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Abstract

Machine learning algorithms and other statistical techniques are widely used to make inferences
with personal information, but systems built for this purpose may be detrimental to privacy
and social equity. Recent research proposes techniques intended to make these inferences
while preserving individuals’ privacy. This thesis 1) develops approaches for evaluating the
social impacts of machine learning systems and “privacy-preserving” approaches to analytics
and 2) theorizes about the role of these evaluations in holding accountable the architects and
operators of machine learning systems.

Part I focuses on the impacts of techniques intended to preserve privacy in machine learning
and other analytic systems. Chapter 1 estimates the impact of di!erentially private public
census statistics on evidence-based policy, finding that while statistical uncertainty creates
inequalities in the distribution of education funding, noise injected for privacy likely has
much less impact than existing data error (Steed, Liu, et al., 2022). Chapter 2 quantifies
the impact of added noise on key findings from a large sample of social science studies.
Chapter 3 develops a grounded theory of the adoption of privacy-preserving analytics from
qualitative interviews, uncovering processes by which adopting organizations may decouple
representations about privacy from the specifics of their implementation (Steed & Acquisti,
2025).

Part II explores approaches for evaluating social equity in machine learning systems and
the use of evaluations as mechanisms for accountability. In Chapter 4, we develop a method
for quantifying stereotypical associations in image embeddings and show that unsupervised
image generation models automatically learn racial, gender, and intersectional biases (Steed
& Caliskan, 2021). In Chapter 5, we taxonomize a dataset of artificial intelligence (AI)
audit tools and interview 35 audit practitioners, finding that the tools practitioners need
for AI accountability—including tools for harms discovery and advocacy—are comparatively
under-resourced (Ojewale et al., 2025).
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Introduction

Algorithmic systems, particularly machine learning (ML) systems, pose serious societal
concerns related to privacy and social equity. They are used to make consequential decisions
in finance, criminal justice, healthcare, and content moderation; but often, these systems do
not work (Raji, Kumar, et al., 2022). They are used to make statistical inferences about
people based on troves of personal data collected through a socioeconomic apparatus of mass
surveillance (Zubo!, 2019; Cohen, 2019; FTC Sta!, 2024); this arrangement perpetuates
discrimination, inequality, and other social harms (Benjamin, 2020; Skinner-Thompson, 2020).
Organizations have responded to privacy concerns by adopting further algorithmic techniques
for protecting individual privacy while performing statistical analysis; while promising in
theory, the practical impacts of these “privacy-preserving” techniques are uncertain.

Preventing and redressing the adverse impacts of algorithmic systems depends in part
on ongoing, consequential, empirical evaluation. This thesis 1) develops approaches for
evaluating the social impacts of machine learning systems and “privacy-preserving” approaches
to analytics and 2) theorizes about the role of these evaluations in holding accountable the
architects and operators of machine learning systems.

The results presented in this thesis weave together two key areas of contemporary technology
policy: data privacy and “artificial intelligence” (AI) accountability. Well-established infor-
mation privacy and data protection regimes—particularly in the European Union—focus on
preserving the individual right to privacy by restricting the ways organizations can process
personal data. Organizations across industry and government are pioneering deployments of
di!erential privacy, federated learning, and other approaches to reconcile business models
dependent on statistical inference with modern privacy regulations and consumer calls for
privacy. But these techniques are complex in theory and implementation, and their role in
privacy and data protection policy is still unsettled. Part I explores the adoption and impacts
of these “privacy-preserving” systems.

Regulation of the societal impacts of AI systems specifically is less mature than regulations
for data protection and information privacy. But policy attention has increased sharply,
particularly in response to the popularity of products that use ML techniques to generate text
and images. Recent policy proposals and enacted legislation in the United States and Europe
place particular emphasis on independent evaluation of algorithmic systems as a mechanism
for accountability : the ability to make consequential judgments about the performance of
algorithmic systems relative to societal expectations (Birhane et al., 2024). Part II focuses
on the practice of AI auditing.
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Policy debates around algorithmic systems often center on hard trade-o!s involved with
their development and deployment—trade-o!s between functionality and privacy, accuracy
and fairness, innovation and safety. At a minimum, evaluations can help demarcate the
frontier between these goals and provide an invaluable guide to considered, evidence-based
policy-making. But a core insight of this thesis is that thorough evaluation can also bring
to light deeper, systemic challenges in current practice—challenges that public policy must
acknowledge and address. Debates over the use of noise infusion techniques in public statistics
elide incredible certitude in data-driven policies and robustness shortcomings in scientific
methods (Steed, Liu, et al., 2022; Manski, 2011). Attempts to simply delete social biases
from AI text and image generators overlook stereotypes and inequalities endemic to large
training datasets (Steed & Caliskan, 2021; Steed, Panda, et al., 2022). Deployments of
“privacy-preserving” analytics in industry and government may fall short of advocates’ hopes
without careful oversight of technical details (Steed & Acquisti, 2025). Rigorous evaluations
surface these deeper issues, clarify policy deliberation, and, in some cases, point the way to
more robust reform.

The first part of this thesis is devoted to developing and applying methods to evaluate specific
algorithmic systems.

Chapters 1 and 2 evaluate algorithmic techniques for di!erential privacy, a mathematical
framework for limiting the sensitivity of ML and other data analysis methods to the presence
or absence of any individual’s information (Dinur & Nissim, 2003; Dwork et al., 2006).
Chapter 1 examines the most well-known and controversial application of di!erential privacy
to date: the Census Bureau’s use of di!erential privacy to release statistics from the 2020
Decennial Census (Abowd et al., 2022). In 2017, federal agencies used census data to guide
the distribution of over $1.5 trillion (Reamer, 2020). We evaluate how the Census Bureau’s
methods, if applied to other Census data products, could impact the allocation of federal
education funds to school districts—over $16.5 billion in 2021. Di!erential privacy is typically
achieved by adding statistical uncertainty, or noise, before sharing sensitive data. We find that
misallocations due to noise from a di!erentially private mechanism occur on the margin of
much larger misallocations due to existing data error, and we show that these misallocations
particularly disadvantage marginalized groups (Steed, Liu, Wu, & Acquisti, 2022). We
suggest policy reforms that could reduce the disparate impacts of both data error and privacy
mechanisms.1

Chapter 2 further investigates the possible impacts of widespread use of di!erential privacy
on the robustness of social science research, another key question of concern for researchers
and policymakers (Hotz et al., 2022; Acquisti & Steed, 2023). To quantify and compare the
impacts of noise injected for di!erential privacy, we replicated the key results of 50 empirical
studies published in economics and social science journals, evaluating whether published
findings replicate on noise-infused datasets. Under privacy budgets typical in industry, a non-
negligible number of findings no longer support the original claims. In particular, the claims

1In other work, we evaluate a privacy concern deterring census respondents; we demonstrate a reconstruction
attack that could identify subsidized households living in violation of occupancy guidelines, and show that
di!erential privacy is more e!ective against this attack than previous disclosure avoidance methods (Steed,
Qing, & Wu, 2024).

2



based on weaker original e!ect sizes are more likely to be nullified or even reversed. Again,
we find that even modest amounts of existing data error can alter findings. Di!erentially
private mechanisms may exacerbate these epistemic disparities—but the marginal impacts
of privacy protection are smaller, especially when the magnitude of data error is large. We
point towards robust estimation techniques that can better account for noise—from data
privacy protections or from data error.

Chapter 4 evaluates two image generation models, SimCLR and iGPT—precursors to the
popular products that are the subject of many contemporary AI policy discussions. We
contribute a method for quantifying stereotypical associations in embeddings produced
with image generation models and show that these embeddings encode racial, gender, and
intersectional biases mirror empirical measurements of social stereotypes and statistical
inequalities (Steed & Caliskan, 2021). We also demonstrate the tendency of these models
to generate images that sexualize female-passing faces while placing male-passing faces in
career-related attire—a tendency still exhibited by popular AI-powered photo editing apps
(Heikkilä, 2022).2

The remainder of this thesis discusses the role of such evaluations in holding accountable the
architects and operators of algorithmic systems.

Chapter 3 contributes a grounded theory of the growing adoption of privacy-preserving
analytics (PPA) techniques, from di!erential privacy to federated learning, in industry and
government. From interviews with PPA practitioners, we identify several mechanisms by
which organizations—particularly organizations with large, existing surveillance businesses—
may decouple representations about “privacy-preserving” algorithmic systems from the
specifics of their implementation (Steed & Acquisti, 2025). Like other algorithmic systems,
these techniques require continuous, consequential evaluation oversight to avoid “privacy
theater”—adoption for show.

Chapter 5 explores the practice of evaluating algorithmic systems—specifically ML systems—
and the landscape of tools available to its practitioners. With a taxonomy of hundreds of AI
audit tools and interviews with 35 AI audit practitioners, we find that while many (often
flawed) tools exist to aid with evaluation, the tools necessary to extend those evaluations
into accountability—through harms discovery and advocacy, for example—are comparatively
under-resourced (Ojewale, Steed, Vecchione, Birhane, & Raji, 2025). We contribute a set of
extensive policy recommendations for building more robust AI accountability infrastructure
(Raji, Vecchione, Birhane, Steed, & Ojewale, 2023b, 2023a, 2024).3

2In other work, we show that similar biases encoded in pre-trained large language models may persist
after fine-tuning, even after bias corrections to the fine-tuning dataset (Steed, Panda, Kobren, & Wick, 2022).

3In other work, we map out the stakeholders and institutions involved in AI auditing across government,
consulting, civil society, journalism, & academia to identify institutional antecedents of e!ective accountability
(Birhane, Steed, Ojewale, Vecchione, & Raji, 2024).
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Evaluating systems for
privacy-preserving analytics
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Chapter 1

Estimating Policy Impacts of
Statistical Uncertainty and Privacy

This chapter is reproduced from:

Steed, R., Liu, T., Wu, Z. S., & Acquisti, A. (2022). Policy impacts of statistical uncertainty
and privacy. Science, 377 (6609), 928–931. https://doi.org/10.1126/science.abq4481
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CHAPTER 1. IMPACTS ON POLICY

Out of $11.7 billion for select Title I grants in 2021,

$1.06 billion in lost funding due to quantifiable data error

+ $50.0 million lost

+ $0.771 million lost

More noise
injected for privacy

Less noise
injected for privacy

ε = 0.1

ε = 1.0 

Figure 1.1: Expected lost entitlements due to data error and privacy protections. Out of a total of
$11.7 billion in Title I basic, concentration, and targeted grants in 2021, we show expected sum of
lost entitlements over 1000 trials due to quantifiable data error alone (“data deviations”; blue), and
with the addition of noise injected for privacy (“privacy deviations”; blue plus red). Noise is injected
with the ω-di!erentially private Laplace mechanism. The margins of error at 99% confidence are too
small to be depicted—less than $4 million for all three bars. Note that for ω = 1.0, the additional
funding loss due to privacy deviations falls within the 90% margin of error for the impact of data
deviations alone.

1.1 Introduction

Di!erential privacy (Dwork et al., 2006) is an increasingly popular tool for preserving
individuals’ privacy by adding statistical uncertainty when sharing sensitive data. Its
introduction into US Census Bureau operations (Abowd et al., 2022), however, has been
controversial. Scholars, politicians, and activists have raised concerns about the integrity
of census-guided democratic processes, from redistricting to voting rights. The debate
raises important issues, yet most analyses of trade-o!s around di!erential privacy overlook
deeper uncertainties in census data (boyd & Sarathy, 2022). To illustrate, we examine
how education policies that leverage census data misallocate funding because of statistical
uncertainty, comparing the impacts of quantified data error and of a possible di!erentially
private mechanism. We find that misallocations due to our di!erentially private mechanism
occur on the margin of much larger misallocations due to existing data error that particularly
disadvantage marginalized groups. But, we also find that policy reforms can reduce the
disparate impacts of both data error and privacy mechanisms.

Di!erential privacy is the cornerstone of the Census Bureau’s updated disclosure avoidance
system (DAS) (Abowd et al., 2022). Designed to rigorously prevent reconstruction, reidenti-
fication, and other attacks on personal data, di!erential privacy formally guarantees that
published statistics are not sensitive to the presence or absence of any individual’s data by
injecting transparently structured statistical uncertainty (noise) (Dwork et al., 2006). But
even before di!erential privacy is applied, estimates from the decennial census, surveys such
as the American Community Survey (ACS), and other Census Bureau data products used
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for critical policy decisions already contain many kinds of statistical uncertainty, including
sampling, measurement, and other kinds of nonsampling error (US Census Bureau, 2020).
Some amount of those errors is quantified, but numerous forms of error are not (Groves &
Lyberg, 2010), including some nonresponses, misreporting, collection errors, and even hidden
distortions introduced by previous disclosure avoidance measures such as data swapping
(Christ et al., 2022). If quantified and unquantified errors alike are not acknowledged and
accounted for, policies that rely on census data sources may not distribute the impacts of
uncertainty equally.

In 2021, the US federal government appropriated over $16.5 billion in Title I funds (including
several special grants not analyzed here) to distribute to over 13,000 local education agencies
(LEAs)—typically school districts—using a formula that takes as input census estimates of the
number of children and children in poverty. School districts qualify for Title I grants on the
basis of the number or share of children in poverty (Snyder et al., 2019). However, the formula
does not account for deviations in the poverty estimates that could cause misallocations—
cases where the funding amount allocated to a school district di!ers from its entitlement in
an imaginary (boyd & Sarathy, 2022), noise-free world.

Researchers have recognized Title I as an important case study of policy-relevant privacy-
utility trade-o!s (Abowd et al., 2019), including misallocation after noise injection for
di!erential privacy (Pujol et al., 2020). We extend this work by comparing the policy impacts
of noise injected for privacy to the impacts of existing statistical uncertainty, contextualizing
preliminary error analyses by Census Bureau scientists (Abowd et al., 2022). Our results
empirically investigate analytical predictions and proposals from previous work on statistical
estimation and federal funding formulas (Zaslavsky & Schirm, 2002; National Research
Council, 2000, 2003).

We focus specifically on the way Title I implicitly concentrates the negative impacts of
statistical uncertainty on marginalized groups. Weakening privacy protection will do little to
help the most vulnerable—for these communities, participating in a census survey can be
especially risky, despite the benefits of voting rights protection and school funding. Historically,
abuse of census data facilitated internment of Japanese Americans and other injustices (boyd
& Sarathy, 2022). Today, a parent with a restrictive lease may not mention their children to
a census worker because they fear being kicked out by their landlord if their responses are
reidentified (Cork et al., 2020).

1.2 Simulating Noise in Title I Allocations

Prior work on di!erential privacy in the context of Title I is purely analytical, analyzes
abstracted components of funding formulas, or focuses only on basic grants (Abowd et al.,
2019; Pujol et al., 2020). By contrast, we fully replicate the Title I provisions for allocating
more than $11.6 billion in basic, targeted, and concentration grants using the same data
sources and procedures as the Department of Education, which is responsible for calculating
the o”cial Title I grant amounts each year (Snyder et al., 2019). We measure the impact of
data and privacy deviations on the 2021 allocations to 13,190 LEAs across the United States.
The primary data input is the Census Small Area Income and Poverty Estimates (SAIPE)
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from 2019—a table of counts of total population, children, and children in poverty in school
districts from all 50 states (excluding Puerto Rico and other territories) that incorporates
weighted survey estimates from the ACS (see Appendix A.2 for details).

In a given year, the SAIPE may vary due to several sources of error, including relative error
in the county-level estimate, error from other data sources used (e.g., tax data), and errors
from raking and recombination methods used to convert county estimates to school district
estimates (US Census Bureau, 2020). To simulate the e!ects of these “data deviations”—
quantified data errors (Spencer, 1985)—we generate alternative poverty estimates for each
school district from a normal distribution around the published estimate of children in poverty
in that district from the 2019 SAIPE, following prior work and Census Bureau guidance (US
Census Bureau, 2020) (Appendix A.2).

We then add “privacy deviations”—noise deliberately injected to achieve di!erential privacy.
The Census Bureau has not yet announced any concrete plans for updated disclosure avoidance
in the ACS, and the SAIPE currently does not inject noise for privacy on top of its inputs.
To illustrate how privacy deviations might a!ect these and similar products, and to guide
policy-makers as the Census Bureau develops new disclosure avoidance measures, we follow
prior work (Abowd et al., 2019; Pujol et al., 2020) in applying the Laplace mechanism, a
commonly used noise-injection procedure that is provably di!erentially private (Dwork et al.,
2006). Our hypothetical mechanism does not include the complex postprocessing applied
to the discrete Gaussian mechanism used in the decennial census; we only round negative
numbers to zero (Abowd et al., 2022).

The strength of di!erential privacy (described by the parameter ω) determines the magnitude
of privacy deviations (lower ω implies stronger privacy and generally more noise). ω measures
how much an individual’s decision to respond to a census survey increases their risk of
unwanted disclosure. It is not yet clear whether or how privacy deviations would be added
to a statistical product like the SAIPE in practice, and because the SAIPE incorporates
weighted survey estimates from the ACS, its sensitivity to changes in an individual’s response
is unclear. Instead, we try several reasonable privacy settings to provide an upper bound on
the magnitude of privacy deviations that might be added in practice (Abowd et al., 2019)
(Appendix A.2). We focus on ω = 0.1 and ω = 1 (Appendix A.7 additionally varies ω from 0.001
to 10). Previous work on Title I (Abowd et al., 2019) suggests ω ↑ 2.52; many applications
use similarly high values (Abowd et al., 2022), whereas di!erential privacy advocates often
prefer ω < 1.

The Title I legislation includes two post-formula provisions to achieve secondary policy goals.
The “hold harmless” provision (20 U.S.C. §6332) limits funding losses to between 5 and
15% per year and the “state minimum” provision (20 U.S.C. §6333) sets a formulaic floor
on the total amount received by each state. We treat the allocations generated without
these provisions as the o”cial formula-based “entitlements” for each district. Later, we
compare these entitlements and the real allocations produced with these provisions. For each
privacy setting, we compute the misallocation due to deviations by comparing the simulated
allocations after deviations to the o”cial entitlements. We repeat this procedure 1000
times, drawing new data and privacy deviations in each trial. Our metric of group-weighted
misallocation describes the expected misallocation borne by the average formula-eligible child

10



1.3. DIVERSION FROM MARGINALIZED GROUPS

in a given group nationwide, assuming that misallocation to a district is borne equally by all
its eligible students.

Of the roughly $11.7 billion distributed nation-wide in 2021, districts in our simulation expect
to lose a total of $1.06 billion (summing all losses in each simulation, then averaging summed
losses across 1000 simulations; SD = $0.04 billion) in entitlements to other districts due
to the Title I formula’s handling of existing (before di!erential privacy) data deviations
alone (see the first figure). The standard deviation in misallocation (computed by averaging
over 1000 trials) is about $835,000 (the average district receives around $880,000)—$237 per
student. When we add privacy deviations (for a relatively strong privacy setting ω = 0.1),
the expected total entitlement loss only increases by $50 million (4.7%; marginal SD = $2.9
million). For a less strong privacy setting (smaller privacy deviations; ω = 1), the increase is
negligible. The marginal impact is small because—as in the 2020 Decennial Census (Abowd
et al., 2022)—the magnitude of privacy deviations is comparable to the magnitude of data
deviations only in the least populous districts, even at a relatively strong privacy setting
(ω = 0.1) (Appendix A.7).

These costs are geographically asymmetrical. Certain population-sparse school districts,
especially in the Northwest, benefit greatly on average from data deviations (Appendix Fig-
ure A1a)—their small sample sizes induce proportionally larger data deviations, and, because
of their low absolute numbers of children in poverty (though poverty rates may still be
high), they have more room to gain funding than to lose funding. Then, because the federal
appropriation is fixed and allocations are zero sum, more populous districts, especially in
the Southeast, pay for that proportional increase in funding with a small “tax” (Pujol et al.,
2020). Less populous districts gain even more as they qualify for new grants (Zaslavsky &
Schirm, 2002) (Appendix Figure A2). Notably, although less populous, usually rural districts
gain funding on average from data deviations, their allocations are more volatile (Pujol et al.,
2020) (Appendix Figure A5).

When we add privacy deviations (for relatively strong privacy, ω = 0.1), gains by small
districts are even more exaggerated (Appendix Figure A1b). Unlike data deviations, where
the absolute variance increases with population size, our privacy deviations have the same
variance in every district, exceeding data deviations in magnitude only in the least populous
districts. Still, the marginal increase in cost to districts due to privacy deviations is much less
than the base-level misallocations resulting from data deviations, and the marginal change
reduces total misallocation about half the time.

1.3 Diversion from Marginalized Groups

Owing to Title I’s distribution of quantified data deviations alone, Black students and Asian
students can expect to lose around $5 and $8 per eligible student, respectively, whereas white
students gain over $2 per eligible child on average (see the second figure). (The average
district receives $1120 per eligible student.) Likewise, school districts with large Cuban,
Puerto Rican, and other Hispanic communities expect to lose funding (between $3 and $14 per
eligible student), whereas non-Hispanic districts gain (Appendix Figure A7). For a child in a
particular district in an unlucky year, the disparity may be worse. Whether a demographic
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group loses funding depends on whether its members tend to live in high- or low- poverty
districts. Often, this happens because the poverty rate in the group itself is high. Groups
that tend to live in denser, usually urban districts with more children in poverty lose out,
whereas groups that live in sparse, often rural districts with fewer children in poverty (though
the rate of poverty may be higher) gain. Geographically concentrated groups—such as tribal
nations or racial subgroups (Appendix A.4)—experience more volatility in outcomes across
trials, which depend on the population density and poverty rates where they live.

In a relatively strong privacy setting (ω = 0.1), our di!erential privacy mechanism aggravates
these disparities, especially for Black students, who lose more than twice as much funding on
average after noise is injected—possibly because Black students are more likely to attend
populous school districts where the costs of privacy deviations accumulate. But in less strong
privacy settings (ω ↑ 1), disparities change very little from the status quo when privacy
deviations are added (Appendix A.7).

To assess the impacts on noncategorical demographics, we also fit a generalized additive
model (GAM) to the school district-level combined misallocations (ω = 0.1) using dis-
trict population characteristics: population density, median household income, proportion
white, proportion Hispanic, proportion renter-occupied housing, and racial homogeneity (the
Herfindahl-Hirschman index). Fitting the GAM on a sample of 100 trials, we find that
districts with a median income between approximately $25,000 and $75,000 (about 56% of
districts) can expect to lose out because of deviations, whereas most other districts gain
(Appendix Figure A4). The 40% most population-dense districts can also expect to lose
funding. Conversely, districts that are less than 5% Hispanic tend to benefit from data and
privacy deviations.

1.4 Simple Reforms

Simple changes to the formula—including additional provisions currently required by law—
can alleviate or aggravate disparities. For example, adding the hold harmless provision
reduces the standard deviation in misallocation (relative to the formula entitlement) but
drastically increases disparities in outcomes for racial minorities (see the second figure). Hold
harmless prevents small districts from losing funding to data or privacy deviations, thereby
increasing the tax on more populous districts and their non-white residents. The state
minimum provision has a similar but smaller e!ect. Typically received by low population
states, the state minimum slightly increases the amount of grants to low population districts,
exacerbating disparities. This result illustrates a tension in evidence-based formula funding:
Because estimates for less populous geographies have higher variance in both privacy and
data deviations relative to their populations and entitlements, measures that overwhelmingly
benefit those small areas burden larger areas.

We tested proposed policy changes that could alleviate this tension (Appendix A.6). We
find that using multiyear averages with windows of increasing size decreases both overall
misallocation and outcome disparities compared to when we use the averaged poverty estimates
as a baseline (figs. S14 and S15). In general, using an average diminishes both data deviations
and the privacy deviations required to achieve di!erential privacy, limiting both increases in
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Figure 1.2: Expected misallocation by racial group. Expected misallocation borne by the average
formula-eligible child in a given census group nationwide is shown (assuming each child in a district
is a!ected by misallocation equally). Specifically, bars depict the nationwide sum of each district’s
misallocation multiplied by the proportion of respondents of a given census single race category in
that district, divided by the total nationwide number of eligible children of that race (SM section
2). Averaged over 1000 trials. The colored bars indicate the race-weighted misallocation due to
data deviations (data error) alone, with an error bar spanning a 90% normal confidence interval for
this quantity. The additional impact of privacy deviations is significantly di!erent (p < 0.01) for all
groups, according to a two-sample z-test.
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expected funding for less populous districts and alleviating worst-case outcomes. Averaging
may even be just as e!ective at stabilizing funding year to year as the hold harmless provision
(Zaslavsky & Schirm, 2002). We also tested requiring repeated years of ineligibility before
disqualifying districts from funding, which did not change overall misallocation—likely because
it permits more marginally wealthy districts to receive funding—but did reduce disparities
(figs. S14 and S15).

1.5 Paying for (Private) Data

Simple policy changes can alleviate disparities in the impact of statistical uncertainty, but
precisely targeted funding formulas will still have costs. Policy-makers could ensure that no
school district expects to lose money because of the underlying data deviations quantified in
our simulation by assigning just $107 million (SD = $31 million) in targeted payments to
individual districts that lose funding on average across 1000 simulations. The cost of stronger
privacy (using our simplified mechanism) could be much less: To compensate districts for
only the expected additional lost funding due to privacy deviations, policy-makers need only
distribute an extra $41 million (SD = $3.8 million) for stronger privacy (ω = 0.1), or $1.7
million (SD = $601,000) for less added privacy (ω = 1) (Appendix A.7). Still, a district’s
actual loss in any given year often greatly exceeds its expected loss, especially for less populous
districts. To compensate districts for both data and privacy deviations in all but the worst
5% of our simulations, an additional $4.7 billion would be needed in the stronger privacy
setting (ω = 0.1). The cost is greater if policy-makers wish to also compensate for the many
other forms of error not quantified here, or for a stronger privacy mechanism. It may be
di”cult to justify or legislate funding increases to just the districts expected to lose funding.
Simply increasing the total federal appropriation to Title I (benefiting all districts unequally)
by $135 million (the combined total expected loss) would only compensate for about half of
expected losses. However, a $4.7 billion increase (95% loss coverage) would compensate for
nearly all total expected losses and cut total 5% quantile misallocation roughly in half. The
White House’s proposed 2022 allocation—a $20 billion increase, since reduced to $1 billion
in Congress—would completely compensate for privacy and data deviations incurred under
the 2019 budget, but inequalities would remain. An overall budget increase would provide
“no-penalty” compensation (Pujol et al., 2020) for data and privacy deviations but would
not solve issues of relative equity (though budget increases do reduce the number of held
harmless districts).

1.6 Uncertainty-Aware Policy Design

The addition of noise for di!erential privacy exposes epistemic issues with formula design
predicted by early work on census-guided federal funding even before di!erential privacy
was first proposed (boyd & Sarathy, 2022; Zaslavsky & Schirm, 2002; National Research
Council, 2000, 2003). Indeed, our results suggest that the impacts of di!erential privacy
relative to other sources of error in census data could be minimal. But current legislation
holds few allowances for the impacts of statistical uncertainty. Use of census data for the
Title I formula is mandated “unless the Secretary and the Secretary of Commerce determine
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that some or all of those data are unreliable or . . . otherwise inappropriate” (20 U.S.C.
§6333). National Research Council studies, commissioned by the Department of Education
before ACS estimates were first incorporated in the SAIPE after 2005, warned against hard
thresholds and hold harmless provisions (National Research Council, 2000, 2003)—but these
provisions are still in e!ect. Recently, the Biden administration proposed a new Title I budget
that includes funding to improve the poverty estimates—but there are still no measures to
update the formula to handle uncertain inputs. Simply acknowledging the e!ects of data error
could improve future policy design for both formula funding and disclosure avoidance.

Our findings come with limitations. Injected noise is just the tip of the iceberg: Many
other unquantified forms of statistical uncertainty—including previous disclosure avoidance
methods—a!ect poverty estimates in di!erent ways (Groves & Lyberg, 2010). No confiden-
tiality measures are directly applied to the SAIPE, but its inputs (mainly ACS and IRS data)
may have hidden or unintended distortions due to swapping and other ad hoc disclosure
avoidance techniques (Christ et al., 2022). By replacing other methods of disclosure avoidance,
di!erential privacy could even reduce the amount of overall misallocation due to uncertainty.
Lacking an alternative source of poverty data, we do not assess the impacts of systematic
biases, including undercounts of marginalized groups. Our analysis of the Title I allocation
process also leaves out several elements that could a!ect the applicability of our findings to
the real-world distribution of funds, including small-district appeals (20 U.S.C. §6333) and
district-level heterogeneity in use of funds. Temporal trends in funding, in combination with
provisions like hold harmless, could compound the e!ects of deviations (Zaslavsky & Schirm,
2002).

Data error—from undercounts to sampling error to noise injection—will always a!ect evidence-
based policy to some degree. In 2017, 316 federal spending programs relied on US census
data to distribute over $1.5 trillion in federal funding across states, cities, and school districts
(Reamer, 2020). Uncertainty in census data—including intentionally added error for privacy—
will incur costs for stakeholders in those programs. But at least the quantifiable portion of
those costs can be mitigated with uncertainty-aware policy design and budget increases—an
avenue for compromise between targeted policy, equity, and also additional privacy.
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Estimating Research Impacts of
Statistical Uncertainty and Privacy

This chapter is reproduced from:

Steed, R., Mustri, E. A. S., & Acquisti, A. (2025). Impacts of Data Error and Di!erential
Privacy on Findings from Social Science.
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2.1 Introduction

Government agencies and private companies are crucial sources of social science data for public
research, but public releases of sensitive data carry privacy risks for individuals and groups.
Recently, organizations have turned to new “privacy-preserving” methods to strengthen
privacy protections in public data releases (Steed & Acquisti, 2025). One of the most popular
approaches is di!erential privacy (DP), a framework for preserving individual privacy (Dinur
& Nissim, 2003; Dwork et al., 2006) which has been adopted by Meta (King & Persily, 2020),
the Wikimedia Foundation (Adeleye et al., 2023), the U.S. Census Bureau (Abowd et al.,
2022), and many other organizations in government and industry (Desfontaines, 2021). These
deployments aim to mitigate concerns about reconstruction and re-identification attacks
aided by widely available commercial data and computing power (Abowd & Hawes, 2023;
Narayanan & Shmatikov, 2010).1

Applications of di!erential privacy, however, have met with disagreements and even controversy
about the appropriate balance of privacy and data usability in public statistics (boyd &
Sarathy, 2022; Hotz et al., 2022; Oberski & Kreuter, 2020). Di!erential privacy is usually
accomplished by injecting statistical noise when sharing statistics about sensitive personal
data, and researchers worry that statistical noise and other distortions could impact the
quality and feasibility of social science research (Hotz et al., 2022; Ruggles et al., 2019).

In this study, we investigate empirically the possible impacts of additive noise—arising from
existing data error or injected for data privacy—on scientific findings from regression analyses
common in the social sciences. We identified, collected, and replicated a benchmark of 177
key findings from 50 empirical studies published in economics and social science journals.
We imagine a counterfactual world where the social statistics used to produce these findings
were released using di!erentially private mechanisms.2 Replacing the original public datasets
with counterfactual versions simulated with additive data error and released with generic
di!erentially private mechanisms, we evaluate epistemic parity : the principle that published
findings should be replicable with a noise-infused dataset (Rosenblatt et al., 2023). Supposing
that researchers did not change their methods to account for added noise, would social science
studies reach the same conclusions if they instead relied on these noisy statistics?

We find that using privacy budgets typical in industry, between 61%–90% of simulated findings
(over 10 simulations) still support the original claims at confidence level ε = 0.1; 10%–39%
do not. These rates of epistemic disparity resulting from typical industry privacy budgets are
generally larger than what economists say they are willing to accept in public data (Williams,
Snoke, et al., 2024) but generally smaller than rates of disparity in large-scale replication
studies in economics and psychology (Camerer et al., 2016; Open Science Collaboration, 2015;
Silberzahn et al., 2018).

1There are many empirical examples of reconstruction attacks against public datasets, including attacks
on Massachusetts Group Insurance Commission data (Sweeney, 2002), the Personal Genome project (Sweeney
et al., 2013), the Netflix Prize dataset (Narayanan & Shmatikov, 2007), the Aircloak Challenge (Cohen &
Nissim, 2020), and, most recently, the 2010 and 2020 Decennial Censuses (Abowd et al., 2023; Dick et al.,
2023; Steed et al., 2024; Flaxman & Keyes, 2025).

2Specifically, we focus on the “trusted curator” paradigm in which an organization collects confidential
microdata centrally, computes aggregate statistics, and adds noise to each before sharing (Clark et al., 2024).
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We also analyze the antecedents of disparities due to additive noise, quantifying the impacts
of privacy budget, choice of mechanism, and other characteristics of the statistics and analysis.
In particular, we show that claims based on weaker initial e!ect sizes are more likely to
be contradicted by added noise, as are more quantitatively specific claims. We explore
how results from certain subfields of economics (e.g., Labor & Demographic Economics)
may be most impacted, particularly fields that rely on certain types of data (e.g., common
cross-sectioning variables such as age, education, and sex/gender).

Of course, di!erential privacy is not the only source of additive noise: social statistics already
contain measurement error and other kinds of non-sampling error (Groves & Lyberg, 2010;
Steed, Liu, et al., 2022). We find that even modest amounts of existing data error can alter
findings. Di!erentially private mechanisms do exacerbate epistemic disparities—but the
marginal impacts of privacy protection are smaller, especially when the magnitude of data
error is large.

Recent federal policy calls for the advancement of privacy-preserving data sharing across
public and private sectors (Biden, 2023; National Science and Technology Council, 2023).
The impacts of these measures would be widespread. The Integrated Public Use Microdata
Series (IPUMS) alone, for example, lists over 27,000 academic publications based on its
catalogue of U.S. census and survey data (IPUMS, 2024); the the Surveillance, Epidemiology,
and End Results (SEER) program claims more than 17,000 publications use its survey data
(Penberthy, 2023); and thousands more studies rely on other public statistics published by
government agencies and other organizations. Scholars have called for more research into
the potential impacts of di!erential privacy and similar techniques on research (Oberski &
Kreuter, 2020; Hotz et al., 2022; Acquisti & Steed, 2023). Our study provides an estimation
of the key trade-o!s involved and should serve as a useful guide for policymakers and data
curators designing the next generation of privacy-preserving technologies.

Related Work

Our work builds on several studies examining the trade-o!s between privacy and usability in
public statistics, particularly in the context of the U.S. census (Abowd & Schmutte, 2019;
Kenny et al., 2021; Pujol et al., 2020; Brummet et al., 2022; Steed, Liu, et al., 2022; Barrientos
et al., 2023).

In particular, Williams, Barrientos, et al. (2024) evaluate the quality of di!erentially private
linear regression methods with a highly controlled simulation study. Closest to our work
is that of Rosenblatt et al. (2023), who explore the impacts of synthetic microdata on the
results of eight social science studies. The methods evaluated in these studies—for generating
DP synthetic microdata and running DP linear regressions on private data—may be critical
in future microdata products but are not yet widespread. Our study examines the simpler
and more common practice of infusing noise into aggregate statistics before public release,
used in the 2020 Decennial Census (Abowd et al., 2022) and the Social Science Facebook
URLs dataset collaboration (King & Persily, 2020).

Our method of analysis is also inspired by recent replication e!orts in psychology and
economics, particularly the Open Science Collaboration (Open Science Collaboration, 2015;
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Obs. Mean SD Min. Q1 Q2 Q3 Max.

Studies 50
Years since publication 50 6.66 4.38 0 3.00 6.00 10.0 15.0
Num. results replicated 50 3.54 1.89 1.00 2.00 3.00 4.00 10.0
Citations (Semantic Scholar) 50 167. 514. 1.00 20.2 42.0 97.2 3520.

Results 177
Model degrees of freedom 175 62.5 122. 1.00 7.00 20.0 40.0 513.
Num. vars about people 177 7.51 6.98 1.00 3.00 6.00 11.0 50.0
Proportion of personal vars. privatized 177 0.838 0.232 0.167 0.714 1.00 1.00 1.00
Answers primary or co-primary RQ 43
Supports claim mentioned in abstract 157

Personal data variables 496
Successfully privacy protected 404
Control var. 312
Dependent var. 88
Primary independent var. 33
Instrumental var. 9
Instrumented var. 20
Subsetting var. 8
Weighting var. 20
Booleans/categorical 7
Count, log count 55
Mean, log mean 264
Ratio 4
Median 5
More complex query 152

Table 2.1: Descriptive statistics. Variables may be used in multiple results within the same study.

Camerer et al., 2016) and the Many Labs replication project (Klein et al., 2014).

2.2 Data

To find social science studies with working replication packages, we used 1) the Inter-University
Consortium for Political and Social Research (ICPSR)’s replication package repository (Inter-
University Consortium for Political and Social Research, 2025) and 2) Find Economic
Articles with Data, a tool for searching English economics articles with accessible data/code
supplements (Kranz, 2024). The database includes articles from journals with standardized
data accessibility policies, including American Economic Association (AEA) journals, the
Review of Economics and Statistics, and several other journals. We searched for studies
using aggregate statistics by filtering for articles whose title or abstract uses one of several
common, mostly geographic, aggregation levels such as “county”, “school”, “neighborhood”,
or “organization”. Appendix B.2.1 lists all our search terms.

We manually reviewed every article resulting from these searches, excluding studies that did
not use aggregate statistics (e.g., studies exclusively analyzing microdata). We also excluded
studies that did not use personal data: information about individuals or households. To
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construct a sample representative of contemporary research, we restricted the sample to
articles published in the last 15 years that use personal data collected within the last 70
years (similar to the U.S. Census Bureau’s policy of keeping data confidential for 72 years
after collection).3 We attempted to reproduce 93 studies that met these criteria4, correcting
the authors’ code only as much as necessary to reproduce their results without error.5 We
were unable to replicate 43 studies, most often either because the replication package did not
include the datasets necessary to reproduce the main results or because the datasets did not
include enough information to implement di!erential privacy. Less often, our reproductions
failed because of bugs or discrepancies in the replication packages.

Our current sample includes 50 successfully replicated studies, summarized in Table 2.1.
For each article, we read the abstract and introduction and identified the key empirical
claims made by the author. We then identified the statistical estimate or estimates (hereafter
results) supporting those claims—in our sample, all regression coe”cients—and modified the
authors’ code to extract those key numerical results and related statistics (standard error,
t-statistic, degrees of freedom, etc.).6 For most studies, we reproduced 2–4 results (Table 2.1).
Most results we reproduced (157 of 177) substantiate a key empirical claim mentioned in the
article’s abstract (Table 2.1).

2.3 Methods

2.3.1 Di!erential Privacy

To investigate the counterfactual where the aggregate statistics in these studies were released
with di!erential privacy, we injected noise into all statistics about personal data used to
produce the key results in our sample.

We compare two approaches: 1) pure di!erential privacy with the Laplace mechanism (Dwork
et al., 2006), a simple randomized mechanism for releasing statistics; and 2) zero-concentrated
di!erential privacy (zCDP) (Dwork & Rothblum, 2016; Bun & Steinke, 2016) with the
Gaussian mechanism, a relaxation of di!erential privacy with improved utility.7 These are

3We also excluded 3 studies with code primarily written Matlab, which was not supported by our computing
infrastructure. The final sample consisted of only Stata scripts, though a few studies included unused R and
Matlab scripts.

4The terms “repeatability”, “reproducibility”, and “replicability” are often interchanged (Barba, 2018).
Here, we use the term “reproduce” to mean achieving the same results with the same data and methods
and “replicate” to mean achieving similar results using the same methods but di!erent (noisy) data (Broman
et al., 2017).

5We recorded the expected values of key results reported in the article and in every run, and we
automatically checked those values against the results produced by our copy of the authors’ code to check
for errors introduced by our environment or modifications. All of our successful reproductions matched the
authors’ original results to same the level of numerical precision reported in their published article.

6To help standardize our analysis, we did not consider visual findings (multiple results represented by
visual relation in a figure) (Rosenblatt et al., 2023). Visual findings substantiated key claims in only a small
handful of the studies we found.

7Specifically, we used the implementation of the Laplace and Gaussian mechanisms in the opendp Python
library (Shoemate et al., 2025).
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two simple, popular, and generalizable DP mechanisms data curators might implement,
though there are more optimal techniques for utility, such as data-adaptive mechanisms
(Cummings et al., 2024).

In pure di!erential privacy, the parameter ω measures how much the inclusion of information
about an individual in the dataset increases the risk that their personal information is revealed
by published statistics (Def. 1).

Each study in our sample uses a set of ϑ variables (or covariates) F (D)k↑ω =
(f1(D), f2(D), . . . fω(D)): statistical queries fj : Dn ↓ Rk over a confidential dataset
of personal information D about n individuals.8 Each statistical query fj(D) =
(fj(d1), fj(d2), . . . , fj(dk)) is provided for k di!erent disjoint subsets di ↔ D (e.g., the total
population of each region in each year).

Definition 1 (Dwork et al., 2006). Let M : Dn ↓ Y be a randomized algorithm. M is
ω-(pure) di!erentially private if for all pairs of datasets D,D

↓ ↔ D
n which di!er in only one

entry and all possible outputs T ↗ Y :

Pr[M(D) ↔ T ] → e
εPr[M(D↓) ↔ T ].

Pure DP with the Laplace mechanism. To simulate releasing F (D)k↑ω with ω-(pure)
di!erential privacy, we apply the Laplace mechanism to each query fj(D) (Def. 3).

We rely on basic composition (Dwork & Roth, 2013, Corollary 3.15) to release all the
queries F (D)k↑ω with ω-DP: we use ε

ω
-DP mechanisms MLap

j
(D) for each query fj such that

M
Lap(D) =

(
M

Lap

1 (D),MLap

2 (D), . . . ,MLap

ω
(D)

)
is ω-(pure) DP.

For some but not all studies, it is possible that the same individual could contribute to
multiple subsets (usually statistics from di!erent time periods). For simplicity, we only
protect privacy with respect to an individual’s contribution to one subset di; in general, then,
our mechanisms are thus ω di!erentially private with respect to the contribution of each
individual within every subset. Since individuals typically contribute to only one geographic
region, our “unit” of privacy is usually (individual)-(time period) (Desfontaines, 2021). With
that assumption, #fj(D) = #fj(di) ↘di ↔ D (equivalent to parallel composition).

Definition 2 (Dwork & Roth, 2013). The lp-sensitivity of a function f : X n ↓ Rk is:

#f = max
D,D→

||f(D)≃ f(D↓)||p,

where D,D
↓ are datasets which di!er in exactly one entry.

Definition 3 (Dwork & Roth, 2013). Let f : Dn ↓ Rk. The Laplace mechanism is defined
as

M
Lap(D) = f(D) + (Y1, . . . , Yk) ,

where the Yi are independent random variables drawn from the Laplace distribution Yi ⇐
Lap

(
!f

ε

)
(Def 6), and #f is the l1-sensitivity of the query function f (Def. 2).

8This dataset is typically not provided in the replication package; we only have access to the statistics
F (D) used by the original authors.
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zCDP with the Gaussian mechanism. Zero-concentrated di!erential privacy (zCDP;
Def. 4) is a relaxation of pure di!erential privacy that provides better accuracy (Dwork &
Rothblum, 2016; Bun & Steinke, 2016). The Gaussian mechanism (Def. 5) satisfies zCDP.
This mechanism was used to release statistics from the 2020 Decennial Census (Abowd et al.,
2022).

zCDP uses a di!erent privacy parameter, ϖ. A mechanism that satisfies pure DP also

satisfies cZDP; specifically, if M satisfies ω-DP, then M satisfies
(
ω
exp(ε)→1
exp(ε)+1 <

ε
2

2

)
-zCDP

(Bun & Steinke, 2016; Steinke, 2024). We use this bound for comparison between the two
mechanisms hereafter. zCDP has the same basic composition property as pure DP (Bun
& Steinke, 2016, Lemma 1.7), so we again apply ϑ

ω
-zCDP mechanisms MGauss

j
(D) such that

M
Gauss(D) =

(
M

Gauss

1 (D),MGauss

2 (D), . . . ,MGauss

ω
(D)

)
is ϖ-zCDP.

Definition 4 (Bun & Steinke, 2016). Let M : Dn ↓ Y be a randomized algorithm. M

is ϖ-zCDP if for all pairs of datasets D,D
↓ ↔ D

n which di!er in only one entry and all
ε ↔ (1,⇒):

Dϖ(M(D)||M(D↓)) → ϖε,

where Dϖ(M(D)||M(D↓)) is the ε-Rényi divergence between the distributions of M(D) and
M(D↓) (Def. 7).

Definition 5 (Bun & Steinke, 2016). Let f : Dn ↓ Rk. The Gaussian mechanism is
defined as

M
Gauss(D) = f(D) + (Z1, . . . , Zk) ,

where the Zi are independent random variables drawn from the Gaussian distribution

Zi ⇐ N
(

(!f)2

2ϑ

)
, and #f is the l2-sensitivity of the query function f (Def. 2).

Sensitivity and post-processing. For each study in our sample, we identified all the
statistics about personal data used to produce the key results. For each statistic, we defined
the global sensitivity of the query used to produce each individual statistic (Def. 2). When
the global sensitivity of a query was undefined (for a ratio of counts, for example), we first
deconstructed the query into component queries with defined sensitivity (e.g., the numerator
and denominator counts), applied the DP mechanism to each component independently, then
reconstructed the query.9 Some variables are used as regression weights and must not be
negative; for those variables, we clipped the noisy values to 0. Di!erential privacy is preserved
through these post-processing steps (Dwork & Roth, 2013, Proposition 2.1).

Because almost all of the datasets used in our sample contain only aggregate statistics, and not
the confidential microdata used to construct them, we make several simplifying assumptions
about the data curator that likely di!er from a real-world deployment of DP.

9We included these pre- and post-processing computations even in control runs where no noise was injected,
checking to ensure that our reconstructions matched the original data.
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1. For a few statistics used in our sample, the authors’ replication package did not provide
enough information to define sensitivity directly or reconstruct the statistical query.
For some queries on continuous data (mostly about income or wages), we were able to
make a simplifying assumption about the sensitivity (e.g., that income does not exceed
three standard deviations above the mean). We did not apply any privacy protection
to the remaining statistics (18.5% of statistics in our sample).

2. We assume that individuals have equal influence over statistics. In reality, particularly
for survey-based estimates, some subgroups may be weighted more heavily than others.
A real-world deployment of di!erential privacy must take this into account (see, e.g.,
Drechsler & Bailie, 2024; Seeman et al., 2024).

3. Statistics are likely to be released as part of larger datasets, and data curators may
have to split privacy loss budgets amongst many other queries. We only distribute the
privacy budget ω or ϖ over the statistics used within each study.

4. In our mechanisms, each statistic receives an equal share of the privacy budget. In
real-world deployments such as the U.S. Decennial Census, data curators may tune
budgets more carefully to preference certain critical statistics (Abowd et al., 2023).

5. The statistics used in these studies may be derivatives or linkages of other public datasets
produced by other data curators; because these precursor datasets and pre-processing
steps are usually not accessible, we apply di!erential privacy to the combined set of
statistics used directly by the authors, as if all the data curators shared a single total
privacy budget ω or ϖ for each study.

6. We assume that the statistics used in our sample are not already subject to formal
privacy protections. In reality, the data that produced these statistics may have been
subject to cell suppression, random swapping, censoring, or other disclosure avoidance
techniques before publication.

2.3.2 Additive Data Error

To compare the e!ects of DP mechanisms to the possible impacts of existing data error, we
simulate possible alternative versions of the dataset by drawing counterfactual observations
from a normal distribution conditioned on the original statistics.

Variance. Unfortunately, the replication datasets rarely include data-based variance esti-
mates. Instead, for each observed statistic xij = fj(di), we simply assume some coe”cient of
variation cij and simulate sampling variances vij = (cijx

1→b

ij
)2 in proportion to the observed

statistic. The parameter b models the rate at which the standard deviation cijxij diminishes
with xij; by default, b = 0 (constant returns). We test a range of coe”cients of variation
c ↔ R+ and b ↔ R.

Shrinkage. Let µ represent the true statistics. Simply drawing replicates from

µ|x ⇐ N (x, diag(v)) (2.1)
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is inadmissable for the true population statistics µ (Stein, 1956). Cui et al. (2023) suggest
two admissable constructions using shrinkage estimation from multi-level empirical Bayesian
modeling. Following Cui et al. (2023), we simulate replicates with the general form

µij|x ⇐ N ((1≃ Bij)xij +Bijϱj, (1≃ Bij)vij) , (2.2)

where ϱj, Bij ↔ [0, 1] are functions of xij and vij (Morris & Lysy, 2012; Cui et al., 2023).
This method adjusts the counterfactual estimate to account for a baseline ϱj with variance
reduced by 100Bij%. The Hudson-Berger construction (Hudson, 1974; Berger, 1976) uses
ϱ = 0 and

B
HB

ij
= min

(
1,

(k ≃ 2)/vij∑
k

m=1(xmj/vmj)2

)
.

The Morris-Lysy construction (Morris & Lysy, 2012) uses ϱj = x̄j and

B
ML

ij
=

vij

vij + v̄
H

j
(1≃ B̂

H

j
)/B̂H

j

,

where v̄
H

j
= k/

∑
k

i=1 v
→1
ij

is the harmonic mean of vj, B̂H

j
= (k ≃ 3)/(k ≃ 1)ς̂2, and ς̂

2 =

(k ≃ 1)→1
∑

k

i=1(xij ≃ x̄j)2/vij is the mean squared error in the observed statistic xj.

Generally, the Hudson-Berger construction imposes more shrinkage for large vij , while Morris-
Lysy imposes more shrinkage for smaller vij. We also present results for the inadmissable
no-shrinkage construction (Eq. 2.1) for comparison.

2.3.3 Metrics

To evaluate the potential impact of di!erential privacy, we reproduced each study in our
sample with datasets treated with these di!erentially private mechanisms. We compare these
counterfactual results to the original results using several standardized metrics developed
in previous replication studies (Open Science Collaboration, 2015; Rosenblatt et al., 2023;
Williams, Barrientos, et al., 2024).

Epistemic parity. Following Rosenblatt et al. (2023), we test for epistemic parity : the
principle that empirical claims should be replicable with a di!erentially private dataset. We
define a finding as a comparison between a statistical estimate (a result) and one or more
other statistical estimates or scalars (for example, a study may find that the coe”cient on x

is greater than zero when y is regressed on x). We define a claim as an epistemic assertion
based on one or more findings (e.g. that the e!ect of x on y is positive) (Rosenblatt et al.,
2023; Cohen et al., 2018). We use the term epistemic disparity to describe cases where
epistemic parity does not hold.

To evaluate epistemic parity, we express each claim as a Boolean condition. For each
finding, we defined a range of possible coe”cient values such that the original finding
holds true (Fig. B.3.4). Epistemic parity requires that all the findings supporting a given
claim remain in this range. This definition of parity is depends on our interpretation of
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the authors’ empirical claims—for example, most claims require only that a statistical
significant coe”cient have a particular sign; others rely on particular relationships between
the magnitude of di!erent coe”cients; a few rely on coe”cient values to fall within a particular
range (Figure B.3.4).

We test whether counterfactual estimates produced from di!erentially private data produce
epistemically similar results: estimates whose confidence intervals fall inside the region
of epistemic parity at a given confidence level ε. For example, if the authors’ original
claim depended on a coe”cient having a positive value, epistemic parity would require the
coe”cient’s confidence interval to be entirely positive at confidence level ε. We except
quantitative claims not originally based on statistical significance (e.g., a claim that an
estimate fall between 0.1 and 0.2 despite its original confidence interval exceeding those
bounds).

We call this notion of epistemic parity strict epistemic parity. Since strict epistemic parity is
based on our subjective reading of the original authors’ claims, we also test three standardized
notions of epistemic parity that do not depend on the authors’ claims:

• Sign parity : whether the counterfactual estimate ˆϱDP has the same sign as the original
estimate ϱ̂ at an equivalent level of significance for the test on H0 : ϱ = 0 vs.
HA : ϱ ⇑= 0.

• Sign reversal : whether the counterfactual estimate ˆϱDP has the opposite sign as the
original estimate ϱ̂ at an equivalent level of significance for the test on H0 : ϱ = 0 vs.
HA : ϱ ⇑= 0.

• Confidence interval coverage at ε: whether the original estimate falls within the
confidence interval of the counterfactual estimate at confidence level ε.10

Bias in standardized e!ect size. Authors often rely on significance thresholds to make
claims, but statistical significance is often an imprecise and arbitrary measure for epistemic
justification. Often, only a small change is required to move an estimate from one significance
level to another (Gelman & Stern, 2006). For added context, we also use a non-binary
measure of epistemic di!erence: the absolute di!erence between the counterfactual e!ect size
and the original e!ect size. To produce standardized e!ect sizes across studies, we follow
Open Science Collaboration (2015, Appendix A3) in converting each result to a common
e!ect size metric, the correlation coe”cient r computed from the t-statistic and residual
degrees of freedom ϑ for each result:

r =

√
t2/ϑ

t2/ϑ + 1
+ 1

(
sign(ϱ̂)sign( ˆϱDP)

)
. (2.3)

r is coded as negative if the sign of the counterfactual estimate does not match the sign of
the original estimate.

10Confidence intervals may give much better information about replicability than p-values, which can vary
widely over replications of the same statistical test (Cumming, 2008).
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Figure 2.1: Impacts of simulated additive data error alone (left), DP mechanisms alone (middle),
and the zCDP Gaussian mechanism after data error (right), evaluated at confidence level ε = 0.1,
averaged over all results and 10 simulations. Error bars depict 90% confidence intervals. Lower
values of the privacy parameter ω provide stronger privacy protection but require more injected
noise; curators commonly use 0.1 → ω → 10.

2.4 Results

2.4.1 Impacts of noise for di!erential privacy

Figure 2.1 presents the impacts of noise added for di!erential privacy on epistemic parity,
sign parity, and CI coverage evaluated at confidence level ε = 0.1. Additional metrics at
additional confidence levels (e!ective sample size and absolute di!erence) are depicted in
Figures B.3.1–B.3.2.

Though di!erential privacy advocates often prefer ω < 1 (Dwork et al., 2019), real-world
public datasets released with di!erential privacy tend to use values of ω greater than 1 and
sometimes even greater than 10—Google’s Community Mobility Reports use ω = 2.64 per
day, for example, and Facebook’s URLs dataset was released with (ω = 1.453, φ = 10→5)-DP
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(Desfontaines, 2021).

At ω = 10 with the pure DP Laplace mechanism, a relatively small amount of injected noise,
we observe epistemic parity at confidence level ε = 0.1 in around 90% of simulated findings
(over 10 replicates)—simulations where the results, when reproduced using di!erentially
private data, still support the authors’ original claims. The rate of parity decreases to 77%
at ω = 1 and 61% at ω = 0.1. Almost all of the disparities we observe are originally significant
results nullified by noise; the rate of originally insignificant results found to be significant after
noise is relatively small (4.3% at ω = 0.1). Using the ω

exp(ε)→1
exp(ε)+1 -zCDP Gaussian mechanism (a

relaxed privacy guarantee) noticeably increases the rate of parity, particularly for stronger
privacy budgets (ω < 10)—by 10 percentage points at ω = 1. We observe only slightly higher
rates of sign parity (matching sign and significance), a metric not based on our interpretation
of authors’ claims.

Are these levels of disparity acceptable to researchers? In a survey of 1,028 American
Economic Association members (Williams, Snoke, et al., 2024), around 60% of economics
researchers said they would be willing to accept estimates changing significance levels (from
p < 0.05) at a rate of up to 10% before they would sacrifice access to noisy estimates based
on administrative data.11 In our sample, sign disparity (similar to significance mismatch12)
at ε = 0.05 reaches 9% at ω = 10 with the pure DP Laplace mechanism—a relatively weak
privacy budget in typical deployments. And around 60% of economics researchers said they
were willing to accept estimates switching sign (similar to sign reversal13) at a rate of up to
5% before they would sacrifice access to noisy estimates based on administrative data. We
find that this occurs less often; even at a relatively strong budget ω = 0.1, significant positive
e!ects flip to significant negative e!ects, or vice versa, at a rate of only around 2.8% (ε = 0.1;
Figure B.3.2).

On the other hand, these levels of disparity are much lower than the rates observed in
large-scale replication studies (di!erent team, di!erent data, same methods) in economics and
other fields. Replicating 110 studies from economics and political science (same data, di!erent
methods), Brodeur et al. (2024) find that only 70% of robustness checks (changing weighting,
control variables, estimation methods, fixed e!ects, etc.) recover a significant e!ect in the

11These self-reported preferences may change with additional information and may not match revealed
preferences in specific contexts. Notably, over 55.2% of respondents said they had “Never heard of the concept”
of di!erential privacy and an additional 24.8% said they had heard of the term but were “not familiar with
any of the details” (Williams, Snoke, et al., 2024).

12Williams, Snoke, et al. (2024) define significance mismatch as “the relative frequency with which a
noisy estimate has a di!erent statistical significance (assume 0.05 level) than the estimate without noise”
(Appendix B.2.2). Respondents may have interpreted significance mismatch as sign disparity at ε = 0.05
(which would count as mismatches cases where estimates maintained significance but switched sign), but they
may also have interpreted it more literally (a mismatch is any change in significance, up or down, regardless
of sign). Under the latter definition, rates of significance mismatch are slightly lower (Figure B.3.1).

13Williams, Snoke, et al. (2024) define sign mismatch as “the relative frequency with which a noisy estimate
is expected to have a di!erent sign (positive or negative) than an estimate without noise” (Appendix B.2.2).
Respondents may have interpreted sign mismatch as sign reversal (excluding initially insignificant results),
but they may also have interpreted it more literally (any change in sign, regardless of significance). Under
the latter definition, the rate of sign mismatch reaches 10% at ω = 1 with the pure DP Laplace mechanism
(Figure B.3.1).
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same direction (p < 0.05). In our experiments, this rate of sign parity occurs at stronger
levels of privacy between ω = 1 and ω = 0.1 (Laplace mechanism).14 Similarly, a replication of
18 laboratory experiments from economics (Camerer et al., 2016) found a significant e!ect
in the same direction (p < 0.05) for only 11 studies (61% sign parity)—equivalent to the
e!ects of the Laplace mechanism with budget around ω = 0.1. The OpenScience project in
social psychology found that only 47 of 100 replicated 95% confidence intervals contained
their original e!ect sizes (Open Science Collaboration, 2015); in our experiments, this rate of
CI coverage (47%) occurs only when the privacy guarantee is quite strong, ω < 0.01 (Laplace
mechanism).

So while the rates of epistemic disparity we observe are often higher than thresholds economists
say they would accept, they are often lower than the rates of disparity observed in robustness
and replication experiments.

2.4.2 Antecedents of epistemic disparity

What characteristics—of studies, their results, and the data involved—are most associated
with epistemic disparities? Table 2.2 summarizes a linear model of the e!ect of various
mechanism, data, and result characteristics. We regress over the average epistemic parity at
ε = 0.1 for each result (N = 177) over all 10 simulations, controlling for study fixed e!ects.
We include all experimental conditions: for privacy (both mechanisms), 50 values of ω spaced
evenly on a log scale in [10→5

, 103].

Data characteristics. Column 1 presents the impacts of the basic privacy mechanism.
Each statistic in the datasets in our sample is the product of one or more statistical queries
(noisy counts, noisy sums, and noisy means). Those queries receive random noise from the
Laplace and Gaussian mechanisms based on (a) the privacy budget ω or ϖ = ω

exp(ε)→1
exp(ε)+1 and (b)

the global sensitivity of the query (Def. 2). Table B.1 demonstrates this model in isolation;
the ratio of the root mean squared deviation applied to each component query to the original
range of the unnoised query is almost completely explained by (1) log ω, (2) the ratio of
sensitivity to the original range of the statistic, and (3) the choice of mechanism. The total
noise added to each statistic depends on the noise added to its component queries and on
the operation used to combine them (e.g., a mean reconstructed with noisy sum over noisy
count); so in Column 1, we also control for the type of statistic.

As expected, epistemic parity decreases with sensitivity and increases with ω. Within the
values of ω we tested, a 10-fold increase in ω corresponds to a 4.1 percentage point increase
in the rate of epistemic parity. This estimate is robust to the introduction of other data-
and result-related controls. Using zCDP with the Gaussian mechanism corresponds to a
3.5≃0.2 log ω percentage point increase over the Laplace mechanism (the Gaussian mechanism
performs slightly better for ω < 10; see Fig. 2.1).

14Moreover, di!erent analysts may disagree at similar rates when replicating with the same dataset (same
data, di!erent team, di!erent methods). When given the same dataset and research question, 20 of 29
analysts found a significant positive e!ect while 9 did not observe a significant relationship (Silberzahn et al.,
2018)—equivalent to 69% sign parity, similar to the rate of successful robustness checks (Brodeur et al., 2024).
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Column 2 adds characteristics of the original regression analysis used to produce the findings.
For example, all else equal, each additional covariate (model degree of freedom) reduces the
rate of epistemic parity by 0.4 percentage points, even after controlling for the number of
statistics noised.

Especially significant is the size of the population used to produce each statistic. We proxy
for this variable by labeling the time and panel indices for each regression (Figs. B.3.8–
B.3.9): compared to regressions over small-population statistics (county-, tract-, block-,
school district-, prefecture-level), regressions over larger-population statistics (1st divisions
including states, districts, and provinces) correspond to 32.4 percentage points higher epistemic
parity on average. These larger area statistics usually have the same sensitivity as their
smaller counterparts (e.g., a simple population count with sensitivity 1), and thus less noise
proportional to their size. However, these e!ects are negligible when we control for the
original e!ect size r.

After controlling for study fixed e!ects, we find no significant e!ect based on whether
the independent (treatment) or dependent (outcome) variables are noised or whether the
regression used instrumental variables. However, the privacy-utility curve for findings utilizing
IV regressions is noticeably steeper than for other regressions; IV estimates tend to have
result in lower rates of epistemic parity (Fig. B.3.6).

Epistemic factors. Notably, some disparities appear even when very little noise is added.
Under the Hudson-Berger data error construction with a coe”cient of variation of just 0.1%,
2% of the findings we reproduced are no longer supported; similarly, at ω = 1000, an extremely
low privacy setting, there are still disparities in around 2% of findings. The CI coverage
and di!erence in e!ect size, which do not depend on the authors’ claims about their results,
are less sensitive to small amounts of noise. (The rate of 90% CI coverage is 99.2% with the
Laplace mechanism at ω = 1000.)

Column 3 examines the impact of characteristics related to the strength of authors’ original
epistemic claims. Findings based on initially weaker evidence are more likely to be contradicted
by noisy estimates; a 0.1 decrease in the original e!ect size corresponds to a 2.74 percentage
point decrease in the rate of epistemic parity. Figures 2.2 depicts this finding graphically
with results from the ω-DP Laplace mechanism. This finding mirrors robustness research in
social science; (Brodeur et al., 2024), for example, find that half of robustness checks of point
estimates significant at 0.05 < p < 0.1 succeed, compared to 70% of robustness checks of
higher-e!ect point estimates p < 0.05.

This e!ect is primarily attributable to attenuation, the classic observation that regression
estimates deflate and standard errors inflate in the presence of measurement error (Hausman,
2001; Carroll et al., 2006). Attenuation is clearly visible in the downward shift in the
distribution of e!ect sizes as ω decreases (Figs. B.3.1, B.3.3). In this ideal case, estimates
with additional measurement error are systematically smaller in magnitude, below the original
e!ect size; most of the disparities we document fit this profile (Figure 2.2a). In their robustness
checks of 110 social science studies, Brodeur et al. (2024) observe significance levels 77% of
the original; in their replication of 18 economics laboratory experiments, Camerer et al. (2016)
similarly observe e!ect sizes attenuated to 66% of their original value on average.
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But in noisier (e.g., lower-powered) settings where the true e!ect is small, measurement error
may increase, not decrease, estimates even as the standard errors increase (Loken & Gelman,
2017). Selecting for significance could lead authors to make positive claims about seemingly
large estimates when in fact they are drawn from the upper end of the distribution of possible
e!ects. This phenomena could help explain why some disparities occur even when little noise
is added—the claims are especially sensitive to small amounts of noise despite relatively
little change to the e!ect size (Figure 2.2a). For ω > 1, epistemic disparities come almost
exclusively from findings with initially lower e!ect sizes (e.g., r < 0.6; Fig. 2.2a).

The type of epistemic claim also matters. There are almost no disparities in null findings
(when the original claim requires a statistically insignificant coe”cient). Most disparities
occur when the original claim requires a coe”cient with a certain sign or within a certain
interval (Figure B.3.5).

Consequences. What do these antecedents mean for di!erent types of research? In general,
the preceding analysis suggests that studies or subfields will be particularly impacted if
they use more social statistics, rely on statistics about smaller subgroups (e.g., blocks and
counties), use more covariates, make more quantitatively specific claims, or rely on weaker
e!ect sizes.

Fig. B.3.10 presents the privacy-utility curves for the 42 studies in our sample published with
Journal of Economic Literature classification codes. (The analysis that follows focuses on
results from the zCDP Gaussian mechanism applied to the original statistics.) Of the top-level
categories with more than 10 findings, studies in Industrial Organization and Macroeconomics
& Monetary Economics have noticeably higher rates of epistemic parity compared to areas
such as Health, Education, & Welfare Economics and Labor & Demographic Economics, likely
because those subfields tend to use more social statistics and examine smaller populations
(Fig. B.3.10).

We observe similar trends in the rate of epistemic parity across types of personal data
(Fig. B.3.11). Regressions using statistics about age, education, and sex/gender tend to have
lower rates of epistemic parity, possibly because these variables are often crossed with other
variables to create statistics about smaller subgroups. This could have consequences for
studies of subgroup di!erences, an ongoing source of concern for researchers (Santos-Lozada
et al., 2020). Election and crime statistics tend to have slightly higher rates of parity, maybe
because these statistics in our datasets mostly involve large, simple counts (e.g., of votes or
crimes committed).

We also cross-section the privacy utility rates by the type of data source: administrative,
census, survey, or blended estimates. We find that rates of epistemic parity are already
generally lower for survey products, and generally higher for blended estimates under our
assumptions (Figure B.3.12). The trade-o! curve for census products is nearly flat for ω > 1;
otherwise, the curves for most data types are similar to the average. However, the type of
data product can have great e!ects on the noise required for di!erential privacy which are not
accounted for in our mechanisms. For example, in our sensitivity analysis, we assume each
person contributes equally to each statistic, but many survey products and other statistical
estimations are weighted to give more influence to certain subgroups. And while applying
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Figure 2.2: Change in average standardized e!ect size (r) over 10 replicates as a result of applying
the Laplace mechanism with increasing privacy parameter ω. Lower values of the privacy parameter
ω provide stronger privacy protection but require more injected noise; curators commonly use
0.1 → ω → 10.

an algorithm to a simple random sample can yield smaller privacy loss than applying the
same algorithm to the entire population, this amplification e!ect may not hold for other
survey designs (Bun et al., 2023; Drechsler & Bailie, 2024; Seeman et al., 2024). Work is still
ongoing to explore these considerations and develop optimal DP-compatible design strategies
for surveys (U.S. Census Bureau, 2022; Seeman et al., 2024; Drechsler & Bailie, 2024) and
small-area estimation (Seeman et al., 2020).
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2.4.3 Impacts of data error

Of course, social statistics contain many di!erent kinds of existing data error, even before
data privacy protections are applied (Groves & Lyberg, 2010; Steed, Liu, et al., 2022).

We find that comparable epistemic disparities occur if statistics contain even modest amounts
of additive data error. For example, U.S. Census Bureau American Community Survey
guidance describes a coe”cient of variation of 1.5% as “very small” and “very reliable” for
aggregated count data (U.S. Census Bureau, 2018). Simulating data error with a coe”cient
of variation of just 1% results in sign disparity in 5% of counterfactual findings (Hudson-
Berger construction). A 5% coe”cient of variation increases sign disparity to 11%. Under
the Morris-Lysy construction, disparities are much, much higher—even just a coe”cient of
variation of 0.1% results in sign disparities in 20% of findings.

These choices of the coe”cient of variation may be quite conservative. Prior to 2022, Census
Bureau statistical quality standard F1-6 required that the majority of key estimates have a
coe”cient of variation less than 30% (U.S. Census Bureau, 2013); more complicated data
products, such as the school district-level Small Area Income and Poverty Estimates, are
published with coe”cients as high as 67% (Maples, 2008).

Again, according to self-reported preferences, researchers may find these existing discrepancies
unacceptable. Of the 1,028 American Economic Association members surveyed, only around
60% of those surveyed said they would accept a 10% rate of changing significance (from
p < 0.05) (Williams, Snoke, et al., 2024); the rate of sign parity reaches 13% from data error
with just a 5% coe”cient of variation (Hudson-Berger, ε = 0.05). Moreover, researchers
may well be overconfident about the robustness of existing research. Asked to predict
the robustness of 17 non-experimental American Economic Review papers, 359 economists
overestimated their robustness reproducibility (46% sign parity on average at p < 0.05) by
about 15 percentage points (Campbell et al., 2024). Similar overconfidence may extend to
robustness to existing data error.

Given the potentially large e!ects of additive error on epistemic disparity in research based
on counterfactual productions of these social statistics, it is crucial to also evaluate privacy
mechanisms on the margin of these existing errors. The third panel of Figure 2.1 presents
the marginal impact of adding the ω exp(ε)→1

exp(ε)+1 -zCDP Gaussian mechanism after simulating data

error with the Hudson-Berger construction. Even with a small amount of data error (coe!.
of variation 0.1%), a budget of ω = 10 increases epistemic disparity by 7 percentage points
in addition to the base e!ects of data error—less than the 9% rate of disparity estimated
without accounting for data error (zCDP Gaussian mechanism). Moreover, the marginal
impact decreases as the magnitude of simulated data error increases: when the coe”cient
of variation is 20%, still below the Census Bureau’s 2022 quality standard, the privacy
mechanism increases disparity by a mere 0.6 percentage points.
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2.5 Discussion

At first glance, these findings paint a bleak picture—modest amounts of noise (from either
di!erential privacy mechanisms or existing data error) can have noticeable impacts on the
scientific findings in our sample. Should authors continue to use the same procedures, as we
imagine here, the potential impacts of existing data error, much less widespread adoption
of di!erential privacy, appear non-trivial. These findings echo replication and robustness
concerns across fields of science: numerous studies have shown that results from psychology
and economics tend to replicate with weaker e!ects and often do not support the original
conclusions at rates often similar to or higher than what we observe (Klein et al., 2014; Open
Science Collaboration, 2015; Camerer et al., 2016; Silberzahn et al., 2018). Other studies
similarly show how findings can be sensitive to small changes in the data; Broderick et al.
(2023), for example, find that the results of some economics papers can be overturned by
removing less than 1% of the sample, even when t-statistics are very large.

But there is an upside: acknowledging and accounting for the impacts of existing data error
clarifies the trade-o!s associated with privacy protections. For example, we show that the
relative impacts of di!erential privacy mechanisms are noticeably slimmer after accounting for
the e!ects of existing data error. Whether these results translate to real-world deployments
depends on several factors. Our privacy mechanisms are simple and generic; with more
e!ort and expertise, their design could be optimized to the individual context of each data
product. Moreover, we make several unrealistic assumptions: not all statistics in each study
are likely to be made private; not all organizations may implement di!erential privacy for
every statistic; and some statistics may remain invariant for operational or legal reasons,
as in the 2020 Decennial Census (Abowd et al., 2022). Still, there are ways our setup may
underestimate the impact of di!erential privacy: in the real world, these statistics may have
to share privacy budget with other statistics, and for survey, blended, and estimated statistics,
the noise required to achieve DP may be higher than we assume here. Future work may
build on these empirical findings to explore optimal mechanism designs and privacy budget
allocations tailored for social science research.

More importantly, this framing contradicts the assumption that di!erential privacy poses
entirely novel problems for science. Social science data already includes measurement error,
missing values, and other distortions; di!erential privacy may be viewed as only a modern
addition to existing sources of data error (Steed, Liu, et al., 2022; Gong, 2022; Groves &
Lyberg, 2010). As our results demonstrate, statistical significance is a less useful signal in
noisier settings and may result in exaggerated estimates of e!ect size (Loken & Gelman,
2017). There are long-established methods for calibrating regression estimates to account for
additive error (Carroll et al., 2006; Cook & Stefanski, 1994). Ideally, authors could “robustify”
their claims with noise-aware data processing procedures. Recent work proposes method for
multiple imputation and data cleaning for di!erentially private data specifically (Blackwell
et al., 2017; Evans & King, 2023). Agarwal and Singh (2024), for example, propose a method
that could recover the main results of Autor et al. (2013) (also included in our sample) with
equivalent precision down to ω = 0.01. There are already examples of this kind of adaptation
in practice: authors developed new methods to account for injected noise when Meta released
its di!erentially private Facebook URLs Dataset (Buntain et al., 2021; Evans & King, 2023).
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However, these e!orts are nascent and not widely known; indeed, the majority of economists
are not even familiar with di!erential privacy (Williams, Snoke, et al., 2024).

While adopting new methods is costly, there can be benefits to scientific practice. For
example, Dwork et al. (2015) and Echenique and He (2024) show that by enforcing provable
stability in the outputs of statistical analyses, di!erentially private methods can also inhibit
p-hacking and other dubious scientific techniques that rely on overfitting and adaptive data
slicing. Indeed, we show that weaker initial e!ects and overly precise claims are less likely to
replicate under di!erential privacy. Exploring these solutions may call into question the sharp
privacy-utility trade-o! commonly assumed in policy debates and point the way towards
practices that are both more private and more robust.
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(1) (2) (3)

(Intercept) 0.937 *** 0.782 *** 0.736 ***
(0.125) (0.179) (0.184)

Log epsilon 0.041 *** 0.041 *** 0.041 ***
(0.003) (0.003) (0.003)

Gaussian mech. (zCDP) 0.035 *** 0.035 *** 0.035 ***
(0.008) (0.008) (0.008)

Log epsilon x Gaussian mech. (zCDP) -0.002 ** -0.002 ** -0.002 **
(0.001) (0.001) (0.001)

Log sum of sensitivity -0.019 * -0.013 *** -0.014 ***
(0.009) (0.004) (0.003)

Log sum of sensitivity x Gaussian mech. (zCDP) 0.000 0.000 0.000
(0.001) (0.001) (0.001)

Log regression sample size 0.022 0.011
(0.014) (0.014)

Model degrees of freedom -0.004 *** -0.002 ***
(0.001) (0.001)

Noised ind./treatment var. -0.072 0.143
(0.234) (0.222)

Noised dep/outcome var. -0.031 0.117
(0.068) (0.076)

Cmd: ivreg, ivreg2, xtivreg2, ivregress, ivreghdfe 0.147 0.094
(0.126) (0.089)

Cmd: other (arima, nbreg) 0.091 0.279
(0.257) (0.266)

Region: City/municipality/MSA/commuting zone 0.024 -0.215
(0.148) (0.148)

Region: State/district/province (1st division) 0.324 * 0.124
(0.148) (0.150)

Original e!ect size 0.274 *
(0.122)

Claim: insignificant 0.357 ***
(0.081)

Claim: non-zero upper/lower bound -0.099
(0.072)

Study FE Yes Yes Yes
Implementation controls Yes Yes Yes
Query type controls Yes Yes Yes
N. obs. 20178 19950 19950
R squared 0.559 0.569 0.606
F statistic 417.420 385.776 431.164
p value 0.000 0.000 0.000

*** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are clustered by study.

Table 2.2: Impact of mechanism & result characteristics on average epistemic parity over 10
replicates. Implementation controls include number of variables noised and number of compo-
nent queries. Dummies for “Cmd: reg, xtreg”, “Claim: sig. positive/negative”, and “Region:
County/tract/block/district/prefecture (below 1st division)” excluded. Includes all experimental
conditions for privacy (both mechanisms): 50 values of ω spaced evenly on a log scale in [10→5, 103].
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CHAPTER 3. DECOUPLING IN ‘PRIVACY-PRESERVING’ ANALYTICS

3.1 Introduction

Facing consumers’ calls for privacy and policymakers’ threats of regulatory action, technology
leaders are endorsing “privacy-preserving” techniques for data analytics as the future of
digital privacy (Egan, 2020). Organizations in industry and government—including Meta,
Google, Apple, Microsoft, Wikipedia, Mozilla, the U.S. Census Bureau, and the Internal
Revenue Service (Desfontaines, 2021)—are pioneering deployments of di!erential privacy
(Dwork et al., 2006), federated learning (McMahan et al., 2017), and other algorithmic
approaches to reconcile analytics and privacy.

On its face, consumers and regulators have reason to hope adoption will improve digital
privacy: these mathematical, statistical, and algorithmic techniques—which we will broadly
refer to as privacy-preserving analytics (PPA)—are used to produce useful insights from
people’s personal data while still preserving some technical definition of data privacy. But
these techniques are complex in theory and implementation, and their actual impacts
on consumer privacy and social welfare are often untested. Privacy advocates (Cyphers,
2019) and advertisers (Lomas, 2021) alike, for instance, have raised doubts about Google’s
privacy-preserving plans for the future of targeted advertising (Goel, 2022). PPA adoption
could present new benefits to researchers and consumers—or, as some fear, it could simply
preserve extractive, surveillance-based economies (Cohen, 2018; Zubo!, 2019; McGuigan
et al., 2023).

Despite a flourishing technical literature in computer science and statistics, little IS, economics,
or social science research has examined organizational processes driving the adoption and
deployment of PPA systems. What drives organizations to adopt privacy-preserving technolo-
gies? How do these drivers inform design choices made during deployment? And how does
PPA adoption change the relationship between policy and practice in the organization?

In absence of empirical studies of PPA adoption in organizations, prior research does, however,
o!er possible theoretical answers to these questions. Some streams of organizational research
suggest that organizations innovate socially beneficial technologies in response to changing
consumer expectations and to regulatory pressure, such as for environmental protection
(Ashford et al., 1985). But institutional research also suggests that policies adopted to satisfy
consumers and regulators may at times be merely symbolic—“decoupled” from substantive
changes to daily practice (Edelman, 2016; Bromley & Powell, 2012). On this trajectory, PPA
adoption could amount to little more than “privacy theater”: gestures accorded deference
incommensurate with their actual benefits to online privacy (Soghoian, 2011).

We investigate the motivations and decision-making processes behind PPA adoption and
design across 21 large technology firms and startups, non-profits, and government agencies.
We interviewed 28 executives, managers, and key contributors in technical, legal, and policy
roles responsible for deciding whether to adopt and how to deploy PPA systems. The firms
and agencies they work for include many of the organizations leading PPA adoption in the
United States. Analyzing transcripts and documents, we used grounded theory methodology
(Charmaz, 2014) to develop a model of the organizational processes that led to and shaped
adoption.
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Our primary finding is that, during implementation, PPA design choices were constrained
and sometimes dominated by operational concerns, disconnecting algorithmic system design
from both internal policies and external representations—a special form of organizational
decoupling we term algorithmic decoupling. Both public and private sector organizations
adopted PPA systems primarily to preserve existing modes of operation against new regulations
or consumer expectations, though some organizations leveraged PPAs to use data in new
ways. The processes involved with deciding when to use PPA techniques and interpreting
privacy expectations into algorithmic designs often prioritized these managerial interests.
Through infrastructure sharing and active standard-setting, these practices set the bar for
future industry implementations and even for regulatory guidance. However, we also find that
morally motivated privacy “champions” (Tahaei et al., 2021) constituted a countervailing
force against algorithmic decoupling within the organization. They had significant leverage
over the interpretation of privacy laws and internal policies on the one hand and the technical
properties of PPA systems on the other, mediating between managerial, legal, and technical
concerns. A subset of these practitioners—particularly in the private sector—used their
influence to push for PPA adoption and defend privacy standards, often because of their own
ethical and professional commitments.

Connecting our findings with research from sociology, law, and technology studies, this study
makes two key contributions to research on information systems (IS), organizational behavior,
and privacy. First, we conceptualize algorithmic decoupling: ways in which the aspects of
organizational practice embedded in algorithmic systems may be uniquely decoupled from
formal policy and external expectations and may uniquely alter those expectations in turn.
Prior work shows how practitioners’ interpretations of the legal environment mediate the
e!ect of regulation (Fuller et al., 2000). Algorithmic decoupling draws on another dimension
of ambiguity: practitioners’ technological interpretations of algorithmic systems employed to
fulfill formal policies. Algorithmic decoupling helps to explain why even significant investments
in PPA adoption often fall short of public privacy expectations (Martin et al., 2023). While
our current study focuses on algorithms for private data processing, the proliferation of
algorithmic systems in other parts of the market and society suggests that the propagation of
similarly motivated innovations may not be an unalloyed benefit to society, if they are overly
mediated by managerial concerns. Second, our findings suggest that although algorithmic
ambiguity leaves room for decoupling, it also uniquely empowers expert PPA practitioners.
Where prior work focused on the role of executives’ ethical commitments in preventing
decoupling (Weaver et al., 1999) or the role of lawyers in framing the legal environment
(Edelman, 2016), algorithmic decoupling is influenced most by technologists’ commitments to
privacy. Our findings o!er a guide for scholars, managers, and policymakers to more critically
evaluate and intervene in the use of algorithmic systems to fulfill social responsibilities.

3.2 Theoretical Background

3.2.1 Technology Adoption and Social Performance

Though organizational IS research on PPA adoption is scant, our work builds upon decades of
research on the social benefits of digital innovation in IS (Yoo et al., 2010), particularly related
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to sustainability (Malhotra et al., 2013; Hanelt et al., 2017). At the firm-level, much IS research
is devoted to identifying the antecedents (resources, competitive environment, management
style, etc.) of information technology adoption and its e!ects on financial and operational
performance (Fichman, 2004). Less research explores how organizations adopt IS technologies
to improve social performance, e!orts to fulfill social responsibilities alongside economic
gains (Davis, 1973; Carroll, 1979; Orlitzky & Benjamin, 2001)—responsibilities which, some
argue, now include data privacy (Pollach, 2011). In the last decade, technology firms have
developed and adopted a number of algorithmic innovations to address privacy, fairness,
sustainability, and other ethical concerns with data processing and artificial intelligence (AI)
practices (Bamberger & Mulligan, 2015; Hirsch et al., 2020; Metcalf et al., 2019; Morozov,
2013). Recent IS research, for example, examines the drivers and performance benefits of
“green” IS practices (including smart grids and building automation) adopted to improve
environmental sustainability (Seidel et al., 2013; Hanelt et al., 2017; Malhotra et al., 2013;
Leidner et al., 2022; Hu et al., 2016; Loeser et al., 2017; Ketter et al., 2023).

Earlier economic theories explain these practices simply as strategic, cost-saving adaptations
to changes in regulation (Oliver, 1991). Stricter environmental standards, for example, forced
firms to innovate new technologies such as the catalytic converter to avoid financial penalties
(Ashford et al., 1985). A wide-ranging literature from institutional theory (Scott, 2007), on
the other hand, explains organizational behaviors as a product of “rational myths”—widely-
accepted ideas about how organizations should act, conditioned on historical, cultural, and
social context (Meyer & Rowan, 1977; DiMaggio & Powell, 1983). Adoption is mediated not
only by strict economic rationality but also by the expectations of activists, competitors,
investors, employees, consumers, and other stakeholders (Campbell, 2007; Boldosova, 2019;
Aguilera et al., 2007; Jones, 1995). Under this theory, adopting socially beneficial technologies
helps organizations maintain their social license to operate (Gunningham et al., 2004).

3.2.2 Algorithmic Decoupling as a Dimension of Organizational
Decoupling

A key observation of contemporary institutional theory is that organizations facing these
external pressures may partially or completely decouple the performance of daily practices
(“performative” aspect) from their presentation in formal structures and policies (‘ostensive”
aspect) (Oliver, 1991; Bromley & Powell, 2012; Boxenbaum & Jonsson, 2017; Feldman &
Pentland, 2003). The concept of decoupling arises from early observations that organizations
can maintain contradictory institutional logics by insulating inconsistent, yet responsive,
practices from one another—a phenomenon referred to in institutional theory as “loose
coupling” (Weick, 1976; Meyer & Rowan, 1977; Orton & Weick, 1990; Hallett & Hawbaker,
2021). This perspective has proved useful for analyzing IS adoption (Strong & Volko!,
2010; Chen et al., 2011). Berente and Yoo (2012), for example, use loose coupling to explain
improvisational user responses to enterprise IS adoption as a resolution to the friction between
abstract software and local contexts.

For organizations facing strong but ambiguous or contradictory external and internal ex-
pectations (Powell & DiMaggio, 2023; Scott, 2007), decoupling—sometimes referred to as
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“organized hypocrisy” (Brunsson, 2003; Lim & Tsutsui, 2011)—serves as a bu!er between
internal practices and external pressures and as a key component of organizational legitimacy
(Meyer & Rowan, 1977; Weber, 1978; Suchman, 1995). Several studies examine decoupling in
the context of social performance e!orts (Lim & Tsutsui, 2011; Schoeneborn et al., 2020; Dob-
bin & Kalev, 2022; Marquis & Qian, 2014; Li & Wu, 2020). For example, some firms obtained
green technology certificates from the Korean government without actually implementing
those technologies in daily operations (Park & Cha, 2019). Decoupling the formal adoption
and espousal of these e!orts from their practice allows organizations to reduce costs while
avoiding legal sanctions and reputational harms (Bromley & Powell, 2012). However, nearly
all studies of organizational decoupling focus on primarily non-technological practices (see,
e.g., Bromley & Powell, 2012, Table 2). And while IS research explores the possibility of loose
coupling as a response to institutional contradictions in enterprise system implementations
(Berente & Yoo, 2012; Keller et al., 2019; Baptista et al., 2021; Chen et al., 2011), the
interaction between organizational decoupling and IS has not been fully explored.

IS research on technology-mediated organizational change explores how organizational routines
are materially embedded in enterprise IS (Volko! et al., 2007). When information systems are
adopted, routines, roles, and other organizational structures are constrained and modified
by material aspects of the system as built (Silva & Hirschheim, 2007; Berente & Yoo, 2012).
IS artifacts, then, constitute a form of embedded, often invisible, organizational regulation
(de Vaujany et al., 2018; Hennigsson & Eaton, 2024)—a topic of nascent IS research agendas
(Butler et al., 2023; de Vaujany et al., 2018). de Vaujany et al. (2018) call for further research
on the “materialization” of rules in IT artifacts, in addition to temporal decoupling between
design time and use time; this study explores the processes involved with rules materialization
and the consequences for regulation & compliance. Technological embeddedness introduces
the possibility of decoupling the presentation of organizational practice (its ostensive aspect)
not only from its performance (performative aspect), but also from the aspect of practice
embedded in information systems (material aspect).

Algorithmic decoupling helps describe this additional dimension: the gap between policy
and the technical and material properties of the algorithmic system deployed to fulfill it.
Research on technology and social performance often frames the adoption of technologies
like the catalytic converter as uniformly implemented and categorically beneficial (Ashford
et al., 1985); algorithmic decoupling accounts for the reality that technology adoption is
contextual and adapted, its design mediated by the organization. In the context of PPA,
privacy advocates’ criticisms of several prominent, public proposals provide an early indication
that organizations’ claims have not been fulfilled by their technological designs (Cyphers,
2019; McGuigan et al., 2023; Martin et al., 2023); algorithmic decoupling helps to explain
these shortcomings. In our study, we explore how the use of algorithmic systems complicates
existing theory about the mediators of and remedies to organizational decoupling.

3.2.3 From Algorithmic Decoupling to Perverse Innovation

Decoupling makes clear that organizational responses to external pressures are not determined.
Organizations and their constituents mediate the impact of the institutional environment on
the adoption of new practices (Edelman, 2016; Oliver, 1991). But institutional research on
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heterogeneous di!usion also explores the influence of adoption on the institutional environment
in turn (Powell & DiMaggio, 2023).

In particular, organizations model their early “educated guesses” at compliance to their peers
and competitors. As in the case of equal opportunity, employment law, and insider trading,
these initial guesses are often legitimated by courts and policymakers and become standard
practice (Edelman, 2016; Bozanic et al., 2012). After defendants began instituting grievance
procedures to forestall unionization and insulate against discrimination suits, for example,
courts and legal journals increasingly considered those procedures relevant to liability despite
little evidence that they actually reduced complaints (Sutton & Dobbin, 1996; Edelman et al.,
1999; Dobbin & Kalev, 2022). Edelman (2016) calls this phenomenon legal endogeneity :
after organizations decide what forms of compliance are reasonable, those practices become
institutionalized as rational responses to regulation. Private organizations may also engage
directly in lobbying, corporate-sponsored research, and other forms of regulatory capture to
promote their versions of compliance (Hillman et al., 2004; Kamieniecki, 2006). Technology
firms in particular, such as Airbnb and Uber, are exemplars of “regulatory entrepreneurship”:
the pursuit of business models that are predicated on changing the law (Pollman & Barry,
2016).

When organizational practices are mediated by algorithms and IS, regulatory entrepreneurship
may be accomplished with technological innovation. Burk (2016) uses the term “perverse
innovation” to describe technological innovation directed at exploiting loopholes in formal
rules. Seed producers in the E.U., for example, avoided restrictions on genetically-modified
crops by replacing recombinant DNA technologies with mutagenic chemicals, an alternative
approach with possibly greater health and safety risks; and the PT Cruiser was designed
with the footprint of a “small truck” to allow Chrysler to avoid stricter EPA fuel e”ciency
requirements for “passenger cars” (Burk, 2016).

Algorithmic decoupling is perverse innovation when and if the implemented algorithmic
system is not only disconnected from but contrary to expected social benefits (e.g., “privacy-
preserving” technologies that increase data collection without providing substantive privacy
benefits). Like other compliance practices, technological designs may set legal precedent.
Algorithmic decoupling helps to explain how perverse practices may become institutional
standards not only through sociolegal mechanisms but also through sociotechnical mechanisms,
primarily cloud platform-dependence (Narayan, 2022; Cutolo & Kenney, 2021)and open
source innovation (West & Gallagher, 2006).

3.2.4 Privacy-Preserving Analytics

This study explores organizational decoupling in the context of a burgeoning area of IS
technology for social performance: privacy-preserving analytics (PPA). Privacy technology is
not new—we define PPA techniques as a particular subset of privacy enhancing technologies
(PETs),1 a variety of tools used by consumers, regulators, and organizations to negotiate
information privacy issues for over three decades (Goldberg, 2007). Privacy is a multifaceted,

1We do not include PETs for private communication or authentication (see, e.g., Domingo-Ferrer &
Blanco-Justicia, 2020)—we are specifically concerned with technologies used in data analytics.
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context-dependent social concept associated with a wide range of attitudes and behaviors
(Dinev et al., 2015; Acquisti et al., 2015; Bélanger & James, 2020; Belanger & Crossler,
2011). Likewise, while all the systems referred to as “privacy-preserving” in our study were
used in practice to govern user data processing, the methods—and the precise definition of
privacy preserved—varied (McGuigan et al., 2023). This study focuses on techniques and
standards used to preserve privacy in both the inputs to and the outputs of data analysis,
such as secure multiparty computation (Goldreich, 2009)(which describes cryptographic
protocols for distributed computing designed not to reveal private inputs), di!erential privacy
(a formal guarantee that outputs of analysis are not sensitive to the inclusion of any one
individual’s information, usually accomplished by noise injection (Dwork et al., 2006)), and
federated learning (which describes techniques for training machine learning models without
transferring raw data o! client devices (McMahan et al., 2017)). Table 3.1 lists all the PPA
practices adopted by our participants.

Organizations have used di!erential privacy, for example, to send COVID-19 exposure
notifications and auto-complete text or emojis (Apple, Google), collect telemetry (Microsoft
Windows), share data with clients and researchers (Meta, LinkedIn, Microsoft, Google, U.S.
Census Bureau), and more (Desfontaines, 2021). In fact, probably spurred by regulatory
initiatives in the U.S. and around the world, the number of private and public sector
organizations adopting and deploying PPAs has significantly increased in recent years. New
startups such as Tumult Labs are o!ering PPA consulting services and building open-source
software. And cryptographic and federated methods—such as Google’s Privacy Sandbox (Goel,
2022)—may soon replace key aspects of online advertising.

With respect to privacy practices in general, there is evidence of decoupling in existing
research: Waldman (2018) distinguishes CPOs’ privacy myth-making e!orts from their
actual performance by technologists on the ground, who had little material incentive to
enact new privacy agendas, and several studies critique the claims to privacy made by
public PPA proposals (McGuigan et al., 2023; Tang et al., 2017; Berke & Calacci, 2022;
Martin et al., 2023). But the organizational processes behind PPA adoption specifically—and
the technological aspects of decoupling in general—are less understood. And the resulting
impacts—on digital privacy as well as data science, social science research, policymaking, and
other data-dependent processes (Abowd & Schmutte, 2019; Hotz et al., 2022)—are largely
untested outside primarily theoretical research in computer science and statistics (Acquisti &
Steed, 2023).

A few interview studies explore practitioners’ challenges with di!erential privacy adoption
specifically, but these studies mostly focus on usability (Dwork et al., 2019; Munilla Garrido
et al., 2023; Sarathy et al., 2023; Ngong et al., 2024; Rosenblatt et al., 2024). Some critical
studies evaluate PPA proposals on technical or philosophical grounds (Tang et al., 2017;
Berke & Calacci, 2022; McGuigan et al., 2023; Martin et al., 2023; Smart et al., 2022) and
explore challenges with communication and participation during adoption (boyd & Sarathy,
2022; Abdu et al., 2024). Other studies investigate data ethics practices (Hirsch et al., 2020)
and privacy practices for artificial intelligence (AI) products (Lee et al., 2024). But little
research examines organizational aspects of these technologies. By investigating this question,
our study contributes to the ongoing project of documenting and describing the social impact
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of PPA technologies.

3.3 Methods

This research is based on a seven-month qualitative study of PPA adoption through semi-
structured interviews with practitioners—including engineers, lawyers, managers, researchers,
policy experts, and executives—at technology firms, privacy-focused startups, non-profits, and
government agencies. These organizations include many of the most prominent deployments
of PPA to date in the United States. Research on organizational adoption of PPA is scant,
but qualitative methods have a long, impactful history of helping researchers theorize about
emerging phenomena in IS and management (Monteiro et al., 2022; Wiesche et al., 2017;
Edmondson & Mcmanus, 2007).

3.3.1 Data Collection

Our data are comprised primarily of IRB-approved interviews with 28 individuals responsible
for helping their organizations decide whether and how to implement PPA systems. Table 3.1)
describes their roles and technologies used. We contacted practitioners working on PPA
products or services at organizations that had considered deploying PPA, though not all have
actually deployed a PPA system. (All had made it at least as far as prototyping.) We sourced
interview candidates either from professional networks (18 contacted, N = 9 interviewed) or
known to both authors through public PPA work (7 contacted, N = 5 interviewed). We also
asked those candidates to recommend one or two others at their organization (23 contacted,
N = 14 interviewed). SM Appendix C.3 contains additional details about our recruitment
strategy.

We designed our sample to explore theoretical variation between di!erent adoption settings,
aiming for analytical generalization from case studies to theory (Eisenhardt, 1989; Lee &
Baskerville, 2003). Our sample includes 21 organizations: eight technology firms (N = 10), six
in the Fortune 500 (N = 8); five privacy-focused startups (N = 6), organizations with privacy-
branded products or o!ering PPA as a service; four non-profits (N = 5); and representatives
from three U.S. government agencies (N = 3), two responsible for federal data collection
and public statistics and one regulatory agency. For large organizations with large-scale or
wide-ranging PPA activities, we recruited at least two or more participants, to add alternative
perspectives on the same processes.

After we analyzed this first round of data, we conducted a second round of interviews
between July and August 2023 with three practitioners in legal and policy roles to validate
our understanding of how private firms interact with regulators about PPA adoption. We
stopped data collection when our categories reached theoretical saturation, such that further
interviews would spark no new insights (Charmaz, 2014). Each participant completed a short
demographic survey and participated in a 50–100 minute interview (57 minutes, median)
through video conferencing, under the condition that their identities were kept confidential.
Interviews centered on open-ended questions about organizational processes involved with 1)
the decision to adopt PPA, including motivations and trade-o!s; 2) design and deployment,
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Employer PPA practices mentioned Roles Participants

Startup DP, SDL, pseudonymization, encryp-
tion, minimization, cohort analytics, k-
anonymity, deletion, PII detection, other
cryptography

Director/Executive,
Software/Privacy
Engineer

P8, P13,
P15,P17, P18,
P24

Other for-
profit

DP, SDL, k-anonymity, l-diversity, FL,
HE, SMC, synthetic data, PPML, private
set intersection, encryption, access control,
retention limits, cohort analytics, other
cryptography

Director/Executive,
Manager, Software/
Privacy Engineer,
Data Scientist, Re-
searcher

P2, P3, P4, P7,
P11, P12, P14,
P19, P20, P23,
P25, P26, P28

Non-profit k-anonymity, DP, minimization, deletion,
retention limits, SDL, other cryptography

Director/Executive,
Engineer, Researcher

P1, P9, P10,
P22, P27

Government DP, SDL, noise infusion, SMC Director/Executive,
Software Engineer

P6, P16, P21

DP: di!erential privacy. FL: federated learning. HE: homomorphic encryption (Gentry, 2009).
SMC: secure multi-party computation. PPML: privacy-preserving machine learning (e.g., Abadi
et al., 2016). SDL: statistical disclosure limitation (Matthews & Harel, 2011)(e.g., suppression,
data swapping).

Table 3.1: Practitioners interviewed. Participants were given di!erential privacy (DP) and federated
learning (FL) as examples but were allowed to name any practices they used for PPA.

especially communication, common challenges faced, and future trends. Interviews were
semi-structured, co-constructed by the interviewer and the participant to allow flexibility to
explore new phenomena (Charmaz, 2014). We piloted our initial interview guide using two
think-aloud interviews (Willis & Artino, 2013)with colleagues and three practice interviews
with volunteer junior practitioners. While we asked about PPA adoption in every interview,
we adjusted the protocol to explore di!erent areas of theoretical interest over the course of
the study. (SM Appendix C.2 provides our interview guide.) We supplemented interview
transcripts with internal documentation provided by participants, press releases, white papers,
blogs, news articles, and other archival documents.

3.3.2 Analysis

As is common in inductive research and grounded theory (Gioia, Corley, & Hamilton, 2013;
Charmaz, 2014), qualitative analysis alternated continuously between 1) first-order, primarily
inductive creation of analytic codes, 2) second-order aggregation and abductive theoretical
analysis, and 3) written and visual presentation of our emergent theoretical model, grounded
in first-order quotations. In first-order analysis, the first author annotated transcripts with
short, precise descriptions—over 2,500 unique codes—staying grounded in the participants’
language and focusing on actions and processes to avoid preconceived framing (Charmaz,
2014). Early on, the second author re-coded a sample of four interviews and provided critical
feedback to calibrate our coding.

In second-order analysis, we critically sorted and synthesized initial codes to draw out
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hypotheses and narratives (axial & theoretical coding). We began to define tentative concepts
by comparing first-order codes and excerpts and by comparing the accounts of di!erent
participants. At this stage, we adopted a theoretically agnostic stance, permitting extant
concepts (such as “scaling up”) only when they fit our data and first-order analysis (Charmaz,
2014). We also compared and generalized across types of organizations and industries, similar
to a case study design (Eisenhardt, 1989). We gradually arranged concepts in multi-layer
hierarchies and eventually three themes describing the overarching processes involved with
PPA adoption (Figure 3.1) and mapped the relationships between them with written notes
and iterative process diagramming (Figures C.4.1–C.4.3). As in the first-order analysis,
the authors discussed and exchanged notes and diagrams describing the concepts and their
relationships until a consistent process model emerged (Gioia, Corley, & Hamilton, 2013).
Analysis occurred alongside data collection, and we continuously adjusted our interview guide
to follow up on topics of theoretical interest (Charmaz, 2014).

3.4 Case Study: Adoption of Privacy-Preserving Ana-
lytics

In the following analysis, we trace the couplings between formal policy, its implementation,
and its outcomes, and highlight where these couplings are likely to break. First, we describe
the ways organizations constructed PPA adoption as an appropriate response to external
privacy expectations (§3.4.1). Second, we describe the processes by which those narratives
were interpreted into specific technological design choices—choices potentially decoupled
from policies or outcomes (§3.4.2). Third, we describe the ways that organizations justified
PPA adoption to satisfy stakeholder expectations, setting a precedent for future adoption
(§3.4.3).

3.4.1 Deciding to Adopt

Organizational investment in PPA technologies specifically has increased sharply in the
last decade following “loud and furious” (P4) public and regulatory pressure embodied by
sweeping data privacy regulations, including the General Data Protection Regulation (GDPR)
and the California Consumer Privacy Act (CCPA), coupled with publicized data privacy
scandals—for example, the news that Cambridge Analytica had deceptively amassed the
personal data of millions of Facebook users (Confessore, 2018).

Across the array of organizations we studied, practitioners consistently pointed to these
external privacy expectations—embodied particularly by regulators, the media, and consumer
advocates—as the root of their motivation to develop and deploy PPA systems. All but
three practitioners named the threat of regulation—including fines, lawsuits, and, for govern-
ment o”cials, criminal penalties—as contributing to their organizations’ decision to adopt,
and sixteen (especially those at for-profits and privacy startups) mentioned specific legal
requirements or agreements with regulators. Seven—especially those working in policy or
legal roles outside of government—also mentioned the possibility of negative media coverage
and public backlash that could sour relations with external stakeholders and make it more
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Deciding to adopt

Interpreting drivers
into design

Interpreting privacy requirements

Evaluating privacy risk

Triaging privacy risk

Convincing executives

Convincing developers

Preserving data-driven operations

Making a business out of privacy

Improving data management

"collecting data we wouldn't otherwise"
"keeping data around longer"
"creating new markets"
offering PPA "as a service"
improving "data quality"
leveraging PPA to address other issues
promoting privacy work
pitching PPA to leadership
following an internal leader
"putting pressure" on others

interpreting consumer expectations
interpreting legal requirements
interpreting org. principles

Themes2nd Order ConceptsSample of 1st Order Codes

Legitimating designs
Setting precedent

Setting standards

Scaling up and baking in

Justifying design

inventing new approaches
leading by example
following industry norms
"influencing standards bodies"
optimizing large-scale processes
creating tools for data users
explaining to laypeople
using "magic" privacy

testifying as an expert
laying the ground for legal

"demonstrating" privacy risk
deciding what protection is sufficient

weighing risk tolerance
focusing on biggest risks first

Adopting strategically

Negotiating design

targeting less critical products
implementing incrementally
choosing parameters
convening stakeholders

Making promises to consumers

communicating risks
explaining PPA to laypeople Making representations

identifying downstream impacts
assessing output data quality Evaluating fitness for use

Figure 3.1: Themes and second-order concepts used in our process model, with an illustrative sample
of first-order codes. Figure inspired by Gioia, Corley, and Hamilton (2013).

di”cult to recruit talented employees: “protecting the brand is just as much a liability thing
as protecting you from creating a compliance disaster where you have to pay millions of
dollars in fines” (P10). Faced with these expectations and the increasing inadequacy of
existing data governance methods against modern reconstruction, linkage, and other attacks,
many organizations—such as the U.S. Census Bureau (Abowd & Hawes, 2023)—looked for
new solutions.
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3.4.1.1 Motivational narratives.

These expectations provided broad motivation for organizations to change privacy practices but
did not prescribe PPA adoption specifically—none of our participants described a regulation
or public campaign that favored new PPA technologies over long-standing, non-algorithmic
alternatives such as data minimization. In the organizations we studied, PPA adoption came
to be viewed as an appropriate solution through three di!erent narratives. Practitioners and
decision-makers used one or more of these narratives to convince decision-makers and justify
their investment.

Preserving data-driven operations. Most commonly, organizations developed PPA to
preserve a data-dependent model of operation—for example, behavioral advertising based on
precise tracking and measurement. As one employee of a technology firm said, “I think a lot
of folks in the industry are concerned about regulators stepping in and saying, ‘Okay, here’s
how the web should work.’ And all of a sudden, the whole business model of the web would
fall apart” (P9).

Instead, organizations developed their own, overwhelmingly algorithmic, solutions. In online
advertising, for example, Google developed plans to replace third party cookies, a ubiquitous
technology for tracking web activity, with a suite of new techniques in their Privacy Sandbox
(Goel, 2022). Meta invested in research on “novel privacy-preserving technologies” for
ad measurement (Meta Research, 2019). Both organizations framed PPA adoption as a
compromise between business interests and privacy concerns. In a blog post titled “A Path
Forward for Privacy and Online Advertising”, Meta’s Chief Privacy O”cer wrote: “We
continue to believe personalized ads and privacy can co-exist... that’s why we’re investing in
research and development of privacy-enhancing technologies” (Egan, 2020).

PPA adoption provided a path for organizations in our study to “collect data we wouldn’t
otherwise collect” (P3), “monetize data more properly” (P17), and “keep data around longer”
(P26)—for example, by anonymizing data to bypass legal limitations on storage. Practitioners
in both private and public organizations said they tended to “collect the data first and then
figure out what it’s useful for later” (P25). Some practitioners in private industry viewed
this strategy for adoption as a “cloak for just collecting lots and lots of data” (P22) or “legal
cover for hoovering up as much information as possible” (P15).

Making a business out of privacy. While all but one organization we studied adopted
to preserve operations, thirteen—disproportionately startups—also welcomed PPA as an
opportunity to access new, privacy-conscious market segments, develop more competitive
marketing, or develop new services. A director recalled, “Before... we would appeal to the
principles of the company. Now... you can start saying things like, ‘It probably will appeal to
this market’ ” (P10). Web browsers like DuckDuckGo and Brave have grown market shares
around privacy-preserving branding. Startups like Tumult Labs or Leap Year Technologies,
recently acquired by cloud data giant Snowflake, o!er PPA services to businesses, non-profits,
and government agencies. And even within less privacy-branded technology companies in
our sample, we observed some teams relying on di!erent narratives than others, depending
on the extent to which privacy di!erentiated the product they worked on. Non-profit and
government organizations in particular used PPA systems to share new sources of data with
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researchers—for example, the U.S. Census Bureau first used di!erential privacy to release
new data on commuting patterns (Machanavajjhala et al., 2008).

Improving data management. To combat the view that additional privacy infrastructure
was “costing resources with no clear benefits” (P17), some practitioners also argued that PPA
would have side benefits beyond compliance. Several practitioners argued internally that the
improvements to data management required to adopt PPA would also reduce “bad science”
and ultimately make for better products. PPA adoption sometimes o!ered practitioners
a chance to bring up older, long-standing issues like data minimization: “it gives you the
ability to talk about that like it’s a fresh thing” (P22). However, no organization we studied
adopted PPA solely to improve data management.

3.4.1.2 Convincing executives.

The primary audience for practitioners’ adoption narratives was the key decision-makers
within the organization—including the chief privacy o”cer, CEO, board members, and
other “legal and risk” executives (P13). To convince executives, practitioners translated
external privacy expectations into concrete business costs—one privacy engineer would “go
in armed with a bucket of consumer research and case studies,” including internal studies
aimed at estimating “how much bad privacy can potentially cost you, based on historical
data” (P3). Executive buy-in helped push forward adoption on a case-by-case basis and
drove the formation of internal policies—one large technology firm in our sample, for example,
integrated PPA adoption into its existing privacy review process for new features.

3.4.1.3 Convincing developers.

Participants at government agencies and more hierarchical organizations relied mostly on
these top-down policies to convince developers and other employees to contribute: “your own
leadership has said, ‘we are doing this’—going back to [prior practices] is not an option, so let’s
make it work” (P6). Participants at other organizations, though, discussed the importance of
a less formal “privacy culture,” especially for organizations that relied on product teams to
“self-forward” (P8) relevant cases for privacy or volunteer for PPA adoption.

While internal policies were often based on cost calculus, the manner of adoption was often
tied up with employees’ moral judgments. Six of our participants—all at for-profit technology
firms and start-ups—said they considered adopting PPA because it was the “right thing” to
do for users. One privacy engineer at a technology firm said:

I think at any company from little to big you’re going to find that there’s some set
of people who are genuinely deeply ethical people—and I have met many of those
at [my organization] and they’re fantastic to work with—and there are people
who recognize that privacy is a business proposition... (P3)

This internal advocacy often depended on the leadership of influential privacy practitioners
in centralized teams. Two participants at large technology firms observed peers “pushing
hard” for particular PPA techniques—one of whom a former employee said “probably is
uniquely responsible for driving adoption in the company” (P19). But when an influential
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leader left, internal adoption of PPA dwindled. At least two organizations in our sample were
deconstructing these central teams by the end of our study, distributing privacy professionals
to product and infrastructure teams across the organization.

3.4.1.4 Adopting strategically.

Restricted to limited time and resources, most organizations we studied did not apply PPA
uniformly across products and features—in fact, many adopted PPA for only one or two
products or features. Instead, the rollout strategy depended on triage. For example, larger
organizations had systems for prioritizing data deemed more “sensitive” or risky. Though most
executives and managers agreed that it was better to start early—to promote communication
and reduce disruption—they disagreed on whether it was better to target mission-critical
products first (to set a precedent) or to start with “easy” use cases (to build momentum).
Five privacy engineers, all in industry, said they experienced mostly the latter—adoption for
only peripheral use cases. One noted that organizations “don’t use the distributed machine
learning approaches in things that are really mission critical... Where it really matters, they
just collect a bunch of data [centrally] and make some promises around it” (P15). Another
perceived a fundamental limit to adoption: “Once there’s real money on the line, you get
leadership involved. And someone doesn’t care about protecting privacy because they’re
going to get promoted if you make however many billion dollars” (P19).

3.4.2 Interpreting Policies into Designs

How did these external and internal drivers of adoption inform choices made during de-
ployment? Adopting PPA—and negotiating its design—is not yet as simple as choosing a
vendor or product o! the shelf. Organizations made many specific design decisions to make
their new systems “privacy-preserving” and align them with internal policies and external
expectations. PPA practitioners were responsible for interpreting privacy requirements and
guarantees, evaluating trade-o!s in proposed designs, and negotiating with product teams,
lawyers, and executives to triage privacy requirements, define scope, and settle on appropriate
designs.

3.4.2.1 Interpreting privacy requirements.

In private firms and public organizations alike, PPA practitioners described “interpreting”
or “translating” legal requirements and internal policies into technical specifications for
algorithmic systems. From a former director at a technology firm:

The way [the organization] did GDPR was: we had this privacy legal department,
they’d spent a huge amount of time with the law... We had them dump the entire
law into my head and I wrote the engineering requirements! (P7)

In rare cases practitioners could reference regulatory guidance—from the European Courts,
for example (Data Protection Working Party, 2014)—or “hints” from regulators about which
practices would be considered unacceptable (P23). Most relied on internal policies written by
executives and legal teams: “These regulations would get translated into internal policies, and
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so what people inside the company care about are the internal policies... I very rarely had to
care about what the actual regulations were” (P19). These internal policies were designed
to satisfy both legal requirements and the social expectations of “key opinion leaders” in
policy and regulation, as one policy researcher describes: “What are their expectations, and
what do we need to do to meet them?” (P12) Less commonly, participants referenced users’
expectations—but nearly all of our participants did not interact with data subjects.

The process of interpreting these “external mandates” (P11), as one participant called them,
was not straightforward. Around half of our participants mentioned conflicting, deficient,
or “unreasonable” expectations in external regulations and at least one created a “pecking
order” (P23) of privacy rules to follow. Some even pointed out specific technical errors in
regulatory guidance, speculating that “people who knew how this stu! really worked or could
work weren’t necessarily at the table” (P26) when the regulation was written. One executive
at a technology firm said, “Regulations come in and kind of break what I’m doing... you
[regulators] just made our system work worse and I’m very grumpy about it” (P7).

3.4.2.2 Triaging privacy risks.

When organizations did adopt PPA, simply evaluating the reduction of privacy risk provided
by a particular algorithm was not straightforward. No single design met all requirements,
especially for the large organizations we studied. As one executive put it, “you want to ask
yourself what risk are you willing to take, how much uncertainty are you willing to live with”
(P14). Another manager at a large technology firm recounted,

When I first started working on this, I accepted the culture of ‘Oh gosh, the sky
is falling, it’s all important, we’ve got to get it all!’... It turns out that we have
permission to fail [on] smaller risks... [Executives] are fine with us taking misses...
because they can’t imagine a future in which we don’t take another fine. (P23)

An engineer recounted, “The sorts of guarantees that a privacy-enhancing technology o!ers
almost never line up with anything a lawyer would recognize... and so we wind up in a room
with a whiteboard sort of scribbling frantically at each other trying to do a lingo match”
(P3).

The ω parameter in di!erential privacy, for example, theoretically bounds the amount an
individual’s inclusion increases their risk of unwanted disclosure, but di”culty interpreting its
value has contributed to heated epistemic disagreements (boyd & Sarathy, 2022; Nanayakkara
& Hullman, 2022). Practitioners disagreed on what designs and parameter settings are
meaningfully “privacy-preserving” for any given use case. Some practitioners in our sample
believed that DP is a “gold standard” approach for managing privacy risk that provides
“meaningful” privacy if implemented properly, but disagreed over whether guarantees were still
meaningful after common relaxations. Others doubted further whether di!erential privacy
is even an appropriate technical conception of privacy (see, e.g., Hotz et al., 2022; Seeman
& Susser, 2023). Some fell back on “experimental” or “practical” guarantees to convince
stakeholders (Dwork et al., 2019).

Without a clear conception of privacy risk, tuning the strength of privacy protections was
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more art than science. Legal requirements that data be “anonymous” or “confidential”, for
example, have been satisficed by successively stronger technical standards in just the past
decade, including the use of k-anonymity to satisfy the Health Insurance Portability and
Accountability Act (HIPAA) Privacy Rule (Malin et al., 2011) and the use of di!erential
privacy in the 2020 Decennial Census (Abowd & Hawes, 2023). As one privacy engineer at a
large technology firm put it,

There’s nothing out there to guide you, so you’re just kind of winging it. We’ve
gotten as far as lining [di!erential privacy] up with things like GDPR’s “singling
out” clause, but it still doesn’t give us any notion of how to do things like tuning
parameters. (P3)

In practice, stakeholders with di!erent incentives interpreted privacy risk di!erently. For
example, Social Science One, an association of researchers partnering with Facebook to
release a large dataset, argued that less stringent privacy standards satisfied the General
Data Protection Regulation and Facebook’s FTC consent decree, but Facebook disagreed,
releasing the dataset with di!erential privacy (King & Persily, 2020).

3.4.2.3 Negotiating design.

These interpretations guided design negotiations between privacy practitioners, the teams
responsible for implementing the PPA system, and other internal (and rarely external)
stakeholders. A privacy engineer said,

[In design meetings] there’s usually a representative from the business and their
job is to sit there and advocate for the continued health of the business... I think
the lawyers and I are both more risk averse and the business is the counterweight
to that. (P3)

For six participants, all at for-profit firms, the relationship between business operations and
PPA adoption was adversarial. A former employee of a large technology firm said:

The inherent relationship between the people on the ground doing the privacy
reviews and the leadership, even within the privacy org, is very confrontational...
The [product] team is trying to do the least amount of privacy that we will
approve... You are fighting against di!erent teams and organizations and you
might as well act like it. (P19)

Still, privacy engineers tried to be constructive: “If people have a positive experience with
privacy, they are more likely to come to us when they feel there’s a problem” (P26).

As a result, design negotiations usually centered managerial and technical concerns—most
participants framed the design process as maximizing “fitness for use”—including data
quality, cost, e”ciency, usability, and interoperability—subject to a minimum “privacy bar”.
Minimum standards helped reinforce boundaries during design negotiations—as one privacy
engineer at a large technology firm said, “The [product] team would come in and say okay well
how about this ω. So a lot of the time, we can really easily just point to, ‘No we have a standard,
it’s at this ω, use it’” (P19). Practitioners in at least four organizations leveraged formal
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processes like privacy review to resist opposing pressure from other executives: “everything
goes through privacy, so we can just tell the leadership ‘Hey, we’re not letting this launch
unless you do this’” (P11).

Because the interpretations of privacy risk and privacy guarantees could vary, standards
were often flexible: “a lot of this we’ve just had to come up with out of thin air” (P23). A
privacy engineer put it more bluntly: “The definition of what we consider to be anonymous
is completely arbitrary. There’s some legal things informing that but, for the most part we
just made up ours” (P19). For k-anonymity, for example, another privacy engineer at a
privacy-focused startup said, “We have some magic numbers in the company, like 20. k = 20
is like a minimum that we don’t go under. But [usually we] start the discussion from k = 1000
or k = 100 at least and then go down from there” (P8). A lawyer for a technology firm
described their “magic number” for k-anonymity similarly: “we kind of feel like [a k value
of] 20 is usually not super necessary, but if it gets down to under 5 it’s kind of a little
dicey” (P28). Not all organizations had “magic numbers.” Larger organizations had teams
of privacy experts who helped product teams set parameters case-by-case. But some are now
curtailing the authority of these teams. Recently, Meta reportedly permitted product teams,
rather than privacy teams, to make the final decision about what privacy risks are acceptable
(Huang, 2025).

3.4.3 Legitimating Designs

Once designs were set and PPA systems deployed, organizations still needed to convince regu-
lators, consumer advocates, and other stakeholders that their design choices were acceptable
to gain the social, economic, and legal benefits of adoption. Organizations relied again on
privacy experts to decide how to represent the privacy properties of their PPA designs in
legal arguments to regulators or marketing promises to consumers. And organizations scaled
up their PPA practices, setting standards internally and promoting those standards to the
rest of their industry, creating precedent for rational response to privacy pressures.

3.4.3.1 Making representations.

In our study, all the organizations that deployed a PPA system translated its properties into
some external representation, usually a legal defense, a promise to consumers, and in some
cases a policy campaign.

Justifying designs. Several practitioners—particularly those who adopted to preserve exist-
ing operations—designed PPA systems with legal justification in mind. As a policy researcher
asked, “Can you back that [public statement] up with your systems in an investigation?”
(P12) This judgment fell to practitioners’ legal and technological expertise.

At some point the lawyer and I just have to sit down and be like... ‘This seems
both ethically justifiable and probably reasonable in the eyes of the law based on
some esoteric U.K. law from the 1600s...’ or ‘We think this is defensible and we
think it’s not a crappy thing to do.’ (P3)
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Sometimes justification had less to do with specific laws and more to do with perceptions of
the regulatory climate. As one privacy engineer recalled telling internal lawyers,

‘We don’t give legal opinions, we’re technical people. But, this new thing [dif-
ferential privacy] is the gold standard. If a regulator says anonymization is a
thing that’s possible, and academia says this is the best thing you can hope for...
probably you’re going to be fine.’ (P18)

Practitioners were prepared to rely heavily on their own expertise. A researcher at another
large technology firm recounted defending their new technique internally:

Ultimately we had a very, very senior statistician who basically just got up and
told the lawyers, ‘I believe that risk of leakage is very low in this model’ and
that’s it. They didn’t go into the math, they didn’t look at any of the other stu!.
(P20)

Making promises to consumers. Practitioners also contributed to public representations
their organizations made about privacy, including public privacy policies and marketing.
Most privacy engineers did not have direct contact with data subjects—they explained their
work only to legal and policy teams. Those that did described the di”culty of accurately
representing algorithmic protections to laypeople: “You’re asking [customers] to trust an
algorithm they will never understand. It’s not that easy to prove to someone that these
things are actually going to work” (P25).

Some organizations dealt with this opacity by choosing “easy-to-describe” systems (P15).
Others, particularly non-profits and government agencies, sought to increase transparency
with open source software and detailed public descriptions. Several reported making changes
in response to feedback from the public, especially at non-profit organizations. The U.S.
Census Bureau, for example, submitted their di!erentially private 2020 disclosure avoidance
system to multiple rounds of public comment, commissioned reviews from organizations like
JASON and MITRE, and adjusted parameters and post-processing in response (boyd &
Sarathy, 2022). Even when code was public, though, our participants—and independent
researchers (Dwork et al., 2019; Gong, 2022)—found it di”cult to judge how exactly that
code is being used from the outside, and key privacy parameters and product details were
not always disclosed.

Others were less concerned about the need to comprehensively educate consumers: “[PPA is]
almost like whiz-bang technology... it doesn’t have to be something that everybody needs
a detailed awareness of, because it just makes life easier in the background” (P12). At
least three participants, in both government and industry, worried that marketing new PPA
protections would “muddy the waters” (P21) by revealing flaws in previous practices. A
privacy director at a technology firm pointed out a practical upside to operating PPA “in the
background”: firms would no longer have to ask for consent and risk “creep[ing] people out”
(P7).

Several practitioners had concerns about misrepresentation. Six of our participants, mostly
in private industry, feared adoption that amounted to “magic privacy” or privacy “pixie
dust”—black box techniques that, when invoked in marketing or legal copy, symbolically
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assure consumers and regulators of strong privacy and foreclose further inspection. An
executive at a technology firm said bluntly: “most of [PPA] marketing is bullshit... they’re
writing checks that their tech cannot cash” (P7). The policy researcher who advocated for
less detailed awareness also advocated for disclosing limitations: “Technologists always have
to be really careful... because you can make this sound so much more impressive. You can
make it seem like snake oil” (P12). Six other participants—who mostly worked to preserve
existing products at for-profit firms—brought up the possibility that their PPA e!orts were
just “good theater” (P28), “privacy whitewashing” (P12), or “adoption for show” (P5). One
participant mentioned Google’s Privacy Sandbox as an example of this kind of proposal.

3.4.3.2 Setting precedent.

Substantive or otherwise, organizations’ PPA practices became a model for others, particularly
in the absence of clear industry standards. From a lawyer at a technology firm: “I’ve been
taken aback a lot in the private sector [at] how out in the cold companies feel—like they want
to do something, but they just don’t know what is required” (P28). One privacy engineer at
a large technology firm explained:

An organization like [mine] really would like to avoid getting to court for every
little thing. You need some kind of consistent internal standard... so that you
can avoid getting into situations where you are in a public sense told, ‘You have
to do this.’ (P19)

As a result, internal standard-setting e!orts were developed in anticipation of future regulation:
“Let’s try to fix this two years before they make it mandatory” (P3).

Leading by example. Some organizations—particularly privacy-focused startups—aimed
to actively guide future regulation. Executives at two privacy boutiques agreed: “We’re eager
to demonstrate that legislation is catching up to [us], instead of [us] catching up to legislation”
(P15); “We want to be seen as thought leaders in this area as it continues to evolve” (P13).
Practitioners in legal and policy teams at large private firms explicitly advocated to policy-
makers for regulation that would provide “safe harbor” (P2) from regulatory requirements
for organizations which implemented their preferred PPA techniques. Practitioners at two
large technology firms and a privacy-focused startup described steps their organizations took
to influence regulation and develop relationships with policymakers—as that director put it,
“glad handing” (P2)—outside the normal course of fact-sharing. Other organizations in our
study worked to “influence standards bodies” (P14) such as the International Organization
for Standardization (ISO), the National Institute of Standards and Technology (NIST) or
the World Wide Web Consortium (W3C).

These e!orts influenced other organizations. At least seven practitioners in non-profits
and smaller organizations modeled their PPA systems after others’ prominent deployments,
particularly the use of di!erential privacy in the Decennial Census.

Scaling up & baking in. Second, organizations spread internal standards through developer
tools and documentation. One manager said, “We bake [PPA] into infrastructure. We make
it so it can’t be screwed up” (P23). All but five practitioners described building or updating
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software infrastructure more generally in the course of scaling up their PPA systems. And
most practitioners, especially those using PPA to create new products, built or updated tools
for developers—mostly software libraries and internal platforms—to increase the capacity of
a limited number of PPA experts. They aimed to construct a “well-lit path” for developers.
As one corporate executive explained, “You want to make it easy to do the right thing and
hard to do the wrong thing” (P7).

By virtue of their market positions, some companies could lay “well-lit paths” for whole
industries by sharing their infrastructure. Amazon and other cloud service companies, for
example, have included PPA tooling and features in their analytics products (AWS, 2023).
Twelve participants, disproportionately from smaller non-profit and government organizations,
mentioned integrating external PPA software libraries or other infrastructure—built by large
technology firms such as IBM or by open source communities such as OpenDP—to deploy
their own PPA systems, though these tools still required expertise to use correctly.

A few of industry practitioners had concerns that these kinds of infrastructure could help
firms box out competitors and control PPA development. Several mentioned Google’s Privacy
Sandbox and a new Apple feature that allows users to opt out of some in-app tracking
used by ad brokers including Meta and Google (Morrison, 2022). Both projects drew anti-
competition criticism from advertisers in France and the United Kingdom (Lomas, 2021). As
one researcher at a large technology firm observed, “When [corporations] make a bid on a
privacy-preserving technology, it’s not just that they want to do it quietly. They want to do
it spectacularly with regulations that ensconce what they’ve done at the expense of their
competitors” (P4).

3.5 Theoretical Integration

We observed multiple points of decoupling between external privacy expectations on the one
hand and the properties of deployed “privacy-preserving” systems on the other (Table 3.2).
Some of these points of decoupling are consistent with existing organizational theory. When
internal constituents failed to reinforce external pressure, leaders and developers often
abstained from adopting PPA for core products—a commonly studied type of policy-practice
decoupling (Bromley & Powell, 2012). And the trends in adoption we observed parallel the
initial stages of legal endogeneity (Edelman, 2016, p. 27-41): organizations encountered
ambiguous or absent privacy regulation, constructed PPA as a relevant solution, designed
& implemented PPA systems to prioritize managerial concerns, and di!used those systems
across industry. It is not yet clear the extent to which PPA systems will be endorsed by
courts and administrative agencies, but practitioners expected it: “A lot of [adoption] is
not so much ‘this is what the law says’ as ‘di!erential privacy seems to make the regulators
happy’” (P19). Technology companies such as Google are already advocating for regulatory
exceptions for the PPA techniques they use (Google, 2022).

However, the material, technological aspect of these information systems complicates existing
theory in two key ways. First, we observed less obtrusive points of decoupling arising from the
algorithmic aspects of PPA systems, a new dimension of decoupling that we term algorithmic
decoupling ; second, our analysis suggests that instances of algorithmic decoupling impact law
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Stage Description of decoupling Representative quotation

Deciding to
adopt

PPA adoption justifies ad-
ditional data collection, un-
dercutting privacy benefits

[There is] market demand for something that will get
you legal cover for hoovering up as much information
as possible. . . the business model isn’t going to change
at all. (P15)

Reliance on voluntary adop-
tion results in low take-up

We depend on people to in the company to understand
the privacy context of the company and self forward
to triage. (P8)

Leadership exempts core
products from adoption

Once there’s real money on the line, you get leader-
ship involved. And someone doesn’t care about pro-
tecting privacy because they’re going to get promoted
if you make however many billion dollars. (P19)

Interpreting
policies
into designs

Product teams negotiate for
weak privacy parameters

The [product] team is trying to do the least amount
of privacy that we will approve... So it’s really about
how much political capital [they] have within the or-
ganization... (P19)

Designers misinterpret pri-
vacy guarantees

To make [open source DP libraries] work you still
have to know what you’re doing... Worst case sce-
nario you’ll think you’re using DP when really you’re
actually not. (P26)

PPA designs are ambigu-
ously related to privacy re-
quirements

We’ve gotten as far as lining [di!erential privacy] up
with things like GDPR’s “singling out” clause, but it
still doesn’t give us any notion of how to do things
like tuning parameters. (P3)

Legitimating
designs

Marketing makes overly sim-
plified or deceptive claims

Most of [PPA] marketing is bullshit... they’re writing
checks that their tech cannot cash. (P7)

Table 3.2: Points of decoupling in PPA adoption.

and society through new mechanisms. We highlight two important mediators of algorithmic
decoupling based on cross-sectional analysis.

3.5.1 Algorithmic Decoupling

Technological infrastructure—the code bases and cloud services that industry “runs on”—
is inextricably linked with practice (Lampland & Star, 2009). Just as routines executed
by people can become decoupled from policies and expectations, so can routines executed
by algorithmic systems (Lessig, 1999). Organizational research describes how employees
form an interpretation of their organization’s legal environment and mobilize that “legal
reading” in their everyday work (Fuller et al., 2000). Our findings add a new dimension:
PPA experts also employed their own technological readings, interpreting technical properties
alongside the social and legal environment. As Wu (2003, p. 682) writes, “The programmer
is not unlike the tax lawyer, exploiting di!erences between stated goals of the law, and
its legal or practical limits.” In PPA design, legal and technological readings were jointly
consequential. Particularly for recently developed techniques, modern privacy laws rarely
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admit to straightforward, specific translations to technical implementation (Nissim & Wood,
2018; Balebako et al., 2014).

Our study suggests that this additional layer of technological interpretation can also con-
tribute to decoupling. We call this dimension algorithmic decoupling—a gap between formal
policy (e.g., an organizations’ public promises about privacy) and the material aspects of
organizational practice embedded in algorithmic processes (e.g., the ways personal data are
processed) (Volko! et al., 2007). Our study focuses on the professionals experts assigned
to navigate this gap, translating between the ostensive and the material aspects of their
organizations’ privacy practices.

Compared to other organizational practices, the operation of algorithmic systems may be
more easily obfuscated, subject to less scrutiny, and therefore more easily and permanently
decoupled from policies and outcomes. Information technologies generally gain scale through
translation and loose coupling between many layers of digital devices, networks, algorithms,
and services (Faik et al., 2020; Yoo et al., 2010). The relative invisibility and complexity of
these layers can make algorithmic systems inscrutable to non-experts (Burrell, 2016; Metcalf
et al., 2023; Selbst et al., 2023; Jin & Salehi, 2024). For example, a major 2002 privacy
transparency requirement for federal agencies was undermined by “the inaccessible idiom of
technology”, which impeded public participation and oversight (Bamberger & Mulligan, 2008).
Moreover, algorithmic systems increase the scale of organizational practices involving data
processing and data-driven decision-making; designers’ decisions have an outsized influence
on the outcomes of these processes, compared to other routines.

Algorithmic decoupling complicates prior research on organizational decoupling (Bromley
& Powell, 2012; Boxenbaum & Jonsson, 2017). Prior research separates decoupling into
policy-practice decoupling (symbolic adoption) and means-ends decoupling (symbolic imple-
mentation) (Bromley & Powell, 2012). Algorithmic decoupling adds an additional dimension—
practitioners identified instances of algorithmic decoupling both between policies and practices
(policy-practice) and between practices and outcomes (means-ends) (Figure 3.2).

Algorithmic decoupling shares certain properties with means-ends decoupling in particular:
because of its inscrutability, it may be more durable than traditional policy-practice decoupling,
which some argue do not withstand public scrutiny for long (Bromley & Powell, 2012). And
while extensive research suggests that policy-practice decoupling may be reversed when
employees reinforce societal expectations based on professional standards, moral commitments,
or personal identity (Edelman, 2016; Haack et al., 2012; Turco, 2012; Gioia, Patvardhan,
et al., 2013), algorithmic decoupling (and means-ends decoupling) may occur nonetheless
(Bromley & Powell, 2012)—when non-expert developers misinterpret privacy guarantees, for
example.

Means-ends decoupling, however, is more likely in opaque institutional fields where the e!ect
of practices on outcomes, such as sustainability, is hard to precisely measure (Wijen, 2014).
This is only partially the case for modern algorithmic systems; the material aspects of “black
box” algorithmic systems are often opaque, but it sometimes possible for technical experts
with access to a system to precisely measure its impacts on well-defined outcomes of concern
such as discrimination and disinformation (Kroll, 2018). Crucially, algorithmic decoupling
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External expectations
(e.g. data privacy laws)

Formal policies
(e.g., privacy promises)

Deciding to adopt

Legitimating designs

Intended outcomes
(e.g. user privacy)

Symbolic
adoption
(e.g., partial
adoption)

Symbolic implementation
(e.g., weak privacy parameters)

Policies Systems & Practices Outcomes

System
design

Interpreting policies
into designs

Adoption
strategy

Symbolic representation
(e.g., "magic privacy")

Figure 3.2: Algorithmic decoupling in our emergent process theory. Figures C.4.1–C.4.3 detail the
bolded subprocesses.

involves not only disconnect between process and outcomes (as in means-ends decoupling)
but also between policies and the properties of algorithmic systems used to process data. This
ambiguity is especially salient when regulations focus more on procedures (e.g., standards for
data processing) than outcomes, requiring practitioners to justify choices in terms system
properties (e.g., the ability to “de-identify” personal data).

Studies disagree on whether decoupling is more likely in early in the adoption process, when
implementation expectations are flexible for early adopters (Bromley & Powell, 2012), or
later, when established symbolic cues may su”ce (Tolbert & Zucker, 1983; Kennedy &
Fiss, 2009). Like policy-practice decoupling, algorithmic decoupling seems more likely when
technical interpretations of the underlying algorithms are uncertain or contested, such as
early on in adoption. Policy-practice decoupling is not always intentional; it may arise as
managers “muddle through” competing stakeholder expectations (Crilly et al., 2012). In
our study, technologists muddled through technical ambiguities in addition to competing
requirements. Unlike policy-practice decoupling, which is inversely related to pressure
from market stakeholders, regulators, and other external constituents (Stevens et al., 2005;
Okhmatovskiy & David, 2012; Bromley & Powell, 2012; Marquis & Qian, 2014) and resistance
from internal constituents (Turco, 2012), algorithmic decoupling may persist in spite of
scrutiny if oversight lacks technical specificity or there is no clear consensus on the acceptable
algorithmic translation of social values such as privacy.
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3.5.2 Algorithm-Mediated Legal Endogeneity

Algorithmic decoupling also entails new mechanisms for initial “guesses” at compliance to
endogenously alter industry practices and institutional norms (Edelman, 2016). Information
systems represent material standards and guidelines for the ethical treatment of personal
data (Verbeek, 2006; Lampland & Star, 2009)—fundamental matters of privacy in IS, for
example, are delegated to technologists and standard setting bodies (Waldman, 2018; Doty
& Mulligan, 2013).

The construction of shared IS infrastructure, then, has potential for lasting influence on
the institutional environment (Faik et al., 2020). In our study, for example, less-resourced
developers’ tendency to rely on only a few entrenched tool libraries meant that early adopters
had even more influence over practices in the rest of industry. This influence grows as more
developers use PPA products built into dominant cloud computing platforms such as Amazon
Web Services (Narayan, 2022; Cutolo & Kenney, 2021; AWS, 2023). And algorithmic systems
receive additional legal deference as courts often treat their design as a technical inevitability
rather than question the design choices that lead to their creation (Selbst et al., 2023; Metcalf
et al., 2023; Jin & Salehi, 2024).

3.5.3 Important Mediators of Algorithmic Decoupling

3.5.3.1 Privacy Champions.

The technical experts able to penetrate the veil of technological idiom hold special leverage
over algorithmic decoupling. They had varying amounts of influence over the decision to
adopt—like the success of enterprise IS adoption in general (Liang et al., 2007), decoupling
depends heavily on the support or opposition of influential executives and managers and
their social ties to other decoupling or non-decoupling organizations (Westphal & Zajac,
2001; Fiss & Zajac, 2004, 2006; Weaver et al., 1999). But when executives decided to adopt,
the process of interpreting policies into designs was heavily dependent on PPA experts,
often only one or two individuals. Nine of the organizations we studied—disproportionately
smaller organizations—mentioned lack of experience as a barrier to PPA adoption and six
consulted with external experts; one non-profit employee said that their PPA deployment
would not have “gotten o! the ground” (P19) without an external consultant from a large
tech firm. Moreover, organizations in our study relied heavily on performances of expertise
to justify their PPA systems to the public. The HIPAA Privacy Rule, for example, permits
de-identification methods certified by a statistical expert (U.S. Department of Health and
Human Services, 2012; Malin et al., 2011).

Some practitioners leveraged their central role in adoption to promote strong privacy standards
and prevent decoupling. Recent work chronicles the role of privacy “champions”: institutional
entrepreneurs who advance privacy through informal education and daily work when o”cial
policies are missing or insu”cient (Tahaei et al., 2021). Many of our participants viewed
their work as aligned with external calls for privacy. The approaches these participants
took to advocate for adoption mirrored stages of emergent moral leadership (Solinger et
al., 2020), including a precipitating scandal, internal coalition building, negotiation with
other stakeholders, and establishment of formal structures (e.g., privacy review). They
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promoted PPA adoption through technological defaults—the “well-lit paths” our participants
mentioned—and formed special interest groups, often centralized teams, to set and maintain
privacy standards. But they also struggled to prioritize and organize around ethics in
corporate environments (Lee et al., 2024), as do software engineers more generally (Widder
et al., 2023; Ali et al., 2023)

3.5.3.2 Motivational Narratives.

Cross-organization analysis of our sample suggests that algorithmic decoupling is also mediated
by the dominant narrative motivating adoption.

Decoupling was more di”cult for organizations making a business out of privacy.
Our participants reported decoupling most commonly when adopting to preserve existing data-
driven operations, disproportionately at large technology firms. For example, the strategy of
adopting only for less “mission critical” use cases (§3.4.1) was reported disproportionately
by practitioners in private industry, as were concerns about deceptive invocations of “magic
privacy” algorithmic techniques (§3.4.3). At large firms adopting mostly to comply with
existing regulations, employee-led adoption e!orts were more likely to falter as key privacy
leaders left the company and the company broke up central privacy groups. But privacy-
motivated practitioners at privacy-branded startups were more positive about PPA standards
at their companies. Indeed, prior research suggests that when employees’ identities are tied
up with their organizations’ external representations, decoupling is less likely to succeed
(Turco, 2012).

Large organizations had more influence on the institutional environment. Institu-
tionally endogenous processes such as participation in standards bodies were disproportionately
discussed by practitioners at large firms. They used legal justifications and “standardization
work” to convince regulators that PPA adoption was su”cient to keep existing practices
compliant. Industry leaders had an advantage in influencing the institutional environment—
both technology adoption and legitimacy spread through networks of influence (DiMaggio &
Powell, 1983; Rogers, 2003).

3.5.4 Boundary Conditions

In our study, we analyze the adoption of a unique class of algorithmic systems for privacy-
preserving analytics. Besides providing thick descriptions of important phenomena like PPA
adoption (Lee & Baskerville, 2003), unconventional contexts can be useful for developing
newly insightful theory (Bamberger & Pratt, 2010; Monteiro et al., 2022). We chose to study
PPA adoption not only because of its potential impact on digital privacy, but also because it
represents an understudied intersection of technological, managerial, and societal concerns
common in a broader class of information systems technologies transforming the technology
industry. Our model applies particularly to technological practices that 1) are implemented
to improve social performance, 2) involve routines enacted by algorithms as well as people,
and 3) have complex properties or impacts that require expertise and access to understand.
Algorithmic systems in particular fit these criteria—pushes towards “responsible” artificial
intelligence (AI) and ethical data science, for example, are motivated by similar institutional
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pressures to PPA adoption, especially as calls for AI regulation proliferate (Hirsch et al.,
2020; Lee et al., 2024). Thus, many of the mechanisms we identify in this unconventional
context—for example, algorithmic decoupling—could also help explain the interaction between
regulation and technology adoption in fields such as AI ethics, environmental protection, or
digital social innovation (Qureshi et al., 2021).

3.6 Practical Implications

Given our findings, policymakers and privacy-minded managers face a conundrum. Within
existing privacy laws, there is room for technological interpretation. But, the capacity to
form and propagate these interpretations is concentrated in mostly large and mostly private
organizations. These early adopters hold particular sway over the techniques that may become
synonymous with privacy compliance. One practitioner, for example, described a future of
“automatically invokable” mathematical techniques that assure users their privacy is preserved.
It may be that the PPA systems deployed today are a substantive step towards privacy, and
many of our participants were optimistic about their organizations’ e!orts. Scholars hope,
for example, that the use of di!erential privacy could discourage dubious statistical practices
such as p-hacking (Oberski & Kreuter, 2020).

But left to self-regulate, prominent early adopters may influence adoption in ways contrary
to the public interest. For example, nearly all organizations in our study framed privacy
risks as invasions or exploitation by state actors or other “attackers,” shifting focus away
from internal threats to privacy (Seeman & Susser, 2023). Privacy scholars argue that by
focusing on specific technical properties such as individual anonymity or local processing,
commercial PPA proposals legitimize invasive practices and foreclose more expansive privacy
norms (Barocas & Nissenbaum, 2014; McGuigan et al., 2023; Martin et al., 2023; Yew et al.,
2024)—a case of perverse innovation (Burk, 2016). Insights from Microsoft’s di!erentially
private Workplace Analytics tool (Bird, 2020), for example, may still be used to increase
managerial control and restrict workers’ autonomy (Levy, 2022). And scholars may worry
that even as PPA adoption addresses real privacy concerns, it also legitimizes asymmetric
economic and social relations (McGuigan et al., 2023; Veale, 2023; Viljoen, 2021). As one
participant said, PPA “can’t make [data collection] ethical just because it makes it private”
(P15).

One remedy to managerial mediation is closer scrutiny (Edelman, 2016). Researchers and
managers should investigate not only the theoretical properties of PPA techniques but also
their empirical manifestations and impacts. Prior work o!ers guidelines for legal accountability
in algorithmic systems (Selbst, 2021; Metcalf et al., 2023), particularly in areas of law where
technologies are routinely deconstructed—products liability, for example (Selbst et al., 2023).
And independent academic researchers are already scrutinizing the most visible PPA systems
deployed by organizations such as Meta, Apple, and Google (Tang et al., 2017; Berke &
Calacci, 2022; McGuigan et al., 2023; Martin et al., 2023). Some of our participants—echoed
by di!erential privacy scholars (Cummings et al., 2024; Gong, 2022; Dwork et al., 2019)—
called for additional e!orts to make PPA techniques more transparent, such as a registry of
PPA parameter choices (Dwork et al., 2019).
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Scrutiny and transparency are not unalloyed goods—they must be accompanied by formal
mechanisms for accountability (Han, 2015; Birchall, 2014). For example, Google’s Privacy
Sandbox included a publicly documented plan to automatically cluster users into interest
groups based on their behavior. The plan drew opposition from competing browsers Firefox,
Brave, and Vivaldi (Bohn, 2021) and from the Electronic Frontier Foundation, which called it
“the opposite of privacy-preserving technology” (Cyphers, 2019). Google eventually proposed
a new design which grouped users into fewer, purportedly less sensitive clusters (Goel,
2022). Here, scrutiny from competitors and advocates helped to make technical reforms
to an unpalatable design. But the Topics API still gave advertisers the power to target
users based on their behavior, leaving Google’s core business model relatively untouched
while hampering its competition (Lomas, 2021)—and Google has since reverted its plans
to phase out third-party cookies entirely. Waldman (2018) suggests that strong regulatory
interventions, such as consent orders and weighty fines, can shock organizations into more
integrated privacy practices. One PPA practitioner in our study described how a “push
from the outside” (P19)—for their organization, a court ruling—initiated centralized privacy
review and empowered PPA practitioners to maintain higher standards.

Judges, policymakers, investigators, and managers tasked with holding PPA operators
accountable should look beyond the invocation of a technique like di!erential privacy to
examine its full technical manifestation—including parameters, definitions of sensitivity, and
post-processing steps. Privacy and algorithm impact assessments optimistically could provide
structure for internal advocacy and provide valuable information to outside observers (Selbst,
2021), though such assessments have had mixed e!ects in practice (Bamberger & Mulligan,
2008; Brandtner, 2021; Smart et al., 2022). But even as policymakers seek to advance the
development of PPA technologies (e.g., National Science and Technology Council, 2023;
O”ce of Science and Technology Policy, 2022a), they should also take care not to endorse
PPA techniques outside of context and to scrutinize PPA systems implemented within “safe
harbor” frameworks. Data privacy regulation has long struggled with decoupling—reviews of
a “gold standard” 2000 U.S. Safe Harbor agreement for processing personal data from E.U.
citizens, for example, revealed that most participating organizations failed to implement basic
requirements and others made false claims about certification (Connolly, 2008). Moreover,
policymakers should not assume that a solely technological solution is su”cient (Green &
Viljoen, 2020)or that “magic privacy” systems even function as advertised (Raji, Kumar,
et al., 2022). In addition to scrutiny, policymakers and foundations could o!er funding and
other support to help less-resourced organizations contribute to PPA practice.

3.7 Conclusion, Limitations, and Future Research

Our study analyzes the expert practitioners who help organizations decide to adopt, interpret
PPA designs, and justify designs to external stakeholders. Through this unique perspective,
we develop a theoretical model that captures interactions between institutional expectations
and technology design—interactions that have great implications for digital privacy. We
conceptualize new technological dimensions to theories of decoupling (algorithmic decoupling)
and legal endogeneity.
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Our work has limitations. First, while our sample did include organizations who considered
PPA techniques but failed to deploy them, our sample does not include organizations which
have never seriously considered adoption. Second, our participants’ responses may be
prone to social desirability bias or crafted to serve professional motives, though we do not
repeat their views uncritically. Third, this study focuses on a set of formal, technical, and
algorithmic approaches to privacy, and our analysis is influenced by our own backgrounds in
computer science, economics, and public policy (see SM Appendix C.1 for further reflection).
Research from disciplines outside of computer science and statistics could further elucidate
the social trade-o!s facing practitioners and the downstream consequences of adoption for
privacy standards. Moreover, our sample—like the population of PPA practitioners—is
predominantly American, white, and cisgender male. Our study thus examines dominant
perspectives in PPA work, but those perspectives do not encompass all possible paths for
PPA development—for example, organizations’ PPA plans rarely accounted for documented
inequities in access to privacy (Skinner-Thompson, 2020; Allen, 2022; Madden et al., 2017).
Researchers and policymakers could imagine alternative trajectories for PPA development
that elevate public interests—for example, as a means to facilitate algorithm auditing (Xu &
Zhang, 2021).

As large technology firms promote PPA techniques as the “future of personalized advertising”
(Egan, 2020) and the digital economy, we hope our study will inspire further rigorous empirical
investigation and theorization about the ways regulators and consumer advocates may shape
the development of socially-motivated innovation in the public interest.
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CHAPTER 4. MEASURING SOCIAL BIASES

4.1 Introduction

Can machines learn social biases from the way people are portrayed in image datasets?
Companies and researchers regularly use machine learning models trained on massive datasets
of images scraped from the web for tasks from face recognition (Hill, 2020) to image classifi-
cation (Sun et al., 2017). To reduce costs, many practitioners use state-of-the-art models
“pre-trained” on large datasets to help solve other machine learning tasks, a powerful approach
called transfer learning (Tan et al., 2018). For example, HireVue used similar state-of-the-art
computer vision and natural language models to evaluate job candidates’ video interviews,
potentially discriminating against candidates based on race, gender, or other social factors
(Harwell, 2019). In this paper, we show how models trained on unlabeled images scraped
from the web embed human-like biases, including racism and sexism.

Where most bias studies focus on supervised machine learning models, we seek to quantify
learned patterns of implicit social bias in unsupervised image representations. Studies in
supervised computer vision have highlighted social biases related to race, gender, ethnicity,
sexuality, and other identities in tasks including face recognition, object detection, image
search, and visual question answering (Buolamwini & Gebru, 2018a; Kay et al., 2015; Raji,
Gebru, et al., 2020; Wilson et al., 2019; Manjunatha et al., 2019; Nex & Remondino,
2014). These algorithms are used in important real-world settings, from applicant video
screening (Harwell, 2019; Raghavan et al., 2020) to autonomous vehicles (Geiger et al., 2012;
Nex & Remondino, 2014), but their harmful downstream e!ects have been documented in
applications such as online ad delivery (Sweeney, 1997) and image captioning (Hendricks
et al., 2018).

Our work examines the growing set of computer vision methods in which no labels are used
during model training. Recently, pre-training approaches adapted from language models
have dramatically increased the quality of unsupervised image representations (Donahue &
Simonyan, 2019; Bachman et al., 2019; He et al., 2020; Chen, Kornblith, Norouzi, & Hinton,
2020; Chen, 2020; Chen, Radford, et al., 2020; Misra & Van Der Maaten, 2020; Carion et al.,
2020). With fine-tuning, practitioners can pair these general-purpose representations with
labels from their domain to accomplish a variety of supervised tasks like face recognition
or image captioning. We hypothesize that 1) like their counterparts in language, these
unsupervised image representations also contain human-like social biases, and 2) these biases
correspond to stereotypical portrayals of social group members in training images.

Results from natural language support this hypothesis. Several studies show that word
embeddings, or representations, learned automatically from the way words co-occur in large
text corpora exhibit human-like biases (Bolukbasi et al., 2016; Caliskan et al., 2017; Garg
et al., 2018). Word embeddings acquire these biases via statistical regularities in language
that are based on the co-occurrence of stereotypical words with social group signals. Recently,
new deep learning methods for learning context-specific representations sharply advanced the
state-of-the-art in natural language processing (NLP) (Devlin et al., 2018; Peters et al., 2018;
Radford et al., 2019). Embeddings from these pre-trained models can be fine-tuned to boost
performance in downstream tasks such as translation (Erhan et al., 2009, 2010). As with
static embeddings, researchers have shown that embeddings extracted from contextualized
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language models also exhibit downstream racial and gender biases (Zhao et al., 2017; Basta
et al., 2019; Tan & Celis, 2019; Guo & Caliskan, 2020).

Recent advances in NLP architectures have inspired similar unsupervised computer vision
models. We focus on two state-of-the-art, pre-trained models for image representation, iGPT
(Chen, Radford, et al., 2020) and SimCLRv2 (Chen, 2020). We chose these models because
they hold the highest fine-tuned classification scores, were pre-trained on the same large
dataset of Internet images, and are publicly available. iGPT, or Image GPT, borrows its
architecture from GPT-2 (Radford et al., 2019), a state-of-the-art unsupervised language
model. iGPT learns representations for pixels (rather than for words) by pre-training on
many unlabeled images (Chen, Radford, et al., 2020). SimCLRv2 uses deep learning to
construct image representations from ImageNet by comparing augmented versions of the
training images (Chen, Kornblith, Norouzi, & Hinton, 2020; Chen, 2020).

Do these unsupervised computer vision models embed human biases like their counterparts
in natural language? If so, what are the origins of this bias? In NLP, embedding biases have
been traced to word co-occurrences and other statistical patterns in text corpora used for
training (Caliskan et al., 2017; Brunet et al., 2019; Blodgett et al., 2020). Both our models are
pre-trained on ImageNet 2012, the most widely-used dataset of curated images scraped from
the web (Russakovsky et al., 2015). In image datasets and image search results, researchers
have documented clear correlations between the presence of individuals of a certain gender
and the presence of stereotypical objects; for instance, the category “male” co-occurs with
career and o”ce related content such as ties and suits whereas “female” more often co-occurs
with flowers in casual settings (Kay et al., 2015; Wang, Narayanan, & Russakovsky, 2020).
As in NLP, we expect that these patterns of bias in the pre-training dataset will result
in implicitly embedded bias in unsupervised models, even without access to labels during
training.

This paper presents the Image Embedding Association Test (iEAT), the first systematic
method for detecting and quantifying social bias learned automatically from unlabeled
images.

• We find statistically significant racial, gender, and intersectional biases embedded in
two state-of-the-art unsupervised image models pre-trained on ImageNet (Russakovsky
et al., 2015), iGPT (Chen, Radford, et al., 2020) and SimCLRv2 (Chen, 2020).

• We test for 15 previously documented human and machine biases that have been studied
for decades and validated in social psychology and conduct the first machine replication
of Implicit Association Tests (IATs) with picture stimuli (Greenwald et al., 1998).

• In 8 tests, our machine results match documented human biases, including 4 of 5
biases also found in large language models. The 7 tests which did not show significant
human-like biases are from IATs with only small samples of picture stimuli.

• With 16 novel tests, we show how embeddings from our model confirm several hypotheses
about intersectional bias from social psychology (Ghavami & Peplau, 2013).

• We compare our results to statistical analyses of race and gender in image datasets.
Unsupervised models seem to learn bias from the ways people are commonly portrayed
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in images on the web.

• We present a qualitative case study of how image generation, a downstream task utilizing
unsupervised representations, exhibits a bias towards the sexualization of women.

4.2 Related Work

Various tests have been constructed to quantify bias in unsupervised natural language models
(Caliskan et al., 2017; Zhao et al., 2017; Basta et al., 2019; May et al., 2019), but to
our knowledge, there are no principled tests for measuring bias embedded in unsupervised
computer vision models. Wang, Narayanan, and Russakovsky (2020) develop a method to
automatically recognize bias in visual datasets but still rely on human annotations. Our
method uses no annotations whatsoever. In NLP, there are several systematic approaches to
measuring unsupervised bias in word embeddings (Caliskan et al., 2017; May et al., 2019;
Tan & Celis, 2019; Guo & Caliskan, 2020; Bommasani et al., 2020; Kurita et al., 2019). Most
of these tests take inspiration from the well-known IAT (Greenwald et al., 1998; Greenwald
et al., 2003). Participants in the IAT are asked to rapidly associate stimuli, or exemplars,
representing two target concepts (e.g. “flowers” and “insects”) with stimuli representing
evaluative attributes (e.g. “pleasant” and “unpleasant”) attribute (Greenwald et al., 1998).
Assuming that the cognitive association task is easier when the strength of implicit association
between the target concept and attributes is high, the IAT quantifies bias as the latency of
response (Greenwald et al., 1998) or the rate of classification error (Nosek & Banaji, 2001).
Stimuli may take the form of words, pictures, or even sounds (Nosek, Greenwald, & Banaji,
2007), and there are several IATs with picture-only stimuli (Nosek, Greenwald, & Banaji,
2007).

Notably, Caliskan et al. (2017) adapt the heavily-validated IAT (Greenwald et al., 1998) from
social psychology to machines by testing for the mathematical association of word embeddings
rather than response latency. They present a systematic method for measuring language
biases associated with social groups, the Word Embedding Association Test (WEAT). Like
the IAT, the WEAT measures the e!ect size of bias in static word embeddings by quantifying
the relative associations of two sets of target stimuli (e.g., {“woman,” “female”} and {“man,”
“male”}) that represent social groups with two sets of evaluative attributes (e.g., {“science,”
mathematics”} and {“arts,” “literature”}). For validation, two WEATs quantify associations
towards flowers vs. insects and towards musical instruments vs. weapons, both accepted
baselines Greenwald et al. (1998). Greenwald et al. (1998) refer to these baseline biases
as “universally” accepted stereotypes since they are widely shared across human subjects
and are not potentially harmful to society. Other WEATs measure social group biases such
as sexist and racist associations or negative attitudes towards the elderly or people with
disabilities. In any modality, implicit biases can potentially be prejudiced and harmful to
society. If downstream applications use these representations to make consequential decisions
about human beings, such as automated video job interview evaluations, machine learning
may perpetuate existing biases and exacerbate historical injustices Raghavan et al., 2020;
De-Arteaga et al., 2019.

The original WEAT (Caliskan et al., 2017) uses static word embedding models such as
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word2vec (Mikolov et al., 2013) and GloVe Pennington et al., 2014, each trained on Internet-
scale corpora composed of billions of tokens. Recent work extends the WEAT to contextualized
embeddings: dynamic representations based on the context in which a token appears. May
et al. (2019) insert targets and attributes into sentences like “This is a[n] ¡word¿” and applying
WEAT to the vector representation for the whole sentence, with the assumption that the
sentence template used is “semantically bleached” (such that the only meaningful content
in the sentence is the inserted word). Tan and Celis (2019) extract the contextual word
representation for the token of interest before pooling to avoid confounding e!ects at the
sentence level; in contrast, Bommasani et al. (2020) find that pooling tends to improve
representational quality for bias evaluation. Guo and Caliskan (2020) dispense with sentence
templates entirely, pooling across n word-level contextual embeddings for the same token
extracted from random sentences. Our approach is closest to these latter two methods,
though we pool over images rather than words.

4.3 Approach

In this paper, we adapt bias tests designed for contextualized word embeddings to the
image domain. While language transformers produce contextualized word representations
to solve the next token prediction task, an image transformer model like iGPT generates
image representations to solve the next pixel prediction task (Chen, Radford, et al., 2020).
Unlike words and tokens, pixels do not explicitly correspond to semantic concepts (objects
or categories) as words do. In language, a single token (e.g. “love”) corresponds to the
target concept or attribute (e.g. “pleasant”). But in images, no single pixel corresponds to
a semantically meaningful concept. To address the abstraction of semantic representation
in the image domain, we propose the Image Embedding Association Test (iEAT), which
modifies contextualized word embedding tests to compare pooled image-level embeddings.
The goal of the iEAT is to measure the biases embedded during unsupervised pre-training
by comparing the relative association of image embeddings in a systematic process. Chen,
Radford, et al. (2020) and Chen, Kornblith, Norouzi, and Hinton (2020) show through
image classification that unsupervised image features are good representations of object
appearance and categories; we expect they will also embed information gleaned from the
common co-occurrence of certain objects and people and therefore contain related social
biases.

Our approach is summarized in Figure 4.1. The iEAT uses the same formulas for the
test statistic, e!ect size d, and p-value as the WEAT (Caliskan et al., 2017), described in
Section 4.3.3. Section 4.3.1 summarizes our approach to replicating several di!erent IATs;
Section 4.3.2 describes several novel intersectional iEATs. Section 4.3.3 describes our test
statistic, drawn from embedding association tests like the WEAT.

4.3.1 Replication of Bias Tests

In this paper, we validate the iEAT by replicating as closely as possible several common
IATs. These tests fall into two broad categories: valence tests, in which two target concepts
are tested for association with “pleasant” and “unpleasant” images; and stereotype tests, in
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Figure 4.1: Example iEAT replication of the Insect-Flower IAT (Greenwald et al., 1998), which
measures the di!erential association between flowers vs. insects and pleasantness vs. unpleasantness.

which two target concepts are tested for association with a pair of stereotypical attributes
(e.g. “male” vs. “female” “career” vs. “family”). To closely match the ground-truth human
IAT data and validate our method, our replications use the same concepts as the original
IATs (listed in Table 4.1). Because some IATs rely on verbal stimuli, we adapt them to
images, using image stimuli from the IATs when available. When no previous studies use
image stimuli, we map the non-verbal stimuli to images using the data collection method
described in Section 4.5.

Many of these bias tests have been replicated for machines in the language domain; for the
first time, we also replicate tests with image-only stimuli, including the Asian and Native
American IATs. Most of these tests were originally administered in controlled laboratory
settings (Greenwald et al., 1998; Greenwald et al., 2003), and all except for the Insect-Flower
IAT have also been tested on the Project Implicit website at http://projectimplicit.org (Nosek
et al., 2002; Greenwald et al., 2003, 2009). Project Implicit has been available worldwide
for over 20 years; in 2007, the site had collected more than 2.5 million IATs. The average
e!ect sizes (which are based on samples so large the power is nearly 100%) for these tests
are reproduced in Table 4.1. To establish a principled methodology, all the IAT verbal and
original image stimuli for our bias tests were replicated exactly from this online IAT platform
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(Nosek, Smyth, et al., 2007). We will treat these results, along with the laboratory results
from the original experiments (Greenwald et al., 1998), as ground-truth for human biases
that serve as validation benchmarks for our methods (Section 4.6).

4.3.2 Intersectional iEATs

We also introduce several new tests for intersectional valence bias and bias at the intersection
of gender stereotypes and race. Intersectional stereotypes are often even more severe than
their constituent stereotypes (Crenshaw, 1990). Following Tan and Celis (2019), we anchored
comparison on White males, the group with the most representation, and compared against
White females, Black males, and Black females, respectively (Table 4.2). Drawing on
social psychology (Ghavami & Peplau, 2013), we pose three hypotheses about intersectional
bias:

• Intersectionality hypothesis: tests at the intersection of gender and race will reveal
emergent biases not explained by the sum of biases towards race and gender alone.

• Race hypothesis : biases between racial groups will be more similar to di!erential biases
between the men than between the women.

• Gender hypothesis : biases between men and women will be most similar to biases
between White men and White women.

4.3.3 Embedding Association Tests

Though our stimuli are images rather than words, we can use the same statistical method
for measuring biased associations between image representations (Caliskan et al., 2017) to
quantify a standardized e!ect size of bias. We follow Caliskan et al. (2017) in describing the
WEAT here.

Let X and Y be two sets of target concepts embeddings of size Nt, and let A and B be
two sets of attribute embeddings of size Na. For example, the Gender-Career IAT tests
for the di!erential association between the concepts “male” (A) and “female” (B) and the
attributes “career” (X) and “family” (Y ). Generally, experts in social psychology and
cognitive science select stimuli that are typically representative of various concepts. In
this case, A contains embeddings for verbal stimuli such as “boy,” “father,” and “man,”
while X contains embeddings for verbal stimuli like “o”ce” and “business.” These linguistic,
visual, and sometimes auditory stimuli are proxies for the aggregate representation of a
concept in cognition. Embedding association tests use these unambiguous stimuli as semantic
representations to study biased associations between the concepts being represented. Since the
stimuli are chosen by experts to most accurately represent concepts, they are not polysemous
or ambiguous tokens. We use these expert-selected stimuli as the basis for our tests in the
image domain.

The test statistic measures the di!erential association of the target concepts X and Y with
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the attributes A and B

s(X, Y,A,B) =
∑

x↔X

s(x,A,B)≃
∑

y↔Y

s(y, A,B) (1)

where s(w,A,B) is the di!erential association of w with the attributes, quantified by the
cosine similarity of vectors

s(w,A,B) = meana↔A cos(w, a)≃meanb↔B cos(w, b)

We test the significance of this association with a permutation test1 over all possible equal-size
partitions {(Xi, Yi)}i of X ⇓ Y to generate a null hypothesis as if no biased associations
existed. The one-sided p-value measures the unlikelihood of the null hypothesis

p = Pr[s(Xi, Yi, A,B) > s(X, Y,A,B)]

and the e!ect size, a standardized measure of the separation between the relative association
of X and Y with A and B, is

d =
meanx↔Xs(x,A,B)≃meany↔Y s(y, A,B)

stdw↔X↗Y s(w,A,B)

A larger e!ect size indicates a larger di!erential association; for instance, the large e!ect size
d in Table 4.1 for the gender-career bias example above indicates that in human respondents,
“male” is strongly associated with “career” attributes compared to “female,” which is strongly
associated with “family” attributes. Note that these e!ect sizes cannot be directly compared
to e!ect sizes in human IATs, but the significance levels are uniformly high. Human IATs
measure individual people’s associations; embedding association tests measure the aggregate
association in the representation space learned from the training set. In general, significance
increases with the number of stimuli; an insignificant result does not necessarily indicate a
lack of bias.

One important assumption of the iEAT is that categories can be meaningfully represented by
groups of images, such that the association bias measured refers to the categories of interest
and not some other, similar-looking categories. Thus, a positive test result indicates only
that there is an association bias between the corresponding samples’ sets of target images and
attribute images. To generalize to associations between abstract social concepts requires that
the samples adequately represent the categories of interest. Section 4.5 details our procedure
for selecting multiple, representative stimuli, following validated approaches from prior work
Greenwald et al., 1998.

We use an adapted version of May et al. (2019)’s Python WEAT implementation. All code,
pre-trained models, and data used to produce the figures and results in this paper can be
accessed at github.com/ryansteed/ieat.

1We use an exact, non-parametric permutation test over all possible partitions. There are no normality
assumptions about the distribution of the null hypothesis.
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4.4 Computer Vision Models

To explore what kinds of biases may be embedded in image representations generated in
unsupervised settings, where class labels are not available for images, we focus on two computer
vision models published in summer 2020, iGPT and SimCLRv2. We extract representations
of image stimuli with these two pre-trained, unsupervised image representation models. We
choose these particular models because they achieve state-of-the-art performance in linear
evaluation (a measure of the accuracy of a linear image classifier trained on embeddings from
each model). iGPT is the first model to learn from pixel co-occurrences to generate image
samples and perform image completion tasks.

4.4.0.1 Pre-training Data

Both models are pre-trained on ImageNet 2012, a large benchmark dataset for computer
vision tasks (Russakovsky et al., 2015).2 ImageNet 2012 contains 1.2 million annotated images
of 200 object classes, including a person class; even if the annotated object is not a person,
a person may appear in the image. For this reason, we expect the models to be capable of
generalizing to stimuli containing people (Russakovsky et al., 2013, 2015). While there are
no publicly available pre-trained models with larger training sets, and the “people” category
of ImageNet is no longer available, this dataset is a widely used benchmark containing a
comprehensive sample of images scraped from the web, primarily Flickr (Russakovsky et al.,
2015). We assume that the portrayals of people in ImageNet are reflective of the portrayal
of people across the web at large, but a more contemporary study is left to future work.
CIFAR-100, a smaller classification database, was also used for linear evaluation and stimuli
collection (Krizhevsky, 2009).

4.4.0.2 Image Representations

Both models are unsupervised : neither use any labels during training. Unsupervised models
learn to produce embeddings based on the implicit patterns in the entire training set of image
features. Both models incorporate neural networks with multiple hidden layers (each learning
a di!erent level of abstraction) and a projection layer for some downstream task. For linear
classification tasks, features can be drawn directly from layers in the base neural network. As
a result, there are various ways to extract image representations, each encoding a di!erent
set of information. We follow Chen, Radford, et al. (2020) and Chen, Kornblith, Norouzi,
and Hinton (2020) in choosing the features for which linear evaluation scores are highest
such that the features extracted contain high-quality, general-purpose information about the
objects in the image. Below, we describe the architecture and feature extraction method for
each model.

2Both models were tested on the Tensorflow version of ILSVRC 2012, available at https://www.tensorflow.
org/datasets/catalog/imagenet2012.

75

https://www.tensorflow.org/datasets/catalog/imagenet2012
https://www.tensorflow.org/datasets/catalog/imagenet2012


CHAPTER 4. MEASURING SOCIAL BIASES

4.4.1 iGPT

The Image Generative Pre-trained Transformer (iGPT) model is a novel, NLP-inspired
approach to unsupervised image representation. We chose iGPT for its high linear evaluation
scores, minimalist architecture, and strong similarity to GPT-2 (Radford et al., 2019),
a transformer-based architecture that has found great success in the language domain.
Transformers learn patterns in the way individual tokens in an input sequence appear with
other tokens in the sequence (Vaswani et al., 2017). Chen, Radford, et al. (2020) apply
a structurally simple, highly parameterized version of the GPT-2 generative language pre-
training architecture (Radford et al., 2019) to the image domain for the first time. GPT-2
uses the “contextualized embeddings” learned by a transformer to predict the next token in
a sequence and generate realistic text (Radford et al., 2019). Rather than autoregressively
predict the next entry in a sequence of tokens as GPT-2 does, iGPT predicts the next entry in
a flattened sequence of pixels. iGPT is trained to autoregressively complete cropped images,
and feature embeddings extracted from the model can be used to train a state-of-the-art
linear classifier (Chen, Radford, et al., 2020).

We use the largest open-source version of this model, iGPT-L 32x32, with L = 48 layers and
embedding size 1536. All inputs are restricted to 32x32 pixels; the largest model, which takes
64x64 input, is not available to the public. Original code and checkpoints for this model
were obtained from its authors at github.com/openai/image-gpt. iGPT is composed of L
blocks

n
l = layer norm(hl)

a
l = h

l +multihead attention(nl)

h
l+1 = a

l +mlp(layer norm(al))

where h
l is the input tensor to the l

th block. In the final layer, called the projection head,
Chen, Radford, et al. (2020) learn a projection from n

L = layer norm(hL) to a set of logits
parameterizing the conditional distributions across the sequence dimension. Because this
final layer is designed for autoregressive pixel prediction, the final layer may not contain the
optimal representations for object recognition tasks. Chen, Radford, et al. (2020) obtain the
best linear classification results using embeddings extracted from a middle layer - specifically,
somewhere near the 20th layer (Chen, Radford, et al., 2020). A linear classifier trained on
these features is much more accurate than one trained on the next-pixel embeddings (Chen,
Radford, et al., 2020). Such “high-quality” features from the middle of the network f

l are
obtained by average-pooling the layer norm across the sequence dimension:

f
l = ⇔nl

i
↖i (2)

Chen, Radford, et al. (2020) then learn a set of class logits from f
l for their fine-tuned,

supervised linear classifier, but we will just use the embeddings f 20. In general, we prefer
these embeddings over embeddings from other layers for two reasons: 1) they can be more
closely compared to the SimCLRv2 embeddings, which are also optimal for fine-tuning a
linear classifier; 2) we hypothesize that embeddings with higher linear evaluation scores
will also be more likely to embed biases, since stereotypical portrayals typically incorporate
certain objects and scenes (e.g. placing men with sports equipment). In Appendix D.3, we
try another embedding extraction strategy and show that this hypothesis is correct.
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4.4.2 SimCLR

The Simple Framework for Contrastive Learning of Visual Representations (SimCLR) (Chen,
Kornblith, Norouzi, & Hinton, 2020; Chen, Kornblith, Swersky, et al., 2020) is another
state-of-the-art unsupervised image classifier. We chose SimCLRv2 because it has a state-of-
the-art open source release and for variety in architecture: unlike iGPT, SimCLRv2 utilizes a
traditional neural network for image encoding, ResNet (He et al., 2016). SimCLRv2 extracts
representations in three stages: 1) data augmentation (random cropping, random color
distortions, and Gaussian blur); 2) an encoder network, ResNet (He et al., 2016); 3) mapping
to a latent space for contrastive learning, which maximizes agreement between the di!erent
augmented views (Chen, Kornblith, Norouzi, & Hinton, 2020). These representations can be
used to train state-of-the-art linear image classifiers (Chen, Kornblith, Norouzi, & Hinton,
2020; Chen, Kornblith, Swersky, et al., 2020). We use the largest pre-trained open-source
version (the model with the highest linear evaluation scores) of SimCLRv2 (Chen, Kornblith,
Swersky, et al., 2020), obtained from its authors at github.com/google-research/simclr. This
pre-trained model uses a 50-layer ResNet with width 3↙ and selective kernels (which have
been shown to increase linear evaluation accuracy), and it was also pre-trained on ImageNet
(Russakovsky et al., 2015).

As with iGPT, we extract the embeddings identified by Chen, Kornblith, Norouzi, and Hinton
(2020) as “high-quality” features for linear evaluation. Following (Chen, Kornblith, Norouzi,
& Hinton, 2020), let x̃i and x̃j be two data augmentations (random cropping, random color
distortion, and random Gaussian blur) of the same image. The base encoder network f(·) is
a network of L layers

hi = f(x̃i) = ResNet(x̃i) (3)

where hi ↔ Rd is the output after the average pooling layer. During pre-training, SimCLRv2
utilizes an additional layer: a projection head g(·) that maps hi to a latent space for contrastive
loss. The contrastive loss function can be found in (Chen, Kornblith, Norouzi, & Hinton,
2020).

After pre-training, Chen, Kornblith, Norouzi, and Hinton (2020) discard the projection head
g(·), using the average pool output f(·) for linear evaluation. Note that the projection
head g(h) is still necessary for pre-training high-quality representations (it improves linear
evaluation accuracy by over 10%); but Chen, Kornblith, Norouzi, and Hinton (2020) find
that training on h rather than z = g(h) also improves linear evaluation accuracy by more
than 10%. We follow suit, using hi (the average pool output of ResNet) to represent our
image stimuli, which has dimensionality 2, 048. High dimensionality is not a great obstacle;
association tests have been used with embeddings as large as 4, 096 dimensions (May et al.,
2019).

4.5 Stimuli

To replicate the IATs, we systematically compiled a representative set of image stimuli for
each of the concepts, or categories, listed in Table 4.1. Rather than attempting to specify
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and justify new constructs, we adhere as closely as possible to stimuli defined and employed
by well-validated psychological studies. For each category (e.g. “male” or “science”) in
each IAT (e.g. Gender-Science), we drew representative images from either 1) the original
IAT stimuli, if the IAT used picture stimuli (Nosek, Smyth, et al., 2007), 2) the CIFAR-100
dataset (Krizhevsky, 2009), or 3) a Google Image Search.

This section describes how we obtained a set of images that meaningfully represent some
target concept (e.g. “male”) or attribute (e.g. “science”) as it is normally, or predominantly,
portrayed in society and on the web. We follow the stimuli selection criteria outlined in
foundational prior work to collect the most typical and accurate exemplars (Greenwald et al.,
1998; Greenwald et al., 2003). For picture-IATs with readily available image stimuli, we
accept those stimuli as representative and exactly replicate the IAT conditions, with two
exceptions: 1) the weapon-tool IAT picture stimuli include outdated objects (e.g. cutlass,
Walkman), so we chose to collect an additional, modernized set of images; 2) the disability
IAT utilizes abstract symbols, so we collected a replacement set of images of real people
for consistency with the training set. For IATs with verbal stimuli, we use Google Image
Search as a proxy for the predominant portrayal of words (expressed as search terms) on the
web (described in Section 4.5.1). Human IATs employ the same philosophy: for example,
the Gender-Science IAT uses common European American names to represent male and
female, because the majority of names in the U.S. are European American (Nosek et al.,
2002). We follow the same approach in replicating the human IATs for machines in the vision
domain.

One consequence of the stimuli collection approach outlined in Section 4.5.1 is that our test
set will be biased towards certain demographic groups, just as the Human IATs are biased
towards European American names. For example, Kay et al. (2015) showed that in 2015,
search results for powerful occupations like CEO systematically under-represented women. In
a case like this, we would expect to underestimate bias towards minority groups. For example,
since we expect Gender-Science biases to be higher for non-White women, a test set containing
more White women than non-White would exhibit lower overall bias than a test set containing
an equal number of stimuli from white and non-White women. Consequently, tests on Google
Image Search stimuli would be expected to result in under-estimated stereotype-congruent
bias scores. While under-representation in the test set does not pose a major issue for
measuring normative concepts, we cannot use the same datasets to test for intersectional
bias. For those iEATs, we collected separate, equal-sized sets of images with search terms
based on the categories White male, White female, Black male, and Black female, since none
of the IATs specifically target these intersectional groups.

4.5.1 Verbal to Image Stimuli

One key challenge of our approach is representing social constructs and abstract concepts such
as “male” or “pleasantness” in images. A Google Image Search for “pleasantness” returns
mostly cartoons and pictures of the word itself. We address this di”culty by adhering as
closely as possible to the verbal IAT stimuli, to ensure the validity of our replication. In
verbal IATs, this is accomplished with “buckets” of verbal exemplars that include a variety
of common-place and easy-to-process realizations of the concept in question. For example, in
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the Gender-Science IAT, the concept “male” is defined by the verbal stimuli “man,” “son,”
“father,” “boy,” “uncle,” “grandpa,” “husband,” and “male” (Xu et al., 2014). To closely
match the representations tested by these IATs, we use these sets of words to search for
substitute image stimuli that portray one of these words or phrases. For the vast majority
of exemplars, we were able to find direct visualizations of the stimuli as an isolated person,
object, or scene. For example, Figure 4.1 depicts sample image stimuli corresponding to the
verbal stimuli “orchid” (for category “flower”), “centipede” (“insect”), “sunset” (“pleasant”),
and “morgue” (“unpleasant”).3

We collected images for each verbal stimulus from either CIFAR-1004 or Google Image Search
according to a systematic procedure detailed in Appendix D.2. This procedure controls for
image characteristics that might confound the category we are attempting to define (e.g.
lighting, background, dominant colors, placement) in several ways: 1) we collected more
than one for each verbal stimulus, in case of idiosyncrasies in the images collected; 2) for
stimuli referring to an object or person, we chose images that isolated the object or person
of interest against a plain background, unless the object filled the whole image; 3) when an
attribute stimulus refers to a group of people, we chose only images where the target concepts
were evenly represented in the attribute images;5 4) for the picture-IATs, we accepted the
original image stimuli to exactly reconstruct the original test conditions. We also did not
alter the original verbal stimuli, relying instead on the construct validity of the original IAT
experiments.6 For each verbal stimulus, Appendix D.2 lists corresponding search terms and
the precise number of images collected. All the images used to represent the concepts being
tested are available at github.com/ryansteed/ieat.

4.5.2 Choosing Valence Stimuli

Valence, the intrinsic pleasantness or goodness of things, is one of the principal dimensions
of a!ect and cognitive heuristics that shape attitudes and biases (Greenwald et al., 1998).
Many IATs quantify implicit bias by comparing two social groups to the valence attributes
“pleasant” vs. “unpleasant.” Here, positive valence will denote “pleasantness” and negative
valence will denote “unpleasantness.” The verbal exemplars for valence vary slightly from test
to test. Rather than create a new set of image stimuli for each valence IAT, we collected one,
large consolidated set from an experimentally validated database (Bellezza et al., 1986) of
low and high valence words (e.g. “rainbow,” “morgue”) commonly used in the valence IATs.
To quantify norms, (Bellezza et al., 1986) asked human participants to rate these non-social

3In the original IATs, the category set sizes Nt and Na range from 5-15 exemplars. We collected n ∝ 5
images for each exemplar such that Nt and Na are 30-50. Significance could be increased by including more
stimuli, at the risk of diluting the test set with less-representative images from farther down in the search
results.

4We first check for test images in CIFAR-100 because iGPT performs well in out-of-sample linear evaluation
on this dataset (Chen, Kornblith, Norouzi, & Hinton, 2020).

5For example, for the “family” attribute in the Gender-Career test, we chose only images of families with
equal numbers of men and women.

6One exception: the Gender-Career IAT used specific male- and female-sounding names, rather than
general exemplars like “man” or “father” as in the Gender-Science IAT. We use the general exemplars for
both tests.
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words for “pleasantness” and “imagery” in a controlled laboratory setting. Because some of
the words for valence do not correspond to physical objects, we collected images for verbal
stimuli with high valence and imagery scores. We used the same procedure as for all the
other verbal stimuli (described above in Section 4.5.1). The full list of verbal valence stimuli
can be found in Appendix D.1.

4.6 Evaluation

We evaluate the validity of iEAT by comparing the results to human and natural language
biases measured in prior work. We obtain stereotype-congruent results for baseline, or
“universal,” biases. We also introduce a simple experiment to test how often the iEAT
incorrectly finds bias in a random set of stimuli.

Predictive Validity. We posit that iEAT results have predictive validity if they correspond
to ground-truth IAT results for humans or WEAT results in word embeddings. In this paper,
we validate the iEAT by replicating several human IATs as closely as possible (as described
in Section 4.5) and comparing the results. We find that embeddings extracted from at least
one of the two models we test display significant bias for 8 of the 15 ground-truth human
IATs we replicate (Section 4.7). The insignificant biases are likely due to small sample sizes.
We also find evidence supporting each of the intersectional hypotheses listed in Section 4.3.2,
which have also been empirically validated in a study with human participants (Ghavami &
Peplau, 2013).

Baselines. As a baseline, we replicate a “universal” bias test presented in the first paper
introducing the IAT (Greenwald et al., 1998): the association between flower vs. insects and
pleasant vs. unpleasant. If human-like biases are encoded in unsupervised image models, we
would expect a strong and statistically significant flower-insect valence bias, for two reasons:
1) as Greenwald et al. (1998) conjecture, this test measures a close-to-universal baseline
human bias; 2) our models (described in Section 4.4) achieve state-of-the-art performance
when classifying simple objects including flowers and bees.7 The presence of universal bias
and absence of random bias suggests our conclusions are valid for other social biases.

Specificity. Prior work on embedding association tests does not evaluate the false positive
rate. To validate the specificity of our significance estimation, we created 1,000 random
partitions of X ⇓ Y ⇓ A ⇓ B from the flower-insect test to evaluate true positive detection.
Our false positive rate is roughly bounded by the p-value: 10.3% of these random tests
resulted in a false positive at p < 10→1; 1.2% were statistically significant false positives at
p < 10→2.

4.7 Experiments and Results

In correspondence with the human IAT, we find several significant racial biases and gender
stereotypes, including intersectional biases, shared by both iGPT and SimCLRv2 when

7A linear image classifier trained on iGPT embeddings reaches 88.5% accuracy on CIFAR-100; SimCLRv2
embeddings reach 89% accuracy (Chen, Radford, et al., 2020).
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pre-trained on ImageNet.

4.7.1 iEATs

E!ect sizes and p-values from the permutation test for each bias type measurement are
reported in Table 4.1 and interpreted below.

4.7.1.1 Widely Accepted Biases

First, we apply the iEAT to the widely accepted baseline Insect-Flower IAT, which measures
the association of insects and flowers with pleasantness and unpleasantness, respectively. As
hypothesized, we find that embeddings from both models contain significant positive biases
in the same direction as the human participants, associating flowers with pleasantness and
insects with unpleasantness, with p < 10≃1 (Table 4.1). Notably, the magnitude of bias is
greater for SimCLRv2 (e!ect size 1.69, p < 10→3) than for iGPT (e!ect size 0.34, p < 10→1).
In general, SimCLRv2 embeddings contain stronger biases than iGPT embeddings but do
not contain as many kinds of bias. We conjecture that because SimCLRv2 transforms images
before training (including color distortion and blurring) and is more architecturally complex
than iGPT (Chen, Kornblith, Norouzi, & Hinton, 2020), its embeddings become more suitable
for concrete object classification as opposed to implicit social patterns.

4.7.1.2 Racial Biases

Both models display statistically significant racial biases, including both valence and stereotype
biases. The racial attitude test, which measures the di!erential association of images of
European Americans vs. African Americans with pleasantness and unpleasantness, shows no
significant biases. But embeddings extracted from both models exhibit significant bias for the
Arab-Muslim valence test, which measures the association of images of Arab-Americans vs.
others with pleasant vs. unpleasant images. Also, embeddings extracted with iGPT exhibit
strong bias large e!ect size (e!ect size 1.26, p < 10≃2) for the Skin Tone test, which compares
valence associations with faces of lighter and darker skin tones. These findings relate to
anecdotal examples of software that claim to make faces more attractive by lightening their
skin color. Both iGPT and SimCLRv2 embeddings also associate White people with tools
and Black people with weapons in both classical and modernized versions of the Weapon
IAT.

4.7.1.3 Gender Biases

There are statistically significant gender biases in both models, though not for both stereotypes
we tested. In the Gender-Career test, which measures the relative association of the category
“male” with career attributes like “business” and “o”ce” and the category “female” with
family-related attributes like “children” and “home,” embeddings extracted from both models
exhibit significant bias (iGPT e!ect size 0.62, p < 10→2, SimCLRv2 e!ect size 0.74, p < 10→3).
This finding parallels Kay et al. (2015)’s observation that image search results for powerful
occupations like CEO systematically under-represented women. In the Gender-Science test,
which measures the association of “male” with “science” attributes like math and engineering
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and “female” with “liberal arts” attributes like art and writing, only iGPT displays significant
bias (e!ect size 0.44, p < 10→1).

4.7.1.4 Other Biases

For the first time, we attempt to replicate several other tests measuring weight stereotypes
and attitudes towards the elderly or people with disabilities. iGPT displays an additional
bias (e!ect size 1.67, p = 10→4) towards the association of thin people with pleasantness and
overweight people with unpleasantness. We found no significant bias for the Native American
or Asian American stereotype tests, the Disability valence test, or the Age valence test. For
reference, significant age biases have been detected in static word embeddings; the others
have not been tested because they use solely image stimuli (Caliskan et al., 2017). Likely,
the target sample sizes for these tests are too low; all three of these tests use picture stimuli
from the original IAT, which are all limited to fewer than 10 images. Replication with an
augmented test set is left to future work. Note that lack of significance in a test, even if
the sample size is su”ciently large, does not indicate the embeddings from either model
are definitively bias-free. While these tests did not confirm known human biases regarding
foreigners, people with disabilities, and the elderly, they also did not contradict any known
human-like biases.

4.7.2 Intersectional Biases

4.7.2.1 Intersectional Valence

Intersectional valence tests with the iGPT embeddings are the most consistent with social
psychology, exhibiting results predicted by the intersectionality, race, and gender hypotheses
listed in Section 4.3 (Ghavami & Peplau, 2013). Overall, iGPT embeddings contain a positive
valence bias towards White people and a negative valence bias towards Black people (e!ect
size 1.16, p < 10→3), as in the human Race IAT (Nosek, Smyth, et al., 2007). As predicted
by the race hypothesis, the same bias is significant but less severe for both White males vs.
Black males (iGPT e!ect size 0.88, p < 10→2) and White males vs. Black females (iGPT
e!ect size 0.83, p < 10→2), and the White female vs. Black female bias is insignificant; in
general, race biases are more similar to the race biases between men. We hypothesize that as
in text corpora, computer vision datasets are dominated by the majority social groups (men
and White).

As predicted by the gender hypothesis, our results also conform with the theory that females
are associated with positive valence when compared to males (Eagly et al., 1991), but only
when those groups are White (iGPT e!ect size 0.79, p < 10→2); there is no significant
valence bias for Black females vs. Black males. This insignificant result might be due to the
under-representation of Black people in the visual embedding space. The largest di!erential
valence bias of all our tests emerges between White females and Black males; White females
are associated with pleasant valence and Black males with negative valence (iGPT e!ect size
1.46, p < 10→3).
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4.7.2.2 Intersectional Stereotypes

We find significant but contradictory intersectional di!erences in gender stereotypes (Table 4.2).
For Gender-Career stereotypes, the iGPT-encoded bias for White males vs. Black females is
insignificant though there is a bias (e!ect size 0.81, p < 10→3) for male vs. female in general.
There is significant Gender-Career stereotype bias between embeddings of White males vs.
White females (iGPT e!ect size 0.97, p < 10→3), even higher than the general case; this result
conforms to the race hypothesis, which predicts gender stereotypes are more similar to the
stereotypes between Whites than between Blacks. The career-family bias between White
males and Black males is reversed; embeddings for images of Black males are more associated
with career and images of White men with family (iGPT e!ect size 0.89, p < 10→2). One
explanation for this result is under-representation; there are likely fewer photos depicting
Black men with non-stereotypical male attributes.

Unexpectedly, the intersectional test of male vs. female (with equal representation for White
and Black people) reports no significant Gender-Science bias, though the normative test (with
unequal representation) does (Table 4.1). Nevertheless, race-science stereotypes do emerge
when White males are compared to Black males (iGPT e!ect size 0.49, p < 10→1) and, to an
even greater extent, when White males are compared to Black females (iGPT e!ect size 0.80,
p < 10→2), confirming the intersectional hypothesis (Ghavami & Peplau, 2013). But visual
Gender-Science biases do not conform to the race hypothesis; the gender stereotype between
White males and White females is insignificant, though the overall male vs. female bias is
not.

4.7.3 Origins of Bias

4.7.3.1 Bias in Web Images

Do these results correspond with our hypothesis that biases are learned from the co-occurrence
of social group members with certain stereotypical or high-valence contexts? Both our models
were pre-trained on ImageNet, which is composed of images collected from Flickr and other
Internet sites (Russakovsky et al., 2015). Yang et al. (2020) show that the ImageNet categories
unequally represent race and gender; for instance, the “groom” category may contain mostly
White people. Under-representation in the training set could explain why, for instance, White
people are more associated with pleasantness and Black people with unpleasantness. There
is a similar theory in social psychology: most bias takes the form of in-group favoritism,
rather than out-group derogation (Hewstone et al., 2002). In image datasets, favoritism
could take the form of unequal representation and have similar e!ects. For example, one
of the exemplars for “pleasantness” is “wedding,” a positive-valence, high imagery word
(Bellezza et al., 1986); if White people appear with wedding paraphernalia more often than
Black people, they could be automatically associated with a concept like “pleasantness,” even
though no explicit labels for “groom” and “White” are available during training.

Likewise, the portrayal of di!erent social groups in context may be automatically learned
by unsupervised image models. Wang, Narayanan, and Russakovsky (2020) find that in
OpenImages (also scraped from Flickr) (Kuznetsova et al., 2018), a similar benchmark
classification dataset, a higher proportion of “female” images are set in the scene “home or
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(a) Cropped image of an artificial (“Gener-
ated Photos,” 2021) White male face.

(b) 8 random autoregressive completions of the
cropped image. 6 depict career-related attire.

Figure 4.2: Example of career associations in image completion of a male face with iGPT, pre-trained
on ImageNet.

hotel” than “male” images. “male” is more often depicted in “industrial and construction”
scenes. This di!erence in portrayal could account for the Gender-Career biases embedded in
unsupervised image embeddings. In general, if the portrayal of people in Internet images
reflects human social biases that are documented in cognition and language, we conclude that
unsupervised image models could automatically learn human-like biases from large collections
of online images.

4.7.3.2 Bias in Autoregression

Though the next-pixel prediction features contained very little significant bias, they may still
propagate stereotypes in practice. For example, the incautious and unethical application of
a generative model like iGPT could produce biased depictions of people. As a qualitative
case study, we selected 5 male- and 5 female-appearing artificial faces from a database
(“Generated Photos,” 2021) generated with StyleGAN (Karras et al., 2019). We decided to
use images of non-existent people to avoid perpetuating any harm to real individuals. We
cropped the portraits below the neck and used iGPT to generate 8 di!erent completions
(with the temperature hyperparameter set to 1.0, following Chen, Radford, et al. (2020)).
We found that completions of woman and men are often sexualized: for female faces, 52.5%
of completions featured a bikini or low-cut top; for male faces, 7.5% of completions were
shirtless or wore low-cut tops, while 42.5% wore suits or other career-specific attire. One
held a gun. This behavior might result from the sexualized portrayal of people, especially
women, in internet images (Gra! et al., 2013) and serves as a reminder of computer vision’s
controversial history with Playboy centerfolds and objectifying images (Iozzio, 2016). To
avoid promoting negative biases, Figure 4.2 shows only an example of male-career associations
in completions of a GAN-generated face.

4.8 Discussion

By testing for bias in unsupervised models pre-trained on a widely used large computer vision
dataset, we show how biases may be learned automatically from images and embedded in
general-purpose representations. Not only do we observe human-like biases in the majority of
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our tests, but we also detect 4 of the 5 human biases replicated in natural language (Caliskan
et al., 2017). Caliskan et al. (2017) show that artifacts of the societal status quo, such as
occupational gender statistics, are imprinted in online text and mimicked by machines. We
suggest that a similar phenomenon is occurring for online images. One possible culprit is
confirmation bias (Schweiger et al., 2014), the tendency of individuals to consume and produce
content conforming to group norms. Self-supervised models exhibit the same tendency (Arazo
et al., 2020).

In addition to confirming human and natural language machine biases in the image domain,
the iEAT measures visual biases that may implicitly a!ect humans and machines but cannot
be captured in text corpora. Foroni and Bel-Bahar (2010) conjecture that in humans, picture-
IATs and word-IATs measure di!erent mental processes. More research is needed to explore
biases embedded in images and investigate their origins, as Brunet et al. (2019) suggest for
language models. Tenney et al. (2019) show that contextual representations learn syntactic
and semantic features from the context. Voita et al. (2019) explain the change of vector
representations among layers based on the compression/prediction trade-o! perspective.
Advances in this direction would contribute to our understanding of the causal factors behind
visual perception and biases related to cognition and language acquisition.

Our methods come with some limitations. The biases we measure are in large part due
to patterns learned from the pre-training data, but ImageNet 2012 does not necessarily
represent the entire population of images currently produced and circulated on the Internet.
Additionally, ImageNet 2012 is intended for object detection, not distinguishing people’s
social attributes, and both our models were validated for non-person object classification.8

The largest version of iGPT (not publicly available) was pre-trained on 100 million additional
web images (Chen, Radford, et al., 2020). Given the financial and carbon costs of the
computation required to train highly parameterized models like iGPT, we did not train our
own models on larger-scale corpora. Complementary iEAT bias testing with unsupervised
models pre-trained on an updated version of ImageNet could help quantify the e!ectiveness
of dataset de-biasing strategies.

A model like iGPT, pre-trained on a more comprehensive private dataset from a platform
like Instagram or Facebook, could encode much more information about contemporary social
biases. Clearview AI reportedly scraped over 3 billion images from Facebook, YouTube, and
millions of other sites for their face recognition model (Hill, 2020). Dosovitskiy et al. (2021)
recently trained a very similar transformer model on Google’s JFT-300M, a 300 million image
dataset scraped from the web (Sun et al., 2017). Further research is needed to determine
how architecture choices a!ect embedded biases and how dataset filtering and balancing
techniques might help (Wang, Qinami, et al., 2020; Wang, Zhao, et al., 2019). Previous
metric-based and adversarial approaches generally require labeled datasets (Wang, Zhao,
et al., 2019; Wang, Narayanan, & Russakovsky, 2020; Wang, Qinami, et al., 2020). Our
method avoids the limitations of laborious manual labeling.

Though models like these may be useful for quantifying contemporary social biases as they

8Recently, Yang et al. (2020) proposed updates to improve fairness and representation in the ImageNet
“person” category that could change our results.
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are portrayed in vast quantities of images on the Internet, our results suggest the use of
unsupervised pre-training on images at scale is likely to propagate harmful biases. Given
the high computational and carbon cost of model training at scale, transfer learning with
pre-trained models is an attractive option for practitioners. But our results indicate that
patterns of stereotypical portrayal of social groups do a!ect unsupervised models, so careful
research and analysis are needed before these models make consequential decisions about
individuals and society. Our method can be used to assess task-agnostic biases contained
in a dataset to enhance transparency (Gebru et al., 2018; Mitchell et al., 2019a), but bias
mitigation for unsupervised transfer learning is a challenging open problem.

4.9 Conclusions

We develop a principled method for measuring bias in unsupervised image models, adapting
embedding association tests used in the language domain. With image embeddings extracted
by state-of-the-art unsupervised image models pre-trained on ImageNet, we successfully
replicate validated bias tests in the image domain and document several social biases,
including severe intersectional bias. Our results suggest that unsupervised image models learn
human biases from the way people are portrayed in images on the web. These findings serve
as a caution for computer vision practitioners using transfer learning: pre-trained models
may embed all types of harmful human biases from the way people are portrayed in training
data, and model design choices determine whether and how those biases are propagated into
harms downstream.
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CHAPTER 5. AI AUDIT TOOLING

5.1 Introduction

Despite increasing policy enthusiasm,1 the execution of e!ective AI audits remains practically
di”cult. Often defined as independent evaluations of the performance, fairness, legality, or
safety of deployed AI systems, the maturity of the audit ecosystem in the technology sector
lags far behind other industries such as finance and healthcare (Raji, Smart, et al., 2020; Raji,
Xu, et al., 2022).2 AI audits are often inconsistent and unreliable (Ryan-Mosley, 2023), and
the lack of access and visibility to many AI systems leaves auditors without the information
needed to make adequate and truly independent assessments (Holstein et al., 2019; Terzis
et al., 2024).

In the face of these challenges, practitioners often rely on tools—software, frameworks, and
other resources—to support their AI audit work. Past research in human-computer interaction
(HCI) and social computing has developed and studied a host of fairness, explainability, and
other toolkits that inform such evaluations (Bellamy et al., 2018; Smith-Renner et al., 2020;
Kaur et al., 2020; Bertrand et al., 2023; Deng et al., 2023; Woodru! et al., 2018; Brown et al.,
2019; Madaio et al., 2020; DeVos et al., 2022; Lee & Singh, 2021; Holstein et al., 2019; Deng
et al., 2022; Amershi et al., 2015; Wong et al., 2023; Ehsan & Riedl, 2020). Governments
across the globe are developing their own tools and making use of existing resources as
part of their enforcement regimes for AI governance (Kaye & Dixon, 2023).3 In the U.S.
alone, several recently proposed “AI innovation” bills are explicitly geared towards investing
in tooling and resource development for AI auditing.4 Similarly, in the E.U., enforcement
reports for the Digital Services Act emphasize the importance of AI audit tooling for e!ective
oversight enforcement (Klinger & Ohme, 2023).

Despite these developments, research has yet to properly map, taxonomize, and understand
the full scope of tooling needed to meaningfully support AI audit practitioners. HCI research
has identified many practical challenges facing practitioners (Holstein et al., 2019; Costanza-
Chock et al., 2022; Brown et al., 2019; Madaio et al., 2020; DeVos et al., 2022) and valuable
recent work critically examines some of the toolkits involved (Lee & Singh, 2021; Deng et al.,
2022; Wong et al., 2023; Berman et al., 2024). However, the auditing process involves more

1AI audits have been featured in several recent U.S. congressional bills (Algorithmic Accountability Act
of 2022, 2019; Lenhart, 2023) and state e!orts (Perrigo, 2023; Stop Discrimination by Algorithms Act of
2021, 2021), and the practice is regularly mentioned in AI governance proposals internationally Galindo et al.,
2021, from the E.U. Digital Services Act to a municipal hiring bill passed in New York City (A Local Law to
Amend the Administrative Code of the City of New York, in Relation to Automated Employment Decision
Tools, 2021).

2This dearth of generalized AI audit guidance is remedied only partially by recent e!orts from government
advisory bodies like the U.K.’s Information Commissioner’s O”ce (ICO) Information Commissioner’s O”ce,
2023, the U.S. National Institute of Standards and Technology Tabassi, 2023 and others (O”ce of Science
and Technology Policy, 2022b).

3Examples include the U.S. AI Safety Institute’s Inspect, the U.S. National Institute of Standards and
Technology’s ARIA & Dioptra, Singapore’s AI Verify, and the U.S. National Science Foundation’s Artificial
Intelligence Research Resource (NAIRR) Pilot.

4Examples include the “CREATE AI Act of 2023”, “VET Artificial Intelligence Act”, “Promoting United
States Leadership in Standards Act of 2024”, “TEST AI Act of 2023”, “Artificial Intelligence Research,
Innovation, and Accountability Act of 2023”, “Artificial Intelligence Public Awareness and Education
Campaign Act”, and “Future of Artificial Intelligence Innovation Act of 2024”.
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Harms 
Discovery

(N=48)

Standards 
Identification & 
Management

(N=206)
Transparency 
Infrastructure
(N=12)

Data
Collection
(N=47)

Performance 
Analysis
(N=129)

Audit 
Communication

(N=8)

Advocacy
(N=14)

Judgment
Iteration / Feedback

Consequences

Evaluation
(N=394)

Accountability
(N=70)

Figure 5.1: Stages of the tool-supported audit process surfaced in our survey of AI audit tooling.
We taxonomize tools by the stage of the AI audit process in which they are used. Tools may be
used in multiple stages.

than just a performance analysis of the AI product or model. A thorough evaluation alone is
not su”cient to hold key stakeholders responsible for system-wide behavior (Goodman &
Tréhu, 2022; Raji, Xu, et al., 2022)—auditors also need tools that support key components
of the accountability process, including target identification, standardization of practice,
communication, and advocacy (Costanza-Chock et al., 2022).

In this study, we compare audit practitioners’ tooling needs to the current landscape of
AI audit tooling to understand challenges to accountability and potential opportunities for
expanding the scope of HCI research and tool development.

1. RQ1: What tools do practitioners need to conduct AI audits?

2. RQ2: What tools currently exist to support AI audit work?

3. RQ3: Do existing tools support practitioners’ needs?

To investigate RQ1, we interviewed 35 AI audit practitioners—employed at 24 organizations,
including tech companies, startups, government agencies, non-profits, consulting firms, and
academic institutions—about the tools they use and how they support the audit process. To
investigate RQ2, we conducted a landscape analysis of 435 existing audit tools (Fig. 5.1).5

In the interviews, we asked practitioners about gaps they encountered and compared their
responses to the current tooling landscape (RQ3).

We find that while there currently exist many tools to support audit work, particularly
for evaluating AI systems and managing standards, these tools often fell short of helping
auditors achieve accountability in practice. Practitioners found some tools—such as open
source tools for data collection—empowering, but tools for tasks beyond evaluation, such
as discovering harms, communicating audit results, and advocating for subsequent changes,
were much less common. The practitioners we interviewed often adapted existing tools or

5Note that our sample is not an exhaustive list of all AI audit tools.
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CHAPTER 5. AI AUDIT TOOLING

built their own from scratch to relieve the tedious or di”cult tasks in their particular audit
workflows. Auditors envisioned tools to help them access high-quality, uncompromised data,
apply consistent and holistic standards and methods, and ensure audit integrity.

Our results identify challenges for every stage of the AI audit process as well as opportunities
for HCI researchers, policymakers, and practitioners to pursue an alternative vision for tool
development that supports rigor, inclusion, independence, and accountability. We conclude
with a summary of research and design opportunities for the HCI community and other
stakeholders that could help push the landscape of AI audit tools beyond evaluation and
towards infrastructure for meaningful accountability.

5.2 Related work

AI auditing. The practice of AI auditing, or algorithm auditing—a term first formally
proposed in 2014 by Sandvig et al. (2014) to describe methods for detecting discrimination
in online platforms—has expanded over the last decade (Vecchione et al., 2021). Researchers
have since used the term to encompass not just field studies for detecting discrimination
with causal estimation (Metaxa et al., 2021) but also any kind of independent assessment of
an automated or data-defined system (Digital Regulation Cooperation Forum, 2022; Raji,
Smart, et al., 2020). Early audit studies of facial recognition systems and criminal risk
assessments, (Angwin et al., 2016; Buolamwini & Gebru, 2018b), for example, resulted in
widespread advocacy and, at times, even changes to or recalls of the audited systems (Raji &
Buolamwini, 2022; Sherwin & Bhandari, 2019; Spinks, 2020; Sheard, 2021). However, not all
audits succeed in holding system builders and operators accountable (Goodman & Tréhu,
2022; Watkins et al., 2021; Birhane et al., 2024).

Following Birhane et al. (2024), we use the term AI audit (Def. 9) to refer to “any independent
assessment of an identified audit target via an evaluation of articulated expectations with
the implicit or explicit objective of accountability”. Accountability is used here in the
legal-political sense to mean consequential judgment of a systems’ behaviors and downstream
impacts Bovens, 2007. Consequential judgment distinguishes an audit from a simple evaluation
or assessment (Fig. 5.1).

More recently, corporations and policymakers have focused on what we refer to as internal AI
audits (Def. 10) conducted by teams of employees or contractors separate from the product
and engineering teams (European Parliament & Council of the European Union, 2016; Raji,
Xu, et al., 2022). These internal audits, a!orded access in cooperation with audit targets,
may enable accountability if designed properly (Raji, Smart, et al., 2020; Desai & Kroll,
2017), but they may also result in false assurances (“audit washing”) (Raji, Xu, et al., 2022;
Goodman & Tréhu, 2022) or foreclose on key remedies such as abandonment or disgorgement
(Def. 12) (Sloane, Moss, & Chowdhury, 2022; Li, 2022; Johnson et al., 2024). As a result,
there is an important role for external AI audits (Def. 10): investigations conducted by civil
society, journalists, lawyers, regulators, and other third-party actors. These external audits
are typically voluntary research studies and investigations into deployed AI systems. However,
as our findings reveal, external auditors faced significant hurdles to accountability, including
lack of access to the systems they aimed to evaluate. The experiences and challenges of
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5.2. RELATED WORK

those doing external audit work has not been the primary focus of HCI research. Our work
provides references for understanding their tooling and resource needs Bandy, 2021; Birhane
et al., 2024; Costanza-Chock et al., 2022.

While these prior studies define the practice of AI auditing and some of the components of
accountability, no study yet examines the full range of tools and technical infrastructure used
to support AI auditing and accountability.

Infrastructure & accountability. A rich field of literature in science, technology and
society (STS) describes infrastructure as not merely physical or technological, but also as
holding social and relational power Winner, 1980; Star, 1999. Infrastructure is “something
that other things ‘run on”’ (Lampland & Star, 2009): the invisible and axiomatic basis of
tools, standards and frameworks that uphold and shape more complex existing processes,
services, and engineered artifacts. Embedded in social systems, technological infrastructures
encode standards, norms, and guidelines for social organization (Verbeek, 2006; Lampland &
Star, 2009).

Accountability also requires infrastructure. Across various industries, the common account-
ability practice of auditing has long relied on rituals, organizational processes and tools in
order to make consistent, inter-operable and reliable judgments Power, 1999, as well as provide
broader access to a larger range of stakeholder participants in the audit process Birhane et al.,
2022. Audit tooling, then, represents not only a mechanism for maintenance and consistency
of audit integrity but also a key capacity-building intervention to lower the barriers for
broader participation.

Past work on AI audit tools. Recent research in human-computer interaction (HCI), social
computing, and cooperative design documents the experiences of practitioners evaluating AI
and the challenges they face (Costanza-Chock et al., 2022; Holstein et al., 2019; Brown et al.,
2019; Madaio et al., 2020; DeVos et al., 2022; Lee & Singh, 2021). For example, Holstein
et al. (2019) documents the practical and technical di”culties faced by internal auditors of
ML systems trying to identify and improve fairness, while other studies have examined the
organizational challenges and barriers these practitioners face (Rakova et al., 2021; Madaio
et al., 2020; Widder et al., 2023; Selbst et al., 2019; Costanza-Chock et al., 2022). Several
HCI studies have since specifically examined the ways AI audit practitioners make use of
various tools to address these issues (Deng et al., 2022; Lee & Singh, 2021; Amershi et al.,
2015).

While some studies of AI audit tools focus on performance analysis (Amershi et al., 2015;
Harvey et al., 2024) or user-driven grassroots auditing (DeVos et al., 2022; Deng et al., 2023),
most HCI studies focus specifically on tools for assessing fairness and interpretability (Bellamy
et al., 2018; Smith-Renner et al., 2020; Kaur et al., 2020; Bertrand et al., 2023; Woodru!
et al., 2018; Madaio et al., 2020; Lee & Singh, 2021; Deng et al., 2022). Lee and Singh (2021),
for example, compare six prominent open source fairness toolkits along various criteria related
to practitioners’ needs. Deng et al. (2022) documented the ways practitioners learn about
and use two prominent fairness toolkits, AI Fairness 360 and Fairlearn (Weerts et al., 2024).
And in a survey of 152 audit practitioners, Costanza-Chock et al. (2022) found that 62% of
practitioners used existing tools like AI Fairness 360, Scikit Fairness, or Parity, though only
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7% of respondents used a standardized framework for their overall audit protocol.

However, less work examines tools for assessing harms beyond fairness, including refusal
of medical services (Waldman, 2024), privacy violations, and other types of harm (Shelby
et al., 2023). And fairness toolkits do not typically support other necessary steps of an audit
such as data collection. Our study aims to expand HCI research by looking beyond fairness
evaluation toolkits to examine other kinds of tools involved in AI audits, such as tools for
basic performance analysis or data collection.

We also build on more general critiques of “responsible AI” toolkits. Wong et al. (2023),
for example, examine documentation from 27 toolkits for “AI Ethics”, finding that these
resources employ a narrow technical framing that fails to involve more diverse stakeholders or
reckon with the non-technical dimensions of AI ethics work; Kaye and Dixon (2023) survey
and critiques the tools currently used for AI governance by governments across the globe;
and Berman et al. (2024) call for more evaluations of the e!ectiveness of responsible AI
tools.

As yet, however, a comprehensive survey of auditors’ practical needs relative to the landscape
of available tools is lacking. We extend these analyses and lay out a more complete view on
what we refer to as AI audit tools : software, interfaces, code, benchmarks, frameworks, and
other artifacts used by auditors in the AI audit process (Def. 11).6

5.3 Methodology

To better understand the kinds of tools auditors use and where those tools fall short, we
conducted 27 semi-structured interviews with 35 auditors across 24 organizations employing
internal and external AI auditors. We use the term AI broadly to include tools applied to any
AI-advertised product or model, including automated decision systems (ADS), algorithmic
recommendation systems, large machine learning base models, generative AI products and
more (see Fig. E.5.4). In parallel, to better understand existing tools, we curated a dataset
of 435 tools designed or used for AI auditing and developed a taxonomy of the audit tool
landscape based on our findings.

5.3.1 Interview methodology

We conducted 27 interviews with a total of 35 audit tool builders and practitioners, rep-
resenting diverse backgrounds such as engineering, law, journalism, advocacy, policy, and
academic research across North America (N = 22) and Europe (N = 5) (Table 5.1). These
practitioners have all participated in internal or external audit work; many have also built
tools for AI auditing. We used purposive sampling and snowball sampling methods to recruit
participants. We began by contacting practitioners in our professional networks who had
conducted notable AI audit work and were active in AI audit communities. Occasionally,

6We include in this definition tools that may also be used for other “responsible AI” e!orts, such as
internal benchmarking, that do not meet our criteria for an audit (Def 9). Auditing is an institutional
arrangement—selecting the right tools does not guarantee operational independence, for example.
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Table 5.1: Participants’ organizations and titles at the time of interview. Some titles are summarized
for anonymity. Participants in the same interview are grouped in parentheses.

Employer Roles of Interviewees Participants

Large tech for-profit Director of Policy Research, VP of Re-
search, Data Science Mgr., Research
Eng., Researcher

P5, P8, P11, P14, P19,
P27

Tech startup Co-Founder, CEO, Chief Scientist P4, P12
Government agency Tech Policy Princi-

pal/Mgr./Assoc./Advisor, Research
Fellow

(P21, P28-35), P25

University Assoc./Asst. Professor, Postdoc. Fel-
low, Data Scientist

P3, P10, P13, P17, P20

Research non-profit Co-Founder, Director, Research Sci-
entist

P9, P16, P18

Civil society non-profit Director, Head of Analytics, Statisti-
cian, Researcher, Policy Fellow

P1, P2, P6, P22, P24

Non-profit news org. Opinion Writer, Data Journalist P7, P15
Law/consulting for-profit Policy Director, Mgr., Consultant (P23, P28), P27

participants were referred to us by a colleague or professional contact at another organization.
Our sample encompassed both internal and external auditors employed by for-profit tech
companies, AI evaluation startups, research and civil society non-profits, universities, and
government agencies.

Interviews followed a semi-structured format and lasted 30–60 minutes. Our questions
centered on 1) the specific tools and methods practitioners built or employed and 2) common
obstacles and unmet needs. (The full interview protocol is included in Appendix E.4.)
Participants had the option to remain anonymous and skip questions at their discretion,
though none skipped a question. Our protocol was approved by three university IRBs. To
analyze the interview data, we transcribed each interview and annotated the transcripts with
manual codes. Our coding approach followed an inductive methodology, allowing patterns
and themes to emerge from the data (Wolcott, 1994; Glaser & Strauss, 2017). We employed
a combination of descriptive coding, which captured the content of the interviews, and
values coding, which captured the attitudes and beliefs expressed by participants. Through
collaborative sessions and memo writing, we organized these codes and related quotes into
key insights, presented in §5.4.

5.3.2 Tool Taxonomy

Initial search. To taxonomize the landscape of tools available to support AI audit work,
we first developed an initial list of tools and tool-building organizations by searching for
tools mentioned in a dataset of published audits from academic audit studies, news articles,
government reports and frameworks, white papers from civil society organizations, law firm
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reports, and case files (Birhane et al., 2024) as well as existing lists of tools such as (Hickock,
2023) (see Appendix E.3.1 for details). Our initial search was conducted in August 2022.
We also included specific tools and sources that were mentioned in our interviews with
practitioners. After we had collected an initial list of 143 tools, we developed an initial
taxonomy by clustering tools into 21 initial categories based on their intended or actual uses
in AI audit work. This approach served as a starting point for category development rather
than as an exhaustive inventory.

Theoretical sampling. Next, we expanded our initial set of tools with two kinds of
additional theoretical sampling. With targeted keyword searches on English Google and
GitHub, we searched explicitly for additional tools in areas where we had fewer examples until
theoretically fresh examples of tools ceased to arise.7 Our search queries were descriptors from
our initial categories or descriptors used by tools already collected—alone and combined with
terms like “audit tool” or “responsible AI” (see Appendix E.3.2). We expanded our list of
sources based on our initial taxonomy. (For example, to find tools in our initial “Participatory”
category, we searched in the proceedings of participatory AI workshops). We also followed
links and references in our initial sample of tools to identify additional, similar tools (snowball
sampling). With these methods, we added 181 tools between August and October 2022,
and we continued to update the dataset with 102 more tools through September 2024. In
September 2024, we ran our search queries again for the top-level categories, adding 9 more
tools.

These searches surfaced new examples which we used to expand and re-define our categories.
We iteratively revised our taxonomy twice more to accommodate new examples, integrate
findings from the interview study, and clarify or expand our initial categories. We did not
explicitly ask interview participants about these categories, but we did incorporate the tools
they used and their descriptions of audit tool use while developing the taxonomy. Our final
taxonomy groups tools into 30 main categories with 27 subcategories (Table 5.2) grounded in
the properties of the tools we found and shaped by our interviews with and experiences as
AI audit practitioners. We sorted these categories into 7 “stages” of the tool-assisted audit
process (Fig. 5.1).

This stage of our search was designed to iteratively refine conceptual categories with the
goal of generalizing from empirical descriptions to theoretical insights (Lee & Baskerville,
2003). So while our search for tools was systematic, it was not exhaustive. The sample
represented in our dataset does not include every tool that could support AI audits. Likewise,
though our sample is designed to represent commonly used and commonly built tools in a
theoretically representative set of categories, numeric descriptions of our sample may not
reflect the statistical distribution of all AI audit tools used in practice. In particular, our
theoretical sampling strategy deliberately over-represents some less common kinds of tooling
(such as tools for advocacy). And because our search relied on public materials, we likely
over-represent open tooling over proprietary tooling (though our dataset includes both). As
a result, while our dataset reflects a structured and iterative search, it should not be viewed
as a comprehensive or perfectly representative sample.

7In this stage, we aimed for theoretical saturation, in the style of grounded theory (Charmaz, 2014).
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Landscape analysis. To analyze the qualities of tools across our taxonomy, we also
manually labeled each tool with several tags describing the tool’s documentation and function,
including license (open source or not), organization type (for-profit, non-profit, government,
or academic), and other characteristics. One author created the labels and at least one other
author reviewed each label for agreement. We also supplemented our dataset with funding &
employment data from Crunchbase (accessed in September 2023), activity data from Github
(September 2024), and citation data from Google Scholar API (September 2023). Detailed
methods and additional analysis can be found in Appendix E.5, and a full interactive version
of our dataset can be viewed at tools.auditing-ai.com.8

5.4 Results

While there exist many tools for aiding AI auditing, practitioners found existing tools
inadequate in multiple ways. Practitioners struggled to independently access high-quality
data about system behavior, apply consistent and holistic standards and methods, ensure
audit integrity, involve a!ected stakeholders, and collaborate across disciplines.

In particular, though we found many tools for evaluating the performance of AI systems,
current tooling did not always help practitioners reach their accountability goals. First, while
our survey of AI audit tools (N = 435), revealed a wide-ranging landscape of resources built
by a variety of academic, for-profit, non-profit, and government organizations (Table 5.2),
we primarily surfaced tools for evaluation, particularly tools for Standards Identification &
Management (N = 206) and Performance Analysis (N = 129). Tools for other stages of the
audit process crucial to accountability—Harms Discovery (N = 48), Audit Communication
(N = 8), Advocacy (N = 14), and model/data transparency (N = 12)—were much less
common in our sample.

Second, while we found many freely available and open source tools (77.9% of our dataset),
auditors highlighted the messy, context-specific nature of their actual audit tool use: “Many
approaches were not necessarily principled. They were quite ad hoc” (P20). Even when open
source tools existed, auditors often preferred to build their own tooling solutions: “if we tried
to use the existing stu!, it would just complicate that process” (P25). For some, existing tools
were inadequate for the complexity and scale of the systems being evaluated: “Most often
we try to use open source tools, but that’s very di!erent than a data pipeline that... curates
data on millions of [users] every day” (P3). In each stage of the audit process, auditors
encountered practical challenges and development gaps between their needs and the landscape
of available tools.

In the remainder of this section, we detail the challenges practitioners faced in each stage,
compare their experiences to the existing landscape of AI audit tools, and discuss the
implications of our findings for the practice and study of AI auditing.

8All the code for our analysis and resulting plots—as well as instructions for obtaining supplemental
data—can be accessed at github.com/ryansteed/oat-analysis.
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Table 5.2: High-level description of the tool taxonomy categories. (Visit tools.auditing-ai.com for
an interactive visualization).

Stage Categories (Subcategories) N Purpose Examples

Harms
Discovery

Education / Awareness
(community education,
visioning), Incident Reporting
(incident databases, intake
forms, bug bounties, hotlines),
Target Identification (algorithm
visibility)

48 Help auditors identify and prior-
itize audit targets and harms to
investigate.

ACLU Wa.’s Algorithm Equity
Toolkit, AI Incident Database,
Algorithm Tips

Standards
Identifica-
tion &
Mgmt.

Goal Articulation (principle
statements, standards
formulation), Self-Assessment
(checklists, grading),
Documentation (single stage,
continuous, licenses),
Regulatory Awareness
(discovery, monitoring),
Methods Design, Participatory
Standards-Setting

206 Help auditors identify and for-
mulate principles and norms to
guide their investigations.

AI-RFX Procurement Frame-
work, Microsoft’s AI Fair-
ness Checklist, Model Cards
(Mitchell et al., 2019b), Queens-
land’s Community Engagement
Toolkit (Queensland Govern-
ment, 2017), Community Jury

Transparency
Infrastruc-
ture

Structured/API Access, Secure
& Private Sharing (federated
learning), Model/Data
Exchange

12 Help auditors interact with and
analyze proprietary information
about the data or model with
centralized infrastructure.

NIST’s Face Recognition Vendor
Test (Ngan et al., 2020), Google
AI Test Kitchen (Warkentin
& Woodward, 2022), Airbnb’s
Project Lighthouse (Airbnb,
2020)

Data
Collection

Field Data Collection (scraping,
donation, interviews/surveys,
compelled disclosure), Bot
Deployment, Simulation

47 Help auditors collect informa-
tion about a model’s interactions
with its subjects.

Mozilla’s YouTube Regrets
(Mozilla Foundation, 2021),
Tracking Exposed, Selenium,
Meta’s Web-Enabled Simulation
(Ahlgren et al., 2020)

Performance
Analysis

Accuracy Evaluation (A/B
testing, benchmarks, adversarial
testing, monitoring),
Explainability (models, training
data), Fairness, Qualitative
Analysis

129 Help auditors evaluate and ex-
plain model behavior through
the calculation of performance
metrics.

Weights & Biases, Meta’s Dyn-
aBench, Foolbox, Fairlearn,
IBM’s AI Fairness 360, Hugging
Face’s ROOTS (Piktus et al.,
2023), Google PAIR’s Language
Interpretability Tool

Audit Com-
munication

Dataset Visualization, Audit
Reporting

8 Help auditors communicate the
results of an audit to a broader
audience.

Google PAIR’s FACETS

Advocacy Organizing/Resistance,
Community Spaces, Legal
Search

14 Help organize community action
and other accountability mea-
sures in response to discovered
harms.

Gigbox, Para, Adnauseam, Ben-
efits Tech Advocacy Hub

5.4.1 Harms Discovery

Auditing an AI system first requires identifying the system that should be subject to scrutiny
and identifying its potential harms. This task can be especially di”cult for external auditors
who may not know where AI systems are in use or what their impacts might be. Tools
for Harms Discovery (N = 48) help identify and select targets for audits and support the
identification, characterization, and prioritization of potential harms to investigate. This
category includes tools for Education & Awareness (to engage a!ected stakeholders in
articulating harms), Incident Reporting (to gather reports of algorithmic harms from users
and the public, e.g., through bug bounties or incident databases (Charlie Pownall, 2021)),
and Target Identification (e.g., the Algorithm Tips database contains a list of deployed
systems in the U.S.). Compared to other stages of our taxonomy (Fig. 5.2), nonprofits
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Figure 5.2: Number of tools in each category within each stage of our taxonomy, grouped by
type of organization. Tools may be used in multiple stages. Note that the scales di!er—the
Standards and Performance Analysis stages contain many more tools than the others. Nonprofit and
university/academic developers account for relatively more Harms Discovery and Data Collection
tools. For-profit developers contribute relatively more Performance Analysis and Transparency
Infrastructure tools.

contributed significantly to creating and maintaining these types of tools in our dataset
(79.2% not-for-profit; see Fig. E.5.6).

Facilitating more participatory audits. Auditors recognized that to comprehensively
identify AI-related harms, they must engage with those directly impacted. Participation in
harms discovery had two main benefits for auditors. First, participation helped auditors
anticipate a broader range of possible harms: “Di!erent types of biases are going to manifest,
and accordingly it requires ... diverse groups from society, to understand their experiences and
expectations in these settings and how they can be impacted” (P20). Second, participation
helped make audits more “context-dependent” and inclusive by providing thorough under-
standing of how an AI system interacts with impacted groups. Participation also helps instill
confidence in the audit process and foster engagement with subsequent accountability e!orts.
Our tool survey surfaced some tools for participatory incident reporting. This includes the bug
bounty platform HackerOne, which Twitter used to crowd audit its image cropping algorithm
(Twitter, 2021), and the AI Incident Database, a collection of reports of AI harms. However,
we found fewer tools designed specifically for identifying and collaborating with a!ected users,
such as the American Civil Liberties Union (ACLU) of Washington’s Algorithmic Equity
Toolkit (Barghouti et al., 2020).
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Avoiding participation washing. Participants also recognized the challenge of designing
methodologies and tools without exploitation, tokenization, or other forms of “participation
washing” (Sloane, Moss, Awomolo, & Forlano, 2022), highlighting the need for fair compen-
sation and participatory algorithmic development, in addition to participatory auditing. One
participant emphasized the importance of “an iterative process of doing longer-term, ongoing
auditing or observation of algorithmic behavior, and then using that to feed into tweaks, or
changes, or even big shifts in where and how [audit] outcomes are used” (P17).

Implications. Limited access to information about AI systems poses a fundamental barrier
to conducting comprehensive audits. Without a clear understanding of which AI systems
require auditing, there is a risk of overlooking critical systems that have significant societal
implications. While we did find multiple popular databases for recording and collating
incidents of harm (such as the AI Incident Database), these databases record harms after
they have already occurred, often rely on second-hand reports, and may not delve deeply
into causes of harms or impacts (Turri & Dzombak, 2023).9

Several participants proposed mandating that corporations disclose AI system use, including
information about model versions, anticipated use cases, expected number of users, and past
audit results. Researchers and policymakers may also explore mechanisms for centralized,
proactive documentation and mandatory, standardized incident reporting for both private
firms and government agencies (Turri & Dzombak, 2023). This ensures that current federal
AI transparency requirements are actually implemented (Lawrence et al., 2023). Additionally,
leveraging mechanisms such as Freedom of Information Act (FOIA) requests could facilitate
access to information held by public institutions or government agencies regarding the use of
AI systems. Future work could also develop and study systems for fair, inclusive community
participation in auditing, the path most often suggested by practitioners for identifying
systems and their harms.

5.4.2 Standards Identification & Management

Auditors also used tools to formulate principles and norms to guide their investigations.
While HCI research has not traditionally included frameworks and guidelines as tools for AI,
Standards Identification & Management was a key focus for participants and comprised the
largest collection of tools in our dataset. Standards Identification & Management (N = 206),
includes tools for Goal Articulation (e.g., broad principles statements), Self-Assessment (more
specific procedural assessment tools, such as Microsoft’s AI Fairness Checklist (Madaio et al.,
2020)), Documentation (e.g., Model Cards (Mitchell et al., 2019b)), Regulatory Awareness
(tools, often paid services, for discovering and monitoring relevant regulations), Methods
Design (standards for audit methodology), and Participatory Standard-Setting (methods for
developing standards in collaboration with a!ected groups, such as Microsoft’s Community
Jury (Cass et al., 2022)).

This category includes both internal organization standards and principles and formal national
or international standards. Tools such as NIST’s Risk Management Framework (RMF) and

9Note: The creators of the AI and Algorithmic Incident and Controversies Repository dispute the
characterization of their tool in Turri and Dzombak (2023).
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relevant ISO standards are referenced extensively by auditing organizations (AI, 2024), and
regulators in Singapore and other nations have invested in similar tools as part of compliance
and oversight frameworks (Infocomm Media Development Authority & AI Verify Foundation,
2023; Kaye & Dixon, 2023). While the weight and enforceability of these standards di!er,
they are united by a shared goal of defining audit methodologies and expectations for system
performance.

Need for more context-specific standard. Despite the large number of standards and
evaluation frameworks surfaced in our tool survey, auditors still felt that evaluation frame-
works needed refinement. Auditors emphasized the importance of standardized evaluation
frameworks that provide clarity and consistency: “I think standardization is a big [concern]...”
(P23) Many wished to streamline the auditing process by o!ering predefined structures and
templates for assessment, which are essential for conducting audits e!ectively and facili-
tating communication. Most commonly found were goal-articulating “principle statements”
(N = 86), self-assessment checklists (N = 49), and similar documents, while methods for
participatory standard-setting (N = 5) were comparatively rare in our dataset. The Standards
Identification tools we found were particularly general in their applications, compared to
other categories of tools—the principle statements, checklists, and similar resources we found
were usually developed without a specific kind of target system in mind (Fig. E.5.4). Some
participants found these tools too broad to easily apply:

I think what I’ve seen is that companies and institutions... really, really struggle
to understand, ‘What should we even do when it comes to auditing or evaluating
the use of machine learning in our organizations?’ And while a template or a
checklist is not the right answer, a lot of them don’t even know where to start...
And so, (it helps) when you have a tool that...has some built in frameworks. (P8)

Need for more standards beyond fairness. Some participants also thought that assess-
ments templates and checklists were focused too narrowly on fairness assessment. One civil
society auditor said, “I would love some guidance on audits generally and tools that describe
the non-fairness components of an audit...” (P6) Another wished for resources that covered
criteria such as explainability, privacy, and transparency: “Currently we have to.. find open
source tools and put them together ourselves, and you need to have expertise to know what to
look for” (P21).

Need for clear and consistent regulatory guidance. Despite some participants’ desire for
o”cial frameworks like NIST’s Risk Management Framework (RMF) (Tabassi, 2023), multiple
participants commented on the di”culty of harmonizing current or expected regulatory
guidance with practical implementation. Regulatory guidance itself may function as a tool,
providing a framework for compliance with emerging policies. One civil society auditor
asked:

What are we evaluating for? And the question of, even when we have some kind
of legal or other benchmark in mind, what are the metrics, and what are the
benchmarks and other ways in which to evaluate, technical and otherwise, which
also remain quite unclear? We’re seeing the ready adoption of audit language into
policies, so that just kind of makes us nervous... What are we auditing for? (P2)
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Several emphasized the necessity of regulatory entities being more forthcoming in defining
best practices. Some sought the guidance of the regulatory bodies in the domains they operate
to establish their own frameworks but often struggle to translate industry expectations into
meaningful standards for evaluation. Multiple participants felt there was a “culture or
communications gap between the legal and compliance people on one side and the engineers
on the other” (P12). As a result, some hoped for more collaborative approaches instead of
command-and-control prescriptions: “Half the time we reach out [to regulators], and there’s
just no one to contact... it’s just a black hole... ” (P13).

Implications. Standards for evaluating AI systems must be simultaneously holistic, context-
specific, inclusive, and compatible with practice. Some of the tools we found made advances
in one or more of these dimensions, but few accomplished all three. Microsoft’s AI Fairness
checklist, for example, was co-designed with practitioners (Madaio et al., 2020) in an e!ort to
be more compatible with practical challenges, but many of the other standards frameworks
we found did not obviously consult practitioners and fewer involved a!ected stakeholders.
Likewise, while NIST’s AI RMF includes safety, security, reliability, transparency, explain-
ability, and privacy, in addition to fairness, its guidance for specific evaluation techniques
remains fairly broad (Tabassi, 2023).

Research could continue to explore how regulatory standards could be translated into concrete
metrics and other e!ective guidance for industry (Wachter et al., 2021; Guha et al., 2023).
One participant at a large tech company, for example, preferred a “must, could, should” (P14)
structure for regulatory guidance: a non-technical legal minimum (“must”) accompanied by
more precise technical paths to compliance (“should”) and a set of ideal best practices for
high performers and innovators (“could”).

5.4.3 Data Collection & Transparency Infrastructure

Gathering empirical evidence is a key step in AI auditing, but often poses the most significant
challenge in practice. When model operators were unwilling or unable to release relevant
documentation and other evidence, auditors turned to two main classes of tools to help.

Tools for Transparency Infrastructure (N = 12) are interfaces and databases hosted by model
operators that allow controlled access to relevant data. This category includes tools for
Structured or Application Programming Interface (API) Access (tools that allow auditors
to interact with models and live systems, such as Google’s AI Test Kitchen (Warkentin &
Woodward, 2022)), tools for Data Sharing (platforms or trusts for hosting models and related
data, such as the Gig Economy Data Hub (“Gig Economy Data Hub,” 2021)), and tools
for Secure & Private sharing (tools that help mitigate concerns with sharing data, such as
Airbnb’s Project Lighthouse (Airbnb, 2020)).

More commonly, though, tools for Data Collection (N = 47), helped external auditors
in particular gather information outside auditee-controlled interfaces. These tools help
auditors gather data about model behavior, including relevant information not routinely
collected by model operators. This category includes tools for Field Data Collection, which
collect data from real systems and real users—including tools for Data Donation (such as
Mozilla’s YouTube Regrets project (Mozilla Foundation, 2021)), Data Scraping (e.g., Tracking
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Exposed (Agosti, 2023)), Interviews/Surveys, and Compelled Transparency (e.g. tools such
as MuckRock, which facilitates public records requests). We also found tools for Simulation
(e.g. Meta’s Web Enabled Simulation platform for simulating interactions on Facebook
(Ahlgren et al., 2020)) and Bot Deployment (tools used for sock puppet auditing (Bandy,
2021), such as Selenium or Appium), both used to test systems with artificial or semi-artificial
interactions.

Need for uncompromised data access. Data collection tools aim to address one of the
challenges most frequently mentioned by our participants: the di”culty of accessing data and
other vital information required to conduct meaningfully independent audits. Transparency
Infrastructure tools provide external auditors with controlled access to models and data—
especially for online platforms, in our dataset (Fig. E.5.4)—but they require investment from
model operators. Despite court orders and regulations like Article 40 of the Digital Service
Act (Leerssen, 2023) that require the construction of transparency tools, one participant
noted that key APIs used for auditing are becoming more costly and undependable:

There’s a direct impact on shutting o! the access to information that a!ects people
doing audits... we saw that with Reddit charging for their API and shutting down...
Twitter charging astronomical, now, amounts for their API. It’s because everybody
is scraping public Reddit and public Twitter to train large [AI] models... (P24)

They wished for “access to platform data... a context under which people can do controlled
experiments, using data that is provided by platforms directly” (P24).

Auditors also said that corporate control over APIs undermined their independence in
conducting audits which aligns with our definition of an audit (Def. 9). A civil society auditor
said,

I wish I had something to force people to give me their data... Part of the problem
of auditing in general is that the only people who get let in are usually the people
who are willing to say nice things about whatever the technology is being audited.
(P6)

In practice, participants reported that key details, such as data sampling methods, data
provenance, model versioning, metrics, and design justifications, were often omitted or only
partially disclosed. And currently, the vetting process for API use often requires the auditor
to disclose their intent for the evaluation in advance, which may compromise the integrity of
the study.

I’m very much concerned that what’s going to happen is.. [platforms have] given
all this access, and there will actually be... more of a cover up than there is now...
They have so much power in this conversation to just share whatever information
they want. (P7)

Instead, one participant’s ideal was an “inspectability API ” (P7), a required, standardized
interface to allow researchers to interact with online platforms, including the ability to test
di!erent profiles, geographies, and other variables needed to evaluate disparate treatment,
misinformation, and other algorithmic harms. Similarly, an auditor at a startup wished for
centralized data archive available to the public:
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Figure 5.3: Tool licensing by taxonomy stage (top) and by organization type (bottom).

If I really had to paint my perfect vision, it would be an independent database
archive, or whatever, of all the relevant data. And then... di!erent parts of
society can tap into it... I think what you want is a lot of di!erent innovative
organizations and people and builders taking this data and building useful things
with it, rather than a single one. (P12)

Challenges with independent data collection. Rather than rely on the model operator
to provide access, auditors—especially external auditors—often turned to tools for Data
Collection to obtain evidence themselves, sometimes developing and sharing their own tools
and processes. Unlike the tools we found for Transparency Infrastructure, which were mostly
not open source (25.0% open source in our dataset; see Fig. 5.3), tools for Data Collection
were much more likely to be available under an open source license (68.1% open source in
our dataset). Tools for Data Collection—most not built specifically for AI auditing—also
comprised the most popular Github repositories in our dataset (Table E.2). For example,
auditors used Selenium (“Selenium,” 2023), a popular collection of open source tools for
browser automation, to simulate user profiles while scraping data (known as a “sock puppet”
audit (Bandy, 2021)).

While this approach gave auditors more freedom, it could also take more e!ort. Some of the
tools we found—such as the Markup’s Citizen Browser (The Markup, 2022), a data donation
platform—were built from scratch to collect specific kinds of data for auditing. Existing tools
for data scraping were helpful but often required extensive adaptation:

We almost always have to build custom scrapers to collect data... There’s some
templates right out there for these scrapers, and then you usually have to customize
them. And then there’s a huge amount of work to keep them alive... They break
all the time with all these edge cases. And so they’re really a pain. I don’t really
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know that there’s a way to solve that. (P7)

Despite these di”culties, external auditors—particularly the journalists in our sample—still
saw advantages in independent data collection. The same journalist noted:

There’s a lot of requests for inside access, as if that’s the only way to do this type
of thing, but in reality inside access can actually be a trap... your view inside
the room is actually really limited. And so I have come to believe... that actually
doing analysis from the outside can often be way more revealing... I usually never
have insight into the algorithm itself, but I can do analysis on the outputs. And
to me, that’s the right place for a journalist to operate, because the outputs are
the real-life impact. (P7)

Challenges with understanding and processing data. Even when they had access
to the data they wanted, participants noted that basic challenges involved with managing
and analyzing data required more labor than any other task. A government auditor said,
“90% of the work is figuring out what di!erent tables are, and what di!erent columns are,
and working out whether it makes sense to join certain things. And then figuring out some
meaningful metrics that we can draw from that data...” (P25). Participants also spent lots of
time reviewing and requesting additional documents from audit targets.

Multiple participants wished for tools to help with tasks such as data collection and cleaning:
“most of the value of data infrastructure is literally cleaning data” (P3). One auditor hoped
for innovation in data quality management: “There are custom scrapers, a lot of human data
quality work, and one thing that I have really wanted to do and never been able to do is try to
figure out ways to get that data quality work done in more interesting ways” (P7).

Data quality concerns intersected with concerns about audit integrity. “I think we often have
to worry about... [whether] what we see is what we think it is” (P15). With recent datasets
scaling up to staggering sizes, this concern has become more acute and auditors commented
on how manual analysis was no longer feasible: “Given how much data we are able to process,
we need new methods to analyze the data curation process and what kind of problems data
comes with. And then we need tools to detect what is synthetic, what is real” (P20).

Risk of retaliation. Some external auditors also worried that external data collection
tools—particularly tools for data scraping or data donation—may violate terms of service set
by platforms and result in legal liability or retaliation. Auditors expressed concerns about
legal risks from existing laws and regulations, particularly the Computer Fraud and Abuse
Act (CFAA) and other privacy laws. Under the CFAA, for example, an auditor who violates
a platforms’ terms of service may be held criminally liable.

It is di”cult for auditors to determine what methods—such as public data scraping or even
data donation—may be deemed “unauthorized” and criminal under the CFAA unless the
audited organization grants authorization. In Sandvig v. Barr (2019), for example, the
ACLU sued to allow researchers to set up false accounts (sock puppets) to audit computer
algorithms (Sandvig v. Bar, 2020; American Civil Liberties Union, 2019). In 2021, Facebook
used exactly this term of art—“unauthorized”—several times in its justification for disabling
the accounts of a group of researchers auditing its advertising algorithms with a data donation
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tool called Ad Observer (Clark, 2021; Edelson & McCoy, 2021). Facebook initially insinuated
that disabling the researchers’ accounts was required by an Federal Trade Commission (FTC)
consent decree, backtracking only after the FTC called the statement inaccurate (Levine,
2021). One civil society auditor said,

Even if the legal risks have not been acted upon as much, there’s cases everyone
points to in terms of attacks against researchers. It’s a matter of time before it
ramps up. As soon as our work becomes threatening enough, that’s when it all
really starts. (P24)

As a result, auditors engaged in external data collection had to take great steps to guard
against liability and retaliation. One journalist said, “[The CFAA] is an incredible legal
hangover for the type of work I do... how much lawyering I need to even get one tool o! the
ground is insane” (P7). Auditors also expressed hesitation about reforms that give platforms
more control over what data is released. The same journalist continued,

Exemption from [the CFAA] would honestly be more helpful than these platform
access roles that the E.U. is claiming that they’re going to o!er [e.g., in the Digital
Services Act], which I am very skeptical about... I just feel like the history of these
things is that when platforms have been required to provide API access, they have
somehow always made it impossible to do real accountability. (P7)

Even auditors hired internally may assume some degree of personal risk. One civil society
auditor noted, for example:

Another really frequent sort of question that I get [from organizations]... is what
is my liability around doing this kind of [audit work]? And frankly, to your earlier
question about building in-house versus contracting, that’s another main [reason
to contract]... it’s like, okay, we’re still going to do this thing, but just sort of
outsource it. So I think that just remains like a really open question that people
doing this kind of work are carrying a lot of legal risk in doing so. (P24)

Implications. Future research could explore tools and processes for not only facilitating
access to data—especially independently, through scraping or simulation—but also for
ensuring data quality and integrity. Participants specifically wished for more tooling for data
donation and user-driven auditing, a nascent area of research in human-computer interaction
(Lam et al., 2023; DeVos et al., 2022; Deng et al., 2023). Auditors also faced challenges
common to data work in general, and research on practices surrounding data quality and data
integrity may be applied specifically to discrimination testing and AI auditing methods.

Other challenges were more particular to auditing work. Future work could explore how
auditors request information and interact with model operators. Transparency Infrastructure
in particular is a nascent area of tooling that may become more common in auditing practice
as AI regulation develops and as barriers to external data collection mount. Independent
research may help guide these tools into more trustworthy mechanisms for disclosure, even as
policymakers can ensure platform-controlled tools are not the only avenue for scrutiny.
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5.4.4 Performance Analysis

Tools for Performance Analysis (N = 129) are designed to help auditors evaluate and
explain model behavior, usually through the calculation of quantiative metrics related to
accuracy/safety (N = 71), explainability (N = 36), or fairness (N = 30). This category
includes tools for Fairness Evaluation, Accuracy Evaluation (including tools for A/B testing,
benchmarking, and model monitoring, such as Meta’s Dynabench or the Linux Foundation’s
Adversarial Robustness Toolbox), Explainability (tools for explaining the behavior of a model,
such as IBM’s AI Explainability 360, or for exploring training data, such as Hugging Face’s
ROOTS search tool (Piktus et al., 2023)), and Qualitative Analysis.

Concerns about methodological integrity. Despite the many tools developed for
Performance Analysis—including the most popular AI-specific Github repositories in our
dataset (e.g., OpenAI Evals (OpenAI, 2023); see Table E.2)—practitioners expressed a need
for more robust, well-vetted tools and methodologies. Internal auditors in particular had
concerns about the validity, reproducibility, transparency, and trustworthiness of the methods
used in popular Performance Analysis tools. One auditor at a tech startup said, “I’m still not
convinced of the validity, even, of some of those methods” (P4) used in tools for monitoring
and validation.

For example, the most popular Performance Analysis tool we found on Github is SHAP
(SHapley Additive exPlanations), a game-theoretic method for measuring feature importance
in a model (Lundberg & Lee, 2017) (see Table E.2). But as Kumar et al. (2020) argue, Shapley
values are prone to misuse and may be unsuitable for normative evaluation. Interpretability
and explainability methods promoted by popular tools vary widely in their goals (Lipton,
2018) and, like many “snake oil” AI products (Kaltheuner, 2021; Narayanan & Kapoor, 2024;
Stark & Hutson, 2021), may encourage false confidence in their users (Ghassemi et al., 2021).
Yet explainability tools such as SHAP are often suggested in o”cial regulatory guidance
(Kaye & Dixon, 2023).

Some participants put methodological deficiencies down to di!erences in the rigor employed by
the various disciplines involved with auditing. An auditor in civil society said, “The bar of the
kind of threshold of... validity of findings and novelty of findings is much higher in academia
than it is for civil society” (P24). Participants had concerns about maintenance, e!ectiveness
of automated monitoring processes, and the e”cacy of synthetic data for representing real
users instead of functioning as “an academic exercise” (P4): “You can perturb all the di!erent
inputs you want. But they might not be realistic combinations of features for people who are
actually using the system” (P25).

Need for inspectable, reproducible methods. To allay methodological concerns, several
participants emphasized the importance of open-sourcing tools for others in the community
to inspect. Some of our industry participants had reproducibility in mind when designing
evaluation procedures: “You want to iterate... but you know that also makes the results less
reproducible. And are you being deceptive then, if you [refer in published evaluations] to a model
that’s di!erent from the one that people analyze?” (P5) However, the Performance Analysis
tools we found (48.1% of which were built by for-profit organizations) were disproportionately
not open source compared to other tools in our dataset, especially tools for Explainability
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(Fig. E.5.3).

Need for more analysis tools beyond fairness & explainability. Similar to Stan-
dards Identification & Management, our participants wished for tools to help evaluate a
broader spectrum of criteria for AI systems. The Performance Analysis tools we found—the
most popular of which were built and maintained by disproportionately large, for-profit
firms (Figures E.5.6)—often focused on a narrow set of technical fairness definitions and
explainability methods popularized in academic literature. The tools we surveyed in this
category often overlooked entire other areas of concern, including the basic functionality of
the model (Raji, Kumar, et al., 2022) as well as other methods of evaluation. For example,
tools specifically devoted to qualitative—as opposed to quantitative—analysis were much
harder to find (N = 3) and rarely mentioned by our participants.

Implications. While there are multiple studies on the use of tools for fairness evaluation
(Holstein et al., 2019; Lee & Singh, 2021; Deng et al., 2022) and explainability (Bertrand
et al., 2023; Wang, Yang, et al., 2019; Liao et al., 2020; Kaur et al., 2020; Smith-Renner
et al., 2020; Kim et al., 2023), fewer studies examine how practitioners evaluate other criteria
such as basic functionality (Raji, Kumar, et al., 2022), safety, privacy, or recourse, just as
fewer tools exist for this purpose. Future work could develop and investigate tools for a
broader range of evaluation criteria. Future work could also explore practitioners’ standards
for audit tooling (Kaye & Dixon, 2023), and policymakers may develop standards that require
academic peer review or vetting by regulatory bodies for audit tooling.

Moreover, research must examine further how tools may contribute to “audit washing,” the
use of auditing procedures to legitimize unethical practices (Goodman & Tréhu, 2022). A
tool for accuracy evaluation, for example, may be used to analyze the accuracy of dubious
technology for predicting “criminality” or “trustworthiness” without questioning underlying
ethical issues with these applications (Stark & Hutson, 2021; Wang et al., 2023). In general,
tools may claim to provide auditing capabilities—using terms such as fairness, safety, or
explainability—while failing to conduct evaluations that meaningfully contend with power
dynamics and institutional barriers to accountability (Wong et al., 2023).

5.4.5 Audit Communication & Advocacy

Some of the most crucial accountability work of an AI audit comes after empirical evaluation
is complete. We found two emerging sets of tools that begin to address this important stage of
AI auditing: tools for Audit Communication, to e!ectively translate audit results to a broader
audience, and tools for Advocacy, for reporting and campaigning for consequential outcomes
in response to audit results. Tools to facilitate Audit Communication were the rarest in
our dataset (N = 8), and consist mostly of tools for Dataset Visualization (e.g. Google’s
FACETS (“Facets - Know Your Data,” 2023)) and Audit Reporting (e.g., the ACLU’s
repository of NYC Local Law 144 hiring bias audit reports (Gerchick & Madubuonwu, 2023,
August 9/2024)). We found more tools for Advocacy (N = 14)—including Community
Spaces (e.g., the Benefits Tech Advocacy Hub (“Benefits Tech Advocacy Hub,” 2023),
which facilitates collaboration between advocates who oppose algorithm-based cuts to public
benefits), tools for Organizing/Resistance (e.g., the Algorithmic Ecology framework (Stop
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LAPD Spying Coalition & Free Radicals, 2020), a tool for mapping the non-technical
dimensions of algorithmic impact), and tools for Legal Search (e.g., the generic case database
Westlaw often used to identify relevant precedent for legal redress)—but still fewer than we
found in other stages of our taxonomy.

These types of tools were also mentioned less often in our interviews, compared to preceding
stages of our taxonomy. Still, auditors wanted their evaluation work to inform consequential
judgments, in line with our definition of an audit (Def. 9). As one put it, “in the business
of designing audits, it should be as important to design the consequences and penalties that
accompany these audits” (P2). For the auditors we spoke to, tooling in this stage of auditing
was mostly aspirational.

Tools and resources for community building. Auditors especially wished for resources
that would bring together the diverse, interdisciplinary groups involved in auditing, similar
to the few tools for Community Spaces we found in our tool survey. As one auditor put
it, “We have to have people in the accountability business” (P7). Auditors hoped greater
communication could help unite the profession around policy developments, shared language,
standards, and goals that could improve the impact of their work. One auditor at a tech
startup said, “[NIST] has AI guidelines that come out, and we work with them... we send in
comments, we give talks, all that kind of stu!. I think that’s an important part of the auditing
community” (P4). Another described a workshop attended by civil society, academics,
and consulting firms to help prepare for legislation in the European Union (P23). One
auditor hoped that communication could lead to shared tooling: “How do we bring these
interdisciplinary communities together so that we can use tools together?” (P20)

Implications. Communicating audit findings, lessons, and insights learned can help build
trust and validate audit findings, recommendations, and subsequent interventions. Audit
report repositories could expand the forum holding model operators accountable, allowing
policymakers, journalists, and other public stakeholders to engage with evaluations more
easily. Embracing public evaluation results also helps audit practitioners to learn from each
other’s experiences. Despite these benefits, tooling to support these stages is rare. While we
found some domain-specific spaces where auditors can interact—the Benefits Tech Advocacy
Hub (“Benefits Tech Advocacy Hub,” 2023), for example—we found few audit reporting tools
or tools for facilitating communication between auditors, journalists, and activists. Future
design work and research could explore these emergent categories. Academic research could
also explore in more detail the specific mechanisms of audit communication that are most
likely to result in meaningful change—such as including concrete demands for action (Raji &
Buolamwini, 2022)—and imagine new tools to support those mechanisms.

5.5 Discussion

The HCI community has historically contributed key research to the design and development
of AI audit tools and helped define the concept of AI auditing Sandvig et al., 2014; Lee and
Singh, 2021; Holstein et al., 2019; Wong et al., 2023. In this section, we specifically discuss
the important takeaways for that community in particular, as well as broader lessons for
other stakeholders, including policymakers, audit practitioners, and funders.
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5.5.1 Moving beyond evaluation, towards accountability

Costanza-Chock et al. (2022) found that over 65% of surveyed AI audit practitioners felt
that “accountability” (defined as a “commitment from auditee to address problems covered
by audit within set time”) was a top unmet need in their AI auditing work. This echoes
a theme repeated several times throughout our interviews—AI auditors care deeply about
accountability but struggled to achieve it.

Despite searching deliberately for non-evaluation tools, we found more than five times as
many tools in the evaluation stages of the AI audit process as we did tools for harms discovery,
audit communication, or advocacy. Perhaps unsurprisingly, these are also the stages of the
audit process that participants described as most requiring contextual awareness and typically
under-studied participatory and community engagement methods. Research and development
related to these and other practical challenges could bolster practitioners’ accountability
e!orts. Promising new directions for HCI research and policy include:

• Studying and developing tools for harms discovery, audit communication,
and advocacy. Our tool survey identifies several neglected categories of tools—
particularly tools for Incident Reporting, Education/Awareness, Target Identification,
and Audit Communication—that are worthy subjects for future HCI research. For
instance, promising recent research explores the existing limitations (Turri & Dzombak,
2023) and educational applications (Fe!er et al., 2023) of incident reporting databases,
but little work explores complementary technical infrastructure, such as, for example,
the AI inventories often used by journalists (such as Algorithm Tips) and previously
required for federal agencies (Biden, 2023). Likewise, auditors envisioned audit report
databases as accountability tools to facilitate the amalgamation and communication of
audit findings to key stakeholders, mirroring interventions such as the U.S. Security and
Exchange Commission (SEC) EDGAR database for financial accounting audits (Raji,
Xu, et al., 2022). These gaps in development also present meaningful opportunities for
further investment and institutionalization by policy-makers and funders.

• Validating existing tools in practice. Audits have limited impact if their results are
not reliable or meaningfully connected to real world requirements (Raji & Buolamwini,
2022). Unreliable performance or accuracy analysis tools that fail to meaningfully
assess the audit target operate as misleading “rubber stamps” for vendors and lead
to “audit washing” Goodman and Tréhu, 2022, posing a serious challenge to the
legitimacy of audit results. There is a growing opportunity for HCI researchers to
explore ways that AI audit practices interact with existing accountability processes
such as litigation or regulatory compliance. For instance, several tools surfaced in
our survey (e.g., from Holistic.ai, Credo.ai) were explicitly marketed for use for NYC
Local Law 144 compliance, but studies of audit practice suggest the produced measures
may not be reliable or legally compatible (Xiang & Raji, 2019; Groves et al., 2024;
Wright et al., 2024). Researchers might also investigate the validity and e!ectiveness of
government-sponsored tooling (Kaye & Dixon, 2023) and court-mandated transparency
infrastructure (e.g., Facebook Ad Library, built after settlements with civil rights groups
(Sandberg, 2019)).
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• Developing participatory methods for audit work.

Given the broader calls for a participatory turn in AI development Delgado et al., 2023;
Kulynych et al., 2020; Birhane et al., 2022, it is no surprise that participation is an
increasing focus for AI audit practitioners and audit tool developers as well. Recent HCI
work on user auditing (Deng et al., 2023), such as the “WeAudit” tool DeVos et al.,
2022, exemplifies this shift and demonstrates the possibility of designing for a more
participatory AI audit process Shen et al., 2021, 2022; Deng et al., 2023. Policymakers
can also further emphasize participation as a requirement in audit guidance and invest
in tools that support participatory methods.

• Open & reproducible practices for AI audit tools. Some participants were
concerned about the e”cacy of many AI audit tools—particularly tools whose methods
were not made available for public scrutiny. (Tools we found for Performance Analysis
were less likely to be open source; Fig. 5.3). Making AI audit tools publicly available
enables both external collaboration and third-party validation. Open tooling practices
may also contribute to knowledge-sharing, standards-setting, transparency, accessibility,
and trust, but can have complex interactions with power and oversight that are worthy
of further study (Widder et al., 2024). Researchers, policymakers, foundations, and
other stakeholders developing audit tools should prioritize open practices. Policymakers
could also consider requiring that published audit reports include clear explanations of
auditors’ methods and tools.

• Independence in audit tool use and protection from retaliation. Power
dynamics between auditors and the audited have a critical impact on accountability
Raji, Xu, et al., 2022; Birhane et al., 2024. Participants had audit results blocked from
publication (P1) or unduly restricted in scope (P13) due to interventions from audit
targets. Audit target retaliation and censorship was raised as a risk to both internal
auditors (P5), who face the threat of firings, social dismissal or professional demotion
Widder et al., 2023; Boag et al., 2022, and external auditors (P7), who face the threat
of legal action under existing privacy and anti-hacking laws Urman et al., 2024; Raji,
Xu, et al., 2022. HCI research has explored software engineers’ attempts to act on ethics
concerns in the face of similar risks (Widder et al., 2023; Tahaei et al., 2021); further
work could explore auditors’ experiences specifically. Policymakers and stakeholders
can take steps to provide protections for auditors through legal reforms (Longpre et al.,
2024) or legal funds such as the Coalition for Independent Technology Research.

5.5.2 Moving beyond ad hoc toolkits, towards shared infrastruc-
ture

Participants agreed on the need for shared infrastructure that supports the auditing process.
As one participant said, tools are “a superpower for journalists, and something that really is
the future of accountability... There really needs to be some sort of public infrastructure [for
auditing]” (P7). But developing high quality audit tools—even when adapting existing open
source tools—took resources, and participants noted a lack of long-term investment: “We
need more funding for this space... especially when it comes to infrastructure” (P20).
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Currently, much of the funding for even open source audit tools comes from private, for-
profit organizations. In our landscape analysis, we found that even the free tools currently
dominating the audit tooling landscape were often built by large, for-profit tech companies
(Fig. 5.2)—for example, 9 of the 12 Transparency Infrastructure tools we found were built
by for-profit organizations. Audit tools like these can hold great power over the audit
process:

Our determination of the performance of the algorithm carries a lot of weight
within the organization. It’s not like somebody else could just throw it and be like
“Oh, we’ll go ask somebody else”... because we built the infrastructure, so we have
that lever... If you can control the data sources or the ways to integrate algorithms
into the data sources, that gives you power. (P3)

The external auditors we interviewed were especially skeptical of the data provided from these
tools and aware of their unreliability, citing the shutdowns of transparency infrastructures
like Reddit and Twitter’s APIs (P24) as well as Facebook’s CrowdTangle tool (P12). Open
source tools (e.g., for data scraping) can sometimes fill the gap, but do not always cover the
scope and complexity of practical audit work.

Our participants’ aspirations for tooling envision another path—a path towards lasting public
infrastructure that gives auditors additional levers to hold model operators accountable
(Marda et al., 2024). Directions for HCI research and development include:

• Tool catalogs & other shared infrastructure. Tool selection was a major source
of uncertainty for practitioners; as one expert suggested, “it’s not just about creating a
multitude of auditing tools but also about fostering decision support frameworks that
empower practitioners to make informed choices based on the context they are dealing
with” (P25). In addition to HCI work evaluating the e”cacy of audit tools (Lee & Singh,
2021; Deng et al., 2022; Wong et al., 2023; Kaye & Dixon, 2023; Berman et al., 2024),
future research could explore frameworks that assist audit practitioners in identifying
and choosing between tools at each stage in an audit. Policymakers can invest in these
frameworks and publish catalogs of vetted tools for auditors to reference, similar to the
OECD’s Tools for Trustworthy AI list (OECD, 2021). In general, shared AI inventories,
AI incident databases, AI audit report registries, tool catalogs, regulatory guidance,
and other centralized repositories or common transparency infrastructure could increase
awareness, accessibility, and knowledge sharing, particularly if the audit community
and a!ected stakeholders are empowered to not only utilize this infrastructure but also
contribute to its development.

• Institutionalized tool maintenance & funding. Currently, the burden of building
and maintaining tools to address technical debt falls on the auditors, raising concerns
about the sustainability of auditing e!orts. One participant suggested putting expiration
dates on tools to avoid future inaccuracies (P7). They also hoped to find “funders
who are on board for longer tool maintenance projects” (P7), but another noted that
attempts to raise support by connecting “performance issues and ML to downstream
business KPIs” (P4) was di”cult when talking about “nebulous things, like fairness
and bias” (P4). Policymakers and foundations should set aside funding and resources
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for long-term tooling projects to ensure that audit tools are high quality, long-lasting,
and address the wide range of needs identified in this study. Some initiatives, such as
the Mozilla Technology Fund (“Mozilla Technology Fund (MTF),” 2024), the U.K. AI
Safety Institute’s Systemic AI Safety Grants (“Fast Grants,” 2024), and the French AI
Action Summit Public Interest fund (AI Action Summit, 2024) are already positioned
to make these investments. Researchers and practitioners should include long-term
maintenance plans with newly developed tools, possibly in collaboration with civil
society organizations such as the Linux Foundation, which hosts several of the open
source tools we found (IBM’s AI Fairness 360 (Bellamy et al., 2018), for example).

5.5.3 Ongoing Impact

This work was completed as part of the Open Source Audit Tooling (OAT) project at
the Mozilla Foundation and has already had demonstrable impact in policy engagement
and funding. After submitting public comments, these findings were cited several times in
the U.S. National Telecommunication and Information Administration (NTIA) “Artificial
Intelligence Accountability Policy Report” (Goodman, 2024), the “Summary report on the
call for evidence on the Delegated Regulation on data access” for the E.U. Digital Services
Act (Leerssen, 2023), and the U.K. AI Safety Institute’s “International AI Safety Report”
(Bengio et al., 2025). OAT team members presented these findings to regulators at the U.K.’s
OfCom and the U.S. Federal Trade Commission. OAT team members also participated in
advising the selection of two rounds of Mozilla Technology Fund (MTF) awardees, including
5 teams in an inaugural cohort (2022), and 8 teams in a follow-up cohort (2023) focused on
AI audit tooling.

5.6 Conclusion

Ideally, AI audit studies will translate into tangible outcomes of accountability, but this
outcome is far from certain. In order for the audit process to truly be feasible and e!ective,
we—researchers, policymakers, and audit practitioners—need to invest in the infrastructure
required for accountability. This will require a full e!ort on multiple fronts, including
everything from the design and development of new tools; to new community infrastructure,
communication standard-setting; to considering advocacy for certain policy positions. We
cannot accept the minimum from AI auditing—we must push the boundaries of this practice
until it becomes the meaningful mechanism of accountability it has the potential to be.
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Appendix A

Estimating Policy Impacts of
Statistical Uncertainty and Privacy

A.1 Additional Figures

Figure A1 geographically depicts the misallocation per eligible child due to underlying data
error (data deviations) and additionally injected noise (privacy deviations) at a relatively
high level of privacy (ω = 0.1). Figure A2 shows the likelihood that a district in Pennsylvania
changes eligibility for any of the Title I grant types. More districts have a higher chance
to lose eligibility than to gain eligibility, as most districts’ poverty counts lie above the
Title I thresholds. Figure A3 presents the baseline disparities in entitlements without any
additional policy features. Figure A4 depicts the fitted smooth for each covariate in the
relatively strong privacy setting ω = 0.1 where demographic patterns are most visible. Note
that adding post-formula provisions noticeably sharpens the e!ects of district median income,
racial make-up, and population density on misallocation (Figure A15). Smooths and other
figures for all of our experiments can be accessed at github.com/ryansteed/ieat.

A.2 Materials and Methods

Data

We measure the impact of data and privacy deviations on Fiscal Year 2021 Title I allocations
to over 13,190 local education agencies across the United States. We focus on three out of the
four grant types: basic, concentration, and targeted grants. (The fourth type of grant, which
accounted for 23% of Title I funds in 2015, is distributed using state-level multipliers that
are not publicly available.) We calculate these allocations using the same data sources as the
Department of Education, most notably the Census Bureau’s Small Area Income and Poverty
Estimates (SAIPE) from 2019 (Luery, 2010; Bell & Robinson, 2020), a table of counts of
total population, children, and eligible children in 13,184 school districts from all fifty states.1

1Our results do not include Puerto Rico and other U.S. territories—they are excluded from the SAIPE.
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APPENDIX A. IMPACTS ON POLICY

(a) Expected misallocation E [yi(x)≃ yi(µ)] per eligible child to school districts due to data deviations
alone. Notably, Northwestern, population-sparse districts tend to benefit from uncertainty while populous
Southeastern districts lose out.

(b) Expected marginal change in misallocation E [yi(x̃)≃ yi(x)] per eligible child after di!erential privacy is
applied (due to both data and privacy deviations). Though gains appear to dominate the map, the districts
that benefit most (and have the largest areas) tend to have small populations. Instead, losses per child in
dense, populous districts increase slightly to pay for large gains per child in sparse, less-populated districts.

Figure A1: Cube root of misallocation (observed minus o”cial) in dollars per eligible child in the
continental U.S. (cube root), averaged over 1,000 trials. Blue school districts gain funding under
deviations; red districts lose funding. Injected noise is drawn from Laplace mechanism with ω = 0.1.
Striped districts have mean misallocations not significantly di!erent from zero (p < 0.1) using a
one-sample, two-tailed z-test.
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Figure A2: Likelihood of changing eligibility due to data deviations alone in Pennsylvania, computed
over 1,000 trials. Striped districts have proportions not significantly di!erent from zero (p ↑ 0.1)
using a one-sample z-test.
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Figure A3: Bars depict the sum of misallocation multiplied by the proportion of respondents of each
census single race category, divided by the sum of formula-eligible children of that race. Averaged
over 1,000 trials. A black outline indicates the marginal change in misallocation due to injected
noise, drawn from Laplace mechanism with ω = 0.1. Error bars span a 90% normal confidence
interval. The di!erences between race-weighted misallocations before and after privacy deviations
are added are significantly di!erent (p < 0.01) for all groups, according to a two-sample z-test.
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The Census Bureau produces these estimates using a smoothed version of the most recent
ACS (for SAIPE 2019, the 2018 ACS) and income tax data from the IRS (Bell et al., 2007;
Powers et al., 2008). A single child can change the count of total population, children xi, or
children in poverty zi by ±1, so the maximum amount the table could change if one child is
removed (i.e., the sensitivity for di!erential privacy) is # = 2. We compare our replication of
the Title I allocations to the o”cial figures produced by the Department of Education, which
also contain counts of eligible children in other categories—juvenile detention, foster homes,
and those enrolled in Temporary Assistance for Needy Families (TANF) (Appendix A.8)
(Rooney, 2021). For SPPE, we use the most recent education expenditure table published by
the National Center for Education Statistics (NCES), from fiscal year 2018 (Cornman et al.,
2020).

For testing the distribution of misallocation over demographics, we use 2015-2019 ACS
demographic data aggregated at the school district level in the NCES Education Demographic
and Geographic Estimates database (“American Community Survey – Education Tabulation
(ACS-ED),” 2015–2019). There are 1,545 school districts with missing child-level race data; for
those districts, we assume that the child demographic frequencies match the adult frequencies.
We drop 14 districts (mostly unorganized territories) which also have no adult estimates.
Median incomes are truncated above $250,000. For the regression analysis, we impute
the means of 162 districts with missing median incomes and 148 districts with missing
household sizes. Population densities are computed using land areas from the published
TIGER shapefiles provided by the Census Bureau (U.S. Census Bureau, 2021). Copies of
these datasets are included in our codebase at github.com/ryansteed/ieat.

Replicating Title I

Because there is no publicly available code for converting poverty counts into Title I allocations,
we replicate the allocation procedure described in detail by the Department of Education
(Sonnenberg, 2016; Snyder et al., 2019). Title I funds are intended to assist disadvantaged
students, so the formulas for grant allocation are based on the number of eligible children
in each school district. Eligible children are school-age children (5-17 years old) who either
a) live in families with income at or below the poverty level, b) live in families who receive
certain government assistance, c) live in institutions for neglected or delinquent children, or d)
live in foster homes (Sonnenberg, 2016; Snyder et al., 2019). Funds are distributed to school
districts with eligible children through four primary types of grants (Snyder et al., 2019):
basic grants, for any LEA that qualifies; concentration grants, for LEAs with especially large
disadvantaged populations; targeted grants, which are distributed according to a weighting
system proportional to eligibility counts; and education finance incentive grants, which are
state-level grants for state-determined distribution. We examine only the first three types of
grants.

To qualify for a grant of any amount, an LEA must have a certain number of eligible students
(in magnitude or in proportion of total school-age population); the qualification amounts
increase from basic grants to targeted grants (Sonnenberg, 2016; Snyder et al., 2019). For
basic grants, an LEA must have at least 10 eligible children and more than 2% of children 5-17
must be in poverty. For concentration grants, an LEA must meet the basic grant eligibility
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requirements and have more than 6,500 eligible children or more than 15% eligible children.
For targeted grants, an LEA must have at least 10 eligible children and more than 5% eligible
children.

Grant amounts are authorized according to the following general formula:

Auth. Amt. = w{# eligible} ∞ adjusted SPPE

where SPPE is the state per-pupil expenditure, normalized and clipped to a certain interval
set by Title I legislation to truncate the tails. Adjusted SPPE refers to the SPPE provision,
which sets lower and upper bounds on the SPPE coe”cient for all states (Sonnenberg, 2016).
For basic and concentration grants, the weights w are uniform; for targeted grants the weights
are a step function of total school district population given in (Sonnenberg, 2016; Snyder
et al., 2019). The “authorization” amount is the amount an LEA is eligible to receive;
allocation amounts are the amount actually received, depending on the amount of federal
funds available and the percentage of a state’s per-pupil cost Congress agrees to fund, usually
40% (Sonnenberg, 2016). Authorization amounts are exactly proportional to allocation
amounts (Sonnenberg, 2016):

Alloc. Amt.i =
Auth. Amt.i∑
j
Auth. Amt.j

∞ Total Federal Appropriation

The final allocation amount is much less than the authorization amount, reduced proportionally
(for each grant type) to sum to the 2020 Title I appropriation (Ujifusa, 2019; Rooney, 2021).
We think of these allocation amounts before post-formula provisions as entitlements which
reflect the primary, stated goal of the legislation (to provide financial assistance to schools with
poor children), which may di!er from the real goals indicated by the final allocation amounts
when the hold harmless and state minimum provisions are applied (Spencer, 1982).

There are also two special legislative provisions that modify the entitlements after they are
calculated. For the majority of our results, we consider only the formula entitlements, before
these provisions are applied. The hold harmless provision requires that no district lose more
than some percent of its Title I funds from the preceding year, depending on the proportion of
children in poverty in the district. The state minimum provision requires that no state receive
less than a minimum amount for each of the four grants (Snyder et al., 2019; Skinner &
Cooper, 2020). Completely satisfying both of these provisions may require several iterations.
For this reason, the Title I formula cannot be expressed in closed form (Spencer, 1982). The
full allocation algorithm is implemented in our codebase at github.com/ryansteed/ieat.

It should be noted that our analysis of the Title I allocation process leaves out several
elements that could a!ect the applicability of our findings to the real-world distribution of
funds, including small district appeals (20 U.S.C. §6333), district-level heterogeneity in the
use and usefulness of funds (Riddle, 2011; Heuer & Stullich, 2011; Borman & D’Agostino,
1996; van der Klaauw, 2008; Murphy, 2012),2 and temporal trends in funding, which in
combination with provisions like hold harmless could compound the e!ects of deviations

2For example, about 70% of participating schools implement school-wide programs that benefit all students,
rather than just Title I eligible students (Snyder et al., 2019).
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(Zaslavsky & Schirm, 2002). For example, there is evidence that Title I grants generally
improve educational outcomes for Title I students (Borman & D’Agostino, 1996), but for
high-poverty schools especially, Title I funds may not close education gaps between poorer
students and their more privileged peers (van der Klaauw, 2008)—so the educational gains
and losses that come from changes in funding may also be disparately distributed.

A.3 Analysis of Variability in Outcomes

In Figure A1, we show the expected misallocation (the average over 1,000 simulation trials)
to each school district across the continental U.S. While less populous districts tend to
experience an average increase in allocation due to data or privacy deviations, funding to
these areas is also much more volatile. Figure A5 shows the 5th percentile misallocation
across all 1,000 trials (the maximum amount lost in 95% of trials). Due to data deviations
alone, less populous districts in the Midwest and Northwest experience somewhat greater
worst-case losses in funding than more populous districts (Figure A5a), despite gaining
funding on average (Figure A1a). Similarly, injecting additional noise for privacy a!ects
populous districts much less in the worst case than less populous districts (Figure A5b),
though less populous districts gain from privacy deviations on average (Figure A1b).

A.4 Additional Categorical Analysis

We also conducted category-weighted disparity analyses for more detailed race groupings
and for the ACS ethnicity question. For readability, Figure 1.2 shows an aggregation of all
the single race categories in the ACS; Figure A6 shows the comparison for all of the ACS
race categories. Figure A7 shows the same analysis for the ACS ethnicity question (Hispanic
or non-Hispanic). Results are mostly stable (with overlapping confidence intervals) within
aggregated race groups, with the exception of the Sioux and Cherokee tribal groupings (the
Sioux tribal grouping gains by noticeably more than the Cherokee tribal grouping).

We also investigated the possibility that there are race- or ethnicity-based discontinuities
around the current eligibility thresholds that may help explain some of the disparities we
notice. (For example, if people of color are systematically grouped into districts slightly
larger than the thresholds.) Figures A8 and A9 show that most districts do not lie near an
eligibility threshold, except for concentration thresholds, for which each district need only lie
above one of the two thresholds to receive funds. There are correlations between Whiteness
and the number or rate of children in poverty. However, even accounting for this correlation,
there is a noticeable dearth of majority-minority districts below the count threshold for basic
and targeted grants, although there are many majority-minority districts just above the
threshold and many majority-White districts just below. This pattern could also partially
explain the racial disparities we document.
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A.5 Regression Analysis

Figure A10 shows a simple univariate regression analysis for several covariates. These e!ects
represent the direct distribution of misallocation over each covariate, not accounting for
other covariates. Here, we include four covariates not included in Figure A4: size of renter
household, citizenship, and the formula inputs, total children and children in poverty. The
patterns of distribution match those reported in the multiple regression (Figure A4) but
with slightly narrower confidence intervals, except for the proportion of white-only residents,
which reports a negative positive e!ect up to 75% instead of 50%.

Because we are also interested in evaluating to what extent each covariate explains or predicts
the typical misallocation to a district after accounting for other covariates (e.g., the e!ect
of racial homogeneity after accounting for population density), we also test several multiple
regression specifications. The regression takes the form

yi(x̃)≃ yi(µ) =
d∑

k=1

sk(Zi) + ωi

where y is the allocation procedure conducted using either the o”cial poverty counts µi or
the “observed,” noise-infused estimates x̃i. The function sk is a thin-plate spline and Zi are
the covariates. ωi is the error term.

Table A.1 reports the OLS estimates for three specifications of our regression models: one
including only the formula components (population, total child population, and population
of children in poverty); another including only demographic components; and a regression
including all the covariates. (We exclude renter household from the demographic regression
because the e!ects are minimal, and we exclude the citizenship question because the data
contain many outliers.) In our main results, we report variables from the demographic-only
specification, because we are interested in analyzing the distribution of misallocation across
demographics. When combined, the formula components tend to mediate the coe”cients on
the demographic variables, with some exceptions.

To estimate non-linear e!ects, we tried a generalized additive model, which yields a significantly
lower sum of squared errors than the OLS specification (Table A.2). We used this model—
summarized in Table A.3—for our main results. Where the OLS model explains about 0.02%
of variance in misallocations, the GAM explains 0.1% of deviations. (The explanatory power
of the model increases as we lower the number of trials; for a single trial, the model usually
explains over 2% of deviations in misallocation.) Estimations were conducted using the mgcv
package in R (Wood, 2011).

We also tested a GAM specification with marginal product smooths to capture interaction
between population density, income, and Whiteness (Table A.5), which has slightly lower
deviance than the baseline GAM without interactions (Table A.4), suggesting there may be
some small interaction e!ects between racial composition and income.

Finally, we ran a regression on the misallocations due only to data deviations to see if there
is a marginal di!erence in the estimates for just data deviations compared to data and
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Dependent variable:

Misallocation (deviated minus true)
Formula components All variables Demographic variables

(1) (2) (3)

Log population density →152.343 →3,560.569↑↑↑

(680.707) (344.609)

Racial homogeneity (HHI) 23,446.180↑↑ 23,095.220↑↑↑

(10,659.330) (6,147.777)

Proportion White →29,914.920↑↑↑ →6,367.596
(10,849.840) (6,255.373)

Proportion Hispanic 1,937.204 →14,012.970↑↑↑

(5,248.909) (3,600.673)

Median income →0.030 0.083↑↑↑

(0.036) (0.024)

(91.254) (57.071)

Log total population 4,055.820↑↑↑ 6,689.163↑↑↑

(460.254) (1,027.212)

Total # children →2.507↑↑↑ →2.518↑↑↑

(0.132) (0.175)

Total # children in poverty →7.536↑↑↑ →8.230↑↑↑

(0.670) (0.892)

(27.241)

Avg. renter’s household size 8,074.700↑↑↑

(2,181.536)

Constant →21,010.610↑↑↑ →52,451.150↑↑↑ →50,555.630↑↑↑

(4,066.151) (18,102.130) (6,291.561)

Observations 1,316,800 841,000 1,308,700
R2 0.005 0.005 0.0002
Adjusted R2 0.005 0.005 0.0002
Residual Std. Error 714,287.500 (df = 1316796) 887,137.200 (df = 840988) 718,155.900 (df = 1308693)
F Statistic 2,207.676↑↑↑ (df = 3; 1316796) 391.687↑↑↑ (df = 11; 840988) 53.820↑↑↑ (df = 6; 1308693)

Note: ↑p<0.1; ↑↑p<0.05; ↑↑↑p<0.01

Table A.1: OLS estimation of the correlation between demographic and formula covariates and
misallocation. Coe”cients are in dollars misallocated.

Res.Df RSS Df Sum of Sq F Pr(>F)
1 130863 7.801↙ 1016

2 130850 7.798↙ 1016 13 3.254↙ 1013 4.30 0.0000

Table A.2: Analysis-of-deviation F-test of di!erence between (1) a OLS specification and (2) a GAM
specification using the demographic specification. Deviations are in dollars misallocated.
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Figure A4: Model-smoothed misallocation (from both data deviations and injected noise) by
covariates, with 95% confidence interval in gray, from a multivariate regression. Injected noise is
drawn from a Laplace mechanism with ω = 0.1. Positive values indicate districts that expect to
benefit from combined data and privacy deviations; negative values indicate districts that expect to
lose funding because of deviations.

A. parametric coe”cients Estimate Std. Error t-value p-value
(Intercept) -227.2932 2133.9246 -0.1065 0.9152
B. smooth terms edf Ref.df F-value p-value
Log population density 5.1214 6.3013 3.6347 0.0009
Racial homogeneity (HHI) 3.7221 4.7235 1.3161 0.3021
Proportion White 4.5520 5.5042 5.0941 0.0011
Proportion Hispanic 1.8194 2.2773 2.6293 0.0658
Median income 1.1889 1.3536 1.2858 0.2714
% households renting 2.2838 2.9248 1.0297 0.4089
R-sq. (adj) = 0.0008, Deviance explained = 0.09%, -REML = 1.9598e+06,
Scale est. = 5.9593e+11, n = 130870

Table A.3: GAM estimation of the correlation between demographic covariates and misallocation.
edf stands for e!ective degrees of freedom. F-values are reported for a joint test of equality to zero
across each set of spline coe”cients.
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(a) 5th percentile of misallocation yi(x)≃ yi(µ) per eligible child to school districts due to data deviations
alone.

(b) 5th percentile of marginal change in misallocation yi(x̃)≃ yi(x) per eligible child after di!erential privacy
is applied (due to both data and privacy deviations).

Figure A5: Cube root of worst-case (5th percentile) misallocation in dollars per eligible child in the
continental U.S. (cube root), averaged over 1,000 trials. Yellow districts lose minimal funding after
deviations; red districts lose significant amounts of funding. Injected noise is drawn from a Laplace
mechanism with ω = 0.1.
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Figure A6: Sum of misallocation multiplied by the proportion of respondents of each census single
race category (disaggregated), divided by the sum of formula-eligible children of that race. Averaged
over 1,000 trials. A black outline indicates the marginal change in misallocation due to injected
noise, drawn from Laplace mechanism with ω = 0.1. Error bars span a 90% normal confidence
interval. Dashed lines indicate a statistically insignificant di!erence between race-weighted data and
privacy deviations using a two-sample z-test. Note that for the tribal and Pacific Islander subgroups,
error in the ACS estimates could introduce an additional margin of error of up to ± $1.17.
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Figure A7: Sum of misallocation multiplied by the proportion of respondents of each census single
ethnicity category, divided by the sum of formula-eligible children of that ethnicity. Averaged over
1,000 trials. A black outline indicates the marginal change in misallocation due to injected noise,
drawn from Laplace mechanism with ω = 0.1. Error bars span a 90% normal confidence interval.
The additional impact of privacy deviations is significant (p < 0.01) for all groups, according to a
two-sample z-test.
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(b) Proportional thresholds.

Figure A8: Children in poverty (as a count or a proportion of total children) by proportion of
White-only children.
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Figure A9: Children in poverty (as a count or a proportion of total children) by proportion non-
Hispanic residents.

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 130,841.500 7.798↙ 1016

2 130,833.700 7.796↙ 1016 7.811 1.668↙ 1013 3.584 0.0004

Table A.4: Analysis-of-deviation F-test of di!erence in sum of squared residuals between (1) a GAM
specification with no tensor product smooths and a (2) a GAM specification with product smooths.
Deviations are in dollars misallocated.
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Figure A10: Model-smoothed misallocation (from both data deviations and injected noise) from
independent univariate regressions, with 95% confidence interval in gray. Injected noise is drawn
from a Laplace mechanism with ω = 0.1. Positive values indicate districts that expect to benefit
from combined data and privacy deviations; negative values indicate districts that expect to lose
funding because of deviations.

A. parametric coe”cients Estimate Std. Error t-value p-value
(Intercept) -227.2932 2133.7902 -0.1065 0.9152
B. smooth terms edf Ref.df F-value p-value
te(prop white,median income est) 16.7213 19.0180 2.7964 < 0.0001
s(log(pop density)) 5.9025 7.1219 3.9745 0.0002
s(hhi) 4.9762 6.1601 1.1466 0.3279
s(prop hispanic) 1.6025 1.9921 2.3333 0.1119
s(renter occupied housing tenure pct) 1.0005 1.0009 0.7541 0.3854
R-sq. (adj) = 0.0009, Deviance explained = 0.11%,
Scale est. = 5.9586e+11, n = 130870

Table A.5: GAM estimation of the correlation between demographic covariates and misallocation.
edf stands for e!ective degrees of freedom. F-values are reported for a joint test of equality to zero
across each set of spline coe”cients.
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privacy deviations combined (Figure A11). The e!ects appear nearly identical in shape and
magnitude for ω ↑ 0.1.

A.6 Policy Experiments

We tested to see how the following policy modifications might a!ect the distribution of
misallocation. The results of these experiments are presented in Figures A12-A16.

Post-formula provisions

1. No provisions (baseline). Hold harmless provision is not applied. Regular, scaled
formula entitlements used.

2. Hold harmless. Hold harmless provision applied. Districts cannot lose more than l

times the previous year’s funding. l = 0.15 for districts with less than 15% children in
poverty; l = 0.10 for districts with 15-30% children in poverty; and l = 0.05 for other
districts.

3. State minimum. State minimum provision applied. States cannot receive more than
a minimum amount of total funding per grant type, which is the minimum of a) 25%
of FY 2001 total appropriations plus 35% of the total amount allocated in excess of
the total amount in 2001, and b) the average of (a) and the state’s eligibility count
multiplied by 150% of the national average per-pupil payment (Sonnenberg, 2016).

4. Both provisions. Both hold harmless and the state minimum provision are applied.

Post processing

1. No post-processing. After applying deviations, counts are not modified.

2. + Clipping (baseline). After applying deviations, negative counts are set to zero.

3. + Rounding. After applying deviations, negative counts are set to zero and decimals
are rounded to the nearest integer.

Moving averages

For this experiment, we assume that the ground-truth poverty estimates are the 5-year average
from 2015-2019. (Using the 2019 data alone as ground truth would skew our results towards
temporal disparities rather than disparities due to the e!ects of uncertainty.) For some
districts, the SAIPE estimates already incorporate 5-year estimates alongside the single-year
tax data; for others, the estimates come from a county model based on 1-year estimates
(Maples, 2019). One practical implementation of this policy change could be converting all
the SAIPE inputs to multi-year averages. The downside to using a moving average is that
the allocations will be slower to react to trends in population. A future multi-year study
could examine whether temporal population trends are large enough to exceed typical data
and privacy deviations and substantially a!ect the usefulness of this approach.
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(a) Data deviations only.
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(b) Data and privacy deviations.

Figure A11: E!ects of demographic variables on misallocation due to data and privacy deviations
versus misallocation due to data deviation alone. Model-smoothed misallocation (from both data
error and injected noise) by covariates, with 95% confidence interval in gray. Injected noise is drawn
from Laplace mechanism with ω = 0.1.

171



APPENDIX A. IMPACTS ON POLICY

(a) With and without hold harmless provision. Pre-
held harmless entitlements are ground truth.

(b) Using various post-processing mechanisms applied
to the data error and injected noise: 1) no post-
processing, 2) clipping negative values to zero, 3)
additionally rounding to integers.

(c) Using a moving average instead of a point esti-
mate, with the lag number indicating the number of
prior years included in the average.

(d) Using modified eligibility thresholds for all grant
types, described in Appendix A.6.

Figure A12: For each modification of Title I, root mean squared loss across 1,000 trials. Dashed
line indicates average RMSE across all trials. Includes data error and injected noise drawn from
Laplace mechanism with ω = 0.1.
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(d) Using modified eligibility thresholds for all grant
types, described in Appendix A.6.

Figure A13: For each modification of the Title I procedure or privacy mechanism, race-weighted
misallocation per formula-eligible child. Averaged over 1,000 trials. A black outline indicates the
marginal change in misallocation due to injected noise, drawn from Laplace mechanism with ω = 0.1.
Error bars span a 90% normal confidence interval. Dashed lines indicate a statistically insignificant
di!erence in race-weighted misallocation after privacy deviations are added, using a two-sample
z-test.
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(d) Using modified eligibility thresholds for all grant
types, described in Appendix A.6.

Figure A14: For each modification of the Title I procedure or privacy mechanism, ethnicity-weighted
misallocation per formula-eligible child. Averaged over 1,000 trials. A black outline indicates the
marginal change in misallocation due to injected noise, drawn from Laplace mechanism with ω = 0.1.
Error bars span a 90% normal confidence interval. The additional impact of privacy deviations is
significant (p < 0.01) for all groups in all treatments, according to a two-sample z-test.
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(a) Hold harmless and state minimum provisions.

−150000

−100000

−50000

0

50000

−15 −10 −5
Log population density

−60000

−40000

−20000

0

20000

0.00 0.25 0.50 0.75 1.00
Racial homogeneity (HHI)

−60000

−30000

0

30000

60000

0.00 0.25 0.50 0.75 1.00
% white−only

0

10000

0.00 0.25 0.50 0.75 1.00
% hispanic

−10000

0

10000

20000

30000

50000 100000 150000 200000 250000
Median income

0

20000

40000

60000

0 25 50 75 100
% renter−occupied housing

Sm
oo

th
ed

 e
ffe

ct
 (i

n 
te

rm
s 

of
 $

$ 
m

is
al

lo
ca

te
d)

(b) No provisions.

Figure A15: E!ects after addition of special provisions. Model-smoothed misallocation (from both
data error and injected noise) by covariates, with 95% confidence interval in gray. Injected noise is
drawn from Laplace mechanism with ω = 0.1.
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1. Single-year (baseline). SAIPE 2019 estimates are used to determine allocations.

2. Averaged, lag l. The SAIPE tables from l years up to 2019 are averaged together
and used to determine all allocations. The l + 1 coe”cients of variation {cj

i
}j↔[l+1] for

each school district i and year j are combined into an averaged coe”cient of variation

c̄i =
ςi

x̄i

=
1

x̄i

√∑
l+1
j=1 ς

j2
i

(l + 1)2
,

where ς
j

i
= x

j

i
c
j

i
.

Alternative thresholds

1. Hard thresholds (baseline). All grant eligibility thresholds are enforced as written.
Districts not meeting the eligibility requirements for a given grant receive no funding
for that grant.

2. Average eligibility. The 5-year moving average is used to determine eligibility.

3. j-repeated ineligibility. Districts are only counted as ineligible if they have been
ineligible j years in a row; otherwise they receive the normal formula amount.

4. ε-level margin of error relaxation. All eligibility thresholds are reduced by the
district’s ε-level margin of error.

5. No thresholds. All districts are considered eligible.

Budget increases

Each proposed budget increase is distributed proportionally to each grant type.

1. Baseline federal appropriation. Approximately $16 billion total, $12 billion to
basic, concentration, and targeted grants.

2. + loss. Increase the baseline appropriation by the absolute sum of negative expected
misallocation due to privacy and data deviations (under the baseline).

3. + ε-quantile loss. Increase the baseline appropriation by absolute sum of negative
ε-quantile misallocation. (This can be thought of as the reasonable worst-case loss for
each district.)

4. Biden proposal. Increase the baseline appropriation by $20 billion, the Biden
administration’s proposal for 2022 (Department of Education, 2022).

A.7 Sensitivity Analysis

Privacy Mechanism

The Census Bureau has not yet made any concrete plans for disclosure avoidance in the ACS
(Jarmin, 2019; Rodriguez, 2021) and the SAIPE currently does not inject noise for privacy
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Figure A16: Change in race-weighted misallocation relative to previous budget for a series of
proposed increases in federal appropriations for Title I grants, averaged over 1,000 trials. A black
outline indicates the marginal change in misallocation due to injected noise, drawn from Laplace
mechanism with ω = 0.1. Error bars span a 90% normal confidence interval. The additional impact of
privacy deviations is significant (p < 0.01) for all groups in all treatments, according to a two-sample
z-test.
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on top of its inputs. To fairly compare misallocations due to privacy and data deviations, we
chose ω to provide a higher privacy guarantee than may be expected in practice. There are
several good reasons to make a conservative choice for ω. First, the implications of privacy
protection in our setting are not clear. Poverty estimates are composed of a combination of
data sources, some of which include weighted samples, and the details of estimation are not
all public—so it is hard to precisely define the sensitivity # and interpret ω. Instead, we try
several reasonable values of ω and present the di!erences here. While prior work suggests a
higher setting (ω = 2.52) of ω for this problem (Abowd & Schmutte, 2019), we chose a setting
low enough to provide strong privacy guarantees even if sensitivity is increased by an order of
magnitude. (Privacy advocates often prefer ω < 1 (Dwork et al., 2019).) Second, this use case
may be part of a larger privacy budget in practice, where linkage between data products and
queries is an issue. Though the overall privacy budget may be high, this particular use case
could receive a small share of the budget. Finally, it is still not clear what privacy protections
might be applied to the ACS and other data products.

Because it is di”cult to predict how the factors above will a!ect future privacy plans, we
explore other amounts of privacy noise to see how our results might change. Figure A17 shows
the privacy-utility frontier, while Figure A18 and Figure A19 depict the privacy-fairness
trade-o!. As ω increases, the marginal decrease in utility caused by privacy noise diminishes,
but the marginal e!ect of privacy on outcome disparities increases. Both the utility and
disparity trade-o!s are relatively small and stable when ω ↑ 0.1. The marginal increase in
average total entitlement loss (Figure 1.1) after adding privacy deviations draws closer to the
total entitlement loss due to data deviations alone at ω = 0.01 and the eventually exceeds it
at ω → 0.01 (Table A.6). Also notably, the e!ects of continuous demographic variables are
much more pronounced for lower values of ω (Figure A20). For example, at ω = 0.01, districts
with a small Hispanic population or districts that are racially homogeneous tend to gain.
The negative e!ect for districts with high population density is also more pronounced.

This result is not particularly surprising when we examine the magnitude of noise injected
for privacy compared to the magnitude of underlying data deviations (Figure A23). The
Laplace mechanism we use is invariant in population size–the variance of the privacy noise is
constant. The total variance of the data deviations, on the other hand, is (ciµi)2, which will
be small only when µi is small. So, as in the 2020 Decennial Census (Bell & Schafer, 2021),
the magnitude of privacy deviations is comparable to the magnitude of data deviations only
in the districts with the fewest Title I eligible children (Figure A24).

Data Error Simulation

Varying the magnitude of data deviations

Preliminary updated research (Maples, 2019) suggests that there are potentially more accurate
ways of estimating poverty and that updates to the ACS and other data inputs could improve
the precision of the poverty estimates. To investigate the e!ects of lower data error on our
results, we imagine that the coe”cients of variation are reduced or increased by as much as
50%, and we also try using Laplace noise instead of Gaussian noise to see if the shape of the
distribution has any e!ect.
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(a) Root mean squared error in allocations across all trials.

(b) Distribution of root mean squared error per trial. Dotted lines depict averages.

Figure A17: Combined data and privacy deviations under di!erent ω settings.
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Figure A18: Race-weighted misallocation under various ω settings, averaged over 1,000 trials. The
marginal e!ects of privacy deviations increase as ω decreases. Error bars span a 90% normal
confidence interval.
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Figure A19: Ethnicity-weighted misallocation under various ω settings, averaged over 1,000 trials.
The marginal e!ects of privacy deviations increase as ω decreases. Error bars span a 90% normal
confidence interval.
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(a) ω = 0.01
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(b) ω = 0.001

Figure A20: E!ects under lower ω settings. Model-smoothed misallocation (from both data error
and injected noise) by covariates, with 95% confidence interval in gray.
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ω for added pri-
vacy deviations

Expected total entitle-
ment loss ($)

Sum of expected losses
($)

Sum of 5% quan-
tile losses ($)

0.001 7.16↙ 109 (4.64↙ 107) 5.55↙ 109 (6.85↙ 107) 1.07↙ 1010
0.01 2.15↙ 109 (3.58↙ 107) 1.09↙ 109 (8.70↙ 107) 6.30↙ 109

0.1 1.11↙ 109 (3.16↙ 107) 1.35↙ 108 (9.30↙ 107) 4.73↙ 109

1 1.06↙ 109 (3.04↙ 107) 1.04↙ 108 (9.00↙ 107) 4.22↙ 109

10 1.06↙ 109 (3.07↙ 107) 1.06↙ 108 (8.66↙ 107) 4.23↙ 109

Data deviations
alone (baseline)

1.06↙ 109 (3.15↙ 107) 1.07↙ 108 (9.08↙ 107) 4.23↙ 109

Table A.6: Misallocation after combined data and privacy deviations at varying levels of ω.

Figure A21: Likelihood of losing eligibility in each grant type, depending on the choice of privacy
parameter ω. Higher ω means less privacy.
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Figure A22: Root mean squared misallocation in grant funding, depending on the choice of privacy
parameter ω. Higher ω means less privacy.
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(a) ω = 0.01 (b) ω = 0.1

(c) ω = 1.0 (d) ω = 10

Figure A23: Distribution of data and privacy deviations injected in simulation, at various levels of
the privacy parameter ω.
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(a) ω = 0.01 (b) ω = 0.1

(c) ω = 1.0 (d) ω = 10

Figure A24: Distribution of data and privacy deviations injected in simulation, at various levels of
the privacy parameter ω, by the o”cial estimate of children in poverty.
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As expected, misallocation (Figure A25) and outcome disparities (Figure A26) both increase
with the amount of data error. The expected total loss due to data error alone—about
$1.06 billion with the original variance estimates and a relatively high-privacy choice of
ω = 0.1—drop to $533 million when the standard deviations are halved and jump to $1.57
billion when increased by 50%. The marginal increase in losses due to privacy deviations
declines with the magnitude of data deviations ($80 million, $50 million, and $33 million for
50%, 100%, and 150% of the estimated standard deviations, respectively). So, even under
the most conservative estimate of data error and privacy deviations, the marginal increase in
negative misallocation is still less than the losses due to underlying data error. The Laplace
mechanism makes a small di!erence in overall losses due to data deviations, which drop by
about $120 million when the error is modeled with Laplace noise instead of Gaussian with
the original coe”cients of variation.

Decreasing data error also decreases disparities. For conservative estimates of the data
error, our finding that underlying disparities due to data error are only slightly increased by
adding privacy noise does not always hold. Taking Asian students as an example, introducing
di!erential privacy at these much lower levels of data error more than doubles race-weighted
misallocation; under the default Census Bureau guidance, the increase is less noticeable.

Varying the total number of children

We also test our simplifying assumption that there are no deviations—data or privacy—in the
total number of children z. The guidance published for modeling uncertainty in the SAIPE
children in poverty estimate does not mention an uncertainty estimate for the total number
of children per school district (US Census Bureau, 2020)—for this reason, our main analysis
excludes this variable from the simulation of data and privacy deviations. To check the
sensitivity of our results to this assumption, we imagine that the estimate of total children has
the same coe”cient of variation in each school district as the estimate of children in poverty
(i.e., the standard deviation is scaled proportionally). That is, we draw zi ⇐ N (ϑi, (ciϑi)2),
where ci are the coe”cients of variation from Table A.7 and ϑi is the o”cial, published
estimate of total children. We add privacy noise to the total number of children using the
same mechanism as before, z̃i ⇐ zi + Laplace (2/ω). The privacy noise distribution is the
same for both xi and zi, in every school district. With these assumptions, the data deviations
added to the total number of children are greater in magnitude than the noise added to
the number of children in poverty, so the privacy deviations are even smaller in comparison
(Figure A28).

Because the estimate of total children is only used to partially determine grant eligibility, the
additional impact of also noising this variable is small (Figures A29 and A30). At ω = 0.1, also
noising the estimate of total children increases the likelihood that districts near the thresholds
change eligibility, but does not noticeably change RMSE (likely because RMSE weights in
large districts higher, and large districts are far away from the eligibility thresholds). Noising
this variable does noticeably increase disparities for certain groups that tend to concentrate
in districts near the eligibility thresholds.
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Figure A25: Distribution of root mean squared error under di!erent data error distributions. The
standard deviation of the sampling distributions was scaled by the coe”cients in parentheses. Dotted
lines depict averages.

Total Population of School District Median CV
0-2,500 0.67

2,500-5,000 0.42
5,000-10,000 0.35
10,000-20,000 0.28
20,000-65,000 0.23
65,000 and up 0.15

Table A.7: Median coe”cients of variation (CVs) for poverty estimates, reproduced from (US Census
Bureau, 2020; Maples, 2008).
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Figure A26: Race- (left) and ethnicity- (right) weighted misallocation under various amounts of
either Gaussian or Laplace data error, averaged over 1,000 trials. The standard deviation of the
sampling distributions was scaled by the coe”cients in parentheses. A black outline indicates the
marginal change in misallocation due to injected noise, drawn from Laplace mechanism with ω = 0.1.
Error bars span a 90% normal confidence interval. The additional impact of privacy deviations is
significant (p < 0.01) for all groups, according to a two-sample z-test.
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(a) Gaussian noise, standard deviation scaled by 0.5.
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(b) Gaussian noise, standard deviation scaled by 1.5.

Figure A27: E!ects under lower and higher data error. Depicts model-smoothed misallocation (from
both data error and injected noise) by covariates, with 95% confidence interval in gray.
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A.7. SENSITIVITY ANALYSIS

(a) Distribution of noise added to total children.
(b) Noise added to total children, plotted by total
children.

Figure A28: Data and privacy deviations when the total number of children is also noised.

Figure A29: Distribution of root mean squared error when the total number of children is also
noised. Dotted lines depict averages.
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Figure A30: Race- (left) and ethnicity- (right) weighted misallocation when the total number of
children is also noised, averaged over 1,000 trials. A black outline indicates the marginal change in
misallocation due to injected noise, drawn from Laplace mechanism with ω = 0.1. Error bars span
a 90% normal confidence interval. Dashed lines indicate a statistically insignificant di!erence in
race-weighted misallocation after privacy deviations are added, using a two-sample z-test.
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A.8 Comparison to O”cial Title I Allocations

To confirm that our algorithm for the Title I allocation process matches the algorithm used
by the Department of Education, we compared our calculated allocation amounts after
all provisions to the o”cial figures released by the Department of Education’s O”ce of
Elementary and Secondary Education to state administrators (Rooney, 2021). The Dept. of
Ed. releases three versions of the figures (preliminary, final, and final-revised); we use the
version that most closely matches our calculations (the preliminary figures, because we are
using the raw data sources before they have been updated by state administrators). Besides
EFIG grants, we also leave out another approximately $1.3 billion in Title I LEA funding:
$98,548,579 allocated for Part D Subpart 2, a provision that provides grants to districts with
many children in juvenile detention; $728,460 allocated on behalf of county balances, occupied
areas not assigned to a school district; and funds to U.S. territories, for which estimates were
not included in our dataset.

Our method approximates the o”cial figures closely: for the average district, our estimate
has an average absolute error of $20,558, with an RMSE of $162,915 (the average o”cial
allocation is about $1.2 million). There is very little systematic error in our replication
(Figure A31)—with the exception of one outlier, the Los Angeles Unified School District.
Most importantly, there is a strong linear correlation between our calculations and the o”cial
allocations. We therefore expect findings based on our replication of the Title I procedure to
generally apply to the o”cial implementation used by the Department of Education.
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(a) Grants in total. (b) Basic grants.

(c) Concentration grants. (d) Targeted grants.

Figure A31: Allocation amounts calculated by our replication code (with no deviations applied),
compared to the o”cial figures. The dashed line denotes plots the frontier where our calculation
and the o”cial figures are equal.

194



Appendix B

Estimating Research Impacts of
Statistical Uncertainty and Privacy

B.1 Additional Definitions

Definition 6 (Dwork & Roth, 2013). The Laplace distribution (centered at 0) with scale b

is the distribution with probability density function:

Lap(x|b) = 1

2b
exp

(
≃ |x|

b

)
.

Definition 7 (Bun & Steinke, 2016). Let P and Q be probability distributions on %. For
ε ↔ (1,⇒), the Rényi divergence of order ε between P and Q is:

Dϖ =
1

ε≃ 1
logEx↘P

[(
P (x)

Q(x)

)ϖ→1
]

B.2 Additional Methods

B.2.1 Search Terms

For each data source, we reviewed all results with abstract or title containing one of the
following keywords: “state”, “county”, “city”, “municipality”, “district”, “province”, “block”,
“commuting zone”, “statistical area”, “prefecture”, “tract”, “college”, “university”, “school”,
“neighborhood”.

B.2.2 Other Metrics

Significance match. Following Williams, Snoke, et al. (2024), we define significance match
as the rate at which the significance level (p < 0.01, p < 0.05, p < 0.1, or insignificant) of the
noisy estimate matches that of the original estimate, regardless of sign or magnitude.
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Sign match. Following Williams, Snoke, et al. (2024), we define sign match as the rate at
which the counterfactual estimate has the same sign as the original estimate, regardless of
statistical significance.

E!ective sample size. Following Williams, Barrientos, et al. (2024), we define the e!ective
sample size of the counterfactual estimate as the number of observations nESS such that the
counterfactual variance Var( ˆϱDP) would equal the original variance Var(ϱ̂):

nESS = n
Var(ϱ̂)

Var( ˆϱDP)
. (B.1)

B.3 Additional Results

(1) (2) (3) (4)

(Intercept) 2.455 ** 4.885 *** 3.260 *** 2.867 ***
(0.902) (0.156) (0.198) (0.046)

Log epsilon -0.982 *** -0.982 *** -0.982 ***
(0.006) (0.006) (0.006)

Gaussian mech. (zCDP) -1.030 *** -0.984 *** -0.984 ***
(0.148) (0.106) (0.106)

Log epsilon x Gaussian mech. (zCDP) 0.128 *** 0.128 *** 0.128 ***
(0.002) (0.002) (0.002)

Log sensitivity 0.830 *** 0.868 *** 0.943 ***
(0.070) (0.041) (0.025)

Log sensitivity x Gaussian mech. (zCDP) 0.126 0.050 0.050
(0.094) (0.027) (0.027)

Study FE No No No Yes
N. obs. 39090 39090 39090 39090
R squared 0.660 0.318 0.976 0.987
F statistic 25237.581 9107.227 316006.286 59511.726
p value 0.000 0.000 0.000 0.000

*** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are clustered by study.

Table B.1: Impact of mechanism characteristics on log RMSD of noise added to each component
statistical query.
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(1) (2) (3)

(Intercept) 0.752 *** 0.099 0.037
(0.048) (0.278) (0.192)

Log coe!. of variation (a) -0.076 *** -0.076 *** -0.076 ***
(0.008) (0.008) (0.008)

Morris-Lysy construction -0.229 *** -0.229 *** -0.229 ***
(0.031) (0.031) (0.030)

Model degrees of freedom -0.002 -0.003 * -0.000
(0.001) (0.001) (0.001)

Log regression sample size 0.051 ** 0.035 **
(0.019) (0.012)

Noised ind./treatment var. -0.351 -0.006
(0.227) (0.171)

Noised dep/outcome var. -0.255 *** -0.114
(0.059) (0.085)

Cmd: ivreg, ivreg2, xtivreg2, ivregress, ivreghdfe 0.128 0.051
(0.127) (0.060)

Cmd: other (arima, nbreg) -0.399 * -0.066
(0.185) (0.193)

Region: City/municipality/MSA/commuting zone 0.290 -0.072
(0.150) (0.115)

Region: State/district/province (1st division) 0.367 * 0.064
(0.150) (0.118)

Original e!ect size 0.424 **
(0.137)

Claim: insignificant 0.439 ***
(0.075)

Claim: non-zero upper/lower bound -0.195
(0.105)

Study FE Yes Yes Yes
Query type controls No Yes Yes
N. obs. 2275 2275 2275
R squared 0.458 0.483 0.548
F statistic 36.139 32.258 39.936
p value 0.000 0.000 0.000

*** p < 0.001; ** p < 0.01; * p < 0.05. Robust standard errors are clustered by study.

Table B.2: Impact of mechanism & result characteristics on epistemic parity. Implementation
controls include the number of variables noised and the number of component queries. Dummies for
Laplace mechanism (pure DP), “Cmd: reg, xtreg”, “Claim: sig. positive/negative”, and “Region:
County/tract/block/district/prefecture (below 1st division)” excluded. Includes all experiments for

additive data error (both constructions), c ↔ {10→3, 10→2, 0.05, 0.1, 0.2, 0.5} with b = 0.
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Figure B.3.1: Impacts of various settings of the privacy parameter ω over 10 runs of DP, averaged
over all results. Lower values of the privacy parameter ω provide stronger privacy protection but
require more injected noise; curators commonly use 0.1 → ω → 10.
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Figure B.3.2: Impacts of various settings of the privacy parameter ω at various significance levels
ε over 10 runs of DP, averaged over all results. Lower values of the privacy parameter ω provide
stronger privacy protection but require more injected noise; curators commonly use 0.1 → ω → 10.
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Figure B.3.3: Distribution of standardized e!ect sizes by study at di!erent settings of the privacy
parameter ω, each repeated 10 times. Lower values of the privacy parameter ω provide stronger
privacy protection but require more injected noise; curators commonly use 0.1 → ω → 10.
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Figure B.3.4: Estimates from the first run of the ω-DP Laplace mechanism for a sample of studies
(Autor et al., 2013; Ferraz & Finan, 2011; Topalova, 2010; Wilson, 2012). Epistemic parity colored
based on confidence level ε = 90. The shaded region indicates the parity region defined by the
original epistemic claim (e.g., that the coe”cient is greater than zero).
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Figure B.3.5: Average epistemic parity vs. the privacy parameter ω across di!erent types of epistemic
claims (“ub” indicates an upper bound other than zero) over 10 runs of the ω-DP Laplace mechanism.
Epistemic parity averaged across noised statistics. Lower values of the privacy parameter ω provide
stronger privacy protection but require more injected noise; curators commonly use 0.1 → ω → 10.
Ns is the number of studies in each category; Nr is the number of results.
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Figure B.3.6: Average epistemic parity for di!erent Stata regression commands and di!erent values
of the privacy parameter ω over 10 runs of the ω-DP Laplace mechanism. Epistemic parity averaged
across noised statistics. Lower values of the privacy parameter ω provide stronger privacy protection
but require more injected noise; curators commonly use 0.1 → ω → 10. Ns is the number of studies
in each category; Nr is the number of results.
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Figure B.3.7: Average epistemic parity vs. the privacy parameter ω over 10 runs of the ω-DP Laplace
mechanism. Epistemic parity averaged across noised statistics and grouped by the role of each
statistic in the regression analysis. Lower values of the privacy parameter ω provide stronger privacy
protection but require more injected noise; curators commonly use 0.1 → ω → 10. Ns is the number
of studies in each category; Nr is the number of results; Nv is the number of variables.

204



B.3. ADDITIONAL RESULTS

City/municipality, U.S. commuting zone/MSA

(Ns=11, Nr=34)

Organization

(Ns=2, Nr=10)

County, tract, block, district, prefecture, residency (<1st division)

(Ns=19, Nr=74)

State, district, province (1st division)

(Ns=19, Nr=56)

100 10 1 0.1 0.01 0.001 100 10 1 0.1 0.01 0.001

100 10 1 0.1 0.01 0.001 100 10 1 0.1 0.01 0.001
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

ε

St
ric

t p
ar

ity

Figure B.3.8: Average epistemic parity for di!erent aggregation levels and di!erent values of the
privacy parameter ω over 10 runs of the ω-DP Laplace mechanism. Epistemic parity averaged across
noised statistics. Lower values of the privacy parameter ω provide stronger privacy protection but
require more injected noise; curators commonly use 0.1 → ω → 10.
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Figure B.3.9: Average epistemic parity for di!erent aggregation levels and di!erent values of the
privacy parameter ω over 10 runs of the ω-DP Laplace mechanism. Epistemic parity averaged
across noised statistics. NA indicates aggregations with no time index.Lower values of the privacy
parameter ω provide stronger privacy protection but require more injected noise; curators commonly
use 0.1 → ω → 10.
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Figure B.3.10: Average epistemic parity for di!erent JEL categories and di!erent values of the
privacy parameter ω over 10 runs of the ω-DP Laplace mechanism. Studies may appear in multiple
JEL categories. Epistemic parity averaged across results. Excluding categories with less than 10
results. Lower values of the privacy parameter ω provide stronger privacy protection but require
more injected noise; curators commonly use 0.1 → ω → 10.
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Figure B.3.11: Average epistemic parity for di!erent types of statistics and di!erent values of
the privacy parameter ω over 10 runs of the ω-DP Laplace mechanism. Epistemic parity averaged
across noised statistics. Excluding categories with less than 10 results. Lower values of the privacy
parameter ω provide stronger privacy protection but require more injected noise; curators commonly
use 0.1 → ω → 10.
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Figure B.3.12: Average epistemic parity for di!erent types of data sources and di!erent values of the
privacy parameter ω over 10 runs of the ω-DP Laplace mechanism. Epistemic parity averaged across
noised statistics. NA indicates unknown or unclear data products. Lower values of the privacy
parameter ω provide stronger privacy protection but require more injected noise; curators commonly
use 0.1 → ω → 10. Ns is the number of studies in each category; Nr is the number of results; Nv is
the number of variables.
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Appendix C

Algorithmic Decoupling in
‘Privacy-Preserving’ Analytics

C.1 Reflexivity Statement

In the tradition of ethnography and qualitative methods more generally, we tried to remain
aware of our own cultural and epistemic perspectives in our work. Reflexivity is not the same
as accounting and correcting for bias—research is not a “view from nowhere” (Haraway, 1988).
The first author (RS) is a Ph.D. student with training in computer science and economics with
experience researching the social implications of algorithms, including di!erentially private
mechanisms. The second author (A.A.) is a tenured professor with years of research experience
studying the economics of privacy and privacy-enhancing technology. Both authors are based
in the United States and work at elite Western universities. Both authors have worked for
tech companies in the past, and R.S. receives stipend support from Meta. Neither author has
experience building and deploying PPA—rather, PPA systems have been the subject of our
largely empirical research. We do not have strong political or intellectual convictions about
the value or future of PPA—this study grew out of our curiosity to understand how these
technologies fit into privacy practice. However, both authors have an interest and stake in the
protection of online privacy. In our analysis, we considered how our backgrounds might lead
us toward certain framings of our results or close us o! to certain possibilities—for example,
that the adoption of PPA is not inevitable. We also considered how it may also lead our
interviews toward certain topics (e.g. economic trade-o!s or privacy scholarship) more than
others. Though we made an e!ort to recruit and consider perspectives other than our own,
we primarily leverage our backgrounds to “study up” (Nader, 1972) and critically analyze
culturally hegemonic institutions close to ourselves.

C.2 Interview Guide

The final version of our semi-structured interview guide can be viewed here. Participants were
compensated with a $30 gift card or donation to a charity. Each interview was recorded (with
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participant consent and IRB approval) and transcribed verbatim by the first author.

C.3 Recruitment

In the first period of data collection between July 2021 and January 2022, we calibrated each
successive wave of recruitment (N = 9 contacted July–August, N = 11 September–October,
N = 3 November) to examine adoption settings and other theoretical interests we had yet to
explain with previous data (e.g., in the second wave, we included privacy-focused startups).
(e.g., the process of interpreting adoption drivers into specific designs)

Because privacy is acutely important to marginalized groups (Skinner-Thompson, 2020), we
deliberately aimed to include those perspectives in our sample and explicitly requested referrals
to participants from underrepresented backgrounds. Still, Our sample was predominantly
American (90%), white (70%), non-Hispanic (85%), heterosexual (65%) and cisgender male
(55%), based on participants who chose to self-identify for each category (22 for race, ethnicity,
and gender; 17 for sexuality). Our sample is similar in racial diversity to the U.S. high-
technology workforce, but more diverse in gender, sexuality, and Hispanic origin (U.S. Equal
Employment Opportunity Commission, 2016).

C.4 Additional Figures

Forming privacy policies,
incentivizing privacy culture

Convincing executives

Persuading, educating, confronting

Convincing developers

Making a business out of privacy

Improving data management

Preserving data-driven operations

Motivating adoption

Privacy representations
& infrastructure

Interpreting policies
into designs

Privacy
expectations

External
expectations

Legitimating designs

Justifying design,
setting precedent

Points of
decoupling

Figure C.4.1: Driving adoption. Second-order concepts are boxed. Key processes associated with
managerial mediation (and possibly decoupling) or expert mediation are highlighted.
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expectations

External
expectations

Adopting
early

Adopting
strategically

Privacy expectations

Points of
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Figure C.4.2: Interpreting drivers into designs. Second-order concepts are boxed. Key processes
associated with managerial mediation (and possibly decoupling) or expert mediation are highlighted.
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Figure C.4.3: Legitimating design. Second-order concepts are boxed. Key processes associated with
managerial mediation (and possibly decoupling) or expert mediation are highlighted.
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Appendix D

Measuring Social Biases in
Unsupervised Image Generation

D.1 Attribute Words

We selected the following words for high/low valence and high imagery from the scores
collected by Bellezza et al. (1986) in a laboratory experiment. A specific algorithm for
systematically selecting words with high imagery and extreme valence is included in our code
at github.com/ryansteed/ieat.

Positive words : baby, ocean, beach, butterfly, gold, rainbow, sunset, money, diamond, flower,
sunrise
Negative words: devil, morgue, slum, corpse, co”n, jail, roach, funeral, prison, vomit,
crash

D.2 Stimuli collection procedure

We collected n images for each verbal stimulus using the following procedure:

1. If there is a CIFAR-100 category corresponding to the stimulus, we selected a random
sample of n images from that category in CIFAR (Krizhevsky, 2009).1

2. Otherwise, we searched for the verbal stimuli verbatim on Google Image Search in
private Chrome window with SafeSearch o! on September 5th, September 18th and
October 1st, 2020. We accepted the first n results of the search meeting the following
criteria:2

1Because the verbal stimuli are very specific, only 3 of over 105 IAT verbal stimuli appear in CIFAR-100;
the rest were collected with Google Image Search.

2A few words were too abstract to be easily visualized. These words are listed in Appendix D.2 with a
sample size of 0.
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• Includes only the object, person, or scene specified by the stimulus.3

• For objects and people, has a plain background, to avoid including confounding
scenes or objects.4

• Has no watermark or other text. Watermarks and text could confound the verbal
stimulus being represented.

• Shows a real object, person, or scene - is not a cartoon or sketch. ImageNet does
not include a great quantity of cartoons or sketches, so we do not expect our
models to generalize well to these kinds of objects/scenes (Recht et al., 2019).

3. If no images in the first 50 results from the verbatim search met these criteria, we added
a clarifying search term (e.g. “biology lab” instead of “biology”).

4. Crop each image squarely (iGPT accepts only square images as input), centering the
object or person of interest to ensure the entire object, person, or scene is included in
the image.

For every verbal stimulus used to collect image stimuli for the verbal and mixed-mode
IATs, we recorded the verbal stimulus (word or phrase), search terms used to collect
images, and the number of images collected in a CSV file along with our code at
github.com/ryansteed/ieat.

D.3 Disparate Bias Across Model Layers

Model design choices might also have an e!ect on how social bias is learned in visual
embeddings. We find that embedded social biases vary not only between models pre-trained
on the same data but also within layers of the same model. In addition to the high quality
embeddings extracted from the middle of the model, we tested embeddings extracted at
the next-pixel logistic prediction layer of iGPT. This logit layer, when taken as a set of
probabilities with softmax or a similar function, is used to solve the next-pixel prediction
task for unconditional image generation and conditional image completion (Chen, Radford,
et al., 2020).

Table D.1 reports the iEAT tests results for these embeddings, which did not display the
same correspondence with human bias as the embeddings for image classification. We found
that unlike the high quality embeddings, next-pixel prediction embeddings do not exhibit the
baseline Insect-Flower valence bias and only encode significant bias at the 10→1 level for the
Gender-Science and Sexuality IATs.

To explain this di!erence in behavior, recall that the neural network used in iGPT learns
di!erent levels of abstraction at each layer; as an example, imagine that first layer encodes

3Some verbal stimuli (e.g. “salary”) are di”cult to express verbally without the use of symbols (e.g. a
picture of cash). In these cases, we collected only the first image (n = 1) that meets the criteria, preferring
image stimuli corresponding to other, more visual cues and representations.

4If no images with white or gray backgrounds appeared in the first 50 results, we searched for “[stimulus]
+ {white, plain} background.”
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lighting particularly well, while the second layer begins to encode curves. The contradiction
between biases in the middle layers and biases in the projection head are consistent with two
previous findings: 1) bias is encoded disparately across the layers of unsupervised pre-trained
models, as Bommasani et al. (2020) show in the language domain; 2) in transformer models,
the highest quality features for image classification, and possibly also social bias prediction,
are found in the middle of the base network (Chen, Radford, et al., 2020). Evidently, bias
depends not only on the training data but also on the choice of model.

Table D.1: iEAT tests for the association between target concepts X vs. Y (represented by nt

images each) and attributes A vs. B (represented by na images each) in embeddings for iGPT
next-pixel prediction. Association e!ect sizes d, colored by conventional small (0.2), medium (0.5),
and large (0.8) size are reported alongside permutation p-values.

X Y A B nt na d p

Age† Young Old Pleasant Unpleasant 6 55 0.38 0.38
Arab-Muslim Other Arab-Muslim Pleasant Unpleasant 10 55 0.06 0.42
Asian§ European American Asian American American Foreign 6 6 0.25 0.36
Disability† Disabled Abled Pleasant Unpleasant 4 55 -0.65 0.76
Gender-Career Male Female Career Family 40 21 0.04 0.44
Gender-Science Male Female Science Liberal Arts 40 21 0.37 0.06
Insect-Flower Flower Insect Pleasant Unpleasant 35 55 -0.32 0.91
Native§ European American Native American U.S. World 8 5 0.32 0.26
Race† European American African American Pleasant Unpleasant 6 55 -0.17 0.62
Religion Christianity Judaism Pleasant Unpleasant 7 55 0.29 0.30
Sexuality Gay Straight Pleasant Unpleasant 9 55 0.69 0.08
Skin-Tone† Light Dark Pleasant Unpleasant 7 55 0.42 0.36
Weapon§ White Black Tool Weapon 6 7 -1.64 1.00
Weapon (Modern) White Black Tool Weapon 6 9 -1.19 0.98
Weight† Thin Fat Pleasant Unpleasant 10 55 -0.84 0.97
§ Originally a picture-IAT (image-only stimuli). † Originally a mixed-mode IAT (image and verbal stimuli).
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Appendix E

Gaps and Opportunities in AI Audit
Tooling

E.1 Reflections

We consider our own cultural and professional perspectives throughout the interviews and our
analysis (Charmaz, 2014). In particular, we view our position as both external to prominent
AI developers and deployments, but still situated within the Western AI industry as a critical
consideration. Our project was financially supported by a prominent U.S.-based foundation,
and all the authors are either graduate students or graduates of well-funded universities
in the U.S. and Europe. We thus recognize that our analysis is primarily scoped to the
U.S. and the E.U. and may not be representative of the global AI auditing landscape or
appropriate for or informed by other contexts. Because we drew our initial sources from our
own fieldwork as audit practitioners and used English search engines for theoretical sampling,
our dataset consists primarily of English language tools from from Western organizations, and
our taxonomy reflects our own particular position.1 Also, although we intentionally defined
tools as resources more broadly and attempted to leave space for non-technical solutions
in our analysis and discussion, we struggled to avoid a techno-solutionist framing in our
conclusions (Wong et al., 2023). We hope that future work will expand and look outside of
the mostly technical, Western perspective emphasized in this work.

E.2 Glossary

Definition 8. Accountability: Bovens (2007) defines accountability as “a relationship
between an actor and a forum, in which the actor has an obligation to explain and to justify
his or her conduct, the forum can pose questions and pass judgment, and the actor may face

1We also attempted to run translated queries in non-English search engines (e.g., Baidu) and to add
regional keywords (e.g., African) to our searches, but we were unable to find any additional tools with initial
tests of these methods. It thus seems likely that non-English, non-Western tools exist that our theoretical
sampling was unable to identify.
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consequences.” We use the term “accountability” in this legal-political sense, meaning to face
consequential judgment for system behaviors and impacts that do not align with articulated
expectations and standards.

Definition 9. AI Audit: Birhane et al. (2024) define an audit as “any independent
assessment of an identified audit target via an evaluation of articulated expectations with
the implicit or explicit objective of accountability”. Independence, as outlined by Birhane
et al. (2024), ensures the auditors (which may or may not belong to the same organization as
the developers) are operationally distinct from the team that engineered the examined AI
system, maintaining separation from the engineering process. Identified audit targets refer
to concrete, specific objects of examination, ideally tied to real-world AI deployments or
widely-used open-source algorithms or datasets, which serve as relevant proxies. Implicit or
explicit accountability refers to audits designed to inform consequential judgments, measuring
the deployment’s behaviors and impacts against clearly articulated expectations.

Definition 10. AI Auditor: An entity executing an AI audit, which may be viewed
as either internal or external to the organization developing and/or operating the audited
system. (Note that auditor independence is a nuanced spectrum, and there is not always a
sharp divide between internal and external auditing.

• Internal Auditor: Raji, Xu, et al. (2022) define an internal auditor as an entity
executing an audit or investigation with some contractual relationship with the audit
target. They typically seek to minimize corporate liability and test for compliance with
corporate or industry-wide expectations. Internal auditors are often hired voluntarily
or to meet regulatory mandates.

• External Auditor: Raji, Xu, et al. (2022) define an external auditor as an entity
executing an audit or investigation without any contractual relationship with the audit
target. They typically execute audits voluntarily with a broader mandate of identifying
and minimizing the harm impacting their constituents.

Definition 11. AI Audit Tool: We use the term AI audit tool to refer broadly to software,
interfaces, code, benchmarks, frameworks, and other artifacts used by auditors in the AI
audit process. Audit tools include resources that support algorithmic analysis and inspection
(e.g., benchmarks/datasets, documentation templates) as well as resources that support the
assessment of internal and external expectations for institutions across stages of design and
development.

Definition 12. Abandonment & disgorgement: In the context of algorithmic systems
and regulatory enforcement, the terms algorithm abandonment (Johnson et al., 2024) and
algorithm disgorgement (Li, 2022) refer to the destruction or abandonment of a system
deemed harmful, unethical, or in violation of societal or regulatory standards. Abandonment
refers to “an organization’s decision to stop designing, developing, or using an algorithmic
system due to its (potential) harms” (Johnson et al., 2024), while disgorgement further
requires the deletion of both improperly obtained data and any machine learning models,
algorithms, or outputs derived from such data (Li, 2022).
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E.3 Additional Methods

E.3.1 Initial Sources

We drew our initial list of 143 tools from:

• tools mentioned by our interviewees;

• tools mentioned in previous surveys of fairness and other toolkits (Deng et al., 2022;
Lee & Singh, 2021; Hickock, 2023)

• academic papers presenting new tools surfaced in a recent literature review of audit
studies (Birhane et al., 2024); this literature review included audit studies from

– the last five years of conference proceedings from: FAccT, AIES, EAAMO, AAAI,
CVPR, ICWSM, WWW, WACV, EECV, and the ACL Anthology; also, the ACM
Digital Library (including CHI and IC2S2) with the terms “audit”, “accountabil-
ity”, “case study”, “bias”, “fairness”, or “assurance” in the title, terms commonly
used in AI studies published in computing venues;

– reports from the government agencies ICO and NIST

• a convenience sample (accounting for 79 of the initial 143 tools) of other prominent
audit tooling projects, academic papers, and tool-building organizations that we had
encountered in our work as researchers and audit practitioners; most of these tools also
appear in the sources above.

We included both tools designed specifically for AI auditing (such as AI fairness toolkits)
and generic tools that have been used in AI audits (such as Selenium (“Selenium,” 2023)).
Our dataset is not an exhaustive list of all tools that have been or could be used in AI audit
practice. Note that there are substitutes and competitors for many of the tools in our dataset
(such as qualitative coding software), but we did not include them unless we observed them
in one of the sources above or our subsequent searches (§ E.3.2). Conversely, inclusion of a
tool does not indicate the authors’ endorsement or preference.

E.3.2 Theoretical Sampling

Category descriptors from the initial taxonomy that were sourced either from our labels or from
descriptors used by tools already collected were then searched in combination with general
keywords we identified that were commonly used in the algorithmic auditing domain. These
keywords include the following: “tool”, “audit”, “algorithm”, “accountability”, “responsible
AI”, “fairness”, “discrimination”, and “AI”. For each of our categories, we conducted English
Google searches using a selection of one or more relevant keywords combined with each of our
initial category descriptors (e.g., “participatory audit”, “participatory tool”, etc.). In order
to determine a point of saturation for each search, we examined each Google search page of
30 results at a time until two pages in a row contained no references to specific audit tools.
It is important to note that we conducted searches for all categories in our initial taxonomy,
but focused first on less saturated categories (for example, harms discovery and tools using
participatory methods) in order to provide well-rounded definitions of categories that were
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less common and/or visible. Categories with a more saturated set of examples were not given
an equal amount of additional sourcing.

In addition to these targeted Google searches, we also added several new sources of tools to
our initial list based on our initial taxonomy:

• News articles and reports by new organizations and civil society organizations including
ProPublica, The Markup, the Pulitzer Center, the ACLU, and AlgorithmWatch;

• the Participatory ML Workshop at ICML (Kulynych et al., 2020);

• an additional Google search for startups working on “reg tech” (regulatory tech).

E.4 Interview Protocol

We used the following protocol in each of our interviews. Because the interviews were semi-
structured, not all participants answered every question in the same order. Bolded questions,
however, were prioritized—we asked all these questions of nearly all participants. The rest
were optional follow-ups.

Thanks so much for taking the time to share your expertise. We really appreciate it and
are looking forward to hearing your thoughts! [Briefly introduce the project.] [Confirm
participant has completed consent form, remind participant of confidentiality, and confirm
optional permissions.]

Background

• How did you get involved in auditing to begin with?

• What do you hope to achieve?

– Would you describe yourself as an internal or external auditor?

– What system was the target of your audit?

– What was the motivation behind your audit work?

– What are some notable successes?

– Notable failures?

– What were the most di”cult aspects of the audit? How were those challenges
overcome?

– What were the easiest aspects of the audit?

• Who do you consider to be stakeholders and why?

• Tell me about the people who have a role in designing and executing the audits you’re
involved with.

Tool Usage and Development
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• Is there a specific tool or method (or set of tools and methods) that you
employ? How do you choose these tools? What parts of the audits did they
assist with?

– What pain points did you encounter while using the tools?

– Who made the decision to use this tool?\Why do you use this tool and
not others?

• What prompted you to use/develop a tool? What are the system behaviors that you
worry about?

• When do you know when to develop a tool vs. use an existing one?

• Can you help me understand why these tools are helpful, from an ethical perspective?

• What is the intent of the tool/method used? Do you find that the way you’ve used the
tools/methods aligns with those intents?

• Some people are trying to build more open-source audit methodologies and tools that
are freely available to the community. Is this an important goal for your audit practice?
Why or why not?

Exploring Gaps & Challenges in Tools

• What common obstacles do you encounter while designing, building, per-
forming, and communicating about audits/tooling? For tools, are there
particular challenges (i.e., around adoption, maintenance, and distribution)
that we should be aware of?

• Do you find that there are needs that are unmet with existing auditing
tools? What are they? / Is there any tool you wish you had but didn’t?
Have the tools/frameworks you’ve developed/used revealed any of the system behaviors
that you are worried about? If yes, which ones (and to what extent)? If not, why do
you think it did not uncover anything?

• In your experience, what are common properties that existing auditing tools/methods
try to assess?

– Do you think existing tools/methods are successful at measuring them?

– Are there things it would be good to measure that current tools don’t capture?

• To what degree do you find that existing auditing formats & methodologies are useful
and impactful? Are there formats/methodologies that you would like to see or see more
of?

• We’d like to get a sense of how resource-intensive your tool(s)/methods are.
Would you be willing to talk about how much it cost to perform audits or develop
tools? How many people were involved? And how long does it take? How hard was it
to do the audit and how much did it cost you?

Wrap-up
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• Is there anything else you’d like to talk about? Do you have any questions for me?

• [Confirm optional permissions again.]

E.5 Additional Landscape Analysis

To analyze the qualities of tools across our taxonomy, we manually labeled each tool with
several tags describing the tool’s documentation and function: license (open-source or
proprietary); organization type (for-profit, non-profit, government, or academic); intended
audit target (automated decision system, online platforms, large pre-trained online platforms
autonomous vehicles, and/or other); intended user (internal and/or external); and format
(e.g. API, software product, code/data repository, white paper, and/or other). One author
created the labels and at least one other author reviewed each label for agreement.

We also supplemented our dataset with data from Crunchbase (“Crunchbase,” 2023) accessed
in September 2023, a platform for tracking funding, employment, revenue and other data
for technology ventures, and Github, a platform for hosting and developing software. From
Github, we scraped repository activity—primarily the number of forks, stars, and issues—for
the 98 tools with Github repositories in our dataset. Of the 347 organizations in our dataset,
we were able to access Crunchbase records for 202 (accounting for 270 tools); 173 of these
records include estimated employee counts. Of the 132 entries that are not for universities or
government agencies, 91 include revenue estimates. We also collected total venture funding
(adjusted to U.S. dollars) for 48 firms out of the 112 firms that are still private (i.e., have
not undertaken an initial public o!ering). Additionally, we used the Google Scholar API to
annotate each academic reference of an identified tool with the most recent available citation
count in September 2023.
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Figure E.5.1: Number of tools by taxonomy category, sorted by type of organization (our classifica-
tion). Tools may be used in multiple stages.
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Figure E.5.2: Number of tools with code in each taxonomy stage. Tools may be used in multiple
stages.
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Figure E.5.3: Number of tools by taxonomy category sorted by license type. Tools may be used in
multiple stages.
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Figure E.5.4: Number of tools by taxonomy category sorted by audit target. Tools may be used in
multiple stages.
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Figure E.5.5: Number of tools by taxonomy category sorted by format. Tools may be used in
multiple stages.
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Figure E.5.6: Number of tools by taxonomy category. Tools may be used in multiple stages.
Workforce size of creating organization sourced from Crunchbase (“Crunchbase,” 2023). Sorted
by type of organization (our classification). Tools from organizations without Crunchbase entries
excluded.
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Figure E.5.7: Number of tools by taxonomy category. Tools may be used in multiple stages.
Estimated revenue of creating organization sourced from Crunchbase (“Crunchbase,” 2023). Tools
from organizations without Crunchbase revenue estimates excluded.
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Table E.2: 20 most popular Github repositories for tools in our database, sorted by number of forks.

Tool Forks Issues Stars Stages

Scrapy 10458 667 52280 Data Coll.
Selenium 8101 242 30129 Data Coll.
Appium 6052 137 18618 Data Coll.
CARLA 3562 1079 11075 Data Coll.
SHAP 3245 806 22426 Perf. Analysis
Evals 2568 130 14631 Perf. Analysis
LIME 1795 120 11492 Perf. Analysis

Language Model Evaluation Harness 1673 338 6312 Perf. Analysis
Adversarial Robustness Toolbox 1146 150 4738 Perf. Analysis

AI Fairness 360 827 199 2401 Perf. Analysis
Seldon Core 827 203 4334 Perf. Analysis
Interpret 726 105 6198 Perf. Analysis
Big Bench 582 107 2802 Perf. Analysis

Tensorflow Privacy 447 121 1915 Perf. Analysis
Foolbox 421 27 2713 Perf. Analysis
Fairlearn 410 163 1888 Perf. Analysis

Purple Llama 404 1 2476 Perf. Analysis
CodeSearchNet 384 14 2172 Perf. Analysis

Language Interpretability Tool 351 113 3453 Perf. Analysis
Error Analysis 344 86 1325 Perf. Analysis

Responsible AI Toolbox 344 86 1325 Perf. Analysis
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Figure E.5.9: Github forks by taxonomy category (for tools with Github repositories), sorted by
type of organization (our classification). Tools may be used in multiple stages. Box-and-whisker
plots included for categories with more than 10 points.
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Figure E.5.10: Citations by taxonomy category (for tools with papers), sorted by type of organization
(our classification). Tools may be used in multiple stages. Box-and-whisker plots included for
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