by Copeland.

Case 2: b .π a. In this case, a .π b and b .π a. This means that for all σ ∈ SA, we have
π(σ) = π(σab). In other words, τ(π) = π, where τ is the permutation that swaps a and b.
Both Borda count and Copeland are neutral SCCs. So, we have τ(f(π)) = f(τ(π)), which
is in turn equal to f(π). Hence, a is selected if and only if b is selected.

We conclude that both conditions of Definition C.2.4 are satisfied by Borda count and
Copeland.

Lemma C.2.6. Let Π be a consistent permutation process that is SwD-compatible. Then,
for any finite subset of alternatives A ⊆ X ,

(
.Π(A)

)
= (.Π|A).

In words, as long as Π is consistent and SwD-compatible, marginalizing out some al-
ternatives from a profile does not remove or add any swap-dominance relations.

Proof of Lemma C.2.6. We first show that for any B ⊆ A ⊆ X ,
(
.Π(A)|B

)
=
(
.Π(B)

)
.

Let a, b ∈ B such that a .Π(A) b. Now, let σ ∈ SB be an arbitrary ranking such that
a �σ b. Also, let πB denote Π(B) and πA denote Π(A). Then, since Π is consistent,

πB(σ) =
∑

σ2∈SA:σ2|B=σ

πA(σ2).

Now, for σ2 ∈ SA such that σ2|B = σ, we have a �σ2 b and therefore πA(σ2) ≥ πA(σab2 )
(because a .Π(A) b). It follows that

πB(σ) =
∑

σ2∈SA:σ2|B=σ

πA(σ2) ≥
∑

σ2∈SA:σ2|B=σ

πA(σab2 )

=
∑

σ′2∈SA:σ′2|B=σab

πA(σ′2)

= πB(σab).

Therefore, a .Π(B) b, that is,
(
.Π(A)|B

)
⊆
(
.Π(B)

)
.
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Next we show that
(
.Π(B)

)
⊆
(
.Π(A)|B

)
. Let a, b ∈ B such that a .Π(B) b. Suppose

for the sake of contradiction that a 7Π(A) b. This implies that a 7Π b. However, .Π is a
total preorder because Π is SwD-compatible (by definition). It follows that b .Π a, and, in
particular, b .Π(A) a and b .Π(B) a.

As before, let πA denote Π(A) and πB denote Π(B). Because a 7Π(A) b, there exists
σ∗ ∈ SA with a �σ∗ b such that πA(σ∗) < πA(σab∗ ). Moreover, because a.Π(B) b and b.Π(B)a,
it holds that πB(σ∗|B) = πB

(
(σ∗|B)ab

)
. The consistency of Π then implies that∑

σ1∈SA:σ1|B=σ∗|B

πA(σ1) =
∑

σ2∈SA:σ2|B=(σ∗|B)ab

πA(σ2). (C.3)

Note σ1 = σ∗ is a ranking that appears on the left-hand side of Equation (C.3), and
σ2 = σab∗ is a ranking that appears on the right-hand side. Furthermore, we know that
πA(σ∗) < πA(σab∗ ). It follows that there exists σ′ ∈ SA with σ′|B = σ∗|B such that πA(σ′) >
πA
(
(σ′)ab

)
. Also, since σ′|B = σ∗|B, it holds that a �σ′ b. We conclude that it cannot be

the case that b .Π(A) a, leading to a contradiction. Therefore, if a .Π(B) b, then a .Π(A) b, i.e.,(
.Π(B)

)
⊆
(
.Π(A)|B

)
.

We next prove the lemma itself, i.e., that
(
.Π(A)

)
= (.Π|A) . Firstly, for a, b ∈ A, if

a .Π b, then a .Π(A) b by definition. So, we easily get (.Π|A) ⊆
(
.Π(A)

)
.

In the other direction, let a, b ∈ A such that a .Π(A) b. Let C be an arbitrary set of
alternatives containing a and b. From what we have shown above, we have

(
.Π(A)|{a,b}

)
=(

.Π({a,b})
)
. Also,

(
.Π(C)|{a,b}

)
=
(
.Π({a,b})

)
. This gives us

(
.Π(A)|{a,b}

)
=
(
.Π(C)|{a,b}

)
. Hence,

a .Π(C) b, and this is true for every such subset C. We conclude that a .Π b, that is,(
.Π(A)

)
⊆ (.Π|A).

Lemma C.2.7. Let f be a strongly SwD-efficient anonymous SCC, and let Π be a consis-
tent permutation process that is SwD-compatible. Then for any finite subset of alternatives
A, f(Π(A)) = {a ∈ A : a .Π b for all b ∈ A}.

Proof. Let A be an arbitrary finite subset of alternatives. Since strong SwD-efficiency
implies SwD-efficiency, Theorem 4.3.7 gives us

f(Π(A)) ⊇ {a ∈ A : a .Π b for all b ∈ A}.

In the other direction, let a ∈ f(Π(A)). Suppose for the sake of contradiction that
there exists b ∈ A such that a 7Π b. Since .Π is a total preorder, it follows that b .Π a.
By Lemma C.2.6, it holds that

(
.Π(A)

)
= (.Π|A), and therefore a 7Π(A) b and b .Π(A) a.

But, since f is strongly SwD-efficient, it follows that a /∈ f(Π(A)), which contradicts our
assumption. Hence,

f(Π(A)) ⊆ {a ∈ A : a .Π b for all b ∈ A},

and we have the desired result.

Theorem C.2.8. Let Π be a consistent permutation process that is SwD-compatible, and
let f be a strongly SwD-efficient anonymous SCC. Then the pair (Π, f) is stable.
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Proof. Consider an arbitrary subset of alternatives A, and let B ⊆ A. By Lemma C.2.7,
f(Π(A)) = {a ∈ A : a .Π b for all b ∈ A}, and similarly for B. Suppose f(Π(A)) ∩B 6= φ,
and let a ∈ f(Π(A)) ∩ B, i.e. a ∈ f(Π(A)) and a ∈ B. This means that a .Π b for all
b ∈ A, and, therefore a .Π b for all b ∈ B. We conclude that a ∈ f(Π(B)), and hence
f(Π(A)) ∩B ⊆ f(Π(B)).

In the other direction, let a ∈ f(Π(B)). This means that a .Π b for all b ∈ B. Suppose
for the sake of contradiction that a /∈ f(Π(A)). This means that there exists c ∈ A such
that a 7Π c. We assumed f(Π(A)) ∩ B 6= φ, so let d ∈ f(Π(A)) ∩ B. Then, d .Π c. In
summary, we have d .Π c and a 7Π c, which together imply that a 7Π d (otherwise, it
would violate transitivity). But d ∈ B, leading to a /∈ f(Π(B)), which contradicts the
assumption. Therefore, indeed a ∈ f(Π(A)), and it holds that f(Π(B)) ⊆ f(Π(A))∩B, as
long as f(Π(A)) ∩B 6= φ.

We are now ready to prove Theorem 4.3.12.

Proof of Theorem 4.3.12. From Lemma C.2.5, Borda count and Copeland are strongly
SwD-efficient. Lemmas 4.3.9 and 4.3.10 imply that when Π is the TM or PL process, .Π is
a total preorder. In particular, a .Π b if µa ≥ µb. Hence, Π is SwD-compatible. Therefore,
by Theorem C.2.8, the pair (Π, f) is stable.

C.3 Proof of Proposition 4.4.1

Let β̄ = 1
N

∑N
i=1 βi. We know that Uβx denotes the utility of x under the TM process

with parameter β. So, Uβx ∼ N (βᵀx, 1
2
). Let its density be given by qx,β(·). Also, U

βi
x ∼

N (βᵀi x,
1
2
). Hence, 1

N

∑N
i=1 U

βi
x ∼ N (β̄ᵀx, 1

2N
). Let its density function be denoted by px(·).

Then

KL(px‖qx,β) =

∫
px(t) log px(t)dt−

∫
px(t) log qx,β(t)dt.

Since the first term does not depend on β, let us examine the second term:

−
∫
px(t) log qx,β(t)dt = −

∫
px(t) log

(
1√
π

exp
(
−(t− βᵀx)2

))
dt

= −
∫
px(t)

[
−1

2
log(π)− (t− βᵀx)2

]
dt

=
1

2
log(π)

(∫
px(t)dt

)
+

∫
px(t)

(
t2 + (βᵀx)2 − 2tβᵀx

)
dt

=
1

2
log(π) +

(∫
t2px(t)dt+ (βᵀx)2

∫
px(t)dt− 2βᵀx

∫
tpx(t)dt

)
=

1

2
log(π) +

((
1

2N
+ (β̄ᵀx)2

)
+ (βᵀx)2 − 2βᵀx(β̄ᵀx)

)
=

1

2
log(π) +

1

2N
+
(
β̄ᵀx− βᵀx

)2
.
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Figure C.1: Accuracy of Step II with number of voters N = 40 (synthetic data)

This term is minimized at β = β̄ for any x, and therefore KL( 1
N

∑N
i=1 U

βi
x

∥∥Uβx ) is mini-
mized at that value as well.

C.4 Robustness of the Empirical Results

In Section 4.5.1, we presented experiments using synthetic data, with the following param-
eters: each instance has 5 alternatives, the number of features is d = 10, and, in Step II,
we let number of voters be N = 20. In this appendix, to demonstrate the robustness of
both steps, we show experimental results for different values of these parameters (keeping
everything else fixed).

C.4.1 Number of Voters in Step II

To show robustness with respect to the number of voters N in Step II, we run the Step II
experiments with 40 (instead of N = 20). The results are shown in Figure C.1.

As before, we observe that the accuracy quickly increases as the number of pairwise
comparisons increases, and with just 30 pairwise comparisons we achieve an accuracy of
89.3%. With 100 pairwise comparisons, the accuracy is 94.9%.

C.4.2 Number of Alternatives

To show robustness with respect to the number of alternatives, we run experiments with
|A| = 3 (instead of |A| = 5). The results are shown in Figure C.2.

Similarly to Section 4.5.1, for Step II, we observe that the accuracy quickly increases as
the number of pairwise comparisons increases, and with just 30 pairwise comparisons we
achieve an accuracy of 88.8%. With 100 pairwise comparisons, the accuracy is 93.5%. For
Step III, we observe that the accuracy increases to 96.2% as the number of voters increases.
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(b) Accuracy of Step III

Figure C.2: Results with 3 alternatives per instance (synthetic data)
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Figure C.3: Results with number of features d = 20 (synthetic data)

C.4.3 Number of Features

To show robustness with respect to the number of features d, we run experiments with
d = 20 (instead of d = 10). The results are shown in Figure C.3.

Again, for Step II, we observe that the accuracy quickly increases (though slower than
in Section 4.5.1, because of higher dimension) as the number of pairwise comparisons
increases. With just 30 pairwise comparisons we achieve an accuracy of 74.6%, and with
100 pairwise comparisons, the accuracy is 88.2%. For Step III, we observe that the accuracy
increases to 94.7% as the number of voters increases.
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Appendix D
Omitted Proofs and Results for Chapter 5

D.1 Proof Of Theorem 5.3.1

Recall that the proof of our main result, Theorem 5.3.1, includes four lemmas. Here we
prove the three lemmas whose proofs were omitted from the main text.

D.1.1 Proof of Lemma 5.3.3

Consider L(p, 1) aggregation with an arbitrary p ∈ (1,∞). We show that efficiency is
violated using the following construction. There are 2 papers, 3 reviewers and each reviewer
reviews both papers. Assume that the papers have objective criteria scores x1 and x2, and
that neither of these scores is pointwise greater than or equal to the other. Let the overall
recommendations by the reviewers for the papers be defined by the matrix

y =

z 0
0 1
0 0

 ,
where z is a constant strictly bigger than 1 and yia denotes the overall recommendation
by reviewer i to paper a. Observe that paper 1 dominates paper 2. But, we will show that
there exists a value z > 1 such that the aggregate score of paper 1 is strictly smaller than
the aggregate score of paper 2.

Let fi denote the value of function f on paper i, i.e. fi := f(xi). And let f̂i(z) denote the
aggregate score of paper i; observe that we write it as a function of z because the aggregate
score of each paper would depend on the chosen score z. Since we are minimizing L(p, 1)
loss, the aggregate function satisfies:

(f̂1(z), f̂2(z)) ∈ argmin
(f1,f2)∈R2

{∥∥(z, 0)− (f1, f2)
∥∥
p

+
∥∥(0, 1)− (f1, f2)

∥∥
p

+
∥∥(f1, f2)

∥∥
p

}
. (D.1)

We do not have any monotonicity constraints in (D.1) because the two papers have incom-

parable criteria scores. For simplicity, let f := (f1, f2), f̂(z) := (f̂1(z), f̂2(z)), and denote
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the objective function in Equation (D.1) by Gz(f). That is,

Gz(f1, f2) =
[
|z − f1|p + |f2|p

] 1
p

+
[
|f1|p + |1− f2|p

] 1
p

+
[
|f1|p + |f2|p

] 1
p
. (D.2)

For the overall proof to be easier to follow, proofs of all claims are given at the end of this
proof. Also, just to re-emphasize, the whole proof assumes z > 1.

Claim D.1.1. Gz is a strictly convex objective function.

Claim D.1.1 states that Gz is strictly convex, implying that it has a unique minimizer
f̂(z). Hence, there is no need to consider tie-breaking.

Claim D.1.2. f̂1(z) and f̂2(z) are bounded. In particular, f̂1(z) ∈ [0, 1] and f̂2(z) ∈ [0, 1].

Claim D.1.2 states that the aggregate score of both papers lies in the interval [0, 1]
irrespective of the value of z. This allow us to restrict ourselves to the region [0, 1]2 when
computing the minimizer of (D.2). Hence, for the rest of the proof, we only consider the
space [0, 1]2. In this region, the optimization problem (D.1) can be rewritten as

(f̂1(z), f̂2(z)) = argmin
f1∈[0,1],f2∈[0,1]

{[(
z − f1

)p
+ fp2

] 1
p

+
[
fp1 +

(
1− f2

)p] 1
p

+
[
fp1 + fp2

] 1
p

}
.

To start off, we analyze the objective function as we take the limit of z going to infinity.
Later, we show that the observed property holds even for a sufficiently large finite z.

For the limit to exist, redefine the objective function as Hz(f1, f2) = Gz(f1, f2) −
Gz(0, 0), i.e.,

Hz(f1, f2) =
[(
z − f1

)p
+ fp2

] 1
p − z +

[
fp1 +

(
1− f2

)p] 1
p

+
[
fp1 + fp2

] 1
p − 1. (D.3)

For any value of z, the function Hz has the same minimizer as Gz, that is,

(f̂1(z), f̂2(z)) = argmin
f1∈[0,1],f2∈[0,1]

Hz(f1, f2).

Claim D.1.3. For any (fixed) f1 ∈ [0, 1], f2 ∈ [0, 1],

lim
z→∞

Hz(f1, f2) = H?(f1, f2),

where

H?(f1, f2) = −f1 +
[
fp1 +

(
1− f2

)p] 1
p

+
[
fp1 + fp2

] 1
p − 1. (D.4)

The proof proceeds by analyzing some important properties of the limiting function
H?.

Claim D.1.4. The function H?(f) is convex in f ∈ [0, 1]2. Moreover, the function H?(f)
is strictly convex for f1 ∈ (0, 1] and f2 ∈ [0, 1].

Claim D.1.5. H? is minimized at v̂ = (v̂1, v̂2), where

v̂1 =
1

2

[
1

(2
p
p−1 − 1)

] 1
p

, v̂2 =
1

2
. (D.5)
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Claim D.1.6. v̂1 < v̂2.

Observe that Claim D.1.6 is the desired result, but for the limiting objective function
H?. The remainder of the proof proceeds to show that this result holds even for the objective
function Hz, when the score z is large enough. Define ∆ = v̂2 − v̂1 > 0. We first show that
(i) there exists z > 1 such that ‖f̂(z) − v̂‖2 <

∆
4

, and then (ii) show that in this case, we

have f̂1(z) < f̂2(z).
To prove part (i), we first analyze how functions Hz and H? relate to each other. Using

Claim D.1.3, for any fixed f1, f2, by definition of the limit, for any ε > 0, there exists zε
(which could be a function of f1, f2) such that, for all z > zε, we have

|Hz(f1, f2)−H?(f1, f2)| < ε. (D.6)

For a given f1, f2, denote the corresponding value of zε by zε(f1, f2). And, let Zε(f1, f2)
denote the set of all values of z > 1 for which Equation (D.6) holds for (f1, f2).

Claim D.1.7. Zε(1, 1) ⊂ Zε(f1, f2) for every (f1, f2) ∈ [0, 1]2.

Claim D.1.7 says that if Equation (D.6) holds for a particular value of z for f1 = f2 = 1,
then for the same value of z it holds for every other value of (f1, f2) ∈ [0, 1]2 as well. So,
define

z̃ε := zε(1, 1) + 1. (D.7)

By definition, z̃ε ∈ Zε(1, 1). And by Claim D.1.7, z̃ε ∈ Zε(f1, f2) for every (f1, f2) ∈ [0, 1]2.
So, set z = z̃ε. Then, Equation (D.6) holds for all (f1, f2) ∈ [0, 1]2 simultaneously. In other
words, for all (f1, f2) ∈ [0, 1]2, we simultaneously have

H?(f1, f2)− ε < Hz(f1, f2) < H?(f1, f2) + ε, (D.8)

i.e. Hz is in an ε-band around H? throughout this region. And observe that this band gets
smaller as ε is decreased (which is achieved at a larger value of z).

To bound the distance between v̂, the minimizer of H?, and f̂(z), the minimizer of Hz,
we bound the distance between the objective function values at these points.

Claim D.1.8. H?(f̂(z)) < H?(v̂) + 2ε.

Although f̂(z) does not minimize H?, Claim D.1.8 says that the objective value at f̂(z)
cannot be more than 2ε larger than its minimum, H?(v̂). We use this to bound the distance

between f̂(z) and the minimizer v̂. Observe that f̂(z) falls in the [H?(v̂) + 2ε]-level set of
H?. So, we next look at a specific level set of H?.

Define

τ := min
f∈[0,1]2:‖f−v̂‖2= ∆

4

H?(f). (D.9)

Observe that a minimum exists (infimum is not required) for the minimization in (D.9)
because we are minimizing over the closed set {f ∈ [0, 1]2 : ‖f − v̂‖2 = ∆

4
} and H? is

continuous.
For any fixed p ∈ (1,∞), Equation (D.5) shows that v̂1 is bounded away from 0. Hence,

Claim D.1.4 shows that H? is strictly convex at and in the region around v̂. Further, H?
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is convex everywhere else. Coupling this with the fact that (D.9) minimizes along points
not arbitrarily close to the minimizer v̂, we have τ > H?(v̂).

Define the level set of H? with respect to τ :

Cτ = {f ∈ [0, 1]2 : H?(f) ≤ τ}.

Claim D.1.9. For every f ∈ Cτ , we have ‖f − v̂‖2 ≤ ∆
4
.

Define εo := τ−H?(v̂)
2

, and set ε = εo. Then, set z = z̃εo as before. Applying Claim D.1.8,
we obtain

H?(f̂(z̃εo)) < H?(v̂) + 2εo = τ.

In other words, f̂(z̃εo) ∈ Cτ . And applying Claim D.1.9, we obtain ‖f̂(z̃εo) − v̂‖2 ≤ ∆
4

,
completing part (i).

This implies that ‖f̂(z̃εo)− v̂‖∞ ≤ ∆
4

, which means∣∣∣f̂1(z̃εo)− v̂1

∣∣∣ ≤ ∆

4
and

∣∣∣f̂2(z̃εo)− v̂2

∣∣∣ ≤ ∆

4
. (D.10)

Using these properties, we have

f̂1(z̃εo) ≤ v̂1 +
∆

4

= v̂2 −∆ +
∆

4

≤ f̂2(z̃εo) +
∆

4
−∆ +

∆

4
= f̂2(z̃εo)−

∆

2
,

where the first inequality holds because of the first part of (D.10), the equality holds
because ∆ = v̂2− v̂1 and the second inequality holds because of the second part of (D.10).
Therefore, for z = z̃εo > 1, the aggregate scores of the two papers are such that

f̂1(z̃εo) < f̂2(z̃εo),

violating efficiency.

Proof of Claim D.1.1 Take arbitrary f ,g ∈ R2 with f 6= g, and let θ ∈ (0, 1). We show
that Gz(θf + (1− θ)g) < θGz(f) + (1− θ)Gz(g). For this, we will first show that either (i)
[(z, 0)− f ] is not parallel to [(z, 0)− g], (ii) [(0, 1)− f ] is not parallel to [(0, 1)− g] or (iii)
f is not parallel to g. For the sake of contradiction, assume that this is not true. That is,
assume [(z, 0) − f ] is parallel to [(z, 0) − g], [(0, 1) − f ] is parallel to [(0, 1) − g], and f is
parallel to g. This implies that[

z − f1

−f2

]
= r

[
z − g1

−g2

]
,

[
−f1

1− f2

]
= s

[
−g1

1− g2

]
and

[
f1

f2

]
= t

[
g1

g2

]
,

where r, s, t ∈ R 1. Note that, none of r, s, t can be 1 because f 6= g. The second equation
tells us that f1 = sg1 and the third one tells us that f1 = tg1. So, either f1 = g1 = 0 or

1A boundary case not captured here is when g is exactly one of the points (z, 0), (0, 1) or (0, 0), leading
to 1/r, 1/s or 1/t being zero respectively. But for this case, it is easy to prove that the other two pairs of
vectors cannot be parallel unless f = g.
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s = t. But from the first equation, z − f1 = rz − rg1. So if f1 = g1 = 0, it says that r = 1
which is not possible. Therefore, s = t. The third equation now tells us that f2 = tg2 = sg2.
But, the second equation gives us 1 − f2 = s − sg2, which implies that s = 1. But again
this is not possible, leading to a contradiction. Therefore, at least one of (i), (ii) and (iii)
is true.

Lp norm with p ∈ (1,∞) is a convex norm, i.e. for any x, y ∈ R2,

‖θx+ (1− θ)y‖p ≤ θ‖x‖p + (1− θ)‖y‖p. (D.11)

Further, since p ∈ (1,∞), the inequality in (D.11) is strict if x is not parallel to y. For our
objective (in Equation (D.1)),

Gz(θf + (1− θ)g) =
∥∥θ[(z, 0)− f ] + (1− θ)[(z, 0)− g]

∥∥
p

+
∥∥θ[(0, 1)− f ] + (1− θ)[(0, 1)− g]

∥∥
p

+
∥∥θf + (1− θ)g

∥∥
p
. (D.12)

Because of convexity of the Lp norm, each of the three terms on the RHS of Equation (D.12)
satisfies inequality (D.11). Further, because at least one of the pair of vectors in the three
terms is not parallel (since either (i), (ii) or (iii) is true), at least one of them gives us a
strict inequality. Therefore we obtain

Gz(θf + (1− θ)g) < θGz(f) + (1− θ)Gz(g).

�

Proof of Claim D.1.2 The claim has four parts: (i) f̂1(z) ≥ 0, (ii) f̂1(z) ≤ 1, (iii)

f̂2(z) ≥ 0 and (iv) f̂2(z) ≤ 1. Observe that parts (i), (iii) and (iv) are more intuitive,
since they show that the aggregate score of a paper is no higher than the maximum score
given to it, and no lower than the minimum score given to it. Part (ii) on the other hand
is stronger; even though paper 1 has a score of z > 1 given to it, this part shows that
f̂1(z) ≤ 1 (which is much tighter than an upper bound of z, especially when z is large).
We prove the simpler parts (i), (iii) and (iv) first.

For the sake of contradiction, suppose f̂1(z) < 0. Then

Gz(f̂1(z), f̂2(z)) =
[
|z − f̂1(z)|p + |f̂2(z)|p

] 1
p

+
[
|f̂1(z)|p + |1− f̂2(z)|p

] 1
p

+
[
|f̂1(z)|p + |f̂2(z)|p

] 1
p

>
[
|z|p + |f̂2(z)|p

] 1
p

+
[
0 + |1− f̂2(z)|p

] 1
p

+
[
0 + |f̂2(z)|p

] 1
p

= Gz(0, f̂2(z)),

contradicting the fact that (f̂1(z), f̂2(z)) is optimal. Therefore, f̂1(z) ≥ 0, completing proof

of (i). Similarly, if f̂2(z) < 0, we can show that Gz(f̂1(z), f̂2(z)) > Gz(f̂1(z), 0), violating

optimality. Therefore, f̂2(z) ≥ 0, completing proof of (iii).

Next, for the sake of contradiction assume that f̂2(z) > 1. Then

Gz(f̂1(z), f̂2(z)) =
[
|z − f̂1(z)|p + |f̂2(z)|p

] 1
p

+
[
|f̂1(z)|p + |1− f̂2(z)|p

] 1
p

+
[
|f̂1(z)|p + |f̂2(z)|p

] 1
p

>
[
|z − f̂1(z)|p + 1

] 1
p

+
[
|f̂1(z)|p + 0

] 1
p

+
[
|f̂1(z)|p + 1

] 1
p

= Gz(f̂1(z), 1),
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contradicting the fact that (f̂1(z), f̂2(z)) is optimal. Therefore, we also have f̂2(z) ≤ 1,
completing proof of (iv).

Finally, we prove the more non-intuitive part, (ii). Suppose for the sake of contradiction,

f̂1(z) > 1. Then,

Gz(f̂1(z), f̂2(z)) =
[
|z − f̂1(z)|p + |f̂2(z)|p

] 1
p

+
[
|f̂1(z)|p + |1− f̂2(z)|p

] 1
p

+
[
|f̂1(z)|p + |f̂2(z)|p

] 1
p

≥ |z − f̂1(z)|+ |f̂1(z)|+ |f̂1(z)|

≥ z + |f̂1(z)|,

where the first inequality comes from the fact that the Lp norm of each vector is at least
as high as the absolute value of its first element, and the second inequality follows from
the triangle inequality. Using the assumption that f̂1(z) > 1, we obtain

Gz(f̂1(z), f̂2(z)) > z + 1 = Gz(0, 0),

contradicting the fact that (f̂1(z), f̂2(z)) is optimal. Therefore, f̂1(z) ≤ 1, completing the
proof. �

Proof of Claim D.1.3 Take any arbitrary f1 ∈ [0, 1] and f2 ∈ [0, 1]. Subtracting Equa-
tions (D.3) and (D.4) we obtain

Hz(f1, f2)−H?(f1, f2) =
[(
z − f1

)p
+ fp2

] 1
p −

(
z − f1

)
. (D.13)

Observe that since f2 ≥ 0, the RHS of Equation (D.13) is non-negative. Hence, the equation
does not change on using an absolute value, i.e.,

|Hz(f1, f2)−H?(f1, f2)| =
[(
z − f1

)p
+ fp2

] 1
p −

(
z − f1

)
. (D.14)

To prove the required result, we take a small detour and define φ(x) = (xp + fp2 )
1
p − x. We

show that φ(x)→ 0 as x→∞. For this, rewrite φ(x) as follows

φ(x) = x

(
1 +

fp2
xp

) 1
p

− x =

(
1 +

fp2
xp

) 1
p − 1

1
x

.

Taking the limit of x to infinity, we have

lim
x→∞

φ(x) = lim
x→∞

(
1 +

fp2
xp

) 1
p − 1

1
x

. (D.15)

Observe that for both the numerator and denominator in the RHS of Equation (D.15), we
have

lim
x→∞

{(
1 +

fp2
xp

) 1
p

− 1

}
= 0 and lim

x→∞

{
1

x

}
= 0.
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Hence, applying L’Hospital’s rule on equation (D.15) gives us

lim
x→∞

φ(x) = lim
x→∞

− fp2
xp+1

(
1 +

fp2
xp

) 1
p
−1

− 1
x2

= lim
x→∞

{
fp2
xp−1

(
1 +

fp2
xp

) 1
p
−1
}

=

[
lim
x→∞

fp2
xp−1

]
∗

[
lim
x→∞

(
1 +

fp2
xp

) 1
p
−1
]

= 0 ∗ 1 = 0,

where
[
limx→∞

fp2
xp−1

]
= 0 because p > 1. Hence, we proved the required result,

limx→∞ φ(x) = 0. Going back to Equation (D.14), we rewrite it as

|Hz(f1, f2)−H?(f1, f2)| =
[(
z − f1

)p
+ fp2

] 1
p −

(
z − f1

)
= φ(z − f1).

Taking the limit of z to infinity, we obtain

lim
z→∞
|Hz(f1, f2)−H?(f1, f2)| = lim

z→∞
φ(z − f1) = lim

t→∞
φ(t) = 0, (D.16)

where the second step follows by setting t = z − f1. Equation (D.16) implies that

lim
z→∞

Hz(f1, f2) = H?(f1, f2).

�

Proof of Claim D.1.4 In the region [0, 1]2, using (D.4), the function H? can be written
as

H?(f1, f2) = −f1 + ‖(0, 1)− (f1, f2)‖p + ‖(f1, f2)‖p − 1. (D.17)

Observe that each term on the RHS of (D.17) is a convex function of f . Hence, their sum
is also convex in f .

The proof of strict convexity closely follows the proof of claim D.1.1. Take arbitrary
f ,g ∈ (0, 1] × [0, 1] with f 6= g, and let θ ∈ (0, 1). We show that H?(θf + (1 − θ)g) <
θH?(f) + (1− θ)H?(g). For this, we will first show that either (i) [(0, 1)− f ] is not parallel
to [(0, 1)− g] or (ii) f is not parallel to g. For the sake of contradiction, assume that this
is not true. That is, assume [(0, 1)− f ] is parallel to [(0, 1)−g], and f is parallel to g. This
implies that [

−f1

1− f2

]
= r

[
−g1

1− g2

]
and

[
f1

f2

]
= s

[
g1

g2

]
,

where r, s ∈ R. Note that, neither r nor s can be 1 because f 6= g. The first equation tells
us that f1 = rg1 and the second one tells us that f1 = sg1. And since g1 6= 0, this implies
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that r = s. The second part of the second equation now tells us that f2 = sg2 = rg2. The
second part of the first equation becomes 1−f2 = r−rg2 which implies that r = 1, leading
to a contradiction. Therefore, at least one of (i) and (ii) is true.

Recall, Lp norm with p ∈ (1,∞) is a convex norm, i.e. for any x, y ∈ R2,

‖θx+ (1− θ)y‖p ≤ θ‖x‖p + (1− θ)‖y‖p. (D.18)

And since p ∈ (1,∞), the inequality in (D.18) is strict if x is not parallel to y. For H?

(using Equation (D.17)),

H?(θf + (1− θ)g) =− θf1 − (1− θ)g1

+
∥∥θ[(0, 1)− f ] + (1− θ)[(0, 1)− g]

∥∥
p

+
∥∥θf + (1− θ)g

∥∥
p
− 1. (D.19)

Because of convexity of the Lp norm, both the third and fourth term on the RHS of
Equation (D.19) satisfy inequality (D.18). Further, because at least one of the pair of
vectors in these two terms is not parallel (since either (i) or (ii) is true), at least one of
them gives us a strict inequality. Therefore we obtain

H?(θf + (1− θ)g) < θH?(f) + (1− θ)H?(g).

�

Proof of Claim D.1.5 To compute the minimizer of H?, we compute its gradients with
respect to f1 and f2. Using Equation (D.4), the partial derivative with respect to f1 is

∂H?

∂f1

= −1 + fp−1
1

[
fp1 + (1− f2)p

] 1
p
−1

+ fp−1
1

[
fp1 + fp2

] 1
p
−1

(D.20)

and with respect to f2 is

∂H?

∂f2

= 0− (1− f2)p−1
[
fp1 + (1− f2)p

] 1
p
−1

+ fp−1
2

[
fp1 + fp2

] 1
p
−1

. (D.21)

Observe that at f2 = 1
2
, irrespective of the value of f1, the partial derivative (D.21) is

∂H?

∂f2

∣∣∣∣
f2= 1

2

= − 1

2p−1

[
fp1 +

1

2p

] 1
p
−1

+
1

2p−1

[
fp1 +

1

2p

] 1
p
−1

= 0.

So, set v̂2 = 1
2
. Next, we find v̂1 such that the other derivative (D.20) is also zero at

v̂ = (v̂1, v̂2). Setting (D.20) to zero at v̂, we obtain

∂H?

∂f1

∣∣∣∣
f=v̂

= 0 = −1 + v̂p−1
1

[
v̂p1 +

1

2p

] 1
p
−1

+ v̂p−1
1

[
v̂p1 +

1

2p

] 1
p
−1

=⇒ 1 = 2v̂p−1
1

[
v̂p1 +

1

2p

] 1
p
−1
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=⇒
[
v̂p1 +

1

2p

]1− 1
p

= 2v̂p−1
1

=⇒
[
v̂p1 +

1

2p

]p−1

= 2pv̂
p(p−1)
1

=⇒ v̂p1 +
1

2p
= 2

p
p−1 v̂p1

=⇒ 1

2p
= v̂p1

(
2

p
p−1 − 1

)
∴ v̂1 =

1

2

[
1

(2
p
p−1 − 1)

] 1
p

.

Hence, ∇fH
?(f) = 0 at v̂. And since H? is convex in [0, 1]2 by Claim D.1.4, v̂ is the

minimizer in this region. �

Proof of Claim D.1.6 For any p > 1, we know

p

p− 1
> 1.

This implies that

2
p
p−1 − 1 > 1 and hence

[
1

2
p
p−1 − 1

] 1
p

< 1.

Finally, using the values from Claim D.1.5, we obtain

v̂1 < v̂2.

�

Proof of Claim D.1.7 Let z ∈ Zε(1, 1). Pick an arbitrary (f1, f2) ∈ [0, 1]2. As in the
proof of Claim D.1.3, on subtracting Equations (D.3) and (D.4), and taking an absolute
value, we obtain Equation (D.14), that is,

|Hz(f1, f2)−H?(f1, f2)| =
[(
z − f1

)p
+ fp2

] 1
p −

(
z − f1

)
. (D.22)

Combining Equation (D.22) with the fact that 0 ≤ f2 ≤ 1, we obtain

|Hz(f1, f2)−H?(f1, f2)| ≤
[(
z − f1

)p
+ 1
] 1
p −

(
z − f1

)
. (D.23)

Now, define ψ(x) = (xp + 1)
1
p − x. We show that ψ(x) is a non-increasing function for

x ≥ 0. Computing the derivative, we have

dψ(x)

dx
= xp−1 (xp + 1)

1
p
−1 − 1 =

(
xp

xp + 1

) p−1
p

− 1 ≤ 0
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for x ≥ 0, showing that it is a non-increasing function. Going back to Equation (D.23),
we know that f1 ≤ 1. Therefore,

(
z − f1

)
≥
(
z − 1

)
≥ 0. Using the fact that ψ is a

non-increasing function, we obtain ψ
(
z − f1

)
≤ ψ

(
z − 1

)
, which on expansion gives us

[(
z − f1

)p
+ 1
] 1
p −

(
z − f1

)
≤
[(
z − 1

)p
+ 1
] 1
p −

(
z − 1

)
= |Hz(1, 1)−H?(1, 1)|. (D.24)

Combining Equations (D.23) and (D.24), and the fact that z ∈ Zε(1, 1), we obtain

|Hz(f1, f2)−H?(f1, f2)| ≤ |Hz(1, 1)−H?(1, 1)| < ε.

Hence, z ∈ Zε(f1, f2). �

Proof of Claim D.1.8 The proof follows using three facts:

1. Equation (D.8) for f̂(z) says that H?(f̂(z)) < Hz(f̂(z)) + ε.

2. Because f̂(z) is the minimizer of Hz, we have Hz(f̂(z)) ≤ Hz(v̂).

3. For v̂, Equation (D.8) gives us Hz(v̂) < H?(v̂) + ε.

Putting these equations together:

H?(f̂(z)) < Hz(f̂(z)) + ε ≤ Hz(v̂) + ε < H?(v̂) + 2ε.

�

Proof of Claim D.1.9 We prove the claim by contraposition. Pick an arbitrary f ∈ [0, 1]2

such that ‖f − v̂‖2 >
∆
4

. This means that there exists g ∈ [0, 1]2 on the line joining f and v̂
such that ‖g− v̂‖2 = ∆

4
. We could alternatively write g = θf + (1− θ)v̂, where θ ∈ (0, 1).

By convexity of H?,

H?(g) ≤ θH?(f) + (1− θ)H?(v̂). (D.25)

By definition of τ in (D.9), we know H?(g) ≥ τ . Also, we know H?(v̂) < τ . Using these
in (D.25), we obtain

τ < θH?(f) + (1− θ)τ.

Therefore, we obtain H?(f) > τ . In summary, if ‖f − v̂‖2 >
∆
4

, then H?(f) > τ . Taking the
contrapositive gives us the desired result. �

D.1.2 Proof of Lemma 5.3.4

Consider L(p, q) aggregation with arbitrary q ∈ (1,∞]. We show that strategyproofness
is violated. The construction for this is as follows. Suppose there is one paper a and two
reviewers. The first reviewer gives the paper an overall recommendation of 1 and the second
reviewer gives it an overall recommendation of 0. Let xa be the (objective) criteria scores
of this paper.
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Let us first consider q ∈ (1,∞). For a function f : X → Y, all we care about in this
example is its value at xa. Hence, for simplicity, let fa denote the value of function f at
xa, i.e, fa := f(xa). Then our aggregation becomes

f̂a = argmin
fa∈R

{
|1− fa|q + |fa|q

}
.

We claim that fa = 0.5 is the unique minimizer. Observe that if fa = 0.5, then the
value of our objective is 0.5q + 0.5q < 1 when q ∈ (1,∞). On the other hand, if fa ≥ 1 or
if fa ≤ 0 then the value of our objective is at least 1. Hence fa ∈ (0, 1). By symmetry, we
can restrict attention to the range [0.5, 1) since if there is a minimizer in (0, 0.5) then there
must also be a minimizer in (0.5, 1). Consequently, we rewrite the optimization problem as

f̂a = argmin
fa∈[0.5,1)

{
(1− fa)q + f qa

}
. (D.26)

Consider the function h : [0.5, 1] → R defined by h(x) = xq. This function is strictly
convex (the second derivative is strictly positive in the domain) whenever q ∈ (1,∞).
Hence from the definition of strict convexity, we have

0.5
(
(1− fa)q + f qa

)
>
(
0.5(1− fa + fa)

)q
= 0.5q

whenever fa ∈ (0.5, 1). Consequently, the objective value of (D.26) is greater at fa ∈ (0.5, 1)

than at fa = 0.5. We conclude that f̂a = 0.5 whenever q ∈ (1,∞).
When q =∞, we equivalently write the optimization problem as

f̂a = argmin
fa∈R

max
(
|1− fa|, |fa|

)
.

This objective has a value of 0.5 if fa = 0.5 and strictly greater if fa 6= 0.5. Hence, f̂a = 0.5
for q =∞ as well.

The true overall recommendation of reviewer 1 differs from the aggregate f̂a by 0.5 (in
every L` norm). However, if reviewer 1 reported an overall recommendation of 2, then an
argument identical to that above shows that the minimizer is ĝa = 1. Reviewer 1 has thus
successfully brought down the difference between her own true overall recommendation and
the aggregate ĝa to 0. We conclude that strategyproofness is violated whenever q ∈ (1,∞].
�

D.1.3 Proof of Lemma 5.3.5

The construction showing that L(∞, 1) aggregation violates consensus is as follows. Sup-
pose there are two papers, two reviewers and both reviewers review both papers. Assume
that the papers have objective criteria scores x1 and x2, and that neither of these scores
is pointwise greater than or equal to the other. Let the overall recommendations of the
reviewers for the papers be given by the matrix

y =

[
0 1
2 1

]
,
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where yia denotes the overall recommendation of reviewer i for paper a. Since both reviewers
give the same overall recommendation of 1 to paper 2, any aggregation method that satisfies
consensus must also give paper 2 an aggregate score of 1. We show that this is not the case
under L(∞, 1) aggregation.

Let fi denote the value of function f on paper i, i.e. fi := f(xi). And let f̂i denote the
aggregate score of paper i. Since we are minimizing L(∞, 1) loss, the aggregate function
satisfies:

(f̂1, f̂2) ∈ argmin
(f1,f2)∈R2

{∥∥(0, 1)− (f1, f2)
∥∥
∞ +

∥∥(2, 1)− (f1, f2)
∥∥
∞

}
. (D.27)

We do not have any monotonicity constraints in (D.27) because the two papers have in-
comparable criteria scores. Denote the objective function of (D.27) by G(f1, f2). We can
simplify this objective to

G(f1, f2) = max(|f1|, |f2 − 1|) + max(|2− f1|, |f2 − 1|). (D.28)

We claim that (0.5, 0.5) is a minimizer of G. The objective function value at this point is

G(0.5, 0.5) = max(0.5, 0.5) + max(1.5, 0.5) = 0.5 + 1.5 = 2.

For arbitrary (f1, f2) ∈ R2, we have

G(f1, f2) = max(|f1|, |f2 − 1|) + max(|2− f1|, |f2 − 1|)
≥ |f1|+ |2− f1|
≥ 2 = G(0.5, 0.5),

where the first inequality holds because the maximum of two elements is always larger than
the first, and the second inequality holds by the triangle inequality. Therefore, (0.5, 0.5)
is a minimizer of G. The L2 norm of this minimizer is 0.5

√
2 < 1. On the other hand,

any minimizer (f̂1, f̂2) with f̂2 = 1 would have an L2 norm of at least 1. It follows that
such a minimizer will not be selected. In other words, L(∞, 1) aggregation would select a
minimizer for which the aggregate score of paper 2 is not 1, violating consensus.2 �

Complete picture of minimizers For completeness, we look at the set of all minimizers
of G. This is given by

F̂ =
{

(f1, f2) | f1 ∈ [0, 2], f2 ∈ [1−min(f1, 2− f1), 1 + min(f1, 2− f1)]
}
.

Pictorially, this set is given by the shaded square in Figure D.1. It is the square with
vertices at (0, 1), (1, 0), (2, 1) and (1, 2).

2Observe that even if we used any Lk norm with k ∈ (1,∞) for tie-breaking, the Lk norm of (0.5, 0.5)

would be 0.5 k
√

2 < 1, while the Lk norm of any minimizer (f̂1, 1) would still be at least 1, violating
consensus.
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0 1 2
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1

2

Figure D.1: The shaded region depicts the set of all minimizers of (D.27). f1 is on the
x-axis and f2 is on the y-axis.

This shows that almost all minimizers violate consensus. For the specific tie-breaking
considered, the minimizer chosen is the one with minimum L2 norm, i.e., the projection of
(0, 0) onto this square. This gives us (0.5, 0.5), violating consensus.

Observe that tie-breaking using minimum Lk norm, for k ∈ (1,∞], also chooses (0.5, 0.5)
as the aggregate function, violating consensus. For k = 1, all points on the line segment
f1 + f2 = 1 (0 ≤ f1 ≤ 1) would be tied winners, almost all of which violate consensus.
Further, even if one uses other reasonable tie-breaking schemes like maximum Lk norm,
they suffer from the same issue, i.e., there is a tied winner which violates consensus.

D.2 Additional Empirical Results

We present some more empirical results in addition to those provided in the main text.

D.2.1 Influence of Varying the Hyperparameters

Although our theoretical results identify L(1, 1) aggregation as the most desirable, we
would like to paint a broader picture by determining how much impact the choice of p and
q actually has on selected papers. To this end, we compute the overlap between the papers
selected by L(p, q) aggregation, for p, q ∈ {1, 2, 3} (although in general p and q need not
be integral, they can be real as well as ∞). Table D.1 shows the overlap between papers
selected by L(p1, q1) and L(p2, q2), where the rows represent (p1, q1) and columns represent
(p2, q2). Note that the table is symmetric. The results suggest that q has a more significant
impact than p on L(p, q) aggregation. For instance, L(1, 1) behaves more similarly to L(2, 1)
and L(3, 1) than to L(1, 2) and L(1, 3).
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1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3
1,1 100.0 87.5 82.7 96.1 88.0 82.6 92.3 87.5 82.1
1,2 87.5 100.0 94.5 88.3 94.9 93.1 87.7 94.6 92.3
1,3 82.7 94.5 100.0 84.0 92.1 95.2 83.5 91.8 94.0
2,1 96.1 88.3 84.0 100.0 89.8 84.4 95.7 89.5 84.0
2,2 88.0 94.9 92.1 89.8 100.0 94.1 89.8 98.8 93.7
2,3 82.6 93.1 95.2 84.4 94.1 100.0 84.4 94.1 98.6
3,1 92.3 87.7 83.5 95.7 89.8 84.4 100.0 89.7 84.0
3,2 87.5 94.6 91.8 89.5 98.8 94.1 89.7 100.0 93.8
3,3 82.1 92.3 94.0 84.0 93.7 98.6 84.0 93.8 100.0

Table D.1: Percentage of overlap (in selected papers) between different L(p, q) aggregation
methods

D.2.2 Visualizing the Community Aggregate Mapping

Our framework is not only useful for computing an aggregate mapping to help in acceptance
decisions, but also for understanding the preferences of the community for use in subsequent
modeling and research. We illustrate this application by providing some visualizations and
interpretations of the aggregate function f̃ obtained from L(1, 1) aggregation on the IJCAI
review data.

The function f̃ lives in a 5-dimensional space, making it hard to visualize the entire
aggregate function. Instead, we fix the values of 3 criteria at a time and plot the function in
terms of the remaining two criteria. In all of the visualization and interpretation below, the
fixed criteria are set to their respective (marginal) modes: For ‘quality of writing’ the mode
is 7 (715 reviews), for ‘originality’ it is 6 (826 reviews), for ‘relevance’ it is 8 (888 reviews),
for ‘significance’ it is 5 (800 reviews), and for ‘technical quality’ it is 6 (702 reviews). These
plots are given in Figures D.2 and D.3.

The key takeaways from this experiment are as follows. First, writing and relevance do
not have a significant influence (Figure D.2e). Really bad writing or relevance is a significant
downside, excellent writing or relevance is appreciated, but everything else in between in
irrelevant. Second, technical quality and significance exert a high influence (Figure D.2f).
Moreover, the influence is approximately linear. Third, linear models (i.e., models that are
linear in the criteria) are quite popular in machine learning, and our empirical observations
reveal that linear models are partially applicable to conference review data — for some
criteria one may indeed assume a linear model, but not for all.
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(b) Varying ‘relevance’ and ‘significance’
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(c) Varying ‘originality’ and ‘technical quality’
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(d) Varying ‘originality’ and ‘significance’

Writing

1 2 3 4 5 6 7 8 9 10
Relevance

1 2 3 4 5 6 7 8 910

Ag
gr

eg
at

e 
ov

er
al

l

2

3

4

5

6

7

(e) Varying ‘quality of writing’ and ‘relevance’
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(f) Varying ‘significance’ and ‘technical qual-
ity’

Figure D.2: Impact of varying different criteria under L(1, 1) aggregation
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(d) Varying ‘originality’ and ‘relevance’

Figure D.3: Impact of varying different criteria under L(1, 1) aggregation (continued)
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Appendix E
Omitted Proofs for Chapter 6

E.1 Appendix for Section 6.2.1

E.1.1 Proof of Lemma 6.2.1

In this proof, we also show that under the given conditions, there exists an MLE β̂ satisfying

‖β̂‖∞ ≤ −(|X | − 1) F−1
(
2−K/η

)
,

where K =
∑

(x,y)∈X 2 #{x � y} and η = min(x,y):#{x�y}>0 #{x � y}.1
Suppose the comparison graph G# is such that each of its connected components is

strongly connected. First, we show that moving any connected component (keeping all
other distances fixed) does not change the likelihood. In particular, let C be an arbitrary
connected component that does not have the reference alternative r. The likelihood function
can then be rewritten as

L(β) =
∑
x,y∈C

#{x � y} logF (βx − βy) +
∑
x,y /∈C

#{x � y} logF (βx − βy),

as there are no edges between C and its complement. For any vector β ∈ D, define β∆ ∈ D
for any ∆ ∈ R as follows

β∆
x =

{
βx + ∆ ; if x ∈ C
βx ; otherwise.

That is, β∆ is the same as β, except with utilities changed by the constant ∆ for C. The
likelihood at this point for any ∆ is

L(β∆) =
∑
x,y∈C

#{x � y} logF (βx + ∆− βy −∆) +
∑
x,y /∈C

#{x � y} logF (βx − βy) = L(β).

1That is, K denotes the total number of comparisons in the dataset, and η denotes the smallest positive
comparison number in it (or equivalently, the smallest positive weight in G#). Also note that, F−1 exists
in (0, 1) as F is strictly monotonic and continous.
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Hence, adding any ∆ to a connected component does not affect the likelihood. In particu-
lar, for any maximizer, we could set ∆ such that an alternative (of choice) in the connected
component C has zero beta value, giving us a new maximizer. And this holds for every
connected component. Hence, we just need to consider β vectors which have a reference al-
ternative in each of the connected components in order to find a maximizer. Let r1, r2, . . . , rk
denote the references we set in each of the connected components C1, C2, . . . , Ck respec-
tively (where k denotes the total number of connected components).

Define
B := −(|X | − 1)F−1

(
2−K/η

)
,

where K and η are as defined at the beginning of the proof. Consider an arbitrary beta
vector (obeying the reference alternative constraints) with ‖β‖∞ > B. Then, there exists
alternative a /∈ {r1, r2, . . . , rk} such that |βa| > B. Without loss of generality, let βa > B.
Let Ct be the connected component that a lies in, with the reference alternative rt. Consider
all alternatives in Ct whose β value lies between that of rt and a. The total number of
these alternatives (including the end points rt and a) is at most |X |. Hence, the number
of pairwise segments encountered starting from rt and ending at a is at most (|X | − 1).2

And since all these pairwise distances make up the total distance βa − βrt > B, it implies
that there exists at least one pairwise distance that is strictly larger than B/(|X |− 1). Let
(b, c) denote the ends of this pairwise segment. That is, b, c ∈ Ct such that βc − βb > B

|X |−1

and there is no alternative in Ct with a β value lying in the segment (βb, βc). Let U denote
the set of alternatives of Ct that lie to the left of b, i.e., U = {x ∈ Ct|βx ≤ βb}, and V be
the set of alternatives of Ct that lie to the right of c, i.e., V = {x ∈ Ct|βx ≥ βc}. Since
no alternative in Ct lies in between b and c, (U ,V) is a partition of Ct. Next, as every
connected component is strongly connected, Ct is also strongly connected. Hence, there
has to be at least one edge going from U to V (otherwise, there would be no paths from
alternatives in U to alternatives in V breaking strongly connectedness). Let this edge be
given by (u, v) ∈ U × V . This implies that βu ≤ βb, βv ≥ βc and #{u � v} > 0. Hence, we
have

βv − βu ≥ βc − βb >
B

|X | − 1
.

The log-likelihood can be rewritten as

L(β) = #{u � v} logF (βu − βv) +
∑

(x,y)6=(u,v)

#{x � y} logF (βx − βy)

≤ #{u � v} logF (βu − βv)

< #{u � v} logF

(
− B

|X | − 1

)
, (E.1)

where the first inequality holds because #{x � y} ≥ 0 and logF (βx − βy) ≤ 0 (as F (·) ≤
1), and the second inequality holds because #{u � v} > 0, βu − βv < − B

|X |−1
and logF is

2assuming all alternatives of Ct are placed on the real line according to their β values.
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strictly increasing. Next, consider the log-likelihood of the zero vector. We have,

L(0) =
∑
x 6=y

#{x � y} logF (0) = K logF (0),

as K is the total number of comparisons in the dataset. Recall the definition of B, we have,

B = −(|X | − 1)F−1
(
2−K/η

)
=⇒ logF

(
− B

|X | − 1

)
=
K

η
log

(
1

2

)
.

Combining this with Equation (E.1), we have

L(β) < #{u � v} logF

(
− B

|X | − 1

)
= #{u � v}K

η
log

(
1

2

)
≤ K log

(
1

2

)
= K logF (0) = L(0),

where the inequality holds because η = min(x,y):#{x�y}>0 #{x � y} ≤ #{u � v} and
log (1/2) < 0, and the next equality holds as F (0) = 1/2. Hence, this shows that L(β) <
L(0) for any β with ‖β‖∞ > B. In other words, such a β vector cannot be a maximizer of
L. Therefore, to maximize L(β) we just need to consider β vectors in [−B,B]|X |−k. And
since this is a closed space, a maximizer always exists. Further, this maximizer satisfies
‖β̂‖∞ ≤ B.

Next, to prove the converse of the theorem statement, suppose there exists a connected
component of G# that is not strongly connected. Denote this connected component by C.
Consider all the strongly connected components of C; they form a DAG (as the conden-
sation of a graph is always acyclic). Hence, there exists a strongly connected component
in this DAG that has no incoming edge (from the rest of C). Let this strongly connected
component be denoted by S. Further, as C itself is a connected component, this implies
that there exists at least one edge going from S to C \S. Putting all this together, we have
strongly connected component S such that there is no (incoming) edge from X \ S to S,
and there is at least one (outgoing) edge from S to X \ S. Now, suppose for the sake of
contradiction that L(β) has a maximizer. And, let β̂ denote an MLE. The log-likelihood
can be written as

L(β) =
∑
x,y∈S

#{x � y} logF (βx − βy) +
∑

x∈S,y/∈S
#{x � y} logF (βx − βy)

+
∑
x,y /∈S

#{x � y} logF (βx − βy).

Consider another beta vector β̃ ∈ D that is the same as β̂ except that it has beta values
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increased by a constant for alternatives in S.3 For instance,

β̃x =

{
β̂x + 1 ; if x ∈ S
β̂x ; otherwise.

The likelihood at this point is

L(β̃) =
∑
x,y∈S

#{x � y} logF (β̂x + 1− β̂y − 1) +
∑

x∈S,y/∈S
#{x � y} logF (β̂x − β̂y + 1)

+
∑
x,y /∈S

#{x � y} logF (β̂x − β̂y)

>
∑
x,y∈S

#{x � y} logF (β̂x − β̂y) +
∑

x∈S,y/∈S
#{x � y} logF (β̂x − β̂y)

+
∑
x,y /∈S

#{x � y} logF (β̂x − β̂y)

= L(β̂),

where the inequality holds because #{x � y} ≥ 0, logF (β̂x − β̂y + 1) > logF (β̂x − β̂y) for
all (x, y) ∈ S×SC as logF is strictly increasing, and there exists at least one (x, y) ∈ S×SC
with #{x � y} > 0 (because of the presence of the outgoing edge from S to SC). This
leads to a contradiction as β̃ has strictly higher likelihood than the MLE β̂. Therefore, an
MLE does not exist.

E.1.2 Proof of Lemma 6.2.2

Let a be an alternative such that there is exactly one other alternative b for which #{a �
b}+ #{b � a} > 0. The log-likelihood function is

L(β) =
∑
(x,y)

#{x � y} logF (βx − βy)

=

 ∑
(x,y)

x 6=a,y 6=a

#{x � y} logF (βx − βy)

+ #{a � b} logF (βa − βb) + #{b � a} logF (βy − βx)

= G(β−a) + #{a � b} logF (βa − βb) + #{b � a} logF (βb − βa),

where G is the part of the likelihood function not containing βa. Maximizing L(β) is
equivalent to first maximizing with respect to βa and then with respect to the rest, β−a.4

3In the case when S has the reference alternative r, the exact effect can be achieved by instead decreasing
the beta values of all alternatives in X \ S by the same constant.

4In the case when a was set as the reference, we could always perform this optimization by placing
the reference on some other alternative, and then shifting the complete learned vector back such that a is
the reference again. Observe that this does not affect the learned distance of (β̂a − β̂b), for which we are
proving the desired property.
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Hence, we maximize

#{a � b} logF (βa − βb) + #{b � a} logF (βb − βa) (E.2)

with respect to βa.

Claim E.1.1 (Coin flip likelihood). For h, t > 0 and p ∈ (0, 1), the function f(p) =
h · log(p) + t · log(1− p) is strictly concave with the maximum uniquely attained at

p̂ =
h

h+ t

Proof. f ′(p) = h
p
− t

1−p , and f ′′(p) = − h
p2 − t

(1−p)2 . Hence, f ′′(p) < 0 for all p ∈ (0, 1)

making f a strictly concave function. Further, f ′(p̂) = 0. Hence, p̂ as defined in the claim
is the point where the maximum is attained.

Equation (E.2) can be rewritten as

#{a � b} logF (βa − βb) + #{b � a} logF (βb − βa) = f(F (βa − βb)),

where f is the function from Claim E.1.1 with h = #{a � b} > 0 and t = #{b � a} > 0,
as F (βb − βa) = 1− F (βa − βb). Applying Claim E.1.1, we have

f(F (βa − βb)) ≤ f(p̂),

for all βa, βb, where p̂ = #{a�b}
#{a�b}+#{b�a} . Further, this upper bound can be achieved by

setting F (βa − βb) = p̂, which is possible as F is invertible in (0, 1) by strict monotonicty
and continuity. Therefore, Equation (E.2) is uniquely maximized at βa = βb+F−1(p̂). And
hence, every MLE satisfies

β̂a = β̂b + F−1

(
#{a � b}

#{a � b}+ #{b � a}

)
= β̂b + δ(a, b).

E.1.3 Proof of Lemma 6.2.3

The initial part of this proof is similar to the proof of Lemma 6.2.1. Let B denote the bound
|X | · max(x,y) δ(x, y). And, recall that r denotes the alternative set as the reference, i.e.

βr = 0. Suppose for the sake of contradiction that there exists an MLE β̂ with ‖β̂‖∞ > B.
This implies that there exists an alternative a such that |β̂a| > B. WLOG, suppose β̂a > B.
The number of alternatives whose β value lies between that of a and the reference r
(including both these points) is at most |X |. Hence, the number of pairwise segments
encountered starting from r and ending at a is at most (|X | − 1).5 And since all these
pairwise distances make up the total distance β̂a − β̂r > B, it implies that there exists at
least one pairwise distance that is strictly larger than B/(|X | − 1). Let (b, c) denote the

5assuming all the alternatives are placed on the real line according to their β values.
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ends of this pairwise segment. That is, β̂c − β̂b > B
|X |−1

, and there is no alternative with

a β value lying in the segment (β̂b, β̂c). Construct a new beta vector β̃ ∈ D, such that β̃
is the same as β̂ for alternatives to the left of alternative b, while is decreased by a small
positive constant ε for all the other alternatives. That is,

β̃x =

{
β̂x ; if β̂x ≤ β̂b

β̂x − ε ; if β̂x ≥ β̂c.

In particular, choose ε such that the distance between b and c is still bigger than
max(x,y) δ(x, y). This is possible because the original distance between b and c (i.e. β̂c− β̂b)
is strictly larger than B

|X |−1
= |X |
|X |−1

max(x,y) δ(x, y). Hence, one can choose ε > 0 such that

the new distance between b and c (i.e. β̃c− β̃b) is say the mid point of |X |
|X |−1

max(x,y) δ(x, y)

and max(x,y) δ(x, y). This would imply that we have

β̃c − β̃b > max
(x,y)

δ(x, y). (E.3)

Next, we show that in fact, L(β̃) > L(β̂). The log-likelihood function is given as

L(β) =
∑

(x,y)∈X 2

#{x � y} logF (βx − βy)

=
∑
{x,y}⊆X

[
#{x � y} logF (βx − βy) + #{y � x} logF (βy − βx)

]
=

∑
{x,y}⊆X

fxy(F (βx − βy)),

where fxy is the function from Claim E.1.1 with h = #{x � y} > 0 and t = #{y � x} > 0.
Hence, from the claim, this function fxy is strictly concave with a maximum attained at

p̂xy = #{x�y}
#{x�y}+#{y�x} . Let’s call U as the set of alternatives x with β̂x ≤ β̂b (i.e. the

alternatives with β value unchanged), and V as the set of alternatives x with β̂x ≥ β̂c (i.e.
the alternatives whose β value is decreased by ε). Observe that neither of these sets in
empty, and they partition X . Therefore, the log-likelihood at β̃ is

L(β̃) =
∑
{x,y}⊆X

fxy

(
F (β̃x − β̃y)

)
=

∑
{x,y}⊆U

fxy

(
F (β̃x − β̃y)

)
+

∑
{x,y}⊆V

fxy

(
F (β̃x − β̃y)

)
+

∑
(v,u)∈V×U

fvu

(
F (β̃v − β̃u)

)
.

Note that, for x, y ∈ U , the distance (β̃x − β̃y) is the same as (β̂x − β̂y) as the β values are

unchanged. In the case of x, y ∈ V , again the distance (β̃x− β̃y) is the same as (β̂x− β̂y) as
both β values (of x and y) are decreased by the same ε. Finally, for any pair (v, u) ∈ V×U ,

we have β̃v−β̃u = β̂v−β̂u−ε, i.e. this pairwise distance decreases by ε. Hence, the likelihood
at β̃ becomes

L(β̃) =
∑

{x,y}⊆U
fxy

(
F (β̂x − β̂y)

)
+

∑
{x,y}⊆V

fxy

(
F (β̂x − β̂y)

)
+

∑
(v,u)∈V×U

fvu

(
F (β̂v − β̂u − ε)

)
.
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Let’s look at the terms fvu

(
F (β̂v − β̂u − ε)

)
for (v, u) ∈ V × U . We have

β̂v − β̂u > β̂v − β̂u − ε = β̃v − β̃u ≥ β̃c − β̃b > max
(x,y)

δ(x, y) ≥ δ(v, u),

where the second inequality holds because v ∈ V is to the right of c while u ∈ U is to
the left of b, and the third inequality holds from Equation (E.3). Rewriting this equation
keeping only the main components, we have

β̂v − β̂u > β̃v − β̃u > δ(v, u).

As F is a strictly increasing function, applying it to this equation gives us

F (β̂v − β̂u) > F (β̃v − β̃u) > F (δ(v, u)) = p̂vu,

where the equality holds by definition of the perfect-fit distance and p̂vu. Hence, by changing
from F (β̂v − β̂u) to F (β̃v − β̃u), we move closer to the maxima of fvu (or alternatively,
F (β̃v − β̃u) is a convex combination of F (β̂v − β̂u) and the maxima p̂vu). But, as fvu is
strictly concave, it means that this change leads to an increase in its value. That is,

fvu

(
F (β̂v − β̂u)

)
< fvu

(
F (β̃v − β̃u)

)
,

and this holds for every (v, u) ∈ V × U . Hence, the log-likelihood at β̃ becomes

L(β̃) =
∑
{x,y}⊆U

fxy

(
F (β̂x − β̂y)

)
+

∑
{x,y}⊆V

fxy

(
F (β̂x − β̂y)

)
+

∑
(v,u)∈V×U

fvu

(
F (β̃v − β̃u)

)
>

∑
{x,y}⊆U

fxy

(
F (β̂x − β̂y)

)
+

∑
{x,y}⊆V

fxy

(
F (β̂x − β̂y)

)
+

∑
(v,u)∈V×U

fvu

(
F
(
β̂v − β̂u

))
= L(β̂).

That is, L(β̃) > L(β̂), leading to a contradiction. Hence, for every MLE β̂, we must have
‖β̂‖∞ ≤ |X | ·max(x,y) δ(x, y).

E.2 Proof of Lemma 6.2.4

The log-likelihood function is given as

L(β) =
∑

(x,y)∈X 2

#{x � y} logF (βx − βy).

Consider β 6= γ ∈ D and θ ∈ (0, 1). Then,

L(θβ + (1− θ)γ) =
∑
(x,y)

#{x � y} logF (θβx + (1− θ)γx − θβy − (1− θ)γy)
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=
∑
(x,y)

#{x � y} logF (θ(βx − βy) + (1− θ)(γx − γy))

≥
∑
(x,y)

#{x � y}
[
θ logF (βx − βy) + (1− θ) logF (γx − γy)

]
= θ

∑
(x,y)

#{x � y} logF (βx − βy) + (1− θ)
∑
(x,y)

#{x � y} logF (γx − γy)

= θL(β) + (1− θ)L(γ),

where the inequality holds because logF is concave, and #{x � y} ≥ 0 for every (x, y) ∈
X 2. Hence, L is a concave function.

Next, suppose the comparison graph G# is connected. Recall, r denotes the reference
alternative set to zero. As β 6= γ, this implies that there exists an alternative a 6= r such
that βa 6= γa. We know that the graph G# is connected, hence, there exists an undirected
path from a to r in G#. Let this (undirected) path be given as

a = v0 → v1 → v2 → · · · → vt → vt+1 = r.

As βa−βr 6= γa−γr, this implies that there exists (l, l+1) such that βvl−βvl+1
6= γvl−γvl+1

.
Because if this difference was equal for all l ∈ [0, t], it would imply that βa − βr = γa − γr.
As there’s an edge between vl and vl+1, it implies that either #{vl � vl+1} > 0 or #{vl+1 �
vl} > 0. Without loss of generality, let #{vl � vl+1} > 0. The log-likelihood is then

L(θβ + (1− θ)γ) = #{vl � vl+1} logF (θ(βvl − βvl+1
) + (1− θ)(γvl − γvl+1

))

+
∑

(x,y) 6=(vl,vl+1)

#{x � y} logF (θ(βx − βy) + (1− θ)(γx − γy))

> #{vl � vl+1}
[
θ logF (βvl − βvl+1

) + (1− θ) logF (γvl − γvl+1
)
]

+
∑

(x,y) 6=(vl,vl+1)

#{x � y} [θ logF (βx − βy) + (1− θ) logF (γx − γy)]

= θL(β) + (1− θ)L(γ)

where the strict inequality holds because #{vl � vl+1} > 0, θ ∈ (0, 1), βvl−βvl+1
6= γvl−γvl+1

and logF is strictly concave. Therefore, L is strictly concave, and, it has unique maximizers.
For the converse, suppose the comparison graph G# is not connected (in the undirected

form). As there is only one reference alternative r, let C be a connected component that
does not contain r. The log-likelihood can then be rewritten as

L(β) =
∑
x,y∈C

#{x � y} logF (βx − βy) +
∑
x,y /∈C

#{x � y} logF (βx − βy),

as there are no edges between C and its complement. Similar to proof of Lemma 6.2.1, for
any vector β ∈ D, define β∆ ∈ D for any ∆ > 0 as follows

β∆
z =

{
βz + ∆ ; if z ∈ C
βz ; if z /∈ C.
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The likelihood at this point for any ∆ is

L(β∆) =
∑
x,y∈C

#{x � y} logF (βx + ∆− βy −∆) +
∑
x,y /∈C

#{x � y} logF (βx − βy) = L(β).

(E.4)

Consider any θ ∈ (0, 1). Then,

(θβ∆ + (1− θ)β)z =

{
θ(βz + ∆) + (1− θ)βz = βz + θ∆ ; if z ∈ C
θβz + (1− θ)βz = βz ; if z /∈ C,

and hence implying that θβ∆ + (1− θ)β = βθ∆. In particular, this gives us

L(θβ∆ + (1− θ)β) = L(βθ∆) = L(β) = θL(β∆) + (1− θ)L(β),

where the second equality holds because Equation (E.4) holds for any ∆ > 0 (including
θ∆). But, as β∆ 6= β and θ ∈ (0, 1), this implies that L is not strictly concave. Note that,
this also shows that if an MLE β̂ existed, it would not be unique. As, β̂∆, with say ∆ = 1,
would have the same likelihood as β̂ making it an MLE as well.

Hence, concluding the proof that L(β) is strictly concave and the MLE is unique, iff
the comparison graph G# is connected.

E.3 Proof of Theorem 6.3.2

Suppose the dataset is such that it satisfies the properties given in Definition 6.3.1, i.e.,
#{a � b} > #{b � a}, and for every other alternative x ∈ X \ {a, b}, we have

#{a � x} > #{b � x} and #{x � a} < #{x � b}.

Suppose for the sake of contradiction that there exists an MLE β̂ such that β̂a < β̂b.
Construct β̃ such that it is the same as β̂, except with a’s and b’s utilities swapped.6 That
is,

β̃x =


β̂x; if x /∈ {a, b}
β̂b; if x = a

β̂a; if x = b.

The log-likelihood at the MLE β̂ is given as

L(β) =
∑

(x,y)∈X 2

#{x � y} logF (βx − βy)

=
∑

x,y /∈{a,b}
#{x � y} logF (β̂x − β̂y)

6In case either a or b is the reference alternative, shift β̃ after swapping these two alternatives’ utilities
such that the reference is restored. Rest of the proof remains the same as the shifted beta vector has the
same likelihood as the unshifted one.
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+
∑

y/∈{a,b}
#{a � y} logF (β̂a − β̂y) +

∑
y/∈{a,b}

#{b � y} logF (β̂b − β̂y)

+
∑

x/∈{a,b}
#{x � a} logF (β̂x − β̂a) +

∑
x/∈{a,b}

#{x � b} logF (β̂x − β̂b)

+ #{a � b} logF (β̂a − β̂b) + #{b � a} logF (β̂b − β̂a). (E.5)

Before proceeding with the proof, we prove a simple claim.

Claim E.3.1. Let c, d, e, f > 0 such that c > d and e > f . Then ce+ df > cf + de.

Proof of Claim E.3.1.

ce+ df = c(f + (e− f)) + df

= cf + c(e− f) + df

> cf + d(e− f) + df

= cf + de,

where the inequality holds because c > d and (e− f) > 0.

By Claim E.3.1, for any x, y ∈ X , we have,

#{a � y} logF (β̂a − β̂y) + #{b � y} logF (β̂b − β̂y)
< #{a � y} logF (β̂b − β̂y) + #{b � y} logF (β̂a − β̂y),

#{x � a} logF (β̂x − β̂a) + #{x � b} logF (β̂x − β̂b)
< #{x � b} logF (β̂x − β̂a) + #{x � a} logF (β̂x − β̂b),

#{a � b} logF (β̂a − β̂b) + #{b � a} logF (β̂b − β̂a)
< #{a � b} logF (β̂b − β̂a) + #{b � a} logF (β̂a − β̂b),

using the property on the counts in the dataset, the fact that β̂a < β̂b and F is strictly
monotonic. Hence, using these expressions in Equation (E.5), we obtain

L(β̂) <
∑

x,y /∈{a,b}
#{x � y} logF (β̂x − β̂y)

+
∑

y/∈{a,b}
#{a � y} logF (β̂b − β̂y) +

∑
y/∈{a,b}

#{b � y} logF (β̂a − β̂y)

+
∑

x/∈{a,b}
#{x � b} logF (β̂x − β̂a) +

∑
x/∈{a,b}

#{x � a} logF (β̂x − β̂b)

+ #{a � b} logF (β̂b − β̂a) + #{b � a} logF (β̂a − β̂b)

=
∑

x,y /∈{a,b}
#{x � y} logF (β̃x − β̃y)

+
∑

y/∈{a,b}
#{a � y} logF (β̃a − β̃y) +

∑
y/∈{a,b}

#{b � y} logF (β̃b − β̃y)

186



+
∑

x/∈{a,b}
#{x � b} logF (β̃x − β̃b) +

∑
x/∈{a,b}

#{x � a} logF (β̃x − β̃a)

+ #{a � b} logF (β̃a − β̃b) + #{b � a} logF (β̃b − β̃a)

=
∑
x6=y

#{x � y} logF (β̃x − β̃y)

= L(β̃),

implying that β̃ has a strictly higher log-likelihood than the MLE β̂, leading to a contra-
diction. Therefore, every every MLE β̂ must satisfy β̂a ≥ β̂b under this condition.

E.4 Proof of Theorem 6.4.2

Let # and #̃ be two datasets as defined in Definition 6.4.1, with (unique) MLEs β̂ and
β̃. That is, #̃ is the same as #, except with α > 0 comparisons of a � b added to it. We
prove that for all alternatives x ∈ X , we have

β̃a − β̃x ≥ β̂a − β̃x.

The proof for the b part (β̃b − β̃x ≤ β̂b − β̃x) is completely symmetric.
Let the log-likelihood function with respect to # be denoted by L, while the log-

likelihood function with respect to #̃ be denoted by L̃. Any alternative could be set as the
reference, but we use a as the reference alternative in this proof for ease of exposition. As
#̃ is the same as #, except with α additional a � b comparisons, we have

L̃(β) = L(β) + α logF (βa − βb).

Let U denote the set of alternatives u ∈ X \ {a} for which β̃u − β̃a ≤ β̂u − β̂a.7 And, let V
denote the set of alternatives v ∈ X \ {a} for which β̃v − β̃a > β̂v − β̂a. Our goal is to show
that U = X \ {a}, or equivalently that V = φ.

First, we show that b ∈ U . Suppose for the sake of contradiction, that β̃b− β̃a > β̂b− β̂a.
Then, this implies that α logF (β̃a − β̃b) < α logF (β̂a − β̂b) as both log and F are strictly
monotonic, and α > 0. Further, as β̂ maximizes L, we have L(β̃) ≤ L(β̂). This implies
that L(β̃) + α logF (β̃a − β̃b) < L(β̂) + α logF (β̂a − β̂b). Or, L̃(β̃) < L̃(β̂), which is a
contradiction as β̃ is the maximizer of L̃. This proves that β̃b − β̃a ≤ β̂b − β̂a, i.e. b ∈ U .

Next, suppose for the sake of contradiction that V 6= φ. We can rewrite the log-likelihood
function L(β) as

L(β) =
∑

(x,y)∈X 2

#{x � y} logF (βx − βy)

=
∑
{x,y}⊆X

[
#{x � y} logF (βx − βy) + #{y � x} logF (βy − βx)

]
,

7Even though β̃a = β̂a = 0 as a is the reference, we do not omit it in some parts for better clarity.

187



where the latter summation is over unordered pairs of alternatives {x, y} with x 6= y.
Denote each term in this expression by `xy(βx − βy), i.e.

`xy(η) = #{x � y} logF (η) + #{y � x} logF (−η).

As F is log-concave, logF is a concave function. And since linear transformations, positive
scalar multiplication and addition preserve concavity, each of these functions `xy is also
concave.

Let us define operator ∆xy to be such that when it is applied to a β vector, it returns
the difference in β values of alternatives x and y. That is, ∆xyβ := βx − βy. Using this
notation to rewrite the log-likelihood function, we have

L(β) =
∑
{x,y}

`xy(∆xyβ)

=
∑
u∈U

`ua(∆uaβ) +
∑
v∈V

`va(∆vaβ) +
∑
{u,p}⊆U

`up(∆upβ)

+
∑
{v,q}⊆V

`vq(∆vqβ) +
∑

(u,v)∈U×V
`vu(∆vuβ),

where the first two terms are the paired terms with a, the third is pairs within U , the
fourth is pairs within V , and the last is for pairs across U and V . For each v ∈ V , we know
β̃v − β̃a > β̂v − β̂a. Hence, we can write ∆vaβ̃ = ∆vaβ̂ + δv,

8 where δv > 0 for each v ∈ V .
Recall, β̂ is the maximizer of L. Hence, L(β̂U , β̃V) < L(β̂U , β̂V),9 as the MLE β̂ is unique,
and V 6= φ. This implies that∑

u∈U
`ua(∆uaβ̂) +

∑
v∈V

`va(∆vaβ̃) +
∑

{u,p}⊆U

`up(∆upβ̂) +
∑

{v,q}⊆V

`vq(∆vqβ̃) +
∑

(u,v)∈U×V

`vu(β̃v − β̂u)

<
∑
u∈U

`ua(∆uaβ̂) +
∑
v∈V

`va(∆vaβ̂) +
∑

{u,p}⊆U

`up(∆upβ̂) +
∑

{v,q}⊆V

`vq(∆vqβ̂) +
∑

(u,v)∈U×V

`vu(β̂v − β̂u).

Cancelling terms that appear on both sides (because of the same β̂U), and plugging in
∆vaβ̃ = ∆vaβ̂ + δv, we have∑

v∈V
`va(∆vaβ̂ + δv) +

∑
{v,q}⊆V

`vq(∆vqβ̂ + δv − δq) +
∑

(u,v)∈U×V
`vu(∆vuβ̂ + δv)

<
∑
v∈V

`va(∆vaβ̂) +
∑
{v,q}⊆V

`vq(∆vqβ̂) +
∑

(u,v)∈U×V
`vu(∆vuβ̂).

Or in other words,∑
(u,v)∈U×V

`vu(∆vuβ̂ + δv)−
∑

(u,v)∈U×V

`vu(∆vuβ̂) (E.6)

< −

∑
v∈V

`va(∆vaβ̂ + δv) +
∑

{v,q}⊆V

`vq(∆vqβ̂ + δv − δq)−
∑
v∈V

`va(∆vaβ̂)−
∑

{v,q}⊆V

`vq(∆vqβ̂)

 .
8Equivalently, this could be written as β̃v = β̂v + δv, as β̃a = β̂a = 0.
9Recall that alternative a has been set as the reference, and hence it zero in both these terms.
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Intuitively, it says that if you increase each β̂v by their δv, the increase in likelihood because
of the cross terms `vu is less than the loss because of the exclusive v terms (or vice versa,
i.e. the loss in likelihood because of `vu is higher than the increase because of the exclusive
v terms).

For each u ∈ U , we know β̃u− β̃a ≤ β̂u− β̂a. Hence, we can write ∆uaβ̃ = ∆uaβ̂ − λu,10

where λu ≥ 0 for each u ∈ U . We now compare L̃(β̃U , β̃V) and L̃(β̃U , β̂V).11 In other words,
we compare∑

u∈U
`ua(∆uaβ̃) +

∑
v∈V

`va(∆vaβ̃) +
∑
{u,p}⊆U

`up(∆upβ̃)

+
∑
{v,q}⊆V

`vq(∆vqβ̃) +
∑

(u,v)∈U×V
`vu(∆vuβ̃) + α logF (∆abβ̃)

vs∑
u∈U

`ua(∆uaβ̃) +
∑
v∈V

`va(∆vaβ̂) +
∑
{u,p}⊆U

`up(∆upβ̃)

+
∑
{v,q}⊆V

`vq(∆vqβ̂) +
∑

(u,v)∈U×V
`vu(β̂v − β̃u) + α logF (∆abβ̃).

Note that the last term α logF (∆abβ) appears with a β̃ in both the equations because we
know b ∈ U . Cancelling terms that appear on both sides (because of the same β̃U), and
plugging in ∆vaβ̃ = ∆vaβ̂ + δv for v ∈ V , as well as ∆uaβ̃ = ∆uaβ̂ − λu for u ∈ U , we are
comparing∑

v∈V
`va(∆vaβ̂ + δv) +

∑
{v,q}⊆V

`vq(∆vqβ̂ + δv − δq) +
∑

(u,v)∈U×V
`vu(∆vuβ̂ + λu + δv)

vs∑
v∈V

`va(∆vaβ̂) +
∑
{v,q}⊆V

`vq(∆vqβ̂) +
∑

(u,v)∈U×V
`vu(∆vuβ̂ + λu).

And, rearranging this, we compare∑
(u,v)∈U×V

`vu(∆vuβ̂ + λu + δv)−
∑

(u,v)∈U×V
`vu(∆vuβ̂ + λu)

vs (E.7)

−

[∑
v∈V

`va(∆vaβ̂ + δv) +
∑
{v,q}⊆V

`vq(∆vqβ̂ + δv − δq)−
∑
v∈V

`va(∆vaβ̂)−
∑
{v,q}⊆V

`vq(∆vqβ̂)

]
.

If λu were zero, we know that the left hand side (i.e. the equation placed above in (E.7))
is smaller (than the one placed below) because of equation (E.6). But, we now show that

10Equivalently, this could be written as β̃u = β̂u − λu, as β̃a = β̂a = 0.
11That is, we are again keeping the U part fixed, while changing the V part from β̃V to β̂V .
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this holds even for λu ≥ 0 by concavity of the functions `vu. For each (u, v) ∈ U × V , we
can write

`vu(∆vuβ̂ + λu + δv)− `vu(∆vuβ̂ + λu) =

∫ ∆vuβ̂+λu+δv

∆vuβ̂+λu

`′vu(t)dt,

where `′vu is the derivative of `vu.
12 Changing the variable of intergration,

`vu(∆vuβ̂ + λu + δv)− `vu(∆vuβ̂ + λu) =

∫ ∆vuβ̂+δv

∆vuβ̂

`′vu(s+ λu)ds.

But, we know that `vu is a concave function, implying that `′vu is monotonically decreasing.
Hence, `′vu(s+ λu) ≤ `′vu(s) for every s, as λu ≥ 0. This gives us

`vu(∆vuβ̂ + λu + δv)− `vu(∆vuβ̂ + λu) =

∫ ∆vuβ̂+δv

∆vuβ̂

`′vu(s+ λu)ds

≤
∫ ∆vuβ̂+δv

∆vuβ̂

`′vu(s)ds

= `vu(∆vuβ̂ + δv)− `vu(∆vuβ̂).

Taking a summation of the left hand side over all (u, v) ∈ U ×V , shows that this sum-
mation is less than or equal to the left hand side of Equation (E.6). Hence, this summation
is strictly smaller than the right hand side of Equation (E.6) (because of Equation (E.6)
itself). This in turn implies that the equation placed above in (E.7) is strictly smaller than
the one placed below. In other words, L̃(β̃) < L̃(β̃U , β̂V), contradicting the fact that β̃ is the
maximizer of L̃. Hence, V = φ. In other words, for each x ∈ X \{a}, β̃x− β̃a ≤ β̂x− β̂a.

E.5 Proof of Theorem 6.5.3

Consider X = {a, b, c}, and let the dataset be as follows. #{a � b} = 5 + ε,#{b � a} =
5,#{a � c} = 5+ε,#{c � a} = 5,#{b � c} = 100 and #{c � b} = 1. Here, ε is a constant
lying in [0, 1]. Observe that for any ε > 0, this dataset conforms to Definition 6.5.1 if we
label x1, x2, x3 = a, b, c. To show violation of PMC, we show that there exists εo ∈ (0, 1]
for which the (unique) MLE β̂ violates the corresponding requirement of β̂a ≥ β̂b ≥ β̂c.

The log-likelihood function for this data is given by

Lε(β) = (5 + ε) logF (βa − βb) + 5 logF (βb − βa) + 100 logF (βb − βc) + logF (βc − βb)
+ (5 + ε) logF (βa − βc) + 5 logF (βc − βa).

Observe that every alternative has been compared with every other alternative, and hence,
the comparison graph G# is strongly connected. Further, as F is strictly monotonic, con-
tinuous and strictly log-concave, the MLE exists and is unique for any ε ∈ [0, 1] (by Lem-
mas 6.2.1 and 6.2.4). Further, the log-likelihood Lε(β) is a strictly concave function (for each

12which exists, as F is differentiable.
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ε ∈ [0, 1]). Any alternative could be set as the reference, but we use c as the reference alter-
native in this proof for ease of exposition. That is, our domain is D = {β ∈ RX : βc = 0}.
The (unique) maximum likelihood estimator is given by

β̂(ε) = argmax
β∈D

Lε(β).

We first show that β̂(ε) is a continuous function of ε. As F is strictly monotonic and
continuous, for each ε ∈ [0, 1], Lemma 6.2.3 tells us that the MLE is bounded as

‖β̂(ε)‖∞ ≤ |X | · max
(x,y)∈X 2

δε(x, y),

where δε is the perfect-fit distance, but is now dependent on ε. For the dataset at hand,
these perfect-fit distances are given by

δε(a, b) = F−1

(
5 + ε

10 + ε

)
, δε(b, c) = F−1

(
100

101

)
and δε(a, c) = F−1

(
5 + ε

10 + ε

)
.

And, δε(b, a) = −δε(a, b), δε(c, b) = −δε(b, c) and δε(c, a) = −δε(a, c), as F−1(1 − x) =
−F−1(x). Further, the first three distances are non-negative (making the remaining three
non-positive) as F−1(x) ≥ 0 for x ≥ 1

2
. Hence, the bound on the MLE simplifies to

‖β̂(ε)‖∞ ≤ 3 ·max

(
F−1

(
5 + ε

10 + ε

)
, F−1

(
100

101

))
.

As F is strictly monotonic, it implies that F−1 is also strictly increasing. Applying this,
we have

F−1

(
5 + ε

10 + ε

)
≤ F−1

(
6

11

)
< F−1

(
100

101

)
,

as ε ∈ [0, 1]. Therefore, the bound on the MLE further simplifies to

‖β̂(ε)‖∞ ≤ 3 F−1

(
100

101

)
,

for any ε ∈ [0, 1]. Hence, the MLE optimization problem can be rewritten as

β̂(ε) = argmax
β∈D:‖β‖∞≤3 F−1( 100

101)
Lε(β).

This shows that we are optimizing over a compact space. Hence, by the Theorem of the
Maximum [Ber63; JR11], both the maximum likelihood and the corresponding maximizer
β̂(ε) are continuous in the parameter ε, for all ε ∈ [0, 1].

Next, we analyze the MLE at ε = 0. The log-likelihood function for this value of ε is

L0(β) = 5 logF (βa − βb) + 5 logF (βb − βa) + 100 logF (βb − βc) + logF (βc − βb)
+ 5 logF (βa − βc) + 5 logF (βc − βa). (E.8)
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For ease of exposition, we use β† to denote the MLE when ε = 0, i.e.

β† := β̂(0) = argmax
β∈D

L0(β).

Recall that we used c as the reference alternative, and hence, β†c = 0. Our goal is to show
that β†b > β†a > β†c . To this end, we first show that β†a = β†b/2, i.e. in terms of β values,

a lies at the mid-point of b and c. Suppose for the sake of contradiction that β†a 6= β†b/2.
Consider another vector β̃ ∈ D that is the same as β†, except with the distances between
β values of b & a and a & c swapped. This can be achieved by setting

β̃x =

{
β†x ; if x ∈ {b, c}
β†b − β†a ; if x = a.

Then, we have β̃a − β̃c = β†b − β†a and β̃b − β̃a = β†a − β†c . Hence, the log-likelihood at this
point is given by

L0(β̃) = 5 logF (β̃a − β̃b) + 5 logF (β̃b − β̃a) + 100 logF (β̃b − β̃c) + logF (β̃c − β̃b)
+ 5 logF (β̃a − β̃c) + 5 logF (β̃c − β̃a)

= 5 logF (β†c − β†a) + 5 logF (β†a − β†c) + 100 logF (β†b − β
†
c) + logF (β†c − β

†
b)

+ 5 logF (β†b − β
†
a) + 5 logF (β†a − β

†
b)

= L0(β†).

That is, swapping these distances does not change the likelihood, because of symmetry.
Now, consider a new vector β̄ = (β† + β̃)/2. Note that, as β†a 6= β†b/2, it implies that

β†a 6= β†b − β†a = β̃a. In other words, β̃ 6= β†. Therefore, applying strict concavity of L0, we
have

L0(β̄) = L0

(
β† + β̃

2

)
>
L0(β†) + L0(β̃)

2
= L0(β†),

which is a contradiction as β† is the maximizer of L0. This proves that β†a = β†b/2. In other

words, β† is of the form (β†b/2, β
†
b , 0). Hence, β† continues to be the maximizer of L0 among

the vectors A = {(α/2, α, 0) : α ∈ R} ⊆ D. Rewriting the log-likelihood (E.8) for vectors
in A, we have

L0((α/2, α, 0)) = 5 logF
(
−α

2

)
+ 5 logF

(α
2

)
+ 100 logF (α) + logF (−α)

+ 5 logF
(α

2

)
+ 5 logF

(
−α

2

)
= 10 logF

(α
2

)
+ 10 logF

(
−α

2

)
+ 100 logF (α) + logF (−α).

Overloading notation, we denote this log-likelihood by L0(α), and this is maximized at
α = β†b . For ease of exposition, denote the composition of log and F byG, i.e.G := logF . As
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F is strictly monotonic, differentiable and strictly log-concave, G is also strictly monotonic
and differentiable, and is strictly concave.13 Rewriting the log-likelihood with this notation,
we have

L0(α) = 10G
(α

2

)
+ 10G

(
−α

2

)
+ 100G (α) +G (−α) .

We show that this function is not maximized at any α ≤ 0. In other words, β†b > 0.
Computing the derivative of L0, we have

L′0(α) = 5G′
(α

2

)
− 5G′

(
−α

2

)
+ 100G′ (α)−G′ (−α) .

As G is strictly concave, it implies that G′ is strictly decreasing. Hence, for α ≤ 0, it implies
that G′(α

2
) ≥ G′(−α

2
) and G′(α) ≥ G′(−α). This shows that for α ≤ 0, we have

L′0(α) ≥ 99G′ (α) > 0,

where the last inequality holds as G is a strictly increasing function, leading to G′ being
positive.14 In other words, if α ≤ 0, the log-likelihood can be strictly increased by taking an
infinitesimally small step in the direction

[
1
2
, 1, 0

]
. Hence, none of these points maximizes

L0, and β†b > 0. Also, recall that β† was of the form (β†b/2, β
†
b , 0); this proves that β†b >

β†a > β†c .
Finally, recall that we need ε > 0 for the dataset to conform to Definition 6.5.1 with the

labelling x1, x2, x3,= a, b, c. To be able to find such a value of ε, we use continuity of β̂(ε). By
continuity, we know that for every γ > 0, there exists δ > 0 such that ‖β̂(ε)− β̂(0)‖∞ < γ
for all |ε − 0| < δ. Define θ := β†b − β†a > 0. Then, choose γ = θ/3, and let δo denote the
corresponding value of δ. Hence, choose εo = min(δo/2, 1) > 0. For this value of εo, we
indeed have ‖β̂(εo)− β̂(0)‖∞ < θ/3. That is,

β̂(εo)b > β†b −
θ

3
and β̂(εo)a < β†a +

θ

3
.

Hence,

β̂(εo)b − β̂(εo)a > β†b − β
†
a −

2θ

3
= θ − 2θ

3
> 0.

Therefore, at ε = εo ∈ (0, 1], the MLE satisfies β̂(εo)b > β̂(εo)a. Hence, the dataset with
ε = εo satisfies the PMC condition, but the corresponding MLE does not conform to the
corresponding ordering, proving violation of pairwise majority consistency.

13This part of the proof does not require concavity of G, but we use it nevertheless as it simplifies the
proof.

14Strictly speaking, a function might be strictly increasing and have a derivative that is not strictly
positive at every point (in particular, the derivative might be zero at stationary points). But in our case,
as G′ is also a strictly decreasing function, it cannot be zero at any point, because that would make it
negative at larger points, violating strict monotonicity of G.
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E.6 Proof of Theorem 6.6.3

Consider X = {a, b, c}, and let the two datasets be as follows. The first dataset is such
that #1{a � c} = 5 + ε,#1{c � a} = 5 − ε,#1{c � b} = 100,#1{b � c} = 1, and has
zero counts otherwise. The second dataset is such that #2{a � c} = 5 + ε,#2{c � a} =
5−ε,#2{b � a} = 100,#2{a � b} = 1, and has zero counts otherwise. Here, ε is a constant
lying in (0, 1].

First, we analyze the MLE for the dataset #1. As the comparison graph G#1 is strongly

connected, and F is strictly monotonic, continuous and strictly log-concave, the MLE β̂1

exists and is unique (by Lemmas 6.2.1 and 6.2.4). Further, the pair (a, c) satisfies the
condition of Lemma 6.2.2, similarly does the pair (b, c). Applying the lemma for the pair
(a, c) says that the MLE satisfies

β̂1
a = β̂1

c + F−1

(
5 + ε

10

)
> β̂1

c ,

as (5 + ε)/10 is larger than 1/2. Similarly, applying Lemma 6.2.2 for the pair (b, c) says
that the MLE satisfies

β̂1
b = β̂1

c + F−1

(
1

1 + 100

)
< β̂1

c ,

as 1/101 is smaller than 1/2. Putting these equations together, we have β̂1
a > β̂1

c > β̂1
b .

Next, we analyze the MLE for the dataset #2. As the comparison graph G#2 is strongly

connected, and F is strictly monotonic, continuous and strictly log-concave, the MLE β̂2

exists and is unique (by Lemmas 6.2.1 and 6.2.4). Further, the pair (c, a) satisfies the
condition of Lemma 6.2.2, similarly does the pair (b, a). Applying the lemma for the pair
(c, a) says that the MLE satisfies

β̂2
c = β̂2

a + F−1

(
5− ε

10

)
< β̂2

a,

as (5− ε)/10 is smaller than 1/2. Similarly, applying Lemma 6.2.2 for the pair (b, a) says
that the MLE satisfies

β̂2
b = β̂2

a + F−1

(
100

1 + 100

)
> β̂2

a,

as 100/101 is larger than 1/2. Putting these equations together, we have β̂2
b > β̂2

a > β̂2
c .

Hence, both datasets #1 and #2 have MLEs β̂1 and β̂2 such that β̂1
a > β̂1

c and β̂2
a > β̂2

c .
Finally, we analyze the MLE for the dataset # = #1 + #2 obtained by pooling both

datasets #1 and #2. Recall that the proof so far holds for any constant ε ∈ (0, 1]; but, from
this point on, we allow ε to take the value of zero as well, i.e. ε ∈ [0, 1]. The log-likelihood
function for the pooled data # is given by

Lε(β) = 100 logF (βc − βb) + logF (βb − βc) + 100 logF (βb − βa) + logF (βa − βb)
+ (10 + 2ε) logF (βa − βc) + (10− 2ε) logF (βc − βa).
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Observe that every alternative has been compared with every other alternative, and hence,
the comparison graph G# is strongly connected. Further, as F is strictly monotonic, con-
tinuous and strictly log-concave, the MLE exists and is unique for any ε ∈ [0, 1] (by Lem-
mas 6.2.1 and 6.2.4). Further, the log-likelihood Lε(β) is a strictly concave function (for each
ε ∈ [0, 1]). Any alternative could be set as the reference, but we use a as the reference alter-
native in this proof for ease of exposition. That is, our domain is D = {β ∈ RX : βa = 0}.
The (unique) maximum likelihood estimator is given by

β̂(ε) = argmax
β∈D

Lε(β).

Similar to the proof of Theorem 6.5.3, we first show that β̂(ε) is a continuous function of
ε. As F is strictly monotonic and continuous, for each ε ∈ [0, 1], Lemma 6.2.3 tells us that
the MLE is bounded as

‖β̂(ε)‖∞ ≤ |X | · max
(x,y)∈X 2

δε(x, y),

where δε is the perfect-fit distance, but is now dependent on ε. For our pooled dataset,
these perfect-fit distances are given by

δε(b, a) = F−1

(
100

101

)
, δε(c, b) = F−1

(
100

101

)
and δε(a, c) = F−1

(
10 + 2ε

20

)
.

And, δε(a, b) = −δε(b, a), δε(b, c) = −δε(c, b) and δε(c, a) = −δε(a, c), as F−1(1 − x) =
−F−1(x). Further, the first three distances are non-negative (making the remaining three
non-positive) as F−1(x) ≥ 0 for x ≥ 1

2
. Hence, the bound on the MLE simplifies to

‖β̂(ε)‖∞ ≤ 3 ·max

(
F−1

(
100

101

)
, F−1

(
10 + 2ε

20

))
.

As F is strictly monotonic, it implies that F−1 is also strictly increasing. Applying this,
we have

F−1

(
10 + 2ε

20

)
≤ F−1

(
12

20

)
< F−1

(
100

101

)
,

as ε ∈ [0, 1]. Therefore, the bound on the MLE further simplifies to

‖β̂(ε)‖∞ ≤ 3 F−1

(
100

101

)
,

for any ε ∈ [0, 1]. Hence, the MLE optimization problem can be rewritten as

β̂(ε) = argmax
β∈D:‖β‖∞≤3 F−1( 100

101)
Lε(β).

This shows that we are optimizing over a compact space. Hence, by the Theorem of the
Maximum, both the maximum likelihood and the corresponding maximizer β̂(ε) are con-
tinuous in the parameter ε, for all ε ∈ [0, 1].
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Next, we analyze the MLE at ε = 0. The log-likelihood function for this value of ε is

L0(β) = 100 logF (βc − βb) + logF (βb − βc) + 100 logF (βb − βa) + logF (βa − βb)
+ 10 logF (βa − βc) + 10 logF (βc − βa). (E.9)

For ease of exposition, we use β† to denote the MLE when ε = 0, i.e.

β† := β̂(0) = argmax
β∈D

Lε(β).

Recall that we used a as the reference alternative, and hence, β†a = 0. Our goal is to show
that β†c > β†b > β†a. To this end, we first show that β†b = β†c/2, i.e. in terms of β values,

b lies at the mid-point of c and a. Suppose for the sake of contradiction that β†b 6= β†c/2.
Consider another vector β̃ ∈ D that is the same as β†, except with the distances between
c & b and b & a swapped. This can be achieved by setting

β̃x =

{
β†x ; if x 6= {a, c}
β†c − β

†
b ; if x = b.

Then, we have β̃b− β̃a = β†c − β
†
b and β̃c− β̃b = β†b − β†a. Hence, the likelihood at this point

is given by

L0(β̃) = 100 logF (β̃c − β̃b) + logF (β̃b − β̃c) + 100 logF (β̃b − β̃a) + logF (β̃a − β̃b)
+ 10 logF (β̃a − β̃c) + 10 logF (β̃c − β̃a)

= 100 logF (β†b − β
†
a) + logF (β†a − β

†
b) + 100 logF (β†c − β

†
b) + logF (β†b − β

†
c)

+ 10 logF (β†a − β†c) + 10 logF (β†c − β†a)
= L0(β†).

That is, swapping these distances does not change the likelihood, because of symmetry.
Now, consider a new vector β̄ = (β† + β̃)/2. Note that, as β†b 6= β†c/2, it implies that

β†b 6= β†c − β
†
b = β̃b. In other words, β̃ 6= β†. Therefore, applying strict concavity of L0, we

have

L0(β̄) = L0

(
β† + β̃

2

)
>
L0(β†) + L0(β̃)

2
= L0(β†),

which is a contradiction as β† is the maximizer of L0. This proves that β†b = β†c/2. In other
words, β† is of the form (0, β†c/2, β

†
c). Hence, β† continues to be the maximizer of L0 among

the vectors A = {(0, α/2, α) : α ∈ R} ⊆ D. Rewriting the log-likelihood (E.9) for vectors
in A, we have

L0((0, α/2, α)) = 100 logF
(α

2

)
+ logF

(
−α

2

)
+ 100 logF

(α
2

)
+ logF

(
−α

2

)
+ 10 logF (−α) + 10 logF (α)
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= 200 logF
(α

2

)
+ 2 logF

(
−α

2

)
+ 10 logF (α) + 10 logF (−α).

Overloading notation, we denote this log-likelihood by L0(α), and this is maximized at
α = β†c . For ease of exposition, denote the composition of log and F byG, i.e.G := logF . As
F is strictly monotonic, differentiable and strictly log-concave, G is also strictly monotonic
and differentiable, and is strictly concave.15 Rewriting the log-likelihood with this notation,
we have

L0(α) = 200G
(α

2

)
+ 2G

(
−α

2

)
+ 10G (α) + 10G (−α) .

We show that this function is not maximized at any α ≤ 0. In other words, β†c > 0.
Computing the derivative of L0, we have

L′0(α) = 100G′
(α

2

)
−G′

(
−α

2

)
+ 10G′ (α)− 10G′ (−α) .

As G is strictly concave, it implies that G′ is strictly decreasing. Hence, for α ≤ 0, it implies
that G′(α

2
) ≥ G′(−α

2
) and G′(α) ≥ G′(−α). This shows that for α ≤ 0, we have

L′0(α) ≥ 99G′
(α

2

)
> 0,

where the last inequality holds as G is a strictly increasing function, leading to G′ being
positive.16 In other words, if α ≤ 0, the log-likelihood can be strictly increased by taking an
infinitesimally small step in the direction

[
0, 1

2
, 1
]
. Hence, none of these points maximizes

L0, and β†c > 0. Also, recall that β† was of the form (0, β†c/2, β
†
c); this proves that β†c >

β†b > β†a.
Finally, recall that the initial part of the proof (analyzing the MLE for the individual

datasets) works only for 0 < ε ≤ 1. Hence, we need to use an ε value strictly larger than zero
even for the pooled dataset. To be able to find such a value of ε, we use continuity of β̂(ε). By
continuity, we know that for every γ > 0, there exists δ > 0 such that ‖β̂(ε)− β̂(0)‖∞ < γ
for all |ε − 0| < δ. Define θ := β†c − β†a > 0. Then, choose γ = θ/3, and let δo denote the
corresponding value of δ. Hence, choose εo = min(δo/2, 1) > 0. For this value of εo, we
indeed have ‖β̂(εo)− β̂(0)‖∞ < θ/3. That is,

β̂(εo)c > β†c −
θ

3
and β̂(εo)a < β†a +

θ

3
.

Hence,

β̂(εo)c − β̂(εo)a > β†c − β†a −
2θ

3
= θ − 2θ

3
> 0.

Therefore, at ε = εo ∈ (0, 1], the MLE (on the pooled data) satisfies β̂(εo)c > β̂(εo)a.
Hence, for ε = εo, the two datasets #1 and #2 have MLEs β̂1 and β̂2 such that β̂1

a > β̂1
c

and β̂2
a > β̂2

c , but the MLE β̂ on the pooled dataset # = #1 + #2 satisfies β̂a < β̂c, proving
violation of separability.

15This part of the proof does not require concavity of G, but we use it nevertheless as it simplifies the
proof.

16Strictly speaking, a function might be strictly increasing and have a derivative that is not strictly
positive at every point (in particular, the derivative might be zero at stationary points). But in our case,
as G′ is also a strictly decreasing function, it cannot be zero at any point, because that would make it
negative at larger points, violating strict monotonicity of G.
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Appendix F
Omitted Proofs for Chapter 7

F.1 Proof of Lemma 7.3.2

Consider an instance of the CAIM problem with prior probability distribution Φ that is
the realization φ∗ with probability 1, where φ∗ is a vector of all 1s. Such a problem reduces
to the standard influence maximization problem, wherein we need to find the optimal
subset of K nodes to influence to have maximum influence spread in the network. But, the
standard influence maximization problem is an NP-Hard problem, making CAIM NP-Hard
too.

F.2 Proof of Lemma 7.3.3

The key idea is that taking a particular action (say ao) now, may have a low marginal gain
because of the realization of the current session, but after a few actions, taking the same
action ao might have a high marginal gain because of a change of session.

More formally, consider the following example. At the beginning of the first session, we
take a query action and ask about nodes {1, 2, 3}. We get the observation that each of them
is absent. At this point, if we take the invite action ao = 〈{2}, i〉, we get a marginal gain
of 0. On the other hand, suppose we took the end-session action after the query, advance
to the next session, again take a query action and ask about nodes {1, 2, 3} and this time
get the observation that 2 is present (while others are absent). Now if we take the same
invite action ao, we get a positive marginal gain. This shows that the objective function of
CAIM is not adaptive submodular.

F.3 Proof of Theorem 7.5.1

The difference between
∑`

x=1 I(SPx) and I(S) comes from the fact that
∑`

x=1 I(SPx) over-
counts influence spread across communities [since I(SPx) equals the expected influence in
the whole graph when SPx is influenced, assuming no nodes of other communities are
influenced, while in fact some actually may be].
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Edges going across communities lead to this double counting of influence spread. We’ll
call these edges as cross-edges. Let Ma denote the total number of such cross-edges, i.e.
Ma = |{(u, v) ∈ E : u ∈ Px, v ∈ Py and x 6= y}|. Each cross-edge can lead to at most
two nodes being double counted. This is because of the following: Let (u, v) be a cross-
edge (where u ∈ Px and v ∈ Py), and suppose that both these nodes are influenced. On
computing I(SPx), v might be counted as being influenced by it [even though v is already
influenced beforehand], hence leading to an over-count of 1 [Note that, since we’re consid-
ering one round of influence spread, I(SPx) assumes that v does not propagate influence
further]. Similar holds with I(SPy).

Hence,
∑`

x=1 I(SPx) − I(S) is bounded by twice the expected number of cross-edges
that are activated (for arbitrary S). Let Eij be the random variable denoting whether
there’s an edge from node i to j in the SBM network. Then, the number of cross-edges is
given as

Ma =
1

2

∑̀
x=1

∑
i∈Px

∑
j /∈Px

Eij,

Hence, the expected number of cross edges is

E[Ma] = E

1

2

∑̀
x=1

∑
i∈Px

∑
j /∈Px

Eij


=

1

2

∑̀
x=1

∑
i∈Px

∑
j /∈Px

q =
1

2

∑̀
x=1

∑
i∈Px

(n− |Px|)q

=
q

2

∑̀
x=1

|Px|(n− |Px|)

=
q

2

(
n2 −

∑̀
x=1

|Px|2
)
.

Since
∑`

x=1 |Px| is equal to n,
∑`

x=1 |Px|2 is minimized when each |Px| is equal to n/`, i.e.

∑̀
x=1

|Px|2 ≥
∑̀
x=1

(n
`

)2

=
n2

`
.

Substituting it above:

E[Ma] ≤
q

2

(
n2 − n2

`

)
=
qn2

2

(
1− 1

`

)
.

Let pm = maxe∈E p(e). Remember that each cross edge e is activated with probability
p(e) (≤ pm). So, we have

E

[
max
S

(∑̀
x=1

I(SPx)− I(S)

)]
≤ 2 · E[Ma] · pm
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And therefore,

E

[
max
S

(∑̀
x=1

I(SPx)− I(S)

)]
≤ qn2

(
1− 1

`

)
pm

Also, note that
∑`

x=1 I(SPx) is always at least as large as I(S), i.e.
∑`

x=1 I(SPx) −
I(S) ≥ 0. This gives us the desired result:

E

[
max
S

∣∣∣∣∣∑̀
x=1

I(SPx)− I(S)

∣∣∣∣∣
]
≤ qn2

(
1− 1

`

)
pm

F.4 Proof of Lemma 7.5.2 & Lemma 7.5.3

We go over the exact procedure of the modified VE algorithm and prove Lemmas 7.5.2
and 7.5.3 in the process. For the forward pass, we compute max~a

∑`
x=1 fx(~ax) + fc(~a). We

know that fc depends only on the L-1 norm of ~a, so we represent it as fc(‖~a‖1). Also note
that, the communities are disjoint, because of which each action bit ai (of action ~a) appears
in the argument of exactly one factor fx (other than the constraint factor fc).

As mentioned in the paper, we eliminate all variables of a community at once. So, to
eliminate the first block of variables, we compute max~a1 f1(~a1) + fc(‖~a‖1) = ψ1(‖~a−1‖1),
where ~a−1 denotes all action bits of ~a except those in ~a1. Note that, in the RHS of this
expression, we use ‖~a−1‖1 as opposed to ~a−1 itself because the LHS (before computing the
max) depends only on ~a1 and ‖~a1‖1 + ‖~a−1‖1. Also, note that for ‖~a−1‖1 > z, we have
‖~a‖1 > z making fc(‖~a‖1) and ψ1(‖~a−1‖1) equal to −∞.

To make this more concrete, Table F.1 shows how ψ1 is exactly computed. Here, v
(x)
i

denotes the maximum value of fx when exactly i bits of ~ax are 1, and sx denotes the
number of bits in ~ax.

‖~a−1‖1 ψ1(‖~a−1‖1)

0 max
(
v

(1)
0 + fc(0), v

(1)
1 + fc(1), · · · v(1)

s1 + fc(s1)
)

1 max
(
v

(1)
0 + fc(1), v

(1)
1 + fc(2), · · · v(1)

s1 + fc(s1 + 1)
)

...
...

z v
(1)
0 + fc(z)

> z −∞

Table F.1: Factor obtained on (first) block elimination

Apart from computing the maximum objective value (forward pass), we also need to
compute the maximizing assignment of the problem (backward pass). For this, we maintain
another function µ1(‖~a−1‖1) which keeps track of the value of ~a1 at which this maximum
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is attained (for each value of ‖~a−1‖1), i.e. µ1(v) = argmax~a1 [f1(~a1) + fc(‖~a1‖1 + v)]. Af-
ter eliminating variables of the first community, we are left with max~a−1

∑`
x=2 fx(~ax) +

ψ1(‖~a−1‖1). We repeat the same procedure and eliminate ~a2 by computing max~a2 f2(~a2) +
ψ1(‖~a−1‖1), to obtain ψ2(‖~a−1,−2‖1). Note that, again, ψ2 depends only on the L-1 norm
of the remaining variables. Also, for ‖~a−1,−2‖1 > z, ψ2 becomes −∞. In a similar way, this
holds for the remaining generated factors, giving Lemma 7.5.2.

Once we complete the forward pass, we are left with ψ`(0) which is the maximum value
of the objective function. Then, as in standard VE, we backtrack and use the µx functions
to obtain the maximizer argmax~a

∑`
x=1 fx(~ax) + fc(‖~a‖1), i.e. µ`(0) gives us the value of

~a`, then µ`−1(‖~a`‖1) gives us the value of ~a`−1, µ`−2(‖~a`‖1 + ‖~a`−1‖1) gives us the value of
~a`−2 and so on.

Observe that to compute the ith derived factor, we needed to compute max~ai fi(~ai) +

ψi−1(‖~a−1,−2,···−(i−1)‖1) = ψi(‖~a−1,−2,···−i‖1). And for this, we just need to compute v
(i)
s for

each s = 0, 1, · · · si, as evident from Table F.1. This takes time O(2si), where si denotes the
size of the ith community. Hence, the time complexity of the whole algorithm is

∑`
i=1O (2si).
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Appendix G
Omitted Proofs and Results for Chapter 9

G.1 IRL Algorithms

In this appendix we identify two well-known algorithms that match feature expectations.

G.1.1 Apprenticeship Learning

Under the classic Apprenticeship Learning algorithm, designed by Abbeel and Ng. [AN04a],
a policy π(0) is selected to begin with. Its feature expectation µ(π(0)) is computed and added
to the bag of feature expectations. At each step,

t(i) = max
w:‖w‖2≤1

min
j∈{0,..,i−1}

wᵀ

(
1

n

n∑
i=1

φ(τi)− µ
(
π(j)
))

is computed along with the weight w(i) that achieved this. When t(i) ≤ ε the algorithm
terminates, otherwise the associated optimal policy π(i) is computed, and its corresponding
feature expectation vector µ(π(i)) is added to the bag of feature expectations. The algorithm
provides the following guarantee.

Theorem G.1.1 (adapted from [AN04a]). For any ε > 0, the Apprenticeship Learning
algorithm terminates with t(i) ≤ ε after a number of iterations bounded by

T = O

(
d

(1− γ)2ε2
ln

d

(1− γ)ε

)
,

and outputs a mixture over π(1), ..., π(T ) that ε-matches the feature expectations of the ob-
served trajectories.

Note that it is necessary for us to use a randomized policy, in contrast to the case
where a single deterministic policy generated all the trajectory samples, as, in our case,
typically there is no single deterministic policy that matches the feature expectations of
the observed trajectories.
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G.1.2 Max Entropy

We next discuss the Max Entropy algorithm of Ziebart et al. [Zie+08], which optimizes
the max entropy of the probability distribution over trajectories subject to the distribution
satisfying approximate feature matching. This is done to resolve the potential ambiguity of
there being multiple stochastic policies that satisfy feature matching. Optimizing entropy
is equivalent to maximizing the regularized likelihood L(w) of the observed trajectories.
Specifically, the objective is

L(w) = max
w

n∑
i=1

log Pr[τi|w, T ]−
d∑
i=1

ρi‖wi‖1,

with

Pr[τi|w, T ] =
ewᵀφ(τi)

Z(w, T )

∏
st,at,st+1∈τi

T (st, at, st+1).

The regularization term is introduced to allow for approximate feature matching since the
observed empirical feature expectation may differ from the true expectation. Let ρ be an
upper bound on this difference, i.e., for all k = 1, . . . , d,

ρk ≥

∣∣∣∣∣ 1n
n∑
i=1

φ(τi)k − E

[
1

n

n∑
i=1

φ(τi)k

]∣∣∣∣∣ .
One may then derive that the gradient of L(w) is the difference between the feature
expectation induced w and the observed feature expectation.

Theorem G.1.2 (adapted from [Zie+08]). Let ε > 0, and assume that the Max Entropy
algorithm finds w such that |∇L(w)| < ε, then this w corresponds to a randomized policy
that (ε+ ‖ρ‖1)-matches the feature expectations of the observed trajectories.

The assumption on the gradient is needed because the above optimization objective
is derived only with the approximate feature matching constraint. MDP dynamics is not
explicitly encoded into the optimization. Instead, heuristically, the likelihood of each tra-
jectory Pr[τi|w, T ] is weighted by the product of the transition probabilities of its steps.
The follow-up work of Ziebart [Zie10] addresses this by explicitly introducing MDP con-
straints into the optimization, and optimizing for the causal entropy, thereby achieving
unconditional feature matching.

G.2 Proof of Theorem 9.3.2

We need to bound the difference between Rw?
(π̃) and Rw?

(πu). First, recall that π̃
ε/3−matches the feature expectations of τ1, . . . , τn. It holds that∣∣∣∣∣Rw?

(π̃)− (w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)∣∣∣∣∣ =

∣∣∣∣∣(w?)ᵀ

(
µ(π̃)− 1

n

n∑
i=1

φ(τi)

)∣∣∣∣∣
≤ ‖w?‖2

∥∥∥∥∥µ(π̃)− 1

n

n∑
i=1

φ(τi)

∥∥∥∥∥
2

≤ ε

3
,

(G.1)
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where the second transition follows from the Cauchy-Schwarz inequality, and the last from
the assumption that ‖w?‖2 ≤ 1. Hence, it is sufficient to demonstrate that, with probability
at least 1− δ, ∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
−Rw?

(πu)

∣∣∣∣∣ ≤ 2ε

3
, (G.2)

as the theorem would then follow from Equations (G.1), and (G.2) by the triangle inequal-
ity.

We note that the difference on the left hand side of Equation (G.2) is due to two sources
of noise.

1. The finite number of samples of trajectories which, in our setting, originates from
multiple policies.

2. The truncated trajectories τi which are limited to L steps.

Formally, let τ ′i denote the infinite trajectory for each i, then the difference can be written
as∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
−Rw?

(πu)

∣∣∣∣∣ ≤
∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
− (w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)∣∣∣∣∣
+

∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)
−Rw?

(πu)

∣∣∣∣∣
Bounding finite sample noise. We wish to bound:∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)
−Rw?

(πu)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
(

n∑
i=1

(w?)ᵀ(φ(τ ′i)− µ(πi))

)∣∣∣∣∣ . (G.3)

Define random variable Zi = (w?)ᵀ(φ(τ ′i) − µ(πi)). Then the right-hand side of Equa-
tion (G.3) may be expressed as | 1

n

∑n
i=1 Zi|. Furthermore, Zi is such that E[φ(τ ′i)k] = µ(πi)k

for all k = 1, . . . , d. This is because a policy πi defines a distribution over trajectories, and
τ ′i is a draw from this distribution. Using the linearity of expectation, it follows that

E[Zi] = (w?)ᵀE[φ(τ ′i)− µ(πi)] = 0.

Moreover,

|Zi| ≤ ‖w?‖2‖φ(τ ′i)‖2 + ‖w?‖2‖µ(πi)‖2 ≤
2
√
d

1− γ
,

since ‖φ(s, ·)‖∞ = 1. Thus, using Hoeffding’s inequality, we conclude that

Pr

[∣∣∣∣∣ 1n
n∑
i=1

Zi

∣∣∣∣∣ > ε

3

]
≤ 2exp

(
−

2n
(
ε
3

)2

(4
√
d

1−γ )2

)
≤ δ,

where the last transition holds by our choice of n.
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Bounding bias due to truncated trajectories. We wish to bound:∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
− (w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)∣∣∣∣∣ .
For each trajectory τi, truncating after L steps incurs a reward difference of:

|(w?)ᵀφ(τ ′i)− (w?)ᵀφ(τi)| =

∣∣∣∣∣(w?)ᵀ
∞∑
t=L

γtφ(τ ′i(st), τ
′
i(at))

∣∣∣∣∣
≤

∞∑
t=L

γt‖w?‖2‖φ(τ ′i(st), τ
′
i(at))‖2 ≤ γL

√
d

1− γ
≤ ε

3
,

where the third transition holds because ‖φ(τi(st), τi(at))‖2 ≤
√
d, and the last transition

follows from our choice of L. Hence, we obtain∣∣∣∣∣(w?)ᵀ

(
1

n

n∑
i=1

φ(τi)

)
− (w?)ᵀ

(
1

n

n∑
i=1

φ(τ ′i)

)∣∣∣∣∣ ≤ 1

n

n∑
i=1

|(w?)ᵀφ(τi)− (w?)ᵀφ(τ ′i)| ≤
ε

3
.

G.3 Proof of Theorem 9.4.1

We require a key property of sub-exponential random variables, which is captured by the
following well known tail inequality; its proof can be found, for example, in Chapter 2 of
[Wai19].

Lemma G.3.1. Let X1, . . . , Xm be independent sub-exponential random variables with
parameters (ν, b). Then

Pr

[
1

m

m∑
j=1

(Xj − uj) ≥ t

]
≤

{
exp

(
−mt2

2ν2

)
for 0 ≤ t ≤ ν2

b

exp
(
−mt

2b

)
for t > ν2

b

,

where uj = E[Xj].

Turning to the theorem’s proof, as πu is a uniform distribution over the policies
π1, . . . , πn, its expected reward is given by

Rw?

(πu) =
1

n

n∑
i=1

Rw?

(πi). (G.4)

Observe that Rw?
(πi) is a random variable which is i.i.d. across i, as the corresponding noise

ηi is i.i.d. as well. We analyze the expectation of the difference with respect to Rw?
(π?).

First, note that for a weight vector w and policy π,

Rw(π) =
∞∑
t=0

γt
∑
s∈S

Pπ(s, t)wᵀφ(s, π(s)), (G.5)
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where Pπ(s, t) denotes the probability of being in state s on executing policy π from the
start. Hence, for each i ∈ N , we have

Rw?

(π?)−Rw?

(πi)

=
∞∑
t=0

γt
∑
s∈S

[
Pπ?(s, t)(w

?)ᵀφ(s, π?(s))− Pπi(s, t)(w?)ᵀφ(s, πi(s))
]

=
∞∑
t=0

γt
∑
s∈S

[
Pπ?(s, t)(wi − ηi)ᵀφ(s, π?(s))− Pπi(s, t)(wi − ηi)ᵀφ(s, πi(s))

]
= Rwi(π?)−Rwi(πi) +

∞∑
t=0

γt
∑
s∈S

[
− Pπ?(s, t)ηᵀi φ(s, π?(s)) + Pπi(s, t)η

ᵀ
i φ(s, πi(s))

]
≤

∞∑
t=0

γt
∑
s∈S

[
− Pπ?(s, t)ηᵀi φ(s, π?(s)) + Pπi(s, t)η

ᵀ
i φ(s, πi(s))

]
=

d∑
k=1

ηik

[ ∞∑
t=0

γt
∑
s∈S

[
− Pπ?(s, t)φ(s, π?(s))k + Pπi(s, t)φ(s, πi(s))k

]]

:=
d∑

k=1

ηikαik, (G.6)

where the inequality holds since Rwi(πi) ≥ Rwi(π?), which, in turn, holds because πi is
optimal under wi.

Using the assumption that ‖φ(s, a)‖∞ ≤ 1, it holds that
∣∣∑

s∈S Pπ(s, t)φ(s, a)k
∣∣ ≤ 1 for

any policy π. We can therefore bound |αik| as follows.

|αik| ≤
∞∑
t=0

γt

∣∣∣∣∣∑
s∈S

[−Pπ?(s, t)φ(s, π?(s))k + Pπi(s, t)φ(s, πi(s))k]

∣∣∣∣∣
≤

∞∑
t=0

γt

[∣∣∣∣∣∑
s∈S

Pπ?(s, t)φ(s, π?(s))k

∣∣∣∣∣+

∣∣∣∣∣∑
s∈S

Pπi(s, t)φ(s, πi(s))k

∣∣∣∣∣
]

≤ 2

1− γ
.

Therefore, it holds that

‖αi‖2 =

√√√√ d∑
k=1

α2
ik ≤

√√√√ d∑
k=1

(
2

1− γ

)2

=
2
√
d

(1− γ)
.

Using this bound along with Equation (G.6), we obtain

Rw?

(π?)−Rw?

(πi) ≤
d∑

k=1

ηikαik ≤ ‖ηi‖2‖αi‖2 ≤
2
√
d

(1− γ)

√√√√ d∑
k=1

η2
ik
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=
2d

(1− γ)

√√√√1

d

d∑
k=1

η2
ik. (G.7)

Denote u = E[1
d

∑d
k=1 η

2
ik]. To compute the expected value of the previous expression

(with respect to the randomness of the noise ηi), we analyze

E


√√√√1

d

d∑
k=1

η2
ik

 =

∫ ∞

0

Pr


√√√√1

d

d∑
k=1

η2
ik ≥ x

 dx =

∫ ∞

0

Pr

[
1

d

d∑
k=1

η2
ik ≥ x2

]
dx

=

∫ √
u

0

Pr

[
1

d

d∑
k=1

η2
ik ≥ x2

]
dx+

∫ ∞

√
u

Pr

[
1

d

d∑
k=1

η2
ik ≥ x2

]
dx

≤
∫ √u

0

1 dx+

∫ ∞

√
u

Pr

[
1

d

d∑
k=1

η2
ik ≥ x2

]
dx

=
√
u+

∫ ∞

0

Pr

[
1

d

d∑
k=1

η2
ik ≥ u+ t

]
1

2
√
u+ t

dt

≤
√
u+

1

2
√
u

∫ ∞

0

Pr

[
1

d

d∑
k=1

η2
ik ≥ u+ t

]
dt,

where the fourth transition is obtained by changing the variable using x =
√
u+ t. But

since each η2
ik is sub-exponential with parameters (ν, b), from Lemma G.3.1 we have

Pr

[
1

d

d∑
k=1

η2
ik ≥ u+ t

]
≤

{
exp

(
− dt2

2ν2

)
for 0 ≤ t ≤ ν2

b

exp
(
− dt

2b

)
for t > ν2

b

.

Plugging this into the upper bound for the expected value gives us

E


√√√√1

d

d∑
k=1

η2
ik

 ≤ √u+
1

2
√
u

∫ ∞

0

Pr

[
1

d

d∑
k=1

η2
ik ≥ u+ t

]
dt

≤
√
u+

1

2
√
u

[∫ ν2

b

0

exp

(
− dt

2

2ν2

)
dt+

∫ ∞
ν2

b

exp

(
−dt

2b

)
dt

]

=
√
u+

1

2
√
u

[∫ ν
√
d
b

0

exp

(
−z

2

2

)
ν√
d
dz +

(
−2b

d

)
exp

(
−dt

2b

) ∣∣∣∣∞
ν2

b

]

=
√
u+

1

2
√
u

[√
2π

d
ν

∫ ν
√
d
b

0

1√
2π

exp

(
−z

2

2

)
dz +

2b

d
exp

(
−dν

2

2b2

)]

=
√
u+

1

2
√
u

[√
2π

d
ν

(
Φ

(
ν
√
d

b

)
− 1

2

)
+

2b

d
exp

(
−dν

2

2b2

)]
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=
√
u+

√
π

2ud
ν

(
Φ

(
ν
√
d

b

)
− 1

2

)
+

b

d
√
u

exp

(
−dν

2

2b2

)
, (G.8)

where the transition in the third line is obtained by changing the variable using t = v√
d
z,

and Φ denotes the CDF of a standard normal distribution. Hence, taking an expected value
for Equation (G.7) and plugging in Equation (G.8), we obtain

E
[
Rw?

(π?)−Rw?

(πi)
]
≤ 2d

(1− γ)

[
√
u+

√
π

2ud
ν

(
Φ

(
ν
√
d

b

)
− 1

2

)
+

b

d
√
u

exp

(
−dν

2

2b2

)]
.

Rearranging this equation, we have

E
[
Rw?

(πi)
]
≥ Rw?

(π?)− 2d

(1− γ)

[
√
u+

√
π

2ud
ν

(
Φ

(
ν
√
d

b

)
− 1

2

)
+

b

d
√
u

exp

(
−dν

2

2b2

)]
.

Taking an expectation over Equation (G.4) gives us E
[
Rw?

(πu)
]

= E
[
Rw?

(πi)
]
, and

the theorem directly follows.
We remark that Theorem 9.4.1 can easily be strengthened to obtain a high probabil-

ity result (at the cost of complicating its statement). Indeed, the reward of the uniform
mixture Rw?

(πu) is the average of the individual policy rewards Rw?
(πi), which are i.i.d.

Further, each of these rewards is bounded, because of the constraints on w? and φ. Hence,
Hoeffding’s inequality would show that Rw?

(πu) strongly concentrates around its mean.

G.4 Example for the Tightness of Theorem 9.4.1

Assume ηik ∼ N (0, σ2) with σ ≤ 2/d (to avoid violating the constraint ‖φ(s, a)‖∞ ≤
1). Suppose the MDP has just one state and 2d−1 + 1 actions. One action has feature
vector (dσ/2, 0, . . . , 0), and for each subset S ⊆ {2, . . . , d}, there is an action aS with a
binary feature vector such that it is 1 for coordinates in S and 0 everywhere else. Let
w? = (1, 0, ..., 0). The optimal policy is to pick the first action which has cumulative
reward of dσ

2(1−γ)
. As ηik ∼ N (0, σ2) for each k, with constant probability, roughly d/2

of the coordinates of the noised vector reward wi will deviate by roughly +σ and the
first coordinate will not increase too much. In this case, the action corresponding to the
coordinates with positive deviations will have reward on the order of dσ/2, beating action
1 to become optimal. Hence, this would lead to πi picking this action and having 0 reward
under w?. As this occurs with constant probability for a policy in the data, and πu is
simply a mean of their rewards, its expected value would deviate from the optimum by at
least a constant fraction of dσ/2.

G.5 Empirical Results for the MDP setting

As we have seen in Section 9.4.1, the gap between Rw?
(π?) and Rw?

(πu) is upper bounded
by O(d

√
u+ ν

√
d/u+ b/

√
u) when η2

ik is sub-exponential, or O(dσ) when ηik is Gaussian.
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Further, Section 9.3 shows that a policy π̃ that matches feature expectations of the observed
trajectories is very close to πu in terms of cumulative reward Rw?

. In this appendix, we
empirically examine the gaps between π̃ (obtained by a “feature matching” IRL algorithm),
πu and π?.

G.5.1 Methodology

As our IRL algorithm we use Apprenticeship Learning, which guarantees the feature-
matching property (see Section 9.3 and Appendix G.1). By Theorem 9.3.2 we may safely
assume that any IRL algorithm that matches feature expectations would have essentially
identical rewards, and therefore would show very similar behavior in our experiments.

We perform our experiments in the following two domains.

Grab a Milk. We adapt the “Grab a Milk” MDP, a route planning RL domain [WL18], to
our setting. The MDP is defined by a 10 by 10 grid room, where the agent starts at (0, 0)
and has to reach a bottle of milk positioned at (9, 9). There are also 16 babies in the room,
5 of which are crying for attention. When the agent crosses a crying baby, they can help
soothe the baby, but on crossing a non-crying baby, the agent disturbs the baby. Hence,
the goal of this task is to minimize the number of steps to the milk, while at the same time
soothing as many crying babies as possible along the way and avoiding crossing non-crying
babies. This MDP is adapted to our setting, by defining each state (or grid square) to have
three features φ(s).1 The first feature captures the reward of taking a step, and is set to −1
if the state is non-terminal, whereas it is set to 5 for the terminal state (9, 9). The second
is a boolean feature depicting whether there is a crying baby in the particular grid square,
and similarly the third is a boolean feature depicting whether there is a non-crying baby in
the particular grid square. The rewards in the MDP are then defined as rw?

(s) = (w?)ᵀφ(s)
where the ground truth weight vector is given by w? = [1, 0.5,−0.5]. Intuitively, this weight
vector w? can be interpreted as the weights for different ethical factors, and each member
of society has a noised version of this weight.

Sailing. The other domain we use is a modified version of the “Sailing” MDP [KS06]. The
Sailing MDP is also a gridworld domain (we use the same size of 10 by 10), where there
is a sailboat starting at (0, 0) and navigating the grid under fluctuating wind conditions.
The goal of the MDP is to reach a specified grid square as quickly as possible. We adapt
this domain to our setting by removing the terminal state, and instead adding features for
each grid square.2 Now, the goal of the agent is not to reach a certain point as quickly
as possible, but to navigate this grid while maximizing (or minimizing) the weighted sum
of these features. We use 10 features for each grid square, and these are independently
sampled from a uniform distribution over (−1, 1). The ground truth weight vector w?,
which defines the weights of these features for the net reward, is also randomly sampled
from independent Unif(−1, 1) for each coordinate. As before, this weight vector w? can be

1For these MDPs, the rewards depend only on the states and not state-action pairs, and hence the
reward function can be defined as rw(s, a) = rw(s) = wᵀφ(s).

2Intuitively, these features could represent aspects like “abundance of fish” in that grid square for fishing,
“amount of trash” in that square that could be cleaned up, “possible treasure” for treasure hunting, etc.

210



0 2 4 6 8 10
Sigma

4

6

8

10

12

14

16

18
Cu

m
ul

at
iv

e 
Re

wa
rd

IRL
uniform mixture
optimal policy
random policy

Figure G.1: Performance on the Sailing
MDP. Error bars show 95% confidence in-
tervals.
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Figure G.2: Performance on the Grab a
Milk MDP. Error bars show 95% confi-
dence intervals.

interpreted as the weights for different bounties, and each member has a noised version of
this weight.

Being gridworld domains, in both the MDPs, the agent has four actions to choose from
at each state (one for each direction). The transition dynamics are as follows: On taking
a particular action from a given state, the agent moves in that direction with probability
0.95, but with a probability of 0.05 it moves in a different direction uniformly at random.
We use a discount factor of 0.95 in both domains.

We generate the trajectories {τ1, . . . , τn} as described in Section 9.3, and use a Gaus-
sian distribution for the noise. That is, ηi ∼ N (0, σ2Id). We generate a total of n = 50
trajectories, each of length L = 30. IRL is then performed on this data and we analyze
its reward as σ is varied. A learning rate of 0.001 is used for the Apprenticeship Learning
algorithm.

G.5.2 Results

Figures G.1 and G.2 show the performance of πu and the IRL algorithm as σ is varied. We
also include the performance of π? and a purely random policy πr (which picks a uniformly
random action at each step), as references. Each point in these graphs is averaged over 50
runs (of data generation).

For both domains, the first thing to note is that the uniform mixture πu and the IRL
algorithm have nearly identical rewards, which is why the green IRL curve is almost invisi-
ble. This confirms that matching feature expectations leads to performance approximating
the uniform mixture.

Next, as expected, one can observe that as σ increases, the gap between R?(π?) and
R?(πu) also increases. Further, for both domains, this gap saturates around σ = 10 and
the R?(πu) curve flattens from there (hence, we do not include larger values of σ in either
graph). Note that, in both domains, the ground truth weight vector w? is generated such
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that ‖w?‖∞ ≤ 1. Hence, a standard deviation of 10 in the noise overshadows the true weight
vector w?, leading to the large gap shown in both graphs. Looking at more reasonable levels
of noise (with respect to the norm of the weights), like σ ∈ [0, 1], we can see that R?(πu)
drops approximately linearly, as suggested by Theorem 9.4.1. In particular, it is 14.27 at
σ = 0.5 and 9.84 at σ = 1.0 for Sailing, and it is 3.93 at σ = 0.5 and 0.39 at σ = 1.0 for
Grab a Milk.

Finally, we compare the performance of πu with that of the purely random policy πr.
As σ becomes very large, each wi is distributed almost identically across the coordinates.
Nevertheless, because of the structure of the Grab a Milk MDP, R?(πu) still does signif-
icantly better than R?(πr). By contrast, Sailing has features that are sampled i.i.d. from
Unif(−1, 1) for each state, which leads the two policies, πu and πr, to perform similarly for
large values of σ.

G.6 Proof of Lemma 9.4.2

Before proving the lemma, we look at a relatively simple example that we will use later to
complete the proof.

G.6.1 Simpler Example

Consider an MDP with a single state s, and three actions {a, b, c}. Since s is the only state,
T (s, a, s) = T (s, b, s) = T (s, c, s) = 1, and D is degenerate at s. This implies that there
are only three possible policies, denoted by πa, πb, πc (which take actions a, b, c respectively
from s). Let the feature expectations be

φ(s, a) = [0.5, 0.5],

φ(s, b) = [1,−δ/2],

φ(s, c) = [−δ/2, 1],

where δ > 0 is a parameter. Hence, the feature expectations of the policies {πa, πb, πc} are
respectively

µa =
1

2(1− γ)
[1, 1],

µb =
1

2(1− γ)
[2,−δ],

µc =
1

2(1− γ)
[−δ, 2].

Let the ground truth weight vector be w? = (vo, vo), where vo is a “large enough”
positive constant. In particular, vo is such that the noised weight vector w = w? + η has
probability strictly more than 1/3 of lying in the first quadrant. For concreteness, set vo to
be such that Pr(w > 0) = 1/2. Such a point always exists for any noise distribution (that is
continuous and i.i.d. across coordinates). Specifically, it is attained at vo = −F−1(1− 1√

2
),
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where F−1 is the inverse CDF of each coordinate of the noise distribution. This is because
at this value of vo,

Pr(w > 0) = Pr((vo, vo) + (η1, η2) > 0) = Pr(vo + η1 > 0)2

= Pr(η1 > −vo)2 = (1− F (−vo))2 =

(
1√
2

)2

=
1

2
.

Let us look at weight vectors w for which each of the three policies πa, πb and πc are
optimal. πa is the optimal policy when wᵀµa > wᵀµb and wᵀµa > wᵀµc, which is the
intersection of the half-spaces wᵀ(−1, 1 + δ) > 0 and wᵀ(1 + δ,−1) > 0. On the other
hand, πb is optimal when wᵀµb > wᵀµa and wᵀµb > wᵀµc, which is the intersection of
the half-spaces wᵀ(−1, 1 + δ) < 0 and wᵀ(1,−1) > 0. Finally, πc is optimal when wᵀµc >
wᵀµa and wᵀµc > wᵀµb, which is the intersection of the half-spaces wᵀ(1 + δ,−1) < 0
and wᵀ(1,−1) < 0. These regions are illustrated in Figure 9.1 for different values of δ.
Informally, as δ is decreased, the lines separating (πa, πc) and (πa, πb) move closer to each
other (as shown for δ = 0.25), while as δ is increased, these lines move away from each
other (as shown for δ = 10).

Formally, let Rδ denote the region of w for which πa is optimal (i.e. the blue region in
the figures), that is,

Rδ =

{
w :

w1

1 + δ
< w2 < w1(1 + δ)

}
.

This is bounded below by the line w1 = (1+δ)w2, which makes an angle of θδ = Tan−1( 1
1+δ

)
with the x-axis, and bounded above by the line w2 = (1 + δ)w1, which makes an angle of
θδ with the y-axis. We first show that for any value of δ, the regions of πb and πc have the
exact same probability. The probability that πb is optimal is the probability of the orange
region which is

Pr(πb is optimal) =

∫ 0

−∞

∫ w1

−∞
Pr(w)dw2dw1 +

∫ ∞
0

∫ w1
(1+δ)

−∞
Pr(w)dw2dw1

=

∫ 0

−∞

∫ t2

−∞
Pr(t2, t1)dt1dt2 +

∫ ∞
0

∫ t2
(1+δ)

−∞
Pr(t2, t1)dt1dt2

=

∫ 0

−∞

∫ t2

−∞
Pr(t1, t2)dt1dt2 +

∫ ∞
0

∫ t2
(1+δ)

−∞
Pr(t1, t2)dt1dt2

= Pr(πc is optimal),

where the second equality holds by changing the variables as t1 = w2 and t2 = w1, and
the third one holds because the noise distribution is i.i.d. across the coordinates. Hence,
we have

Pr(πb is optimal) = Pr(πc is optimal) =
1− Pr(Rδ)

2
,

as Rδ denotes the region where πa is optimal.
Finally, we show that there exists a value of δ such that Pr(Rδ) = 1/3. Observe that as

δ → 0, the lines bounding the regionRδ make angles that approach Tan−1(1) = π/4 and the
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two lines touch, causing the region to have zero probability. On the other hand, as δ →∞,
the angles these lines make approach Tan−1(0) = 0, so the region coincides with the first
quadrant in the limit. Based on our selection of vo, the probability of this region is exactly
1/2. Hence, as δ varies from 0 to ∞, the probability of the region Rδ changes from 0 to
1/2. Next, note that as θδ = Tan−1( 1

1+δ
), this angle changes continuously as δ changes, and

hence does the region Rδ. Finally, as the noise distribution is continuous, the probability of
this region Rδ also changes continuously as δ is varied. That is, limε→0 Pr(Rδ+ε) = Pr(Rδ).
Coupling this with the fact that Pr(Rδ) changes from 0 to 1/2 as δ changes from 0 to ∞,
it follows that there exists a value of δ in between such that Pr(Rδ) is exactly 1/3. Denote
this value of δ by δo.

We conclude that for w? = (vo, vo) and our MDP construction with δ = δo, P(w?) =
(1

3
, 1

3
, 1

3
).

G.6.2 Completing the Proof

Consider the same MDP as in Section G.6.1. However, for this example, let the feature
expectations be

φ(s, a) = [0.5, 0.5 , −δo/2, 1],

φ(s, b) = [1,−δo/2, 0.5, 0.5],

φ(s, c) = [−δo/2, 1, 1,−δo/2],

where δo is as defined in Section G.6.1. Hence, the feature expectations of the policies
{πa, πb, πc} are respectively

µa =
1

2(1− γ)
[1, 1 , −δo, 2],

µb =
1

2(1− γ)
[2,−δo, 1, 1],

µc =
1

2(1− γ)
[−δo, 2, 2,−δo].

Consider two weight vectors w?
a = (vo, vo, 0, 0) and w?

b = (0, 0, vo, vo), where vo is
as defined in Section G.6.1. Since w?

a completely discards the last two coordinates, it
immediately follows from the example of Section G.6.1 that P(w?

a) = (1
3
, 1

3
, 1

3
). Similarly,

the same analysis on the last two coordinates shows that P(w?
b) = (1

3
, 1

3
, 1

3
) as well. On the

other hand, the optimal policy according to w?
a is πa while the optimal policy according to

w?
b is πb. Hence, π?a 6= π?b , but we still have P(w?

a) = P(w?
b), leading to non-identifiability.

G.7 Proof of Theorem 9.4.3

The proof of this theorem strongly relies on Lemma 9.4.2 and the example used to prove
it. Consider the MDP as in Section G.6.2, but now with 6 features instead of just 4. In
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particular, let the feature expectations of the three policies be

φ(s, a) = [0.5, 0.5 , −δo/2, 1, 1,−δo/2],

φ(s, b) = [1,−δo/2, 0.5, 0.5 , −δo/2, 1],

φ(s, c) = [−δo/2, 1, 1,−δo/2, 0.5, 0.5 ].

Hence, the feature expectations of the policies {πa, πb, πc} are respectively

µa =
1

2(1− γ)
[1, 1 , −δo, 2, 2,−δo],

µb =
1

2(1− γ)
[2,−δo, 1, 1 ,−δo, 2],

µc =
1

2(1− γ)
[−δo, 2, 2,−δo, 1, 1 ].

Consider three weight vectors

w?
a = (vo, vo, 0, 0, 0, 0),

w?
b = (0, 0, vo, vo, 0, 0),

w?
c = (0, 0, 0, 0, vo, vo).

Since w?
a completely discards the last four coordinates, the example of Section G.6.1 shows

that P(w?
a) = (1

3
, 1

3
, 1

3
). Similarly, the same analysis on the middle two and last two co-

ordinates shows that P(w?
b) = (1

3
, 1

3
, 1

3
) and P(w?

c) = (1
3
, 1

3
, 1

3
), respectively. However, the

optimal policy according to w?
a is πa, according to w?

b it is πb, and according to w?
c it is πc.

Now, consider an arbitrary algorithmA, which takes as input a distribution over policies
and outputs a (possibly randomized) policy. Look at the randomized policy A(1

3
, 1

3
, 1

3
)

returned by A when the input is (1
3
, 1

3
, 1

3
), and let pa, pb, pc be the probabilities it assigns

to playing πa, πb and πc. Let pi (where i ∈ {a, b, c}) denote the smallest probability among
the three. Then, pi ≤ 1/3. Pick the ground truth weight vector to be w?

i . As P(w?
a) =

P(w?
b) = P(w?

c), the data generated by w?
i follows the distribution

(
1
3
, 1

3
, 1

3

)
, and the policy

distribution chosen by A is simply (pa, pb, pc).
Now, with probability pi ≤ 1/3, the policy played is πi leading to a reward of w?

i
ᵀµi =

vo
(1−γ)

, and with probability (1 − pi), the policy played is some πj (where j 6= i) leading

to a reward of w?
i
ᵀµj = (2−δo)

2
vo

(1−γ)
(which is independent of the value of j).3 Hence, the

expected reward of algorithm A in this case is

pi ·
vo

(1− γ)
+ (1− pi) ·

(2− δo)
2

vo
(1− γ)

=
(2− δo)

2

vo
(1− γ)

+ pi ·
δo
2

vo
(1− γ)

≤ (2− δo)vo
2(1− γ)

+
δovo

6(1− γ)
.

3An interesting point to note is that by carefully selecting vo, one could get the corresponding δo to be
arbitrarily large, thereby causing the optimal and suboptimal policies to have a much larger gap (equally
affecting the uniform mixture πu as well).
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Observe that the uniform mixture πu in this case is just the input distribution (1
3
, 1

3
, 1

3
).

Whatever be the chosen w?
i , the expected reward of this distribution is exactly

1

3
· vo

(1− γ)
+

2

3
· (2− δo)

2

vo
(1− γ)

=
(2− δo)vo
2(1− γ)

+
δovo

6(1− γ)
,

which is nothing but the upper bound on the expected reward of A. Hence, for any algo-
rithm A there exists a ground truth weight vector w?

i such that A has an expected reward
at most that of πu (which in turn is strictly suboptimal).

G.8 Proof of Theorem 9.5.1

To see that this problem is convex, let’s analyze the distribution Q(w).

Q(w)k = Pr(Arm k is optimal under weight (w + η))

= Pr((w + η)ᵀxk ≥ (w + η)ᵀxj for all j)

= Pr((w + η)ᵀ(xk − xj) ≥ 0 for all j)

= Pr(Xk(w + η) ≥ 0)

= Pr(−Xkη ≤ Xkw). (G.9)

Since η ∼ N (0, σ2Id), we have

−Xkη ∼ N (0, σ2XkX
ᵀ
k ).

And since XkX
ᵀ
k is invertible, this distribution is non-degenerate and has a PDF. Let us

use Fk to denote its CDF. Equation (G.9) then reduces to Q(w)k = Fk(Xkw). Plugging
this back into our optimization problem (9.1), we have

min
w
−
∑
k∈A
Q̃k logFk(Xkw). (G.10)

As Fk corresponds to a (multivariate) Gaussian which has a log-concave PDF, this CDF
is also log-concave. Hence, logFk(Xkw) is concave in w for each k, and therefore (G.10) is
a convex optimization problem.

G.9 Gradient Calculation

From Equation (G.10), we know that the objective function of problem (9.1) can be rewrit-
ten as f(w) = −

∑
k∈A Q̃k logFk(Xkw). Taking the gradient with respect to w, we have

∇wf(w) = −
∑
k∈A
Q̃k∇w logFk(Xkw)

= −
∑
k∈A

Q̃k
Fk(Xkw)

∇wFk(Xkw)
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= −
∑
k∈A

Q̃k
Fk(Xkw)

[
m−1∑
i=1

∂Fk(z)

∂zi

∣∣∣∣∣
z=Xkw

· ∇w(Xkw)i

]

= −
∑
k∈A

Q̃k
Fk(Xkw)

[
m−1∑
i=1

∂Fk(z)

∂zi

∣∣∣∣∣
z=Xkw

·X(i)
k

]
, (G.11)

where the third equality holds as Fk(z) has multidimensional input and we’re taking the

total derivative. Hence, we need to compute ∂Fk(z)
∂zi

. Writing CDF Fk in terms of its PDF
pk (which exists as XkX

ᵀ
k is invertible), we have

Fk(z) =

∫ z1

−∞
· · ·
∫ zm−1

−∞
pk(x1, . . . , xm−1)dx1 . . . dxm−1.

We compute partial derivative w.r.t. z1 first, for simplicity, and generalize it after. In
particular,

∂Fk(z)

∂z1

=

∫ z2

−∞
· · ·
∫ zm−1

−∞

∂

∂z1

[∫ z1

−∞
pk(x1, . . . , xm−1)dx1

]
dx2 . . . dxm−1

=

∫ z2

−∞
· · ·
∫ zm−1

−∞
pk(z1, . . . , xm−1)dx2 . . . dxm−1

=

∫ z2

−∞
· · ·
∫ zm−1

−∞
pk,−1(x2, . . . , xm−1|z1)pk,1(z1)dx2 . . . dxm−1

= pk,1(z1)

∫ z2

−∞
· · ·
∫ zm−1

−∞
pk,−1(x2, . . . , xm−1|z1)dx2 . . . dxm−1

= pk,1(z1) · Prk(Z2 ≤ z2, . . . , Zm−1 ≤ zm−1|Z1 = z1)

= pk,1(z1) · Fk,Z−1|Z1=z1(z−1),

where Fk,Z−1|Z1=z1 is the conditional CDF of the distribution Fk given the first coordinate
is z1, pk,1 is the marginal distribution PDF of this first coordinate, and pk,−1 is the PDF of
the rest. This derivation holds for the partial derivative w.r.t. any zi, even though it was
derived for z1. Plugging this into Equation (G.11), the gradient therefore becomes

∇wf(w) = −
∑
k∈A

Q̃k
Fk(Xkw)

[
m−1∑
i=1

pk,i((Xkw)i) · Fk,Z−i|Zi=(Xkw)i((Xkw)−i) ·X(i)
k

]
.

G.10 Additional Empirical Results for Inverse Ban-

dits

G.10.1 Varying parameter δ

Here, we present the experimental results as δ is varied for additional values of σ and n.
All graphs in this section have also been averaged over 1000 runs. Figure G.3 shows how
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Figure G.3: Performance as δ is varied, when σ is fixed to 0.5 and 2.
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Figure G.4: Performance as δ is varied, when the number of agents is 250 and 1000.

the performance varies as δ is varied from 0.01 to 3, when σ is set to 0.5 and 2.0 (while n
is still 500). As expected, one can observe that the tipping point (where the mode switches
to the blue region corresponding to arm 1) occurs much earlier when σ = 0.5, and much
later when σ = 2.

Figure G.4 shows how the performance varies as δ is varied from 0.01 to 3, when the
number of agents n is 250 and 1000 (while σ is still set to 1). First, note that the tipping
point (for the mode switch) only depends on the value of δ and σ, and indeed, we can
see from the graphs that the tipping point continues to be around δ = 1 irrespective of
the number of the agents. But, the number of agents defines how close Q̃ is to Q(w?),
and hence determines the sharpness of the transition. In particular, for a larger number of
agents, the empirical mode (obtained from Q̃) is more likely to match the true mode (of
Q(w?)). Hence, we can see that when n = 1000, the transition of the mode’s performance is
sharper across the tipping point (because of less noise), while when n = 250, the transition
is smoother across this tipping point (because of more noise).

218



0 1 2 3 4 5
Noise std sigma

0.0

0.2

0.4

0.6

0.8

1.0
Op

t. 
ar

m
 re

co
ve

r %

Mode recover %
Algorithm recover %

δ = 0.5

0 1 2 3 4 5
Noise std sigma

0.0

0.2

0.4

0.6

0.8

1.0

Op
t. 

ar
m

 re
co

ve
r %

Mode recover %
Algorithm recover %

δ = 2.0.

Figure G.5: Performance as σ is varied, when δ is fixed to 0.5 and 2.
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Figure G.6: Performance as σ is varied, when the number of agents is 250 and 1000.

G.10.2 Varying noise parameter σ

Next, we present the experimental results as σ is varied, for additional values of δ and n.
All graphs in this section have also been averaged over 1000 runs. Figure G.5 shows how
the performance varies as σ is varied from 0.01 to 5, when δ is set to 0.5 and 2.0 (while n
is still 500). As expected, we can see that the tipping point (where the mode switches out
of the blue region corresponding to arm 1) occurs earlier when δ = 0.5, and much later
when δ = 2. Further, at high values of σ, the algorithm’s performance is more robust when
δ = 2, as the blue region is larger.

Finally, Figure G.6 shows how the performance varies as σ is varied from 0.01 to 5,
when number of agents n is 250 and 1000 (while δ is still set to 1). Again, note that the
tipping point of the mode switch occurs at the same point (around σ = 1) irrespective of
the number of agents. And, as Section G.10.1, when n = 1000, the transition of the mode’s
performance is sharper across the tipping point, while when n = 250, the transition is
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smoother across it. Further, at high values of σ, n = 1000 has a much better algorithm
performance compared to n = 500 (which in turn outperforms that at n = 250), showing
that even at such high levels of noise, if Q̃ coincides with Q(w?), the algorithm is still able
to recover the optimal arm 1.
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