
CURRICULUM LEARNING

Otilia Stretcu

June 2021
CMU-ML-21-105

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy.

Copyright © Otilia Stretcu

This research was supported by: the Air Force Research Laboratory award numbers FA865013C7360,
FA87501720130, FA95501710218 and FA95502010118; the National Institutes of Health award numbers
R01HD075328 and U01NS098969; the National Science Foundation award numbers IIS1247658 and IIS1563887; the
United States Army award number W911NF1020022; a fellowship from the University of Pittsburgh Medical Center;
gifts from Google and Verizon; and research grants from JP Morgan Chase Bank and Lockheed Martin.

THESIS COMMITTEE

Tom Mitchell, Co-Chair
Barnabás Póczos, Co-Chair

Ruslan Salakhutdinov
Rich Caruana

Keywords: curriculum learning, machine learning, deep learning, multi-
task learning, semi-supervised learning, self-supervised learning, function
composition, classification.

Curriculum Learning

Committee:
1. Tom Mitchell, Co-Chair
2. Barnabás Póczos, Co-Chair
3. Ruslan Salakhutdinov
4. Rich Caruana

Date of submission: May, 2021

Date of defense: June 8th, 2021

Please cite this document as:
Otilia Stretcu “Curriculum Learning.”
Carnegie Mellon University PhD Thesis. 2021.
URN: CMU-ML-21-105

URL: http://reports-archive.adm.cs.cmu.edu/anon/ml2020/CMU-ML-21-105.pdf

This document is provided by:
Machine Learning Department Reports,
SCS Technical Report Collection,
Carnegie Mellon University.
http://reports-archive.adm.cs.cmu.edu

reports@cs.cmu.edu

© 2021 by Otilia Stretcu. This thesis is made available under
a Creative Commons “Attribution — No Derivatives 4.0” license:
https://creativecommons.org/licenses/by-nd/4.0/deed.en.

http://reports-archive.adm.cs.cmu.edu/anon/ml2020/CMU-ML-21-105.pdf
http://reports-archive.adm.cs.cmu.edu
mailto:reports@cs.cmu.edu
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Dedicated to my parents who inspired me to see the beauty in science and always
supported me in pursuing my passions, to my little brother who once told me to
aim for the stars, and to my loving grandparents who taught me that hard work

and dedication can get you far.

A B S T R A C T

Artificial Intelligence (AI) researchers often disagree about the best strategy
to train a machine learning system, but there is one belief that is generally
agreed upon: humans are still much better learners than machines. Unlike
AI systems, humans do not learn challenging new tasks (e.g., solving dif-
ferential equations) from scratch, by looking at independent and identically
distributed examples. Instead, humans often follow sequences of steps that
allow them to incrementally build up the necessary skills for performing
these new tasks. Curriculum Learning (CL) is a line of work that tries to in-
corporate this human approach to learning into machine learning, with the
hope that machines trained in this manner can learn faster and perform bet-
ter. However, biological brains are different than silicon brains, and are not
trained by using gradient descent, which has become the norm in machine
learning. So, can we expect human learning strategies to work for comput-
ers, too? Evidence from various studies in the past two decades suggests
that CL can indeed benefit machine learning in some cases, while in oth-
ers it may in fact hinder performance (Elman, 1993; Rohde and Plaut, 2003;
Bengio et al., 2009; Bojar et al., 2017b). In this thesis we aim to discover
the problem settings in which different forms of CL are beneficial, and the
types of benefits they provide. We posit the following statement:

thesis statement : AI systems that learn like humans, starting with easy
problems and gradually tackling more and more difficult ones, have the po-
tential to reach better local optima and/or converge faster. Furthermore,
the learning benefits gained using a curriculum depend on the choice of cur-
riculum, the size and type of data, and the model architecture.

In this work, we provide evidence for this statement, as well as investigate
what types of data and models can benefit from CL. We start by introducing
a definition of CL and identifying three broad categories of CL methods. We
further provide a literature review of the main CL approaches in the past
three decades. Moreover, we propose new CL methods and apply them to
a variety of models and problem settings, from teaching an LSTM to solve
basic arithmetic problems, to neural machine translation using Transform-
ers, image classification using convolutional neural networks, and compo-
sitional multitask learning problems. Through these experiments, we ob-
served that CL can be very beneficial in certain settings (e.g., on sequential
data such as sentences) if well-designed, but it can also harm the efficiency
of learning if performed poorly (e.g., if the curriculum spends too much
time on easy problems). Finally, we conduct analyses to understand why
CL leads to the observed effects.

vii

A C K N O W L E D G E M E N T S

First and foremost I would like to thank my advisors, Barnabás Póczos and
Tom Mitchell, for their invaluable advice and guidance throughout my PhD
years. Throughout this journey, they have always encouraged me to explore
new problems and work on topics that I was personally interested in, while
at the same time always reminding me to sleep and rest more. From Barn-
abás, I learned how to be methodical and how to ask insightful technical
questions that get to the heart of a problem. Whenever my methods had
a weakness, Barnabás would sure discover it. On the other hand, Tom has
always encouraged me to question the question that I am trying to answer,
and to find problems that are worth pursuing. All in all, I feel extremely
lucky and grateful for having had the chance to be co-advised by two bril-
liant researchers and wonderful people. Moreover, I am very grateful to my
thesis committee members, Ruslan Salakhutdinov and Rich Caruana, for
their feedback, advice, time, and very importantly, for their support and
excitement about the ideas in my thesis. Their insightful questions made
this thesis better!

I would also like to thank my professors and advisors from my under-
graduate and master’s studies who first introduced me to research and
guided me in the decisions that lead to this PhD: Emilia Petris, or, Marius
Minea, Marius Leordeanu, and Pietro Liò. I would not be here without their
help and advice, for which I will be forever grateful. Moreover, I would like
to thank Matthias Seeger and Emtiyaz Khan for giving me the opportu-
nity to work on my very first machine learning research project during a
summer internship at EPFL, Lausanne. This experience led me to consider
pursuing a PhD in machine learning. I would also like to thank Rodica
Cret,escu, my very first informatics teacher, who taught me to program and
pushed me to exceed my limits in the informatics olympiads. These skills,
and more importantly, my passion for computer science, have been crucial
in my PhD journey. I am also very grateful to have had the opportunity to
test my research skills in practice during my summer internships at Google,
working with Chen Wu, Krishnamurthy Viswanathan, and Dana Alon. It
was through these wonderful experiences that I decided what I wanted
to do next: using the knowledge acquired in my PhD to solve real-world
problems that can improve people’s lives.

Moreover, this PhD would not have been possible without my many col-
laborators and fellow PhD students, who shared ideas, provided valuable
feedback and inspired a lot of my work: Anthony Platanios, Mariya Toneva,
Anna Chrabaszcz, George Stoica, Han Zhao, Abulhair Saparov, Avinava

ix

Dubey, Maruan Al-Shedivat, Chris Dann, Andreea Bobu, Sebastian Claici,
Sharmistha Jat, Dan Schwartz, Nicole Rafidi, Jennifer Williams, Ashique
Khudabukhsh, Chenghui Zhou, Xiao Fu, Kejun Huang, Hyun Ah Song,
Evangelos Papalexakis, Witold Lipski, Alan Bush, Renato Negrinho, Manzil
Zaheer, and Barun Parta. Many thanks to you all! Special thanks to An-
thony Platanios who showed me that researchers can express brilliant ideas
through elegantly-written code (whether it’s written in Scala or not), and
listened with stoicism to my complaints about TensorFlow. Undoubtedly, I
am a better researcher because of him. I would also like to thank the faculty
at CMU and other collaborating institutions, from whom I have learned a
lot through collaborations or just interesting discussions on the 8th floor
of Gates. Many thanks to Leila Wehbe, Rayid Ghani, Zach Lipton, Aaditya
Ramdas, Nicholas Sidiropoulos, Christos Faloutsos, Partha Talukdar, Ge-
off Gordon, Alex Smola, Mike Tarr, and Mark Richardson. Of course, my
PhD experience would not have been the same without the attention and
care of the MLD staff, Diane Stidle, Mary Stech, Sharon Cavlovich, Dorothy
Holland-Minkley, Russ O’Lare, and Kelly Widmaier. I am particularly grate-
ful to Diane, who has made MLD feel like a home away from home!

A big thank you to my fun and caring friends who have made my PhD an
unforgettable experience: Abs Saparov, Avillama Dubey, Brynn Edmunds,
Daniel Bird, Mariya Toneva, Chris Dann, Sushma Anand Akoju, Maruan
Al-Shedivat, Marimaya Sachan, Xun Zheng, Dan Robbie Schwartz, Zhong
Zhou, Chengy Zhou, Robin Schmucker, Charvi Rastogi, Ezra Winston, and
Biswajit Paria. I hope our paths will cross again soon!

Last, but not least, I would like to thank my family for their constant love
and support. My parents have always encouraged me to pursue my pas-
sions, wherever they may take me, and have made great efforts to ensure I
can achieve them—for which I cannot thank them enough. My dad inspired
me to appreciate the beauty in math from a young age, while my mom in-
spired me to develop a curiosity for physics and for understanding how
things work. This led to me choosing, without realizing, a field at the inter-
section of their passions: computer science. However, a big source of inspi-
ration throughout my academic years has been my little brother, Cătă. His
love and admiration has always pushed me to be a better version of myself.
Very importantly, I want to also thank my grandparents, who worked hard
to overcome adversities in life, to give their children and grandchildren a
good education. Moreover, their work ethic is something that I always look
back to and keeps me going, whenever I feel overloaded with work. Finally,
I would like to thank my former office-mate, collaborator, best friend, part-
ner in crime and in life, Anthony Platanios. His love, support, and constant
ability to make fun of me, have kept me going through the highs and lows
of PhD life and a year in COVID-19 lockdown. Looking forward to keep
laughing together, wherever life may take us next!

x

C O N T E N T S

List of Figures xiv
List of Tables xxi
List of Algorithms xxiii

1 introduction 1

1.1 Thesis Overview . 4

1.2 Background . 5

2 what is curriculum learning? 7

2.1 Definitions . 7

2.2 Categorization of Curriculum Learning Methods 9

2.3 Comparison with Related Fields 11

3 literature review 15

3.1 The Early Debate Between "Less Is More" and "Less Is Less" . 15

3.2 Curriculum in Input Space . 16

3.2.1 The Structure of Curricula in Input Space 17

3.2.2 Hand-Crafted Curricula 18

3.2.3 Automated Curricula . 20

3.2.4 Self-Paced Learning . 21

3.2.5 Comparison . 25

3.3 Curriculum in Task Space . 26

3.4 Curriculum in Model Space . 27

4 curriculum in input space 29

4.1 A Generic Curriculum Learning Framework 31

4.1.1 How can we make sample difficulties comparable to
model competence? . 32

4.1.2 How do we define the model competence? 33

4.1.3 Algorithm . 36

4.2 Addition Digit-by-Digit With Recurrent Neural Networks . . 37

4.2.1 Data . 37

4.2.2 Models and Training . 38

4.2.3 Results . 39

4.2.4 Discussion . 41

4.3 Learning Arithmetic with Sequence-to-Sequence Models . . . 42

4.3.1 Data . 43

4.3.2 Models and Training . 43

4.3.3 Results . 44

4.3.4 Discussion . 47

4.4 Neural Machine Translation . 49

xi

xii contents

4.4.1 Difficulty Metrics . 50

4.4.2 Experiments . 52

4.4.3 Related Work . 57

4.4.4 Discussion . 58

4.5 Multimodal Language Understanding 59

4.5.1 Data . 59

4.5.2 Model and Training . 60

4.5.3 Results . 61

4.5.4 Discussion . 62

4.6 Key Takeaways . 63

5 curriculum in task space 65

5.1 Overview . 65

5.2 Coarse-to-Fine Curriculum Learning 68

5.2.1 Method . 69

5.2.2 Generating Auxiliary Tasks 69

5.2.3 Transferring Acquired Knowledge 72

5.2.4 Algorithm Properties . 74

5.2.5 Experiments . 75

5.2.6 Related Work . 84

5.2.7 Discussion . 86

5.3 Curricula for Compositional Multitask Learning 87

5.3.1 Learning Arithmetic using Explicit Task Composition 88

5.3.2 Implicit Task Composition for Multimodal Image Un-
derstanding . 94

5.4 Key Takeaways . 101

6 understanding curriculum learning : a case study on

sequential data 103

6.1 Analytical Study . 104

6.1.1 Gradients for Composed Functions 104

6.1.2 Gradients for a Simple RNN 106

6.1.3 Hypotheses on When and Why Curriculum Learning
Works . 109

6.2 Case Study #1: Parity Function 110

6.2.1 Experimental Setup . 111

6.2.2 Results . 112

6.2.3 Evidence for the Proposed Hypotheses 113

6.2.4 The Effect of the Curriculum on the Loss Landscape . 115

6.3 Case Study #2: Addition Digit-by-Digit 119

6.3.1 Analytical Study . 119

6.3.2 Evidence for the Proposed Hypotheses 119

6.3.3 The Effect of the Curriculum on the Loss Landscape . 120

6.4 Case Study #3: Addition Sequence-to-Sequence 123

6.4.1 Evidence for the Proposed Hypotheses 123

contents xiii

6.5 Case Study #4: Fine-tuning BERT on GLUE data 125

6.5.1 Experimental Setup . 125

6.5.2 Learning Sequences of Different Lengths 130

6.5.3 The Effect of the Curriculum on the Loss Landscape . 130

6.5.4 Discussion . 130

6.6 Key Takeaways . 132

7 conclusion 135

7.1 Key Results . 136

7.2 Future Work . 138

a curriculum in task space : supplementary 139

a.1 Coarse-to-Fine Curriculum Learning: Supplementary 139

a.1.1 Confusion Matrix vs Embedding Similarity 139

a.1.2 A Staged Coarse-to-Fine Approach 140

a.1.3 Experimental Details . 143

a.1.4 Other Related Work . 145

bibliography 149

L I S T O F F I G U R E S

Figure 2.1 Graphic illustration of the curriculum learning defi-
nition. 9

Figure 2.2 A comparison of the main types of curriculum learn-
ing approaches. This illustration is meant to show-
case the main characteristics of these three types of
curriculum approaches, but there can be exceptions.
For instance, a curriculum in task space may also
produce small modifications to the model architec-
ture (e.g., the output layer), to be able to handle the
modified targets. Similarly, different types of curricu-
lum may also modify the loss function. 10

Figure 2.3 A comparison between curriculum learning and other
related learning strategies. 12

Figure 4.1 Overview of the proposed curriculum learning frame-
work. During training, the difficulty of each training
sample is estimated, and a decision whether to use it
is made based on the current competence of the model. 32

Figure 4.2 Illustration of the training data “filtering” performed
by our algorithm. To showcase this idea, here we
used the preprocessed data from our machine trans-
lation experiments in Section 4.4, with sentence length
as measure of difficulty. 33

Figure 4.3 Visualization of the difficulty preprocessing strategy
of our algorithm. Here we use an as example sen-
tence length as the difficulty function. “CDF” stands
for the empirical “cumulative density function” ob-
tained from the histogram on the top. 34

Figure 4.4 Examples of various competence functions with ini-
tial competence value c0 = 0.01 and total curriculum
duration T = 1, 000. 35

Figure 4.5 A recurrent neural network (RNN) performing ad-
dition digit by digit. We align the digits of the two
operands, and we present the network pairs of digits
step-by-step, starting with the least significant dig-
its. For every pair of input digits, the network out-
puts the corresponding digit of the result. The carry
needs to be expressed through the hidden state of
the network. 38

xiv

List of Figures xv

Figure 4.6 Test accuracy for an LSTM with hidden size 16, trained
to add two numbers digit-by-digit. Each curve rep-
resents the accuracy mean and standard error (over
4 runs started at different random parameter initial-
izations) per training step, under different training
testing settings. Each row corresponds to a differ-
ent training dataset, with 500, 1000 and 5000 sam-
ples, respectively. For each training setting, we com-
pute the test accuracy on the interpolation (first col-
umn) and extrapolation (second column) datasets.
For each train-test setting, we display the performance
of a model trained without a curriculum ("Baseline"),
as well as of models trained with curricula of increas-
ing lengths. 40

Figure 4.7 Illustrating of a sequence-to-sequence model trained
to predict the sum of an arbitrary number of terms. . 43

Figure 4.8 Results for the LSTM-based sequence-to-sequence model
trained to add multiple integers. We show the results
for a baseline model trained without curriculum, and
multiple models trained with curricula of different
lengths. We report the accuracy mean and standard
error (over 4 runs with different random initializa-
tions) per training step. 45

Figure 4.9 Results for the Transformer-based sequence-to-sequence
model trained to add multiple integers. We show the
results for a baseline model trained without curricu-
lum, and multiple models trained with curricula of
different lengths. We report the accuracy mean and
standard error (over 4 runs with different random
initializations) per training step. 46

Figure 4.10 Plots illustrating the performance of various models
on the test set, as training progresses. Blue lines rep-
resent the baseline methods when no curriculum is
used and red lines represent the same models when
different versions of our curriculum learning frame-
work are used to train them. The vertical lines rep-
resent the step in which the models attain the BLEU
score that the baseline models attain at convergence. 55

Figure 4.11 Examples from the ShapeWorld dataset, for an existen-
tial task. 60

Figure 4.12 Model used for the ShapeWorld dataset. Figure adapted
from Kuhnle and Copestake (2017). 61

xvi List of Figures

Figure 4.13 Results for the ShapeWorld dataset, using a CNN-
LSTM model. We show the results for a baseline model
trained without curriculum, and for input space cur-
ricula of different lengths C. The difficulty was the
number of shapes per image. We report the mean
and standard error over 5 runs. 62

Figure 5.1 Confusion matrix for a CNN classifier on the CIFAR-
10 dataset. Each element at position (i, j) indicates
the ratio of times the model wrongly classifies an
image as class j instead of the correct class i. The di-
agonal elements have been removed for visualization
purposes. 66

Figure 5.2 High-level illustration of the proposed algorithm. . . 70

Figure 5.3 Example images from the Shapes dataset. 76

Figure 5.4 Accuracy mean and standard error (shown in tight
shaded bands around the mean) for a CNN trained
with and without our curriculum approach, aver-
aged over 5 runs, on the Shapes dataset. 77

Figure 5.5 Hierarchy generated using EmbeddingDist as class dis-
tance measure. The hierarchy is created bottom-up,
starting by first connecting the shapes that have the
lowest embedding distance (i.e. those that are most
similar) at the bottom of the hierarchy. 78

Figure 5.6 Hierarchy generated using EmbeddingSim as class dis-
tance measure. The hierarchy is created bottom-up,
starting by first connecting the shapes that have the
lowest embedding similarity (i.e. those that are most
dissimilar) at the bottom of the hierarchy. 78

Figure 5.7 Test accuracy per epoch on the CIFAR-100 using a
CNN. The curriculum here had 3 levels, all visited in
the first 11 epochs, which is the time it took the base-
line to reach 90% of its accuracy. 82

Figure 5.8 Accuracy of our coarse-to-fine curriculum strategy
with different curriculum lengths on CIFAR-100. . . . 84

Figure 5.9 A self-supervised learning setting for learning arith-
metic operations. The system is provided with la-
beled examples only for learning how to count. Once
the model has learned how to count, it can self-label
training examples for learning addition, using the
compositional relationship between counting and ad-
dition. Similarly, once the model has learned how to
add, it can self-label data for learning multiplication,
etc. 89

List of Figures xvii

Figure 5.10 Results for semi-supervised learning model trained
to perform arithmetic tasks (counting, addition, mul-
tiplication). We show the performance of two models—
one trained without a curriculum ("Baseline") and
one trained using curriculum learning in task space
("Curriculum")—evaluated in two settings: on an in-
terpolation dataset (1− 5 digits), and on a extrapo-
lation dataset (6 − 10 digits). For counting we only
show the baseline model, since we always train it in
a fully-supervised way using the provided labeled
dataset. 93

Figure 5.11 Model used for multitask learning on the ShapeWorld
dataset. The gray area enclosed by a dashed line marks
the part of the model architecture that is shared among
tasks. 96

Figure 5.12 Example of task dependencies for a task space cur-
riculum. An arrow between two tasks t1 → t2 indi-
cates that t1 is a prerequisite of t2, and thus t1 should
be prioritized before t2. 97

Figure 5.13 The four curriculum configurations whose results are
presented in Figure 5.14. Each edge in a DAG shows
a task perquisite, together with its corresponding ac-
curacy threshold. 98

Figure 5.14 Results on the ShapeWorld dataset, for multiple learn-
ing settings: single task learning (red), multitask learn-
ing without a curriculum (gray), and multitask learn-
ing with various curricula (shades of blue). The pre-
cise curricula for each setting are described in Fig-
ure 5.13. We report the accuracy mean and standard
error per training step, averaged over 5 runs. Note
that not all curves start at training step 0. This is be-
cause some of the tasks wait until their prerequisites
are satisfied, before starting to train. 100

Figure 6.2 A basic RNN cell. 106

Figure 6.1 Using a recurrent neural network (RNN) to compute
the parity function for a sequence of binary inputs. . 107

Figure 6.3 Maximum sequence length allowed to be sampled at
each epoch during training, depending on the cur-
riculum length, C. 112

xviii List of Figures

Figure 6.4 Accuracy of RNNs trained on sequences of length 1-
10, with and without a curriculum. Top row: hidden
state d = 4. Bottom row: hidden state d = 128. First
column: the test dataset contains sequences of length
1-10 to test interpolation. Second column: test se-
quences of length 101-120, to test extrapolation. For
each experiment configuration, we report the accu-
racy mean and standard error over 5 runs with dif-
ferent random initializations. 113

Figure 6.5 Train loss of RNNs trained on sequences of length
1-10, with and without a curriculum. Left: hidden
state d = 4. Right: hidden state d = 128. For each ex-
periment configuration, we report the accuracy mean
and standard error over 5 runs with different ran-
dom initializations. 114

Figure 6.6 Accuracy per sequence length for an RNN with hid-
den size 128, trained on sequences of length 1-10.
We report the accuracy on a validation set, averaged
separately for samples of different sequence length.
All accuracies are the average over 5 runs initialized
with different random seeds. 114

Figure 6.7 Results for the 4 model trajectories displayed on the
loss landscape in Figure 6.8. Left: interpolation test
accuracy evaluated on sequences of length 1-10, sim-
ilar to the training distribution. Middle: extrapola-
tion test accuracy evaluated on sequences of length
101-120. Right: training loss. 116

Figure 6.8 Loss landscape for an RNN with hidden state 128,
trained to predict the parity function. Each row shows
the loss landscape evaluated on datasets with differ-
ent sequence lengths. Each column provides a differ-
ent view of the corresponding loss landscape: a con-
tour plot (left), a heatmap with contour lines (mid-
dle), a 3D view of the heatmap where the height cor-
responds to the value of the loss (right). We overlay
over each plot the trajectories of three models: a base-
line trained without curriculum, and three curricula
of lengths 10, 50 and 100 epochs. The correspond-
ing test accuracies for these trajectories are shown in
Figure 6.7. 117

List of Figures xix

Figure 6.9 Accuracy per number of digits for an LSTM with
hidden size 16, trained on adding numbers with up
to 5 digits, and evaluated on a held-out test set con-
taining operands with up to 10 digits. We report the
accuracy on a validation set, averaged separately for
samples with different number of digits. All accu-
racies are the average over 5 runs initialized with
different random seeds. Since we are adding two
operands with potentially different number of dig-
its, the number of digits in the figure refers to the
number of digits of their sum (thus it goes to 11). . . 120

Figure 6.10 Loss landscape for an LSTM with hidden size 16,
performing digit-by-digit addition. The value of the
loss depends on the dataset that it is evaluated on.
In each of the figures above we evaluate the loss
on different subsets of data, as specified in the title
of the plot. The contour plots mark different levels
of the loss value—the levels are similar in all plots.
The x and y axes represent the 2D projection of two
high-dimensional directions in the parameter space.
On the loss landscape, we plot the trajectories of
two models during training: one trained without a
curriculum (in blue) and one trained with a length-
based curriculum (in red). 121

Figure 6.11 Accuracy per sequence length during training, for
two sequence-to-sequence models, based on LSTMs
(top row) and Transformers (bottom row). The left
column displays the accuracies for models trained
without a curriculum, and on the right for models
trained with a length-based curriculum. 124

Figure 6.12 Visualization of the BERT-Base model architecture.
BERT consists of multiple Transformer layers (Vaswani
et al., 2017) that are pretrained on a very large cor-
pus, as described in Devlin et al. (2019). The first out-
put of the final Transformer layer is passed as input
to a dense layer, which is initialized from scratch for
each task. 126

Figure 6.13 Accuracy mean and standard error per training step
for BERT-Base on the RTE (top), SST-2 (middle) and
QNLI (bottom). The model was fine-tuned for 3 epochs
as in the original publication (Devlin et al., 2019), but
to get a better resolution here we display the accu-
racy per training step. 128

xx List of Figures

Figure 6.14 Accuracy per train step, aggregated for each input
sequence length separately, for BERT-Base. Each row
corresponds to a different GLUE dataset. On the left
column, we show the accuracies for the baseline method
trained without curriculum. On the right, we have
the accuracies for the corresponding curriculum ap-
proach (with the same length C as the results in Ta-
ble 6.1). 129

Figure 6.15 Loss landscape of the BERT-Tiny model on the RTE
dataset. 130

Figure A.1 Accuracy per epoch for the baseline and our algo-
rithm, on the CIFAR-100 dataset. 144

Figure A.2 Accuracy mean and standard error for the baseline
and the curriculum model, averaged over 5 runs, on
Shapes. 144

L I S T O F TA B L E S

Table 2.1 Summary of notations used in our definitions. 8

Table 4.1 Overview of our applications using input-space cur-
ricula, and their corresponding difficulty and pacing
functions. 30

Table 4.2 Number of parallel sentences in each dataset. “k”
stands for “thousand” and “M” stands for “million.” 53

Table 4.3 Summary of experimental results. For each method
and dataset, we present the test set BLEU score of
the best model based on validation set performance.
We also show the relative time required to obtain the
BLEU score of the best performing baseline model.
For example, if an RNN gets to 26.27 BLEU in 10,000

steps and the SL curriculum gets to the same BLEU
in 3,000 steps, then the plain model gets a score of 1.0
and the SL curriculum receives a score of 3, 000/10, 000 =
0.3. Plain stands for the model trained without a cur-
riculum and, for Transformers, Plain* stands for the
model trained using the learning rate schedule shown
in Equation 4.10. 54

Table 5.1 Results on Shapes with 500 samples per class. We
show the accuracy mean and standard error of the
baseline, our curriculum approach, and their differ-
ence (calculated separately per run and then averaged). 79

Table 5.2 Statistics for the classification datasets used in our
experiments. 79

Table 5.3 Results on real datasets, showing the accuracy mean
and standard error for the baseline model, computed
over 5 runs, as well as the accuracy gain achieved by
the our curriculum approach, computed per run and
then averaged. 80

xxi

xxii List of Tables

Table 5.4 Results on real datasets, showing the accuracy mean
and standard error for the baseline model, computed
over 5 runs, as well as the accuracy gain achieved by
the various curriculum approaches, computed per
run and then averaged. The missing numbers are
due to the fact that we were only able to run com-
peting methods using the CNN, due to limited compu-
tational resources. For the larger models, we report
the numbers published in the respective papers, and
do not include standard errors as they were not re-
ported. CIFAR-100 C refers to the coarse version of
the CIFAR-100 datasset. 83

Table 6.1 Result for fine-tuning BERT models on a subset of
the GLUE datasets. We report the accuracy mean and
standard error over 4 runs, where the final projection
layer is randomly initialized with different seeds, and
the rest of the model layers are initialized with the
pretrained weights of the corresponding BERT model. 127

Table A.1 Results on real datasets using the CNN architecture,
showing the accuracy mean and standard error for
the baseline model, computed over 5 runs, as well
as the accuracy gain achieved by the two versions
of our coarse-to-fine curriculum (staged and contin-
uous), computed per run and then averaged. Note
that these results were obtained without any image
augmentation techniques or specialized learning rate
schedules. 143

L I S T O F A L G O R I T H M S

Algorithm 4.1 Competence-based Curriculum Learning 36

Algorithm 5.1 Transform Labels . 71

Algorithm 5.2 Generate Class Hierarchy 72

Algorithm 5.3 Coarse-To-Fine Curriculum Learning 74

Algorithm 5.4 Generating Labels for Addition using Counting 91

Algorithm 5.5 Generating Labels for Multiplication using Addition . 91

Algorithm A.1 Coarse-To-Fine Curriculum: A Staged Approach . . . 141

xxiii

1
I N T R O D U C T I O N

The field of artificial intelligence (AI) has witnessed an impressive leap
in the last decade. Machines are now able to perform tasks never before
thought to be possible, such as driving cars or interacting with humans
in natural language. However, these advances were only possible through
large data collection efforts. Humans, on the other hand, are very good at
learning new skills efficiently using incredibly small amounts of supervi-
sion. Inspired by this, AI researchers have often attempted to create models
that resemble the way the human brain works, with notable examples be-
ing convolutional neural networks (LeCun et al., 2015) and various forms
of attention mechanisms (e.g., Vaswani et al., 2017). However, one key dif-
ference between human learning and machine learning (ML) that is often
overlooked lies not in the model architecture, but in the way in which they
learn. Unlike most ML systems, humans do not learn difficult new tasks
(e.g., solving differential equations) entirely from scratch by looking at inde-
pendent and identically distributed examples. Instead, new skills are often
learned progressively, starting with easier tasks and gradually becoming
able to tackle harder ones. For example, students first learn to perform ad-
dition, multiplication, differentiation, and solving simple equations, before
starting to learn about differential equations. Thus, we can think of human
learning as often being aided by a curriculum, which may either be provided
by a teacher or chosen directly by the student.

Curriculum learning (Elman, 1993; Bengio et al., 2009) is a line of work
in machine learning that attempts to devise learning strategies inspired by
human learning, in which concepts are learned in the order of difficulty,
from easy to hard. This relies on the assumption that, similar to humans,
machines trained in this manner can learn faster or perform better. However,
biological brains are different than silicon brains, and are not trained by
using gradient descent, as it has become the norm in machine learning.
So, can we expect human learning strategies to work for computers, too?
Two decades after this idea was originally proposed (Elman, 1993), there
is increasingly more evidence that curriculum learning can indeed improve
learning (e.g., Bengio et al., 2009; Jiang et al., 2015; Pentina et al., 2015; Jiang
et al., 2018; Zhou and Bilmes, 2018; Wu et al., 2021), by helping the model
learn faster (e.g., Krueger and Dayan, 2009; Platanios et al., 2019; Li et al.,
2020) or reach better final performance (e.g., Bengio et al., 2009; Jiang et al.,
2015; Sachan and Xing, 2016; Platanios et al., 2019). However, there is also
evidence that curriculum learning does not benefit learning, or in some

1

2 introduction

cases it even harms the performance of the model (e.g., Rohde and Plaut,
1999, 2003; Avramova, 2015; Bojar et al., 2017b). Even more, taking certain
curriculum learning methods that work successfully for one problem and
applying them to another, often does not result in benefits for the new
problem. Therefore, when and how to make curriculum learning work is
still far from being understood.

In this thesis, we pose the following questions:

1. What exactly is curriculum learning?

2. When is curriculum learning useful? Does it work only for certain
types of data, or only for certain models?

3. What kinds of benefits can curriculum learning bring to the learning
process (e.g., better performance, faster convergence)?

4. How does a curriculum learning affect the optimization process, and
why does it sometimes work and sometimes not?

In this work we attempt to address these questions. More concretely, our
goal is to better understand in what problem settings curriculum learning
is beneficial, as well as the types of curriculum learning strategies that are
appropriate for each situation. Additionally, we propose new curriculum
learning methods targeted at certain properties of the data, the models or
the tasks at hand, from teaching an LSTM (Hochreiter and Schmidhuber,
1997) to solve basic arithmetic problems, to neural machine translation us-
ing Transformers (Vaswani et al., 2017), image classification using convolu-
tional neural networks, and compositional multitask learning problems. We
tackle the above questions empirically through extensive experimentation
using various datasets and models, as well as analytically, with the goal
of predicting which new learning settings could also benefit from using
curriculum learning.

Moreover, we believe that one of the reasons why curriculum learning is
not well understood is the lack of a common formal language in which to
describe the various approaches. Each new approach to curriculum learn-
ing has its own interpretation of what easy and hard are measuring, as well
as which component of the learning pipeline to modify in order to incorpo-
rate a curriculum (e.g., the data, the loss, or the model architecture). There-
fore, as a first step, we introduce a formalism that allows us to describe both
the existing and proposed approaches in a unified way, as well as compare
curriculum learning with other related fields, such as transfer learning and
continual learning.

Furthermore, to answer the questions above, we consider not only the
takeaways from our own experiments, but also the results obtained so far by
the entire community. Using the formalism mentioned above, we will put

introduction 3

together and categorize the existing curriculum learning literature in the
first curriculum learning survey. We believe that having a compiled version
of the developments in curriculum learning over the past two decades will
benefit not only the work in this thesis, but also future work in the field.

We propose the following statement:

thesis statement : AI systems that learn like humans, starting with easy
problems and gradually tackling more and more difficult ones, have the po-
tential to reach better local optima and/or converge faster. Furthermore,
the learning benefits gained using a curriculum depend on the choice of cur-
riculum, the size and type of data, and the model architecture.

In the rest of the thesis, we provide evidence for this statement, as well
as further details on the model types and data that can benefit from cur-
riculum learning. We discovered that different problem settings can ben-
efit more from different types of curricula. For instance, for problems on
sequential data—be it natural language, numerical data, or simple as se-
quences of bits—we found input space curricula (that is, curricula that sched-
ule when the training samples are shown to the model) to be consistently
beneficial, providing faster convergence speeds and often better perfor-
mance (Chapter 4). Our analysis into why this is the case (Chapter 6) sug-
gests that curricula that correlate with sequence length can reduce the gra-
dient noise, as well as widen the local minima in the loss landscape early
on during training. On the other hand, for tasks of compositional nature,
we found that task space curricula can significantly improve performance
(Chapter 5). However, we also discovered some settings where curriculum
learning is not improving, or even harming the learning process. For exam-
ple, curricula that are too long can in fact perform worse than the baseline
(e.g., Section 4.5). At the same time, curricula that are otherwise successful
when training a model from scratch may have no impact when applied to
pretrained models (Section 6.5).

In summary, this thesis aims to further our understanding about curricu-
lum learning, as well as propose new methods appropriate for different situ-
ations. We hope that the methods and analyses presented in this thesis will
provide useful insights for practical applications and for future research in
the field.

4 introduction

1.1 thesis overview

This thesis is structured in the following main chapters:

1. What is Curriculum Learning: We introduce a definition of curriculum
learning that allows us to formally describe existing and proposed cur-
riculum learning approaches under a unified framework. We then use
this definition to categorize the main lines of work in curriculum learn-
ing. Note that when this work was performed, it was the first attempt
at unifying existing approaches under a common framework. Finally,
we also provide a comparison of curriculum learning to other learning
paradigms, such as transfer learning and active learning.

2. Literature Survey: We review the curriculum learning literature, from
the early ideas that started in the fields of psychology and cognitive
neuroscience, to state-of-the-art machine learning methods.

3. Curriculum in Input Space: We propose curriculum learning methods
in which the curriculum acts as a filter on the data, deciding when each
training example is presented to the learner based on its difficulty. We ap-
ply these to multiple problems (e.g., machine translation, multimodal im-
age understanding, learning arithmetics) using a variety of data modali-
ties (e.g., text, images, and numbers in the form of digit sequences).

4. Curriculum in Task Space: We introduce curriculum learning methods
that consider a series of learning tasks with increasing difficulty. This
can be done in the context of learning a single task, or learning multiple
tasks together. For single task learning, we propose a curriculum learn-
ing method that can automatically create a series of auxiliary tasks—
which are not explicitly provided—as intermediate goals. For multitask
learning, where multiple tasks are provided, we show that by leveraging
their relationships and learning them in a particular order defined by a
curriculum, we can improve their performance.

5. Understanding Curriculum Learning – A Case Study on Sequential
Data: In this chapter we focus on understanding the effect of curriculum
learning on the optimization process. We consider problems involving
sequences as the target problem setting because such problems have
consequences for multiple application areas, and curriculum learning
has already proven to work well for them. Using several case studies,
we analyse the model gradients and visualize the loss landscapes, and
attempt to explain the effects that we observe when using curriculum
learning. Moreover, we propose a conjecture which can help us decide
for future problems whether a length-based curriculum can be helpful
in that setting.

1.2 background 5

1.2 background

We now provide a brief overview of the field and clarify what kind of
approaches fit under our definition of “curriculum learning” in this thesis.

The ideas behind curriculum learning originated in the field of cogni-
tive neuroscience. Inspired by the process of language development in chil-
dren, Elman (1993) was among first advocates for the “importance of start-
ing small” when training artificial neural networks. In this early work,
he trained a simplified language model using a recurrent neural network
(RNN), and showed that the network was only able to learn when the train-
ing process was guided using a curriculum. This idea was later disputed
by Rohde and Plaut (1999, 2003), who showed contradictory results and
argued that in fact, “less is less”. Afterwards, these ideas remained mainly
unexplored until the influential paper of Bengio et al. (2009) that coined the
term curriculum learning and lead the way to a rediscovery of these earlier
ideas, introducing them to the machine learning community. In the next
decade, a multitude of curriculum learning methods were proposed. While
all these approaches attempted to train models to solve problems in order
of difficulty, “from easy to hard”, what was being scored by difficulty and
how the scoring was performed could vary significantly. For example, one
line of work focused on presenting the training examples the model in a
particular order, while the objective function the model is optimizing was
kept fixed throughout training (e.g., Bengio et al., 2009; Jiang et al., 2015,
2018; Wang et al., 2018; Zhou and Bilmes, 2018; Platanios et al., 2019). Other
approaches allowed the learner to see all the training examples through-
out learning, but they made the learning goal of the model incrementally
more difficult with time (Florensa et al., 2017; Saxena et al., 2019; Dogan
et al., 2020; Stretcu et al., 2020). A less explored direction is one that al-
ters the model during training, where the some of the model’s features
could purposefully be disabled to force the model to “start small”. For in-
stance, Elman (1993) trained a simple RNN language model by limiting the
amount of memory the network has in the early stages of training, and al-
lowing it to get larger and larger with every training phase. This was an
attempt to replicate the fact that, when children learn their first language
starting at a few months of age, their brain is simultaneously undergoing
some changes, and their memory and attention span is growing during this
time. Along the same lines, Sinha et al. (2020) proposed a curriculum learn-
ing approach for image understanding that controls the amount of texture
information that a convolutional neural network (CNN) is able to represent
during training.

While all these different learning strategies are intuitive for humans, it is
not entirely clear why curriculum learning would benefit a machine learn-
ing model. In fact, a few publications have reported that anti-curriculum ap-

6 introduction

proaches (i.e., training on hard examples first) sometimes work better than
the reverse (Mermer and Amasyali, 2017). Moreover, in active learning, a
field closely related to curriculum learning, many approaches suggest tack-
ling what can be considered the “hardest” samples first, such as those for
which the model has the highest uncertainty, or those that are closest to
the decision boundary (Fu et al., 2013). These observations, coupled with
the limited amount of theoretical analyses of curriculum learning (Gong
et al., 2016; Weinshall et al., 2018; Hacohen and Weinshall, 2019), raise the
question of whether “easy first” is indeed the right policy.

Moreover, as seen from all examples above, there is no consensus on a
definition of curriculum learning and what objective it should optimize. For
this reason, one of the contributions of this thesis consists of introducing a
formal definition of curriculum learning and its variants, and describing
and comparing existing approaches in terms of a common terminology. We
discuss this next.

2
W H AT I S C U R R I C U L U M L E A R N I N G ?

Curriculum learning can be described informally as a strategy for training
machine learning systems on incrementally more difficult learning tasks,
similar to how we would teach a human. While this idea is intuitive, it is
vague with respect to several aspects. What exactly is a learning task? How
do we define incrementally more difficult tasks and how do we transition
between them? In fact, different approaches in the literature have found
different interpretations of curriculum learning, and it is important to have
a common language to describe and compare them.

In this chapter, we propose some definitions along with some notation
that allow us to define curriculum learning formally. We then use these
definitions to describe several categories of curriculum learning which we
have identified in the field.

2.1 definitions

We start by introducing definitions and terminology that allow us to for-
mally describe existing and proposed curriculum learning methods. To the
best of our knowledge, this is the first attempt to unify all the existing cur-
riculum learning approaches under a common terminology. We then use
this terminology in the next chapter to survey the main lines of work in the
curriculum learning literature.

Consider a learning task where the goal is to learn the function fθ : X→
Y that operates on an arbitrary feature space X, projects to an arbitrary
target domain Y, and has trainable parameters θ. To train f, we are provided
with the training dataset D = {(x1,y1), ..., (xN,yN)} containing N training
examples with xi ∈ X and yi ∈ Y, for i ∈ {1, ...,N}. For simplicity, we denote
the set of training examples as two tensors, X and Y, that contain all of the
training inputs and outputs, respectively, stacked along the first dimension.
Moreover, we denote the marginal probability distribution of the inputs by
P(X), the marginal probability distribution of the labels by P(Y), and the
labels conditional distribution by P(Y|X).

Using this notation, we define a learning task as:

T = {Y,P(Y|X)}, (2.1)

and the input domain it operates on as:

D = {X,P(X)}. (2.2)

7

8 what is curriculum learning?

Notation Description

X input/feature space
Y output/targets space
P(X) inputs marginal distribution
P(Y) labels marginal distribution
P(Y|X) labels conditional distribution
T learning task; T = {Y,P(Y|X)}
D input domain; D = {X,P(X)}
D training dataset; D = {(xi,yi)|i = 1..N}

f prediction function; fθ : X→ Y

θ parameters of function f
L learning context; L = (D,T,D, fθ)

Table 2.1: Summary of notations used in our definitions.

We will refer to all of these components together as the learning context,
denoted as:

L = (D,T,D, fθ) (2.3)

Table 2.1 summarizes these definitions. Let us further ground these def-
initions using a concrete example. Consider an image classification task
where the goal is to classify the main object shown in the image (e.g., such
as in the CIFAR-10 dataset (Krizhevsky, Hinton, et al., 2009)). In this case, X
represents the space of images, Y represents the space of labels, the dataset
D contains example pairs of images and their corresponding labels, and
fθ is the neural network that is trained to solve the task. Moreover, P(X)
represents the probability of each input image to appear in the dataset,
and P(Y|X) represents that probability of a label assignment given an input
image.

Having established our notation, we can now formally define curriculum
learning, as follows:

Definition 2.1. Given a target domain DT and a learning task TT , curricu-
lum learning aims to improve the learning of the target predicting function
fθT operating over DT , using knowledge acquired by learning a series of
K functions, fθ1 ,..., fθK , operating on domains D1, ...,DK and solving tasks
T1, ...,TK, respectively. The domains D1, ...,DK, tasks T1, ...,TK and func-
tions fθ1 ,..., fθK , are typically derived from DT , TT , and fθT , respectively.

Definition 2.2. We refer to the functions fθ1 ,..., fθK as auxiliary functions,
because their sole purpose is to aid the learning of the target function fθT .

We illustrate this definition graphically in Figure 2.1. Note that the cur-
riculum learning literature includes a variety of approaches for deriving
the auxiliary functions, and it is possible, depending on the approach, that

2.2 categorization of curriculum learning methods 9

Target Data

Model

Model

ModelCurriculum

fT

...

Figure 2.1: Graphic illustration of the curriculum learning definition.

either fθ1 = fθ2 = ... = fθK , or T1 = T2 = ... = TK, or D1 = D2 = ... = DK.
In the next section, we categorize existing approaches based on which of
these components are changed and which are kept fixed. Moreover, in or-
der to decide on the sequence of auxiliary tasks, functions and domains,
the method may use various kinds of information:

1. Data properties, such as sentence length (e.g., Platanios et al., 2019),
word frequency (e.g., Bengio et al., 2009), etc.

2. Model properties, such as iteration number, history of validation ac-
curacy, various learning signals (e.g., Graves et al., 2017).

3. Importance of each sample to current model, such as the loss on each
sample in self-paced learning (e.g., Kumar et al., 2010).

4. Domain knowledge directly encoded by the model designer (e.g., in
deciding how to measure the sample difficulty or how to generate the
auxiliary tasks).

2.2 categorization of curriculum learning methods

There are two main dimensions of comparison when discussing curriculum
learning (CL) methods:

I. Learning Context: Different methods may keep fixed or change differ-
ent components of the learning context L = (D,T,D, fθ). Thus, one
way to categorize CL methods is by grouping them in terms of the
components they modify. To this end, we define 3 such categories:

a) curriculum in input space, which modifies the inputs domain, pro-
gressively training the model on domains D1, ...,DK before fi-
nally training it on the target domain DT .

b) curriculum in task space, which modifies the task, progressively
training on tasks T1, ...,TK before training on the target task TT .

c) curriculum in model space, which modifies the learning function,
progressively training the functions fθ1 , ..., fθK before training the
target function fθT .

10 what is curriculum learning?

Model

Loss Function

Sample Input
Data

Sample Output

Predictions

Loss

Modified Model

Model

Loss Function

Sample Input
Data

Sample Output

Predictions

Loss

Curriculum

Model

Loss Function

Sample Input
Data

Sample Output

Predictions

Loss

Modified Output
Curriculum

Model

Loss Function

Sample Input
Data

Sample Output

Predictions

LossCurriculum

Curriculum in Input Space

No Curriculum

Curriculum in Task Space

Curriculum in Model Space

Figure 2.2: A comparison of the main types of curriculum learning approaches.
This illustration is meant to showcase the main characteristics of these three types
of curriculum approaches, but there can be exceptions. For instance, a curriculum
in task space may also produce small modifications to the model architecture (e.g.,
the output layer), to be able to handle the modified targets. Similarly, different
types of curriculum may also modify the loss function.

Figure 2.2 provides an illustration of these categories. Of course, it is
possible for a CL method to modify multiple of the above components
simultaneously (e.g., Saxena et al., 2019), but such approaches are not
common.

II. Human Supervision: Different methods rely to different extents on hu-
man decisions. We can categorize the existing methods based on how
much human effort is required for the creation of the auxiliary tasks,

2.3 comparison with related fields 11

which can range from completely hand-crafted (i.e., a human has to de-
cide what all the components of the learning task are), to completely
automated (i.e., everything is generated automatically). For instance, in
our object recognition example, the user might decide which images
are easy and which are hard based on their own intuition (e.g., im-
ages with fewer background objects are easier), and how exactly the
images will be presented to the learner based on their difficulty. Alter-
natively, the image difficulties, as well as they way they are presented
to the learner, can be automatically inferred from the data, using met-
rics independent of the domain or task at hand (e.g., the difficulty can
be the loss of the model on a particular example).

In the next chapter, use the first criteria of comparison—learning context—
to structure our discussion on existing and proposed curriculum learn-
ing approaches. When discussing each category, we will also mention the
amount of human supervision required for each approach.

2.3 comparison with related fields

Curriculum Learning (CL) is often confused with other learning strategies,
such as transfer learning or continual learning. Therefore, it is useful to
understand the relationships between CL and such other methods. We now
enumerate the closest related fields, and discuss their similarities to and
differences from CL:

• Curriculum Learning (CL): Based on the previous definitions, we can
see CL as a way of pretraining a model on an altered version of the
original learning context before training on the target setup of interest.

• Transfer Learning (TL): Similar to CL, Transfer Learning (TL) is also
a pretraining strategy. However, unlike CL, in TL the pretraining is
typically done using an additional source dataset, whereas CL has no
access to extra data.

• Continual Learning (ContL): Similar to a curriculum in input space,
ContL does not train the model on the whole target dataset at once,
but rather subsets of the data are presented at different points in time.
However, unlike CL, the model is forced to see different slices of the
data at different points in time in a way that not controlled by the
model designer or by a curriculum. Instead, the data flow is controlled
by the outside world, and thus it may not be sorted by difficulty. Ad-
ditionally, the most successful curricula in input space do not slice
the data in non-overlapping batches. As training progresses, they typ-
ically allow the model to sample harder and harder examples, while
always having access to the easier ones. This is not the case for ContL.

12 what is curriculum learning?

Target Data

Model

Continual Learning

Model

Model

Target Data

Labeled

Unlabeled

Unlabeled

Self-Training

Model

Model

Model

self-label part of
unlabeled data

Target Data

label new data based
on model performance

Model

Active Learning

Model

Model

Target Data

Model

Curriculum Learning

Model

ModelCurriculum

Target Data

Model

Task
Generator

additional self-
supervised tasks

Self-Supervised Learning

Source Data

Target Data

Source Domain

Model

Transfer Learning

Target Domain

Model

Figure 2.3: A comparison between curriculum learning and other related learning
strategies.

• Active Learning (AL): Similar to CL, AL also trains a model on in-
crementally more data. However, the goal of AL is very different. AL
typically starts with a few labeled data, and the model asks for labels
for the examples that would be most informative to its learning pro-
cess at that point in time. On the other hand, CL has access to all of
the labeled target dataset from the beginning and can plan on how to
use it, but it cannot ask for more labels or data.

• Self-Supervised Learning (SL): Similar to CL, SL also introduces
some auxiliary tasks whose only purpose is to help the target task
train better. These tasks are also created from altering the target dataset
(e.g. predicting the relative position of image patches in image un-
derstanding (Doersch et al., 2015)). However, unlike CL, SL is not
concerned with establishing the relative difficulties of these auxiliary
tasks and scheduling them from easy to hard.

2.3 comparison with related fields 13

• Self-Training (ST): ST is used in the context of semi-supervised learn-
ing, where the model has access to both labeled and unlabeled data.
The model is trained on the available labeled data and is then used to
make predictions on unlabeled data. Some of these predictions (e.g.,
the most confident ones) are used to self-label some the unlabeled
samples, and the process is repeated. While this bears some similar-
ity to CL, ST does not use the notion of auxiliary tasks, and is not
concerned with scheduling tasks or samples by difficulty.

These comparisons are depicted graphically in Figure 2.3.

3
L I T E R AT U R E R E V I E W

In this chapter, we provide an overview of the field of curriculum learning
since its beginnings. We focus on the motivations behind this idea, which
started in the field of cognitive neuroscience, as well as on the main curricu-
lum learning methods that have shaped the field. We shape the discussions
around the categories of curriculum learning methods identified in Sec-
tion 2.2. We cover methods and ideas proposed in the past three decades.
Since this area now includes hundreds of publications, this survey is not
meant to be exhaustive, but rather will focus on the main ideas that have
shaped the field. We hope that this survey will inform and inspire future
research in curriculum learning and related areas.

This survey consists of the following main components:

• A discussion on cognitive science ideas that have sparked interest
in applying human learning strategies to machine learning systems
(Section 3.1).

• A description of the curriculum learning methods that have shaped
the field and provided inspiration for the approaches that followed,
which we group by category: input space (Section 3.2), task space
(Section 3.3) and model space (Section 3.4).

Note that this survey does not cover curriculum learning approaches for
reinforcement learning (RL), since the work included in the rest of the thesis
focuses on supervised and semi-supervised learning. However, curriculum
learning was shown to be successful in several RL settings (e.g., Florensa
et al., 2017; Narvekar et al., 2017; Svetlik et al., 2017; Fournier et al., 2018;
Sukhbaatar et al., 2018). For more on this, we refer the reader an excellent
blog post providing an overview of curricula for RL, at Weng (2020).

3.1 the early debate between "less is more" and "less is less"

The ideas behind curriculum learning started very early, in the field of cog-
nitive neuroscience, when Newport (1988, 1990) put forward the idea that
children are better able to learn languages than adults because they have
fewer cognitive resources available to them. This inspired Elman, also a psy-
cholinguist, to test this idea using recurrent neural networks. Inspired by
the process of language development in children, Elman (1993) was among
of the earliest advocates for the "importance of starting small" when train-

15

16 literature review

ing artificial neural networks, at least as far as language modeling is con-
cerned. In this work, he trained a simplified language model using a recur-
rent neural network, and showed that the network was only able to learn
when the training process was guided using a curriculum. More specifically,
this curriculum involved 5 stages, where the early stages train the model
only on sentences with a simple grammatical structures, and with every
phase, it transitioned towards more complicated ones1. In our terminology,
this approach contains 5 auxiliary functions, in which the data distribution
P(X) is modified to be biased towards easy sentences first and towards diffi-
cult sentences later, where the difficulty of a sentence was computed based
on a hand-crafted rule.

In contrast to these results, Rohde and Plaut (1999) found using a similar
setup that a language model can achieve similar performance as in the case
of Elman (1993) without “starting small” in terms of data or memory. In
fact, they found that starting small can actually hinder the model perfor-
mance when the learned language is made more realistic by introducing
graded semantic constraints. In a later work (Rohde and Plaut, 2003), the
same authors argue against the “less is more” theory proposed by earlier
research, and provide counter arguments for why this may not be the case
for language modeling. Importantly, while Rohde and Plaut (2003) disagree
about the benefits of curriculum learning in language modeling, they do ac-
knowledge that such an approach might be beneficial in other language
tasks, such as language comprehension—this was later shown to be true by
Bengio et al. (1994), Lin et al. (1998) and others.

In summary, early work on this topic has shown contradictory evidence
regarding the benefits of curriculum learning. It is important to note though
that most of the early work has focused on various language tasks, and the
difficulty of the training examples, as well as the way they were presented
to the learner were predefined by the authors.

3.2 curriculum in input space

This category includes the curriculum learning (CL) strategies that modify
the input domain D = {X,P(X)} of the learning function. These approaches
alter the domain by either changing the input space X in a way that makes
the examples "easier" in some sense (e.g., blur the images), or they change
the distribution P(X) of the training data (e.g., images that are considered
easier have higher probability of being sampled in the beginning of train-
ing). Most existing supervised and semi-supervised CL approaches lie in
this category.

1In the same work, Elman also experimented with increasing the model capacity, which
we discuss in Section 3.4

3.2 curriculum in input space 17

One of the most influential publications on CL in input space, which
provided inspiration for the work that followed, was the work of Bengio
et al. (2009). Although the idea of “starting small” had been put forward
more than a decade before, “curriculum learning” became known under
this name and gained attention in the machine learning community with
this publication. In this work, Bengio et al. considered a formulation of
curriculum learning in which the learning task T and function fθ do not
change, but the input distribution P(X) does. This is done by starting with
a P(X) that puts emphasis only on the easy samples, and slowly transitions
towards the target data distribution, allowing the model to train on more
and more difficult examples. Their results using this strategy suggested that
this type of curriculum regularizes the model, leading to a lower generaliza-
tion error for the same training error, as well as bringing improvements in
convergence speed. The benefits gained with curriculum learning seemed
very promising, but in this case both the sample sample difficulties and the
way the authors changed P(X) with time was manually decided. Therefore,
this left a very important question unanswered: how can we design curricula
for new problems?

This question has been answered in many different ways by the line of
work that followed, which we discuss next. But first, we start by introducing
the main components of curricula in input space, which are present in most
approaches in this category.

3.2.1 The Structure of Curricula in Input Space

The methods proposed by Bengio et al. (2009), as well as the line of work
that followed on curriculum methods in input space, consist of two main
components:

1. Difficulty – each sample is assigned difficulty score, which can be
hand-crafted or computed automatically. Hand-crafted difficulties are
defined by humans based on some properties of the data or prob-
lem at hand (e.g., shorter sentences are considered easier than long
sentences), while automatic difficulties could be based on model per-
formance metrics (e.g., loss function value for that sample).

2. Schedule (or Pacing function) – the sample difficulties are used to
define a schedule which decides when each sample is presented to the
learner. Typically, the samples are scheduled from easy to difficult, but
the schedule needs to specify more precisely at which iteration and
for how long the model can train on a sample. In other words, the
schedule specifies the domain D from which batches of examples are
sampled are at every training iteration. The schedule can be predefined

18 literature review

before training, or it can be computed on the fly and adjusted according
to the progress of the learner.

The work that followed proposed multiple ways of defining the sam-
ple difficulty and schedule. We further categorize input space approaches
based on the level of human-decision making they require, from hand-
crafted curricula, to automated curricula and self-paced learning.

3.2.2 Hand-Crafted Curricula

Hand-crafted approaches often rely on some property of the data or the
specific problem at hand in order to define the sample difficulty scores.
Because of this, we will focus the discussion around different application
areas and problem settings. We include in this category the approaches that
are specific to a single data type (e.g., sentences) or problem setting (e.g.,
noisy or imbalanced data), and would not be as broadly applicable as the
automated approaches discussed later in Section 3.2.3 and Section 3.2.4.

nlp. Hand-crafted difficulty metrics are generally very common in natural
language processing (NLP), where intuitive metrics often work well. Some
common difficulty metrics include sentence length (Spitkovsky et al., 2010;
Platanios et al., 2019), the frequency of words in the training dataset where
the samples containing only very common words are easier (Bengio et al.,
1994; Platanios et al., 2019), and the specificity of the word semantics from
the most semantically generic to the most specific words (Caubrière et al.,
2019). Moreover, when applying curriculum learning to domain adaptation
for neural machine translation, Zhang et al. (2019) estimate the sample dif-
ficulty based on its distance to the in-domain data. In another NLP appli-
cation, Goldberg and Elhadad (2010) perform dependency parsing accord-
ing to a curriculum, starting from easy attachment decisions to harder and
harder ones, instead of simply going left to right.

computer vision. In one of the early attempts to apply curriculum learn-
ing to image problems, Bengio et al. (2009) performed a toy experiment
where the task was to classify geometric shapes into classes. They used as
difficulty the variability of different classes of shapes (i.e., easy classes have
less degrees of variability, occupying a small volume in the input space),
and showed that a simple 2-stage curriculum using this difficulty criteria
was able to generalize better. More recent approaches attempted to discover
curriculum learning approaches that can improve performance on common
benchmark datasets, such as CIFAR-10 or CIFAR-100 (Krizhevsky, Hinton, et
al., 2009). Wu et al. (2021) performed an extensive experimental analysis,
considering 3 types of sample difficulty metrics: loss value of a reference
model on each sample, learned epoch/iteration, and c-score (Jiang et al.,

3.2 curriculum in input space 19

2020). However, their analysis concluded that curriculum learning provides
benefits only in the presence of noisy labels or when the budget of training
iterations is limited, and not in standard training. On the other hand, other
approaches applied to different computer vision problems report more suc-
cess with curriculum learning. For instance, Ionescu et al. (2016) used the
human response time at solving a visual search task as sample difficulty
metric in weakly supervised object localization. This approach requires
extra efforts and costs for collecting human annotations, and so Li et al.
(2017b) proposed to use the agreement between segmentation masks and
detection bounding boxes. Furthermore, Wang et al. (2018) used curricu-
lum learning when training a ranking model for person re-identification,
where they prioritize negative samples based on their distances to the an-
chor when using a triplet loss. Other examples of computer vision applica-
tions where curriculum learning has been successfully applied are medical
images (e.g., Tang et al., 2018; Oksuz et al., 2019) and visual concept learn-
ing (Li et al., 2020).

noisy data . Curriculum learning has also proved to be useful in noisy
data settings. For example, Lotfian and Busso (2019) improved the perfor-
mance of a speech emotion recognition system with a curriculum that uses
the disagreement between human evaluators as measure of difficulty. This
relied on the intuition that samples that are ambiguous for humans are
also ambiguous for the model. Along similar lines, Jiang et al. (2018) used a
curriculum that first focuses samples that are likely to be correctly labeled.
This showed improved performance for image classification problems with
noisy labels. Another similar approach was proposed by Guo et al. (2018b).
The applications mentioned above considered noise in the label space. How-
ever, Braun et al. (2017) successfully used a curriculum when dealing with
noise in the input space. They improved the performance of automatic speech
recognition systems using a simple multi-stage curriculum using the signal-
to-noise ratio of the input as difficulty.

imbalanced data . Wang et al. (2019b) proposed a curriculum learning
approach for handling classification problems with imbalanced data. Their
approach alters the data distribution from imbalanced to balanced, improv-
ing the accuracy on two attribute analysis datasets, CelebA (Liu et al., 2015)
and RAP (Li et al., 2016a).

All in all, this variety of curriculum learning methods and applications
showcases how curriculum learning can have a broad impact across many
areas of machine learning, and how intuitive difficulty metrics often work
well. Of course, ideally we should not rely on human intuition for defining
the curriculum, both because it may be hard to propose relevant difficulty
metrics for certain applications, and because difficulties based on human in-

20 literature review

tuition may not be optimal. Thus, we next discuss approaches that attempt
to define the curriculum automatically.

3.2.3 Automated Curricula

Automated curriculum learning methods aim to learn a curriculum along
with the model parameters, which would require less human decision-
making. There have been efforts to automate both the choice of difficulty
metric and the pacing function, in a way that makes them more generally
applicable to more problem settings and data types.

In one line of work, Graves et al. (2017) introduced a non-stationary multi-
armed bandit algorithm for determining the curriculum. The algorithm is
provided with signals about the learning efficiency of the model (e.g., the
rate of increase in prediction accuracy, the rate of increase in network com-
plexity), and predicts the distribution of the data from which to sample the
next batch of training samples. This strategy was able to accelerate learning
for a language modeling problem and the bAbI dataset (Weston et al., 2016).

A common strategy for designing automated curriculum methods is us-
ing a teacher-student architecture. Such approaches formulate learning as
an interaction between a “student” model and a “teacher” model. The stu-
dent is the model whose parameters we aim to optimize, and the teacher is
an auxiliary network that assists the student network in order to improve
its learning process. In terms of our notation in Section 2.1, the teacher
is a trainable model that outputs the training data distribution P(X) for
the student model at each step during the student’s training process. For
example, Matiisen et al. (2019) proposed a teacher-student approach, in
which a teacher model gives tasks to a student model, while also learn-
ing what makes makes the student learn better. The tasks were prioritized
such that the student model would make the fastest progress (i.e., those
tasks with the steepest learning curve), while at the same time the student
revisited already learned tasks that were being forgotten (i.e. those whose
learning curve slope is negative). The framework was formulated as a par-
tially observable Markov decision process (Kaelbling et al., 1998), where the
reward is the change in a performance criterion (i.e., the improvement in
learner’s performance) from one step to the next. This method was applied
on two different kinds of applications: learning to add decimal numbers
with LSTMs (Hochreiter and Schmidhuber, 1997) and learning to navigate
in a Minecraft environment. The tasks from which the teacher had to choose
were manually defined: in the addition experiment, the tasks correspond to
the number of digits in the operands that the student needs to learn to add;
in the Minecraft experiment, the tasks are different mazes in which the
agent needs to learn to navigate. Along similar lines, Fan et al. (2018) pro-
posed a teacher-student method in which a reinforcement learning agent

3.2 curriculum in input space 21

teacher decides the data, loss function, and hypothesis space to train a stu-
dent model. The teacher is updated using reward signals from the student
(e.g., the accuracy on a validation set). This strategy was shown to achieve
almost the same accuracy as a baseline without curriculum on benchmark
image datasets, using less training data and fewer training iterations. More-
over, the work of Jiang et al. (2018), which discussed earlier in the context of
noisy data, is also a teacher-student approach where the teacher provides
the sample weights for training a student model.

It is important to note that the teacher-student curriculum learning meth-
ods are closely related to “machine teaching” (Zhu, 2015; Liu et al., 2017;
Zhu et al., 2018), which also relies on the interaction between a teacher
and a student model, but goal is different. In machine teaching, the goal
is generally to select a minimal subset of training data (or other measures
of “teaching effort”) that enough to train an accurate student model fast.
In such cases, there is often a trade-off between student performance and
teaching effort. Moreover, a common assumption in machine teaching is
that the teacher already knows the optimal model parameters, and tries to
guide the student guide the student towards these by examples. However, in
curriculum learning the teacher does not know the optimal solution, and
the cost associated to using all the training data not considered. Instead, the
emphasis lies on how to schedule the training data to improve the perfor-
mance of the learner.

3.2.4 Self-Paced Learning

Self-Paced Learning (SPL) is a line of work inspired by curriculum learning,
but which challenges the idea that sample are universally “easy” or “hard”.
Instead, in SPL the difficulty of the sample depends on the model chosen
to solve this task and also, importantly, on the current knowledge of the
learner. Thus, the curriculum should not be defined a priori before starting
to train the model, but it should adapt to the current capabilities of the
model. This direction has become known as “self-paced learning” (SPL), after
the work of Kumar et al. (2010).

Since this work has been the inspiration for a long series of self-paced
learning methods, we discuss the proposed idea in more detail. To allow
the model to choose its own “pace”, Kumar et al. (2010) considered that the
difficulty of the samples at a particular step during training should be given
by the how difficult it is for the model to predict its target output correctly
at that point during training. Concretely, the difficulty of a training example
i at a particular step t during training is defined as the loss value for sample
i, using the current estimation of the function parameters θ (e.g., this could
be the mean squared error between the predicted value and the true value).
This idea is formulated using a latent variable model whose parameters are

22 literature review

optimized jointly with the curriculum using the following mixed-integer
program:

(θ∗, v∗) = arg min
θ∈Rd,v∈{0,1}N

(
r(θ) +

N∑
i=1

viL(f(xi,yi; θ),yi) −
1

K

N∑
i=1

vi

)
(3.1)

where f, x,y,N and θ are defined in Section 2.1, L is a loss function, r(.) is
a regularization function, K is a weight that determines the number of sam-
ples to be considered at the current training step, and vi is a variable that
specifies whether sample i is easy enough to be included in training at step
t. The optimization problem is solved using an alternative search strategy.
In a first stage, the parameters θ are fixed and Equation 3.1 is solved for
v. The solution can be computed in closed form: vi = δ(f(xi,yi; θ) < 1

K),
where δ(.) is the indicator function. In the second stage, v is fixed and
Equation 3.1 is solved for θ. The value of K is decreased with every iter-
ation, such that when K approaches 0, all samples are included in train-
ing. In terms of our definitions from Section 2.1, Kumar et al.’s approach
to self-paced learning modifies the training data domain by altering P(X)
with every iteration of training. At every iteration, P(X) assigns probability
0 to the samples considered difficult, and distributes the probability mass
uniformly among the samples considered easy. By increasing K iteratively,
P(X) approaches a uniform distribution. The authors tested their approach
using a latent structural Support Vector Machines (SVM) model on four
types of problems (object localization, noun phrase co-reference, motif find-
ing and handwritten digit recognition), and showed improvements in the
final performance and the number of iterations it took the model to reach
that performance.

An important observation is that in self-paced learning, the notion of
sample difficulty is dynamic (i.e., it is not fixed at the beginning of training,
but it changes with time) and is in some sense independent of the problem
at hand (i.e., signals such prediction confidence or loss do not depend on
the nature of the data). However, the way in which the sample difficulties
are used is more or less predefined, and is not adjusted depending on the
progress of the learner.

Building on the work of Kumar et al. (2010), Jiang et al. (2014b) proposed
an improvement to self-paced learning based on the intuition that the cur-
riculum should not only prioritize easy samples, but it should also ensure
some amount of “diversity” in the examples presented to the learner. This
is implemented using an additional regularization term in the loss func-
tion that encourages the curriculum to select samples that belong to differ-
ent clusters. The sample clustering is done one before training, using any
clustering algorithm (in the paper, the authors use k-means and spectral
clustering). The proposed approach was evaluated on three datasets: a mul-

3.2 curriculum in input space 23

timedia event detection dataset and two video action recognition datasets.
The results reported by Jiang et al. (2014b) show improvements over the
SPL approach of Kumar et al. (2010) in terms of final performance.

Moreover, Jiang et al. (2015) pointed out that both hand-crafted curricula
and SPL have their advantages and disadvantages. On one hand, a hand-
crafted curriculum (e.g. using sentence length as difficulty score) is rigid
and does not adapt to the current knowledge of the learner, but it allows
us to incorporate domain knowledge into the curriculum. On the other
hand, SPL is adaptive to the progress of the learner, but under the formu-
lations of Kumar et al. (2010) and Jiang et al. (2014b), it does not provide a
way to utilize any domain knowledge. To mitigate these issues, Jiang et al.
(2015) proposed a model that combines the benefits of the two approaches,
by modifying the objective function in Equation 3.1 to incorporate prior
knowledge. This method was tested on a matrix factorization dataset and
a multimedia event detection dataset, and showed boosts in performance
and convergence speed compared to the baseline curriculum learning and
SPL methods.

Several other approaches have been proposed, which we describe briefly.
Li et al. (2016b) aimed to overcome the sensitivity to initialization of other
SPL methods by introducing a multi-objective formulation, and using an
evolutionary algorithm to optimize the two objectives simultaneously. Zhang
et al. (2015) proposed a modification to the SPL with diversity method of
Jiang et al. (2014b) by using a norm that is easier to optimize, and applied
it to co-saliency detection. Avramova (2015) provided some interesting in-
sights into the types of samples that a model finds easy or hard as train-
ing progresses, when training a convolutional neural network using SLP
or SPL with diversity. Fan et al. (2017) pointed out a limitation of the SPL
approaches described so far. All these approaches can expressed using the
following common formulation:

(θ∗, v∗) = arg min
θ∈Rd,v∈{0,1}N

(
r(θ) +

N∑
i=1

viL(f(xi,yi; θ),yi) + g(λ, vi)

)
(3.2)

where g(λ, vi) that depends on the specific SPL method of choice, λ is a
parameter that controls the learning pace (corresponding to 1

K in Equa-
tion 3.1), and the rest of the terms have the same interpretation as in Equa-
tion 3.1. As Fan et al. (2017) pointed out, the specific form of the regularizer
g(λ, vi) needs to be specified explicitly, and choosing it manually might re-
sult in sub-optimal results. Thus, Fan et al. (2017) proposed an implicit
regularizer whose minimizer function can be derived based on convex con-
jugacy, using the dual of a robust loss function. For details, we refer the
reader to the original publication. Results on three types of problems (ma-

24 literature review

trix factorization, clustering and classification) show improvements in per-
formance compared to SPL methods that use explicit regularizers.

Inspired by the SPL methods described so far, several other approaches
have been introduced that adapt these techniques to specific problem set-
tings. For example, Zhao et al. (2015) adapted the SPL method proposed
by Kumar et al. (2010) for the task of matrix factorization. This idea was in-
spired by Kumar et al. (2010), but the authors proposed a different version
of the self-paced regularizer g(.) in Equation 3.2, which allows the sam-
ple weights to take “soft” (continuous) values, as opposed to the “hard”
(binary) sample weighting used by Kumar et al. (2010).

Similarly, Xu et al. (2015) also proposed a soft SPL approach for a differ-
ent application, multi-view clustering. In this setting, each sample is repre-
sented though multiple sets of features (i.e. views), but the goal is to create
a clustering that is unique across all views. In this case, Xu et al. (2015)
assigned the notions of easy and hard not just to samples, but also to views.
Moreover, they also redefined the regularizer g(.) in Equation 3.2 to allow
for “soft” sample weights.

Along the same lines, Jiang et al. (2014a) also introduced a modification
of the SPL method of Kumar et al. (2010), adapted for multimedia retrieval.
Their approach focused on the task of reranking search results using multi-
ple data modalities. Therefore, SPL was adapted to weigh not only samples,
but also different modalities. Moreover, similar to the approaches before,
Jiang et al. (2014a) also proposed a “soft” SPL version.

Ma et al. (2017) proposed a SPL strategy for co-training. In this setting,
two classifiers are trained on different views of the same data and provide
each other labels for the unlabeled data. Similar to the SPL of Kumar et al.
(2010), the training examples are allowed in the training process based on
their current loss. Each classifier has its own binary vector indicating which
samples are easy enough to be currently considered for training (i.e., those
for which the corresponding loss value is lower than a threshold), but the
two vectors are encouraged to be similar through an additional loss term
added to the objective function.

Other more applied approaches propose more problem-specific versions
of SPL. For example Sangineto et al. (2019), Supancic and Ramanan (2013),
and Lee and Grauman (2011) defined sample difficulty measures that de-
pend on image properties relevant to the problem at hand (e.g., an image
region’s difficulty score depends on the predictions made for the regions
around it), but these methods are self-paced in the sense that the model
trained so far is used to re-estimate the sample difficulties during training.

3.2 curriculum in input space 25

3.2.5 Comparison

Given the multitude of curriculum learning approaches in input space, it
would be useful to compare and understand the pros and cons of these
methods, in order to understand which one to use in different settings.
While we do not run experiments to conduct such a comparison in this
survey, we refer the reader to a couple of publications that have conducted
such analyses.

Collier and Beel (2018) provide an empirical comparison of several cur-
riculum learning schedules applied to training a LSTM (Hochreiter and
Schmidhuber, 1997) on three synthetic sequence learning tasks: (1) Copy
– the LSTM needs to memorize a sequence and retrieve it from memory;
(2) Repeat Copy – same as Copy but the sequence has to be repeated k

times, where k is specified at the end of the input; and (3) Associative
Recall – the model needs to retrieve an item, conditioned on a provided
query. The curriculum is defined as a time-varying distribution over the
training data. In other words, every phase of the curriculum changes P(X)
such that every phase only considers sequences of a specific length, which
grows with time. The tested curricula include: Naive (the model is shown
only examples from the current domain), Look Back (the model is shown
only examples from the current and past domains), Look Back and Forward
(the model is shown only examples from past, current and future domains,
with more weight in the current domain), None (no curriculum), Uniform
(sample uniformly from all domains), and Prediction Gain (as defined by
Graves et al. (2017)). For details on the problem setting and the curricula,
we refer the readers to Collier and Beel (2018). Their analysis found that
including examples from previous domains (i.e. shorter sequences) is crit-
ical in preventing catastrophic forgetting, while including examples from
future domain (i.e. longer sequences) is also helpful in increasing conver-
gence speed. Prediction Gain performed competitively to the Look Back
and Forward approach.

Moreover, Cirik et al. (2016) compare the effect of curriculum learning on
the LSTM internal representation on two sequence prediction tasks: a digit
summation task and a sentiment analysis task. In the first task, the LSTM
is presented with a sequence of digits as input, and it needs to learn to add
them and output their sum. The second is a sentiment classification task.
In all cases, the sample difficulty is defined as the length of the input sen-
tence. Three curricula are considered, corresponding to the Naive and Look
Back approaches of Collier and Beel (2018), as well as a curriculum where
each epoch visits all the examples in the order of difficulty. The results sug-
gest that curriculum learning is not always beneficial, and it seems to bring
some advantages compared an LSTM trained without curriculum only in
certain conditions: when the training data is limited, or when the model ca-

26 literature review

pacity (i.e., here the hidden size of the LSTM) is low. Out of the considered
curricula, the Look Back approach works best, whereas the Naive approach
even hurts performance for a large model and larger dataset. An interest-
ing result is shown by observing the predicted sentiment as each word of
an input sentence is presented to the model sequentially. The predictions
of the Look Back curriculum are the most consistent with what a human
would predict.

More recently, Wu et al. (2021) tried to answer the question “When do cur-
ricula work?” and conducted an extensive experimental analysis compar-
ing different forms of curriculum, anti-curriculum, and random-curriculum.
Their analysis performed on image classification datasets (e.g., CIFAR-10,
CIFAR-100 (Krizhevsky, Hinton, et al., 2009)) concluded that “curriculum,
but not anti-curriculum can indeed improve the performance either with
limited training time budget or in existence of noisy data”. Note that this
is not necessarily the case in our later experiments in Chapter 4 where we
apply curriculum learning to sequential data.

3.3 curriculum in task space

Curriculum learning in task space refers to those approaches that operate
on the learning task T = {Y,P(Y|X)}. In this section, we consider only meth-
ods targeted at learning a single task by modifying T. We also discuss the
multitask learning case in Chapter 5, where the goal is to train a system to
perform well on multiple such T1, T2, etc.

Perhaps surprisingly, this category contains only a handful of methods.
Saxena et al. (2019) proposed an approach targeted at classification prob-
lems, in which they introduce a class-specific parameter for each class in
the dataset. The class parameters are learned together with the model pa-
rameters. When making predictions on a particular sample during training,
the predicted logits are scaled by the corresponding class parameter. This
has the effect of decaying the gradient with respect to the misclassified
classed, thereby accelerating learning. They applied their method to image
classification and object detection, reporting improvements in accuracy es-
pecially when the labels are noisy.

Moreover, Dogan et al. (2020) also proposed an approach targeted at clas-
sification problems, which is based on the label similarity. During training,
the class labels that the model is supervised with are modified: instead of
using a 1-hot vector for the true class, they use a probability distribution
over classes, assigning a non-zero probability weight to classes that are sim-
ilar to the true class. The label similarities come from prior knowledge (e.g.,
when the labels are word, they use the distance in word embeddings as sim-
ilarity). As training progresses, the target distribution is shifted towards the
1-hot encoding of the correct label. This method is also evaluated on image

3.4 curriculum in model space 27

classification tasks and reports accuracy improvements, especially in the
low data regime.

Along similar lines, Ganesh and Corso (2020) propose another curricu-
lum approach in the label space of a classification method. This method in-
crementally increases the number labels considered by the classifier, while
always using the entire dataset during training. This is achieved by replac-
ing the original correct label with a pseudo-label that is shared by multiple
classes. As the model is being trained, the correct labels are incrementally
revealed, finally converging to the original label distribution. The approach
is also evaluated on image classification datasets.

Aside from these approaches, we also propose other curriculum learning
methods in task space in Chapter 5.

3.4 curriculum in model space

This type of curriculum is different than the approaches described earlier,
since the inputs and targets of the model stay fixed throughout learning.
The change brought about by the curriculum takes place in model space,
meaning that the auxiliary functions f1, f2, ..., fK defined in Section 2.1 mod-
ify the architecture of the model, while, in this case, the tasks T1 = T2 =

... = TK and the input domains D1 = D2 = ... = DK are left unchanged
(unless we combine it with other forms of curriculum learning). Curric-
ula in model space are perhaps the sparsest category of curriculum learn-
ing methods, with only a handful of publications. However, other learning
strategies, that were not originally intended as curriculum learning, in fact
train a model in order of difficulty, and thus can also be seen as forms of
curriculum learning in model space. We review these methods next.

In the same seminal work of Elman (1993) discussed in Section 3.2, the
author proposes another approach of aligning learning in humans with
learning in machines. It is well known in neuroscience that in the early
stages of development, children have limited memory and attention span,
which then grow with time as the brain develops (Kail, 1990). Elman tried
to replicate this process with recurrent neural networks (RNN) by limiting
the amount of memory the network has in the early stages of training, and
allowing it to become larger and larger with every training phase. This was
done by limiting the RNN to propagate information only from the previous
3-4 words initially, then 4-5 words, and so on. The results showed that
the network trained in this manner performed better than the one trained
without a curriculum, and on par with the input space strategy described
in Section 3.2.

More recently, Sinha et al. (2020) proposed a curriculum learning method
in model space targeted at convolutional neural networks (CNNs). Their
work is motivated by the observation that CNNs are biased towards ex-

28 literature review

tracting high-frequency (texture) information, and often fail to take advan-
tage of the low-frequency (shape) information (Geirhos et al., 2019). Thus,
Sinha et al. (2020) propose a curriculum learning approach that controls the
amount of texture information that the model is allowed to represent dur-
ing training, by convolving the output of each CNN layer with a Gaussian
kernel, which acts like a low-pass filter. The standard deviation of the Gaus-
sian kernel is reduced as training progresses, thus allowing more and more
texture information to pass through. Their results show improvements in
accuracy on several image datasets and several CNN architectures.

Moreover, Morerio et al. (2017) propose a different take on curriculum
learning in model space: they modify the amount of dropout applied to the
model during training according to a curriculum, increasing the amount
of neurons that are dropped out layer-wise. This method is shown to im-
prove performance on standard image classification datasets. This strategy
can also been interpreted as a curriculum in model space, since dropout
essentially changes the function fθ being learned.

There are also other areas in machine learning which can be seen as ver-
sions of curriculum learning in model space. For example, continuation
methods, also known as graduated optimization (Hazan et al., 2016), in-
crementally change the loss function during training, in a smooth-to-sharp
manner. Smoothing the loss landscape early on during training aims to
facilitate the learning of highly non-convex loss functions. Another type
of category of methods related to curricula in model space are the layer-
wise pretraining strategies in deep learning (Bengio et al., 2007). Neural
networks that are very deep often benefit from training layer-by-layer, by
starting with a small number of hidden layers and successively adding a
new layers and refitting the model. This can be seen as a curriculum in
model space, because the learning function fθ is progressively changed
during training.

4
C U R R I C U L U M I N I N P U T S PA C E

As discussed in Section 2.2, one of the main categories of curriculum learn-
ing approaches consists of methods that modify the domain of the inputs
presented to the model during training. This is most commonly done by
changing the distribution of the training data, such that examples that are
considered easier have higher probability of being sampled in the begin-
ning of training. Most existing CL methods for supervised learning lie in
this category, and some representative examples include the work of Ben-
gio et al. (2009), Kumar et al. (2010), Spitkovsky et al. (2010), Jiang et al.
(2015), Graves et al. (2017), Jiang et al. (2018), Zhou and Bilmes (2018), and
Platanios et al. (2019).

In order to prioritize the samples by difficulty as training progresses,
these approaches typically consist of two main components:

– Difficulty Function: each method needs to provide a means of assign-
ing difficulty scores to each training sample. This can be hand-crafted
or computed automatically. Hand-crafted difficulty functions are de-
signed by humans based on some properties of the data (e.g., shorter
sentences are considered easier than long sentences), while automat-
ically computed difficulties could be based on model performance
metrics (e.g., loss function value for that sample).

– Pacing Function (i.e., Schedule): the sample difficulties are used to
define a schedule which decides when each sample is presented to
the learner. Typically, the samples are scheduled from easy to diffi-
cult, but the pacing function needs to specify at which training step
and for how long the model can train on a sample. In other words,
the pacing function specifies the domain D from which batches of
examples are sampled at each training iteration. The schedule can be
predefined before training, or it can be computed on the fly and adjusted
according to the progress of the learner.

Existing approaches cover multiple ways of defining the sample difficulties
and pacing function.s However, despite the progress made in the literature
in the last few years, defining good difficulty measures that work across dif-
ferent data domains is still an open question. We covered some of the most
popular approaches in Section 3.2. However, for the applications included
in this chapter, we found that intuitive hand-crafted difficulty measures in
fact work very well. For example, sequence length worked well across all ap-
plications where the inputs are sequences (e.g., natural language sentences,

29

30 curriculum in input space

sequences of digits for learning arithmetic, etc.). In Chapter 6 we provide
an explanation for why this is the case. On the other hand, what had a big
impact on our results was the way we processed the difficulties (from the
original values which may be discrete and not evenly spaced), as well as
the pacing function that decides when to show samples of a particular diffi-
culty to the model. In the next section we propose a new generic curriculum
learning framework, that can take any measures of sample difficulty (e.g.,
sentence length, number of objects in image, etc.) and provide a schedule
for the model trainer.

We successfully applied the proposed framework to multiple applica-
tions, on various types of data. In Sections 4.2, 4.3, 4.4, and 4.5 we discuss
these applications, along with their corresponding sample difficulties. We
consider incrementally more difficult problems, starting with a few simple
synthetic problems, such as learning to add two numbers using a recurrent
neural network, and leading to some real-world applications such as neu-
ral machine translation using Transformers (Vaswani et al., 2017). Table 4.1
provides a summary of our applications and their corresponding curricula.

Application Models Difficulty Function Pacing Function
Addition digit-by-digit RNNs Number of digits Square Root
Learning arithmetic with
seq2seq models seq2seq LSTMs,

Transformer
Sequence Length Square Root

Neural Machine Translation seq2seq LSTM,
Transformer

Sentence Rarity,
Sentence Length

Linear,
Square Root

Multimodal Language
Understanding CNN-LSTM Number of Ob-

jects in Image
Square Root

Table 4.1: Overview of our applications using input-space curricula, and their cor-
responding difficulty and pacing functions.

Note that some of these applications will be recurring in this thesis. We
also use them when discussing curricula in task space in Chapter 5, and in
our analysis of curriculum learning in Chapter 6.

4.1 a generic curriculum learning framework 31

4.1 a generic curriculum learning framework

We propose competence-based curriculum learning, a training framework based
on the idea that training algorithms can perform better if training data is
presented in a way that picks examples appropriate for the model’s current
competence. This algorithm was first introduced in our NAACL paper (Pla-
tanios et al., 2018), which was tackling the topic of machine translation, but
the framework itself is generic, meaning that it can be applied to any kind of
data, as long as we can define a difficulty measure for each training sample.
For ease of discussion, when introducing our framework, we use sequence
length as difficulty metric, but the method does not depend on it.

Our approach is based on two key concepts:

– Difficulty: A value that represents the difficulty of a training sam-
ple. For example, sentence length is an intuitive difficulty metric for
natural language processing tasks. However, the difficulty scores can
take any values; the only constraint is that they are comparable across
different training samples (i.e., the training samples can be ranked ac-
cording to their difficulty).

– Competence: A value between 0 and 1 that represents the progress of
a learner during its training. It is defined as a function of the learner’s
state. More specifically, we define the competence c(t) of a learner
at training step t as the proportion of training data it is allowed to
use at that time. The training examples are ranked according to their
difficulty and the learner is only allowed to use the top c(t) ratio of
them at step t.

They key idea of our approach is based on the balance between the diffi-
culty and competence: at every step during training, an example from the
dataset can be shown to the model only if the difficulty of the sample is less
than the competence of the model. More precisely, we propose the following al-
gorithm, which we refer to as competence-based curriculum learning. At each
training step:

(i) the current competence of the model is computed,

(ii) a batch of training examples is sampled uniformly from all training
examples whose difficulty is lower than that competence.

Note that, at each training step, we are not changing the relative proba-
bility of each training sample under the input data distribution, but we are
rather constraining the domain of that distribution, based on the current
competence of the learner. Eventually, once the competence becomes 1, the
training process becomes equivalent to that without using a curriculum,

32 curriculum in input space

CURRICULUM LEARNING

DIFFICULTY

Use sample only if:
difficulty(sample) ≤ competence(model)

COMPETENCE

MODELTRAINER
DATA

SA
M
PL

E

M
O
D
EL

STATE

Figure 4.1: Overview of the proposed curriculum learning framework. During
training, the difficulty of each training sample is estimated, and a decision whether
to use it is made based on the current competence of the model.

with the main difference being that the learner should now be more capa-
ble to learn from the more difficult examples. A high-level overview of this
algorithm is illustrated in Figure 4.1, an example visualization of the first
two steps is shown in Figure 4.3, and an example of the interaction between
difficulty and competence is shown in Figure 4.2.

There are two decisions that still need to be made:

1. If the difficulty is a hand-crafted metric, how do we make sure the
difficulty and competence are comparable?

2. How do we set the competence per training step?

We address the first question by converting the sample difficulties to
the [0, 1] spectrum, in a way that is compatible with the competence. We
describe how we can convert an arbitrary difficulty measure in Section 4.1.1.
As we mentioned earlier, the competence is already defined between [0, 1],
but we still need to define how the competence changes with time during
training. We propose several pacing functions in Section 4.1.2. Finally, we
put all the pieces together and present our full algorithm in Section 4.1.3.

4.1.1 How can we make sample difficulties comparable to model competence?

As described earlier, the competence refers to the ratio of the training data
that the learner is allowed to use at a particular training step. Of course,
from a curriculum learning perspective, a percentage of x% of data will
refer to the easiest x% of the training set. As such, we convert the sample
difficulties from arbitrary values (e.g., sentence lengths, number of objects
in image) to their corresponding percentiles—numbers between 0 and 1

which represent the relative difficulty of that sample compared to all other
samples in the dataset.

4.1 a generic curriculum learning framework 33

Difficulty
Step 1000

Competence

Competence at current stepSample uniformly from
blue region

Step 10000

Figure 4.2: Illustration of the training data “filtering” performed by our algorithm.
To showcase this idea, here we used the preprocessed data from our machine trans-
lation experiments in Section 4.4, with sentence length as measure of difficulty.

We do this using using the strategy displayed in Figure 4.3, where we
first calculate the histogram for all difficulty values. Then, we convert the
histogram into a cumulative distribution function (CDF), and replace each
difficulty with its corresponding position in the CDF.

4.1.2 How do we define the model competence?

A competence function dictates how the competence of the model, c(t),
changes with time, which reflects how fast we introduce more and more
difficult examples to the learner. In this work, we propose two simple func-
tional forms for c(t) and justify them with some intuition. More sophisti-
cated strategies that depend on the loss function, the gradient, or on the
learner’s performance on held-out data, are possible, but we do not con-
sider them in this line of work.

linear : This is a simple way to define c(t). Given an initial value c0 ,
c(0) > 0 and a slope parameter r, we define:

c(t) , min (1, tr+ c0) (4.1)

34 curriculum in input space

0 100
0

1

0.5CD
F

sentence length

0 100

0.04

sentence length

fre
qu

en
cy

0.0

Thank you very much! 4
Joe Biden decided ... 13
My name is ... 6
What did she say ... 123

Sentence Length

Thank you very much! 0.01
Joe Biden decided ... 0.15
My name is ... 0.03
What did she say ... 0.95

Sentence Difficulty

Figure 4.3: Visualization of the difficulty preprocessing strategy of our algorithm.
Here we use an as example sentence length as the difficulty function. “CDF” stands
for the empirical “cumulative density function” obtained from the histogram on
the top.

In this case, new training examples are constantly being introduced dur-
ing the training process, with a constant rate r (as a proportion of the to-
tal number of available training examples). Note that we can also define
r = (1− c0)/T , where T denotes the time after which the learner is fully
competent, which results in:

clinear(t) , min
(
1, t
1− c0
T

+ c0

)
. (4.2)

root : In the case of the linear form, the same number of new and more
difficult, examples are added to the training set, at all times t. However, as
the training data grows in size, it gets less likely that any single data exam-
ple will be sampled in a training batch. Thus, given that the newly added
examples are less likely to be sampled, we propose to reduce the number
of new training examples per unit time as training progresses to give the
learner sufficient time to assimilate their information content. More specif-
ically, we define the rate in which new examples are added as inversely
proportional to the current training data size:

dc(t)

dt
=

P

c(t)
, (4.3)

4.1 a generic curriculum learning framework 35

0 200 400 600 800 1000

0.2

0.0

0.4

0.6

0.8

1.0

clinear
csqrt
croot-3
croot-5
croot-10

co
m

pe
te

nc
e

training step

Figure 4.4: Examples of various competence functions with initial competence
value c0 = 0.01 and total curriculum duration T = 1, 000.

for some constant P > 0. Solving this differential equation, we obtain:∫
c(t)dc(t) =

∫
Pdt⇒ c(t) =

√
2Pt+D, (4.4)

for some constants P and D. Then, we consider the following constraint:
c0 , c(0) =

√
D ⇒ D = c20. Finally, we also have that c(T) = 1 ⇒ P =

(1− c20)/2T , where T denotes the time after which the learner is fully com-
petent. This, along with the constraint that c(t) ∈ [0, 1] for all t > 0, results
in the following definition:

csqrt(t) , min

1,
√
t
1− c20
T

+ c20

 . (4.5)

In our experiments, we refer to this specific formulation as the “square
root” competence model. If we want to make the curve sharper, meaning
that even more time is spent per sample added later on in training, then we
can consider the following more general form, for p > 1:

croot-p(t) , min

1, p

√
t
1− cp0
T

+ cp0

 . (4.6)

We observed that best performance is obtained when p = 2 and then, as we
increase the value of p, the performance converges to that obtained when
training without a curriculum. Plots of the presented competence functions
are shown in Figure 4.4.

36 curriculum in input space

4.1.3 Algorithm

Putting the pieces together, Algorithm 4.1 presents our entire method, end-
to-end. In the next sections we show applications of this algorithms to vari-
ous machine learning problems, and using different data modalities.

Algorithm 4.1: Competence-based Curriculum Learning

Inputs : Dataset, D = {si}
N
i=1, consisting of N examples.

Model trainer, that uses batches of training data for each
update.

Difficulty scoring function, d.
Competence function, c.

1 Compute the difficulty, d(si), for each si ∈ D.
2 Compute the cumulative density function of the difficulty scores.

This results in a relative difficulty score per example, d(si) ∈ [0, 1].
Illustrated in Figure 4.3.

3 for training step t = 1, . . . do
4 Compute the model competence, c(t).
5 Sample a data batch Bt uniformly from all si ∈ D, such that

d(si) 6 c(t). Illustrated in Figure 4.2.
6 Invoke the trainer using Bt as input.

Output: Trained model.

4.2 addition digit-by-digit with recurrent neural networks 37

4.2 addition digit-by-digit with recurrent neural networks

For our first application, we attempt a simple synthetic experiment: we
teach a neural network how to add two numbers, digit by digit. While this
problem in itself is not of practical interest, it provides an excellent setting
for studying curriculum learning, for multiple reasons:

• We can generate arbitrarily large datasets, since the domain of the
inputs is infinite, and we know how to compute the target answer
for any pair of inputs. This gives us the opportunity to see how the
benefits of curriculum learning vary with the amount of training data.

• Due to the sequential nature of the data, we can test the model’s abil-
ity to extrapolate beyond the training distribution (with and without
curriculum learning), on sequences that are longer than what it has
been trained on. This can provide us with insights that are beneficial
to a wide range of application areas, from language, signal processing,
finance data, or any kind of sequential data.

• We know how humans are taught to do it, which gives us an intuitive
difficulty metric. Children are taught to add two numbers starting
with numbers with 1 digit, then 2, then 3, and so on. While humans
and machine learning models may find different types of examples
difficult, trying a length-based curriculum for this setting seems like
a reasonable approach to attempt (more on this in Chapter 6).

To allow for numbers of arbitrary length, we use a recurrent neural net-
work architecture, that takes as input at every time step a pair of digits from
the two operands—starting with the least significant digits—and outputs
the corresponding digit of their sum. The final result consists of concatenat-
ing the output of the network at all time points, in reverse. This process is
illustrated in Figure 4.5.

4.2.1 Data

We generate training samples, each example consisting of two input operands
(i.e. the two numbers we want to add), and their sum will constitute the tar-
get output. All operands have between 1 − 5 digits, and thus their sums
have 1 − 6 digits, accounting for a possible carry at the most significant
digit position. The data we is sampled as follows: (i) First we sample the
number of digits for each operand, uniformly from {1, 2, 3, 4, 5}. (ii) For each
operand, given a number of digits k, we sample uniformly k digits. This
sampling strategy is aimed to help the baseline model trained without cur-
riculum, by making sure that all number lengths are equally represented in

38 curriculum in input space

RNN

0 0

1

RNN

0

9 0

RNN

2

6 5

RNN

2

3 9

9634 + 592 = 10226

RNN

4 2

6

Figure 4.5: A recurrent neural network (RNN) performing addition digit by digit.
We align the digits of the two operands, and we present the network pairs of digits
step-by-step, starting with the least significant digits. For every pair of input digits,
the network outputs the corresponding digit of the result. The carry needs to be
expressed through the hidden state of the network.

the data. Using this sampling process, we generate 3 training datasets of dif-
ferent sizes, containing N ∈ {500, 1000, 5000} instances, in order to compare
how curricula perform with different amounts of data.

We also generate two test datasets of 1000 samples each, sampled from
two different data distributions:

• an interpolation dataset, which contains 1000 examples sampled from
a distribution similar to the training distribution, containing operands
with 1-5 digits, and which have been held out from training.

• an extrapolation dataset, which contains 1000 examples sampled from
a distribution that is different from the training distribution, and
which contains operands with 6-10 digits.

4.2.2 Models and Training

We use a Long Short-Term Memory (LSTM) network (Hochreiter and Schmid-
huber, 1997) which takes as input at every time step a pair of digits repre-
sented as floating point numbers (0.0, 1.0, ..., 9.0). Since the two operands
can have different number of digits, we pad the shorted numbers with 0.0 in
the most significant digits positions. In our experiments, we set the LSTM
hidden size to 16.

We formulate the prediction problem as a classification problem, where
for every time step, we predict a probability distribution over the 10 possi-
ble digits of the sum at that position. Therefore, at every time step, we pass
the output of the LSTM through a hidden dense layer that projects it to a
tensor of size 10 (i.e., one output for each possible digit).

4.2 addition digit-by-digit with recurrent neural networks 39

For the curriculum we use the square root competence function intro-
duced in Equation 4.5, with initial competence c0 = 0.2, and we experiment
with various curriculum lengths T as shown in the next section.

We train the model for 50000 epochs, using the Adam optimizer (Kingma
and Ba, 2015) with batch size 128, learning rate 0.001 and momentum 0.9.
We use the cross entropy loss function, averaged over the time dimension.
Our code is implemented using the TensorFlow framework (Abadi et al.,
2016), and we conduct all our experiments on a single Nvidia TitanX GPU.

4.2.3 Results

The results are presented in Figure 4.6. On each row of the figure, we dis-
play the accuracy per training step (where each training step corresponds
to one batch update) for models trained using each of the three training
datasets of increasing size. We evaluate the model performance on the two
test settings described earlier, interpolation (first column) and extrapolation
(second column). For each train-test setting, we display the performance of
a model trained without a curriculum ("Baseline"), as well as of models
trained with curricula of different lengths. Note that for all training set-
tings, we trained the models for the same number of epochs (where an
epoch is a complete pass over the entire training set), but because some
datasets are larger, each epoch requires more training iterations (hence the
different number of training steps on the x-axis in Figure 4.6).

As expected, models trained on larger training sets perform better both
in the interpolation and extrapolation setting. In fact, for this simple prob-
lem setting, when the dataset is large enough all models are able to predict
the test data perfectly (100% accuracy), in both interpolation and extrapo-
lation. However, as we reduce the amount of training data, we start seeing
a wider and wider gap between the performance of the model in interpo-
lation versus extrapolation, and we also start observing increasing benefits
from using curriculum learning. For both N = 500 and N = 1, 000 training
samples, curricula improve the final accuracy for both interpolation and ex-
trapolation, with larger benefits on the extrapolation distribution, of up to
18% difference in accuracy.

Comparing different curriculum lengths, we notice an interesting trend.
As we increase the curriculum length C, the performance gain initially in-
creases, and then starts to decrease. This suggests that longer curricula are
not necessarily better. We should then use a validation dataset to chose
hyperparameter C, as we typically do with other model parameters.

In terms of the benefits gained from using curriculum learning, here we
see two types of benefits:

(i) better accuracy at the end of training, for certain curriculum lengths.

40 curriculum in input space

50
0

tra
in

sa
m

pl
es

0 200000 400000 600000
0

20

40

60

80

100

ac
cu

ra
cy

(%
)

0 200000 400000 600000
0

20

40

60

80

100

ac
cu

ra
cy

(%
)

10
00

tra
in

sa
m

pl
es

0 500000 1000000 1500000
0

20

40

60

80

100

ac
cu

ra
cy

(%
)

0 500000 1000000 1500000
0

20

40

60

80

100

ac
cu

ra
cy

(%
)

50
00

tra
in

sa
m

pl
es

0 2000000 4000000 6000000 80000000

20

40

60

80

100

ac
cu

ra
cy

(%
)

0 2000000 4000000 6000000 8000000
0

20

40

60

80

100

ac
cu

ra
cy

(%
)

Baseline
Curriculum 50 epochs
Curriculum 100 epochs
Curriculum 500 epochs
Curriculum 1000 epochs

Test Interpolation Test Extrapolation

training step training step

training step training step

training step training step

Figure 4.6: Test accuracy for an LSTM with hidden size 16, trained to add two
numbers digit-by-digit. Each curve represents the accuracy mean and standard er-
ror (over 4 runs started at different random parameter initializations) per training
step, under different training testing settings. Each row corresponds to a different
training dataset, with 500, 1000 and 5000 samples, respectively. For each training
setting, we compute the test accuracy on the interpolation (first column) and ex-
trapolation (second column) datasets. For each train-test setting, we display the
performance of a model trained without a curriculum ("Baseline"), as well as of
models trained with curricula of increasing lengths.

4.2 addition digit-by-digit with recurrent neural networks 41

(ii) faster training. Except for the largest dataset, the curricula on the
small and medium-sized dataset train faster. We measure this in the
following way. We select a point on the accuracy curve of the base-
line model, and we check at which training step a certain curriculum
approach achieved the same accuracy. It is easy to see that this point
is much earlier for the best curricula, since the curriculum accuracy
curve is always "above" that of the baseline. Thus, if we have a limited
training time budget, a model trained with curriculum learning can
achieve a better performance in the allotted time. Alternatively, if we
want to train the model up to a minimum accuracy of a%, a model
trained with a curriculum can achieve this faster.

4.2.4 Discussion

In this case study, we applied curriculum learning to a simple synthetic
problem: learning to add two numbers using an LSTM. We used a curricu-
lum based on the number of digits of the two operands, and evaluated it on
training datasets of increasing size. Our results indicated that the curricu-
lum strategy was particularly beneficial in middle and low-data regimes.
Curricula with an appropriate length helped the model train faster and
achieve better accuracy at the end of training, with larger gains when tested
out of distribution. However, curricula that are too long provided marginal
or no benefits. Moreover, for this simple problem, with enough training
data, the baseline model was able to solve the problem without any bene-
fits from using a curriculum. These results suggest that curriculum learning
can be very useful, but only for certain data regimes, and when the length
of the curriculum is chosen carefully.

42 curriculum in input space

4.3 learning arithmetic with sequence-to-sequence models

For our second case study, we take the problem setting in the previous
section, and we make it more challenging:

1. The inputs are no longer provided one digit at a time, with the two
operators aligned digit-by-digit. Instead, the input is provided as a
string (e.g., “963 + 59”), and thus the model also needs to learn to
interpret the requested computation.

2. The inputs may contain more than two operands (e.g., “963 + 59 + 123

+ 2”).

3. The inputs are provided character by character as symbols from a
vocabulary. Thus the model also needs to learn a meaningful repre-
sentation (embedding) for each digit.

4. The target outputs are also sequences of digits (e.g., “1022”), and we
no longer have one output for every pair of inputs as in Section 4.2.
Thus, the model also needs to infer the appropriate output length.

To support the new data format, we take inspiration from the sequence-
to-sequence (seq2seq) models typically used in machine translation (e.g.,
Sutskever et al., 2014). The model consists of an encoder, that processes the
entire input sentence and converts it into a hidden representation, and a de-
coder, that predicts the answer character by character. We depict this setting
in Figure 4.7.

This setting gives us the opportunity to test a some additional properties
of curriculum learning:

• We test if curriculum learning is also beneficial for seq2seq models,
which are very common in practice (e.g., in machine translation, se-
mantic parsing, syntactic parsing, time series).

• We can test the model ability to generalize to adding more terms than
it has been trained on. Unlike our previous setup from Section 4.2,
now the model does not have any support from the model architec-
ture to know how to align the digits of the operands.

• We can test the model ability to generalize to adding numbers with
more digits than it has trained on. Unlike our previous setup from
Section 4.2, now the model does not have any support from the model
architecture to know how many digits to predict for the output.

• We experiment not only with recurrent networks, but also with Trans-
formers (Vaswani et al., 2017), which have become the go-to models
for many NLP areas.

4.3 learning arithmetic with sequence-to-sequence models 43

9

ENCODER

6 5 93 +

1

DECODER

0 2 2

963 + 59 = 1022

encoded
sequence

Figure 4.7: Illustrating of a sequence-to-sequence model trained to predict the sum
of an arbitrary number of terms.

4.3.1 Data

training data . We generate training samples, each representing a sum-
mation of 2-4 terms, each being an integer with 1-5 digits. We generate
10, 000 samples for each number of terms (i.e., 3 × 10, 000 samples in to-
tal). Each input is represented as a string sentence (e.g., “12+ 3456”) that
is passed to the model character by character. The target output is also a
string, representing the answer (e.g., “3468”).

test data . We generate multiple test datasets:

• Interpolation: we generate data from the same distribution as training,
and test the model’s ability to add 2, 3 and 4 terms, using 10, 000
samples for each case.

• Extrapolation in the number of terms: we generate 10, 000 samples
containing 5− 7 terms to add, each term consisting of 1− 5 digits.

• Extrapolation in the number of digits: we generate 10, 000 samples
representing the addition of 2 terms, each term consisting of 6 or 7

digits.

4.3.2 Models and Training

model . The model consists of an encoder-decoder architecture, as illus-
trated in Figure 4.7. We experiment with two types of architectures:

• LSTM: The encoder is a Long Short Term Memory (LSTM) network
(Hochreiter and Schmidhuber, 1997) with a single layer of hidden size
512 units. Similarly, the decoder is also a single layer LSTM with 2048
hidden units.

• Transformer: The encoder-decoder architecture is a Transformer (Vaswani
et al., 2017), which has become ubiquitous in deep learning, and

44 curriculum in input space

which uses a special type of attention mechanism known as self-attention.
We chose the number of layers and units to match the architecture
used in Saxton et al. (2019), where a Transformer was also used
for solving multiple mathematical problems. Concretely, both the en-
coder and the decoder consist of 6 self-attention layers with 512 units,
8 attention heads, and a feed-forward layer with 2048 units. The model
is regularized using dropout on the outputs of each layer, with drop
probability 0.1.

The inputs are parsed into individual characters and embedded into a
256-dimensional space for the LSTM model, and 512-dimensional space for
the Transformer. The character embeddings are learned from scratch to-
gether with the model parameters.

implementation details . We implemented our model using OpenNMT-
tf 1, the TensorFlow (Abadi et al., 2016) version of the OpenNMT framework
(Klein et al., 2017), which provides support for training seq2seq models.

training . We trained the model using as loss function the average cross-
entropy between the predicted sequences and the targets. We used a batch
size of 1024 samples and trained for 200, 000 iterations. We updated the
model parameters using the Adam optimizer (Kingma and Ba, 2015) with
learning rate 0.0006 and momentum 0.9. For the Transformer we also apply
learning rate decay, with an exponential decay which multiplies the learn-
ing rate every 10 steps by a factor of 0.999, similar to Saxton et al. (2019). To
guard against exploding gradients, we used gradient clipping with a global
norm threshold of 10.

curriculum . We apply our curriculum framework from Section 4.1, us-
ing the length of the input sequence as difficulty metric and the Square Root
competence function with initial value c0 = 0.1. The length of the input
sequence is an intuitive difficulty score in this case, since longer sequences
can mean that there are more terms to add or that the numbers that we
are adding are larger. We vary the curriculum length, and report results for
multiple lengths.

4.3.3 Results

We evaluated the model under multiple training regimes (baseline without
curriculum, and multiple curriculum lengths). We plot the test accuracy per
training step for both interpolation and extrapolation in Figure 4.8 for the
LSTM architecture, and in Figure 4.9 for the Transformer.

1https://github.com/OpenNMT/OpenNMT-tf

https://github.com/OpenNMT/OpenNMT-tf

4.3 learning arithmetic with sequence-to-sequence models 45

Test Interpolation: Add 2 Terms, 1-5 Digits Test Extrapolation: Add 5-7 Terms, 1-5 Digits

0 20000 40000 60000 80000 100000
0

20

40

60

80

100

0 20000 40000 60000 80000 100000

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

training step

ac
cu

ra
cy

(%
)

ac
cu

ra
cy

(%
)

training step

Test Interpolation: Add 3 Terms, 1-5 Digits Test Extrapolation: Add 2 Terms, 6-7 Digits

0 20000 40000 60000 80000 100000
0

20

40

60

80

100

0 20000 40000 60000 80000 100000

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

training step

ac
cu

ra
cy

(%
)

ac
cu

ra
cy

(%
)

training step

Test Interpolation: Add 4 Terms, 1-5 Digits Curriculum Competence

0 50000 100000 150000 200000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
m

pe
te

nc
e

0 20000 40000 60000 80000 100000
0

20

40

60

80

100

ac
cu

ra
cy

(%
)

training step training step

Baseline
Curriculum 1000 steps
Curriculum 5000 steps
Curriculum 10000 steps
Curriculum 20000 steps

Figure 4.8: Results for the LSTM-based sequence-to-sequence model trained to add
multiple integers. We show the results for a baseline model trained without cur-
riculum, and multiple models trained with curricula of different lengths. We report
the accuracy mean and standard error (over 4 runs with different random initial-
izations) per training step.

As expected, adding more and more terms is more difficult for both
model architectures for all training regimes. However, the models trained
with curricula seem to perform better regardless of the number of terms we
add, obtaining boosts in accuracy between up to a difference of 30% for the

46 curriculum in input space

0 20000 40000 60000 80000 100000
0

20

40

60

80

Test Interpolation: Add 2 Terms, 1-5 Digits Test Extrapolation: Add 5-7 Terms, 1-5 Digits

0 20000 40000 60000 80000 100000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

ac
cu

ra
cy

(%
)

ac
cu

ra
cy

(%
)

training step training step

Test Extrapolation: Add 2 Terms, 6-7 DigitsTest Interpolation: Add 3 Terms, 1-5 Digits

0 20000 40000 60000 80000 100000
0

2

4

6

8

10

12

0 20000 40000 60000 80000 100000
0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

ac
cu

ra
cy

(%
)

ac
cu

ra
cy

(%
)

training step training step

Curriculum Competence

0 20000 40000 60000 80000 100000
0.0

0.2

0.4

0.6

0.8

1.0

Test Interpolation: Add 4 Terms, 1-5 Digits

0 20000 40000 60000 80000 100000

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(%
)

co
m

pe
te

nc
e

training step training step

Curriculum 5000 steps
Curriculum 10000 steps
Curriculum 20000 steps

Baseline
Curriculum 100 steps
Curriculum 500 steps
Curriculum 1000 steps

Figure 4.9: Results for the Transformer-based sequence-to-sequence model
trained to add multiple integers. We show the results for a baseline model
trained without curriculum, and multiple models trained with curricula of dif-
ferent lengths. We report the accuracy mean and standard error (over 4 runs with
different random initializations) per training step.

interpolation case (adding 2− 4 terms), up to 6% for extrapolation (adding
5− 7 terms).

An interesting failure mode is extrapolation in the number of digits of
the operands, where both the baseline and the curricula fail to make cor-
rect predictions, both settings obtaining ∼ 0% accuracy, for both LSTMs and
Transformers. This is because the sequence-to-sequence model is always
supervised to predict the end-of-sequence token after reaching the maxi-

4.3 learning arithmetic with sequence-to-sequence models 47

mum sequence length seen in training, and thus it wrongly predicts the
end-of-sequence token earlier than it should on the extrapolation setting.

Comparing curricula of different lengths, the results show that curricula
that are too short perform closer to the baseline model. As we increase the
curriculum length, the performance improves, but only up to a point, after
which the performance gains start decreasing. This is especially prevalent
on the extrapolation dataset, where the longest curriculum in fact harms
performance. This suggests that there is an optimal curriculum length, and
it would be beneficial to use a validation dataset to choose the best hyper-
parameter C. However, at least for this problem, the range of curriculum
lengths C for which the curriculum performs better than the baseline is
quite permissive, which makes it easy to improve the baseline performance
without significant parameter tuning efforts.

In terms of the types of benefits provided by curriculum learning, in this
case the benefits are two-fold. In the plots in both Figure 4.8 and Figure 4.9,
the curriculum curve is always above that of the baseline. This means that
for every accuracy achieved by the baseline at a training step t, the cur-
riculum has achieved that accuracy earlier. We can therefore say that the
curriculum trains the model faster. The gains in training speed are partic-
ularly prevalent for the Transformer. Moreover, at the end of training, the
models trained with curriculum learning (at least up to some length C)
achieve better performance on all datasets. For the LSTM it is questionable
whether the baseline would have achieved the same performance if given a
larger budget of training iterations, since the accuracy curves still have not
yet converged despite the generous iteration budget (we discuss more on
this in Chapter 6). However, for the Transformer the curves have flattened,
and we can see a clear difference in final accuracy. Nevertheless, in practical
settings we cannot allow the model to train indefinitely, and thus a method
that achieves better performance after a reasonable amount of training time
would be preferable.

4.3.4 Discussion

In this case study we considered a type of neural network architecture that
if very common in modern deep learning, especially in natural language
processing: sequence-to-sequence models. We experimented with two of the
most common types of encoder-decoder architectures, consisting of LSTM

and Transformer layers. Our results showed that both types of architec-
tures can have significant benefits from curriculum learning, both in terms
of final performance and training speed. This is particularly impressive for
Transformers, which are notoriously hard to train and typically require spe-
cialized learning rate schedules (Vaswani et al., 2017). In our case, without
modifying a learning rate schedule that had been tuned for the baseline, we

48 curriculum in input space

were able to observe performance improvements with curriculum learning.
This can have important consequences for several application areas where
Transformers have become the de facto standard, such as machine transla-
tion (Vaswani et al., 2017), document summarization (e.g., Egonmwan and
Chali, 2019; Pilault et al., 2020) and many other areas in natural language
processing or signal processing. In the next case study, we consider one
such application.

4.4 neural machine translation 49

4.4 neural machine translation

In this section, we apply our curriculum learning framework to the task of
Neural Machine Translation (NMT). The work presented in this section is
also included in our publication (Platanios et al., 2019).

Neural Machine Translation (Kalchbrenner and Blunsom, 2013; Bahdanau
et al., 2015) now represents the state-of-the-art adapted in most machine
translation systems (Crego et al., 2016; Wu et al., 2016; Bojar et al., 2017a),
largely due to its ability to benefit from end-to-end training on massive
amounts of data. In particular, the recently-introduced self-attentional Trans-
former architectures (Vaswani et al., 2017) are rapidly becoming the de-facto
standard in NMT, having demonstrated both superior performance and
training speed compared to previous architectures using recurrent neural
networks (RNNs; Kalchbrenner and Blunsom, 2013; Sutskever et al., 2014).
However, large scale NMT systems are often hard to train, requiring compli-
cated heuristics which can be both time-consuming and expensive to tune.
This is especially true for Transformers which, when carefully tuned, have
been shown to consistently outperform RNNs (Popel and Bojar, 2018), but
on the other hand, also rely on a number of heuristics such as specialized
learning rates and large-batch training.

In this line of work, we attempt to tackle this problem by using our
generic curriculum learning framework introduced in Section 4.1 for train-
ing NMT systems, which reduces training time, reduces the need for spe-
cialized heuristics or large batch sizes, and results in overall better perfor-
mance. It allows us to train both RNNs and, perhaps more importantly,
Transformers, with relative ease. In this case, it can also be thought of as a
means to avoid getting stuck in bad local optima early on in training.

Notably, we are not the first to examine curriculum learning for NMT,
although other related approaches have met with mixed success. Kocmi
and Bojar (2017) explored the impact of several curriculum heuristics on
training a translation system for a single epoch, presenting the training ex-
amples in an easy-to-hard order based on sentence length and vocabulary
frequency. However, their strategy introduced all training samples during
the first epoch, and it is not clear how this affected learning in the subse-
quent epochs, with official evaluation results (Bojar et al., 2017b) indicating
that final performance may indeed be hurt with this strategy. Contempo-
raneously to our work, Zhang et al. (2018) further proposed splitting the
training samples into a predefined number of bins (5, in their case), based
on various difficulty metrics. A manually designed curriculum schedule
then specified the bins from which the model sampled training examples.
Experiments demonstrated that the benefits of curriculum learning were
highly sensitive to several hyperparameters (e.g., learning rate, number of

50 curriculum in input space

iterations spent in each phase, etc.), and largely provided benefits in con-
vergence speed as opposed to final model accuracy.

In contrast to these previous approaches, we define a continuous curricu-
lum learning method (instead of a discretized regime) with only one tun-
able hyperparameter (the duration of curriculum learning). Furthermore,
as opposed to previous work which only focuses on RNNs, we also exper-
iment with Transformers, which are notoriously hard to train (Popel and
Bojar, 2018). Finally, unlike any of the work described above, we show that
our curriculum approach helps not only in terms of convergence speed, but
also in terms of the learned model performance. In summary, our method
has the following desirable features:
1. Abstract: It is a novel, generic, and extensible formulation of curriculum

learning. A number of previous heuristic-based approaches, such as that
of Kocmi and Bojar (2017), can be formulated as special cases of our
framework.

2. Simple: It can be applied to existing NMT systems with only a small
modification to their training data pipelines.

3. Automatic: It does not require any tuning other than picking the value
of a single parameter, which is the length of the curriculum (i.e., for
how many steps to use curriculum learning, before easing into normal
training).

4. Efficient: It reduces training time by up to 70%, whereas contemporane-
ous work of Zhang et al. (2018) reports reductions of up to 46%.

5. Improved Performance: It improves the performance of the learned mod-
els by up to 2.2 BLEU points, where the best setting reported by Zhang
et al. (2018) achieves gains of up 1.55 BLEU after careful tuning.
The proposed method uses the curriculum learning framework that we

introduced in Section 4.1, and in the next section, we discuss the difficulty
metrics used in conjunction with our framework.

4.4.1 Difficulty Metrics

There are many possible ways of defining the difficulty of translating a
sentence. We consider two heuristics inspired by what we, as humans, may
consider difficult when translating, and by factors which can negatively
impact the optimization algorithms used when training NMT models. In
the rest of this section we denote our training corpus as a collection of
M sentences, {si}Mi=1, where each sentence is a sequence of words, si =

{wi0, . . . ,wiNi}.

sentence length : We argue that it is harder to translate longer sen-
tences, as longer sentences require being able to translate their component
parts, which often consist of short sentences. Furthermore, longer sentences

4.4 neural machine translation 51

are intuitively harder to translate due to the propagation of errors made
early on when generating the target language sentence. Therefore, a simple
way to define the difficulty of a sentence si = {wi0, . . . ,wiNi} is as follows:

dlength(si) , Ni. (4.7)

Note that we can compute this difficulty metric on either the source lan-
guage sentence or the target language sentence. We only consider the source
sentence in this work 2.

word rarity : Another aspect of language that can affect the difficulty
of translation is the frequency with which words appear. For example, hu-
mans may find rare words hard to translate because we rarely ever see
them and it may be hard to recall their meaning. The same can be true
for NMT models where: (i) the statistical strength of the training examples
containing rare words is low and thus the model needs to keep revisiting
such words in order to learn robust representations for them, and (ii) the
gradients of the rare word embeddings tend to have high variance; they
are overestimates of the true gradients in the few occasions where they are
non-zero, and underestimates otherwise. This suggests that using word fre-
quencies may be a helpful difficulty heuristic. Given a corpus of sentences,
{si}

M
i=1, we define relative word frequencies as:

p̂(wj) ,
1

Ntotal

M∑
i=1

Ni∑
k=1

1wik=wj
, (4.8)

where j = 1, . . . , #{unique words in corpus} and 1condition is the indicator
function which is equal to 1 if its condition is satisfied and 0 otherwise.
Next we need to decide how to aggregate the relative word frequencies of
all words in a sentence to obtain a single difficulty score for that sentence.
Previous research has proposed various pooling operations, such as mini-
mum, maximum, and average (Zhang et al., 2018), but they show that they
do not work well in practice. We propose a different approach. Ultimately,
what might be most important is the overall likelihood of a sentence as that
contains information about both word frequency and, implicitly, sentence
length. An approximation to this likelihood is the product of the unigram
probabilities, which is related to previous work in the area of active learn-
ing (Settles and Craven, 2008). This product can be thought of as an ap-
proximate language model (assuming words are sampled independently)

2NMT models typically first pick up information about producing sentences of correct
length. It can be argued that presenting only short sentences first may lead to learning a
strong bias for the sentence lengths. However, in our experiments, we did not observe this
to be an issue as the models kept improving and predicting sentences of correct length
throughout training.

52 curriculum in input space

and also implicitly incorporates information about the sentence length that
was proposed earlier (longer sentence scores are products over more terms
in [0, 1] and are thus likely to be smaller). We thus propose the following
difficulty heuristic:

drarity(si) , −

Ni∑
k=1

log p̂(wik), (4.9)

where we use logarithms of word probabilities to prevent numerical errors.
Note that negation is used because we define less likely (i.e., more rare)
sentences as more difficult.

These are just two examples of difficulty metrics, and it is easy to conceive
of other metrics such as the occurrence of homographs (Liu et al., 2018) or
context-sensitive words (Bawden et al., 2018), the examination of which we
leave for future work.

4.4.2 Experiments

datasets . For our experiments, we use three of the most commonly used
datasets in NMT, that range from a small benchmark dataset to a large-scale
dataset with millions of sentences. Statistics about the datasets are shown
in Table 4.2.

models . We perform experiments using both RNNs and Transformers.
For the RNN experiments we use a bidirectional LSTM for the encoder, and
an LSTM with the attention model of Bahdanau et al. (2015) for the decoder.
The number of layers of the encoder and the decoder are equal. We use a 2-
layer encoder and a 2-layer decoder for all experiments on IWSLT datasets,
and a 4-layer encoder and a 4-layer decoder for all experiments on the WMT
dataset, due to the dataset’s significantly larger size. For the Transformer
experiments we use the Base model proposed by Vaswani et al. (2017) It
consists of a 6-layer encoder and decoder, using 8 attention heads, and
2,048 units for the feed-forward layers. The multi-head attention keys and
values depth is set to the word embedding size. The word embedding size
is 512 for all experiments. Furthermore, for the Transformer experiments
on the two smaller datasets we do not use any learning rate schedule, and
for the experiments on the largest dataset we use the default Transformer
schedule. A detailed discussion on learning rate schedules for Transformers
is provided near the end of this section.

setup. All of our experiments were conducted on a machine with a single
Nvidia V100 GPU, and 24 GBs of system memory. During training, we use
a label smoothing factor of 0.1 (Wu et al., 2016) and the AMSGrad optimizer

4.4 neural machine translation 53

Dataset # Train # Dev # Test
IWSLT-15 En)Vi 133k 768 1268
IWSLT-16 Fr)En 224k 1080 1133
WMT-16 En)De 4.5M 3003 2999

Table 4.2: Number of parallel sentences in each dataset. “k” stands for “thousand”
and “M” stands for “million.”

(Reddi et al., 2018), and a batch size of 5,120 tokens (due to GPU memory
constraints). During inference, we employ beam search with a beam size of
10 and the length normalization scheme of Wu et al. (2016).3

curriculum hyperparameters . We set the initial competence c0 to
0.01, in all experiments. This means that all models start training using the
1% easiest training examples. The curriculum length T is effectively the only
hyperparameter that we need to set for our curriculum methods. In each
experiment, we set T in the following manner: we train the baseline model
without using any curriculum and we compute the number of training steps
it takes to reach approximately 90% of its final BLEU score. We then set T to
this value. This results in T being set to 5,000 for the RNN experiments on
the IWSLT datasets, and 20,000 for the corresponding Transformer experi-
ments. For WMT, we set T to 20,000 and 50,000 for RNNs and Transformers,
respectively. Furthermore, we use the following notation and abbreviations
when presenting our results:
– Plain: Trained without using any curriculum.
– SL: Curriculum with sentence length difficulty.
– SR: Curriculum with sentence rarity difficulty.
– Linear: Curriculum with the linear competence shown in Equation 4.2.
– Sqrt: Curriculum with the square root competence shown in Equation 4.5.

data preprocessing . Our experiments are performed using the ma-
chine translation library released by Platanios et al. (2018). We use the same
data preprocessing approach the authors used in their experiments. While
training, we consider sentences up to length 200. Similar to them, for the
IWSLT-15 experiments we use a per-language vocabulary which contains the
20,000 most frequently occurring words, while ignoring words that appear
less than 5 times in the whole corpus. For the IWSLT-16 and WMT-16 exper-
iments we use a byte-pair encoding (BPE) vocabulary (Sennrich et al., 2016)
trained using 32,000 merge operations, similar to the original Transformer
paper by Vaswani et al. (2017).

3We emphasize that we did not run experiments with other architectures or configura-
tions, and thus our baseline architectures were not chosen because they were favorable to
our method, but rather because they were frequently mentioned in existing literature.

54 curriculum in input space

RNN Transformer

Plain SL Curriculum SR Curriculum Plain Plain* SL Curriculum SR Curriculum
clinear csqrt clinear csqrt clinear csqrt clinear csqrt

BL
EU

En)Vi 26.27 26.57 27.23 26.72 26.87 28.06 29.77 29.14 29.57 29.03 29.81
Fr)En 31.15 31.88 31.92 31.39 31.57 34.05 34.88 34.98 35.47 35.30 35.83
En)De 26.53 26.55 26.54 26.62 26.62 – 27.95 28.71 29.28 29.93 30.16

Ti
m
e En)Vi 1.00 0.64 0.61 0.71 0.57 1.00 1.00 0.44 0.33 0.35 0.31

Fr)En 1.00 1.00 0.93 1.10 0.73 1.00 1.00 0.49 0.44 0.42 0.39
En)De 1.00 0.86 0.89 1.00 0.83 – 1.00 0.58 0.55 0.55 0.55

Table 4.3: Summary of experimental results. For each method and dataset, we
present the test set BLEU score of the best model based on validation set per-
formance. We also show the relative time required to obtain the BLEU score of the
best performing baseline model. For example, if an RNN gets to 26.27 BLEU in
10,000 steps and the SL curriculum gets to the same BLEU in 3,000 steps, then
the plain model gets a score of 1.0 and the SL curriculum receives a score of
3, 000/10, 000 = 0.3. Plain stands for the model trained without a curriculum and,
for Transformers, Plain* stands for the model trained using the learning rate sched-
ule shown in Equation 4.10.

results . We present a summary of our results in Table 4.3 and we also
show complete learning curves for all methods in Figure 4.10. The evalu-
ation metrics we use are the test set BLEU score and the time it takes for
the models using curriculum learning to obtain the BLEU score that the
baseline models attain at convergence. We observe that Transformers con-
sistently benefit from our curriculum learning approach, achieving gains of
up to 2 BLEU, and reductions in training time of up to 70%. RNNs also
benefit, but to a lesser extent. This is consistent with our motivation for this
work, which stems from the observation that training RNNs is easier and
more robust than training Transformers. Moreover, the square root com-
petence consistently outperforms the linear one, which fits well with our
intuition and motivation for introducing it. Regarding the difficulty heuris-
tics, sentence length and sentence rarity both result in similar performance.

We also observe that, for the two small datasets, RNNs converge faster
than Transformers in terms of both the number of training iterations and
the overall training time. This is contrary to other results in the machine
translation community (e.g., Vaswani et al., 2017), but could be explained
by the fact that we are not using any learning rate schedule for training
Transformers. However, they never manage to outperform Transformers in
terms of test BLEU score of the final model. Furthermore, to the best of
our knowledge, for IWSLT-15 we achieve state-of-the-art performance. The
highest previously reported result was 29.03 BLEU (Platanios et al., 2018),
in a multi-lingual setting. Using our curriculum learning approach we are
able to achieve a BLEU score of 29.81 for this dataset.

4.4 neural machine translation 55

0 5000 10000
Step

15

20

25

30
BL

EU

26.0

27.0

RNN

0 50000 100000
Step

15

20

25

30
28.0

29.9
Transformer

IWSLT 15: En → Vi

0 10000 20000
Step

20

25

30

35

BL
EU

31.0

32.0

RNN

0 50000 100000
Step

20

25

30

35
34.0

36.0
Transformer

IWSLT 16: Fr → En

0 100000
Step

15

20

25

30

BL
EU

25.5

26.5

RNN

0 100000 200000
Step

15

20

25

30
28.0

30.0
Transformer

WMT 16: En → De

Plain SL Linear SL Sqrt SR Linear SR Sqrt

Figure 4.10: Plots illustrating the performance of various models on the test set, as
training progresses. Blue lines represent the baseline methods when no curriculum
is used and red lines represent the same models when different versions of our
curriculum learning framework are used to train them. The vertical lines represent
the step in which the models attain the BLEU score that the baseline models attain
at convergence.

Overall, we have shown that our curriculum learning approach consistently
outperforms models trained without any curriculum, in both limited data set-
tings and large-scale settings.

56 curriculum in input space

learning rate schedule . In all of our IWSLT experiments so far, we
have used the default AMSGrad learning rate of 0.001 and intentionally
avoid using any learning rate schedules. However, Transformers are not
generally trained without a learning rate schedule. Such schedules typically
use a warm-up phase, which means that the learning rate starts at a very
low value and keeps increasing until the end of the warm-up period, after
which a decay rate is typically used. In order to show that our curriculum
learning approach can act as a principled alternative to such highly tuned
learning rate schedules, we now present the results we obtain when training
our Transformers using the following learning rate schedule:

lr(t) , d−0.5
embedding min

(
t−0.5, t · T−1.5

warmup

)
, (4.10)

where t is the current training step, dembedding is the word embedding size,
and Twarmup is the number of warmup steps and is set to 10,000 in these
experiments. This schedule was proposed in the original Transformer pa-
per (Vaswani et al., 2017), and was tuned for the WMT dataset. The results
obtained when using this learning rate schedule are also shown in Table 4.3,
under the name Plain*. In both cases, our curriculum learning approach obtains
a better model in about 70% less training time. This is very important, espe-
cially when applying Transformers in new datasets, because such learning
rate heuristics often require careful tuning. This tuning can be both very
expensive and time consuming, often resulting in very complex mathemat-
ical expressions, with no clear motivation or intuitive explanation (Chen et
al., 2018). Our curriculum learning approach achieves better results in sig-
nificantly less time, while only requiring one parameter (the length of the
curriculum). Note that even without using any learning rate schedule, our
curriculum methods were able to achieve performance comparable to the
Plain* in about twice as many training steps. Plain was not able to achieve
a BLEU score above 2.00 even after fives times as many training steps, at
which point we stopped these experiments.

implementation and reproducibility. We are releasing an imple-
mentation of our proposed method and experiments built on top of the
machine translation library released by Platanios et al. (2018). Furthermore,
all experiments can be run on a machine with a single Nvidia V100 GPU,
and 24 GBs of system memory. Our most expensive experiments — the
ones using Transformers on the WMT-16 dataset — take about 2 days to
complete, which would cost about $125 on a cloud computing service such
as Google Cloud or Amazon Web Services, thus making our results repro-
ducible, even by independent researchers.

4.4 neural machine translation 57

4.4.3 Related Work

We provide an extensive overview of curriculum learning methods in Chap-
ter 3. However, in this section we review the work that is related to applying
curriculum learning to machine translation (MT).

Perhaps the earliest attempt to apply curriculum learning in MT was
made by Zou et al. (2013). The authors employed a curriculum learning
method to learn Chinese-English bilingual word embeddings, which were
subsequently used in the context of phrase-based machine translation. They
split the word vocabulary in 5 separate groups based on word frequency,
and learned separate word embeddings for each of these groups in paral-
lel. Then, they merged the 5 different learned embeddings and continued
training using the full vocabulary. While this approach makes use of some
of the ideas behind curriculum learning, it does not directly follow the orig-
inal definition introduced by Bengio et al. (2009). Moreover, their model
required 19 days to train. There have also been a couple of attempts to
apply curriculum learning in NMT that were discussed earlier.

There also exists some relevant work in areas other than curriculum learn-
ing. Zhang et al. (2016a) propose training neural networks for NMT by fo-
cusing on hard examples, rather than easy ones. They report improvements
in BLEU score, while only using the hardest 80% training examples in their
corpus. This approach is more similar to boosting by Schapire (1999), rather
than curriculum learning, and it does not help speed up the training pro-
cess; it rather focuses on improving the performance of the trained model.
The fact that hard examples are used instead of easy ones is interesting be-
cause it is somewhat contradictory to curriculum learning. Also, in contrast
to curriculum learning, no ordering of the training examples is considered.

Perhaps another related area is that of active learning, where the goal
is to develop methods that request for specific training examples. Haffari
et al. (2009), Bloodgood and Callison-Burch (2010), and Ambati (2012) all
propose methods to solicit training examples for MT systems, based on
the occurrence frequency of n-grams in the training corpus. The main idea
is that if an n-gram is very rare in the training corpus, then it is difficult
to learn to translate sentences in which it appears. This is related to our
sentence rarity difficulty metric and points out an interesting connection
between curriculum learning and active learning.

Regarding training Transformer networks, Shazeer and Stern (2018) per-
form a thorough experimental evaluation of Transformers, when using dif-
ferent optimization configurations. They show that a significantly higher
level of performance can be reached by not using momentum during op-
timization, as long as a carefully chosen learning rate schedule is used.
Such learning rate schedules are often hard to tune because of the multiple
seemingly arbitrary terms they often contain. Furthermore, Popel and Bojar

58 curriculum in input space

(2018) show that, when using Transformers, increasing the batch size results
in a better model at convergence. We believe this is indicative of very noisy
gradients when starting to train Transformers and that higher batch sizes
help increase the signal-to-noise ratio. We show that our proposed curricu-
lum learning method offers a more principled and robust way to tackle this
problem. Using our approach, we are able to train Transformers to state-
of-the-art performance, using small batch sizes and without the need for
peculiar learning rate schedules, which are typically necessary.

4.4.4 Discussion

In this case study, we applied our curriculum learning framework to train-
ing neural machine translation models. Our approach is able to boost per-
formance of existing NMT systems, while at the same time significantly
reducing their training time. It differs from previous approaches in that
it does not depend on multiple hyperparameters that can be hard to tune,
and it does not depend on a manually designed discretized training regime.
Perhaps most interestingly, we show that our method makes training Trans-
formers faster and more reliable, but has a much smaller effect in training
recurrent neural networks (RNNs).

As future directions for this line of work, we are mainly interested in:
(i) exploring more difficulty heuristics, such as measures of alignment be-
tween the source and target sentences (Kocmi and Bojar, 2017), sentence
length discrepancies, or even using a pre-trained language model to score
sentences, which would act as a more robust replacement of our sentence
rarity heuristic, and (ii) exploring more sophisticated competence metrics
that may depend on the loss function, the loss gradient, or on the learner’s
performance on held-out data. Furthermore, it would be interesting to ex-
plore applications of curriculum learning to multilingual machine transla-
tion (e.g., it may be easier to start with high-resource languages and move
to low-resource ones later on).

4.5 multimodal language understanding 59

4.5 multimodal language understanding

In the previous sections, we have successfully applied curriculum learning
on various types of sequential data, and we used difficulty metrics that were
in some sense characteristic for sequences. In this case study, we tackle a
different scenario with a different data modality and difficulty metric.

We consider the problem of multimodal language understanding, where
the goal is to train a model that can integrate information from multiple
modalities. In particular, we focus on the task of integrating visual informa-
tion from images with natural language sentences. This is an active research
area, with numerous practical applications, from Visual-Question Answer-
ing (VQA; Antol et al., 2015; Zhang et al., 2016b; Goyal et al., 2017), image
captioning (Lin et al., 2014; Hossain et al., 2019), image search (Thomee and
Lew, 2012), to robots that live in the real world and interact with humans.

In our experiments, we use the ShapeWorld framework introduced by
Kuhnle and Copestake (2017) for generating custom Visual Question An-
swering (VQA) datasets. Here, each sample consists of an image and a cap-
tion, and the goal is to predict whether the caption agrees with the image.
Some examples are shown in Figure 4.11. We chose this framework because
it allows us to create both images and captions of varying degrees of dif-
ficulty, requiring the model to solve different kinds of tasks (e.g., conjunc-
tions, disjunctions, spatial relations, etc.), and thus we chose it primarily to
study curricula in task space in Chapter 5. However, in this chapter we are
interested to find out whether a curriculum in input space would also work
for this scenario. We could attempt a curriculum based on properties of
the caption like in the previous case studies (e.g., sentence length, sentence
rarity). However, for diversity, we decided to experiment with a curriculum
based on the image properties, which we discuss further.

4.5.1 Data

The data consists pairs of images and sentences. Each image contains one
or more shapes of geometrical figures (e.g., circle, rectangle, cross, poly-
gon, etc.) of different colors, sizes and rotations, displayed on a black back-
ground. For this experiment, we generated images of shape 64× 64 pixels
containing 1-8 shapes.

While the caption generator can create complex sentences, in this chapter
we focus on a simple task—testing existential statements—where the caption
states that a specific shape, color or shape-color combination exists in the
image, such as the examples in Figure 4.11.

For training, we generated 10, 000 images with 5 different captions for
each (i.e. a total of 50, 000 training instances). For testing, we we generated
5, 000 images with 5 captions each (i.e. a total of 25, 000 test instances). We

60 curriculum in input space

There is a square.
[FALSE]

There is a red shape.
[TRUE]

A cross is blue.
[TRUE]

A shape is red.
[FALSE]

Figure 4.11: Examples from the ShapeWorld dataset, for an existential task.

also generated 1, 000× 5 instances for validation, used to tune the model
hyperparameters. For all datasets, the ratio of positive and negative labels
is 50%, thus the chance accuracy is also 50%.

4.5.2 Model and Training

model . We use the CNN-LSTM framework also used by Kuhnle and Copes-
take (2017) and illustrated in Figure 4.12. The image is processed using a 3

layer convolutional neural network (CNN) with filter sizes 32, 64, and 128,
respectively, kernel size 3× 3 and ReLU activations. After the last layer, we
apply global max pooling to obtain an image embedding of size 128.

The sentence is first split into words and converted to a list of 1-hot word
representations. The words are then passed through an embedding layer of
size 200, and processed using an LSTM model with hidden size 128.

Then, the image and sentence embeddings are multiplied element-wise,
and passed through a multi-layer perception (MLP) with 2 hidden layers
of sizes 256 and 128, respectively, and ReLU activation. Finally, a dense
projection layer maps the 128 vector to a single output, which is interpreted
as the unnormalized probability that the image and sentence agree.

training . We frame the problem of predicting image-caption agreement
as a binary classification task, and we use the binary cross-entropy loss
function. We train the model using the Adam optimizer (Kingma and Ba,
2015) with learning rate 3e− 4 and momentum 0.9. The model was regu-
larized using a weight decay value of 1e− 5 and dropout rate 0.2. We train
all models for 200, 000 iterations, using batches of size 128. Our code is im-
plemented using Tensorflow (Abadi et al., 2016) and we performed all our
experiments using a single Nvidia V100 GPU.

curriculum . We apply a curriculum in input space that is based on the
difficulty of the image. The intuition was that it is easier to test existential
statements, such as "There is a circle in the image.", when there are fewer
shapes in the image. Thus, we use the number of shapes in the image as

4.5 multimodal language understanding 61

there

agreement
score

[0, 1]

is a green circle

embedding look-up

CONV 2D

CONV 2D

CONV 2D

LSTM LSTM LSTM

DENSE

LSTM LSTM

caption
embedding

image
embedding

multimodal
pooling

agreement
embedding

Figure 4.12: Model used for the ShapeWorld dataset. Figure adapted from Kuhnle
and Copestake (2017).

difficulty metric, and we apply our curriculum learning framework intro-
duced in Section 4.1 using the Square Root competence function.

4.5.3 Results

We evaluated the baseline method trained without a curriculum, as well as
curricula of different lengths C. We show their corresponding test accuracy
per training step in Figure 4.13.

These results show that, as we increase the curriculum length C the
model starts performing better than the baseline, both in terms of final
accuracy after 50, 000 steps, but also in terms of training speed. Similar to
the previous sections, we say that the curriculum approach is training faster
than the baseline if for a particular accuracy a of the baseline, the curricu-
lum approach has reached that accuracy earlier. We can see that this is also
the case for this experiment. However, if we increase the curriculum length
C beyond a point (C > 30, 000), the model starts performing worse than
the baseline. This is consistent with our observations from the previous sec-
tions. As before, there may be multiple causes for this. This may be due to
the fact that the slow pace of the curriculum allows difficult examples very
late, and thus the model may not have had the chance to learn them within
the allotted iteration budget. Alternatively, a curriculum that is too slow
may cause the model to get stuck in a local minimum before the schedule
allows the model to train on all samples, which would require an adjust-
ment of the learning rate or other strategies. We attempt to understand this
behavior in Chapter 6.

62 curriculum in input space

0 10000 20000 30000 40000 50000
training step

50

55

60

65

70

75

ac
cu

ra
cy

(%
)

Baseline
Curriculum 100 steps
Curriculum 500 steps
Curriculum 1000 steps
Curriculum 5000 steps
Curriculum 10000 steps
Curriculum 30000 steps
Curriculum 50000 steps

Figure 4.13: Results for the ShapeWorld dataset, using a CNN-LSTM model. We
show the results for a baseline model trained without curriculum, and for input
space curricula of different lengths C. The difficulty was the number of shapes per
image. We report the mean and standard error over 5 runs.

4.5.4 Discussion

These results provide us with a few interesting insights:

• Curricula in input space also work on problems with images and
CNN-style networks, if we choose an appropriate difficulty metric.

• There is an optimal range for the curriculum length C that will allow
the model to converge faster and achieve better performance than the
baseline. Curricula that are too short perform similar to the baseline,
while curricula that are too long can in fact harm the performance.
For this reason, we would typically use the results on the validation
set to select the appropriate curriculum length.

• Our framework proposed in Section 4.1 was successfully applied to
another problem setting without changing the competence function.
The only hyperparameter we have to tune is the curriculum length C.

We will also revisit this problem in the next chapter, when discussing
curriculum learning methods in task space.

4.6 key takeaways 63

4.6 key takeaways

In this chapter we have proposed algorithms for performing curriculum
learning on the input space of a model. In this scenario, the training sam-
ples are ranked by some measure of difficulty, and presented to the model
for training according to a schedule. In Section 4.1, we proposed a cur-
riculum learning framework that allows us to take any sample difficulty
measures and preprocess them such that they are compatible with our
proposed model competence functions (i.e. pacing functions). Using this
framework, we were able to easily apply curriculum learning to multiple
problems, where we used different models that operate on different types
of data (sequences of numbers, sequences of characters, natural language,
images). This addresses the part of the thesis statement in which we try to
understand whether curriculum learning is beneficial only for certain types
of data, or only for certain models. Moreover, we also considered datasets
of various sizes, to investigate in what data regime the curriculum is most
useful. Taking all the results together, we observed the following:

1. For all considered problems, curricula can work if chosen carefully.
This is true for a variety of model architectures and data types.

2. The benefits can be both in terms of improvements in the final per-
formance at the end of training (even with a generous number of
training iterations), as well as faster training (i.e. models trained with
a curriculum can reach the baseline performance much earlier).

3. The benefits gained with curriculum learning followed a consistent
trend with respect the curriculum length, across our case studies: as
we increase the curriculum length (i.e. the number of iterations until
the model is allowed to train on the full dataset) the benefits (both
in terms of performance and speed) first increase up to an optimal
curriculum length, then start decreasing.

4. Curricula that are excessively long can in fact harm learning, mak-
ing it slower to train, overall requiring more iterations to reach the
baseline performance.

5. For easy problems (e.g., addition digit by digit in Section 4.2), curricu-
lum learning is most useful with less training data, since the baseline
models can learn well on their own when enough data is provided.

6. For more difficult problems (e.g. machine translation in Section 4.4),
we still obtained performance and speed gains even when using the
entire available training dataset.

In Chapter 6, we revisit some of these experiments, as well as new input-
space curricula, and attempt to understand why we observed these effects.

5
C U R R I C U L U M I N TA S K S PA C E

5.1 overview

As discussed earlier, curriculum learning refers to training strategies that
learn a difficult task by pretraining on a series of auxiliary learning goals
of increasing difficulty. However, which components of the model or the
training procedure are modified in order to derive easier auxiliary tasks
can vary significantly across different approaches. Most efforts are focused
around scheduling the order in which training data is presented to learner
(similar to the work presented in Chapter 4), and rely on the assumption
that the provided training datasets contain examples of varying degrees
difficulty. Such strategies are particularly appropriate for some domains
such as machine translation, where we can easily assume that some training
examples are easier than others.

However, we argue that for many common learning tasks, the errors that
a model makes can be mostly attributed to the difficulty of the learning
task itself, and less so to the difficulty of specific examples. To use a con-
crete example, in classification tasks the errors that the model makes may
be due to the similarity of the classes being considered (e.g., it may be harder
to distinguish between a cat and a dog than between a mammal and a
reptile), rather than the absolute difficulty of a sample independent of its
class. To exemplify this, Figure 5.1 shows the confusion matrix of a convo-
lutional neural network (CNN) classifier trained on the popular CIFAR-10
dataset (Krizhevsky, Hinton, et al., 2009). This confusion matrix shows that
the errors that our model makes are not uniformly distributed among all
pairs of classes. Instead, they are mostly dominated by a select few class
pairs that are difficult to distinguish (e.g., dog and cat). Moreover, certain
classes like automobile are mainly confused with only a few other classes,
suggesting that a sample is in many cases difficult to classify correctly be-
cause of its similarity to a few specific other classes, rather than because
of being an inherently difficult image (e.g., because the input image has a
lower signal-to-noise ratio). Therefore, in such cases it may be beneficial to
consider the difficulty of classes—rather than that of the data samples—to
more effectively perform curriculum learning.

Another potential disadvantage of input space curricula is that training
datasets usually contain only examples for the difficult target task (e.g.,
distinguishing between multiple different species of animals), but no exam-
ples at all for easy intermediate goals (e.g., distinguishing between mam-

65

66 curriculum in task space

ai
rp

la
ne fro

g
ho

rs
e

sh
ip

tru
ckdo
g

de
erca

t

bi
rdca

r 0.00

0.03

0.06

0.09

0.12

0.15
airplane

car
bird
cat

deer
dog
frog

horse
ship

truck

Figure 5.1: Confusion matrix for a CNN classifier on the CIFAR-10 dataset. Each
element at position (i, j) indicates the ratio of times the model wrongly classifies
an image as class j instead of the correct class i. The diagonal elements have been
removed for visualization purposes.

mals and reptiles). For example, this is true for ImageNet (Russakovsky et
al., 2015), a popular image classification dataset. In these situations, we
would ideally like for a system to be able to break a difficult learning task
down into a sequence of easier sub-tasks that better facilitate learning. We
would further like for the system to be able to do this without requiring any
additional human supervision. This motivates the design of curriculum al-
gorithms that operate on the learning tasks themselves, rather than on the
order in which training data is presented to the learner.

For such scenarios, we look at curriculum learning strategies in task space
(or in output space), which we introduced in Section 2.2, and which gradu-
ally change the learning task T = {Y,P(Y|X)}. Thus, the auxiliary functions
fθ1 , ..., fθK learn to perform increasingly more difficult tasks T1, ...,TK, trans-
ferring the knowledge acquired for performing task Tk to perform Tk+1.

However, we should make an important distinction between curriculum
methods in task space for single task learning versus multitask learning.

single task learning . In this setting, the goal is to learn a single func-
tion f : X→ Y. Therefore, a curriculum in task space needs to create a series
of auxiliary tasks (which are not provided) as intermediate goals. Perhaps
surprisingly, this idea has been underexplored in machine learning. This
category contains only a handful of approaches (Han and Myaeng, 2017;
Saxena et al., 2019; Dogan et al., 2020; Ganesh and Corso, 2020), which we
discussed in more detail in Section 3.3. In Section 5.2, we propose such a
curriculum strategy in task space that shows considerable benefits for im-
age classification tasks.

multitask learning . In this setting, the goal is to learn multiple func-
tions, f1 : X1 → Y1, ..., fM : XM → YM that are in some sense related. In-
stead of training each function in isolation, multitask learning approaches

5.1 overview 67

take advantage of the relationships between the tasks and train them jointly
(Caruana, 1997; Ruder, 2017). Common strategies for sharing information
between the tasks include sharing a part of the model architecture, or by en-
forcing some constraints between the tasks. In standard training (i.e., with-
out a curriculum), the tasks are usually learned simultaneously, by sam-
pling batches alternatively from each task. With curriculum learning, we
can alter the order in which the tasks are trained, prioritizing the easier
tasks first. While this is more common in the area of reinforcement learn-
ing (which we are not covering in this thesis), there have also been a few
attempts in supervised learning (Pentina et al., 2015; Li et al., 2017a; Mu-
rugesan and Carbonell, 2017; Guo et al., 2018a). We also consider this set-
ting in Section 5.3.

In what follows, we propose curriculum learning approaches for the two
scenarios above, single task and multitask learning.

68 curriculum in task space

5.2 coarse-to-fine curriculum learning

In this section we present a novel algorithm for performing curriculum
learning on the output space of a model, rather than on its input space. The
methods and results discussed in this section can also be found in our pub-
lications at Stretcu et al. (2020) and Stretcu et al. (2021). Our algorithm is
targeted at classification problems and allows learners to set their own eas-
ier goals, towards learning to solve a difficult classification problem. The in-
tuition is that learners may benefit from learning to classify labels in stages,
starting with coarse-grained concepts (e.g., learning to distinguish between
animal and object), before moving on to more fine-grained concepts (e.g.,
dog, cat, car, truck).

This idea was inspired by human learning. For example, when a baby
encounters a dog for the first time, her parents teach her that it is simply
a “dog,” rather than specifying its breed. Only later on, they start helping
her distinguish between different dog breeds. Aside from the human teach-
ing strategies, there is also ample evidence in neuroscience that the human
ability to understand concepts and infer relationships among them is ac-
quired progressively. Warrington (1975) was amongst the first to suggest
that children first learn abstract conceptual distinctions, before progressing
to finer ones. Subsequent studies have also found evidence consistent with
this coarse-to-fine progression (Mandler, 1992; Mandler and McDonough,
1993; Mandler, 2000; Pauen, 2002; McClelland and Rogers, 2003; Keil, 2013).
Moreover, McClelland and Rogers (2003) found evidence that human learn-
ing for classification problems follows a coarse-to-fine order. In fact, the
same authors also showed that semantic dementia causes cognitive degra-
dation in the reverse order. Thus, we can think of human learning as being
driven by a curriculum that is either explicitly provided by a teacher, or
implicitly learned by the student.

In this line of work, we propose such a coarse-to-fine curriculum algorithm
for ML systems. This algorithm is aimed at classification problems and
enables learners to decompose difficult problems into sequences of coarse-to-
fine classification problems, that improve learning for the original difficult
problem. Our main goal is to answer the following questions:

– How can we automatically construct a sequence of learning tasks
from coarse-grained to fine-grained?

– How can knowledge acquired by learning coarse-grained tasks trans-
fer to fine-grained tasks?

– How does such a curriculum learning approach affect the generaliza-
tion ability of a model?

5.2 coarse-to-fine curriculum learning 69

The proposed algorithm allows us to answer these questions and can
be applied to any classification problem without requiring any additional
human supervision.

Our main contribution is a novel algorithm for curriculum learning that
answers these questions and that can be applied to any classification prob-
lem without requiring additional human supervision, thus making it broadly
applicable to many areas of machine learning. Furthermore, it is model-
independent, and can thus be used to train arbitrary models. We perform
an empirical evaluation on several established classification datasets and
using several types of models, and show that it consistently helps boost
performance. The gains are especially prevalent on classification problems
with many labels. We further introduce this algorithm.

5.2.1 Method

The standard strategy for learning fθ is to initialize θ using random values
and iteratively update it by performing gradient descent on a loss func-
tion that is defined over X and Y . In this work, we propose a different
approach: we learn a series of auxiliary functions fθ1 , fθ2 , . . . , fθM , sequen-
tially, where the final function fθM corresponds to our target function, fθ.
These functions operate on the same input domain as fθ, but the task they
are learning is coarser, meaning that they each learn to classify samples into
fewer classes than the function that comes after them. This means that fθ1
is learning an easier task than fθ2 , fθ2 an easier task than fθ3 , etc., up until
fθM , which is learning our actual target task.

Our method thus consists of two parts:

(i) deciding what the auxiliary tasks should be and providing a way to
automatically generate them along with training data for them.

(ii) providing a way for each learned function to transfer its acquired
knowledge to the next function in the chain.

We propose a solution for part (i) in Section 5.2.2, followed by a method
for transferring knowledge in Section 5.2.3. An illustration of the proposed
approach is shown in Figure 5.2.

5.2.2 Generating Auxiliary Tasks

Our main requirement for the auxiliary learning tasks is that they form
a sequence of increasing difficulty. We posit that grouping similar classes
into coarse clusters will lead to an easier classification task. But how can we
automatically decide which classes are similar?

70 curriculum in task space

TrainCoarse Model 2

TrainFiner Model 4

TrainFine Model 6

CURRICULUM

air
pl
an
e

sh
ip ca
r

tr
uc
k

bir
d

de
er

ho
rs
e

ca
t

fro
g

do
g

CLASS HIERARCHY Generate
Tasks

Generate a coarse-to-fine class hierarchy 1

Transfer3

Transfer5

Figure 5.2: High-level illustration of the proposed algorithm.

measuring class similarity. There exists a natural heuristic for gaug-
ing how similar classes are, and that is the confusion matrix of a trained
classification model. However, it turns out that using this as our class simi-
larity metric results in a degenerate case that we discuss in Appendix A.1.1.
Thus, we consider another similarity metric that also encodes what the
trained model might find confusing: the class embedding similarity. We de-
fine the embedding of a target class as the parameters of the final layer of
the trained model, that are associated with that class. In a neural network
setting, the final layer typically consists of a linear projection using a weight
matrix W ∈ RE×K that maps from the last hidden layer of size E to the pre-
dicted logits, for each of the K classes. We use W·k, the k-th column of W,
to represent the embedding of class k. Thus, we can measure the distance
between two classes, k1 and k2, as d(k1,k2) = cos(W·k1 ,W·k2), where cos
refers to the cosine distance, and their similarity as 1− d(k1,k2).

defining a coarse classification task . Given the original set of
classes and their computed similarities, we expect that:

(i) grouping together similar classes to form coarse clusters, and

(ii) defining a new classification task where the goal is to predict the
cluster instead of the specific class,

should result in an easier learning problem.
Using an example from the CIFAR-100 dataset, we could group the classes

willow_tree, oak_tree and pine_tree into a single tree cluster, and all sam-
ples that belong to either of these three classes receive a new label associ-
ated with this cluster. The clusters allow us to define a new coarser classifi-
cation problem that the auxiliary function fθM−1

is responsible for learning.
Note that it is easy to automatically generate training data for the new task
given the data of the original task: for every training example (xi,yi) in the

5.2 coarse-to-fine curriculum learning 71

original dataset, we replace the label yi with the index of its cluster. We
repeat this process for fθM−2

,..., fθ1 .

defining coarse-to-fine task sequences . It remains to show how
we generate sequences of such auxiliary tasks with increasing difficulty, lead-
ing to the original task. Extending the previous idea of clustering classes,
we consider a hierarchical clustering algorithm. An example of a class hier-
archy is shown in Figure 5.2. If such a hierarchy forms a tree, then we can
consider each level of the tree as a separate task, and form a sequence of
tasks by iterating over these levels in top-down order. In Figure 5.2, the first
auxiliary task, which corresponds to fθ1 is a binary classification problem
where the 2 classes correspond to the clusters {airplane, ship, car, truck}
and {bird, deer, horse, cat, frog, dog}. The subsequent task, which corre-
sponds to fθ2 , further splits these clusters resulting in 4 classes. Intuitively,
we expect the auxiliary tasks built in this manner to be sorted by difficulty.
In other words, fθ1 should be easier than fθ2 , fθ2 than fθ3 , etc. This is be-
cause, using our example from Figure 5.2, fθ3 would need to be able to tell
whether a sample is a car or a truck, as opposed to fθ2 which only needs to
be able to tell if it is a road vehicle. Formally, we have a cluster hierarchy of
depth M where the bottom level corresponds to the original classes. Train-
ing data for each of these tasks can be generated automatically using the
approach described in the previous paragraph. The concrete algorithm is
shown in Algorithm 5.1. These tasks will be trained in order, starting with
the top level in the tree, and transferring acquired knowledge from each
level to the next, using the approach described in Section 5.2.3.

Algorithm 5.1: Transform Labels
// This algorithm replaces the original sample labels with their corresponding

cluster index.

Inputs : Original labels {yi}
N
i=1.

Set of clusters {ck̂}
K̂
k̂=1

, where
each cluster ck̂ is a set of labels.

1 originalToNew← Zero-initialized array of length K.
2 for k̂← 1, . . . , K̂ do
3 foreach Label l ∈ ck̂ do
4 originalToNew[l]← k̂

5 newLabels← Zero-initialized array of length N.
6 for i← 1, . . . ,N do
7 newLabels[i]← originalToNew[yi]

Output: newLabels.

generating class hierarchies . We still need to show how to auto-
matically generate our hierarchies without human supervision. We already

72 curriculum in task space

mentioned that we would like to use a hierarchical clustering algorithm us-
ing the similarity metric defined earlier. Most existing hierarchical cluster-
ing algorithms (Sibson, 1973; Defays, 1977; Kaufman and Rousseeuw, 2009)
do not directly fit our setting because they typically output binary trees,
where each non-leaf node has exactly two children clusters in the next level
(e.g., cat, frog, dog would not be directly grouped together in Figure 5.2).
This can be important if we want our curriculum to visit all levels because,
in the worst case, the depth of generated hierarchies will be O(K), where
K is the original number of classes. To address this, we adopt the affinity
clustering algorithm proposed by Bateni et al. (2017), which is based on
Borůvka’s algorithm for minimum spanning trees. This algorithm has sev-
eral desirable properties—including the fact that it is parallelizable—but
the property that is most important for our approach is that the depth of
the hierarchy is at most O(logK), where K is the original number of classes.
In summary, for every level l in the hierarchy, affinity clustering starts with
the clusters from level l+ 1 and then joins each cluster with the one closest
to it from the same level, thus forming a larger cluster. This means that
in each level the size of the smallest cluster at least doubles relative to the
next level. An overview of our algorithm for generating class hierarchies is
shown in Algorithm 5.2.

Algorithm 5.2: Generate Class Hierarchy
// This algorithm generates a class hierarchy.

Inputs : Number of classes K.
Training data {xi,yi}Ni=1.
Trained baseline model fθ.

1 Estimate class distance matrix D by computing pairwise cosine distances between
the columns of the projection matrix in θpred.

2 Compute the class hierarchy, H, using affinity clustering with D distance matrix
between samples.

3 clustersPerLevel← []
4 for l← 1, . . . ,depth(H) do
5 clustersPerLevel[l]← []
6 foreach n ∈ H.nodesAtDepth[l] do
7 Create cluster c by grouping the leaves of the sub-tree rooted at n.
8 clustersPerLevel[l].append(c)

Output: clustersPerLevel.

5.2.3 Transferring Acquired Knowledge

A direct approach to transferring knowledge from a trained classifier at one
level of the hierarchy to the next is via the model parameters. We can initial-
ize the parameters of fθl+1 based on the parameters of the trained fθl , for
l ∈ {1, . . . ,M− 1}. However, since fθl+1 and fθl make predictions for differ-

5.2 coarse-to-fine curriculum learning 73

ent number of classes, the number of parameters in θl+1 does not directly
match that of θl. One solution is to transfer only the subset of parame-
ters that θl+1 and θl can have in common (e.g., all except for the very last
layer), and train from scratch the final prediction layer at each level of the
hierarchy. We have attempted this approach and discuss it in detail in Ap-
pendix A.1.2. We refer to this as the staged variant of our curriculum learn-
ing algorithm. However, its main disadvantage is that the prediction layer,
being re-initialized at each hierarchy level, can potentially lose valuable
information—this is often called “representational collapse” in pre-training
literature (e.g., Aghajanyan et al., 2020). Ideally, we would like to be able to
reuse the knowledge captured by the prediction layer used for the coarse
labels when initializing the prediction layer for finer labels. We can achieve
this using the following strategy.

Let us assume that we use the same model for all stages, and that it is
a model that predicts the probability of each class from our target task,
while not being aware of the cluster hierarchy. When training the model
at hierarchy level `, we want to use that level’s cluster assignments as the
target labels (instead of the original classes), and we need to define a way
to supervise the model with that information. Intuitively, when we are told
that the label for an example is cluster k, we know that the underlying class
is one that belongs to cluster k, but we do not know which one. Therefore,
while we are doing maximum likelihood optimization during training (e.g.,
by minimizing the cross-entropy function), we propose to marginalize out
the class variable which is unobserved. Given that all classes are mutually
exclusive, this results in the following objective for fθ` (i.e., the negative
log-likelihood):

L` = −
∑
i

log
∑

c∈C`(yi)

exp{fθ`(xi)}, (5.1)

where C`(yi) is the cluster in level ` that class yi belongs to. Using this for-
mulation, the coarse-to-fine algorithm proceeds as follows (shown in more
detail in Algorithm 5.3):

1. We start by initializing the parameters θ1 randomly.

2. We learn fθ1 using L1 as the loss function.

3. We initialize θ2 = θ1, and continue training using L2, to learn fθ2 .
We can do this because the function being learned is the same for all
levels.

4. We iterate over this process until we go through all the levels of the
hierarchy. That is, for each level `, we initialize θ` = θ`−1 and learn
fθ` by optimizing L`.

74 curriculum in task space

Algorithm 5.3: Coarse-To-Fine Curriculum Learning
// This is an overview of the proposed continuous curriculum algorithm.

Inputs : Number of classes K.
Training data {xi,yi}Ni=1.
Trainable baseline model fθ.

1 Train fθ on the provided training data {xi,yi}Ni=1.
2 bestEpoch← epoch where fθ reached its best validation accuracy
// Assign the number of epochs to spend on the curriculum either manually, or

automatically based on the baseline accuracy per epoch.

3 numEpochsCurriculum← round(bestEpoch ∗ 0.9)
4 clustersPerLevel← GenerateClassHierarchy(K, {xi,yi}Ni=1, fθ)
5 M← clustersPerLevel.length
6 numEpochsPerLevel← round(numEpochsCurriculum / M)
// Train the model at each level of the hierarchy.

7 originalLabels← [1,...,K]
8 θ0 ← random()
9 for l← 0, . . . ,M - 1 do
10 clusters← clustersPerLevel[l+ 1]
11 newLabels← TransformLabels({yi}

N
i=1, clusters)

12 Train fθl+1
using newLabels as the target labels, and summing the predicted

probabilities for all labels in the same cluster to obtain the cluster probability,
when computing the loss function. Please refer to our code repository for
implementation details (e.g., how to make this calculation numerically stable).

Output: fθ[M]
.

This allows us to learn a single function fθ by going through the levels of
our class hierarchy sequentially and adjusting the objective function we are
optimizing appropriately.

5.2.4 Algorithm Properties

hyperparameters . The proposed approach introduces a single hyperpa-
rameter: the total number of epochs to be spent on the curriculum before
training on the original classes (i.e., the last level in the cluster hierarchy),
which we denote as T . We split this budget of T epochs equally among the
levels of the hierarchy. In our experiments, we found that T is easy to set
using a heuristic that, albeit not optimal, consistently results in an accuracy
boost across all datasets: following Platanios et al. (2019), we set T to the
number of epochs it takes for the baseline model to reach 90% of its best val-
idation accuracy. Note that T set this way tends to be only a small fraction
of the total number of training epochs (∼5-10%).

computational complexity. Let C be the computational complexity
required to train the baseline model to convergence. The computational
cost per training iteration of our coarse-to-fine model is approximately the
same as that of the original model (label marginalization is implemented

5.2 coarse-to-fine curriculum learning 75

efficiently as a matrix multiplication). Also, even though a computational
overhead could come from the need to train the baseline model first in order
obtain the class similarity matrix, if one is not provided, in our experiments
we observed that this can be avoided. Specifically, we observed that the
relative class similarities were mostly consistent among different models
(e.g., small CNN, WideResnet, Resnet), even when training on only a subset
of training examples and for only a small number of epochs.

human supervision. Our algorithm does not require supervision for
deciding on the class hierarchy or other measures of data difficulty. This is
in contrast to many existing curriculum methods (e.g., Bengio et al., 2009;
Spitkovsky et al., 2010; Platanios et al., 2019). However, prior knowledge
can still be incorporated into our method by either replacing the task gen-
eration module with a provided hierarchy, or by providing a custom class
dissimilarity matrix to the hierarchical clustering algorithm. We consider
this flexibility an advantage of our approach.

relationship to hierarchical classification. The algorithm pro-
posed in this paper bears some conceptual similarities to hierarchical clas-
sification. They both leverage a label hierarchy in order to obtain a better
classifier. However, there is one fundamental distinction between hierarchi-
cal classification and curriculum learning more generally: hierarchical clas-
sification methods typically use the class hierarchy, not just during training,
but also while making predictions at inference time (see Section 5.2.6 for
more details). On the other hand, curriculum learning is purely a training
strategy. Its goal is to provide a better means of training a model, without
introducing any additional memory or computational cost when the model
is deployed. We propose a curriculum learning approach. Nevertheless, it
could be converted to a hierarchical classification method by creating an
ensemble using the classifiers trained at each level, but this is beyond the
scope of this paper. We discuss this more extensively in Section 5.2.6.

5.2.5 Experiments

We performed experiments on both synthetic and real datasets, using mul-
tiple different neural network architectures: a convolutional neural network
with 3 convolution layers followed by a single densely connected layer
(which we refer to as CNN), as well as the common larger models Resnet-18,
Resnet-50 (He et al., 2016) and WideResnet-28-10 (Zagoruyko and Ko-
modakis, 2016). Details on the hyperparameters we used and our training
pipeline can be found in Appendix A.1.3.

76 curriculum in task space

Figure 5.3: Example images from the Shapes dataset.

5.2.5.1 Synthetic Datasets

In order to study the properties of our method, we created a synthetic
dataset that is easy to analyse, and where a natural coarse-to-fine curricu-
lum might arise. The questions we investigate are: (i) how our method per-
forms with varying amounts of training data, (ii) what the class hierarchy
looks like, and (iii) how the class embedding distance metric compares to
other metrics.

dataset generation. We refer to this dataset as Shapes. The inputs con-
sist of 64×64 images depicting one of 10 geometrical shapes (circles, ellipses,
and regular polygons with 3-10 vertices) in one of three colors (magenta,
cyan, or grey) against a black background (see Figure 5.3). The dataset con-
tains 50,000 images (5,000 per shape), out of which 10,000 are set aside for
testing. The goal is to predict the shape and its color for each image (i.e.,
we have 30 classes). Our motivation for the design of this dataset is that
shapes with similar colors and number of vertices look more alike and are
thus more likely to confuse the model. Therefore, we expect our method to
help in this setting.

results . For this dataset, we performed experiments using the CNN archi-
tecture. Our results, shown in Figure 5.4, indicate that our method con-
sistently outperforms the baseline. Furthermore, we observe that the cur-
riculum method provides the biggest boost over the baseline in the middle
regime, when there are not enough samples for the baseline to reach high
accuracy, but there is enough to make it a sufficiently good learner that
our curriculum learning algorithm can improve upon. These observations
also agree with prior results showing that pre-training is most beneficial
in problems where labeled data is scarce. To further understand where the
gains are coming from, we also inspected the generated label hierarchies.
The most common hierarchy generated during our experiments separates
all shapes by color on the first level, and by shape similarity on the second

5.2 coarse-to-fine curriculum learning 77

200 400 600 800 1000 1200
samples / class

20

40

60

80

ac
cu

ra
cy

(%
)

Baseline
Coarse-to-Fine

Figure 5.4: Accuracy mean and standard error (shown in tight shaded bands
around the mean) for a CNN trained with and without our curriculum approach,
averaged over 5 runs, on the Shapes dataset.

level (i.e., circles and ellipses are grouped together, and polygons are also
grouped together). This is intuitive and compatible with what we might
have manually constructed.

distance metric evaluation. A natural question to ask is whether
using the class embedding distance as a distance metric between classes is
better than alternative approaches. For example, what if we force classes
that are similar to be separated into different clusters early on, such as in
Figure 5.6? Could this help the model recognise subtle differences better, by
focusing on them early on? Another natural concern is whether the curricu-
lum itself indeed matters, or the model can simply benefit from any clus-
tering of the labels. This could be because assigning coarse group labels
to samples still requires learning feature representations that distinguish
these groups (e.g., edges, corners), no matter what the grouping is. To an-
swer these questions, we tested our approach using different types of class
distance matrices as input to the hierarchical clustering algorithm:

(i) the class confusion matrix1 (Confusion)
(ii) a distance matrix defined as 1 minus the confusion matrix (Confu-

sionDist)
(iii) the class embedding distance used in the rest of our experiments

(EmbeddingDist)
(iv) the class embedding similarity, defined as 1 minus embedding dis-

tance (EmbeddingSim)
(v) a random symmetric matrix, whose elements are drawn from a

Gaussian distribution with mean 0 and standard deviation 1, which
will lead to a random grouping of the classes (Random).

By using either ConfusionDist or EmbeddingDist as distances between classes
we obtain a hierarchy similar to Figure 5.5, where the most similar classes

1In practice, we add its transpose to it, since a distance metric needs to be symmetric.

78 curriculum in task space

...

...

...

Figure 5.5: Hierarchy generated using EmbeddingDist as class distance measure.
The hierarchy is created bottom-up, starting by first connecting the shapes that
have the lowest embedding distance (i.e. those that are most similar) at the bottom
of the hierarchy.

...

...

...

Figure 5.6: Hierarchy generated using EmbeddingSim as class distance measure.
The hierarchy is created bottom-up, starting by first connecting the shapes that
have the lowest embedding similarity (i.e. those that are most dissimilar) at the
bottom of the hierarchy.

(e.g. gray circle and gray ellipse) are separated in the very last level of the
hierarchy (i.e. later on during training, according to our coarse-to-fine cur-
riculum). On the contrary, reverting these distances, and using Confusion or
EmbeddingSim as inputs to the clustering algorithm, leads to a hierarchy as
shown in Figure 5.6, where the most similar classes are separated at the
first level of the hierarchy.

We evaluate these different approaches and present the in Table 5.1. We
observe that Random hurts performance, as do the metrics that group dis-
similar classes early on. On the other hand, EmbeddingDist and ConfusionDist,
which group the most similar classes first, both result in accuracy gains,
with the former resulting in the largest gain. This suggests that using arbi-
trary hierarchies along with our curriculum is not sufficient; the actual choice
of class hierarchy matters.

5.2 coarse-to-fine curriculum learning 79

Table 5.1: Results on Shapes with 500 samples per class. We show the accuracy
mean and standard error of the baseline, our curriculum approach, and their dif-
ference (calculated separately per run and then averaged).

Distance Metric
Accuracy

Baseline Curriculum Difference
ConfusionDist 39.36±0.52 52.72±0.98 13.49± 1.03
EmbeddingDist 39.36±0.52 54.96±1.37 15.70± 1.34
Confusion 39.36±0.52 39.59±1.32 0.04± 1.71
EmbeddingSim 39.36±0.52 34.91±2.02 -4.46± 1.84
Random 39.36±0.52 39.00±1.33 -0.32± 1.85

5.2.5.2 Real Datasets

We performed experiments on the popular CIFAR-10, CIFAR-100 (Krizhevsky,
Hinton, et al., 2009), Tiny-ImageNet (Li et al., 2015) and ImageNet (Russakovsky
et al., 2015) datasets. The CIFAR-100 dataset contains labels at two levels of
granularity: the original 100 classes, as well as 20 coarse-grained classes.
Tiny-ImageNet is a subset of the larger ImageNet dataset that contains 200

categories and only 500 training examples per category. This low ratio of
samples per class is what makes it an interesting test case for our method.
Dataset statistics are shown in Table 5.2. The data and specific train/test
splits for CIFAR-10, CIFAR-100, and CIFAR-100 Coarse were obtained from
the tensorflow_datasets package 2 from Tensorflow. For Tiny-ImageNet, we
used the provided train/validation/test splits as Li et al. (2015).

Table 5.2: Statistics for the classification datasets used in our experiments.
Dataset # Classes # Train # Test

Shapes 30 40,000 10,000
CIFAR-10 10 50,000 10,000
CIFAR-100 Coarse 20 50,000 10,000
CIFAR-100 100 50,000 10,000
Tiny-ImageNet 200 100,000 10,000
ImageNet 1000 1,281,167 50,000

varying the amount of training data . Similar to our experiments
on synthetic data, we compare the baseline method with our curriculum-
based approach, while varying the amount of labeled examples. Our results,
reported in Table 5.3, show that our approach is able to boost baseline per-
formance for all models and across all datasets. As expected, the accuracy
gains are most significant when we have a large number of labels. A more
controlled setting for observing this effect is to compare the gains on CIFAR-
100 and CIFAR-100 Coarse, where the input images and the number of sam-
ples are similar, but where one dataset contains more fine-grained labels.
Moreover, when comparing results on the same dataset between the smaller

2https://www.tensorflow.org/datasets/catalog/

https://www.tensorflow.org/datasets/catalog/

80 curriculum in task space

Table 5.3: Results on real datasets, showing the accuracy mean and standard error
for the baseline model, computed over 5 runs, as well as the accuracy gain achieved
by the our curriculum approach, computed per run and then averaged.

Model Dataset #Train Baseline Accuracy Curriculum Accuracy
Gain (%)

CNN

CIFAR-10 50k 70.92± 0.37 0.69± 0.32
CIFAR-10 20k 64.66± 0.53 1.28± 0.60
CIFAR-10 10k 59.52± 0.35 1.24± 0.46
CIFAR-10 5k 53.64± 0.19 1.57± 0.39
CIFAR-100 Coarse 50k 49.63± 0.35 1.22± 0.38
CIFAR-100 Coarse 20k 42.04± 0.29 1.84± 0.51
CIFAR-100 Coarse 10k 36.61± 0.19 1.77± 0.56
CIFAR-100 Coarse 5k 31.80± 0.28 1.38± 0.22
CIFAR-100 50k 35.87± 0.23 3.31± 0.59
CIFAR-100 20k 27.83± 0.34 2.27± 0.37
CIFAR-100 10k 21.96± 0.49 2.67± 0.68
CIFAR-100 5k 17.20± 0.20 1.92± 0.24
Tiny-ImageNet 100k 21.94± 0.19 2.73± 0.49
Tiny-ImageNet 50k 16.33± 0.32 3.06± 0.33
Tiny-ImageNet 20k 10.16± 0.22 2.02± 0.34
Tiny-ImageNet 10k 7.38± 0.11 1.14± 0.19

Resnet18

CIFAR-100 50k 76.11± 0.20 1.08± 0.12
CIFAR-100 20k 61.24± 0.21 2.73± 0.41
CIFAR-100 10k 46.01± 0.91 4.61± 0.40
CIFAR-100 5k 20.98± 0.35 2.32± 0.97

Resnet50

CIFAR-100 50k 77.21± 0.40 2.20± 0.53
CIFAR-100 20k 63.31± 0.38 0.52± 0.45
CIFAR-100 10k 51.21± 0.22 0.39± 1.01

WRN-28-10

CIFAR-100 50k 80.10± 0.20 0.55± 0.13
CIFAR-100 10k 58.72± 0.38 1.29± 0.35
CIFAR-100 5k 43.77± 0.98 2.49± 0.90
CIFAR-100 1k 14.87± 0.14 0.54± 0.56

and the larger models, we observe that the gains are larger for models with
lower baseline performance, which is expected given that in these cases
there is more room for improvement. Interestingly, the WideResnet-28-10

performance on CIFAR-100 follows the same trend as our observations on
the shapes dataset: we see the largest gains in the middle regime (neither
too much nor too little training data).

inspecting the curriculum . To understand how our curriculum has
been trained, we show the generated class hierarchy for CIFAR-10 in Fig-
ure 5.2, and for CIFAR-100 in the list below. Most clusters are intuitive,
matching our expectation based on semantic similarity (e.g., {crab, lobster},
{bicycle, motorcycle}), but there are a few interesting examples (e.g., {lamp,
cup}, {skyscraper, rocket}) that are based on visual similarity as interpreted
by the model. The latter examples stress the importance of automatically
generating hierarchies based on what the model itself finds confusing, rather
than using hand-crafted ones.

5.2 coarse-to-fine curriculum learning 81

Generated label hierarchy for CIFAR-100:
• Level 1:

Cluster 1 : apple, pear, sweet_pepper, orange, aquarium_fish, sunflower, rose, or-
chid, tulip, poppy, crab, lobster

Cluster 2 : baby, woman, girl, hamster, boy, man, fox, lion, snail, camel
Cluster 3 : flatfish, ray, shark, turtle, dolphin, whale, bear, chimpanzee, skunk, cat-

tle, dinosaur, elephant, seal, otter
Cluster 4 : crocodile, lizard, shrew, beaver, porcupine, mushroom, kangaroo, tiger,

leopard, trout, possum, wolf, mouse, raccoon, squirrel, rabbit
Cluster 5 : lamp, cup, worm, chair, bed, table, keyboard, couch, snake, bicycle, mo-

torcycle, can, telephone, television, bottle, wardrobe, bowl, plate, clock
Cluster 6 : caterpillar, bee, butterfly, cockroach, spider, beetle
Cluster 7 : willow_tree, forest, oak_tree, palm_tree, pine_tree, maple_tree, skyscraper,

rocket, tractor, train, tank, castle, bridge, house, streetcar, pickup_truck,
bus, lawn_mower, mountain, cloud, road, sea, plain

• Level 2:
Cluster 1 : apple, pear, sweet_pepper, orange
Cluster 2 : aquarium_fish, sunflower, rose, orchid, tulip, poppy
Cluster 3 : bowl, plate, clock
Cluster 4 : castle, bridge, house
Cluster 5 : streetcar, pickup_truck, bus, lawn_mower
Cluster 6 : fox, lion, snail, camel
Cluster 7 : skunk, cattle, dinosaur, elephant
Cluster 8 : mountain, cloud, road, sea, plain
Cluster 9 : crab, lobster

Cluster 10 : crocodile, lizard
Cluster 11 : lamp, cup
Cluster 12 : flatfish, ray, shark, turtle, dolphin, whale
Cluster 13 : baby, woman, girl, hamster, boy, man
Cluster 14 : willow_tree, forest, oak_tree, palm_tree, pine_tree, maple_tree
Cluster 15 : mushroom, kangaroo, tiger, leopard, trout
Cluster 16 : possum, wolf, mouse, raccoon
Cluster 17 : seal, otter
Cluster 18 : squirrel, rabbit
Cluster 19 : skyscraper, rocket
Cluster 20 : tractor, train, tank
Cluster 21 : bear, chimpanzee
Cluster 22 : shrew, beaver, porcupine
Cluster 23 : worm, chair, bed, table, keyboard, couch, snake
Cluster 24 : caterpillar, bee, butterfly
Cluster 25 : cockroach, spider, beetle
Cluster 26 : bicycle, motorcycle
Cluster 27 : can, telephone, television, bottle, wardrobe

• Level 3:
Each class has its own cluster.

Moreover, we show the progression of the accuracy per epoch, with and
without curriculum, in Figure 5.7,

82 curriculum in task space

0

40

0 10 20 30 40 50 60
epoch

10

20

30

ac
cu

ra
cy

(%
)

Baseline
Coarse-to-Fine

Figure 5.7: Test accuracy per epoch on the CIFAR-100 using a CNN. The curriculum
here had 3 levels, all visited in the first 11 epochs, which is the time it took the
baseline to reach 90% of its accuracy.

comparing to other approaches . We also compare our approach to
other related methods:

1. a recent method by Saxena et al. (2019) which is, to the best of our
knowledge, the only other existing curriculum approach operating in
label space. This method also supports using a curriculum in both
the label space and the input space simultaneously. We refer to the
two variants of this method as DP-L (label space) and DP-LI (label and
input space).

2. a recent hierarchical classification method (Wan et al., 2021), termed
NBDT, that uses a label hierarchy generated automatically, similar to
our EmbeddingSim.

3. the popular self-paced learning (SPL) method of Kumar et al. (2010),
which allows us to compare with an established input space curricu-
lum approach.

4. a multitask learning approach which trains in parallel all levels of the
hierarchy (Multitask). This is meant to test if training the tasks sequen-
tially (as given by the curriculum) matters, or having a contribution
from each of them throughout training is enough.

Note that there is no standardized evaluation setting for curriculum learn-
ing methods, and thus most of the published approaches use their own cus-
tom setup. For a fair comparison, we replicated the setup from NBDT when
training our approach (including the Resnet and WideResnet architectures,
learning rate and other hyperparameters), and implemented other methods
(SPL and Multitask) from scratch where code was not available. We also im-
plemented our CNN architecture within the published code repositories of

5.2 coarse-to-fine curriculum learning 83

Table 5.4: Results on real datasets, showing the accuracy mean and standard error
for the baseline model, computed over 5 runs, as well as the accuracy gain achieved
by the various curriculum approaches, computed per run and then averaged. The
missing numbers are due to the fact that we were only able to run competing
methods using the CNN, due to limited computational resources. For the larger
models, we report the numbers published in the respective papers, and do not
include standard errors as they were not reported. CIFAR-100 C refers to the coarse
version of the CIFAR-100 datasset.

Model Dataset
Accuracy (%) Accuracy Gain (%)

Baseline SPL DP-L DP-LI Multitask NBDT C2F (Ours)

CNN

CIFAR-10 70.92± 0.37 -0.04± 0.19 0.26± 0.20 0.53± 0.30 0.12± 0.25 0.04± 0.38 0.69± 0.32
CIFAR-100 C 49.63± 0.35 -0.27± 0.09 -0.65± 0.34 -0.75± 0.47 -0.08± 0.24 — 1.22± 0.38
CIFAR-100 35.87± 0.23 0.94± 0.61 0.14± 0.25 0.26± 0.31 0.69± 0.15 0.45± 0.45 3.31± 0.59
Tiny-ImageNet 21.94± 0.19 -0.97± 0.97 -0.05± 0.14 -0.08± 0.15 0.33± 0.33 0.22± 0.28 2.73± 0.49

Resnet18

CIFAR-100 C 84.57± 0.14 -0.21± 0.82 — — 0.53± 0.02 — 0.69± 0.11
CIFAR-100 76.11± 0.20 0.51± 0.45 — — 0.01± 0.37 -1.19 1.08± 0.12
Tiny-ImageNet 65.03± 0.09 -0.19± 0.15 — — -0.76± 0.42 -0.80 0.12± 0.14

Resnet50
CIFAR-100 C 84.68± 0.47 -1.21± 0.56 — — -0.97± 0.51 — 0.49± 0.41
CIFAR-100 77.21± 0.40 -1.68± 0.55 — — 0.43± 0.89 — 2.20± 0.53

WRN-28-10
CIFAR-100 80.10± 0.20 0.50± 0.41 — 0.70± 0.33 0.21± 0.12 2.77 0.55± 0.13
Tiny-ImageNet 64.14± 0.15 — — — — 2.52 3 1.01± 0.22

the methods DP-L and NBDT, and ran their training pipeline. We tried sev-
eral hyperparameter configurations starting with the ones reported in the
original publications (DP-L and DP-LI have 3 and 6 curriculum-specific hy-
perparameters, respectively). For the larger models we report the numbers
from their respective publications, where available.

The results are shown in Table 5.4. Surprisingly, DP-L and DP-LI generally
do not perform well for the small CNN. They do, however boost the accuracy
of the larger model by 0.7%. The results for SPL are inconsistent; it some-
times improve the performance of the baseline and it sometimes does not
(note that we have also attempted to tune its pace parameter, denoted as K
in the original publication, in order to allow for a fair comparison). This re-
sult is interesting, because SPL has been shown to work well for other types
of problems (though generally involving data of a sequential nature). One
possible explanation for this result is that input space methods such as SPL
are better suited for problems where the difficulty of training examples can
be quantified (e.g., some examples involve longer sequences or are noisier
than others), and less so for datasets like the ones we consider, where the
difficulty is possibly given by the inter-class similarities. This is possibly
why DP-L and DP-LI are also very similar in terms of performance. NBDT
results in some improvements for CNN and WideResnet, but also incurs a
significant loss in accuracy for Resnet-18, as also reported in the original
paper. Multitask generally performs similarly to or slightly better than the
baseline, suggesting that there is value in adding a loss function contribu-

3This difference is with respect to our baseline accuracy of 64.14%, but the difference
would be −0.99% relative to their own baseline, which we could not reproduce. Similarly,
for CIFAR-100, the difference relative to their baseline is 0.78%.

84 curriculum in task space

0 20 40 60 80 100 120 140 160
epochs

10

20

30

40

Ac
cu

ra
cy

 (%
)

Baseline
Curriculum - 5 epochs
Curriculum - 10 epochs
Curriculum - 20 epochs
Curriculum - 30 epochs
Curriculum - 40 epochs
Curriculum - 50 epochs
Curriculum - 70 epochs
Curriculum - 100 epochs

Figure 5.8: Accuracy of our coarse-to-fine curriculum strategy with different cur-
riculum lengths on CIFAR-100.

tion for each level of label granularity. However, our approach results in the
largest improvements, suggesting that learning these tasks sequentially in a
coarse-to-fine order, is important.

hyperparameter sensitivity. We evaluate the sensitivity of our cur-
riculum approach to the length of the curriculum. In Figure 5.8, we show
the accuracy of the CNN on the CIFAR-100 dataset, using various curricu-
lum lengths. For a fixed curriculum length (in number of epochs), we di-
vide it equally among the hierarchy levels. Once the final hierarchy level is
reached, we train until the validation accuracy has not improved for the last
50 epochs. As can be seen in Figure 5.8, this threshold is enough for both
the baseline model and the curriculum models to reach their best point. The
results suggest that there is an optimal middle curriculum length: too few
epochs and the coarse hierarchy levels do not have enough time to train
and provide good initial points for the next level; too many epochs and
the auxiliary hierarchy levels start overfitting, and their performance starts
dropping before we move on to the next level. However, our curriculum
method is robust overall, because despite the large range of curriculum
lengths we used across all experiment runs, the performance of the cur-
riculum trained model consistently outperformed or at least matched the
baseline model performance.

5.2.6 Related Work

Most prior work in curriculum learning focuses on the notion of example
difficulty, rather than task difficulty (e.g., Bengio et al., 2009; Jiang et al.,
2015; Guo et al., 2018b; Jiang et al., 2018; Wang et al., 2018; Zhou and Bilmes,
2018). The difficulty of the examples is estimated based on problem-specific

5.2 coarse-to-fine curriculum learning 85

rules (e.g., sentence length in natural language processing; Bengio et al.,
2009; Platanios et al., 2019) or based on the progress of the learner (e.g., the
loss on each sample in SPL; Kumar et al., 2010; Jiang et al., 2015). Using the
sample difficulties, these methods then decide when a sample should be
shown to the model, starting with the easy ones first. Perhaps most related
to our work is the work of Saxena et al. (2019), where the logits predicted
for each training example are scaled by a corresponding class weight, which
is learned together with the model parameters. While this can be seen as a
form of curriculum in output space, the core idea is different.

There also exist a few methods that consider curricula in task space in
the context of multitask learning. For example, Pentina et al. (2015) pro-
pose a multitask learning approach where a set tasks are learned one at
a time, as opposed to jointly, by sharing knowledge between subsequent
tasks, instead of solving all of them jointly. Other curriculum approaches
for multitask learning include Guo et al. (2018a) and Sarafianos et al. (2018).
However, multitask learning is different than our setting because: (i) the
tasks are provided, rather than being automatically generated, and (ii) the
goal is typically to perform well on all of the tasks and not just one of them.

A line of work related to curriculum in output space and which can be
viewed as a curriculum in task space is in the area of reinforcement learning,
where agents are trained to achieve incrementally more difficult goals (e.g.,
Florensa et al., 2017; Narvekar et al., 2017; Svetlik et al., 2017; Sukhbaatar
et al., 2018). While these approaches do alter the target task, the setting is
very different from ours and therefore these methods could not be directly
translated to the supervised classification regime.

The idea of solving tasks in a coarse-to-fine order has previously been ex-
plored in computer vision and signal processing (e.g., for object detection
and recognition Fleuret and Geman, 2001; Amit et al., 2004; Moreels and
Perona, 2005; Ren et al., 2018), head pose estimation (Wang et al., 2019c), or
more general computer vision tasks (Sahbi and Boujemaa, 2002; Lu et al.,
2011; Zambanini and Kampel, 2012; Mazić et al., 2015; Wu et al., 2019). Sim-
ilarly, coarse-to-fine ideas have also been used for various tasks in natural
language processing (e.g., Dong and Lapata, 2018; Lee et al., 2018; Yao and
Al-Dahle, 2019). Our approach is different in that it is widely applicable; it
does not depend on the problem space at hand, but can rather be applied
as-is to any classification problem. In a different line of work, Srivastava
and Salakhutdinov (2013) proposed a probabilistic learning method using
a class hierarchy. A tree-based prior over the last layer of a neural network
is used to encourage classes closer in the hierarchy to have similar param-
eters. Moreover, Bilal et al. (2017) obtain coarse clusters of classes from the
confusion matrix and introduce extra branches to a neural network architec-
ture during training that classify the coarse classes simultaneously during

86 curriculum in task space

training (similar to our Multitask baseline, but the branches are introduced
at custom positions in the model).

Finally, some of the ideas in our paper bear some resemblance to hier-
archical classification (e.g., Bennett and Nguyen, 2009; Ramaswamy et al.,
2015; Ramírez-Corona et al., 2016; Xu and Geng, 2019). As discussed in Sec-
tion 5.2.4, there is a fundamental difference between our approach, which
is purely a training algorithm, and the various HC methods (that also lever-
age the hierarchy during inference, such as NBDT; Wan et al., 2021). For
example, some HC methods propose special architectures that can make
predictions at all levels of the hierarchy and combine them (e.g., Wehrmann
et al., 2018), or use the predictions for coarse labels as inputs to a classifier
for finer labels (e.g., Bennett and Nguyen, 2009). We provide a more de-
tailed comparison with different HC approaches in Appendix A.1.4. How-
ever, the important take-away is that our method is: (i) general purpose,
meaning that it can be used to train any baseline model without requiring
a special architecture, and (ii) does not affect the model during inference,
meaning that it does not require any extra memory or computation.

5.2.7 Discussion

In this section, we proposed a curriculum learning algorithm in task space
aimed at single-task classification problems. Our approach:

(i) breaks down complex classification tasks into sequences of simpler
tasks, and

(ii) goes through these tasks in order of increasing difficulty, training a
classifier for each task and transferring the acquired knowledge be-
tween the trained classifiers.

We showed that our approach achieves significant performance gains
on both synthetic and real data, using multiple neural network architec-
tures. Our approach shows especially great promise for settings with low
amounts of training data, where machine learning models are prone to over-
fitting, and pretraining (even on the same dataset) can bring large boosts in
performance. Finally, our approach is purely a training strategy, and does
not incur any additional memory or computational costs during inference.

5.3 curricula for compositional multitask learning 87

5.3 curricula for compositional multitask learning

Multitask learning refers to a problem setting in which we want to jointly
learn multiple related tasks (Caruana, 1997). It is a very active research area
in machine learning, with numerous methods proposed in the past couple
of decades (e.g., Xue et al., 2007; Collobert and Weston, 2008; Misra et al.,
2016; Zhao et al., 2020), and with numerous uses across many application
domains (e.g., Ji et al., 2009; Xu and Yang, 2011; Peng et al., 2017; Kendall
et al., 2018). In this setting, the learning tasks are usually trained in parallel,
for example by alternating between tasks in random order and updating
the model with a batch of examples from each task. Therefore, it is natural
to consider whether a curriculum would be useful in this case, and if there
is any benefit in learning the tasks in order of difficulty. This problem has
been investigated in prior work, such as Pentina et al. (2015), Guo et al.
(2018b), and Sarafianos et al. (2018), where the models are applied to image
classification tasks.

However, in this thesis we focus on a particular class of multitask prob-
lems: problems with compositional tasks. Since “composition” is an over-
loaded term used with different meanings, let us define what it means in
our setting. Consider a multitask-learning setting where we aim to learn a
set of functions f1, f2, ..., fK. We assume that each of these functions can be
expressed as a composition (in the mathematical sense, where (f ◦ g)(x) =
f(g(x)) for two functions f and g) of a small set of primitive functions that
need to be learned, and that are shared among functions f1, f2, ..., fK.

We chose to focus on compositional tasks, because this is a setting that is
very common in the real world and yet very difficult for machine learning
methods nowadays, and where we expect that curriculum learning can have
a large impact. In the next sections, we consider two problems, in which the
composition between the tasks is modeled either explicitly (i.e., the relation-
ships between the tasks are explicitly used by the model architecture to
improve its predictions) or implicitly (some difficult tasks implicitly require
the model to be able to solve easier ones, and learning the easier tasks
first seems to be beneficial despite the fact that task relationships are not
explicitly modeled in the architecture). We propose some ideas of how cur-
riculum learning can be applied in each of these settings, and we evaluate
what kind of benefits we can expect.

88 curriculum in task space

5.3.1 Learning Arithmetic using Explicit Task Composition

In this section we illustrate an approach of combining curriculum learn-
ing with semi-supervised and self-supervised learning. We apply this on
a learning setting very common in human learning—learning arithmetic—
and which provides a textbook definition of compositional tasks.

In human learning, students are introduced to arithmetic operations in a
specific order: first they are taught to count, then to add, then to multiply,
etc. The operations are taught in this order not only because counting is
easier than adding, which is easier than multiplying, and so on, but also
because the compositional relationship between these operations provides
additional benefits when taught in this order. Once a student has learned
how to count, her teacher tells her that "adding x and y simply means count-
ing y times starting at x". Similarly, once the student knows how to add,
her teacher will explain that "multiplying x and y simply means adding
x, y times". Using the relationships between these different learning tasks
gives the students a means of verifying their answers (e.g., use addition to
verify a multiplication result), as well as a means of “generating their own
examples” for practicing on their own.

In this line of work, we replicate this setting using neural networks. The
goal is to train a machine learning system to perform basic arithmetic op-
erations (counting, addition, multiplication) using very little labeled data.
We refer to the process of learning each operation as a separate learning
task. Thus we operate in a multitask learning (MTL) setting. We represent the
compositional relationships between the learning tasks explicitly in the ar-
chitecture. We show that, by taking advantage of these relationships, and by
training on these tasks in a particular order as driven by a curriculum, the
system can take advantage of human-like strategies such as self-training,
and perform better. In what follows, we introduce our data and experimen-
tal setting.

5.3.1.1 Multitask Framework

problem formulation. We use the same problem formulation as in-
troduced in Section 4.2 for performing addition digit-by-digit. However, in
this case we have multiple functions that we want to learn, one for learn-
ing each operation: fcount : Xcount → Ycount, fadd : Xadd → Yadd,
fmult : Xmult → Ymult. In what follows we use fop to refer to any of
these functions, where “op” stands for an arbitrary arithmetic operation.

All functions operate on the similar input domains, with addition and
multiplication operating over pairs of integers, and counting takes a single
integer input. The addition and multiplication functions estimate the sum
and product of the provided input numbers, respectively, while counting es-

5.3 curricula for compositional multitask learning 89

Data
labelsinputs

inputs

inputs

labels

Loss

Loss

LossMultiplication

Addition

Counting

labels

Figure 5.9: A self-supervised learning setting for learning arithmetic operations.
The system is provided with labeled examples only for learning how to count.
Once the model has learned how to count, it can self-label training examples for
learning addition, using the compositional relationship between counting and ad-
dition. Similarly, once the model has learned how to add, it can self-label data for
learning multiplication, etc.

timates the next consecutive number (i.e., for an input number x, it should
predict x+ 1). All functions predict integer numbers. The inputs are pro-
vided to the corresponding model digit-by-digit, and the model also makes
predictions digit-by-digit. Thus, the inputs and outputs are in fact sequences
of digits of arbitrary length, instead of natural numbers. We formally define
the input and output domains as:

Xcount = {(xn)n∈N|xn ∈ {0, ..., 9}} (5.2)

Xadd = Xmult = {((x
(1)
n)n∈N, (x(2)m)m∈N)|x

(1)
n , x(2)m ∈ {0, ..., 9}}

(5.3)

Ycount = Yadd = Ymult = {(yn)n∈N|yn ∈ {0, ..., 9}} (5.4)

where (xn)n∈N represents a sequence of natural numbers of arbitrary length.
To train this system we are provided with labeled and unlabeled exam-

ples from each task. Let NLop and NUop refer the to the number of labeled
and unlabeled samples for task op. For addition and multiplication, NLop
can be 0.

baseline training . We train the baseline model only on the labeled
dataset for each task. In a typical MTL fashion, we train the model by sam-
pling batches of examples alternatively from each task, and updating the
corresponding model parameters. We update the model parameters using
the average cross-entropy loss for each predicted digit at every time step,
similar to Section 4.2. That is, for a batch of samples of size B < NLcount,
indexed by i:

Llabeledop =
1

B

∑
i

ni∑
j=1

cross_entropy(fcount(xi),yij). (5.5)

90 curriculum in task space

where xi and yi are the input and output of labeled sample i of task op, ni
is the number of digits in yi, and yij is the j-th digit of yi.

curriculum training . The curriculum model is trained by prioritizing
certain tasks in the beginning of training, instead of alternating between
all tasks uniformly. We start by training the system only on the counting
task, using labeled data. When counting reaches a target validation accu-
racy threshold (threshcount), we allow the model to also train on the addi-
tion task. However, for addition we can use not only the labeled training set,
but we can also self-label the available unlabeled data using the counting
module. We describe how we perform the self-labeling in the paragraph
below. Similarly, once the addition task reaches a target validation accuracy
threshold (threshadd), we can use the addition module to self-label data
for multiplication, and start training this task as well. In this work, we set
the two thresholds manually, as a proof of concept that such a setup could
work. For future work, it would be interesting to develop a curriculum ap-
proach that can automatically derive these thresholds. When multiple tasks
are enabled for training, we alternate between the allowed tasks in random
order and update one batch from each task at a time, as in standard multi-
task learning. An illustration of the described self-training setting is shown
in Figure 5.9.

self-labeling . We can generate labels for the unlabeled data for addi-
tion and multiplication, using the already trained counting and addition
modules, respectively, by taking advantage of the known compositional re-
lationship between these operations:

• a+b = count up starting at b, a times = fcount(fcount(...(fcount(b))))︸ ︷︷ ︸
a times

• a× b = add b, a times = fadd(b, fadd(b, ...(fadd(b, 0))))︸ ︷︷ ︸
a times

The algorithms for generating labels in this manner are presented in Algo-
rithm 5.4 and Algorithm 5.5.

model . We use the LSTM model introduced in Section 4.2 for performing
addition digit by digit. However, in this case we have multiple such LSTM

models, one for learning each operation. Concretely, for each pair of num-
bers that we want to add or multiply, we provide the two operands as input
to the corresponding LSTM model one digit at the time (from least signifi-
cant to most significant digits), and the model predicts the result, also digit
by digit. For counting, the LSTM is provided with a single input number x
digit by digit, and the model needs to predict x+ 1, digit by digit.

5.3 curricula for compositional multitask learning 91

Algorithm 5.4: Generating Labels for Addition using Counting
// This algorithm generates samples for addition using the counting module.

Inputs : Trained counting model fcount.

Unlabeled data for addition {(x(1), x(2))i}
NU

add

i=1 , each sample consisting of
two sequences of digits x(1) and x(2) .

1 y← []
2 for i← 1, . . . ,NUadd do

// Count up starting at x
(1)
i , x

(2)
i times.

3 yi ← x
(1)
i

4 for iter← 1, . . . ,integer(x(2)) do
5 logits← fcount(x

(1)
i)

6 yi ← argmax(logits, axis=-1)

Output: y.

Algorithm 5.5: Generating Labels for Multiplication using Addition
// This algorithm generates samples for multiplication using the addition module.

Inputs : Trained addition model fadd.

Unlabeled data for multiplication {(x(1), x(2))i}
NU

mult

i=1 , each sample
consisting of two sequences of digits x(1) and x(2) .

1 y← []
2 for i← 1, . . . ,NUmult do

// Add x
(1)
i , x

(2)
i times.

3 yi ← (0, 0, 0,, 0)
4 for iter← 1, . . . ,integer(x(2)) do
5 logits← fadd(x

(1)
i ,yi)

6 yi ← argmax(logits, axis=-1)

Output: y.

5.3.1.2 Training

We train the system using stochastic gradient descent, with batch size 128,
and update the model parameters using the mean cross-entropy loss over
the predicted digits probability at every time step, similar to Section 4.2.
We use the Adam optimizer (Kingma and Ba, 2015) with learning rate 0.001
and momentum 0.9. Similar to the previous experiments, we implemented
our system using TensorFlow (Abadi et al., 2016).

5.3.1.3 Data

train. We generate 1, 000 labeled and 10, 000 unlabeled samples per task.
Given our self-supervised setting, in principle we do not need any labeled
data, except for learning to count. However, we decided to provide the
system with a small amount of labeled data for each task, in order to be
able to compare the curriculum approach with a baseline method, which

92 curriculum in task space

otherwise could not be trained without supervision. In the training data,
all input numbers have between 1− 5 digits.

test interpolation. We generate 1, 000 test instances from the same
distribution as the training data, where the input terms consist of 1 − 5
digits, which allows us to test the model’s ability to interpolate between the
training samples.

test extrapolation. We generate 1, 000 test instances where the input
terms consist of 6− 10 digits. This allows us to test the model’s ability to
extrapolate beyond the training distribution, on more difficult examples.

5.3.1.4 Results

We ran experiments with threshadd = threshmult = 90% and we present
the results in Figure 5.10. We evaluate the models in terms of exact match
accuracy (i.e., each prediction is either awarded a score of 1.0 if all the digits
are predicted correctly, or 0.0 otherwise).

As can be observed from the figure, counting is a very easy task, and
the baseline quickly achieves 100% accuracy, both for interpolation and ex-
trapolation. For addition, the baseline also achieves good results, with 95%
accuracy in the interpolation case and around 80% accuracy for extrapo-
lation. The curriculum approach starts later, waiting for counting to reach
threshadd = 90% accuracy, and then quickly outperforms the baseline,
with 98% accuracy for interpolation and 87% accuracy for extrapolation.
Thus the benefits are larger on out-of-distribution data.

For the multiplication task, the baseline achieves 1.5% accuracy in the
interpolation case, while the curriculum approach obtains 4.0% accuracy.
However, neither the baseline nor the curriculum can extrapolate in this
case. These results suggest that multiplication is a difficult very difficult
task for this type of model, and that we should be considering model ar-
chitectures more suitable for this problem. In fact, there are active areas of
research in machine learning focused on developing models that can per-
form multiplication (Trask et al., 2018; Madsen and johansen, 2020).

5.3.1.5 Discussion

In this case study we have seen how curriculum learning can be combined
with other learning strategies such as semi-supervised learning and self-
training. By taking advantage of the compositional relationships between
tasks, and by applying a curriculum that keeps track of each task’s pre-
requisites, we can improve the performance of the model by self-labeling
unlabeled data. We obtained good results both for interpolation and extrap-
olation. However, the low accuracy for multiplication suggests that while

5.3 curricula for compositional multitask learning 93

0 50000 100000 150000 200000

0

20

40

60

80

100

epoch

ac
cu

ra
cy

(%
)

Baseline
Curriculum

0 50000 100000 150000 200000

0

20

40

60

80

100

epoch

ac
cu

ra
cy

(%
)

Baseline
Curriculum

Ad
di
�o

n

0 50000 100000 150000 200000

epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ac
cu

ra
cy

(%
)

Baseline
CurriculumM

ul
�p

lic
a�

on

0 50000 100000 150000 200000

epoch

ac
cu

ra
cy

(%
)

Baseline
Curriculum

0.04

0.02

0.00

0.02

0.04

0 50000 100000 150000 200000

epoch

ac
cu

ra
cy

(%
)

Baseline
0

20

40

60

80

100
Co

un
�n

g

0 50000 100000 150000 200000

0

20

40

60

80

100

epoch

ac
cu

ra
cy

(%
)

Baseline

Test Interpola�on

LABELS LABELS

LABELS LABELS

Test Extrapola�on

Figure 5.10: Results for semi-supervised learning model trained to perform arith-
metic tasks (counting, addition, multiplication). We show the performance of two
models—one trained without a curriculum ("Baseline") and one trained using cur-
riculum learning in task space ("Curriculum")—evaluated in two settings: on an
interpolation dataset (1− 5 digits), and on a extrapolation dataset (6− 10 digits).
For counting we only show the baseline model, since we always train it in a fully-
supervised way using the provided labeled dataset.

our strategy can bring some improvements, it is not a replacement for better
architectures that can model this task better.

94 curriculum in task space

5.3.2 Implicit Task Composition for Multimodal Image Understanding

In the previous section we considered a multitask setting, where the com-
positional relationship between the tasks of interest was known, and we
could explicitly represent it in our system. However, in some cases it is hard
to know how to represent this composition explicitly. Nevertheless, even
in this case curriculum learning can be used in a different way. We fur-
ther illustrate this with another case study. We start from the multimodal
language understanding problem we introduced in Section 4.5, where we
trained a model to predict the agreement between images and their natural-
language captions on the ShapeWorld dataset (Kuhnle and Copestake, 2017).
In that case, we only considered one type of task: an existential task
where the captions always specified the existence of a shape, or a color, or a
shape-color combination (e.g., “There is a red shape.”, “A cross is blue.”), and
applied an input space curriculum on the number of shapes in the image.

We now convert the problem into a multitask learning setting, by intro-
ducing more types of tasks. We then take advantage of the implicit task
composition and design a task space curriculum to learn these tasks in order.
We consider the following tasks:

– existential: similar to Section 4.5, as described above.

– conjunctions: consisting of conjunctions of existential tasks (e.g.,
“There is a gray square and there is a gray ellipse.”).

– disjunctions: consisting of disjunctions of existential tasks (e.g.,
“A shape is a yellow cross or there is a gray ellipse.”).

– conjunctions & disjunctions: consisting of a combination of con-
junctions and disjunctions of existential tasks. Therefore, a model
solving this task would need to learn the difference between “and”
and “or”.

– quantitative: consisting of quantitative statements, using both nu-
meric attributes (e.g., “More than five shapes are red ellipses."), as well as
fractional descriptions (e.g., “Exactly half the crosses are magenta.").

– spatial: consisting of statements related to the position of objects
(e.g., “A magenta rectangle is to the right of a cross.", “A red shape is below
an ellipse.”).

– selection: consisting of descriptions that identify and describe a spe-
cific object in the image. The entity can be identified through its abso-
lute position, relative position, size, color, or any combination of these
(e.g., “The upper red shape is a rectangle.”, “The magenta shape farther from
the cyan cross is a cross.’, “The biggest green shape is an ellipse.”).

5.3 curricula for compositional multitask learning 95

It is easy to notice that certain tasks depend on others. For instance, the
selection task requires the model to be able to identify the existence of
one or more objects with certain attributes (existential, conjunctions),
but also to understand their relative positioning (spatial). However, the
way the selection captions are phrased cannot necessarily be expressed
in terms of a composition of existential, conjunctions and spatial cap-
tions. Instead, the composition may take place at a higher level of repre-
sentation, and not directly on the model inputs. Therefore, we pose the fol-
lowing question: can a curriculum in task space, through which the tasks
are learned in a particular order, help the model perform better, despite the
fact that we do not explicitly model the task compositions? We refer to this
means of taking advantage of the dependencies between tasks without ex-
plicitly representing the composition function as implicit task composition.
We further analyse this empirically.

5.3.2.1 Method

We consider multiple learning settings:

1. single-task learning, where each task is trained in isolation, using a
separate model for each task.

2. multitask learning, where parts of the model architecture are shared,
and all tasks are trained in parallel, alternating between them in ran-
dom order (sampled from a uniform distribution).

3. multitask curriculum learning, where parts of the model architecture
are shared among tasks, and the tasks are trained in an order specified
by a curriculum.

multitask model . In multitask learning, part of the model architecture
is shared among the tasks. In our experiments, we chose to share the first
two layers of the convolutional network (i.e., those performing the more
low-level processing), as well as the word embeddings. The rest of the ar-
chitecture is kept separate for each task, in order to allow it to adapt to the
task requirements. This is illustrated in Figure 5.11.

baseline training . For both the single task and multitask models with-
out curriculum we train the models in the following way. At every training
step, we sample uniformly a task from all tasks. We then sample a batch of
training samples from the chosen task, and update the model. We repeat
for a fixed number of training steps, or until all tasks have converged.

96 curriculum in task space

there

agreement
score

[0, 1]

is a green circle

embedding look-up
CONV 2D

CONV 2D

CONV 2D LSTM

SH
AR

ED

LSTM LSTM

DENSE

LSTM LSTM

caption
embedding

image
embedding

multimodal
pooling

agreement
embedding

Figure 5.11: Model used for multitask learning on the ShapeWorld dataset. The
gray area enclosed by a dashed line marks the part of the model architecture that
is shared among tasks.

curriculum training . Our proposed curriculum training algorithm
consists of the following steps:

1. Decide the task dependencies. For each task, we define a set of prereq-
uisites, consisting of those tasks that the model should learn (at least
to some extent) before attempting the current task (e.g., existential
could be a prerequisite for conjunctions). Thus, the task dependen-
cies can be represented as a directed acyclic graph (DAG), as the one
showed in Figure 5.12.

2. For each pair of tasks (t1, t2) where t1 is a prerequisite of t2, decide
an accuracy (or any other meaningful metric) threshold, thresht1→t2 ,
such that the multitask model is allowed to train on task t2 only after
t1 has reached thresht1→t2 accuracy (e.g., start training on conjunctions

when existential reaches 70% accuracy).

3. Start training. At every training step, sample uniformly a task from
the allowed tasks. Sample a batch of training samples from the chosen
task, and update the model.

4. Evaluate regularly (on a validation set, or even on the training set)
and update the allowed tasks. A task is allowed during training once
all its prerequisites have been satisfied.

5.3.2.2 Data

For each of the 7 tasks described earlier, we generate equal amount of train-
ing and test data, as follows. As before, all images contain 1− 8 shapes of
different colors. For training we generate 10, 000 images, each associated

5.3 curricula for compositional multitask learning 97

There is a magenta shape.

existen�al

There is a gray square and
there is a gray ellipse.

conjunc�ons
A shape is a yellow cross or

there is a gray ellipse.

disjunc�ons

More than five shapes
are red ellipses.

quan�ta�ve
The magenta shape farther
from the cyan cross is a cross.

selec�on
A gray rectangle is to
the right of a cross.

spa�al
There is a gray square and there is a gray ellipse.
A shape is a yellow cross or there is a gray ellipse.

conjunc�ons & disjunc�ons

Figure 5.12: Example of task dependencies for a task space curriculum. An arrow
between two tasks t1 → t2 indicates that t1 is a prerequisite of t2, and thus t1
should be prioritized before t2.

with 5 different captions (i.e., 50, 000 training samples per task). We also
generate 1, 000 images with 5 captions each for validation, per task. For
testing, we generate 5, 000 images with 5 captions each, per task.

5.3.2.3 Models and Training

We use the same CNN-LSTM model architecture and sizes as described in
Section 4.5, except part of the architecture is shared in the multitask learn-
ing case, as described earlier. We train all models using the Adam opti-
mizer (Kingma and Ba, 2015) with learning rate 0.001, momentum 0.9, and
batch size 512.

5.3.2.4 Results

We run experiments with single task learning, multitask learning without
a curriculum, and multitask learning with 4 different curricula. The 4 cur-
riculum DAGs and the corresponding accuracy thresholds are displayed
in Figure 5.13. The results for all training settings on the test datasets are
shown in Figure 5.14.

For the easier tasks such as existential, conjunctions, disjunctions,
conjunctions & disjunctions, or quantitative, the single task and mul-
titask models without curriculum perform on par, with accuracies between
70− 75%. For the harder tasks such as spatial and selection, the accura-
cies are lower (56− 58%), but the multitask model is able to take advantage
of the parameter sharing, and performs better than the single-task one.

The 4 curriculum settings perform overall better on all tasks, obtaining
up to 6−7% additional accuracy points. Interestingly, even the existential

task, which is a prerequisite for all other tasks and thus does not bene-
fit from pretraining on other easier tasks, performs better in the multitask
curriculum setting. However, depending on the prerequisite requirements,

98 curriculum in task space

existen�al
77% 77%

80%

80%

75%

75% 80%

75%

conjunc�ons disjunc�ons

quan�ta�ve selec�on spa�alconjunc�ons & disjunc�ons
80%

75%

Setting #4

existen�al
75% 75%

80%

80%

75%

75% 80%

75%

conjunc�ons disjunc�ons

quan�ta�ve selec�on spa�alconjunc�ons & disjunc�ons
80%

75%

Setting #3

existen�al
70% 70%

70% 70%

conjunc�ons disjunc�ons

quan�ta�ve selec�on spa�al

conjunc�ons & disjunc�ons
75% 75%75%

Setting #1

existen�al
77% 77%

70% 70%

conjunc�ons disjunc�ons

quan�ta�ve selec�on spa�al

conjunc�ons & disjunc�ons
77% 77%77%

Setting #2

Figure 5.13: The four curriculum configurations whose results are presented in
Figure 5.14. Each edge in a DAG shows a task perquisite, together with its corre-
sponding accuracy threshold.

5.3 curricula for compositional multitask learning 99

certain tasks start training much later. Therefore, there is a trade-off be-
tween the gain in performance and total training time. Another interesting
observation is that, for some tasks, the curriculum approaches reach a better
accuracy than the standard training approaches, but soon start overfitting.
It is thus important to use the validation set in order to keep track of the
best performing model parameters.

5.3.2.5 Discussion

In this section, we have introduced a curriculum learning strategy for multi-
task learning. This approach takes advantage of the dependencies between
tasks and prioritizes training certain tasks early on. Our goal was to pro-
vide a proof of concept that such a strategy can improve model perfor-
mance. Indeed, for the problem at hand, the curriculum strategies reached
better performance, which will hopefully motivate future work at the in-
tersection of curriculum and multitask learning. For the future, it would
be beneficial to develop curriculum methods that can automatically detect
the task dependencies, to reduce the overhead of validating the curriculum
hyperparameters.

Moreover, note that when switching from a single task model to a multi-
task model, we chose which components of the architecture to share among
tasks based on intuition, without considering what is more beneficial for a
model trained with or without curriculum. For future work, it would be
interesting to analyze how the benefits gained with curriculum learning
vary relative to the amount of parameter sharing among tasks.

100 curriculum in task space

Single Task

Multitask
Multitask + Curriculum: Setting #1

Multitask + Curriculum: Setting #2

Multitask + Curriculum: Setting #3

Multitask + Curriculum: Setting #4

ac
cu

ra
cy

training step
0 100000 200000 300000

50

52

54

56

58

selection

training step

ac
cu

ra
cy

spatial

0 100000 200000 300000
50

52

54

56

58

ac
cu

ra
cy

training step
0 100000 200000 300000

50

55

60

65

70

quantitative

ac
cu

ra
cy

training step
0 100000 200000 300000

50

55

60

65

70

75

disjunctions

ac
cu

ra
cy

training step
0 100000 200000 30000050

55

60

65

70

75

conjunctions & disjunctions

ac
cu
ra
cy

training step
0 100000 200000 30000050

55

60

65

70

75

80

conjunctions

ac
cu

ra
cy

existential

training step
0 100000 200000 300000

50

55

60

65

70

75

Figure 5.14: Results on the ShapeWorld dataset, for multiple learning settings: sin-
gle task learning (red), multitask learning without a curriculum (gray), and mul-
titask learning with various curricula (shades of blue). The precise curricula for
each setting are described in Figure 5.13. We report the accuracy mean and stan-
dard error per training step, averaged over 5 runs. Note that not all curves start at
training step 0. This is because some of the tasks wait until their prerequisites are
satisfied, before starting to train.

5.4 key takeaways 101

5.4 key takeaways

In this chapter we presented another approach to curriculum learning by
designing curricula that operate on the task space of a model, as opposed to
scheduling the training examples. We showed that this can be done both in
the context of single task learning and in multitask learning.

In single task learning, the data and model architecture are structured
with the goal of learning a single function of interest. Thus, a curriculum
in task space needs to create a series of auxiliary tasks, which are not pro-
vided and which are easier than the task of interest. In Section 5.2 we pro-
posed such an approach aimed at multiclass classification problems. Our
approach automatically derives a series of easier classification problems
operating on coarser labels. It then trains a classifier sequentially on these
tasks, transferring the knowledge acquired about the coarser labels through
the model parameters. We applied this training strategy to several common
model architectures (CNN, Resnet, WideResnet) on popular image classifi-
cation datasets (e.g., CIFAR-100, Tiny-Imagenet), and found that it achieves
significant performance gains, especially on low data regimes and on clas-
sification problems with many labels.

Moreover, we also considered curricula for multitask learning. Here, we
decided to focus on compositional problems, where current machine learn-
ing methods still struggle, and where we believe there is much to gain
from curriculum learning. In Section 5.3.1, we used the explicit composi-
tional relationships between tasks and we combined curriculum learning
with semi-supervised and self-supervised learning to improve the system
performance. We applied this idea to a synthetic scenario where we want
to train a neural network basic arithmetic (counting, addition, multiplica-
tion). With our proposed strategy, we were able to boost the results for both
interpolation (when the test data is sampled from the same distribution as
the training data) and extrapolation (when the test data is sampled from a
different distribution than the training data).

Finally, we also applied a different task-space curriculum learning ap-
proach on a multimodal image understanding problem. We generated mul-
tiple related tasks using the ShapeWorld framework (Kuhnle and Copestake,
2017). Here, the task compositions were implicit: for the model to be able to
solve more complex tasks (such as reasoning about the relative positioning
of objects in images), it must first be able to solve an easier task (such as
detecting if that object exists in the image). Without explicitly modeling the
relationships between tasks, we observed that just by training the tasks in a
particular order given by a curriculum, we were able to improve the overall
system performance on all tasks.

Taken together, these results show that there are various ways to apply
curriculum learning on the task space of a model to improve performance.

6
U N D E R S TA N D I N G C U R R I C U L U M L E A R N I N G : A C A S E
S T U D Y O N S E Q U E N T I A L D ATA

In this thesis so far, we have reviewed prior work on curriculum learn-
ing, proposed several novel methods for performing curriculum learning,
and presented multiple successful use cases. However, while there has been
been a significant amount of work on the practical usefulness of curriculum
learning, not much progress has been made towards a better theoretical
understanding of the effect of curriculum learning on optimization algo-
rithms. One of the main issues that thwarts progress on this front is that
curricula have been shown to bring benefits mainly for deep neural net-
works, which are notoriously hard to analyze theoretically. Existing theo-
retical work mostly focuses on self-paced learning (Fan et al., 2017; Ma et
al., 2017), or makes strong assumptions about the studied curriculum (e.g.,
Hacohen and Weinshall (2019) prove that an ideal curriculum selected with
respect to an optimal hypothesis can indeed improve learning). While these
studies are excellent first steps, more work is needed to fully understand the
effects of curriculum approaches that are commonly used in practice. For
instance, in our work in Chapter 4, curricula based on intuition inspired by
human learning were able to provide significant benefits in both training
speed and final performance, without relying on any knowledge about the
optimal model parameters.

Our goal in this chapter is to better understand how curriculum learning
affects training and why it benefits learning in some cases, while it hin-
ders it in others. Specifically, we are going to focus on a problem setting
where we have seen many successful applications of curriculum learning:
problems involving sequential data. Several publications (e.g., Bengio et al.,
2009; Spitkovsky et al., 2010; Sachan and Xing, 2016; Xu et al., 2020), includ-
ing our work presented in Chapter 4 used input space curricula on various
types of sequential data, and showed how such curricula can help neural
networks train faster and also sometimes obtain higher accuracy. Addition-
ally, many of these approaches use as the sample difficulty measure either
the sequence length, or other measures that correlate to some extent with
sequence length (e.g., sentence probability in Section 4.4). For this reason,
we focus on understanding the effect of length-based curricula on sequen-
tial data problems, and hope that our insights for this problem setting prove
to be beneficial to a wide variety of domains that involve sequential data,
including natural language processing, signal processing, finance, medical
applications, etc.

103

104 understanding curriculum learning : a case study on sequential data

To study the effect of curriculum learning on such problems, in this chap-
ter we consider several case studies of increasing complexity:

1. Learning the parity function using recurrent neural networks (RNNs).
2. Learning to add two numbers digit by digit using Long Short-Term

Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997).
3. Learning arithmetic using encoder-decoder networks based on LSTMs

and Transformers (Vaswani et al., 2017).
4. Fine-tuning BERT (Devlin et al., 2019) on tasks included in the GLUE

benchmark datasets (Wang et al., 2019a).

For each of these scenarios, we try to understand the effect of curriculum
learning on the training process by analyzing the parameter gradients com-
puted during training and the loss function landscape.

6.1 analytical study

In this section we inspect analytically the parameter gradients equation for
the some of the models considered in this chapter, and discuss the effect
that we expect to see with curriculum learning. We then verify that we do
indeed observe this effect empirically in each of the case studies. Before
computing gradients for specific model architectures, in Section 6.1.1 we
consider a more abstract model representation, that applies to recurrent
neural networks (RNNs), as well as to other compositional models more
broadly. Then, in Section 6.1.2, we inspect the concrete gradients for the
simple RNN used in the first case study. Finally, based on the observations
from the analytical study, in Section 6.1.3 we propose two hypotheses about
when and why length-based curricula work.

6.1.1 Gradients for Composed Functions

Consider a scenario where the function that we want to learn, f parameter-
ized by θ, can be expressed as the composition of two other functions g and
h with parameters θg and θh, respectively, where θ = θg ∪ θh and θg and
θh may share parameters (θg ∩ θh 6= ∅):

f(x) = g(h(x)) (6.1)

This type of composition applies to RNNs, as well as other models. For
example, for RNNs this is a composition of the same function, applied
repeatedly, once for each element of the sequence being modeled. However,
we are now going to focus on the simplified function f for simplicity of
exposition and without loss of generality.

6.1 analytical study 105

Let us first inspect the gradients of f with respect to θg. By applying the
chain rule, we have that:

∂f(x)

∂θg
=
∂g(h(x))

∂θg
=
∂g(y)

∂θg

∣∣∣
y=h(x)

+
∂g(h(x))

∂h(x)

∂h(x)

∂θg
(6.2)

Here we have decomposed the gradient of g(h(x)) with respect to θg into a
component that depends only on the transformation performed by function
g, and a component that depends on the nested function h due to the fact
that θg and θh may share parameters.

If the function g(y) applies some transformation on the inputs y using
the parameters θg, as is typically the case in neural networks, then the
gradient ∂g(y)∂θg

depends on y (i.e., ∂g(h(x))∂θg
depends on the value of h(x)).

Thus the update that we apply to θg depends on the estimate of h(x) using
the current θh parameters. This can be a problem early on during training
while the parameters θh are far from converged and their distribution may
be shifting. This a well known problem in machine learning, known as inter-
nal covariate shift, which refers to “the change in the distribution of network
activations due to the change in network parameters during training” (Ioffe
and Szegedy, 2015). More generally, in neural networks, the predictions of
the first layer are passed as input to the second layer, the predictions of the
second layer are passed as input to the third layer, etc. Because of this, when
the parameters of a particular layer (especially an early one) change, the in-
put distribution of all subsequent layers also changes. This makes deep
models harder to train, and requires special tricks such as learning rate
schedules that progressively lower the learning rate, careful initialization,
or using methods designed to mitigate this such as batch normalization
(Ioffe and Szegedy, 2015). Such strategies can ameliorate the problem, but
slow down training and also require additional tuning efforts. RNNs can
be seen as deep networks by “unrolling” the time dimension, and thus are
also prone to this issue, even more so when training on longer sequences. A
curriculum based on sequence length may be able to improve the internal
covariate shift issue, because the predictions for the shorter sequences may
have stabilized by the time the model is allowed to see longer ones.

Let us now consider the gradients of f with respect to θh:

∂f(x)

∂θh
=
∂g(h(x))

∂θh
=
∂g(h(x))

∂h(x)

∂h(x)

∂θh
(6.3)

Early on during training, while θg is far from its correct value, the pre-
diction for g(h(x)), and consequently the value of ∂g(h(x))∂h(x) , is likely far

from its optimal value. Therefore, the update that we apply to θh via ∂f(x)
∂θh

will also be noisy. For RNNs this means that the updates that we apply
to correct the predictions for the beginning of the sequence will be noisy

106 understanding curriculum learning : a case study on sequential data

due to the multiplier coming from the wrong predictions at the end of
sequence. Therefore, it is worth considering training h (which, for RNNs
means shorter sequences) in isolation if possible, before training the com-
posed function jointly. In fact, for many RNN problems, datasets typically
have examples of different lengths which would allow us to do this using a
length-based curriculum.

Taken together, these observations suggest that the coupling between the
two composed functions, f and g, can have a negative impact on learning
each of them. Therefore, it may be beneficial to decouple their parameter up-
dates, if possible, in order to avoid internal covariate shift and compound-
ing errors.

6.1.2 Gradients for a Simple RNN

We now inspect the gradients of a basic RNN architecture (which we also
use in Section 6.2 in our first case study), to verify that the issues described
earlier indeed apply in this case. Moreover, for this specific RNN architec-
ture there is an additional issue, which we will discuss after introducing
its gradients. We start by introducing the model architecture, followed by a
discussion on its gradients and the problems that can arise.

6.1.2.1 Model

We consider a simple RNN architecture and input sequence x of length T ,
which is passed through the RNN step by step. After the last input at time1

step T , the network predicts the output of interest, which is used to update
the model parameters. We depict this in Figure 6.1 where, for illustration
purposes, the data is a sequence of bits as used in Section 6.2.

To facilitate our analysis, we chose a basic recurrent neural network
(RNN) architecture, with the following hidden state update equation:

ht = xtWxh + σ(ht−1)Whh + b (6.4)

Wxh

+

xt

σ Whhht-1 ht

Figure 6.2: A basic RNN cell.

where x is a sequence of length T , t ∈ {1, ..., T }
represents the time step indexing the position
in the input sequence, xt is the m-dimensional
input at time t, ht is the network hidden state
at step t, Wxh ∈ Rm×d, Whh ∈ Rd×d and
b ∈ Rd are the RNN parameters with hidden
size d, and σ is a non-linear activation function

1Borrowing terminology from signal processing, it has become standard in recurrent
neural networks to refer to sequence elements as “time steps”, because they are provided
to the network one at a time. We follow this convention, although the sequence elements in
our case do not refer to time per se.

6.1 analytical study 107

RNN

11

RNN

1

RNN

Dense

1

RNN

0 0

RNN

1
Figure 6.1: Using a recurrent neural network (RNN) to compute the parity function
for a sequence of binary inputs.

(we use tanh in our experiments). An illustration of the recurrent network
cell is shown in Figure 6.2. Note that this formulation is equivalent to the
more popular alternative ht = σ(xtWxh + ht−1Whh + b), and we chose it
to facilitate the derivation of the gradients, as did Pascanu et al. (2013) in a
related line of work.

The last RNN output is passed to a dense layer, that projects to the output
space of size k:

o = htWho + bo (6.5)

where Who ∈ Rd×k and bo ∈ R are the dense layer parameters.
When we perform classification, we further normalize the logits o into a

valid probability distribution as ŷ = softmax(o). We train the network by
minimizing a loss function L(ŷ,y) between the predicted outputs ŷ and the
target y.

6.1.2.2 Gradients

Let us consider the gradient of the loss function with respect to the recur-
rent weights of the model, Whh. Using the chain rule, we can calculate the
gradient as:

∂L

∂Whh
=
∂L

∂oT

∂oT
∂hT

∂hT
∂Whh

(6.6)

Taking into account the recurrent relationship between ht and ht−1 for all
t, we have that:

∂hT
∂Whh

=
∑

16k6T

∂hT
∂hk

∂+hk
∂Whh

(6.7)

∂hT
∂hk

=
∏
k<i6T

∂hi
∂hi−1

=
∏
k<i6T

WT
hhdiag(σ

′(hi−1)) (6.8)

108 understanding curriculum learning : a case study on sequential data

where we have used the notation of Pascanu et al. (2013) in ∂+hk
∂Whh

to refer to
the “immediate” partial derivative of hk with respect toWhh in which ht−1
is taken as a constant with respect toWhh. Also, diag converts a vector into
a diagonal matrix, and σ ′ is the element-wise derivative of σ with respect
to its only argument. Moreover, the value of a row in the tensor ∂+hk

∂Whh
is

diag(σ(hk−1)).
From Equation 6.4 and Equation 6.7 we can observe two important issues

that make training difficult for RNNs:

1. Vanishing Gradients: Equation 6.7 exposes a well known difficulty
in training recurrent neural networks known as the “vanishing gra-
dients problem” (Hochreiter, 1991). This refers to the fact that the
contribution of the time steps T-1, T-2, ..., 1 to the gradient keeps de-
creasing in this order, and thus when T is large the gradient cannot
help the model correct its predictions for the early time steps. This
is due to the multiplication in ∂hT

∂hk
in Equation 6.7 containing more

and more factors with values between [0,1] as k decreases, that cause
that term to “vanish”. For instance, if σ is the tanh function, then
σ ′(ft) = 1− (σ(ft)︸ ︷︷ ︸

∈[−1,1]

)2 ∈ [0, 1]. Similarly, depending on the norm of

Whh, the power of Whh coming from the product in Equation 6.7 can
also contribute to this problem. A more detailed discussion on this
issue can be found at Pascanu et al. (2013).

2. Compounding Errors: The value of the hidden state ht depends on all
the estimated values for the prior states ht−1, ...,h1. Therefore, during
training, until the network is good enough at predicting h1, ...,ht−1,
due to compounding errors, we can expect ht to be noisy.

Putting the pieces together, we notice that the terms with large impact
on the gradient (i.e., those corresponding to the latter hidden states hT−1,
hT−2, etc.) depend on having good hidden states propagated from the ear-
lier time points. At the same time, the early hidden states h1, h2, etc., con-
tribute little to gradient update, especially when the input sequence is long,
and thus it would be difficult for the model to “fix” its predictions for the
early states using parameter gradients computed on a long sequence. There-
fore, we can expect that the gradients for long sequences will be noisy while the
model is not good at predicting shorter sequences.

6.1 analytical study 109

6.1.3 Hypotheses on When and Why Curriculum Learning Works

Based on the observations in Section 6.1.1 and Section 6.1.2, we propose the
following hypotheses:

• Hypothesis 1: When training composed models (in particular recur-
rent networks) without a curriculum on sequential data, there is some
degree of correlation between the sequence length and the relative
time during training when that sequence is learned.

• Hypothesis 2: When there is such a correlation even without a curricu-
lum, a length-based curriculum can help the model converge faster.

Hypothesis 1 (H1) is stating that a model during training will start per-
forming well first on shorter sequences, and only afterwards on longer and
longer ones. Of course, depending on the concrete application, there may
be other criteria besides sequence length that make a sequence easier or
harder (e.g., in Section 4.4 we used the intuition that if a sentence contains
rare words, this makes it harder to translate). H1 is accounting for this is-
sue by specifying that there only “some degree” of correlation with the
time during training when the model starts performing well on sequences
of that length—only “some” degree because part of the difficulty of the
sample may be caused by other criteria as well. In other words, the sequence
length only contributes to the difficulty of a training sample, and thus can be
used in combination with other difficulty criteria to establish a combined
sample difficulty.

Hypothesis 2 refers to curricula that focus on shorter sequences early on.
There are multiple ways to “focus” on shorter sequences. For example, at a
training iteration i, we can sample uniformly from all sequences of length
T < threshold(i), as we did in Chapter 6 using the competence function.
Another way is to perform weighted sampling from all training data, but
put more weight on shorter sequences early on during training.

In the following sections we investigate empirically whether these hy-
potheses hold on multiple case studies.

110 understanding curriculum learning : a case study on sequential data

6.2 case study #1 : parity function

For our first case study, we consider learning the parity function, also known
as the XOR problem. This is a famous problem that is often used as a text-
book example when introducing neural networks, because it is a very sim-
ple classification problem that is not “solvable” using a linear model (i.e., it
is not linearly separable). The XOR function over binary inputs x1 and x2 is
defined as follows:

x1 ⊕ x2 =

{
0, if x1 = x2
1, otherwise

(6.9)

In this case study, we are interested in sequences and so we consider the
n-bit parity function f : {0, 1}n → {0, 1}, where f(x) = 1 if and only if the
total number of ones in the vector x ∈ {0, 1}n is odd. We denote this as:

f(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn (6.10)

Therefore, in this first case study, we will train a neural network to compute
the parity of bit sequences of arbitrary length. In the following sections we
provide details on the model and the training algorithm that we use.

model . To support variable-length sequences, we use a recurrent neural
network (RNN). In fact, we use the precise architecture described in Sec-
tion 6.1.2.1. In this case, the inputs at every time step are binary, x ∈ {0, 1}T ,
and thus the dimension m of xt is 1. After the last input at time step T , the
network predicts the parity of the sequence or, in other words, it predicts
whether the sequences contains an odd number of 1’s. Finally, since the net-
work is performing binary classification, we use the binary cross entropy
loss function to train it:

L(ŷ,y) = −(y log ŷ+ (1− y) log(1− ŷ)) (6.11)

curriculum . As discussed earlier, we use an input-space curriculum that
uses the sequence length to measure the sample difficulty. The network is
trained by sampling batches of examples and updating the model parame-
ters according to the batch loss (we discuss concrete optimizers and learn-
ing rates later in Section 6.2.1). The curriculum acts as a filter on the data
that is selected during training. To keep the analysis easy to interpret, we
use a simple form of curriculum learning that still shows good results on
this problem: a linear curriculum with its length being the single hyperpa-
rameter of this algorithm (equivalent to the “linear” competence function
from Section 4.1). We set the curriculum length to a prespecified number
of training steps, C. For the first C training steps, we sample batches of
examples uniformly from the k% easiest training samples (i.e., shortest se-

6.2 case study #1 : parity function 111

quences), where k linearly increases to 100% during the first C steps. After
the first C training steps, we sample batches uniformly from the whole
training set (i.e., similar to training without a curriculum).

6.2.1 Experimental Setup

data . The model is trained on bit sequences with length T ∈ {1, ..., Tmax}.
In what follows we report results for Tmax = 10. We also experimented
with longer training sequences, but this did not seem to affect our results
and key takeaways that we present at the end of this section. We used the
following dataset splits:

– Train: For each training batch, we first sample a sequence length T
uniformly from {1, ..., Tmax}, and we then sample a batch of 128 exam-
ples of length T . Each bit in the input sequences is sampled from a
Bernoulli distribution with parameter p = 0.5. This strategy ensures
that all sequence lengths appear equal probability during training.

– Test: We construct two datasets: one for testing the ability of the model
to interpolate, and one for testing its ability to extrapolate. For the in-
terpolation dataset we use the training data sampling strategy to sam-
ple 100 batches of examples, with each batch containing 16 examples.
Note that each batch contains examples of equal length. For the ex-
trapolation dataset we also sample 100 batches of examples of size 16,
but in this case the sequence lengths we consider are between 101 and
120. This is so that we can evaluate the model on sequences that are
significantly longer than the sequences it was trained on. This large
difference between the train and test data distribution will allow us to
evaluate whether the model has learned the parity function rule that
can generalize to arbitrary lengths, as opposed to just overfitting on
the training data distribution.

training . We train our model using stochastic gradient descent with a
constant learning rate of 0.001, and a batch size 128. We also tried using
other optimizers like Adam (Kingma and Ba, 2015) and other learning rates,
but while these affected the convergence speed of the models, they did
not affect the relative performance of the models trained with and without
curriculum, and thus do not affect our conclusions.

curriculum . We use the linear curriculum described earlier. Concretely,
the curriculum changes the probability distribution of the training data by
adjusting the value of Tmax (i.e., the maximum sequence length that we
consider when sampling training data batches), starting at Tmax = 1, and
linearly increasing it to 10 during the first C epochs. Figure 6.3 shows the
Tmax value every training epoch depending on total curriculum length C.

112 understanding curriculum learning : a case study on sequential data

Curriculum Schedule

m
ax

se
qu

en
ce

le
ng

th
al

lo
we

d
Curriculum 300 epochs
Curriculum 200 epochs
Curriculum 100 epochs
Curriculum 50 epochs
Curriculum 10 epochs
Baseline

epoch
0 50 100 150 200 250 300

2

4

6

8

10

Figure 6.3: Maximum sequence length allowed to be sampled at each epoch during
training, depending on the curriculum length, C.

6.2.2 Results

For our experiments we consider two training regimes: a baseline regime
where we train without using a curriculum, and a curriculum regime where
train using a linear curriculum for the first C epochs, after which we switch
back to the baseline training regime. We consider multiple values for C and
we also use two variants of our model: one with a hidden size of d = 4

and one with d = 128. Note that the hidden size d = 4 was the smallest
network that we were able to train successfully under any training regime.
Our results are shown in Figure 6.6. Across all of our experiments, we
observe that models trained using a curriculum reach better performance
and learn faster than the corresponding baselines. We now summarize a
few more of our observations:

– Small vs Large Model: The larger RNN seems easier to train even
without a curriculum (i.e. it both performs better and trains faster
than the smaller model), but the curriculum helped in both cases. In-
terestingly, the small baseline was not able to extrapolate at all in any
of the 5 runs, while the model trained using curriculum learning was
able to extrapolate.

– Curriculum Length: We observe that the optimal curriculum learn-
ing for these experiments seems to be between 100 and 200 epochs.
We also notice that curricula which are shorter or longer than that
range result in smaller gains. This suggests that there is an optimal
curriculum length beyond which the benefits of curriculum learning
start to decay and may even harm overall performance. We attempt
to provide an explanation for this effect in the following sections.

6.2 case study #1 : parity function 113

0 50 100 150 200 250 300
epoch

50

60

70

80

90

100

ac
cu
ra
cy

(%
)

Test Interpolation Test Extrapolation
hi
dd
en

si
ze

=
4

hi
dd
en

si
ze

=
12
8

0 50 100 150 200 250 300

50

60

70

80

90

100

ac
cu
ra
cy

(%
)

epoch epoch

0 50 100 150 200 250 300
epoch

50

60

70

80

90

100

ac
cu
ra
cy

(%
)

0 50 100 150 200 250 300

50

60

70

80

90

100

ac
cu
ra
cy

(%
)

Curriculum 50 epochs

Baseline Curriculum 100 epochs
Curriculum 10 epochs Curriculum 200 epochs

Curriculum 300 epochs

1-10 bits 101-120 bits

Figure 6.4: Accuracy of RNNs trained on sequences of length 1-10, with and with-
out a curriculum. Top row: hidden state d = 4. Bottom row: hidden state d = 128.
First column: the test dataset contains sequences of length 1-10 to test interpola-
tion. Second column: test sequences of length 101-120, to test extrapolation. For
each experiment configuration, we report the accuracy mean and standard error
over 5 runs with different random initializations.

– Training Loss: Observing the loss of the two models in Figure 6.5,
we notice an interesting behavior for the curriculum experiments: at
the beginning of each new curriculum level, when longer sequences
are introduced, the loss shows a sharp increase followed by a steady
decrease until the next curriculum level. Also, after 300 epochs we
observe that, for d = 4, the loss of the model trained with curriculum
is significantly lower than that of the baseline. On the contrary, for
d = 128 the two values are close, but the curriculum allowed to the
model to reach that value earlier in training.

6.2.3 Evidence for the Proposed Hypotheses

hypothesis 1 . To test Hypothesis 1, we first train the network without a
curriculum and compute the accuracy on a test set as training progresses.
We keep track of the test accuracy per sequence length (i.e. we separately
average the accuracies for test sequences of length 1, 2, etc.), in order to

114 understanding curriculum learning : a case study on sequential data

hidden size = 4 hidden size = 128

Tr
ai

n
Lo

ss

0 50 100 150 200 250 300

epoch epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

Curriculum 50 epochs

Baseline Curriculum 100 epochs
Curriculum 10 epochs Curriculum 200 epochs

Curriculum 300 epochs

Figure 6.5: Train loss of RNNs trained on sequences of length 1-10, with and with-
out a curriculum. Left: hidden state d = 4. Right: hidden state d = 128. For each
experiment configuration, we report the accuracy mean and standard error over 5

runs with different random initializations.

Se
nt

en
ce

Le
ng

th

Epoch

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0
No Curriculum Curriculum

Epoch
0 30 60 90 120 150 180 210 240 270

1

2

3

4

5

6

7

8

9

0 30 60 90 120 150 180 210 240 270

1

2

3

4

5

6

7

8

9

Figure 6.6: Accuracy per sequence length for an RNN with hidden size 128, trained
on sequences of length 1-10. We report the accuracy on a validation set, averaged
separately for samples of different sequence length. All accuracies are the average
over 5 runs initialized with different random seeds.

observe how well the network performs on sequences of different length as
training progresses. We perform this experiment using an RNN with hidden
size d = 128 trained on sequences of length 1-10, and tested on sequences
of the same length. The results are shown in Figure 6.6, left side. We can
clearly see a pattern where the sequences are learned in order of length,
meaning that at every point during training the model performs on average
better on sequences of length t than length t+ 1, which is consistent with
Hypothesis 1.

hypothesis 2 . We perform the same experiment with a model trained
with curriculum learning. We set C = 100, which was one of the best per-
forming curricula in Figure 6.4. The results are shown in Figure 6.6, right
side. We notice the same pattern of accuracies increasing in order of length
as displayed by the baseline model, but the all accuracies increase faster.

6.2 case study #1 : parity function 115

Using curriculum learning, the model reaches a good performance even for
the longest sequences much faster, which is consistent with Hypothesis 2.
In fact, Figure 6.4, where the accuracies for all lengths are aggregated, also
supports this hypothesis.

6.2.4 The Effect of the Curriculum on the Loss Landscape

In the previous sections we have seen that a model trained with curricu-
lum performs better than the equivalent baseline, and we conjectured in
Section 6.1 that this is because it avoids the noisy gradients from longer
sequences early on during training. In this section we visualize how the
curriculum changes the trajectory of the parameters during training. To
this purpose, we use a recent method of visualizing the loss landscape of
deep neural networks (Goodfellow et al., 2014; Im et al., 2016; Li et al., 2018).
We follow the method described in Li et al. (2018) to visualize the training
loss along a 2D projection of the model trajectory. We further summarize
the visualization approach, and then use it on our parity function problem.
Note that we will also use the same visualization technique in the following
case studies.

visualization method. Let θ represent all the model parameters flat-
tened and concatenated into a single 1-dimensional vector. The model tra-
jectory during training is a sequence of such parameters θ0, θ1, ..., θn, etc.,
starting at the initial parameters θ0 and converging to θn at the end of
training. For every parameter configuration θ, we obtain a different loss
value on the training dataset, L(θ). However, we would like to visualize the
loss value not only at the exact points on the trajectory, but also on a grid
around them, in order to better understand what the loss landscape looks
like. To be able to visualize it, the grid needs to be in a lower-dimensional
subspace (e.g., 1D or 2D) that we can easily plot. Thus, we follow the ap-
proach described in Li et al. (2018) and select a center point θ∗ for our grid
(e.g., θ∗ = θ0), as well as two direction vectors, δ and η. We then calculate
the loss value at multiple locations in the subspace given by the directions δ
and η: `(α,β) = L(θ∗ +αδ+βη). The directions δ and η need to be chosen
carefully, to preserve as much as possible of the variation in the trajectory.
Section 7 of Li et al. (2018) shows examples of good and bad directions.
We follow their approach of applying principal component analysis (PCA)
on the matrix M = [θ0 − θ∗, θ1 − θ∗, ..., θn − θ∗] to find two directions that
explain as much as possible of the variance.

results . We display the loss landscape for one of the discussed experi-
mental settings: an RNN with hidden state 128, trained on sequences of
length 1-10. We consider 4 individual trajectories: a baseline model trained

116 understanding curriculum learning : a case study on sequential data

Test Interpolation Test Extrapolation

Train Loss

0 50 100 150 200 250 300

50

60

70

80

90

100

ac
cu
ra
cy

(%
)

0 50 100 150 200 250 300

50

60

70

80

90

100

ac
cu
ra
cy

(%
)

0 50 100 150 200 250 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lo
ss

Baseline

Curriculum 10 epochs

Curriculum 50 epochs

Curriculum 100 epochs

epoch epoch

epoch

Figure 6.7: Results for the 4 model trajectories displayed on the loss landscape in
Figure 6.8. Left: interpolation test accuracy evaluated on sequences of length 1-10,
similar to the training distribution. Middle: extrapolation test accuracy evaluated
on sequences of length 101-120. Right: training loss.

without a curriculum, and three curricula trajectories for curriculum lengths
C ∈ {10, 50, 100}. All 4 experiments start from the same initial parameters
θ0. We select θ∗ = θ0 as the reference point for the loss plot. We display
the loss landscape in Figure 6.8, and the corresponding test accuracies and
training loss curves in Figure 6.7.

The loss landscape depends on the dataset it is evaluated on. The model
trained without curriculum is always updated based on the landscape cor-
responding to ”Sequence length 1-10”, at every step along the trajectory.
The models trained with curriculum learning are updated based on each of
the landscapes sequentially, starting with sequences of length 1, followed by
1− 2, then 1− 3, etc. Thus, the initial gradient descent direction is driven by
the earlier loss landscapes, but after the curriculum is complete, the model
continues training on the original train distribution. We also display the
loss landscape of the test distribution, for sequences of length 101− 120, on
the last row of Figure 6.8.

Interestingly, we can observe that the loss surface seems smoother with
wider local minima when evaluated on shorter sequences. As the sequences
become longer, the loss space becomes sharper, with narrower local minima.

6.2 case study #1 : parity function 117

5 0 5 1 0 1 5 2 0
2 0

1 5

1 0

5

0

5

0 . 2 5 00.500 0 . 7 5 0

0 . 7 5 0

1 . 0 0 0

1 . 0 0 0

1.250

1 . 250

1 . 2 5 01 . 5 0 0

1 . 5 0 0

1 . 5 0 01 . 7 5 0

1 . 7 5 0

2 . 0 0 0

2 . 0 0 0

2 . 2 5 0

2 . 2 5 0

2 . 5 0 0

2 .500

2 . 7 5 0

2 . 7 5 0

3 . 0 0 0

3 . 0 0 0

3.
25

0

3 . 2 5 0

3 .5
00

3 . 5 0 0

3 . 5 0 0

3 . 7 5 0

3 . 7 5 0

3 . 7 5 0

4 .000

4 .000

4 . 000

4 . 0 0 0

4 . 2 5 0
4 .250

4 . 250

4 . 2 5 0

4 . 5 0 0
4 .500

4 .500

4 . 5 0 0

4 . 7 5 0 4 . 7 5 0

4.750

4 . 7 5 0

5 0 5 1 0 1 5 2 0
2 0

1 5

1 0

5

0

5

5 0 5 1 0 1 5 2 0
2 0

1 5

1 0

5

0

5

0 . 250

0 . 2 5 0

0 .500

0 . 5 0 00.
75

0

1 . 0 00

1 . 0 0 0

1 . 0 0 0

1 .250

1 . 500

1.
75

0

2 .
00

0

Se
qu

en
ce

le
ng

th
1-

5

5 0 5 1 0 1 5 2 0
2 0

1 5

1 0

5

0

5

0 1 2 3 4 0 1 2 3 54

Se
qu

en
ce

le
ng

th
1-

10
Se

qu
en

ce
le

ng
th

1-
50

5 0 5 1 0 1 5 2 0
2 0

1 5

1 0

5

0

5

0 . 250

0 . 2 5 0

0.
50

0

0 . 500
0.750

0 . 750

1.000

1 . 0 00

1 . 0 0 0

1.250

1 . 2 5 0

1 . 2 5 0

1 . 2 5 0

1.500

1 . 5 0 0

1.750

1 . 7 5 0

2 . 0 0 0

2 . 2 5 0

2 . 500

2.
75

0
3.

00
0 3 . 250

3 . 500

5 0 5 1 0 1 5 2 0
2 0

1 5

1 0

5

0

5

Se
qu

en
ce

le
ng

th
10

1-
12

0

5 0 5 1 0 1 5 2 0
2 0

1 5

1 0

5

0

5

0 . 2 5 0

0.500

0 . 7 5 0

0 .750

0.750

1 . 000

1 . 000

1.250

1 . 2 5 0

1 .250

1.500

1 . 500

1.750

1 . 750

2 .000

2 . 000

2 . 0 0 0

2 .250

2.
25

0

2 .
25

0

2 . 500

2 . 5 0 0

2 . 5 0 0

2 .750

2 . 7 5 0
2.750

3 . 000

3 . 000

3 . 0 0 0

3 . 2 5 0

3 . 2 5 0

3 . 5 0 0

3 . 5 0 0

3 . 7 5 0
4 . 0 0 0

4 .2504
.5

00
4.

75
0

5 0 5 1 0 1 5 2 0
2 0

1 5

1 0

5

0

5

Baseline Curriculum 10 epochs Curriculum 50 epochs Curriculum 100 epochs

Figure 6.8: Loss landscape for an RNN with hidden state 128, trained to predict
the parity function. Each row shows the loss landscape evaluated on datasets with
different sequence lengths. Each column provides a different view of the corre-
sponding loss landscape: a contour plot (left), a heatmap with contour lines (mid-
dle), a 3D view of the heatmap where the height corresponds to the value of the
loss (right). We overlay over each plot the trajectories of three models: a baseline
trained without curriculum, and three curricula of lengths 10, 50 and 100 epochs.
The corresponding test accuracies for these trajectories are shown in Figure 6.7.

118 understanding curriculum learning : a case study on sequential data

A possible explanation for the narrowing of the local minima with length
is that, for the xor problem, samples consisting of short sequences can be
prefixes of longer sequences. Therefore, a parameter configuration that can
solve a long sequence, is likely to be a good solution for short sequences as
well. Thus, local minima in the loss landscape of long sequences, will likely
be local minima for short sequences as well. This effect can probably be
seen for other problems where the data has this property, such as natural
language processing problems using text data or our addition experiments.
The wideness of the local minima, as well as the smoothness of the loss
landscape, may enable a model trained with a length-based curriculum to
“see” local minima that are farther from the initial parameters. Therefore,
the gradient descent direction during the early stages of the curriculum may
point towards local minima that are not in the immediate descent direction
according to the full training distribution.

Another interesting observation is that the baseline model in this case is
slowed down in a flatter region of the loss surface. We see from the accuracy
plot in Figure 6.7 that is has not converged, but it is moving very slowly
around a flatter region of the loss. The models trained with curricula, on the
other hand, quickly start in the direction of local minima and reach a better
accuracy faster. The shorter of the curricula reaches the local minimum that
is closest to the baseline method, but faster. The longer curricula find a
different local minimum which is further away.

Moreover, when considering that type of benefits we can expect from
curriculum learning, a natural question to ask is whether the curriculum
is just helping the model train faster and the difference in performance at
the end of training is entirely due to the fact that the baseline may need
more iterations to reach the same point. The loss landscape plots suggest
that this is not necessarily the case, and that the models trained with and
without curriculum may not necessarily converge to the same point.

6.3 case study #2 : addition digit-by-digit 119

6.3 case study #2 : addition digit-by-digit

In this case study, we use the same setup as in Section 4.2 to perform digit-
by-digit addition using an LSTM. In this setting, we observed that a curricu-
lum using the number of digits as difficulty measure (equivalent to using
the sequence length) was beneficial for both interpolation and extrapolation,
as reported in Figure 4.6. Next, we attempt to understand better what led
to these effects, using the same type of analyses as in the previous section.

6.3.1 Analytical Study

In Section 6.1 we inspected the gradients of RNNs and of compositional
functions more generally, and pointed out a few issues related to training
on long sequences, such as compounding errors and vanishing gradients.
LSTMs (Hochreiter and Schmidhuber, 1997) are in fact a special type of
RNN that has been designed explicitly to overcome the vanishing gradi-
ents issue. Indeed, LSTMs provide a big improvement over simple RNNs,
making them popular across many machine learning areas, and especially
those that deal with sequential data (e.g., natural language processing, sig-
nal processing). Nevertheless, they are still recurrent networks which are
compositional in nature, and so our discussion in Section 6.1.1 applies to
them as well. That is, when updating the model parameters on a long se-
quence early on, the gradient component trying to correct the predictions at
later time steps will still be affected by the wrong hidden state propagated
from earlier time steps. And similarly, the gradient component trying to
correct the predictions at early time steps will still be affected by the gradi-
ent component propagated from the later time steps. Therefore, using the
same argument as before, we expect to see that the sequences are being
learned in order of length (i.e., Hypothesis 1), and that using length-based
curricula helps them learn faster and more effectively (i.e., Hypothesis 2).

6.3.2 Evidence for the Proposed Hypotheses

We now investigate further what property of the curriculum brought about
the improvements observed in Figure 4.6. Similar to the parity function
experiments, we record the accuracy of the model during training, and ag-
gregate it over samples with the same number of digits. We report these
accuracies per number of digits in Figure 6.9. Also similar to the parity
function experiments, we observe that the accuracies per training step in-
crease in order of number of digits, suggesting that the model first learns
to add the samples with fewer digits, and then with more and more digits.
This provides further evidence for Hypothesis 1.

120 understanding curriculum learning : a case study on sequential data

Nu
m

be
ro

fD
ig

its

Train Steps

50

60

70

80

90

100No Curriculum Curriculum

0 10000 20000 30000 40000 50000

Train Steps
0 10000 20000 30000 40000 50000

1

2

3

4

5

6

7

8

9

10

11

Figure 6.9: Accuracy per number of digits for an LSTM with hidden size 16, trained
on adding numbers with up to 5 digits, and evaluated on a held-out test set con-
taining operands with up to 10 digits. We report the accuracy on a validation set,
averaged separately for samples with different number of digits. All accuracies
are the average over 5 runs initialized with different random seeds. Since we are
adding two operands with potentially different number of digits, the number of
digits in the figure refers to the number of digits of their sum (thus it goes to 11).

We also observe that the final accuracies (at the last step) are also de-
creasing with sequence length, which can be explained by the compound-
ing errors argument described in Section 6.1.2. Unlike the parity function
experiment, here the model learns the training data distribution (1-6 dig-
its on the y-axis in the figure) very quickly for both the baseline and the
curriculum training regimes. However, the curriculum version improves ac-
curacy much faster for long sequences that are outside the training data
distribution (7-10 digits), which is in agreement with Hypothesis 2. Further
evidence for Hypothesis 2 is provided by the results in Figure 4.6, where
we the model trained with curriculum learning not only reaches better final
accuracy, but also achieves its best accuracy earlier than the baseline.

6.3.3 The Effect of the Curriculum on the Loss Landscape

We also inspect the loss landscape along the learning trajectories of the
two models, using the process described in Section 6.2.4. In Figure 6.10,
we show contour plots of the loss landscape around the model trajectory
during training. We also project the trajectories of two models: a baseline
trained without curriculum learning, and a model trained with a length-
based curriculum, whose losses are illustrated in Figure 6.9. As we can see
from Figure 6.10, the two trajectories both start at the same initial point, but
they converge to different local minima. The loss landscape marked by the
contour plots depends on the dataset it is being computed over. The model
trained without curriculum is always updated according to the “Full Train”
loss landscape, at every step along the trajectory. The curriculum model,
on the other hand, is updated based on each of the landscapes sequentially
starting with the 5% easiest data, increasing the amount of data allowed

6.3 case study #2 : addition digit-by-digit 121

2 .0 1 .5 1 .0 0 . 5 0 . 0 0 .5 1 .0 1 .5 2 .0
4

3

2

1

0

1

2

14 . 602

14 . 602
29 . 202

29 . 202

43 . 802

43 . 802

58 . 402

58 . 402

73 . 001

73 . 001

87 . 601

87 . 601

102 . 201

102 . 201

116 . 801

116 . 801

131 . 401

131 . 401

146 . 001

146 . 001

160 . 601

160 . 601

175 . 201

175 . 201

189 . 801

18
9.

80
1

1 8 9 . 8 01

204 . 401

20
4.

40
1

2 0 4 . 4 01

21
9.

00
0

2 3 3 . 6 00 248 . 200
2 62 . 800

35% easiest data

0
30
58
88
117
146
175
205
234
263

Curriculum
No Curriculum

2 .0 1 .5 1 .0 0 . 5 0 . 0 0 .5 1 .0 1 .5 2 .0
4

3

2

1

0

1

2

14 . 600

14 . 600

29 . 200

29 . 200

43 . 800

43 . 800

58 . 400

58 . 400

73.000

7 3 . 000

87 . 600

87
.6

00

8 7 . 600

102 . 2
00 102.200

1 0 2 . 2 00

116 . 800

116.800

1 1 6 . 8 00

131.400

1 3 1 . 4 00

146 .000

1 4 6 . 000

160 .600

1 6 0 . 600

175 .200

1 7 5 . 200

189 .800

1 8 9 . 800

204 .400

2 0 4 . 400

219 .000

2 1 9 . 000

233 .600

2 3 3 . 600

248 .200

2 4 8 . 2 00

262 . 800

5% easiest data

2 .0 1 .5 1 .0 0 . 5 0 . 0 0 .5 1 .0 1 .5 2 .0
4

3

2

1

0

1

2

14 . 600 14 . 600

29 . 200

29 . 200

43 . 800

43 . 800

58 . 400

58 . 400

73 . 000

73 . 000

87 . 600

87 . 600

102 . 200

102 . 200

116 . 800

116 . 800

131 . 400

131 . 400

146 . 000

14
6 .

00
0

1 46 . 000

160 . 600

160 . 600

160 . 600

175.200

1 7 5 . 2 00

189.800

1 8 9 . 8 00

204.400

2 0 4 . 4 00

219.000

2 1 9 . 000

233 .600
248 . 200

262 . 800

20% easiest data

2 .0 1 .5 1 .0 0 . 5 0 . 0 0 .5 1 .0 1 .5 2 .0
4

3

2

1

0

1

2 14 . 605

14 . 605
29 . 204

29 . 204

43 . 804

43 . 804

58 . 404

58 . 404

73 . 004

73 . 004

87 . 603

87 . 603

102 . 203

102 . 203

116 . 803

116 . 803

131 . 403

131 . 403

146 . 002

146 . 002

160 . 602
175 . 202

189 . 802
204 . 401

219 . 001
233 . 601

248 . 201

24
8 .

20
12 62 . 800

277 . 400

Full Train

2 .0 1 .5 1 .0 0 . 5 0 . 0 0 .5 1 .0 1 .5 2 .0
4

3

2

1

0

1

2 14 . 600

14 . 600

29 . 200

29 . 200

43 . 800

43 . 800

58 . 400

58 . 400

73 . 000

73 . 000

87 . 600

87 . 600

102 . 200

102 . 200

116 . 800

116 . 800

131 . 400
146 . 000160 . 600

175 . 200
189 . 800

20
4 . 4

00
219 . 000

233 . 600
248 . 200

262 . 800
277 . 400

Full Test (Extrapolate)

Figure 6.10: Loss landscape for an LSTM with hidden size 16, performing digit-
by-digit addition. The value of the loss depends on the dataset that it is evaluated
on. In each of the figures above we evaluate the loss on different subsets of data,
as specified in the title of the plot. The contour plots mark different levels of the
loss value—the levels are similar in all plots. The x and y axes represent the 2D
projection of two high-dimensional directions in the parameter space. On the loss
landscape, we plot the trajectories of two models during training: one trained with-
out a curriculum (in blue) and one trained with a length-based curriculum (in red).

as the competence of the curriculum increases. The training distribution
converges to “Full Train” within 500 steps (the length of the curriculum).
Thus, the initial descent direction is driven by the earlier loss landscapes,
but after the curriculum is complete, the model continues training on the
original distribution.

We also make some interesting observations for the loss landscapes. Firstly,
similar to the parity function, we see how the local minima for easier data
are wider, and they become narrower and narrower as the difficulty of the
examples increases. Secondly, unlike the parity function, the loss landscape
here is not necessarily smoother for easier data. For example, the loss peak
around position (2,−3) on the plots is in fact sharper for shorter sequences.
Note that we can make these comparisons between the contour plots be-
cause contour lines marking the loss level are kept constant for all plots.

Taking all these results together, the two case studies so far suggest that
the curriculum makes local minima wider early on, which may be helping the
model start off in a better direction, and reach local minima that may not
otherwise be easily reachable by gradient descent from the starting point.

122 understanding curriculum learning : a case study on sequential data

This is also consistent with our conjecture about why curricula that are too
long could be harmful: training too long on easy data can get the curriculum
stuck in a different region of the wider local minimum, that is not necessarily a
local minimum for the full training distribution.

6.4 case study #3 : addition sequence-to-sequence 123

6.4 case study #3 : addition sequence-to-sequence

In this case study, we use the same setup as in Section 4.3, where we trained
an sequence-to-sequence encoder-decoder model to perform an addition
problem provided as a sequence of characters (e.g., “123+45+7”). We repli-
cate the same experiments, where we previously observed that a curricu-
lum using the sequence length as difficulty measure is beneficial for both
interpolation and extrapolation. We reported these in Figure 4.8 and Fig-
ure 4.9, where the curricula helped the model train faster and reach better
final performance than the baseline.

We further show the same types of visualizations as in the previous case
studies, to verify that the results in this case are also compatible with the
proposed hypotheses. Note that in this case we were not able to provide
visualizations of the loss landscape. Since the models in this case study are
much larger than the ones used in the previous experiments, we could not
accurately project the model parameters along the training trajectory down
to a 2D space.

6.4.1 Evidence for the Proposed Hypotheses

Similar to the case studies before, we evaluate the accuracy per sequence
length during training, with and without curriculum learning. The results
are presented in Figure 6.11. The plots confirm the same trends observed in
the previous case study, where the baseline model learns sequences in order
of length, supporting Hypothesis 1. The models trained using a curriculum
also learn sequences in the same order, but faster (especially prevalent for
longer sequences), supporting Hypothesis 2.

Interestingly, these trends hold not only for LSTMs, which have the com-
positional nature discussed in Section 6.1.1, but also for Transformers which
have a different type of compositional structure than LSTMs and do not suf-
fer from the vanishing gradients problem in the same manner. Specifically,
the self-attention mechanism (Vaswani et al., 2017) that Transformers rely
on seems to also benefit from first training the model on shorter sequences.
This is further supported from our results in machine translation using
Transformers, where we also observed that a length-based curriculum was
beneficial (Section 4.4.2).

124 understanding curriculum learning : a case study on sequential data

Se
nt
en
ce

Le
ng
th

Training step Training step

No Curriculum

LSTM
Transformer

Curriculum

1000 11000 21000 31000 41000
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0

20

40

60

80

100

1000 11000 21000 31000 41000
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Se
nt
en
ce

Le
ng
th

Training step Training step

0

20

40

60

80

100

1000 11000 21000 31000 41000

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

1000 11000 21000 31000 41000

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Figure 6.11: Accuracy per sequence length during training, for two sequence-to-
sequence models, based on LSTMs (top row) and Transformers (bottom row). The
left column displays the accuracies for models trained without a curriculum, and
on the right for models trained with a length-based curriculum.

6.5 case study #4 : fine-tuning bert on glue data 125

6.5 case study #4 : fine-tuning bert on glue data

In this case study we investigate the effect of curriculum learning on fine-
tuning a model that has already been pretrained. This is very different than
the previous case studies, where our arguments on why curriculum learn-
ing should help relied on the fact that predictions are noisy for a randomly
initialized model. Nevertheless, we are interested to understand if there
is still a benefit from using curriculum learning in this case, perhaps for
different reasons.

Concretely, we consider a very popular Natural Language Processing
(NLP) setting: fine-tuning a BERT model (Devlin et al., 2019) on the pop-
ular GLUE benchmark datasets (Wang et al., 2019a). GLUE (General Lan-
guage Understanding Evaluation) is a collection of datasets aimed at evalu-
ating language understanding capabilities of NLP models, including QNLI
(Stanford Question Answering Dataset; Rajpurkar et al., 2016), SST (Stan-
ford Sentiment Treebank; Socher et al., 2013), and RTE (Recognizing Textual
Entailment; Dagan et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al.,
2007; Bentivogli et al., 2009). BERT is based on the Transformer architec-
ture (Vaswani et al., 2017), for which we have already seen some successful
results with length-based curricula in Section 4.3 and Section 4.4.

We found that, in this case a length-based curriculum does not help the
model in terms of speed or performance. In the following sections, we use
the analysis tools we introduced earlier in this chapter to understand why
this is the case.

6.5.1 Experimental Setup

models . We follow the experimental setup from the official BERT reposi-
tory2, which reports results on the GLUE datasets using the original BERT
model (BERT-Base) from Devlin et al. (2019), as well as using several other
smaller versions of BERT (e.g., BERT-Tiny, BERT-Small, etc.; Turc et al., 2019).
We use pretrained BERT models downloaded from TensorFlow Hub3, and
fine-tune them on GLUE with and without a curriculum. We provide a
high-level visualization of BERT in Figure 6.12

data . We consider a subset of the GLUE datasets for which we analyze
in detail the effect of curriculum learning. We chose a few diverse datasets
where BERT performs significantly better than chance—SST-2, RTE, and QNLI—
which we obtained from the TensorFlow datasets catalog4. SST-2 is the sec-
ond version of the Stanford Sentiment Treebank dataset (Socher et al., 2013).

2https://github.com/google-research/bert
3https://www.tensorflow.org/hub
4https://www.tensorflow.org/datasets

https://github.com/google-research/bert
https://www.tensorflow.org/hub
https://www.tensorflow.org/datasets

126 understanding curriculum learning : a case study on sequential data

Transformer Layer

Transformer Layer

Transformer Layer

This film does
4

...

...

[CLS]

1

1 2 3 512

2

12

Dense

Figure 6.12: Visualization of the BERT-Base model architecture. BERT consists of
multiple Transformer layers (Vaswani et al., 2017) that are pretrained on a very
large corpus, as described in Devlin et al. (2019). The first output of the final
Transformer layer is passed as input to a dense layer, which is initialized from
scratch for each task.

It consists of sentences from movie reviews along with their corresponding
human annotated sentiment, and the goal is to predict the sentiment of a
given sentence. RTE is the Recognizing Textual Entailment dataset, combin-
ing multiple textual entailment datasets from a series of annual challenges:
RTE1 (Dagan et al., 2005), RTE2 (Bar-Haim et al., 2006), RTE3 (Giampiccolo
et al., 2007) and RTE5 (Bentivogli et al., 2009). Here, the samples come from
news and Wikipedia text. QNLI, which stands for Question-answering NLI,
is a modified version of the Stanford Question Answering Dataset (SQuAD;
Rajpurkar et al., 2016), and consists of (question, context sentence) pairs.
The goal is to determine if the context sentence contains the answer to the
question. All three datasets are binary classification tasks. We fine-tune our
models on the provided training splits,4 and we report the accuracy on
the validation dataset. Note that GLUE provides a leaderboard where one
can submit the predictions on a test set, for which labels are not publicly
available. We did not participate in this competition, and thus the results
reported here are on the development set (which we further refer to as Dev)
for which the correct labels have been released. Therefore, the results for
the baseline may differ from those reported on the test set from the original
sources. However, we tried to replicate the hyperparameter tuning setup
described in Devlin et al. (2019) and https://github.com/google-research/bert

to obtain the best results on the Dev set.

https://github.com/google-research/bert

6.5 case study #4 : fine-tuning bert on glue data 127

Table 6.1: Result for fine-tuning BERT models on a subset of the GLUE datasets. We
report the accuracy mean and standard error over 4 runs, where the final projection
layer is randomly initialized with different seeds, and the rest of the model layers
are initialized with the pretrained weights of the corresponding BERT model.

Model Dataset
Accuracy (%)

Baseline Curriculum

BERT-Tiny RTE 59.93± 0.75 58.93± 1.71
QNLI 78.90± 0.14 79.23± 0.19
SST-2 82.48± 0.11 82.26± 0.37

BERT-Medium
RTE 65.25± 0.93 64.26± 1.16
QNLI 89.04± 0.04 88.92± 0.09
SST-2 89.54± 0.21 89.39± 0.15

BERT-Base
RTE 67.37± 1.76 69.32± 1.46
QNLI 90.36± 0.22 90.25± 0.21
SST-2 92.03± 0.07 92.12± 0.12

training . We replicate the training setup from Devlin et al. (2019) for
BERT-Base and from Turc et al. (2019) for the smaller versions, including
the batch size, optimizer, and learning rate schedule. The official repository
results are obtained by fine-tuning the smaller BERT models for only 4

epochs, and BERT-Base for 3 epochs. We replicate this setting.

curriculum . We used the curriculum learning framework proposed in
Section 4.1, which was successful for all the applications in Chapter 4. Here,
we use the sentence length as our difficulty metric, and apply the Square
Root competence function (a setting which was successful in all experiments
in Chapter 4). We evaluate multiple curriculum lengths C.

results . We report results for 3 model sizes: BERT-Tiny, BERT-Medium and
BERT-Base in Table 6.1. We tested multiple values for the curriculum length
C, we report the results for the best performing one in Table 6.1. We also
inspect if the curriculum helps the model converge faster. For this we plot
the accuracy on the Dev set per training step in Figure 6.13. In this case,
the curriculum is not helping the model converge faster. Interestingly, the
baseline on its own converges very quickly, achieving an accuracy close to
its maximum within 1 epoch.

128 understanding curriculum learning : a case study on sequential data

SST-2

0 2000 4000 6000
40

50

60

70

80

90

Baseline
Curriculum 50 steps
Curriculum 200 steps
Curriculum 1000 steps

training step

ac
cu

ra
cy

(%
)

RTE

50 100 150 200
45

50

55

60

65

70

Baseline
Curriculum 10 steps
Curriculum 50 steps
Curriculum 100 steps

training step

ac
cu

ra
cy

(%
)

QNLI

0 2000 4000 6000 8000 10000
40

50

60

70

80

90

Baseline
Curriculum 1000 steps
Curriculum 2000 steps
Curriculum 3000 steps

training step

ac
cu

ra
cy

(%
)

Figure 6.13: Accuracy mean and standard error per training step for BERT-Base
on the RTE (top), SST-2 (middle) and QNLI (bottom). The model was fine-tuned
for 3 epochs as in the original publication (Devlin et al., 2019), but to get a better
resolution here we display the accuracy per training step.

6.5 case study #4 : fine-tuning bert on glue data 129

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0
1 8

3 3

4 3

5 3

6 3

7 4

9 5

1 1 4

1 2 9

S
eq
ue
nc
e
Le
ng
th

RT
E

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0
1 8

3 3

4 3

5 3

6 3

7 4

9 5

1 1 4

1 2 9

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0
Baseline

S
eq
ue
nc
e
Le
ng
th

Training Step Training Step

QN
LI

0 2000 4000 6000 8000
16

26

36

46

56

66

76

86

96

106

116

128

0.6

0.7

0.8

0.9

1.0

0 1800 3600 5400 7200 9000
16

26

36

46

56

66

76

86

96

106

116

128

SS
T-
2

0 2000 4000 6000 8000 10000 12000
5

15

25

35

45

55

S
eq
ue
nc
e
Le
ng
th

0 20000 40000 60000 80000 100000 120000
5

15

25

35

45

55

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

Curriculum

Figure 6.14: Accuracy per train step, aggregated for each input sequence length
separately, for BERT-Base. Each row corresponds to a different GLUE dataset. On
the left column, we show the accuracies for the baseline method trained without
curriculum. On the right, we have the accuracies for the corresponding curriculum
approach (with the same length C as the results in Table 6.1).

130 understanding curriculum learning : a case study on sequential data

6.5.2 Learning Sequences of Different Lengths

As in the previous case studies, we plot the accuracy of the model during
training, aggregated for each sequence length separately. This is displayed
in Figure 6.14. Interestingly, neither the baseline model nor the curriculum
show the pattern of decreasing accuracy with length, as we have seen in
the previous experiments. This may be explained by the fact that we use
BERT which is a pretrained model that already knows how to embed long
sequences, despite the fact that the final layer is not fine-tuned specifically
for the GLUE tasks that we are evaluating on. This could also be the reason
why a length-based curriculum is no longer impactful in this case.

6.5.3 The Effect of the Curriculum on the Loss Landscape

We plot the loss landscape for BERT-Tiny. We chose the smallest version
of BERT, because having less parameters helps us obtain more accurate
loss plots, since it is harder to preserve the variance between the trajectory
points when projecting larger parameter spaces to 2D. This is shown in Fig-
ure 6.15 for the RTE dataset, for both a model trained with and without cur-
riculum. The plot indicates that the initial model parameters already start
in the attraction basin of a local minimum, perhaps due to the fact that the
majority of the model parameters—which are in the Transformer layers—
are already pretrained. Given this initial position and loss landscape shape,
widening the local minimum would not provide further benefits, which
explains why a length-based curriculum is not useful in this case.

B a s e l i n e
C u r r i c u l u m

0 . 7 5

1 . 0 0

1 . 2 5

1 . 5 0

1 . 7 5

2 . 0 0

2 . 2 5

4 2 0 2 4
3

2

1

0

1

2

3

4 2 0 2 4
3

2

1

0

1

2

3

0 . 6 3 8

0 . 6 7 5 0 . 7 1 2

0 .748

0 . 7 8 5

0 . 7 8 5

0 . 8 2 2

0 . 8 2 2

0.859

0 . 8 5 9

0 . 8 9 6

0 . 8 9 6

0 .933

0 . 9 3 3

0.9
70

0 . 9 7 0

1 . 0 0 6

1 . 0 0 6

1.043

1 . 0 4 3

1 . 0 8 0

1 . 0 8 0

1.
11

7

1 . 1 1 7

1 .1
54

1 . 1 5 4

1.191

1 . 1 9 1

1.
22

7

1 . 2 2 7

1 . 2 6 41 . 3 0 11 . 3 3 81 . 3 7 5

1 . 4 1 2

1 . 4 4 91 . 4 8 5

1 . 5 2 2

1 . 5 5 91 . 5 9 6
1 . 6 3 3

1 . 6 7 0
1 . 7 0 7

1 . 7 4 3 1 . 7 8 0

1 . 8 1 7

1 . 8 5 4
1 . 8 9 1

1 . 9 2 8

1 . 9 6 5

2 . 0 0 1
2 . 0 3 8

2 . 0 7 52 . 1 1 22 . 1 4 9
2 . 1 8 6 2 . 2 2 32 . 2 5 92 . 2 9 62 . 3 3 32 . 3 7 02 . 4 0 7

Figure 6.15: Loss landscape of the BERT-Tiny model on the RTE dataset.

6.5.4 Discussion

In this case study, we applied a length-based input-space curriculum to
a popular NLP setting: fine-tuning a pretrained BERT model on the GLUE
datasets. For this scenario, we found that our previously successful curricu-
lum strategies no longer bring any improvements. We were able to provide

6.5 case study #4 : fine-tuning bert on glue data 131

an explanation based on the observation that, when using a pretrained BERT

model, the sequences are no longer learned in order of length, which was
the case when training from scratch. Moreover, through our loss landscape
visualizations we were able to observe that the widening effect of the local
minima that was helpful before, does not seem to matter in this case. This is
because the pretrained model is already in a wide attraction basin of a local
minimum. All in all, these results suggest that curricula are most beneficial
when training a model from scratch.

132 understanding curriculum learning : a case study on sequential data

6.6 key takeaways

In this chapter, our goal was to understand what happens to the optimiza-
tion process when using curriculum learning, and why it is beneficial to use
in some cases. We focused on a problem setting where we have seen (from
our work in Chapter 4 and from the literature) that curricula consistently
improve the training process: applying length-based input-space curricula
on problems with sequential data. We recapitulate our findings:

1. We considered the gradient update equations of composed models
and recurrent neural networks. We observed that, when training a
model from scratch on long sequences, there are several difficulties
that hinder learning, such as compounding errors, internal covariate
shift or vanishing gradients. These lead to a negative interaction be-
tween the gradient components corresponding to the early and the
late time steps, and are particularly prevalent for long sequences.

2. The analytical discussion lead us to propose two hypotheses that ap-
ply to training recurrent neural networks (of any type) on sequences:

(i) Hypothesis 1: When training composed models (in particular re-
current networks) without a curriculum on sequential data, there
is some degree of correlation between the sequence length and
the relative time during training when that sequence is learned.

(ii) Hypothesis 2: When there is such a correlation even without a
curriculum, a length-based curriculum can help the model con-
verge faster.

3. These hypotheses were supported by the three experimental settings
that we considered: learning the parity function (xor) using a basic
RNN, learning to add two numbers digit by digit with LSTMs, and
learning arithmetic in a sequence-to-sequence fashion with LSTMs
and Transformers.

4. Using visualizations of the loss landscapes produced at different points
in the curriculum, we were able to observe an interesting effect of
training on incrementally longer sequences. The loss landscape on
short sequences has wider local minima, giving the model the possibil-
ity to find a descent direction towards farther local minima that other-
wise would not be accessible from the initialization point via gradient
descent. Then, gradually allowing longer and longer sequences drives
the model parameters to a point that is a local optimum for the entire
training distribution.

5. We also applied a length-based curriculum on a fine-tuning problem.
We fine-tuned the BERT model (Devlin et al., 2019) on a subset of the

6.6 key takeaways 133

GLUE datasets (Wang et al., 2019a). In this case, the curriculum was
not able to provide any improvements to the training process. We
were able to understand these effects by noticing that Hypothesis 1

no longer applies for pretrained BERT models, and by observing using
loss landscape visualizations that the pretrained model already starts
in the attraction basin of a local minimum.

7
C O N C L U S I O N

In the introduction of this thesis we made the following statement about
curriculum learning:

thesis statement : AI systems that learn like humans, starting with easy
problems and gradually tackling more and more difficult ones, have the po-
tential to reach better local optima and/or converge faster. Furthermore,
the learning benefits gained using a curriculum depend on the choice of cur-
riculum, the size and type of data, and the model architecture.

Throughout this thesis, our goal was to provide evidence that supports
this statement, by discovering different problem settings in which different
forms of curriculum learning are beneficial, and understanding the types
of benefits they provide.

We started this quest by first defining formally what curriculum learn-
ing is (Section 2.1), and how it differs from other learning paradigms (Sec-
tion 2.2). Using these definitions, we were able to identify three broad
categories of curriculum learning methods: curriculum in input space, in
task space, and in model space. We then used this classification to discuss
existing methods from the curriculum learning literature, and provide an
overview of the field, from early ideas that started in the field of cognitive
neuroscience to state-of-the-art methods (Chapter 3).

Moreover, also proposed new curriculum learning methods and applied
them to a variety of models and problem settings, from teaching an LSTM
to solve basic arithmetic problems, to neural machine translation using
Transformers, image classification using convolutional neural networks, and
compositional multitask learning problems. We structured the discussion
around the categories identified earlier, and introduced curricula in input
space in Chapter 4 and curricula in task space in Chapter 5.

Furthermore, we also conducted analyses to understand why curriculum
learning leads to the observed effects (Chapter 6). We focused this discus-
sion on a problem setting where curriculum learning has proved to be con-
sistently successful, both in our work and related literature: curriculum
learning in input space for problems with sequences.

We hope that the work included in this thesis will provide insights for
future research in the field, as well as useful ideas for how to use CL in
practical applications.

135

136 conclusion

7.1 key results

We summarize the key results obtained in this thesis:

1. We introduced a definition of curriculum learning, which allows us to
formally describe what curriculum learning is and how it compares
to other learning paradigms (Section 2.1).

2. We identified three broad categories of curriculum learning methods:
curriculum in input space, curriculum in task space, and curriculum
in model space (Section 2.2).

3. We provided a survey of curriculum learning methods, from early
ideas in cognitive neuroscience, to state-of-the-art approaches (Chap-
ter 3). We structured the discussion around the three categories iden-
tified above.

4. We introduced a curriculum learning framework that can take any
sample difficulty metrics, and combine them with our proposed pac-
ing functions. We applied this framework successfully to multiple
problems, including learning addition digit-by-digit with LSTM net-
works, learning arithmetic using sequence-to-sequence models (LSTM,
Transformer), neural machine translation with LSTMs and Transform-
ers, and multimodal image understanding combining images and cap-
tions using a CNN-RNN network.

5. Through these applications, we learned that curricula can work well
if chosen carefully, for a variety of models, data modalities, and data
regimes.

6. We found that curriculum learning can help the model not only train
faster, but also obtain a better performance at the end of training.

7. For all experiments, there seems to be a consistent trend in the bene-
fits (i.e. gain in accuracy or training speed) obtained with curriculum
learning versus the curriculum length: as we increase the curriculum
length, the benefits steadily increase up to an optimal point, and then
start decreasing. Moreover, curricula that are excessively long can in
fact harm learning, making it slower to train and potentially getting
stuck in bad local optima.

8. In Chapter 5 we explained why for some types of problems (e.g., im-
age classification) curricula in input space have limitations, and pro-
posed the use of curricula in task space. Moreover, we introduced
a curriculum learning algorithm targeted at multiclass classification

7.1 key results 137

problems. Our algorithm automatically derives a series of easier auxil-
iary tasks which can be used to pretrain the model before tackling the
target task (Section 5.2). This approach was able to improve the perfor-
mance of several image classification models (CNN, Resnet, WideRes-
net), on multiple standard datasets (CIFAR100, Tiny-Imagenet, etc.).

9. We also showcased how curriculum learning can be used in the con-
text of multitask learning on compositional tasks, both in situations
where we model the task composition explicitly (e.g., in Section 5.3.1
we expressed multiplication through addition, and addition through
counting), or implicitly (e.g., in Section 5.3.2 we do not explicitly repre-
sent the compositional relationship between tasks). In both scenarios,
curricula in task space were able to improve model performance.

10. In Chapter 6, we set out to understand why curriculum learning helps
in some cases, and why it does not in others. We considered a setting
where we apply a length-based curriculum on sequential data. By
inspecting the gradient update equations of composed models and
recurrent neural networks, we proposed two hypotheses:

(i) Hypothesis 1: When training composed models (in particular re-
current networks) without a curriculum on sequential data, there
is some degree of correlation between the sequence length and
the relative time during training when that sequence is learned.

(ii) Hypothesis 2: When there is such a correlation even without a
curriculum, a length-based curriculum can help the model con-
verge faster.

11. These hypotheses were confirmed for three case studies (learning the
parity function with basic RNNs, learning addition digit-by-digit with
LSTMs, and learning arthmetic using an encode-decoder architecture).
Furthermore, by visualizing the loss landscape at different points dur-
ing a curriculum, we observed that length-based curricula widen the
local minima, allowing the model to reach certain points of the pa-
rameter space during gradient optimization that otherwise it would
not be able to.

12. We also applied a length-based curriculum on a popular problem set-
ting: fine-tuning BERT (Devlin et al., 2019) on a few benchmark lan-
guage datasets. In this case, we did not observe any improvements
from using curriculum learning, and we explained this result by the
fact that the pretrained model no longer follows Hypothesis 1. More-
over, from the loss landscape visualizations, we observed that the pre-
trained BERT model already starts in the attraction basin of a wide
local minimum.

138 conclusion

7.2 future work

While the field of curriculum learning is not new, it is still at the beginning,
with several directions to explore and improve.

Out of the types of curricula discussed in this thesis, curriculum in input
space is by far the most popular category. However, this type of curricu-
lum is more common in certain application areas, such as natural language
processing, and has not gained ground in many other areas yet. This is par-
tially due to the difficulty of proposing intuitive sample difficulty metrics
for certain fields (e.g. computer vision). For such areas, more automated ap-
proaches (e.g., self-paced learning, automated curricula) are more suitable.
While significant progress has been made in this direction, there is still a
need for more adaptable automated curriculum learning methods that can
be applied to new fields “out-the-box”, without significant re-tuning efforts.
Additionally, for practical reasons, such methods should be easy to imple-
ment and should not add significant computation and memory overhead
to the original system.

Moreover, we have seen in this thesis that curricula in task space show
promise, both for single-task and multitask learning scenarios. However,
for our settings the multitask curricula were designed manually. For future
work, it would be impactful to design task-space curricula that can auto-
matically derive auxiliary tasks (for both single and multi-task learning),
or can automatically derive the relationships between provided tasks (in
multitask learning) and how to schedule them for training.

Furthermore, we discussed in our literature review in Chapter 3 about
curricula in model space. The idea of modifying the model architecture
or model capabilities during training has been explored in various ares
of machine learning, but very few approaches have considered it in the
context of curriculum learning. Future work may look back at the original
inspiration for curriculum learning—the human brain—to further develop
curricula in model space.

Finally, while this thesis has touched on understanding the effects of cur-
riculum learning on the optimization process, more work is needed to truly
explain the effects of various forms of curriculum learning from a theoreti-
cal perspective.

A
C U R R I C U L U M I N TA S K S PA C E : S U P P L E M E N TA RY

a.1 coarse-to-fine curriculum learning : supplementary

a.1.1 Confusion Matrix vs Embedding Similarity

In Section 5.2.2, we considered two different measures of class similarity:
one based on the confusion matrix and one based on the class embedding
distance. We experimented with both and observed a few disadvantages to
using the confusion matrix. This made us opt for a measure that is based
on the class embedding distance. In what follows, we discuss these dis-
advantages. We recommend reading Section 5.2.2 before proceeding with
this section, as some of the issues discussed here are related to the way we
intend to use the class similarity measure.

First, we need to define how the confusion matrix is estimated from the
data. We define the confusion matrix as C ∈ [0, 1]K×K, where K is the num-
ber of classes and Cij is the probability that the model predicts class j when
it should have predicted class i, and

∑K
j=1Cij = 1. Given an existing model,

this matrix can be approximated using the sample estimate of each proba-
bility on a validation dataset. Using C as similarity between the classes in
the hierarchical clustering algorithm, we encountered the following issues:

– If the training set is imbalanced, and one class dominates in the num-
ber of training examples, it is possible that the classifier often confuses
all other classes for the dominating class, instead of mistaking them
for more semantically similar classes. This is because making such a
mistake during training is likely to incur a lower loss. Thus, using the
confusion matrix as similarity measure, the most similar class to all
other classes could be the dominating class, regardless of its semantics.
As a consequence, affinity clustering (Bateni et al., 2017) will connect
all classes to the dominating class in the first level of the hierarchy,
resulting in a degenerate case with no auxiliary functions.

– The confusion matrix is not a proper distance metric, as is not symmet-
ric and does not necessarily satisfy the triangle inequality. Although
this did not necessary pose a problem for our implementation of the
affinity clustering algorithm, being a proper distance metric is im-
portant for other hierarchical clustering algorithms, and could cause
issues if the users of our algorithm chose to use a different cluster-

139

140 curriculum in task space : supplementary

ing method. In our experiments, we made it symmetric by adding its
transpose to itself (i.e. C + C>).

– If the classifier does not confuse two classes i and j at all in the valida-
tion set, their confusion count will be 0, and they will thus be consid-
ered highly dissimilar. Using an example from CIFAR-100, the classes
willow_tree, oak_tree, palm_tree and pine_tree are similar seman-
tically and so, intuitively we would expect them to be grouped in the
same cluster. However, suppose that in our validation set willow_tree
and palm_tree are always confused only with each other, and the
same happens for oak_tree and pine_tree. Then willow_tree and
palm_tree classes will be grouped together early on, and oak_tree

and pine_tree will also be grouped together early. After this group-
ing, the confusion between the two new clusters will be 0 and so they
will only be merged at the top of the hierarchy. The class embedding
similarity, being the cosine distance between two high dimensional
vectors, does not suffer from the same issue.

a.1.2 A Staged Coarse-to-Fine Approach

As mentioned in Section 5.2.3, there is also another version of our algorithm,
where we can train a different classifier fθ` at each level ` of the hierarchy.
The main difficulty is that fθ`+1 and fθ` make predictions for different num-
ber of classes, and thus the number of parameters in θ`+1 does not directly
match that of θ`.

Let us assume that for any level `,

fθ = fHθH︸︷︷︸
predictor

◦ fH−1
θH−1 ◦ · · · ◦ f1θ1︸ ︷︷ ︸

encoder

, (A.1)

where ◦ denotes function composition, H is the number of layers in the
network, and θ = {θ1, . . . , θH}. This is a simple decomposition that applies
to most deep learning models that are used in practice. Intuitively, the en-
coder converts its input to a latent representation (i.e., embedding), that is
then processed by the predictor to produce a probability distribution over
classes. Let us further denote the parameters of the predictor by θpred and
those of the encoder by θenc (we have that θ = θpred ∪ θenc). We suggest
decomposing fθ such that most of the model parameters are part of the
encoder. In our experiments, the predictor is simply the output layer of a
neural network, whose output dimensionality changes at every hierarchy
level, depending on the number of clusters in that level. When training
fθ`+1 , we initialize its encoder parameters as θenc`+1 = θ

enc
` , and its predictor

parameters θpred`+1 randomly. Thus, knowledge transfer in this case happens
through the initialization of the encoder parameters, which often include

A.1 coarse-to-fine curriculum learning : supplementary 141

Algorithm A.1: Coarse-To-Fine Curriculum: A Staged Approach
// This is an overview of the proposed staged curriculum algorithm.

Inputs : Number of classes K.
Training data {xi,yi}Ni=1.
Trainable baseline model fθ.

1 Train fθ on the provided training data {xi,yi}Ni=1.
2 clustersPerLevel← GenerateClassHierarchy(K, {xi,yi}Ni=1, fθ)
3 M← clustersPerLevel.length
// Train the model at each level of the hierarchy.

4 originalLabels← [1,...,K]
5 for l← 0, . . . ,M - 1 do
6 clusters← clustersPerLevel[l+ 1]
7 newLabels← TransformLabels({yi}

N
i=1, clusters)

8 if l = 0 then
9 θencoderl+1 ← random().

10 else
11 θencoderl+1 ← θencoderl

12 θ
predictor
l+1 ← random().

13 Train fθl+1
using newLabels as the target labels.

Output: fθ[M]
.

most of the model parameters. The main intuition behind this decision is
that lower level processing (e.g., converting pixels to edges and potentially
to abstract semantic features) is a step that is necessary for most levels of
granularity. However, the predictor parameters are specific to the each task
(i.e., the predictor decides how the higher-level features are assembled to-
gether to solve each task). θ1 is initialized randomly in our experiments.
Putting the pieces together, first we generate a class hierarchy as described
in Algorithm 5.2, and then we train a classifier at each level of the hierar-
chy, transferring knowledge via the model parameters as described above.
These steps are detailed in Algorithm A.1. We refer to this approach as the
staged variant of our curriculum learning algorithm, and we refer to the
approach discussed in the main paper as the continuous variant.

The two proposed training algorithms, staged and continuous, come with
advantages and disadvantages. Here we discuss the trade-offs in terms of
hyperparameters and computational complexity.

hyperparameters . An advantage of the staged approach is that it intro-
duces no extra hyperparameters that we need to tune. The number of levels
in the hierarchy is automatically determined by the output of the hierarchi-
cal clustering algorithm and we train until convergence for each level. The
continuous approach introduces a hyperparameter, which is total number
of epochs to be spent on the curriculum, T , and which is then split equally
among the levels of the hierarchy.

142 curriculum in task space : supplementary

computational complexity. Let C be the computational complexity
required to train the baseline model to convergence. Since affinity clus-
tering guarantees that our class hierarchy will have at most logK levels,
where K is the original number of classes, the computational complexity
of the staged approach will be at most C logK. However, in practice we
observed that the cost is significantly less for two reasons: (i) training the
coarse-grained classifiers converges much faster than the fine-grained base-
line, and (ii) after fθ1 , all other levels are already pre-trained by being ini-
tialized with the parameters from the previous level, and thus require very
few training iterations. Evidence of this behavior can be seen in Figure A.1.
As discussed in Section 5.2.4, our continuous curriculum has roughly the
same computational complexity as the baseline. Using our heuristic for set-
ting the number of epochs T , the continuous curriculum typically requires
about as many training iterations as the baseline model.

experiments using staged coarse-to-fine curriculum . We show
results for the staged curriculum, on similar settings to the experiments re-
ported in the main paper, using the CNN model. Note that, for all these
experiments, we do not use any image augmentation techniques or spe-
cialized learning rate schedules, since we wanted to understand the effect
of our methods without extra help from such techniques. The results are
reported in Table A.1 and Figure A.1 and Figure A.2.

Table A.1 shows that the staged approach also provides a significant
boost over the baseline method, occasionally even better than the contin-
uous approach (albeit at a larger computational cost).

Figure A.1 shows the training curve of the staged curriculum at each level
of the hierarchy, as well as a comparison with the baseline and the continu-
ous method shown in Figure 5.7. Importantly, even for CIFAR-100 where we
have 100 labels, the hierarchy only contains two auxiliary levels with 6 and
27 clusters, respectively. This means that the staged approach can achieve
accuracy improvements in the order of 3-4% with at most 3 times the com-
putational cost. In practice, the actual cost is much less than that, because
each hierarchy level now needs much fewer iterations to converge than the
baseline, as shown in Figure A.1. This figure also confirms our intuition
that the auxiliary tasks obtained with our approach are indeed sorted in or-
der of difficulty, in the sense that the accuracy of the model at solving levels
3, 2, and 1 is monotonically increasing. Additionally, we directly notice the
benefits of pre-training by looking the accuracy of the staged models after
one epoch.

A.1 coarse-to-fine curriculum learning : supplementary 143

Dataset #Class #Samples
Accuracy Accuracy Gain
Baseline Coarse-to-Fine-

Staged
Coarse-to-Fine-
Continuous

CIFAR-10 10 50,000 70.92± 0.37 0.92± 0.32 0.69± 0.32
CIFAR-10 10 20,000 64.66± 0.53 1.86± 0.23 1.28± 0.60
CIFAR-10 10 10,000 59.52± 0.35 1.01± 0.13 1.24± 0.46
CIFAR-10 10 5,000 53.64± 0.19 2.22± 0.42 1.57± 0.39
CIFAR-100 Coarse 20 50,000 49.63± 0.35 0.91± 0.37 1.22± 0.38
CIFAR-100 Coarse 20 20,000 42.04± 0.29 1.03± 0.22 1.84± 0.51
CIFAR-100 Coarse 20 10,000 36.61± 0.19 1.38± 0.53 1.77± 0.56
CIFAR-100 Coarse 20 5,000 31.80± 0.28 1.17± 0.46 1.38± 0.22
CIFAR-100 100 50,000 35.87± 0.23 3.99± 0.24 3.31± 0.59
CIFAR-100 100 20,000 27.83± 0.34 4.40± 0.32 2.27± 0.37
CIFAR-100 100 10,000 21.96± 0.49 2.70± 0.22 2.67± 0.68
CIFAR-100 100 5,000 17.20± 0.20 2.35± 0.29 1.92± 0.24
Tiny-ImageNet 200 100,000 21.94± 0.19 3.79± 0.34 2.73± 0.49
Tiny-ImageNet 200 50,000 16.33± 0.32 3.64± 0.47 3.06± 0.33
Tiny-ImageNet 200 20,000 10.16± 0.22 2.94± 0.36 2.02± 0.34
Tiny-ImageNet 200 10,000 7.38± 0.11 2.01± 0.32 1.14± 0.19

Table A.1: Results on real datasets using the CNN architecture, showing the accuracy
mean and standard error for the baseline model, computed over 5 runs, as well as
the accuracy gain achieved by the two versions of our coarse-to-fine curriculum
(staged and continuous), computed per run and then averaged. Note that these
results were obtained without any image augmentation techniques or specialized
learning rate schedules.

a.1.3 Experimental Details

architecture details . The Convolutional Neural Network (CNN) used
in our experiments consists of these layers:

1. Convolution: 2D convolution using a 3× 3 filter with 32 channels, fol-
lowed by ReLU activation.

2. Pooling: Max pooling using a 2× 2 window.

3. Convolution: 2D convolution using a 3× 3 filter with 64 channels, fol-
lowed by ReLU activation.

4. Pooling: Max pooling using a 2× 2 window.

5. Convolution: 2D convolution using a 3× 3 filter with 64 channels, fol-
lowed by ReLU activation.

6. Projection: Fully connected layer performing a linear projection to the
output space dimensionality (i.e., number of classes), returning logits.

The WideResnet-28-10 and Resnet18 architectures were implemented af-
ter the code released by Wan et al. (2021), and are similar to the original
publications (He et al., 2016; Zagoruyko and Komodakis, 2016).

training . We implemented our method using the TensorFlow framework
(Abadi et al., 2016). All models were trained by minimizing the softmax
cross-entropy loss function.

144 curriculum in task space : supplementary

Baseline
Staged - Level 1
Staged - Level 2
Staged - Level 3
Continuous

0 10 20 30 40 50 60 70
epoch

0

10

20

30

40

50

60

70

ac
cu
ra
cy
(%
)

Figure A.1: Accuracy per epoch for the baseline and our algorithm, on the CIFAR-
100 dataset.

200 400 600 800 1000 1200
samples / class

20

40

60

80

Ac
cu

ra
cy

 (%
)

Baseline
Staged Curriculum
Continuous Curriculum

Figure A.2: Accuracy mean and standard error for the baseline and the curriculum
model, averaged over 5 runs, on Shapes.

All the CNN experiments used the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 0.001 and a batch size of 512 samples. We also em-
ployed early stopping by terminating training when validation accuracy
did not improve within the last 50 epochs (we made sure that this num-
ber is large enough by visually inspecting the validation curve). We also
made sure that the baseline is allowed to perform at least as many epochs
as the curriculum. We report test accuracy statistics for the iteration that
corresponds to the best validation set performance. The validation dataset
is obtained by setting aside 20% of the training examples, chosen uniformly
at random.

For the Resnet and WideResnet experiments we replicated the setting of
Wan et al. (2021) from https://github.com/alvinwan/neural-backed-decision-trees,
in order to be able to directly compare with their results. Concretely, we
used a Stochastic Gradient Descent (SGD) optimizer with momentum 0.9,
batch size 128, and weight decay value of 5e− 4, and trained the models for
200 epochs. The learning rate schedule starts with a learning rate of 0.1 and
is divided by 10 twice: 37 and 5

7 of the way through training. Because of this

https://github.com/alvinwan/neural-backed-decision-trees

A.1 coarse-to-fine curriculum learning : supplementary 145

step-wise learning rate, our heuristic for choosing the curriculum length
(when the baseline has reached 90% of its peak accuracy) no longer applies,
so in this case the curriculum length was chosen based on validation set per-
formance among the choices {5, 10, 20, 30, 40, 50}. First we randomly split
the training set in a 90% train and 10% validation and trained the models
with each of these curriculum lengths. We then chose the best performing
curriculum length on the validation set, and retrained on the full training
set using this length. Importantly, in all our experiments we only allowed
both the baseline and the corresponding curriculum models to train for
exactly the same number of epochs.

To match the implementation of Wan et al. (2021), for the large models
we used the same data augmentation techniques they did, while for the CNN

experiments we opted out of data augmentation to see just how much the
curriculum impacts this simple model.

Finally, all our experiments were performed using a single Nvidia Titan X
GPU, and the code for reproducing our results is available at https://github.

com/otiliastr/coarse-to-fine-curriculum.

a.1.4 Other Related Work

In Section 5.2.4, we discussed how our coarse-to-fine approach may be re-
lated to hierarchical classification. Here, we expand on the main directions
in hierarchical classification and compare them with our method. A popu-
lar survey on hierarchical classification (Silla and Freitas, 2011) organizes
the hierarchical classification literature in three main types of methods:

– flat classification approaches, which ignore the class hierarchy and con-
sider only the fine-grained leaf-node classes. This is equivalent to any
standard classification problem.

– local classification approaches, which typically go top-down through the
label hierarchy and train multiple classifiers along the way that take
into account only local information (e.g., Bennett and Nguyen, 2009;
Ramaswamy et al., 2015; Ramírez-Corona et al., 2016). These approaches
use various ways of incorporating local information, such as having
a classifier per node (Jin et al., 2008; Valentini and Re, 2009), per par-
ent node (Gauch et al., 2009), or per hierarchy level (Clare and King,
2003). Knowledge can be passed down through the hierarchy in var-
ious ways, for example using the predictions of the parent node as
input to the current classifier (Bennett and Nguyen, 2009; Holden and
Freitas, 2009). A more recent approach (Xu and Geng, 2019) is based
on the idea that two labels with a common ancestor in the class hi-
erarchy are correlated, and explicitly models this correlation in the
label distribution. Approaches in this category are typically computa-

https://github.com/otiliastr/coarse-to-fine-curriculum
https://github.com/otiliastr/coarse-to-fine-curriculum

146 curriculum in task space : supplementary

tionally more expensive, and tend to be sensitive to error propagation
along the hierarchy levels.

– global classification approaches, which train a single classification func-
tion that takes into account the entire class hierarchy at once (Cai and
Hofmann, 2004; Wang et al., 2009; Xiao et al., 2011; Cerri et al., 2012).
For example, Cai and Hofmann (2004) do so by designing a general-
ization of Support Vector Machines (SVM) using discriminant func-
tions that decompose into contributions from different levels of the
hierarchy. Xiao et al. (2011) train a hierarchical SVM which consists of
a classifier at each node, but information about the whole hierarchy
is encoded in a regularization term that encourages the normal vector
of the classifying hyperplane at each node to be orthogonal to those
of its ancestors. The more recent work of Wehrmann et al. (2018) pro-
poses a new neural network architecture for class hierarchies, which
can make predictions at different levels of the hierarchy and is trained
by combining multiple losses: a local loss, a global loss, and a loss that
penalizes predictions that violate the hierarchy. This approach is not
merely a mechanism for training arbitrary models, but is tied together
to the proposed architecture.

Our approach is similar to local node classification approaches in that we
also train a classifier at each level. It is also in some sense similar to global
classification approaches, because at the end of training, the model at the
final level of the hierarchy is able to preserve knowledge about the rest of
the hierarchy through the parameters that have been propagated through
the levels. However, to the best of our knowledge, none of these hierarchi-
cal classification approaches pass information across levels only through
the model parameters. Typically this information is encoded directly in the
model itself, which often means that the hierarchy is also used during in-
ference, not just during training.

B I B L I O G R A P H Y

[1] Robin Sibson. “SLINK: An Optimally Efficient Algorithm for the
Single-Link Cluster Method.” In: The Computer Journal 16.1 (1973),
pp. 30–34.

[2] Elizabeth K Warrington. “The selective impairment of semantic mem-
ory.” In: The Quarterly Journal of Experimental Psychology 27.4 (1975),
pp. 635–657.

[3] Daniel Defays. “An Efficient Algorithm for a Complete Link Method.”
In: The Computer Journal 20.4 (1977), pp. 364–366.

[4] Elissa L Newport. “Constraints on learning and their role in lan-
guage acquisition: Studies of the acquisition of American Sign Lan-
guage.” In: language Sciences 10.1 (1988), pp. 147–172.

[5] Robert Kail. The Development of Memory in Children. WH Freeman/-
Times Books/Henry Holt & Co, 1990.

[6] Elissa L Newport. “Maturational constraints on language learning.”
In: Cognitive science 14.1 (1990), pp. 11–28.

[7] Sepp Hochreiter. “Untersuchungen zu Dynamischen Neuronalen Net-
zen.” In: Diploma, Technische Universität München 91.1 (1991).

[8] Jean M Mandler. “How to build a baby: II. Conceptual primitives.”
In: Psychological Review 99.4 (1992), p. 587.

[9] Jeffrey L Elman. “Learning and Development in Neural Networks:
The Importance of Starting Small.” In: Cognition 48.1 (1993), pp. 71–
99.

[10] Jean M Mandler and Laraine McDonough. “Concept formation in
infancy.” In: Cognitive Development 8.3 (1993), pp. 291–318.

[11] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. “Learning Long-
Term Dependencies with Gradient Descent Is Difficult.” In: IEEE
transactions on neural networks 5.2 (1994), pp. 157–166.

[12] Rich Caruana. “Multitask Learning.” In: Machine learning 28.1 (1997),
pp. 41–75.

[13] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Mem-
ory.” In: Neural Computation 9 (1997), pp. 1735–1780.

[14] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra.
“Planning and Acting in Partially Observable Stochastic Domains.”
In: Artificial intelligence 101.1-2 (1998), pp. 99–134.

149

150 bibliography

[15] Tsungnan Lin, Bill G Horne, and C Lee Giles. “How Embedded
Memory in Recurrent Neural Network Architectures Helps Learn-
ing Long-Term Temporal Dependencies.” In: Neural Networks 11.5
(1998), pp. 861–868.

[16] Douglas LT Rohde and David C Plaut. “Language Acquisition in the
Absence of Explicit Negative Evidence: How Important is Starting
Small?” In: Cognition 72.1 (1999), pp. 67–109.

[17] Robert E. Schapire. “A Brief Introduction to Boosting.” In: Proceed-
ings of the 16th International Joint Conference on Artificial Intelligence -
Volume 2. IJCAI’99. Stockholm, Sweden: Morgan Kaufmann Publish-
ers Inc., 1999, pp. 1401–1406. url: http://dl.acm.org/citation.cfm?id=
1624312.1624417.

[18] Jean M Mandler. “Perceptual and conceptual processes in infancy.”
In: Journal of Cognition and Development 1.1 (2000), pp. 3–36.

[19] Francois Fleuret and Donald Geman. “Coarse-to-fine face detection.”
In: International Journal of Computer Vision 41.1-2 (2001), pp. 85–107.

[20] Sabina Pauen. “The global-to-basic level shift in infants’ categorical
thinking: First evidence from a longitudinal study.” In: International
Journal of Behavioral Development 26.6 (2002), pp. 492–499.

[21] Hichem Sahbi and Nozha Boujemaa. “Coarse-to-fine support vector
classifiers for face detection.” In: Object recognition supported by user
interaction for service robots. Vol. 3. IEEE. 2002, pp. 359–362.

[22] Amanda Clare and Ross D King. “Predicting gene function in Sac-
charomyces cerevisiae.” In: Bioinformatics 19.suppl_2 (2003), pp. ii42–
ii49.

[23] James L McClelland and Timothy T Rogers. “The Parallel Distributed
Processing Approach to Semantic Cognition.” In: Nature Reviews
Neuroscience 4.4 (2003), pp. 310–322.

[24] Douglas L. T. Rohde and David C. Plaut. “Less is Less in Language
Acquisition.” In: Connectionist Modelling of Cognitive Development. Psy-
chology Press, 2003.

[25] Yali Amit, Donald Geman, and Xiaodong Fan. “A coarse-to-fine
strategy for multiclass shape detection.” In: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 26.12 (2004), pp. 1606–1621.

[26] Lijuan Cai and Thomas Hofmann. “Hierarchical document catego-
rization with support vector machines.” In: Proceedings of the Thir-
teenth ACM International Conference on Information and Knowledge Man-
agement. 2004, pp. 78–87.

http://dl.acm.org/citation.cfm?id=1624312.1624417
http://dl.acm.org/citation.cfm?id=1624312.1624417

bibliography 151

[27] Ido Dagan, Oren Glickman, and Bernardo Magnini. “The PASCAL
recognising textual entailment challenge.” In: Machine Learning Chal-
lenges Workshop. Springer. 2005, pp. 177–190.

[28] Pierre Moreels and Pietro Perona. Probabilistic coarse-to-fine object recog-
nition. Tech. rep. Technical report, 2005.

[29] Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampic-
colo, Bernardo Magnini, and Idan Szpektor. “The second pascal recog-
nising textual entailment challenge.” In: Proceedings of the second PAS-
CAL challenges workshop on recognising textual entailment. Vol. 6. 1.
Venice. 2006, pp. 6–4.

[30] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et
al. “Greedy layer-wise training of deep networks.” In: Advances in
neural information processing systems 19 (2007), p. 153.

[31] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan.
“The third pascal recognizing textual entailment challenge.” In: Pro-
ceedings of the ACL-PASCAL workshop on textual entailment and para-
phrasing. Association for Computational Linguistics. 2007, pp. 1–9.

[32] Ya Xue, X. Liao, L. Carin, and B. Krishnapuram. “Multi-Task Learn-
ing for Classification with Dirichlet Process Priors.” In: J. Mach. Learn.
Res. 8 (2007), pp. 35–63.

[33] Ronan Collobert and Jason Weston. “A unified architecture for natu-
ral language processing: Deep neural networks with multitask learn-
ing.” In: Proceedings of the 25th international conference on Machine
learning. 2008, pp. 160–167.

[34] Bo Jin, Brian Muller, Chengxiang Zhai, and Xinghua Lu. “Multi-
label literature classification based on the Gene Ontology graph.”
In: BMC Bioinformatics 9.1 (2008), p. 525.

[35] Burr Settles and Mark Craven. “An Analysis of Active Learning
Strategies for Sequence Labeling Tasks.” In: Proceedings of the 2008
Conference on Empirical Methods in Natural Language Processing. Hon-
olulu, Hawaii: Association for Computational Linguistics, Oct. 2008,
pp. 1070–1079. url: http://www.aclweb.org/anthology/D08-1112.

[36] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason We-
ston. “Curriculum Learning.” In: International Conference on Machine
Learning. ACM. 2009, pp. 41–48.

[37] Paul N Bennett and Nam Nguyen. “Refined experts: improving clas-
sification in large taxonomies.” In: Proceedings of the 32nd international
ACM SIGIR Conference on Research and Development in Information Re-
trieval. 2009, pp. 11–18.

http://www.aclweb.org/anthology/D08-1112

152 bibliography

[38] Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo.
“The Fifth PASCAL Recognizing Textual Entailment Challenge.” In:
TAC. 2009.

[39] Susan Gauch, Aravind Chandramouli, and Shankar Ranganathan.
“Training a hierarchical classifier using inter document relationships.”
In: Journal of the American Society for Information Science and Technology
60.1 (2009), pp. 47–58.

[40] Gholamreza Haffari, Maxim Roy, and Anoop Sarkar. “Active Learn-
ing for Statistical Phrase-based Machine Translation.” In: Proceed-
ings of Human Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Computational Lin-
guistics. NAACL ’09. Boulder, Colorado: Association for Computa-
tional Linguistics, 2009, pp. 415–423. isbn: 978-1-932432-41-1. url:
http://dl.acm.org/citation.cfm?id=1620754.1620815.

[41] Nicholas Holden and Alex A Freitas. “Hierarchical classification of
protein function with ensembles of rules and particle swarm optimi-
sation.” In: Soft Computing 13.3 (2009), pp. 259–272.

[42] S. Ji, D. Dunson, and L. Carin. “Multitask Compressive Sensing.” In:
IEEE Transactions on Signal Processing 57 (2009), pp. 92–106.

[43] Leonard Kaufman and Peter J Rousseeuw. Finding Groups in Data:
An Introduction to Cluster Analysis. Vol. 344. John Wiley & Sons, 2009.

[44] Alex Krizhevsky, Geoffrey Hinton, et al. Learning Multiple Layers of
Features from Tiny Images. Tech. rep. Massachusetts Institute of Tech-
nology and New York University, 2009.

[45] Kai A Krueger and Peter Dayan. “Flexible shaping: How learning in
small steps helps.” In: Cognition 110.3 (2009), pp. 380–394.

[46] Giorgio Valentini and Matteo Re. “Weighted True Path Rule: a mul-
tilabel hierarchical algorithm for gene function prediction.” In: Eu-
ropean Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases: 1st International Workshop on learn-
ing from Multi-Label Data. 2009.

[47] Junhui Wang, Xiaotong Shen, and Wei Pan. “On large margin hierar-
chical classification with multiple paths.” In: Journal of the American
Statistical Association 104.487 (2009), pp. 1213–1223.

[48] Michael Bloodgood and Chris Callison-Burch. “Bucking the Trend:
Large-Scale Cost-Focused Active Learning for Statistical Machine
Translation.” In: ACL. 2010.

http://dl.acm.org/citation.cfm?id=1620754.1620815

bibliography 153

[49] Yoav Goldberg and Michael Elhadad. “An efficient algorithm for
easy-first non-directional dependency parsing.” In: Human Language
Technologies: The 2010 Annual Conference of the North American Chapter
of the Association for Computational Linguistics. 2010, pp. 742–750.

[50] M Pawan Kumar, Benjamin Packer, and Daphne Koller. “Self-paced
learning for latent variable models.” In: Advances in Neural Informa-
tion Processing Systems. 2010, pp. 1189–1197.

[51] Valentin I. Spitkovsky, Hiyan Alshawi, and Dan Jurafsky. “From
Baby Steps to Leapfrog: How “Less is More” in Unsupervised De-
pendency Parsing.” In: HLT-NAACL. 2010.

[52] Yong Jae Lee and Kristen Grauman. “Learning the Easy Things First:
Self-Paced Visual Category Discovery.” In: CVPR (2011), pp. 1721–
1728.

[53] Le Lu, Meizhu Liu, Xiaojing Ye, Shipeng Yu, and Heng Huang. “Coarse-
to-fine classification via parametric and nonparametric models for
computer-aided diagnosis.” In: Proceedings of the 20th ACM interna-
tional conference on Information and knowledge management. 2011, pp. 2509–
2512.

[54] Carlos N Silla and Alex A Freitas. “A survey of hierarchical classi-
fication across different application domains.” In: Data Mining and
Knowledge Discovery 22.1-2 (2011), pp. 31–72.

[55] Lin Xiao, Dengyong Zhou, and Mingrui Wu. “Hierarchical Classifi-
cation via Orthogonal Transfer.” In: ICML. 2011.

[56] Qian Xu and Qiang Yang. “A survey of transfer and multitask learn-
ing in bioinformatics.” In: Journal of Computing Science and Engineer-
ing 5.3 (2011), pp. 257–268.

[57] Vamshi Ambati. “Active Learning and Crowdsourcing for Machine
Translation in Low Resource Scenarios.” AAI3528171. PhD thesis.
Pittsburgh, PA, USA, 2012. isbn: 978-1-267-58215-7.

[58] Ricardo Cerri, Rodrigo C Barros, and Andre CPLF de Carvalho. “A
genetic algorithm for hierarchical multi-label classification.” In: Pro-
ceedings of the 27th Annual ACM Symposium on Applied Computing.
2012, pp. 250–255.

[59] Bart Thomee and Michael S Lew. “Interactive Search in Image Re-
trieval: A Survey.” In: International Journal of Multimedia Information
Retrieval 1.2 (2012), pp. 71–86.

[60] Sebastian Zambanini and Martin Kampel. “Coarse-to-fine correspon-
dence search for classifying ancient coins.” In: Asian Conference on
Computer Vision. Springer. 2012, pp. 25–36.

154 bibliography

[61] Yifan Fu, Xingquan Zhu, and Bin Li. “A survey on instance selection
for active learning.” In: Knowledge and information systems 35.2 (2013),
pp. 249–283.

[62] Nal Kalchbrenner and Phil Blunsom. “Recurrent continuous transla-
tion models.” In: Proceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. 2013, pp. 1700–1709.

[63] Frank C Keil. Semantic and conceptual development: An ontological per-
spective. Harvard University Press, 2013.

[64] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. “On the diffi-
culty of training recurrent neural networks.” In: International confer-
ence on machine learning. PMLR. 2013, pp. 1310–1318.

[65] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christo-
pher D Manning, Andrew Ng, and Christopher Potts. “Recursive
deep models for semantic compositionality over a sentiment tree-
bank.” In: Proceedings of the 2013 conference on empirical methods in
natural language processing. 2013, pp. 1631–1642.

[66] Nitish Srivastava and Russ R Salakhutdinov. “Discriminative trans-
fer learning with tree-based priors.” In: Advances in neural informa-
tion processing systems. 2013, pp. 2094–2102.

[67] James Steven Supancic and Deva Ramanan. “Self-Paced Learning
for Long-Term Tracking.” In: IEEE Conference on Computer Vision and
Pattern Recognition (2013), pp. 2379–2386.

[68] Will Y. Zou, Richard Socher, Daniel Cer, and Christopher D. Man-
ning. “Bilingual Word Embeddings for Phrase-Based Machine Trans-
lation.” In: Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguis-
tics, 2013, pp. 1393–1398. url: http://aclweb.org/anthology/D13-1141.

[69] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. “Qualitatively
characterizing neural network optimization problems.” In: Interna-
tional Conference on Learning Representations. 2014.

[70] Lu Jiang, Deyu Meng, Teruko Mitamura, and Alexander G Haupt-
mann. “Easy Samples First: Self-paced Reranking for Zero-Example
Multimedia Search.” In: Proceedings of the 22nd ACM International
Conference on Multimedia. 2014, pp. 547–556.

[71] Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan,
and Alexander Hauptmann. “Self-paced learning with diversity.”
In: Advances in Neural Information Processing Systems. 2014, pp. 2078–
2086.

http://aclweb.org/anthology/D13-1141

bibliography 155

[72] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. “Mi-
crosoft COCO: Common objects in context.” In: European conference
on computer vision. Springer. 2014, pp. 740–755.

[73] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to sequence
learning with neural networks.” In: Advances in neural information
processing systems. 2014, pp. 3104–3112.

[74] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell,
Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. “VQA: Visual
Question Answering.” In: Proceedings of the IEEE international confer-
ence on computer vision. 2015, pp. 2425–2433.

[75] Vanya Avramova. “Curriculum Learning with Deep Convolutional
Neural Networks.” In: Master’s Thesis in Computer Science. 2015.

[76] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural
Machine Translation by Jointly Learning to Align and Translate.” In:
International Conference on Learning Representations. 2015. url: https:

//arxiv.org/pdf/1409.0473.

[77] Carl Doersch, Abhinav Gupta, and Alexei A Efros. “Unsupervised
visual representation learning by context prediction.” In: Proceedings
of the IEEE international conference on computer vision. 2015, pp. 1422–
1430.

[78] Sergey Ioffe and Christian Szegedy. “Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift.” In:
International conference on machine learning. PMLR. 2015, pp. 448–456.

[79] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander
G Hauptmann. “Self-Paced Curriculum Learning.” In: AAAI Confer-
ence on Artificial Intelligence. 2015.

[80] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization.” In: Proceedings of the 3rd International Conference for
Learning Representations. ACM. 2015.

[81] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learn-
ing.” In: Nature 521.7553 (2015), pp. 436–444. doi: 10.1038/nature14539.
url: https://doi.org/10.1038/nature14539.

[82] Fei-Fei Li, Andrej Karpathy, and Justin Johnson. Tiny ImageNet Visual
Recognition Challenge. https://tiny-imagenet.herokuapp.com/. 2015.

[83] Z. Liu, Ping Luo, Xiaogang Wang, and X. Tang. “Deep Learning
Face Attributes in the Wild.” In: 2015 IEEE International Conference
on Computer Vision (ICCV) (2015), pp. 3730–3738.

https://arxiv.org/pdf/1409.0473
https://arxiv.org/pdf/1409.0473
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://tiny-imagenet.herokuapp.com/

156 bibliography

[84] Igor Mazić, Mirjana Bonković, and Barbara Džaja. “Two-level coarse-
to-fine classification algorithm for asthma wheezing recognition in
children’s respiratory sounds.” In: Biomedical Signal Processing and
Control 21 (2015), pp. 105–118.

[85] Anastasia Pentina, Viktoriia Sharmanska, and Christoph H Lampert.
“Curriculum Learning of Multiple Tasks.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2015, pp. 5492–
5500.

[86] Harish Ramaswamy, Ambuj Tewari, and Shivani Agarwal. “Convex
calibrated surrogates for hierarchical classification.” In: International
Conference on Machine Learning. 2015, pp. 1852–1860.

[87] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael
Bernstein, Alexander C. Berg, and Li Fei-Fei. “ImageNet Large Scale
Visual Recognition Challenge.” In: International Journal of Computer
Vision 115.3 (2015), pp. 211–252. doi: 10.1007/s11263-015-0816-y.

[88] Chang Xu, Dacheng Tao, and Chao Xu. “Multi-view Self-Paced Learn-
ing for Clustering.” In: IJCAI. 2015.

[89] Dingwen Zhang, Deyu Meng, Chao Li, Lu Jiang, Qian Zhao, and
Junwei Han. “A Self-Paced Multiple-Instance Learning Framework
for Co-Saliency Detection.” In: 2015 IEEE International Conference on
Computer Vision (ICCV) (2015), pp. 594–602.

[90] Qian Zhao, Deyu Meng, Lu Jiang, Qi Xie, Zongben Xu, and Alexan-
der G. Hauptmann. “Self-Paced Learning for Matrix Factorization.”
In: AAAI. 2015.

[91] Xiaojin Zhu. “Machine Teaching: An Inverse Problem to Machine
Learning and an Approach Toward Optimal Education.” In: Twenty-
Ninth AAAI Conference on Artificial Intelligence. 2015.

[92] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. “Tensorflow: a system for large-scale
machine learning.” In: Arxiv e-prints (Mar. 2016).

[93] Volkan Cirik, Eduard H. Hovy, and Louis-Philippe Morency. “Vi-
sualizing and Understanding Curriculum Learning for Long Short-
Term Memory Networks.” In: ArXiv abs/1611.06204 (2016).

[94] Josep Maria Crego, Jungi Kim, Guillaume Klein, Anabel Rebollo,
Kathy Yang, Jean Senellart, Egor Akhanov, Patrice Brunelle, Aure-
lien Coquard, Yongchao Deng, Satoshi Enoue, Chiyo Geiss, Joshua
Johanson, Ardas Khalsa, Raoum Khiari, Byeongil Ko, Catherine Kobus,
Jean Lorieux, Leidiana Martins, Dang-Chuan Nguyen, Alexandra

https://doi.org/10.1007/s11263-015-0816-y

bibliography 157

Priori, Thomas Riccardi, Natalia Segal, Christophe Servan, Cyril Ti-
quet, Bo Wang, Jin Yang, Dakun Zhang, Jing Zhou, and Peter Zoldan.
“SYSTRAN’s Pure Neural Machine Translation Systems.” In: CoRR
abs/1610.05540 (2016). url: https://arxiv.org/abs/1610.05540.

[95] Tieliang Gong, Qian Zhao, Deyu Meng, and Zongben Xu. “Why
curriculum learning & self-paced learning work in big/noisy data:
A theoretical perspective.” In: Big Data & Information Analytics 1.1
(2016), p. 111.

[96] Elad Hazan, Kfir Yehuda Levy, and Shai Shalev-Shwartz. “On grad-
uated optimization for stochastic non-convex problems.” In: Interna-
tional conference on machine learning. PMLR. 2016, pp. 1833–1841.

[97] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep
residual learning for image recognition.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2016, pp. 770–
778.

[98] Daniel Jiwoong Im, Michael Tao, and Kristin Branson. “An empirical
analysis of the optimization of deep network loss surfaces.” In: arXiv
preprint arXiv:1612.04010 (2016).

[99] Radu Tudor Ionescu, Bogdan Alexe, Marius Leordeanu, Marius Popescu,
Dim P Papadopoulos, and Vittorio Ferrari. “How hard can it be? Es-
timating the difficulty of visual search in an image.” In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2016,
pp. 2157–2166.

[100] Dangwei Li, Z. Zhang, Xiaotang Chen, Haibin Ling, and K. Huang.
“A Richly Annotated Dataset for Pedestrian Attribute Recognition.”
In: ArXiv abs/1603.07054 (2016).

[101] Hao Li, Maoguo Gong, Deyu Meng, and Qiguang Miao. “Multi-
objective self-paced learning.” In: Thirtieth AAAI Conference on Ar-
tificial Intelligence. 2016.

[102] Ishan Misra, Abhinav Shrivastava, A. Gupta, and M. Hebert. “Cross-
Stitch Networks for Multi-task Learning.” In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 3994–
4003.

[103] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.
“Squad: 100,000+ questions for machine comprehension of text.” In:
arXiv preprint arXiv:1606.05250 (2016).

[104] Mallinali Ramírez-Corona, L Enrique Sucar, and Eduardo F Morales.
“Hierarchical multilabel classification based on path evaluation.” In:
International Journal of Approximate Reasoning 68 (2016), pp. 179–193.

https://arxiv.org/abs/1610.05540

158 bibliography

[105] Mrinmaya Sachan and Eric Xing. “Easy questions first? a case study
on curriculum learning for question answering.” In: Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). 2016, pp. 453–463.

[106] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Ma-
chine Translation of Rare Words with Subword Units.” In: Proceed-
ings of the 54th Annual Meeting of the Association for Computational Lin-
guistics. 2016, pp. 1715–1725. url: http://www.aclweb.org/anthology/P16-
1162.

[107] J. Weston, Antoine Bordes, S. Chopra, and Tomas Mikolov. “Towards
AI-Complete Question Answering: A Set of Prerequisite Toy Tasks.”
In: arXiv: Artificial Intelligence (2016).

[108] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xi-
aobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku
Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil,
Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick,
Oriol Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean.
“Google’s Neural Machine Translation System: Bridging the Gap be-
tween Human and Machine Translation.” In: CoRR abs/1609.08144

(2016). url: https://arxiv.org/abs/1609.08144.

[109] Sergey Zagoruyko and Nikos Komodakis. “Wide Residual Networks.”
In: The British Machine Vision Conference. 2016.

[110] Dakun Zhang, Jungi Kim, Josep Crego, and Jean Senellart. “Boost-
ing neural machine translation.” In: arXiv preprint arXiv:1612.06138
(2016).

[111] Peng Zhang, Yash Goyal, Douglas Summers-Stay, Dhruv Batra, and
Devi Parikh. “Yin and Yang: Balancing and Answering Binary Vi-
sual Questions.” In: Conference on Computer Vision and Pattern Recog-
nition (CVPR). 2016.

[112] Mohammadhossein Bateni, Soheil Behnezhad, Mahsa Derakhshan,
MohammadTaghi Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi,
and Vahab Mirrokni. “Affinity Clustering: Hierarchical Clustering
at Scale.” In: Advances in Neural Information Processing Systems. 2017,
pp. 6864–6874.

[113] Alsallakh Bilal, Amin Jourabloo, Mao Ye, Xiaoming Liu, and Liu Ren.
“Do convolutional neural networks learn class hierarchy?” In: IEEE
transactions on visualization and computer graphics 24.1 (2017), pp. 152–
162.

http://www.aclweb.org/anthology/P16-1162
http://www.aclweb.org/anthology/P16-1162
https://arxiv.org/abs/1609.08144

bibliography 159

[114] Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Gra-
ham, Barry Haddow, Shujian Huang, Matthias Huck, Philipp Koehn,
Qun Liu, Varvara Logacheva, et al. “Findings of the 2017 Conference
on Machine Translation (WMT17).” In: Proceedings of the Second Con-
ference on Machine Translation. 2017, pp. 169–214.

[115] Ondřej Bojar, Jindřich Helcl, Tom Kocmi, Jindřich Libovický, and
Tomáš Musil. “Results of the WMT17 Neural MT Training Task.” In:
Proceedings of the Second Conference on Machine Translation, Volume 2:
Shared Task Papers. Association for Computational Linguistics, 2017,
pp. 525–533. url: http://www.aclweb.org/anthology/W17-4757.

[116] S. Braun, D. Neil, and S. Liu. “A curriculum learning method for im-
proved noise robustness in automatic speech recognition.” In: 2017
25th European Signal Processing Conference (EUSIPCO). 2017, pp. 548–
552.

[117] Yanbo Fan, Ran He, Jian Liang, and Baogang Hu. “Self-paced learn-
ing: An implicit regularization perspective.” In: Thirty-First AAAI
Conference on Artificial Intelligence. 2017.

[118] Carlos Florensa, David Held, Markus Wulfmeier, and Pieter Abbeel.
“Reverse Curriculum Generation for Reinforcement Learning.” In:
The 1st Conference on Robot Learning. 2017.

[119] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and
Devi Parikh. “Making the V in VQA Matter: Elevating the Role of
Image Understanding in Visual Question Answering.” In: Conference
on Computer Vision and Pattern Recognition (CVPR). 2017.

[120] Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and
Koray Kavukcuoglu. “Automated Curriculum Learning for Neural
Networks.” In: International Conference on Machine Learning. 2017.

[121] Sanggyu Han and Sung-Hyon Myaeng. “Tree-structured Curricu-
lum Learning based on Semantic Similarity of Text.” In: 2017 16th
IEEE International Conference on Machine Learning and Applications
(ICMLA). IEEE. 2017, pp. 971–976.

[122] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexan-
der Rush. “OpenNMT: Open-Source Toolkit for Neural Machine
Translation.” In: Proceedings of ACL 2017, System Demonstrations. Van-
couver, Canada: Association for Computational Linguistics, July 2017,
pp. 67–72. url: https://www.aclweb.org/anthology/P17-4012.

[123] Tom Kocmi and Ondřej Bojar. “Curriculum Learning and Minibatch
Bucketing in Neural Machine Translation.” In: Proceedings of the In-
ternational Conference Recent Advances in Natural Language Processing.
2017, pp. 379–386. doi: 10.26615/978- 954- 452- 049- 6_050. url: https:

//doi.org/10.26615/978-954-452-049-6_050.

http://www.aclweb.org/anthology/W17-4757
https://www.aclweb.org/anthology/P17-4012
https://doi.org/10.26615/978-954-452-049-6_050
https://doi.org/10.26615/978-954-452-049-6_050
https://doi.org/10.26615/978-954-452-049-6_050

160 bibliography

[124] Alexander Kuhnle and Ann Copestake. “Shapeworld-a new test method-
ology for multimodal language understanding.” In: arXiv preprint
arXiv:1704.04517 (2017).

[125] Changsheng Li, Junchi Yan, Fan Wei, Weishan Dong, Qingshan Liu,
and Hongyuan Zha. “Self-paced multi-task learning.” In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 31. 1. 2017.

[126] Siyang Li, Xiangxin Zhu, Qin Huang, Hao Xu, and C-C Jay Kuo.
“Multiple instance curriculum learning for weakly supervised object
detection.” In: British Machine Vision Conference. 2017.

[127] Weiyang Liu, Bo Dai, Ahmad Humayun, Charlene Tay, Chen Yu,
Linda B Smith, James M Rehg, and Le Song. “Iterative machine
teaching.” In: Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70. JMLR. org. 2017, pp. 2149–2158.

[128] Fan Ma, Deyu Meng, Qi Xie, Zina Li, and Xuanyi Dong. “Self-paced
co-training.” In: Proceedings of the 34th International Conference on Ma-
chine Learning. Vol. 70. JMLR.org. 2017, pp. 2275–2284.

[129] Melike Nur Mermer and Mehmet Fatih Amasyali. “Scalable Curricu-
lum Learning for Artificial Neural Networks.” In: IPSI BGD Transac-
tions On Internet Research 13.2 (2017).

[130] Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, René Vidal, and Vit-
torio Murino. “Curriculum dropout.” In: Proceedings of the IEEE In-
ternational Conference on Computer Vision. 2017, pp. 3544–3552.

[131] Keerthiram Murugesan and Jaime Carbonell. “Self-Paced Multitask
Learning with Shared Knowledge.” In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence. 2017.

[132] Sanmit Narvekar, Jivko Sinapov, and Peter Stone. “Autonomous
Task Sequencing for Customized Curriculum Design in Reinforce-
ment Learning.” In: IJCAI. 2017.

[133] Hao Peng, Sam Thomson, and Noah A. Smith. “Deep Multitask
Learning for Semantic Dependency Parsing.” In: ACL. 2017.

[134] Sebastian Ruder. “An overview of multi-task learning in deep neural
networks.” In: arXiv preprint arXiv:1706.05098 (2017).

[135] Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick
Walker, and Peter Stone. “Automatic Curriculum Graph Generation
for Reinforcement Learning Agents.” In: AAAI. 2017.

[136] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Atten-
tion is All you Need.” In: Advances in Neural Information Processing
Systems. 2017, pp. 5998–6008. url: http://papers.nips.cc/paper/7181-

attention-is-all-you-need.pdf.

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

bibliography 161

[137] Rachel Bawden, Rico Sennrich, Alexandra Birch, and Barry Haddow.
“Evaluating Discourse Phenomena in Neural Machine Translation.”
In: Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers). New Orleans, Louisiana: Associa-
tion for Computational Linguistics, June 2018, pp. 1304–1313. url:
http://www.aclweb.org/anthology/N18-1118.

[138] Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin Johnson, Wolfgang
Macherey, George Foster, Llion Jones, Mike Schuster, Noam Shazeer,
Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Zhifeng
Chen, Yonghui Wu, and Macduff Hughes. “The Best of Both Worlds:
Combining Recent Advances in Neural Machine Translation.” In:
Proceedings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics (Long Papers). Association for Computational Lin-
guistics, 2018, pp. 76–86. url: http://aclweb.org/anthology/P18-1008.

[139] Mark Collier and Joeran Beel. “An Empirical Comparison of Syl-
labuses for Curriculum Learning.” In: Proceedings of the 26th Irish
Conference on Artificial Intelligence and Cognitive Science. 2018.

[140] Li Dong and Mirella Lapata. “Coarse-to-Fine Decoding for Neural
Semantic Parsing.” In: Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Mel-
bourne, Australia: Association for Computational Linguistics, July
2018, pp. 731–742. doi: 10.18653/v1/P18-1068. url: https://www.aclweb.

org/anthology/P18-1068.

[141] Yang Fan, Fei Tian, Tao Qin, Xiuping Li, and Tie-Yan Liu. “Learn-
ing to Teach.” In: International Conference on Learning Representations.
2018.

[142] Pierre Fournier, Olivier Sigaud, Mohamed Chetouani, and Pierre-
Yves Oudeyer. “Accuracy-based Curriculum Learning in Deep Rein-
forcement Learning.” In: ArXiv abs/1806.09614 (2018).

[143] Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li
Fei-Fei. “Dynamic task prioritization for multitask learning.” In: Pro-
ceedings of the European Conference on Computer Vision (ECCV). 2018,
pp. 270–287.

[144] Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke
Dong, Matthew R Scott, and Dinglong Huang. “Curriculumnet: Weakly
supervised learning from large-scale web images.” In: Proceedings of
the European Conference on Computer Vision (ECCV). 2018, pp. 135–
150.

http://www.aclweb.org/anthology/N18-1118
http://aclweb.org/anthology/P18-1008
https://doi.org/10.18653/v1/P18-1068
https://www.aclweb.org/anthology/P18-1068
https://www.aclweb.org/anthology/P18-1068

162 bibliography

[145] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-
Fei. “MentorNet: Learning Data-Driven Curriculum for Very Deep
Neural Networks on Corrupted Labels.” In: International Conference
on Machine Learning. 2018.

[146] Alex Kendall, Y. Gal, and R. Cipolla. “Multi-task Learning Using
Uncertainty to Weigh Losses for Scene Geometry and Semantics.” In:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2018), pp. 7482–7491.

[147] Kenton Lee, Luheng He, and Luke Zettlemoyer. “Higher-Order Coref-
erence Resolution with Coarse-to-Fine Inference.” In: Proceedings of
the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers). New Orleans, Louisiana: Association for Computa-
tional Linguistics, June 2018, pp. 687–692. doi: 10.18653/v1/N18-2108.
url: https://www.aclweb.org/anthology/N18-2108.

[148] Hao Li, Zheng Xu, G. Taylor, and T. Goldstein. “Visualizing the Loss
Landscape of Neural Nets.” In: Advances in Neural Information Pro-
cessing Systems. 2018.

[149] Frederick Liu, Han Lu, and Graham Neubig. “Handling Homographs
in Neural Machine Translation.” In: Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long Papers). New
Orleans, Louisiana: Association for Computational Linguistics, June
2018, pp. 1336–1345. url: http://www.aclweb.org/anthology/N18-1121.

[150] Emmanouil Antonios Platanios, Mrinmaya Sachan, Graham Neubig,
and Tom Mitchell. “Contextual Parameter Generation for Universal
Neural Machine Translation.” In: Conference on Empirical Methods in
Natural Language Processing (EMNLP). 2018. url: https://arxiv.org/

abs/1808.08493.

[151] Martin Popel and Ondřej Bojar. “Training Tips for the Transformer
Model.” In: The Prague Bulletin of Mathematical Linguistics 110.1 (2018),
pp. 43–70. url: https://content.sciendo.com/view/journals/pralin/110/1/
article-p43.xml.

[152] Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. “On the Conver-
gence of Adam and Beyond.” In: International Conference on Learning
Representations. 2018. url: https://openreview.net/forum?id=ryQu7f-RZ.

[153] Xutong Ren, Lingxi Xie, Chen Wei, Siyuan Qiao, Chi Su, Jiaying
Liu, Qi Tian, Elliot K Fishman, and Alan L Yuille. “Generalized
Coarse-to-Fine Visual Recognition with Progressive Training.” In:
arXiv preprint arXiv:1811.12047 (2018).

https://doi.org/10.18653/v1/N18-2108
https://www.aclweb.org/anthology/N18-2108
http://www.aclweb.org/anthology/N18-1121
https://arxiv.org/abs/1808.08493
https://arxiv.org/abs/1808.08493
https://content.sciendo.com/view/journals/pralin/110/1/article-p43.xml
https://content.sciendo.com/view/journals/pralin/110/1/article-p43.xml
https://openreview.net/forum?id=ryQu7f-RZ

bibliography 163

[154] Nikolaos Sarafianos, Theodoros Giannakopoulos, Christophoros Nikou,
and Ioannis A Kakadiaris. “Curriculum Learning of Visual Attribute
Clusters for Multi-task Classification.” In: Pattern Recognition 80 (2018),
pp. 94–108.

[155] Noam Shazeer and Mitchell Stern. “Adafactor: Adaptive Learning
Rates with Sublinear Memory Cost.” In: Proceedings of the 35th Inter-
national Conference on Machine Learning. Ed. by Jennifer Dy and An-
dreas Krause. Vol. 80. Proceedings of Machine Learning Research.
Stockholmsmässan, Stockholm Sweden: PMLR, July 2018, pp. 4596–
4604. url: http://proceedings.mlr.press/v80/shazeer18a.html.

[156] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve,
Arthur Szlam, and Rob Fergus. “Intrinsic motivation and automatic
curricula via asymmetric self-play.” In: ICLR. 2018.

[157] Yuxing Tang, Xiaosong Wang, Adam P Harrison, Le Lu, Jing Xiao,
and Ronald M Summers. “Attention-guided curriculum learning for
weakly supervised classification and localization of thoracic diseases
on chest radiographs.” In: International Workshop on Machine Learning
in Medical Imaging. Springer. 2018, pp. 249–258.

[158] Andrew Trask, Felix Hill, Scott E. Reed, Jack W. Rae, Chris Dyer, and
P. Blunsom. “Neural Arithmetic Logic Units.” In: NeurIPS. 2018.

[159] Cheng Wang, Qian Zhang, Chang Huang, Wenyu Liu, and Xinggang
Wang. “Mancs: A Multi-Task Attentional Network with Curriculum
Sampling for Person Re-Identification.” In: European Conference on
Computer Vision. 2018, pp. 365–381.

[160] Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Barros. “Hierarchi-
cal multi-label classification networks.” In: International Conference on
Machine Learning. 2018, pp. 5075–5084.

[161] Daphna Weinshall, Gad Cohen, and Dan Amir. “Curriculum learn-
ing by transfer learning: Theory and experiments with deep net-
works.” In: International Conference on Machine Learning. PMLR. 2018,
pp. 5238–5246.

[162] Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Kenton Murray, Jeremy
Gwinnup, Marianna J Martindale, Paul McNamee, Kevin Duh, and
Marine Carpuat. “An Empirical Exploration of Curriculum Learning
for Neural Machine Translation.” In: CoRR abs/1811.00739 (2018).
url: https://arxiv.org/abs/1811.00739.

[163] Tianyi Zhou and Jeff A Bilmes. “Minimax Curriculum Learning: Ma-
chine Teaching with Desirable Difficulties and Scheduled Diversity.”
In: International Conference on Learning Representations. 2018.

http://proceedings.mlr.press/v80/shazeer18a.html
https://arxiv.org/abs/1811.00739

164 bibliography

[164] Xiaojin Zhu, Adish Singla, Sandra Zilles, and Anna N. Rafferty. “An
Overview of Machine Teaching.” In: ArXiv abs/1801.05927 (2018). A
tutorial document grown out of NeurIPS 2017 Workshop on Teach-
ing Machines, Robots, and Humans.

[165] Antoine Caubrière, N. Tomashenko, Antoine Laurent, E. Morin, Nathalie
Camelin, and Y. Estève. “Curriculum-based transfer learning for an
effective end-to-end spoken language understanding and domain
portability.” In: INTERSPEECH. 2019.

[166] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding.” In: NAACL-HLT. 2019.

[167] Elozino Egonmwan and Yllias Chali. “Transformer-based model for
single documents neural summarization.” In: Proceedings of the 3rd
Workshop on Neural Generation and Translation. 2019, pp. 70–79.

[168] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge,
Felix A. Wichmann, and Wieland Brendel. “ImageNet-Trained CNNs
are Biased Towards Texture; Increasing Shape Bias Improves Accu-
racy and Robustness.” In: International Conference on Learning Repre-
sentations. 2019.

[169] Guy Hacohen and Daphna Weinshall. “On the power of curriculum
learning in training deep networks.” In: International Conference on
Machine Learning. PMLR. 2019, pp. 2535–2544.

[170] MD Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and
Hamid Laga. “A comprehensive survey of deep learning for image
captioning.” In: ACM Computing Surveys (CsUR) 51.6 (2019), pp. 1–
36.

[171] Reza Lotfian and Carlos Busso. “Curriculum learning for speech
emotion recognition from crowdsourced labels.” In: IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing 27.4 (2019), pp. 815–
826.

[172] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman.
“Teacher-Student Curriculum Learning.” In: IEEE transactions on neu-
ral networks and learning systems (2019).

[173] Ilkay Oksuz, Bram Ruijsink, Esther Puyol-Antón, James R Clough,
Gastao Cruz, Aurelien Bustin, Claudia Prieto, Rene Botnar, Daniel
Rueckert, Julia A Schnabel, et al. “Automatic CNN-based detection
of cardiac MR motion artefacts using k-space data augmentation and
curriculum learning.” In: Medical image analysis 55 (2019), pp. 136–
147.

bibliography 165

[174] Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barn-
abas Poczos, and Tom M Mitchell. “Competence-based Curriculum
Learning for Neural Machine Translation.” In: Conference of the North
American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers). 2019.

[175] Enver Sangineto, Moin Nabi, Dubravko Culibrk, and Nicu Sebe.
“Self Paced Deep Learning for Weakly Supervised Object Detection.”
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 41

(2019), pp. 712–725.

[176] Shreyas Saxena, Oncel Tuzel, and Dennis DeCoste. “Data parame-
ters: A new family of parameters for learning a differentiable cur-
riculum.” In: Advances in Neural Information Processing Systems. 2019,
pp. 11095–11105.

[177] David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli.
“Analysing mathematical reasoning abilities of neural models.” In:
International Conference on Learning Representations. 2019.

[178] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
“Well-Read Students Learn Better: On the Importance of Pre-training
Compact Models.” In: arXiv preprint arXiv:1908.08962v2 (2019).

[179] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. “GLUE: A Multi-Task Benchmark and Anal-
ysis Platform for Natural Language Understanding.” In: In the Pro-
ceedings of the International Conference on Learning Representa-
tions (ICLR). 2019.

[180] Yiru Wang, Weihao Gan, Wei Wu, and J. Yan. “Dynamic Curriculum
Learning for Imbalanced Data Classification.” In: 2019 IEEE/CVF
International Conference on Computer Vision (ICCV) (2019), pp. 5016–
5025.

[181] Yujia Wang, Wei Liang, Jianbing Shen, Yunde Jia, and Lap-Fai Yu.
“A deep Coarse-to-Fine network for head pose estimation from syn-
thetic data.” In: Pattern Recognition 94 (2019), pp. 196–206.

[182] Zuxuan Wu, Caiming Xiong, Yu-Gang Jiang, and Larry S Davis.
“LiteEval: A Coarse-to-Fine Framework for Resource Efficient Video
Recognition.” In: Advances in Neural Information Processing Systems.
2019, pp. 7778–7787.

[183] Changdong Xu and Xin Geng. “Hierarchical classification based on
label distribution learning.” In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 33. 2019, pp. 5533–5540.

[184] Jian Yao and Ahmad Al-Dahle. “Coarse-to-fine optimization for speech
enhancement.” In: arXiv preprint arXiv:1908.08044 (2019).

166 bibliography

[185] Xuan Zhang, Pamela Shapiro, Gaurav Kumar, Paul McNamee, Ma-
rine Carpuat, and Kevin Duh. “Curriculum learning for domain
adaptation in neural machine translation.” In: NAACL-HLT. 2019.

[186] Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta, Naman Goyal,
Luke Zettlemoyer, and Sonal Gupta. “Better Fine-Tuning by Reduc-
ing Representational Collapse.” In: ArXiv abs/2008.03156 (2020).

[187] Ürün Dogan, Aniket Anand Deshmukh, Marcin Bronislaw Machura,
and Christian Igel. “Label-similarity curriculum learning.” In: Euro-
pean Conference on Computer Vision. Springer. 2020, pp. 174–190.

[188] Madan Ravi Ganesh and Jason J Corso. “Rethinking Curriculum
Learning with Incremental Labels and Adaptive Compensation.” In:
arXiv preprint arXiv:2001.04529 (2020).

[189] Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer.
“Exploring the memorization-generalization continuum in deep learn-
ing.” In: arXiv preprint arXiv:2002.03206 (2020).

[190] Qing Li, Siyuan Huang, Yining Hong, and Song-Chun Zhu. “A Competence-
aware Curriculum for Visual Concepts Learning via Question An-
swering.” In: European Conference on Computer Vision. Springer. 2020,
pp. 141–157.

[191] Andreas Madsen and alexander rosenberg johansen. “Neural Arith-
metic Units.” In: International Conference on Learning Representations.
2020.

[192] Jonathan Pilault, Raymond Li, Sandeep Subramanian, and Christo-
pher Pal. “On Extractive and Abstractive Neural Document Summa-
rization with Transformer Language Models.” In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). 2020, pp. 9308–9319.

[193] Samarth Sinha, Animesh Garg, and Hugo Larochelle. “Curriculum
By Texture.” In: arXiv preprint arXiv:2003.01367 (2020).

[194] Otilia Stretcu, Emmanouil Antonios Platanios, Tom M. Mitchell, and
Barnabás Póczos. “Coarse-to-Fine Curriculum Learning for Classifi-
cation.” In: International Conference on Learning Representations (ICLR)
Workshop on Bridging AI and Cognitive Science (BAICS). 2020.

[195] Lilian Weng. Curriculum for Reinforcement Learning. Jan. 2020. url:
https : / / lilianweng . github . io / lil - log / 2020 / 01 / 29 / curriculum - for -

reinforcement-learning.html.

[196] Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan Wang, Hongtao
Xie, and Yongdong Zhang. “Curriculum learning for natural lan-
guage understanding.” In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. 2020, pp. 6095–6104.

https://lilianweng.github.io/lil-log/2020/01/29/curriculum-for-reinforcement-learning.html
https://lilianweng.github.io/lil-log/2020/01/29/curriculum-for-reinforcement-learning.html

bibliography 167

[197] Han Zhao, Otilia Stretcu, Alexander J Smola, and Geoffrey J Gor-
don. “Efficient multitask feature and relationship learning.” In: Un-
certainty in Artificial Intelligence. PMLR. 2020, pp. 777–787.

[198] Otilia Stretcu, Emmanouil Antonios Platanios, Tom M. Mitchell, and
Barnabás Póczos. Coarse-to-Fine Curriculum Learning. 2021. arXiv: 2106.
04072 [cs.AI].

[199] Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Henry Jin,
Suzanne Petryk, Sarah Adel Bargal, and Joseph E. Gonzalez. “NBDT:
Neural-Backed Decision Trees.” In: International Conference on Learn-
ing Representations. 2021.

[200] X. Wu, Ethan Dyer, and Behnam Neyshabur. “When Do Curricula
Work?” In: International Conference on Learning Representations. 2021.

https://arxiv.org/abs/2106.04072
https://arxiv.org/abs/2106.04072

colophon

This document was typeset using a modified version of the typographical
look-and-feel classicthesis developed by André Miede. The style was in-
spired by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style.” classicthesis is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Final Version as of June 21, 2021 (Version).

https://bitbucket.org/amiede/classicthesis/

	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	List of Algorithms
	List of Algorithms

	1 Introduction
	1.1 Thesis Overview
	1.2 Background

	2 What is Curriculum Learning?
	2.1 Definitions
	2.2 Categorization of Curriculum Learning Methods
	2.3 Comparison with Related Fields

	3 Literature Review
	3.1 The Early Debate Between "Less Is More" and "Less Is Less"
	3.2 Curriculum in Input Space
	3.2.1 The Structure of Curricula in Input Space
	3.2.2 Hand-Crafted Curricula
	3.2.3 Automated Curricula
	3.2.4 Self-Paced Learning
	3.2.5 Comparison

	3.3 Curriculum in Task Space
	3.4 Curriculum in Model Space

	4 Curriculum in Input Space
	4.1 A Generic Curriculum Learning Framework
	4.1.1 How can we make sample difficulties comparable to model competence?
	4.1.2 How do we define the model competence?
	4.1.3 Algorithm

	4.2 Addition Digit-by-Digit With Recurrent Neural Networks
	4.2.1 Data
	4.2.2 Models and Training
	4.2.3 Results
	4.2.4 Discussion

	4.3 Learning Arithmetic with Sequence-to-Sequence Models
	4.3.1 Data
	4.3.2 Models and Training
	4.3.3 Results
	4.3.4 Discussion

	4.4 Neural Machine Translation
	4.4.1 Difficulty Metrics
	4.4.2 Experiments
	4.4.3 Related Work
	4.4.4 Discussion

	4.5 Multimodal Language Understanding
	4.5.1 Data
	4.5.2 Model and Training
	4.5.3 Results
	4.5.4 Discussion

	4.6 Key Takeaways

	5 Curriculum in Task Space
	5.1 Overview
	5.2 Coarse-to-Fine Curriculum Learning
	5.2.1 Method
	5.2.2 Generating Auxiliary Tasks
	5.2.3 Transferring Acquired Knowledge
	5.2.4 Algorithm Properties
	5.2.5 Experiments
	5.2.6 Related Work
	5.2.7 Discussion

	5.3 Curricula for Compositional Multitask Learning
	5.3.1 Learning Arithmetic using Explicit Task Composition
	5.3.2 Implicit Task Composition for Multimodal Image Understanding

	5.4 Key Takeaways

	6 Understanding Curriculum Learning: A Case Study on Sequential Data
	6.1 Analytical Study
	6.1.1 Gradients for Composed Functions
	6.1.2 Gradients for a Simple RNN
	6.1.3 Hypotheses on When and Why Curriculum Learning Works

	6.2 Case Study #1: Parity Function
	6.2.1 Experimental Setup
	6.2.2 Results
	6.2.3 Evidence for the Proposed Hypotheses
	6.2.4 The Effect of the Curriculum on the Loss Landscape

	6.3 Case Study #2: Addition Digit-by-Digit
	6.3.1 Analytical Study
	6.3.2 Evidence for the Proposed Hypotheses
	6.3.3 The Effect of the Curriculum on the Loss Landscape

	6.4 Case Study #3: Addition Sequence-to-Sequence
	6.4.1 Evidence for the Proposed Hypotheses

	6.5 Case Study #4: Fine-tuning BERT on GLUE data
	6.5.1 Experimental Setup
	6.5.2 Learning Sequences of Different Lengths
	6.5.3 The Effect of the Curriculum on the Loss Landscape
	6.5.4 Discussion

	6.6 Key Takeaways

	7 Conclusion
	7.1 Key Results
	7.2 Future Work

	A Curriculum in Task Space: Supplementary
	A.1 Coarse-to-Fine Curriculum Learning: Supplementary
	A.1.1 Confusion Matrix vs Embedding Similarity
	A.1.2 A Staged Coarse-to-Fine Approach
	A.1.3 Experimental Details
	A.1.4 Other Related Work

	Bibliography
	Colophon

