
Learning and Reasoning with
Fast Semidefinite Programming and

Mixing Methods

Po-Wei Wang

July 2021
CMU-ML-21-107

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee
J. Zico Kolter, Chair

Gary Miller
Ryan Tibshirani

Fatma Kılınç-Karzan
Max Welling

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2021 Po-Wei Wang

This research was supported by: the Air Force Research Laboratory award FA87501720027; the Defense Advanced
Research Projects Agency award N660011714036; the National Science Foundation award CCF1522054; and grants
from Duquesne Light Company, Google, Robert Bosch GmbH, and the Siebel Energy Institute.

Keywords: semidefinite programming, approximation algorithm, machine learning

Dedicated to my loving family, who constantly stand behind me while I am pursuing my dream.

iv

Abstract
Semidefinite programming has long been a theoretically powerful tool for solving

relaxations of challenging, often NP-hard optimization problems. However, it has
typically not been practical for most large-scale tasks, owing to the high memory
and computational cost of typical solvers for solving SDPs. In this thesis, we aim
to break the barrier and bring SDP’s power back to large-scale machine learning
problems. To achieve this, we introduce a series of optimization solvers, operating on
the low-rank or low-cardinality manifolds of the semidefinite variables. We find that
in many domains, these methods allow SDP relaxations to exceed the state of the art
in terms of both computational cost and the relevant performance metrics.

First, we proposed the Mixing method, a low-rank SDP solver aimed at the
classical MAXCUT SDP relaxation. We also show that the Mixing method can
accurately estimate the mode and partition function of the pairwise Markov Random
Fields, and scales to millions of variables. Further, we show how to learn the
parameters inside SDPs by analytically differentiating through the optimization
problem with implicit differentiation and the mixing methods, which leads to a
differentiable SAT solver that can be integrated within the loop of larger deep learning
systems. For nonnegative constraints, we propose a separate variant aimed at low
cardinality SDPs, and demonstrate how to apply the method to community detection
on finding clusters within large-scale networks. Finally, we show that the technique
can also be applied to more generic problems, such as a generic linear programming
problems (with arbitrarily structured constraints), and we use this approach to develop
a scalable sparse linear programming solver that improves solution speed over existing
state-of-the-art commercial solvers.

vi

Acknowledgments
First and foremost, I want to express my gratitude to my advisor, Zico Kolter, the

person without whom the thesis would not have been possible. Zico is the kindest
advisor a PhD student could have asked for. He is always inspiring, having magical
instincts on do’s and don’ts, while giving me abundant freedom to grow and explore
as a researcher; From him, I learned not only vision and tastes about machine learning
and optimization, but also how to be kind to others while keeping the progress. Many
thanks are also due to Gary Miller, Ryan Tibshirani, Fatma Kılınç-Karzan, and Max
Welling for serving on my thesis committee. Specifically, I’d like to thank Gary for
those afternoon discussions, which allows me to see my topics through a different
lens. I want to thank Ryan for our collaborations on the convex optimization courses,
and I’d like to thank Fatma for encouraging me to continue working on SDPs during
my bottlenecks. Finally, I’d like to thank Max for his vision of my works and for the
opportunities during the job search.

During my PhD journey, I am fortunate to collaborate with many brilliant re-
searchers, including Priya Donti, Shaojie Bai, Matt Wytock, Bryan Wilder, Wei-
Cheng Chang, Chirag Pabbaraju, Chun Kai Ling, Chun-Liang Li, and Ching-Pei
Lee. Many of our collaborations contribute to this thesis, and I learned a lot from
them in research, mentorship, and being nice to others. Especially, I am grateful to
Priya for always providing me feedback and encouragement. I appreciate Eric Wong
for introducing me to Zico and for our foodie trips. And I thank Cho-Jui Hsieh and
Yen-Chi Chen for being the role models in my early stage of research.

Special thanks to my officemates for their discussions and conversations, and for
creating a comfortable working environment. Shout-out to Maruan Al-Shedivat, Yifei
Ma, Avi Dubey, Xun Zheng, Anthony Platanios, Otilia Stretcu, and Ivan Stelmakh
for our chats. I’d also like to thank my friends in the machine learning department
and computer science department, including Alnur Ali, Brandon Amos, Vaishnavh
Nagarajan, Gaurav Manek, En-Hsu Yen, Derek Liu, Simon Shaolei Du, Wei Dai,
Han Zhao, Akash Umakantha, Jeremy Cohen, and Ezra Winston. I will definitely
miss those academic coffee talks. Further, I’d like to give my gratitude to my board
game mates, Shao-Wen Chiu, Yen-Chia Hsu, and Wei-Yu Chen. From Pandemic to
Gloomhaven, we have so many wonderful memories. And I have to thank my pals
Ting-Yao Hu, Carol Cheng, Hsiao-Yu Tung, Chih-Kuan Yeh, Yao-Hung Tsai, Ting
Hsieh, Bingbin Liu, Huan Zhang, Mu-Chu Lee, Tzu-Ming Kuo, and Sz-Rung Shiang
for the numerous lunches and dinners together.

Looking back to my journey of research, I need to express my gratitude to my
advisor at National Taiwan University, Chih-Jen Lin, for opening the door to machine
learning and optimization for me. I learned from him not only about how to do
research but also about being a decent researcher. I need to thank Chieh-Chih Wang
for letting me participate in his robotics seminar early in my undergrad, which had a
lasting influence on my taste in research. I want to thank Diane Stidle for her warm
greetings and care to the entire machine learning department. And I appreciate the
opportunities and mentorship during my internships. I am grateful to Inderjit Dhillon

viii

and Vijai Mohan from A9 for the great experience in my first-ever internship, and I
thank Daria Stepanova and Csaba Domokos from Bosch for teaching me answer set
programming and our time in Europe.

Last but not least, I owe my deepest gratitude to my family. I am forever grateful
to my father and mother, Kuo-Liang Wang and Mun-Ying Lin, for their unconditional
love and dedication. I am grateful to my sibling, Po-Ya Wang, for her company and
encouragement. Finally, I want to thank my best friend, life partner, and beloved
wife, Chieh Lin, who has been supporting me in the ebb and flow of my PhD, while
providing unswerving love and happiness to my life.

ix

x

Contents

1 Introduction 1
1.1 Thesis outline . 1
1.2 Itemized summary of contributions . 3

2 Background 5
2.1 Semidefinite programming . 5

2.1.1 SDP solvers . 5
2.2 Learning by implicit differentiation . 7
2.3 Reasoning with semidefinite programs . 8

2.3.1 Approximation for NP-hard problems 8
2.3.2 Inference in Markov Random Field . 8
2.3.3 Learning to reason with a differentiable satisfiability layer 9
2.3.4 Community detection with modularity maximization 10

2.4 Linear programming via efficient piecewise quadratic optimization 11

3 The Mixing method for low-rank SDPs 13
3.1 The Mixing method . 15

3.1.1 Convergence properties of the Mixing methods 16
3.1.2 Proof of Theorem 3.4: The instability of non-optimal criticals points . . . 18

3.2 Applications . 22
3.2.1 Maximum cut problem . 22
3.2.2 Maximum satisfiability problem . 23

3.3 Experimental results . 24
3.4 Discussion . 27

4 Inference in Markov Random Field with fast low-rank SDPs 29
4.1 Inference in multi-class MRFs . 31
4.2 Partition function estimation . 34
4.3 Experimental results . 35

4.3.1 Mode estimation . 36
4.3.2 Partition function estimation . 37
4.3.3 Image segmentation . 38

4.4 Discussion . 39

xi

5 Learning to reason with a differentiable satisfiability layer 41
5.1 A differentiable satisfiability solver . 42

5.1.1 Solving an SDP formulation of satisfiability 42
5.1.2 SATNet: Satisfiability solving as a layer 43
5.1.3 Computing the backward pass . 46
5.1.4 An efficient GPU implementation . 47

5.2 Experimental results . 48
5.2.1 Learning parity (chained XOR) . 48
5.2.2 Sudoku (original and permuted) . 50
5.2.3 Visual Sudoku . 51

5.3 Discussion . 52

6 Community detection using fast low-cardinality SDPs 53
6.1 The Locale algorithm and application to community detection 54

6.1.1 Generalizing the local move procedure by low-cardinality embeddings . . 54
6.1.2 Rounding by changing the cardinality constraint 58
6.1.3 The Leiden-Locale algorithm for community detection 58

6.2 Experimental results . 59
6.3 Discussion . 62

7 Linear programming via efficient piecewise quadratic optimization 63
7.1 The unconstrained piecewise quadratic formulation 64
7.2 The QULP algorithm . 66

7.2.1 The coordinate descent method with linear convergence 66
7.2.2 The semismooth Newton method with superlinear convergence 68
7.2.3 A hybrid method . 69

7.3 Experimental results . 70
7.4 Conclusion . 71

8 Conclusion 73

A Proofs for the Mixing methods 75
A.1 Proof of Theorem 3.1: Convergence to critical points 75
A.2 Proof of Theorem 3.3: Local Linear convergence 76
A.3 Proof of Lemma 3.10: Divergence of Gauss-Seidel methods 79
A.4 Proof of Theorem 3.5: Global convergence with a step size 82
A.5 Proof of Lemma 3.11: Rank Deficiency in Critical Points 84

B Proofs and additional experimental results for MRF 87
B.1 Proof of Equivalence of (4.8) and (4.9) . 87
B.2 Derivation of (4.11) . 89
B.3 Proof of Theorem 4.1 . 93
B.4 Pseudocode for AIS . 94
B.5 Mode estimation comparisons . 95

xii

B.6 Performance of AIS with varying parameters 96
B.7 Image Segmentation - more results . 97

C Derivations and additional experimental results for SATNet 101
C.1 Derivation of the forward pass coordinate descent update 101
C.2 Details on backpropagation through the MAXSAT SDP 102
C.3 Proof of pseudoinverse computations . 103
C.4 Derivation of the backward pass coordinate descent algorithm 104
C.5 Results for the 4× 4 Sudoku problem . 105
C.6 Convergence plots for 9× 9 Sudoku experiments 105

D Proofs for the Locale algorithm 109
D.1 Proof of Proposition 6.1 . 109
D.2 Proof of Theorem 6.2 . 111
D.3 Proof for Lemma D.1 . 112
D.4 Experiments on networks with ground truth . 112
D.5 Pseudo-code for the Leiden-Locale algorithm 113

E Proofs for the linear programming algorithm 115
E.1 Proof of Theorem 7.3 . 115

E.1.1 Global Convergence . 115
E.1.2 Local Superlinear Convergence With Unit Step Size 117
E.1.3 Unit Step Size Acceptance . 118

E.2 Other Proofs . 120
E.2.1 Proof of Theorem 7.2 . 120

E.3 Additional Experiments . 121
E.3.1 Benchmark Problems . 121

Bibliography 125

xiii

xiv

Chapter 1

Introduction

Semidefinite programs (SDP) has long been a theoretical powerful tool for encoding a large
range of practical problems, including relaxations of many combinatorial optimization tasks [34],
approximate probabilistic inference [78], control theory [35], matrix completion [41], and many
others. Also, it provides a systematic way of approximating the underlying NP-hard optimization
problems [88, 121] in many machine learning applications. However, it is typically not practical
for most large-scale machine learning problems, owing to the high memory and computational
cost of typical solvers for solving SDPs. So despite the many progress and theoretical usages,
SDP has not been widely adopted in solving real-world tasks.

In this thesis, we aim to break the barrier and unleash SDP’s power back to large-scale machine
learning problems. To achieve the goal, we introduce a series of optimization solvers, operating
on the low-rank or low-cardinality manifolds of the semidefinite variables to leverage the problem
structures. We find that in domains including probabilistic inference, parameter learning, and
clustering, the proposed methods allow SDP relaxations to exceed the state of the art in terms of
both computational cost and the relevant performance metrics. Further, we show that the technique
can be generalized to scale up linear programming.

1.1 Thesis outline
In this initial chapter, we give an overview of the thesis and summarize the existing con-

tributions. Chapter 2 gives more detailed presentation on the background of SDPs and their
applications in machine learning. In Chapter 3, we present the Mixing method, the core tool
we use to scale up SDPs, together with its theoretical properties. The following three chapters
present the works on applying the Mixing methods or its variants on the three important problems
in machine learning: probabilistic inference, parameter learning, and clustering (Chapter 4, 5, 6
respectively). Then, in Chapter 7, we demonstrate how to apply the solution technique to general
linear constraints in a linear programming problem.

Chapter 3: The Mixing method for low-rank SDPs. We presents a low-rank block coordinate
descent approach to structured semidefinite programming with diagonal constraints. The approach,
which we call the Mixing method, is extremely simple to implement, has no free parameters,

1

and typically attains an order of magnitude or better improvement in optimization performance
over the current state of the art. We show that the method is strictly decreasing, will converge
to a critical point, and further that for sufficient rank all non-optimal critical points are unstable.
Moreover, we prove that with a step size, the Mixing method converges to the global optimum of
the semidefinite program almost surely in a locally linear rate under random initialization. This
is one of the first low-rank semidefinite programming method that has been shown to achieve
a global optimum without assumption. We demonstrate the algorithm to two related domains:
solving the maximum cut semidefinite relaxation, and solving a maximum satisfiability relaxation.
In all settings, we demonstrate substantial improvement over the existing state of the art along
various dimensions, and in total, this work expands the scope and scale of problems that can be
solved using semidefinite programming methods and inspires all the subsequent chapters.

Chapter 4: Inference in Markov Random Field with fast low-rank SDPs. Probabilistic
inference in pairwise Markov Random Fields (MRFs), i.e. computing the partition function or
computing a MAP estimate of the variables, is a foundational problem in probabilistic graphical
models. Semidefinite programming relaxations have long been a theoretically powerful tool for
analyzing properties of probabilistic inference, but have not been practical owing to the high
computational cost of typical solvers for solving the resulting SDPs. In this chapter, we propose
an efficient method for computing the partition function or MAP estimate in a pairwise MRF by
instead exploiting a recently proposed coordinate-descent-based fast semidefinite solver. We also
extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and
develop a compact semidefinite relaxation that can again be solved efficiently using the solver. We
show that the method substantially outperforms (both in terms of solution quality and speed) the
existing state of the art in approximate inference, on benchmark problems drawn from previous
work. We also show that our approach can scale to large MRF domains such as fully-connected
pairwise CRF models used in computer vision.

Chapter 5: Learning to reason with a differentiable satisfiability layer. Integrating logical
reasoning within deep learning architectures has been a major goal of modern AI systems. In this
chapter, we propose a new direction toward this goal by introducing a differentiable (smoothed)
maximum satisfiability (MAXSAT) solver that can be integrated into the loop of larger deep
learning systems. Our approximate solver is based upon a fast coordinate descent approach to
solving the SDP associated with the MAXSAT problem. We show how to analytically differentiate
through the solution to this SDP and efficiently solve the associated backward pass, which enables
parameters learning for the clause matrix. We demonstrate that by integrating this solver into
end-to-end learning systems, we can learn the logical structure of challenging problems in a
minimally supervised fashion. In particular, we show that we can learn the parity function using
single-bit supervision (a traditionally hard task for deep networks) and learn how to play 9× 9
Sudoku solely from examples. We also solve a “visual Sudoku” problem that maps images of
Sudoku puzzles to their associated logical solutions by combining our MAXSAT solver with a
traditional convolutional architecture.

2

Chapter 6: Community detection using fast low-cardinality SDPs. Modularity maximiza-
tion has been a fundamental tool for understanding the community structure of a network, but the
underlying optimization problem is nonconvex and NP-hard to solve. State-of-the-art algorithms
like the Louvain or Leiden methods focus on different heuristics to help escape local optima, but
they still depend on a greedy step that moves node assignment locally and is prone to getting
trapped. In this chapter, we propose a new class of low-cardinality algorithm that generalizes
the local update to maximize a semidefinite relaxation derived from max-k-cut. This proposed
algorithm is scalable, empirically achieves the global semidefinite optimality for small cases,
and outperforms the state-of-the-art algorithms in real-world datasets with little additional time
cost. From the algorithmic perspective, it also opens a new avenue for scaling-up semidefinite
programming when the solutions are sparse instead of low-rank.

Chapter 7:Linear programming via efficient piecewise quadratic optimization. We present
a new approach to solving large-scale, structured linear programs (LPs). Specifically, we show that
the primal-dual solution pair of any feasible LP can be formulated as an unconstrained piecewise
convex quadratic objective, which requires only a few passes over the constraint matrix to compute
and differentiate (and without the need for any matrix inversion). The formulation additionally
requires only a single objective, without the need for scheduling any relaxation parameters (e.g.,
a central path parameter or augmented Lagrangian relaxation variable), as is common in most
comparable linear programming solvers. We then propose an efficient algorithm for solving
such problems, based upon a combination of coordinate descent and conjugate gradient steps.
We show that this algorithm achieves global Q-linear convergence as well as local superlinear
convergence. We evaluate the approach empirically on several large-scale machine learning and
linear programming applications and show that the method solves problems substantially more
quickly than state-of-the-art commercial interior-point and simplex methods as well as a recent
augmented Lagrangian approach.

1.2 Itemized summary of contributions
• Chapter 3 presents the Mixing method, an low-rank algorithm that enables the SDP to scale

to millions of variables. It has a linear dependency to the non-zeros in input and is one of
the first solver that provably converges to the global optimum without assumption.

• Chapter 4 demonstrates how to apply the low-rank method to Markov Random Fields
for inferencing the mode and partition function, which outperforms the state-of-the-art
approaches in both speed and accuracy.

• Chapter 5 presents a differentiable MAXSAT solver, demonstrating how to learn opti-
mization parameters with implicit differentiation and the Mixing method. It enables the
end-to-end integration of logical reasoning and deep learning.

• Chapter 6 presents a variant SDP solver aimed at the low-cardinality solutions. It is applied
to the maximum modularity problem in community detection, and outperforms the state of
the art in both performance and speed.

• Chapter 7 demonstrates how to convert the linear constraints in a linear program to an

3

unconstrained piecewise quadratic problem, which is solvable using coordinate descent and
second-order methods in linear time.

4

Chapter 2

Background

2.1 Semidefinite programming
Semidefinite programming (SDP) is a class of optimization problem involving symmetric

matrix variables that are constrained to be positive semidefinite. It can be written as

minimize
X�0

〈C,X〉, subject to 〈Ai, X〉 = bi, i = 1 . . . p, (2.1)

where X ∈ Sn is the optimization variable (a symmetric n× n matrix), C ∈ Sn is the cost matrix,
and Ai ∈ Rn×n, bi ∈ R, i = 1, . . . , p are the constraint coefficients. Semidefinite programs
can encode a large range of practical problems, including relaxations of many combinatorial
optimization tasks [34], approximate probabilistic inference [78], control theory [35], matrix
completion [41], and many others. It has long been a theoretical powerful tool for approximating
challenging problems. However, it is typically not practical for most large-scale tasks, owing to
the high memory and computational cost of typical solvers for solving SDPs. In this thesis, we
aim to break the barrier and bring SDP’s power back to large-scale machine learning problems.

2.1.1 SDP solvers
Interior point methods. The primal-dual interior point methods [104, 160], including Sedumi[136]
and DSDP[18], are the canonical solvers for SDPs. They take full Newton steps on the perturbed
KKT system and control the tightness of perturbation on a primal-dual central path. Because
they need to solve Newton steps for the n2 scalars inside the variable matrix X ∈ Sn, a naive
implementation requires O(n2) memory for storing X and O((n2)3) = O(n6) computational
complexity per iteration. By utilizing the primal-dual relation [142], the cost per iteration can be
reduced to O(pn4). If p = O(n) and the SDP satisfies a certain KYP structure, the cost can be
further reduced to O(n3). However, the overall complexity is still impractical for most large-scale
machine learning problems.

Multiplicative update algorithms. Starting from the multiplicative weight update algorithms
[10, 79] from online learning, there has been a series of breakthroughs on using the multiplicative
update to solve traditional optimization problems, including the multiplicative update (MW)

5

algorithms for SDPs [8, 135] and the matrix multiplicative weight (MMW) algorithm [7] that
combines fast matrix exponential with randomized sketching. The core idea of MW for SDP
is to convert the optimization problem into a series of membership problems, solving it using
oracles and adjust the weight with multiplicative update algorithms. Their complexities are
sometimes optimal in certain parameters, but are not really practical because of their bad sublinear
dependency on the error. For example, for solving a MAXCUT SDP for a d-regular graph with m
edges and n nodes to a relative error of ε, the MMW algorithm requires a O(m · 8d2 log(n)/ε2)
computational complexity, which is optimal for m edges but not practical for a moderate ε = 0.1.

Low-rank methods for SDP. Given an SDP problem with p constraints, it was proven by
Barvinok [16], Pataki [123] that, if the problem is solvable, it admits solutions of rank k = d

√
2pe.

That is, we have solutions satisfying X = V TV , such that V ∈ Rk×n. Thus, if we can solve
the problem in the space of V , we can ignore the semidefinite constraint and have many fewer
variables. The idea of using this low-rank structure during optimization was first proposed by
Burer and Monteiro [39] in their solver SDPLR, in which they solve the low-rank problem with
L-BFGS on the extended Lagrangian problem. Since then, many low-rank optimization algorithms
have been developed. One of the most notable is the Riemannian trust-region method introduced
by Absil et al. [1]. They considered the Riemannian manifold of low-rank structures and extended
the non-linear conjugate gradient method to work on the manifold. Later, Boumal and Absil [29]
improved the method by including preconditioned CG; these methods are implemented in the
popular Manopt package [30]. Later, a series of works on Riemannian optimization [1, 28, 30]
further established the theoretical framework and extended the domain of applications for the low-
rank optimization algorithms. Despite the fact that the low-rank problem is of course nonconvex,
in practice this would virtually always find the optimal solution to the original SDPs. Although
this remained an empirical rather than theoretical property for many years, recently Boumal et al.
[32] has shown that there are no spurious local optima in the augmented Lagrangian form for these
problems. Following the result, Boumal et al. [31, Theorem 12 and Proposition 19] proved that
the Riemannian trust-region method converges to a suboptimal solution with Riemannian Hessian
(the PSD constraint in the KKT condition) larger than −γI in O(1/γ3), and Bhojanapalli et al.
[20] proved the connection between γ, the norm of gradients, and fµ − f ∗µ for the unconstrained
penalty form fµ.

The Mixing methods. To summarize, the Mixing methods proposed in the thesis are a family of
first-order feasible optimization algorithms, usually a variant of block coordinate descent methods.
It exploits the problem structures and the low-rank [151, 153] or low-cardinality [147] properties
of the solutions in the factorized space V of the matrix variable X = V TV . The Mixing methods
and variants easily scale to millions of variables and have a complexity linear to the number
of non-zeros in the inputs. Empirically, it converges linearly to global optimal solutions of the
corresponding SDPs, and for certain cases like in chapter 3, it admits almost surely optimal
convergence guarantees without any assumptions.

6

2.2 Learning by implicit differentiation

Learning from KKT equations. Once we have an efficient solver for the SDPs, we might
want to learn the coefficients or cost matrix inside the optimization problem. This is closely
related to the bi-level optimization problem [21, 131]. In this thesis, we focus on integrating the
optimization problem as a layer inside a deep learning system and learn the parameters through
stochastic gradient methods. That is, we only require the optimization layer to be differentiable
to its parameters. Previous work has introduced differentiable modules for quadratic programs
[5, 52], submodular optimization problems [51, 141, 158], equilibrium computation in zero-sum
games [97], and general conic program [4]. Most of them rely on applying the implicit function
theorem on KKT system of the optimization problem, where all the coefficients required to
construct the gradient can be obtained from the corresponding primal-dual interior-point method
[4]. However, the primal-dual interior-point method is not scalable, so learning from the KKT
equations is also not scalable.

Learning from solvers or fixed-point equations. Another way to learn the coefficient is by
differentiating the iterations inside a solver. We can do this by simply unrolling the optimization
steps or by applying implicit function theorem through the fixed-point equation induced by the
solver. The latter doesn’t require storing the intermediate results, thus needs only constant memory
regardless of the depth of optimization steps. A famous example of differentiating through the
solver is Neural ODE [44], which models a residual block with “infinitesimal layers” by solving
for the endpoint of an ODE flow. SATNet [152] (chapter 5) introduces a differentiable MAXSAT
solver that differentiates through the fixed-point equations induced by the coordinate descent
methods. Winston and Kolter [159] generalize the domain of differentiable optimization problem
to variational equalities and implicitly differentiate through fixed-point of the forward-backward
and Peaceman-Rachford splittings. El Ghaoui et al. [54] studies the well-posedness of these
implicit-depth models. The deep equilibrium model (DEQ) [13] formulates the output of an
infinite-depth sequence model (e.g., a Transformer block) as an equilibrium state, and uses
quasi-Newton root solvers to directly solve for this point (and thus scalable). More broadly, the
very notion of equilibrium state has also been explored in the original recurrent backpropagation
literature [3, 125], which studies a constrained version of RNNs that take the same input at every
time step.

Although learning from solvers is already much faster than learning from KKT equations,
it is still less efficient and less stable compared to typical neural networks, which has turned
into a major bottleneck for limiting these models for practical deployment. For instance, Neural
ODE [44] methods so far mostly work on relatively low dimensional tasks (e.g., MNIST) due to
the instability in ODE flow solving, and can be 3− 4× slower than conventional ResNets. Both
Neural ODEs [44] (which rely on ODE solvers) and DEQ [13] (which rely on quasi-Newton root
solvers) report increasing instability and slowdown of the implicit solvers as training progresses.
Moreover, while Bai et al. [13] tries to force the convergence to (potentially unstable) roots, it
cannot guarantee the existence of them and thus adds a huge computational burden to the model
(and is about 2.5− 3× slower than stacked Transformers), despite its O(1) memory cost.

7

2.3 Reasoning with semidefinite programs

2.3.1 Approximation for NP-hard problems
The SDPs has been widely applied to approximate of NP-hard problems since Goemans and

Williamson [67], which introduced the MAXCUT SDP and its corresponding rounding process to
turn the continuous SDP solution back to discrete variables. Under the unique game conjecture
[82], the MAXCUT SDP gives the optimal approximation ratio among all polynomial-time
algorithms. Other examples includes the MAX-k-CUT SDP by Frieze and Jerrum [59] and the
ARV algorithm for the sparsest-cut [9]. Also, SDPs provide a systematic way of approximating
NP-hard problem by the sum-of-square hierarchy [23, 121] and its dual the Lasserre hierarchy
[86, 87, 88]. Other than combinatorial optimization problems, the SDP can also be applied
to approximate the (non-convex) quadratic optimization problem [100], general polynomial
optimization problem [23], and estimation of the mean of high-dimensional heavy-tail distributions
[74].

2.3.2 Inference in Markov Random Field
Variational methods and Continuous relaxations One popular class of approaches in approx-
imate inference consists of framing a relevant optimization problem whose solution can be treated
as a reasonable approximation to the true mode/partition function. This includes techniques
employing the Gibbs variational principle [22] that solve an optimization problem over the set
of all possible distributions on the random variables (generally intractable). Amongst these, the
mean-field approximation [118], which makes the simplifying (and possibly inaccurate) assump-
tion of a product distribution amongst the variables, is extremely popular. Belief propagation
[166] is another popular algorithm used for inference that has connections to variational inference,
but has strong theoretical guarantees only when the underlying MRFs are loop-free. In addition,
several LP-based and SDP-based continuous relaxations [80, 133] to the discrete optimization
problem have been proposed. In particular, Frieze et al. [59] model the problem of estimating
the mode in a multi-class MRF as an instance of the MAX k-CUT problem and propose an SDP
relaxation as well as rounding mechanism for the same. Generally, such SDP-based approaches
are theoretically attractive to analyze [39, 60, 109, 123], but practically infeasible for large MRFs
with many constraints due to their high computational cost.

MCMC and sampling-based methods Another class of approaches involves running MCMC
chains whose stationary distribution is the one specified by (4.1). These methods run a particular
number of MCMC steps and then do some averaging over the samples at the end of the chain.
Popular methods include Gibbs sampling [64] and Metropolis-Hastings [73]. A significant
development in these methods was the introduction of annealing over a range of temperatures by
Neal [108], which computes an unbiased estimate of the true partition function. Thereafter, several
other methods in this line that employ some form of annealing and importance sampling have
emerged [37, 42, 98]. However, it is typically difficult to determine the number of steps that the
MCMC chain requires to converge to the stationary distribution (denoted mixing time). Further,
as mentioned above, both variational methods (due to their propensity to converge to suboptimal

8

solutions) and MCMC methods (due to large mixing times) are known to underperform in the
low-temperature setting.

Other methods Some other popular techniques for inference include variable elimination meth-
ods like bucket elimination [49, 50] that typically use a form of dynamic programming (DP) to
approximately marginalize the variables in the model one-by-one. A significant recent develop-
ment in this line, which is also based on DP, is the spectral approach by Park et al. [120]. By
viewing all possible configurations of the random variables in the function space, Park et al. [120]
build a bottom-up approximate DP tree which yields a fully polynomial-time approximation
scheme for estimating Z, and markedly outperforms other standard techniques. However, as
mentioned above, it is a priori unclear how their method could be extended to the multi-class
Potts model, since their bottom-up dynamic programming chain depends on the variables being
binary-valued. Other approximate algorithms for estimating the partition function with the-
oretical guarantees include those that employ discrete integration by hashing [56] as well as
quadrature-based methods [124]. While our method does not purely belong to either of the two
categories mentioned above (since it involves both an SDP relaxation and importance sampling),
it successfully generalizes to multi-class MRFs.

2.3.3 Learning to reason with a differentiable satisfiability layer

Semidefinite solvers for MAXSAT problems. It is known that SDP relaxations produce strong
approximation guarantees for MAXCUT and MAX-2SAT [67], and are empirically tighter than
standard linear programming relaxations [69]. However, they have not generally been viewed
as practical strategies for solving MAXSAT problems, owing to the high computational cost of
solving an SDP. More recent work, e.g. Wang et al. [151] has developed low-rank SDP solvers for
general MAXSAT problems, and Wang and Kolter [146] showed that the SDP-based solver is able
to outperform state-of-the-art discrete solvers in MAX-2SAT problems using branch-and-bound
and pruning strategies based on SDPs.

Logical reasoning in deep networks. Recently, the deep learning community has given in-
creasing attention to the concept of embedding complex, “non-traditional” layers within deep
networks in order to train systems end-to-end [62]. Most previous systems have focused on
creating differentiable modules from an existing set of known relationships, so that a deep network
can learn the parameters of these relationships [46, 75, 101, 128, 134, 161, 162]. For example,
Palm et al. [116] introduce a network that carries out relational reasoning using hand-coded
information about which variables are allowed to interact, and test this network on 9× 9 Sudoku.
Similarly, Evans and Grefenstette [57] integrate inductive logic programming into neural networks
by constructing differentiable SAT-based representations for specific “rule templates.” While
these networks are seeded with prior information about the relationships between variables, our
approach learns these relationships and their associated parameters end-to-end. While other recent
work has also tried to jointly learn rules and parameters, the problem classes captured by these
architectures have been limited. For instance, Cingillioglu and Russo [45] train a neural network

9

to apply a specific class of logic programs, namely the binary classification problem of whether a
given set of propositions entails a specific conclusion.

2.3.4 Community detection with modularity maximization
Modularity was proposed in [111] to measure the quality of densely connected clusters. For

an undirected graph with a community assignment, its modularity is given by

Q(c) :=
1

2m

∑
ij

[
aij −

didj
2m

]
δ(ci = cj), (2.2)

where aij is the edge weight connecting nodes i and j, di =
∑

j aij is the degree for node i,
m =

∑
ij aij/2 is the sum of edge weights, and ci ∈ [r] is the community assignment for node

i among the r possible communities. The notation δ(ci = cj) is the Kronecker delta, which
is one when ci = cj and zero otherwise. The higher the modularity, the better the community
assignment. However, as shown in [36], optimizing modularity is NP-hard, so researchers
instead focus on different heuristics, including spectral methods [110], simulated annealing [127],
linear programming and semidefinite programming [2, 76]. The most popular heuristic, the
Louvain method [24], initializes each node with a unique community and updates the modularity
Q(c) cyclically by moving ci to the best neighboring communities [81, 110]. When no local
improvement can be made, it aggregates nodes with the same community and repeats itself
until no new communities are created. Experiments show that it is fast and performant [165]
and can be further accelerated by choosing update orders wisely [12, 115]. However, the local
steps can easily get stuck at local optima, and it may even create disconnected communities
[140] containing disconnected components. In follow-up work, the Leiden method [140] fixes
the issue of disconnected communities by adding a refinement step that splits disconnected
communities before aggregation. However, it still depends on greedy local steps and still suffers
from local optima. Beyond modularity maximization, there are many other metrics to optimize
for community detection, including asymptotic surprise [139], motif-aware [93] or higher-order
objectives [168].

Semidefinite programming and clustering. Semidefinite programming (SDP) has been a
powerful tool in approximating NP-complete problems [88, 122]. Specifically, the max-k-cut
SDP [59, 67] deeply relates to community detection, where max-k-cut maximizes the sum of edge
weights between partitions, while community detection maximizes the sum inside partitions. The
max-k-cut SDP is given by the optimization problem

maximize
X

−
∑
ij

aijxij, s.t. X � 0, X ≥ −1/(k − 1), diag(X) = 1. (2.3)

When limiting the rank ofX to be k−1, values of xij become discrete and are either 1 or−1/(k−
1), which works similarly to a Kronecker delta δ(ci = cj) [59]. If k goes to infinity, the constraint
set reduces to {X ≥ 0, X � 0, Xii = 1}, and Swamy [137] provides a 0.75 approximation ratio
to correlation clustering on the relaxation (the bound doesn’t apply to modularity maximization).

10

However, these SDP relaxations are less practical because known semidefinite solvers don’t
scale with the numerous constraints, and the runtime of the rounding procedure converting the
continuous variables to discrete assignments grows with O(n2k). By considering max-2-cut
iteratively at every hierarchical level, Agarwal and Kempe [2] is able to perform well on small
datasets by combining SDPs with the greedy local move, but the method is still unscalable due to
the SDP solver. DasGupta and Desai [48] discussed the theoretical property of SDPs when there
are only 2 clusters. Other works [76, 106, 144] also apply SDPs to solve clustering problems, but
they don’t optimize modularity.

Relation to copositive programming. The constraint DNN = {X | X � 0, X ≥ 0} in our
SDP relaxation is connected to an area called “copositive programming” [38, 53, 102], which
focuses on the sets

CP = {X | vTXv ≥ 0, ∀v ≥ 0} and CP∗ = {V TV | V ≥ 0, V ∈ Rn×r, ∀r ∈ N}. (2.4)

Interestingly, both CP and CP∗ are convex, but the set membership query is NP-hard. The
copositive sets relate to semidefinite cone S = {X | vTXv ≥ 0, ∀v} by the hierarchy

CP ⊇ S ⊇ DNN ⊇ CP∗. (2.5)

For low dimensions n ≤ 4, the set DNN = CP∗, but DNN) CP∗ for n ≥ 5 [70]. Optimization
over the copositive set is hard in the worst case because it contains the class of binary quadratic
programming [38]. Approximation through optimizing the V space has been proposed in [26, 71],
but it is still time-consuming because it requires a large copositive rank r = O(n2) [27].

2.4 Linear programming via efficient piecewise quadratic op-
timization

In linear programming (LP), we consider the following constrained optimization problem

minimize
x≥0

cTx, s.t. Ax = b, (2.6)

and its dual problem

maximize
y

bTy, s.t. ATy ≤ c, (2.7)

where A ∈ Rm×n is the coefficients matrix, b ∈ Rm is the bias, c ∈ Rn is the cost vector, and
x ∈ Rn

+ is the variable. Nowadays, linear programs are usually solved by the interior point method
and augmented Lagrangian methods. The former has been introduced in the previous section and
is well-documented in standard textbooks such as [112, Chapter 14], so we will only discuss the
latter here.

11

Augmented Lagrangian methods for LP. Poljak and Tretjakov [126] first proposed to solve
the dual LP through an augmented Lagrangian method, which iteratively solves the following
subproblem at the t-th iteration.

xt+1 := arg min
x≥0

cTx+ σt‖b− Axt − σ−1
t yT‖2, yt+1 := yt + σt(b− Axt+1), (2.8)

where {σt} is a nonnegative and nondecreasing scaling sequence. The core problem to the
augmented Lagrangian method is always about how to solve a sequence of the inner subproblems
efficiently to a desired precision, since the subproblem may not be easier than the original problem
and now we need to deal with multiple them.

Yen et al. [167] applied a coordinate newton solver to solve the inner problem and proved
global linear convergence to the subproblem optimum for the expected objective value. They also
showed that for a specific σt fixed over the outer iterations, the augmented Lagrangian approach
attains global linear convergence to an optimal solution y of the dual when the inner problem
is solved exactly. Their approach can also be applied to solve the primal instead with little
modifications. Later, Li et al. [95] considered solving the primal LP by augmented Lagrangian,
but they formulated the bound constraints in both the original problem and the subproblem as
an indicator function and wisely utilized the Moreau decomposition to obtain a differentiable,
strongly convex, and unconstrained subproblem whose gradient is semismooth. They then applied
a semismooth Newton method to solve the subproblem and proved that their semismooth Newton
method achieves fast local superlinear convergence while the outer part possesses a local linear
convergence rate to a primal-dual solution pair.

The major target of [167] is large-scale machine learning applications, the same as what we
consider in our work. These problems tend to have very large m and n while the matrix A is
either highly sparse or has a specific structure such that Ax and A>y can be computed efficiently
without explicitly forming A. Their coordinate newton solver is able to utilize such properties of
A to execute each iteration swiftly, and they suggested a way to totally abandon parameter tuning
for augmented Lagrangian while still achieving good practical speed over commercial solvers in
their experiment. On the other hand, [95] mainly considered the situation that A or AA> is not
sparse so that commercial solvers utilizing sparse matrix factorizations become inefficient. Their
semismooth Newton approach is able to utilize the sparsity in the solution as well as the sparsity
in the generalized Hessian in the subproblem. Similar to that of [167], the convergence speed of
the outer loop in [95] is also linear.

12

Chapter 3

The Mixing method for low-rank SDPs

This chapter considers the solution of large-scale, structured semidefinite programming
problems (SDPs). A generic SDP can be written as the optimization problem

minimize
X�0

〈C,X〉, subject to 〈Ai, X〉 = bi, i = 1 . . . p (3.1)

where X ∈ Sn is the optimization variable (a symmetric n× n matrix), and Ai ∈ Rn×n, bi ∈ R,
i = 1, . . . , p are problem data. Semidefinite programs can encode a huge range of practical
problems, including relaxations of many combinatorial optimization tasks [34], approximate
probabilistic inference [78], metric learning [164], matrix completion [41], and many others.
Unfortunately, generic semidefinite programs involve optimizing a matrix-valued variable X ,
where the number of variables grows quadratically so that it quickly becomes unaffordable for
solvers employing exact methods such as primal-dual interior point algorithms.

Fortunately, a property of these problems, which has been recognized for some time now,
is that the solution to such problems is often low-rank; specifically, the problem always admits
an optimal solution with at most rank d

√
2pe [16, 123], and many SDPs are set up to have even

lower rank solutions in practice. This has motivated the development of non-convex low-rank
solvers for these systems: that is, we can attempt to solve the equivalent (but now non-convex)
formulation of the problem

minimize
V ∈Rk×n

〈C, V TV 〉, subject to 〈Ai, V TV 〉 = bi, i = 1 . . . p

with the optimization variable V ∈ Rk×n. Here we are explicitly representing X by the matrix V
of rank k (typically with k � n), X = V TV . Note that because we are representing X in this
way, we no longer need to explicitly enforce semidefiniteness, as it is implied by the change of
variables. In a long series of work dating back several years, it has been shown that, somewhat
surprisingly, this change to a non-convex problem does not cause as many difficulties as might
be thought: in practice, local solutions to the problem tend to recover the optimal solution [39];
assuming sufficient rank k, all second order local optima of the problem are also global optima
[32]; and it even holds that approximated local optima also have good approximation properties
[105] for convex relaxations of some combinatorial problems. Despite these advances, solving for
V remains a practical challenge. Traditional methods for handling non-linear equality constraints,

13

such as augmented Lagrangian methods and Riemannian manifold methods, suffer from slow
convergence, difficulties in selecting step size, or other deficiencies.

In this chapter, we present a low-rank coordinate descent approach to solving SDPs that have
the additional specific structure of constraints (only) on the diagonal entries of the matrix (we
consider the case of unit diagonal constraints, though we can easily extend to arbitrary positive
numbers)

minimize
X�0

〈C,X〉, subject to Xii = 1, i = 1 . . . n. (3.2)

This is clearly a very special case of the full semidefinite program, but it also captures some fun-
damental problems, such as the famous semidefinite relaxation of the maximum cut (MAXCUT)
combinatorial optimization problem; indeed, the MAXCUT relaxation will be one of the primary
applications in this chapter. In this setting, if we consider the above low-rank form of the problem,
we show that we can derive the coordinate descent updates in a very simple closed form, resulting
in an algorithm several times faster than the existing state of the art. We call our approach the
Mixing method, since the updates have a natural interpretation in terms of giving each vi as a
mixture of the remaining vj terms. We will also show, however, that the method can be applied to
other problems as well, such as a (novel, to the best of our knowledge) relaxation of the MAXSAT
problem.

On the theoretical side, we prove several strong properties about the Mixing method. Most
notably, despite the fact that the method is solving a non-convex formulation of the original
MAXCUT SDP, it nonetheless will converge to the true global optimum of the original SDP
problem, provided the rank is sufficient, k >

√
2n (which is of course much smaller than

optimizing over the entire n2 variables of the original SDP). We prove this by first showing
that the method is strictly decreasing, and always converges to a first-order critical point. We
then show that all non-optimal critical points (that is, all points which are critical point in the
non-convex formulation in V , but not optimal in X in the original SDP), are unstable, i.e., they
are saddle points in V and will be unstable under updates of the Mixing method; this means that,
in practice, the Mixing method is extremely unlikely to converge to any non-optimal solution.
However, to formally prove that the method will converge to the global optimum, we consider
a slightly modified “step size” version of the algorithm, for which we can prove formally that
the method indeed converges to the global optimum in all cases (although in practice such a step
size is not needed). Finally, for both the traditional and step size versions of the algorithm, we
show that the Mixing method attains locally linear convergence around the global optimum. The
primary tools we use for these proofs require analyzing the spectrum of the Jacobian of the Mixing
method at non-optimal critical points, showing that it is always unstable around those points;
we combine these with a geometric analysis of critical points due to [32] and a convergence
proof for coordinate gradient descent due to [91] to reach our main result (both results require
slight specialization for our case, so are included for completeness, but the overall thrust of those
supporting points are due to these past papers).

Contributions of this chapter. In summary, the main contributions of this chapter are:
1) We propose a low-rank coordinate descent method, the Mixing method, for the diagonally
constrained SDP problem, which is extremely fast and simple to implement. 2) We prove that
despite its non-convex formulation, the method is guaranteed to converge to global optimum of the

14

original SDP with local linear convergence, provided that we use a small rank k >
√

2n. 3) We
evaluate the proposed method on the MAXCUT SDP relaxation, showing that it is 10-100x times
faster than the other state-of-the-art solvers and scales to millions of variables. 4) We extend the
MAX-2SAT relaxation of Goemans and Williamson [67] to general MAXSAT problems, showing
that the proposed formulation can be solved by the Mixing method in linear time to the number
of literals. Further, experiments show that the proposed method has much better approximation
ratios than other approximation algorithms, and is even comparable to the best partial MAXSAT
solvers in some instances.

3.1 The Mixing method

As mentioned above, the goal of the Mixing method is to solve the semidefinite program
(3.2) with a unit diagonal constraint. As discussed, we can replace the X � 0 constraint with
X = V TV for some V ∈ Rk×n; when we do this, the constraint Xii = 1 translates to the
constraint ‖vi‖ = 1, where vi is the ith column of V . This leads to the equivalent (non-convex)
problem on the spherical manifold

minimize
V ∈Rk×n

〈C, V TV 〉 subject to ‖vi‖ = 1, i = 1 . . . n. (3.3)

Although the problem is non-convex, it is known [16, 123] that when k >
√

2n, the optimal
solution for V ∈ Rk×n can recover the optimal solution for X .

We consider solving the problem (3.3) via a coordinate descent method. The resulting
algorithm is extremely simple to implement but, as we will show, it performs substantially better
than existing approaches for the semidefinite problems of interest. Specifically, the objective
terms that depend on vi are given by vTi (

∑n
j=1 cijvj). However, because ‖vi‖ = 1 we can assume

that cii = 0 without affecting the solution of the optimization problem. Thus, the problem is
equivalent to simply minimizing the inner product vTi gi (where gi =

∑n
j=1 cijvj), subject to the

constraint that ‖vi‖ = 1; this problem has a closed form solution, given by vi = −gi/‖gi‖ when
‖gi‖ 6= 0, and no update otherwise. Put in terms of the original vj variable, the update is simply

vi := normalize

(
−

n∑
j=1

cijvj

)
if the norm is non-zero.

This way, we can initialize vi on the unit sphere and perform cyclic updates over all the
i = 1 . . . n in closed-form. We call this the Mixing method, because for each vi our update mixes
and normalizes the remaining vectors vj according to weight cij . In the case of sparse C (which
is common for any large data problem), the time complexity for updating all variables once is
O(k ·m), where k is the rank of V and m is the number of nonzeros in C. This is significantly
cheaper than the interior point method, which typically admits complexities cubic in n. However,
the details for efficient computation differ depending on the precise nature of the SDP, so we will
describe these in more detail in the subsequent application sections. A complete description of
the generic algorithm is shown in Algorithm 3.1.

15

Algorithm 3.1 The Mixing method for MAXCUT problem
1: Initialize vi randomly on a unit sphere
2: while not yet converged do
3: for i = 1, . . . , n do
4: if ‖

∑n
j=1 cijvj‖ 6= 0 then vi := normalize(−

∑n
j=1 cijvj)

5: end for
6: end while

3.1.1 Convergence properties of the Mixing methods
This section presents the theoretical analysis of the Mixing methods, which constitutes four

main properties:
• We prove that the Mixing methods are strictly decreasing in objective value and always

converge to first-order critical points in the limit.
• Next, we establish the linear convergence for the Mixing methods when the iterate is close

enough to a critical point, regardless of the rank. Together with the above limit property, it
means that the Mixing methods converge to a critical point in a asymptotic linear rate.

• Further, we prove that for a rank1 k >
√

2n, all non-optimal critical points V ∈ Rk×n

are unstable for the Mixing method. That is, when V TV is non-optimal for the convex
problem (3.2), the critical point V will sit on a saddle of the non-convex problem (3.3) and
the Mixing method tends to diverge from the point locally.

• Finally, to rigorously prove the global convergence, we show that a variant of the Mixing
method with a proper step size converges to a global optimum almost surely under random
initialization for almost every cost matrix C, without any assumptions.

In total, our method represents the first low-rank semidefinite programming method which will
provably converge to a global optimum under constraints, and further in a locally linear rate.

Convergence to critical points. Our first property shows that the Mixing method strictly
decreases, and always converges to a first-order critical point for any k. This is a relatively weak
statement, but useful in the context of the further proofs.
Theorem 3.1. The Mixing method on the SDP problem (3.2) is strictly decreasing and con-
verges to first-order critical points, with step size (no assumption) and without step size (with
Assumption 3.2).

For the proof on the mixing method without step size, we introduce an additional assumption
on the non-degeneracy for its normalization.
Assumption 3.2. Assume that for all i = 1 . . . n, ‖

∑n
j=1 cijvj‖ do not degenerate in the procedure.

That is, all norms are always greater than or equal to a constant δ > 0.
In practice, the degeneracy is never observed. The proof of Theorem 3.1 is in Appendix A.1,

which mainly involves setting up the Mixing iteration in a matrix form, and showing that the
difference in objective value between two iterations is given by a particular positive term based
upon this form.

1The tightness of the
√
2n rank (actually, rank satisfying k(k + 1)/2 ≥ n) is proved in [15].

16

Locally linear convergence. Next, we show that the convergence of the Mixing methods
exhibits linear convergence to the global optimum whenever the solution is close enough, regard-
less of the rank and the existence of nearby non-optimal critical points, for both versions with
or without the step size. This also echoes practical experience, where the Mixing method does
exhibit this rate of convergence.
Theorem 3.3. The Mixing methods converge linearly to the global optimum when close enough
to the solution, with step size (no assumption) or without step size (under Assumption 3.2).

The full proof is provided in Appendix A.2. We prove it from the Lipschitz smoothness
(Lipschitz continuous gradient) of the Mixing mappings. The main difficulty here is that the
corresponding linear system in the Gauss-Seidel method, S∗ ∈ Rn×n, is semidefinite so that the
corresponding Jacobian JGS contains eigenvectors of magnitude 1 in the null space of S∗. We
overcome the difficulty by proving the result directly in the function value space like [149] so
that the eigenvectors in null(S∗) can be ignored. This is the first local linear convergence on the
spherical manifold without assumption.

Instability of non-optimal critical points. Next we prove the main result of our approach,
that not only is the function decreasing, but that every non-optimal critical point is unstable; that
is, although the problem (3.3) is non-convex, the algorithm tends to diverge (locally) from any
solution that is not globally optimal. Further, the local divergence from non-optimal critical points
and the global convergence to critical points hint that the Mixing method can only converges to
global optimal solutions.
Theorem 3.4. Pick k >

√
2n. For almost all C, all non-optimal first-order critical points are

unstable fixed points for the Mixing method.
The full proof is provided in Section 3.1.2. The main idea is to show that the maximum

eigenvalue of the dynamics Jacobian, evaluated at a critical point but when V is not optimal,
is guaranteed to have a spectral radius (magnitude of the largest eigenvalue) greater than one.
We do this by showing that the Jacobian of the Mixing method has the same structure as the
Jacobian of a standard Gauss-Seidel update plus an additional projection matrix. By a property
from [32], plus an analysis of the eigenvector of Kronecker products, we can then guarantee that
the eigenvalues of the Mixing method Jacobian contains those of the Gauss-Seidel update. We
then use an argument based upon [91] to show that the Gauss-Seidel Jacobian is similarly unstable
around non-optimal critical points, proving our main theorem.

Globally optimal convergence of Mixing method with a step size. Though the above two
theorems in practice ensure convergence of the Mixing method to a global optimum, because the
method makes discrete updates, there is the theoretical possibility that the method will “jump”
directly to a non-optimal critical point (yet again, this has never been observed in practice). For
completeness, however, in the next theorem we highlight the fact that a version of the Mixing
method that is modified with a step size will always converge to a global optimum.
Theorem 3.5. Consider the Mixing method with a step size θ > 0. That is,

vi := normalize

(
vi − θ

n∑
j=1

cijvj

)
, for i = 1, . . . , n.

17

Take k >
√

2n and θ ∈ (0, 1
maxi ‖ci‖1), where ‖ · ‖1 denotes the 1-norm. Then for almost every C,

the method converges to a global optimum almost surely under random initialization.2

The full proof is provided in Appendix A.4. The main difference in the proof from the step size
free version is that, with a step size, we can prove the diffeomorphism of the Mixing method and
thus are able to use the stable manifold theorem. Because the Jacobian of any feasible method on
the spherical manifold is singular3, we need to construct the inverse function explicitly and show
the smoothness of such function. We can then use an analysis of the Gauss-Seidel method with a
step size to show our result. To the best of our knowledge, this represents the first globally optimal
convergence result for the low-rank method applied to (constrained) semidefinite programming,
without additional assumptions such as the Cauchy decrease [31, Assumption A3], or solving a
sequence of “bounded” log-barrier subproblems exactly [40, Theorem 5.3].
Remark 3.6. Assume there are m nonzeros in C ∈ Rn×n. With Theorem 3.5 and 3.3, for almost
every C, the Mixing method with a step size admits an asymptotic complexity of O(m

√
n log 1

ε
) to

reach the global optimality gap of f − f ∗ ≤ ε almost surely under random initialization. This
concludes the theoretical analysis of the Mixing method.

Now we will prove one of our main result: the instability of non-optimal critical points.

3.1.2 Proof of Theorem 3.4: The instability of non-optimal criticals points
Before starting the proofs, we discuss our notations and reformulate the Mixing methods.

Notations. We use upper-case letters for matrix, and lower-case letters for vector and scalar. For
a matrix V ∈ Rk×n, vi ∈ Rk refers to the i-th column of V , vec(V) and vect(V) ∈ Rnk denote the
vector stacking columns and rows of V , respectively. For a vector y ∈ Rn, Dy = diag(y) ∈ Rn×n

denotes the matrix with y on the diagonal, ymax, ymin, ymin-nz ∈ R the maximum, the minimum,
and the minimum nonzero element of y, respectively. The symbol ⊗ denotes the Kronecker
product, † the Moore-Penrose inverse, σ(·) the vector of eigenvalues, ρ(·) the spectral radius, 1n
the 1-vector of length n, In the identity matrix of size n, tr(·) the trace, 〈A,B〉 = tr(ATB) the
dot product, and ‖V ‖ =

√
tr(V V T) the generalized L2 norm. Indices i, j are reserved for matrix

element, and index r for iterations.

The Mixing methods. We denote C ∈ Rn×n the cost matrix of the problem

minimize
V ∈Rk×n

f(V) ≡ 〈C, V TV 〉 subject to ‖vi‖ = 1, i = 1 . . . n,

and w.l.o.g. assume that cii = 0 in all proofs. Matrices V and V̂ refer to the current and the next
iterate, and V ∗ the global optimum attaining an optimal value f ∗ in the semidefinite program

2Any distribution will suffice if it maps zero volume in the spherical manifold to zero probability. For example,
both spherical Gaussian distribution and normalized uniform distribution work.

3Note that on the spherical manifold, the Jacobian of any feasible method is singular because the Jacobian of
vi/‖vi‖ is singular. Thus, the proof in Lee et al. [91, Section 5.5] does not carry over to the case of the Mixing
method, even with a step size. This past proof required a non-singular Jacobian, and thus different techniques are
required in our setting.

18

(3.2).4 Let
gi =

∑
j<i

cij v̂j +
∑
j>i

cijvj (3.4)

and matrix L be the strict lower triangular part of C. With these notations, the mapping of the
Mixing method M : Rk×n → Rk×n and its variant Mθ with step size θ can be written as5

M(V)T = −(L+Dy)
−1LTV T , where yi = ‖gi‖, i = 1 . . . n, and (3.5)

Mθ(V)T = (θL+Dy)
−1(I − θL)TV T , where yi = ‖vi − θgi‖, i = 1 . . . n. (3.6)

Note that in the analysis we assume yi > 0 without loss of generality, otherwise we can remove
those vi from the analysis because they are not updated. Also, both M and Mθ are valid functions
of V because y can be calculated from V by the original algorithmic definitions in Section 3.1.
This formulation is similar to the classical analysis of the Gauss-Seidel method for linear equation
in Golub and Van Loan [68], where the difference is that y here is not a constant to V and thus the
evolution is not linear.

Proof of technical lemmas.

We start by analyzing the Jacobian of the Mixing method.
Lemma 3.7. Using the notation in (3.5), the Jacobian of the Mixing method is

JV = −(PL⊗ Ik +Dy ⊗ Ik)−1PLT ⊗ Ik.

in which P is the rejection matrix of V . That is,

P = diag(P1, . . . , Pn) ∈ Rnk×nk, where Pi = Ik − v̂iv̂Ti ∈ Rk×k.

Proof. Denote V and V̂ the current and the next iterate. Taking total derivatives on the update of
the Mixing method (A.1), we have

yidv̂i = −Pidgi = −Pi(
∑
j<i

cijdv̂j +
∑
j>i

cijdvj), i = 1 . . . n.

Moving dv̂j to the left-hand side. By the implicit function theorem, we have the Jacobian

JV = −

y1Ik 0 . . . 0
c12P2 y2Ik . . . 0
. 0
c1nPn c2nPn . . . ynIk

−1

0 c12P1 . . . c1nP1

0 0
0 0 . . . c(n−1)nPn−1

0 0 . . . 0

 .

The implicit function theorem holds here because the triangular matrix is always inversible.
Rewriting JV with Kronecker product leads to the result.

4By [123], the optimality in (3.2) is always attainable by V ∈ Rk×n when k >
√
2n.

5The reason to reformulate here is to avoid the “overwrite” of variables in the algorithmic definition. Moving the
inverse term to the left-hand side, the reader can recover the original sequential algorithm.

19

Note that V = V̂ on critical points, which is also a fixed point of the Mixing method. Now we
demonstrate how to analyze the Jacobian. Remember the notation vect(Z) = vec(ZT). This way,
we have the following convenient property by the Kronecker product.
Lemma 3.8. For matrices A,B,Q,R, we have A⊗B vect(QRT) = vect((AQ)(BR)T).

Proof. A⊗B vect(QRT) = A⊗B vec(RQT) = vec(BRQTAT) = vect((AQ)(BR)T).

By the above property, part of the spectrum of the Jacobian can be analyzed.
Lemma 3.9 (Overlapping Eigenvalues). Assume V ∈ Rk×n has rank(V) < k. Let

P = diag(P1, . . . , Pn), where Pi = Ik − vivTi .

For any matrices A,B,D ∈ Rn×n where (A+D) is inversible, any eigenvalue of (A+D)−1B is
also an eigenvalue of

J = [PA⊗ Ik +D ⊗ Ik]−1 ⊗ IkPB ⊗ Ik.

Proof. Because rank(V) < k, by linear dependency there is a nonzero z ∈ Rk such that

zTvi = 0 for i = 1 . . . n =⇒ Piz = z for i = 1 . . . n.

Observe the following matrix identity by separating the subspaces of P and Ink − P .

[PA⊗ Ik +D ⊗ Ik] (A+D)−1 ⊗ IkP
= [P (A+D)⊗ Ik + (Ink − P)D ⊗ Ik] (A+D)−1 ⊗ IkP
= P + (Ink − P)(D(A+D)−1)⊗ IkP.

Inversing the square brackets and moving the (Ink − P) term to the other side, we get

[PA⊗Ik+D⊗Ik]−1P = (A+D)−1⊗IkP−[PA⊗Ik+D⊗Ik]−1(Ink−P)(D(A+D)−1)⊗IkP.
(3.7)

Beacuse there are both P and (Ink−P) in the last term, for any vector q we have from Lemma 3.8

[PA⊗ Ik +D ⊗ Ik]−1(Ink − P)(D(A+D)−1)⊗ IkP vect(qzT)

= [PA⊗ Ik +D ⊗ Ik]−1 vect
(
D(A+D)−1q ((Ik − Pi)Piz)T

)
i=1...n

= 0. (3.8)

Let q ∈ Cn be an eigenvector of (A+D)−1B with eigenvalue λ ∈ C. Then

J vect(qzT) = [PA⊗ Ik +D ⊗ Ik]−1 ⊗ IkP vect((Bq)zT)

= ((A+D)⊗ Ik)−1P vect((Bq)zT)

= vect((A+D)−1Bq zT)

= λ vect(qzT),

where the first equality follows from Lemma 3.8, the second equality follows from Piz = z, ∀i
and (3.7)–(3.8), and the last equality follows from q being an eigenvector. Thus, every eigenvalue
λ of (A+D)−1B is also an eigenvalue of J .

20

By the above lemma, the spectral radius of J = −(PL⊗ Ik +Dy ⊗ Ik)−1PLT ⊗ Ik is lower
bounded by JGS = −(L+Dy)

−1LT , which can be again lower bounded as follows.
Lemma 3.10. For a positive vector y ∈ Rn, consider a matrix under the notation in (3.5)

JGS = −(L+Dy)
−1LT .

Let S = C +Dy. When S 6� 0, the spectral radius ρ(JGS) > 1.6

Proof. The proof is more technical and is given in Appendix A.3.

Further, the assumption in Lemma 3.9 is fulfilled by the following property of critical points.
Lemma 3.11. [32, Lemma 9] Let k(k+1)

2
> n. Then, for almost all C ∈ Rn×n, all first-order

critical points V ∈ Rk×n have rank smaller than k.

Proof. The proof is listed in Appendix A.5 for completeness.

Next, we characterize the optimality of V by proving all non-optimal V admits an S 6� 0.
Lemma 3.12. For a critical solution V , denote S = C + diag(y), where yi = ‖V ci‖, ∀i. Then

S � 0 if and only if V is optimal.

Further, if V is optimal, all yi are positive except when ci = 0.7

Proof. Consider the dual problem of the SDP problem (3.2),

maximize
y∈Rn

−1Tny, subject to C + diag(y) � 0.

If S = C + diag(y) � 0, variable y becomes a feasible solution of the above dual problem.
Further, since V is a critical solution, we have

V S = 0 =⇒ V TV S = 0 =⇒ tr(V TV C) = − tr(V TV diag(y)) = −1Tny,

which means that V TV and y are primal and dual optimal solutions that close the duality gap.
Thus, for critical V , S � 0 implies optimality, and non-optimality implies S 6� 0.

On the other direction, when the solution V is optimal, there will be a corresponding dual
optimal solution y satisfying

V TV (C + diag(y)) = 0 =⇒ vTi V (C + diag(y)) = 0, ∀i =⇒ yi = ‖V ci‖, ∀i.

And S = C + diag(y) � 0 follows from the dual feasibility. By the characterization of SPSD
matrix, all submatrix of S � 0 are SPSD. Thus, yi ≥ 0. If equality yi = 0 holds, by the same

reason all 2× 2 submatrix
(

0 cij
cij yjj

)
� 0, ∀j. This means ci = 0.

6If S � 0, we can prove that the spectral radius ρ(JGS) ≤ 1, in which all eigenvectors with magnitude 1 reside in
the null of S, as an immediate result from Wang and Lin [149, Corollary 3.4]. However, the result is not used here.

7Let y∗i = ‖V ∗ci‖ and S∗ = C + diag(y∗) � 0. An immediate consequence of the lemma is that, for any
feasible U , f(U) − f∗ = tr(UCUT) + 1Tny

∗ = tr(US∗UT). Further, suppose U is also an optimum, then
f(U)− f∗ = tr(US∗UT) = 0 ⇐⇒ US∗ = 0 ⇐⇒ ‖Uci‖ = y∗i = ‖V ∗ci‖, ∀i. That is, y∗ is unique.

21

Proof of Theorem 3.4

Proof. We first derive the Jacobian J of the Mixing method in Lemma 3.7, which gives

J = −(PL⊗ Ik +Dy ⊗ Ik)−1PLT ⊗ Ik,

where P = diag(P1, . . . , Pn) and Pi = I − vivTi because v̂i = vi on the critical point (also a
fixed point). In Lemma 3.9, we prove that when rank(V) < k, the eigenvalues of J contain the
eigenvalues of

JGS = −(L+Dy)
−1LT .

The assumption in Lemma 3.9 is fulfilled by Lemma 3.11, which guarantees that for almost every
C, all the first-order critical point must have rank(V) < k. Further, Lemma 3.10 and 3.12 show
that JGS happens to be the Jacobian of the Gauss-Seidel method on a linear system, which has
a spectral radius ρ(JGS) > 1 on the non-optimal first-order critical point V . Thus, Lemma 3.9
implies ρ(J) ≥ ρ(JGS) > 1, which means that all non-optimal first-order critical points are
unstable for the Mixing method.

3.2 Applications

3.2.1 Maximum cut problem
The SDP MAXCUT relaxation is indeed the motivating example of the Mixing method, so we

consider it first. In this section, we demonstrate how to apply our method to this problem, which
originated from Goemans and Williamson [67].

Problem description. The maximum cut problem is an NP-hard binary optimization problem,
which seeks a partition over a set of vertices i = 1 . . . n, so that the sum of edge weights cij
across the partition is maximized. If we denote the two partitions as ±1, we can formulate the
assignment vi of vertex i as the following binary optimization problem

maximize
vi∈{±1}, ∀i

1

2

∑
ij

cij

(
1− vivj

2

)
.

Goemans and Williamson [67] proposed that we can approximate the above solution by “lifting”
the assignment vi from {±1} to a unit sphere in Rk for sufficiently large k as

maximize
‖vi‖=1, ∀i

1

2

∑
ij

cij

(
1− vTi vj

2

)
.

To recover the binary assignment, we can do a randomized rounding by picking a random vector
r ∈ Rk on the unit sphere, and letting the binary assignment of vertex i be sign(rTvi). Their
analysis shows that the approximation ratio for the NP-hard problem is 0.878, which means that
the expected objective from the randomized rounding scheme is at least 0.878 times the optimal
binary objective.

22

Algorithm Design. Because the problem can be solved by the unit diagonal SDP (3.2), we
can apply the Mixing method directly, as presented in Algorithm 3.1. Further, for a sparse
adjacency matrix C, the coefficient

∑
j cijvj can be constructed in time proportional to the

nonzeros in column i of C. Thus, the time complexity of running a round of updates for all vi is
O (k ·#edges), in which k is at most

√
2n.

3.2.2 Maximum satisfiability problem

Using similar ideas as in the previous section, Goemans and Williamson [67] proposed that
we can use SDP to approximate the maximum 2-satisfiability problem. In this section, we propose
a formulation that generalizes this idea to the general maximum satisfiability problem, and apply
the Mixing method to this problem. The proposed relaxation here is novel, to the best of our
knowledge, and (as we will show) achieves substantially better approximation results than existing
relaxations.

Problem description. The MAXSAT problem is an extension of the well-known satisfiability
problem, where the goal is to find an assignment that maximizes the number of satisfied clauses.
Let vi ∈ {±1} be a binary variable and sij ∈ {−1, 0, 1} be the sign of variable i in clause j. The
goal of MAXSAT can then be written as the optimization problem

maximize
v∈{−1,1}n

m∑
j=1

n∨
i=1

1{sijvi > 0}.

Note that most clauses will contain relatively few variables, so the sj vectors will be sparse. To
avoid the need for an additional bias term, we introduce an auxiliary “truth” variable v0, and define
zj =

∑n
i=1 sijvi − 1 =

∑n
i=0 sijvi = V sj . Then the MAXSAT problem can be approximated as

maximize
v∈{−1,1}n

m∑
j=1

1− ‖V sj‖
2 − (|sj| − 1)2

4|sj|
.

Although we will not derive it formally, the reader can verify that for any configuration v ∈
{−1, 1}n, this term represents an upper bound on the exact MAXSAT solution.8 Similar to the
MAXCUT SDP, we can relax the vis to be vectors in Rk with ‖vi‖ = 1. This leads to the full
MAXSAT semidefinite programming relaxation

minimize
X�0

〈C,X〉, subject to C =
m∑
j=1

wjsjs
T
j , Xii = 1, i = 0 . . . n,

where wj = 1/(4|sj|).

8Actually, the formula matches the approximation of Goemans and Williamson [67] for MAX-2SAT.

23

Algorithm 3.2 The Mixing method for MAXSAT problem
1: Initialize all vi randomly on a unit sphere, i = 1 . . . n.
2: Let zj =

∑n
i=0 sijvi for j = 1, . . . ,m

3: while not yet converged do
4: for i = 1, . . . , n do
5: For each sij 6= 0 do zj := zj − sijvi
6: vi := normalize

(
−
∑m

j=1
sij

4|sj |zj

)
if the norm is non-zero

7: For each sij 6= 0 do zj := zj + sijvi
8: end for
9: end while

Algorithm Design. Because the C matrix here is not sparse (sjsTj has |sj|2 non-sparse entries),
we need a slightly more involved approach than for MAXCUT, but the algorithm is still extremely
simple. Specifically, we maintain zj = V sj for all clauses j. Because in each subproblem only
one variable vi is changed, zj can be maintained in O(k ·mi) time, where mi denotes the number
of clauses that contain variable i. In total, the iteration time complexity is O(k ·m), where m is
the number of literals in the problem. Also, because applying arbitrary rotations R ∈ Rk×k to
V does not change the objective value of our problem, we can avoid updating v0. Algorithm 3.2
shows the complete algorithm. To recover the binary assignment, we apply the following classic
rounding scheme: sample a random vector r from a unit sphere, then assign binary variable i as
true if sign(rTvi) = sign(rTv0) and false otherwise.

3.3 Experimental results
Running time comparison for MAXCUT Figure 3.1 shows the results of running the Mixing
method on several instances of benchmark MAXCUT problems. These range in size from
approximately 1000 nodes and 20000 edges to approximately 2 million nodes and 3 million edges.
For this application, we are largely concerned with evaluating the runtime of our Mixing method
versus other approaches for solving the same semidefinite program. Specifically, we compare to
DSDP [19], a mature interior point solver; SDPLR [39], one of the first approaches to use low-rank
structures; Pure-RBR [156, 157], a coordinate descent method in the X space, which outputs the
best rank-1 update at each step; and Manopt [30], a recent toolkit for optimization on Riemannian
manifolds, with specialized solvers dedicated to the MAXCUT problem.9 To be specific, we use
DSDP 5.8, SDPLR 1.03-beta, and Manopt 3.0 with their default parameters. For Manopt, we
compare to a subroutine ”elliptopefactory”, specially designed for diagonal-constrained SDP. For
Pure-RBR, we implement the specialized algorithm [156, Algorithm 2] for MAXCUT SDP with a
sparse graph in C++, which only requires a single pass of the sparse matrix per iteration. We omit
the log barrier and initialize the RBR with full-rank X . All experiments are run on an Intel Xeon
E5-2670 machine with 256 GB memory, and all solvers are run in the single-core mode to ensure
fair comparisons. As the results show, in all cases the Mixing method is substantially faster than

9We didn’t compare to commercial software like MOSEK, an interior-point solver like DSDP, because it is not
open-source and Boumal [28] already showed that SDPLR is faster than MOSEK on diagonally constrained problems.

24

10 3 10 2 10 1 100 101

10 9

10 5

10 1

103

(n=800 edges=19176)
 g3.rud

10 3 10 2 10 1 100 101 102

10 9

10 5

10 1

103

(n=2000 edges=19990)
 g27.rud

10 2 100 102

10 8

10 5

10 2

101

104

(n=2000 edges=11778)
 g35.rud

10 2 100 102

10 10

10 7

10 4

10 1

102

105
(n=3000 edges=6000)

 g48.rud

10 2 10 1 100 101 102

10 4

10 2

100

102

(n=5242 edges=14496)
ca-GrQc

100 102 104

10 8

10 5

10 2

101

104
(n=12008 edges=118521)

ca-HepPh

100 102 104

10 9

10 6

10 3

100

103

(n=36692 edges=183831)
email-Enron

100 101 102 103 104

100

102

104

106

(n=1971281 edges=2766607)
roadNet.CA

MIXING MANOPT SDPLR DSDP RBR

lo
g

fu
nc

tio
n

di
ffe

re
nc

e

log running time (s)

Figure 3.1: Objective value difference versus training time for the MAXCUT problems (log-log plot, lower
is better). The horizontal lines mark the default stopping precision of the Mixing method, which is 10−4

times the starting relative objective of the Mixing method. Experiments show that our method (the blue
line) is 10-100x faster than other solvers on our default stopping precision. Note that sometimes curves for
SDPLR, DSDP, and RBR are not plotted because they either crashed or did not output any solution after an
hour.

other approaches: for reaching modest accuracy (defined as 10−4 times the difference between the
initial and optimal value), we are typically 10-100x faster than all competing approaches; only the
Manopt algorithm ever surpasses our approach, and this happens only once both methods have
achieved very high accuracy. Crucially, on the largest problems, we remain about 10x (or more)
faster than Manopt over the entire run, which allows the Mixing method to scale to substantially
larger problems.

Effectiveness of the Mixing method on approximating MAXSAT problems. Unlike the
previous experiment (where the focus was solely on optimization performance), in this section we
highlight the fact that with the Mixing method we are able to obtain MAXSAT results with a high
approximation ratio on challenging domains (as the problems are similar, relative optimization
performance is similar to that of the MAXCUT evaluations). Specifically, we evaluate examples
from the 2016 MAXSAT competition [6] and compare our result to the best heuristic complete
and partial solvers. Note that the complete solver produces a verified result, while the partial
solver outputs a non-verified solution. Out of 525 problems solved in the complete track (every
problem solved exactly by some solvers within 30 minutes during the competition), our method
achieves an average approximation ratio of 0.978, and usually finds such solutions within seconds
or less. Further, in some instances we obtain perfect solution faster than the best partial solvers.
Figure 3.2 shows the progress of the approximate quality versus the running time. Beside the
best heuristic solvers in MAXSAT 2016, we also show the approximation ratio over time for the

25

10 2 100 102
0.88

0.90

0.92

0.94

0.96

0.98

1.00
(n=120 m=1200 nnz=2400)s2v120c1200-1.cnf

10 2 100 102

0.90

0.92

0.94

0.96

0.98

1.00
(n=120 m=1800 nnz=3600)s2v120c1800-1.cnf

10 1 101 103

0.850

0.875

0.900

0.925

0.950

0.975

1.000
(n=220 m=1400 nnz=2800)s2v220c1400-1.cnf

10 2 100 102

0.90

0.92

0.94

0.96

0.98

1.00
(n=110 m=900 nnz=2700)s3v110c900-10.cnf

10 2 100 1020.90

0.92

0.94

0.96

0.98

1.00
(n=110 m=900 nnz=2700)s3v110c900-1.cnf

10 2 100 102

0.95

0.96

0.97

0.98

0.99

1.00
(n=100 m=900 nnz=3600)HG-4SAT-V100-C900-20.cnf

10 2 100 102

0.95

0.96

0.97

0.98

0.99

1.00
(n=100 m=900 nnz=3600)HG-4SAT-V100-C900-23.cnf

10 2 100 102

0.875

0.900

0.925

0.950

0.975

1.000
(n=140 m=1258 nnz=2516)maxcut-140-630-0.8-50.cnf

mixing LP partial complete

ap
pr

ox
im

at
ed

 ra
tio

log running time (s)

Figure 3.2: Approximated ratio versus (log) running time for the MAXSAT problems (higher is better). The
horizontal line marks the perfect approximation ratio (1.00), and the curves mark the approximation ratio of
different approximation algorithms over time. Experiments indicate that our proposed formulation/method
(blue curves) achieves better approximation ratios in less time compared to LP. Further, it is sometimes
faster than the best partial solvers (purple vertical lines) and complete solvers (black vertical lines) in the
MAXSAT 2016 competition.

well-known linear programming approximation [66] (solved via the Gurobi solver). Note that
each point in the blue and green curves denote the approximation ratio of the output solution at the
time, and the starting points of the curves denote the time that the solver output the first solution.
In all cases the Mixing method gives better and faster solutions than the LP approximations.

The sufficient rank for optimization and randomized rounding We proved that a low-rank
of
√

2n is sufficient for optimizing the SDP [16, 123]. But can we use an even lower rank? Will
the low rank affect the quality of randomized rounding? In Figure 3.3, we ran several MAXSAT
SDP instances with ranks ranging from 1 to double the theoretical rank upper-bound and record
the relative error, which is (f − f ∗)/f ∗ for the objective value and (unsat− opt)/#clauses for the
approximation ratio of the randomized rounding. The experiment shows that a very low rank (≤ 5
in those instances) is enough to achieve nearly optimal performance in both the optimization and
the randomized rounding process. Further, we see that increasing the rank beyond the theoretical
upper bound doesn’t improve the performance. That is, the

√
2n rank is sufficient for both

optimization and randomized rounding, and it is possible to use a lower rank without hurting the
performance.

26

0 10 20 30
0.00

0.01

0.02

0.03

0.04 s2v120c1200-1.cnf

0 10 20 30
0.00

0.01

0.02

0.03

0.04 s2v120c1800-1.cnf

0 20 40
0.00

0.01

0.02

0.03

0.04 s2v220c1400-1.cnf

0 10 20 30
0.00

0.01

0.02

0.03

0.04 s3v110c900-10.cnf

0 10 20 30
0.00

0.01

0.02

0.03

0.04 s3v110c900-1.cnf

objective value approximation

0 10 20 30
0.00

0.01

0.02

0.03

0.04 HG-4SAT-V100-C900-20.cnf

0 10 20 30
0.00

0.01

0.02

0.03

0.04 HG-4SAT-V100-C900-23.cnf

0 10 20 30
0.00

0.01

0.02

0.03

0.04 maxcut-140-630-0.8-50.cnf

re
la

tiv
e

er
ro

r

rank

Figure 3.3: The relative error vs rank in the objective value and approximation (the lower, the better). The
x-axis is the ranks ranging from 1 to 2x the theoretical rank upper-bound (

√
2n). Experiments suggests that

a very low rank (≤ 5) is sufficeint to achieve nearly optimal approximation error in both the optimization
and the randomized rounding process. Further, the error doesn’t change much after the theoretical rank
upper-bound.

3.4 Discussion
In this chapter we have presented the Mixing method, a low-rank coordinate descent ap-

proach for solving diagonally constrained semidefinite programming problems. The algorithm
is extremely simple to implement, and involves no free parameters such as learning rates. In
theoretical aspects, we have proved that the method converges to a first-order critical point and all
non-optimal critical points are unstable under sufficient rank. With a proper step size, the method
converges to the global optimum almost surely under random initialization. This is the first
convergence result to the global optimum on the spherical manifold without assumption. Further,
we have shown that the proposed methods admit local linear convergence in the neighborhood
of the optimum regardless of the rank. In experiments, we have demonstrated the method on
three different application domains: the MAXCUT SDP, a MAXSAT relaxation, and a word
embedding problem (in the appendix). In all cases we show positive results, demonstrating that
the method performs much faster than existing approaches from an optimization standpoint (for
MAXCUT and word embeddings), and that the resulting solutions have high quality from an
application perspective (for MAXSAT). In total, the method substantially raises the bar as to what
applications can be feasibly addressed using semidefinite programming, and also advances the
state of the art in structured low-rank optimization.

27

28

Chapter 4

Inference in Markov Random Field with
fast low-rank SDPs

This chapter is modified from our NeurIPS’2020 paper [153] in collaboration with Chirag
Pabbaraju and J. Zico Kolter.

Undirected graphical models or Markov Random Fields (MRFs) are used in various real-world
applications like computer vision, computational biology, etc. because of their ability to concisely
represent associations amongst variables of interest. A general pairwise MRF over binary random
variables x ∈ {−1, 1}n may be characterized by the following joint distribution

p(x) ∝ exp
(
xTAx+ hTx

)
, (4.1)

where A ∈ Rn×n denotes the “coupling matrix” and encodes symmetric pairwise correlations,
while h ∈ Rn consists of the biases for the variables. In this model, there are three fundamental
problems of interest: (a) estimating the mode of the distribution, otherwise termed as maximum a
posteriori (MAP) inference (b) estimating p(x) for a configuration x or generating samples from
the distribution, and (c) learning the parameters (A, h) given samples from the joint distribution.
Since there are an exponential number of configurations in the support of the MRF, the problem
of finding the true mode of the distribution is in general a hard problem. Similarly, to compute the
probability p(x) of any particular configuration, one has to compute the constant of proportionality
in (4.1) which ensures that the distribution sums up to 1. This constant, denoted as Z, is called
the partition function, where

Z =
∑

x∈{−1,1}n
exp

(
xTAx+ hTx

)
.

Computing Z exactly also involves summing up an exponential number of terms and is #P
hard [63, 77] in general. The problem becomes harder still when we go beyond binary random
variables and consider the case of a general multi-class MRF (also termed as a Potts model),
where each variable can take on values from a finite set. Since problem (b) above requires
computing Z accurately, several approximations have been proposed in the literature. These
methods have typically suffered in the quality of their approximations in the case of problem

29

instances where the entries of A have large magnitude; this is referred to as the low-temperature
setting [61, 120, 132, 138].

Recently, Park et al. [120] proposed a novel spectral algorithm that provably computes
an approximate estimate of the partition function in time polynomial in the dimension n and
spectral properties of A. They show that their algorithm is fast, and significantly outperforms
popular techniques used in approximate inference, particularly in the low-temperature setting.
However, their experimental results suggest that there is still room for improvement in this setting.
Furthermore, it is unclear how their method could be conveniently generalized to the richer domain
of multi-class MRFs.

Another well-studied approach to compute the mode, i.e. the maximizer of the RHS in (4.1),
is to relax the discrete optimization problem to a semidefinite program (SDP) [15, 154] and solve
the SDP instead. Rounding techniques like randomized rounding [67] are then used to round
the SDP solution to the original discrete space. In particular, Wang et al. [154] employ this
approach in the case of a binary RBM and demonstrate impressive results. Frieze et al. [59]
draw parallels between mode estimation in a general k-class Potts model and the MAX k-CUT
problem, and suggest an SDP relaxation for the same. However, their relaxation has a quadratic
number of constraints in the number of variables in the MRF. Therefore, using traditional convex
program solvers employing the primal dual-interior point method [19] to solve the SDP would be
computationally very expensive for large MRFs.

In this work, we propose solving a fundamentally different SDP relaxation for performing
inference in a general k-class Potts model, that can be solved efficiently via a recently proposed
low-rank SDP solver [151], and show that our method performs accurately and efficiently in
practice, scaling successfully to large MRFs. Our SDP relaxation has only a linear number of
constraints in the number of variables in the MRF. This allows us to exploit a low-rank solver
based on coordinate descent, called the “Mixing method” [151], which converges extremely
fast to a global solution of the proposed relaxation. We further propose a simple importance
sampling-based method to estimate the partition function. Once we have solved the SDP, we state
a rounding procedure to obtain samples in the discrete space. Since the rounding is applied to
the optimal solution, the samples returned are closely clustered around the true mode in function
value. Then, to ensure additional exploration in the space of the samples, we obtain a fraction of
samples from the uniform distribution on the discrete hypercube. The combination results in an
accurate estimate of the partition function.

Our experimental results show that our technique excels in both mode and partition function
estimation, when compared to state-of-the-art methods like Spectral Approximate Inference [120],
as well as specialized Markov Chain Monte Carlo (MCMC) techniques like Annealed Importance
Sampling (AIS) [108], especially in the low temperature setting. Not only does our method
outperform these methods in terms of accuracy, but it also runs significantly faster, particularly
compared to AIS. We display these results on synthetic binary MRF settings drawn from Park
et al. [120], as well as synthetic multi-class MRFs. Finally, we demonstrate that, owing to the
efficiency of the fast SDP solver, our method is able to scale to large real-world MRFs used in
image segmentation tasks.

30

4.1 Inference in multi-class MRFs
In this section, we formulate the SDP relaxation which we propose to solve for mode estimation

in a k-class Potts model. First, we state the optimization problem for mode estimation in a binary
MRF:

max
x∈{−1,1}n

xTAx+ hTx. (4.2)

We observe that the above problem can be equivalently stated as below:

max
x∈{−1,1}n

n∑
i=1

n∑
j=1

Aij δ̂(xi, xj) +
n∑
i=1

∑
l∈{−1,1}

ĥ
(l)
i δ̂(xi, l); where δ̂(a, b) =

{
1 if a = b

−1 otherwise.

(4.3)

The equivalence in (4.2) and (4.3) is readily achieved by setting ĥ(l)
i such that hi = ĥ

(1)
i − ĥ

(−1)
i .

However, viewing the optimization problem thus helps us naturally extend the problem to general
k-class MRFs where the random variables xi can take values in a discrete domain {1, . . . , k}
(denoted [k]). For the general case, we can frame a discrete optimization problem as follows:

max
x∈[k]n

n∑
i=1

n∑
j=1

Aij δ̂(xi, xj) +
n∑
i=1

k∑
l=1

ĥ
(l)
i δ̂(xi, l). (4.4)

where we are now provided with bias vectors ĥ(l) for each of the k classes.

Efficient SDP relaxation We now derive an SDP-based relaxation to (4.4) that grows only
linearly in n. To motivate this approach, we note that for the case of (4.4) (without the bias terms),
Frieze et al. [59] first state an equivalent optimization problem defined over a simplex in Rk−1,
and go on to derive the following relaxation for which theoretical guarantees hold:

max
vi∈Rn, ‖vi‖2=1 ∀i∈[n]

n∑
i=1

n∑
j=1

Aijv
T
i vj

subject to vTi vj ≥ −
1

k − 1
∀i 6= j. (4.5)

The above problem (4.5) can be equivalently posed as a convex problem over PSD matrices Y ,
albeit with ∼ n2 entry-wise constraints Yij ≥ −1/k − 1 corresponding to each pairwise constraint
in vi, vj . Thus, for large n, solving (4.5) via traditional convex program solvers would be very
expensive. Note further that, unlike the binary case (where the pairwise constraints hold trivially),
it would also be challenging to solve this problem with low-rank methods, due to the quadratic
number of constraints.

Towards this, we propose an alternate relaxation to (4.4) that reduces the number of constraints
to be linear in n. Observe that the pairwise constraints in (4.5) are controlling the separation
between vi, vj and trying to keep them roughly aligned with the vertices of a simplex. With this

31

insight, we try to incorporate the functionality of these constraints within the criterion by plugging
them in as part of the bias terms. Specifically, let us fix r1, . . . , rk ∈ Rn on the vertices of a
simplex, so that

rTl rl′ =

{
1 if l = l′

− 1
k−1

if l 6= l′.

Then, we can observe that the following holds:

δ̂(xi, xj) =
2

k

(
(k − 1)rTxirxj + 1

)
− 1, (4.6)

so that solving the following discrete optimization problem is identical to solving (4.4):

max
vi∈{r1,...,rk} ∀i∈[n]

n∑
i=1

n∑
j=1

Aijv
T
i vj +

n∑
i=1

k∑
l=1

ĥ
(l)
i v

T
i rl. (4.7)

The motivation here is that we are trying to mimic the δ̂ operator in (4.4) via inner products, but
in such a way that the bias coefficients ĥ(l)

i determine the degree to which vi is aligned with a
particular rl. Thus, intuitively at least, we have incorporated the pairwise constraints in (4.5)
within the criterion. As the next step, we simply relax the domain of optimization in (4.7) from
the discrete set {ri}ki=1 to unit vectors in Rn so as to derive the following relaxation:

max
vi∈Rn, ‖vi‖2=1 ∀i∈[n]

n∑
i=1

n∑
j=1

Aijv
T
i vj +

n∑
i=1

vTi

k∑
l=1

ĥ
(l)
i rl. (4.8)

Now, let H ∈ Rn×k such that Hij = ĥ
(j)
i . Define the block matrix C ∈ R(k+n)×(k+n) such that:

C =

[
0 1

2
·HT

1
2
·H A

]
.

Then, the following convex program is equivalent to (4.8):

max
Y�0

Y · C

subject to Yii = 1 ∀i ∈ [k + n]; Yij = − 1

k − 1
∀i ∈ [k], i < j ≤ k. (4.9)

We defer the proof of the equivalence between (4.8) and (4.9) to Appendix B.1. Note that the
number of constraints in (4.9) is now only n+ k+ k(k−1)

2
= n+ k(k+1)

2
i.e. linear in n as opposed

to the quadratic number of constraints in (4.5). We can then use the results by Barvinok [15]
and Pataki [123], which state that there indeed exists a low-rank solution to (4.9) with rank d at

most
⌈√

2
(
n+ k(k+1)

2

)⌉
. Thus, we can instead work in the space Rd, leading to the following

optimization problem:

max
vi∈Rd, ‖vi‖2=1 ∀i∈[n]

n∑
i=1

n∑
j=1

Aijv
T
i vj +

n∑
i=1

vTi

k∑
l=1

ĥ
(l)
i rl. (4.10)

32

This low-rank relaxation can then directly be solved in its existing non-convex form by using the
method for solving norm-constrained SDPs by Wang et al. [151] called the “mixing method”,
which we refer to as M4 (“Multi-class MRFs via Mixing Method”). M4 derives closed-form
coordinate-descent updates for the maximization in (4.10), and has been shown [146, 152] to
reach accurate solutions in just a few iterations. Pseudocode for solving (4.10) via M4 is given in
the block for Algorithm 6.1.

Once we have a solution v1, . . . , vn to (4.10), we still require a technique to round back these
vectors to configurations in the discrete space [k]n. For this purpose, Frieze et al. [59] propose
a natural extension to the technique of randomized rounding suggested by Goemans et al. [67],
which involves rounding the vis to k randomly drawn unit vectors. We further extend their
approach as described in Algorithm 4.2 for the purposes of rounding our SDP relaxation (4.10).
In the first step in Algorithm 4.2, we sample k unit vectors {ml}kl=1 uniformly on the unit sphere
Sd and perform rounding as in Frieze et al. [59]. However, we need to reconcile this rounding
with the truth vectors on the simplex. Thus, in the second step, we reassign each rounded value to
a truth vector: if vi was mapped to ml in the first step, we now map it to rl′ such that ml is closest
to rl′ . In this way, we can obtain a bunch of rounded configurations, and output as the mode the
one that has the maximum criterion value in (4.4).

Alternate relaxation to (4.7) M4 provably solves the optimization problem in (4.10), but the
rounded solution after applying Algorithm 4.2 lacks any approximation guarantees. This is
because we simply discarded the pairwise constraints which existed in the original formulation
(4.5) of Frieze et al. [59]. In order to remedy this, we further propose an alternate relaxation, so
as to obtain an approximation ratio for the rounded solution.

To ensure that vi, vj satisfy the pairwise constraints in 4.5, we adopt an alternate parameteriza-
tion of the vis in terms of auxiliary variables zi ∈ Rd for d = m · k,m ∈ Z (we want to be able to
segment each zi into k blocks). Let C = k

k−1

(
Id − 1

k
(1k×k ⊗ Im)

)
where 1k×k is filled with 1s,

and let C = STS denote the Cholesky decomposition of C. Further, let zbi ∈ Rm denote the bth

block in zi. Then, we frame the following optimization problem:

max
zi∈Rd ∀i∈[n]

n∑
i=1

n∑
j=1

Aijv
T
i vj +

n∑
i=1

vTi

k∑
l=1

ĥ
(l)
i rl

subject to zi ≥ 0,

∥∥∥∥∥
k∑
b=1

zbi

∥∥∥∥∥
2

2

= 1, vi = Szi ∀i ∈ [n] (4.11)

We defer the detailed derivation for formulating (4.11) and solving it by Algorithm 4.3 (denoted
as M4+) to Appendix B.2. Here, we simply describe the motivation for such a parameterization
of the vis. The approximation guarantees of Frieze et al. [59] hold for any set of vis lying
in the feasible set of (4.5). Concretely, for ‖vi‖2 = 1 and vTi vj ≥ − 1/k − 1, we have that
E[f(Rounding(V))] ≥ α · f(V), where we denote the objective by f and V = {v1, . . . , vn}.
Thus, if we find a set of feasible vis such that f(V) ≥ f ?discrete, where f ?discrete refers to the
solution to (4.7), we have the required guarantee on the expected value of the rounding. In the
above, the parameterization of the vis via the zis and S, together with the positivity constraints
on zi, ensure that vi, vj satisfy the pairwise constraints. In addition, step 10 in Algorithm 4.3

33

Algorithm 4.1 Solving (4.10) via M4

Input: A, {vi}ni=1, {ĥ(l)}kl=1, {rl}kl=1

1: procedure M4:
2: Initialize num iters
3: for iter = 1, 2 . . . , num iters do
4: for i = 1, 2 . . . , n do
5: gi ← 2

∑
j 6=iAijvj +

∑k
l=1 ĥ

(l)
i rl

6: vi ← gi
‖gi‖2

7: end for
8: end for
9: return v1, . . . , vn

10: end procedure

Algorithm 4.2 Rounding in the multi-class
case

Input: {vi}ni=1, {rl}kl=1

1: procedure ROUNDING:
2: Sample {ml}kl=1 ∼ Unif(Sd)
3: for i = 1, 2 . . . , n do
4: xi ← arg maxl∈[k] v

T
i ml

5: end for
6: for i = 1, 2 . . . , n do
7: xi ← arg maxl∈[k] m

T
xi
rl

8: end for
9: return x

10: end procedure

ensures that after each round of updates, ‖zi‖2 = 1 and consequently, ‖vi‖2 = 1 for all i. Thus,
we have that the vis after each round of updates in M4+ lie in the required feasible set. Further,
we empirically observe that at convergence of Algorithm 4.3, f(V) > f ?discrete always (in fact,
the solution is within 5% of the true solution to (4.11)). To summarize, provided that Algorithm
4.3 converges to a set of vis such that f(V) > f ?discrete, we have the approximation guarantees of
Frieze et al. [59] for the rounded solution.

4.2 Partition function estimation
In this section, we deal with the other fundamental problem in inference: estimating the

partition function. Following Section 4.1 above, the joint distribution in a k-class MRF can be
expressed as:

p(x) ∝ exp

(
n∑
i=1

n∑
j=1

Aij δ̂(xi, xj) +
n∑
i=1

k∑
l=1

ĥ
(l)
i δ̂(xi, l)

)
︸ ︷︷ ︸

f(x)

. (4.12)

As stated previously, the central aspect in computing the probability of a configuration x in this
model is being able to calculate the partition function Z. The expression for the partition function
in (4.12) is:

Z =
∑
x∈[k]n

exp

(
n∑
i=1

n∑
j=1

Aij δ̂(xi, xj) +
n∑
i=1

k∑
l=1

ĥ
(l)
i δ̂(xi, l)

)
. (4.13)

We begin with the intuition that the solution to (4.4) can be useful in computing the partition
function. This intuition indeed holds if the terms in the summation are dominated by a few terms
with large magnitude, which happens to be the case when A has entries with large magnitude (low
temperature setting). The hope then is that the rounding procedure described above more often
than not rounds to configurations that have large f values (ideally close to the mode). In that case,

34

Algorithm 4.3 Solving (4.11) via M4+

Input: A, {zi}ni=1, {ĥ(l), rl}kl=1, C = STS

1: procedure M4+:
2: Initialize num iters
3: for iter = 1, 2 . . . , num iters do
4: for i = 1, 2 . . . , n do

5: g ← 2
n∑
j 6=i

AijCzj + ST
k∑
l=1

ĥ
(l)
i rl

6: for j = 1, 2 . . . ,m do
7: Pick any b(j) ∈ arg maxb g

b
j

8: gbj ←

{
(gbj)+ if b = b(j)

0 otherwise
9: end for

10: zi ← g
‖g‖2

11: end for
12: end for
13: return Sz1, . . . , Szn
14: end procedure

Algorithm 4.4 Estimation of Z
Input: k, {vi}ni=1, {rl}kl=1

1: procedure PARTITIONFUNCTION:
2: Initialize R ∈ Z, Xpv = {}, XΩ = []
3: for i = 1, 2 . . . , R do
4: Sample x ∼ pv using Algorithm 4.2
5: If x not in Xpv , add x to Xpv

6: end for
7: q ← 1

kn−|Xpv |
8: for i = 1, 2 . . . , R do
9: Sample x ∼ Unif([k]n \Xpv)

10: Append x to XΩ

11: end for
12: Ẑ ←

∑
x∈Xpv

ef(x) + 1
R

∑
x∈XΩ

ef(x)

q

13: return Ẑ
14: end procedure

a few iterations of rounding would essentially yield all the configurations that make up the entire
probability mass (a phenomenon which we empirically confirm ahead).

With this motivation, we describe a simple algorithm to estimate Z that exploits the solution
to our proposed relaxations. The rounding procedure described in Algorithm 4.2 induces a
distribution on x in the original space. Let us denote this distribution as pv. For the case when
d = 2, Wang et al. [154] propose a geometric technique for exactly calculating pv, and derive an
importance sampling estimate of Z based on the empirical expectation Ê [exp(f(x))/pv(x)]. However,
this approach does not scale to higher dimensions. Further, note that for small values of d, pv does
not have a full support of [k]n. Thus, an importance sampling estimate computed solely on pv
would not be theoretically unbiased. Consequently, we propose using Algorithm 4.4 to estimate Z.
First, we do a round of sampling from pv, and store all the unique x’s seen in Xpv . At this point,
the hope is that Xpv stores all the x’s that constitute a bulk of the probability mass. Thereafter, to
encourage exploration and ensure that our sampling process has a full support of [k]n, we do a
round of importance sampling from the uniform distribution on [k]n \Xpv and combine the result
with the samples stored in Xpv . For the estimate of Z thus obtained, the following guarantee can
be easily shown (refer to Appendix B.3 for proof):
Theorem 4.1. The estimate Ẑ given by Algorithm 4.4 is unbiased i.e. E[Ẑ] = Z.

4.3 Experimental results

In this section, we validate our formulations on a variety of MRF settings, both synthetic and
real-world. Following its usage in Park et al. [120], we first state the notion of “coupling strength”

35

10 4 10 3 10 2 10 1 100

Time elapsed

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

er
ro

r (
f

f
f

)
AIS (3, 1, 500)
M4+ (500)
M4 (500)

(a) Complete graph, k = 5, n = 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Coupling strength

0.00

0.01

0.02

0.03

0.04

0.05

Re
la

tiv
e

er
ro

r (
f

f
f

)

M4+ (500) (~0.003s)
M4 (500) (~0.002s)
DecMAP (~0.036s)
Max-product (~0.007s)

(b) Complete graph k = 5, n = 7

Ranked order0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ilit

y
M

as
s (

1 Z
ex

p(
f)) All mass

Sampled by rounding

(c) Mass sampled k = 5, n = 7

Figure 4.1: (a) Mode estimation - comparison with AIS (x-axis on log-scale) (b) Mode estimation
comparison between M4 and M4+ (c) Randomized rounding samples most of the mass

of a matrix A ∈ Rn×n, which determines the temperature of the problem instance:

CS(A) =
1

n(n− 1)

∑
i 6=j

|Aij|. (4.14)

As in the setup in Park et al. [120], the coupling matrices are generated as follows: for a
coupling strength c, the entries on edges in A are sampled uniformly from [−c′, c′], where c′ is
appropriately scaled so that CS(A) ≈ c. The biases are sampled uniformly from [−1, 1]. We
generate random complete graphs and Erdös-Renyi (ER) graphs. While generating ER graphs,
we sample an edge in A with probability 0.5. We perform experiments on estimating the mode
(Section 4.1) as well as Z (Section 4.2). The algorithms we mainly compare to in our experiments
are AIS [108], Spectral Approximate Inference (Spectral AI) [120] and the method suggested
by Wang et al. [154]. We note that for the binary MRFs considered in the partition function
task, Park et al. [120] demonstrate that they significantly outperform popular algorithms like
belief propagation, mean-field approximation and mini-bucket variable elimination (Figures 3(a),
3(c) in Park et al. [120]). Hence, we simply compare to Spectral AI. For AIS, we have 3 main
parameters: (K,num cycles, num samples). We provide a description of these parameters
along with complete pseudocode of our implementation of AIS in Appendix B.4. All the results
in any synthetic setting are averaged over 100 random problem instances.1

4.3.1 Mode estimation
We compare the quality of the mode estimate over progress of our methods (rounding applied

to M4 and M4+) and AIS. On the x-axis, we plot the time elapsed for either method, and on
the y-axis, we plot the relative error f−f̂

f
. Figure 4.1a shows the comparison for k = 5 and

CS(A) = 2.5. In the legend, the number in parentheses following our methods is the number of
rounding iterations, while those following AIS are (K,num cycles, num samples) respectively.
We observe from the plots that our methods are able to achieve a near optimal mode much quicker
than AIS, underlining the efficacy of our method. Next, we compare the quality of the mode
estimates given by both of our relaxations with the max-product belief propagation and decimation

1Source code for our experiments is available at https://github.com/locuslab/sdp_mrf.

36

https://github.com/locuslab/sdp_mrf

0 1 2 3 4 5
Coupling strength

0

2

4

6

8

10

12

14

16

|lo
gZ

lo
gZ

|
Spectral AI [~0.3s]
Wang et al. d=2 (500) [~0.2s]
M4 (500) [~0.2s]

(a) Complete graph k = 2, n = 20

0 1 2 3 4 5
Coupling strength

0.0

0.5

1.0

1.5

2.0

2.5

|lo
gZ

lo
gZ

|

AIS (25, 1, 500) [~2.1s]
AIS (25, 5, 500) [~9.8s]
AIS (50, 1, 500) [~4.0s]
AIS (50, 5, 500) [~17.4s]
M4 (500) [~0.2s]

(b) Complete graph k = 2, n = 20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Coupling strength

0

1

2

3

4

5

6

7

|lo
gZ

lo
gZ

|

AIS (3, 1, 500) (~3.6s)
AIS (3, 5, 500) (~17.3s)
AIS (5, 1, 500) (~7.3s)
AIS (5, 5, 500) (~34.7s)
M4 (5000) (~0.9s)

(c) Complete graph k = 3, n = 10

0 1 2 3 4 5
Coupling strength

0

5

10

15

20

|lo
gZ

lo
gZ

|

Spectral AI [~0.3s]
Wang et al. d=2 (500) [~0.2s]
M4 (500) [~0.2s]

(d) ER graph k = 2, n = 20

0 1 2 3 4 5
Coupling strength

0

1

2

3

4

5

|lo
gZ

lo
gZ

|

AIS (25, 1, 500) [~2.0s]
AIS (25, 5, 500) [~9.5s]
AIS (50, 1, 500) [~4.0s]
AIS (50, 5, 500) [~17.4s]
M4 (500) [~0.2s]

(e) ER graph k = 2, n = 20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Coupling strength

0

1

2

3

4

|lo
gZ

lo
gZ

|

AIS (3, 1, 500) (~3.8s)
AIS (3, 5, 500) (~18.5s)
AIS (5, 1, 500) (~7.6s)
AIS (5, 5, 500) (~36.8s)
M4 (5000) (~0.9s)

(f) Complete graph k = 4, n = 8

Figure 4.2: Estimation of Z

(DecMAP) algorithms provided in libDAI [107]. Across a range of coupling strengths, we plot
the relative error of the mode estimates given by each method, for k = 5. We can observe (Figure
4.1b) that both our relaxations provide mode estimates that have very small relative error (∼ 0.018
at worst), whilst also being faster. Additional plots comparing our methods as well as timing
experiments are provided in Appendix B.5.

4.3.2 Partition function estimation

We now evaluate the accuracy of the partition function estimate given by our Algorithm 4.4
applied on the M4 solution. First, we empirically verify our intuition about randomized rounding
returning configurations that account for most of the probability mass in (4.12). For a 5-class
MRF with CS(A) = 2.5, we bucket the attainable f values over different configurations of x, and
compute the probability mass in each bucket. The buckets are then arranged in an increasing order
of the probability mass, and the bars in Figure 4.1c show the mass in this order. Then, we obtain
1000 samples via randomized rounding, and fill in with blue the probability mass corresponding
to the observed samples. We can observe that with just 1000 iterations of rounding, the obtained
samples constitute most of the probability mass. Next, we consider coupling matrices over a range
of coupling strengths and plot the error | logZ − log Ẑ| against the coupling strength. We note
here that for k > 2, there is no straightforward way in which we could extend the formulation in
Spectral AI [120] to multiple classes; hence we only provide comparisons with AIS in this case. In
the binary case (Figures 4.2a, 4.2d), we can observe that our estimates are more accurate than both
Spectral AI [120] and Wang et al. [154] almost everywhere. Importantly, in the high-coupling
strength setting, where the performance of Spectral AI [120] becomes pretty inaccurate, we are

37

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Coupling strength

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

|lo
gZ

lo
gZ

|
AIS (3, 1, 500) (~4s)
AIS (3, 5, 500) (~19.6s)
AIS (5, 1, 500) (~8s)
AIS (5, 5, 500) (~39.4s)
M4 (5000) (~0.9s)

(a) Complete graph k = 5, n = 7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Coupling strength

0.0

0.5

1.0

1.5

2.0

2.5

|lo
gZ

lo
gZ

|

AIS (5, 5, 500) (~34.7s)
M4+ (5000) (~0.9s)
M4 (5000) (~0.9s)

(b) Complete graph k = 3, n = 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Coupling strength

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

|lo
gZ

lo
gZ

|

AIS (5, 5, 500) (~36.8s)
M4+ (5000) (~0.9s)
M4 (5000) (~0.9s)

(c) Complete graph k = 4, n = 8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Coupling strength

0.0

0.2

0.4

0.6

0.8

1.0

1.2

|lo
gZ

lo
gZ

|

AIS (5, 5, 500) (~36.8s)
M4+ (5000) (~0.9s)
M4 (5000) (~0.9s)

(d) Complete graph k = 5, n = 7

(e) Original image, Annotated image, Segmented image

(f) Pairs of Original and Segmented images

Figure 4.3: (a), (b), (c), (d) Estimation of Z (e) For the tree, we show the original image, annotations and
segmented image (f) Segmentations computed on other images based on similar annotations

still able to maintain high accuracy. We also note that with just 500 rounding iterations, the
running time of our algorithm is faster than Spectral AI [120]. We also provide comprehensive
comparisons with AIS in Figures 4.2b, 4.2e,4.2c, 4.2f,4.3a over a range of parameter settings of
K and num cycles. We can see in the plots that on increasing the number of temperatures (K),
the AIS estimates become more accurate, but suffer a lot with respect to time. Finally, we also
analyze the performance of Algorithm 4.4 applied to the M4+ solution in Figures 4.3b, 4.3c,4.3d.
We observe that the M4+ estimates for Z are slightly worse when compared to M4 for larger k,
but still much more accurate and efficient when compared to AIS.

4.3.3 Image segmentation
In this section, we demonstrate that our method of inference is able to scale up to large

fully connected CRFs used in image segmentation tasks. Here, we consider the setting as in
DenseCRF [85] where the task is to compute the configuration of labels x ∈ [k]n for the pixels in

38

an image that maximizes:

max
x∈[k]n

∑
i<j

µ(xi, xj)K̄(fi, fj) +
∑
i

ψu(xi).

The first term provides pairwise potentials where K̄ is modelled as a Gaussian kernel that measures
similarity between pixel-feature vectors fi, fj and µ is the label compatibility function. The second
term corresponds to unary potentials for individual pixels. As in the SDP relaxation described
above, we relax each pixel to a unit vector in Rd. We model µ via an inner product, and base
the unary potentials φu on rough annotations provided with the images to derive the following
objective:

max
vi∈Rd, ‖vi‖2=1 ∀i∈[n]

∑
i<j

K̄(fi, fj)v
T
i vj + θ

n∑
i=1

k∑
l=1

log pi,l · vTi rl. (4.15)

In the second term above, log pi,l plugs in our prior belief based on annotations for the ith pixel
being assigned the lth label. The coefficient θ helps control the relative weight on pairwise and
unary potentials. We note here that running MCMC-based methods on MRFs with as many nodes
as pixels in standard images is generally infeasible. However, we can solve (4.15) efficiently via
the mixing method. At convergence, using the rounding scheme described in Algorithm 4.2, we
are able to obtain accurate segmentations of images (Figures 4.3e, 4.3f), competitive with the
quality presented in DenseCRF [85]. More details regarding the setting here are described in
Appendix B.7.

4.4 Discussion
In this chapter, we presented a novel relaxation to estimate the mode in a general k-class

Potts model that can be written as a low-rank SDP and solved efficiently by a recently proposed
low-rank solver based on coordinate descent. We further introduced a relaxation that allows for
approximation guarantees. We also proposed a simple and intuitive algorithm based on importance
sampling which guarantees an unbiased estimate of the partition function. We set up experiments
to empirically study the performance of our method as compared to relevant state-of-the-art
methods in approximate inference, and verified that our relaxation provides an accurate estimate
of the mode, while our algorithm for computing the partition function also gives fast and accurate
estimates. We also demonstrated that our method is able to scale up to very large MRFs in an
efficient manner.

The simplicity of our algorithm also lends itself to certain areas for improvement. Specifically,
in the case of MRFs that have many well-separated modes, an accurate estimate of Z should
require sampling around each of the modes. Although we did empirically observe that randomized
rounding samples most of the probability mass, the next steps involve studying other structured
sampling mechanisms that indeed guarantee adequate sampling around each of the modes.

39

40

Chapter 5

Learning to reason with a differentiable
satisfiability layer

This chapter is modified from our ICML’2019 paper [152] in collaboration with Priya L.
Donti, Bryan Wilder, and J. Zico Kolter.

Although modern deep learning has produced groundbreaking improvements in a variety of
domains, state-of-the-art methods still struggle to capture “hard” and “global” constraints arising
from discrete logical relationships. Motivated by this deficiency, there has been a great deal
of recent interest in integrating logical or symbolic reasoning into neural network architectures
[45, 57, 116, 162]. However, with few exceptions, previous work primarily focuses on integrating
preexisting relationships into a larger differentiable system via tunable continuous parameters, not
on discovering the discrete relationships that produce a set of observations in a truly end-to-end
fashion. As an illustrative example, consider the popular logic-based puzzle game Sudoku, in
which a player must fill in a 9× 9 partially-filled grid of numbers to satisfy specific constraints. If
the rules of Sudoku (i.e. the relationships between problem variables) are not given, then it may
be desirable to jointly learn the rules of the game and learn how to solve Sudoku puzzles in an
end-to-end manner.

We consider the problem of learning logical structure specifically as expressed by satisfiability
problems – concretely, problems that are well-modeled as instances of SAT or MAXSAT (the
optimization analogue of SAT). This is a rich class of domains encompassing much of symbolic
AI, which has traditionally been difficult to incorporate into neural network architectures since
neural networks rely on continuous and differentiable parameterizations. Our key contribution
is to develop and derive a differentiable smoothed MAXSAT solver that can be embedded
within more complex deep architectures, and show that this solver enables effective end-to-end
learning of logical relationships from examples (without hard-coding of these relationships). More
specifically, we build upon recent work in fast block coordinate descent methods for solving SDPs
[151] to build a differentiable solver for the smoothed SDP relaxation of MAXSAT. We provide
an efficient mechanism to differentiate through the optimal solution of this SDP by using a similar
block coordinate descent solver as used in the forward pass. Our module is amenable to GPU
acceleration, greatly improving training scalability.

Using this framework, we are able to solve several problems that, despite their simplicity,

41

prove essentially impossible for traditional deep learning methods and existing logical learning
methods to reliably learn without any prior knowledge. In particular, we show that we can
learn the parity function, known to be challenging for deep classifiers [129], with only single bit
supervision. We also show that we can learn to play 9× 9 Sudoku, a problem that is challenging
for modern neural network architectures [116]. We demonstrate that our module quickly recovers
the constraints that describe a feasible Sudoku solution, learning to correctly solve 98.3% of
puzzles at test time without any hand-coded knowledge of the problem structure. Finally, we show
that we can embed this differentiable solver into larger architectures, solving a “visual Sudoku”
problem where the input is an image of a Sudoku puzzle rather than a binary representation. We
show that, in a fully end-to-end setting, our method is able to integrate classical convolutional
networks (for digit recognition) with the differentiable MAXSAT solver (to learn the logical
portion). Taken together, this presents a substantial advance toward a major goal of modern AI:
integrating logical reasoning into deep learning architectures.

SDP relaxation
(weights 𝑺)

𝑣# ∈ ℝ&
for 𝜄 ∈

𝑣(∈ ℝ&
for 𝑜 ∈

𝑧# ∈ 0, 1
for 𝜄 ∈

𝑧(∈ 0, 1
for 𝑜 ∈

Inputs (discrete
or probabilistic)

relax round

Outputs (discrete
or probabilistic)MAXSAT Layer

Relaxed inputs Relaxed outputs

Figure 5.1: The forward pass of our MAXSAT layer. The layer takes as input the discrete or probabilistic
assignments of known MAXSAT variables, and outputs guesses for the assignments of unknown variables
via a MAXSAT SDP relaxation with weights S.

5.1 A differentiable satisfiability solver
The MAXSAT problem is the optimization analogue of the well-known satisfiability (SAT)

problem, in which the goal is to maximize the number of clauses satisfied. We present a differen-
tiable, smoothed approximate MAXSAT solver that can be integrated into modern deep network
architectures. This solver uses a fast coordinate descent approach to solving an SDP relaxation
of MAXSAT. We describe our MAXSAT SDP relaxation as well as the forward pass of our
MAXSAT deep network layer (which employs this relaxation). We then show how to analytically
differentiate through the MAXSAT SDP and efficiently solve the associated backward pass.

5.1.1 Solving an SDP formulation of satisfiability
Consider a MAXSAT instance with n variables and m clauses. Let ṽ ∈ {−1, 1}n denote

binary assignments of the problem variables, where ṽi is the truth value of variable i ∈ {1, . . . , n},
and define s̃i ∈ {−1, 0, 1}m for i ∈ {1, . . . , n}, where s̃ij denotes the sign of ṽi in clause
j ∈ {1, . . . ,m}. We then write the MAXSAT problem as

maximize
ṽ∈{−1,1}n

m∑
j=1

n∨
i=1

1{s̃ij ṽi > 0}. (5.1)

42

As derived in Goemans and Williamson [67], Wang and Kolter [145], to form a semidefinite
relaxation of (5.1), we first relax the discrete variables ṽi into associated continuous variables
vi ∈ Rk, ‖vi‖ = 1 with respect to some “truth direction” v> ∈ Rk, ‖v>‖ = 1. Specifically, we
relate the continuous vi to the discrete ṽi probabilistically via P (ṽi = 1) = cos−1(−vTi v>)/π based
on randomized rounding (Goemans and Williamson [67]; see Section 5.1.2). We additionally
define a coefficient vector s̃> = {−1}m associated with v>. Our SDP relaxation of MAXSAT is
then

minimize
V ∈Rk×(n+1)

〈STS, V TV 〉,

subject to ‖vi‖ = 1, i = >, 1, . . . , n
(5.2)

where V ≡
[
v> v1 . . . vn

]
∈ Rk×(n+1), and S ≡

[
s̃> s̃1 . . . s̃n

]
diag(1/

√
4|s̃j |) ∈ Rm×(n+1).

We note that this problem is a low-rank (but non-convex) formulation of MIN-UNSAT, which
is equivalent to MAXSAT. This formulation can be rewritten as an SDP, and has been shown to
recover the optimal SDP solution given k >

√
2n [16, 123].

Despite its non-convexity, problem (6.8) can then be solved optimally via coordinate de-
scent for all i = >, 1, . . . , n. In particular, the objective terms that depend on vi are given by
vTi
∑n

j=0 s
T
i sjvj , where si is the ith column vector of S. Minimizing this quantity over vi subject

to the constraint that ‖vi‖ = 1 yields the coordinate descent update

vi = −gi/‖gi‖, where gi = V ST si − ‖si‖2vi. (5.3)

These updates provably converge to the globally optimal fixed point of the SDP (6.8) [151]. A
more detailed derivation of this update can be found in Appendix C.1.

5.1.2 SATNet: Satisfiability solving as a layer
Using our MAXSAT SDP relaxation and associated coordinate descent updates, we create a

deep network layer for satisfiability solving (SATNet). Define I ⊂ {1, . . . , n} to be the indices
of MAXSAT variables with known assignments, and let O ≡ {1, . . . , n} \ I correspond to the
indices of variables with unknown assignments. Our layer admits probabilistic or binary inputs
zι ∈ [0, 1], ι ∈ I, and then outputs the assignments of unknown variables zo ∈ [0, 1], o ∈ O
which are similarly probabilistic or (optionally, at test time) binary. We let ZI ∈ [0, 1]|I| and
ZO ∈ [0, 1]|O| refer to all input and output assignments, respectively.

The outputs ZO are generated from inputs ZI via the SDP (6.8), and the weights of our layer
correspond to the SDP’s low-rank coefficient matrix S. This forward pass procedure is pictured in
Figure 5.1. We describe the steps of layer initialization and the forward pass in Algorithm 5.1,
and in more detail below.

Layer initialization

When initializing SATNet, the user must specify a maximum number of clauses m that this
layer can represent. It is often desirable to set m to be low; in particular, low-rank structure can
prevent overfitting and thus improve generalization.

Given this low-rank structure, a user may wish to somewhat increase the layer’s representa-
tional ability via auxiliary variables. The high-level intuition here follows from the conjunctive

43

Algorithm 5.1 SATNet Layer
1: procedure INIT()
2: // rank, num aux vars, initial weights, rand vectors
3: init m,naux, S
4: init random unit vectors v>, vrand

i ∀i ∈ {1, . . . , n}
5: // smallest k for which (6.8) recovers SDP solution
6: set k =

√
2n+ 1

7: end procedure
8:
9: procedure FORWARD(ZI)

10: compute VI from ZI via (5.5)
11: compute VO from VI via coord. descent (Alg 5.2)
12: compute ZO from VO via (5.7)
13: return ZO
14: end procedure
15:
16: procedure BACKWARD(∂ /̀∂ZO)
17: compute ∂ /̀∂VO via (5.8)
18: compute U from ∂ /̀∂VO via coord. descent (Alg 5.3)
19: compute ∂ /̀∂ZI, ∂ /̀∂S from U via (5.12), (5.11)
20: return ∂ /̀∂ZI
21: end procedure

normal form (CNF) representation of boolean satisfaction problems; adding additional variables
to a problem can dramatically reduce the number of CNF clauses needed to describe that problem,
as these variables play a role akin to register memory that is useful for inference.

Finally, we set k =
√

2n+ 1, where here n captures the number of actual problem variables
in addition to auxiliary variables. This is the minimum value of k required for our MAXSAT
relaxation (6.8) to recover the optimal solution of its associated SDP [16, 123].

Step 1: Relaxing layer inputs

Our layer first relaxes its inputs ZI into continuous vectors for use in the SDP formulation (6.8).
That is, we relax each layer input zι, ι ∈ I to an associated random unit vector vι ∈ Rk so that

vTι v> = − cos(πzι). (5.4)

(This equation is derived from the probabilistic relationship described in Section 5.1.1 between
discrete variables and their continuous relaxations.) Constraint (5.4) can be satisfied by

vι = − cos(πzι)v> + sin(πzι)(Ik − v>vT>)vrand
ι , (5.5)

where vrand
ι is a random unit vector. For simplicity, we use the notation VI ∈ Rk×|I| (i.e. the

I-indexed column subset of V) to collectively refer to all relaxed layer inputs derived via Equa-
tion (5.5).

44

Algorithm 5.2 Forward pass coordinate descent
1: input VI // inputs for known variables
2: init vo with random vector vrand

o , ∀o ∈ O.
3: compute Ω = V ST

4: while not converged do
5: for o ∈ O do // for all output variables
6: compute go = Ωso − ‖so‖2vo as in (5.3)
7: compute vo = −go/‖go‖ as in (5.3)
8: update Ω = Ω + (vo − vprev

o)sTo
9: end for

10: end while
11: output VO // final guess for output cols of V

Step 2: Generating continuous relaxations of outputs via SDP

Given the continuous input relaxations VI , our layer employs the coordinate descent up-
dates (5.3) to compute values for continuous output relaxations vo, o ∈ O (which we collectively
refer to as VO ∈ Rk×|O|). Notably, coordinate descent updates are only computed for output
variables, i.e. are not computed for variables whose assignments are given as input to the layer.

Our coordinate descent algorithm for the forward pass is detailed in Algorithm 5.2. This
algorithm maintains the term Ω = V ST needed to compute go, and then modifies it via a rank-one
update during each inner iteration. Accordingly, the per-iteration runtime is O(nmk) (and in
practice, only a small number of iterations is required for convergence).

Step 3: Generating discrete or probabilistic outputs

Given the relaxed outputs VO from coordinate descent, our layer converts these outputs to
discrete or probabilistic variable assignments ZO via either thresholding or randomized rounding
(which we describe here).

The main idea of randomized rounding is that for every vo, o ∈ O, we can take a random
hyperplane r from the unit sphere and assign

ṽo =

{
1 if sign(vTo r) = sign(vT>r)

−1 otherwise
, o ∈ O, (5.6)

where ṽo is the boolean output for vo. Intuitively, this scheme sets ṽo to “true” if and only if vo and
the truth vector v> are on the same side of the random hyperplane r. Given the correct weights S,
this randomized rounding procedure assures an optimal expected approximation ratio for certain
NP-hard problems [67].

During training, we do not explicitly perform randomized rounding. We instead note that the
probability that vo and v> are on the same side of any given r is

P (ṽo) = cos−1(−vTo v>)/π, (5.7)

and thus set zo = P (ṽo) to equal this probability.

45

During testing, we can either output probabilistic outputs in the same fashion, or output
discrete assignments via thresholding or randomized rounding. If using randomized rounding,
we round multiple times, and then set zo to be the boolean solution maximizing the MAXSAT
objective in Equation (5.1). Prior work has observed that such repeated rounding improves
approximation ratios in practice, especially for MAXSAT problems [145].

5.1.3 Computing the backward pass
We now derive backpropagation updates through our SATNet layer to enable its integration

into a neural network. That is, given the gradients ∂ /̀∂ZO of the network loss ` with respect to the
layer outputs, we must compute the gradients ∂ /̀∂ZI with respect to layer inputs and ∂ /̀∂S with
respect to layer weights. As it would be inefficient in terms of time and memory to explicitly unroll
the forward-pass computations and store intermediate Jacobians, we instead derive analytical
expressions to compute the desired gradients directly, employing an efficient coordinate descent
algorithm. The procedure for computing these gradients is summarized in Algorithm 5.1 and
derived below.

From probabilistic outputs to their continuous relaxations

Given ∂ /̀∂ZO (with respect to the layer outputs), we first derive an expression for ∂ /̀∂VO
(with respect to the output relaxations) by pushing gradients through the probability assignment
mechanism described in Section 5.1.2. That is, for each o ∈ O,

∂`

∂vo
=

(
∂`

∂zo

)(
∂zo
∂vo

)
=

(
∂`

∂zo

)
1

π sin(πzo)
v>, (5.8)

where we obtain ∂zo/∂vo by differentiating through Equation (5.7) (or, more readily, by implicitly
differentiating through its rearrangement cos(πzo) = −vT>vo).

Backpropagation through the SDP

Given the analytical form for ∂ /̀∂VO (with respect to the output relaxations), we next seek to
derive ∂ /̀∂VI (with respect to the input relaxations) and ∂ /̀∂S (with respect to the layer weights) by
pushing gradients through our SDP solution procedure (Section 5.1.2). We describe the analytical
form for the resultant gradients in Theorem 5.1.
Theorem 5.1. Define Po ≡ Ik−vovTo for each o ∈ O. Then, define U ∈ Rk×n, where the columns
UI = 0 and the columns UO are given by

vect(UO) = (P ((C +D)⊗ Ik)P)† vect

(
∂`

∂VO

)
, (5.9)

where P ≡ diag(Po), where C ≡ STOSO − diag(‖so‖2), and where D ≡ diag(‖go‖). Then, the
gradient of the network loss ` with respect to the relaxed layer inputs is

∂`

∂VI
= −

(∑
o∈O

uos
T
o

)
SI , (5.10)

46

where SI is the I-indexed column subset of S, and the gradient with respect to the layer weights
is

∂`

∂S
= −

(∑
o∈O

uos
T
o

)T
V − (SV T)U. (5.11)

We defer the derivation of Theorem 5.1 to Appendix C.2. Although this derivation is somewhat
involved, the concept at a high level is quite simple: we differentiate the solution of the SDP
problem (Section 5.1.1) with respect to the problem’s parameters and input, which requires
computing the (relatively large) matrix-vector solve given in Equation (5.9).

To solve Equation (5.9), we use a coordinate descent approach that closely mirrors the coordi-
nate descent procedure employed in the forward pass, and which has similar fast convergence
properties. This procedure, described in Algorithm 5.3, enables us to compute the desired gradi-
ents without needing to maintain intermediate Jacobians explicitly. Mirroring the forward pass, we
use rank-one updates to maintain and modify the term Ψ = UST needed to compute dgo, which
again enables our algorithm to run in O(nmk) time. We defer the derivation of Algorithm 5.3 to
Appendix C.4.

From relaxed to original inputs

As a final step, we must use the gradient ∂ /̀∂VI (with respect to the input relaxations) to derive
the gradient ∂ /̀∂ZI (with respect to the actual inputs) by pushing gradients through the input
relaxation procedure described in Section 5.1.2. For each ι ∈ I, we see that

∂`

∂zι
=

∂`

∂z?ι
+

(
∂`

∂vι

)T
∂vι
∂zι

=
∂`

∂z?ι
−
(
∂vι
∂zι

)T (∑
o∈O

uos
T
o

)
sι

(5.12)

where
∂vι
∂zι

= π
(
sin(πzι)v> + cos(πzι)(Ik − v>vT>)vrand

ι

)
, (5.13)

and where ∂ /̀∂z?ι captures any direct dependence of ` on z?ι (as opposed to dependence through vι).
Here, the expression for ∂ /̀∂vι comes from Equation (5.10), and we obtain ∂vι/∂zι by differentiating
Equation (5.5).

5.1.4 An efficient GPU implementation
The coordinate descent updates in Algorithms 5.2 and 5.3 dominate the computational costs

of the forward and backward passes, respectively. We thus present an efficient, parallel GPU
implementation of these algorithms to speed up training and inference. During the inner loop
of coordinate descent, our implementation parallelizes the computation of all go (dgo) terms
by parallelizing the computation of Ω (Ψ), as well as of all rank-one updates of Ω (Ψ). This
underscores the benefit of using a low-rank SDP formulation in our MAXSAT layer, as traditional

47

Algorithm 5.3 Backward pass coordinate descent

1: input {∂ /̀∂vo | o ∈ O} // grads w.r.t. relaxed outputs
2: // Compute UO from Equation (5.9)
3: init UO = 0 and Ψ = (UO)STO = 0
4: while not converged do
5: for o ∈ O do // for all output variables
6: compute dgo = Ψso − ‖so‖2uo − ∂`/∂vo.
7: compute uo = −Podgo/‖go‖.
8: update Ψ = Ψ + (uo − uprev

o)sTo
9: end for

10: end while
11: output UO

full-rank coordinate descent cannot be efficiently parallelized. We find in our preliminary bench-
marks that our GPU CUDA-C implementation is up to 18− 30x faster than the corresponding
OpenMP implementation run on Xeon CPUs. Source code for our implementation is available at
https://github.com/locuslab/SATNet.

5.2 Experimental results

We test our MAXSAT layer approach in three domains that are traditionally difficult for
neural networks: learning the parity function with single-bit supervision, learning 9× 9 Sudoku
solely from examples, and solving a “visual Sudoku” problem that generates the logical Sudoku
solution given an input image of a Sudoku puzzle. We find that in all cases, we are able to perform
substantially better on these tasks than previous deep learning-based approaches.

5.2.1 Learning parity (chained XOR)

This experiment tests SATNet’s ability to differentiate through many successive SAT problems
by learning to compute the parity function. The parity of a bit string is defined as one if there is
an odd number of ones in the sequence and zero otherwise. The task is to map input sequences to
their parity, given a dataset of example sequence/parity pairs. Learning parity functions from such
single-bit supervision is known to pose difficulties for conventional deep learning approaches
[129]. However, parity is simply a logic function – namely, a sequence of XOR operations applied
successively to the input sequence.

Hence, for a sequence of length L, we construct our model to contain a sequence of L − 1
SATNet layers with tied weights (similar to a recurrent network). The first layer receives the first
two binary values as input, and layer d receives value d along with the rounded output of layer
d − 1. If each layer learns to compute the XOR function, the combined system will correctly
compute parity. However, this requires the model to coordinate a long series of SAT problems
without any intermediate supervision.

48

https://github.com/locuslab/SATNet

0 20 40 60 80 100

Epoch

0.0

0.2

0.4

E
rr

or
(L

=
20

)
0 20 40 60 80 100

Epoch

0.0

0.2

0.4

E
rr

or
(L

=
40

)

SATNet LSTM

Figure 5.2: Error rate for the parity task with L = 20 (top) and L = 40 (bottom). Solid lines denote test
values, while dashed lines represent training values.

Model Train Test

ConvNet 72.6% 0.04%
ConvNetMask 91.4% 15.1%
SATNet (ours) 99.8% 98.3%

(a) Original Sudoku.

Model Train Test

ConvNet 0% 0%
ConvNetMask 0.01% 0%
SATNet (ours) 99.7% 98.3%

(b) Permuted Sudoku.

Model Train Test

ConvNet 0.31% 0%
ConvNetMask 89% 0.1%
SATNet (ours) 93.6% 63.2%

(c) Visual Sudoku. (Note: the theo-
retical “best” test accuracy for our
architecture is 74.7%.)

Table 5.1: Results for 9× 9 Sudoku experiments with 9K train/1K test examples. We compare our SATNet
model against a vanilla convolutional neural network (ConvNet) as well as one that receives a binary mask
indicating which bits need to be learned (ConvNetMask).

Figure 5.2 shows that our model accomplishes this task for input sequences of length L = 20
and L = 40. For each sequence length, we generate a dataset of 10K random examples (9K
training and 1K testing). We train our model using cross-entropy loss and the Adam optimizer
[83] with a learning rate of 10−1. We compare to an LSTM sequence classifier, which uses 100
hidden units and a learning rate of 10−3 (we tried varying the architecture and learning rate but did
not observe any improvement). In each case, our model quickly learns the target function, with
error on the held-out set converging to zero within 20 epochs. In contrast, the LSTM is unable to
learn an appropriate representation, with only minor improvement over the course of 100 training
epochs; across both input lengths, it achieves a testing error rate of at best 0.476 (where a random
guess achieves value 0.5).

49

5.2.2 Sudoku (original and permuted)

In this experiment, we test SATNet’s ability to infer and recover constraints simply from bit
supervision (i.e. without any hard-coded specification of how bits are related). We demonstrate
this property via Sudoku. In Sudoku, given a (typically) 9× 9 partially-filled grid of numbers,
a player must fill in the remaining empty grid cells such that each row, each column, and each
of nine 3 × 3 subgrids contains exactly one of each number from 1 through 9. While this
constraint satisfaction problem is computationally easy to solve once the rules of the game are
specified, actually learning the rules of the game, i.e. the hard constraints of the puzzle, has
proved challenging for traditional neural network architectures. In particular, Sudoku problems
are often solved computationally via tree search, and while tree search cannot be easily performed
by neural networks, it is easily expressible using SAT and MAXSAT problems.

We construct a SATNet model for this task that takes as input a logical (bit) representation of
the initial Sudoku board along with a mask representing which bits must be learned (i.e. all bits
in empty Sudoku cells). This input is vectorized, which means that our SATNet model cannot
exploit the locality structure of the input Sudoku grid when learning to solve puzzles. Given this
input, the SATNet layer then outputs a bit representation of the Sudoku board with guesses for
the unknown bits. Our model architecture consists of a single SATNet layer with 300 auxiliary
variables and low rank structure m = 600, and we train it to minimize a digit-wise negative log
likelihood objective (optimized via Adam with a 2× 10−3 learning rate).

We compare our model to a convolutional neural network baseline modeled on that of Park
[119], which interprets the bit inputs as 9 input image channels (one for each square in the board)
and uses a sequence of 10 convolutional layers (each with 512 3×3 filters) to output the solution.
The ConvNet makes explicit use of locality in the input representation since it treats the nine cells
within each square as a single image. We also compare to a version of the ConvNet which receives
a binary mask indicating which bits need to be learned (ConvNetMask). The mask is input as a
set of additional image channels in the same format as the board. We trained both architectures
using mean squared error (MSE) loss (which gave better results than negative log likelihood for
this architecture). The loss was optimized using Adam (learning rate 10−4). We additionally tried
to train an OptNet [5] model for comparison, but this model made little progress even after a few
days of training. (We compare our method to OptNet on a simpler 4× 4 version of the Sudoku
problem in Appendix C.5.)

Our results for the traditional 9 × 9 Sudoku problem (over 9K training examples and 1K
test examples) are shown in Table 5.1. (Convergence plots for this experiment are shown in
Appendix C.6.) Our model is able to learn the constraints of the Sudoku problem, achieving
high accuracy early in the training process (95.0% test accuracy in 22 epochs/37 minutes on a
GTX 1080 Ti GPU), and demonstrating 98.3% board-wise test accuracy after 100 training epochs
(172 minutes). On the other hand, the ConvNet baseline does poorly. It learns to correctly solve
72.6% of puzzles in the training set but fails altogether to generalize: accuracy on the held-out
set reaches at most 0.04%. The ConvNetMask baseline, which receives a binary mask denoting
which entries must be completed, performs only somewhat better, correctly solving 15.1% of
puzzles in the held-out set. We note that our test accuracy is qualitatively similar to the results
obtained in Palm et al. [116], but that our network is able to learn the structure of Sudoku without
explicitly encoding the relationships between variables.

50

Figure 5.3: An example visual Sudoku image input, i.e. an image of a Sudoku board constructed with
MNIST digits. Cells filled with the numbers 1–9 are fixed, and zeros represent unknowns.

To underscore that our architecture truly learns the rules of the game, as opposed to overfitting
to locality or other structure in the inputs, we test our SATNet architecture on permuted Sudoku
boards, i.e. boards for which we apply a fixed permutation of the underlying bit representation
(and adjust the corresponding input masks and labels accordingly). This removes any locality
structure, and the resulting Sudoku boards do not have clear visual analogues that can be solved
by humans. However, the relationships between bits are unchanged (modulo the permutation)
and should therefore be discoverable by architectures that can truly learn the underlying logical
structure. Table 5.1 shows results for this problem in comparison to the convolutional neural
network baselines. Our architecture is again able to learn the rules of the (permuted) game,
demonstrating the same 98.3% board-wise test accuracy as in the original game. In contrast,
the convolutional neural network baselines perform even more poorly than in the original game
(achieving 0% test accuracy even with the binary mask as input), as there is little locality structure
to exploit. Overall, these results demonstrate that SATNet can truly learn the logical relationships
between discrete variables.

5.2.3 Visual Sudoku

In this experiment, we demonstrate that SATNet can be integrated into larger deep network
architectures for end-to-end training. Specifically, we solve the visual Sudoku problem: that is,
given an image representation of a Sudoku board (as opposed to a one-hot encoding or other
logical representation) constructed with MNIST digits, our network must output a logical solution
to the associated Sudoku problem. An example input is shown in Figure 5.3. This problem cannot
traditionally be represented well by neural network architectures, as it requires the ability to
combine multiple neural network layers without hard-coding

the logical structure of the problem into intermediate logical layers.
Our architecture for this problem uses a convolutional neural network connected to a SATNet

layer. Specifically, we apply a convolutional layer for digit classification (which uses the LeNet
architecture [89]) to each cell of the Sudoku input. Each cell-wise probabilistic output of this
convolutional layer is then fed as logical input to the SATNet layer, along with an input mask
(as in Section 5.2.2). This SATNet layer employs the same architecture and training parameters

51

as described in the previous section. The whole model is trained end-to-end to minimize cross-
entropy loss, and is optimized via Adam with learning rates 2× 10−3 for the SATNet layer and
10−5 for the convolutional layer.

We compare our approach against a convolutional neural network which combines two sets of
convolutional layers. First, the visual inputs are passed through the same convolutional layer as
in our SATNet model, which outputs a probabilistic bit representation. Next, this representation
is passed through the convolutional architecture that we compared to for the original Sudoku
problem, which outputs a solution. We use the same training approach as above.

Table 5.1 summarizes our experimental results (over 9K training examples and 1K test
examples); additional plots are shown in Appendix C.6. We contextualize these results against the
theoretical “best” testing accuracy of 74.7%, which accounts for the Sudoku digit classification
accuracy of our specific convolutional architecture; that is, assuming boards with 36.2 out of
81 filled cells on average (as in our test set) and an MNIST model with 99.2% test accuracy
[89], we would expect a perfect Sudoku solver to output the correct solution 74.7% (= 0.99236.2)
of the time. In 100 epochs, our model learns to correctly solve 63.2% of boards at test time,
reaching 85% of this theoretical “best.” Hence, our approach demonstrates strong performance in
solving visual Sudoku boards end-to-end. On the other hand, the baseline convolutional networks
make only minuscule improvements to the training loss over the course of 100 epochs, and fail
altogether to improve out-of-sample performance. Accordingly, our SATNet architecture enables
end-to-end learning of the “rules of the game” directly from pictorial inputs in a way that was not
possible with previous architectures.

5.3 Discussion
In this chapter, we have presented a low-rank differentiable MAXSAT layer that can be

integrated into neural network architectures. This layer employs block coordinate descent methods
to efficiently compute the forward and backward passes, and is amenable to GPU acceleration.
We show that our SATNet architecture can be successfully used to learn logical structures, namely
the parity function and the rules of 9× 9 Sudoku. We also show, via a visual Sudoku task, that our
layer can be integrated into larger deep network architectures for end-to-end training. Our layer
thus shows promise in allowing deep networks to learn logical structure without hard-coding of
the relationships between variables.

More broadly, we believe that this work fills a notable gap in the regime spanning deep
learning and logical reasoning. While many “differentiable logical reasoning” systems have been
proposed, most of them still require fairly hand-specified logical rules and groundings, and thus
are somewhat limited in their ability to operate in a truly end-to-end fashion. Our hope is that
by wrapping a powerful yet generic primitive such as MAXSAT solving within a differentiable
framework, our solver can enable “implicit” logical reasoning to occur where needed within larger
frameworks, even if the precise structure of the domain is unknown and must be learned from data.
In other words, we believe that SATNet provides a step towards integrating symbolic reasoning
and deep learning, a long-standing goal in artificial intelligence.

52

Chapter 6

Community detection using fast
low-cardinality SDPs

This chapter is modified from our NeurIPS’2020 paper [147] in collaboration with Zico.

Community detection, that is, finding clusters of densely connected nodes in a network, is a
fundamental topic in network science. A popular class of methods for community detection, called
modularity maximization [111], tries to maximize the modularity of the cluster assignment, the
quality of partitions defined by the difference between the number of edges inside a community and
the expected number of such edges. However, optimizing modularity is NP-hard [36], so modern
methods focus on heuristics to escape local optima. A very popular heuristic, the Louvain method
[24], greedily updates the community membership node by node to the best possible neighboring
community that maximizes the modularity function’s gain. Then it aggregates the resulting
partition and repeats until no new communities are created. The Louvain method is fast and
effective [165], although it still gets trapped at local optima and might even create disconnected
communities. A follow-up work, the Leiden method [140], resolves disconnectedness by an
additional refinement step, but it still relies on greedy local updates and is prone to local optima.

In this chapter, we propose the Locale (low-cardinality embedding) algorithm, which improves
the performance of community detecion above the current state of the art. It generalizes the
greedy local move procedure of the Louvain and Leiden methods by optimizing a semidefinite
relaxation of modularity, which originates from the extremal case of the max-k-cut semidefinite
approximation [2, 59, 67] when k goes to infinity. We provide a scalable solver for this semidef-
inite relaxation by exploiting the low-cardinality property in the solution space. Traditionally,
semidefinite programming is considered unscalable. Recent advances in Riemannian manifold
optimization [1, 40, 123] provide a chance to scale-up by optimizing directly in a low-rank
solution space, but it is not amenable in many relaxations like the max-k-cut SDP, where there
are nonnegativity constraints on all entries of the semidefinite variable X . However, due to the
nonnegativity constraints, the solution X is sparse and a low-cardinality solution in the factorized
space V suffices. These observations lead to our first contribution, which is a scalable solver for
low-cardinality semidefinite programming subject to nonnegative constraints. Our second contri-
bution is using this solver to create a generalization of existing community detection methods,
which outperforms them in practice because it is less prone to local optima.

53

We demonstrate in the experiments that our proposed low-cardinality algorithm is far less
likely to get stuck at local optima than the greedy local move procedure. On small datasets
that are solvable with a traditional SDP solver, our proposed solver empirically reaches the
globally optimal solution of the semidefinite relaxation given enough cardinality and is orders
of magnitude faster than traditional SDP solvers. Our method uniformly improves over both the
standard Louvain and Leiden methods, which are the state-of-the-art algorithms for community
detection, with 2.2x time cost. Additionally, from the perspective of algorithmic design, the low-
cardinality formulation opens a new avenue for scaling up semidefinite programming when the
solutions tend to be sparse instead of low-rank. Source code for our implementation is available
at https://github.com/locuslab/sdp_clustering.

Notation. We use upper-case letters for matrices and lower-case letters for vectors and scalars.
For a matrix X , we denote the symmetric semidefinite constraint as X � 0, the entry-wise
nonnegative constraint asX ≥ 0. For a vector v, we use card(v) for the number of nonzero entries,
‖v‖ for the 2-norm, and top+

k (v) for the sparsified vector of the same shape containing the largest k
nonnegative coordinates of v. For example, top+

2 ((−1, 3)) = (0, 3), and top+
1 ((−1,−2)) = (0, 0).

For a function Q(V), we use Q(vi) for the same function taking the column vector vi while
pinning all other variables. We use [r] for the set {1, . . . , r}, and e(t) for the basis vector of
coordinate t.

6.1 The Locale algorithm and application to community de-
tection

In this section, we present the Locale (low-cardinality embedding) algorithm for community
detection, which generalizes the greedy local move procedure from the Louvain and Leiden
methods. We describe how to derive the low-cardinality embedding from the local move procedure,
its connection to the semidefinite relaxation, and then how to round the embedding back to the
discrete community assignments. Finally, we show how to incorporate this algorithm into full
community detection methods.

6.1.1 Generalizing the local move procedure by low-cardinality embed-
dings

State-of-the-art community detection algorithms like the Louvain and Leiden methods de-
pend on a core component, the local move procedure, which locally optimizes the community
assignment for a node. It was originally proposed by Kernighan and Lin [81] for graph cuts, and
was later adopted by Newman [110] to maximize the modularity Q(c) defined in (2.2). The local
move procedure in [24, 110] first initializes each node with a unique community, then updates the
community assignment node by node and changes ci to a neighboring community (or an empty
community) that maximizes the increment of Q(ci). That is, the local move procedure is an exact
coordinate ascent method on the discrete community assignment c. Because it operates on the

54

https://github.com/locuslab/sdp_clustering

discrete space, it is prone to local optima. To improve it, we will first introduce a generalized
maximum modularity problem such that each node may belong to more than one community.

A generalized maximum modularity problem. To assign a node to more than one community,
we need to rewrite the Kronecker delta δ(ci = cj) in Q(c) as a dot product between basis vectors.
Let e(t) be the basis vector for community t with one in e(t)t and zeros otherwise. By creating an
assignment vector vi = e(ci) for each node i, we have δ(ci = cj) = vTi vj , and we reparameterize
the modularity function Q(c) defined in (2.2) as

Q(V) :=
1

2m

∑
ij

[
aij −

didj
2m

]
vTi vj. (6.1)

Notice that the original constraint ci ∈ [r], where r is the upper-bounds on number of communities,
becomes vi ∈ {e(t) | t ∈ [r]}. And the set becomes equivalent to the below unit norm and unit
cardinality constraint in the nonnegative orthant.

{e(t) | t ∈ [r]} = {vi | vi ∈ Rr
+, ‖vi‖ = 1, card(vi) ≤ 1}. (6.2)

The constraint can be interpreted as the intersection between the curved probability simplex
(vi ∈ Rr

+, ‖vi‖ = 1) and the cardinality constraint (card(vi) ≤ 1), where the latter constraint
controls how many communities may be assigned to a node. Naturally, we can generalize the
maximum modularity problem by relaxing the cardinality constraint from 1 to k, where k is the
maximun number of overlaying communities a node may belong to. The generalized problem is
given by

maximize
V

Q(V) :=
1

2m

∑
ij

[
aij −

didj
2m

]
vTi vj, s.t. vi ∈ Rr

+, ‖vi‖ = 1, card(vi) ≤ k, ∀i.

(6.3)
The larger the k, the smoother the problem (6.3). When k = r the cardinality constraint becomes
trivial and the feasible space of V become smooth. The original local move procedure is simply
an exact coordinate ascent method when k = 1, and we now generalized it to work on arbitrary k
in a smoother feasible space of V . We call the resulting V the low cadinality embeddings and the
generalized algorithm the Locale algorithm. An illustration is given in Figure 6.1.

The Locale algorithm for low-cardinality embeddings. We first prove that, just like the local
move procedure, there is a closed-form optimal solution for the subproblem Q(vi), where we
optimize on variable vi and pin all the other variables.
Proposition 6.1. The subproblem for variable vi

maximize
vi

Q(vi), s.t. vi ∈ Rr
+, ‖vi‖ = 1, card(vi) ≤ k (6.4)

admits the following optimal solution

vi = g/‖g‖, where g =

{
e(t) with the max (∇Q(vi))t if ∇Q(vi) ≤ 0

top+
k (∇Q(vi)) otherwise

, (6.5)

55

Figure 6.1: An illustration of the low cardinality relaxation, where the discrete cluster assignment for
nodes is relaxed into a continuous and smooth space containing the original discrete set. The parameter k
controls the cardinality, or equivalently the maximum number of overlapping communities a node may
belong to. When k = 1, we recover the original discrete set.

where top+
k (q) is the sparsified vector containing the top-k-largest nonnegative coordinates of q.

For the special case ∇Q(vi) ≤ 0, we choose the t with maximum (vi)t from the previous iteration
if there are multiple t with maximum (∇Q(vi))t.

We list the proof in Appendix E.2. With the close-form solution for every subproblem, we
can now generalize the local move procedure to a low-cardinality move procedure that works on
arbitrary k. We first initialize every vector vi with a unique vector e(i), then perform the exact
block coordinate ascent method using the optimal update (6.5) cycling through all variables vi,
i = 1, . . . , n, till convergence. We could also pick coordinate randomly, and because the updates
are exact, we have the following guarantee.
Theorem 6.2. Applying the low-cardinality update iteratively on random coordinates1, the pro-
jected gradient of the iterates converges to zero at O(1/T) rate, where T is the number of
iterations.

We list the proof in Appendix D.2. When implementing the Locale algorithm, we store the
matrix V in a sparse format since it has a fixed cardinality upper bound, and perform all the
summation using sparse vector operations. We maintain a vector z =

∑
j djvj and compute

∇Q(vi) by (
∑

j aijvj)−
di
2m

(z− divi). This way, updating all vi once takes O
(

card(A) · k log k
)

time, where the log k term comes from the partial sort to implement the top+
k (·) operator. Taking a

small k (we pick k = 8 in practice), the experiments show that it scales to large networks without
too much additional time cost to the greedy local move procedure. Implementation-wise, we
choose the updating order by the smart local move [12, 115]. We initialize r to be the number of
nodes and increase it when∇Q(vi) ≤ 0 and there is no free coordinate. This corresponds to the
assignment to a new “empty community” in the Louvain method [24] (which also increases the r).
At the worst case, the maximum r is n · k, but we have never observed this in the experiments,
where in practice r is always less than 2n. For illustration, we provide an example from Leiden
method [140] in Figure 6.2 showing that, because of the relaxed cardinality constraint, the Locale
algorithm is less likely to get stuck at local optima compared to the greedy local move procedure.

1The proof can also be done with a cyclic order using Lipschitz continuity, but for simplicity we focus on the
randomized version in our proof, which contains largely the same arguments and intuition.

56

1

2

3

45

87

6

gram matrix

(3:0.7 4:0.7)

(6:0.7 7:0.7)

(4:0.8 5:0.5)

(4:0.7 5:0.7)

(4:0.9 5:0.5)

(7:0.8 8:0.5)

(7:0.6 8:0.7)

(7:0.9 8:0.5)

(1:1)

(2:1)

(3:1)

(4:1)

(5:1)

(6:1)

(7:1)

(8:1)

(4:0.8 5:0.6)

(7:0.8 8:0.6)

(4:0.8 5:0.6)

(4:0.8 5:0.6)

(4:0.8 5:0.6)

(7:0.8 8:0.6)

(7:0.8 8:0.6)

(7:0.8 8:0.6)

iter 0 iter 1 iter 2

 local optimum in greedy local moves is escaped

Figure 6.2: An example that the Locale algorithm escapes the local optimum in greedy local move
procedure. Numbers in the parentheses are the low-cardinality embeddings in a sparse index : value
format, where we compress a sparse vector with its top-k nonzero entries. The above bottleneck graph was
used in the Leiden paper [140] to illustration local optima, where a greedy local move procedure following
the order of the nodes gets stuck at the local optima in the red box, splitting node 1 and 2 from the correct
communities because of its unit cardinality constraint. In contrast, the Locale (low-cardinality embeddings)
algorithm escapes the local optima because it has an additional channel for the top-k communities to
cross the bottleneck. The gram matrix of the resulting embeddings shows that it perfectly identifies the
communities.

Connections to correlation clustering SDP and copositive programming. Here we connect
the Locale solution to an SDP relaxation of the generalized modularity maximization problem
(6.3). Let r to be large enough2 and let k = r to drop the cardinality constraint, the resulting
feasible gram matrix of V becomes (the dual of) the copositive constraint

{V TV | V ≥ 0, diag(V TV) = 1}, (6.6)

which can be further relaxed to the semidefinite constraint

{X | X � 0, X ≥ 0, diag(X) = 1}. (6.7)

This semidefinite constraint has been proposed as a relaxation for correlation clustering in [137].
With these relaxations, the complete SDP relaxation for the (generalized) maximum modularity
problem is

maximize
X

∑
ij

[
aij −

didj
2m

]
xij, s.t. X � 0, X ≥ 0, diag(X) = 1. (6.8)

We use the SDP relaxation to certify whether the Locale algorithm reaches the global optima,
given enough cardinality k. That is, if the objective value given by the Locale algorithm meets
the SDP relaxation (solvable via an SDP solver), it certifies the globally optimality of (6.3). In
the experiments for small datasets that is solvable via SDP solvers, we show that a very low
cardinality k = 8 is enough to approximate the optimal solution to a difference of 10−4, and
running the Locale algorithm with k = n recovers the global optimum. In addition, our algorithm
is orders-of-magnitude faster than the state-of-the-art SDP solvers.

2At the worse case r = n(n+ 1)/2− 4 suffices [27, Theorem 4.1].

57

10−3 10−110−6
10−5
10−4
10−3
10−2
10−1
100

zachary =34 deg=4.6

SCS Greedy local moves Locale, k=8 Locale, k=

10−3 10−1 10110−6
10−5
10−4
10−3
10−2
10−1
100 polbook =105 deg=8.4

10−3 10−1 10110−6
10−5
10−4
10−3
10−2
10−1

football =115 deg=10.7
Re
la
tiv
e
er
ro
r

ru i g time (in sec)

Figure 6.3: Comparing the relative error to optimal objective values and the running time in the semidefinite
relaxation of maximum modularity. The optimal values are obtained by running the SCS [114], a splitting
conic solver, for 3k iterations. The greedy local move procedure gets stuck pretty early at a local optimum
(even for the original modularity maximization problem). The Locale algorithm is able to give a good
approximation with cardinality k = 8, and is able to reach the global optima with k = n. Further, it is 100
to 1000 times faster than SCS, which is already orders of magnitude faster the than state-of-the-art interior
point methods.

6.1.2 Rounding by changing the cardinality constraint

After obtaining the embeddings for the generalized modularity maximization algorithm (6.3),
we need to convert the embedding back to unit cardinality to recover the community assignment
for the original maximum modularity problem. This is achieved by running the Locale algorithm
with the k = 1 constraint, starting at the previous solution. Also, since the rounding procedure
reduces all embeddings to unit cardinality after the first sweep, this is equivalent to running the
local move procedure of the Louvain method, but initialized with higher-cardinality embeddings.
Likewise, we could also increase the cardinality constraint to update a unit cardinality solution to
a higher cardinality solution. These upgrade and downgrade steps can be performed iteratively
to increase the quality of the solution slowly, but we find that it is more efficient to only do
the downgrade steps in the overall multi-level algorithm. The rounding process has the same
complexity as the Locale algorithm since it is a special case of the algorithm with k = 1.

6.1.3 The Leiden-Locale algorithm for community detection

Here, we assemble all the aforementioned components and build the Leiden-Locale algorithm
for community detection. We use the Leiden method [140] as a framework and replace the local
move procedure with the Locale algorithm followed by the rounding procedure. While the results
are better with more inner iterations of the Locale algorithm, we found that two inner iterations
followed by the rounding procedure is more efficient in the overall multi-level algorithm over
multiple iterations, while substantially improving over past works. We list the core pseudo-code
below, and the subroutines can be found in the Appendix D.5.

58

Algorithm 6.1 The Leiden-Locale method
1: procedure LEIDEN-LOCALE(Graph G , Partition P)
2: do
3: E ← LocaleEmbeddings(G ,P) . Replace the LocalMove(G ,P) in Leiden
4: P ← LocaleRounding(G ,P ,E)
5: G ,P , done← LeidenRefineAggregate(G,P) . [140, Algorithm A.2, line

5-9]
6: while not done
7: return P
8: end procedure

Because we still use the refinement step from the Leiden algorithm, we have the following
guarantee.
Theorem 6.3. [140, Thm. 5] The communities obtained from the Leiden-Locale algorithm are
connected.

Since we only perform two rounds of updates of the Locale algorithm, it adds relatively
little overhead and complexity to the Leiden algorithm. However, experiments show that the
boost is significant. The Leiden-Locale algorithm gives consistently better results than the other
state-of-the-art methods.

6.2 Experimental results
In this section, we evaluate the Locale algorithm with other state-of-the-art methods. We show

that the Locale algorithm is effective on the semidefinite relaxation of modularity maximization,
improves the complexity from O(n6) to O(card(A)k log k) over SDP solvers, and scales to
millions of variables. Further, we show that on the original maximum modularity problem, the
Locale algorithm significantly improves the greedy local move procedure. When used on the
community detection problem, the combined Leiden-Locale algorithm provides a 30% additional
performance increase over ten iterations and is better than all the state-of-the-art methods on the
large-scale datasets compared in the Leiden paper [140], with 2.2x the time cost to the Leiden
method. The code for the experiment is available at the supplementary material.

Comparison to SDP solvers on the semidefinite relaxation of maximum modularity. We
compare the Locale algorithm to the state-of-the-art SDP solver on the semidefinite relaxation
(6.8) of the maximum modularity problem. We show that it converges to the global optimum
of SDP on the verifiable datasets and is much faster than the SDP method. We use 3 standard
toy networks that are small enough to be solvable via an SDP solver, including zachary [170],
polbook [111], and football [65]. Typically, primal-dual interior-point methods [136] have
cubic complexity in the number of variables, which is n2 in our problem, so the total complexity
is O(n6). Moreover, the canonical SDP solver requires putting the nonnegativity constraint on the
diagonal of the semidefinite variable X , leading a much higher number of variables. For fairness,
we choose to compare with a new splitting conic solver, the SCS [114], which supports splitting
variables into Cartesian products of cones, which is much more efficient than pure SDP solver in

59

Table 6.1: Overview of the empirical networks and the modularity after the greedy local move procedure
(running till convergence) and the Locale algorithm (running for 2 rounds or till convergence).

Greedy The Locale algorithm
Dataset Nodes Degree local moves 2 rounds full update

DBLP 317 080 6.6 0.5898 0.6692 0.8160
Amazon 334 863 5.6 0.6758 0.7430 0.9154
IMDB 374 511 80.2 0.6580 0.6697 0.6852
Youtube 1 134 890 5.3 0.6165 0.6294 0.7115
Live Journal 3 997 962 17.4 0.6658 0.6540 0.7585

this kind of problem. We run the SCS solver for 3k iterations for the reference optimal objective
value. Also, since the solution of SCS might not be feasible, we project the solution back to the
feasible set by iterative projections.

Figure 6.3 shows the plot of difference to the optimal objective value and the running time.
The greedy local move procedure gets stuck at a local optimum early in the plot, but the Locale
algorithm gives a decent approximation at a low cardinality k = 8. At k = n, both the Locale
algorithm and the SCS solver reach the optimum for the SDP relaxation (6.8), but Locale is 193x
faster than SCS (in average) for reaching 10−4 difference to the optimum, and the speedup scales
with the dimensions.

The results demonstrate the effectiveness and the orders of speedup of the proposed low-
cardinality method, opening a new avenue for scaling-up semidefinite programming when the
solution is low-cardinality instead of low-rank.

Comparison with the local move procedure. In this experiment, we show that the Locale
algorithm scales to millions of nodes and significantly improves the local move procedure in
empirical networks. We compare to 5 large-scale networks, including DBLP, Amazon, Youtube
[163], IMDB[155],and Live Journal [11, 92]. These are the networks that were also studied
in the Leiden [140] and Louvain papers [24]. For the greedy local move procedure, we run it
iteratively till convergence (or till the function increment is less than 10−8 after n consecutive
changes to avoid floating-point errors). For the Locale algorithm, we test two different settings:
running only two rounds of updates or running it till convergence, followed by the rounding
procedure.

Table 6.1 shows the comparison results. With only 2 rounds of updates, the Locale algorithm
already improves the greedy local move procedure except for the Live Journal dataset.
When running a full update, the algorithm significantly outperforms the greedy local moves on all
datasets. Moreover, it is even comparable with running a full (multi-level) iteration of the Louvain
and Leiden methods, as we will see in the next experiments. The results suggest that the Locale
algorithm indeed improves the greedy local move procedure. With the algorithm, we create a
generalization of the Leiden method and show that it outperforms the Leiden methods in the next
experiment.

60

Table 6.2: Overview of the empirical networks and the maximum modularity, running for 1 iterations
(running the full multi-level algorithm till no new communities are created) and for 10 iterations (using
results from the previous iteration as initialization). Note that results of Louvain [24] and Leiden [140]
methods are obtained in additional 10 random trials.

Max. modularity
1 iter 10 iters 10 trials [140] 10 iters

Dataset Nodes Degree Louvain Leiden Locale Louvain Leiden Locale

DBLP 317 080 6.6 0.8201 0.8206 0.8273 0.8262 0.8387 0.8397
Amazon 334 863 5.6 0.9261 0.9252 0.9273 0.9301 0.9341 0.9344
IMDB 374 511 80.2 0.6951 0.7046 0.7054 0.7062 0.7069 0.7070
Youtube 1 134 890 5.3 0.7179 0.7254 0.7295 0.7278 0.7328 0.7355
Live Journal 3 997 962 17.4 0.7528 0.7576 0.7531 0.7653 0.7739 0.7747

Comparison with state-of-the-art community detection algorithms. In the experiments, we
show that the Leiden-Locale algorithm (Locale in the table) outperforms the Louvain and Leiden
methods, the state-of-the-art community detection algorithms. For more context, the Louvain and
Leiden methods are the state-of-the-art multi-level algorithm that performs the greedy local move
procedure, refinement (for Leiden only), and aggregation of graph at every level until convergence.
Further, they can be run for multiple iterations using previous results as initialization3, so we
consider the settings of running the algorithm once or for 10 iterations, where one iteration means
running the whole multi-level algorithm until convergence. Specifically, for the 10-iteration
setting, we take the best results over 10 random trials for the Louvain and Leiden methods shown
in the Leiden paper [140]. Since the Locale algorithm is less sensitive to random seeds, we only
need to run it once in the setting. This make it much faster than the Leiden method with 10 trials,
while performing better. Further, we run the inner update twice for the Locale algorithm since we
found that it is more efficient in the overall multi-level algorithm over multiple iterations.

Table 6.2 shows the result of comparisons. In the one iteration setting, the Locale algorithm
outperforms both the Louvain and Leiden methods (except for the Live Journal dataset),
with an 2.2x time cost in average. Using the Louvain method as a baseline, the Locale method
provides a 0.0052 improvement in average and the Leiden method provides a 0.0034 improvement.
These improvement are significant since little changes in modularity can give completely different
community assignments [2]. For the 10 iteration setting, we uniformly outperform both Louvain
and Leiden methods in all datasets and provide a 30% additional improvement over the Leiden
method using the Louvain method as a baseline.

3The performance with low-number of iterations is also important because the Leiden method takes a default of 2
iterations in the leidenalg package and 10 iterations in the paper [140].

61

6.3 Discussion
In this chapter, we have presented the Locale (low-cardinality embeddings) algorithm for

community detection. It generalizes the greedy local move procedure from the Louvain and
Leiden methods by approximately solving a low-cardinality semidefinite relaxation. The proposed
algorithm is scalable (orders of magnitude faster than the state-of-the-art SDP solvers), empirically
reaches the global optimum of the SDP on small datasets that we can verify with an SDP
solver. Furthermore, it improves the local move update of the Louvain and Leiden methods and
outperforms the state-of-the-art community detection algorithms.

The Locale algorithm can also be interpreted as solving a generalized modularity problem
(6.3) that allows assigning at most k communities to each node, and this may be intrinsically a
better fit for practical use because in a social network, a person usually belongs to more than one
community. Further, the Locale algorithm hints a new way to solve heavily constrained SDPs
when the solution is sparse but not low-rank. It scales to millions of variables, which is well
beyond previous approaches. From the algorithmic perspective, it also opens a new avenue for
scaling-up semidefinite programming by the low-cardinality embeddings.

62

Chapter 7

Linear programming via efficient piecewise
quadratic optimization

This chapter is a joint work with Ching-pei Lee.

Linear programming (LP) is the optimization problem with linear objective function and linear
constraints. Despite its simple formulation, the linear constraints in LP can encode a wide range
of tasks, such as `1-norm support vector machines [171], inverse covariance estimation [169],
and MAP inference [84], just to name a few. We have shown how to scale up SDPs with specific
diagonal constraints in the previous chapters, and here we will show how to extend the techniques
to generic constraints in linear programming.

Traditionally, obtaining linear programming solutions has been considered as a solved problem
and efficient interior-point methods that converge in a few iterations are readily available in
commercial solvers like Gurobi and Mosek. Each iteration of these interior-point methods
requires solving a linear system of the size of the problem and constraint dimension, and the
linear system is often highly ill-conditioned because of the complementary constraint, making
iterative solvers converge slowly. A more severe issue of the ill-conditioned linear system is
that instead of iterative methods, it requires a direct solver with numerically more stable matrix
factorizations. These factorizations have cubic computational complexity and usually multiply
the memory consumption when the data is sparse. Thus, they are not suitable for modern machine
learning tasks, of which large-scale problems are the norm.

Recently, efforts have been put in developing scalable solvers for large-scale linear program-
ming using the augmented Lagrangian approach [95, 167]. The augmented Lagrangian method
uses an inner iterative algorithm to solve a series of subproblems with increasing precision.
Although the cost per iteration of the inner solver can be linear to the problem dimension or
the data size, and the subproblems tend to possess much better problem conditions than that of
the linear systems of interior-point methods, the experiments in [95, 167] show that augmented
Lagrangian does not always outperform the highly-optimized commercial solvers that implement
the interior-point methods. The major reason is the requirement of increasing precision for
the subproblem solution, as solving the subproblem to a high accuracy can be rather lengthy.
Moreover, the performance of the augmented Lagrangian approach is highly dependent on the
parameters defining the subproblem and the accuracy of its approximate solution, but there is no

63

universal setting for the parameters that works effectively on all problems, and parameter tuning
itself is a time-consuming task.

In this work, we propose a novel and efficient way to solve large-scale linear programming
problems. We first show that finding a primal-dual solution pair to a linear programming problem
is equivalent to solving any member of a family of simple unconstrained convex piecewise
quadratic programming problems with a known optimal value (the family actually contains a
broader range of problems but we focus on the simplest case for succinctness). We then propose an
efficient algorithm, QULP (Quadratic Unconstrained optimization for Linear Programming), that
adopts coordinate descent and semismooth Newton-CG approaches for such piecewise quadratic
problems. QULP can fully utilize the sparsity and structure in the constraint matrix of the original
linear programming problem to enjoy a low computational cost. In particular, since our algorithm
only needs to evaluate Ax or A>y for vectors x and y, but never explicitly compute AA> or
A>A, the cost per iteration is only proportional to the cost of computing Ax and A>y, making it
much more suitable for large-scale problems than interior-point methods. In comparison to the
augmented Lagrangian, our approach is more succinct because it only has one piecewise quadratic
problem to solve and needs no parameter tuning, while our solver can be at least as efficient as, if
not better than, the subproblem solvers of the augmented Lagrangian approaches.

Notation. We use I to denote the identity matrix. Given any set C, dist(x,C) := ‖x− PC(x)‖
is the distance from x to C. For any vector x, [x]+ is the projection of x onto the nonnegative
orthant.

7.1 The unconstrained piecewise quadratic formulation
The major difficulties for designing an optimizer for LP lies in utilizing the structure of the

constraints. In this section, we show that an LP can be converted to an unconstrained piecewise
quadratic problem, which can be solved using arbitrary first- and second-order methods. Consider
the following form of linear programming w.r.t. variables x ∈ Rn and z ∈ Rp.

minimize
x∈Rn, z∈Rp

c>x+ d>z, subject to Ax+Gz = b, z ≥ 0, (P)

where A ∈ Rm×p, G ∈ Rm×q are the coefficient matrix, b is the bias, c and d are the cost vectors.
Using this notation, the corresponding dual problem of Eq. (P) is

maximize
y∈Rm

b>y, subject to A>y = c, G>y ≤ d. (D)

The major difficulty for solving an LP is in dealing with the constraints. Here, we show that
the difficulty can be avoided by transforming the LP into an equivalent unconstrained piecewise
quadratic program. We first show that a primal-dual solution pair for Eq. (P) and Eq. (D) can be
obtained simultaneously by solving a simple unconstrained convex problem as follows.
Proposition 7.1. Assume Eq. (P) has at least one optimal solution. Then for any point (x∗, z∗, y∗) ∈
Rp+q+m, the following are equivalent.

1. (x∗, z∗) is an optimal solution to Eq. (P) and y∗ is an optimal solution to Eq. (D).

64

QULP (ours) Barrier methods Aug. Lagrangian Cone splitting

Inner iteration Single Multiple Multiple Multiple

Inner solver
Unconstrained
piecewise QP Linear Eqs Simple QP Linear Eqs

Condition number
over iterations Same Worsen Same Same

Convergence rate Superlinear Quadratic Linear[95, 167] Linear [14, 114]

Table 7.1: Comparison of properties between different type of solvers.

2. Given any nonnegative functions r : R1+m+2p+q 7→ R+ that are zero only at the origin,
(x∗, z∗, y∗) is an optimal solution to

minimize
(x,z,y)∈Rp+q+m

r

(
[b>y − c>x− d>z]+,

[
Ax+Gz − b
A>y − c

]
,

[
−z

G>y − d

]
+

)
(7.1)

with objective value 0.

Proof. (condition 1 =⇒ condition 2) Since the constraints of Eq. (P) and Eq. (D) are satisfied at
the optimal solution in the first condition, the last two terms in (7.1) are all zero. The first term
is also zero at the optimal solution following the strong duality of linear programs. Thus, the
objective of (7.1) is zero. From the nonnegativity of the loss function r, the optimal solution for
the first condition is also the optimal solution in the second condition.

(condition 2 =⇒ condition 1) Since all terms in (7.1) are nonnegative, clearly they are all 0
at (x∗, y∗). This shows that (x∗, z∗) is a feasible point for Eq. (P), y∗ is feasible for Eq. (D), and

c>x∗ + d>z∗ ≤ b>y∗. (7.2)

As (x∗, z∗) is a feasible point for Eq. (P) and y∗ is feasible for Eq. (D), weak duality implies that

c>x∗ + d>z∗ ≥ b>y∗. (7.3)

Combining (7.2) and (7.3) then shows that c>x∗ + d>z∗ = b>y∗, meaning that (x∗, z∗) and y∗ are
respectively optimal for Eq. (P) and Eq. (D).

The above proposition suggests a new way to solve the LP. That is, when Eq. (P) has at least
one optimal solution, solving the reformulation equals finding a pair of primal-dual solutions, and
we can estimate the accuracy of the solution by the objective value (zero when optimal). On the
other hand, the optimal objective value will be larger than zero when there’s no optimal solution
for the LP, and we may output the status in the case. Further, if there are specific structures in A,
we can utilize it to select suitable functions r in Eq. (7.1) that allow for efficient computation. In
our subsequent discussion, we assume that there is at least one optimal solution for the LP and
consider the simplest case in which r(·) = ‖ · ‖2

2 so that Eq. (7.1) becomes

minimize
(x,z,y)∈Rp+q+m

f(x, z, y) :=

∥∥∥∥[b>y − c>x− d>z]+,

[
Ax+Gz − b
A>y − c

]
,

[
−z

G>y − d

]
+

∥∥∥∥2

. (7.4)

65

Note that the above problem is an unconstrained piecewise quadratic program, and it admits
Lipschitz gradient, is semismooth and strongly convex up to affine transformations. In fact, we
will show that we can apply a mixture of first- and second-order algorithms to achieve both
global linear convergence and local superlinear convergence on such a problem. We called
it the Quadratic Unconstrained Linear Program (QULP). Compared to other linear program
solvers like the penalty methods and the augmented Lagrangian methods, the QULP is an
equivalent transformation instead of an iterative refinement; that is, it doesn’t have multiple
refining subproblems, and solving the QULP alone is equivalent to solving the LP. Further,
because the QULP is unconstrained, we can apply arbitrary first- and (modified) second-order
algorithm on the reformulation. We list the comparison of the QULP to other methods in Table 7.1.

7.2 The QULP algorithm
Here we propose the QULP, our algorithm for solving Eq. (7.4). We first describe two basic

algorithms as cornerstones for different purposes and then discuss their combination as the final
algorithm. For convenience, we will first simplify Eq. (7.4) as

min
w∈Rn̂

f (w) := ‖Bw − u‖2
2 + ‖ [Cw − v]+ ‖

2, (7.5)

by defining w := (x, z, y) and

B :=

[
A G 0
0 0 A>

]
, u :=

[
b
c

]
, C :=

−c> −d> b>

0 −I 0
0 0 G>

 , v :=

0
0
d

 .
7.2.1 The coordinate descent method with linear convergence

Because Eq. (7.5) is an unconstrained piecewise quadratic program, its subproblem for every
single variable is also piecewise quadratic, which has a closed-form solution by the quick-select
algorithm [150, Algorithm 2]. Naturally, we may apply coordinate descent methods (CD) to
cyclically update every single variable subproblem. That is, at each iteration of CD, we pick a
coordinate i with basis vector ei, and update the variable wi by

wi ← wi + di, di := arg min
di∈R

f(w + eidi). (7.6)

In practice, even though the quick-select algorithm has a linear computational complexity to
the sparsity of the coefficient matrix A, it has a larger constant in the runtime, and a Newton
approximation will usually suffice, leading to our CD algorithm in Algorithm 7.1. To be more
specific, we first compute ∇if(w) and then conduct the Newton-Raphson method to find the root
for

∂f(w − α · ei∇if(w))

∂α

to decide the step size α. Finally, we obtain di = −α∇if(w). For the coordinate selection, we
use random permutation cyclic coordinate descent (RPCD) such that within each epoch (meaning

66

Algorithm 7.1 The coordinate descent method for QULP
1: for each coordinate i in random permuted order do
2: Set wi ← wi − θ∇if(w)/∇2

i f(w) by Armijo line search on θ starting from θ = 1.
3: end for

n̂ iterations), all coordinates are processed exactly once, with the order reshuffled every epoch.
The behavior of RPCD is often observed to be similar to that of stochastic CD (SCD) that picks
the coordinates uniformly randomly with replacement, which has a much better convergence
guarantee for the expected objective than cyclic CD (CCD), while RPCD also shares with CCD
the same guarantee for the stronger deterministic convergence and the ability to identify the active
constraints.

The most expensive part of CD is computing ∇if(w) and conducting line search. For the
gradient computation, we reduce its cost by keeping track of r1 := Bz − u and r2 := Dz − v.
Let B = [B1, . . . , Bn̂] and C = [C1, . . . , Cn̂]. The computation then becomes ∇if(w) =
2B>i r1 + 2C>i [r2]+, and the update of r1 and r2 is conducted by r1 ← Bidi and r2 ← Cidi. We
see that at each step, we just need to access one row or column of A twice, so the operations can
be conducted efficiently. The part of line search only involves utilization of r1, r2, Bi, and Ci
and tends to finish in few Newton-Raphson steps, so it is not more expensive than the gradient
computation.

Regarding the convergence of RPCD, we make the following two observations. First, the
problem is unconstrained, convex, and piecewise quadratic, so it is Lipschitz-continuously differ-
entiable and satisfies the error-bound condition [94], which means that given any initial point w0,
there is κ ≥ 0 such that

‖∇f(w)‖ ≥ κdist(w,Ω), ∀w ∈ {w | f(w) ≤ f(w0)}. (7.7)

Second, even if the Newton-Raphson line search procedure did not produce the exact minimizer,
it would still have given a step size that generates sufficient objective decrease, such that the new
objective is not larger than that of taking the reciprocal of the coordinate-wise Lipschitz constant
as the step size, and thus we always have f(w) ≤ f(w0) for Eq. (7.7) to continue being in work.
Through these observations, the following theorem leverages the analysis by Wang and Lin [148]
to show that when RPCD is applied to Eq. (7.5), f(w) converges to 0 Q-linearly, and the iterates
approach the solution setR-linearly and further converge to an optimal solution. Therefore, RPCD
can quickly generate an approximate solution if high precision is not needed, as is usually the
case in machine learning applications.
Theorem 7.2. Assume that Eq. (P) has at least one optimal solution. When RPCD is applied
to Eq. (7.5) with an initial point w0 ∈ Rn̂ and let the iterates obtained after each epoch be
w1, w2, . . . , there exists η ∈ [0, 1) such that

f
(
wt+1

)
≤ ηf

(
wt
)
, ∀t ≥ 0. (7.8)

Moreover, let Ω be the solution set of Eq. (7.1), then the iterates converge to a point w∗ ∈ Ω and
there is τ > 0 such that

dist
(
wt,Ω

)
≤ τη

t
2 .

67

Algorithm 7.2 The semismooth Newton method for QULP

1: Denote H = ∇2f(w) + c‖∇f(w)‖I for a c > 0.
2: Initialize d = 0.
3: while criterion (7.10) is not met do
4: Perform an iteration of conjugate gradient method on the system Hd+∇f(w) = 0.
5: end while
6: Set w = w + θd by backtracking line search on θ with criterion (7.11) starting from θ = 1.

7.2.2 The semismooth Newton method with superlinear convergence
In the traditional optimization scheme, a highly precise solution for a linear programming prob-

lem might be desirable. In this case, RPCD may not be a suitable choice as it does not possess fast
superlinear local convergence like the interior-point methods. Truncated Newton or quasi-Newton
are practical choices for achieving superlinear convergence if the objective is twice-differentiable
and strongly convex at least around the solution set. Unfortunately, these conditions do not hold
for Eq. (7.5). But fortunately, in addition to that f is Lipschitz-continuously differentiable, the
gradient of f is piecewise linear, ergo strongly semismooth [58, Proposition 7.4.7], meaning that
∇f is directionally differentiable, and for any w and any∇2f(w+ ∆w) ∈ ∂(∇f(w+ ∆w)) with
∆w → 0,

∇f(w + ∆w)−∇f(w)−∇2f(w + ∆w)∆w = O
(
‖∆w‖2

)
. (7.9)

We can therefore use the generalized Hessian to conduct semismooth Newton (SSN) updates.
In particular, any ∇2f(w) ∈ ∂(∇f(w)) is a generalized Hessian that can be used. Since f is
not strongly convex, a damping term in the generalized Hessian is needed to ensure positive
definiteness. Therefore, given parameters c > 0, ρ ∈ (0, 1], at each iteration, we select∇2f(w) ∈
∂(∇f(w)) and find the truncated SSN step d by approximately solving

d ≈ arg min
d̄

∇f(w)>d̄+
1

2
d̄>
(
∇2f(w) + c‖∇f(w)‖ρI

)
d̄

through the linear conjugate gradient (CG) method. The method is terminated when d satisfies

∇f(w)>d+
1

2
d>
(
∇2f(w) + c‖∇f(w)‖ρI

)
d ≤ 0,∥∥(∇2f(w) + c‖∇f(w)‖ρI

)
d+∇f(w)

∥∥ ≤ ν min
{
‖∇f(w)‖, ‖∇f(w)‖1+ρ

} (7.10)

for some pre-specified ν ∈ [0, 1). The CG procedure does not require us to explicitly form
∇2f(w), but only needs to evaluate∇2f(w)s for different s at each CG iteration. Thus, we utilize
the sparse matrix-vector multiplication of the generalized Hessians of f and vector s, which are
of the form

∇2f(w)s = 2B>Bs+ 2C> diag(h(w))Cs,

where h(w) is a sparse indicator vector with

h(w)i =

{
1 if (Cw − v)i > 0

0 otherwise .
.

68

Algorithm 7.3 The overall QULP algorithm

1: Initialize T̂ = T0, and pick a multiplying factor δ2 > 1.
2: while not yet converged do
3: Run the coordinate descent algorithm (Algorithm 7.1) for T̂ iterations.
4: Perform the semismooth Newton algorithm (Algorithm 7.2) once.
5: if criterion (7.12) holds then
6: Set T̂ ← δ2T̂ .
7: else
8: Set T̂ ← min(1, T̂ /δ2).
9: end if

10: end while

After obtaining d, and given parameters γ, σ ∈ (0, 1), we conduct a backtracking line search
to find the step size θ as the largest element in {γ0, γ1, . . . } that satisfies

f (w + θd) ≤ f(w) + θσmin {1, c‖∇f(w)‖ρ}∇f(w)>d, (7.11)

and the iterate is updated by w ← w + θd. Notice that backtracking can be done efficiently by
computingBd and Cd first and estimate f(w+θd) throughBw−u+θ(Bd) and Cw−v+θ(Cd).
The overall semismooth Newton algorithm is presented in Algorithm 7.2.

In the following theorem, we show that our semismooth Newton approach achieves the
superlinear convergence of ∇f(w), f(w), and dist(w,Ω) to 0 following Lee and Wright [90],
where Ω is the set of optimum. Consequently, the iterates converge to a point in the optimum.
Theorem 7.3. Assume that Eq. (P) has at least one optimal solution. If Eq. (7.5) is solved by the
truncated semismooth Newton approach described above with initial point w0 and the iterates are
w1, w2, . . . , then there is t0 ≥ 0 such that for all t ≥ t0,

‖∇f
(
wt+1

)
‖ = O

(
‖∇f

(
wt
)
‖1+ρ

)
, dist

(
wt+1,Ω

)
= dist

(
wt,Ω

)1+ρ
, f
(
wt+1

)
= O

(
f
(
wt
)1+ρ

)
.

Moreover, the iterates converge to a point w∗ ∈ Ω.

7.2.3 A hybrid method
The major problem of the SSN approach is that one iteration of it involves running the CG

procedure once, which is much more expensive than an epoch of RPCD (one iteration of CG costs
roughly the same as an epoch of RPCD). We also observe that although SSN attains fast local
rates, its convergence speed at the early stage tends to be slower than that of RPCD. Therefore,
there is a need to interlace the two and form a hybrid algorithm.

In most cases, it is hard to decide when to switch because the convergence rate is known only
when the optimal objective or the optimal solution is available in a priori. Fortunately, it is the
case for our problem because the optimal objective value is 0 for Eq. (7.5). We can therefore use
this property to decide if SSN gives enough advantage over RPCD to cover its higher cost. Notice
that one epoch of RPCD accesses each entry of B twice, and so does one round of CG, while the

69

computation of the gradient and the step size respectively needs to access B once. Those costs
provide an intuitive way to mix the two methods.

We first run RPCD for a pre-specified T0 rounds as RPCD tends to be faster than SSN at the
early stage. Then we start to run SSN once every T̂ round. If at the (k − 1)-th round RPCD is
conducted and at the k-th round SSN is conducted with Tk CG iterations, we increase T̂ by a
factor δ2 > 1 if

f
(
wk−1

)
f (wk−2)

≤

(
f
(
wk
)

f (wk−1)

)Tk+1

, (7.12)

and otherwise decrease it by the same factor as long as T̂ is larger than 1. We present the overall
QULP method in Algorithm 7.3.

7.3 Experimental results
In this section, we compare the performance of QULP on both synthesis and real-world

large-scale linear programming problems with state-of-the-art packages. We consider all solvers
in Gurobi (version 9.1) and the approach of Yen et al. [167] to include both a mature interior-point
method and augmented Lagrangian approach.1 For Gurobi, we report results of their barrier
method as well as the primal and dual simplex methods. For all methods except the simplex ones,
we use the following stopping condition

max

{∥∥∥∥[Ax−Gz − bA>y − c

]∥∥∥∥
∞
,

∥∥∥∥[−z
G>y − d

]
+

∥∥∥∥
∞
,

∣∣∣∣c>x+ d>z − b>y
1 + |c>x+ d>z|

∣∣∣∣
}
≤ ε, (7.13)

with ε = 10−3, while simplex methods consider the first three terms in Eq. (7.13) only. The
experiments are conducted on dedicated Amazon EC2 m5.24xlarge instances with 384 GB
memory and 48 cores, with eight cores assigned to each solver for each problem. Except for the
stopping criteria and the number of threads, all other parameter settings follow the default ones of
the solvers.

We conduct four sets of experiments. The first one uses randomly generated data, the second
one solves the `1-norm support vector machine problem proposed by [171], the third one compares
the solvers on network flow problems, and the last one considers benchmark linear programming
problems. Due to the space limit, the last one is put in the supplementary materials. For all
datasets except for the synthesis ones, we preprocess them using the aggressive presolve of Gurobi
and report the statistics of the processed data to remove redundant rows and columns.

Synthesis Data We first start with generating random instances for Eq. (P) and Eq. (D). We
slightly modify the procedure in [33, Chapter 11.3] to generate the data as follows. Each element
of A is set to zero with probability (1 − p), and those not set to zero follow independent and
identically distributed (iid) standard normal distribution. We then set b = Ax∗, where x∗ ∈ Rn

1[95] is excluded because their algorithm is implemented in MATLAB, which is non-open-source and unavailable
in our experimental environment, and their code is not publicly available.

70

Dataset (10m) P-Simplex D-Simplex Barrier [167] (P) [167] (D) QULP

103 4.0 3.0 1.0 18.9696 242.174 5.37746
104 5568.0 3323.56 8.0 304.613 368.681 15.5328
105 > 24hr > 24hr 43695.38 3612.12 6815.8 725.526
106 > 24hr > 24hr X > 24hr > 24hr 7652.88
107 > 24hr > 24hr X > 24hr > 24hr > 24hr

Table 7.2: Running time (seconds) comparison on synthesis data. The data name 10i indicates that
m = n = 10i. We report time when the solver reaches ε = 10−1 in Eq. (7.13). X means the solver incurred
an out of memory error. For Simplex and [167], P denotes primal and D denotes dual.

are iid uniform from [0, 1], and c = A>y∗ + s, where y∗ ∈ Rm are iid standard normal, and
elements of s ∈ Rn are iid uniform from [0, 1]. We test m = n ∈ {103, 104, 105, 106, 107}, while
set p = 50m−1 to ensure that the data are sparse enough to fit in the memory capacity. The results
are reported in Table 7.2, and it shows that our method (QULP) are significantly better than the
primal/dual simplex method and the barrier method when the data is large enough. Further, it is
uniformly better than the primal/dual augmented Lagrangian methods in [167].

Multi-class Classification We conduct a comparison on `1-regularized multi-class support
vector machine problems. Given training instances (xi, yi) ∈ Rn × {1, . . . , K}, i = 1, . . . ,m,
where K ∈ N is the number of possible classes, it solves the following linear optimization
problem.

min
w1,wK∈Rn,ξ∈Rm

λ
K∑
k=1

‖wk‖1 +
m∑
i=1

ξi

subject to w>yixi − w
>
k xi ≥ eki − ξi, i = 1, . . . ,m, k = 1, . . . , K.

This problem can be easily formulated into a bound constrained linear programming problem by
splitting each wk into wk = w+

k − w
−
k with the constraint w+

k , w
−
k ≥ 0. The data statistics are

summarized in 7.32 and the running time is shown in Table 7.4. As suggested by the experimental
results, our methods are uniformly better than the primal/dual simplex methods and the barrier
method, and are better than the primal/dual methods in [167] in 4 over the 6 datasets.

7.4 Conclusion
In this work, we proposed a versatile unconstrained piecewise quadratic optimization reformu-

lation for linear programming problems utilizing its strong duality. Efficient algorithms utilizing
the structure and sparsity of the original linear programming problem while achieving global linear
and local superlinear convergence are then shown. Experiments demonstrate that our approach is
not only theoretically sound but also superior to existing methods in empirical performance.

2Original data downloaded from the LIBSVM site: https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/.

71

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Data set rows columns Nonzero entries

real-sim 72,201 102,708 7,082,389
news20 318,700 795,932 40,719,163
vehicle 236,469 158,248 47,845,513
rcv1 train.multiclass 793,764 607,256 70,586,511
sector.scale 673,260 1,107,940 129,813,911
mnist.scale 600,000 132,390 181,088,991

Table 7.3: Data statistics of multi-class classification problems.

Data set P-Simplex D-Simplex Barrier [167] (P) [167] (D) QULP

real-sim 64877.0 4517.0 595.0 684.363 68.6403 2.68164
news20 > 24hr > 24hr 12262.0 69071.8 > 24hr 1475.4
vehicle 10395.0 > 24hr 565.0 > 24hr 7021.8 72.8821
rcv1 train.multiclass > 24hr > 24hr 69240.0 7334.91 739.41 56324.0
sector.scale 1686.0 6509.0 15060.0 9612.75 7145.75 8828.67
mnist.scale > 24hr > 24hr 16548.0 > 24hr 75325.3 1420.48

Table 7.4: Running time (seconds) comparison on classification problems. For Simplex and [167], P
denotes primal and D denotes dual.

72

Chapter 8

Conclusion

In this thesis, we have shown how to scale up structured SDPs and applied them to probabilistic
inference, parameter learning, clustering, and generic problems with linear constraints. We have
presented Mixing methods (Chapter 3), the fundamental building block in our thesis, allowing us
to scale SDPs to millions of variables with convergence guarantees by solving the corresponding
vector program. We have demonstrated the methods’ effectiveness on inferencing Markov Random
Fields (Chapter 4). Further, we have used it to approximate the MAXSAT problem (Chapter 5),
creating a differentiable SAT-solving layer that enables the integration of deep learning and logic
reasoning. We have proposed a variant for low cardinality SDPs, applying it to the unsupervised
community detection problem (Chapter 6) within large-scale networks and surpassing the discrete
state-of-the-art solvers in both performance and speed. We have also shown how to apply it
to linear programs with generic constraints (Chapter 7). The idea of applying SDP to machine
learning problems by considering its corresponding vector program has a promising set of future
directions. In the following, we provide a brief outlook of the possible applications.

1. Combinatorial optimization.
• Lasserre hierarchy and SOS. Many of the combinatorial optimization problems can

be approximated by the Lasserre hierarchy [86, 87, 88] or the sum-of-square hierarchy
[23, 121], which relax them to generic linearly-constrained SDPs. On the one hand,
it is possible to convert generic SDP to a vector program and solve it by coordinate
descent methods, using similar techniques as demonstrated in Chapter 7. On the other
hand, we can sometimes further relax the complex constraints to diagonal constraints
by modifying the coefficient matrix (Chapter 5). The trade-off between constraint
complexity and approximation efficiency can really be further explored.

• Approximate and exact solution. SDPs and randomized rounding may give unex-
pectedly high approximation ratio in real-world data, as confirmed in MAXCUT
(Chapter 3), MAXSAT [69], and community detection (Chapter 6). The reason behind
this phenomenon is still unknown. But in the other hand, we may use the correspond-
ing vector embedding to predict the approximation ratio, and it will have applications
in the branch-and-cut process to get the exact solution. At the very least, the objective
value of the SDPs is already useful in pruning the branches in MAX2SAT [146].

• Embedding and randomized rounding. The process of solving a vector program

73

can be seen as finding a (rotation invariant) vector embedding for the corresponding
energy function defined by the SDP objective function with dot-product interactions.
This way, the randomized rounding procedure corresponds to efficiently sampling the
possible (discrete) configuration space. For different applications, we may define or
learn a customized (nonlinear) objective function (Chapter 5) tailored to our need and
differentiate through the randomized rounding process to provide feedback. However,
how to design a proper nonlinear objective function and how to do randomized
rounding in more complex action space (e.g., sequence) remain a direction to be
explored.

2. Semi-supervised learning. The features in the low-cardinality embedding for the commu-
nity detection problem (Chapter 6) actually work like a bag-of-word descriptor; it describes
the top-k possible attributes that a node may have, and it’s generated solely from the local
graph information. We may further associate the attributes (keys) with vector embeddings
(values) to incorporate more information, and such formulation is closely related to the slot
attention [99].

3. Language modeling. Running a sliding window through a language corpus and define a
directed co-occurrence graph with causality (i.e., the arrows only go right), we can model the
word embedding problem as a large vector program. Further, if we associate edge weights
with the dot-products between vector embeddings, the vector program will look pretty
similar to a transformer [47, 143]. With some modification, an equilibrium transformer [13]
can actually be written as an SDP, in which each layer is performing a step of the Mixing
method. This partly explains the transformer’s ability to perform reasoning. However,
how to make the modification as good as the original transformer remains a direction to be
explored.

4. Neural symbolic reasoning. We have demonstrated how to approximate the MAXSAT
problems and learn its parameters in Chapter 5. During the process, we “round” the
vector embedding back to a scalar by projection, which forms a bottleneck and requires
tuning to backpropagate smoothly [43]. The condition may be enhanced by incorporating
a differentiable randomized rounding procedure, which may be an interesting direction.
Also, we may use the embedding to guide the search process instead, but in that case, we
need to backpropagate through the search process. On the other hand, we know that many
reasoning problems can be efficiently reduced to a MAXSAT problem, so the differentiable
MAXSAT solver may be used as a bridge to neural symbolic reasoning. However, there
are still challenges to be addressed. For example, how to dynamically change the graph
structure once there are new objects. Also, it may not be necessary to iterate the vector
embedding to an exact equilibrium; many real-world problems only take a few steps of
derivation.

74

Appendix A

Proofs for the Mixing methods

A.1 Proof of Theorem 3.1: Convergence to critical points

Lemma A.1. Let V̂ = M(V) for the Mixing method M : Rk×n → Rk×n defined in (3.4) and
(3.5).

f(V)− f(V̂) =
n∑
i=1

yi‖vi − v̂i‖2.

Proof. Recall the objective function f w.r.t. variable vi while fixing all other variables vj is

〈C, V TV 〉 =
∑
i

∑
j

cijv
T
i vj = 2vTi (

∑
j

cijvj) + constant.

Note that the
∑

j cijvj term is independent of vi because cii = 0. Now consider the inner cyclic
iteration of the Mixing method updating vi to v̂i. Because only those vj with j < i are updated
to v̂j , the objective value before updating vi to v̂i equals 2vTi (

∑
j<i cij v̂j +

∑
j>i cijvj) = 2gTi vi

plus constants, Thus, the updates of the Mixing method can be written as

v̂i = −gi/yi, where yi = ‖gi‖ and gi =
∑
j<i

cij v̂j +
∑
j>i

cijvj, i = 1 . . . n. (A.1)

and the objective difference after updating vi to v̂i is

2gTi (vi − v̂i) = −2‖gi‖v̂Ti (vi − v̂i) = 2yi(1− vTi v̂i) = yi‖vi − v̂i‖2.

The result follows from summing above equation over i = 1 . . . n.

Proof of Theorem 3.1

Proof. From Lemma A.1 and the compactness of the space of V , the sequence {f(V r)} for iterate
V r is monotonically decreasing and converges to a value f̄ . The function decrease converges to

75

zero because of Lemma A.1 and yi = ‖gi‖ being bounded. Further, the normalizer yi does not
degenerate due to Assumption 3.2, so we have

lim
r→∞
‖vri − v̂ri ‖2 = 0.

That is, every limit point is a fixed point. Now we prove that every limit point in {V r} is also a
critical point, which has zero Riemannian gradient. The Riemannian gradient on the spheres is
defined as

grad(V)i = (I − vivTi)g̃i,∀i = 1, . . . , n.

where g̃i = V ci is the gradient for coordinate block i. Then we have

‖grad(V)i‖2 = ‖gi‖2 − (vTi gi)
2 ≤ 2‖gi‖(‖gi‖+ vTi gi) = ‖gi‖ · 2gTi (vi − v̂i),

where the inequality is from (‖gi‖+ vTi gi)
2 ≥ 0. Note that the RHS term is the function decrease

in Lemma A.1. Align the above term to a specific iterate V r by taking out the difference vri − v̂ri
in gi, and taking limit to the inequality, we have

lim
r→∞
‖grad(V r)‖2 ≤ lim

r→∞
‖gi‖ · 2gTi (vri − v̂ri) +

∑
i

O(‖vri − v̂ri ‖) = 0,

That is, the Riemannian gradient converges to zero in the limit. The step-sized version follows
from the same argument.

A.2 Proof of Theorem 3.3: Local Linear convergence
In the following lemma, we use the asymptotic analysis inspired by [55, Theorem 4], while

removing its assumption by identifying the inherent Rayleigh quotient problem.
Lemma A.2. Define ŷi = vTi V ci, ∀i = 1, . . . , n. Let Ŝ = C + Dŷ, and let f̄ be the objective
value of the nearest first-order critical point. Then, there is a neighborhood around the critical
point such that

‖V Ŝ‖2 ≥ κ

2
(f(V)− f̄)

for V with f(V) ≥ f̄ with a constant κ > 0. That is, ‖V S‖2 is a local error bound.

Proof. Let V̄ be the nearest first-order critical point to V . Consider the geodesic on the spheres
around V̄ w.r.t. a unit tangent direction U such that uTi v̄i = 0 and ‖U‖ = 1, which is

vi = v̄i cos(‖ui‖t) +
ui
‖ui‖

sin(‖ui‖t),∀i = 1, . . . , n.

Taking the Taylor expansion around V̄ and using V̄ s̄i = 0, we have

vi = v̄i + tui +O(t2) and V s̄i = tUs̄i +O(t2).

76

Substitute Ŝ = S̄ +Dŷ −Dȳ and applying the expansion and , there is

‖V Ŝ‖2 =
∑
i

‖V s̄i‖2 − (vTi V s̄i)
2 = t2

(∑
i

‖Us̄i‖2 − (v̄Ti Us̄i)
2

)
+O(t3)

= t2
∑
i

‖(I − v̄iv̄Ti)Us̄i‖2 +O(t3).

In the other hand, applying the expansion to f(V)− f̄ , we have

f(V)− f̄ = tr(V TV S̄) = t2 tr(UTUS̄) +O(t3).

Note that tr(UTUS̄) ≥ 0, otherwise it contradicts with f(V) ≥ f̄ when t is small enough. Now
consider the generalized Rayleigh quotient problem relating the t2 terms in ‖V Ŝ‖2 and f(V)− f̄ .

κ := inf
U

∑
i ‖(I − v̄iv̄Ti)Us̄i‖2

tr(UTUS̄)
, s.t. tr(UTUS̄) ≥ 0, uTi v̄i = 0, ∀i. (A.2)

The numerator equals vect(U)TM vect(U) for an SPSD matrix M because it’s a sum-of-squares.
Further,

(I − v̄iv̄Ti)Us̄i = 0 =⇒ ∃θ, Us̄i = θvi =⇒ uTi Us̄i = θuTi v̄i = 0.

Thus, tr(UTUS̄) contains all the null of
∑

i ‖(I − v̄iv̄Ti)Us̄i‖2. So κ ≥ σmin-nz(M)/σmax(S̄) > 0
because tr(UTUS̄) ≥ 0. Together, there is

‖V Ŝ‖2 =

∑
i ‖(I − v̄iv̄Ti)Us̄i‖2

tr(UTUS̄)
(f(V)− f̄) +O(t3) ≥ κ

2
(f(V)− f̄)

in the neighborhood of V̄ when t is small enough.

Lemma A.3. Let S = C + Dy for arbitrary y and Ŝ = C + Dŷ with ŷi = −vTi V ci. Then
‖V S‖2 ≥ ‖V Ŝ‖2.

Proof. Note that
vTi V ŝi = vTi (V ci − (vTi V ci)vi) = 0.

Using this property,

‖V S‖2 = ‖V Ŝ + V (Dy −Dŷ)‖2 = ‖V Ŝ‖2 + ‖Dy −Dŷ‖2 ≥ ‖V Ŝ‖2.

Thus, the result holds.

Lemma A.4. Under Assumption 3.2, the Mixing method M : Rk×n → Rk×n satisfies

‖V −M(V)‖2 ≥ 1

y2
max

‖V Ŝ‖2. (A.3)

77

Proof Let S = C +Dy with y = y(V). Under the notation in (3.5),

V −M(V) = V (LT +Dy)(L
T +Dy)

−1 + V L(LT +Dy)
−1 = V S(LT +Dy)

−1.

For simplicity, let R := (LT +Dy)
−1. Then

‖V −M(V)‖2 = ‖V SR‖2 ≥ σ2
min-nz(R)‖V S‖2 ≥ σ2

min-nz(R)‖V Ŝ‖2. (A.4)

The last inequality follows from Lemma A.3. The result holds with σ2
min-nz(R) = 1/y2

max.
Lemma A.5. The Mixing method Mθ : Rk×n → Rk×n with step size θ satisfies

‖V −Mθ(V)‖2 ≥ θ2

y2
max

‖V Ŝ‖2. (A.5)

Proof Let S = C + 1
θ
(Dy − I) because the normalizer yi = ‖vi − θgi‖. By the derivation in

(3.6), we have

V−Mθ(V) = V−V (In−θL)(θLT+Dy)
−1 = V (Dy−In+θC)(θLT+Dy)

−1 = θV S(θLT+Dy)
−1.

Following the same analysis in Lemma A.4, the result holds.

Proof of Theorem 3.3

Proof. By Lemma A.2 and Lemma A.4, there is a neighborhood around V̄ such that

‖V −M(V)‖2 ≥ κ

2y2
max

(f(V)− f̄).

Together with Lemma A.1 (under Assumption 3.2),

f(V)− f(M(V)) ≥ ymin-nzκ

2y2
max

(f(V)− f ∗) =⇒ (1− ymin-nzκ

2y2
max

)(f(V)− f ∗) ≥ f(M(V))− f̄ .

That is, the Mixing method M converges R-linearly to the f̄ in the neighborhood of the critical
point. Moreover, we know the method always reaches the neighborhood by Theorem 3.1. The
same local linear convergence follows for the Mixing method Mθ with step size θ ∈ (0, 1

maxi ‖ci‖1)
from Lemma A.9 (no assumption) and Lemma A.5.

Further, because f(V)− f̄ is converging to zero exponentially, there is a δ ∈ (0, 1) such that
f(V r) − f̄ = O(δr) for all large enough r. Consequently, f(V r) − f(M(V r)) = O(δr) and
‖V −M(V)‖2 = O(δr) follows, so we have

‖V r − V̄ ‖ ≤
∞∑
t=r

‖V t − V t+1‖ = O(
∞∑
t=r

δt/2) = O(δr/2/(1−
√
δ)).

That is, the solution converges to a critical point Q-linearly.

78

A.3 Proof of Lemma 3.10: Divergence of Gauss-Seidel meth-
ods

Proof. Because the dynamics of the Gauss-Seidel method (GS) on the system

min
x∈Rn

f(x), where f(x) ≡ xTSx,

has the same Jacobian as JGS , proving ρ(JGS) > 1 is equivalent to proving the “linear divergence”
of the Gauss-Seidel method, which cyclically optimizes each coordinate of x ∈ Rn. Further, since
S 6� 0, there is an eigenvector q ∈ Rn of S such that qTSq < 0.

Consider the sequence {xr}r=0,1,... generated by the GS. That is, xr = (JGS)rx0, ∀r > 0,
where (JGS)r is JGS to the r-th power. Let the initial solution of the system be x0 = q so
that f(x0) < 0. Because the Gauss-Seidel method is greedy in every coordinate updates, it is
monotonically deceasing in the function value. Thus, there are only two cases for the sequence of
function values: 1) the function value converges below zero; 2) the function value goes to negative
infinity.

Denote zri the xr before updating the i-th coordinate and let zr1 = xr and zrn+1 = xr+1. This
way, only the i-th coordinate between zri and zri+1 is changed and the inner cyclic updates can be
flattened as

xr = zr1 → zr2 → . . .→ zrn → zrn+1 = xr+1. (A.6)

1) When the function value converges. The monotonic decreasing property of GS implies that
the function difference converges to zero. By the same analysis in Lemma A.1,1 we have

f(xr)− f(xr+1) =
n∑
i=1

yi‖zri − zri+1‖2.

Thus, the flattened sequence {zri } convergences, which implies {xr} also converges. Let x̄ be the
limit of the sequence {xr}. Being a limit of the GS sequence means that x̄ is a fixed point of GS,
which implies Sx̄ = 0 and f(X̄) = x̄TSx̄ = 0. This contradicts with the monotonic decreasing
property of GS and the fact that f(x0) < 0.

2) When the function value xTr Sxr goes to negative infinity. Because the spectrum of S is
bounded, we know that ‖xr‖ also goes to infinity. For simplicity, we focus on the r-th iterate and
write zri as zi. From the GS, zi,i is updated to zi+1,i = −1

yi

∑
j cijzj,i, and we have

f(zi)− f(zi+1) = yi‖zi − zi+1‖2 = yi(zi,i +
1

yi
(
∑
j

cijzj,i))
2 = |eTi Szi|2/yi, (A.7)

where ei is the i-th coordinate vector and the first equality is from f(x) = xTSx. Then we have
the following claim from Lee et al. [91, cliam 1].

1We can obtain the result by fixing y in Lemma A.1 to be a constant and let V ∈ R1×n. The result can also be
obtained by examining the coordinate updates of GS, which is already known in the literature.

79

Claim A.6. Assume xr be in the range of S. There exists an index j such that 1
yj
|eTj Szj| ≥ ω‖zj‖

for some global constant ω > 0 that only depends on S and n.

The full proof of the claim is listed after this lemma for completeness. To fulfill the assumption,
we can decompose xr = xr +x⊥r , where xr is in the range of S and x⊥r is in the null of S. Consider
the flattened inner cyclic update zi like (A.6) but starting from xr such that2

xr = z1 → z2 → . . .→ zn → zn+1.

Because JGS map the null space of S to itself,3

f(xr)− f(xr+1) = f(xr)− f(JGS(xr + x⊥r)) = f(z1)− f(zn+1 + x⊥r) = f(z1)− f(zn+1).

Further, because GS is coordinate-wise monotonic decreasing and the function decrease of a
coordinate update is smaller than the whole cyclic update, by above equality and (A.7) we have

f(xr)− f(xr+1) = f(z1)− f(zn+1) ≥
(eTj Szj)2

yj
≥ yjω

2‖zj ‖2.

The last inequality is from Claim A.6. Thus,

f(xr+1) ≤ f(xr)− yjω2‖zj ‖2 (A.8)

Further, because ‖zj ‖2 ≥ |z T
j Szj |/ρ(S) and z T

j Szj = f(zj) ≤ f(xr) = f(xr) ≤ f(x0) < 0,

f(xr)− yjω2‖zj ‖2 ≤ f(xr) +
yjω

2

ρ(S)
z T
j Szj ≤ (1 +

yminω
2

ρ(S)
)f(xr). (A.9)

Combining (A.8) and (A.9), we obtain the exponential divergence to negative infinity

f(xr+1) ≤ (1 +
yminω

2

ρ(S)
)f(xr) ≤ (1 +

yminω
2

ρ(S)
)r+1f(x0), ∀r ≥ 0. (A.10)

The last inequality is from applying the first inequality recursively. Because S � σmin(S)In and
σmin(S) < 0,

f(xr) = ((JGS)rx0)TS((JGS)rx0) ≥ σmin(S)‖(JGS)rx0‖2 ≥ σmin(S)‖(JGS)r‖2‖x0‖2.
(A.11)

Combining (A.10) and (A.11), we have

σmin(S)‖(JGS)r‖2‖x0‖2 ≤
(

1 +
yminω

2

ρ(S)

)r
f(x0), ∀r > 0.

Applying Gelfand’s theorem for spectral radius, we conclude that

ρ(JGS) = lim
r→∞
‖(JGS)r‖1/r ≥

√
1 +

yminω2

ρ(S)
,

which means that the spectral radius ρ(JGS) is strictly larger than 1.
2Note that only xr is decomposed to xr in range(S) and x⊥r in null(S). Symbols zi are the GS iterates generated

from xr and might not be in the range of S.
3Consider p such that Sp = 0. Then (JGS)p = −(L+ y)−1LT p = −(L+ y)−1Sp+ p = p.

80

Proof of the Claim A.6 in the above lemma. Note that the following proof is essentially the
same with Lee et al. [91, cliam 1], where their α is our 1

yi
and their yt is our xr. The only difference

here is that we prove the result for the exact Gauss-Seidel method, and they prove the result for
the coordinate gradient descent method with a step size. The proof is listed here for completeness.

Proof. We will prove by contradiction. Assume that

1

yj
|eTj Szj| < ω‖zj‖ for all j = 1 . . . n for certain ω. (A.12)

Now we show the following result by induction, that for j = 2 . . . n+ 1,

‖xr − zj‖ < 2(j − 1)ω‖xr‖. (A.13)

Remember from (A.7) we have

yj‖zj − zj+1‖2 = |eTj Szj|2/yj. (A.14)

For j = 2, we have the induction basis for (A.13) from the above equality and (A.12), that

‖xr − z2‖ = ‖z1 − z2‖ =
1

y1

|eT1 Sz1| < ω‖z1‖ = ω‖xr‖ < 2ω‖xr‖,

and accordingly ‖z2‖ ≤ ‖z2 − z1‖+ ‖z1‖ < (1 + 2ω)‖xr‖. Now we do the induction. Suppose
the hypothesis (A.13) holds for a j. This implies

‖zj‖ ≤ ‖zj − xr‖+ ‖xr‖ < (1 + 2(j − 1)ω)‖xr‖. (A.15)

Then at j + 1,

‖xr − zj+1‖ ≤ ‖xr − zj‖+ ‖zj − zj+1‖ by the triangular inequality

< 2(j − 1)ω‖xr‖+
1

yj
|eTj Szj| by hypothesis (A.13) at j and (A.14)

< 2(j − 1)ω‖xr‖+ ω‖zj‖ by assumption (A.12)
< 2(j − 1)ω‖xr‖+ ω(1 + 2(j − 1)ω)‖xr‖ by (A.15)
≤ 2jω‖xr‖,

where the last inequality holds from picking ω ∈ (0, 1
2n

) so that ω(1 + 2(j − 1)ω − 2) < 0. Thus,
the induction on (A.13) holds. With the result (A.13), for j = 2 . . . n we have

1

ymax
|eTj Sxr| ≤

1

yj
|eTj Sxr| by ymax ≥ yj

≤ 1

yj
(|eTj Szj|+ |eTj S(xr − zj)|) by the triangular inequality

< ω‖zj‖+
1

yj
‖Sej‖‖xr − zj‖ by (A.12) and Cauchy inequality

< ω(1 + 2(j − 1)ω)‖xr‖+
1

yj
2(j − 1)ω‖Sej‖‖xr‖ by (A.15) and (A.13)

≤ ω(1 + 2nω + 2n
1

ymin
ρ(S))‖xr‖, (A.16)

81

where the last inequality is from ‖Sej‖ ≤ ‖S‖‖ej‖ ≤ ρ(S), ymin ≤ yj , and j ≤ n+ 1. Note that
the result of (A.16) for j = 1 also holds because (A.12) and xr = z1. Summing the square of
(A.16) over j = 1 . . . n and put it in a square root, we have

√
nω(1 + 2nω + 2n

ρ(S)

ymin
)‖xr‖ >

1

ymax
‖Sxr‖ ≥ κmin-nz(S)‖xr‖,

where κmin-nz(S) =
√
σmin-nz(STS) > 0 is the minimum nonzero singular value of S and the last

inequality holds because κmin-nz(S)‖xr‖ ≤ ‖Sxr‖ from xr ∈ range(S). Cancelling ‖xr‖ from
both sides of the above inequality, the left-hand side goes to 0 when ω → 0 but the right-hand side
stays constant. Thus, picking small enough ω such that κmin-nz(S) ≥ ymax

√
nω(1+2nω+2n ρ(S)

ymin
)

leads to a contradiction.4 So the claim holds.

A.4 Proof of Theorem 3.5: Global convergence with a step
size

Lemma A.7. The Mixing method Mθ with a step size θ ∈ (0, 1
maxi ‖ci‖1) never degenerates. That

is, there is a constant δ ∈ (0, 1) such that

‖θV ci‖ ≤ 1− δ < 1 and ‖vi − θV ci‖ ≥ δ > 0.

Proof. Taking a constant θ ∈ (0, 1
maxi ‖ci‖1) is equivalent to taking θ = 1−δ

maxi ‖ci‖1 for a constant
δ ∈ (0, 1). From the triangular inequality,

‖V ci‖ = ‖
∑
j

cijvj‖ ≤
∑
j

|cij|‖vj‖ = ‖ci‖1.

So we have ‖θV ci‖ ≤ 1− δ < 1. The second result follows from ‖vi− θV ci‖ ≥ 1−‖θV ci‖.

Lemma A.8. The Mixing method Mθ with a step size θ ∈ (0, 1
maxi ‖ci‖1) is a diffeomorphism.

Proof. Note that Mθ can be decomposed to

Mθ(V) = Φn(Φn−1(. . .Φ1(V))),

where the column update Φi(V) : Rk×n → Rk×n is defined as

(Φi(V))s=1...n =

{
vi−θV ci
‖vi−θV ci‖ if s = i

vs otherwise.

Thus, if we can prove that Φi(V) is a diffeomorphism for i = 1 . . . n, thenMθ is a diffeomorphism
because compositions of diffeomorphisms are still diffeomorphism. Specifically, because all

4Note that the choice of ω only depends on n and S.

82

variables vj except for vi are given and stay the same, proving diffeomorphism of Φi(V) is
equivalent to proving the diffeomorphism of the projective mapping φ : Rn → Rn

φ(v) =
v − g
‖v − g‖

,

where g = θV ci is known. Let φ(v) = z. We claim the inverse function φ−1(z) is

φ−1(z) = αz + g, where α = −zTg +
√

(zTg)2 + 1− ‖g‖2.

The square root is valid because of Lemma A.7. We prove the claim by validation. First,

φ−1(φ(v)) = φ−1

(
v − g
‖v − g‖

)
.

By using the property that ‖v‖ = 1, the α for the above function is

α =
−(v − g)Tg

‖v − g‖
+

√(
(v − g)Tg

‖v − g‖

)2

+ 1− ‖g‖2

=
1

‖v − g‖

(
−(v − g)Tg +

√
((v − g)Tg)2 + ‖v − g‖2(1− ‖g‖2)

)
=

1

‖v − g‖
(
−vTg + ‖g‖2 + 1− vTg

)
= ‖v − g‖.

Thus, φ−1(φ(v)) = ‖v − g‖ v−g
‖v−g‖ + g = v is indeed the inverse function. The diffeomorphism

follows from the smoothness of φ(v) and φ−1(z) when ‖v − g‖ ≥ δ > 0 by Lemma A.7.
Lemma A.9. For the Mixing method Mθ with step size θ ∈ (0, 1

maxi ‖ci‖), let V̂ = Mθ(V).
Following the notation in (3.4) and (3.6), we have

f(V)− f(V̂) =
∑
i

1 + yi
θ
‖vi − v̂i‖2,

where yi = ‖vi − θgi‖ and gi =
∑

j<i cij v̂j +
∑

j>i cijvj .

Proof. Consider the inner iteration of the Mixing method with a step size. With the same analysis
to Lemma A.1, the function value before updating the variable vi is 2gTi vi, and the function
difference after updating vi to v̂i = (vi − θgi)/yi is

2gTi (vi − v̂i) = 2(gi +
vi − θgi

θ
)T (vi − v̂i)− 2(

vi − θgi
θ

)T (vi − v̂i)

= 2
1

θ
vTi (vi − v̂i)− 2

yi
θ
v̂Ti (vi − v̂i)

=
1 + yi
θ

2(1− vTi v̂i) =
1 + yi
θ
‖vi − v̂i‖2.

Thus, the result holds from summing the above equation over i = 1 . . . n.

83

Proof of Theorem 3.5

Proof. Similar to Lemma 3.7, the Jacobian of the Mixing method Mθ with step size θ is

J(V) = (Dy⊗Ik−θPL⊗Ik)−1PθLT⊗Ik, where P = diag(P1, . . . , Pn) and Pi = I− v̂iv̂Ti .

By Lemma 3.9, the spectral radius of J at a critical point is lower bounded by JCGD = (Dy −
θL)−1θLT , which is the Jacobian of the coordinate gradient descent method (CGD) on a linear
system S = C + Dy. Because the CGD admits a Jacobian with ρ(JCGD) > 1 when S 6� 0 [91,
Proposition 5], it follows that all non-optimal critical points are unstable fixed points for Mθ.
Further, since the Mixing method Mθ with step size θ is a diffeomorphism by Lemma A.8, we can
apply the center-stable manifold theorem [130, Theorem III.7] to the mapping. To be specific, the
corollary of center-stable manifold theorem in Lee et al. [91, Theorem 2]5 implies that the Mixing
method Mθ escapes all non-optimal critical point almost surely under random initialization.6

Further, because Mθ is monotonically decreasing by Lemma A.9 and the objective value is lower
bounded, Mθ converges to a first-order critical points (with the same analysis to Theorem 3.1). In
conclusion, the almost surely divergence from the non-optimal critical points and the convergence
to a critical point imply that the method converges to a global optimal solution almost surely.

A.5 Proof of Lemma 3.11: Rank Deficiency in Critical Points

The proof is a specialized version of [32, Lemma 9] for the MAXCUT SDP, in which their Y
is our V and their µ(V) is our y. We list it here for completeness.

Proof. Let V be a first-order critical point of problem (3.2), which means that there is a corre-
sponding yi = ‖V ci‖, i = 1 . . . n such that

V S = 0, where S ≡ C +Dy.

This implies
rank(V) ≤ null(C +Dy) ≤ max

ν
null(C +Dν).

Note that the right-hand side is independent of V , so we can use it to bound the rank of all
critical V . Let ν be a solution of the right-hand side, M ≡ C +Dν , and null(M) ≡ `. Writing
C = M −Dν , we have

C ∈ N` + im(D),

5Note that Lee et al. [91, Lemma 1] use only the property of diffeomorphism, so their assumption on the non-
singular Jacobian is not necessary. Actually, non-singular Jacobian is a sufficient condition for the existence of
one-to-one mapping but not the necessary condition.

6Note that the critical points here is non-isolated because they are invariant to rotations in Rk. While Lee et al.
[91, Theorem 2] suffices for our result, interested reader can also refer to [117] on how they use the Lindelöf lemma
to solve the non-isolation issue.

84

in which the + denotes the set-sum, im(D) denotes the image of all diagonal matrices of size n,
andN` denotes the set of symmetric matrices of size n with nullity `. Because of the symmetricity
of N`,

dim(N`) =
n(n+ 1)

2
− `(`+ 1)

2
.

Further, because rank(V) ≤ k, we can assume that ` ≥ k. Union all possible `,

C ∈
⋃

`=k...n

N` + im(D).

Note that the right-hand side is now independent of C. Because the dimension of a finite union is
at most the maximal dimension, and the dimension of a finite set sum is at most the sum of set
dimensions,

dim

(⋃
`∈k...n

N` + im(D)

)
≤ dim(Nk + im(D)) ≤ n(n+ 1)

2
− k(k + 1)

2
+ rank(D). (A.17)

We know that rank(D) = n because the space of diagonal matrix has n free dimensions. Because
the symmetric matrix C lives in the space n(n+1)

2
, almost no C satisfies the right-hand side of

(A.17) if we take large enough k so that

n(n+ 1)

2
− k(k + 1)

2
+ n <

n(n+ 1)

2
.

Thus, almost no C has critical point of rank k if k(k+1)
2

> n, which means for almost all C, the
critical point has at most rank k − 1.

85

86

Appendix B

Proofs and additional experimental results
for MRF

B.1 Proof of Equivalence of (4.8) and (4.9)

We state (4.8) and (4.9) again. Let the vectors r1, . . . , rk ∈ Rn be fixed on the simplex. Then,
(4.8) is stated as follows:

max
vi∈Rn, ‖vi‖2=1 ∀i∈[n]

n∑
i=1

n∑
j=1

Aijv
T
i vj +

n∑
i=1

vTi

k∑
l=1

ĥ
(l)
i rl. (4.8)

Let H ∈ Rn×k such that Hij = ĥ
(j)
i . Define the block matrix C ∈ R(k+n)×(k+n) such that:

C =

[
0 1

2
·HT

1
2
·H A

]
.

Then, (4.9) is stated as follows:

max
Y�0

Y · C (4.9)

subject to Yii = 1 ∀i ∈ [n+ k]

Yij = − 1

k − 1
∀i ∈ [k], i < j ≤ k.

We will show that the optimal solutions to both these optimization problems are equal. Consider
any v1, . . . , vn ∈ Rn in the feasible set of (4.8). Then, corresponding to these v1, . . . , vn, consider
the matrix Y ∈ R(k+n)×(k+n) defined as follows:

Y =

rT1
...
rTk
vT1
...
vn

[
r1 . . . rk v1 . . . vn

]
.

87

Clearly, Y � 0. Further, since r1, . . . , rk are on the simplex and v1, . . . , vn are in the feasible set
of (4.8), this matrix Y satisfies the constraints in (4.9). Thus, Y lies in the feasible set of (4.9).
Also, because of the way in which the block matrix C is defined, we can verify that:

Y · C =
n∑
i=1

n∑
j=1

Aijv
T
i vj +

n∑
i=1

vTi

k∑
l=1

ĥ
(l)
i rl.

Thus, for any v1, . . . , vn in the feasible set of (4.8), we have a corresponding Y in the feasible set
of (4.9) such that the criterion values match.

Now, consider any Y in the feasible set of (4.9). Since Y � 0, we can compute its Cholesky
decomposition as Y = UTU for some U ∈ R(k+n)×(k+n). Denote the first k columns in U as
r′1, . . . , r

′
k and the last n columns of U as v′1, . . . , v

′
n. Then, since Y satisfies the constraints

in (4.9), we have that ‖v′i‖2 = 1 for all i ∈ [n]. Also, we have that r′Ti r
′
j = 1 if i = j and

r
′T
i r
′
j = − 1

k−1
otherwise. Thus, the vectors r′1, . . . , r

′
k correspond to the vertices of a simplex in

Rn. Then, there exists a rotation matrix R̄ ∈ Rn×n such that R̄r′l = rl for all i ∈ [k] and R̄T R̄ = I .
Then, consider the vectors vi = R̄v′i for i ∈ [n]. Since rotation matrices preserve norm, we have
that ‖vi‖2 = 1 for all i ∈ [n]. Thus, v1, . . . , vn lie in the feasible set of (4.8). Also, we have that:

Y · C = UTU · C

=
n∑
i=1

n∑
j=1

Aijv
′T
i vj +

n∑
i=1

v
′T
i

k∑
l=1

ĥ
(l)
i r
′
l

=
n∑
i=1

n∑
j=1

Aijv
′T
i R̄

T R̄vj +
n∑
i=1

v
′T
i R̄

T

k∑
l=1

ĥ
(l)
i R̄r

′
l (since R̄T R̄ = I)

=
n∑
i=1

n∑
j=1

Aij(R̄v
′
i)
T R̄vj +

n∑
i=1

(R̄v′i)
T

k∑
l=1

ĥ
(l)
i rl (since R̄r′i = ri)

=
n∑
i=1

n∑
j=1

Aijv
T
i vj +

n∑
i=1

vTi

k∑
l=1

ĥ
(l)
i rl.

Thus, corresponding to any Y in the feasible set of (4.9), we have found vectors v1, . . . , vn in the
feasible set of (4.8) such that criterion values match.

Consequently, we have shown the range of criterion values in both optimization problems is
the same, and hence the optimization problems have equivalent optimal solutions.

88

B.2 Derivation of (4.11)

Let z1, . . . , zn ∈ Rd such that d = m · k,m ∈ Z, and let C = k
k−1

(
Id − 1

k
(1k×k ⊗ Im)

)
where 1k×k is a matrix filled with 1s. Let C = STS denote the Cholesky decomposition of C.
Further, let us segment each zi into k blocks such that zbi ∈ Rm denotes the bth block. Then, we
state (4.11) again:

max
zi∈Rd ∀i∈[n]

n∑
i=1

n∑
j=1

Aijv
T
i vj +

n∑
i=1

vTi

k∑
l=1

ĥ
(l)
i rl

subject to zi ≥ 0,

∥∥∥∥∥
k∑
b=1

zbi

∥∥∥∥∥
2

2

= 1, vi = Szi ∀i ∈ [n]. (4.11)

First, we show that with the parameterization above, 1 ≥ vTi vj ≥ −1
k−1

, i.e. vi, vj satisfy the
pairwise constraints. Note that with the structure of C as defined, we have that

vTi vj = zTi S
TSzj

= zTi Czj

=
k

k − 1

zTi zj − 1

k

(
k∑
b=1

zbi

)T (k∑
b=1

zbj

) .
Now, since zi ≥ 0 and since

∥∥∥∑k
b=1 z

b
i

∥∥∥2

2
= 1, we have that ‖zi‖2 ≤ 1. Thus, by the Cauchy-

Schwartz inequality, we have that 0 ≤ zTi zj ≤ 1, and also that, 0 ≤
(∑k

b=1 z
b
i

)T (∑k
b=1 z

b
j

)
≤ 1.

Thus, we have vTi vj ≥ k
k−1

(
0− 1

k

)
= − 1

k−1
. Further, note that

‖vi‖2
2 =

k

k − 1

‖zi‖2
2 −

1

k

∥∥∥∥∥
k∑
b=1

zbi

∥∥∥∥∥
2

2

=

k

k − 1

(
‖zi‖2

2 −
1

k

)
≤ 1.

Thus, we have that vTi vj ≤ ‖vi‖2‖vj‖2 ≤ 1, establishing both bounds. Next, note that we can set
the appropriate zbi in each zi to e1 ∈ Rm (where e1 is the first basis vector), and set all the other
zb
′
i to 0, and this allows vi = Szi to be the required vector rl on the simplex corresponding to the

optimal solution to the discrete problem (4.7). Thus, we have that the optimal solution to (4.11) is
at least as large as f ?discrete.

Our goal then is to obtain candidates z1, . . . , zn, such that the objective is at least as large as
f ?discrete. Additionally, if we can further guarantee that ‖zi‖2 = 1 for all i, we are done.

Let us write the objective in (4.11) in terms of zi. This is

n∑
i=1

n∑
j=1

Aijz
T
i Czj +

n∑
i=1

zTi S
T

k∑
l=1

ĥ
(l)
i rl.

89

Let us consider the terms in the objective involving a particular zi. These are

zTi

(
2

n∑
j 6=i

AijCzj + ST
k∑
l=1

ĥ
(l)
i rl

)
︸ ︷︷ ︸

gi

.

Note that for every index j within a block in gi, across the k blocks, there will definitely be at
least one positive entry. This is because

2
n∑
j 6=i

AijCzj + ST
k∑
l=1

ĥ
(l)
i rl = 2

n∑
j 6=i

AijCzj + ST
k∑
l=1

ĥ
(l)
i Sel

= 2
n∑
j 6=i

AijCzj + C
k∑
l=1

ĥ
(l)
i el

= C

(
2

n∑
j 6=i

Aijzj +
k∑
l=1

ĥ
(l)
i el

)
︸ ︷︷ ︸

p

= Cp.

and because of the nature of the matrix C, the entries at a particular index j across the k blocks in
Cp will each be of the form x− avg(x). This fact will be useful later on.

We now consider updating each zi in a sequential manner as a block-coordinate update, just
as in the original mixing method. In the following, we drop the subscript i in zi and gi for
convenience. Concretely, we aim to solve the problem

min − gT z

subject to z ≥ 0;

∥∥∥∥∥
k∑
b=1

zb

∥∥∥∥∥
2

2

= 1. (B.1)

Let us write the Lagrangian L(z, α, λ) for the above constrained optimization problem, for dual
variables α ≥ 0, λ:

L(z, α, λ) = −gT z +
λ

2

∥∥∥∥∥
k∑
b=1

zb

∥∥∥∥∥
2

2

− 1

− αT z.
90

The KKT conditions are

Stationarity: gbi + αbi = λ

k∑
b=1

zbi ∀b ∈ [k], i ∈ [m]

Complementary slackness: αbiz
b
i = 0 ∀b ∈ [k], i ∈ [m]

Primal feasibility: zbi ≥ 0 ∀b ∈ [k], i ∈ [m]∥∥∥∥∥
k∑
b=1

zb

∥∥∥∥∥
2

2

= 1

Dual feasibility: αbi ≥ 0 ∀b ∈ [k], i ∈ [m].

Note that now, zbi refers to the ith entry in the bth block in z. Since the KKT conditions are always
sufficient, if we are able to construct z and α, λ that satisfy all the conditions above, z and α, λ
would be optimal primal and dual solutions to (B.1) respectively.

Towards this, let (·)+ denote the operation that thresholds the argument at 0, i.e.

(x)+ =

{
x if x ≥ 0

0 otherwise.

For any fixed index i ∈ [m], let b(i) = arg maxb g
b
i (if there are multiple, pick any). Consider the

following assignment:

λ =

√√√√ m∑
i=1

(g
b(i)
i)2

+

z
b(i)
i =

(g
b(i)
i)+

λ
, α

b(i)
i =

{
0 if gb(i)i > 0

−gb(i)i otherwise

zbi = 0, αbi = −gbi + λz
b(i)
i for b 6= b(i).

Note that λ > 0, since we argued above that there will be at least one entry that will be positive
across the blocks. We will now verify that this assignment satisfies all the KKT conditions. First,
note that

∑k
b=1 z

b
i = z

b(i)
i . Consider stationarity: for b(i), if gb(i)i > 0,

g
b(i)
i + α

b(i)
i = g

b(i)
i = (g

b(i)
i)+ = λz

b(i)
i .

otherwise if gb(i)i ≤ 0, zb(i)i = 0 and so

g
b(i)
i + α

b(i)
i = g

b(i)
i − gb(i)i = 0 = λz

b(i)
i .

For b 6= b(i), by construction

gbi + αbi = λz
b(i)
i .

91

Next, we can observe that complementary slackness holds, since either one of zbi or αbi is always
0. Next, we verify primal feasibility. We can observe that zbi ≥ 0 for all b. Further,∥∥∥∥∥

k∑
b=1

zb

∥∥∥∥∥
2

2

=
m∑
i=1

z
b(i)2
i =

1

λ2

m∑
i=1

(g
b(i)
i)2

+ = 1.

Finally, we verify dual feasibility. For b(i), we have that

α
b(i)
i =

{
0 if gb(i)i > 0

−gb(i)i otherwise.
.

Either way, αb(i)i ≥ 0. For b 6= b(i),

αbi = −gbi + λz
b(i)
i = −gbi + (g

b(i)
i)+ ≥ 0.

Thus, we observe that the constructed z and α, λ satisfy all the KKT conditions. Hence, z (as
constructed as above) is the optimal solution to (B.1). Algorithm 4.3 precisely updates each zi
based on this constructed solution. The hope at the convergence of this routine is that we will have
ended up with a solution v1, . . . , vn such that f(v1, . . . , vn) > f ?discrete. Empirically, we always
observe that this is the case. In fact, the solution at convergence is within 5% of the true optimal
solution of (4.11) itself. Thus, the approximation guarantees of Frieze et al. [59] go through for
the rounded solution on v1, . . . , vn at convergence, assuming that the entries in A are positive.

92

B.3 Proof of Theorem 4.1
We have that

E[Ẑ] = EXpv
[
E·|Xpv [Ẑ]

]
= EXpv

E·|Xpv
 ∑
x∈Xpv

exp(f(x)) +
1

R

∑
x∈XΩ

exp(f(x))

q

= EXpv

 ∑
x∈Xpv

exp(f(x)) +
1

R
E·|Xpv

[∑
x∈XΩ

exp(f(x))

q

]
= EXpv

 ∑
x∈Xpv

exp(f(x)) +
1

Rq

∑
x∈XΩ

E·|Xpv [exp(f(x))]

= EXpv

 ∑
x∈Xpv

exp(f(x)) +
1

Rq

∑
x∈XΩ

∑
y∈{[k]n\Xpv}

q · exp(f(y))

= EXpv

 ∑
x∈Xpv

exp(f(x)) +
1

R

∑
x∈XΩ

∑
y∈{[k]n\Xpv}

exp(f(y))

= EXpv

 ∑
x∈Xpv

exp(f(x)) +
1

R
·R ·

∑
y∈{[k]n\Xpv}

exp(f(y))

= EXpv

 ∑
x∈Xpv

exp(f(x)) +
∑

y∈{[k]n\Xpv}

exp(f(y))

= EXpv

∑
x∈[k]n

exp(f(x))

= EXpv [Z]

= Z.

Thus, the estimate Ẑ given by Algorithm 4.4 is unbiased.

93

B.4 Pseudocode for AIS
Our implementation of AIS has 3 main parameters: the number of temperatures in the

annealing chain (denoted K), the number of cycles of Gibbs sampling while transitioning from
one temperature to another (denoted num cycles), and the number of samples used (denoted
num samples). First, we define K + 1 coefficients 0 = β0 < β1 < · · · < βK = 1 . Then, given
a general k-class MRF problem instance as defined in Sections 4.1, 4.2, let

f(x) =
n∑
i=1

n∑
j=1

Aij δ̂(xi, xj) +
n∑
i=1

k∑
l=1

ĥ
(l)
i δ̂(xi, l).

Further, define functions fk as follows:

fk(x) =

(
1

kn

)1−βk
(exp(f(x)))βk .

Also, let p0 denote the uniform distribution on the discrete hypercube [k]n. The complete
pseudocode for our implementation of AIS is then provided below:

Algorithm B.1 Annealed Importance Sampling
1: procedure GIBBSSAMPLING(x, βk, num cycles)
2: Let p(x) ∝ (exp(f(x)))βk

3: for cycle = 1, 2 . . . , num cycles do
4: for i = 1, 2, . . . , n do
5: xi ← Sample p(xi|x−i)
6: end for
7: end for
8: return x
9: end procedure

10: procedure AIS(K,num cycles, num samples)
11: for i = 1, 2 . . . , num samples do
12: Sample x ∼ p0

13: w(i) ← 1
14: for k = 1, 2, . . . , K do
15: w(i) ← w(i) · fk(x)

fk−1(x)

16: x← GIBBSSAMPLING(x, βk, num cycles)
17: end for
18: end for
19: return Z = 1

num samples

∑num samples
i=1 w(i)

20: end procedure

94

B.5 Mode estimation comparisons
Here, we compare the mode estimates given by M4 and M4+ with max-product belief

propagation and decimation algorithm given in libDAI [107] over complete graphs across a range
of coupling strengths for k = 2, 3, 4, 5.

0 1 2 3 4 5
Coupling strength

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Re
la

tiv
e

er
ro

r (
f

f
f

)

M4+ (500)
M4 (500)

(a) k = 2, n = 20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Coupling strength

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Re
la

tiv
e

er
ro

r (
f

f
f

)

M4+ (500) (~0.003s)
M4 (500) (~0.002s)
DecMAP (~0.077s)
Max-product (~0.009s)

(b) k = 3, n = 10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Coupling strength

0.00

0.01

0.02

0.03

0.04

0.05

Re
la

tiv
e

er
ro

r (
f

f
f

)

M4+ (500) (~0.003s)
M4 (500) (~0.002s)
DecMAP (~0.047s)
Max-product (~0.007s)

(c) k = 4, n = 8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Coupling strength

0.00

0.01

0.02

0.03

0.04

0.05

Re
la

tiv
e

er
ro

r (
f

f
f

)

M4+ (500) (~0.003s)
M4 (500) (~0.002s)
DecMAP (~0.036s)
Max-product (~0.007s)

(d) k = 5, n = 7

Figure B.1: Mode estimation comparison with max-product BP and decimation

We can observe that for both methods, the relative errors are very small (∼ 0.018 at worst)
compared to the other methods, but M4+ suffers a little for larger k.

Next, we show the results for the mode estimation task (timing comparison versus AIS) on
complete graphs for k = 2, 3, 4, 5. The coupling matrices are fixed to have a coupling strength
CS(A) = 2.5.

10 4 10 3 10 2 10 1 100

Time elapsed

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

er
ro

r (
f

f
f

)

AIS (25, 1, 500)
M4+ (500)
M4 (500)

(a) k = 2, n = 20

10 4 10 3 10 2 10 1 100

Time elapsed

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

er
ro

r (
f

f
f

)

AIS (3, 1, 500)
M4+ (500)
M4 (500)

(b) k = 3, n = 10

10 4 10 3 10 2 10 1 100

Time elapsed

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

er
ro

r (
f

f
f

)

AIS (3, 1, 500)
M4+ (500)
M4 (500)

(c) k = 4, n = 8

10 4 10 3 10 2 10 1 100

Time elapsed

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

er
ro

r (
f

f
f

)

AIS (3, 1, 500)
M4+ (500)
M4 (500)

(d) k = 5, n = 7

Figure B.2: Mode estimation comparison with AIS

We can observe that both M4 and M4+ are able to achieve an accurate estimate of the mode
much quicker than AIS across different values of k.

95

B.6 Performance of AIS with varying parameters
Here, we demonstrate how the performance of AIS is affected on separately varying the

parameters K and num cycles (Algorithm B.1) in the partition function task. We consider similar
problem instances described in Section 4.3 in the paper:

1. We fix num cycles = 1 and vary K. Figure B.3 shows the results. We can observe that
increasing K helps increase the accuracy of the estimate of Z, but also becomes very
expensive w.r.t. time.

0 1 2 3 4 5
Coupling strength

0.0

0.5

1.0

1.5

2.0

2.5

|lo
gZ

lo
gZ

|

AIS (25, 1, 500) [~2.1s]
AIS (50, 1, 500) [~4.0s]
AIS (75, 1, 500) [~6.2s]
AIS (100, 1, 500) [~7.9s]
M4 (500) [~0.2s]

(a) Complete graph k = 2, n = 20

0 1 2 3 4 5
Coupling strength

0

1

2

3

4

5

|lo
gZ

lo
gZ

|

AIS (25, 1, 500) [~2.0s]
AIS (50, 1, 500) [~4.0s]
AIS (75, 1, 500) [~6.5s]
AIS (100, 1, 500) [~8.0s]
M4 (500) [~0.2s]

(b) ER graph k = 2, n = 20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Coupling strength

0

1

2

3

4

5

6

7

|lo
gZ

lo
gZ

|

AIS (3, 1, 500) (~3.6s)
AIS (5, 1, 500) (~7.3s)
AIS (7, 1, 500) (~10.8s)
AIS (10, 1, 500) (~16.2s)
M4 (5000) (~0.9s)

(c) Complete graph k = 3, n = 10

Figure B.3: Variation of K in AIS

2. Next, we fix K and vary num cycles in the Gibbs sampling step. Figure B.4 shows the
results. We can observe that increasing num cycles helps increase the accuracy of the
estimate of Z (although the effect is much less pronounced when compared to increasing
K), but also becomes very expensive w.r.t. time.

0 1 2 3 4 5
Coupling strength

0.0

0.5

1.0

1.5

2.0

2.5

|lo
gZ

lo
gZ

|

AIS (25, 1, 500) [~2.1s]
AIS (25, 3, 500) [~5.6s]
AIS (25, 5, 500) [~9.8s]
AIS (25, 7, 500) [~12.2s]
M4 (500) [~0.2s]

(a) Complete graph k = 2, n = 20

0 1 2 3 4 5
Coupling strength

0

1

2

3

4

5

|lo
gZ

lo
gZ

|

AIS (25, 1, 500) [~2.0s]
AIS (25, 3, 500) [~5.4s]
AIS (25, 5, 500) [~9.5s]
AIS (25, 7, 500) [~12.0s]
M4 (500) [~0.2s]

(b) ER graph k = 2, n = 20

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Coupling strength

0

1

2

3

4

5

6

7

|lo
gZ

lo
gZ

|

AIS (3, 1, 500) (~3.6s)
AIS (3, 3, 500) (~10.6s)
AIS (3, 5, 500) (~17.3s)
AIS (3, 7, 500) (~24.0s)
M4 (5000) (~0.9s)

(c) Complete graph k = 3, n = 10

Figure B.4: Variation of num cycles in AIS

96

B.7 Image Segmentation - more results
We describe in more detail the setting in DenseCRF [85]. Let fi denote the feature vector

associated with the ith pixel in an image e.g. position, RGB values, etc. Then, the image
segmentation task is to compute the configuration of labels x ∈ [k]n for the pixels in an image
that maximizes:

max
x∈[k]n

∑
i<j

µ(xi, xj)K̄(fi, fj) +
∑
i

ψu(xi).

The first term provides pairwise potentials where K̄(fi, fj) is modelled as a Gaussian kernel
consisting of smoothness and appearance kernels and the coefficient µ is the label compatibility
function. The second term corresponds to unary potentials for the individual pixels. In keeping
with the SDP relaxation described above, we relax each pixel to Rd to derive the following
optimization problem:

max
vi∈Rd, ‖vi‖2=1 ∀i∈[n]

∑
i<j

K̄(fi, fj)v
T
i vj + θ

n∑
i=1

k∑
l=1

log pi,l · vTi rl. (4.15)

In the first term above, the term vTi vj models the label compatibility function µ, and we can
observe that if K̄(fi, fj) is large i.e. the pixels are similar, it encourages the vectors vi and vj to
be aligned. The second term models unary potentials φu from available rough annotations, so
that we have a bias vector rl for each label, and the term log pi,l plugs in our prior belief based on
annotations of the ith pixel being assigned the lth label. The coefficient θ helps control the relative
weight on the pairwise and unary potentials. The mixing method update for the above objective is:

vi ← normalize

(∑
j 6=i

K̄(fi, fj)vj + θ
L∑
l=1

log pi,l · rl

)
︸ ︷︷ ︸

Gi

. (B.2)

We note here that computing the pairwise kernels K̄(fi, fj) naively has a quadratic time complexity
in n, and for standard images, the number of pixels is pretty large, making this computation very
slow. Here, we use the high-dimensional filtering method as in DenseCRF [85] which provides a
linear time approximation for simultaneously updating all the vis as given by the update in (B.2).
However, because of the simultaneous nature of the updates, we are no longer employing true
coordinate descent. Hence, we instead propose to use a form of gradient descent with a small
learning rate α to update each of the vis as follows. Here, the Gis are those that are simultaneously
given for all i at once by the high-dimensional filtering method:

vi ← normalize(vi + α ·Gi).

At convergence, we use the same rounding scheme described in Algorithm 4.2 above to obtain
a configuration of labels for each pixel. Figures B.5, B.6 below show the results of using our
method for performing image segmentation on some benchmark images obtained from the works

97

of DenseCRF [85], Lin et al. [96]. We can see that our method produces accurate segmentations,
competitive with the quality of segmentations demonstrated in DenseCRF[85].

The naive runtime for segmenting a standard (say 400x400) image by our method (without any
GPU parallelization) is roughly ∼ 2 minutes. We remark here that performing each segmentation
constitutes randomly initializing the vi vectors and solving (4.15) via the mixing method, and also
performing a few rounds of rounding. However, with parallelization and several optimizations,
we believe that there is massive scope for significantly reducing this runtime.

98

Figure B.5: Original image, annotated image, segmented image

99

Figure B.6: Original image, annotated image, segmented image

100

Appendix C

Derivations and additional experimental
results for SATNet

C.1 Derivation of the forward pass coordinate descent update
Our MAXSAT SDP relaxation (described in Section 5.1.1) is given by

minimize
V ∈Rk×(n+1)

〈STS, V TV 〉,

subject to ‖vi‖ = 1, i = 0, . . . , n,
(C.1)

where S ∈ Rm×(n+1) and vi is the ith column vector of V .
We rewrite the objective of (C.1) as 〈STS, V TV 〉 ≡ tr((STS)T (V TV)) = tr(V TV STS) by

noting that STS is symmetric and by cycling matrices within the trace. We then observe that the
objective terms that depend on any given vi are given by

vTi

n∑
j=0

sTj sivj = vTi

n∑
j=0

(j 6=i)

sTj sivj + vTi s
T
i sivi, (C.2)

where si is the ith column vector of S. Observe vTi vi in the last term cancels to 1, and the
remaining coefficient

gi ≡
n∑
j=0

(j 6=i)

sTj sivj = V ST si − ‖si‖2vi (C.3)

is constant with respect to vi. Thus, (C.2) can be simply rewritten as

vTi gi + sTi si. (C.4)

Minimizing this expression over vi with respect to the constraint ‖vi‖ = 1 yields the block
coordinate descent update

vi = −gi/‖gi‖. (C.5)

101

C.2 Details on backpropagation through the MAXSAT SDP
Given the result ∂ /̀∂VO, we next seek to compute ∂ /̀∂VI and ∂ /̀∂S by pushing gradients through

the SDP solution procedure described in Section 5.1.1. We do this by taking the total differential
through our coordinate descent updates (5.3) for each output o ∈ O at the optimal fixed-point
solution to which these updates converge.

Computing the total differential. Computing the total differential of the updates (5.3) and
rearranging, we see that for every o ∈ O,(

‖go‖Ik − ‖so‖2Po
)
dvo + Po

∑
j∈O

sTo sjdvj = −Poξo, (C.6)

where

ξo ≡
(∑
j∈I′

sTo sjdvj + V dST so + V STdso − 2dsTo sovo
)
, (C.7)

and where Po ≡ Ik − vovTo , o ∈ O and I ′ ≡ {>} ∪ I.

Rewriting as a linear system. Rewriting Equation C.6 over all o ∈ O as a linear system, we
obtain (

diag(‖go‖)⊗ Ik + PC ⊗ Ik
)

vect(dVO) = −P vect(ξo)

⇒ vect(dVO) = −
(
P (
(

diag(‖go‖) + C
)
⊗ Ik)P

)†
vect(ξo),

(C.8)

where C = STOSO − diag(‖so‖2), P = diag(Po), and the second step follows from the lemma
presented in Appendix C.3.

We then see that by the chain rule, the gradients ∂ /̀∂VI and ∂ /̀∂S are given by the left matrix-
vector product (

∂`

∂ vect(VO)

)T
vect(dVO)

= −
(

∂`

∂ vect(VO)

)T (
P (
(
diag(‖go‖) + C

)
⊗ Ik)P

)†
vect(ξo)

(C.9)

where the second equality comes from plugging in the result of (C.8).
Now, define U ∈ Rk×n, where the columns UI = 0 and the columns UO are given by

vect(UO) =
(
P (
(

diag(‖go‖) + C
)
⊗ Ik)P

)†
vect

(
∂`

∂ vect(VO)

)
. (C.10)

Then, we see that (C.9) can be written as(
∂`

∂ vect(VO)

)T
vect(dVO) = − vect(UO)T vect(ξo), (C.11)

which is the implicit linear form for our gradients.

102

Computing desired gradients from implicit linear form. Once we have obtained UO (via
coordinate descent), we can explicitly compute the desired gradients ∂ /̀∂VI and ∂ /̀∂S from the
implicit form (C.11). For instance, to compute the gradient ∂ /̀∂vι for some ι ∈ I, we would set
dvι = 1 and all other gradients to zero in Equation (C.11) (where these gradients are captured
within the terms ξo).

Explicitly, we compute each ∂ /̀∂vιj by setting dvιj = 1 and all other gradients to zero, i.e.

∂`

∂vιj
= − vect(UO)T vect(ξo) = −

∑
o∈O

uTo ejs
T
ι so

= −eTj

(∑
o∈O

uos
T
o

)
sι.

(C.12)

Similarly, we compute each ∂ /̀∂Si,j by setting dSi,j = 1 and all other gradients to zero, i.e.

∂`

∂Si,j
= −

∑
o∈O

uTo ξo

= −
∑
o∈O

uTo visoj − uTi (V ST)j + uTi (sijPivi)

= −vTi (
∑
o∈O

uosoj)− uTi (V ST)j.

(C.13)

In matrix form, these gradients are

∂`

∂VI
= −

(∑
o∈O

uos
T
o

)
SI , (C.14)

∂`

∂S
= −

(∑
o∈O

uos
T
o

)T

V − (SV T)U, (C.15)

where ui is the ith column of U , and where SI denotes the I-indexed column subset of S.

C.3 Proof of pseudoinverse computations
We prove the following lemma, used to derive the implicit total differential for vect(dVO).

Lemma C.1. The quantity

vect(dVO) = (P ((D + C)⊗ Ik)P)† vect(ξo) (C.16)

is the solution of the linear system

(D ⊗ Ik + PC ⊗ Ik) vect(dVO) = P vect(ξo), (C.17)

where P = diag(Ik − vovTo), C = STOSO − diag(‖so‖2), D = diag(‖gi‖), and ξo is as defined in
Equation (C.7).

103

Proof. Examining the equation with respect to dvi gives

‖gi‖dvi + Pi

(∑
j

cijdvj − ξj

)
= 0, (C.18)

which implies that for all i, dvi = Piyi for some yi. Substituting yi into the equality gives

(D ⊗ Ik + PC ⊗ Ik)P vect(yi) (C.19)
=P ((D + C)⊗ Ik)P vect(yi) = P vect(ξo). (C.20)

Note that the last equation comes form D ⊗ IkP = D ⊗ IkPP = P (D ⊗ Ik)P due to the block
diagonal structure of the projection P . Thus, by the properties of projectors and the pseudoinverse,

vect(Y) = (P ((D + C)⊗ Ik)P)†P vect(ξo) (C.21)

= (P ((D + C)⊗ Ik)P)† vect(ξo). (C.22)

Note that the first equation comes from the idempotence property of P (that is, PP = P).
Substituting vect(dVO) = P vect(Y) back gives the solution of dVO.

C.4 Derivation of the backward pass coordinate descent algo-
rithm

Consider solving for UO as mentioned in Equation (C.10):(
P (
(

diag(‖go‖) + C
)
⊗ Ik)P

)
vect(UO) = vect

(
∂`

∂ vect(VO)

)
,

where C = STOSO − diag(‖so‖2). The linear system can be computed using block coordinate
descent. Specifically, observe this linear system with respect to only the uo variable. Since we
start from UO = 0, we can assume that P vect(Uo) = vect(Uo). This yields

‖go‖Pouo + Po

(
UOS

T
Oso − ‖so‖2uo

)
= Po

(
∂`

∂vo

)
. (C.23)

Let Ψ = (UO)STO. Then we have

‖go‖Pouo = −Po(Ψso − ‖so‖2uo − ∂`/∂vo). (C.24)

Define −dgi to be the terms contained in parentheses in the right-hand side of the above equation.
Note that dgi does not depend on the variable uo. Thus, we have the closed-form feasible solution

uo = −Podgo/‖go‖. (C.25)

After updating uo, we can maintain the term Ψ by replacing the old uprev
o with the new uo. This

yields the rank 1 update
Ψ := Ψ + (uo − uprev

o)sTo . (C.26)

The above procedure is summarized in Algorithm 5.3. Further, we can verify that the assumption
P vect(UO) = vect(UO) still holds after each update by the projection Po.

104

0 10 20 30 40 50 60 70
Epoch

10 1

10 3

10 5

10 7

10 9M
ea

n
NL

L
Lo

ss

0 10 20 30 40 50 60 70
Epoch

10 1

10 2

10 3M
ea

n
M

SE
 L

os
s

0 10 20 30 40 50 60 70
Epoch

0
20
40
60
80

100

%
 P

uz
zle

s C
or

re
ct

SATNet (train)
SATNet (test)

ConvNet (train)
ConvNet (test)

ConvNetMask (train)
ConvNetMask (test)

OptNet (train)
OptNet (test)

Figure C.1: Results for 4 × 4 Sudoku. Lower loss (mean NLL loss and mean MSE loss) and higher
whole-board accuracy (% puzzles correct) are better.

C.5 Results for the 4× 4 Sudoku problem

We compare the performance of our SATNet architecture on a 4× 4 reduced version of the
Sudoku puzzle against OptNet [5] and a convolutional neural network architecture. These results
(over 9K training and 1K testing examples) are shown in Figure C.1. We note that our architecture
converges quickly – in just two epochs – to 100% board-wise test accuracy.

OptNet takes slightly longer to converge to similar performance, in terms of both time and
epochs. In particular, we see that OptNet takes 3-4 epochs to converge (as opposed to 1 epoch for
SATNet). Further, in our preliminary benchmarks, OptNet required 12 minutes to run 20 epochs
on a GTX 1080 Ti GPU, whereas SATNet took only 2 minutes to run the same number of epochs.
In other words, we see that SATNet requires fewer epochs to converge and takes less time per
epoch than OptNet.

Both our SATNet architecture and OptNet outperform the traditional convolutional neural
network in this setting, as the ConvNet somewhat overfits to the training set and therefore does not
generalize as well to the test set (achieving 93% accuracy). The ConvNetMask, which additionally
receives a binary input mask, performs much better (99% test accuracy) but does not achieve
perfect performance as in the case of OptNet and SATNet.

C.6 Convergence plots for 9× 9 Sudoku experiments

Convergence plots for our 9 × 9 Sudoku experiments (original and permuted) are shown
in Figure C.2. SATNet performs nearly identically in both the original and permuted settings,
generalizing well to the test set at every epoch without overfitting to the training set. The
ConvNet and ConvNetMask, on the other hand, do not generalize well. In the original setting,
both architectures overfit to the training set, showing little-to-no improvement in generalization
performance over the course of training. In the permuted setting, both ConvNet and ConvNetMask
make little progress even on the training set, as they are not able to rely on spatial locality of
inputs.

Convergence plots for the visual Sudoku experiments are shown in Figure C.3. Here, we see
that SATNet generalizes well in terms of loss throughout the training process, and generalizes
somewhat well in terms of whole-board accuracy. The difference in generalization performance

105

between the logical and visual Sudoku settings can be attributed to the generalization performance
of the MNIST classifier trained end-to-end with our SATNet layer. The ConvNetMask architecture
overfits to the training set, and the ConvNet architecture makes little-to-no progress even on the
training set.

0 20 40 60 80 100
Epoch

10 1

10 2M
ea

n
NL

L
Lo

ss

0 20 40 60 80 100
Epoch

10 1

10 2

10 3

10 4M
ea

n
M

SE
 L

os
s

0 20 40 60 80 100
Epoch

0
20
40
60
80

100

%
 P

uz
zle

s C
or

re
ct

SATNet (train)
SATNet (test)

ConvNet (train)
ConvNet (test)

ConvNetMask (train)
ConvNetMask (test)

(a) Original 9× 9 Sudoku

0 20 40 60 80 100
Epoch

10 1

10 2M
ea

n
NL

L
Lo

ss

0 20 40 60 80 100
Epoch

10 1

10 2M
ea

n
M

SE
 L

os
s

0 20 40 60 80 100
Epoch

0
20
40
60
80

100

%
 P

uz
zle

s C
or

re
ct

SATNet (train)
SATNet (test)

ConvNet (train)
ConvNet (test)

ConvNetMask (train)
ConvNetMask (test)

(b) Permuted 9× 9 Sudoku

Figure C.2: Results for our 9× 9 Sudoku experiments. Lower loss (mean NLL loss and mean MSE loss)
and higher whole-board accuracy (% puzzles correct) are better.

106

0 20 40 60 80 100
Epoch

10 1

10 2M
ea

n
NL

L
Lo

ss

0 20 40 60 80 100
Epoch

10 1

10 2

10 3

10 4M
ea

n
M

SE
 L

os
s

0 20 40 60 80 100
Epoch

0
20
40
60
80

100

%
 P

uz
zle

s C
or

re
ct

SATNet (train)
SATNet (test)

ConvNet (train)
ConvNet (test)

ConvNetMask (train)
ConvNetMask (test)

Theoretical "best" test accuracy

Figure C.3: Results for our visual Sudoku experiments. Lower loss (mean NLL loss and mean MSE loss)
and higher whole-board accuracy (% puzzles correct) are better. The theoretical “best” test accuracy plotted
is for our specific choice of MNIST classifier architecture.

107

108

Appendix D

Proofs for the Locale algorithm

D.1 Proof of Proposition 6.1
Note that in problem (6.3) the term (aii−didi/(2m))vTi vi is constant because ‖vi‖ = 1. Thus,

in the subproblem Q(vi) for variable vi, we can ignore the constant term and write the gradient
∇Q(vi) as

∇Q(vi) =
1

2m

∑
j 6=i

(
aij −

didj
2m

)
vj. (D.1)

Further, since there is no vi term in ∇Q(vi), the objective function Q(vi) for the subproblem of
variable vi becomes qTvi with q = ∇Q(vi), up to a constant. For simplicity, denote vi as v, and
the subproblem reduces to

maximize
v

qTv, s.t. v ∈ Rr
+, ‖v‖ = 1, card(v) ≤ k. (D.2)

Let v∗ be the optimal solution of the above subproblem (6.4) (existence by compactness). When
q ≤ 0, we have max(q) ≤ 0. With ‖v‖2 = 1, v ≥ 0, and ‖v‖2 ≤ ‖v‖1, there is

max(q) = max(q)‖v‖2 ≥ max(q)‖v‖1 = max(q)
∑
t

vt ≥
∑
t

qtvt = qTv. (D.3)

Thus, e(t) with the max qt is the optimal solution in the first case. For the second case, there is
at least one coordinate p such that qp > 0. Now we exclude the following two cases of inactive
coordinates by contradictions.

(When qt < 0) We know v∗t = 0. Otherwise, suppose there is a v∗t > 0 with qt < 0.
If qTv∗ ≤ 0, selecting v∗ = e(p) violates the optimality of v∗, a contradiction.
If qTv∗ > 0, we have

0 < qTv∗ < qT (v∗ − e(t)v∗t) ≤ qT (v∗ − e(t)v∗t)/‖v∗ − e(t)v∗t ‖, (D.4)

also a contradiction to the optimality of v∗, because the last term is a feasible solution.

109

(When qt < q[k], where q[k] is the k-th largest value) We know v∗t = 0. Otherwise, there must
be a coordinate j in the top-k-largest value that is not selected (v∗j = 0) because card(v∗) ≤ k.
This way, we have

qTv∗ < qT (v∗ − e(t)v∗t + e(j)v∗t), (D.5)

which contradicts to the optimality of v∗ because (v∗ − e(t)v∗t + e(j)v∗t) is a feasible solution.
Thus, by removing the inactive coordinates, the effective objective function qTv∗ becomes

top+
k (q)Tv∗, and the optimal solution follows from ‖v∗i ‖ = 1 and top+

k (q) ≥ 0.

110

D.2 Proof of Theorem 6.2
Define the projected gradient (for maximization) as

grad(V) = PΩ(V +∇Q(V))− V, (D.6)

where PΩ is the projection (under 2-norm) to the constraint set Ω of the optimization problem
(6.3)

Ω = {V | vi ∈ Rr
+, ‖vi‖ = 1, card(vi) ≤ k, ∀i = 1, . . . , n}, (D.7)

and denote Ωi as the constraint for vi for the separable Ω. Because the cardinality constraint
is an union between finite hyperplanes, it is a closed set, which implies the constraint of the
optimization problem is a compact set. Thus, by the Weierstrass extreme value theorem, the
function Q(V) is upper-bounded and must attain global maximum over the constraint.

Now we connect the exact update in the Locale algorithm with the projected gradient. Denote
v+
i as the update taken for the subproblem Q(vi). Because the Locale algorithm performs an exact

update (Proposition 6.1), we have

∇Q(vi)
Tv+

i ≥ ∇Q(vi)
Tu, ∀u ∈ Ωi. (D.8)

Further, because ‖v+
i ‖2 = 1 and ‖u‖2 = 1, we have

‖v+
i −∇Q(vi)‖2 ≤ ‖u−∇Q(vi)‖2, ∀u ∈ Ωi. (D.9)

This means that the update v+
i is the projection of ∇Q(vi) to the constraint set Ωi. To connect the

update with the projected gradient, we need the following lemma.
Lemma D.1. Denote the projection (under 2-norm) of a point x on a closed constraint set Ω as
PΩ(x). Then for any scalar α > 1 and vector q, we have

qT (PΩ(x+ αq)− PΩ(x+ q)) ≥ 0

The proof is listed in Appendix D.3. Taking the lemma with α→∞ and let q = ∇Q(vi), we
have

0 ≤ lim
α→0

qT (PΩi(vi + αq)− PΩi(x+ q)) = qT (v+
i − PΩi(vi + q)), (D.10)

where the last equation follows because v+
i is the projection of q on Ωi with ‖ · ‖ = 1 constraint 1.

Further, apply the definition of projection PΩi(vi + q) again on the feasible vi, we have

‖PΩi(vi + q)− (vi + q)‖2 ≤ ‖vi − (vi + q)‖2, (D.11)

and after rearranging there is

‖PΩi(vi + q)− vi‖2 ≤ 2qT (PΩi(vi + q)− vi). (D.12)

Applying (D.10) to the equation above, we have

‖PΩi(vi + q)− vi‖2 ≤ 2qT (v+
i − vi). (D.13)

1Note that in Proposition 6.1, when q ≤ 0 and there are multiple maximum qt, we further select the t with the
maximum (vi)t in the previous iteration. This makes the limit to hold on the corner case q = 0.

111

The right hand side of the above equation equals the function increment Q(v+
i)−Q(vi). Thus,

‖PΩi(vi + q)− vi‖2 ≤ 2(Q(v+
i)−Q(vi)). (D.14)

Now, taking expectation over the random coordinate i, we have

1

n
‖PΩ(V +∇Q(V))−V ‖2 = E‖PΩi(vi+q)−vi‖2 ≤ 2E(Q(v+

i)−Q(vi)) = Q(V t+1)−Q(V t).

(D.15)
Further, since Q(V t+1) − Q(V t) is monotonic increasing, summing them over iterations 0 to
T − 1 forms a telescoping sum, which is upper-bounded by Q(V ∗) − Q(V 0), where V ∗ is the
global optimal solution of Q(V). Substitute the definition of projected gradient (D.6), we have

T

n
min
t
‖grad(V t)‖2 ≤ 1

n

T−1∑
t=0

‖grad(V t)‖2 ≤ 2(Q(V ∗)−Q(V 0)). (D.16)

Thus, the projected gradient grad(V) converges to zero at a O(1/T) rate.

D.3 Proof for Lemma D.1
By definition of the projection PΩ(x+ q), we have

‖PΩ(x+ q)− (x+ q)‖2 ≤ ‖PΩ(x+ αq)− (x+ q)‖2.

Take out the q term out of the norm and rearrange, there is

‖PΩ(x+ q)− x‖2 ≤ ‖PΩ(x+ αq)− x‖2 − 2qT (PΩ(x+ αq)− PΩ(x+ q)). (D.17)

Similarly, by definition of the projection PΩ(x+ αq), there is

‖PΩ(x+ αq)− x‖2 ≤ ‖PΩ(x+ q)− x‖2 − 2αqT (PΩ(x+ q)− PΩ(x+ αq)). (D.18)

Sum (D.17) and (D.18), the norms cancel, and we have

2(α− 1)qT (PΩ(x+ αq)− PΩ(x+ q)) ≥ 0,

which implies
qT (PΩ(x+ αq)− PΩ(x+ q)) ≥ 0. (D.19)

Thus, the result holds.

D.4 Experiments on networks with ground truth
In this section, we compare results from the Leiden-Locale method on data with the ground

truth for partitions. The result is listed in Figure D.1.

112

0
1

2 3

4

5 6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22 23 24

25

26

27

28

29

30

31
32

33

(a) zachary (ground truth = 4 clusters)

0 1

2

3

4

5

6

7

8

9

10

11

12
13

14

15
16

1718
19

20

21

22

23
24

25

26 27

28

29

30
31

3233
34

3536 37
38

39

40
41

42
43

44

45

46

47

48

49

50

51

52

53
54

55

56

57
58

59
60

61

62 63

64

65

66

67
68

69

70

71

72
73 74

75

76

77

7879

8081

8283
84

85

86

878889 90

91 92

93
94

95

96
97 98
99 100

101

102

103

104

(b) polbook (ground truth = 3 clusters)

Figure D.1: The comparison of the results from Leiden-Locale method to ground-truth partitions in the
zachary and polbook datasets. The position of each node is arranged using the 2D Fruchterman-
Reingold force-directed algorithm from the ground-truth using networkx [72], and the color of each
node indicates the solution community given by Leiden-Locale algorithm. The red edges between nodes
indicates the case when two nodes are inside the same cluster in the ground truth but wasn’t assigned so
in our algorithm. For zachary, the Leiden-Locale algorithm returns a perfect answer comparing to the
ground truth with a perfect modularity of 0.4197 [103]. For polbook, it misclassifies 18 over 105 nodes,
but still attains a best known modularity of 0.5272 [2].

D.5 Pseudo-code for the Leiden-Locale algorithm

Here we list the pseudo-code for the Leiden-Locale method. Note that we reuse Algorithm D.1
in Algorithm D.2–D.3 for rounding and refinement by changing its constraint and initialization.
And in the actual code, Algorithm D.2–D.3 are combined as a single subroutine.

113

Algorithm D.1 Optimization procedure for the Locale algorithm
1: procedure LOCALEEMBEDDINGS(Graph G , Partition P)
2: Initialize V with vi = e(i), i = 1, . . . , n.
3: Initialize the ring queue R with indices i = 1, . . . , n.
4: Let z =

∑n
j=1 djvj .

5: while not yet converged do
6: i = R.pop() . Pick an index from the ring queue
7: ∇Q(vi) =

∑
j∈P(i) aijvj −

di
2m

(z − divi) . Sums only j in the same partition of i

8: gi =

{
e(t) with the max (∇Q(vi))t, if ∇Q(vi) ≤ 0,

top+
k (∇Q(vi)), otherwise.

9: vold
i = vi, vi = gi/‖gi‖ . Perform the closed-form update

10: z = z + di(vi − vold
i) . Maintain the z

11: Push all neighbors j with nonzero aij into the ring queue R if it is not already inside.
12: end while
13: return the embedding V
14: end procedure

Algorithm D.2 Rounding procedure for the Locale algorithm
1: procedure LOCALEROUNDING(Graph G , Partition P , Embedding E)
2: Initialize V with input E.
3: Run line 3–12 of Algorithm D.1 with cardinality constraint k = 1.
4: Let the index of the 1-sparse embedding above be the new partition P ′.
5: return P ′

6: end procedure

Algorithm D.3 Refine and Aggregate procedure from the Leiden algorithm
1: procedure LEIDENREFINEAGGREGATE(Graph G , Partition P)
2: Refine P ′ ← LocaleRounding(G ,P) by restricting the local move within its partition.2

3: Forms a hypergraph G ′ by merging nodes inside the same partitions in P ′ and simplify
P ′.

4: done← |P | equals |G ′|.
5: return G ′, P ′, done
6: end procedure

2This is the refinement step implemented in the package python-leiden.

114

Appendix E

Proofs for the linear programming
algorithm

E.1 Proof of Theorem 7.3
This result is obtained by treating Eq. (7.5) as a special case of the problems analyzed in

an unpublished work from Ching-Pei. For completeness, we provide a detailed proof for this
simplified case Eq. (7.5) (in comparison to the general case in the unpublished work) in this
appendix. The proof consists of three parts: global convergence, local superlinear convergence
when unit step size is taken, and finally the acceptance of unit step size for all large enough
iterations.

E.1.1 Global Convergence
We start with that the step sizes are lower-bounded and then show that the objective value

converges to the optimal one. At the t-th iteration, we denote the iterate by wt, the SSN direction
by dt, and the step size by θt. We also use the following notations in our following description:

∆t := ∇f(wt)>dt, µt := c‖∇f(wt)‖ρ, Ht := ∇2f(wt) + µtI, (E.1)

where∇2f(wt) is the generalized Hessian selected for the SSN step.
Lemma E.1. Given γ, σ ∈ (0, 1) and let L be the Lipschitz constant for ∇f . Given an iterate
wt and the SSN direction dt satisfying Eq. (7.10) for some ν ∈ [0, 1), then the backtracking line
search procedure produces a step size θ satisfying Eq. (7.11) with

1 ≥ θt ≥ min
{

1,
γµt
L

(1− σmin{1, µt})
}
. (E.2)

Proof. The upper bound for θt is straightforward, and here we prove the upper bound. If ‖dt‖ = 0,
then clearly θt = 1 satisfies Eq. (7.11). Thus we assume without loss of generality that ‖dt‖ > 0.
The first condition in Eq. (7.10) indicates that

∆t ≤ −
1

2
d>t Htdt ≤ −

1

2
µt‖dt‖2

2 < 0. (E.3)

115

Since f is L-Lipschitz-continuously differentiable, we obtain

f
(
wt + θtdt

)
≤ f

(
wt
)

+ θt∇f(wt)>dt +
θ2
tL

2
‖dt‖2

2

Eq. (E.3)
≤ f(wt) + ∆t

(
θt −

θ2
tL

µt

)
. (E.4)

Thus, for the line search criterion Eq. (7.11) to hold, it suffices to have

∆t

(
θt −

θ2
tL

µt

)
≤ θtσmin{1, µt}∆t,

or equivalently (as ∆t < 0),

1− θtL

µt
≥ σmin{1, µt} ⇔ θt ≤

µt
L

(1− σmin{1, µt}) .

Since all θt in the range holds for criterion Eq. (7.11), after considering the possible overshoot
from backtracking, we have proven Eq. (E.2).

Lemma E.2. Assume that Eq. (P) has at least one optimal solution. When the SSN procedure
described in Section 7.2.2 is applied to solve Eq. (7.5) starting from any w0, and let the iterates
be {wt}, we have

lim
t→∞

∇f(wt) = 0, lim
t→∞

dist(wt,Ω) = 0, lim
t→∞

f(wt) = 0.

Proof. Summing Eq. (7.11) from t = 0 to t =∞, we obtain

−σ
∞∑
t=0

θt min{1, µt}∆t ≤ f(w0),

since Proposition 7.1 shows that f(w) ≥ 0 for any w. This together with Lemma E.1 implies that

lim
t→∞

min
{

1,
γµt
L

(1− σmin {1, µt})
}

min{1, µt}µt‖dt‖2
2 = 0.

By carefully examining the above equation, we get that either µt → 0 or ‖dt‖ → 0. If µt → 0,
then it implies that

∇f(wt)→ 0 (E.5)

from the definition of µt. When ‖dt‖ → 0, from Eq. (7.10), we get that

(1− ν) ‖∇f(wt)‖ ≤ ‖Ht‖‖dt‖ ≤ (L+ µt) ‖dt‖,

so again we obtain Eq. (E.5) because ρ ≤ 1. Note that in the last inequality we used the fact
that ∇f is L-Lipschitz continuous so all the generalized Hessian is upper-bounded by L. For the
remaining two results, we have from Eq. (7.7) that dist(wt,Ω) ≤ κ‖∇f(wt)‖, so the convergence
of dist(wt,Ω) to 0 is also proven. Finally, since f is convex and satisfies the error bound condition,
[113, Appendix A] has shown that that there is µ2 > 0 such that

f(w) ≤ µ2‖∇f(w)‖2, ∀w ∈ {w | f(w) ≤ f(w0)},

so that ∇f(wt)→ 0 implies that f(wt)→ 0 as Proposition 7.1 has shown that 0 is the optimal
objective value.

116

E.1.2 Local Superlinear Convergence With Unit Step Size

The second part is showing that superlinear convergence takes place if unit step size is accepted.
We define pt := dist(wt,Ω) and first lay out some technical lemmas.
Lemma E.3. dt satisfies

‖dt‖ ≤ 2pt + µ−1
t O

(
p2
t

)
+ νµ−1

t ‖∇f(wt)‖1+ρ. (E.6)

Proof. From Eq. (7.10), we can find ξt such that

Htdt +∇f(wt) = ξt, ‖ξt‖ ≤ ν‖∇f(wt)‖1+ρ. (E.7)

From the convexity of f and the definition of Ht, we have

Ht � µt � 0, (E.8)

so Ht is invertible. We then get

‖wt + dt − PΩ(wt)‖ Eq. (E.7)
= ‖H−1

t

(
ξt −∇f(wt) +Ht

(
wt − PΩ(wt)

))
‖ (E.9)

Eq. (E.1)
≤ ‖H−1

t ‖
(
‖ξt‖+ ‖∇f(wt)−∇2f(wt)pt‖+ µtpt

)
Eq. (E.8),Eq. (E.7),Eq. (7.9)

≤ νµ−1
t ‖∇f(wt)‖1+ρ + µ−1

t O
(
p2
t

)
+ pt. (E.10)

From the triangle inequality, we have ‖dt‖ ≤ ‖wt − PΩ(wt)‖ + ‖wt + dt − PΩ(wt)‖, whose
combination with Eq. (E.10) proves Eq. (E.6).

Lemma E.4. wt + dt satisfies

‖∇f
(
wt + dt

)
‖ = O

(
p1+ρ
t

)
+O

(
p2
t

)
+O

(
‖∇f(wt)‖−2ρp4

t

)
(E.11)

Proof. The Lipschitz continuity of∇f implies that

‖∇f(wt)‖ ≤ L‖wt − PΩ(wt)‖ = Lpt (E.12)

for some L ≥ 0, as PΩ(wt) ∈ Ω implies∇f(PΩ(wt)) = 0. We also note from the definition of µt
in Eq. (E.1) that

µ−1
t ‖∇f(wt)‖1+ρ = c−1‖∇f(wt)‖ = Θ

(
‖∇f(wt)‖

)
. (E.13)

117

We have the following by repeating the triangle inequality:

‖∇f
(
wt + dt

)
‖

= ‖∇f
(
wt + dt

)
− ξt + ξt‖

Eq. (E.7)
≤ ‖∇f

(
wt + dt

)
−∇f(wt)−Htdt‖+ ‖ξt‖

Eq. (E.1),Eq. (E.7)
≤ ‖∇f

(
wt + dt

)
−∇f(wt) +∇2f(wt)

(
wt −

(
wt + dt

))
‖+ µt‖dt‖+ ν‖∇f(wt)‖1+ρ

Eq. (7.9)
≤ O

(
‖dt‖2

)
+ µt‖dt‖+ ν‖∇f(wt)‖1+ρ

Lemma E.3

≤ O
(
p2
t +

(
µ−1
t ‖∇f(wt)‖1+ρ

)2
+
(
µ−1
t ‖pt‖2

)2
)

+ 2µtpt + ν‖∇f(wt)‖1+ρ

+O
(
p2
t

)
+ ν‖∇f(wt)‖1+ρ

Eq. (E.12),Eq. (E.13)
= O

(
p2
t

)
+O

(
p1+ρ
t

)
+O

((
‖∇f(wt)‖−ρp2

t

)2
)
,

proving Eq. (E.11)

Now we are able to prove the superlinear convergence.
Theorem E.5. One-step superlinear convergence of the form holds.

‖∇f
(
wt + dt

)
‖ = O

(
‖∇f(wt)‖1+ρ

)
, dist

(
wt + dt,Ω

)
= O

(
dist

(
wt,Ω

)1+ρ
)
. (E.14)

Proof. From Eq. (7.7), we have that

‖∇f(wt)‖−ρ = O
(
p−ρt
)
. (E.15)

Now substituting Eq. (E.15) into Eq. (E.11) shows

‖∇f(wt + dt)‖ = O
(
p1+ρ
t

)
+O

(
p2
t

)
+O

(
p4−2ρ
t

)
= O

(
p1+ρ
t

)
, (E.16)

where the last equality is from that ρ ∈ (0, 1]. We then apply Eq. (7.7) to Eq. (E.16) twice and get

dist
(
wt + dt,Ω

)
= O

(
‖∇f

(
wt + dt

)
‖
)

= O
(
p1+ρ
t

)
= O

(
‖∇f(wt)‖1+ρ

)
,

proving the desired superlinear convergence result.

E.1.3 Unit Step Size Acceptance
Finally, we show that wt+1 = wt + dt for all t large enough and thus asymptotic superlinear

convergence holds.
Proposition E.6. Assume that the SSN procedure for Eq. (7.5) starts from some initial point w0.
Then there is t0 ≥ 0 such that for all t ≥ t0, we have wt+1 = wt + dt. Moreover, we have

f
(
wt + dt

)
= O

(
f(wt)1+ρ

)
. (E.17)

118

Proof. From the convexity of f and the zero optimal objective value, we know that

f(w) ≤ ‖∇f(w)‖dist(w,Ω)
Eq. (7.7)
≤ κ−1‖∇f(w)‖2, ∀w ∈ {w | f(w) ≤ f(w0)}. (E.18)

We then apply [25, Theorem 5] to Eq. (E.18) to conclude that there is κ2 > 0 such that

f(w) ≥ κ2dist(w,Ω)2,∀w ∈ {w | f(w) ≤ f(w0)}. (E.19)

We thus obtain from f(wt) ≤ f(w0) that

f(wt) + σmin {1, µt}∆t ≥ κ2p
2
t − σmin {1, µt} ‖dt‖‖∇f(wt)‖. (E.20)

From Lemma E.3,

−µt‖∇f(wt)‖‖dt‖ ≥ −
(
2µtpt +O

(
p2
t

)
+ ν‖∇f(wt)‖1+ρ

)
‖∇f(wt)‖.

Furthermore, Eq. (E.12) and Eq. (7.7) show that ‖∇f(wt)‖ = Θ(pt), so the inequality above can
be further bounded by

− µt‖∇f(wt)‖‖dt‖ ≥ −
(
Θ
(
p1+ρ
t

)
+O(p2

t) + νΘ(p1+ρ
t)

)
Θ(pt) = −O(p2+ρ

t). (E.21)

Lemma E.2 shows that there is t1 ≥ 0 such that µt ≤ 1 for all t ≥ t1, which together with
Eq. (E.20) and Eq. (E.21) shows that for t ≥ t1,

f(wt) + σmin {1, µt}∆t = f(wt) + σµt∆t

≥ κ2p
2
t −O(p2+ρ

t)

= O(p2
t). (E.22)

Next, from Eq. (E.18), Eq. (E.12), and Theorem E.5, we get that

f(wt + dt) ≤ κ−1‖∇f(wt + dt)‖2κ−1L2dist(wt + dt,Ω)2 = O
(
p

2(1+ρ)
t

)
. (E.23)

Comparing Eq. (E.22) and Eq. (E.23), we see that wt + dt satisfies Eq. (7.11) whenever pt is small
enough. Finally, Lemma Lemma E.2 shows that pt → 0, so pt is small enough for Eq. (7.11)
to hold with θt = 1 for all t large enough. The convergence speed in Eq. (E.17) is a direct
consequence of the combination of Eq. (E.23) and Eq. (E.19).

With these results, we are ready to prove Theorem 7.3.

Proof of Theorem 7.3. This is implied by the combination of Proposition E.6 and Theorem E.5.

119

E.2 Other Proofs

E.2.1 Proof of Theorem 7.2

Proof. From the observations we made preceding the theorem, Eq. (7.7) holds on Eq. (7.5) for all
w such that f(w) ≤ f(w0) and there is L ≥ 0 such that ∇f is L-Lipschitz continuous, meaning
that

‖∇f(z1)−∇f(z2)‖ ≤ L‖z1 − z2‖, ∀z1, z2.

Therefore, it is straightforward that we can find coordinate-wise Lipschitz contstants L1, . . . , Ln̂ ∈
[0, L] such that

‖∇f(w + eid)−∇f(w)‖ ≤ Li|d|, ∀w ∈ Rn̂, ∀d ∈ R, ∀i ∈ {1, . . . , n̂}.

This can be viewed as the Lipschitz constant for the gradient the function f̂i(d) := f(w + eid).
Therefore, from the Lipschitz continuity of∇f̂i(d), we have that

f(w − eiL−1
i ∇if(w))− f(w) ≤ ‖∇if(w)‖2

2Li
, ∀w ∈ Rn̂, ∀i ∈ {1, . . . , n̂}. (E.24)

In this proof, we consider the more general case such that the CD subproblem is not necessarily
solved to optimality, but at least satisfies Eq. (E.24).

By [17, Lemma 3.3] and Proposition 7.1, there is γ > 0 such that

f(wt) ≥ f(wt)− f(wt+1) ≥ γ‖wt − wt+1‖2, ∀t ≥ 0. (E.25)

Therefore, Eq. (7.7) and Eq. (E.25) show that the conditions of [148, Corollary 3.3] are satisfied,
so Eq. (7.8) follows directly from it and that the optimal objective value is 0, as shown in
Proposition 7.1. By combining Eq. (E.25) and Eq. (7.8), we get that for any T1 > T2 ≥ 0,

‖wT1 − wT2‖ = ‖
t=T1−1∑
t=T2

(
wt+1 − wt

)
‖

≤
t=T1−1∑
t=T2

‖wt+1 − wt‖

≤
t=T1−1∑
t=T2

√
γ−1f(wt)

≤
√
γ−1f(wT2)

T1−1−T2∑
i=0

ηi

=
√
γ−1f(wT2)

1− ηT1−T2

1− η
≤
√
γ−1(1− η)−1f(w0)ηT2 .

120

Since the upper bound decreases to zero as T2 approaches infinity, we conclude that {wt} is a
Cauchy sequence and hence it converges to some point w∗. Moreover, as f is continuous, we have
that

f(w∗) = lim
t→∞

f(wt) = 0,

showing that w∗ ∈ Ω.
Finally, [113, Appendix A] shows that the convexity of f and Eq. (7.7) imply that there is

µ > 0 such that
f(w) ≥ µ

2
dist(w,Ω)2, ∀w ∈

{
w | f(w) ≤ f(w0)

}
. (E.26)

The combination of Eq. (E.26) and Eq. (7.8) then proves the desired convergence for dist(wt,Ω).

E.3 Additional Experiments

E.3.1 Benchmark Problems
We take a subset of benchmark linear programming problems listed on http://plato.

asu.edu/ftp/lpbar.html. The data statistics after Gurobi’s presolve are listed in Table E.1
and the results of reaching ε = 10−3 with a time limit of two hours are shown in Table E.2.

121

http://plato.asu.edu/ftp/lpbar.html
http://plato.asu.edu/ftp/lpbar.html

Problem Rows Columns Nonzeros

L1 six1000 65,193 128,897 435,742
L1 sixm250 9,930 19,809 63,273
Linf 520c 47,128 48,909 233,548
buildingen 277,591 154,975 788,964
chrom1024-7 67,583 73,728 270,324
cont1 120,395 40,398 359,593
cont11 120,395 80,396 359,593
datt256 9,863 196,147 1,124,556
degme 185,501 659,415 8,127,528
ex10 62,934 15,896 1,032,200
fhnw-bin0 52,027 316,453 1,368,504
fome13 34,496 76,672 247,152
graph40-40 342,600 97,500 1,206,300
irish-e 64,781 40,279 399,279
karted 46,501 133,114 1,770,336
neos 419,478 41,140 911,651
neos3 79,083 78,166 4,582,692
neos3025225 19,134 46,727 2,467,987
neos5052403 385,426 110,503 1,651,589
neos5251915 512,209 6,624 1,542,816
ns1687037 36,080 30,955 1,377,655
ns1688926 24,576 16,489 901,120
nug08-3rd 19,728 20,448 139,008
pds-100 94,957 433,853 932,671
psched3-3 62,597 15,285 382,478
qap15 6,330 22,275 94,950
rail4284 3,682 1,071,905 9,884,998
rmine15 358,323 42,366 879,300
s100 14,504 364,210 1,413,748
s250r10 7,995 270,321 1,207,610
s82 85,074 1,687,857 6,737,090
savsched1 265,758 309,673 1,656,966
scpm1 5,000 500,000 6,250,000
set-cover 10,000 1,102,008 20,442,268
square41 1,730 23,828 4,335,717
stat96v1 4,624 187,712 561,421
storm 1000 380,028 1,037,119 2,864,280
support10 105,209 8,955 361,283
tp-6 142,752 1,014,301 11,537,419
ts-palko 22,002 47,235 1,076,903

Table E.1: Data statistics of benchmark linear programming problems.

122

Problem P-Simplex D-Simplex Barrier [167] (P) [167] (D) QULP

L1 six1000 132.0 7.0 27.0 1220.49 1266.06 > 2hr
L1 sixm250 2.0 0.0 1.0 13.3755 27.1818 189.975
Linf 520c 648.0 98.0 4.0 > 2hr 800.94 405.653
buildingen 95.0 15.0 3.0 1208.57 78.179 > 2hr
chrom1024-7 284.0 236.0 0.0 44.7325 0.0951451 1.57016
cont1 351.0 56.0 1.0 > 2hr 84.4562 0.0922321
cont11 > 2hr 1869.0 1.0 0.591868 0.150179 0.0101461
datt256 > 2hr 482.0 1.0 0.509509 > 2hr > 2hr
degme > 2hr > 2hr 21.39 > 2hr 1308.24 > 2hr
ex10 1849.0 150.0 46.0 0.09153 0.133641 > 2hr
fhnw-bin0 12.0 14.0 8.0 > 2hr > 2hr > 2hr
fome13 379.0 129.0 3.0 3596.68 > 2hr > 2hr
graph40-40 2902.0 2833.0 28.0 0.461357 0.198039 1.58717
irish-e 189.0 84.0 2.0 > 2hr > 2hr > 2hr
karted > 2hr > 2hr 7.0 1237.1 92.4798 1174.44
neos 67.0 187.0 315.0 > 2hr 1430.63 > 2hr
neos3 459.0 174.0 10.0 > 2hr > 2hr 8.84747
neos3025225 374.0 67.0 4.0 5.42892 7.47513 2.36517
neos5052403 2506.0 > 2hr 2.0 > 2hr > 2hr > 2hr
neos5251915 3758.0 4730.0 538.0 250.126 0.567204 2.53894
ns1687037 3397.0 1246.0 13.0 > 2hr > 2hr > 2hr
ns1688926 36.0 8.0 X > 2hr > 2hr > 2hr
nug08-3rd 2073.0 206.0 8.0 0.194123 0.56121 > 2hr
pds-100 244.0 27.0 12.0 > 2hr > 2hr > 2hr
psched3-3 82.0 141.0 8.0 > 2hr > 2hr > 2hr
qap15 240.0 2595.0 1.0 0.544318 1.74733 > 2hr
rail4284 1549.0 41.0 11.0 4.10997 4.7331 7.46578
rmine15 2561.0 598.0 180.0 > 2hr 275.661 2.47883
s100 50.0 112.0 6.0 > 2hr 1075.75 > 2hr
s250r10 16.0 29.0 4.0 > 2hr 1.66041 > 2hr
s82 > 2hr 5661.0 48.0 > 2hr > 2hr > 2hr
savsched1 153.0 875.0 5.0 4.45634 19.0491 > 2hr
scpm1 838.0 302.0 11.0 2.3414 2.75486 2.1328
set-cover > 2hr > 2hr 53.0 > 2hr > 2hr 13.974
square41 296.0 26.0 5.0 0.835887 19.7173 1.58969
stat96v1 32.0 29.0 0.0 1465.25 > 2hr 148.389
storm 1000 439.0 25.0 40.0 > 2hr > 2hr > 2hr
support10 392.0 15.0 27.0 0.108023 0.233563 0.289946
tp-6 > 2hr > 2hr 29.0 > 2hr > 2hr > 2hr
ts-palko > 2hr > 2hr 5.0 373.248 45.0329 486.173

Table E.2: Solvers comparison on benchmark linear programming problems for reaching stopping tolerance
in Eq. (7.13) with ε = 10−1. “X” means that the solver terminated and failed to solve this problem.

123

124

Bibliography

[1] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix
manifolds. Princeton University Press, 2009. 2.1.1, 6

[2] Gaurav Agarwal and David Kempe. Modularity-maximizing graph communities via
mathematical programming. The European Physical Journal B, 66(3):409–418, 2008.
2.3.4, 2.3.4, 6, 6.2, D.1

[3] Luis B Almeida. A learning rule for asynchronous perceptrons with feedback in a combi-
natorial environment. In Artificial Neural Networks. 1990. 2.2

[4] Brandon Amos. Differentiable optimization-based modeling for machine learning. PhD
thesis, Carnegie Mellon University, PA, USA, 2019. 2.2

[5] Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. arXiv preprint arXiv:1703.00443, 2017. 2.2, 5.2.2, C.5

[6] Josep Argelich, Chu Min Li, Felip Manya, and Jordi Planes. Max-sat-2016 eleventh
max-sat evaluation. http://maxsat.ia.udl.cat/, 2016. 3.3

[7] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite
programs. Journal of the ACM (JACM), 63(2):1–35, 2016. 2.1.1

[8] Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast algorithms for approximate semidefinite
programming using the multiplicative weights update method. In 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’05), pages 339–348. IEEE, 2005.
2.1.1

[9] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings
and graph partitioning. Journal of the ACM (JACM), 56(2):1–37, 2009. 2.3.1

[10] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012. 2.1.1

[11] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. Group formation
in large social networks: membership, growth, and evolution. In Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
44–54, 2006. 6.2

[12] Seung-Hee Bae, Daniel Halperin, Jevin D West, Martin Rosvall, and Bill Howe. Scal-
able and efficient flow-based community detection for large-scale graph analysis. ACM
Transactions on Knowledge Discovery from Data (TKDD), 11(3):1–30, 2017. 2.3.4, 6.1.1

[13] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Advances in

125

http://maxsat.ia.udl.cat/

Neural Information Processing Systems (NeurIPS), 2019. 2.2, 3

[14] Goran Banjac and Paul J Goulart. Tight global linear convergence rate bounds for operator
splitting methods. IEEE Transactions on Automatic Control, 63(12):4126–4139, 2018. ??

[15] Alexander Barvinok. A remark on the rank of positive semidefinite matrices subject to
affine constraints. Discrete & Computational Geometry, 25(1):23–31, 2001. 1, 4, 4.1

[16] Alexander I. Barvinok. Problems of distance geometry and convex properties of quadratic
maps. Discrete & Computational Geometry, 13(2):189–202, 1995. 2.1.1, 3, 3.1, 3.3, 5.1.1,
5.1.2

[17] Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent type
methods. SIAM journal on Optimization, 23(4):2037–2060, 2013. E.2.1

[18] Steven J. Benson and Yinyu Ye. DSDP5: Software for semidefinite programming. Technical
Report ANL/MCS-P1289-0905, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL, September 2005. URL http://www.mcs.anl.
gov/˜benson/dsdp. Submitted to ACM Transactions on Mathematical Software.
2.1.1

[19] Steven J. Benson and Yinyu Ye. DSDP5: Software for semidefinite programming. Technical
Report ANL/MCS-P1289-0905, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL, September 2005. URL http://www.mcs.anl.
gov/˜benson/dsdp. Submitted to ACM Transactions on Mathematical Software. 3.3,
4

[20] Srinadh Bhojanapalli, Nicolas Boumal, Prateek Jain, and Praneeth Netrapalli. Smoothed
analysis for low-rank solutions to semidefinite programs in quadratic penalty form. arXiv
preprint arXiv:1803.00186, 2018. 2.1.1

[21] Wayne Bialas and Mark Karwan. On two-level optimization. IEEE transactions on
automatic control, 27(1):211–214, 1982. 2.2

[22] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.
2.3.2

[23] Grigoriy Blekherman, Pablo A Parrilo, and Rekha R Thomas. Semidefinite optimization
and convex algebraic geometry. SIAM, 2012. 2.3.1, 1

[24] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of statistical mechanics: theory and
experiment, 2008(10):P10008, 2008. 2.3.4, 6, 6.1.1, 6.1.1, 6.2, 6.2

[25] Jérôme Bolte, Trong Phong Nguyen, Juan Peypouquet, and Bruce W Suter. From error
bounds to the complexity of first-order descent methods for convex functions. 165(2):
471–507, 2017. E.1.3

[26] Immanuel M Bomze, Florian Jarre, and Franz Rendl. Quadratic factorization heuristics
for copositive programming. Mathematical Programming Computation, 3(1):37–57, 2011.
2.3.4

[27] Immanuel M Bomze, Peter JC Dickinson, and Georg Still. The structure of completely

126

http://www.mcs.anl.gov/~benson/dsdp
http://www.mcs.anl.gov/~benson/dsdp
http://www.mcs.anl.gov/~benson/dsdp
http://www.mcs.anl.gov/~benson/dsdp

positive matrices according to their cp-rank and cp-plus-rank. Linear algebra and its
applications, 482:191–206, 2015. 2.3.4, 2

[28] Nicolas Boumal. A riemannian low-rank method for optimization over semidefinite
matrices with block-diagonal constraints. arXiv preprint arXiv:1506.00575, 2015. 2.1.1, 9

[29] Nicolas Boumal and P-A Absil. Low-rank matrix completion via preconditioned optimiza-
tion on the grassmann manifold. Linear Algebra and its Applications, 475:200–239, 2015.
2.1.1

[30] Nicolas Boumal, Bamdev Mishra, Pierre-Antoine Absil, Rodolphe Sepulchre, et al. Manopt,
a matlab toolbox for optimization on manifolds. Journal of Machine Learning Research,
15(1):1455–1459, 2014. 2.1.1, 3.3

[31] Nicolas Boumal, P-A Absil, and Coralia Cartis. Global rates of convergence for nonconvex
optimization on manifolds. arXiv preprint arXiv:1605.08101, 2016. 2.1.1, 3.1.1

[32] Nicolas Boumal, Vlad Voroninski, and Afonso Bandeira. The non-convex burer-monteiro
approach works on smooth semidefinite programs. In Advances in Neural Information
Processing Systems, pages 2757–2765, 2016. 2.1.1, 3, 3, 3.1.1, 3.11, A.5

[33] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004. 7.3

[34] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004. 1, 2.1, 3

[35] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. Linear
matrix inequalities in system and control theory. SIAM, 1994. 1, 2.1

[36] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran
Nikoloski, and Dorothea Wagner. On modularity clustering. IEEE transactions on knowl-
edge and data engineering, 20(2):172–188, 2007. 2.3.4, 6

[37] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Accurate and conservative estimates
of mrf log-likelihood using reverse annealing. In Artificial Intelligence and Statistics, pages
102–110, 2015. 2.3.2

[38] Samuel Burer. A gentle, geometric introduction to copositive optimization. Mathematical
Programming, 151(1):89–116, 2015. 2.3.4, 2.3.4

[39] Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving
semidefinite programs via low-rank factorization. Mathematical Programming, 95(2):
329–357, 2003. 2.1.1, 2.3.2, 3, 3.3

[40] Samuel Burer and Renato DC Monteiro. Local minima and convergence in low-rank
semidefinite programming. Mathematical Programming, 103(3):427–444, 2005. 3.1.1, 6

[41] Emmanuel Candes and Benjamin Recht. Exact matrix completion via convex optimization.
Communications of the ACM, 55(6):111–119, 2012. 1, 2.1, 3

[42] David Carlson, Patrick Stinson, Ari Pakman, and Liam Paninski. Partition functions from
rao-blackwellized tempered sampling. In International Conference on Machine Learning,
pages 2896–2905, 2016. 2.3.2

127

[43] Oscar Chang, Lampros Flokas, Hod Lipson, and Michael Spranger. Assessing satnet’s
ability to solve the symbol grounding problem. In NeurIPS, 2020. 4

[44] Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems (NeurIPS),
2018. 2.2

[45] Nuri Cingillioglu and Alessandra Russo. Deeplogic: End-to-end logical reasoning. arXiv
preprint arXiv:1805.07433, 2018. 2.3.3, 5

[46] Wang-Zhou Dai, Qiu-Ling Xu, Yang Yu, and Zhi-Hua Zhou. Tunneling neural perception
and logic reasoning through abductive learning. arXiv preprint arXiv:1802.01173, 2018.
2.3.3

[47] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhut-
dinov. Transformer-XL: Attentive language models beyond a fixed-length context. In
Annual Meeting of the Association for Computational Linguistics (ACL), 2019. 3

[48] Bhaskar DasGupta and Devendra Desai. On the complexity of newman’s community
finding approach for biological and social networks. Journal of Computer and System
Sciences, 79(1):50–67, 2013. 2.3.4

[49] Rina Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelli-
gence, 113(1-2):41–85, 1999. 2.3.2

[50] Rina Dechter and Irina Rish. Mini-buckets: A general scheme for bounded inference.
Journal of the ACM (JACM), 50(2):107–153, 2003. 2.3.2

[51] Josip Djolonga and Andreas Krause. Differentiable learning of submodular models. In
Advances in Neural Information Processing Systems, pages 1013–1023, 2017. 2.2

[52] Priya L Donti, Brandon Amos, and J. Zico Kolter. Task-based end-to-end model learning
in stochastic optimization. arXiv preprint arXiv:1703.04529, 2017. 2.2

[53] Mirjam Dür. Copositive programming–a survey. In Recent advances in optimization and
its applications in engineering, pages 3–20. Springer, 2010. 2.3.4

[54] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, and Armin Askari. Implicit deep
learning. arXiv:1908.06315, 2019. 2.2

[55] Murat A Erdogdu, Asuman Ozdaglar, Pablo A Parrilo, and Nuri Denizcan Vanli. Conver-
gence rate of block-coordinate maximization burer-monteiro method for solving large sdps.
arXiv preprint arXiv:1807.04428, 2018. A.2

[56] Stefano Ermon, Carla Gomes, Ashish Sabharwal, and Bart Selman. Taming the curse of di-
mensionality: Discrete integration by hashing and optimization. volume 28 of Proceedings
of Machine Learning Research, pages 334–342, Atlanta, Georgia, USA, 17–19 Jun 2013.
PMLR. URL http://proceedings.mlr.press/v28/ermon13.html. 2.3.2

[57] Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data.
Journal of Artificial Intelligence Research, 61:1–64, 2018. 2.3.3, 5

[58] Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and
complementarity problems. Springer Science & Business Media, 2003. 7.2.2

128

http://proceedings.mlr.press/v28/ermon13.html

[59] Alan Frieze and Mark Jerrum. Improved approximation algorithms for max k-cut and
max bisection. In International Conference on Integer Programming and Combinatorial
Optimization, pages 1–13. Springer, 1995. 2.3.1, 2.3.2, 2.3.4, 2.3.4, 4, 4.1, 4.1, 4.1, 4.1, 6,
B.2

[60] Roy Frostig, Sida Wang, Percy S Liang, and Christopher D Manning. Simple map inference
via low-rank relaxations. In Advances in Neural Information Processing Systems, pages
3077–3085, 2014. 2.3.2

[61] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability for antiferro-
magnetic spin systems in the tree nonuniqueness region. Journal of the ACM (JACM), 62
(6):1–60, 2015. 4

[62] Ad Garcez, Tarek R Besold, Luc De Raedt, Peter Földiak, Pascal Hitzler, Thomas Icard,
Kai-Uwe Kühnberger, Luis C Lamb, Risto Miikkulainen, and Daniel L Silver. Neural-
symbolic learning and reasoning: contributions and challenges. In Proceedings of the AAAI
Spring Symposium on Knowledge Representation and Reasoning: Integrating Symbolic
and Neural Approaches, Stanford, 2015. 2.3.3

[63] Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979. 4

[64] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on pattern analysis and machine
intelligence, (6):721–741, 1984. 2.3.2

[65] Michelle Girvan and Mark EJ Newman. Community structure in social and biological
networks. Proceedings of the national academy of sciences, 99(12):7821–7826, 2002. 6.2

[66] Michel X Goemans and David P Williamson. New 34-approximation algorithms for the
maximum satisfiability problem. SIAM Journal on Discrete Mathematics, 7(4):656–666,
1994. 3.3

[67] Michel X Goemans and David P Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of the
ACM (JACM), 42(6):1115–1145, 1995. 2.3.1, 2.3.3, 2.3.4, 3, 3.2.1, 3.2.1, 3.2.2, 8, 4, 4.1,
5.1.1, 5.1.2, 6

[68] Gene H Golub and Charles F Van Loan. Matrix computations, volume 3. JHU Press, 2012.
3.1.2

[69] Carla P Gomes, Willem-Jan van Hoeve, and Lucian Leahu. The power of semidefinite pro-
gramming relaxations for max-sat. In International Conference on Integration of Artificial
Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming,
pages 104–118. Springer, 2006. 2.3.3, 1

[70] Leonard J Gray and David G Wilson. Nonnegative factorization of positive semidefinite
nonnegative matrices. Linear algebra and its applications, 31:119–127, 1980. 2.3.4

[71] Patrick Groetzner and Mirjam Dür. A factorization method for completely positive matrices.
Linear Algebra and its Applications, 591:1–24, 2020. 2.3.4

[72] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics,

129

and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008. D.1

[73] W Keith Hastings. Monte carlo sampling methods using markov chains and their applica-
tions. 1970. 2.3.2

[74] Samuel B Hopkins et al. Mean estimation with sub-gaussian rates in polynomial time.
Annals of Statistics, 48(2):1193–1213, 2020. 2.3.1

[75] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing
deep neural networks with logic rules. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages
2410–2420, 2016. 2.3.3

[76] Adel Javanmard, Andrea Montanari, and Federico Ricci-Tersenghi. Phase transitions
in semidefinite relaxations. Proceedings of the National Academy of Sciences, 113(16):
E2218–E2223, 2016. 2.3.4, 2.3.4

[77] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the ising
model. SIAM Journal on computing, 22(5):1087–1116, 1993. 4

[78] Michael I Jordan and Martin J Wainwright. Semidefinite relaxations for approximate
inference on graphs with cycles. In Advances in Neural Information Processing Systems,
pages 369–376, 2004. 1, 2.1, 3

[79] Satyen Kale. Efficient algorithms using the multiplicative weights update method. 2007.
2.1.1

[80] Hariprasad Kannan, Nikos Komodakis, and Nikos Paragios. Tighter continuous relaxations
for map inference in discrete mrfs: A survey, 2019. 2.3.2

[81] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning graphs.
The Bell system technical journal, 49(2):291–307, 1970. 2.3.4, 6.1.1

[82] Subhash A Khot and Nisheeth K Vishnoi. The unique games conjecture, integrality gap
for cut problems and embeddability of negative-type metrics into ` 1. Journal of the ACM
(JACM), 62(1):8, 2015. 2.3.1

[83] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations, 2015. 5.2.1

[84] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009. 7

[85] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected crfs with
gaussian edge potentials. In Advances in neural information processing systems, pages
109–117, 2011. 4.3.3, 4.3.3, B.7, B.7

[86] Jean Lasserre. The moment-sos hierarchy. 2.3.1, 1

[87] Jean B Lasserre. An explicit exact sdp relaxation for nonlinear 0-1 programs. In Inter-
national Conference on Integer Programming and Combinatorial Optimization, pages
293–303. Springer, 2001. 2.3.1, 1

[88] Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM

130

Journal on optimization, 11(3):796–817, 2001. 1, 2.3.1, 2.3.4, 1

[89] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 5.2.3

[90] Ching-pei Lee and Stephen J. Wright. Revisiting superlinear convergence of proximal
Newton methods to degenerate solutions, 2021. 7.2.2

[91] Jason D Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I Jordan, and
Benjamin Recht. First-order methods almost always avoid saddle points. Math. Program.,
176(1–2):311–337, July 2019. ISSN 0025-5610. 3, 3.1.1, 3, A.3, A.3, A.4, 5, 6

[92] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009. 6.2

[93] Pei-Zhen Li, Ling Huang, Chang-Dong Wang, and Jian-Huang Lai. Edmot: An edge
enhancement approach for motif-aware community detection. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
479–487, 2019. 2.3.4

[94] Wu Li. Error bounds for piecewise convex quadratic programs and applications. SIAM
Journal on Control and Optimization, 33(5):1510–1529, 1995. 7.2.1

[95] Xudong Li, Defeng Sun, and Kim-Chuan Toh. An asymptotically superlinearly convergent
semismooth Newton augmented lagrangian method for linear programming. SIAM Journal
on Optimization, 30(3):2410–2440, 2020. 2.4, 7, ??, 1

[96] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun. Scribblesup: Scribble-supervised
convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3159–3167, 2016. B.7

[97] Chun Kai Ling, Fei Fang, and J. Zico Kolter. What game are we playing? end-to-end
learning in normal and extensive form games. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, pages 396–402, 2018. doi:
10.24963/ijcai.2018/55. 2.2

[98] Qiang Liu, Jian Peng, Alexander Ihler, and John Fisher III. Estimating the partition function
by discriminance sampling. In Proceedings of the Thirty-First Conference on Uncertainty
in Artificial Intelligence, pages 514–522, 2015. 2.3.2

[99] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning
with slot attention. arXiv preprint arXiv:2006.15055, 2020. 2

[100] Zhi-Quan Luo, Wing-Kin Ma, Anthony Man-Cho So, Yinyu Ye, and Shuzhong Zhang.
Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing
Magazine, 27(3):20–34, 2010. 2.3.1

[101] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic programming. In Advances in Neural
Information Processing Systems, pages 3749–3759, 2018. 2.3.3

[102] John E Maxfield and Henryk Minc. On the matrix equation XTX = A. Proceedings of

131

the Edinburgh Mathematical Society, 13(2):125–129, 1962. 2.3.4

[103] Andres Medus, Guillermo Acuña, and Claudio Oscar Dorso. Detection of community
structures in networks via global optimization. Physica A: Statistical Mechanics and its
Applications, 358(2-4):593–604, 2005. D.1

[104] Sanjay Mehrotra. On the implementation of a primal-dual interior point method. SIAM
Journal on optimization, 2(4):575–601, 1992. 2.1.1

[105] Song Mei, Theodor Misiakiewicz, Andrea Montanari, and Roberto I Oliveira. Solving sdps
for synchronization and maxcut problems via the grothendieck inequality. arXiv preprint
arXiv:1703.08729, 2017. 3

[106] Dustin G Mixon, Soledad Villar, and Rachel Ward. Clustering subgaussian mixtures by
semidefinite programming. arXiv preprint arXiv:1602.06612, 2016. 2.3.4

[107] Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate
inference in graphical models. Journal of Machine Learning Research, 11:2169–2173,
August 2010. URL http://www.jmlr.org/papers/volume11/mooij10a/
mooij10a.pdf. 4.3.1, B.5

[108] Radford M Neal. Annealed importance sampling. Statistics and computing, 11(2):125–139,
2001. 2.3.2, 4, 4.3

[109] Alantha Newman. Complex semidefinite programming and max-k-cut. arXiv preprint
arXiv:1812.10770, 2018. 2.3.2

[110] Mark EJ Newman. Finding community structure in networks using the eigenvectors of
matrices. Physical review E, 74(3):036104, 2006. 2.3.4, 6.1.1

[111] Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in
networks. Physical review E, 69(2):026113, 2004. 2.3.4, 6, 6.2

[112] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer, second edition,
2006. 2.4

[113] Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, and Hoyt Koepke. Co-
ordinate descent converges faster with the Gauss-Southwell rule than random selection.
In Proceedings of the International Conference on Machine Learning, pages 1632–1641,
2015. E.1.1, E.2.1

[114] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator splitting
and homogeneous self-dual embedding. Journal of Optimization Theory and Applications,
169(3):1042–1068, June 2016. URL http://stanford.edu/˜boyd/papers/
scs.html. 6.3, 6.2, ??

[115] Naoto Ozaki, Hiroshi Tezuka, and Mary Inaba. A simple acceleration method for the
louvain algorithm. International Journal of Computer and Electrical Engineering, 8(3):
207, 2016. 2.3.4, 6.1.1

[116] Rasmus Berg Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. arXiv
preprint arXiv:1711.08028, 2017. 2.3.3, 5, 5.2.2

[117] Ioannis Panageas and Georgios Piliouras. Gradient descent only converges to minimizers:

132

http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf
http://www.jmlr.org/papers/volume11/mooij10a/mooij10a.pdf
http://stanford.edu/~boyd/papers/scs.html
http://stanford.edu/~boyd/papers/scs.html

Non-isolated critical points and invariant regions. arXiv preprint arXiv:1605.00405, 2016.
6

[118] Giorgio Parisi. Statistical field theory. Addison-Wesley, 1988. 2.3.2

[119] Kyubyong Park. Can neural networks crack sudoku?, 2016. URL https://github.
com/Kyubyong/sudoku. 5.2.2

[120] Sejun Park, Eunho Yang, Se-Young Yun, and Jinwoo Shin. Spectral approximate infer-
ence. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 5052–5061, Long Beach, California, USA, 09–15 Jun 2019.
PMLR. URL http://proceedings.mlr.press/v97/park19c.html. 2.3.2,
4, 4.3, 4.3, 4.3.2

[121] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000. 1, 2.3.1,
1

[122] Pablo A Parrilo. Semidefinite programming relaxations for semialgebraic problems. Math-
ematical programming, 96(2):293–320, 2003. 2.3.4

[123] Gábor Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity
of optimal eigenvalues. Mathematics of operations research, 23(2):339–358, 1998. 2.1.1,
2.3.2, 3, 3.1, 4, 3.3, 4.1, 5.1.1, 5.1.2, 6

[124] Nico Piatkowski and Katharina Morik. Stochastic discrete clenshaw-curtis quadrature. vol-
ume 48 of Proceedings of Machine Learning Research, pages 3000–3009, New York, New
York, USA, 20–22 Jun 2016. PMLR. URL http://proceedings.mlr.press/
v48/piatkowski16.html. 2.3.2

[125] Fernando J Pineda. Generalization of back propagation to recurrent and higher order neural
networks. In Advanced Neural Information Processing Systems, 1988. 2.2

[126] BT Poljak and NV Tretjakov. An iterative method for linear programming and its economic
interpretation. Matecon, 10:81–100, 1974. 2.4

[127] Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community detection.
Physical review E, 74(1):016110, 2006. 2.3.4

[128] Daniel Selsam, Matthew Lamm, Benedikt Bunz, Percy Liang, Leonardo de Moura,
and David L Dill. Learning a sat solver from single-bit supervision. arXiv preprint
arXiv:1802.03685, 2018. 2.3.3

[129] Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep
learning. In Proceedings of the 34th International Conference on Machine Learning, pages
3067–3075, 2017. 5, 5.2.1

[130] Michael Shub. Global stability of dynamical systems. Springer Science & Business Media,
2013. A.4

[131] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. A review on bilevel optimization: from
classical to evolutionary approaches and applications. IEEE Transactions on Evolutionary
Computation, 22(2):276–295, 2017. 2.2

133

https://github.com/Kyubyong/sudoku
https://github.com/Kyubyong/sudoku
http://proceedings.mlr.press/v97/park19c.html
http://proceedings.mlr.press/v48/piatkowski16.html
http://proceedings.mlr.press/v48/piatkowski16.html

[132] Allan Sly and Nike Sun. The computational hardness of counting in two-spin models on
d-regular graphs. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, pages 361–369. IEEE, 2012. 4

[133] David Sontag, Talya Meltzer, Amir Globerson, Tommi S Jaakkola, and Yair Weiss. Tight-
ening lp relaxations for map using message passing. arXiv preprint arXiv:1206.3288, 2012.
2.3.2

[134] Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezny, Steven Schockaert, and Ondrej
Kuzelka. Lifted relational neural networks: Efficient learning of latent relational structures.
Journal of Artificial Intelligence Research, 62:69–100, 2018. 2.3.3

[135] David Steurer. Fast sdp algorithms for constraint satisfaction problems. In Proceedings
of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 684–697.
SIAM, 2010. 2.1.1

[136] Jos F Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones.
Optimization methods and software, 11(1-4):625–653, 1999. 2.1.1, 6.2

[137] Chaitanya Swamy. Correlation clustering: maximizing agreements via semidefinite pro-
gramming. In Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 526–527. Society for Industrial and Applied Mathematics, 2004. 2.3.4,
6.1.1

[138] MF Sykes, JW Essam, and DS Gaunt. Derivation of low-temperature expansions for the
ising model of a ferromagnet and an antiferromagnet. Journal of Mathematical Physics, 6
(2):283–298, 1965. 4

[139] Vincent A Traag, Rodrigo Aldecoa, and J-C Delvenne. Detecting communities using
asymptotical surprise. Physical Review E, 92(2):022816, 2015. 2.3.4

[140] Vincent A Traag, Ludo Waltman, and Nees Jan van Eck. From louvain to leiden: guaran-
teeing well-connected communities. Scientific reports, 9(1):1–12, 2019. 2.3.4, 6, 6.1.1, 6.2,
6.1.3, 5, 6.3, 6.2, 6.2, 6.2, 6.2, 3

[141] Sebastian Tschiatschek, Aytunc Sahin, and Andreas Krause. Differentiable submodular
maximization. arXiv preprint arXiv:1803.01785, 2018. 2.2

[142] Lieven Vandenberghe, V Ragu Balakrishnan, Ragnar Wallin, Anders Hansson, and Tae
Roh. Interior-point algorithms for semidefinite programming problems derived from the
kyp lemma. In Positive polynomials in control, pages 195–238. Springer. 2.1.1

[143] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, 2017. 3

[144] Jun Wang, Tony Jebara, and Shih-Fu Chang. Semi-supervised learning using greedy
max-cut. Journal of Machine Learning Research, 14(Mar):771–800, 2013. 2.3.4

[145] Po-Wei Wang and J. Zico Kolter. Low-rank semidefinite programming for the max2sat
problem. In AAAI Conference on Artificial Intelligence, 2019. 5.1.1, 5.1.2

[146] Po-Wei Wang and J. Zico Kolter. Low-rank semidefinite programming for the max2sat
problem. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,

134

pages 1641–1649, 2019. 2.3.3, 4.1, 1

[147] Po-Wei Wang and J. Zico Kolter. Community detection using fast low-cardinality semidef-
inite programming. In Advances in Neural Information Processing Systems (NeurIPS),
2020. 2.1.1, 6

[148] Po-Wei Wang and Chih-Jen Lin. Iteration complexity of feasible descent methods for
convex optimization. Journal of Machine Learning Research, 15:1523–1548, 2014. 7.2.1,
E.2.1

[149] Po-Wei Wang and Chih-Jen Lin. Iteration complexity of feasible descent methods for
convex optimization. Journal of Machine Learning Research, 15(1):1523–1548, 2014.
3.1.1, 6

[150] Po-Wei Wang, Matt Wytock, and Zico Kolter. Epigraph projections for fast general convex
programming. In Proceedins of the International Conference on Machine Learning, pages
2868–2877, 2016. 7.2.1

[151] Po-Wei Wang, Wei-Cheng Chang, and J. Zico Kolter. The mixing method: low-rank
coordinate descent for semidefinite programming with diagonal constraints. arXiv preprint
arXiv:1706.00476, 2017. 2.1.1, 2.3.3, 4, 4.1, 5, 5.1.1

[152] Po-Wei Wang, Priya L Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep
learning and logical reasoning using a differentiable satisfiability solver. arXiv preprint
arXiv:1905.12149, 2019. 2.2, 4.1, 5

[153] Po-Wei Wang, Chirag Pabbaraju, and J. Zico Kolter. Efficient semidefinite-programming-
based inference for binary and multi-class mrfs. In Advances in Neural Information
Processing Systems (NeurIPS), 2020. 2.1.1, 4

[154] Sida I Wang, Roy Frostig, Percy Liang, and Christopher D Manning. Relaxations for
inference in restricted boltzmann machines. arXiv preprint arXiv:1312.6205, 2013. 4, 4.2,
4.3, 4.3.2

[155] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks.
nature, 393(6684):440, 1998. 6.2

[156] Zaiwen Wen, Donald Goldfarb, Shiqian Ma, and Katya Scheinberg. Row by row methods
for semidefinite programming. Industrial Engineering, pages 1–21, 2009. 3.3

[157] Zaiwen Wen, Donald Goldfarb, and Katya Scheinberg. Block coordinate descent methods
for semidefinite programming. In Handbook on Semidefinite, Conic and Polynomial
Optimization, pages 533–564. Springer, 2012. 3.3

[158] Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline:
Decision-focused learning for combinatorial optimization. In AAAI Conference on Artificial
Intelligence, 2018. 2.2

[159] Ezra Winston and J Zico Kolter. Monotone operator equilibrium networks. arXiv preprint
arXiv:2006.08591, 2020. 2.2

[160] Stephen J Wright. Primal-dual interior-point methods. SIAM, 1997. 2.1.1

[161] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic

135

loss function for deep learning with symbolic knowledge. In Proceedings of the 35th
International Conference on Machine Learning, pages 5498–5507, 2018. URL http:
//proceedings.mlr.press/v80/xu18h.html. 2.3.3

[162] Fan Yang, Zhilin Yang, and William W Cohen. Differentiable learning of logical rules for
knowledge base reasoning. In Advances in Neural Information Processing Systems, pages
2319–2328, 2017. 2.3.3, 5

[163] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on
ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015. 6.2

[164] Liu Yang. Distance metric learning: A comprehensive survey. 2006. 3

[165] Zhao Yang, René Algesheimer, and Claudio J Tessone. A comparative analysis of commu-
nity detection algorithms on artificial networks. Scientific reports, 6:30750, 2016. 2.3.4,
6

[166] Jonathan S Yedidia, William T Freeman, and Yair Weiss. Understanding belief propagation
and its generalizations. Exploring artificial intelligence in the new millennium, 8:236–239,
2003. 2.3.2

[167] Ian En-Hsu Yen, Kai Zhong, Cho-Jui Hsieh, Pradeep Ravikumar, and Inderjit S. Dhillon.
Sparse linear programming via primal and dual augmented coordinate descent. In Advances
in Neural Information Processing Systems, 2015. 2.4, 7, ??, 7.3, ??, ??, 7.2, 7.3, 7.3, ??,
??, 7.4, ??, ??

[168] Hao Yin, Austin R Benson, Jure Leskovec, and David F Gleich. Local higher-order
graph clustering. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 555–564, 2017. 2.3.4

[169] Ming Yuan. High dimensional inverse covariance matrix estimation via linear programming.
The Journal of Machine Learning Research, 11:2261–2286, 2010. 7

[170] Wayne W Zachary. An information flow model for conflict and fission in small groups.
Journal of anthropological research, 33(4):452–473, 1977. 6.2

[171] Ji Zhu, Saharon Rosset, Robert Tibshirani, and Trevor J Hastie. 1-norm support vector
machines. In Advances in neural information processing systems. Citeseer, 2003. 7, 7.3

136

http://proceedings.mlr.press/v80/xu18h.html
http://proceedings.mlr.press/v80/xu18h.html

	1 Introduction
	1.1 Thesis outline
	1.2 Itemized summary of contributions

	2 Background
	2.1 Semidefinite programming
	2.1.1 SDP solvers

	2.2 Learning by implicit differentiation
	2.3 Reasoning with semidefinite programs
	2.3.1 Approximation for NP-hard problems
	2.3.2 Inference in Markov Random Field
	2.3.3 Learning to reason with a differentiable satisfiability layer
	2.3.4 Community detection with modularity maximization

	2.4 Linear programming via efficient piecewise quadratic optimization

	3 The Mixing method for low-rank SDPs
	3.1 The Mixing method
	3.1.1 Convergence properties of the Mixing methods
	3.1.2 Proof of Theorem 3.4: The instability of non-optimal criticals points

	3.2 Applications
	3.2.1 Maximum cut problem
	3.2.2 Maximum satisfiability problem

	3.3 Experimental results
	3.4 Discussion

	4 Inference in Markov Random Field with fast low-rank SDPs
	4.1 Inference in multi-class MRFs
	4.2 Partition function estimation
	4.3 Experimental results
	4.3.1 Mode estimation
	4.3.2 Partition function estimation
	4.3.3 Image segmentation

	4.4 Discussion

	5 Learning to reason with a differentiable satisfiability layer
	5.1 A differentiable satisfiability solver
	5.1.1 Solving an SDP formulation of satisfiability
	5.1.2 SATNet: Satisfiability solving as a layer
	5.1.3 Computing the backward pass
	5.1.4 An efficient GPU implementation

	5.2 Experimental results
	5.2.1 Learning parity (chained XOR)
	5.2.2 Sudoku (original and permuted)
	5.2.3 Visual Sudoku

	5.3 Discussion

	6 Community detection using fast low-cardinality SDPs
	6.1 The Locale algorithm and application to community detection
	6.1.1 Generalizing the local move procedure by low-cardinality embeddings
	6.1.2 Rounding by changing the cardinality constraint
	6.1.3 The Leiden-Locale algorithm for community detection

	6.2 Experimental results
	6.3 Discussion

	7 Linear programming via efficient piecewise quadratic optimization
	7.1 The unconstrained piecewise quadratic formulation
	7.2 The QULP algorithm
	7.2.1 The coordinate descent method with linear convergence
	7.2.2 The semismooth Newton method with superlinear convergence
	7.2.3 A hybrid method

	7.3 Experimental results
	7.4 Conclusion

	8 Conclusion
	A Proofs for the Mixing methods
	A.1 Proof of Theorem 3.1: Convergence to critical points
	A.2 Proof of Theorem 3.3: Local Linear convergence
	A.3 Proof of Lemma 3.10: Divergence of Gauss-Seidel methods
	A.4 Proof of Theorem 3.5: Global convergence with a step size
	A.5 Proof of Lemma 3.11: Rank Deficiency in Critical Points

	B Proofs and additional experimental results for MRF
	B.1 Proof of Equivalence of (4.8) and (4.9)
	B.2 Derivation of (4.11)
	B.3 Proof of Theorem 4.1
	B.4 Pseudocode for AIS
	B.5 Mode estimation comparisons
	B.6 Performance of AIS with varying parameters
	B.7 Image Segmentation - more results

	C Derivations and additional experimental results for SATNet
	C.1 Derivation of the forward pass coordinate descent update
	C.2 Details on backpropagation through the MAXSAT SDP
	C.3 Proof of pseudoinverse computations
	C.4 Derivation of the backward pass coordinate descent algorithm
	C.5 Results for the 4 4 Sudoku problem
	C.6 Convergence plots for 9 9 Sudoku experiments

	D Proofs for the Locale algorithm
	D.1 Proof of Proposition 6.1
	D.2 Proof of Theorem 6.2
	D.3 Proof for Lemma D.1
	D.4 Experiments on networks with ground truth
	D.5 Pseudo-code for the Leiden-Locale algorithm

	E Proofs for the linear programming algorithm
	E.1 Proof of thm:ssn
	E.1.1 Global Convergence
	E.1.2 Local Superlinear Convergence With Unit Step Size
	E.1.3 Unit Step Size Acceptance

	E.2 Other Proofs
	E.2.1 Proof of thm:cd

	E.3 Additional Experiments
	E.3.1 Benchmark Problems

	Bibliography

