
Statistical Game Theory

Arun Sai Suggala

August 2021
CMU-ML-21-109

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Pradeep Ravikumar, Chair Carnegie Mellon University

Tuomas Sandholm Carnegie Mellon University
Larry Wasserman Carnegie Mellon University
Robert Schapire Microsoft Research

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy.

Copyright © 2021 Arun Sai Suggala

This research was supported by: the Air Force Research Laboratory award FA87501720152, the Na-
tional Institutes of Health award R01GM117594, the National Science Foundation awards IIS1661755 and
IIS1909816; and the U.S. Army Research Office contract W911NF1210390.

Keywords: statistics, machine learning, game theory, online learning, bandits, mini-
max estimation, boosting

Dedicated to my parents who supported me through out my life and helped me pursue my
dreams. ♥

Abstract
Game theory and statistics are two huge scientific disciplines that have

played a significant role in the development of a wide variety of fields, including
computer science, natural sciences, and social sciences. Traditionally, game the-
ory has been used for decision making in strategic environments where multiple
agents interact with each other. Statistics, on the other hand, is traditionally
used for reasoning in non-adversarial settings where the samples are assumed
to be generated by some stationary non-reactive source. Due to the contrasting
settings in which game theory and statistics are often studied, these two disci-
plines have traditionally been regarded as disparate research areas. However,
there is a great degree of commonality between the two fields. A surprisingly
wide range of problems in classical and modern statistics have a game theoretic
component to them. Classically, the mathematical philosophy of statistics, par-
ticularly frequentist statistics, posits that the source of samples is potentially
adversarial. This resulted in the rich theory of minimax statistical games and
estimation. Boosting algorithms, which are often regarded as best off-the-shelf
classifiers, can be viewed as playing a zero-sum game against a weak learner. To
allow for various departures of “test environment” from “train environments”,
the emerging field of robust machine learning allows for adversarial manipu-
lation of the train or test environments. Finally, an emerging class of density
estimators in modern machine learning use an adversarial “critic” of the density
estimator to improve the final density estimation. The common theme among
these classical and modern developments is an interplay between statistical
estimation and multiplayer games.

Statistical game theory is a unified analytical and algorithmic framework
underlying all these classical and modern developments. This thesis aims to lay
the foundations of statistical game theory to address the above-mentioned (and
many more) statistical problems. While our primary focus in this thesis is on
minimax statistical estimation and boosting, the tools and techniques developed
here are broadly applicable and are useful for studying other problems such as
robust learning, and adversarial density estimation.

Our work on minimax statistical estimation aims to provide efficient tech-
niques for algorithmically building minimax optimal estimators. These tech-
niques automate the process of designing minimax estimators and can aid statis-
ticians in building these estimators. For various fundamental problems such as
mean estimation, and entropy estimation, our algorithmic minimax estimators
match, if not beat, the performance of existing minimax estimators designed by
statisticians. Our work on boosting aims to improve its performance and bring
it closer to neural networks’ performance. To this end, we develop a generalized
boosting framework that combines weak classifiers using more complex forms
of aggregation than additive combinations considered in traditional boosting.
Our generalized boosting algorithms have better performance than traditional
boosting and have performance close to neural networks.

Acknowledgments

I am incredibly grateful to my advisor Pradeep Ravikumar for his uncondi-
tional support over the years, and for giving me the freedom to pursue a variety
of topics during my Ph.D. This thesis would not have been possible without
the close collaboration I have had with him over the years. Pradeep was very
patient with me during the early days of my Ph.D., and taught me many valu-
able lessons on how to be a good researcher. He encouraged me to think big,
develop a broad vision, and pursue impactful research directions. My interac-
tions with him have profoundly shaped this work and more generally, the way
I do research.

I would like to thank Tuomas Sandholm, Larry Wasserman, and Robert
Schapire for serving on my dissertation committee. Their insightful questions
and valuable feedback during my proposal and defense have greatly helped
improve my work.

The foundations of this thesis were laid during my time at Microsoft Re-
search in the summer of 2018, where I had the opportunity to work with Pra-
neeth Netrapalli and Prateek Jain. Praneeth and Prateek are incredibly smart
people and are really good mentors who bring the best out of me. I enjoyed
working with them, and over time, we developed strong connections and col-
laborated on numerous research projects.

This thesis wouldn’t have been possible without my close collaborators who
have contributed to the projects I pursued during my Ph.D., including Kush
Bhatia, Kartik Gupta, David I Inouye, Mladen Kolar, Bingbin Liu, Adarsh
Prasad, Eunho Yang, Chih-Kuan Yeh. I would like to give special mention
to Adarsh Prasad for the numerous hours we have spent discussing various
research problems and having non-research conversations.

I would also like to thank my wonderful friends and colleagues at CMU who
made by graduate school both enjoyable and memorable. This includes Sushma
Akoju, Alnur Ali, Ifigeneia Apostolopoulou, Shaojie Bai, Jonathon Byrd, Se-
bastian Caldas, Jeremiah Cohen, Amanda Coston, Christoph Dann, Avinava
Dubey, Dhivya Eswaran, Ben Eysenbach, Chirag Gupta, Juyong Kim, Paul
Liang, Leqi Liu, Vaishnavh Nagarajan, Ojash Neopane, Eyan Noronha, Biswa-
jit Paria, Emilio Parisotto, Pratik Patil, Anthony Platanios, Charvi Rastogi,
Elan Rosenfeld, Mrinmaya Sachan, Otilia Stretcu, Mariya Toneva, Ian En-Hsu
Yen. I would like to thank CMU for providing me with a vibrant and collab-
orative research environment to pursue my graduate studies. Finally, I would
like to thank Diane Stidle for help with administrative work throughout my
time at CMU.

Last but certainly not the least, I would like to thank all of my family
members for supporting me and providing me with immense amount of love
throughout my life. I would like to especially thank my parents, who were
also my mentors and teachers during my childhood, for providing me with
good education. It is them who identified my interest in mathematics and

encouraged me to pursue a career in computer science and engineering. Next, I
would like thank my sister Anusha, and my cousins Anil, Asha, Pavan, Prasad,
for bringing so much joy to my life. Finally, I would like to thank my amazing
wife Mounica for her unwavering moral support during the final few years of my
PhD. She has immense patience to listen to my petty problems and helped me
stay sane during stressful times. Whether I’m happy or sad, angry or anxious,
she is my go to person.

Contents

1 Introduction 1
1.1 Part I: Online Learning with Full Information Feedback 3
1.2 Part II. Bandit Optimization . 4
1.3 Part III: Minimax Statistical Estimation 5
1.4 Part IV: Boosting . 6
1.5 Summary of publications . 8

I Online Learning with Full Information Feedback 11

2 Following the Perturbed Leader for Nonconvex Losses 13
2.1 Problem Setup and Main Results . 14

2.1.1 Main Result . 15
2.2 Background . 16
2.3 Non-Convex FTPL . 17
2.4 Discussion . 21

3 Optimistic Follow the Perturbed Leader for Convex & Nonconvex Losses 23
3.1 Preliminaries and Background Material . 24
3.2 Dual view of Perturbation as Regularization 26
3.3 Online Learning with OFTPL . 27

3.3.1 Online Convex Learning . 27
3.3.2 Online Nonconvex Learning . 29

3.4 Minimax Games . 31
3.5 Discussion . 33

II Bandit Optimization 35

4 Efficient Bandit Optimization for Convex Quadratic Losses 37
4.1 Problem Setting and Background . 40

4.1.1 One-point Gradient and Hessian Estimates 41
4.1.2 Self Concordant Barriers . 41

4.2 Main Results . 42
4.3 Related Work . 43
4.4 Regularized Bandit Newton Algorithm . 44

ix

4.4.1 Importance of Hessian Estimates 46
4.5 Analysis . 47
4.6 Implementation . 48
4.7 Discussion . 49

III Minimax Statistical Estimation 53

5 Learning Minimax Estimators via Online Learning 55
5.1 Background and Problem Setup . 59

5.1.1 Minimax Estimation and Statistical Games 59
5.2 Minimax Estimation via Online Learning 63
5.3 Invariance of Minimax Estimators and LFPs 68

5.3.1 Finite Gaussian Sequence Model . 69
5.3.2 Linear Regression . 70
5.3.3 Normal Covariance Estimation . 71
5.3.4 Entropy estimation . 71

5.4 Finite Gaussian Sequence Model . 72
5.5 Linear Regression . 74
5.6 Normal Covariance Estimation . 76
5.7 Entropy Estimation . 77
5.8 Experiments . 78

5.8.1 Finite Gaussian Sequence Model . 78
5.8.2 Linear Regression . 81
5.8.3 Normal Covariance Estimation . 82
5.8.4 Entropy Estimation . 83

5.9 Discussion . 84

IV Boosting 87

6 Generalized Boosting 89
6.1 Preliminaries . 91
6.2 Generalized Boosting . 92

6.2.1 Compositional Boosting . 93
6.3 Excess Risk Bounds . 96
6.4 Experiments . 99

6.4.1 Simulated Datasets . 99
6.4.2 Benchmark Datasets . 100

6.5 Discussion . 101

7 Conclusion and Future Work 103

Bibliography 105

x

V Appendix 117

A Supplementary Material for Chapter 2 119
A.1 Proof of Proposition 1 . 119
A.2 Non-oblivious to Oblivious Adversary Model 119
A.3 Proof of Lemma 2 . 121

B Supplementary Material for Chapter 3 123
B.1 Dual view of Perturbations as Regularization 123

B.1.1 Proof of Theorem 2 . 123
B.2 Online Convex Learning . 125

B.2.1 Proof of Theorem 5 . 125
B.2.2 Proof of Corollary 1 . 128

B.3 Online Nonconvex Learning . 129
B.3.1 Proof of Theorem 6 . 129
B.3.2 Proof of Corollary 2 . 135

B.4 Convex-Concave Games . 136
B.4.1 General Result . 137
B.4.2 Proof of Theorem 7 . 141

B.5 Nonconvex-Nonconcave Games . 141
B.5.1 General Result . 141
B.5.2 Proof of Theorem 8 . 146

B.6 Choice of Perturbation Distributions . 147
B.7 High Probability Bounds . 149

B.7.1 Online Convex Learning . 149
B.7.2 Convex-Concave Games . 152
B.7.3 Nonconvex-Nonconcave Games . 154

B.8 Background on Convex Analysis . 158

C Supplementary Material for Chapter 4 161
C.1 Proof of Proposition 3 . 161
C.2 Proof of Proposition 4 . 162
C.3 Proof of Proposition 5 . 163
C.4 Warm up: Hypothetical case of known Hessians 164

C.4.1 Intermediate Results . 165
C.4.2 Proof of Theorem 38 . 166

C.5 Proof of Theorem 10 . 180
C.5.1 Proof of Proposition 6 . 190
C.5.2 Main argument for Theorem 10 . 197

C.6 Additional Results . 201
C.7 Review of Self Concordant Barriers . 202

xi

D Supplementary Material for Chapter 5 203
D.1 Measurability of Bayes Estimators . 203
D.2 Minimax Estimators, LFPs and Nash Equilibirium 204
D.3 Minimax Estimation via Online Learning 205

D.3.1 Proof of Proposition 7 . 205
D.3.2 Proof of Theorem 11 . 205
D.3.3 Proof of Corollary 3 . 206
D.3.4 Proof of Corollary 4 . 208

D.4 Invariance of Minimax Estimators . 210
D.4.1 Proof of Theorem 12 . 210
D.4.2 Proof of Theorem 13 . 211
D.4.3 Applications of Invariance Theorem 214

D.5 Finite Gaussian Sequence Model . 217
D.5.1 Proof of Proposition 8 . 217
D.5.2 Proof of Theorem 19 . 219
D.5.3 Loss on few co-ordinates . 225

D.6 Linear Regression . 226
D.6.1 Proof of Proposition 9 . 226
D.6.2 Mean and normalization constant of Fisher-Bingham distribution . 227
D.6.3 Proof of Theorem 20 . 229

D.7 Covariance Estimation . 235
D.7.1 Proof of Proposition 10 . 235

D.8 Entropy Estimation . 236
D.8.1 Proof of Proposition 11 . 236

D.9 Experiments . 237
D.9.1 Covariance Estimation . 237
D.9.2 Entropy Estimation . 237

E Supplementary Material for Chapter 6 239
E.1 Notation and Terminology . 239
E.2 Proof of Proposition 12 . 241
E.3 Proof of Proposition 13 . 242
E.4 Discussion of Theorem 21 . 243
E.5 Proof of Theorem 21 . 245

E.5.1 Intermediate Results . 245
E.5.2 Main Argument . 249

E.6 Proof of Corollary 5 . 251
E.7 Proof of Corollary 6 . 253
E.8 Proof of Corollary 7 . 254
E.9 Some Useful Results . 256
E.10 Experiments . 257

E.10.1 Drawbacks of Layer-by-Layer fitting 257
E.10.2 Datasets and Hyperparameters . 258
E.10.3 Further Experimental Details . 259

xii

List of Figures

2.1 Illustration of monotonicity properties of the predictions of FTPL on a 1-
dimensional example with D = 10, L = 2. 18

5.1 Contour plots of the estimator learned using Algorithm 5 when the risk is
evaluated on the first coordinate. x axis shows the first coordinate of X,
which is the input to the estimator. y axis shows the norm of the rest of the
coordinates of X. The contour bar shows θ̂(1), the first co-ordinate of the
output of the estimator. 81

D.1 Risk of various estimators for covariance estimation evaluated at randomly gen-
erated Σ’s. We generated multiple Σ’s whose eigenvalues are randomly sampled
from a Beta distribution with various parameters and averaged the risks of esti-
mators at these Σ’s. Plots on the left correspond to d = 5 and the plots on the
right correspond to d = 10. 237

D.2 Risk of various estimators for entropy estimation evaluated at randomly gener-
ated distributions. We generated multiple P ’s with pi’s sampled from a Beta
distribution and averaged the risks of estimators at these P ’s. 238

xiii

xiv

List of Tables

3.1 Table showing some popular Integral Probability Metrics. Here Lip(f) is the
Lipschitz constant of f which is defined as supx,y∈X |f(x) − f(y)|/‖x − y‖
and ‖f‖∞ is the supremum norm of f . 30

3.2 Table comparing oracle complexities of various projection free techniques
for finding an ε-approximate NE of smooth convex-concave games. 32

4.1 Comparison of various approaches for BCO with quadratic losses. “h.p”,
“exp” in the second column denote high probability and expected regret
bounds respectively. m in the last column denotes the number of constraints
in the polytope. 43

5.1 Worst-case risk of various estimators for finite Gaussian sequence model.
The risk is measured with respect to squared error loss. The worst-case risk
of the estimators from Algorithm 5 (last two rows) is smaller than the worst-
case risk of baselines. The numbers in the brackets for Averaged Estimator
represent the duality gap. 79

5.2 Comparison of the worst case risk of θ̂avg with established lower bounds from
[DLM90] for finite Gaussian sequence model with d = 1. 80

5.3 Worst-case risk of various estimators for bounded normal mean estimation
when the risk is evaluated with respect to squared loss on the first k coor-
dinates. 81

5.4 Worst-case risk of various estimators for linear regression. The performance
of ridge is obtained by choosing the best regularization parameter. The
numbers in the brackets for Averaged Estimator represent the duality gap. 82

5.5 Worst-case risk of various estimators for covariance estimation for various
configurations of (n, d,B). The worst-case risks are obtained by taking a
max of the worst-case risk estimate from DragonFly and the risks computed
at randomly generated Σ’s. 83

5.6 Worst-case risk of various estimators for entropy estimation, for various val-
ues of (n, d). The worst-case risks are obtained by taking a max of the
worst-case risk estimate from DragonFly and the risks computed at ran-
domly generated distributions. 84

xv

6.1 Test accuracy of various boosting techniques on synthetic datasets. Numbers
in bold indicate the best performance among various greedy techniques. . 101

6.2 Test accuracy of various boosting techniques on benchmark datasets. We
use convolution blocks for the first 5 datasets and fully connected blocks for
the other datasets. 101

B.1 Regularizers corresponding to various perturbation distributions used in
FTPL when the action space X is `∞ ball of radius 1 centered at origin.
Here, F is the CDF of a standard normal random variable. 147

E.1 Test accuracy at each layer, with the first layer being set to a random value
or the all-0 matrix. Compared to the performance without corrupted first
layer, StdCompBoost suffers a performance drop, while DenseCompBoost is
almost unaffected, demonstrating its ability to recover from mistakes made
in early layers. 258

E.2 Test accuracy using CmplxCompBoost with decreasing or increasing layer
widths. 258

E.3 Details of simulated datasets used in our experiments. We use 20% of the
training data as validation set for picking the best hyper-parameter 259

E.4 Details of benchmark datasets used in our experiments. We use 20% of the
training data as validation set for picking the best hyper-parameter 260

E.5 List of hyper-parameters tuned for XGBoost, on all the datasets used in our
experiments. 260

E.6 List of hyper-parameters tuned for various compositional boosting tech-
niques and end-2-end training. 260

E.7 List of hyper-parameters tuned for AdaBoost and additive feature boost-
ing. To be fair for additive boosting techniques, we considered wider weak
learners than the ones used for compositional boosting and end-2-end training.261

xvi

List of Algorithms

1 Follow the Perturbed Leader (FTPL) . 15
2 Convex OFTPL . 27
3 Nonconvex OFTPL . 29
4 Regularized Bandit Newton Algorithm . 51
5 FTPL for statistical games . 65
6 Maximization Oracle . 73
7 Minimization Oracle . 73
8 Regression Maximization Oracle . 75
9 Regression Minimization Oracle . 75
10 Generalized Boosting . 94
11 Exact Greedy Update . 94
12 Gradient Greedy Update . 94
13 OFTPL for convex-concave games . 137
14 OFTPL for nonconvex-nonconcave games 142
15 Maximization Oracle . 225
16 Minimization Oracle . 226
17 Greedy algorithm of Huang, Ash, Langford, and Schapire [Hua+17a] for

learning ResNets . 242
18 Training a ResNet module . 242

xvii

xviii

Chapter 1
Introduction

Game theory and statistics are two huge scientific disciplines that have in turn played a
significant role in the development of a wide variety of fields, including computer science,
natural sciences, and social sciences. Traditionally, game theory has been used for decision-
making in strategic environments where multiple agents interact with each other. For
example, in economics, it is often used for designing auctions and for decision-making in
competitive markets. In computer science, it has found applications in numerous sub-fields
such as distributed computing, network security, robotics, self-driving cars, and in general
where multiple self-interested parties interact with each other.

Unlike game theory, statistics has traditionally been used for reasoning in non-strategic
and non-adversarial environments. In particular, statistics is concerned with the analysis
and interpretation of data generated by some stationary non-reactive source. For exam-
ple, in numerous fields such as astronomy, biostatistics, business analytics, epidemiology,
finance, statistical analysis, and estimation is often performed on data generated from non-
reactive sources. Due to the contrasting settings in which game theory and statistics are
often studied, these two disciplines have traditionally been regarded as disparate research
areas. However, there is a great degree of commonality between the two fields. A surprising
range of developments in classical and modern statistics have a game theoretic component
to them:
• Classical Developments. Classically, the mathematical philosophy of statistics, in
particular frequentist statistics, was concerned about strategic considerations. It posits
that the source of samples seen by the statistician is potentially adversarial. This re-
sulted in the rich theory of minimax statistical estimation and games [Wal49]. In these
games, statistical estimation problems are framed as two-player games in which nature
adversarially selects a distribution that makes it difficult for a statistician to perform the
estimation. Boosting algorithms, which are often regarded as best off-the-shelf classifiers,
can be viewed as playing a zero-sum game against a weak learner [FS96].

• Modern Developments. Modern statistical and machine learning applications are
increasingly moving towards multi-agent learning as illustrated by the following exam-
ples. To allow for various departures of “test environment” from “train environments”, the
emerging field of robust machine learning allows for adversarial manipulation of the train

1

or test environments [Pra+20; Sze+13]. An emerging class of density estimators in mod-
ern machine learning use an adversarial “critic” of the density estimator to improve the
final density estimation [Goo+14]. Finally, approaches for algorithmic fairness [Has+18;
DN18], uncertainty quantification (e.g., calibration, prediction intervals) [Gup+21], can
be framed as finding the equilibrium of two-player games.

The common theme among these classical and modern developments is an interplay be-
tween statistical estimation and two-player games. Moving beyond two-player games, sev-
eral emerging problems in statistics and machine learning naturally lead to multi-player
games. Due to various privacy concerns, data used in many modern statistical applications
in healthcare and advertising is often collected in a decentralized manner by multiple local
actors, each with their own self-interests. Statistical inference in such scenarios naturally
leads to an interplay with multi-player game theory. All these examples show that the
intersection of statistics and game theory is becoming an increasingly relevant sub-field.

In this thesis, we aim to bring together statistics and game theory and study the
interplay between the two fields. In particular, we are interested in studying statistical
problems from a game theoretic perspective and understand how game theory can advance
statistics. Despite the many commonalities between the two fields, the game theoretic
perspective of many statistical problems is often ignored due to various analytical and
computational reasons:
• Large Domains. One of the unpleasant facts about many games arising in statistics is
that they are generally much too big and too difficult to solve than those typically arising
in economics and computer science. For example, consider the problem of minimax
statistical estimation, which can be viewed as a game between statistician and nature.
The action space of the statistician in this game is the set of all functions, which is an
infinite-dimensional space. Existing algorithmic tools from game theory are inefficient
for solving this game. Consequently, statisticians have often ignored the game theoretic
viewpoint while designing minimax estimators.

• Nonconcave Utilities. Another unpleasant fact about games arising in statistics and
machine learning is that the utility functions of the players often turn out to be non-
concave. For example, this is the case in many modern statistical applications such as
robust machine learning, Generative Adversarial Networks (GANs) that rely on deep
neural networks. This is the case even in classical statistical problems such as minimax
statistical estimation. Existing analytical and algorithmic tools from game theory, which
primarily focus on concave utility functions, are inadequate for studying such games.
Setting aside these analytical and computational caveats, the game theoretic perspec-

tive provides tremendous value and comes with several benefits. It can help us reason about
and construct optimal solutions for the wide range of statistical problems described above.
As an example, consider again the problem of minimax statistical estimation. Existing
approaches for designing minimax estimators often rely on prior knowledge and require
a deeper understanding of the problem at hand. This process is very time-consuming,
and often requires decades of research on the problem; for example, designing the popu-
lar LASSO estimator required decades of research on sparse estimation. In contrast, the
game theoretic perspective can help us come up with algorithmic approaches that can au-

2

tomate the process of designing minimax estimators. Such algorithmic approaches can be
of tremendous value to statisticians, as they can aid them in building minimax estimators.
As another example, consider robust machine learning. Existing approaches for construct-
ing robust models often rely on heuristics and are not guaranteed to return an optimal
solution. In contrast, the game theoretic viewpoint of robust machine learning provides
us a wide array of tools for constructing robust models that can withstand adversarial
manipulations better than existing approaches.

The sub-field of statistical game theory provides an analytical and algorithmic frame-
work for addressing the above issues and helps us study statistical problems from a game
theoretic perspective. In this thesis, we aim to lay the foundations of statistical game
theory and study some of the above-described statistical applications. Our primary focus
in this thesis is on minimax statistical estimation and boosting. However, the tools and
techniques developed here are broadly applicable and are useful in other areas such as
contextual bandits, robust machine learning, and adversarial density estimation.

Here is the organization of the thesis. In Parts I and II, we develop necessary algorithmic
tools in online learning, game theory, and optimization that help us study several statistical
problems from a game theoretic perspective. In Part III of the thesis, we study the problem
of minimax statistical estimation. Here, we utilize the tools in Part I to develop efficient
techniques for algorithmically building minimax optimal estimators. In Part IV, we study
the problem of boosting. Here, we develop new techniques to improve the performance of
boosting and bring it closer to neural networks’ performance.

1.1 Part I: Online Learning with Full Information Feed-
back

As previously mentioned, a major challenge in studying games that arise in statistical
applications is that they come with nonconcave utility functions. For such games, there
need not exist a Nash equilibrium (NE)1, that is, there need not exist situations where
all the players are satisfied with their actions. So, it is crucial to first understand the
type of solutions we should target when studying these games. Several works have studied
alternatives to Nash equilibrium in zero-sum games with nonconcave utilities. Two such
popular solution concepts are local Nash equilibrium [JNJ20; DSZ21] and mixed strategy
Nash equilibrium. Of these two concepts, mixed strategy NE is much more suitable for
statistical applications. This is because, for problems such as minimax statistical estima-
tion, local NE solutions can lead to highly sub-optimal estimators2. Consequently, in this
thesis, we primarily focus on studying mixed strategy NE of games with nonconcave utility
functions.

In Part I of the thesis, we present efficient algorithms for computing mixed strategy
NE of games with nonconcave utility functions. A popular and widely used approach for

1Nash equilibrium is a very popular notion that is often used to analyze games and multi-agent systems.
2In certain applications such as GANs, adversarial training, it could be possible that local NE solutions

might suffice.

3

computing NE of games is to rely on online learning algorithms [Haz16; CL06]. In this
thesis, we take this approach and develop efficient algorithms for online nonconvex learning
that achieve optimal regret. This in turn gives us efficient algorithms for solving games
with nonconcave utility functions.

In Chapter 2, we show that the classical Follow-the-Perturbed-Leader (FTPL) algo-
rithm is optimal for online learning with nonconvex losses, and is (oracle) efficient. In
particular, we show that it achieves the optimal O(T−1/2) regret even when the sequence
of loss functions chosen by the adversary is nonconvex. In each iteration, the FTPL algo-
rithm makes a single call to an offline optimization oracle to choose its next action. Given
that offline optimization is well understood for a number of problems of interest [HP13],
this entails an efficient algorithm for online nonconvex learning. We note that the result
in this chapter is of independent interest and has several consequences beyond the set-
ting of nonconvex-nonconcave games considered here. The most important of these is its
applications to online learning in bandit settings and contextual bandits.

While the O(T−1/2) regret guarantees achieved by FTPL is optimal, these guarantees
are derived under the assumption that the sequence of loss functions encountered by the
learner could be adversarial. However, when online learning is used in the context of two-
player games, this assumption becomes invalid. So a natural question in this context is
whether there exist algorithms that can achieve better regret guarantees when the sequence
of loss functions is benign and predictable. We answer this question in the affirmative. In
Chapter 3, we show that an optimistic variant of FTPL can achieve better regret guarantees
when the sequence of losses is predictable. In the context of two-player games, we show
that Optimistic FTPL (OFTPL) converges at a faster rate to a Nash equilibrium than
vanilla FTPL.

1.2 Part II. Bandit Optimization

Studying games with nonconcave utility functions invariably leads us to the question of
maximizing nonconcave functions. Unfortunately, this is a very hard problem (in fact,
it is known to be NP-hard). In addition, in many statistical applications of interest, we
are faced with two more challenges: (a) we only have zeroth-order access (a.k.a bandit
feedback) to the functions we want to maximize, and (b) evaluating the function at any
given point is computationally expensive (see Chapter 5 for details). So we ideally want
derivative-free optimization techniques that satisfy the following desiderata

1. handle nonconcave objectives
2. require as few function evaluations as possible
3. scale well to high dimensional problems

Unfortunately, none of the existing derivative-free optimization techniques satisfy all these
requirements. Gaussian Process Optimization [Sri+09], perhaps the most popular derivative-
free optimization technique, doesn’t scale well to high dimensional problems. Random walk
based approaches such as simulated annealing [VA87] require too many function evalua-
tions, thus making them inefficient even for low dimensional problems. So, our aim is to

4

develop derivative-free order optimization techniques that satisfy the above desiderata.
In Chapter 4, we take a small step towards this goal by studying the above ques-

tion for convex quadratic loss functions (albeit in the much harder adversarial setting).
Surprisingly, there are no efficient derivative-free optimization techniques known even in
this simple setting. In Chapter 4, we design a regularized bandit Newton method which
achieves the optimal Õ

(
T−1/2

)
regret guarantee in this setting and is computationally ef-

ficient. In ongoing work, we are relying on the insights gained from studying quadratic
losses to design efficient derivative-free optimization techniques for nonconvex losses.

1.3 Part III: Minimax Statistical Estimation

For decades, minimax statistical estimation has been crucial for the development of fre-
quentist statistics, as it aids statisticians in picking estimators that work well even under
the worst circumstances. Traditional approaches for solving this statistical game are usu-
ally problem-specific. In these approaches, an estimator is first proposed for a specific
problem, and then its optimality is certified by showing its worst-case risk matches the
known lower bounds for the minimax value of the game. However, such approaches can be
time-consuming, require a deeper understanding of the problem, and do not often provide
concrete guidelines for designing minimax optimal estimators for general problems. So
algorithmic approaches that automate this process can be of immense help to statisticians.

In Chapter 5, we aim to develop algorithmic techniques for solving minimax statistical
games. As previously described, a critical distinction of statistical games, in contrast to
the typical zero-sum games studied in economics and computer science, is that the set of all
possible moves of the statistician is extremely large, and importantly, the game need not
have concave utility functions. To handle these technical caveats, we rely on algorithmic
tools developed in Part I of the thesis.

Solving Minimax Statistical Games. A standard technique for computing a NE of
the game relies on online learning algorithms. Here, the minimization player and the max-
imization player play a repeated game against each other, with both relying on online
learning algorithms to choose their actions in each round of the game, and with the ob-
jective of minimizing their respective regret. Whenever the algorithms used by both the
players guarantee vanishing regret, it can be shown that the repeated game play converges
to a NE. Equipped with the FTPL, OFTPL algorithms developed in Chapters 2, 3, in
Chapter 5, we rely on this technique to solve the statistical game. The resulting algorithm
requires access to two subroutines: a Bayes estimator subroutine that outputs a Bayes es-
timator corresponding to any given prior, and a subroutine that computes the (perturbed)
worst-case risk of any given estimator. Given access to these two subroutines, we show that
our algorithm outputs both a minimax estimator and a least favorable prior (LFP). For
problems where the two subroutines are efficiently implementable, our algorithm provides
an efficient technique to construct minimax estimators. While implementing the subrou-
tines can be computationally hard in general, we show that the computational complexity

5

can be significantly reduced for a wide range of problems satisfying certain invariance
properties.

To demonstrate the power of this technique, we use it to construct provably minimax
estimators for the classical problems of finite-dimensional Gaussian sequence model and
linear regression. Furthermore, for the fundamental problems of covariance and entropy
estimation, we present empirical evidence showing that our algorithmically constructed
estimators match the performance of existing minimax estimators designed by statisticians.

1.4 Part IV: Boosting

In the final part of the thesis, we focus on boosting. Boosting is a widely used learning
technique in machine learning for solving classification problems. Over the years, boosting
based methods have shown tremendous success in many real-world applications. Moreover,
boosting based methods are easy to train and understand from a theoretical standpoint,
thus making it easier to adopt these methods in critical applications such as healthcare.
However, this success is mostly limited to classification tasks involving structured or tabular
data with hand-engineered features. On classification problems involving low-level features
and complex decision boundaries, boosting tends to perform poorly. One example where
this is evident is the image classification task, where the decision boundaries are often
complex and the features are low-level pixel intensities. This drawback stems from the
fact that boosting builds an additive model of weak classifiers, each of which has very
little predictive power. Since such additive models with any reasonable number of weak
classifiers are usually not powerful enough to approximate complex decision boundaries,
the models’ output by boosting tend to have poor performance. This then brings us to the
following question:
can we generalize boosting to allow for more complex forms of aggregation than linear

combinations of weak classifiers?
Such a generalized boosting algorithm can have several benefits. For example, if we can
develop boosting algorithms that combine weak classifiers through function compositions, it
entails a simple and easy-to-understand algorithm for learning neural networks. Moreover,
such an algorithm can make neural network training transparent and easy to adopt in
critical applications.

The above question can be studied from two different perspectives: one based on
the statistical view of boosting, where boosting is viewed as greedy stagewise optimiza-
tion [FHT+00], and the other based on the game theoretic view, where boosting algorithms
are viewed as playing a game against a weak learner [FS95]. In Chapter 6, we study the
above question from the statistical viewpoint. In particular, we develop greedy stagewise
optimization algorithms which allow for more complex forms of aggregation than additive
combinations that are considered by traditional stagewise optimization techniques. Our
algorithms improve upon traditional boosting and bridge the gap in performance between
traditional boosting and neural networks.

The algorithms we developed in Chapter 6 don’t yet match the performance of end-
to-end trained neural networks. To truly bridge the gap in performance between boosting

6

and neural networks, we hypothesize that one has to look at the game theoretic viewpoint
of boosting. Historically, the game theoretic perspective has been much more successful in
developing boosting algorithms with good generalization guarantees, than the statistical
perspective. For example, consider the problem of multiclass boosting. Numerous boosting
algorithms have been developed for this problem from the statistical perspective. However,
many of these algorithms often perform poorly in practice. When viewed from a game
theoretic perspective, many of these algorithms actually turn out to be sub-optimal [MS13].
Furthermore, the game theoretic viewpoint has played a crucial role in designing optimal
algorithms for multiclass boosting. Consequently, in future, we aim to develop generalized
boosting algorithms from a game theoretic perspective.

7

1.5 Summary of publications

The content of Chapter 2 appears in:

[SN20b] Arun Sai Suggala and Praneeth Netrapalli. “Online Non-Convex
Learning: Following the Perturbed Leader is Optimal”. In: ed. by Aryeh
Kontorovich and Gergely Neu. Vol. 117. Proceedings of Machine Learning
Research. San Diego, California, USA: PMLR, Aug. 2020, pp. 845–861. url:
http://proceedings.mlr.press/v117/suggala20a.html

The content of Chapter 3 appears in:

[SN20a] Arun Sai Suggala and Praneeth Netrapalli. “Follow the Per-
turbed Leader: Optimism and Fast Parallel Algorithms for Smooth Minimax
Games”. In: Advances in Neural Information Processing Systems 33. 2020.
url: https://arxiv.org/abs/2006.07541

The content of Chapter 4 appears in:

[SRN21] Arun Sai Suggala, Pradeep Ravikumar, and Praneeth Netrapalli.
“Efficient Bandit Convex Optimization: Beyond Linear Losses”. In: Confer-
ence on Learning Theory. 2021

The content of Chapter 5 appears in:

[Gup+20] Kartik Gupta, Arun Sai Suggala, Adarsh Prasad, Praneeth Netra-
palli, and Pradeep Ravikumar. “Learning Minimax Estimators via Online
Learning”. In: arXiv preprint arXiv:2006.11430 (2020)

The content of Chapter 6 appears in:

[SLR20] Arun Sai Suggala, Bingbin Liu, and Pradeep Ravikumar. “General-
ized Boosting”. In: Advances in Neural Information Processing Systems 33.
2020

Non-thesis research: I have also pursued the following research directions on robust
machine learning during my Ph.D. These are excluded from the remainder of this thesis.

[Sug+19a] Arun Sai Suggala, Kush Bhatia, Pradeep Ravikumar, and Pra-
teek Jain. “Adaptive Hard Thresholding for Near-optimal Consistent Robust
Regression”. In: Conference on Learning Theory. 2019, pp. 2892–2897

[Sug+19b] Arun Sai Suggala, Adarsh Prasad, Vaishnavh Nagarajan, and
Pradeep Ravikumar. “Revisiting adversarial risk”. In: The 22nd Interna-

8

http://proceedings.mlr.press/v117/suggala20a.html
https://arxiv.org/abs/2006.07541

tional Conference on Artificial Intelligence and Statistics. 2019, pp. 2331–
2339

9

10

Part I

Online Learning with Full Information
Feedback

11

Chapter 2
Following the Perturbed Leader for
Nonconvex Losses

In this chapter, we study the problem of online learning with non-convex losses, where, in
each iteration, the learner chooses an action and observes a loss which could potentially be
non-convex. The goal of the learner is to choose a sequence of actions which minimize the
cumulative loss suffered over the course of learning. The paradigm of online learning has
been studied in a number of fields, including game theory, machine learning, statistics and
has several practical applications. In recent years a number of efficient algorithms have
been developed for online learning. Convexity of the loss functions has played a central
role in the development of many of these techniques. In this chapter, we consider a more
general setting, where the sequence of loss functions encountered by the learner could be
non-convex. Such a setting has numerous applications in machine learning, especially in
adversarial training [Sze+13], robust optimization and training of Generative Adversarial
Networks (GANs) [Goo+14].

As mentioned above, most of the existing works on online optimization have focused on
convex loss functions [Haz16]. A number of computationally efficient approaches have been
proposed for regret minimization in this setting. However, when the losses are non-convex,
minimizing the regret is computationally hard. Recent works on learning with non-convex
losses get over this computational barrier by either working with a restricted class of loss
functions such as approximately convex losses [GLZ18] or by optimizing a computationally
tractable notion of regret [HSZ17]. Consequently, the techniques studied in these papers do
not guarantee vanishing regret for general non-convex losses. Another class of approaches
consider general non-convex losses, but assume access to a sampling oracle [MM10; Kri+15]
or an offline optimization oracle [AGH19]. Of these, assuming access to an offline opti-
mization oracle is reasonable, given that in practice, simple heuristics such as stochastic
gradient descent seem to be able to find approximate global optima reasonably fast even
for complicated tasks such as training deep neural networks.

In a recent work Agarwal, Gonen, and Hazan [AGH19] take this later approach, where
they assume access to an offline optimization oracle, and show that the classical Follow
the Perturbed Leader (FTPL) algorithm achieves O(T−1/3) regret for general non-convex

13

losses which are Lipschitz continuous. In this chapter, we improve upon this result and
show that FTPL in fact achieves optimal O(T−1/2) regret.

2.1 Problem Setup and Main Results

Let X ⊆ Rd denote the set of all possible moves of the learner. In the online learning
framework, on each round t, the learner makes a prediction xt ∈ X and the nature/adver-
sary simultaneously chooses a loss function ft : X → R and observe each others actions.
The goal of the learner is to choose a sequence of actions {xt}Tt=1 such that the following
notion of regret is small

1

T

T∑
t=1

ft(xt)−
1

T
inf
x∈X

T∑
t=1

ft(x).

We assume that X is bounded and has `∞ diameter of D, which is defined as

D = sup
x,y∈X

‖x− y‖∞.

Moreover, we assume that the sequence of loss functions ft chosen by the adversary are
L-Lipschitz with respect to `1 norm, that is, for all x,y ∈ X , |ft(x)− ft(y)| ≤ L‖x− y‖1.

Approximate Optimization Oracle. Our results rely on an offline optimization oracle
which takes as input a function f : X → R and a d-dimensional vector σ and returns an
approximate minimizer of x 7→ f(x) − 〈σ,x〉. An optimization oracle is called “(α, β)-
approximate optimization oracle” if it returns x∗ ∈ X such that

f(x∗)− 〈σ,x∗〉 ≤ inf
x∈X

[f(x)− 〈σ,x〉] + (α + β‖σ‖1) ,

We denote such an optimization oracle with Oα,β (f − 〈σ, ·〉).

FTPL. Given access to an (α, β)-approximate offline optimization oracle, we study the
FTPL algorithm which is described by the following prediction rule (see Algorithm 1).

xt = Oα,β

(
t−1∑
i=1

fi − 〈σt, ·〉

)
, (2.1)

where σt ∈ Rd is a random perturbation such that σt,j, the jth coordiante of σt, is sampled
from Exp(η), the exponential distribution with parameter η1. We note that one can also
generate the perturbations from other probability distributions such as uniform distribution
and achieve similar regret bounds as presented in this chapter.

1Recall, Z is an exponential random variable with parameter η if P (Z ≥ s) = exp(−ηs)

14

Algorithm 1 Follow the Perturbed Leader (FTPL)
1: Input: Parameter of exponential distribution η, approximate optimization oracle Oα,β
2: for t = 1 . . . T do
3: Generate random vector σt such that {σt,j}dj=1

i.i.d∼ Exp(η)
4: Predict xt as

xt = Oα,β

(
t−1∑
i=1

fi − 〈σt, ·〉

)
.

5: Observe loss function ft
6: end for

2.1.1 Main Result

We present our main result for an oblivious adversary who fixes the sequence of losses
{ft}Tt=1 ahead of the game. Following [CL06], one can show that any algorithm that is
guaranteed to work against an oblivious adversary also works for a non-oblivious adversary,
whose actions are allowed to depend on the past predictions of the algorithm. For the
sake of completeness, we present a proof of this reduction from non-oblivious to oblivious
adversary model in Appendix A.2.

Theorem 1 (Non-Convex FTPL). Let D be the `∞ diameter of X . Suppose the losses en-
countered by the learner are L-Lipschitz w.r.t `1 norm. Moreover, suppose the optimization
oracle used by Algorithm 1 is a “(α, β)-approximate” optimization oracle. For any fixed η,
the predictions of Algorithm 1 satisfy the following regret bound

E

[
1

T

T∑
t=1

ft(xt)−
1

T
inf
x∈X

T∑
t=1

ft(x)

]
≤ O

(
ηd2DL2 +

d(βT +D)

ηT
+ α + βdL

)
.

The above result shows that for appropriate choice of η, FTPL achievesO(d
3
2T−

1
2 + α + βd

3
2T

1
2)

regret. This also shows that when α = O(T−
1
2), β = O(T−1), FTPL achieves the optimal

O(T−
1
2) regret. This improves upon the O(T−

1
3) regret bound obtained by Agarwal, Go-

nen, and Hazan [AGH19]. We note that the above result can be generalized to infinite-
dimensional spaces such as `1 space of sequences. To do this we assume that the domain
X is bounded and can be enclosed in a hyper-rectangle with edge length Di along the ith
standard basis vector. Through a more careful analysis we can obtain regret bounds that
depend on the effective dimension of X , which is defined as

∑d
i=1Di

maxiDi
, instead of d.

Before we conclude the section we point out that as an immediate consequence of
the above regret bounds, we obtain algorithms for approximating the mixed strategy
Nash equilibria of general non-convex non-concave saddle point problems of the form
min
x∈X

max
y∈Y

F (x,y). This follows from the observation that saddle point problems can be

solved by playing two online optimization algorithms against each other [CL06; Haz16].

15

2.2 Background

In this section we briefly review the relevant literature on online learning in both convex
and non-convex settings.

Online Convex Optimization. When the domain X and the loss functions ft encoun-
tered by the learner are convex, a number of efficient algorithms for regret minimization
have been studied. Most of these algorithms fall into three broad categories, namely Follow
the Regularized Leader (FTRL), Online Mirror Descent (OMD) [Haz16] and Follow the
Perturbed Leader (FTPL) [KV16]. FTRL algorithms make a prediction in each iteration
by minimizing argminx

∑t−1
i=1 fi(x) + R(x), where R is a strongly convex regularizer. The

regularization R plays a crucial role in the performance of the algorithm and helps avoid
overfitting to the observed loss functions. Similar to FTRL, OMD also relies on explicit
regularization to guarantee vanishing regret. In fact, under certain settings, both OMD and
FTRL algorithms are known to be equivalent [McM11]. For a broad class of online convex
optimization problems, FTRL and OMD are known to achieve optimal regret guarantees.

FTPL algorithms rely on random perturbation of loss functions to guarantee vanishing
regret. This random perturbation can be viewed as having a similar role as the explicit
regularization used in FTRL and OMD. In a recent work Abernethy, Lee, and Tewari
[ALT16] use duality to connect FTPL and FTRL. They show that every instance of FTPL
is also an instance of FTRL.

Online Non-Convex Optimization. A natural question that arises in the context of
online non-convex learning is whether there exist counterparts of FTRL and OMD which
achieve vanishing regret. Unfortunately, the answer is no. As we show in the following
Proposition, there exists no deterministic algorithm that can achieve vanishing regret when
the losses are non-convex.

Proposition 1. No deterministic algorithm can achieve o(1) regret in the setting of online
non-convex learning.

The above Proposition shows that only randomized algorithms can achieve vanishing
regret. Recent works of Maillard and Munos [MM10] and Krichene, Balandat, Tomlin, and
Bayen [Kri+15] consider the natural extension of Exponential Weight Algorithm to contin-
uous domains and show that the resulting algorithm has vanishing regret in the setting of
online non-convex learning. The algorithms studied in these works rely on an offline sam-
pling oracle which can generate samples from any given probability distribution. In another
line of work, Agarwal, Gonen, and Hazan [AGH19] study the classical FTPL algorithm
with access to a certain offline optimization oracle and show that it achieves O(T−1/3)
regret. As an immediate consequence of this result, the authors show that both online
adversarial learning model and statistical learning model are computationally equivalent.

16

2.3 Non-Convex FTPL

In this section, we present a proof of Theorem 1. Since we are in the oblivious adversary
setting, it suffices to work with a single random vector σ, instead of generating a new
random vector in each iteration. The first step in the proof involves relating the expected
regret to the stability of prediction, which is a standard step in the analysis of many online
learning algorithms.
Lemma 2. The regret of Algorithm 1 can be upper bounded as

1

T
E

[
T∑
t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x)

]
≤ L

T

T∑
t=1

E [‖xt − xt+1‖1]︸ ︷︷ ︸
Stability

+
d(βT +D)

ηT
+ α. (2.2)

In the rest of the proof we focus on bounding the stability term E [‖xt − xt+1‖1]. The
randomness used in the algorithm is crucial for bounding its stability. The more random-
ness we add, the more stable the algorithm is. However, there is a price we pay for adding
randomness. It causes the algorithm to make poor predictions, which leads to worse regret.
This is evident in the second term in the upper bound in Equation (2.2), which increases
as η decreases.

We first provide an brief sketch of the proof in the 1-dimensional case. Similar to
the proof of Agarwal, Gonen, and Hazan [AGH19], our proof relies on showing certain
monotonicity properties of the predictions of the algorithm. Letting xt(σ) be the prediction
in the tth iteration of FTPL with random perturbation σ, we show that the predictions are
monotonic functions of σ

∀t, c > 0, xt(σ + c) ≥ xt(σ).

Moreover, we show that

∀c > L, min {xt(σ + c),xt+1(σ + c)} ≥ max {xt(σ),xt+1(σ)} .

Since the domain is bounded, these two properties imply that the functions xt(σ),xt+1(σ)
should be close to each other for sufficiently large values of σ (see Figure 2.1 for an illustra-
tion). The closeness of these two functions immediately implies the stability of the algo-
rithm. In what follows, we formalize this argument and extend it to the high-dimensional
case.
Lemma 3 (Monotonicity 1). Let xt(σ) be the prediction of FTPL in iteration t, with
random perturbation σ. Let ei denote the ith standard basis vector and xt,i denote the ith
coordinate of xt. Then the following monotonicity property holds for any c > 0

xt,i(σ + cei) ≥ xt,i(σ)− 2(α + β‖σ‖1)

c
− β.

Proof. Let f1:t(x) =
∑t

i=1 fi(x) and σ′ = σ + cei. Moreover, let γ(σ) = α + β‖σ‖1 be the
approximation error of the offline optimization oracle. From the approximate optimality

17

0 2 4 6 8 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 2.1: Illustration of monotonicity properties of the predictions of FTPL on a 1-
dimensional example with D = 10, L = 2.

of xt(σ) we have

f1:t−1(xt(σ))− 〈σ,xt(σ)〉
≤ f1:t−1(xt(σ

′))− 〈σ,xt(σ′)〉+ γ(σ)

= f1:t−1(xt(σ
′))− 〈σ′,xt(σ′)〉+ cxt,i(σ

′) + γ(σ)

(a)

≤ f1:t−1(xt(σ))− 〈σ′,xt(σ)〉+ cxt,i(σ
′) + γ(σ) + γ(σ′)

= f1:t−1(xt(σ))− 〈σ,xt(σ)〉+ c (xt,i(σ
′)− xt,i(σ)) + γ(σ) + γ(σ′),

where (a) follows from the approximate optimality of xt(σ′). Combining the first and last
terms in the above expression, we get xt,i(σ′) ≥ xt,i(σ)− 2γ(σ)

c
− β.

Lemma 4 (Monotonicity 2). Let xt(σ) be the prediction of FTPL in iteration t, with
random perturbation σ. Let ei denote the ith standard basis vector and xt,i denote the ith
coordinate of xt. Suppose ‖xt(σ)− xt+1(σ)‖1 ≤ 10d · |xt,i(σ)− xt+1,i(σ)|. For σ′ = σ +
100Ldei, we have

min (xt,i(σ
′),xt+1,i(σ

′)) ≥ max (xt,i(σ),xt+1,i(σ))− 1

10
|xt,i(σ)− xt+1,i(σ)|

− 3(α + β‖σ‖1)

100Ld
− β.

Proof. Let f1:t(x) =
∑t

i=1 fi(x) and let γ(σ) = α + β‖σ‖1 be the approximation error of
the offline optimization oracle. From the approximate optimality of xt(σ), we have

f1:t−1(xt(σ))− 〈σ,xt(σ)〉+ ft(xt(σ))

≤ f1:t−1(xt+1(σ))− 〈σ,xt+1(σ)〉+ ft(xt(σ)) + γ(σ)

(a)

≤ f1:t−1(xt+1(σ))− 〈σ,xt+1(σ)〉+ ft(xt+1(σ)) + L‖xt(σ)− xt+1(σ)‖1 + γ(σ)

(b)

≤ f1:t−1(xt+1(σ))− 〈σ,xt+1(σ)〉+ ft(xt+1(σ)) + 10Ld|xt,i(σ)− xt+1,i(σ)|+ γ(σ),

18

where (a) follows from the Lipschitz property of ft(·) and (b) follows from our assumption
on ‖xt(σ)− xt+1(σ)‖1. Next, from the optimality of xt+1(σ′), we have

f1:t−1(xt(σ))− 〈σ,xt(σ)〉+ ft(xt(σ))

= f1:t−1(xt(σ))− 〈σ′,xt(σ)〉+ ft(xt(σ)) + 〈100Ldei,xt(σ)〉

≥ f1:t−1(xt+1(σ′))− 〈σ′,xt+1(σ′)〉+ ft(xt+1(σ′)) + 100Ldxt,i(σ)− γ(σ′)

= f1:t−1(xt+1(σ′))− 〈σ,xt+1(σ′)〉+ ft(xt+1(σ′)) + 100Ld(xt,i(σ)− xt+1,i(σ
′))− γ(σ′)

≥ f1:t−1(xt+1(σ))− 〈σ,xt+1(σ)〉+ ft(xt+1(σ)) + 100Ld(xt,i(σ)− xt+1,i(σ
′))− γ(σ′)− γ(σ),

where the last inequality follows from the optimality of xt+1(σ). Combining the above two
equations, we get

xt+1,i(σ
′)− xt,i(σ) ≥ − 1

10
|xt,i(σ)− xt+1,i(σ)| − 3γ(σ)

100Ld
− β.

A similar argument shows that

xt,i(σ
′)− xt+1,i(σ) ≥ − 1

10
|xt,i(σ)− xt+1,i(σ)| − 3γ(σ)

100Ld
− β.

Finally, from the monotonicity property in Lemma 3 we know that

xt+1,i(σ
′)− xt+1,i(σ) ≥ − 3γ(σ)

100Ld
− β, xt,i(σ

′)− xt,i(σ) ≥ − 3γ(σ)

100Ld
− β.

Combining the above four inequalities gives us the required result.

Proof of Theorem 1. We now proceed to the proof of Theorem 1. We use the same
notation as in Lemmas 3, 4. First note that E [‖xt(σ)− xt+1(σ)‖1] can be written as

E [‖xt(σ)− xt+1(σ)‖1] =
d∑
i=1

E [|xt,i(σ)− xt+1,i(σ)|] . (2.3)

To bound E [‖xt(σ)− xt+1(σ)‖1] we derive an upper bound for E [|xt,i(σ)− xt+1,i(σ)|] ,∀i ∈ [d].
For any i ∈ [d], define E−i [|xt,i(σ)− xt+1,i(σ)|] as

E−i [|xt,i(σ)− xt+1,i(σ)|] := E
[
|xt,i(σ)− xt+1,i(σ)|

∣∣∣{σj}j 6=i] ,
where σj is the jth coordinate of σ. Let xmax,i(σ) = max (xt,i(σ),xt+1,i(σ)) and xmin,i(σ) =
min (xt,i(σ),xt+1,i(σ)). Then E−i [|xt,i(σ)− xt+1,i(σ)|] = E−i [xmax,i(σ)] − E−i [xmin,i(σ)].
Define event E as

E = {σ : ‖xt(σ)− xt+1(σ)‖1 ≤ 10d · |xt,i(σ)− xt+1,i(σ)|} .

Consider the following

E−i [xmin,i(σ)] = P(σi < 100Ld)E−i [xmin,i(σ)|σi < 100Ld]︸ ︷︷ ︸
T1

+P(σi ≥ 100Ld)E−i [xmin,i(σ)|σi ≥ 100Ld]︸ ︷︷ ︸
T2

.
(2.4)

19

We now try to lower bound T1, T2 in the above equation. Since the domain of ith coordinate
lies within some interval of length D and since T1 and E−i [xmax,i(σ)] are points in this
interval, their difference is bounded by D. So T1 is lower bounded by E−i [xmax,i(σ)]−D.
We next rewrite T2 as follows.

T2 = P(σi ≥ 100Ld)E−i [xmin,i(σ)|σi ≥ 100Ld] =

∫ ∞
σi=100Ld

xmin,i(σ)P (σi)dσi

=

∫ ∞
σi=100Ld

xmin,i(σ)ηe−ησidσi

We now do a change of variables in the above integration. Let σi = σ′i + 100Ld and
σ′ = [σ1, . . . σi−1, σ

′
i, σi+1, . . .] be the vector obtained by replacing the ith coordinate of σ

with σ′i. Rewriting the RHS in terms of σ′i and σ′, we get∫ ∞
σi=100Ld

xmin,i(σ)ηe−ησidσi =

∫ ∞
σ′i=0

xmin,i(σ
′ + 100Ldei)ηe

−η(σ′i+100Ld)dσ′i

= e−100ηLd

∫ ∞
σ′i=0

xmin,i(σ
′ + 100Ldei)ηe

−ησ′idσ′i

= e−100ηLdE−i [xmin,i(σ′ + 100Ldei)] .

This shows that T2 = e−100ηLdE−i [xmin,i(σ + 100Ldei)]. Substituting the lower bounds for
T1, T2 in Equation (2.4), we get

E−i [xmin,i(σ)] ≥ (1− exp(−100ηLd)) (E−i [xmax,i(σ)]−D)

+ exp(−100ηLd)E−i [xmin,i(σ + 100Ldei)] ,

We can further lower bound E−i [xmin,i(σ)] as follows

E−i [xmin,i(σ)] ≥ (1− exp(−100ηLd)) (E−i [xmax,i(σ)]−D)

+ exp(−100ηLd)P−i(E)E−i [xmin,i(σ + 100Ldei)|E]

+ exp(−100ηLd)P−i(Ec)E−i [xmin,i(σ + 100Ldei)|Ec] ,

where P−i(E) is defined as P−i(E) := P
(
E
∣∣∣{σj}j 6=i) . We now use the monotonicity prop-

erties proved in Lemmas 3, 4 to further lower bound E−i [xmin,i(σ)]. Let γ(σ) = α+β‖σ‖1

be the approximation error of the offline optimization oracle. Then

E−i [xmin,i(σ)] ≥ (1− exp(−100ηLd)) (E−i [xmax,i(σ)]−D)

+ exp(−100ηLd)P−i(E)E−i
[
xmax,i(σ)− 1

10 |xt,i(σ)− xt+1,i(σ)| − 3γ(σ)
100Ld − β

∣∣∣E]
+ exp(−100ηLd)P−i(Ec)E−i

[
xmin,i(σ)− 2γ(σ)

100Ld − β|E
c
]

≥ (1− exp(−100ηLd)) (E−i [xmax,i(σ)]−D)

+ exp(−100ηLd)P−i(E)E−i
[
xmax,i(σ)− 1

10 |xt,i(σ)− xt+1,i(σ)| − 3γ(σ)
100Ld − β

∣∣∣E]
+ exp(−100ηLd)P−i(Ec)E−i

[
xmax,i(σ)− 1

10d‖xt(σ)− xt+1(σ)‖1 − 2γ(σ)
100Ld − β

∣∣∣Ec] ,
20

where the first inequality follows from Lemmas 3, 4, the second inequality follows from the
definition of Ec. Rearranging the terms in the RHS and using P−i(E) ≤ 1 gives us

E−i [xmin,i(σ)] ≥ (1− exp(−100ηLd)) (E−i [xmax,i(σ)]−D)

+ exp(−100ηLd)E−i
[
xmax,i(σ)− 3γ(σ)

100Ld
− β

]
− exp(−100ηLd)E−i

[
1
10
|xt,i(σ)− xt+1,i(σ)|+ 1

10d
‖xt(σ)− xt+1(σ)‖1

]
≥ E−i [xmax,i(σ)]− 100ηLdD − 3γ(σ)

100Ld
− β

−E−i
[

1
10
|xt,i(σ)− xt+1,i(σ)|+ 1

10d
‖xt(σ)− xt+1(σ)‖1

]
,

where the last inequality uses the the fact that exp(x) ≥ 1 + x. Rearranging the terms in
the last inequality gives us

E−i [|xt,i(σ)− xt+1,i(σ)|] ≤ 1

9d
E−i [‖xt(σ)− xt+1(σ)‖1]

+
1000

9
ηLdD +

E−i [γ(σ)]

30Ld
+

10

9
β.

Since the above bound holds for any {σj}j 6=i, we get the following bound on the uncondi-
tioned expectation

E [|xt,i(σ)− xt+1,i(σ)|] ≤ 1

9d
E [‖xt(σ)− xt+1(σ)‖1]

+
1000

9
ηLdD +

E [γ(σ)]

30Ld
+

10

9
β.

Plugging this in Equation (2.3) gives us the following bound on stability of predictions of
FTPL

E [‖xt(σ)− xt+1(σ)‖1] ≤ 125ηLd2D +
βd

20ηL
+ 2βd+

α

20L
. (2.5)

Plugging the above bound in Equation (2.2) gives us the required bound on regret.

2.4 Discussion
In this chapter, we considered the problem of online learning with non-convex losses and
showed that the classical FTPL algorithm with access to an offline optimization oracle
achieves optimal regret rate of O(T−1/2). The problem of online non-convex learning has
several important applications in machine learning. In particular, the algorithms studied in
this chapter can lead to improved training procedures for adversarial training and training
of Generative Adversarial Networks, which currently rely on algorithms from online convex
learning to solve the non-convex non-concave games in their training objectives. Moreover,
we believe the algorithms in this chapter have applications to online learning in bandit
setting, and contextual bandits. Both these problems often involve computing an unbiased
estimate of the unknown loss function and reducing the problem to online learning in the

21

full-information setting. Hedge is a popular algorithm that is typically used for the latter
step [AHK12]. However, Hedge can be computationally expensive when the action space of
the learner is huge. FTPL, on the other hand, can be efficiently implemented for a number
of problems of interest, even when the action space is huge.

22

Chapter 3
Optimistic Follow the Perturbed Leader for
Convex & Nonconvex Losses

In this chapter, we study optimistic variants of FTPL, which can achieve better regret
guarantees than FTPL when the sequence of loss functions encountered by the learner
is not adversarial. While the primary focus of this thesis is on nonconvex losses, in this
chapter, we also study optimistic variants of FTPL for convex losses.

As mentioned in Chapter 2, the various algorithms that have been developed for online
learning can be classified into two broad categories, namely, Follow the Regularized Leader
(FTRL) [McM17] and FTPL [KV05] style algorithms. When the sequence of loss functions
encountered by the learner are convex, both these algorithms are known to achieve the op-
timal O

(
T 1/2

)
worst case regret [CL06; Haz16]. While these algorithms have similar regret

guarantees, they differ in their computational aspects. Each iteration of FTRL involves
optimization of a non-linear convex function over the action space (also called the projec-
tion step). In contrast, each step of FTPL involves solving a linear optimization problem,
which can be implemented efficiently for many problems of interest [GH13; GJL16; HM20].
For example, if the action space is an `p ball for some p 6∈ {1, 2,∞}, then projecting onto
this set is much more computationally expensive than performing linear optimization over
this set. As another example, consider the scenario where the action space is the set of all
positive semidefinite matrices. Then projecting onto this set requires performing expensive
singular value decompositions. Whereas, linear optimization only requires computation of
the leading eigenvector. This crucial difference between FTRL and FTPL makes the lat-
ter algorithm more attractive in practice. Even in the more general nonconvex setting,
where the loss functions encountered by the learner can potentially be nonconvex, FTPL
algorithms are attractive. In this setting, FTPL requires access to an offline optimiza-
tion oracle which computes the perturbed best response, and achieves O

(
T 1/2

)
worst case

regret. Furthermore, these optimization oracles can be efficiently implemented for many
problems by leveraging the rich body of work on global optimization [HP13].

Despite the importance and popularity of FTPL, it has been mostly studied for the
worst case setting, where the loss functions are assumed to be adversarially chosen. In
a number of applications of online learning, the loss functions are actually benign and

23

predictable [RS12]. In such scenarios, FTPL can not utilize the predictability of losses to
achieve tighter regret bounds. While Rakhlin and Sridharan [RS12] study variants of FTPL
which can make use of predictability, they consider restricted settings (see Section 3.1
for more details). This is unlike FTRL, where optimistic variants that can utilize the
predictability of loss functions have been well understood [RS12; RS13] and have been
shown to provide faster convergence rates in applications such as minimax games. In this
chapter, we aim to bridge this gap and study a variant of FTPL called Optimistic FTPL
(OFTPL), which can achieve better regret bounds, while retaining the optimal worst case
regret guarantee for unpredictable sequences. The main challenge in obtaining these tighter
regret bounds is handling the stochasticity and optimism in the algorithm, which requires
different analysis techniques to those commonly used in the analysis of FTPL. In this
chapter, we rely on the dual view of perturbation as regularization to derive regret bounds
of OFTPL.

To demonstrate the usefulness of OFTPL, we consider the problem of solving min-
imax games. A widely used approach for solving such games relies on online learning
algorithms [CL06]. In this approach, both the minimization and the maximization play-
ers play a repeated game against each other and rely on online learning algorithms to
choose their actions in each round of the game. In our algorithm for solving games, we let
both the players use OFTPL to choose their actions. For solving smooth convex-concave
games, our algorithm only requires access to a linear optimization oracle. For Lipschitz
and smooth nonconvex-nonconcave games, our algorithm requires access to an optimization
oracle which computes the perturbed best response. In both these settings, our algorithm
solves the game up to an accuracy of O

(
T−1/2

)
using T calls to the optimization ora-

cle. While there are prior algorithms that achieve these convergence rates [HH15; SN20b],
an important feature of our algorithm is that it is highly parallelizable and requires only
O(T 1/2) iterations, with each iteration making O

(
T 1/2

)
parallel calls to the optimization

oracle. We note that such parallelizable algorithms are especially useful in large-scale ma-
chine learning applications such as training of GANs, adversarial training, which often
involve huge datasets such as ImageNet [Rus+15].

3.1 Preliminaries and Background Material

In this chapter, we use a similar notation as in Chapter 2. In round t of online learning,
the learner makes a prediction xt ∈ X ⊆ Rd for some compact set X , and the adversary
simultaneously chooses a loss function ft : X → R and observe each others actions. The
goal of the learner is to choose a sequence of actions {xt}Tt=1 so that the following notion
of regret is minimized:

∑T
t=1 ft(xt)− infx∈X

∑T
t=1 ft(x).

Online Convex Learning. When the domain X and loss functions ft are convex, a
number of efficient algorithms for regret minimization have been studied. Some of these
include deterministic algorithms such as Online Mirror Descent, Follow the Regularized
Leader (FTRL) [Haz16; McM17], and stochastic algorithms such as Follow the Perturbed
Leader (FTPL) [KV05]. In FTRL, one predicts xt as argminx∈X

∑t−1
i=1〈∇i,x〉 + R(x), for

24

some strongly convex regularizer R, where ∇i = ∇fi(xi). FTRL is known to achieve the
optimal O(T 1/2) worst case regret in the convex setting [McM17]. In FTPL, one predicts
xt as m−1

∑m
j=1 xt,j, where xt,j is a minimizer of the following linear optimization problem:

argminx∈X 〈
∑t−1

i=1∇i−σt,j,x〉. Here, {σt,j}mj=1 are independent random perturbations drawn
from some appropriate probability distribution such as exponential distribution or uniform
distribution in a hyper-cube. Various choices of perturbation distribution gives rise to
various FTPL algorithms. When the loss functions are linear, Kalai and Vempala [KV05]
show that FTPL achieves O

(
T 1/2

)
expected regret, irrespective of the choice of m. When

the loss functions are convex, Hazan [Haz16] showed that the deterministic version of FTPL
(i.e., asm→∞) achieves O

(
T 1/2

)
regret. While projection free methods for online convex

learning have been studied since the early work of [HK12], surprisingly, regret bounds of
FTPL for finite m have only been recently studied [HM20]. Hazan and Minasyan [HM20]
show that for Lipschitz and convex functions, FTPL achieves O

(
T 1/2 +m−1/2T

)
expected

regret, and for smooth convex functions, the algorithm achieves O
(
T 1/2 +m−1T

)
expected

regret.

Online Learning with Optimism. When the sequence of loss functions is convex and
predictable, Rakhlin and Sridharan [RS12] and Rakhlin and Sridharan [RS13] study op-
timistic variants of FTRL which can exploit the predictability to obtain better regret
bounds. Let gt be our guess of ∇ft(xt) at the beginning of round t. Given gt, we predict
xt in Optimistic FTRL (OFTRL) as argminx∈X 〈

∑t−1
i=1∇fi(xi) + gt,x〉 + R(x). Note that

when gt = 0, OFTRL is equivalent to FTRL. [RS12; RS13] show that the regret bounds of
OFTRL only depend on (gt−∇ft(xt)). Moreover, these works show that OFTRL provides
faster convergence rates for solving smooth convex-concave games. In contrast to FTRL,
the optimistic variants of FTPL have been less well understood. Rakhlin and Sridharan
[RS12] studies OFTPL for linear loss functions. But they consider restrictive settings and
their algorithms require the knowledge of sizes of deviations (gt − ∇ft(xt)). When the
sequence of loss functions is nonconvex and predictable, there are no prior works which
study OFTPL.

Projection Free Learning. Projection free optimization algorithms are those algo-
rithms which only involve solving linear optimization problems in each iteration. They
are attractive because for many problem of interest linear optimization problems are very
easy to solve. Two broad classes of projection free techniques have been considered for
online convex learning and convex-concave minimax games, namely, Frank-Wolfe (FW)
methods and FTPL based methods. Garber and Hazan [GH13] consider the problem of
online learning when the action space X is a polytope. They provide a FW method which
achieves O

(
T 1/2

)
regret using T calls to the linear optimization oracle. Hazan and Kale

[HK12] provide a FW technique which achieves O
(
T 3/4

)
regret for general online convex

learning with Lipschitz losses and uses T calls to the linear optimization oracle. In a recent
work, Hazan and Minasyan [HM20] show that FTPL achieves O

(
T 2/3

)
regret for online

convex learning with smooth losses, using T calls to the linear optimization oracle. This
translates to O

(
T−1/3

)
rate of convergence for solving smooth convex-concave games. Note

25

that, in contrast, our algorithm achieves O
(
T−1/2

)
convergence rate in the same setting.

Gidel, Jebara, and Lacoste-Julien [GJL16] study FW methods for solving convex-concave
games. When the constraint sets X ,Y are strongly convex, the authors show geometric con-
vergence of their algorithms. In a recent work, He and Harchaoui [HH15] propose a FW
technique for solving smooth convex-concave games which converges at a rate of O

(
T−1/2

)
using T calls to the linear optimization oracle. We note that our simple OFTPL based
algorithm achieves these rates, with the added advantage of parallelizability. That being
said, He and Harchaoui [HH15] achieve dimension free convergence rates in the Euclidean
setting, where the smoothness is measured w.r.t ‖ · ‖2 norm. In contrast, the rates of
convergence of our algorithm depend on the dimension.

Notation. ‖ · ‖ is a norm on some vector space, which is typically Rd in our work. ‖ · ‖∗
is the dual norm of ‖ · ‖, which is defined as ‖x‖∗ = sup{〈u,x〉 : u ∈ Rd, ‖u‖ ≤ 1}. We
use Ψ1,Ψ2 to denote norm compatibility constants of ‖ · ‖, which are defined as Ψ1 =
supx 6=0 ‖x‖/‖x‖2, Ψ2 = supx 6=0 ‖x‖2/‖x‖.

We use the notation f1:t to denote
∑t

i=1 fi and ∇i to denote ∇fi(xi). In some cases,
when clear from context, we overload the notation f1:t and use it to denote the set
{f1, f2 . . . ft}. For any convex function f , ∂f(x) is the set of all subgradients of f at x. For
any function f : X ×Y → R, f(·,y), f(x, ·) denote the functions x→ f(x,y),y→ f(x,y).
For any function f : X → R and any probability distribution P , we let f(P) denote
Ex∼P [f(x)] . Similarly, for any function f : X × Y → R and any two distributions P,Q,
we let f(P,Q) denote Ex∼P,y∼Q [f(x,y)] . For any set of distributions {Pj}mj=1,

1
m

∑m
j=1 Pj

is the mixture distribution which gives equal weights to its components. We use Exp(η) to
denote the exponential distribution, whose CDF is given by P (Z ≤ s) = 1− exp(−s/η).

3.2 Dual view of Perturbation as Regularization
In this section, we present a key result which shows that when the sequence of loss functions
is convex, every FTPL algorithm is an FTRL algorithm. Our analysis of OFTPL relies
on this dual view to obtain tight regret bounds. This duality between FTPL and FTRL
was originally studied by Hofbauer and Sandholm [HS02], where the authors show that any
FTPL algorithm, with perturbation distribution admitting a strictly positive density on Rd,
is an FTRL algorithm w.r.t some convex regularizer. However, many popular perturbation
distributions such as exponential and uniform distributions don’t have a strictly positive
density. In a recent work, Abernethy, Lee, and Tewari [ALT16] point out that the duality
between FTPL and FTRL holds for very general perturbation distributions. However,
the authors do not provide a formal theorem showing this result. Here, we provide a
proposition formalizing the claim of [ALT16].
Proposition 2. Consider the problem of online convex learning, where the sequence of loss
functions {ft}Tt=1 encountered by the learner are convex. Consider the deterministic version
of FTPL algorithm, where the learner predicts xt as Eσ [argminx∈X 〈∇1:t−1 − σ,x〉]. Suppose
the perturbation distribution is absolutely continuous w.r.t the Lebesgue measure. Then
there exists a convex regularizer R : Rd → R ∪ {∞}, with domain dom(R) ⊆ X , such that

26

Algorithm 2 Convex OFTPL
1: Input: Perturbation Distribution PPRTB, number of samples m, number of iterations
T

2: Denote ∇0 = 0
3: for t = 1 . . . T do
4: Let gt be the guess for ∇t

5: for j = 1 . . .m do
6: Sample σt,j ∼ PPRTB

7: xt,j ∈ argminx∈X 〈∇0:t−1 + gt − σt,j,x〉
8: end for
9: Play xt = 1

m

∑m
j=1 xt,j

10: Observe loss function ft
11: end for

xt = argminx∈X 〈∇1:t−1,x〉+R(x). Moreover, −∇1:t−1 ∈ ∂R(xt), and xt = ∂R−1 (−∇1:t−1) ,
where ∂R−1 is the inverse of ∂R in the sense of multivalued mappings.

3.3 Online Learning with OFTPL

3.3.1 Online Convex Learning

In this section, we present the OFTPL algorithm for online convex learning and derive an
upper bound on its regret. The algorithm we consider is similar to the OFTRL algorithm
(see Algorithm 2). Let gt[f1 . . . ft−1] be our guess for ∇t at the beginning of round t, with
g1 = 0. To simplify the notation, in the sequel, we suppress the dependence of gt on {fi}t−1

i=1.
Given gt, we predict xt in OFTPL as follows. We sample independent perturbations
{σt,j}mj=1 from the perturbation distribution PPRTB and compute xt asm−1

∑m
j=1 xt,j, where

xt,j is a minimizer of the following linear optimization problem

xt,j ∈ argmin
x∈X

〈∇1:t−1 + gt − σt,j,x〉.

We now present our main theorem which bounds the regret of OFTPL. A key quantity
the regret depends on is the stability of predictions of the deterministic version of OFTPL.
Intuitively, an algorithm is stable if its predictions in two consecutive iterations differ by
a small quantity. To capture this notion, we first define function ∇Φ : Rd → Rd as:
∇Φ (g) = Eσ [argminx∈X 〈g − σ,x〉] . Observe that ∇Φ (∇1:t−1 + gt) is the prediction of the
deterministic version of OFTPL. We say the predictions of OFTPL are stable, if ∇Φ is a
Lipschitz function.
Definition 3.3.1 (Stability). The predictions of OFTPL are said to be β-stable w.r.t some
norm ‖ · ‖, if

∀g1, g2 ∈ Rd ‖∇Φ (g1)−∇Φ (g2) ‖∗ ≤ β‖g1 − g2‖.
Theorem 5. Suppose the perturbation distribution PPRTB is absolutely continuous w.r.t
Lebesgue measure. Let D be the diameter of X w.r.t ‖ · ‖, which is defined as D =

27

supx1,x2∈X ‖x1− x2‖. Let η = Eσ [‖σ‖∗] , and suppose the predictions of OFTPL are Cη−1-
stable w.r.t ‖ · ‖∗, where C is a constant that depends on the set X . Finally, suppose the
sequence of loss functions {ft}Tt=1 are Holder smooth and satisfy

∀x1,x2 ∈ X ‖∇ft(x1)−∇ft(x2)‖∗ ≤ L‖x1 − x2‖α,

for some constant α ∈ [0, 1]. Then the expected regret of Algorithm 2 satisfies

sup
x∈X

E

[
T∑
t=1

ft(xt)− ft(x)

]
≤ ηD +

T∑
t=1

C

2η
E
[
‖∇t − gt‖2

∗
]
−

T∑
t=1

η

2C
E
[
‖x∞t − x̃∞t−1‖2

]
+ LT

(
Ψ1Ψ2D√

m

)1+α

.

where x∞t = E [xt|gt, f1:t−1,x1:t−1] and x̃∞t−1 = E [x̃t−1|f1:t−1,x1:t−1] and x̃t−1 denotes the
prediction in the tth iteration of Algorithm 2, if guess gt = 0 was used. Here, Ψ1,Ψ2 denote
the norm compatibility constants of ‖ · ‖.

Regret bounds that hold with high probability can be found in Appendix B.7. The
above Theorem shows that the regret of OFTPL only depends on ‖∇t−gt‖∗, which quanti-
fies the accuracy of our guess gt. In contrast, the regret of FTPL depends on ‖∇t‖∗ [Haz16].
This shows that for predictable sequences, with an appropriate choice of gt, OFTPL can
achieve better regret guarantees than FTPL. As we demonstrate in Section 5.2, this helps
us design faster algorithms for solving minimax games.

Note that the above result is very general and holds for any absolutely continuous
perturbation distribution. The key challenge in instantiating this result for any particular
perturbation distribution is in showing the stability of predictions. Several past works
have studied the stability of FTPL for various perturbation distributions such as uniform,
exponential, Gumbel distributions [KV05; Haz16; HM20]. Consequently, the above result
can be used to derive tight regret bounds for all these perturbation distributions. As one
particular instantiation of Theorem 5, we consider the special case of gt = 0 and derive
regret bounds for FTPL, when the perturbation distribution is the uniform distribution
over a ball centered at the origin.
Corollary 1 (FTPL). Suppose the perturbation distribution is equal to the uniform dis-
tribution over {x : ‖x‖2 ≤ (1 + d−1)η}. Let D be the diameter of X w.r.t ‖ · ‖2. Then
Eσ [‖σ‖2] = η, and the predictions of OFTPL are dDη−1-stable w.r.t ‖ · ‖2. Suppose,
the sequence of loss functions {ft}Tt=1 are G-Lipschitz and satisfy supx∈X ‖∇ft(x)‖2 ≤ G.
Moreover, suppose ft satisfies the Holder smooth condition in Theorem 5 w.r.t ‖ · ‖2 norm.
Then the expected regret of Algorithm 2 with guess gt = 0, satisfies

sup
x∈X

E

[
T∑
t=1

ft(xt)− ft(x)

]
≤ ηD +

dDG2T

2η
+ LT

(
D√
m

)1+α

.

This recovers the regret bounds of FTPL for general convex loss functions derived
by Hazan and Minasyan [HM20].

28

Algorithm 3 Nonconvex OFTPL
1: Input: Perturbation Distribution PPRTB, number of samples m, number of iterations
T

2: Denote f0 = 0
3: for t = 1 . . . T do
4: Let gt be the guess for ft
5: for j = 1 . . .m do
6: Sample σt,j ∼ PPRTB

7: xt,j ∈ argminx∈X f0:t−1(x) + gt(x)− σt,j(x)
8: end for
9: Let Pt be the empirical distribution over {xt,1,xt,2 . . .xt,m}
10: Play xt, a random sample generated from Pt
11: Observe loss function ft
12: end for

3.3.2 Online Nonconvex Learning

We now study OFTPL in the nonconvex setting. In this setting, we assume the sequence of
loss functions belong to some function class F containing real-valued measurable functions
on X . Some popular choices for F include the set of Lipschitz functions, the set of bounded
functions. The OFTPL algorithm in this setting is described in Algorithm 3. Similar
to the convex case, we first sample random perturbation functions {σt,j}mj=1 from some
distribution PPRTB. Some examples of perturbation functions that we have considered in
Chapter 2 include σt,j(x) = 〈σ̄t,j,x〉, for some random vector σ̄t,j sampled from exponential
or uniform distributions. Another popular choice for σt,j is the Gumbel process, which
results in the continuous exponential weights algorithm [MTM14]. Letting, gt be our
guess of loss function ft at the beginning of round t, the learner first computes xt,j as
argminx∈X

∑t−1
i=1 fi(x) + gt(x)− σt,j(x). We assume access to an optimization oracle which

computes a minimizer of this problem. We often refer to this oracle as the perturbed best
response oracle. Let Pt denote the empirical distribution of {xt,j}mj=1. The learner then
plays an xt which is sampled from Pt. Algorithm 3 describes this procedure. We note
that for the online learning problem, m = 1 suffices, as the expected loss suffered by the
learner in each round is independent of m; that is E [ft(xt)] = E [ft(xt,1)]. However, the
choice of m affects the rate of convergence when Algorithm 3 is used for solving nonconvex
nonconcave minimax games.

Before we present the regret bounds, we introduce the dual space associated with F .
Let ‖ · ‖F be a seminorm associated with F . For example, when F is the set of Lipschitz
functions, ‖ · ‖F is the Lipschitz seminorm. Various choices of (F , ‖ · ‖F) induce various
distance metrics on P , the set of all probability distributions on X . We let γF denote the
Integral Probability Metric (IPM) induced by (F , ‖ · ‖F), which is defined as

γF(P,Q) = sup
f∈F ,‖f‖F≤1

∣∣∣Ex∼P [f(x)]− Ex∼Q [f(x)]
∣∣∣.

We often refer to (P , γF) as the dual space of (F , ‖ · ‖F). When F is the set of Lips-

29

γF(P,Q) ‖f‖F F
Dudley Metric Lip(f) + ‖f‖∞ {f : Lip(f) + ‖f‖∞ <∞}

Kantorovich Metric (or)
Wasserstein-1 Metric Lip(f) {f : Lip(f) <∞}

Total Variation (TV) Distance ‖f‖∞ {f : ‖f‖∞ <∞}
Maximum Mean Discrepancy (MMD)

for RKHS H ‖f‖H {f : ‖f‖H <∞}

Table 3.1: Table showing some popular Integral Probability Metrics. Here Lip(f) is the
Lipschitz constant of f which is defined as supx,y∈X |f(x)−f(y)|/‖x−y‖ and ‖f‖∞ is the
supremum norm of f .

chitz functions and when ‖ · ‖F is the Lipschitz seminorm, γF is the Wasserstein distance.
Table 3.1 presents examples of γF induced by some popular function spaces. Similar to
the convex case, the regret bounds in the nonconvex setting depend on the stability of
predictions of OFTPL.
Definition 3.3.2 (Stability). Suppose the perturbation function σ(x) is sampled from
PPRTB. For any f ∈ F , define random variable xf (σ) as argminx∈X f(x)−σ(x). Let ∇Φ (f)
denote the distribution of xf (σ). The predictions of OFTPL are said to be β-stable w.r.t
‖ · ‖F if

∀f, g ∈ F γF(∇Φ (f) ,∇Φ (g)) ≤ β‖f − g‖F .

Theorem 6. Suppose the sequence of loss functions {ft}Tt=1 belong to (F , ‖ · ‖F). Suppose
the perturbation distribution PPRTB is such that argminx∈X f(x)−σ(x) has a unique mini-
mizer with probability one, for any f ∈ F . Let P be the set of probability distributions over
X . Define the diameter of P as D = supP1,P2∈P γF(P1, P2). Let η = E [‖σ‖F]. Suppose the
predictions of OFTPL are Cη−1-stable w.r.t ‖ · ‖F , for some constant C that depends on
X . Then the expected regret of Algorithm 3 satisfies

sup
x∈X

E

[
T∑
t=1

ft(xt)− ft(x)

]
≤ ηD +

T∑
t=1

C

2η
E
[
‖ft − gt‖2

F
]
−

T∑
t=1

η

2C
E
[
γF(P∞t , P̃

∞
t−1)2

]
,

where P∞t = E [Pt|gt, f1:t−1, P1:t−1] , P̃∞t = E
[
P̃t−1|f1:t−1, P1:t−1

]
and P̃t−1 is the empirical

distribution computed in the tth iteration of Algorithm 3, if guess gt = 0 was used.
As in the convex case, the key challenge in instantiating the above result for any par-

ticular perturbation distribution is in showing the stability of predictions. In Chapter 2
we considered linear perturbation functions σ(x) = 〈σ̄,x〉, for σ̄ sampled from exponential
distribution, and showed stability of FTPL. We now instantiate the above theorem for this
setting.
Corollary 2. Consider the setting of Theorem 6. Let F be the set of Lipschitz functions
and ‖ · ‖F be the Lipschitz seminorm, which is defined as ‖f‖F = supx 6=y in X |f(x) −
f(y)|/‖x − y‖1. Suppose the perturbation function is such that σ(x) = 〈σ̄,x〉, where
σ̄ ∈ Rd is a random vector whose entries are sampled independently from Exp(η). Then

30

Eσ [‖σ‖F] = η log d, and the predictions of OFTPL are O (d2Dη−1)-stable w.r.t ‖ · ‖F .
Moreover, the expected regret of Algorithm 3 is upper bounded by

O

(
ηD log d+

T∑
t=1

d2D

η
E
[
‖ft − gt‖2

F
]
−

T∑
t=1

η

d2D
E
[
γF(P∞t , P̃

∞
t−1)2

])
.

We note that the above regret bounds are tighter than the regret bounds of FTPL
derived in Chapter 2, where we derived the following bound

O

(
ηD log d+

T∑
t=1

d2D

η
E
[
‖ft‖2

F
])

.

These tigher bounds help us design faster algorithms for solving minimax games in the
nonconvex setting (see Section 3.4 for a more detailed discussion).

3.4 Minimax Games
We now consider the problem of solving minimax games of the following form

min
x∈X

max
y∈Y

f(x,y). (3.1)

Nash equilibria of such games can be computed by playing two online learning algorithms
against each other [CL06; Haz16]. In this chapter, we study the algorithm where both the
players employ OFTPL to decide their actions in each round.

Convex-Concave games. For convex-concave games, both the players use the OFTPL
algorithm described in Algorithm 2 (see Algorithm 13 in Appendix B.4). The following
theorem derives the rate of convergence of this algorithm to a Nash equilibirum (NE).
Theorem 7. Consider the minimax game in Equation (3.1). Suppose both the domains
X ,Y are compact subsets of Rd, with diameter

D = max{ sup
x1,x2∈X

‖x1 − x2‖2, sup
y1,y2∈Y

‖y1 − y2‖2}.

Suppose f is convex in x, concave in y and is smooth w.r.t ‖ · ‖2

‖∇xf(x,y)−∇xf(x′,y′)‖2 + ‖∇yf(x,y)−∇yf(x′,y′)‖2 ≤ L‖x− x′‖2 + L‖y − y′‖2.

Suppose Algorithm 13 is used to solve the minimax game. Suppose the perturbation dis-
tributions used by both the players are the same and equal to the uniform distribution
over {x : ‖x‖2 ≤ (1 + d−1)η}. Suppose the guesses used by x,y players in the tth it-
eration are ∇xf(x̃t−1, ỹt−1),∇yf(x̃t−1, ỹt−1), where x̃t−1, ỹt−1 denote the predictions of
x,y players in the tth iteration, if guess gt = 0 was used. If Algorithm 13 is run with
η = 6dD(L+ 1),m = T , then the iterates {(xt,yt)}Tt=1 satisfy

sup
x∈X ,y∈Y

E

[
f

(
1

T

T∑
t=1

xt,y

)
− f

(
x,

1

T

T∑
t=1

yt

)]
= O

(
dD2(L+ 1)

T

)
.

31

Table 3.2: Table comparing oracle complexities of various projection free techniques for
finding an ε-approximate NE of smooth convex-concave games.

Method Total calls to linear
optimization oracle Number of iterations Parallel calls to oracle

in each iteration
FTPL O (ε−3) O (ε−2) O (ε−1)

He and Harchaoui [HH15] O (ε−2) O (ε−2) 1
OFTPL O (ε−2) O (ε−1) O (ε−1)

Rates of convergence which hold with high probability can be found in Appendix B.7.
We note that Theorem 7 can be extended to more general noise distributions and settings
where gradients of f are Holder smooth w.r.t non-Euclidean norms, and X ,Y lie in spaces
of different dimensions (see Theorem 27 in Appendix). We now discuss the above result.
• Theorem 7 shows that for smooth convex-concave games, Algorithm 13 converges to a NE
at O (T−1) rate using 4T 2 calls to the linear optimization oracle. Moreover, the algorithm
runs in T iterations, with each iteration making 4T parallel calls to the optimization
oracle. In contrast, FTPL makes 2T 3 calls to the linear optimization oracle to achieve
O (T−1) rates of convergence and runs for T 2 iterations, with each iteration making 2T
parallel calls to the optimization oracle. This can be obtained by settingm =

√
T , α = 1,

and η = O
(√

T
)
in Corollary 1.

• The Frank-Wolfe technique of He and Harchaoui [HH15] achieves the same convergence
rates as our algorithm; that is, it achieves O (T−1) rates using T 2 calls to the linear
optimization oracle. However, unlike [HH15], our algorithm is parallelizable and can be
run in T iterations.

• He and Harchaoui [HH15] achieve dimension free convergence rates in the Euclidean
setting, where the smoothness is measured w.r.t ‖ · ‖2 norm. In contrast, the rates
of convergence of our algorithm depend on the dimension. We believe the dimension
dependence in the rates can be removed by appropriately choosing the perturbation
distributions based on domains X ,Y (see Appendix B.6).

• Note that OFTRL also achieves O (T−1) rates of convergence after T iterations. However,
each iteration of OFTRL involves optimization of a non-linear convex function over the
domains X ,Y , which can be quite expensive in practice.

Nonconvex-Nonconcave games. We now consider the more general nonconvex - non-
concave games. In this case, both the players use the nonconvex OFTPL algorithm de-
scribed in Algorithm 3 to choose their actions. Instead of generating a single sample from
the empirical distribution Pt computed in tth iteration of Algorithm 3, the players now play
the entire distribution Pt (see Algorithm 14 in Appendix B.5). Letting {Pt}Tt=1, {Qt}Tt=1,
be the sequence of iterates generated by the x and y players, the following theorem shows
that

(
1
T

∑T
t=1 Pt,

1
T

∑T
t=1 Qt

)
converges to a NE.

Theorem 8. Consider the minimax game in Equation (3.1). Suppose the domains X ,Y are
compact subsets of Rd with diameter D = max{supx1,x2∈X ‖x1−x2‖1, supy1,y2∈Y ‖y1−y2‖1}.

32

Suppose f is Lipschitz w.r.t ‖ · ‖1 and satisfies

max

{
sup

x∈X ,y∈Y
‖∇xf(x,y)‖∞, sup

x∈X ,y∈Y
‖∇yf(x,y)‖∞

}
≤ G.

Moreover, suppose f satisfies the following smoothness property

‖∇xf(x,y)−∇xf(x′,y′)‖∞ + ‖∇yf(x,y)−∇yf(x′,y′)‖∞ ≤ L‖x− x′‖1 + L‖y − y′‖1.

Suppose both x and y players use Algorithm 14 to solve the game with linear perturbation
functions σ(z) = 〈σ̄, z〉, where σ̄ ∈ Rd is such that each of its entries is sampled inde-
pendently from Exp(η). Suppose the guesses used by x and y players in the tth iteration
are f(·, Q̃t−1), f(P̃t−1, ·), where P̃t−1, Q̃t−1 denote the predictions of x,y players in the tth
iteration, if guess gt = 0 was used. If Algorithm 14 is run with η = 10d2D(L+ 1),m = T ,
then the iterates {(Pt, Qt)}Tt=1 satisfy

sup
x∈X ,y∈Y

E

[
f

(
1

T

T∑
t=1

Pt,y

)
− f

(
x,

1

T

T∑
t=1

Qt

)]
= O

(
d2D2(L+ 1) log d

T

)
+O

(
min

{
D2L,

d2G2 log T

LT

})
.

More general versions of the Theorem, which consider other function classes and general
perturbation distributions, can be found in Appendix B.5. The above result shows that
Algorithm 14 converges to a NE at Õ (T−1) rate using T 2 calls to the perturbed best
response oracle. This matches the rates of convergence of FTPL derived in Chapter 2.
However, the key advantage of our algorithm is that it is highly parallelizable and runs in
O (T) iterations, in contrast to FTPL, which runs in O (T 2) iterations.

3.5 Discussion
We studied an optimistic variant of FTPL which achieves better regret guarantees when
the sequence of loss functions is predictable. As one specific application of our algorithm,
we considered the problem of solving minimax games. For solving convex-concave games,
our algorithm requires access to a linear optimization oracle and for nonconvex-nonconcave
games our algorithm requires access to a more powerful perturbed best response oracle. In
both these settings, our algorithm achieves O

(
T−1/2

)
convergence rates using T calls to the

oracles. Moreover, our algorithm runs in O
(
T 1/2

)
iterations, with each iteration making

O
(
T 1/2

)
parallel calls to the optimization oracle. We believe our improved algorithms for

solving minimax games are useful in a number of modern machine learning applications
such as training of GANs, adversarial training, which involve solving nonconvex-nonconcave
minimax games and often deal with huge datasets.

33

34

Part II

Bandit Optimization

35

Chapter 4
Efficient Bandit Optimization for Convex
Quadratic Losses

In this chapter, we study the problem of online learning with bandit feedback, which can
be viewed as a repeated game between a learner and an adversary. In round t of this
game, the learner chooses an action xt from a known domain X ⊂ Rd. The adversary
simultaneously selects a loss function ft : X → and reveals the loss suffered by the learner
ft(xt). The performance of the learner at the end of T rounds is measured using regret

RegT =
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x).

For this problem, we would like to design an algorithm for choosing xt that satisfies the
following key criteria: (a) (optimal regret) achieves regret bounds which have optimal
dependence on T , and which hold in high-probability against adaptive adversaries, and (b)
(computational efficiency) the run-time of each iteration of algorithm should have a
small dependence on dimension d, e.g., polynomial dependence with a small exponent, and
independent of the number of rounds T (ideally, we would like it to have similar run-time
as efficient algorithms for online learning in the full information setting).

The framework of bandit optimization is extremely general and has found numerous
practical applications in fields such as computer science, economics, game theory, and med-
ical decision making. Some of these applications include design of clinical trials, market
pricing, online ad placement, and recommender systems [Kle05; BC12; Haz16]. Owing to
its importance, there has been extensive work on designing low-regret algorithms for bandit
optimization. Early works on this problem have focused on finite action space X , in which
case the problem is called multi-armed bandit (MAB) problem. This problem has been
well studied and several efficient algorithms achieving the optimal high-probability regret
rate of O

(
T 1/2

)
have been developed [Aue+02; AB10; Lee+20]. Later works on bandit

optimization have turned to continuous action spaces and convex loss functions. Seminal
works along this line have developed online gradient descent style algorithms for regret
minimization [FKM04; Kle05]. When the loss functions ft are convex and bounded, these

37

algorithms achieve O
(
T 5/6

)
regret in expectation. Improving upon these regret guarantees

has remained an open problem until the works of Hazan and Li [HL16] and Bubeck, Lee,
and Eldan [BLE17]. The algorithms developed in these latter works achieve the optimal
Õ
(
T 1/2

)
regret, albeit they are computationally expensive and are not efficiently imple-

mentable in practice. In particular, the run time of the algorithm of Hazan and Li [HL16]
depends exponentially on the dimension, and the algorithm of Bubeck, Lee, and Eldan
[BLE17] involves minimization of an approximately convex function over a nonconvex set,
which is non-trivial in practice1.

Despite years of research, designing efficient algorithms for bandit convex optimiza-
tion (BCO) has turned out to be challenging. This can be attributed to the extremely
limited information available to the learner about the loss functions chosen by the adver-
sary. Consequently, several works have focused on sub-cases of BCO. These works can
be classified into two broad categories. One category imposes parametric assumptions
such as linearity on the loss functions. The other category imposes structural assump-
tions such as strong convexity. The most popular parametric assumption that is studied
in the literature is the linearity assumption [AHR09]. Recent works have designed efficient
algorithms achieving optimal regret guarantees under this assumption [Lee+20]. How-
ever, apart from linearity, to the best of our knowledge, no other parametric assumption
has been considered in the literature. When it comes to structural assumptions, several
works have considered assumptions such as Lipschitzness [FKM04], smoothness [ST11],
and strong convexity, smoothness [HL14; Ito20]. Perhaps surprisingly, among all these
assumptions, computationally efficient and optimal algorithms are only known for strongly
convex, smooth functions [HL14]. While these results are interesting, it should be noted
that strong convexity is a restrictive assumption which rarely holds in practice. Conse-
quently, it is important to relax this assumption. However, the oracle lower bounds of Hu,
Prashanth, György, and Szepesvari [Hu+16] suggest that designing optimal algorithms
for non-strongly convex, smooth functions might require new and different algorithmic
techniques to those used in existing works. In particular, all existing works which design
computationally efficient algorithms first estimate the gradient of the loss function from
one-point feedback, and then use Online Mirror Descent (OMD) style updates to choose
the next action. The lower bounds of Hu, Prashanth, György, and Szepesvari [Hu+16]
suggest that such techniques will not be able to achieve the optimal Õ

(
T 1/2

)
regret for

non-strongly convex, smooth functions. So, to make progress along this line, we need new
algorithmic techniques. Unfortunately, it is unclear how to come up with such techniques
for general convex functions.

This Chapter. In this chapter, we make progress on this problem by designing an effi-
cient algorithm for convex, quadratic loss functions that achieves optimal high-probability
regret guarantees against an adaptive adversary. To be precise, our algorithm achieves a
regret of Õ

(
d16
√
T
)
, which is known to be optimal in T (see Dani, Hayes, and Kakade

1Although Bubeck, Lee, and Eldan [BLE17] present a modified algorithm for polytopes which can
be implemented in polynomial time, the per iteration runtime of this algorithm has a large polynomial
dependence on d and a linear dependence on T .

38

[DHK07] for lower bounds on the regret). In terms of computation, the key computational
bottleneck of our algorithm involves generating uniform samples from a convex set. This
is a well studied problem and several efficient MCMC algorithms such as Hit-and-run algo-
rithms have been developed for this problem [LV03; Bel+15; LLV20]. For action sets which
are polytopes with m constraints, the amortized time complexity of each iteration of our
algorithm is Õ

(
m2d3+md6

T
+md4 +m2d

)
. In comparison, the only existing computation-

ally efficient and optimal algorithm for this setting has a time complexity of Õ (poly(dm)T)
with a much larger exponent on d [BLE17]. Moreover, the runtime of each iteration of this
algorithm has a linear dependence on T , thus making it extremely inefficient for large T .

Furthermore, our algorithm is robust to model mis-specification: if each loss function
ft is ε-close to a convex, quadratic function in ‖ · ‖∞ norm, the regret of our algorithm
is bounded by Õ

(
εT + d16

√
T
)
. We believe robustness is necessary for algorithms which

focus on sub-cases of BCO, as the assumptions on loss functions do not typically hold
in practice. However, most existing works do not study this property. To the best of
our knowledge, ours is the first algorithm for BCO with quadratic functions, which is
computationally efficient, robust and achieves optimal regret guarantees.

Techniques. Our algorithm is a regularized Newton’s method with self concordant bar-
rier of X as the regularizer. It involves estimation of gradients and Hessians of the loss
functions from single point feedback. This is unlike most existing computationally efficient
algorithms which rely only on the gradient estimates to choose their actions [ST11; HL14].
As previously mentioned, gradient information alone doesn’t suffice to design algorithms
achieving optimal regret for nonlinear losses (see Section 4.4.1 for empirical evidence). So,
in this chapter, we estimate both the gradient and Hessian of the unknown loss function
and use the estimates in a regularized Newton method. However, estimating the Hessian
comes with its own challenges. The variance of the Hessian estimates is typically very
large. Consequently, we need new techniques to cancel the effect of variance. In this chap-
ter, we crucially rely on “focus regions” to handle the variance. This technique is inspired
by Bubeck, Lee, and Eldan [BLE17], who use similar ideas to design an optimal, albeit
computationally inefficient, algorithm for general convex functions. At a high level, the
variance of the Hessian estimates can only be controlled in a small region, which we call
focus region. So, we restrict ourselves to this region and always choose actions within this
region. However, the resulting algorithm only ensures low regret with respect to (w.r.t)
points in the focus region. To ensure low regret even w.r.t points outside the focus region,
we perform a test every iteration called “restart condition”. Intuitively, this test checks
if the minimizer of the cumulative loss over the entire domain falls well within the focus
region. If yes, we continue the algorithm, as having a low regret w.r.t points in the focus
region ensures the overall regret is low. The test fails when the minimizer gets too close
to the boundary of the focus region. In this case, we show that the regret of our actions
until now is negative, and restart the algorithm.

While the ideas of focus region and restart condition appeared in Bubeck, Lee, and
Eldan [BLE17], we note that new techniques are needed to make this approach computa-

39

tionally efficient. Restricting to quadratics doesn’t automatically make Bubeck, Lee, and
Eldan [BLE17]’s approach computationally efficient. To make our algorithm efficient, we
move away from the exponential weights update scheme used by Bubeck, Lee, and Eldan
[BLE17] and instead rely on Newton method and OMD framework. Moreover, we design
a new test for the restart condition that is much more computationaly efficient than the
test of Bubeck, Lee, and Eldan [BLE17] (see Section 4.4 for more details).

Before we proceed, we note that our algorithm requires access to a self-concordant
barrier (SCB) of X which satisfies certain assumption on the behavior of its Hessian (see
Assumption 1). If X ⊂ R, then any SCB satisfies this property (see Proposition 4).
Moreover, we show that the log-barrier of any polyhedral set satisfies this property. We
conjecture that any SCB of any convex action set X ⊂ Rd satisfies this property.

Paper Organization. Section 4.1 presents necessary background. Section 4.2 presents
our main results. Section 4.3 discusses some of the related works. Section 4.4 presents our
algorithm and Section 4.5 discusses the key ideas used in the algorithm. In Section 4.6 we
discuss the computational aspects of our algorithm. We conclude with Section 4.7. Due to
the lack of space, most proofs are presented in the appendix.

4.1 Problem Setting and Background
Notation. Throughout the paper, we denote vectors by bold-faced letters (x), and ma-
trices by capital letters (A). ‖ · ‖ is the Euclidean norm in Rd and ‖ · ‖A is the weighted
Euclidean norm, i.e., ‖x‖A = 〈Ax,x〉1/2, where A is a positive definite matrix. We let
Br(x) denote an `2 ball of radius r centered at x, i.e., Br(x) = {y : ‖y − x‖ ≤ r}. We let
Br,A(x) = {y : ‖x− y‖A ≤ r}. For any strictly convex twice differentiable function f , we
define the local norm at x as ‖v‖x,f = 〈v,∇2f(x)v〉1/2. ∂X denotes the boundary of a set
X . b = Õ (a) implies b ≤ Ca log a for a large enough constant C independent of a.

A function f : X → R is ε-close to a function g : X → R if supx∈X |f(x)− g(x)| ≤ ε. A
function f is a quadratic function if it can be parameterized as f(x;A,b, c) = 1

2
〈x, Ax〉+

〈b,x〉 + c, for some A ∈ Rd×d,b ∈ Rd, c ∈ R. In addition, if (A + AT) is positive semi-
definite, then f is called a convex quadratic function. Note that the set of linear functions
is a subset of the set of convex quadratic functions. We let Et denote the conditional
expectation conditioned on all randomness in the first t − 1 rounds. We use Bd,Sd−1 to
denote the d-dimensional unit ball and unit sphere w.r.t Euclidean norm. We let u ∼
Bd,v ∼ Sd−1 denote the random variables chosen uniformly from these sets.

Problem Setting. In this chapter, we assume that the action space X is convex, compact
and has non-empty interior. Without loss of generality, we assume X contains an Euclidean
ball of radius 1, and has an `2 diameter of D, i.e., supx,y∈X ‖x − y‖ ≤ D. We assume
that each loss function ft is ε-close to a convex quadratic function qt which is bounded and
Lipschitz, i.e., supx∈X |qt(x)| ≤ B, and for all x,y ∈ X , |qt(x)−qt(y)| ≤ L‖x−y‖. Finally,
we assume the adversary is adaptive, i.e., the decisions of the adversary can depend on
the learner’s previous actions.

40

4.1.1 One-point Gradient and Hessian Estimates

A major component of our algorithm involves estimating the gradient and Hessian of the
unknown loss function from one-point feedback provided by the adversary. These estimates
are then used in OMD to pick the next move of the learner. In this chapter, we rely on
the following randomized sampling scheme to compute these estimates.
Proposition 3. Let f : Rd → R be a quadratic function. Let C ∈ Rd×d be any symmetric
positive definite matrix. Then

∇f(x) = dEv1,v2∼Sd−1

[
C−1v1f(x + Cv1 + Cv2)

]
,

∇2f(x) =
d2

2
Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1)C−1f(x + Cv1 + Cv2)

]
.

To generate unbiased estimates of the gradient and Hessian of f at x, we first randomly
sample v1 and v2 from uniform distribution on Sd−1, and get the one-point feedback from
the adversary about f(x+Cv1+Cv2), and then rely on the above proposition. We note that
one can also rely on Gaussian smoothing to estimate this information (see Proposition 16
in Appendix). For the simplicity and clarity of analysis, in this chapter, we use the above
sampling scheme instead of Gaussian smoothing. However, our algorithm and its analysis
can be modified in a straightforward way to rely on Gaussian smoothing.

4.1.2 Self Concordant Barriers

Self Concordant Barriers (SCBs) play a crucial role in our algorithm and its analysis. So,
in this section, we define SCB and present some of its useful properties.
Definition 4.1.1. Let X ⊆d be a closed convex set with non-empty interior. A function
R : int(X)→ is called a ν-self-concordant barrier of X , if

1. (Barrier Property) R is three times continuously differentiable with R(xk) → ∞
along every sequence {xk ∈ int(X)} converging to a boundary point of X , as k →∞

2. R satisfies the following for all x ∈ int(X), h ∈d,

|∇3R(x)[h, h, h]| ≤ 2|∇2R(x)[h, h]|3/2, |〈∇R(x), h〉| ≤
√
ν|∇2R(x)[h, h]|1/2.

Without loss of generality, we assume minx∈X R(x) = 0. It is well known that R satisfies
the following properties (see Appendix C.7 for a more comprehensive review)
• (P1) Dikin Ellipsoid : For any x ∈ int(X), the Dikin ellipsoid centered at x, B1,∇2R(x)(x),
is entirely contained in X .

• (P2) For any x ∈ int(X), and y ∈ B1,∇2R(x)(x), we have

(1− ‖x− y‖∇2R(x))
2∇2R(x) � ∇2R(y) � 1

(1− ‖x− y‖∇2R(x))2
∇2R(x). (4.1)

In this chapter, we assume that X has an SCB which satisfies the following additional
property.

41

Assumption 1. For any x,y ∈ int(X) such that ‖y − x‖∇2R(x) ≤ λ

∇2R(y) � 1

(1 + λ)2
∇2R(x). (4.2)

The following propositions show that a wide range of action spaces have SCBs which
satisfy this property. We conjecture that any SCB satisfies this property.
Proposition 4. Suppose X ⊆ R. Then any SCB of X satisfies Assumption 1.
Proposition 5. Suppose X ⊆ Rd is polyhedral, i.e., it is the intersection of a finite num-
ber of closed half spaces. Then the logarithmic barrier of X is an SCB which satisfies
Assumption 1.

4.2 Main Results
Theorem 9 (Approximately quadratic losses). Suppose ft is ε-close to a convex, quadratic
function qt(x) = 1

2
xTAtx+ 〈bt,x〉+ ct, for ε = O

(
dBT−1/2

)
. Let R be a ν-self-concordant

barrier of X that satisfies Assumption 1. Suppose Algorithm 4 is run for T iterations with
appropriate choice of hyper-parameters. Suppose the diameter of X is bounded by T , and
the Lipschitz constants of {qt}Tt=1 are bounded by T . Then with probability at least 1 − δ,
the regret of the algorithm is upper bounded by Õ

(
d11(d+ ν)5

√
T
)
.

Remarks. We now briefly discuss the above result. See Table 4.1 for a detailed
comparison of our algorithm with other related algorithms.
• Our algorithm achieves the optimal regret guarantees in high probability, against adap-
tive adversaries. In comparison with Bubeck, Lee, and Eldan [BLE17], our regret bound
has similar dependence on T and slightly worse dependence on dimension d. We believe
the dimension dependence of our regret can be improved to d8 using a tighter analysis.
Also note that the OMD based algorithm of Saha and Tewari [ST11], which only relies
on gradient estimates of loss functions, achieves a sub-optimal regret of Õ

(
T 2/3

)
.

• There are two key computational bottlenecks in our approach: (a) (uniform sampling)
on an average, each iteration of our algorithm involves generating Õ

(
d
T

)
samples from

uniform distribution over a convex set. This is a well studied problem and several
efficient algorithms are known for uniform sampling from various classes of convex sets.
To derive concrete runtime bounds, we consider the special case of the action set X
being a polytope with m constraints. By relying on the algorithm of Laddha, Lee,
and Vempala [LLV20], we can generate a single sample in Õ (m2d2 + (m+ d)d4) time.
(b) (Newton update) The Newton update in our algorithm involves minimization of a
convex objective. This objective can be minimized using plethora of convex optimization
techniques that have been developed. For the special case of action set being a polytope
with m constraints, this objective can be minimized in Õ (m2d+ (m+ d)d3) time using
interior point methods (IPM).

• Our algorithm is robust to model mis-specification. In particular, even if each loss
function ft is O

(
T−1/2

)
away from a convex, quadratic function, our algorithm achieves

the optimal regret. This result can be improved in a straightforward fashion: suppose

42

Paper Regret Adversary
amortized time complexity

of each iteration
(dependence on d, T)

Hazan and Li [HL16] Õ
(

2d
4
(log T)2dT 1/2

)
(h.p) adaptive O

(
(log T)poly(d)

)
Bubeck, Lee, and Eldan [BLE17] Õ

(
d9.5T 1/2

)
(h.p) adaptive O

(
2d
)

Bubeck, Lee, and Eldan [BLE17]
(computationally
efficient variant)

Õ
(
d10.5T 1/2

)
(h.p) adaptive Õ (poly(dm)T)

Saha and Tewari [ST11] Õ
(
d2/3T 2/3

)
(exp) oblivious involves minimization of

a self concordant function

Flaxman, Kalai, and McMahan [FKM04] Õ
(
d1/2T 3/4

)
(exp) oblivious involves projecting a

point onto a convex set
This chapter

(instantiation for polytopes) Õ
(
d16T 1/2

)
(h.p) adaptive

Õ
(
m2d3+(m+d)d5

T

)
+Õ ((m+ d)d3 +m2d)

Table 4.1: Comparison of various approaches for BCO with quadratic losses. “h.p”, “exp”
in the second column denote high probability and expected regret bounds respectively. m
in the last column denotes the number of constraints in the polytope.
each ft is εt close to a convex, quadratic function. Then our algorithm achieves the
optimal regret as long as

∑T
t=1 εt = O

(
T 1/2

)
.

4.3 Related Work

In this section, we present a review of bandit optimization that is necessarily incomplete
but is relevant to the current work. Multi-armed bandits is perhaps the simplest and most
well studied sub-case of bandit optimization. Several efficient and optimal algorithms have
been proposed for this problem [AB+09; AB10; ALT15; Lee+20]. These algorithms first
estimate the unknown loss function from one-point feedback, and then rely on Follow-the-
Regularized-Leader (FTRL) framework with appropriate regularizer to choose the next
action.

Moving beyond MAB, several recent works on bandit optimization have focused on
BCO. For bounded, convex functions, Flaxman, Kalai, and McMahan [FKM04] and Klein-
berg [Kle05] developed online gradient descent style algorithms which achieve Õ

(
T 5/6

)
regret. Recent works of Bubeck, Lee, and Eldan [BLE17] and Hazan and Li [HL16] im-
proved upon this result and developed algorithms which achieve the optimal Õ

(
T 1/2

)
re-

gret (also see Lattimore [Lat20] for information-theoretic upper bounds). However, these
algorithms are computationally expensive. Moreover, the regret bounds of Hazan and Li
[HL16] have exponential dependence on dimension. As previously mentioned, several works
have studied sub-cases of BCO. The most popular among these sub-cases is bandit linear
optimization. For this problem, Abernethy, Hazan, and Rakhlin [AHR09] provided the
first efficient algorithm with optimal O

(
T 1/2

)
regret in expectation (see Dani, Hayes, and

Kakade [DHK07] for lower bounds on regret for linear losses). This algorithm uses one-point
estimate of the gradient and relies on OMD with SCB of X as the regularizer to choose
the next action. Subsequent works have attempted to develop algorithms which achieve
optimal regret in high-probability [Bar+08; AR09]. However, this turned out to be a dif-
ficult problem. It is only recently that an efficient and optimal algorithm for this problem

43

was designed [Lee+20]. A related line of work studied generalizations of linear bandits in
euclidean space to the framework of Reproducing Kernel Hilbert Spaces (RKHS) [CPB19;
TS20]. As an application of this general framework, Chatterji, Pacchiano, and Bartlett
[CPB19] study convex quadratic losses. However, their algorithm, which is based on expo-
nential weights update scheme, is computationally inefficient as it involves sampling from
non log-concave distributions, which is NP-hard in general. Moving beyond linear losses,
Flaxman, Kalai, and McMahan [FKM04] provided an algorithm with O

(
T 3/4

)
regret for

convex, Lipschitz loss functions. Saha and Tewari [ST11] provided an algorithm for convex,
smooth loss functions with Õ

(
T 2/3

)
regret. For strongly convex, smooth functions, Hazan

and Levy [HL14] and Ito [Ito20] provide algorithms which achieve the optimal Õ
(
T 1/2

)
regret (see Shamir [Sha13] for lower bounds on regret for strongly convex losses).

Another active line of research on bandit optimization has focused on handling weaker
adversary models. One such popular model is the stochastic adversary model, where it
is assumed that the loss functions seen by the learner are independent samples generated
from an unknown but fixed distribution [LR85; AG12; Fil+10; Kve+20; Aga+11; Sri+09].
Recently, there has been a flurry of research on designing computationally efficient and
optimal regret algorithms for this setting. However, these algorithms usually have poor
performance in the stronger adversary model considered in this chapter. Yet another line
of research on bandit optimization has focused on multi-point feedback models where the
player can query each loss function at multiple points. Several recent works have designed
efficient algorithms for this setting [ADX10; Duc+15; Sha17]. These works show that it
is possible to achieve similar regret guarantees in this setting as in the full-information
setting.

4.4 Regularized Bandit Newton Algorithm

In this section we describe our algorithm for BCO (see Algorithm 4). At a high level, our
algorithm tries to estimate the missing information (i.e., gradient and Hessian) about the
unknown loss function and pass it to the OMD framework, which chooses the next action.
Gradient and Hessian estimation. To estimate the gradient and Hessian of ft at
xt, we rely on the following randomized sampling scheme. We first randomly sample a
point from the uniform distirbution on a ellipsoid with mean xt and whose covariance
matrix depends on the Hessian estimates of the past loss functions {fs}t−1

s=1. Next, we
get one-point feedback from the adversary about the loss value at the sampled point, and
use it to estimate the gradient and Hessian (see lines 6-13 of Algorithm 4). Our choice
of the covariance matrix ensures that the sampling scheme adapts to the geometry of the
cumulative loss

∑t−1
s=1 fs(x). In particular, it reduces exploration along directions which are

strongly convex, and increases exploration along directions which are linear. This choice of
exploration helps us achieve the right balance between exploration and exploitation, and
plays a crucial role in achieving optimal regret guarantees.
Focus Region. Once we have an estimate of the gradient and Hessian, we construct a
quadratic approximation of ft around xt (see line 14 of Algorithm 4). One caveat with this

44

approximation, however, is that it is not guaranteed to have a low variance. To see this,
first note that the variance of our estimate f̂t(x) scales with ‖x− xt‖Mt (look at line 6 for
definition of Mt). If xt gets too close to the boundary of X , then ‖∇2R(xt)‖2 and ‖Mt‖2

become very large. This in turn increases the variance of f̂t(x), for x far away from xt.
Consequently, we can not directly plug in the estimate f̂t(x) into the OMD framework to
choose the next action. To handle this issue, we rely on focus regions. In each iteration
of the algorithm, we maintain a focus region Ft which satisfies the following key property:
the variance of the quadratic approximation within Ft is small and bounded. To this end,
we choose an Ft such that ‖x− xt‖Mt is bounded for any x ∈ Ft. When picking the next
action xt+1 using OMD, we restrict ourselves to the focus region Ft.

At the beginning of the algorithm, we set F1 to Xξ, a scaled version of X , which is
defined as Xξ = ξx1 + (1 − ξ)X , where ξ = T−4 and x1 is the minimizer of R(x) over
X . We use Xξ instead of X purely for theoretical reasons, as it simplifies our proofs. In
practice, one can set F1 to X . To ensure Ft satisfies the above mentioned property on low
variance, we perform a check in each iteration of the algorithm (see lines 20-25). Intuitively,
this checks if the current focus region has a large overlap with Bα,Mt(xt), the region of low
variance of the quadratic approximation. If yes, we do not change the focus region. If not,
we shrink the focus region so that it overlaps with the low variance region. Moreover, we
simultaneously increase the learning rate (ηt) of OMD. This learning rate change ensures
that the algorithm can quickly adapt to any changes of the adversary. If the adversary
attempts to move the minimizer of minx∈Xξ

∑t
s=0 fs(x) outside of the focus region, then

increasing the learning rate helps us quickly detect this change. This plays a crucial role
in the restart condition, which we explain next. Several recent works have used the idea
of increasing learning schedule for various purposes [Aga+17; BLE17; Lee+20].

Restart Condition. By relying on focus regions, we can only guarantee low regret w.r.t
points within the focus region. To ensure low regret even w.r.t points outside the focus
region, we perform another test every iteration, which we call “restart condition” (see lines
15-18). Intuitively, this test checks if the minimizer of minx∈X

∑t
s=1 fs(x) is well within

the focus region. If yes, we continue the algorithm, as having a low regret w.r.t points in
the focus region ensures the overall regret is low. If instead the test fails, then it usually
implies that the minimizer is too close to the boundary of the focus region ∂Ft ∩ int(X).
In this case we show that the regret of our actions until now is negative. So, we can safely
restart the algorithm. That is, we act as if time step t + 1 is time step 1 and run the
algorithm for T − t steps.

We note that the ideas of focus region and restart condition appeared in the work of
Bubeck, Lee, and Eldan [BLE17]. However, their approach is computationally expensive,
even after restricting the loss functions to convex quadratics. There are two main reasons
for this:
1. the algorithm of Bubeck, Lee, and Eldan [BLE17] relies on exponential weights update

scheme. Each iteration of this algorithm involves generating Õ (d) samples from an
approximately log-concave distribution, which can be computationally expensive in high
dimensions. In contrast, we rely on OMD framework in our work, which doesn’t require

45

access to an approximately log-concave sampler.
2. the restart condition of Bubeck, Lee, and Eldan [BLE17] involves optimization of an

approximately convex objective over a non-convex set. To be precise, the authors use
the following restart condition

min
y∈∂Ft∩int(X)

t∑
s=0

f̂s(y)−min
y∈Ft

t∑
s=0

f̂s(y) ≤ 1

η1

.

Implementing this can be NP-hard in general because the domain of the first optimiza-
tion is a nonconvex set. While the authors present a modified algorithm to handle this
issue, it is still computationally expensive (the runtime of each iteration is Õ (daT) for
some large a). Moreover, the modified algorithm only works for constraint sets which are
polytopes and whose coefficients in the constraints are rational numbers with absolute
values of numerators and denominators bounded by poly(T). In contrast, the restart
condition we use only involves minimization of minx∈Ft

∑t
s=0 f̂s(x), which we show is

approximately convex and can be optimized efficiently (see Section 4.6).

4.4.1 Importance of Hessian Estimates

In this section we empirically demonstrate that existing OMD algorithms that only rely
on gradient information don’t achieve optimal regret bounds for quadratic losses [AHR09;
ST11; HL14].

Lets consider a simple example where the adversary always selects the following loss
function in each iteration: ft(x) =

∑d/2
i=1 x

2
i +
∑d

i=1 xi. Here, we choose the domain X to be
Bd. In this case, all the three algorithms mentioned above get sub-optimal regret of Ω(T 2/3)
(see image for empirical evidence). This is because Mt (defined in line 6 of Algorithm 4),
which controls the exploration, is not chosen appropriately by these algorithms. Ideally, we
should explore the first d/2 directions less and the last d/2 directions more. This is because
the expected regret of these algorithms depends on the following term: E[ft(yt) − ft(xt)]
= E[ft(xt+M

−1/2
t vt)−ft(xt)] =

∑d/2
i=1 E[(M

−1/2
t vt)

2
i]. So a good choice ofMt should ensure

E[(M
−1/2
t vt)

2
i] is low for the first d/2 coor-

dinates. We achieve this in our algorithm
by relying on Hessian estimates, which tell us
how much exploration to do in each direc-
tion. For the example considered here, Mt

in our algorithm is approximately equal to
∇2R(xt) +

∑t−1
s=0 2ηs∇2fs(x). For this choice of

Mt, E[(M
−1/2
t vt)

2
i] goes down with t along the

first d/2 directions. As a result, our algorithm
performs less exploration along directions with
large curvature, and more exploration along directions with small curvature, and achieves
the optimal trade-off between exploration and exploitation. If we do uniform exploration
in all directions (similar to existing algorithms), then we don’t achieve the optimal regret.

46

4.5 Analysis
In this section we provide an outline of the proof of our main result stated in Theorem 9.
We prove the following Theorem from which Theorem 9 follows readily.
Theorem 10 (Regret). Consider the setting of Theorem 9. Suppose Algorithm 4 is run
for T iterations with the following hyper-parameters

λ =
1

4
, α = c1(ν + d)d log2 dT , β = d log dT , γ =

c2

d log T
, η1 =

c3

d7(B + ε)α4
√
T log T

,

for some universal constants c1, c2, c3 > 0. Let T be the minimum between T and the first
time at which the algorithm restarts. Then with probability at least 1− δ

T∑
t=1

ft(yt)−min
x∈X

T∑
t=1

ft(x) ≤

{
Õ
(
d11(d+ ν)5

√
T
)

if T = T

0 otherwise
.

Proof. (Sketch) We first consider the case where the restart condition triggered for the first
time at iteration T < T . Then we show that the regret of the learner until T is negative.
There are several key steps involved in showing this result:

1. We first show that the minimizer of the cumulative loss
∑T

s=0 fs(x) over the entire do-
main X lies in FT ; that is, minx∈X

∑T
s=0 fs(x) = minx∈FT

∑T
s=0 fs(x). This immediately

entails that the regret after T iterations satisfies.

RegT =
T∑
s=0

fs(ys)− min
x∈FT

T∑
s=0

fs(x).

2. Next, consider the following for any x ∈ FT
T∑
s=0

fs(ys)−
T∑
s=0

fs(x) =
T∑
s=0

[fs(ys)− fs(xs)] +
T∑
s=0

[
fs(xs)− fs(x)− f̂s(xs) + f̂s(x)

]
+

T∑
s=0

[
f̂s(xs)− f̂s(x)

]
.

Recall yt − xt = λM
−1/2
t (v1,t + v2,t). Relying on standard martingale concentration

inequalities, the first term in the RHS above can be bounded as Õ
(
dη−1

1

)
. To bound the

second term, we rely on a key property of our loss estimates {f̂t}Tt=1: the cumulative loss
estimate concentrates well around the true cumulative loss (see Proposition 6). Using
this property, the second term can be bounded as O

(
η−1

1

)
. To bound the last term, we

rely on the definition of restart condition which says that
∑T

s=0 f̂s(xs)− f̂s(x) ≤ −βη−1
1 .

Combining these bounds shows that the regret after T iterations is negative.

Next, consider the case where the restart condition never triggered. Here, we can again
show that the minimizer of the cumulative loss over the entire domain lies in the focus

47

region FT . So it suffices to bound
∑T

s=0 fs(ys) −minx∈FT
∑T

s=0 fs(x). Consider the same
decomposition of regret as above. We use the same arguments as above to bound the first
two terms in the decomposition. To bound the thrid term, we consider the following

T∑
s=0

[
f̂s(xs)− f̂s(x)

]
=

T∑
s=0

[
f̂s(xs)− f̂s(xs+1)

]
+

T∑
s=0

[
f̂s(xs+1)− f̂s(x)

]
.

The first term in the RHS can be upper bounded using stability of the iterates ‖xt−xt+1‖Mt

(in our proof we show that ‖xt−xt+1‖Mt is upper bounded by Õ (ηt)). The second term is
the regret of Be-The-Regularized-Leader and can be upper bounded as Õ

(
η−1

1

)
. Combining

these two bounds, we show that the regret is Õ
(
T 1/2

)
.

The proof of Theorem 10 relies on several crucial properties of the iterates produced
by our algorithm. First, we need to ensure that the matrix Mt is positive definite and the
iterates yt produced by our algorithm lie within the domain X . Second, we need to show
that the algorithm is stable, i.e., ‖xt−xt+1‖Mt is small. The following proposition plays a
crucial role in showing these properties. It is concerned about concentration of the Hessian
estimates {Ĥt}Tt=1, and the loss estimates {f̂t}Tt=1 computed by the Algorithm.
Proposition 6. Consider the setting of Theorem 10. Let T be the minimum between T
and the first time at which the algorithm restarts. Then for any t ≤ T , the following
properties hold with probability at least 1− T−2

• Let Ht = 1
2
(At +ATt) be the Hessian of qt(x), and let M̃t = ∇2R(xt) +

∑t−1
s=0 ηsHs. Then

Mt defined in line 6 of Algorithm 4 satisfies

‖M̃−1/2
t (M̃t −Mt)M̃

−1/2
t ‖2 = O

(
α2η1λ

−2d5B
√
T log(dT)

)
.

• The cumulative loss estimate
∑t

s=1 f̂s(x) satisfies

sup
x∈Ft

∣∣∣ t∑
s=1

η1(f̂s(x)− f̂s(xs)− qs(x) + qs(xs))
∣∣∣ ≤ O

(
α2η1λ

−2Bd4.5
√
T log dT

)
.

4.6 Implementation
In this section, we discuss the implementation aspects of our algorithm.

Focus region update. To estimate the ratio
Vol(Ft∩Bα,Mt+1

(xt+1))

Vol(Ft)
, we generate sufficiently

many independent uniformly distributed samples in Ft and count what fraction of them fall
in Ft∩Bα,Mt+1(xt+1). By sampling just O(log T) points, we can show that with probability
at least 1 − 1

T 4 , the focus region gets updated whenever the true ratio is less than 1
4
and

doesn’t get updated whenever the true ratio is greater than 3
4
. The intermediate values don’t

effect our argument. Next, note that we need not generate the samples every iteration. It
suffices to generate them only when the focus region gets updated. We can reuse the old
samples in rest of the iterations. In Appendix C.5 we show that the focus region doesn’t
get updated more than O (d log T) times (see Lemma 49). So, over T iterations of the
Algorithm, we only need to generate O

(
d log2 T

)
samples.

48

As previously mentioned, uniform sampling from a convex set is a well studied problem.
For the special case of the action set being a polytope with m constraints, we rely on the
recent work of Laddha, Lee, and Vempala [LLV20] which uses Dikin walk for sampling.
The authors show that the Dikin walk mixes in O (dν̄) steps, where ν̄ is the strong self
concordant parameter of the set. For our problem, ν̄ is O(m + O (d log T)) (this follows
from the fact that each of our focus regions is an intersection of O (d log T) elliposoids and
a polytope). Moreover, each iteration of Dikin walk takes O (d3 log T +md+ d2) time.
So generating a single sample from uniform distribution in Ft takes Õ (m2d2 + (m+ d)d4)
time.
OMD Update. Our results in Appendix C.5 entail that the objective in line 19 is strictly
convex (see Lemma 48). So we can use IPM to solve the objective. As a concrete exam-
ple, lets again consider the case of action set being a polytope with m constraints. Since
there are O (d log T) elliposoidal constrains and m linear constraints, the self concordant
parameter of the entire objective is m+O (d log T). So, the number of Newton updates we
perform is Õ (m+ d). Moreoever, performing each newton update takes O (d3 log T +md)
time. So, the overall compute time of IPM is Õ (m2d+ (m+ d)d3).
Restart Condition. Checking the restart condition involves minimizing

∑t
s=0 f̂s(y) over

the focus region Ft. We note that this need not be a convex function. However, it is point-
wise close to the following convex function:

∑t
s=0 f̂s(y) + (d2α2η1)−1(y−xt)

T∇2R(xt)(y−
xt) (see Remark C.5.1 in Appendix for a discussion on the convexity of this objective).
To see why this objective is pointwise close to

∑t
s=0 f̂s(y), first note that our choice of Ft

always ensures ‖y − xt‖∇2R(xt) ≤ O (dα) for any y ∈ Ft (see Lemma 48). So the modified
objective is O

(
η−1

1

)
close to the original objective. So we can rely on IPM to solve the

modified objective and obtain O
(
η−1

1

)
-approximate solution to the original objective (note

that an approximate solution suffices for our argument). The computational complexity of
IPM in this case is same as the complexity of OMD update described above.

4.7 Discussion
In this chapter, we presented a new algorithm for bandit optimization with convex (approx-
imately) quadratic functions. Our algorithm achieves the optimal regret rate of Õ(

√
T) and

is computationally much more efficient than any other known algorithms for this problem.
To obtain these results, we (i) estimate the Hessian of the loss functions and use it in a
controlled fashion to minimize the effect of variance in this estimation and (ii) develop new
algorithmic ideas to implement this efficiently.

While our work focuses on the convex quadratic setting, we believe our ideas can be
extended to other convex, parameteric loss functions such as generalized linear models.
However, extending the idea of using Hessian (or more generally kth order derivatives for
k > 1) estimates to obtain efficient algorithms with optimal regret rates seems challenging,
even for highly smooth functions as the estimates of higher order derivatives come with
high variance and new ideas seem necessary to make effective use of them. This is an
interesting future direction to explore. Finally, we believe the dimension dependence in
our regret bound can improved to d8 by tightening the Hessian concentration result in

49

Proposition 6. We base this claim on the results in Appendix C.4, where we show that
Algorithm 4 achieves Õ

(
d5.5
√
T
)

regret when the Hessian of ft is known to the learner
ahead of round t.

50

Algorithm 4 Regularized Bandit Newton Algorithm
1: Input: ν-self-concordant barrier R, initial learning rate η1, number of iterations T , radius of

initial focus region α, learning rate increment γ, exploration parameter λ, β.
2: Denote ĝ0 = 0, Ĥ0 = 0, η0 = 0, ξ = T−4

3: Let x1 = argminx∈X R(x)
4: Focus Region F1 = Xξ, where Xξ = ξx1 + (1− ξ)X
5: for t = 1 . . . T do
6: Let Mt =

(
∇2R(xt) +

∑t−1
s=0 ηsĤs

)
.

7: Sample v1,t,v2,t ∼ Sd−1, and compute yt = xt + λM
−1/2
t (v1,t + v2,t)

8: if yt ∈ X then
9: Play yt and observe ft(yt)
10: Estimate gradient and Hessian of ft at xt as

ĝt = λ−1dft(yt)M
1/2
t v1,t, Ĥt =

λ−2

2
d2ft(yt)M

1/2
t

(
v1,tv

T
2,t + v2,tv

T
1,t

)
M

1/2
t

11: else
12: Play xt and set ĝt = 0, Ĥt = 0.
13: end if
14: Let f̂t(x) = 〈ĝt − Ĥtxt,x〉+ 1

2x
T Ĥtx be the quadratic approximation of ft at xt

15: //restart condition
16: if

∑t
s=0 f̂s(xs)−miny∈Ft

∑t
s=0 f̂s(y) ≤ − β

η1
then

17: Restart
18: end if
19: Compute xt+1 using OMD

xt+1 = argmin
x∈Ft

ηt〈ĝt,x〉+ ΦRt+1(x,xt).

Here ΦRt+1 is Bregman divergence w.r.t Rt+1(x)
def
= R(x) +

t∑
s=0

ηs
2 (x− xs)

T Ĥs(x− xs)

20: //Update focus region
21: if Vol(Ft ∩Bα,Mt+1(xt+1)) ≤ 1

2Vol(Ft) then
22: Ft+1 = Ft ∩Bα,Mt+1(xt+1) and ηt+1 = (1 + γ)ηt
23: else
24: Ft+1 = Ft and ηt+1 = ηt
25: end if
26: end for

51

52

Part III

Minimax Statistical Estimation

53

Chapter 5
Learning Minimax Estimators via Online
Learning

Estimating the properties of a probability distribution is a fundamental problem in ma-
chine learning and statistics. In this problem, we are given observations generated from
an unknown probability distribution P belonging to a class of distributions P . Knowing
P , we are required to estimate certain properties of the unknown distribution P , based
on the observations. Designing good and “optimal” estimators for such problems has been
a fundamental subject of research in statistics. Over the years, statisticians have consid-
ered various notions of optimality to compare the performance of estimators and to aid
their search of good estimators. Some popular notions of optimality include admissibility,
minimax optimality, Bayesian optimality, asymptotic efficiency [Fer14; LC06]. Of these,
minimax optimality is the most popular notion and has received wide attention in frequen-
tist statistics. This notion of optimality has led to the minimax estimation principle, where
the goal is to design estimators with the minimum worst-case risk. Let R(θ̂, θ(P)) be the
risk of an estimator θ̂ for estimating the property θ(P) of a distribution P , where an esti-
mator is a function which maps observations to the set of possible values of the property.
Then the worst-case risk of θ̂ is defined as supP∈P R(θ̂, θ(P)). The goal in minimax estima-
tion principle is to design estimators with worst-case risk close to the best worst-case risk,
which is defined as R∗ = inf θ̂ supP∈P R(θ̂, θ(P)), where the infimum is computed over the
set of all estimators. Such estimators are often referred to as minimax estimators [Tsy08].

Classical Estimators A rich body of work in statistics has focused on studying the
minimax optimality properties of classical estimators such as the maximum likelihood esti-
mator (MLE), Bayes estimators, and minimum contrast estimators (MCEs) [IH81; Le 12;
Vaa98; Bir83; BM93; YB99]. Early works in this line have considered parametric estima-
tion problems and focused on the asymptotic setting, where the number of observations
approaches infinity, for a fixed problem dimension. In a series of influential works, Hájek
and Le Cam showed that under certain regularity conditions on the parametric estimation
problem, MLE is asymptotically minimax whenever the risk is measured with respect to a
convex loss function [Le 12; IH81]. Later works in this line have considered both paramet-

55

ric and non-parametric estimation problems in the non-asymptotic setting and studied the
minimax rates of estimation. In a series of works, Birgé [Bir83; BM93] showed that under
certain regularity conditions on the model class P and the estimation problem, MLE and
MCEs are approximately minimax w.r.t Hellinger distance.

While these results paint a compelling picture of classical estimators, we highlight two
key problem settings where they tend to be rate inefficient (that is, achieve sub-optimal
worst-case risk) [Wel15; BM93]. The first is the so-called high dimensional sampling setting,
where the number of observations is comparable to the problem dimension, and under
which, classical estimators can be highly sub-optimal. In some recent work, Jiao, Venkat,
Han, and Weissman [Jia+15] considered the problem of entropy estimation in discrete
distributions and showed that the MLE (plug-in rule) is sub-optimal in the high dimensional
regime. Similarly, Cai and Low [CL11] considered the problem of estimation of non-
smooth functional 1

d

∑d
i=1 |θi| from an observation Y ∼ N (θ, Id) and showed that the

MLE is sub-optimal. The second key setting where classical estimators tend to be sub-
optimal is when the risk R(θ̂, θ(P)) is measured w.r.t “non-standard” losses that have a very
different behavior compared to standard losses such as Kullback-Leibler (KL) divergence.
For example, consider the MLE, which can be viewed as a KL projection of the empirical
distribution of observations onto the class of distributions P . By its design, we expect it
to be minimax when the risk is measured w.r.t KL divergence and other related metrics
such as Hellinger distance [BM93]. However, for loss metrics which are not aligned with
KL, one can design estimators with better performance than MLE, by taking the loss
into consideration. This phenomenon is better illustrated with the following toy example.
Suppose P is the set of multivariate normal distributions in Rd with identity covariance,
and suppose our goal is to estimate the mean of a distribution P ∈ P , given n observations
drawn from it. If the risk of estimating θ as θ̃ is measured w.r.t the following loss ‖θ̃−θ−c‖2

2,
for some constant c, then it is easy to see that MLE has a worst-case risk greater than
‖c‖2

2. Whereas, the minimax risk R∗ is equal to d/n, which is achieved by an estimator
obtained by shifting the MLE by c. While the above loss is unnatural, such a phenomenon
can be observed with natural losses such as `q norms for q ∈ (0, 1) and asymmetric losses.

Bespoke Minimax Estimators For problems where classical estimators are not opti-
mal, designing a minimax estimator can be challenging. Numerous works in the literature
have attempted to design minimax estimators in such cases. However the focus of these
works is on specific problems [CL11; VV11; Jia+15; But+18], and there is no single esti-
mator which is known to be optimal for a wide range of estimation problems. For example,
Jiao, Venkat, Han, and Weissman [Jia+15] and Wu and Yang [WY16] considered the prob-
lem of entropy estimation for discrete distributions and provided a minimax estimator in
the high-dimensional setting. Cai and Low [CL11] considered the problem of estimating a
non-smooth functional in high dimensions and provided a minimax estimator. While these
results are impressive, the techniques used in these works are tailored towards specific
problems and do not extend to other problems. So, a natural question that arises in this
context is, how should one go about constructing minimax estimators for problems where
none of the classical estimators are optimal? Unfortunately, our current understanding of

56

minimax estimators does not provide any concrete guidelines on designing such estimators.

Minimax Estimation via Solving Statistical Games In this chapter, we attempt
to tackle the problem of designing minimax estimators from a game-theoretic perspective.
Instead of the usual two-step approach of first designing an estimator and then certifying
its minimax optimality, we take a more direct approach and attempt to directly solve the
following min-max statistical game: inf θ̂ supP∈P R(θ̂, θ(P)). Since the resulting estimators
are solutions to the min-max game, they are optimal by construction. Such a direct
approach for construction of minimax estimators has certain advantages over the classical
estimators. First, the technique itself is very general and can theoretically be used to
construct minimax estimators for any estimation problem. Second, a direct approach often
results in exact minimax estimators with R∗ + o(1) worst-case risk. In contrast, classical
estimators typically achieve O(1)R∗ worst-case risk, which is constant factors worse than
the direct approach. Finally, a direct approach can make effective use of any available side
information about the problem, to construct estimators with better worst-case risk than
classical estimators. For example, consider the problem of mean estimation given samples
drawn from an unknown Gaussian distribution. If it is known a priori that the true mean
lies in a bounded set, then a direct approach for solving the min-max statistical game results
in estimators with better performance than classical estimators. Several past works have
attempted to directly solve the min-max game associated with the estimation problem [see
Ber85, and references therein]. We discuss these further in Section 5.1 after providing
some background, but in gist, existing approaches either focus on specific problems or are
applicable only to simple estimation problems.

This Chapter In this chapter, we rely on recent advances in online learning and game
theory to directly solve the min-max statistical game. Recently, online learning techniques
have been widely used for solving min-max games. For example, Freund and Schapire
[FS96] relied on these techniques to find equilibria in min-max games that arise in the con-
text of boosting. Similar techniques have been explored for robust optimization by Chen,
Lucier, Singer, and Syrgkanis [Che+17] and Feige, Mansour, and Schapire [FMS15]. In
this chapter, we take a similar approach and provide an algorithm for solving statistical
games. A critical distinction of statistical games, in contrast to the typical min-max games
studied in the learning and games literature, is that the domain of all possible measur-
able estimators is extremely large, the set of possible parameters need not be convex, and
the loss function need not be convex-concave. We show that it is nonetheless possible to
finesse these technical caveats and solve the statistical game, provided we are given ac-
cess to two subroutines: a Bayes estimator subroutine which outputs a Bayes estimator
corresponding to any given prior, and a subroutine which computes the worst-case risk
of any given estimator. Given access to these two subroutines, we show that our algo-
rithm outputs both a minimax estimator and a least favorable prior (LFP). The minimax
estimator output by our algorithm is a randomized estimator which is an ensemble of mul-
tiple Bayes estimators. When the loss function is convex - which is the case for a number
of commonly used loss functions - the randomized estimator can be transformed into a

57

deterministic minimax estimator. For problems where the two subroutines are efficiently
implementable, our algorithm provides an efficient technique to construct minimax esti-
mators. While implementing the subroutines can be computationally hard in general, we
show that the computational complexity can be significantly reduced for a wide range of
problems satisfying certain invariance properties.

To demonstrate the power of this technique, we use it to construct provably minimax es-
timators for the classical problems of finite dimensional Gaussian sequence model and linear
regression. In the problem of Gaussian sequence model, we are given a single sample drawn
from a normal distribution with mean θ and identity covariance, where θ ∈ Rd, ‖θ‖2 ≤ B.
Our goal is to estimate θ well under squared-error loss. This problem has received much
attention in statistics because of its simplicity and connections to non-parametric regres-
sion [Joh02]. Surprisingly, however, the exact minimax estimator is unknown for the case
when B ≥ 1.16

√
d [Bic81; Ber90; MP02]. In this chapter, we show that our technique

can be used to construct provably minimax estimators for this problem, for general B. To
further demonstrate that our technique is widely applicable, we present empirical evidence
showing that our algorithm can be used to construct estimators for covariance and entropy
estimation which match the performance of existing minimax estimators.

On Criticisms of Minimaxity Perhaps it is important to note that sometimes minimax
estimators are deemed to be unnecessarily pessimistic, as they are driven by the worst case
risk. Nonetheless they occupy a unique position in the statistical estimation literature.
They have undoubtedly been a major source of intellectual curiosity as exemplified by
many settings under which minimax estimators have already been constructed. In scenarios
where other notions of optimality might be desired, minimax estimators and LFPs can
still be used to validate the performance of the constructed estimators against worst case
scenario. We could also use model selection over minimax estimators for varying sub-
classes of models to mitigate some of their undesirable properties. This makes constructing
minimax estimators a worthy pursuit. Given the difficulty of constructing such estimators
in new scenarios, it is important to find methods to automate this process. While previous
work has tried to do this under very restricted assumptions [Nel66; Kem87], in this chapter
we show the feasibility of this approach in a fairly general context. We are able to achieve
this because of the recent advancements in online learning, as we highlight in later sections.

Outline We conclude this section with a brief outline of the rest of the paper. In
Section 5.1, we provide necessary background on online learning and minimax estima-
tion. In Section 5.2, we introduce our algorithm for solving statistical games. In Sec-
tions 5.3, 5.4, 5.5 we utilize our algorithm to construct provably minimax estimators for
finite dimensional Gaussian sequence model and linear regression. In Section 5.8 we study
the empirical performance of our algorithm on a variety of statistical estimation problems.
We defer technical details to the Appendix. Finally, we conclude in Section 5.9 with a
discussion of future directions and some open problems.

58

5.1 Background and Problem Setup

In this section, we formally introduce the problem of minimax statistical estimation and
review the necessary background on online learning.

5.1.1 Minimax Estimation and Statistical Games

Let P = {Pθ : θ ∈ Θ ⊆ Rd} be a parametric family of distributions. In this chapter, we
assume Θ is a compact set. Let Xn = {X1, . . . Xn} ∈ X n be n independent samples drawn
from some unknown distribution Pθ ∈ P . Given Xn, our goal is to estimate the unknown
parameter θ. A deterministic estimator θ̂ of θ is any measurable function from X n to
Θ. We denote the set of deterministic estimators by D. A randomized estimator is given
by a probability measure on the set of deterministic estimators. Given Xn, the unknown
parameter θ is estimated by first sampling a deterministic estimator according to this
probability measure and using the sampled estimator to predict θ. Since any randomized
estimator can be identified by a probability measure on D, we denote the set of randomized
estimators by MD, the set of all probability measures on D. Let M : Θ × Θ → R be a
measurable loss function such that M(θ′, θ) measures the cost of an estimate θ′ when
the true parameter is θ. Define the risk of an estimator θ̂ for estimating θ as R(θ̂, θ)

def
=

E
[
M(θ̂(Xn), θ)

]
, where the expectation is taken with respect to randomness from Xn and

the estimator θ̂. The worst-case risk of an estimator θ̂ is defined as supθ∈ΘR(θ̂, θ) and the
minimax risk is defined as the best worst-case risk that can be achieved by any estimator

R∗
def
= inf

θ̂∈MD
sup
θ∈Θ

R(θ̂, θ). (5.1)

Any estimator whose worst case risk is equal to the minimax risk is called a minimax
estimator. We refer to the above min-max problem as a statistical game. Often, we are
also interested in deterministic minimax estimators, which are defined as estimators with
worst case risk equal to

inf
θ̂∈D

sup
θ∈Θ

R(θ̂, θ). (5.2)

From the perspective of game theory, the optimality notion in Equation (5.1) is referred
to as the minmax value of the game. This is to be contrasted with the maxmin value of
the game supθ∈Θ inf θ̂∈MD R(θ̂, θ). In general, these two quantities are not equal, but the
following relationship always holds:

sup
θ∈Θ

inf
θ̂∈MD

R(θ̂, θ) ≤ inf
θ̂∈MD

sup
θ∈Θ

R(θ̂, θ). (5.3)

In statistical games, for typical choices of loss functions, supθ∈Θ inf θ̂∈MD R(θ̂, θ) = 0, whereas
inf θ̂∈MD supθ∈ΘR(θ̂, θ) > 0; that is, the minmax value is strictly greater than maxmin value
of the game. So we cannot in general reduce computing the minmax value to computing
the maxmin value.

59

Linearized Statistical Games Without any additional structure such as convexity,
computing the values of min-max games is difficult in general. So it is common in game
theory to consider a linearized game in the space of probability measures, which is in general
better-behaved. To set up some notation, for any probability distribution P , define R(θ̂, P)

as Eθ∼P
[
R(θ̂, θ)

]
. In the context of statistical games, a linearized game has the following

form:
inf

θ̂∈MD
sup
P∈MΘ

R(θ̂, P), (5.4)

where MΘ is the set of all probability measures on Θ. The minmax and maxmin values
of the linearized game and the original game in Equation (5.1) are related as follows

sup
θ∈Θ

inf
θ̂∈MD

R(θ̂, θ) ≤ sup
P∈MΘ

inf
θ̂∈MD

R(θ̂, P) ≤ inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P)
(a)
= inf

θ̂∈MD
sup
θ∈Θ

R(θ̂, θ),

where (a) holds because for any estimator θ̂, supP∈MΘ
R(θ̂, P) is equal to supθ∈ΘR(θ̂, θ).

Thus, the minmax values of the original and linearized statistical games are equal. Any
estimator whose worst-case risk is equal to the minmax value of the linearized game is a
minimax estimator. The maxmin values of the original and linearized statistical games are
however in general different. In particular, as discussed above, the maxmin value of the
original statistical game is usually equal to zero. The maxmin value of the linearized game
however has a deep connection to Bayesian estimation.

Note that R(θ̂, P) is simply the integrated risk of the estimator θ̂ under prior P ∈
MΘ. Any estimator which minimizes R(θ̂, P) is called the Bayes estimator for P , and
the corresponding minimum value is called Bayes risk. Though the set of all possible
measurable estimators is in general vast, in what might be surprising from an optimization
or game-theoretic viewpoint, the Bayes estimator can be characterized simply as follows.
Letting P (·|Xn) be the posterior distribution of θ given the data Xn, a Bayes estimator of
P can be found by minimizing the posterior risk

θ̂P (Xn) ∈ argmin
θ̃∈Θ

Eθ∼P (·|Xn)

[
M(θ̃, θ)

]
. (5.5)

Certain mild technical conditions need to hold for θ̂P to be measurable and for it to be a
Bayes estimator [Ber85]. We detail these conditions in Appendix D.1, which incidentally
are all satisfied for the problems considered in this chapter. A least favourable prior is de-
fined as any prior which maximizes the Bayes risk; that is, P̃ is LFP if inf θ̂∈MD R(θ̂, P̃) =

supP∈MΘ
inf θ̂∈MD R(θ̂, P). Thus, LFPs solve for the maxmin value of the linearized sta-

tistical game. Any prior whose Bayes risk is equal to the maxmin value of the linearized
game is an LFP.

Nash Equilibrium Directly solving for the minmax or maxmin values of the (linearized)
min-max games is in general computationally hard, in large part because: (a) these val-
ues need not be equal, which limits the set of possible optimization algorithms, and (b)
the optimal solutions need not be stable, which makes it difficult for simple optimization

60

problems. It is thus preferable that the two values are equal1, and the solutions be stable,
which is formalized by the game-theoretic notion of a Nash equilibrium (NE).

For the original statistical game in Equation (5.1), a pair (θ̂∗, θ∗) ∈ MD × Θ is called
a pure strategy NE, if the following holds

sup
θ∈Θ

R(θ̂∗, θ) ≤ R(θ̂∗, θ∗) ≤ inf
θ̂∈MD

R(θ̂, θ∗) = inf
θ̂∈D

R(θ̂, θ∗),

where the equality follows since the optimum of a linear program over a convex hull can
always be attained at an extreme point. Intuitively, this says that there is no incentive
for any player to change their strategy while the other player keeps hers unchanged. Note
that whenever a pure strategy NE exists, the minmax and maxmin values of the game are
equal to each other:

inf
θ̂∈MD

sup
θ∈Θ

R(θ̂, θ) ≤ sup
θ∈Θ

R(θ̂∗, θ) ≤ R(θ̂∗, θ∗) ≤ inf
θ̂∈MD

R(θ̂, θ∗) ≤ sup
θ∈Θ

inf
θ̂∈MD

R(θ̂, θ).

Since the RHS is always upper bounded by the LHS from (5.3), the inequalities above are
all equalities.

As we discussed above, the maxmin and minmax values of the statistical game in Equa-
tion (5.1) are in general not equal to each other, so that a pure strategy NE will typically
not exist for the statistical game (5.1). Instead what often exists is a mixed strategy NE,
which is precisely a pure strategy NE of the linearized game. That is, (θ̂∗, P ∗) ∈MD×MΘ

is called a mixed strategy NE of statistical game (5.1), if

sup
θ∈Θ

R(θ̂∗, θ) = sup
P∈MΘ

R(θ̂∗, θ) ≤ R(θ̂∗, P ∗) ≤ inf
θ̂∈MD

R(θ̂, P ∗) = inf
θ̂∈D

R(θ̂, P ∗).

As with the original game, if (θ̂∗, P ∗) is a pure strategy NE of the linearized game of (5.1),
aka, a mixed strategy NE of (5.1), then the minmax and maxmin values of the linearized
game are equal to each other, and, moreover θ̂∗ is a minimax estimator and P ∗ is an LFP.
Conversely, if θ̂∗ is a minimax estimator, and P ∗ is an LFP, and the minmax and maxmin
values of (5.4) are equal to each other, then (θ̂∗, P ∗) is a mixed strategy NE of (5.1). These
just follow from similar sandwich arguments as with the original game, which we add for
completeness in Appendix D.2.

In gist, it might be computationally easier to recover the mixed strategy NE of the
statistical game, assuming they exist, and doing so, would recover minimax estimators and
LFPs. In this chapter, we are thus interested in imposing mild conditions on the statis-
tical game so that a mixed strategy NE exists, and under this setting, develop tractable
algorithms to estimate the mixed strategy NE.

Existence of NE We now briefly discuss sufficient conditions for the existence of NE.
As discussed earlier, a pure strategy NE does not exist for statistical games in general.
So, here we focus on existence of mixed strategy NE. In a seminal work, Wald [Wal49]

1John Von Neumann, a founder of game theory, has said he could not foresee there even being a theory
of games without a theorem that equates these two values

61

studied the conditions for existence of a mixed strategy NE, and showed that a broad
class of statistical games have mixed strategy NE. Suppose every distribution in the model
class P is absolutely continuous, Θ is compact, and the loss M is a bounded, non-negative
function. Then minmax and maxmin values of the linearized game are equal. Moreover, a
minimax estimator with worst-case risk equal to R∗ exists. Under the additional condition
of compactness of P , [Wal49] showed that an LFP exists as well. Thus, based on our
previous discussion, this implies the game has a mixed strategy NE. In this chapter, we
consider a different and simpler set of conditions on the statistical game. We assume
that Θ is compact and the risk R(θ̂, θ) is Lipschitz in its second argument. Under these
assumptions, we show that the minmax and maxmin values of the linearized game in
Equation (5.4) are equal to each other. Such results are known as minimax theorems and
have been studied in the past [VMK07; Yan74; Wal49]. However, unlike past works that
rely on fixed point theorems, we rely on a constructive learning-style proof to prove the
minimax theorem, where we present an algorithm which outputs an approximate NE of
the statistical game. Under the additional condition that the risk R(θ̂, θ) is bounded, we
show that the statistical game has a minimax estimator and an LFP.

Computation of NE Next, we discuss previous numerical optimization techniques for
computing a mixed strategy NE of the statistical game. Note that this is a difficult compu-
tational problem: minimizing over the domain of all possible estimators, and maximizing
over the set of all probability measures on Θ. Nonetheless, several works in statistics have
attempted to tackle this problem [Ber85]. One class of techniques involves reducing the
set of estimators D via admissibility considerations to a small enough set. Given this re-
stricted set of estimators, they can then directly calculate a minimax test for some testing
problems; see for instance Hald [Hal71]. A drawback of these approaches is that they are
restricted to simple estimation problems for which the set of admissible estimators are easy
to construct. Another class of techniques for constructing minimax estimators relies on the
properties of LFPs [CB94; Joh02]. When the parameter set Θ is a compact subset of R,
and when certain regularity conditions hold, it is well known that LFPs are supported on
a finite set of points [Gho64; Ber85]. Based on this result, Nelson [Nel66] and Kempthorne
[Kem87] propose numerical approaches to determine the support points of LFPs and the
probability mass that needs to be placed on these points. However, these approaches are
restricted to 1-dimensional estimation problems and are not broadly applicable. In a re-
cent work, Luedtke, Carone, Simon, and Sofrygin [Lue+20] propose heuristic approaches
for solving statistical games using deep learning techniques. In particular, they use neural
networks to parameterize the statistical game and solve the resulting game using local
search techniques such as alternating gradient descent. However, these approaches are not
guaranteed to find minimax estimators and LFPs and can lead to undesirable equilibrium
points. They moreover parameterize estimators via neural networks whose inputs are a
simple concatenation of all the samples, which is not feasible for large n.

In our work, we develop numerical optimization techniques that rely on online learning
algorithms. Though the domains as well as the setting of the statistical game are far
more challenging than typically considered in learning and games literature, we reduce the

62

problem of designing minimax estimators to a purely computational problem of efficient
implementation of certain optimization subroutines. For the wide range of problems where
these subroutines can be efficiently implemented, our algorithm provides an efficient and
scalable technique for constructing minimax estimators.

5.2 Minimax Estimation via Online Learning
In this section, we present our algorithm for computing a mixed strategy NE of the sta-
tistical game in Equation (5.1) (equivalently a pure strategy NE of the linearized game in
Equation (5.4)). A popular and widely used approach for solving min-max games is to rely
on online learning algorithms [Haz16; CL06]. In this approach, the minimization player
and the maximization player play a repeated game against each other. Both the players
rely on online learning algorithms to choose their actions in each round of the game, with
the objective of minimizing their respective regret. The following proposition shows that
this repeated game play converges to a NE.
Proposition 7. Consider a repeated game between the minimization and maximization
players in Equation (5.4). Let (θ̂t, Pt) be the actions chosen by the players in iteration t.
Suppose the actions are such that the regret of each player satisfies

T∑
t=1

R(θ̂t, Pt)− inf
θ̂∈D

T∑
t=1

R(θ̂, Pt) ≤ ε1(T),

sup
θ∈Θ

T∑
t=1

R(θ̂t, θ)−
T∑
t=1

R(θ̂t, Pt) ≤ ε2(T).

Let θ̂rnd denote the randomized estimator obtained by uniformly sampling an estimator from
the iterates {θ̂t}Tt=1. Define the mixture distribution Pavg as 1

T

∑T
i=1 Pi. Then (θ̂rnd, Pavg)

is an approximate mixed strategy NE of Equation (5.1)

R(θ̂rnd, Pavg) ≤ inf
θ̂∈D

R(θ̂, Pavg) +
ε1(T) + ε2(T)

T
,

R(θ̂rnd, Pavg) ≥ sup
θ∈Θ

R(θ̂rnd, θ)−
ε1(T) + ε2(T)

T
.

Note that the above proposition doesn’t specify an algorithm to generate the iterates
(θ̂t, Pt). All it shows is that as long as both the players rely on algorithms which guarantee
sub-linear regret, the iterates converge to a NE. There exist several algorithms such as
FTRL, FTPL, Best Response (BR), which guarantee sub-linear regret. It is important
to choose these algorithms appropriately as our choices impact the rate of convergence to
a NE and also the computational complexity of the resulting algorithm. First, consider
the minimization player, whose domainMD is the set of all probability measures over D.
Note that D, the set of all deterministic estimators, is an infinite dimensional space. So,
algorithms such as FTRL, FTPL, whose regret bounds depend on the dimension of the
domain, can not guarantee sub-linear regret. So the minimization player is forced to rely

63

on BR, which has 0 regret. Recall, in order to use BR, the minimization player requires the
knowledge of the future action of the opponent. This can be made possible in the context of
min-max games by letting the minimization player choose her action after the maximization
player reveals her action. Next, consider the maximization player. Since the minimization
player is relying on BR, the maximization player has to rely on either FTRL or FTPL to
choose her action2. In this chapter, we choose the FTPL and OFTPL algorithms studied in
Chapters 2, 3. Our choice is mainly driven by the computational aspects of the algorithm.
Each iteration of the FTRL algorithm of Krichene, Balandat, Tomlin, and Bayen [Kri+15]
involves sampling from a general probability distribution. Whereas, each iteration of the
FTPL algorithm requires minimization of a non-convex objective. While both sampling
and optimization are computationally hard in general, the folklore is that optimization is
relatively easier than sampling in many practical applications.

We now describe our algorithm for computing a pure strategy NE of Equation (5.4). In
iteration t, the maximization player chooses distribution Pt using FTPL. Pt is given by the
distribution of the random variable θt(σ), which is generated by first sampling a random
vector σ ∈ Rd from exponential distribution and then computing an optimizer of

sup
θ∈Θ

t−1∑
i=1

R(θ̂i, θ) + 〈σ, θ〉. (5.6)

The minimization player chooses θ̂t using BR, which involves computing a minimizer of
the integrated risk under prior Pt

inf
θ̂∈D

R(θ̂, Pt). (5.7)

Very often, computing exact optimizers of the above problems is infeasible. Instead, one
can only compute approximate optimizers. To capture the error from this approximation,
we introduce the notion of approximate optimization oracles/subroutines.
Definition 5.2.1 (Maximization Oracle). A function Omax

α,β (·) is called (α, β)-approximate
maximization oracle, if for any set of estimators {θ̂i}Ti=1 and perturbation σ, it returns
θ′ ∈ Θ which satisfies the following inequality

T∑
i=1

R (θ′, θ) + 〈σ, θ′〉 ≥ sup
θ∈Θ

T∑
i=1

R(θ̂i, θ) + 〈σ, θ〉 − (α + β‖σ‖1) .

We denote the output θ′ by Omax
α,β

(
{θ̂i}Ti=1, σ

)
.

Definition 5.2.2 (Minimization Oracle). A functionOmin
α (·) is called α-approximate mini-

mization oracle, if for any probability measure P , it returns an approximate Bayes estimator
θ̂′ which satisfies the following inequality

R(θ̂′, P) ≤ inf
θ̂∈D

R(θ̂, P) + α.

We denote the output θ̂′ by Omin
α (P).

2If both the players use BR, then both will wait for the other player to pick an action first. As a result,
the algorithm will never proceed.

64

Algorithm 5 FTPL for statistical games
1: Input: Parameter of exponential distribution η, approximate optimization oracles
Omax
α,β (·) ,Omin

α′ (·) for problems (5.6), (5.7) respectively
2: for t = 1 . . . T do
3: Let Pt be the distribution of random variable θt(σ), which is generated as follows:

(i) Generate a random vector σ such that {σj}dj=1
i.i.d∼ Exp(η)

(ii) Compute θt(σ) as
θt(σ) = Omax

α,β

(
{θ̂i}t−1

i=1, σ
)
.

4: Compute θ̂t as
θ̂t = Omin

α′ (Pt) .

5: end for
6: Output: {θ̂1, . . . θ̂T }, {P1, . . . PT }.

Given access to subroutines Omax
α,β (·) ,Omin

α′ (·) for approximately solving the optimiza-
tion problems in Equations (5.6), (5.7), the algorithm alternates between the maximization
and minimization players who choose Pt and θ̂t in each iteration. We summarize the overall
algorithm in Algorithm 5. The following theorem shows that Algorithm 5 converges to an
approximate NE of the statistical game.
Theorem 11 (Approximate NE). Consider the statistical game in Equation (5.1). Suppose
Θ ⊆ Rd is compact with `∞ diameter D, i.e., D = supθ1,θ2∈Θ ‖θ1 − θ2‖∞. Suppose R(θ̂, θ)
is L-Lipschitz in its second argument w.r.t `1 norm:

∀θ̂, θ1, θ2 |R(θ̂, θ1)−R(θ̂, θ2)| ≤ L‖θ1 − θ2‖1.

Suppose Algorithm 5 is run for T iterations with approximate optimization subroutines
Omax
α,β (·), Omin

α′ (·) for solving the maximization and minimization problems. Let θ̂rnd be
the randomized estimator obtained by uniformly sampling an estimator from the iterates
{θ̂t}Tt=1. Define the mixture distribution Pavg as 1

T

∑T
i=1 Pi. Then (θ̂rnd, Pavg) is an approx-

imate mixed strategy NE of the statistical game in Equation (5.1)

sup
θ∈Θ

R(θ̂rnd, θ)− ε ≤ R(θ̂rnd, Pavg) ≤ inf
θ̂∈D

R(θ̂, Pavg) + ε,

where ε = O
(
ηd2 + d(βT+D)

ηT
+ α + α′

)
.

As an immediate consequence of Theorem 11, we show that the minmax and maxmin
values of the statistical game in Equation (5.4) are equal to each other. Moreover, when
the risk is bounded, we show that the statistical game (5.1) has minimax estimators and
LFPs.
Corollary 3 (Minimax Theorem). Consider the setting of Theorem 11. Then

inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P) = sup
P∈MΘ

inf
θ̂∈MD

R(θ̂, P) =: R∗.

Furthermore, suppose the risk R(θ̂, θ) is a bounded function and Θ is compact w.r.t the
following metric: ∆M(θ1, θ2) = supθ∈Θ |M(θ1, θ)−M(θ2, θ)|. Then there exists a minimax

65

estimator θ̂∗ ∈MD whose worst-case risk satisfies

sup
θ∈Θ

R(θ̂∗, θ) = R∗,

and there exists a least favorable prior P ∗ ∈MΘ whose Bayes risk satisfies

inf
θ̂∈D

R(θ̂, P ∗) = R∗.

We note that the assumption on compactness of Θ w.r.t ∆M is mild and holds whenever
Θ is compact w.r.t `2 norm and M is a continuous function. As another consequence of
Theorem 11, we show that Algorithm 5 outputs approximate minimax estimators and
LFPs.
Corollary 4. Consider the setting of Theorem 11. Suppose Algorithm 5 is run with
η =

√
1

dL2T
. Then the worst-case risk of θ̂rnd satisfies

sup
θ∈Θ

R(θ̂rnd, θ) ≤ R∗ +O(d
3
2LT−

1
2 + α + α′ + βd

3
2LT

1
2).

Moreover, Pavg is approximately least favorable with the associated Bayes risk satisfying

inf
θ̂∈D

R(θ̂, Pavg) ≥ R∗ −O(d
3
2LT−

1
2 + α + α′ + βd

3
2LT

1
2).

In addition, suppose the loss M used in the computation of risk is convex in its first argu-
ment. Let θ̂avg be the deterministic estimator which is equal to the mean of the probability
distribution associated with θ̂rnd. Then the worst-case risk of θ̂avg satisfies

sup
θ∈Θ

R(θ̂avg, θ) ≤ R∗ +O(d
3
2LT−

1
2 + α + α′ + βd

3
2LT

1
2),

and θ̂avg is an approximate Bayes estimator for prior Pavg.
Remark 5.2.1 (Near Optimal Estimator). Corollary 4 shows that when the approximation
error of the optimization oracles is sufficiently small and when T is large enough, Algo-
rithm 5 outputs a minimax estimator with worst-case risk (1+o(1))R∗. This improves upon
the approximate minimax estimators that are usually designed in statistics, which have a
worst-case risk of O(1)R∗.
Remark 5.2.2 (Deterministic Minimax Estimators). For general non-convex loss func-
tions, Algorithm 5 only provides a randomized minimax estimator. Given this, a natural
question that arises is whether there exist efficient algorithms for finding a deterministic
minimax estimator. Unfortunately, even with access to the optimization subroutines used
by Algorithm 5, finding a deterministic minimax estimator can be NP-hard [see Theorem
9 of Che+17]
Remark 5.2.3 (Implementation Details). Note that the estimators {θ̂i}Ti=1 and distribu-
tions {Pi}Ti=1 output by Algorithm 5 are infinite dimensional objects and can not in general
be stored using finitely many bits. However, in practice, we use independent samples gener-
ated from Pi as its proxy and only work with these samples. Since θ̂i is a Bayes estimator

66

for prior Pi, it can be approximately computed using samples from Pi. This process of
approximating Pi with its samples introduces some approximation error and the number of
samples used in this approximation need to be large enough to ensure Algorithm 5 returns a
minimax estimator. For the problems of finite Gaussian sequence model and linear regres-
sion studied in Sections 5.4, 5.5, we show that poly(d) samples suffice to ensure a minimax
estimator.

Remark 5.2.4 (Computation of the Oracles). We now consider the computational aspects
involved in the implementation of optimization oracles used by Algorithm 5. Recall that the
maximization oracle, given any estimator, computes its worst-case risk with some linear
perturbation. Since this objective could potentially be non-concave, maximizing it can take
exponential time in the worst-case. And recall that the minimization oracle computes the
Bayes estimator given some prior distribution. Implementation of this minimization oracle
can also be computationally expensive in the worst case. While the worst case complexities
are prohibitive, for a number of problems, one can make use of the problem structure to
efficiently implement these oracles in polynomial time.

In particular, we leverage symmetry and invariance properties of the statistical games to
reduce the complexity of optimization oracles, while controlling their approximation errors;
see Section 5.3. We further consider the case where there is no structure in the prob-
lem, other than the existence of finite-dimensional sufficient statistics for the statistical
model. This allows one to reduce the computational complexity of the minimization oracle
by replacing the optimization over D in Equation (5.7) with universal function approxi-
mators such as neural networks. Moreover, one can use existing global search techniques
to implement the maximization oracle. While such a heuristic approach can reduce the
computational complexity of the oracles, bounding their approximation errors can be hard
(recall, the worst-case risk of our estimator depends on the approximation error of the
optimization oracles). Nevertheless, in later sections, we empirically demonstrate that the
estimators from this approach have superior performance over many existing estimators
which are known to be approximately minimax.

We briefly discuss some classical work that can be leveraged for efficient implementation
of optimization oracles, albeit for specific models or settings. For several problems, it can
be shown that there exists an approximate minimax estimator in some restricted space of
estimators such as linear or polynomial functions of the data [DLM90; CL11; PW19].
Such results can be used to reduce the space of estimators in the statistical game (5.1). By
replacingMD in Equation (5.1) with the restricted estimator space, one can greatly reduce
the computational complexity of the optimization oracles. Another class of results relies
on analyses of convergence of posterior distributions. As a key instance, when the number
of samples n is much larger than the dimension d, it is well known that the posterior
distribution behaves like a normal distribution, whenever the prior has sufficient mass
around the true parameter [Har83]. Such a property can be used to efficiently implement
the minimization oracle.

67

5.3 Invariance of Minimax Estimators and LFPs

In this section, we show that whenever the statistical game satisfies certain invariance
properties, the computational complexity of the optimization oracles required by Algo-
rithm 5 can be greatly reduced. We first present a classical result from statistics about the
invariance properties of minimax estimators.When the statistical game in Equation (5.2) is
invariant to group transformations, the invariance theorem says that there exist minimax
estimators which are also invariant to these group transformations [Kie+57; Ber85]. Later,
we utilize this result to reduce the computational complexity of the oracles required by
Algorithm 5.

We first introduce the necessary notation and terminology to formally state the invari-
ance theorem. We note that the theorem stated here is tailored for our setting and more
general versions of the theorem can be found in Kiefer et al. [Kie+57]. Let G be a compact
group of transformations on X × Θ which acts component wise; that is, for each g ∈ G,
g(X, θ) can be written as (g1X, g2θ), where g1, g2 are transformations on X ,Θ. With a
slight abuse of notation we write gX, gθ in place of g1X, g2θ. We assume that the group
action is continuous, so that the functions (g,X) → gX and (g, θ) → gθ are continuous.
Finally, let µ be the unique left Haar measure on G with µ(G) = 1. We now formally define
“invariant statistical games”, “invariant estimators” and “invariant probability measures”.
Definition 5.3.1 (Invariant Game). A statistical game is invariant to group transforma-
tions G, if the following two conditions hold for each g ∈ G

• for all θ ∈ Θ, gθ ∈ Θ. Moreover, the probability distribution of gX is Pgθ, whenever
the distribution of X is Pθ.

• M(gθ1, gθ2) = M(θ1, θ2), for all θ1, θ2 ∈ Θ.
Definition 5.3.2 (Invariant Estimator). A deterministic estimator θ̂ is invariant if for
each g ∈ G, θ̂(gXn) = gθ̂(Xn), where gXn = {gX1, . . . gXn}.
Definition 5.3.3 (Invariant Measure). Let B(Θ) be the Borel σ-algebra corresponding to
the parameter space Θ. A measure ν on (Θ,B(Θ)) is invariant if for all g ∈ G and any
measurable set A ∈ B(Θ), ν(gA) = ν(A).
Example 5.3.1. Consider the problem of estimating the mean of a Gaussian distribution.
Given n samples X1, . . . Xn drawn from N (θ, Id×d), our goal is to estimate the unknown
parameter θ. Suppose the parameter space is given by Θ = {θ′ : ‖θ′‖2 ≤ B} and the risk of
any estimator is measured w.r.t squared L2 loss. Then it is easy to verify that the problem
is invariant to transformations of the orthogonal group O(d) = {U : UUT = UTU = I}.

We now present the main result concerning the existence of invariant minimax estima-
tors.A more general version of the result can be found in [Kie+57].
Theorem 12 (Invariance). Consider the statistical game in Equation (5.1). Suppose the
game is invariant to group transformations G. Suppose the loss metric M is convex in its
first argument. Then for any deterministic estimator θ̂, there exists an estimator θ̂G which
is invariant to group transformations G, with worst-case risk no larger than the worst-case
risk of θ̂

sup
θ∈Θ

R(θ̂G, θ) ≤ sup
θ∈Θ

R(θ̂, θ).

68

This shows that there exists a minimax estimator which is invariant to group transfor-
mations. We now utilize this invariance property to reduce the complexity of the optimiza-
tion oracles. Let Θ =

⋃
β Θβ be the partitioning of Θ into equivalence classes under the

equivalence θ1 ∼ θ2, if θ1 = gθ2 for some g ∈ G. The quotient space of Θ is defined as the set
of equivalence classes of the elements of Θ under the above defined equivalence and is given
by Θ/G = {Θβ}β. For an invariant estimator θ̂, we define RG(θ̂,Θβ) as R(θ̂, θβ) for any
θβ ∈ Θβ. Note that this is well defined because for invariant estimators R(θ̂, θ1) = R(θ̂, θ2)
whenever θ1 ∼ θ2 (see Lemma 52). Our main result shows that Equation (5.1) can be
reduced to the following simpler objective

inf
θ̂∈MD,G

sup
Θβ∈Θ/G

RG(θ̂,Θβ), (5.8)

where MD,G represents the set of randomized estimators which are invariant to group
transformations G. This shows that the outer minimization over the set of all estimators
in Equation (5.1) can be replaced with a minimization over just the invariant estimators.
Moreover, the inner maximization over the entire parameter space Θ can be replaced with
a maximization over the smaller quotient space Θ/G , which in many examples we study
here is a one or two-dimensional space, irrespective of the dimension of Θ.
Theorem 13. Suppose the statistical game in Equation (5.1) is invariant to group trans-
formations G. Moreover, suppose the loss metric M is convex in its first argument. Then,

inf
θ̂∈MD

sup
θ∈Θ

R(θ̂, θ) = inf
θ̂∈MD,G

sup
Θβ∈Θ/G

RG(θ̂,Θβ).

Moreover, given any ε-approximate mixed strategy NE of the reduced statistical game (5.8),
one can reconstruct an ε-approximate mixed strategy NE of the original statistical game (5.1).

We now demonstrate how Theorem 13 can be used on a variety of fundamental statis-
tical estimation problems.

5.3.1 Finite Gaussian Sequence Model

In the finite Gaussian sequence model, we are given a single sample X ∈ Rd sampled from
a Gaussian distribution N (θ, I). We assume the parameter θ has a bounded L2 norm and
satisfies ‖θ‖2 ≤ B. Our goal is to design an estimator for θ which is minimax with respect
to squared-error loss. This results in the following min-max problem

inf
θ̂∈MD

sup
‖θ‖2≤B

R(θ̂, θ) ≡ EX∼N (θ,I)

[
‖θ̂(X)− θ‖2

2

]
. (5.9)

Theorem 14. Let O(d) = {U : UUT = UTU = I} be the group of d×d orthogonal matrices
with matrix multiplication as the group operation. The statistical game in Equation (5.9)
is invariant under the action of O(d), where the action of g ∈ O(d) on (X, θ) is defined
as g(X, θ) = (gX, gθ). Moreover, the quotient space Θ/O(d) is homeomorphic to the real
interval [0, B] and the reduced statistical game is given by

inf
θ̂∈MD,G

sup
b∈[0,B]

R(θ̂, be1), (5.10)

69

where e1 is the first standard basis vector in Rd andMD,G represents the set of randomized
estimators which are invariant to the actions of orthogonal group.

The theorem shows that the supremum in the reduced statistical game (5.8) is over a
bounded interval on the real line. So the maximization oracle in this case can be efficiently
implemented using grid search over the interval [0, B]. In Section 5.4 we use this result to
obtain estimators for Gaussian sequence model which are provably minimax and can be
computed in polynomial time.

Estimating a few co-ordinates Here, we again consider with the Gaussian sequence
model described above, but we are now interested in the estimation of only a subset of the
co-ordinates of θ. Without loss of generality, we assume these are the first k coordinates.
The loss M is the squared L2 loss on the first k coordinates. The following Theorem
presents the invariance properties of this problem. It relies on the group O(k)×O(d− k),

which is defined as the set of orthogonal matrices of the form g =

[
g1 0
0 g2

]
where g1 ∈ O(k)

and g2 ∈ O(d− k).
Theorem 15. The statistical game described above is invariant under the action of the
group O(k)×O(d− k). Moreover, the quotient space Θ/O(k)×O(d− k) is homeomorphic
to the ball of radius B centered at origin in R2 and the reduced statistical game is given by

inf
θ̂∈MD,G

sup
b21+b22≤B2

R(θ̂, [b1e1,k, b2e1,d−k]), (5.11)

where e1,k is the first standard basis vector in Rk andMD,G represents the set of randomized
estimators which are invariant to the actions of orthogonal group.

5.3.2 Linear Regression

In the problem of linear regression with random design we are given n independent samples
Dn = {(Xi, Yi)}ni=1 generated from a linear model Yi = XT

i θ
∗+εi, where Xi ∼ N (0, I), and

εi ∼ N (0, 1). We assume the true regression vector is bounded and satisfies ‖θ∗‖2 ≤ B.
Our goal is to design minimax estimator for estimating θ∗ from Dn, w.r.t squared error
loss. This leads us to the following min-max problem

inf
θ̂∈MD

sup
||θ||2≤B

R(θ̂, θ) ≡ EDn
[
||θ̂(Dn)− θ||22

]
. (5.12)

Theorem 16. The statistical game in Equation (5.12) is invariant under the action of
the orthogonal group O(d), where the action of g ∈ O(d) on ((X, Y), θ) is defined as
g((X, Y), θ) = ((gX, Y), gθ). Moreover, the quotient space Θ/O(d) is homeomorphic to
the interval [0, B] and the reduced statistical game is given by

inf
θ̂∈MD,G

sup
b∈[0,B]

R(θ̂, be1), (5.13)

whereMD,G represents the set of randomized estimators which are invariant to the actions
of orthogonal group.

70

5.3.3 Normal Covariance Estimation

In the problem of normal covariance estimation we are given n independent samples Xn =
{Xi}ni=1 drawn from N(0,Σ). Here, we assume that the true Σ has a bounded operator
norm and satisfies ‖Σ‖2 ≤ B. Our goal is to construct an estimator for Σ which is minimax
w.r.t the entropy loss, which is defined as

M(Σ1,Σ2) = tr
(
Σ−1

1 Σ2

)
− log |Σ−1

1 Σ2| − d.

This leads us to the following min-max problem

inf
Σ̂∈MD

sup
Σ∈Ξ

R(Σ̂,Σ) ≡ EXn
[
M(Σ̂(Xn),Σ)

]
, (5.14)

where Ξ = {Σ : ||Σ||2 ≤ B}.
Theorem 17. The statistical game defined by normal covariance estimation with entropy
loss is invariant under the action of the orthogonal group O(d), where the action of g ∈ O(d)
on (X,Σ) is defined as g(Xi,Σ) = (gXi, gΣgT). Moreover the quotient space Ξ/O(d) is
homeomorphic to ΞG = {λ ∈ Rd : B ≥ λ1 ≥ . . . λd > 0} and the reduced statistical game is
given by

inf
Σ̂∈MD,G

sup
λ∈ΞG

R(Σ̂,Diag(λ)), (5.15)

where Diag(λ) is the diagonal matrix whose diagonal entries are given by λ and MD,G
represents the set of randomized estimators which are invariant to the actions of orthogonal
group.

The theorem shows that the maximization problem over Ξ can essentially be reduced
to an optimization problem over a d-dimensional space.

5.3.4 Entropy estimation

In the problem of entropy estimation, we are given n samples Xn = {X1, . . . Xn} drawn
from a discrete distribution P = (p1, . . . pd). Here, the domain of each Xi is given by
X = {1, 2, . . . d}. Our goal is to estimate the entropy of P , which is defined as f(P) =
−
∑d

i=1 pi log2 pi, under the squared error loss. This leads us to the following min-max
problem

inf
f̂∈MD

sup
P∈P

R(f̂, P) ≡ EXn

[(
f̂(Xn)− f(P)

)2
]
, (5.16)

where P is the set of all probability distributions supported on d elements.
Theorem 18. The statistical game in Equation (5.16) is invariant to the action of the
permutation group Sd. The quotient space P/Sd is homeomorphic to PG = {P ∈ Rd : 1 ≥
p1 ≥ . . . ≥ pd ≥ 0,

∑
i pi = 1} and the reduced statistical game is given by

inf
f̂∈MD,G

sup
P∈PG

R(f̂, P), (5.17)

whereMD,G represents the set of randomized estimators which are invariant to the actions
of permutation group.

71

5.4 Finite Gaussian Sequence Model

In this section we consider the finite Gaussian sequence model described in Section 5.3.1
and use Algorithm 5 to construct a provably minimax estimator, which can be computed
in polynomial time. This problem has received a lot of attention in statistics because of
its simplicity, relevance and its connections to non-parametric regression [see Chapter 1
of Joh11]. When the radius of the domain B is smaller than 1.15

√
d, Marchand and

Perron [MP02] show that the Bayes estimator with uniform prior on the boundary is a
minimax estimator for the problem. For larger values of B, the exact minimax estimator
is unknown. Several works have attempted to understand the properties of LFP in such
settings [CS81] and constructed approximate minimax estimators [Bic81]. In this chapter,
we rely on Algorithm 5 to construct an exact minimax estimator and an LFP, for any value
of B, d.

Recall, in Theorem 14 we showed that the original min-max statistical game can be
reduced to the simpler problem in Equation (5.10) To use Algorithm 5 to find a Nash
equilibrium of the reduced game, we need efficient implementation of the required opti-
mization oracles and a bound on their approximation errors. The optimization problems
corresponding to the oracles in Equations (5.6), (5.7) are given as follows

θ̂t ← argmin
θ̂∈DG

Eb∼Pt
[
R(θ̂, be1)

]
, bt(σ)← argmax

b∈[0,B]

t−1∑
i=1

R(θ̂i, be1) + σb,

where DG is the set of deterministic invariant estimators and Pt is the distribution of ran-
dom variable bt(σ). We now present efficient techniques for implementing these oracles
(Algorithms 6, 7). Since the maximization problem is a 1 dimensional optimization prob-
lem, grid search can be used to compute an approximate maximizer. The approximation
error of the resulting oracle depends on the grid width and the number of samples used to
compute the expectation in the risk R(θ̂, be1). Later, we show that poly(d,B) grid points
and samples suffice to have a small approximation error. The minimization problem, which
requires finding an invariant estimator minimizing the integrated risk under any prior Pt,
can also be efficiently implemented. As shown in Proposition 8 below, the minimizer has
a closed-form expression which depends on Pt and modified Bessel functions. To compute
an approximate minimizer of the problem, we approximate Pt with its samples and rely on
the closed-form expression. The approximation error of this oracle depends on the number
of samples used to approximate Pt. We again show that poly(d,B) samples suffice to have
a small approximation error.
Proposition 8. The optimizer θ̂t of the minimization problem defined above has the fol-
lowing closed-form expression

θ̂t(X) =

 Eb∼Pt
[
b3−d/2e−b

2/2Id/2(b‖X‖2)
]

Eb∼Pt
[
b2−d/2e−b

2/2Id/2−1(b‖X‖2)
]
 X

‖X‖2

,

where Iν is the modified Bessel function of first kind of order ν.

72

Algorithm 6 Maximization Oracle

1: Input: Estimators {θ̂i}t−1
i=1, perturbation σ, grid width w, number of samples for computation

of expected risk R(θ̂, θ): N1

2: Let {b1, b2 . . . bB/w} be uniformly spaced points on [0, B]
3: for j = 1 . . . B/w do
4: for i = 1 . . . t− 1 do
5: Generate N1 independent samples {Xk}N1

k=1 from the distribution N (bje1, I)

6: Estimate R(θ̂i, bje1) as 1
N1

∑N1
k=1 ‖θ̂i(Xk)− be1‖22.

7: end for
8: Evaluate the objective at bj using the above estimates
9: end for
10: Output: bj which maximizes the objective

Algorithm 7 Minimization Oracle

1: Input: Samples {bi}N2
i=1 generated from distribution Pt.

2: For any X, compute θ̂t(X) as (∑N2
i=1wibiA(bi‖X‖2)∑N2

i=1wi

)
X

‖X‖2
,

where A(γ) =
Id/2(γ)

Id/2−1(γ)
, wi = b

2−d/2
i e−b

2
i /2Id/2−1(bi‖X‖2), and Iν is the modified Bessel

function of the first kind of order ν.

We now show that using Algorithm 5 for solving objective (5.10) with Algorithms 6, 7 as
optimization oracles, gives us a provably minimax estimator and an LFP for finite Gaussian
sequence model.
Theorem 19. Suppose Algorithm 5 is run for T iterations with Algorithms 6, 7 as the
maximization and minimization oracles. Suppose the hyper-parameters of these algorithms
are set as η = 1

B(B+1)
√
T
, w = B

T 3/2 , N1 = T 3

(B+1)2 , N2 = T 4

(B+1)2 . Let P̂t be the approximation

of probability distribution Pt used in the tth iteration of Algorithm 5. Moreover, let θ̂t be
the output of Algorithm 7 in the tth iteration of Algorithm 5.

1. Then the averaged estimator θ̂avg(X) = 1
T

∑T
i=1 θ̂i(X) is approximately minimax and

satisfies the following worst-case risk bound with probability at least 1− δ

sup
θ:‖θ‖2≤B

R(θ̂avg, θ) ≤ R∗ + Õ

(
B2(B + 1)√

T

)
,

where Õ(.) hides log factors and R∗ is the minimax risk.
2. Define the mixture distribution P̂avg as 1

T

∑T
i=1 P̂i. Let P̂LFP be a probability distri-

bution over Rd with density function defined as p̂LFP(θ) ∝ ‖θ‖1−d
2 P̂avg(‖θ‖2), where

P̂avg(‖θ‖2) is the probability mass placed by P̂avg at ‖θ‖2. Then P̂LFP is approximately

73

least favorable and satisfies the following with probability at least 1− δ

inf
θ̂∈D

R(θ̂, P̂LFP) ≥ R∗ − Õ
(
B2(B + 1)√

T

)
,

where the infimum is over the set of all estimators.
We believe the polynomial factors in the bounds can be improved with a tighter analysis

of the algorithm. The above Theorem shows that Algorithm 5 learns an approximate
minimax estimator in poly(d,B) time. To the best our knowledge, this is the first result
providing provable minimax estimators for finite Gaussian sequence model, for any value
of B.

5.5 Linear Regression
In this section we consider the linear regression problem described in Section 5.3.2 and
provide a provably minimax estimator. Recall, in Theorem 16 we showed that the original
min-max statistical game can be reduced to the simpler problem in Equation (5.13). We
now provide efficient implementations of the optimization oracles required by Algorithm 5
for finding a Nash equilibrium of this game. The optimization problems corresponding to
the two optimization oracles are as follows

θ̂t ← argmin
θ̂∈DG

Eb∼Pt
[
R(θ̂, be1)

]
, bt(σ)← argmax

b∈[0,B]

t−1∑
i=1

R(θ̂i, be1) + σb,

where DG is the set of deterministic invariant estimators and Pt is the distribution of ran-
dom variable bt(σ). Similar to the Gaussian sequence model, the maximization oracle can
be efficiently implemented via a grid search over [0, B] (Algorithm 8). The solution to the
minimization problem has a closed-form expression in terms of the mean and normalization
constant of Fisher-Bingham distribution, which is a distribution obtained by constraining
multivariate normal distributions to lie on the surface of unit sphere [KW05]. Letting
Sd−1 be the unit sphere in Rd, the probability density of a random variable Z distributed
according to Fisher-Bingham distribution is given by

p(Z;A, γ) = C(A, γ)−1 exp
(
−ZTAZ + 〈γ, Z〉

)
,

where Z ∈ Sd−1, and γ ∈ Rd, A ∈ Rd×d are the parameters of the distribution with A being
positive semi-definite and C(A, γ) is the normalization constant. Note that the mean of
Fisher-Bingham distribution is given by C(A, γ)−1 ∂

∂γ
C(A, γ). The following proposition

obtains a closed-form expression for θ̂t in terms of C(A, γ) and ∂
∂γ
C(A, γ).

Proposition 9. The optimizer θ̂t of the minimization problem defined above has the fol-
lowing closed-form expression

θ̂t(Dn) =

Eb∼Pt
[
b2 ∂

∂γ
C
(
2−1b2XTX, γ

) ∣∣∣
γ=bXTY

]
Eb∼Pt

[
bC
(
2−1b2XTX, bXTY

)] ,

74

Algorithm 8 Regression Maximization Oracle

1: Input: Estimators {θ̂i}t−1
i=1, perturbation σ, grid width w, number of samples for computation

of expected risk R(θ̂, θ): N1

2: Let {b1, b2 . . . bB/w} be uniformly spaced points on [0, B]
3: for j = 1 . . . B/w do
4: for i = 1 . . . t− 1 do
5: Generate N1 independent datasets {Dn,k}N1

k=1 from the linear model with true regres-
sion vector bje1

6: Estimate R(θ̂i, bje1) as 1
N1

∑N1
k=1 ‖θ̂i(Dn,k)− be1‖22.

7: end for
8: Evaluate the objective at bj using the above estimates
9: end for
10: Output: bj which maximizes the objective

Algorithm 9 Regression Minimization Oracle

1: Input: Samples {bi}N2
i=1 generated from distribution Pt

2: For any Dn, compute θ̂t(Dn) as

θ̂t(Dn) =

∑N2
i=1 b

2
i
∂
∂γC

(
2−1b2iX

TX, γ
) ∣∣∣
γ=biXTY∑N2

i=1 biC
(
2−1b2iX

TX, biXTY
) ,

where X = [X1, X2 . . . Xn]T and Y = [Y1, Y2 . . . Yn].

where X = [X1, X2 . . . Xn]T and Y = [Y1, Y2 . . . Yn].
We note that there exist a number of efficient techniques for computation of the mean

and normalization constant of Fisher-Bingham distribution [KW05; Imh61]. In our experi-
ments we rely on the technique of Kume and Wood [KW05] (we relegate the details of this
technique to Appendix D.6.2). To compute an approximate optimizer of the minimization
problem, we approximate Pt with its samples and rely on the above closed-form expres-
sion. Algorithm 9 describes the resulting minimization oracle. We now show that using
Algorithm 5 for solving objective (5.13) with Algorithms 8, 9 as optimization oracles, gives
us a provably minimax estimator and an LFP for linear regression.
Theorem 20. Suppose Algorithm 5 is run for T iterations with Algorithms 8, 9 as the
maximization and minimization oracles. Suppose the hyper-parameters of these algorithms
are set as η = 1

B(B
√
n+1)

√
T
, w = B

T 3/2 , N1 = T 3

(B
√
n+1)2 , N2 = T 4

(B
√
n+1)2 . Let P̂t be the approx-

imation of probability distribution Pt used in the tth iteration of Algorithm 5. Moreover,
let θ̂t be the output of Algorithm 9 in the tth iteration of Algorithm 5.

1. Then the averaged estimator θ̂avg(Dn) = 1
T

∑T
i=1 θ̂i(Dn) is approximately minimax

and satisfies the following worst-case risk bound with probability at least 1− δ

sup
θ:‖θ‖2≤B

R(θ̂avg, θ) ≤ R∗ + Õ

(
B2(B + 1)

√
n

T

)
.

75

2. Define the mixture distribution P̂avg as 1
T

∑T
i=1 P̂i. Let P̂LFP be a probability distri-

bution over Rd with density function defined as p̂LFP(θ) ∝ ‖θ‖1−d
2 P̂avg(‖θ‖2), where

P̂avg(‖θ‖2) is the probability mass placed by P̂avg at ‖θ‖2. Then P̂LFP is approximately
least favorable and satisfies the following with probability at least 1− δ

inf
θ̂∈D

R(θ̂, P̂LFP) ≥ R∗ − Õ
(
B2(B + 1)

√
n

T

)
.

5.6 Normal Covariance Estimation

In this section, we consider the problem of normal covariance estimation. Recall, in Sec-
tion 5.3.3 we showed that the problem is invariant to the action of the orthogonal group
and can be reduced to the simpler problem in Equation (5.15). The optimization problems
corresponding to the oracles in Equations (5.6), (5.7) are as follows

Σ̂t ← argmin
Σ̂∈DG

Eλ∼Pt
[
R(Σ̂,Diag(λ))

]
, λt(σ)← argmax

λ∈ΞG

t−1∑
i=1

R(Σ̂i,Diag(λ)) + 〈λ, σ〉,

where DG is the set of deterministic invariant estimators and Pt is the distribution of ran-
dom variable λt(σ). Note that the maximization problem involves optimization of a non-
concave objective in d-dimensional space. So, implementing a maximization oracle with
low approximation error can be computationally expensive, especially in high dimensions.
Moreover, unlike finite Gaussian sequence model and linear regression, the minimization
problem doesn’t have a closed form expression, and it is not immediately clear how to effi-
ciently implement a minimization oracle with low approximation error. In such scenarios,
we show that one can rely on a combination of heuristics and problem structure to further
reduce the computational complexity of the optimization oracles. Although relying on
heuristics comes at the expense of theoretical guarantees, in later sections, we empirically
demonstrate that the resulting estimators have superior performance over classical estima-
tors. We begin by showing that the domain of the outer minimization in Equation (5.15)
can be reduced to a smaller set of estimators. Our reduction relies on Blackwell’s theorem,
which shows that for convex loss functions M , there exists a minimax estimator which is a
function of the sufficient statistic [IH81]. We note that Blackwell’s theorem is very general
and can be applied to a wide range of problems, to reduce the computational complexity
of the minimization oracle.
Proposition 10. Consider the problem of normal covariance estimation. Let Sn be the
empirical covariance matrix which is defined as

∑n
i=1 XiX

T
i

n
and let U∆UT be the eigen

decomposition of Sn. Then there exists a minimax estimator which can be approximated
arbitrarily well using estimators of the form Σ̂f,g(Xn) = UΣ̃f,g(∆)UT , where Σ̃f,g(∆) is a
diagonal matrix whose ith diagonal entry is given by

Σ̃f,g,i(∆) = f

(
∆i,
∑
j 6=i

g(∆i,∆j)

)
,

76

for some functions f : Rd+1 → R, g : R2 → Rd. Here, ∆i is the ith diagonal entry of
∆. Moreover, the optimization problem in Equation (5.15) can be reduced to the following
simpler problem

inf
Σ̂∈Mf,g

sup
λ∈ΞG

R(Σ̂,Diag(λ)) = R∗, (5.18)

whereMf,g is the set of probability distributions over estimators of the form Σ̂f,g.
We now use Algorithm 5 to solve the statistical game in Equation (5.18). The opti-

mization problems corresponding to the two optimization oracles are given by

f̂t, ĝt ← argmin
f,g

Eλ∼Pt
[
R(Σ̂f,g,Diag(λ))

]
,

λt(σ)← argmax
λ∈ΞG

t−1∑
i=1

R(Σ̂f̂i,ĝi
,Diag(λ)) + 〈λ, σ〉.

We rely on heuristics to efficiently implement these oracles. To implement the minimiza-
tion oracle, we use neural networks (which are universal function approximators) to pa-
rameterize functions f, g. Implementing the minimization oracle then boils down to the
finding the parameters of these networks which minimize the objective. To implement
the maximization oracle, we rely on global search techniques. In our experiments, we use
DragonFly [Kan+19], which is a zeroth order optimization technique, to implement this
oracle. Note that these heuristics do not come with any guarantees and as a result the or-
acles are not guaranteed to have a small approximation error. Despite this, we empirically
demonstrate that the estimators learned using this approach have good performance.

5.7 Entropy Estimation

In this section, we consider the problem of entropy estimation. Recall, in Section 5.3.4 we
showed that the problem is invariant to the action of permutation group and can be reduced
to the simpler problem in Equation (5.17). Similar to the problem of covariance estimation,
implementing the optimization oracles for this problem, with low approximation error, can
be computationally expensive. So we again rely on heuristics and problem structure to
reduce the computational complexity of optimization oracles.
Proposition 11. Consider the problem of entropy estimation. Let P̂n = (p̂1, . . . p̂d) be
the observed empirical probabilities. Then there exists a minimax estimator which can be
approximated arbitrarily well using estimators of the form f̂g,h(P̂n) = g(

∑d
i=1 h(p̂i)), for

some functions g : Rd+1 → R, h : R → Rd+1. Moreover, the optimization problem in
Equation (5.17) can be reduced to the following problem

inf
f̂∈Mg,h

sup
P∈PG

R(f̂, P) = R∗, (5.19)

whereMg,h is the set of probability distributions over estimators of the form f̂g,h.

77

The proof of this proposition is presented in Appendix D.8.1. We now use Algorithm 5
to solve the statistical game in Equation (5.19). The optimization problems corresponding
to the two optimization oracles are given by

ĝt, ĥt ← argmin
g,h

EP∼Pt
[
R(f̂g,h, P)

]
, Pt(σ)← argmax

P∈PG

t−1∑
i=1

R(f̂ĝi,ĥi , P) + 〈P, σ〉,

where Pt is the distribution of random variable Pt(σ). To implement the minimization ora-
cle, we use neural networks to parameterize functions g, h. To implement the maximization
oracle, we rely on DragonFly.

5.8 Experiments

In this section, we present experiments showing performance of the proposed technique
for constructing minimax estimators. While our primary focus is on the finite Gaussian
sequence model and linear regression for which we provided provably minimax estimators,
we also present experiments on other problems such as covariance and entropy estima-
tion. For each of these problems, we begin by describing the setup as well as the baseline
algorithms, before proceeding to a discussion of the experimental findings.

5.8.1 Finite Gaussian Sequence Model

In this section, we focus on experiments related to the finite Gaussian sequence model. We
first consider the case where the risk is measured with respect to squared error loss, i.e.,
M(θ1, θ2) = ‖θ1 − θ2‖2

2.

Proposed Technique We use Algorithm 5 with optimization oracles described in Algo-
rithms 6, 7 to find minimax estimators for this problem. We set the hyper-parameters of
our algorithm as follows: number of iterations of FTPL T = 500, grid width w = 0.05×B,
number of samples for computation of R(θ̂, θ) in Algorithm 6 N1 = 1000, number of sam-
ples generated from Pt in Algorithm 7 N2 = 1000. We note that these are default values
and were not tuned. The randomness parameter η in Algorithm 5 was tuned using a coarse
grid search. We report the performance of the following two estimators constructed using
the iterates of Algorithm 5: (a) Averaged Estimator θ̂avg(X) = 1

T

∑T
i=1 θ̂i(X), (b) Bayes

estimator for prior 1
T

∑T
i=1 P̂i which we refer to as “Bayes estimator for avg. prior”. The

performance of the randomized estimator θ̂rnd is almost identical to the performance of
θ̂avg. So we do not report its performance.

Baselines We compare our estimators with various baselines: (a) standard estimator
θ̂(X) = X, (b) James Stein estimator θ̂(X) = (1− (d− 3)/‖X‖2

2)
+
X, where c+ =

max(0, c), (c) projection estimator (MLE) θ̂(X) = min(‖X‖2, B) X
‖X‖2 , (d) Bayes estimator

for uniform prior on the boundary; this estimator is known to be minimax for B ≤ 1.15
√
d.

78

Table 5.1: Worst-case risk of various estimators for finite Gaussian sequence model. The
risk is measured with respect to squared error loss. The worst-case risk of the estimators
from Algorithm 5 (last two rows) is smaller than the worst-case risk of baselines. The
numbers in the brackets for Averaged Estimator represent the duality gap.

Worst-case Risk
B =

√
d B = 1.5

√
d B = 2

√
d

Estimator d = 10 d = 20 d = 30 d = 10 d = 20 d = 30 d = 10 d = 20 d = 30
Standard 10 20 30 10 20 30 10 20 30

James Stein 6.0954 11.2427 16.073 7.9255 15.0530 21.3410 8.7317 16.6971 24.7261
Projection 8.3076 17.4788 26.7873 10.3308 20.3784 30.2464 10.1656 20.2360 30.3805

Bayes estimator
for uniform prior
on boundary

4.8559 9.9909 14.8690 11.7509 23.4726 35.2481 24.5361 49.0651 73.3158

Averaged
Estimator

4.7510
(0.1821)

9.7299
(0.2973)

14.8790
(0.0935)

6.7990
(0.0733)

13.8084
(0.2442)

20.5704
(0.0087)

7.8504
(0.3046)

15.6686
(0.2878)

23.8758
(0.6820)

Bayes estimator
for avg. prior 4.9763 10.1273 14.8128 6.7866 13.8200 20.3043 7.8772 15.6333 23.5954

Worst-case Risk We compare the performance of various estimators based on their
worst-case risk. The worst-case risk of the standard estimator is equal to d. The worst
case risk of all the other estimators is computed as follows. Since all these estimators
are invariant to orthogonal group transformations, the risk R(θ̂, θ) only depends on ‖θ‖2

and not its direction. So the worst-case risk can be obtained by solving the following
optimization problem: maxb∈[0,B] R(θ̂, be1), where e1 is the first standard basis vector. We
use grid search to solve this problem, with 0.05 × B grid width. We use 104 samples to
approximately compute R(θ̂, be1) for any θ̂, b.

Duality Gap For estimators derived from our technique, we also present the duality
gap, which is defined as supθ∈ΘR(θ̂avg, θ)− inf θ̂∈D R(θ̂, 1

T

∑T
i=1 P̂i). Duality gap quantifies

the closeness of (θ̂avg,
1
T

∑T
i=1 P̂i) to a Nash equilibrium. Smaller the gap, closer we are to

an equilibrium.

Results Table 5.1 shows the performance of various estimators for various values of
d,B along with the duality gap for our estimator. For B =

√
d, the estimators obtained

using Algorithm 5 have similar performance as the “Bayes estimator for uniform prior
on boundary”, which is known to be minimax. For B = 2

√
d, 3
√
d for which the exact

minimax estimator is unknown, we achieve better performance than baselines. Finally,
we note that the duality gap numbers presented in the table can be made smaller by
running our algorithm for more iterations. When the dimension d = 1, Donoho, Liu, and
MacGibbon [DLM90] derived lower bounds for the minimax risk, for various values of B. In
Table 5.2, we compare the worst risk of our estimator with these established lower bounds.
It can be seen that the worst case risk of our estimator is close to the lower bounds.

79

Table 5.2: Comparison of the worst case risk of θ̂avg with established lower bounds from
[DLM90] for finite Gaussian sequence model with d = 1.

B = 1 B = 2 B = 3 B = 4
Worst case risk of
Averaged Estimator 0.456 0.688 0.799 0.869

Lower bound 0.449 0.644 0.750 0.814

Estimating a few coordinates

In this section we again consider the finite Gaussian sequence model, but with a different
risk. We now measure the risk on only the first k coordinates: M(θ1, θ2) =

∑k
i=1(θ1(i) −

θ2(i))2. We present experimental results for k = 1, d/2.

Proposed Technique Following Theorem 15, the original min-max objective can be
reduced to the simpler problem in Equation (5.11). We use similar optimization oracles
as in Algorithms 6, 7, to solve this problem. The maximization problem is now a 2D opti-
mization problem for which we use grid search. The minimization problem, which requires
computation of Bayes estimators, can be solved analytically and has similar expression as
the Bayes estimator in Algorithm 7 (see Appendix D.5.3 for details). We use a 2D grid of
0.05B width and length in the maximization oracle. We use the same hyper-parameters
as above and run FTPL for 10000 iterations for k = 1 and 4000 iterations for k = d/2.

Worst-case Risk We compare our estimators with the same baselines described in the
previous section. For the case of k = 1, we also compare with the best linear estimator,
which is known to be approximately minimax with worst case risk smaller than 1.25 times
the minimax risk [Don94]. Since all these estimators, except the best linear estimator, are
invariant to the transformations of group O(k)×O(d−k), the max risk of these estimators
can be written as maxb21+b22≤B2 R(θ̂, [b1e1,k, b2e1,d−k]). We solve this problem using 2D grid
search. The worst case risk of best linear estimator has a closed form expression.

Results Table 5.3 shows the performance of various estimators for various values of
d,B. It can be seen that for B =

√
d, our estimators have better performance than other

baselines. The performance difference goes down for large B, which is as expected. In
order to gain insights about the estimator learned by our algorithm, we plot the contours
of θ̂avg(X) in Figure 5.1, for the k = 1 case, where the risk is measured on the first
coordinate. It can be seen that when X(1) is close to 0, irrespective of other coordinates,
the estimator just outputs X(1) as its estimate of θ(1). When X(1) if far from 0, by looking
along the corresponding vertical line, the estimator can be seen as outputting a shrinked
version of X(1), where the amount of shrinkage increases with the norm of X(2 : d). Note
that this is unlike James Stein estimator which shrinks vectors with smaller norm more
than larger norm vectors.

80

Table 5.3: Worst-case risk of various estimators for bounded normal mean estimation when
the risk is evaluated with respect to squared loss on the first k coordinates.

Worst-case Risk
k = 1,B =

√
d k = 1,B = 2

√
d k = 1,B = 3

√
d

Estimator d = 10 d = 20 d = 30 d = 10 d = 20 d = 30 d = 10 d = 20 d = 30

Standard Estimator 1 1 1 1 1 1 1 1 1
James-Stein Estimator 2.3796 4.9005 7.3489 2.5087 4.9375 7.3760 2.4288 4.8951 7.3847
Projection Estimator 1.0055 1.4430 2.0424 1.0263 1.1051 1.5077 1.0288 1.0310 1.0202
Best Linear Estimator 0.9091 0.9524 0.9677 0.9756 0.9877 0.9917 0.9890 0.9945 0.9963
Bayes Estimator for

average prior 0.7955 0.8565 0.8996 0.9160 0.9496 0.9726 0.9611 1.0007 1.0172

Averaged Estimator 0.7939 0.8579 0.8955 0.9104 0.9497 0.9724 0.9640 1.0003 1.0101
Worst-case Risk

k = d/2,B =
√
d k = d/2,B = 2

√
d k = d/2,B = 3

√
d

Estimator d = 10 d = 20 d = 30 d = 10 d = 20 d = 30 d = 10 d = 20 d = 30

Standard Estimator 5 10 15 5 10 15 5 10 15
James-Stein Estimator 4.1167 7.9200 11.6892 5.0109 9.7551 14.6568 5.0281 10.0155 14.9390
Projection Estimator 7.1096 15.8166 24.8158 30.3166 66.1806 103.0456 73.4834 156.5076 241.1031

Bayes Estimator for
average prior 3.2611 6.5834 9.8189 4.2477 8.6564 13.0606 4.6359 9.2773 13.9678

Averaged Estimator 3.2008 6.4763 9.7763 4.2260 8.6421 13.0353 4.6413 9.2760 13.9446

5.8.2 Linear Regression

In this section we present experimental results on linear regression. We use Algorithm 5
with optimization oracles described in Algorithms 8, 9 to find minimax estimators for
this problem. We use the same hyper-parameter settings as finite Gaussian sequence
model, and run Algorithm 5 for T = 500 iterations. We compare the worst-case risk
of minimax estimators obtained using our algorithm for various values of (n, d,B), with
ordinary least squares (OLS) and ridge regression estimators. Since all the estimators are
invariant to the transformations of orthogonal group O(d), the max risk can be written as
maxb∈[0,B] R(θ̂, be1), which can be efficiently computed using grid search. Table 5.4 presents
the results from this experiment. It can be seen that we achieve better performance than
ridge regression for small values of n/d, B. For large values of n/d, B, the performance

Contours of Estimator d = 10, B =
√
10

-5 0 5

X(1)

1

2

3

4

5

6

‖X
(2

:
d
)‖

2

-3

-2.4

-1.8

-1.2

-0.6

0

0.6

1.2

1.8

2.4

3

Contours of Estimator d = 10, B = 2
√
10

-10 -5 0 5 10

X(1)

2

4

6

8

10

12

‖X
(2

:
d
)‖

2

-3

-2.4

-1.8

-1.2

-0.6

0

0.6

1.2

1.8

2.4

3

Contours of Estimator d = 10, B = 3
√
10

-10 0 10

X(1)

2

4

6

8

10

12

‖X
(2

:
d
)‖

2

-3

-2.4

-1.8

-1.2

-0.6

0

0.6

1.2

1.8

2.4

3

Figure 5.1: Contour plots of the estimator learned using Algorithm 5 when the risk is
evaluated on the first coordinate. x axis shows the first coordinate of X, which is the input
to the estimator. y axis shows the norm of the rest of the coordinates of X. The contour
bar shows θ̂(1), the first co-ordinate of the output of the estimator.

81

of our estimator approaches ridge regression. The duality gap numbers presented in the
Table suggest that the performance of our estimator can be improved for larger values of
n/d,B, by choosing better hyper-parameters.

Table 5.4: Worst-case risk of various estimators for linear regression. The performance
of ridge is obtained by choosing the best regularization parameter. The numbers in the
brackets for Averaged Estimator represent the duality gap.

Worst-case Risk
n = 1.5× d,B = 0.5×

√
d n = 1.5× d,B =

√
d

Estimator d = 5 d = 10 d = 15 d = 20 d = 5 d = 10 d = 15 d = 20

OLS 5.0000 2.5000 2.5000 2.2222 5.0000 2.5000 2.5000 2.2222
Ridge regression 0.6637 0.9048 1.1288 1.1926 1.3021 1.4837 1.6912 1.6704

Averaged
Estimator

0.5827
(0.0003)

0.8275
(0.0052)

0.9839
(0.0187)

1.0946
(0.0404)

1.2030
(0.0981)

1.4615
(0.1145)

1.6178
(0.1768)

1.6593
(0.1863)

Bayes estimator
for avg. prior 0.5827 0.8275 0.9844 1.0961 1.1750 1.4621 1.6265 1.6674

Worst-case Risk
n = 2× d,B = 0.5×

√
d n = 2× d,B =

√
d

Estimator d = 5 d = 10 d = 15 d = 20 d = 5 d = 10 d = 15 d = 20

OLS 1.2500 1.1111 1.0714 1.053 1.2500 1.1111 1.0714 1.053
Ridge regression 0.5225 0.6683 0.7594 0.8080 0.8166 0.8917 0.9305 0.9608

Averaged
Estimator

0.4920
(0.0038)

0.5991
(0.0309)

0.6873
(0.0485)

0.7339
(0.0428)

0.8044
(0.0647)

0.8615
(0.0854)

0.9388
(0.0996)

0.9621
(0.1224)

Bayes estimator
for avg. prior 0.4894 0.6004 0.6879 0.7320 0.8140 0.8618 0.9375 0.9656

5.8.3 Normal Covariance Estimation

In this section we present experimental results on normal covariance estimation.

Minimization oracle In our experiments we use neural networks, which are universal
function approximators, to parameterize functions f, g in Equation (5.18). To be precise,
we use two layer neural networks to parameterize each of these functions. Implementing
the minimization oracle then boils down to finding the parameters of these networks which
minimize Eλ∼Pt

[
R(Σ̂f,g,Diag(λ))

]
. In our experiments, we use stochastic gradient descent

to learn these parameters.

Baselines We compare the performance of the estimators returned by Algorithm 5 for
various values of (n, d,B), with empirical covariance Sn and the James Stein estima-
tor [JS92] which is defined as Kn∆JSK

T
n , where Kn is a lower triangular matrix such that

Sn = KnK
T
n and ∆JS is a diagonal matrix with ith diagonal element equal to 1

n+d−2i+1
.

Results We use worst-case risk to compare the performance of various estimators. To
compute the worst-case risk, we again rely on DragonFly. We note that the worst-case

82

computed using this approach may be inaccurate as DragonFly is not guaranteed to return
a global optimum. So, we also compare the risk of various estimators at randomly generated
Σ’s (see Appendix D.9). Table 5.5 presents the results from this experiment. It can be seen
that our estimators outperform empirical covariance for almost all the values of n, d,B and
outperform James Stein estimator for small values of n/d, B. For large values of n/d, B,
our estimator has similar performance as JS. In this setting, we believe the performance of
our estimators can be improved by running the algorithm with better hyper-parameters.

Table 5.5: Worst-case risk of various estimators for covariance estimation for various con-
figurations of (n, d,B). The worst-case risks are obtained by taking a max of the worst-case
risk estimate from DragonFly and the risks computed at randomly generated Σ’s.

Worst-case Risk
n = 1.5× d,B = 1 n = 1.5× d,B = 2 n = 1.5× d,B = 4 n = 1.5× d,B = 8

Estimator d = 5 d = 10 d = 5 d = 10 d = 5 d = 10 d = 5 d = 10

Empirical Covariance 2.5245 5.1095 2.5245 5.1095 2.5245 5.1095 2.5245 5.1095
James-Stein Estimator 2.1637 4.1704 2.1637 4.1704 2.1637 4.1704 2.1637 4.1704
Averaged Estimator 1.8686 3.1910 1.9371 3.7019 2.0827 4.2454 2.1416 3.9864

Worst-case Risk
n = 2× d,B = 1 n = 2× d,B = 2 n = 2× d,B = 4 n = 2× d,B = 8

Estimator d = 5 d = 10 d = 5 d = 10 d = 5 d = 10 d = 5 d = 10

Empirical Covariance 1.8714 3.4550 1.8714 3.4550 1.8714 3.4550 1.8714 3.4550
James-Stein Estimator 1.6686 2.9433 1.6686 2.9433 1.6686 2.9433 1.6686 2.9433
Averaged Estimator 1.2330 2.1944 1.5237 2.6471 1.6050 3.0834 1.6500 2.9907

Worst-case Risk
n = 3× d,B = 1 n = 3× d,B = 2 n = 3× d,B = 4 n = 3× d,B = 8

Estimator d = 5 d = 10 d = 5 d = 10 d = 5 d = 10 d = 5 d = 10

Empirical Covariance 1.1425 2.1224 1.1425 2.1224 1.1425 2.1224 1.1425 2.1224
James-Stein Estimator 1.0487 1.9068 1.0487 1.9068 1.0487 1.9068 1.0487 1.9068
Averaged Estimator 0.8579 1.3731 0.9557 1.7151 1.0879 1.9174 1.2266 2.0017

5.8.4 Entropy Estimation

In this section, we consider the problem of entropy estimation described in Section 5.3.4.
Similar to covariance estimation, we use two layer neural networks to parameterize func-
tions g, h in Equation (5.19). Implementing the minimization oracle then boils down
to finding the parameters of these networks which minimize EP∼Pt

[
R(f̂g,h, P)

]
. We use

stochastic gradient descent to solve this optimization problem.

Baselines We compare the performance of the estimators returned by Algorithm 5 for
various values of (n, d), with the plugin MLE estimator −

∑d
i=1 p̂i log p̂i, and the minimax

rate optimal estimator of Jiao, Venkat, Han, and Weissman [Jia+15] (JVHW). The plugin
estimator is known to be sub-optimal in the high dimensional regime, where n < d [Jia+15].

Results We compare the performance of various estimators based on their worst-case risk
computed using DragonFly. Since DragonFly is not guaranteed to compute the worst-case

83

risk, we also compare the estimators based on their risk at randomly generated distributions
(see Appendix D.9). Table 5.6 presents the worst-case risk numbers. It can be seen that the
plugin MLE estimator has a poor performance compared to JVHW and our estimator. Our
estimator has similar performance as JVHW, which is the best known minimax estimator
for entropy estimation. We believe the performance of our estimator can be improved with
better hyper-parameters.

Table 5.6: Worst-case risk of various estimators for entropy estimation, for various values
of (n, d). The worst-case risks are obtained by taking a max of the worst-case risk estimate
from DragonFly and the risks computed at randomly generated distributions.

Worst-case Risk
d = 10 d = 20 d = 40 d = 80

Estimator n = 10 n = 20 n = 20 n = 40 n = 10 n = 20 n = 40 n = 20 n = 40 n = 80

Plugin MLE 0.2895 0.1178 0.2512 0.0347 2.1613 0.8909 0.2710 2.2424 0.9142 0.2899
JVHW [Jia+15] 0.3222 0.0797 0.1322 0.0489 0.6788 0.2699 0.0648 0.3751 0.1755 0.0974

Averaged
Estimator 0.1382 0.0723 0.1680 0.0439 0.5392 0.2320 0.0822 0.5084 0.2539 0.0672

5.9 Discussion
We introduced an algorithmic approach for constructing minimax estimators, where we
attempt to directly solve the min-max statistical game associated with the estimation
problem. This is unlike the traditional approach in statistics, where an estimator is first
proposed and then its minimax optimality is certified by showing its worst-case risk matches
the known lower bounds for the minimax risk. Our algorithm relies on techniques from
online non-convex learning for solving the statistical game and requires access to certain
optimization subroutines. Given access to these subroutines, our algorithm returns a mini-
max estimator and a least favorable prior. This reduces the problem of designing minimax
estimators to a purely computational question of efficient implementation of these subrou-
tines. While implementing these subroutines is computationally expensive in the worst
case, we showed that one can rely on the structure of the problem to reduce their com-
putational complexity. For the well studied problems of finite Gaussian sequence model
and linear regression, we showed that our approach can be used to learn provably minimax
estimators in poly(d) time. For problems where provable implementation of the optimiza-
tion subroutines is computationally expensive, we demonstrated that our framework can
still be used together with heuristics to obtain estimators with better performance than
existing (up to constant-factor) minimax estimators. We empirically demonstrated this on
classical problems such as covariance and entropy estimation. We believe our approach
could be especially useful in high-dimensional settings where classical estimators are sub-
optimal and not much is known about minimax estimators. In such settings, our approach
can provide insights into least favourable priors and aid statisticians in designing minimax
estimators.

There are several avenues for future work. The most salient is a more comprehensive un-
derstanding of settings where the optimization subroutines can be efficiently implemented.

84

In this chapter, we have mostly relied on invariance properties of statistical games to im-
plement these subroutines. As described in Section 5.2, there are several other forms of
problem structure that can be exploited to implement these subroutines. Exploring these
directions can help us construct minimax estimators for several other estimation problems.
Another direction for future work would be to modify our algorithm to learn an approx-
imate minimax estimator (i.e., a rate optimal estimator), instead of an exact minimax
estimator. There are several reasons why switching to approximate rather than exact min-
imaxity can be advantageous. First, with respect to our risk tolerance, it may suffice to
construct an estimator whose worst-case risk is constant factors worse than the minimax
risk. Second, by switching to approximate minimaxity, we believe one can design algo-
rithms requiring significantly weaker optimization subroutines than those required by our
current algorithm. Third, the resulting algorithms might be less tailored or over-fit to the
specific statistical model assumptions, so that the resulting algorithms will be much more
broadly applicable. Towards the last point, we note that our minimax estimators could
always be embedded within a model selection sub-routine, so that for any given data-set,
one could select from a suite of minimax estimators using standard model selection criteria.
Finally, it would be of interest to modify our algorithm to output a single estimator which
is simultaneously minimax for various values of n, the number of observations.

85

86

Part IV

Boosting

87

Chapter 6
Generalized Boosting

Boosting is a widely used learning technique in machine learning for solving classification
problems. Boosting aims to improve the performance of a weak learner by combining mul-
tiple weak classifiers to produce a strong classifier with good predictive performance. Since
the seminal works of Schapire [Sch90] and Freund [Fre95], a number of practical algorithms
such as AdaBoost [FS+96], gradient boosting [Mas+00], XGBoost [CG16], have been pro-
posed for boosting. Over the years, boosting based methods such as XGBoost in particular,
have shown tremendous success in many real-world classification problems, as well as com-
petitive settings such as Kaggle competitions. However, this success is mostly limited
to classification tasks involving structured or tabular data with hand-engineered features.
On classification problems involving low-level features and complex decision boundaries,
boosting tends to perform poorly [BSW14; Pon+17] (also see Section 6.4). One example
where this is evident is the image classification task, where the decision boundaries are
often complex and the features are low-level pixel intensities. This drawback stems from
the fact that boosting builds an additive model of weak classifiers, each of which has very
little predictive power. Since such additive models with any reasonable number of weak
classifiers are usually not powerful enough to approximate complex decision boundaries,
the models’ output by boosting tend to have poor performance.

In this chapter, we aim to overcome this drawback of traditional boosting by consid-
ering a generalization of boosting which allows for more complex forms of aggregation
than linear combinations of weak classifiers. To achieve this goal, we work in the feature
representation space and boost the performance of weak feature transformers. Working
in the representation space allows for more flexible combinations of weak feature trans-
formers. This is unlike traditional boosting which works in the label space and builds an
additive model on the predictions of the weak classifiers. The starting point for our ap-
proach is the greedy view of boosting, originally studied by Friedman, Hastie, Tibshirani,
et al. [FHT+00] and Mason, Baxter, Bartlett, and Frean [Mas+00]. Letting R̂S(f) be the
risk of a classifier f on training samples S, boosting techniques aim to approximate the
minimizer of R̂S in terms of linear combinations of elements from a set of weak classifiers
F . Many popular boosting algorithms including AdaBoost, XGBoost, rely on greedy tech-
niques to find such an approximation. In our generalized framework for boosting, we take

89

this greedy view, but differ in how we aggregate the weak learners. We approximate the
minimizer of R̂S using models of the form fT = WφT , where φT =

∑T
t=0 gt, and {gt}Tt=0

are feature transformations learned in each iteration of the greedy algorithm, and W is the
linear classifier on top of the feature transformation. Unlike additive boosting, where each
gt comes from a fixed weak feature transformer class G, in our framework each gt comes
from a class Gt which evolves over time t and is allowed to depend on the past iterates
{φi}t−1

i=0. Some potential choices for Gt that could be of interest are {g ◦ φt−1 for g ∈ G},
{g ◦ ([φ0, . . . , φt−1]) for g ∈ G}, where g ◦ φ(x) = g(φ(x)) denotes function composition of
g and φ, and G is a weak feature transformer class. Note that the former choice of Gt is
connected to layer-by-layer training of models with ResNet architecture [He+16].

As one particular instantiation of our framework, we consider weak feature transform-
ers that are neural networks and use function compositions to combine them; that is, we
use Gt’s constructed using function compositions. We show that for certain choices of
Gt, our framework recovers the layer-by-layer training techniques developed in deep learn-
ing [Ben+07; Hua+17a]. Greedy layer-by-layer training techniques have seen a revival in
recent years [Che+18; Hua+17a; BEO18; NS18; LOV19]. One reason for this revival is
that greedy techniques consume less memory than end-to-end training of deep networks, as
they do not perform end-to-end back-propagation. Consequently, they can accommodate
much larger models in limited memory. As a primary contribution of the work, we identify
several drawbacks of existing layer-by-layer training techniques, and show that the choice
of Gt used by these algorithms can lead to a drop in performance. We propose alternative
choices for Gt which fix these issues and empirically demonstrate that the resulting algo-
rithms have superior performance over existing layer-by-layer training techniques, and in
some cases achieve performance close to that of end-to-end trained DNNs. Moreover, we
show that the proposed algorithms perform much better than traditional additive boosting
algorithms, on a variety of classification tasks.

As the second contribution of the work, we provide excess risk bounds for models
learned using our generalized boosting framework. Our results depend on a certain weak
learning condition on feature transformer classes {Gt}Tt=1, which is a natural generalization
of the weak learning condition that is typically imposed in traditional boosting. The re-
sulting risk bounds are modular and depend on the generalization bounds of {Gt}Tt=1. An
advantage of such modular bounds is that one can rely on the best-known generalization
bounds for weak transformation classes {Gt}Tt=1 and obtain tight risk bounds for boost-
ing. As an immediate consequence of this result, we obtain excess risk bounds for existing
greedy layer-by-layer training techniques.

RelatedWork. Several works have proposed generalizations of traditional boosting [GB11;
CMS14; Cor+17; Hua+17a]. Cortes, Mohri, and Syed [CMS14] propose a boosting algo-
rithm where the hypothesis set of weak classifiers is chosen adaptively. However, the
resulting models are still additive models of weak classifiers and usually perform poorly
on hard classification problems. Several recent works have attempted to learn neural net-
works greedily based on boosting theory. Cortes, Gonzalvo, Kuznetsov, Mohri, and Yang
[Cor+17] propose a boosting-style algorithm to learn both the structure and weights of
neural networks in an adaptive way. However, the algorithms developed are restricted

90

to feed forward neural networks and are mostly theoretical in nature. The experimental
evidence in the chapter is a proof-of-concept and only considers small scale binary classi-
fication tasks. Huang, Ash, Langford, and Schapire [Hua+17a] and Nitanda and Suzuki
[NS18] use ideas from classical boosting to learn neural networks in a layer-by-layer fashion.
As we show later, these algorithms are specific instances of our generalized framework, and
have certain drawbacks arising from the choice of Gt they use.

6.1 Preliminaries
In this section, we set up the notation and review the necessary background on additive
boosting. A consolidated list of notation can be found in Appendix E.1.
Notation. Let (X, Y) ∈ X × Y denote a feature-label pair following a probability dis-
tribution P . Let PX , P Y denote the marginal distributions of X and Y . In this chapter,
we consider the multi-class classification problem where Y = {0, . . . K − 1}, and assume
X ⊆ Rd. Let S = {(xi, yi)}ni=1 be n i.i.d samples drawn from P . Let Pn be the empirical
distribution of S and PX

n , P
Y
n be the marginal distributions of {xi}ni=1, {yi}ni=1.

In classification, our goal is to find a predictor that can well predict the label of any feature
from just the samples S. Let f : X → RK denote a score-based classifier which assignsX to
class argmaxi fi(X). The expected classification risk of f is defined as EX,Y [`0−1(f(X), Y)],
where `0−1(f(X), Y) = 0 if argmaxi fi(X) = Y , and 1 otherwise. Since optimizing 0/1 risk
is computationally intractable, we consider convex surrogates of `0−1(f(X), Y), which we
denote by `(f(X), Y); typical choices for ` include the logistic loss and the exponential
loss. The population risk of f is then defined as R(f) = EX,Y [`(f(X), Y)] . Since directly
optimizing the population risk is impossible, we approximate it with the empirical risk
R̂S(f) = 1

n

∑n
i=1 `(f(xi), yi) and try to find its minimizer.

We consider classifiers of the form f(X) = Wφ(X), where φ : X → RD is the fea-
ture transformer and W ∈ RK×D is the linear classifier on top. A popular choice for
φ is a neural network. We denote the population and empirical risks of such an f as
R(W,φ), R̂S(W,φ). We usually work in the space of feature transforms. Let L2(P) de-
note the space of square integrable functions w.r.t P , and define the inner product be-
tween φ1, φ2 ∈ L2(P) as 〈φ1, φ2〉P = EX∼P [〈φ1(X), φ2(X)〉]. We denote with ∇φR(W,φ)
the functional gradient of R(W,φ) w.r.t φ in the L2(PX) space, which is defined as
∇φR(W,φ)(x) = EY |x

[
W T∇`(Wφ(x), Y)

]
, where ∇`(Wφ(x), y) denotes the gradient of

` w.r.t its first argument, evaluated at Wφ(x). Similarly, we let ∇φR̂S(W,φ) denote the
functional gradient of R̂S(W,φ) in the L2(PX

n) space

∇φR̂S(W,φ)(x) =

{
W T∇`(Wφ(xi), yi), if x = xi,

0 otherwise
.

Additive Boosting. In this chapter, we refer to traditional boosting as additive boost-
ing, as it constructs additive models of weak classifiers. Let F be a hypothesis class of
weak classifiers, a typical example being decision trees of bounded depth. Additive boost-
ing aims to find an element in the linear span of F which minimizes the empirical risk

91

R̂S(f). As previously mentioned, there exists a duality between boosting and greedy algo-
rithms [FHT+00; Fri01; Mas+00]. Many popular boosting algorithms use a greedy forward
stagewise approach to find a minimizer of R̂S(f), and solve the following in each iteration:

ηt, ft = argminη∈R,f∈F R̂S

(∑t−1

i=1
ηifi + ηf

)
,

where η is the learning rate. Various algorithms differ in how they solve this optimization
problem. In gradient boosting, one uses a linear approximation of R̂S around

∑t−1
i=1 ηifi

[Mas+00]. In this chapter, we take this greedy view of boosting to design the generalized
boosting framework.
Additive Representation Boosting. In this chapter, we perform boosting in the rep-
resentation space, contrasting with traditional boosting which works in the output space.
Let G be a hypothesis class of weak feature transformers, whose examples include the set
of one layer neural networks of bounded width and a set of vector-valued polynomials of
bounded degree. More generally, G can be any set of non-linear transformations. In ad-
ditive representation boosting, we aim to find a strong feature transform φ in the linear
span of G, and a linear predictor W ∈ W ⊆ RK×D that minimizes R̂S(W,φ). To this end,
we consider greedy algorithms that solve the following problem each iteration:

Wt, gt = argminW∈W,g∈G R̂S (W,φt−1 + ηtg) , (6.1)

where φt = φ0 +
∑t

i=1 ηigi with φ0 being the initial feature transformation, and {ηi}∞i=1 is
a predefined learning rate schedule.

6.2 Generalized Boosting
The starting point for our generalized boosting framework is the additive representation
boosting described in Section 6.1. Typically, linear combinations of weak feature trans-
formations are not powerful enough to model complex decision boundaries. Consequently,
the minimizer of R̂S(W,φ) over the linear span of G tends to have a high risk. A simple
workaround for this issue would be to perform additive boosting with a complex hypoth-
esis class G. For example, if the weak feature transformers are one layer neural networks,
then one could increase the complexity of G by using deeper networks. However, such an
alternative has several drawbacks both from an optimization and generalization perspec-
tive and defeats the purpose of boosting, which aims to convert weak learners into strong
learners. From an optimization perspective, moving to complex G makes each greedy step
harder to optimize. For example, compared to deep neural networks, shallow networks are
easier to optimize, require fewer resources, and are easier to analyze or interpret [BEO18].
From a generalization perspective, since the generalization bounds of boosting depend on
the complexity of G, larger hypothesis classes can lead to overfitting and poor performance
on unseen data.

In this chapter, we are interested in other approaches for increasing the complexity
of models produced by boosting, while ensuring the boosting/greedy steps are easy to

92

implement. One way to achieve this is by considering more complex combinations of weak
feature transformers than the linear combinations considered in additive representation
boosting. Formally, let Gt denote the hypothesis class of feature transformations used in
the tth iteration of boosting. In additive boosting, Gt = G for all t. In our generalized
boosting framework, we increase the complexity of Gt by letting it depend on the past
iterates {φi}t−1

i=0. Here are some potential choices for Gt, other than the ones stated in the
introduction: {g ◦ (

∑t−1
i=0 αiφi), for g ∈ G, αi ∈ R}, {g ◦ φt−1 ◦ φt−2 · · · ◦ φ0, for g ∈ G}.

Depending on the problem domain, one could consider several other ways of constructing
Gt using the past iterates. Note that even with these complex choices of Gt, the greedy
steps are easy to implement and only need a weak learner which can identify an element
in G that best fits the data. As a result, this remains in the spirit of boosting and at the
same time ensures the models learned are complex enough for real world problems.

We now present our algorithm for generalized boosting (see Algorithm 10). Similar to
additive representation boosting, our algorithm proceeds in a greedy fashion. In the tth
iteration of the algorithm, we aim to solve the following optimization problem:

Wt, gt = argmin
W∈W,g∈Gt

R̂S (W,φt−1 + ηtg) . (6.2)

We provide two approaches for solving this problem. One is the exact greedy approach,
which directly solves the optimization problem (Algorithm 11). For problems where direct
optimization of Equation (6.2) is difficult1, we provide an approximate technique which
performs functional gradient descent on the objective. In this approach, which we call
gradient greedy approach, we approximate the objective with the linear approximation of
R̂S around φt−1 (Algorithm 12):

R̂S (W,φt−1 + ηtg) ≈ R̂S (W,φt−1) + ηt〈∇φR̂S(W,φt−1), g〉PXn .

To optimize the linear approximation, we first fixW toWt−1 and find a minimizing gt ∈ Gt.
Intuitively, this step can be seen as finding a g which best aligns with the negative functional
gradient of empirical risk at the current iterate. For appropriate choice of learning rate
η, moving along gt results in reduction of R̂S. Next, we fix gt and find a linear predictor
W which minimizes the empirical risk R̂S(W,φt). This alternating optimization of g and
W makes the algorithm easy to implement in practice. Moreover, this algorithm is more
stable than joint optimization of g and W . We note that such gradient greedy approaches
have been developed for traditional boosting [Mas+00].

6.2.1 Compositional Boosting

As one particular instantiation of our framework, we consider Gt’s constructed by com-
posing elements from a weak feature transformer class G with the past iterates {φi}t−1

i=0

and study the resulting boosting algorithms. We refer to such boosting algorithms as
compositional boosting algorithms since the strong feature transformer is constructed from
weak feature transformer via function composition. When Gt = {g ◦ φt−1 for g ∈ G}, the

1Such scenarios can potentially arise if the feature transformations are non-differentiable functions.

93

models in our framework have the ResNet architecture and can be defined recurrently
as φt = φt−1 + ηtgt ◦ φt−1. Moreover, Algorithm 10 with this choice of Gt and Algo-
rithm 11 as update routine give us the greedy layer-wise supervised training technique
proposed by Bengio, Lamblin, Popovici, and Larochelle [Ben+07] and recently revisited by
Belilovsky, Eickenberg, and Oyallon [BEO18]. In another recent work, Huang, Ash, Lang-
ford, and Schapire [Hua+17a] propose a boosting-based algorithm for learning ResNets
(see Algorithm 17 in Appendix). We now show that their approach is equivalent to the
greedy technique of Bengio, Lamblin, Popovici, and Larochelle [Ben+07], and thus can
be seen as an instance of our general framework. We note that such a connection is not
known previously.
Proposition 12. Suppose the classification loss ` is the exponential loss. Then the greedy
technique of Huang, Ash, Langford, and Schapire [Hua+17a] for learning ResNets is equiv-
alent to the greedy layer-wise supervised training technique of Bengio, Lamblin, Popovici,
and Larochelle [Ben+07].

In another recent work, Nitanda and Suzuki [NS18] propose a gradient boosting tech-
nique to greedily learn a ResNet. This algorithm is closely related to the gradient greedy
approach described in Algorithm 12, with Gt = {g ◦ φt−1 for g ∈ G}.

Algorithm 10 Generalized Boosting
1: Input: Training data S = {(xi, yi)}ni=1, iterations T , initial linear predictorW0, initial feature

transformer φ0, learning rates {ηi}Ti=1, Update-routine: UPDATE
2: t← 1
3: while t ≤ T do
4: Construct feature transformer class Gt based on past iterates {(Wi, φi)}t−1

i=0

5: Wt, φt, gt ← UPDATE (S,Wt−1, φt−1, ηt,Gt)
6: t← t+ 1
7: end while
8: Return: WT , φT

Algorithm 11 Exact Greedy Up-
date
1: Input: Training data S, previous

iterate (W,φ), learning rate η, fea-
ture transformer class G

2:

W+, g+ ← argmin
W̃∈W,g̃∈G

R̂S(W̃ , φ+ηg̃)

3: φ+ ← φ+ ηg+

4: Return: W+, φ+, g+

Algorithm 12 Gradient Greedy Update
1: Input: Training data S, previous iterate (W,φ), learn-

ing rate η, feature transformer class G
2: // Pick a descent direction
3: g+ ← argming̃∈G〈∇φR̂S(W,φ), g̃〉PXn
4: φ+ ← φ+ ηg+

5: // Update the linear predictor
6: W+ ← argmin

W̃∈W R̂S(W̃ , φ+)
7: Return: W+, φ+, g+

We now highlight certain drawbacks of the existing greedy layer-wise training tech-
niques, which arise from the particular choice of Gt used by these algorithms. Since
{g ◦ φt−1 for g ∈ G} is constructed solely based on the past iterate φt−1, any mistake

94

in φt−1 is propagated to all the future iterates. As a result, these algorithms can not re-
cover from their past mistakes. As an example, consider the following scenario where two
points x1,x2 belonging to two different classes are placed close to each other in the feature
space, after 1st iteration of greedy; that is φ1(x1) ≈ φ1(x2). In such a scenario, the future
iterates {φt}∞t=2 generated by existing greedy algorithms will always place x1,x2 close to
each other in the representation space. As a result, the algorithm will always misclassify
at least one of x1,x2. Another issue with existing greedy techniques is that they do not
guarantee that the complexity of Gt increases with time t. In such scenarios, Algorithm 10
doesn’t make much progress in each iteration and can result in poor models. As an exam-
ple, consider the setting where G is the set of all linear transformations. Suppose φ0 is the
identity transform and φ1 is such that its range lies in a low dimensional subspace. Then,
it is evident that G1 ⊇ Gt for all t ≥ 2.

To fix these issues, we propose two new compositional boosting algorithms obtained
with a more careful choice of Gt. In our first algorithm, which we call DenseCompBoost,
we choose Gt as follows

Gt =
{
g ◦
(
Id +

∑t−1

i=0
αiφi

)
, for g ∈ G, αi ∈ R

}
, (6.3)

where Id(·) is the identify function. Such a choice of Gt helps us recover from the past
mistakes. For example, if φ1 is a constant function, then the algorithm can still learn a
good feature transformer by relying on the input x and the initial feature transform φ0.
Moreover, our choice of Gt ensures its complexity grows with t and satisfies: Gt−1 ⊆ Gt,
for all t. We call our algorithm DenseCompBoost, since the resulting model for this choice
of Gt resembles a DenseNet [Hua+17b], where each layer is allowed to be connected to all
the previous layers. That being said, the models output by DenseCompBoost differ from
DenseNet in how they aggregate the previous layers. DenseNet concatenates the features
from previous layers, whereas DenseCompBoost adds the features. Our second algorithm,
which we call CmplxCompBoost, tries to increase the complexity of Gt in each iteration as
follows

Gt =
{
g ◦ φt−1, for g ∈ G̃t

}
, (6.4)

where G̃t is a weak feature transformer class and satisfies G̃t−1 ⊂ G̃t for all t. In the case of
one layer neural networks, such G̃t’s can be constructed by increasing the layer width with
t. We note that the G̃t in this algorithm is independent of the past iterates. By increasing
the complexity of G̃t with t, we expect the complexity of Gt to increase and Algorithm 10
to make more progress in each iteration. While not immediately evident, we note that this
technique can also fix the mistakes made by past iterates. For example, suppose φ1 is such
that it places two points x1,x2 from different classes, close to each other in the feature
space. Then having a more complex G̃2 can help recover from this mistake, as one can
potentially find a g ∈ G̃2 which can separate these two points. In Section 6.4, we present
empirical evidence showing that our new boosting algorithms have superior performance
over existing additive and compositional boosting algorithms. Further empirical evidence
corroborating the issues we identified with existing layer-wise training techniques can be
found in Appendix E.10.1.

95

6.3 Excess Risk Bounds

In this section, we provide excess risk bounds for the models’ output by the generalized
boosting framework. Our results depend on a weak learning condition on the hypothesis
class Gt used in the tth iteration of Algorithm 10. This condition is a way to quantify the
relative strength of Gt and roughly says that there always exists an element in Gt which
has an acute angle with the negative functional gradient at the current iterate. Such a
condition ensures progress in each iteration of boosting.
Definition 6.3.1. Let β ∈ (0, 1], ε ≥ 0 be constants. Gt+1 is said to satisfy the (β, ε)-weak
learning condition for a dataset S, if there exists a g ∈ Gt+1 such that

〈g,−∇φR̂S(Wt, φt)〉PXn ≥ βB(Gt+1)‖∇φR̂S(Wt, φt)‖PXn − ε,

where B(Gt+1) = supg∈Gt+1
‖g‖PXn , and Pn is the empirical distribution of S.

In traditional boosting, such conditions are typically referred to as the edge of a weak
learner and play a crucial role in the convergence analysis. For example, Freund and
Schapire [FS95] assume that for any set of weights over the training set S, there exists a
classifier in the hypothesis class of weak classifiers which has better than random accuracy
on the weighted samples. The following proposition shows that their condition is closely
related to Definition 6.3.1.
Proposition 13. For binary classification, the weak learning condition of Freund and
Schapire [FS95] satisfies the empirical weak learning condition in Definition 6.3.1, albeit
in the label space.

For binary classification problems, it is well known that the weak learning condition
of [FS95] is the weakest condition under which boosting is possible [FS96; RW05]. This,
together with the above proposition, suggests that our weak learning condition in Defini-
tion 6.3.1 cannot be weakened for binary classification problems.

To begin with, we derive excess risk bounds for the gradient greedy approach. Our
analysis crucially relies on the observation that it can be viewed as performing inexact
gradient descent on the population risk R. Several recent works have analyzed inexact
gradient descent on convex objectives [SRB11; Tem14; DGN14; BWY+17]. However, the
condition on the inexact gradient imposed by these works is different from ours and in
many cases is stronger than our condition. For example, the condition of Balakrishnan,
Wainwright, Yu, et al. [BWY+17] translates to ‖g + ∇φR(W,φ)‖PX ≤ ε in our setting,
which is stronger than our weak learning condition. So the core of our analysis focuses
on understanding inexact gradient descent with descent steps satisfying the weak learning
condition in Definition 6.3.1. In our analysis, we consider a sample-splitting variant of the
algorithm, where in each iteration we use a fresh batch of samples. This is mainly done
to simplify the analysis by avoiding complex statistical dependencies between the iterates
of the algorithm. Let ñ = b n

T
c, we split the training dataset S into T subsets {St}Tt=1

of size ñ, where St = {(xt,i, yt,i)}ñi=1. We work with the subset St in the tth iteration of
Algorithm 10. We are now ready to state our main result on the excess risk bounds of the
iterates of Algorithm 12. Our results depend on the Rademacher complexity terms related

96

to the hypothesis sets W ,Gt

R (W ,Gt) = E

 sup
W∈W,
g∈Gt

1

ñ

ñ∑
i=1

K∑
k=1

ρik[Wg(xt,i)]k

 , R (Gt) = E

[
sup
g∈Gt

1

ñ

ñ∑
i=1

D∑
j=1

ρij[g(xt,i)]j

]
,

where [u]k denotes the kth entry of a vector u, and the expectation is taken w.r.t the
randomness from St and the Rademacher random variables ρij’s.
Theorem 21 (Gradient Greedy). Suppose the classification loss ` is L-Lipschitz and M-
smooth w.r.t the first argument. Let the hypothesis set of linear predictors W be s.t. any
W ∈ W satisfies λmin

(
WW T

)
≥ σ2

min > 0 and λmax
(
WW T

)
≤ σ2

max. Moreover, suppose
for all t, Gt satisfies the (β, εt)-weak learning condition of Definition 6.3.1 for any dataset
St. Finally, suppose any g ∈ Gt is bounded with supX ‖g(X)‖2 ≤ B. Let the learning
rates {ηt}∞t=1 be chosen as ηt = ct−s, for some s ∈

(
β+1
β+2

, 1
)

and positive constant c. If
Algorithm 10 is run for T iterations with Algorithm 12 as update routine, then (WT , φT),
the T th iterate output by the algorithm, satisfies the following risk bound for any W ∗, φ∗

and α ∈ (0, β(1− s)), with probability at least 1− δ over datasets of size n

R(WT , φT) ≤ R(W ∗, φ∗) +O

 1

Tα
+ T 2−s

√
log T

δ

ñ

+ 2
T∑
t=1

ηt (LR (W ,Gt) + LR (Gt) + εt) .

Proof Sketch. We first show that Algorithm 12 can be viewed as performing inexact
gradient descent on the population risk R. Specifically, we show that with high probability,
the tth iterate gt satisfies

〈gt,−∇φR(Wt−1, φt−1)〉P ≥ βB‖∇φR(Wt−1, φt−1)‖P − εt − ζt,

for some ζt > 0. This follows from the weak learning condition satisfied by Gt. Ignoring
εt, ζt, the above equation shows that gt makes acute angle with the population functional
gradient at φt−1. Consequently, we would expect the population risk to decrease, if we
move along gt. This is indeed the case, and the final step in the proof formalizes this
intuition.

Remarks: We now briefly discuss the above result. See Appendix E.4 for more dis-
cussion.
• The reference classifier (W ∗, φ∗) in the above bound can be any classifier, as long as
‖W ∗‖2 < ∞, ‖φ∗‖PX < ∞. In particular, if there exists a Bayes optimal classifier
satisfying this condition, then the above Theorem provides an excess risk bound w.r.t
the Bayes optimal classifier.

• The T−α term in the bound corresponds to the optimization error. The ηtεt term corre-
sponds to the approximation error and the rest of the terms correspond to the general-
ization error. As T increases, the optimization error goes down, and as ñ increases, the
generalization error goes down. If there is no approximation error, that is εt = 0 for all
t, then the excess risk goes down to 0 as ñ, T →∞ at appropriate rate.

97

• If β = 1, then for appropriate choice of step size the optimization error goes down as
O
(
T−1/3+γ

)
, for some arbitrarily small γ > 0. This rate is slower than the O(T−1)

rates for inexact gradient descent obtained by Schmidt, Roux, and Bach [SRB11] and
Devolder, Glineur, and Nesterov [DGN14]. However, we note that unlike our work, these
works assume that the level sets of the objective are bounded. Under the assumption
that the level sets of population risk are bounded, the optimization error in Theorem 21
can be improved to O(T−1). However, such a condition need not hold in the our setting.

• Note that the risk bounds are modular and only depend on the Rademacher complexity
terms R(W ,Gt),R(Gt) which capture the complexity of Gt. To instantiate Theorem 21
for specific choices of Gt, we need to bound these two complexity terms.
We now extend the analysis of Theorem 21 to the exact greedy approach.

Corollary 5 (Exact Greedy). Consider the setting of Theorem 21. Suppose Algorithm 10
is run with Algorithm 11 as update routine. Then (WT , φT), the T th iterate output by the
algorithm, satisfies the same risk bounds as gradient greedy algorithm in Theorem 21.

In the rest of the section, we instantiate Theorem 21 for specific choices of Gt. We first
consider the additive representation boosting algorithm.
Corollary 6. Consider the setting of Theorem 21 and consider the additive representation
boosting algorithm, where Gt = G for all t. Suppose G is the set of one layer neural
networks with sigmoid activation functions: G =

{
σ(Cx), for C ∈ RD×d, ‖Ci,∗‖1 ≤ Λ,∀i

}
.

Moreover, suppose the feature domain X is a subset of [0, 1]d. Then the T th iterate output
by Algorithm 10, with Algorithm 11 or 12 as update routine, satisfies the following risk
bound for any (W ∗, φ∗), with probability at least 1− δ

R(WT , φT) ≤ R(W ∗, φ∗) +O

(
1

Tα

)
+ 2

T∑
t=1

ηtεt +O

KDΛT 1−s logD√
ñ

+ T 2−s

√
log T

δ

ñ

 .

Next, we consider the layer-by-layer fitting technique of Bengio, Lamblin, Popovici,
and Larochelle [Ben+07].
Corollary 7. Consider the setting of Corollary 6 and consider the layer-by-layer train-
ing technique of Bengio, Lamblin, Popovici, and Larochelle [Ben+07], where Gt = {g ◦
φt−1 for g ∈ G}. Suppose G is the set of one layer neural networks with sigmoid activation
functions: G =

{
σ(Cx), for C ∈ RD×D, ‖Ci,∗‖1 ≤ Λ,∀i

}
. Then the T th iterate output by

Algorithm 10, with Algorithm 11 or 12 as update routine, satisfies the following risk bound
for any (W ∗, φ∗) with probability at least 1− δ

R(WT , φT) ≤ R(W ∗, φ∗) +O

(
1

Tα

)
+ 2

T∑
t=1

ηtεt +O

KDΛT 2−2s logD√
ñ

+ T 2−s

√
log T

δ

ñ

 .

Note that the generalization and optimization errors for both additive feature boosting
and layer-by-layer fitting have similar dependence on T, ñ. However, the latter tends to
have a smaller approximation error (εt) as it is able to build complex Gt’s over time. So one
would expect layer-by-layer fitting to output models with a better population risk, which
our empirical results in fact verify.

98

6.4 Experiments
In this section, we present experiments comparing the performance of various boosting
techniques on both simulated and benchmark datasets.

Baselines. We compare our proposed boosting techniques with XGBoost, AdaBoost,
additive representation boosting (discussed in Corollary 6) and greedy layer-by-layer train-
ing technique of Bengio, Lamblin, Popovici, and Larochelle [Ben+07] (Corollary 7). XG-
Boost uses decision trees as weak classifiers. For AdaBoost, we use 1 hidden layer neural
networks as weak classifiers. We use two kinds of neural networks, based on the dataset.
For tabular datasets, we use fully connected networks and for image datasets, we use
convolutional networks (CNN) with the convolution block made up of Convolution, Batch-
Norm, ReLU layers arranged sequentially. For additive representation boosting (Additive
Feature Boost from now on) and layer-by-layer fitting (StdCompBoost from now on), the
weak feature transformer class G consists of one layer neural network transformations. Sim-
ilar to AdaBoost, we use two kinds of transformations: a) fully connected transformations
of the form g(x) = ReLU(Cx + d), and b) convolutional transformations with Convolu-
tion, BatchNorm, ReLU blocks arranged sequentially. Finally, we also compare against
end-to-end training of ResNets.

Proposed Techniques. For DenseCompBoost, we use a slight variant of Gt defined
in Equation (6.3) : Gt = {h + g ◦ (

∑t−1
i=0 αiφi), for h ∈ H, g ∈ G, αi ∈ R}, where H,G are

weak feature transformer classes. We use this variant because the dimensions of the input
feature space and the representation space need not be the same, and as a consequence Gt in
Equation (6.3) can not always be used. Similar to StdCompBoost, we consider two choices
for H,G: one based on fully connected blocks and the other based on convolution blocks.
For CmplxCompBoost, we again consider two choices for the weak transformer class G̃t in
Equation (6.4): a) ReLU(Cx + d) with C ∈ RDt×Dt−1 , where Dt = Dt−1 + ∆ for some
positive constant ∆, and b) convolution blocks with number of output channels equal to the
number of input channels plus a constant ∆. This choice of feature transformers ensures the
complexity of G̃t increases with t. We use exact greedy updates (Algorithm 11) for both of
our proposed methods and set learning rate ηt to 1. We do not present experimental results
for Algorithm 12, which we noticed has marginally worse performance than Algorithm 11.

6.4.1 Simulated Datasets

Datasets. In this section we compare the techniques described above on simulated
datasets. We generated 3 synthetic binary classification datasets in R32. Simulation 1
is a concentric ellipsoids dataset, where a point x is classified based on xTAx, for some
randomly generated positive semidefinite matrix A. Simulations 2, 3 are datasets whose
classification boundaries are polynomials of degrees 8 and 9 respectively. For each of these
datasets, we generated 106 samples for training and testing.
Hyper-parameters. We used hold-out set validation to pick the best hyper-parameters
for all the methods. We used 20% of the training data as validation data and picked the
best parameters using grid search, based on validation accuracy. After picking the best
parameters, we train on the entire training data and report performance on the test data.

99

For all the greedy techniques based on neural networks, we used fully connected blocks
and tuned the following parameters: weight decay, width of weak feature transformers,
number of boosting iterations T , which we upper bound by 15. For CmplxCompBoost, we
set ∆ = D0/5. For end-to-end training, we tuned weight decay, width of layers, depth. We
used SGD for optimization of all these techniques. The number of epochs and step size
schedule of SGD are chosen to ensure convergence. For XGBoost, we tuned the number
of trees, depth of each tree, learning rate. The exact values of hyper-parameters tuned for
each of the methods can be found in Appendix E.10.
Results. Table 6.1 presents the results from our experiments. Both CmplxCompBoost and
StdCompBoost largely outperform the additive boosting methods, with CmplxCompBoost
being slightly better due to the increasing complexity in G̃t. Notably, DenseCompBoost
performs significantly better than the rest and is able to bridge the gap between Std-
CompBoost and End-to-End. We attribute its success to its ability to recover from earlier
mistakes: while StdCompBoost or CmplxCompBoost necessarily accumulate errors at each
layer, DenseCompBoost is further connected to earlier layers, allowing it to undo its past
mistakes.

6.4.2 Benchmark Datasets

Datasets. In this section, we compare various techniques on the following image datasets:
CIFAR10, MNIST, FashionMNIST [XRV17], MNIST-rot-back-image [Lar+07], convex [XRV17],
SVHN [Net+11], and the following tabular datasets from UCI repository [BM98]: letter
recognition [FS91], forest cover type (covtype), connect4. The convex dataset involves
classifying shapes in images as either convex or non-convex.
Hyper-parameters. For covtype dataset, which doesn’t come with a test set, we ran-
domly sample 20% of the original data and use it as the test set. We use a similar hyper-
parameter selection technique as above and tune the same set of hyper-parameters as
described above. We use convolution blocks for CIFAR10, SVHN, FashionMNIST, convex,
MNIST-rot-back-image and fully connected blocks for the rest. We limit the width of fully
connected blocks to 4096, and the number of output channels in convolution blocks to 128
while tuning the hyper-parameters for the composition boosting techniques and end-to-end
training. For AdaBoost and additive representation boosting, we set these limits to 16000
and 350 respectively. For CmplxCompBoost with convolution blocks, we set ∆ = D0/8.
We do not use data augmentation in our experiments.
Results. Table 6.2 presents the results from our experiments. It can be seen that on image
classification tasks, additive boosting techniques have poor performance. Among compo-
sitional boosting methods, StdCompBoost performs the worst. While DenseCompBoost
performs comparably to CmplxCompBoost on image datasets, it is better on tabular data.
We believe a hybrid of DenseCompBoost and CmplxCompBoost algorithms can achieve
better performance than either of the algorithms.

100

Table 6.1: Test accuracy of various boosting techniques on synthetic datasets. Numbers
in bold indicate the best performance among various greedy techniques.

Technique Simulation 1 Simulation 2 Simulation 3
XGBoost (Trees) 84.40 97.59 50.10
AdaBoost (1 NN) 67.90 93.73 72.64

Additive Feature Boost 88.49 93.91 73.13
StdCompBoost 91.53 96.95 82.49

DenseCompBoost 93.55 98.35 95.70
CmplxCompBoost 91.97 97.22 82.52

End-to-End 93.88 98.35 99.09

Table 6.2: Test accuracy of various boosting techniques on benchmark datasets. We use
convolution blocks for the first 5 datasets and fully connected blocks for the other datasets.

Technique SVHN FashionMNIST CIFAR10 Convex MNIST-rot-
back-image MNIST Letter CovType Connect4

XGBoost (Trees) 77.72 90.34 58.34 82.29 53.89 97.96 96.16 97.46 86.63
AdaBoost (1 NN) 82.88 88 72.78 86.17 50.02 98.27 92.08 90.95 86.39

Additive
Feature Boost 83.36 89.95 74.33 89.30 54.31 98.27 90.86 93.12 86.58

StdCompBoost 90.81 92.77 81.93 98.19 73.17 98.37 96.43 95.61 86.33
DenseCompBoost 91.03 93.17 82.31 98.6 73.1 98.34 96.96 96.28 86.85
CmplxCompBoost 91.25 93.18 82.43 98.52 74.32 98.34 96.66 95.92 86.49

End-to-End 94.82 93.49 86.88 98.81 82.69 98.95 97.67 96.86 87.37

6.5 Discussion
We proposed a generalized framework for boosting, which allows for more complex forms of
aggregation of weak learners than traditional boosting. Our generalized framework allows
to derive learning algorithms that (a) have performance close to that of end-to-end trained
DNNs, and (b) come with strong theoretical guarantees. Additive boosting algorithms do
not satisfy property (a), while DNNs do not satisfy property (b). In particular, additive
boosting algorithms, even with small neural networks as their weak classifiers, do not have
the strong performance of end-to-end trained DNNs. Improving their performance requires
the hypothesis space to increase in complexity while not increasing sample complexity
of each boosting step too greatly, which can be achieved by our generalized boosting
framework. One particular instantiation of our framework is aggregation using function
compositions. A number of existing greedy techniques for learning neural networks fall
into our framework, and our analysis allowed us to delineate some of their key flaws,
then consequently, propose new techniques which improve upon them. We believe our
work opens up a new line of inquiry for greedy learning of highly flexible models with
rigorous theoretical guarantees, by leveraging the theory of boosting and generalized greedy
algorithms in function spaces. We moreover believe our work has the potential to bridge
the gap in performance between existing greedy layer-by-layer training techniques and
end-to-end training of deep networks.

101

102

Chapter 7
Conclusion and Future Work

Statistical Game Theory. This thesis aims to lay the foundations of statistical game
theory to study several classical and modern statistical problems. Our algorithmic contri-
butions to statistical game theory are primarily driven by two challenges that often arise
while studying statistical games: (a) large domains, and (b) nonconcave utility functions.
To this end, in Chapters 2, 3, we designed computationally efficient algorithms for finding
mixed strategy Nash equilibrium of games with nonconcave utilities. A number of open
questions need to be solved to adequately address the above two challenges. The most im-
portant of these is the need for efficient derivative-free optimization techniques that scale
well to high dimensional problems, and require very few function evaluations. Existing
techniques for derivative-free optimization do not satisfy these desiderata: random walk
based approaches such as Simulated Annealing require too many function evaluations and
model-based approaches such as Gaussian Process optimization don’t scale well to high
dimensional problems. In Chapter 4, we took a step towards this goal by designing effi-
cient derivative-free optimization techniques for convex quadratic loss functions. However,
this is a very restrictive setting and a lot of work remains to be done to derive efficient
derivative-free optimization techniques for nonconvex losses. To this end, in an ongoing
work, we are relying on the insights gained from studying quadratic losses to develop bandit
Newton methods for nonconvex losses.

There are several other avenues for future research in statistical game theory. Depend-
ing on the specific statistical application that is being studied, one might face various
algorithmic and analytic challenges. It is important to identify these challenges and come
up with appropriate tools to handle them. For example, for the problem of minimax sta-
tistical estimation, it often suffices to learn approximate minimax estimators (i.e., rate
optimal estimators), instead of exact minimax estimators. To construct such approximate
minimax estimators, we need new game-theoretic tools that help us find an approximate
NE whose value is constant factors away from the minimax value of the game. As another
example, consider the problem of robust machine learning. Machine learning practitioners
often prefer deterministic classifiers over randomized classifiers. In such cases, pure strat-
egy equilibrium turns out to be a more appropriate solution concept to study than mixed
strategy NE considered in this thesis. Studying this solution concept would require new

103

game-theoretic tools that can compute pure strategy equilibria in games with nonconcave
utility functions.

Statistical Applications. In this thesis, we mainly focused on the following two clas-
sical statistical applications: minimax statistical estimation and boosting. In minimax
statistical estimation, we utilized our game-theoretic tools to construct minimax estima-
tors for various problems such as mean estimation, regression, and entropy estimation. We
believe our algorithmic tools (in combination with problem structure) can help construct
minimax estimators for numerous other problems. In an ongoing work, we are designing
algorithmic minimax estimators for fundamental problems such as sparse mean estima-
tion, sparse linear regression. For the problem of boosting, the algorithms we developed
in Chapter 6 don’t yet match the performance of end-to-end trained neural networks. To
truly bridge the gap in performance between boosting and neural networks, we hypothe-
size that one has to look at the game-theoretic viewpoint of boosting. Consequently, in
an ongoing work, we are developing generalized boosting algorithms from a game-theoretic
perspective.

There are several other emerging problems in modern machine learning that can be
studied from a game-theoretic perspective. Some of these include robustness, GANs, and
algorithmic fairness. Many existing algorithms for these problems rely on heuristics to
solve the associated games. These heuristic approaches are not always guaranteed to find
an optimal solution. So it is important to understand the drawbacks of these heuristics
and come up with algorithms that improve upon them.

104

Bibliography
This bibliography contains 169 references.

[AB+09] Jean-Yves Audibert, Sébastien Bubeck, et al. “Minimax Policies for Adver-
sarial and Stochastic Bandits.” In: COLT. Vol. 7. 2009, pp. 1–122.

[AB10] Jean-Yves Audibert and Sébastien Bubeck. “Regret bounds and minimax poli-
cies under partial monitoring”. In: The Journal of Machine Learning Research
11 (2010), pp. 2785–2836.

[ADX10] Alekh Agarwal, Ofer Dekel, and Lin Xiao. “Optimal Algorithms for Online
Convex Optimization with Multi-Point Bandit Feedback.” In: COLT. Cite-
seer. 2010, pp. 28–40.

[AG12] Shipra Agrawal and Navin Goyal. “Analysis of thompson sampling for the
multi-armed bandit problem”. In: Conference on learning theory. 2012, pp. 39–
1.

[Aga+11] Alekh Agarwal, Dean P Foster, Daniel J Hsu, ShamMKakade, and Alexander
Rakhlin. “Stochastic convex optimization with bandit feedback”. In: Advances
in Neural Information Processing Systems. 2011, pp. 1035–1043.

[Aga+17] Alekh Agarwal, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire.
“Corralling a band of bandit algorithms”. In: Conference on Learning Theory.
PMLR. 2017, pp. 12–38.

[AGH19] Naman Agarwal, Alon Gonen, and Elad Hazan. “Learning in Non-convex
Games with an Optimization Oracle”. In: Proceedings of the Thirty-Second
Conference on Learning Theory. Ed. by Alina Beygelzimer and Daniel Hsu.
Vol. 99. Proceedings of Machine Learning Research. Phoenix, USA: PMLR,
25–28 Jun 2019, pp. 18–29. url: http://proceedings.mlr.press/v99/
agarwal19a.html.

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. “The multiplicative weights
update method: a meta-algorithm and applications”. In: Theory of Computing
8.1 (2012), pp. 121–164.

[AHR09] Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. “Competing in the
dark: An efficient algorithm for bandit linear optimization”. In: (2009).

[ALL19] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. “Learning and general-
ization in overparameterized neural networks, going beyond two layers”. In:
Advances in neural information processing systems. 2019, pp. 6155–6166.

105

http://proceedings.mlr.press/v99/agarwal19a.html
http://proceedings.mlr.press/v99/agarwal19a.html

[ALT15] Jacob D Abernethy, Chansoo Lee, and Ambuj Tewari. “Fighting bandits with
a new kind of smoothness”. In: Advances in Neural Information Processing
Systems 28 (2015), pp. 2197–2205.

[ALT16] Jacob Abernethy, Chansoo Lee, and Ambuj Tewari. “Perturbation techniques
in online learning and optimization”. In: Perturbations, Optimization, and
Statistics (2016), p. 233.

[AR09] Jacob Abernethy and Alexander Rakhlin. “Beating the adaptive bandit with
high probability”. In: 2009 Information Theory and Applications Workshop.
IEEE. 2009, pp. 280–289.

[Aue+02] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. “The
nonstochastic multiarmed bandit problem”. In: SIAM journal on computing
32.1 (2002), pp. 48–77.

[Ban+05] Arindam Banerjee, Inderjit S Dhillon, Joydeep Ghosh, and Suvrit Sra. “Clus-
tering on the unit hypersphere using von Mises-Fisher distributions”. In: Jour-
nal of Machine Learning Research 6.Sep (2005), pp. 1345–1382.

[Bar+08] Peter Bartlett, Varsha Dani, Thomas Hayes, Sham Kakade, Alexander Rakhlin,
and Ambuj Tewari. “High-probability regret bounds for bandit online linear
optimization”. In: Proceedings of the 21st Annual Conference on Learning
Theory-COLT 2008. Omnipress. 2008, pp. 335–342.

[BC12] Sébastien Bubeck and Nicolo Cesa-Bianchi. “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems”. In: arXiv preprint arXiv:1204.5721
(2012).

[Bel+15] Alexandre Belloni, Tengyuan Liang, Hariharan Narayanan, and Alexander
Rakhlin. “Escaping the local minima via simulated annealing: Optimization
of approximately convex functions”. In: Conference on Learning Theory. 2015,
pp. 240–265.

[Ben+07] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. “Greedy
layer-wise training of deep networks”. In: Advances in neural information
processing systems. 2007, pp. 153–160.

[BEO18] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. “Greedy Lay-
erwise Learning Can Scale to ImageNet”. In: arXiv preprint arXiv:1812.11446
(2018).

[Ber73] Dimitri P Bertsekas. “Stochastic optimization problems with nondifferentiable
cost functionals”. In: Journal of Optimization Theory and Applications 12.2
(1973), pp. 218–231.

[Ber85] James O Berger. Statistical Decision Theory and Bayesian Analysis. Springer
Science & Business Media, 1985.

[Ber90] J Calvin Berry. “Minimax estimation of a bounded normal mean vector”. In:
Journal of Multivariate Analysis 35.1 (1990), pp. 130–139.

[Bic81] PJ Bickel. “Minimax estimation of the mean of a normal distribution when
the parameter space is restricted”. In: The Annals of Statistics 9.6 (1981),
pp. 1301–1309.

106

[Bir83] Lucien Birgé. “Approximation dans les espaces métriques et théorie de l’estimation”.
In: Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 65.2 (1983),
pp. 181–237.

[BLE17] Sébastien Bubeck, Yin Tat Lee, and Ronen Eldan. “Kernel-based methods
for bandit convex optimization”. In: Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing. 2017, pp. 72–85.

[BM02] Peter L Bartlett and Shahar Mendelson. “Rademacher and Gaussian complex-
ities: Risk bounds and structural results”. In: Journal of Machine Learning
Research 3.Nov (2002), pp. 463–482.

[BM93] Lucien Birgé and Pascal Massart. “Rates of convergence for minimum contrast
estimators”. In: Probability Theory and Related Fields 97.1-2 (1993), pp. 113–
150.

[BM98] Catherine L Blake and Christopher J Merz. UCI repository of machine learn-
ing databases, 1998. 1998.

[BP73] Lawrence D Brown and R Purves. “Measurable selections of extrema”. In:
The annals of statistics 1.5 (1973), pp. 902–912.

[BSW14] Pierre Baldi, Peter Sadowski, and Daniel Whiteson. “Searching for exotic par-
ticles in high-energy physics with deep learning”. In: Nature communications
5 (2014), p. 4308.

[But+18] Cristina Butucea, Mohamed Ndaoud, Natalia A Stepanova, and Alexandre B
Tsybakov. “Variable selection with Hamming loss”. In: The Annals of Statis-
tics 46.5 (2018), pp. 1837–1875.

[BWY+17] Sivaraman Balakrishnan, Martin J Wainwright, Bin Yu, et al. “Statistical
guarantees for the EM algorithm: From population to sample-based analysis”.
In: The Annals of Statistics 45.1 (2017), pp. 77–120.

[CB94] Bertrand S Clarke and Andrew R Barron. “Jeffreys’ prior is asymptotically
least favorable under entropy risk”. In: Journal of Statistical planning and
Inference 41.1 (1994), pp. 37–60.

[CG16] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”.
In: Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 2016, pp. 785–794.

[Che+17] Robert S Chen, Brendan Lucier, Yaron Singer, and Vasilis Syrgkanis. “Robust
optimization for non-convex objectives”. In: Advances in Neural Information
Processing Systems. 2017, pp. 4705–4714.

[Che+18] Chang Chen, Zhiwei Xiong, Xinmei Tian, and Feng Wu. “Deep boosting for
image denoising”. In: Proceedings of the European Conference on Computer
Vision (ECCV). 2018, pp. 3–18.

[CL06] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. Cam-
bridge university press, 2006.

[CL11] T Tony Cai and Mark G Low. “Testing composite hypotheses, Hermite poly-
nomials and optimal estimation of a nonsmooth functional”. In: The Annals
of Statistics 39.2 (2011), pp. 1012–1041.

107

[CMS14] Corinna Cortes, Mehryar Mohri, and Umar Syed. “Deep Boosting”. In: ed.
by Eric P. Xing and Tony Jebara. Vol. 32. Proceedings of Machine Learning
Research. Bejing, China: PMLR, 22–24 Jun 2014, pp. 1179–1187. url: http:
//proceedings.mlr.press/v32/cortesb14.html.

[Cor+17] Corinna Cortes, Xavier Gonzalvo, Vitaly Kuznetsov, Mehryar Mohri, and
Scott Yang. “Adanet: Adaptive structural learning of artificial neural net-
works”. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org. 2017, pp. 874–883.

[CPB19] Niladri Chatterji, Aldo Pacchiano, and Peter Bartlett. “Online learning with
kernel losses”. In: International Conference on Machine Learning. PMLR.
2019, pp. 971–980.

[CS81] George Casella and William E Strawderman. “Estimating a bounded normal
mean”. In: The Annals of Statistics (1981), pp. 870–878.

[DGN14] Olivier Devolder, Franccois Glineur, and Yurii Nesterov. “First-order meth-
ods of smooth convex optimization with inexact oracle”. In: Mathematical
Programming 146.1-2 (2014), pp. 37–75.

[DHK07] Varsha Dani, Thomas P Hayes, and Sham M Kakade. “The price of bandit
information for online optimization”. In: Proceedings of the 20th International
Conference on Neural Information Processing Systems. 2007, pp. 345–352.

[DLM90] David L Donoho, Richard C Liu, and Brenda MacGibbon. “Minimax risk
over hyperrectangles, and implications”. In: The Annals of Statistics (1990),
pp. 1416–1437.

[DN18] John Duchi and Hongseok Namkoong. “Learning models with uniform perfor-
mance via distributionally robust optimization”. In: arXiv preprint arXiv:1810.08750
(2018).

[Don94] David L Donoho. “Statistical estimation and optimal recovery”. In: The An-
nals of Statistics (1994), pp. 238–270.

[DSZ21] Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. “The
complexity of constrained min-max optimization”. In: Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing. 2021, pp. 1466–
1478.

[Duc+15] John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono.
“Optimal rates for zero-order convex optimization: The power of two func-
tion evaluations”. In: IEEE Transactions on Information Theory 61.5 (2015),
pp. 2788–2806.

[Fer14] Thomas S Ferguson. Mathematical statistics: A decision theoretic approach.
Vol. 1. Academic press, 2014.

[FHT+00] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. “Additive logistic
regression: a statistical view of boosting (with discussion and a rejoinder by
the authors)”. In: The annals of statistics 28.2 (2000), pp. 337–407.

[Fil+10] Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. “Para-
metric bandits: The generalized linear case”. In: Advances in Neural Informa-
tion Processing Systems. 2010, pp. 586–594.

108

http://proceedings.mlr.press/v32/cortesb14.html
http://proceedings.mlr.press/v32/cortesb14.html

[FKM04] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. “On-
line convex optimization in the bandit setting: gradient descent without a
gradient”. In: arXiv preprint cs/0408007 (2004).

[FMS15] Uriel Feige, Yishay Mansour, and Robert Schapire. “Learning and inference in
the presence of corrupted inputs”. In: Conference on Learning Theory. 2015,
pp. 637–657.

[Fre95] Yoav Freund. “Boosting a weak learning algorithm by majority”. In: Infor-
mation and computation 121.2 (1995), pp. 256–285.

[Fri01] Jerome H Friedman. “Greedy function approximation: a gradient boosting
machine”. In: Annals of statistics (2001), pp. 1189–1232.

[FS+96] Yoav Freund, Robert E Schapire, et al. “Experiments with a new boosting
algorithm”. In: icml. Vol. 96. Citeseer. 1996, pp. 148–156.

[FS91] Peter W Frey and David J Slate. “Letter recognition using Holland-style
adaptive classifiers”. In: Machine learning 6.2 (1991), pp. 161–182.

[FS95] Yoav Freund and Robert E Schapire. “A desicion-theoretic generalization of
on-line learning and an application to boosting”. In: European conference on
computational learning theory. Springer. 1995, pp. 23–37.

[FS96] Yoav Freund and Robert E Schapire. “Game theory, on-line prediction and
boosting”. In: COLT. Vol. 96. Citeseer. 1996, pp. 325–332.

[GB11] Alexander Grubb and J Andrew Bagnell. “Generalized boosting algorithms
for convex optimization”. In: arXiv preprint arXiv:1105.2054 (2011).

[GH13] Dan Garber and Elad Hazan. “Playing non-linear games with linear oracles”.
In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
IEEE. 2013, pp. 420–428.

[Gho64] MN Ghosh. “Uniform approximation of minimax point estimates”. In: The
Annals of Mathematical Statistics (1964), pp. 1031–1047.

[GJL16] Gauthier Gidel, Tony Jebara, and Simon Lacoste-Julien. “Frank-Wolfe al-
gorithms for saddle point problems”. In: arXiv preprint arXiv:1610.07797
(2016).

[GLZ18] Xiand Gao, Xiaobo Li, and Shuzhong Zhang. “Online learning with non-
convex losses and non-stationary regret”. In: International Conference on Ar-
tificial Intelligence and Statistics. 2018, pp. 235–243.

[Goo+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative ad-
versarial nets”. In: Advances in neural information processing systems. 2014,
pp. 2672–2680.

[Gup+20] Kartik Gupta, Arun Sai Suggala, Adarsh Prasad, Praneeth Netrapalli, and
Pradeep Ravikumar. “Learning Minimax Estimators via Online Learning”.
In: arXiv preprint arXiv:2006.11430 (2020).

[Gup+21] Varun Gupta, Christopher Jung, Georgy Noarov, Mallesh M Pai, and Aaron
Roth. “Online multivalid learning: Means, moments, and prediction intervals”.
In: arXiv preprint arXiv:2101.01739 (2021).

109

[Hal71] Anders Hald. “The size of bayes and minimax tests as function of the sample
size and the loss ratio”. In: Scandinavian Actuarial Journal 1971.1-2 (1971),
pp. 53–73.

[Har83] JA Hartigan. “Asymptotic normality of posterior distributions”. In: Bayes
theory. Springer, 1983, pp. 107–118.

[Has+18] Tatsunori Hashimoto, Megha Srivastava, Hongseok Namkoong, and Percy
Liang. “Fairness without demographics in repeated loss minimization”. In:
International Conference on Machine Learning. PMLR. 2018, pp. 1929–1938.

[Haz16] Elad Hazan. “Introduction to online convex optimization”. In: Foundations
and Trends® in Optimization 2.3-4 (2016), pp. 157–325.

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual
learning for image recognition”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778.

[HH15] Niao He and Zaid Harchaoui. “Semi-proximal mirror-prox for nonsmooth com-
posite minimization”. In: Advances in Neural Information Processing Systems.
2015, pp. 3411–3419.

[HK12] Elad Hazan and Satyen Kale. “Projection-free online learning”. In: arXiv
preprint arXiv:1206.4657 (2012).

[HKZ+12] Daniel Hsu, Sham Kakade, Tong Zhang, et al. “A tail inequality for quadratic
forms of subgaussian random vectors”. In: Electronic Communications in
Probability 17 (2012).

[HL14] Elad Hazan and Kfir Levy. “Bandit convex optimization: Towards tight bounds”.
In: Advances in Neural Information Processing Systems 27 (2014), pp. 784–
792.

[HL16] Elad Hazan and Yuanzhi Li. “An optimal algorithm for bandit convex opti-
mization”. In: arXiv preprint arXiv:1603.04350 (2016).

[HM20] Elad Hazan and Edgar Minasyan. “Faster Projection-free Online Learning”.
In: CoRR abs/2001.11568 (2020). arXiv: 2001.11568. url: https://arxiv.
org/abs/2001.11568.

[HP13] Reiner Horst and Panos M Pardalos. Handbook of global optimization. Vol. 2.
Springer Science & Business Media, 2013.

[HS02] Josef Hofbauer and William H Sandholm. “On the global convergence of
stochastic fictitious play”. In: Econometrica 70.6 (2002), pp. 2265–2294.

[HSZ17] Elad Hazan, Karan Singh, and Cyril Zhang. “Efficient regret minimization in
non-convex games”. In: arXiv preprint arXiv:1708.00075 (2017).

[Hu+16] Xiaowei Hu, LA Prashanth, András György, and Csaba Szepesvari. “(Ban-
dit) convex optimization with biased noisy gradient oracles”. In: Artificial
Intelligence and Statistics. PMLR. 2016, pp. 819–828.

[Hua+17a] Furong Huang, Jordan Ash, John Langford, and Robert Schapire. “Learning
deep resnet blocks sequentially using boosting theory”. In: arXiv preprint
arXiv:1706.04964 (2017).

110

https://arxiv.org/abs/2001.11568
https://arxiv.org/abs/2001.11568
https://arxiv.org/abs/2001.11568

[Hua+17b] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
“Densely connected convolutional networks”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2017, pp. 4700–4708.

[IH81] I. A. Ibragimov and R. Z. Has’minskii. Statistical Estimation: Asymptotic
Theory. New York: springer, 1981.

[Imh61] Jean-Pierre Imhof. “Computing the distribution of quadratic forms in normal
variables”. In: Biometrika 48.3/4 (1961), pp. 419–426.

[Ito20] Shinji Ito. “An Optimal Algorithm for Bandit Convex Optimization with
Strongly-Convex and Smooth Loss”. In: International Conference on Artificial
Intelligence and Statistics. PMLR. 2020, pp. 2229–2239.

[Jia+15] Jiantao Jiao, Kartik Venkat, Yanjun Han, and Tsachy Weissman. “Minimax
estimation of functionals of discrete distributions”. In: IEEE Transactions on
Information Theory 61.5 (2015), pp. 2835–2885.

[Jin+19] Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jor-
dan. “A short note on concentration inequalities for random vectors with
subgaussian norm”. In: arXiv preprint arXiv:1902.03736 (2019).

[JNJ20] Chi Jin, Praneeth Netrapalli, and Michael Jordan. “What is local optimality
in nonconvex-nonconcave minimax optimization?” In: International Confer-
ence on Machine Learning. PMLR. 2020, pp. 4880–4889.

[Joh02] Iain M Johnstone. “Function estimation and gaussian sequence models”. In:
Unpublished manuscript 2.5.3 (2002).

[Joh11] Iain M Johnstone. “Gaussian estimation: Sequence and wavelet models”. In:
Unpublished manuscript (2011).

[JS92] William James and Charles Stein. “Estimation with quadratic loss”. In: Break-
throughs in statistics. Springer, 1992, pp. 443–460.

[Kan+19] Kirthevasan Kandasamy, Karun Raju Vysyaraju, Willie Neiswanger, Biswajit
Paria, Christopher R. Collins, Jeff Schneider, Barnabas Poczos, and Eric P
Xing. “Tuning Hyperparameters without Grad Students: Scalable and Robust
Bayesian Optimisation with Dragonfly”. In: arXiv preprint arXiv:1903.06694
(2019).

[Kem87] Peter J Kempthorne. “Numerical specification of discrete least favorable prior
distributions”. In: SIAM Journal on Scientific and Statistical Computing 8.2
(1987), pp. 171–184.

[Kie+57] Jack Kiefer et al. “Invariance, minimax sequential estimation, and continu-
ous time processes”. In: The Annals of Mathematical Statistics 28.3 (1957),
pp. 573–601.

[Kle05] Robert D Kleinberg. “Nearly tight bounds for the continuum-armed ban-
dit problem”. In: Advances in Neural Information Processing Systems. 2005,
pp. 697–704.

[Kri+15] Walid Krichene, Maximilian Balandat, Claire Tomlin, and Alexandre Bayen.
“The hedge algorithm on a continuum”. In: International Conference on Ma-
chine Learning. 2015, pp. 824–832.

111

[KST09] Sham Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. “On the duality of
strong convexity and strong smoothness: Learning applications and matrix
regularization”. In: Unpublished Manuscript, http://ttic. uchicago. edu/shai/-
papers/KakadeShalevTewari09. pdf 2.1 (2009).

[KV05] Adam Kalai and Santosh Vempala. “Efficient algorithms for online decision
problems”. In: Journal of Computer and System Sciences 71.3 (2005), pp. 291–
307.

[KV16] Adam Kalai and Santosh Vempala. “Efficient algorithms for on-line optimiza-
tion”. In: Journal of Computer and System Sciences 71 (2016).

[Kve+20] Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad
Ghavamzadeh, and Craig Boutilier. “Randomized exploration in generalized
linear bandits”. In: International Conference on Artificial Intelligence and
Statistics. 2020, pp. 2066–2076.

[KW05] Alfred Kume and Andrew TA Wood. “Saddlepoint approximations for the
Bingham and Fisher–Bingham normalising constants”. In: Biometrika 92.2
(2005), pp. 465–476.

[Lar+07] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua
Bengio. “An empirical evaluation of deep architectures on problems with
many factors of variation”. In: Proceedings of the 24th international conference
on Machine learning. 2007, pp. 473–480.

[Lat20] Tor Lattimore. “Improved regret for zeroth-order adversarial bandit convex
optimisation”. In: arXiv preprint arXiv:2006.00475 (2020).

[LC06] Erich L Lehmann and George Casella. Theory of point estimation. Springer
Science & Business Media, 2006.

[Le 12] Lucien Le Cam. Asymptotic methods in statistical decision theory. Springer
Science & Business Media, 2012.

[Lee+20] Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, and Mengxiao Zhang. “Bias no
more: high-probability data-dependent regret bounds for adversarial bandits
and MDPs”. In: arXiv preprint arXiv:2006.08040 (2020).

[LLV20] Aditi Laddha, Yin Tat Lee, and Santosh Vempala. “Strong self-concordance
and sampling”. In: Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing. 2020, pp. 1212–1222.

[LOV19] Sindy Löwe, Peter O’Connor, and Bastiaan Veeling. “Putting An End to
End-to-End: Gradient-Isolated Learning of Representations”. In: Advances in
Neural Information Processing Systems. 2019, pp. 3033–3045.

[LR85] Tze Leung Lai and Herbert Robbins. “Asymptotically efficient adaptive allo-
cation rules”. In: Advances in applied mathematics 6.1 (1985), pp. 4–22.

[Lue+20] Alex Luedtke, Marco Carone, Noah Simon, and Oleg Sofrygin. “Learning to
learn from data: Using deep adversarial learning to construct optimal statis-
tical procedures”. In: Science Advances 6.9 (2020). doi: 10.1126/sciadv.
aaw2140. eprint: https : / / advances . sciencemag . org / content / 6 / 9 /
eaaw2140.full.pdf. url: https://advances.sciencemag.org/content/
6/9/eaaw2140.

112

https://doi.org/10.1126/sciadv.aaw2140
https://doi.org/10.1126/sciadv.aaw2140
https://advances.sciencemag.org/content/6/9/eaaw2140.full.pdf
https://advances.sciencemag.org/content/6/9/eaaw2140.full.pdf
https://advances.sciencemag.org/content/6/9/eaaw2140
https://advances.sciencemag.org/content/6/9/eaaw2140

[LV03] László Lovász and Santosh Vempala.Where to start a geometric random walk.
2003.

[Mas+00] Llew Mason, Jonathan Baxter, Peter L Bartlett, and Marcus R Frean. “Boost-
ing algorithms as gradient descent”. In: Advances in neural information pro-
cessing systems. 2000, pp. 512–518.

[Mau16] Andreas Maurer. “A vector-contraction inequality for rademacher complexi-
ties”. In: International Conference on Algorithmic Learning Theory. Springer.
2016, pp. 3–17.

[McM11] Brendan McMahan. “Follow-the-Regularized-Leader and Mirror Descent: Equiv-
alence Theorems and L1 Regularization”. In: Proceedings of the Fourteenth In-
ternational Conference on Artificial Intelligence and Statistics. 2011, pp. 525–
533.

[McM17] H Brendan McMahan. “A survey of algorithms and analysis for adaptive
online learning”. In: The Journal of Machine Learning Research 18.1 (2017),
pp. 3117–3166.

[MJ09] Kanti V Mardia and Peter E Jupp. Directional statistics. Vol. 494. John Wiley
& Sons, 2009.

[MM10] Odalric-Ambrym Maillard and Rémi Munos. “Online learning in adversarial
lipschitz environments”. In: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer. 2010, pp. 305–320.

[MP02] Éric Marchand and Franccois Perron. “On the minimax estimator of a bounded
normal mean”. In: Statistics & probability letters 58.4 (2002), pp. 327–333.

[MS13] Indraneel Mukherjee and Robert E Schapire. “A theory of multiclass boost-
ing”. In: Journal of Machine Learning Research 14.Feb (2013), pp. 437–497.

[MTM14] Chris J Maddison, Daniel Tarlow, and Tom Minka. “A* sampling”. In: Ad-
vances in Neural Information Processing Systems. 2014, pp. 3086–3094.

[Nel66] Wayne Nelson. “Minimax solution of statistical decision problems by itera-
tion”. In: The Annals of Mathematical Statistics (1966), pp. 1643–1657.

[Nem04] Arkadi Nemirovski. “Interior point polynomial time methods in convex pro-
gramming”. In: Lecture notes (2004).

[Nes18] Yurii Nesterov. Lectures on convex optimization. Vol. 137. Springer, 2018.
[Net+11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and

Andrew Y Ng. “Reading digits in natural images with unsupervised feature
learning”. In: (2011).

[NS18] Atsushi Nitanda and Taiji Suzuki. “Functional gradient boosting based on
residual network perception”. In: arXiv preprint arXiv:1802.09031 (2018).

[Pon+17] Natalia Ponomareva, Thomas Colthurst, Gilbert Hendry, Salem Haykal, and
Soroush Radpour. “Compact multi-class boosted trees”. In: 2017 IEEE Inter-
national Conference on Big Data (Big Data). IEEE. 2017, pp. 47–56.

[Pra+20] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep
Ravikumar. “Robust estimation via robust gradient estimation”. In: Journal

113

of the Royal Statistical Society: Series B (Statistical Methodology) 82.3 (2020),
pp. 601–627.

[PW19] Yury Polyanskiy and Yihong Wu. “Dualizing Le Cam’s method, with applica-
tions to estimating the unseens”. In: arXiv preprint arXiv:1902.05616 (2019).

[Roc70] R Tyrrell Rockafellar. Convex analysis. 28. Princeton university press, 1970.
[RS12] Alexander Rakhlin and Karthik Sridharan. “Online learning with predictable

sequences”. In: arXiv preprint arXiv:1208.3728 (2012).
[RS13] Sasha Rakhlin and Karthik Sridharan. “Optimization, learning, and games

with predictable sequences”. In: Advances in Neural Information Processing
Systems. 2013, pp. 3066–3074.

[Rus+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, et al. “Imagenet large scale visual recognition challenge”. In: Interna-
tional journal of computer vision 115.3 (2015), pp. 211–252.

[RW05] Gunnar Rätsch and Manfred K Warmuth. “Efficient margin maximizing with
boosting”. In: Journal of Machine Learning Research 6.Dec (2005), pp. 2131–
2152.

[Sch90] Robert E Schapire. “The strength of weak learnability”. In: Machine learning
5.2 (1990), pp. 197–227.

[Sha07] Shai Shalev-Shwartz. “Thesis submitted for the degree of “Doctor of Philos-
ophy””. In: (2007).

[Sha13] Ohad Shamir. “On the complexity of bandit and derivative-free stochas-
tic convex optimization”. In: Conference on Learning Theory. PMLR. 2013,
pp. 3–24.

[Sha17] Ohad Shamir. “An optimal algorithm for bandit and zero-order convex op-
timization with two-point feedback”. In: The Journal of Machine Learning
Research 18.1 (2017), pp. 1703–1713.

[SLR20] Arun Sai Suggala, Bingbin Liu, and Pradeep Ravikumar. “Generalized Boost-
ing”. In: Advances in Neural Information Processing Systems 33. 2020.

[SN20a] Arun Sai Suggala and Praneeth Netrapalli. “Follow the Perturbed Leader:
Optimism and Fast Parallel Algorithms for Smooth Minimax Games”. In:
Advances in Neural Information Processing Systems 33. 2020. url: https:
//arxiv.org/abs/2006.07541.

[SN20b] Arun Sai Suggala and Praneeth Netrapalli. “Online Non-Convex Learning:
Following the Perturbed Leader is Optimal”. In: ed. by Aryeh Kontorovich
and Gergely Neu. Vol. 117. Proceedings of Machine Learning Research. San
Diego, California, USA: PMLR, Aug. 2020, pp. 845–861. url: http : / /
proceedings.mlr.press/v117/suggala20a.html.

[SRB11] Mark Schmidt, Nicolas L Roux, and Francis R Bach. “Convergence rates of
inexact proximal-gradient methods for convex optimization”. In: Advances in
neural information processing systems. 2011, pp. 1458–1466.

114

https://arxiv.org/abs/2006.07541
https://arxiv.org/abs/2006.07541
http://proceedings.mlr.press/v117/suggala20a.html
http://proceedings.mlr.press/v117/suggala20a.html

[Sri+09] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger.
“Gaussian process optimization in the bandit setting: No regret and experi-
mental design”. In: arXiv preprint arXiv:0912.3995 (2009).

[SRN21] Arun Sai Suggala, Pradeep Ravikumar, and Praneeth Netrapalli. “Efficient
Bandit Convex Optimization: Beyond Linear Losses”. In: Conference on Learn-
ing Theory. 2021.

[ST11] Ankan Saha and Ambuj Tewari. “Improved regret guarantees for online smooth
convex optimization with bandit feedback”. In: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics. 2011, pp. 636–
642.

[Sug+19a] Arun Sai Suggala, Kush Bhatia, Pradeep Ravikumar, and Prateek Jain.
“Adaptive Hard Thresholding for Near-optimal Consistent Robust Regres-
sion”. In: Conference on Learning Theory. 2019, pp. 2892–2897.

[Sug+19b] Arun Sai Suggala, Adarsh Prasad, Vaishnavh Nagarajan, and Pradeep Raviku-
mar. “Revisiting adversarial risk”. In: The 22nd International Conference on
Artificial Intelligence and Statistics. 2019, pp. 2331–2339.

[Sze+13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. “Intriguing properties of neural net-
works”. In: arXiv preprint arXiv:1312.6199 (2013).

[Tem14] Vladimir Nikolaevich Temlyakov. “Greedy expansions in convex optimiza-
tion”. In: Proceedings of the Steklov Institute of Mathematics 284.1 (2014),
pp. 244–262.

[Tro12] Joel A Tropp. “User-friendly tail bounds for sums of random matrices”. In:
Foundations of computational mathematics 12.4 (2012), pp. 389–434.

[TS20] Sho Takemori and Masahiro Sato. “Approximation Methods for Kernelized
Bandits”. In: arXiv preprint arXiv:2010.12167 (2020).

[Tsy08] Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. 1st. Springer
Publishing Company, Incorporated, 2008. isbn: 0387790519, 9780387790510.

[VA87] Peter JM Van Laarhoven and Emile HL Aarts. “Simulated annealing”. In:
Simulated annealing: Theory and applications. Springer, 1987, pp. 7–15.

[Vaa98] A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, 1998. doi: 10.
1017/CBO9780511802256.

[VMK07] John Von Neumann, Oskar Morgenstern, and Harold William Kuhn. Theory
of games and economic behavior (commemorative edition). Princeton univer-
sity press, 2007.

[VV11] G. Valiant and P. Valiant. “The Power of Linear Estimators”. In: 2011 IEEE
52nd Annual Symposium on Foundations of Computer Science. Oct. 2011,
pp. 403–412. doi: 10.1109/FOCS.2011.81.

[Wai19] Martin J Wainwright. High-dimensional statistics: A non-asymptotic view-
point. Vol. 48. Cambridge University Press, 2019.

115

https://doi.org/10.1017/CBO9780511802256
https://doi.org/10.1017/CBO9780511802256
https://doi.org/10.1109/FOCS.2011.81

[Wal49] Abraham Wald. “Statistical decision functions”. In: The Annals of Mathemat-
ical Statistics (1949), pp. 165–205.

[Wel15] Jon AWellner. “Maximum Likelihood in modern times: the ugly, the bad, and
the good”. 2015. url: https://www.stat.washington.edu/jaw/RESEARCH/
TALKS/LeCam-v2.pdf.

[Wij90] Robert A Wijsman. “Invariant Measures on Groups and Their Use in Statis-
tics”. In: Lecture Notes-Monograph Series 14 (1990), pp. i–218.

[WY16] Yihong Wu and Pengkun Yang. “Minimax rates of entropy estimation on
large alphabets via best polynomial approximation”. In: IEEE Transactions
on Information Theory 62.6 (2016), pp. 3702–3720.

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Im-
age Dataset for Benchmarking Machine Learning Algorithms. Aug. 28, 2017.
arXiv: cs.LG/1708.07747 [cs.LG].

[Yan74] EB Yanovskaya. “Infinite zero-sum two-person games”. In: Journal of Soviet
Mathematics 2.5 (1974), pp. 520–541.

[YB99] Yuhong Yang and Andrew Barron. “Information-theoretic determination of
minimax rates of convergence”. In: Annals of Statistics (1999), pp. 1564–1599.

[Zah+17] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Rus-
lan R Salakhutdinov, and Alexander J Smola. “Deep sets”. In: Advances in
neural information processing systems. 2017, pp. 3391–3401.

[Zar73] Eduardo H Zarantonello. “Dense single-valuedness of monotone operators”.
In: Israel Journal of Mathematics 15.2 (1973), pp. 158–166.

116

https://www.stat.washington.edu/jaw/RESEARCH/TALKS/LeCam-v2.pdf
https://www.stat.washington.edu/jaw/RESEARCH/TALKS/LeCam-v2.pdf
https://arxiv.org/abs/cs.LG/1708.07747

Part V

Appendix

117

Appendix A
Supplementary Material for Chapter 2

A.1 Proof of Proposition 1
For any deterministic algorithm, we show that there exists a sequence of loss functions over
which the algorithm has Ω(T) regret. We work in the 1-dimensional setting and assume
that the domain X is equal to [−D,D]. Suppose the adversary chooses the loss functions
from the following class of 1-Lipschitz functions F = {ga(x) : a ∈ [−D,D]}, where ga is
given by

ga(x) = max

{
0,
D

2
− |x− a|

}
.

We now describe our construction of the sequence of losses that cause the deterministic
algorithm to fail. Let f<t = {f1, . . . ft−1} be the sequence of loss functions chosen until
iteration t − 1. Let xt be the prediction of the deterministic learner at iteration t. Then
we choose the loss at iteration t as ft(x) = gxt(x). It is easy to see that, after T iterations,
the loss suffered by the learner is equal to DT

2
. Whereas, the loss of the best action in

hindsight can be upper bounded as

inf
x∈[−D,D]

T∑
t=1

ft(x) ≤ DT

4
.

This shows that the regret of any deterministic algorithm is Ω(1).

A.2 Non-oblivious to Oblivious Adversary Model
In the oblivious adversary model, the actions {ft}Tt=1 of the adversary are assumed to be
independent of the predictions {xt}Tt=1 of the FTPL/OFTPL algorithm. In this model,
we assume that the sequence of losses {ft}Tt=1 is fixed ahead of time. Whereas in the
non-oblivious adversary model, the actions of the adversary are allowed to depend on the
past predictions of the algorithm, i.e., each ft is given by ft := Ft[x<t] for some function
Ft : X t−1 → F , where F is the set of all possible actions of the adversary and x<t is a

119

shorthand for {x1 . . .xt−1} and F1 is a constant function. Note that the functions F1 . . . FT
uniquely determine a non-oblivious adversary.

Let Pt be the conditional distribution of the prediction xt of the FTPL/OFTPL algo-
rithm, conditioned on the past predictions x<t. Note that when the adversary is oblivious,
Pt is independent of x<t. Moreover, in both oblivious and non-oblivious models, Pt is fully
determined by the past actions f<t of the adversary. Let ft(Pt) denote the expected loss
Ex∼Pt [ft(x)|x<t].

The following Theorem shows that any algorithm which is guaranteed to work against
an oblivious adversary also works against a non-oblivious adversary. This is an adaptation
of Lemma 4.1 of [CL06] to the setting studied in this paper.
Theorem 22. Let B be a positive constant. Suppose the FTPL, OFTPL algorithms satisfy
the following regret bound against an oblivious adversary

E

[
T∑
t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x)

]
≤ B, ∀f1 . . . fT ∈ F . (A.1)

Then these algorithms satisfy the following regret bound against a non-oblivious adversary

T∑
t=1

ft(Pt)− inf
x∈X

T∑
t=1

ft(x) ≤ B.

Proof. Consider the non-oblivious adversary model. For any x ∈ X we have

T∑
t=1

ft(Pt)−
T∑
t=1

ft(x)

=
T∑
t=1

Ft[x<t](Pt)−
T∑
t=1

Ft[x<t](x)

(a)

≤ sup
F1,...FT

(
T∑
t=1

Ft[x<t](Pt)−
T∑
t=1

Ft[x<t](x)

)
(b)
= sup

g1∈F

(
g1(P1)− g1(x) + sup

g2∈F

(
g2(P2)− g2(x) + sup

g3∈F

(
· · ·+ sup

gT∈F
gT (PT)− gT (x)

)))
,

where the supremum in (a) is over all possible non-oblivious adversaries. To see why (b)
holds, consider T = 2. Then

sup
F1,F2

(F1[x<1](P1)− F1[x<1](x) + F2[x<2](P2)− F2[x<2](x))

= sup
g1∈F ,F2

(g1(P1)− g1(x) + F2[x<2](P2)− F2[x<2](x))

= sup
g1

(
g1(P1)− g1(x) + sup

g2∈F
g2(P2)− g2(x)

)
.

This shows that a good strategy for the adversary is to set F2[x<2] to be a maximizer of
g2(P2)− g2(x). Using a similar argument we can show that (b) holds for T > 2.

120

Next, we show that

sup
g1∈F

(
g1(P1)− g1(x) + sup

g2∈F

(
g2(P2)− g2(x) + sup

g3∈F

(
· · ·+ sup

gT∈F
gT (PT)− gT (x)

)))
= sup

g1...gT∈F

(
T∑
t=1

gt(Pt)− gt(x)

)
.

Moreover, we show that the maximizers of the RHS objective are independent of the
predictions {xt}Tt=1 of the algorithm. This would then imply that the RHS is exactly equal
to the regret of the algorithm under the oblivious adversary model, which is upper bounded
by B. To see why the above statements are true, again consider the case of T = 2. First
note that g1(P1)− g1(x) is independent of g2. So g1(P1)− g1(x) can be pushed inside the
inner supermum. So we have

sup
g1∈F

(
g1(P1)− g1(x) + sup

g2∈F
(g2(P2)− g2(x))

)
= sup

g1,g2∈F
(g1(P1)− g1(x) + g2(P2)− g2(x))

To see why the maximizers of the RHS are independent of x1,x2, note that P1 is indepen-
dent of x1,x2. Moreover, P2 is fully determinimed by g1. So the objective is independent
of x1,x2. This shows that the maximizers are independent of x1,x2. Using a similar argu-
ment we can show that the above claim holds for T > 2. Finally, from the regret bound
against an oblivious adversary in Equation (A.1), we have

sup
g1...gT∈F

(
T∑
t=1

gt(Pt)− gt(x)

)
= sup

g1...gT∈F
E

[
T∑
t=1

gt(xt)−
T∑
t=1

gt(x)

]
≤ B.

This shows that for any x ∈ X ,
∑T

t=1 ft(Pt)−
∑T

t=1 ft(x) ≤ B.

A.3 Proof of Lemma 2
Let γ(σ) = α + β‖σ‖1. For any x∗ ∈ X we have

T∑
t=1

[ft(xt)− ft(x∗)]

=
T∑
t=1

[ft(xt)− ft(xt+1)] +
T∑
t=1

[ft(xt+1)− ft(x∗)]

≤
T∑
t=1

L‖xt − xt+1‖1 +
T∑
t=1

[ft(xt+1)− ft(x∗)] .

We now use induction to show that
∑T

t=1 [ft(xt+1)− ft(x∗)] ≤ γ(σ)T + 〈σ,x2 − x∗〉.

121

Base Case (T = 1). Since x2 is an approximate minimizer of f1(x)− 〈σ,x〉, we have

f1(x2)− 〈σ,x2〉 ≤ min
x∈X

f1(x)− 〈σ,x〉+ γ(σ) ≤ f1(x∗)− 〈σ,x∗〉+ γ(σ),

where the last inequality holds for any x∗ ∈ X . This shows that f1(x2)− f1(x∗) ≤ γ(σ) + 〈σ,x2 − x∗〉.

Induction Step. Suppose the claim holds for all T ≤ T0 − 1. We now show that it also
holds for T0.

T0∑
t=1

ft(xt+1)

(a)

≤

[
T0−1∑
t=1

ft(xT0+1) + 〈σ,x2 − xT0+1〉+ γ(σ)(T0 − 1)

]
+ fT0(xT0+1)

=

[
T0∑
t=1

ft(xT0+1)− 〈σ,xT0+1〉

]
+ 〈σ,x2〉+ γ(σ)(T0 − 1)

(b)

≤
T0∑
t=1

ft(x
∗) + 〈σ,x2 − x∗〉+ γ(σ)T0, ∀x∗ ∈ X ,

where (a) follows since the claim holds for any T ≤ T0 − 1, and (b) follows from the
approximate optimality of xT0+1.

Using this result, we get the following upper bound on the expected regret of FTPL

E

[
T∑
t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x)

]
≤ L

T∑
t=1

E [‖xt − xt+1‖1] + E [γ(σ)T + 〈σ,x2 − x∗〉]

≤ L
T∑
t=1

E [‖xt − xt+1‖1] + (βT +D)

(
d∑
i=1

E [σi]

)
+ αT

The proof of the Lemma now follows from the following property of exponential distribution

E [σi] =
1

ηi
.

122

Appendix B
Supplementary Material for Chapter 3

B.1 Dual view of Perturbations as Regularization

B.1.1 Proof of Theorem 2

We first define a convex function Ψ : Rd → R as

Ψ(f) = Eσ
[
sup
x∈X
〈f + σ,x〉

]
= Eσ

[
sup
x∈X
〈f + σ,x〉

]
,

where perturbation σ follows probability distribution PPRTB which is absolutely continuous
w.r.t the Lebesgue measure. For our choice of PPRTB, we now show that Ψ is differentiable.
Consider the function ψ(g) = supx∈X 〈g,x〉. Since ψ(g) is a proper convex function, we
know that it is differentiable almost everywhere, except on a set of Lebesgue measure 0 [see
Theorem 25.5 of Roc70]. Moreover, it is easy to verify that argmaxx∈X 〈g,x〉 ∈ ∂ψ(g). These
two observations, together with the fact that PPRTB is absolutely continuous, show that
the sup expression inside the expectation of Ψ has a unique maximizer with probability
one.

Since the sup expression inside the expectation has a unique maximizer with probability
1, we can swap the expectation and gradient to obtain [see Proposition 2.2 of Ber73]

∇Ψ(f) = Eσ
[
argmax

x∈X
〈f + σ,x〉

]
. (B.1)

Note that ∇Ψ is related to the prediction of deterministic version of FTPL. Specifically,
∇Ψ(−∇1:t−1) is the prediction of deterministic FTPL in the tth iteration. We now show
that ∇Ψ(f) = argminx∈X 〈−f,x〉+R(x), for some convex function R.

Since all differentiable functions are closed, Ψ(f) is a proper, closed and differentiable
convex function over Rd. Let R(x) denote the Fenchel conjugate of Ψ(f)

R(x) = sup
f∈dom(Φ)

〈x, f〉 −Ψ(f),

123

where dom(Ψ) denotes the domain of Ψ. Following Theorem 32 (see Appendix B.8), Ψ(f)
is the Fenchel conjugate of R(x)

Ψ(f) = sup
x∈dom(R)

〈f,x〉 −R(x).

Furthermore, from Theorem 33 we have

∇Ψ(f) = argmax
x∈dom(R)

〈f,x〉 −R(x).

We now show that the domain of R is a subset of X . This, together with the previous two
equations, would then immediately imply

Ψ(f) = sup
x∈X
〈f,x〉 −R(x), (B.2)

∇Ψ(f) = argmax
x∈X

〈f,x〉 −R(x). (B.3)

From Theorem 35, we know that the domain of R satisfies

ri(dom(R)) ⊆ range∇Ψ ⊆ dom(R),

where ri(A) denotes the relative interior of a set A. Moreover, from the definition of ∇Ψ(f)
in Equation (B.1), we have range∇Ψ ⊆ X . Combining these two properties, we can show
that one of the following statements is true

ri(dom(R)) ⊆ range∇Ψ ⊆ X ⊆ dom(R),

ri(dom(R)) ⊆ range∇Ψ ⊆ dom(R) ⊆ X .

Suppose the first statement is true. Since X is a compact set, it is easy to see that
X = dom(R). If the second statement is true, then dom(R) ⊆ X . Together, these two
statements imply dom(R) ⊆ X .

Connecting back to FTPL. We now connect the above results to FTPL. From Equa-
tion (B.1), we know that the prediction at iteration t of deterministic FTPL is equal to
∇Ψ(−∇1:t−1). From Equation (B.3), ∇Ψ(−∇1:t−1) is defined as

xt = ∇Ψ(−∇1:t−1) = argmax
x∈X

〈−∇1:t−1,x〉 −R(x).

This shows that
xt = argmin

x∈X
〈∇1:t−1,x〉+R(x).

So the prediction of FTPL can also be obtained using FTRL for some convex regularizer
R(x). Finally, to show that −∇1:t−1 ∈ ∂R(xt),xt = ∂R−1 (−∇1:t−1) , we rely on Theo-
rem 34. Since xt = ∇Ψ(−∇1:t−1), from Theorem 34, we have

−∇1:t−1 ∈ ∂R(xt), xt = ∇Ψ(−∇1:t−1) = ∂R−1 (−∇1:t−1) ,

where ∂R−1 is the inverse of ∂R in the sense of multivalued mappings. Note that, even
though ∂R can be a multivalued mapping, its inverse ∂R−1 = ∇Ψ is a singlevalued mapping
(this follows form differentiability of Ψ). This finishes the proof of the Theorem.

124

B.2 Online Convex Learning

B.2.1 Proof of Theorem 5

Before presenting the proof of the Theorem, we introduce some notation.

Notation

We define functions Φ : Rd → R, R : Rd → R as follows

Φ(f) = Eσ
[

inf
x∈X
〈f − σ,x〉

]
, R(x) = sup

f∈Rd
〈f,x〉+ Φ(−f).

Note that Φ is related to the function Ψ defined in the proof of Proposition 2. To be
precise, Ψ(f) = −Φ(−f). Moreover, R(x) is the Fenchel conjugate of Ψ. For our choice of
perturbation distribution, Ψ is differentiable (see proof of Proposition 2). This implies Φ
is also differentiable with gradient ∇Φ defined as

∇Φ (f) = Eσ
[
argmin

x∈X
〈f − σ,x〉

]
.

Note that ∇Φ is the prediction of deterministic version of FTPL. In Proposition 2 we
showed that

∇Φ (f) = argmin
x∈X

〈f,x〉+R(x).

Main Argument

Since x∞t is the prediction of deterministic version of FTPL, following FTPL-FTRL duality
proved in Proposition 2, x∞t can equivalently be written as

x∞t = ∇Φ (∇1:t−1 + gt) = argmin
x∈X

〈∇1:t−1 + gt,x〉+R(x).

Similarly, x̃∞t can be written as

x̃∞t = ∇Φ (∇1:t) = argmin
x∈X

〈∇1:t,x〉+R(x).

We use the notation ∇1:0 = 0. So x̃∞0 ,x
∞
1 are equal to argminx∈X R(x). From the first

order optimality conditions, we have

−∇1:t−1 − gt ∈ ∂R (x∞t) , −∇1:t ∈ ∂R (x̃∞t) .

Define functions B(·,x∞t), B(·, x̃∞t) for any t ∈ [T] as

B(x,x∞t) = R(x)−R(x∞t) + 〈∇1:t−1 + gt,x− x∞t 〉,
B(x, x̃∞t) = R(x)−R(x̃∞t) + 〈∇1:t,x− x̃∞t 〉.

125

From the stability of predictions of OFTPL we know that: ‖∇Φ (g1) − ∇Φ (g2) ‖ ≤
Cη−1‖g1−g2‖∗. Following our connection between Ψ,Φ, this implies ‖∇Ψ(g1)−∇Ψ(g2)‖ ≤
Cη−1‖g1 − g2‖∗. This implies the following smoothness condition on Ψ [see Lemma 15 of
Sha07]

Ψ(g2) ≤ Ψ(g1) + 〈∇Ψ(g1), g2 − g1〉+
Cη−1

2
‖g1 − g2‖2

∗.

Since Ψ is Cη−1-smooth w.r.t ‖ · ‖∗, following duality between strong convexity and strong
smoothness properties (see Theorem 36), we can infer that R is C−1η- strongly convex
w.r.t ‖ · ‖ norm and satisfies

B(x,x∞t) ≥ η

2C
‖x− x∞t ‖2, B(x, x̃∞t) ≥ η

2C
‖x− x̃∞t ‖2.

We now go ahead and bound the regret of the learner. For any x ∈ X , we have

ft(xt)− ft(x)
(a)

≤ 〈xt − x,∇t〉 = 〈xt − x∞t ,∇t〉+ 〈x∞t − x,∇t〉
= 〈xt − x∞t ,∇t〉+ 〈x∞t − x̃∞t ,∇t − gt〉+ 〈x∞t − x̃∞t , gt〉

+ 〈x̃∞t − x,∇t〉
≤ 〈xt − x∞t ,∇t〉+ ‖x∞t − x̃∞t ‖‖∇t − gt‖∗ + 〈x∞t − x̃∞t , gt〉

+ 〈x̃∞t − x,∇t〉,

where (a) follows from convexity of f . Next, a simple calculation shows that

〈x∞t − x̃∞t , gt〉 = B(x̃∞t , x̃
∞
t−1)−B(x̃∞t ,x

∞
t)−B(x∞t , x̃

∞
t−1)

〈x̃∞t − x,∇t〉 = B(x, x̃∞t−1)−B(x, x̃∞t)−B(x̃∞t , x̃
∞
t−1).

Substituting this in the previous inequality gives us

ft(xt)− ft(x) ≤ 〈xt − x∞t ,∇t〉+ ‖x∞t − x̃∞t ‖‖∇t − gt‖∗
+B(x̃∞t , x̃

∞
t−1)−B(x̃∞t ,x

∞
t)−B(x∞t , x̃

∞
t−1)

+B(x, x̃∞t−1)−B(x, x̃∞t)−B(x̃∞t , x̃
∞
t−1)

= 〈xt − x∞t ,∇t〉+ ‖x∞t − x̃∞t ‖‖∇t − gt‖∗
+B(x, x̃∞t−1)−B(x, x̃∞t)−B(x̃∞t ,x

∞
t)−B(x∞t , x̃

∞
t−1)

(a)

≤ 〈xt − x∞t ,∇t〉+ ‖x∞t − x̃∞t ‖‖∇t − gt‖∗

+B(x, x̃∞t−1)−B(x, x̃∞t)− η‖x̃∞t − x∞t ‖2

2C
−
η‖x∞t − x̃∞t−1‖2

2C
,

126

where (a) follows from strongly convexity of R. Summing over t = 1, . . . T , gives us

T∑
t=1

ft(xt)− ft(x) ≤
T∑
t=1

〈xt − x∞t ,∇t〉+B(x, x̃∞0)−B(x, x̃∞T)︸ ︷︷ ︸
S1

+
T∑
t=1

‖x∞t − x̃∞t ‖‖∇t − gt‖∗

− η

2C

T∑
t=1

(
‖x̃∞t − x∞t ‖2 + ‖x∞t − x̃∞t−1‖2

)
.

Bounding S1. We now bound B(x, x̃∞0)−B(x, x̃∞T). From the definition of B, we have

B(x, x̃∞0)−B(x, x̃∞T) = R(x̃∞T)− 〈∇1:T ,x− x̃∞T 〉 −R(x̃∞0) + 〈∇1:0,x− x̃∞T 〉.

Note that ∇1:0 = 0. This gives us

B(x, x̃∞0)−B(x, x̃∞T) = R(x̃∞T)− 〈∇1:T ,x− x̃∞T 〉 −R(x̃∞0).

We now use duality to convert the RHS of the above equation, which is currently in terms
of R, into a quantity which depends on Φ. From Proposition 2 we have

Φ(g) = −Ψ(−g) = inf
x∈X
〈g,x〉+R(x).

Since x̃∞T is the minimizer of 〈∇1:T ,x〉 + R(x), we have Φ(∇1:T) = 〈∇1:T , x̃
∞
T 〉 + R(x̃∞T).

Similarly, Φ(0) = R(x̃∞0). Substituting these in the previous equation gives us

B(x, x̃∞0)−B(x, x̃∞T) = Φ(∇1:T)− 〈∇1:T ,x〉 − Φ(0)

= Eσ
[

inf
x′∈X
〈∇1:T − σ,x′〉

]
− 〈∇1:T ,x〉 − Eσ

[
inf
x′∈X
〈−σ,x′〉

]
≤ Eσ [〈∇1:T − σ,x〉]− 〈∇1:T ,x〉 − Eσ

[
inf
x′∈X
〈−σ,x′〉

]
= Eσ

[
inf
x′∈X
〈σ,x′〉

]
− Eσ [〈σ,x〉]

≤ DEσ [‖σ‖∗] = ηD

127

Bounding Regret. Substituting this in our regret bound and taking expectation on
both sides gives us

E

[
T∑
t=1

ft(xt)− ft(x)

]
≤

T∑
t=1

E [〈xt − x∞t ,∇t〉] + ηD +
T∑
t=1

E [‖x∞t − x̃∞t ‖‖∇t − gt‖∗]

− η

2C

T∑
t=1

(
E
[
‖x̃∞t − x∞t ‖2

]
+ E

[
‖x∞t − x̃∞t−1‖2

])
≤

T∑
t=1

E [〈xt − x∞t ,∇t〉] + ηD +
T∑
t=1

C

2η
E
[
‖∇t − gt‖2

∗
]

− η

2C

T∑
t=1

E
[
‖x∞t − x̃∞t−1‖2

]

To finish the proof, we make use of the Holder’s smoothness assumption on ft to bound
the first term in the RHS above. From Holder’s smoothness assumption, we have

〈xt − x∞t ,∇t −∇ft(x∞t)〉 ≤ L‖xt − x∞t ‖1+α.

Using this, we get

E [〈xt − x∞t ,∇t〉|gt,x1:t−1, f1:t] ≤ E
[
〈xt − x∞t ,∇ft(x∞t)〉+ L‖xt − x∞t ‖1+α|gt,x1:t−1, f1:t

]
(a)
= LE

[
‖xt − x∞t ‖1+α|gt,x1:t−1, f1:t

]
(b)

≤ Ψ1+α
1 LE

[
‖xt − x∞t ‖1+α

2 |gt,x1:t−1, f1:t

]
(c)

≤ Ψ1+α
1 LE

[
‖xt − x∞t ‖2

2|gt,x1:t−1, f1:t

](1+α)/2

(d)

≤ L

(
Ψ1Ψ2D√

m

)1+α

,

where (a) follows from the fact that E [〈xt − x∞t ,∇ft(x∞t)〉|gt,x1:t−1, f1:t] = 0, (b) follows
from the definition of norm compatibility constant Ψ1, (c) follows from Holders inequality
and (d) uses the fact that conditioned on {gt,x1:t−1, f1:t}, xt− x∞t is the average of m i.i.d
bounded mean 0 random variables, the variance of which scales as O(D2/m). Substituting
this in the above regret bound gives us the required result.

B.2.2 Proof of Corollary 1

We first bound Eσ [‖σ‖2]. Relying on spherical symmetry of the perturbation distribution
and the fact that the density of PPRTB on the spherical shell of radius r is proportional to
rd−1, we get

Eσ [‖σ‖2] =

∫ (1+d−1)η

r=0
r × rd−1dr∫ (1+d−1)η

r=0
rd−1dr

= η.

128

We now bound the stability of predictions of OFTPL. Our technique for bounding the sta-
bility uses similar arguments as Hazan and Minasyan [HM20] (see Lemma 4.2 of [HM20]).
Recall, to bound stability, we need to show that Φ(g) = Eσ [infx∈X 〈g − σ,x〉] is smooth.
Let φ0(g) = infx∈X 〈g,x− x00〉, where x00 is an arbitrary point in X . We can rewrite Φ(g)
as

Φ(g) = Eσ [φ0(g − σ)] + 〈g,x00〉.

Since the second term in the RHS above is linear in g, any upper bound on the smoothness
of Eσ [φ0(g − σ)] is also a bound on the smoothness of Φ(g). So we focus on bounding the
smoothness of Eσ [φ0(g − σ)].

First note that φ0(g) is D Lipschitz and satisfies the following for any g1, g2 ∈ Rd

φ0(g1)− φ0(g2) = inf
x∈X
〈−g2,x− x00〉 − inf

x∈X
〈−g1,x− x00〉

≤ sup
x∈X
〈g1 − g2,x− x00〉

≤ D‖g1 − g2‖2.

Letting Φ0(g) = Eσ [φ0(g − σ)], Lemma 4.2 of Hazan and Minasyan [HM20] shows that
Φ0(g) is smooth and satisfies

‖∇Φ0(g1)−∇Φ0(g2)‖2 ≤ dDη−1‖g1 − g2‖2.

This shows that the predictions of OFTPL are dDη−1 stable. The rest of the proof involves
substituting C = dD in the regret bound of Theorem 5 and setting gt = 0 and using the
fact that ‖∇t‖2 ≤ G.

B.3 Online Nonconvex Learning

B.3.1 Proof of Theorem 6

Before we present the proof of the Theorem, we introduce some notation and present some
useful intermediate results. We note that unlike the convex case, there are no know Fenchel
duality theorems for infinite dimensional setting. So more careful arguments are need to
obtain tight regret bounds. Our proof mimics the proof of Theorem 5.

Notation

Let P be the set of all probability measures on X . We define functions Φ : F → R,
R : P → R as follows

Φ(f) = Eσ
[

inf
P∈P

Ex∼P [f(x)− σ(x)]

]
,

R(P) = sup
f∈F
−Ex∼P [f(x)] + Φ(f).

129

Also, note that the function ∇Φ : F → P defined in Section 3.3.2 can be written as

∇Φ (f) = Eσ
[
argmin
P∈P

Ex∼P [f(x)− σ(x)]

]
.

Note that, ∇Φ (f) is well defined because from our assumption on the perturbation dis-
tribution, the minimization problem inside the expectation has a unique minimizer with
probability one. To simplify the notation, in the sequel, we use the shorthand notation
〈P, f〉 to denote Ex∼P [f(x)], for any P ∈ P and f ∈ F . Similarly, for any P1, P2 ∈ P and
f ∈ F , we use the notation 〈P1 − P2, f〉 to denote Ex∼P1 [f(x)]− Ex∼P2 [f(x)].

Intermediate Results

Lemma 23. For any g ∈ F , R(∇Φ (g)) = −〈∇Φ (g) , g〉+ Φ(g).

Proof. Define Pg,σ as
Pg,σ = argmin

P∈P
Ex∼P [g(x)− σ(x)] .

Note that ∇Φ (g) = Eσ [Pg,σ]. For any g, h ∈ F , we have

Φ(h) = Eσ
[

inf
P∈P
〈P, h− σ〉

]
≤ Eσ [〈Pg,σ, h− σ〉]
= Eσ [〈Pg,σ, g − σ〉] + Eσ [〈Pg,σ, h− g〉]
= Φ(g) + 〈∇Φ (g) , h− g〉.

This shows that for any g, h ∈ F

Φ(h)− 〈∇Φ (g) , h〉 ≤ Φ(g)− 〈∇Φ (g) , g〉. (B.4)

Taking supremum over h of the LHS quantity gives us

R(∇Φ (g)) = sup
h∈F

Φ(h)− 〈∇Φ (g) , h〉 = Φ(g)− 〈∇Φ (g) , g〉.

Lemma 24 (Strong Smoothness). The function −Φ is convex and strongly smooth and
satisfies the following inequality for any g1, g2 ∈ F

−Φ(g2) ≤ −Φ(g1)− 〈∇Φ (g1) , g2 − g1〉+
C

2η
‖g2 − g1‖2

F .

Proof. Let g1, g2 ∈ F and α ∈ [0, 1]. Then

Φ(αg1 + (1− α)g2) = Eσ
[

inf
P∈P
〈P, αg1 + (1− α)g2 − σ〉

]
≥ αEσ

[
inf
P∈P
〈P, g1 − σ〉

]
+ (1− α)Eσ

[
inf
P∈P
〈P, g2 − σ〉

]
= αΦ(g1) + (1− α)Φ(g2).

130

This shows that −Φ is convex. To show smoothness, we rely on the following stability
property

∀g1, g2 ∈ F γF(∇Φ (g1) ,∇Φ (g2)) ≤ C

η
‖g1 − g2‖F .

Let T be an arbitrary positive integer and for t ∈ {0, 1, . . . T}, define αt = t/T . Let
h = g2 − g1. We have

Φ(g1)− Φ(g2) = Φ(g1 + α0h)− Φ(g1 + αTh)

=
T−1∑
t=0

(Φ(g1 + αth)− Φ(g1 + αt+1h))

Since −Φ is convex and satisfies Equation (B.4), we have

Φ(g1)− Φ(g2) =
T−1∑
t=0

(Φ(g1 + αth)− Φ(g1 + αt+1h))

≤ −
T−1∑
t=0

1

T
〈∇Φ (g1 + αt+1h) , h〉

Using stability, we get

Φ(g1)− Φ(g2) ≤ −
T−1∑
t=0

1

T
〈∇Φ (g1 + αt+1h) , h〉

=
T−1∑
t=0

1

T
(〈∇Φ (g1)−∇Φ (g1 + αt+1h) , h〉 − 〈∇Φ (g1) , h〉)

(a)

≤ −〈∇Φ (g1) , h〉+
T−1∑
t=0

1

T
γF(∇Φ (g1) ,∇Φ (g1 + αt+1h))‖h‖F

(b)

≤ −〈∇Φ (g1) , h〉+
T−1∑
t=0

C

Tη
‖αt+1h‖F‖h‖F

= −〈∇Φ (g1) , h〉+
T−1∑
t=0

Cαt+1

Tη
‖h‖2

F

= −〈∇Φ (g1) , h〉+
C

η

T + 1

2T
‖h‖2

F ,

where (a) follows from the definition of γF and (b) follows from the stability assumption.
Taking T →∞, we get

−Φ(g2) ≤ −Φ(g1)− 〈∇Φ (g1) , g2 − g1〉+
C

2η
‖g2 − g1‖2

F .

131

Lemma 25 (Strong Convexity). For any P ∈ P and g ∈ F , R satisfies the following
inequality

R(P) ≥ R(∇Φ (g)) + 〈∇Φ (g)− P, g〉+
η

2C
γF(P,∇Φ (g))2.

Proof. From Lemma 24 we know that the following holds for any g, h ∈ F

Φ(g) ≥ Φ(h) + 〈∇Φ (h) , g − h〉 − C

2η
‖g − h‖2

F︸ ︷︷ ︸
Φlb,h(g)

.

Define Rlb,h(P) as
Rlb(P) = sup

g∈F
−〈P, g〉+ Φlb,h(g).

Since Φ(g) ≥ Φlb,h(g) for all g ∈ F , R(P) ≥ Rlb,h(P) for all P . We now derive an expression
for Rlb,h(P). Note that from Lemma 23 we have R(∇Φ (h)) = −〈∇Φ (h) , h〉+Φ(h). Using
this, we get

Rlb,h(P) = sup
g∈F
−〈P, g〉+ Φlb,h(g)

(a)
= sup

g∈F

(
−〈P, g〉+ Φ(h) + 〈∇Φ (h) , g − h〉 − C

2η
‖g − h‖2

F

)
(b)
= R(∇Φ (h)) + sup

g∈F

(
〈∇Φ (h)− P, g〉 − C

2η
‖g − h‖2

F

)
,

where (a) follows from the definition of Φlb,h(g) and (b) follows from Lemma 23. We now
do a change of variables in the supremum of the above expression. Substituting g′ = g−h,
we get

Rlb,h(P) = R(∇Φ (h)) + 〈∇Φ (h)− P, h〉+ sup
g′∈F

(
〈∇Φ (h)− P, g′〉 − C

2η
‖g′‖2

F

)
.

We now show that

sup
g′∈F

(
〈∇Φ (h)− P, g′〉 − C

2η
‖g′‖2

F

)
≥ η

2C
γF(P,∇Φ (h))2.

To this end, we choose a g′′ ∈ F such that

‖g′′‖F =
η

C
γF(P,∇Φ (h)), 〈∇Φ (h)− P, g′′〉 =

η

C
γF(P,∇Φ (h))2. (B.5)

If such a g′′ can be found, we have

sup
g′∈F

(
〈∇Φ (h)− P, g′〉 − C

2η
‖g′‖2

F

)
≥ 〈∇Φ (h)− P, g′′〉 − C

2η
‖g′′‖2

F

=
η

2C
γF(P,∇Φ (h))2.

This would then imply the main claim of the Lemma.

R(P) ≥ Rlb,h(P) ≥ R(∇Φ (h)) + 〈∇Φ (h)− P, h〉+
η

2C
γF(P,∇Φ (h))2.

132

Finding g′′. We now construct a g′′ which satisfies Equation (B.5). From the definition
of γF we know that

γF(P,∇Φ (h)) = sup
‖g′‖F≤1

|〈∇Φ (h)− P, g′〉|

Suppose the supremum is achieved at g∗. Define g′′ as ηs
C
γF(P,∇Φ (h))g∗, where s =

sign(〈∇Φ (h)− P, g∗〉). It can be easily verified that g′′ satifies Equation (B.5).
If the supremum is never achieved, the same argument as above can still be made using

a sequence of functions {gn}∞n=1 such that

‖gn‖F ≤ 1, lim
n→∞

|〈∇Φ (h)− P, gn〉| = γF(P,∇Φ (h)).

Define g′′n as
ηsn
C
γF(P,∇Φ (h))gn, where sn = sign(〈∇Φ (h)−P, gn〉). Since limn→∞ ‖gn‖F =

1, we have limn→∞ ‖g′′n‖F = η
C
γF(P,∇Φ (h)). Moreover,

lim
n→∞
〈∇Φ (h)− P, g′′n〉 = lim

n→∞

η

C
γF(P,∇Φ (h))

∣∣∣〈∇Φ (h)− P, gn〉
∣∣∣ =

η

C
γF(P,∇Φ (h))2.

This shows that

sup
g′∈F

(
〈∇Φ (h)− P, g′〉 − C

2η
‖g′‖2

F

)
≥ lim

n→∞
〈∇Φ (h)− P, g′′n〉 −

C

2η
‖g′′n‖2

F

=
η

2C
γF(P,∇Φ (h))2.

This finishes the proof of the Lemma.

Main Argument

We are now ready to prove Theorem 6. Our proof relies on Lemma 25 and uses similar
arguments as used in the proof of Theorem 5. We first rewrite Pt, P̃t as

Pt =
1

m

m∑
j=1

argmin
P∈P

Ex∼P

[
t−1∑
i=1

fi(x) + gt(x)− σt,j(x)

]
,

P̃t =
1

m

m∑
j=1

argmin
P∈P

Ex∼P

[
t∑
i=1

fi(x)− σ′t,j(x)

]
.

Note that

P∞t = E [Pt|gt, f1:t−1, P1:t−1] = ∇Φ (f1:t−1 + gt) ,

P̃∞t = E
[
P̃t|f1:t−1, P1:t−1

]
= ∇Φ (f1:t) ,

with P∞1 = P̃∞0 = ∇Φ (0). Define functions B(·, P∞t), B(·, P̃∞t) as

B(P, P∞t) = R(P)−R(P∞t) + 〈P − P∞t , f1:t−1 + gt〉,
B(P, P̃∞t) = R(P)−R(P̃∞t) + 〈P − P̃∞t , f1:t〉.

133

From Lemma 25, we have

B(P, P∞t) ≥ η

2C
γF(P, P∞t)2, B(P, P̃∞t) ≥ η

2C
γF(P, P̃∞t)2.

For any P ∈ P , we have

E [ft(xt)− ft(P)] = E [ft(Pt)− ft(P)]

= E [〈Pt − P, ft〉]
= E [〈Pt − P∞t , ft〉] + E [〈P∞t − P, ft〉]

= E [〈Pt − P∞t , ft〉] + E
[
〈P∞t − P̃∞t , ft − gt〉

]
+ E

[
〈P∞t − P̃∞t , gt〉

]
+ E

[
〈P̃∞t − P, ft〉

]
(a)

≤ E
[
γF(P∞t , P̃

∞
t)‖ft − gt‖F

]
+ E

[
〈P∞t − P̃∞t , gt〉

]
+ E

[
〈P̃∞t − P, ft〉

]
,

where (a) follows from the fact that E [〈Pt − P∞t , ft〉|gt, f1:t−1, P1:t−1] = 0 and as a result
E [〈Pt − P∞t , ft〉] = 0. Next, a simple calculation shows that

〈P∞t − P̃∞t , gt〉 = B(P̃∞t , P̃
∞
t−1)−B(P̃∞t , P

∞
t)−B(P∞t , P̃

∞
t−1)

〈P̃∞t − P, ft〉 = B(P, P̃∞t−1)−B(P, P̃∞t)−B(P̃∞t , P̃
∞
t−1).

Substituting this in the previous regret bound gives us

E [ft(xt)− ft(P)] ≤ E
[
γF(P∞t , P̃

∞
t)‖ft − gt‖F

]
+ E

[
B(P̃∞t , P̃

∞
t−1)−B(P̃∞t , P

∞
t)−B(P∞t , P̃

∞
t−1)
]

+ E
[
B(P, P̃∞t−1)−B(P, P̃∞t)−B(P̃∞t , P̃

∞
t−1)
]

= E
[
γF(P∞t , P̃

∞
t)‖ft − gt‖F

]
+ E

[
B(P, P̃∞t−1)−B(P, P̃∞t)−B(P̃∞t , P

∞
t)−B(P∞t , P̃

∞
t−1)
]

(a)

≤ E
[
γF(P∞t , P̃

∞
t)‖ft − gt‖F

]
+ E

[
B(P, P̃∞t−1)−B(P, P̃∞t)

]
− E

[η
2C

γF(P̃∞t , P
∞
t)2 +

η

2C
γF(P∞t , P̃

∞
t−1)2

]
(b)

≤ C

2η
E
[
‖ft − gt‖2

F
]

+ E
[
B(P, P̃∞t−1)−B(P, P̃∞t)

]
− E

[η
2C

γF(P∞t , P̃
∞
t−1)2

]
where (a) follows from Lemma 25, and (b) uses the fact that |xy| ≤ 1

2c
|x|2 + c

2
|y|2, for any

x, y, c > 0. Summing over t = 1, . . . T gives us
T∑
t=1

E [ft(xt)− ft(P)] ≤ E
[
B(P, P̃∞0)−B(P, P̃∞T)

]
︸ ︷︷ ︸

S1

+
T∑
t=1

C

2η
E
[
‖ft − gt‖2

F
]

−
T∑
t=1

η

2C
E
[
γF(P∞t , P̃

∞
t−1)2

]

134

To finish the proof of the Theorem, we need to bound S1.

Bounding S1. From the definition of B, we have

B(P, P̃∞0)−B(P, P̃∞T) = R(P̃∞T)− 〈P − P̃∞T , f1:T 〉 −R(x̃∞0),

where we used the fact that f1:0 = 0. We now rely on Lemma 23 to convert the above
equation, which is currently in terms of R, into a quantity which depends on Φ. Using
Lemma 23, we get

B(P, P̃∞0)−B(P, P̃∞T) = Φ(f1:T)− 〈P, f1:T 〉 − Φ(0).

From the definition of Φ we have

B(P, P̃∞0)−B(P, P̃∞T) = Φ(f1:T)− 〈P, f1:T 〉 − Φ(0)

= Eσ
[

inf
P ′∈P
〈P ′, f1:T − σ〉

]
− 〈P, f1:T 〉 − Eσ

[
inf
P ′∈P
〈P ′,−σ〉

]
≤ Eσ [〈P, f1:T − σ〉]− 〈P, f1:T 〉 − Eσ

[
inf
P ′∈P
〈P ′,−σ〉

]
= Eσ

[
sup
P ′∈P
〈P ′, σ〉

]
− Eσ [〈P, σ〉]

≤ DEσ [‖σ‖F] = ηD,

where the last inequality follows from our bound on the diameter of P . Substituting this
in the above regret bound gives us the required result.

B.3.2 Proof of Corollary 2

To prove the corollary we first show that for our choice of perturbation distribution,
argminx∈X f(x)− σ(x) has a unique minimizer with probability one, for any f ∈ F . Next,
we show that the predictions of OFTPL are stable.

Intermediate Results

Lemma 26 (Unique Minimizer). Suppose the perturbation function is such that σ(x) =
〈σ̄,x〉, where σ̄ ∈ Rd is a random vector whose entries are sampled independently from
Exp(η). Then, for any f ∈ F , argminx∈X f(x)− σ(x) has a unique minimizer with proba-
bility one.

Proof. Define xf (σ) as
xf (σ̄) ∈ argmin

x∈X
f(x)− 〈σ̄,x〉.

For any σ̄1, σ̄2 we now show that xf (σ̄) satisfies the following monotonicity property

〈xf (σ̄1)− xf (σ̄2), σ̄1 − σ̄2〉 ≥ 0.

135

From the optimality of xf (σ̄1),xf (σ̄2) we have

f(xf (σ̄1))− 〈σ̄1,xf (σ̄1)〉 ≤ f(xf (σ̄2))− 〈σ̄1,xf (σ̄2)〉
= f(xf (σ̄2))− 〈σ̄2,xf (σ̄2)〉+ 〈σ̄2 − σ̄1,xf (σ̄2)〉
≤ f(xf (σ̄1))− 〈σ̄2,xf (σ̄1)〉+ 〈σ̄2 − σ̄1,xf (σ̄2)〉.

This shows that 〈σ̄2 − σ̄1,xf (σ̄2) − xf (σ̄1)〉 ≥ 0. To finish the proof of Lemma, we rely
on Theorem 1 of Zarantonello [Zar73], which shows that the set of points for which a
monotone operator is not single-valued has Lebesgue measure zero. Since the distribution
of σ̄ is absolutely continuous w.r.t Lebesgue measure, this shows that argminx∈X f(x)−σ(x)
has a unique minimizer with probability one.

Main Argument

For our choice of perturbation distribution, Eσ [‖σ‖F] = Eσ̄ [‖σ̄‖∞] = η log d. We now
bound the stability of predictions of OFTPL. First note that for our choice of primal space
(F , ‖ · ‖F), γF is the Wasserstein-1 metric, which is defined as

γF(P1, P2) = sup
f∈F ,‖f‖F≤1

∣∣∣Ex∼P1 [f(x)]− Ex∼P2 [f(x)]
∣∣∣ = inf

Q∈Γ(P1,P2)
E(x1,x2)∼Q [‖x1 − x2‖1] ,

where Γ(P1, P2) is the set of all probability measures on X × X with marginals P1, P2 on
the first and second factors respectively. Define xf (σ̄) as

xf (σ̄) ∈ argmin
x∈X

f(x)− 〈σ̄,x〉.

Note that ∇Φ (f) is the distribution of random variable xf (σ̄). In Chapter 2 we showed
that for any f, g ∈ F

Eσ̄ [‖xf (σ̄)− xg(σ̄)‖1] ≤ 125d2D

η
‖f − g‖F .

Since γF(∇Φ (f) ,∇Φ (g)) ≤ Eσ̄ [‖xf (σ̄)− xg(σ̄)‖1], this shows that OFTPL is O (d2Dη−1)
stable w.r.t ‖·‖F . Substituting the stability bound in the regret bound of Theorem 6 shows
that

sup
P∈P

E

[
T∑
t=1

ft(xt)− ft(P)

]
= ηD log d

+O

(
T∑
t=1

d2D

η
E
[
‖ft − gt‖2

F
]
−

T∑
t=1

η

d2D
E
[
γF(P∞t , P̃

∞
t−1)2

])
.

B.4 Convex-Concave Games
Our algorithm for convex-concave games is presented in Algorithm 13. Before presenting
the proof of Theorem 7, we first present a more general result in Section B.4.1. Theo-
rem 7 immediately follows from our general result by instantiating it for the uniform noise
distribution.

136

Algorithm 13 OFTPL for convex-concave games
1: Input: Perturbation Distributions P 1

PRTB, P
2
PRTB of x,y players, number of samples m, iter-

ations T
2: for t = 1 . . . T do
3: if t = 1 then
4: Sample {σ1

1,j}mj=1, {σ2
1,j}mj=1 from P 1

PRTB, P
2
PRTB

5: x1 = 1
m

∑m
j=1

[
argminx∈X 〈−σ1

1,j ,x〉
]
,y1 = 1

m

[∑m
j=1 argmaxy∈Y〈σ2

1,j ,y〉
]

6: continue
7: end if
8: //Compute guesses
9: for j = 1 . . .m do
10: Sample σ1

t,j ∼ P 1
PRTB, σ

2
t,j ∼ P 2

PRTB
11: x̃t−1,j = argmin

x∈X
〈
∑t−1

i=1∇xf(xi,yi)− σ1
t,j ,x〉

12: ỹt−1,j = argmax
y∈Y

〈
∑t−1

i=1∇yf(xi,yi) + σ2
t,j ,y〉

13: end for
14: x̃t−1 = 1

m

∑m
j=1 x̃t−1,j , ỹt−1 = 1

m

∑m
j=1 ỹt−1,j

15: //Use the guesses to compute the next action
16: for j = 1 . . .m do
17: Sample σ1

t,j ∼ P 1
PRTB, σ

2
t,j ∼ P 2

PRTB
18: xt,j = argmin

x∈X
〈
∑t−1

i=1∇xf(xi,yi) +∇xf(x̃t−1, ỹt−1)− σ1
t,j ,x〉

19: yt,j = argmax
y∈Y

〈
∑t−1

i=1∇yf(xi,yi) +∇yf(x̃t−1, ỹt−1) + σ2
t,j ,y〉

20: end for
21: xt = 1

m

∑m
j=1 xt,j ,yt = 1

m

∑m
j=1 yt,j

22: end for
23: return {(xt,yt)}Tt=1

B.4.1 General Result

Theorem 27. Consider the minimax game in Equation (3.1). Suppose f is convex in x,
concave in y and is Holder smooth w.r.t some norm ‖ · ‖

‖∇xf(x,y)−∇xf(x′,y′)‖∗ ≤ L1‖x− x′‖α + L2‖y − y′‖α,
‖∇yf(x,y)−∇yf(x′,y′)‖∗ ≤ L2‖x− x′‖α + L1‖y − y′‖α.

Define diameter of sets X ,Y as D = max{supx1,x2∈X ‖x1 − x2‖, supy1,y2∈Y ‖y1 − y2‖}. Let
L = {L1, L2}. Suppose both x and y players use Algorithm 2 to solve the minimax game.
Suppose the perturbation distributions P 1

PRTB, P
2
PRTB, used by x, y players are absolutely

continuous and satisfy Eσ∼P 1
PRTB

[‖σ‖∗] = Eσ∼P 2
PRTB

[‖σ‖∗] = η. Suppose the predictions of
both the players are Cη−1-stable w.r.t ‖ ·‖∗. Suppose the guesses used by x,y players in the
tth iteration are ∇xf(x̃t−1, ỹt−1),∇yf(x̃t−1, ỹt−1), where x̃t−1, ỹt−1 denote the predictions
of x,y players in the tth iteration, if guess gt = 0 was used in that iteration. Then the

137

iterates {(xt,yt)}Tt=1 generated by the OFTPL based algorithm satisfy

sup
x∈X ,y∈Y

E

[
f

(
1

T

T∑
t=1

xt,y

)
− f

(
x,

1

T

T∑
t=1

yt

)]
≤2L1

(
Ψ1Ψ2D√

m

)1+α

+
2ηD

T

+
20CL2

η

(
Ψ1Ψ2D√

m

)2α

+ 10L

(
5CL

η

) 1+α
1−α

Proof. Since both the players are responding to each others actions using OFTPL, using
Theorem 5, we get the following regret bounds for the players

sup
x∈X

E

[
T∑
t=1

f(xt,yt)− f(x,yt)

]
≤ L1T

(
Ψ1Ψ2D√

m

)1+α

+ ηD

+
C

2η

T∑
t=1

E
[
‖∇xf(xt,yt)−∇xf(x̃t−1, ỹt−1)‖2

∗
]

− η

2C

T∑
t=1

E
[
‖x∞t − x̃∞t−1‖2

]
.

sup
y∈Y

E

[
T∑
t=1

f(xt,y)− f(xt,yt)

]
≤ L1T

(
Ψ1Ψ2D√

m

)1+α

+ ηD

+
C

2η

T∑
t=1

E
[
‖∇yf(xt,yt)−∇yf(x̃t−1, ỹt−1)‖2

∗
]

− η

2C

T∑
t=1

E
[
‖y∞t − ỹ∞t−1‖2

]
.

First, consider the regret of the x player. Since ‖a1 + · · ·+ a5‖2 ≤ 5(‖a1‖2 · · ·+ ‖a5‖2), we
have

‖∇xf(xt,yt)−∇xf(x̃t−1, ỹt−1)‖2
∗ ≤5‖∇xf(xt,yt)−∇xf(x∞t ,yt)‖2

∗

+ 5‖∇xf(x∞t ,yt)−∇xf(x∞t ,y
∞
t)‖2

∗

+ 5‖∇xf(x∞t ,y
∞
t)−∇xf(x̃∞t−1, ỹ

∞
t−1)‖2

∗

+ 5‖∇xf(x̃∞t−1, ỹ
∞
t−1)−∇xf(x̃∞t−1, ỹt−1)‖2

∗

+ 5‖∇xf(x̃∞t−1, ỹt−1)−∇xf(x̃t−1, ỹt−1)‖2
∗

(a)

≤ 5L2
1‖xt − x∞t ‖2α + 5L2

1‖x̃t−1 − x̃∞t−1‖2α

+ 5L2
2‖yt − y∞t ‖2α + 5L2

2‖ỹt−1 − ỹ∞t−1‖2α

+ 5‖∇xf(x∞t ,y
∞
t)−∇xf(x̃∞t−1, ỹ

∞
t−1)‖2

∗.

138

where (a) follows from the Holder’s smoothness of f . Using a similar technique as in the
proof of Theorem 5, relying on Holders inequality, we get

E
[
‖xt − x∞t ‖2α|x̃t−1, ỹt−1,x1:t−1,y1:t−1

]
≤ E

[
‖xt − x∞t ‖2|x̃t−1, ỹt−1,x1:t−1,y1:t−1

]α
≤ Ψ2α

1 E
[
‖xt − x∞t ‖2

2|x̃t−1, ỹt−1,x1:t−1,y1:t−1

]α
(a)

≤
(

Ψ1Ψ2D√
m

)2α

,

where (a) follows from the fact that conditioned on past randomness, xt−x∞t is the average
of m i.i.d bounded mean 0 random variables, the variance of which scales as O(D2/m). A
similar bound holds for the expectation of other quantities appearing in the RHS of the
above equation. Using this, the regret of x player can be upper bounded as

sup
x∈X

E

[
T∑
t=1

f(xt,yt)− f(x,yt)

]
≤ L1T

(
Ψ1Ψ2D√

m

)1+α

+ ηD +
10CL2T

η

(
Ψ1Ψ2D√

m

)2α

+
5C

2η

T∑
t=1

E
[
‖∇xf(x∞t ,y

∞
t)−∇xf(x̃∞t−1, ỹ

∞
t−1)‖2

∗
]

− η

2C

T∑
t=1

E
[
‖x∞t − x̃∞t−1‖2

]
.

Similarly, the regret of y player can be bounded as

sup
y∈Y

E

[
T∑
t=1

f(xt,y)− f(xt,yt)

]
≤ L1T

(
Ψ1Ψ2D√

m

)1+α

+ ηD +
10CL2T

η

(
Ψ1Ψ2D√

m

)2α

+
5C

2η

T∑
t=1

E
[
‖∇yf(x∞t ,y

∞
t)−∇yf(x̃∞t−1, ỹ

∞
t−1)‖2

∗
]

− η

2C

T∑
t=1

E
[
‖y∞t − ỹ∞t−1‖2

]
.

Summing the above two inequalities, we get

sup
x∈Xy∈Y

E

[
T∑
t=1

f(xt,y)− f(x,yt)

]
≤ 2L1T

(
Ψ1Ψ2D√

m

)1+α

+ 2ηD +
20CL2T

η

(
Ψ1Ψ2D√

m

)2α

+
5C

2η

T∑
t=1

E
[
‖∇xf(x∞t ,y

∞
t)−∇xf(x̃∞t−1, ỹ

∞
t−1)‖2

∗
]

+
5C

2η

T∑
t=1

E
[
‖∇yf(x∞t ,y

∞
t)−∇yf(x̃∞t−1, ỹ

∞
t−1)‖2

∗
]

− η

2C

T∑
t=1

(
E
[
‖y∞t − ỹ∞t−1‖2

]
+ E

[
‖x∞t − x̃∞t−1‖2

])
.

139

From Holder’s smoothness assumption on f , we have

E
[
‖∇xf(x∞t ,y

∞
t)−∇xf(x̃∞t−1, ỹ

∞
t−1)‖2

∗
]
≤ 2E

[
‖∇xf(x∞t ,y

∞
t)−∇xf(x∞t , ỹ

∞
t−1)‖2

∗
]

+ 2E
[
‖∇xf(x∞t , ỹ

∞
t−1)−∇xf(x̃∞t−1, ỹ

∞
t−1)‖2

∗
]

(a)

≤ 2L2E
[
‖x∞t − x̃∞t−1‖2α

]
+ 2L2E

[
‖y∞t − ỹ∞t−1‖2α

]
,

Using a similar argument, we get

E
[
‖∇yf(x∞t ,y

∞
t)−∇yf(x̃∞t−1, ỹ

∞
t−1)‖2

∗
]
≤ 2L2E

[
‖x∞t − x̃∞t−1‖2α

]
+ 2L2E

[
‖y∞t − ỹ∞t−1‖2α

]
.

Plugging this in the previous bound, we get

sup
x∈Xy∈Y

E

[
T∑
t=1

f(xt,y)− f(x,yt)

]
≤ 2L1T

(
Ψ1Ψ2D√

m

)1+α

+ 2ηD +
20CL2T

η

(
Ψ1Ψ2D√

m

)2α

+
10CL2

η

T∑
t=1

(
E
[
‖x∞t − x̃∞t−1‖2α

]
+ E

[
‖y∞t − ỹ∞t−1‖2α

])
− η

2C

T∑
t=1

(
E
[
‖y∞t − ỹ∞t−1‖2

]
+ E

[
‖x∞t − x̃∞t−1‖2

])
.

Case α = 1. We first consider the case of α = 1. In this case, choosing η >
√

20CL, we
get

sup
x∈Xy∈Y

E

[
T∑
t=1

f(xt,y)− f(x,yt)

]
≤ 2L1T

(
Ψ1Ψ2D√

m

)1+α

+ 2ηD +
20CL2T

η

(
Ψ1Ψ2D√

m

)2α

.

General α. The more general case relies on AM-GM inequality. Consider the following

10CL2

η
‖x∞t − x̃∞t−1‖2α =

(
(2αC)

α
1−αη−

1+α
1−α (10CL2)

1
1−α

)1−α
(
‖x∞t − x̃∞t−1‖2

2αCη−1

)α
(a)

≤ (1− α)
(

(2αC)
α

1−αη−
1+α
1−α (10CL2)

1
1−α

)
+

η

2C
‖x∞t − x̃∞t−1‖2

=
√

20L

(√
20CL

η

) 1+α
1−α

+
η

2C
‖x∞t − x̃∞t−1‖2

where (a) follows from AM-GM inequality. Plugging this in the previous bound, we get

sup
x∈Xy∈Y

E

[
T∑
t=1

f(xt,y)− f(x,yt)

]
≤2L1T

(
Ψ1Ψ2D√

m

)1+α

+ 2ηD

+
20CL2T

η

(
Ψ1Ψ2D√

m

)2α

+ 4
√

5LT

(√
20CL

η

) 1+α
1−α

.

140

The claim of the theorem then follows from the observation that

E

[
f

(
1

T

T∑
t=1

xt,y

)
− f

(
x,

1

T

T∑
t=1

yt

)]
≤ 1

T
E

[
T∑
t=1

f(xt,y)− f(x,yt)

]
.

B.4.2 Proof of Theorem 7

To prove the Theorem, we instantiate Theorem 27 for the uniform noise distribution. As
shown in Corollary 1, the predictions of OFTPL are dDη−1-stable in this case. Plugging
this in the bound of Theorem 27 and using the fact that Ψ1 = Ψ2 = 1 and α = 1 gives us

sup
x∈X ,y∈Y

E

[
f

(
1

T

T∑
t=1

xt,y

)
− f

(
x,

1

T

T∑
t=1

yt

)]
≤2L

(
D√
m

)2

+
2ηD

T

+
20dDL2

η

(
D√
m

)2

+ 10L

(
5dDL

η

)∞
.

Plugging in η = 6dD(L+ 1), m = T in the above bound gives us

sup
x∈X ,y∈Y

E

[
f

(
1

T

T∑
t=1

xt,y

)
− f

(
x,

1

T

T∑
t=1

yt

)]
≤O

(
dD2(L+ 1)

T

)
.

B.5 Nonconvex-Nonconcave Games
Our algorithm for nonconvex-nonconcave games is presented in Algorithm 14. Note that in
each iteration of this game, both the players play empirical distributions (Pt, Qt). Before
presenting the proof of Theorem 8, we first present a more general result in Section B.5.1.
Theorem 8 immediately follows from our general result by instantiating it for exponential
noise distribution.

B.5.1 General Result

Theorem 28. Consider the minimax game in Equation (3.1). Suppose the domains X ,Y
are compact subsets of Rd. Let F ,F ′ be the set of Lipschitz functions over X ,Y, and
‖g1‖F , ‖g2‖F ′ be the Lipschitz constants of functions g1 : X → R, g2 : Y → R w.r.t some
norm ‖ · ‖. Suppose f is such that max{supx∈X ‖f(·,y)‖F , supy∈Y ‖f(x, ·)‖F ′} ≤ G and
satisfies the following smoothness property

‖∇xf(x,y)−∇xf(x′,y′)‖∗ ≤ L‖x− x′‖+ L‖y − y′‖,
‖∇yf(x,y)−∇yf(x′,y′)‖∗ ≤ L‖x− x′‖+ L‖y − y′‖.

Let P ,Q be the set of probability distributions over X ,Y. Define diameter of P ,Q as D =
max{supP1,P2∈P γF(P1, P2), supQ1,Q2∈Q γF ′(Q1, Q2)}. Suppose both x,y players use Algo-
rithm 3 to solve the game. Suppose the perturbation distributions P 1

PRTB, P
2
PRTB, used by x,

141

Algorithm 14 OFTPL for nonconvex-nonconcave games
1: Input: Perturbation Distributions P 1

PRTB, P
2
PRTB of x,y players, number of samples m, iter-

ations T
2: for t = 1 . . . T do
3: if t = 1 then
4: for j = 1 . . .m do
5: Sample σ1

t,j ∼ P 1
PRTB, σ

2
t,j ∼ P 2

PRTB
6: x1,j = argminx∈X −σ1

1,j(x)

7: y1,j = argmaxy∈Y σ
2
1,j(y)

8: end for
9: Let P1, Q1 be the empirical distributions over {x1,j}mj=1, {y1,j}mj=1

10: continue
11: end if
12: //Compute guesses
13: for j = 1 . . .m do
14: Sample σ1

t,j ∼ P 1
PRTB, σ

2
t,j ∼ P 2

PRTB
15: x̃t−1,j = argminx∈X

∑t−1
i=1 f(x, Qi)− σ1

t,j(x)

16: ỹt−1,j = argmaxy∈Y
∑t−1

i=1 f(Pi,y) + σ2
t,j(y)

17: end for
18: Let P̃t−1, Q̃t−1 be the empirical distributions over {x̃t−1,j}mj=1, {ỹt−1,j}mj=1

19: //Use the guesses to compute the next action
20: for j = 1 . . .m do
21: Sample σ1

t,j ∼ P 1
PRTB, σ

2
t,j ∼ P 2

PRTB
22: xt,j = argminx∈X

∑t−1
i=1 f(x, Qi) + f(x, Q̃t−1)− σ1

t,j(x)

23: yt,j = argmaxy∈Y
∑t−1

i=1 f(Pi,y) + f(P̃t−1,y) + σ2
t,j(y)

24: end for
25: Let Pt, Qt be the empirical distributions over {xt,j}mj=1, {yt,j}mj=1

26: end for
27: return {(Pt, Qt)}Tt=1

y players are such that argminx∈X f(x)−σ(x), argmaxy∈Y f(y)+σ(y) have unique optimiz-
ers with probability one, for any f in F ,F ′ respectively. Moreover, suppose Eσ∼P 1

PRTB
[‖σ‖F] =

Eσ∼P 2
PRTB

[‖σ‖F ′] = η and predictions of both the players are Cη−1-stable w.r.t norms ‖ ·
‖F , ‖·‖F ′. Suppose the guesses used by x,y players in the tth iteration are f(·, Q̃t−1), f(P̃t−1, ·),
where P̃t−1, Q̃t−1 denote the predictions of x,y players in the tth iteration, if guess gt = 0
was used. Then the iterates {(Pt, Qt)}Tt=1 generated by the Algorithm 13 satisfy the follow-
ing, for η >

√
3CL

sup
x∈X ,y∈Y

E

[
f

(
1

T

T∑
t=1

Pt,y

)
− f

(
x,

1

T

T∑
t=1

Qt

)]
= O

(
ηD

T
+
CD2L2

ηm

)
+O

(
min

{
dCΨ2

1Ψ2
2G

2 log(2m)

ηm
,
CD2L2

η

})
.

Proof. The proof of this Theorem uses similar arguments as Theorem 27. Since both the

142

players are responding to each others actions using OFTPL, using Theorem 6, we get the
following regret bounds for the players

sup
x∈X

E

[
T∑
t=1

f(Pt, Qt)− f(x, Qt)

]
≤ ηD +

T∑
t=1

C

2η
E
[
‖f(·, Qt)− f(·, Q̃t−1)‖2

F

]
− η

2C

T∑
t=1

E
[
γF(P∞t , P̃

∞
t−1)2

]
,

sup
y∈Y

E

[
T∑
t=1

f(Pt,y)− f(Pt, Qt)

]
≤ ηD +

T∑
t=1

C

2η
E
[
‖f(Pt, ·)− f(P̃t−1, ·)‖2

F ′

]
− η

2C

T∑
t=1

E
[
γF ′(Q

∞
t , Q̃

∞
t−1)2

]
,

where P∞t , P̃∞t−1, Q
∞
t , Q̃

∞
t−1 are as defined in Theorem 6. First, consider the regret of the x

player. We upper bound ‖f(·, Qt)− f(·, Q̃t−1)‖2
F as

‖f(·, Qt)− f(·, Q̃t−1)‖2
F ≤ 3‖f(·, Qt)− f(·, Q∞t)‖2

F

+ 3‖f(·, Q∞t)− f(·, Q̃∞t−1)‖2
F

+ 3‖f(·, Q̃∞t−1)− f(·, Q̃t−1)‖2
F .

We now show that E
[
‖f(·, Qt)− f(·, Q∞t)‖2

F |P̃t−1, Q̃t−1, P1:t−1, Q1:t−1

]
is O(1/m). To sim-

plify the notation, we let ζt = {P̃t−1, Q̃t−1, P1:t−1, Q1:t−1}. Let Nε be the ε-net of X w.r.t
‖ · ‖. Then

‖f(·, Qt)− f(·, Q∞t)‖F
(a)
= sup

x∈X
‖∇xf(x, Qt)−∇xf(x, Q∞t)‖∗

(b)

≤ sup
x∈Nε
‖∇xf(x, Qt)−∇xf(x, Q∞t)‖∗ + 2Lε,

where (a) follows from the definition of Lipschitz constant and (b) follows from our smooth-
ness assumption on f . Using this, we get

E
[
‖f(·, Qt)− f(·, Q∞t)‖2

F |ζt
]
≤ 2E

[
sup
x∈Nε
‖∇xf(x, Qt)−∇xf(x, Q∞t)‖2

∗

∣∣∣ζt]+ 8L2ε2,

Since f is Lipschitz, ‖∇xf(x,y)‖∗ is bounded by G. So ‖∇xf(x, Qt)−∇xf(x, Q∞t)‖∗
is bounded by 2G and ‖∇xf(x, Qt)−∇xf(x, Q∞t)‖2 is bounded by 2Ψ1G. Moreover,
conditioned on past randomness (ζt), ∇xf(x, Qt)−∇xf(x, Q∞t) is a sub-Gaussian random
vector and satisfies the following bound

E [〈u,∇xf(x, Qt)−∇xf(x, Q∞t)〉|ζt] ≤ exp
(
2Ψ2

1G
2‖u‖2

2/m
)
.

143

From tail bounds of sub-Gaussian random vectors [HKZ+12], we have

P
(
‖∇xf(x, Qt)−∇xf(x, Q∞t)‖2

2 >
4Ψ2

1G
2

m
(d+ 2

√
ds+ 2s)

∣∣∣ζt) ≤ e−s,

for any s > 0. Using union bound, and the fact that log |Nε| is upper bounded by
d log (1 + 2D/ε), we get

P
(

sup
x∈Nε
‖∇xf(x, Qt)−∇xf(x, Q∞t)‖2

2 >
4Ψ2

1G
2

m
(d+ 2

√
ds+ 2s)

∣∣∣ζt) ≤ e−s+d log(1+2D/ε).

Let Z = supx∈Nε ‖∇xf(x, Qt) −∇xf(x, Q∞t)‖2
2. The expectation of Z can be bounded as

follows

E [Z|ζt] = P(Z ≤ a|ζt)E [Z|ζt, Z ≤ a] + P(Z > a|ζt)E [Z|ζt, Z > a]

≤ a+ 4Ψ2
1G

2P(Z > a|ζt).

Choosing ε = Dm−1/2, s = 3d log(1 + 2m1/2), and a =
44dΨ2

1G
2 log(1+2m1/2)

m
, we get

E [Z|ζt] ≤
48dΨ2

1G
2 log(1 + 2m1/2)

m
.

This shows that E [‖f(·, Qt)− f(·, Q∞t)‖2
F |ζt] ≤

96dΨ2
1Ψ2

2G
2 log(1+2m1/2)

m
+ 8D2L2

m
. Note that

another trivial upper bound for ‖f(·, Qt)−f(·, Q∞t)‖F is DL, which can obtained as follows

‖f(·, Qt)− f(·, Q∞t)‖F = sup
x∈X
‖∇xf(x, Qt)−∇xf(x, Q∞t)‖∗

= ‖Ey1∼Qt,y2∼Q∞t [∇xf(x,y1)−∇xf(x,y2)] ‖∗
(a)

≤ LD,

where (a) follows from the smoothness assumption on f and the fact that the diameter of
X is D. When L is close to 0, this bound can be much better than the above bound. So
we have

E
[
‖f(·, Qt)− f(·, Q∞t)‖2

F |ζt
]
≤ min

(
96dΨ2

1Ψ2
2G

2 log(1 + 2m1/2)

m
+

8D2L2

m
,L2D2

)
.

Using this, the regret of the x player can be bounded as follows

sup
x∈X

E

[
T∑
t=1

f(Pt, Qt)− f(x, Qt)

]
≤ ηD +

24CD2L2T

ηm

+ min

(
288dCΨ2

1Ψ2
2G

2T log(1 + 2m1/2)

ηm
,
3CD2L2T

η

)
+

T∑
t=1

3C

2η
E
[
‖f(·, Q∞t)− f(·, Q̃∞t−1)‖2

F

]
− η

2C

T∑
t=1

E
[
γF(P∞t , P̃

∞
t−1)2

]
.

144

A similar analysis shows that the regret of y player can be bounded as

sup
y∈Y

E

[
T∑
t=1

f(Pt,y)− f(Pt, Qt)

]
≤ ηD +

24CD2L2T

ηm

+ min

(
288dCΨ2

1Ψ2
2G

2T log(1 + 2m1/2)

ηm
,
3CD2L2T

η

)
+

T∑
t=1

3C

2η
E
[
‖f(P∞t , ·)− f(P̃∞t−1, ·)‖2

F ′

]
− η

2C

T∑
t=1

E
[
γF ′(Q

∞
t , Q̃

∞
t−1)2

]
,

Summing the above two inequalities, we get

sup
x∈X ,y∈Y

E

[
T∑
t=1

f(Pt,y)− f(P,Qt)

]
≤ 2ηD +

48CD2L2T

ηm

+ min

(
576dCΨ2

1Ψ2
2G

2T log(1 + 2m1/2)

ηm
,
6CD2L2T

η

)
+

T∑
t=1

3C

2η
E
[
‖f(·, Q∞t)− f(·, Q̃∞t−1)‖2

F

]
+

T∑
t=1

3C

2η
E
[
‖f(P∞t , ·)− f(P̃∞t−1, ·)‖2

F ′

]
− η

2C

T∑
t=1

(
E
[
γF(P∞t , P̃

∞
t−1)2

]
+ E

[
γF ′(Q

∞
t , Q̃

∞
t−1)2

])
.

From our assumption on smoothness of f , we have

‖f(·, Q∞t)− f(·, Q̃∞t−1)‖F ≤ LγF ′(Q
∞
t , Q̃

∞
t−1), ‖f(P∞t , ·)− f(P̃∞t−1, ·)‖F ′ ≤ LγF(P∞t , P̃

∞
t−1).

145

To see this, consider the following

‖f(·, Q∞t)− f(·, Q̃∞t−1)‖F = sup
x∈X
‖∇xf(x, Q∞t)−∇xf(x, Q̃∞t−1)‖∗

= sup
x∈X ,‖u‖≤1

〈u,∇xf(x, Q∞t)−∇xf(x, Q̃∞t−1)〉

= sup
x∈X ,‖u‖≤1

Ey∼Q∞t [〈u,∇xf(x,y)〉]− Ey∼Q̃∞t−1
[〈u,∇xf(x,y)〉]

≤ γF ′(Q
∞
t , Q̃

∞
t−1) sup

x∈X ,‖u‖≤1

‖〈u,∇xf(x, ·)〉‖F ′

= γF ′(Q
∞
t , Q̃

∞
t−1) sup

x∈X ,‖u‖≤1

(
sup

y1 6=y2∈Y

|〈u,∇xf(x,y1)〉 − 〈u,∇xf(x,y2)〉|
‖y1 − y2‖

)
≤ γF ′(Q

∞
t , Q̃

∞
t−1) sup

x∈X

(
sup

y1 6=y2∈Y

‖∇xf(x,y1)−∇xf(x,y2)‖∗
‖y1 − y2‖

)
(a)

≤ LγF ′(Q
∞
t , Q̃

∞
t−1),

where (a) follows from smoothness of f . Substituting this in the previous equation, and
choosing η >

√
3CL, we get

sup
x∈X ,y∈Y

E

[
T∑
t=1

f(Pt,y)− f(P,Qt)

]
≤ 2ηD +

48CD2L2T

ηm

+ min

(
576dCΨ2

1Ψ2
2G

2T log(1 + 2m1/2)

ηm
,
6CD2L2T

η

)

This finishes the proof of the Theorem.

Remark B.5.1. We note that a similar result can be obtained for other choice of function
classes such as the set of all bounded and Lipschitz functions. The only difference between
proving such a result vs. proving Theorem 28 is in bounding ‖f(·, Qt)− f(·, Q∞t)‖F .

B.5.2 Proof of Theorem 8

To prove the Theorem, we instantiate Theorem 28 for exponential noise distribution. Re-
call, in Corollary 2, we showed that Eσ [‖σ‖F] = η log d and OFTPL is O (d2Dη−1) stable
w.r.t ‖·‖F , for this choice of perturbation distribution (similar results hold for (F ′, ‖·‖F ′)).
Substituting this in the bounds of Theorem 28 and using the fact that Ψ1 =

√
d,Ψ2 = 1,

we get

sup
x∈X ,y∈Y

E

[
f

(
1

T

T∑
t=1

Pt,y

)
− f

(
x,

1

T

T∑
t=1

Qt

)]
= O

(
ηD log d

T
+
d2D3L2

ηm

)
+O

(
min

{
d4DG2 log(2m)

ηm
,
d2D3L2

η

})
.

146

Choosing η = 10d2D(L+ 1),m = T , we get

sup
x∈X ,y∈Y

E

[
f

(
1

T

T∑
t=1

Pt,y

)
− f

(
x,

1

T

T∑
t=1

Qt

)]
= O

(
d2D2(L+ 1) log d

T

)
+O

(
min

{
d2G2 log(T)

LT
,D2L

})
.

B.6 Choice of Perturbation Distributions

Regularization of some Perturbation Distributions. We first study the regular-
ization effect of various perturbation distributions. Table B.1 presents the regularizer R
corresponding to some commonly used perturbation distributions, when the action space
X is `∞ ball of radius 1 centered at origin.

Perturbation Distribution PPRTB Regularizer

Uniform over [0, η]d η‖x− 1‖2
2

Exponential P (σ > t) = exp(−t/η)
∑
i

η(xi + 1) [log(xi + 1)− (1 + log 2)]

Gaussian P (σ = t) ∝ e−t
2/2η2

∑
i

sup
u∈R

u [xi − 1 + 2F (−u/η)]

Table B.1: Regularizers corresponding to various perturbation distributions used in FTPL
when the action space X is `∞ ball of radius 1 centered at origin. Here, F is the CDF of
a standard normal random variable.

Dimension independent rates. Recall, the OFTPL algorithm described in Algorithm 13
converges at O (d/T) rate to a Nash equilibrium of smooth convex-concave games (see The-
orem 7). We now show that for certain constraint sets X ,Y , by choosing the perturbation
distributions appropriately, the dimension dependence in the rates can potentially be re-
moved.

Suppose the action set is X = {x : ‖x‖2 ≤ 1}. Suppose the perturbation distribution
PPRTB is the multivariate Gaussian distribution with mean 0 and covariance η2Id×d, where
Id×d is the identity matrix. We now try to explicitly compute the reguralizer corresponding
to this perturbation distribution and action set. Define function Ψ as

Ψ(f) = Eσ
[
max
x∈X
〈f + σ,x〉

]
= Eσ [‖f + σ‖2] .

As shown in Proposition 2, the regularizer R corresponding to any perturbation distribution
is given by the Fenchel conjugate of Ψ

R(x) = sup
f
〈f,x〉 −Ψ(f).

147

Since getting an exact expression for R is a non-trivial task, we only compute an approxi-
mate expression for R. Consider the high dimensional setting (i.e., very large d). In this
setting, ‖f + σ‖2, for σ drawn from N (0, η2Id×d), can be approximated as follows

‖f + σ‖2 =
√
‖f‖2

2 + ‖σ‖2
2 + 2〈f, σ〉

(a)
≈
√
‖f‖2

2 + η2d+ 2〈f, σ〉
(b)
≈
√
‖f‖2

2 + η2d

where (a) follows from the fact that ‖σ‖2
2 is highly concentrated around η2d [HKZ+12]. To

be precise
P(‖σ‖2

2 ≥ η2(d+ 2
√
dt+ 2t)) ≤ e−t.

A similar bound holds for the lower tail. Approximation (b) follows from the fact that 〈f, σ〉
is a Gaussian random variable with mean 0 and variance η2‖f‖2

2, and with high probability
its magnitude is upper bounded by Õ(η‖f‖2). Since η‖f‖2 �

√
dη‖f‖2 ≤ ‖f‖2

2 + η2d,
approximation (b) holds. This shows that Ψ(f) can be approximated as

Ψ(f) ≈
√
‖f‖2

2 + η2d.

Using this approximation, we now compute the reguralizer corresponding to the perturba-
tion distribution

R(x) = sup
f
〈f,x〉 −Ψ(f) ≈ sup

f
〈f,x〉 −

√
‖f‖2

2 + η2d = −η
√
d
√

1− ‖x‖2
2.

This shows that R is η
√
d-strongly convex w.r.t ‖ · ‖2 norm. Following duality between

strong convexity and strong smoothness, Ψ(f) is (η2d)−1/2 strongly smooth w.r.t ‖ · ‖2

norm and satisfies
‖∇Ψ(f1)−∇Ψ(f2)‖2 ≤ (η2d)−1/2‖f1 − f2‖2.

This shows that the predictions of OFTPL are (η2d)−1/2 stable w.r.t ‖ · ‖2 norm. We now
instantiate Theorem 27 for this perturbation distribution and for constraint sets which are
unit balls centered at origin, and use the above stability bound, together with the fact that
Eσ [‖σ‖2] ≈ η

√
d. Suppose f is smooth w.r.t ‖ · ‖2 norm and satisfies

‖∇xf(x,y)−∇xf(x′,y′)‖2 + ‖∇yf(x,y)−∇yf(x′,y′)‖2 ≤ L‖x− x′‖2 + L‖y − y′‖2.

Then Theorem 27 gives us the following rates of convergence to a NE

sup
x∈X ,y∈Y

E

[
f

(
1

T

T∑
t=1

xt,y

)
− f

(
x,

1

T

T∑
t=1

yt

)]
≤2L1

m
+

2η
√
d

T

+
20L2

η
√
d

(
1

m

)
+ 10L

(
5L

η
√
d

)∞

148

Choosing η = 6L/
√
d,m = T , we get O

(
L
T

)
rate of convergence. Although, these rates are

dimension independent, we note that our stability bound is only approximate. More accu-
rate analysis is needed to actually claim that Algorithm 13 achieves dimension independent
rates in this setting. That being said, for general constraints sets, we believe one can get
dimension independent rates by choosing the perturbation distribution appropriately.

B.7 High Probability Bounds

In this section, we provide high probability bounds for Theorems 5, 7. Our results rely on
the following concentration inequalities.
Proposition 14 (Jin, Netrapalli, Ge, Kakade, and Jordan [Jin+19]). Let X1, . . . XK be K
independent mean 0 vector-valued random variables such that ‖Xi‖2 ≤ Bi. Then

P

(
‖
K∑
i=1

Xi‖2 ≥ t

)
≤ 2 exp

(
−c t2∑K

i=1B
2
i

)
,

where c > 0 is a universal constant.
We also need the following concentration inequality for martingales.

Proposition 15 (Wainwright [Wai19]). Let X1, . . . XK ∈ R be a martingale difference
sequence, where E [Xi|Fi−1] = 0. Assume that Xi satisfy the following tail condition, for
some scalar Bi > 0

P
(∣∣∣Xi

Bi

∣∣∣ ≥ z
∣∣∣Fi−1

)
≤ 2 exp(−z2).

Then

P

(∣∣∣ K∑
i=1

Xi

∣∣∣ ≥ z

)
≤ 2 exp

(
−c z2∑K

i=1B
2
i

)
,

where c > 0 is a universal constant.

B.7.1 Online Convex Learning

In this section, we present a high probability version of Theorem 5.
Theorem 29. Suppose the perturbation distribution PPRTB is absolutely continuous w.r.t
Lebesgue measure. Let D be the diameter of X w.r.t ‖ · ‖, which is defined as D =
supx1,x2∈X ‖x1− x2‖. Let η = Eσ [‖σ‖∗] , and suppose the predictions of OFTPL are Cη−1-
stable w.r.t ‖ · ‖∗, where C is a constant that depends on the set X . Suppose, the sequence
of loss functions {ft}Tt=1 are G-Lipschitz w.r.t ‖ · ‖ and satisfy supx∈X ‖∇ft(x)‖∗ ≤ G.
Moreover, suppose {ft}Tt=1 are Holder smooth and satisfy

∀x1,x2 ∈ X ‖∇ft(x1)−∇ft(x2)‖∗ ≤ L‖x1 − x2‖α,

149

for some constant α ∈ [0, 1]. Then the regret of Algorithm 2 satisfies the following with
probability at least 1− δ

sup
x∈X

T∑
t=1

ft(xt)− ft(x) ≤ ηD +
T∑
t=1

C

2η
‖∇t − gt‖2

∗ −
T∑
t=1

η

2C
‖x∞t − x̃∞t−1‖2

+ cGD

√
T log 2/δ

m
+ cLT

(
Ψ2

1Ψ2
2D

2 log 4T/δ

m

) 1+α
2

,

where c is a universal constant, x∞t = E [xt|gt, f1:t−1,x1:t−1] and x̃∞t−1 = E [x̃t−1|f1:t−1,x1:t−1]
and x̃t−1 denotes the prediction in the tth iteration of Algorithm 2, if guess gt = 0 was used.
Here, Ψ1,Ψ2 denote the norm compatibility constants of ‖ · ‖.

Proof. Our proof uses the same notation and similar arguments as in the proof Theorem 5.
Recall, in Theorem 5 we showed that the regret of OFTPL is upper bounded by

T∑
t=1

ft(xt)− ft(x) ≤
T∑
t=1

〈xt − x∞t ,∇t〉+ ηD +
T∑
t=1

‖x∞t − x̃∞t ‖‖∇t − gt‖∗

− η

2C

T∑
t=1

(
‖x̃∞t − x∞t ‖2 + ‖x∞t − x̃∞t−1‖2

)
≤

T∑
t=1

〈xt − x∞t ,∇t〉+ ηD +
T∑
t=1

C

2η
‖∇t − gt‖2

∗ −
T∑
t=1

η

2C
‖x∞t − x̃∞t−1‖2.

From Holder’s smoothness assumption, we have

〈xt − x∞t ,∇t −∇ft(x∞t)〉 ≤ L‖xt − x∞t ‖1+α.

Substituting this in the previous bound gives us

T∑
t=1

ft(xt)− ft(x) ≤
T∑
t=1

〈xt − x∞t ,∇ft(x∞t)〉︸ ︷︷ ︸
S1

+
T∑
t=1

L ‖xt − x∞t ‖1+α︸ ︷︷ ︸
S2

+ηD

+
T∑
t=1

C

2η
‖∇t − gt‖2

∗ −
T∑
t=1

η

2C
‖x∞t − x̃∞t−1‖2.

We now provide high probability bounds for S1 and S2.

Bounding S1. Let ξi = {gi+1, fi+1,xi} and let ξ0:t denote the union of sets ξ0, ξ1, . . . , ξt.
Let ζt = 〈xt − x∞t ,∇ft(x∞t)〉 with ζ0 = 0. Note that {ζt}Tt=0 is a martingale difference
sequence w.r.t ξ0:T . This is because E [xt|ξ0:t−1] = x∞t and ∇ft(x∞t) is a deterministic
quantity conditioned on ξ0:t−1. As a result E [ζt|ξ0:t−1] = 0. Moreover, conditioned on

150

ξ0:t−1, ζt is the average of m independent mean 0 random variables, each of which is
bounded by GD. Using Proposition 14, we get

P
(
|ζt| ≥ s

∣∣∣ξ0:t−1

)
≤ 2 exp

(
− ms2

G2D2

)
.

Using Proposition 42 on the martingale difference sequence {ζt}Tt=0, we get

P

(∣∣∣ T∑
t=1

ζt

∣∣∣ ≥ s

)
≤ 2 exp

(
−c ms2

G2D2T

)
,

where c > 0 is a universal constant. This shows that with probability at least 1− δ/2, S1

is upper bounded by O
(√

G2D2T log 2
δ

m

)
.

Bounding S2. Conditioned on {gt, f1:t−1,x1:t−1}, xt−x∞t is the average ofm independent
mean 0 random variables which are bounded by D in ‖ · ‖ norm. From our definition of
norm compatibility constant Ψ2, this implies the random variables are bounded by Ψ2D
in ‖ · ‖2. Using Proposition 14, we get

P

(
‖xt − x∞t ‖2 ≥ Ψ2D

√
c log 4T/δ

m

∣∣∣∣∣gt, f1:t−1,x1:t−1

)
≤ δ

2T
.

Since the above bound holds for any set of {gt, f1:t,x1:t−1}, the same tail bound also holds
without the conditioning. This shows that

P

(
‖xt − x∞t ‖1+α ≥

(
cΨ2

1Ψ2
2D

2 log 4T/δ

m

) 1+α
2

)
≤ δ

2T
,

where we converted back to ‖ · ‖ by introducing the norm compatibility constant Ψ1.

Bounding the regret. Plugging the above high probability bounds for S1, S2 in the
previous regret bound and using union bound, we get the following regret bound which
holds with probability at least 1− δ

T∑
t=1

ft(xt)− ft(x) ≤ cGD

√
T log 2/δ

m
+ cLT

(
Ψ2

1Ψ2
2D

2 log 4T/δ

m

) 1+α
2

+ ηD

+
T∑
t=1

C

2η
‖∇t − gt‖2

∗ −
T∑
t=1

η

2C
‖x∞t − x̃∞t−1‖2,

where c > 0 is a universal constant.

151

B.7.2 Convex-Concave Games

In this section, we present a high probability version of Theorem 7.
Theorem 30. Consider the minimax game in Equation (3.1). Suppose both the domains
X ,Y are compact subsets of Rd, with diameter D = max{supx1,x2∈X ‖x1 − x2‖2, supy1,y2∈Y ‖y1 − y2‖2}.
Suppose f is convex in x, concave in y and is Lipschitz w.r.t ‖ · ‖2 and satisfies

max

{
sup

x∈X ,y∈Y
‖∇xf(x,y)‖2, sup

x∈X ,y∈Y
‖∇yf(x,y)‖2

}
≤ G.

Moreover, suppose f is smooth w.r.t ‖ · ‖2

‖∇xf(x,y)−∇xf(x′,y′)‖2 + ‖∇yf(x,y)−∇yf(x′,y′)‖2 ≤ L‖x− x′‖2 + L‖y − y′‖2.

Suppose Algorithm 13 is used to solve the minimax game. Suppose the perturbation dis-
tributions used by both the players are the same and equal to the uniform distribution
over {x : ‖x‖2 ≤ (1 + d−1)η}. Suppose the guesses used by x,y players in the tth it-
eration are ∇xf(x̃t−1, ỹt−1),∇yf(x̃t−1, ỹt−1), where x̃t−1, ỹt−1 denote the predictions of
x,y players in the tth iteration, if guess gt = 0 was used. If Algorithm 13 is run with
η = 6dD(L + 1),m = T , then the iterates {(xt,yt)}Tt=1 satisfy the following bound with
probability at least 1− δ

sup
x∈X ,y∈Y

[
f

(
1

T

T∑
t=1

xt,y

)
− f

(
x,

1

T

T∑
t=1

yt

)]
= O

GD
√

log 8
δ

T
+
D2(L+ 1)

(
d+ log 16T

δ

)
T

 .

Proof. We use the same notation and proof technique as Theorems 27, 7. From Theorem 1
we know that the predictions of OFTPL are dDη−1 stable w.r.t ‖ · ‖2, for the particular
perturbation distribution we consider here. We use this stability bound in our proof. From
Theorem 29, we have the following regret bound for both the players, which holds with
probability at least 1− δ/2

sup
x∈X

[
T∑
t=1

f(xt,yt)− f(x,yt)

]
≤ cGD

√
T log 8/δ

m
+ cLT

(
D2 log 16T/δ

m

)
+ ηD

+
dD

2η

T∑
t=1

[
‖∇xf(xt,yt)−∇xf(x̃t−1, ỹt−1)‖2

2

]
− η

2dD

T∑
t=1

[
‖x∞t − x̃∞t−1‖2

2

]
.

152

sup
y∈Y

[
T∑
t=1

f(xt,y)− f(xt,yt)

]
≤ cGD

√
T log 8/δ

m
+ cLT

(
D2 log 16T/δ

m

)
+ ηD

+
dD

2η

T∑
t=1

[
‖∇yf(xt,yt)−∇yf(x̃t−1, ỹt−1)‖2

2

]
− η

2dD

T∑
t=1

[
‖y∞t − ỹ∞t−1‖2

2

]
.

First, consider the regret of the x player. From the proof of Theorem 27, we have

‖∇xf(xt,yt)−∇xf(x̃t−1, ỹt−1)‖2
2 ≤ 5L2‖xt − x∞t ‖2

2 + 5L2‖x̃t−1 − x̃∞t−1‖2
2

+ 5L2‖yt − y∞t ‖2
2 + 5L2‖ỹt−1 − ỹ∞t−1‖2

2

+ 5‖∇xf(x∞t ,y
∞
t)−∇xf(x̃∞t−1, ỹ

∞
t−1)‖2

2.

Moreover, from the proof of Theorem 29, we know that ‖xt − x∞t ‖2
2 satisfies the following

tail bound

P
(
‖xt − x∞t ‖2

2 ≥
cD2 log 16T/δ

m

)
≤ δ

8T
.

Similar bounds hold for the quantities appearing in the regret bound of y player. Plugging
this in the previous regret bounds, we get the following which hold with probability at
least 1− δ

sup
x∈X

[
T∑
t=1

f(xt,yt)− f(x,yt)

]
≤ cGD

√
T log 8/δ

m
+

(
L+

10dDL2

η

)(
cD2 log 16T/δ

m

)
T

+ ηD +
5dD

2η

T∑
t=1

[
‖∇xf(x∞t ,y

∞
t)−∇xf(x̃∞t−1, ỹ

∞
t−1)‖2

2

]
− η

2dD

T∑
t=1

[
‖x∞t − x̃∞t−1‖2

2

]
.

sup
y∈Y

[
T∑
t=1

f(xt,y)− f(xt,yt)

]
≤ cGD

√
T log 8/δ

m
+

(
L+

10dDL2

η

)(
cD2 log 16T/δ

m

)
T

+ ηD +
5dD

2η

T∑
t=1

[
‖∇yf(x∞t ,y

∞
t)−∇yf(x̃∞t−1, ỹ

∞
t−1)‖2

2

]
− η

2dD

T∑
t=1

[
‖y∞t − ỹ∞t−1‖2

2

]
.

153

Summing these two regret bounds, we get

sup
x∈X ,y∈Y

[
T∑
t=1

f(xt,y)− f(x,yt)

]
≤ 2cGD

√
T log 8/δ

m
+

(
L+

10dDL2

η

)(
2cD2 log 16T/δ

m

)
T + 2ηD

+
10dD

2η

T∑
t=1

[
‖∇xf(x∞t ,y

∞
t)−∇xf(x̃∞t−1, ỹ

∞
t−1)‖2

2

]
+

10dD

2η

T∑
t=1

[
‖∇yf(x∞t ,y

∞
t)−∇yf(x̃∞t−1, ỹ

∞
t−1)‖2

2

]
− η

2dD

T∑
t=1

[
‖x∞t − x̃∞t−1‖2

2 + ‖y∞t − ỹ∞t−1‖2
2

]
.

From Holder’s smoothness assumption on f , we have

‖∇xf(x∞t ,y
∞
t)−∇xf(x̃∞t−1, ỹ

∞
t−1)‖2

2 ≤ 2‖∇xf(x∞t ,y
∞
t)−∇xf(x∞t , ỹ

∞
t−1)‖2

2

+ 2‖∇xf(x∞t , ỹ
∞
t−1)−∇xf(x̃∞t−1, ỹ

∞
t−1)‖2

2

≤ 2L2‖x∞t − x̃∞t−1‖2
2 + 2L2‖y∞t − ỹ∞t−1‖2

2,

Using a similar argument, we get

‖∇yf(x∞t ,y
∞
t)−∇yf(x̃∞t−1, ỹ

∞
t−1)‖2

2 ≤ 2L2‖x∞t − x̃∞t−1‖2
2 + 2L2‖y∞t − ỹ∞t−1‖2

2.

Plugging this in the previous bound, and setting η = 6dD(L + 1),m = T , we get the
following bound which holds with probability at least 1− δ

sup
x∈X ,y∈Y

[
T∑
t=1

f(xt,y)− f(x,yt)

]
≤ O

(
GD

√
log

8

δ
+D2(L+ 1)

(
d+ log

16T

δ

))
.

B.7.3 Nonconvex-Nonconcave Games

In this section, we present a high probability version of Theorem 8.
Theorem 31. Consider the minimax game in Equation (3.1). Suppose the domains X ,Y
are compact subsets of Rd with diameter D = max{supx1,x2∈X ‖x1 − x2‖1, supy1,y2∈Y ‖y1 −
y2‖1}. Suppose f is Lipschitz w.r.t ‖ · ‖1 and satisfies

max

{
sup

x∈X ,y∈Y
‖∇xf(x,y)‖∞, sup

x∈X ,y∈Y
‖∇yf(x,y)‖∞

}
≤ G.

Moreover, suppose f satisfies the following smoothness property

‖∇xf(x,y)−∇xf(x′,y′)‖∞ + ‖∇yf(x,y)−∇yf(x′,y′)‖∞ ≤ L‖x− x′‖1 + L‖y − y′‖1.

154

Suppose both x and y players use Algorithm 14 to solve the game with linear perturbation
functions σ(z) = 〈σ̄, z〉, where σ̄ ∈ Rd is such that each of its entries is sampled inde-
pendently from Exp(η). Suppose the guesses used by x and y players in the tth iteration
are f(·, Q̃t−1), f(P̃t−1, ·), where P̃t−1, Q̃t−1 denote the predictions of x,y players in the tth
iteration, if guess gt = 0 was used. If Algorithm 14 is run with η = 10d2D(L+ 1),m = T ,
then the iterates {(Pt, Qt)}Tt=1 satisfy the following with probability at least 1− δ

sup
x∈X ,y∈Y

T∑
t=1

f(Pt,y)− f(x, Qt) = O

(
d2D2(L+ 1) log d

T
+
GD

T

√
log

8

δ

)

+O

(
min

{
D2L,

d2G2 log T + dG2 log 8
δ

LT

})
.

Proof. We use the same notation used in the proofs of Theorems 6, 28. Let F ,F ′ be the set
of Lipschitz functions over X ,Y , and ‖g1‖F , ‖g2‖F ′ be the Lipschitz constants of functions
g1 : X → R, g2 : Y → R w.r.t ‖ · ‖1. Recall, in Corollary 2 we showed that for our choice of
perturbation distribution, Eσ [‖σ‖F] = η log d and OFTPL is O (d2Dη−1) stable. We use
this in our proof.

From Theorem 6, we know that the regret of x,y players satisfy

T∑
t=1

f(Pt, Qt)− f(x, Qt) ≤ ηD log d+
T∑
t=1

〈Pt − P∞t , f(·, Qt)〉︸ ︷︷ ︸
S1

+
T∑
t=1

cd2D

2η
‖f(·, Qt)− f(·, Q̃t−1)‖2

F︸ ︷︷ ︸
S2

−
T∑
t=1

η

2cd2D
γF(P∞t , P̃

∞
t−1)2

T∑
t=1

f(Pt,y)− f(Pt, Qt) ≤ ηD log d+
T∑
t=1

〈Qt −Q∞t , f(Pt, ·)〉

+
T∑
t=1

cd2D

2η
‖f(Pt, ·)− f(P̃t−1, ·)‖2

F ′

−
T∑
t=1

η

2cd2D
γF ′(Q

∞
t , Q̃

∞
t−1)2,

where c > 0 is a positive constant. We now provide high probability bounds for S1, S2.

Bounding S1. Let ξi = {P̃i, Q̃i, Pi, Qi+1} with ξ0 = {Q1} and let ξ0:t denote the union of
sets ξ0, . . . , ξt. Let ζt = 〈Pt − P∞t , f(·, Qt)〉 with ζ0 = 0. Note that {ζt}Tt=0 is a martingale

155

difference sequence w.r.t ξ0:T . This is because E [Pt|ξ0:t−1] = P∞t and f(·, Qt) is a deter-
ministic quantity conditioned on ξ0:t−1. As a result E [ζt|ξ0:t−1] = 0. Moreover, conditioned
on ξ0:t−1, ζt is the average of m independent mean 0 random variables, each of which is
bounded by 2GD. Using Proposition 14, we get

P
(
|ζt| ≥ s

∣∣∣ξ0:t−1

)
≤ 2 exp

(
− ms2

4G2D2

)
.

Using Proposition 42 on the martingale difference sequence {ζt}Tt=0, we get

P

(∣∣∣ T∑
t=1

ζt

∣∣∣ ≥ s

)
≤ 2 exp

(
−c ms2

G2D2T

)
,

where c > 0 is a universal constant. This shows that with probability at least 1− δ/8, S1

is upper bounded by O
(√

G2D2T log 8
δ

m

)
.

Bounding S2. We upper bound S2 as

‖f(·, Qt)− f(·, Q̃t−1)‖2
F ≤ 3‖f(·, Qt)− f(·, Q∞t)‖2

F

+ 3‖f(·, Q∞t)− f(·, Q̃∞t−1)‖2
F

+ 3‖f(·, Q̃∞t−1)− f(·, Q̃t−1)‖2
F .

We first provide a high probability bound for ‖f(·, Qt) − f(·, Q∞t)‖2
F . A trivial bound for

this quantity is L2D2, which can be obtained as follows

‖f(·, Qt)− f(·, Q∞t)‖F = sup
x∈X
‖∇xf(x, Qt)−∇xf(x, Q∞t)‖∞

= ‖Ey1∼Qt,y2∼Q∞t [∇xf(x,y1)−∇xf(x,y2)] ‖∞
(a)

≤ LD,

where (a) follows from the smoothness assumption on f and the fact that the diameter
of X is D. A better bound for this quantity can be obtained as follows. From proof of
Theorem 28, we have

‖f(·, Qt)− f(·, Q∞t)‖2
F ≤ 2 sup

x∈Nε
‖∇xf(x, Qt)−∇xf(x, Q∞t)‖2

∞ + 8L2ε2.

where Nε be the ε-net of X w.r.t ‖ · ‖. Recall, in the proof of Theorem 28, we showed the
following high probability bound for the RHS quantity

P
(

sup
x∈Nε
‖∇xf(x, Qt)−∇xf(x, Q∞t)‖2

2 >
4dG2

m
(d+ 2

√
ds+ 2s)

)
≤ e−s+d log(1+2D/ε).

156

Choosing ε = Dm−1/2, s = log 8
δ

+ d log(1 + 2m1/2), we get the following bound for
supx∈Nε ‖∇xf(x, Qt)−∇xf(x, Q∞t)‖2

2 which holds with probability at least 1− δ/8

sup
x∈Nε
‖∇xf(x, Qt)−∇xf(x, Q∞t)‖2

2 ≤
20dG2

m

(
log

8

δ
+ d log(1 + 2m1/2)

)
.

Together with our trivial bound of D2L2, this gives us the following bound for ‖f(·, Qt)−
f(·, Q∞t)‖2

F , which holds with probability at least 1− δ/8

‖f(·, Qt)− f(·, Q∞t)‖2
F ≤ min

(
20dG2

m

(
log

8

δ
+ d log(1 + 2m1/2)

)
, D2L2

)
+

8D2L2

m
.

Next, we bound ‖f(·, Q∞t)− f(·, Q̃∞t−1)‖2
F . From our smoothness assumption on f , we have

‖f(·, Q∞t)− f(·, Q̃∞t−1)‖F ≤ LγF ′(Q
∞
t , Q̃

∞
t−1).

Combining the previous two results, we get the following upper bound for S2 which holds
with probability at least 1− δ/8

‖f(·, Qt)− f(·, Q̃t−1)‖2
F ≤ 3L2γF ′(Q

∞
t , Q̃

∞
t−1)2 +

48D2L2

m

+ min

(
120dG2

m

(
log

8

δ
+ d log(1 + 2m1/2)

)
, 6D2L2

)
.

Regret bound. Substituting the above bounds for S1, S2 in the regret bound for x player
gives us the following bound, which holds with probability at least 1− δ/2

T∑
t=1

f(Pt, Qt)− f(x, Qt) ≤ ηD log d+O

GD
√
T log 8

δ

m
+
d2D3L2T

ηm


+O

(
min

(
d3DG2T

ηm

(
log

8

δ
+ d log(2m)

)
,
d2D3L2T

η

))
+

T∑
t=1

3cd2DL2

2η
γF ′(Q

∞
t , Q̃

∞
t−1)2 −

T∑
t=1

η

2cd2D
γF(P∞t , P̃

∞
t−1)2

Using a similar analysis, we get the following regret bound for the y player

T∑
t=1

f(Pt, Qt)− f(x, Qt) ≤ ηD log d+O

GD
√
T log 8

δ

m
+
d2D3L2T

ηm


+O

(
min

(
d3DG2T

ηm

(
log

8

δ
+ d log(2m)

)
,
d2D3L2T

η

))
+

T∑
t=1

3cd2DL2

2η
γF(P∞t , P̃

∞
t−1)2 −

T∑
t=1

η

2cd2D
γF ′(Q

∞
t , Q̃

∞
t−1)2

157

Choosing, η = 10d2D(L+ 1),m = T , and adding the above two regret bounds, we get

sup
x∈X ,y∈Y

T∑
t=1

f(Pt,y)− f(x, Qt) = O

(
d2D2(L+ 1) log d+GD

√
log

8

δ

)

+O

(
min

{
D2LT,

d2G2 log T

L
+
dG2 log 8

δ

L

})
.

B.8 Background on Convex Analysis
Fenchel Conjugate. The Fenchel conjugate of a function f is defined as

f ∗(x∗) = sup
x
〈x, x∗〉 − f(x).

We now state some useful properties of Fenchel conjugates. These properties can be found
in Rockafellar [Roc70].
Theorem 32. Let f be a proper convex function. The conjugate function f ∗ is then a
closed and proper convex function. Moreover, if f is lower semi-continuous then f ∗∗ = f .
Theorem 33. For any proper convex function f and any vector x, the following conditions
on a vector x∗ are equivalent to each other

• x∗ ∈ ∂f(x)
• 〈z, x∗〉 − f(z) achieves its supremum in z at z = x
• f(x) + f ∗(x∗) = 〈x, x∗〉

If (clf)(x) = f(x), the following condition can be added to the list
• x ∈ ∂f ∗(x∗)

Theorem 34. If f is a closed proper convex function, ∂f ∗ is the inverse of ∂f in the sense
of multivalued mappings, i.e., x ∈ ∂f ∗(x∗) iff x∗ ∈ ∂f(x).

Theorem 35. Let f be a closed proper convex function. Let ∂f be the subdifferential
mapping. The effective domain of ∂f , which is the set dom(∂f) = {x|∂f 6= 0}, satisfies

ri(dom(f)) ⊆ dom(∂f) ⊆ dom(f).

The range of ∂f is defined as range∂f = ∪{∂f(x)|x ∈ Rd}. The range of ∂f is the effective
domain of ∂f ∗, so

ri(dom(f ∗)) ⊆ range∂f ⊆ dom(f ∗).

Strong Convexity and Smoothness. We now define strong convexity and strong
smoothness and show that these two properties are duals of each other.
Definition B.8.1 (Strong Convexity). A function f : X → R∪ {∞} is β-strongly convex
w.r.t a norm ‖ · ‖ if for all x, y ∈ ri(dom(f)) and α ∈ (0, 1) we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− 1

2
βα(1− α)‖x− y‖2.

158

This definition of strong convexity is equivalent to the following condition on f [see
Lemma 13 of Sha07]

f(y) ≥ f(x) + 〈g, y − x〉+
1

2
β‖y − x‖2, for any x, y ∈ ri(dom(f)), g ∈ ∂f(x)

Definition B.8.2 (Strong Smoothness). A function f : X → R∪{∞} is β-strongly smooth
w.r.t a norm ‖ · ‖ if f is everywhere differentiable and if for all x, y we have

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
1

2
β‖y − x‖2.

Theorem 36 (Kakade, Shalev-Shwartz, and Tewari [KST09]). Assume that f is a proper
closed and convex function. Suppose f is β-strongly smooth w.r.t a norm ‖ · ‖. Then its
conjugate f ∗ satisfies the following for all a, x with u = ∇f(x)

f ∗(a+ u) ≥ f ∗(u) + 〈x, a〉+
1

2β
‖a‖2

∗.

Theorem 37 (Kakade, Shalev-Shwartz, and Tewari [KST09]). Assume that f is a closed
and convex function. Then f is β-strongly convex w.r.t a norm ‖ · ‖ iff f ∗ is 1

β
-strongly

smooth w.r.t the dual norm ‖ · ‖∗.

159

160

Appendix C
Supplementary Material for Chapter 4

C.1 Proof of Proposition 3
Let f(x) = 1

2
〈x, Ax〉 + 〈b,x〉 + c, for some A ∈ Rd×d,b ∈ Rd, c ∈ R. The gradient and

Hessian of f at x are given by

∇f(x) =
1

2
(A+ AT)x + b, ∇2f(x) =

1

2
(A+ AT).

Gradient. From the definition of f , we have

Ev1,v2∼Sd−1

[
C−1v1f(x + Cv1 + Cv2)

]
=

1

2
Ev1,v2∼Sd−1

[
C−1v1(x + Cv1 + Cv2)TA(x + Cv1 + Cv2)

]︸ ︷︷ ︸
T1

+ Ev1,v2∼Sd−1

[
C−1v1〈b,x + Cv1 + Cv2〉

]︸ ︷︷ ︸
T2

.

First consider T1

Ev1,v2∼Sd−1

[
C−1v1(x + Cv1 + Cv2)TA(x + Cv1 + Cv2)

]
= Ev1,v2∼Sd−1

[
C−1v1

]
xTAx + Ev1,v2∼Sd−1

[
C−1v1(v1 + v2)TCAC(v1 + v2)

]
+ Ev1,v2∼Sd−1

[
C−1v1x

TAC(v1 + v2) + C−1v1(v1 + v2)TCAx
]
.

Since v1,v2 are independent random variables whose distributions are symmetric around
origin, it is easy to see that the first two terms in the RHS are 0. So we get

Ev1,v2∼Sd−1

[
C−1v1(x + Cv1 + Cv2)TA(x + Cv1 + Cv2)

]
= Ev1,v2∼Sd−1

[
C−1v1x

TAC(v1 + v2) + C−1v1(v1 + v2)TCAx
]

= Ev1,v2∼Sd−1

[
C−1v1x

TACv1 + C−1v1v
T
1 CAx

]
= C−1Ev1∼Sd−1

[
v1v

T
1

]
C(Ax + ATx) =

1

d
(A+ AT)x,

161

where we used the fact that Ev1∼Sd−1

[
v1v

T
1

]
= 1

d
Id×d. Now consider T2

Ev1,v2∼Sd−1

[
C−1v1〈b,x + Cv1 + Cv2〉

]
= Ev1

[
C−1v1〈b, Cv1〉

]
=

1

d
b.

Substituting the above expressions for T1, T2 in the first display gives us

Ev1,v2∼Sd−1

[
C−1v1f(x + Cv1 + Cv2)

]
=

1

d
∇f(x).

Hessian. From the definition of f , we have

Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1)C−1f(x + Cv1 + Cv2)

]
=

1

2
Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1)C−1(x + Cv1 + Cv2)TA(x + Cv1 + Cv2)

]
+ Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1)C−1〈b,x + Cv1 + Cv2〉

]
Since v1,v2 are independent random variables whose distributions are symmetric around
origin, it is easy to see that the second term in the RHS above is 0. So, consider the first
term

Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1)C−1(x + Cv1 + Cv2)TA(x + Cv1 + Cv2)

]
= Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1)C−1(v1 + v2)TCAC(v1 + v2)

]
= 2Ev1,v2∼Sd−1

[
C−1(v1v

T
1)CAC(v2v

T
2)C−1 + C−1(v1v

T
2)CAC(v1v

T
2)C−1

]
,

where we relied on the fact that odd moments of v1,v2 are zero. Continuing, we get

Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1)C−1(x + Cv1 + Cv2)TA(x + Cv1 + Cv2)

]
=

2

d2
(A+ AT),

where we used the fact that Ev1∼Sd−1

[
v1v

T
1

]
= 1

d
I and Ev1,v2∼Sd−1

[
(v1v

T
2)W (v1v

T
2)
]

=
1
d2W

T . Substituting this in the first display gives us

Ev1,v2∼Sd−1

[
C−1(v1v

T
2 + v2v

T
1)C−1f(x + Cv1 + Cv2)

]
=

2

d2
∇2f(x).

C.2 Proof of Proposition 4
This proposition was proved in Nemirovski [Nem04]. For the sake of completeness, we
reproduce the proof here. Let h = y−x and r = ‖h‖∇2R(x). Let φ(t) = ∇2R(x+ th)[h,h].
The function φ satisfies the following properties

0 ≤ φ(t), r2 = φ(0), |φ′(t)| = |∇3R(x + th)[h,h,h]| ≤ 2φ3/2(t).

So, for all positive ε, we have

0 < φε(t) = ε+ φ(t), |φ′ε(t)| ≤ 2φ3/2
ε (t).

162

Continuing, ∣∣∣ d
dt
φ−1/2
ε (t)

∣∣∣ ≤ 1.

It follows that
φ−1/2
ε (t) ≤ φ−1/2

ε (0) + t.

This gives us
φε(0)

(1 + tφ
1/2
ε (0))2

≤ φε(t).

The above inequality holds for any t ∈ [0, 1] and any ε > 0. Passing to limit as ε → 0+,
we get

r2

(1 + rt)2
≤ φ(t) = ∇2R(x + th)[h,h]

Setting t = 1, we get ∇2R(y) ≥ 1
(1+r)2∇2R(x). Using the fact that r ≤ λ gives us the

required result.

C.3 Proof of Proposition 5
Let X = {x : 〈ai,x〉 ≥ bi, for i = 1, . . .m}. Consider the logarithmic barrier for X

R(x) = −
∑
i

log(〈ai,x〉 − bi).

It is well know that R(x) is a m-self concordant barrier for X [Nem04]. The Hessian of R
is given by

∇2R(x) =
∑
i

aia
T
i

(〈ai,x〉 − bi)2
.

Since ‖y − x‖∇2R(x) ≤ λ, we have∑
i

〈ai,y − x〉2

(〈ai,x〉 − bi)2
≤ λ2

=⇒ ∀i, 〈ai,y − x〉2

(〈ai,x〉 − bi)2
≤ λ2

=⇒ ∀i, 〈ai,y − x〉 ≤ λ(〈ai,x〉 − bi),

where we used the fact that x ∈ X and hence 〈ai,x〉 − bi ≥ 0 in the last step. This then
implies that

〈ai,y〉 − bi ≤ (1 + λ)(〈ai,x〉 − bi).
Since y ∈ X and hence 〈ai,y〉− bi ≥ 0, we have (〈ai,y〉− bi)2 ≤ (1 +λ)2(〈ai,x〉− bi)2. So,
we have

∇2R(y) =
∑
i

aia
T
i

(〈ai,y〉 − bi)2
� 1

(1 + λ)2

∑
i

aia
T
i

(〈ai,x〉 − bi)2
=

1

(1 + λ)2
∇2R(x).

This finishes the proof of the Proposition.

163

C.4 Warm up: Hypothetical case of known Hessians
In this section, we consider a hypothetical scenario where we are given access to the Hessian
Ht of loss function ft at the beginning of iteration t. In such a scenario, instead of estimating
the Hessian from single point feedback (as done in Algorithm 4), one can rely on Ht. In
this section, we study such an algorithm; that is, we study a variant of Algorithm 4 where
we replace the Hessian estimate Ĥt with Ht.

Studying this hypothetical scenario helps the readers understand the intuition behind
Algorithm 4. Moreover, it greatly simplifies our proofs and makes it easier to understand
the key ideas in the proof of Theorem 9. Finally, this hypothetical scenario encompasses
the important special case of linear loss functions (i.e., Ht = 0) that is often studied in the
literature of bandit optimization [AHR09].

The following Theorem bounds the regret of this hypothetical algorithm. To further
simplify the analysis, we assume the loss functions are exactly quadratic (i.e., ε = 0).
Theorem 38 (Approximately quadratic losses). Suppose ft is a convex, quadratic function
ft(x) = 1

2
xTAtx + 〈bt,x〉 + ct. Let R be a ν-self-concordant barrier of X that satisfies

Assumption 1. Suppose the diameter of X is bounded by T , and the Lipschitz constants of
{ft}Tt=1 are bounded by T . Suppose Algorithm 4 is run for T iterations with Ĥt = 1

2
(At+A

T
t)

and the following hyper-parameters

λ =
1

4
, α = c1(ν + d)d log2 dT , β = 4d log dT , γ =

c2

d log T
, η1 =

c3

d2.5Bα
√
T log T

,

for some universal constants c1, c2, c3 > 0. Let T be the minimum between T and the first
time at which the algorithm restarts. Then with probability at least 1− δ

T∑
t=1

ft(yt)−min
x∈X

T∑
t=1

ft(x) ≤

{
Õ
(
d3.5(d+ ν)2

√
T
)

if T = T

0 otherwise
.

Remark C.4.1 (Linear losses). The above regret bound can be improved to Õ
(
d3.5ν2

√
T
)

for linear loss functions. This is because for linear losses, we can obtain a tighter bound
for

∑T
s=1 fs(ys) − fs(xs) than the one we obtained for general quadratic functions in the

proof of Theorem 38 (see Equation C.4 below).
Remark C.4.2 (Convex losses). The above Theorem can be generalized in a straightfor-
ward way to general convex loss functions. Suppose ft’s are general convex loss functions
and suppose we have access to a lower bound for of ∇2ft’s. In particular, suppose at the
beginning iteration t, we have access to Ht which satisfies: ∀x ∈ X , Ht � ∇2ft(x). Sup-
pose we run Algorithm 4 with Ĥt = Ht. Then we can use similar proof techniques as in
Theorem 38 to obtain regret bounds. There are two special cases of particular interest here.

1. (Strongly convex and smooth) Suppose ft’s are strongly convex and smooth and
we have access to the strong convex parameter of ft (say κt) at each iteration t.
Suppose Algorithm 4 is run with Ĥt = κtI. Then its regret is Õ

(
d3.5ν2

√
T
)
.

2. (Smooth) Suppose ft’s are smooth and we run Algorithm 4 with Ĥt = 0. Then its
regret can be bounded by Õ

(
d7/3T 2/3

)
.

164

Before we present a proof of this Theorem, we present some useful intermediate results.

C.4.1 Intermediate Results

Lemma 39 (Initial focus region). For any α ≥ ν + 2
√
ν,

F1 ⊆ X ⊆ Bα,∇2R(x1)(x1).

Proof. Consider property (P4) of self-concordant barriers stated in Equation (C.19) of
Appendix C.7. It says that for any x ∈ int(X)

X ∩ {y : 〈∇R(x),y − x〉 ≥ 0} ⊆ Bν+2
√
ν,∇2R(x)(x).

Since x1 is the minimizer of R(x) over X , and since it is in the interior of X , we have
∇R(x1) = 0. So, from property (P4) we have X ⊆ Bν+2

√
ν,∇2R(x1)(x1). The lemma then

immediately follows from the definition of F1 (recall F1 = Xξ ⊆ X).

Lemma 40 (Lemma 5 of Bubeck, Lee, and Eldan [BLE17]). Let K be a convex body and E
be an ellipsoid centered at the origin. Suppose that Vol(K∩E) ≥ 1

2
Vol(K). Then K ⊂ 4dE.

Lemma 41 (Lemma 4.6 of Hazan [Haz16]). Let B0 be a symmetric positive definite matrix
and let {Bt}Tt=1 be symmetric positive semi-definite matrices. Let At =

∑t
s=0Bs. Then

T∑
t=1

tr (At(At − At−1)) ≤ log2

detAT
detA0

.

Lemma 42 (Wainwright [Wai19]). Let X1, . . . XK ∈ R be a martingale difference sequence,
where E [Xi|Fi−1] = 0. Assume that Xi satisfy the following tail condition, for some scalar
Bi > 0

P
(∣∣∣Xi

Bi

∣∣∣ ≥ z
∣∣∣Fi−1

)
≤ 2 exp(−z2).

Then

P

(∣∣∣ K∑
i=1

Xi

∣∣∣ ≥ z

)
≤ 2 exp

(
−c z2∑K

i=1B
2
i

)
,

where c > 0 is a universal constant.
Lemma 43 (Matrix Azuma; Tropp [Tro12]). Consider a finite adapted sequence {Xi} of
symmetric matrices in dimension d, and fixed sequence {Ai} of symmetric matrices that
satisfy

Ei [Xi] = 0 and X2
i � A2

i almost surely.

Compute the variance parameter σ2 := ‖
∑

iA
2
i ‖2. Then, for all t ≥ 0,

P

(
λmax

(∑
i

Xi

)
≥ t

)
≤ de−t

2/8σ2

.

165

C.4.2 Proof of Theorem 38

To prove Theorem 38, we work with a slightly modified algorithm and show that with high
probability, the iterates of the modified algorithm are exactly same as the actual algorithm.
Consequently, proving the proposition for the modified algorithm entails that the Theorem
also holds for the actual algorithm. In the modified algorithm, we slightly change ĝt, Ĥt

and work with the following sequence of random variables

ĝt = λ−1dιtft(yt)M
1/2
t v1,t, Ĥt =

ιt
2

(
At + ATt

)
.

where ιt is an indicator random variable which is equal to 1 if and only if the following
event happen

sup
x∈Ft

∣∣∣ t−1∑
s=1

(f̂s(x)− f̂s(xs)− ιsfs(x) + ιsfs(xs))
∣∣∣ ≤ 1

η1

.

This event happens when the cumulative loss estimate
∑t−1

s=1 f̂s(x) is close to the true
cumulative loss

∑t−1
s=1 fs(x) over the focus region Ft. We assume the algorithm is run with

these modified estimates of gradients and Hessians. The main benefit of working with the
modified gradient and Hessian estimates is that they are more amenable to analysis. Our
proof shows that with high probability, the modified random variables ĝt, Ĥt are exactly
equal to the original definitions of ĝt, Ĥt. In particular, we show that in every iteration
before the algorithm restarts, ιt = 1 with high probability. This entails that the actions
output by the modified algorithm are exactly same as the actual algorithm, with high
probability. As a result, it suffices to prove Theorem 38 for the modified algorithm.

We now derive some useful properties of the iterates produced by the modified algo-
rithm. Some of these properties are very basic and pertain to the well-behavedness of the
iterates of the algorithm. For example, the first property ensures that yt always lies in X .
Lemma 44 (Properties of iterates). Consider the setting of Theorem 38. Let T be the
minimum between T and the first iteration at which the modified algorithm restarts. For
any t < T such that ηt ≤ 10η1, the iterates of the algorithm satisfy the following stability
properties

1. Mt is positive definite and yt ∈ X .
2. Rt(x) is a strictly convex function over Ft.
3. For all x ∈ Ft, ‖x− xt‖Mt ≤ 4dα and ∇2R(x) � 1

(1+4dα)2∇2R(xt).

4. ‖xt+1 − xt‖Mt ≤ 2λ−1dBηt and ‖I −M−1/2
t Mt+1M

−1/2
t ‖2 ≤ 12λ−2d2Bηt.

5. if ιt = 0, then ιt = ιt+1 = · · · = ιT , xt = xt+1 · · · = xT and Ft = Ft+1 · · · = FT .

Proof. We use induction to prove the lemma.

Base Case (t=1).

1. First note that M1 = ∇2R(x1). From property P3 of SCB stated in Appendix C.7, we
know that R(x) is strictly convex over int(X). So M1 is positive definite and invertible.
Moreover, from the Dikin ellipsoid property (P1) of SCB stated in Section 4.1, and from
our choice of λ, it is easy to see that y1 ∈ X .

166

2. The strict convexity property of R(x) over F1 follows from property P3 of SCB stated
in Appendix C.7.

3. To show that for all x ∈ F1, ∇2R(x) � 1
(1+4dα)2∇2R(x1), we rely on Assumption 1 and

Lemma 39. In particular, from Assumption 1 we know that if ‖x−x1‖∇2R(x1) ≤ λ, then
∇2R(x) � 1

(1+λ)2∇2R(x1). Moreover, from Lemma 39 we know that any x ∈ X satisfies

‖x− x1‖∇2R(x1) ≤ ν + 2
√
ν ≤ α.

Combining these two facts gives us the required result.
4. We now show that x2 and x1 are close to each other. Note that x2 is the minimizer of

the following objective

x2 ∈ argmin
x∈F1

η1〈ĝ1,x〉+ ΦR2(x,x1). (C.1)

From first order optimality conditions we have

∀x ∈ F1, 〈∇R2(x2)−∇R2(x1) + η1ĝ1,x− x2〉 ≥ 0.

Substituting x1 in the above equation gives us

〈∇R2(x2)−∇R2(x1) + η1ĝ1,x1 − x2〉 ≥ 0.

This can equivalently be written as

〈∇R(x2)−∇R(x1) + η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1〉 ≤ 0. (C.2)

Now suppose ‖x2 − x1‖M1 > 2λ−1dBη1. Then we have

〈∇R(x2)−∇R(x1) + η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1〉
(a)

≥
‖x2 − x1‖2

M1

1 + ‖x2 − x1‖M1

+ 〈η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1〉

(b)

≥
‖x2 − x1‖2

M1

1 + ‖x2 − x1‖M1

− η1‖ĝ1‖∗M1
‖x2 − x1‖M1

= ‖x2 − x1‖M1

(
‖x2 − x1‖M1

1 + ‖x2 − x1‖M1

− η1‖ĝ1‖∗M1

)
,

where (a) follows from property P7 of SCBs stated in Appendix C.7 and (b) follows
from the fact that Ĥ1 is a positive semi-definite matrix. Next, consider the following

(‖ĝ1‖∗M1
)2 = ĝT1 M

−1
1 ĝ1 = λ−2d2f 2

1 (y1)vT1,1v1,1 ≤ λ−2d2B2.

Substituting this in the previous inequality and using the fact that ‖x2 − x1‖M1 >
2λ−1dBη1 gives us

〈∇R(x2)−∇R(x1) + η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1〉

≥ λ−1dBη1‖x2 − x1‖M1

(
2

1 + 2λ−1dBη1

− 1

)
(a)
> 0,

167

where (a) follows from the fact that λ−1dBη1 < 1/2. This contradicts the first order
optimality condition in Equation (C.2). This shows that ‖x2 − x1‖M1 ≤ 2λ−1dBη1.

Next, we show that M−1/2
1 M2M

−1/2
1 is close to identity. From the definitions of M1,M2,

we have

M
−1/2
1 M2M

−1/2
1 − I = M

−1/2
1 (∇2R(x2)−∇2R(x1))M

−1/2
1 + η1M

−1/2
1 Ĥ1M

−1/2
1 .

Since ‖x2−x1‖M1 ≤ 2λ−1dBη1, we can rely on property P2 of SCB stated in Section 4.1
to infer that

∇2R(x2) � 1

(1− 2λ−1dBη1)2
∇2R(x1) � (1 + 6λ−1dBη1)∇2R(x1),

where the last inequality follows since λ−1dBη1 < 1/10. Next, note that Ĥ1 can be
written as

Ĥ1 = E
[
λ−2

2
d2f1(y1)M

1/2
1

(
v1,1v

T
2,1 + v2,1v

T
1,1

)
M

1/2
1

]
.

So we have M−1/2
1 Ĥ1M

−1/2
1 = E

[
λ−2

2
d2f1(y1)

(
v1,1v

T
2,1 + v2,1v

T
1,1

)]
which is a bounded

quantity. Substituting the previous two bounds in our expression forM−1/2
1 M2M

−1/2
1 −I

we get

‖M−1/2
1 M2M

−1/2
1 − I‖2 ≤ 6λ−1dBη1 + λ−2d2Bη1

5. Note that ι1 is always equal to 1. So the last property trivially holds. This finishes the
proof of the base case.

Induction Step. Suppose the proposition holds for the first t − 1 iterations. We now
show that it also holds for the tth iteration.

1. The first part on positive definiteness ofMt and yt ∈ X follows from the same arguments
as in the base case.

2. Note that Rt(x) = R(x)+
∑t−1

s=0
ηs
2

(x−xs)T Ĥs(x−xs). Since Ĥs is positive semi-definite,
we have ∇2Rt(x) � ∇2R(x). The strict convexity of Rt(x) then follows from the fact
that R(x) is strictly convex over int(X).

3. The focus region update condition of our algorithm (lines 21-25 of Algorithm 4) always
ensures that

Vol(Ft ∩Bα,Mt(xt)) ≥
1

2
Vol(Ft).

So, from Lemma 40 we know that for any x ∈ Ft, ‖x − xt‖Mt ≤ 4dα. By relying on
Assumption 1 on SCB, we then get

∀x ∈ Ft, ∇2R(x) � 1

(1 + 4dα)2
∇2R(xt).

168

4. We now prove stability of the iterates. In particular, we show that ‖xt+1 − xt‖Mt ≤
2λ−1dBηt. If ιt−1 = 0, then this trivially holds (because xt+1 = xt). So lets consider the
case where ιt−1 = 1. From the first order optimality conditions, we have

∀x ∈ Ft, 〈∇Rt+1(xt+1)−∇Rt+1(xt) + ηtĝt,x− xt+1〉 ≥ 0. (C.3)

Note that from our definition of Ft, Ft−1 we always have Ft ⊆ Ft−1 and xt ∈ Ft. So
substituting xt in the above equation and rearranging terms gives us

〈∇R(xt+1)−∇R(xt) + ηtĝt +
t∑

s=1

ηsĤs(xt+1 − xt),xt+1 − xt〉 ≤ 0.

Now suppose ‖xt+1 − xt‖Mt > 2λ−1dBηt. Then we have

〈∇R(xt+1)−∇R(xt) + ηtĝt +
t∑

s=1

ηsĤs(xt+1 − xt),xt+1 − xt〉

(a)

≥
‖xt+1 − xt‖2

∇2R(xt)

1 + ‖xt+1 − xt‖∇2R(xt)

+ ‖xt+1 − xt‖2
η1:tĤ1:t

+ 〈ηtĝt,xt+1 − xt〉

(b)

≥
‖xt+1 − xt‖2

∇2R(xt)

1 + ‖xt+1 − xt‖∇2R(xt)

+ ‖xt+1 − xt‖2
η1:t−1Ĥ1:t−1

− ηt‖ĝt‖∗Mt
‖xt+1 − xt‖Mt ,

where (a) follows from property P7 of SCBs stated in Appendix C.7 and (b) follows
from the fact that Ĥt is a positive semi-definite matrix. Here η1:tĤ1:t =

∑t
s=1 ηsĤs.

Continuing

〈∇R(xt+1)−∇R(xt) + ηtĝt +
t∑

s=1

ηsĤs(xt+1 − xt),xt+1 − xt〉

(b)

≥
‖xt+1 − xt‖2

Mt

1 + ‖xt+1 − xt‖Mt

− ηt‖ĝt‖∗Mt
‖xt+1 − xt‖Mt ,

Next, consider the following

(‖ĝt‖∗Mt
)2 = ĝTt M

−1
t ĝt = λ−2d2f 2

t (yt)v
T
1,tv1,t ≤ λ−2d2B2.

Substituting this in the previous inequality and using the fact that ‖xt+1 − xt‖Mt >
2λ−1dBηt gives us

〈∇R(xt+1)−∇R(xt) + ηtĝt +
t∑

s=1

ηsĤs(xt+1 − xt),xt+1 − xt〉

≥ λ−1dBηt‖xt+1 − xt‖Mt

(
2

1 + 2λ−1dBηt
− 1

)
(a)
> 0,

169

where (a) follows from the fact that λ−1dBηt < 1/2. This contradicts the first order
optimality condition in Equation (C.3). This shows that ‖xt+1 − xt‖Mt ≤ 2λ−1dBηt.

Next, we show that M−1/2
t Mt+1M

−1/2
t is close to identity. From the definitions of

Mt,Mt+1, we have

M
−1/2
t Mt+1M

−1/2
t − I = M

−1/2
t (∇2R(xt+1)−∇2R(xt))M

−1/2
t + ηtM

−1/2
t ĤtM

−1/2
t .

Using similar arguments as in the base case, we get

∇2R(xt+1) � (1 + 6λ−1dBηt)∇2R(xt), M
−1/2
t ĤtM

−1/2
t = Et

[
λ−2

2
d2ft(yt)

(
v1,tv

T
2,t + v2,tv

T
1,t

)]
.

Substituting these quantities in our expression for M−1/2
t Mt+1M

−1/2
t − I we get

‖M−1/2
t Mt+1M

−1/2
t ‖2 ≤ 12λ−2d2Bηt.

5. The last property that remains to be shown is that if ιt = 0, then ιt = ιt+1 = · · · = ιT ,
xt = xt+1 · · · = xT and Ft = Ft+1 · · · = FT . We assume ιt−1 = 1, since otherwise the
property is trivially true. Also note that Rt(x) is strictly convex over Ft and so the
OMD update in line 19 of Algorithm 4 has a unique minimizer.
When ιt = 0, we have ĝt = 0, Ĥt = 0. So the OMD update in line 19 of Algorithm 4 is
given by xt+1 = argminx∈Ft ΦRt+1(x,xt). Since Rt+1(x) = Rt(x) and xt ∈ Ft, it is easy
to see that xt+1 = xt. So the algorithm wouldn’t make any progress in further rounds.

This finishes the proof of the lemma.

We now show that the focus region doesn’t get updated more than 12d log T times.
This helps us show that the learning ηt doesn’t gets too large.
Lemma 45 (Focus region updates). Consider the setting of Theorem 38. Let T be the
minimum between T and the first time at which the modified algorithm restarts. Then the
focus region gets updated no more than 12d log T times before T . Moreover, ηs ≤ 10η1 for
any s ≤ T .

Proof. We prove the proposition using contradiction. Assume that the focus region gets
updated more than 12d log T times before the algorithm restarts. Let τ < T be the
iteration where the focus region update happens for 12d log T th time. We now show that
the restart condition should have triggered in iteration τ .

We have the following upper bound on the volume of Fτ+1 :

Vol(Fτ+1) ≤ Vol(Fτ) ≤
1

T 6d
Vol(Xξ).

This follows from the fact that the volume of the focus region reduces by a factor of 1/2
whenever the focus region update condition triggers. In the rest of the proof, we show that
if the volume of focus region is less than 1

T 6dVol(Xξ), then the restart condition should have
triggered.

170

Step 1. First of all, for our choice of γ, we have (1 + γ)12d log T ≤ 10. Consequently,
ητ ≤ 10η1. So the properties of the iterates we proved in Lemma 44 apply to our setting
here. From this Lemma, we can infer that ιτ = 1. Otherwise, we know that the focus
region shouldn’t have changed in the τ th iteration (recall, in Lemma 44 we showed that if
ιτ = 0, then Fτ = Fτ+1). Moreoever, from this Lemma we can infer that ∀t ≤ τ, ιt = 1. So
the cumulative loss estimate is close to the true cumulative loss and satisfies

sup
x∈Fτ

∣∣∣ τ−1∑
s=1

(f̂s(x)− f̂s(xs)− fs(x) + fs(xs))
∣∣∣ ≤ 1

η1

.

Step 2. Let uτ+1 be the minimizer of
∑τ

s=1 f̂s(x) over Fτ . SupposeB
(
uτ+1,

1
T 2

)
∩Xξ ⊂ Fτ .

Then
Vol(Fτ) ≥ Vol

(
B

(
uτ+1,

1

T 2

)
∩ Xξ

)
.

Next, from our assumption that X contains a euclidean ball of radius 1, we can infer that
Xξ = ξx1 + (1 − ξ)X contains a ball of radius (1 − ξ) in it. Let B̃ be the ball of radius
(1− ξ) that lies in Xξ. By convexity of X and the fact that the diameter of X is less than
or equal to T , we have(

1− 1

T 3

)
uτ+1 +

1

T 3
B̃ ⊆ B

(
uτ+1,

1

T 2

)
∩ Xξ.

This shows that Vol(Fτ) ≥ T−4dωd, where ωd is the volume of unit sphere in Rd. Combining
this with the previous upper bound on Vol(Fτ), we get

T−4dωd,≤ Vol(Fτ) ≤ T−6dVol(X)
(a)

≤ T−5dωd,

where (a) follows from the fact that the diameter of X is upper bounded by T . We arrived
at a contradiction. This shows that B

(
uτ+1,

1
T 2

)
∩ Xξ 6⊂ Fτ .

Step 3. Since B
(
uτ+1,

1
T 2

)
∩Xξ 6⊂ Fτ , the following holds: ∃x ∈ ∂Fτ ∩ int(Xξ) such that

‖x− uτ+1‖2 ≤ 1
T 2 . Now, consider the following for such an x

τ∑
s=1

f̂s(x)− f̂s(uτ+1) =
τ∑
s=1

fs(x)− fs(uτ+1)

+
τ∑
s=1

f̂s(x)− f̂s(uτ+1)− fs(x) + fs(uτ+1).

Since each fs is T -Lipschitz, the first term in the RHS above is upper bounded by 1. Since
the cumulative loss estimate is close to the true cumulative loss, the second term can be
bounded as

τ∑
s=1

f̂s(x)− f̂s(uτ+1)− fs(x) + fs(uτ+1) ≤ 1

η1

+ f̂τ (x)− f̂τ (uτ+1)− fτ (x) + fτ (uτ+1)

(a)
=

1

η1

+ 〈ĝτ − Eτ [ĝτ] ,x− uτ+1〉,

171

where (a) follows from the definitions of fτ , f̂τ . Next, from Lemma 44 we know that for any
x ∈ Fτ , ‖x− xτ‖Mτ ≤ 4dα. Since x,uτ+1 are points in Fτ , we have ‖x− uτ+1‖Mτ ≤ 8dα.
Using, this we get

〈ĝτ − Eτ [ĝτ] ,x− uτ+1〉 ≤ ‖ĝτ − Eτ [ĝτ] ‖∗Mτ
‖x− uτ+1‖Mτ

≤ 16λ−1d2αB,

where the last inequality follows from the fact that ‖ĝτ‖∗Mτ
is a bounded random variable

which satisfies ‖ĝτ‖∗Mτ
≤ λ−1dB. Since 16λ−1d2Bη1 ≤ 1, we have
τ∑
s=1

f̂s(x)− f̂s(uτ+1)− fs(x) + fs(uτ+1) ≤ 2

η1

.

This shows that
∑τ

s=1 f̂s(x) − f̂s(uτ+1) ≤ 4
η1
. We now show that this implies the restart

condition should have triggered. Consider the following
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) =
τ∑
s=1

f̂s(xs)−
τ∑
s=1

f̂s(uτ+1)

≤ 4

η1

+
τ∑
s=1

f̂s(xs)− f̂s(x)

=
4

η1

+
τ∑
s=1

〈ĝs,xs − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

=
4

η1

+
τ∑
s=1

〈ĝs,xs − xs+1〉+ 〈ĝs,xs+1 − x〉

− 1

2
(x− xs)

T Ĥs(x− xs)

(a)

≤ 4

η1

+ 2λ−2d2B2

τ∑
s=1

ηs +
τ∑
s=1

〈ĝs,xs+1 − x〉

−
τ∑
s=1

1

2
(x− xs)

T Ĥs(x− xs),

where (a) follows from the stability of the iterates we proved in Lemma 44. Since xs+1 is
the minimizer of miny∈Fs ηs〈ĝs,y〉+ΦRs+1(y,xs), we have the following from the first order
optimality conditions

〈ĝs,xs+1 − x〉 ≤
ΦRs+1(x,xs)− ΦRs+1(x,xs+1)− ΦRs+1(xs+1,xs)

ηs
.

Using this in the previous display, we get
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+ 2λ−2d2B2

τ∑
s=1

ηs +
τ∑
s=1

ΦRs+1(x,xs)− ΦRs+1(x,xs+1)

ηs

−
τ∑
s=1

1

2
(x− xs)

T Ĥs(x− xs).

172

Rearranging the terms in the RHS above, we get
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+ 2λ−2d2B2

τ∑
s=1

ηs +
ΦR(x,x1)

η1

−
ΦRτ+1(x,xτ+1)

ητ

+
τ∑
s=2

(
1

ηs
− 1

ηs−1

)
ΦRs(x,xs).

Recall, x ∈ ∂Fτ ∩ int(Xξ). Let τ ′ be such that x ∈ ∂Bα,Mτ ′
(xτ ′). Then

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+ 2λ−2d2B2

τ∑
s=1

ηs +
ΦR(x,x1)

η1

− γ
ΦRτ ′

(x,xτ ′)

ητ ′
.

Since ‖x − xτ ′‖Mτ ′
= α, we have the following lower bound on ΦRτ ′

(x,xτ ′) which follows
from property (P6) of SCB stated in Appendix C.7

ΦRτ ′
(x,xτ ′) ≥ α− log (1 + α) .

For our choice of α, ΦRτ ′
(x,xτ ′) can be lower bounded by α/2. We now upper bound

ΦR(x,x1). Since x ∈ Xξ, using property P8 of SCB stated in Appendix C.7, we can upper
bound ΦR(x,x1) as

ΦR(x,x1) = R(x) ≤ 4ν log T.

Substituting the above two bounds in the previous display and using the fact that ητ ≤
10η1, we get

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+ 20λ−2d2B2η1T +
4ν log T

η1

− αγ

20η1

≤ − β
η1

.

This implies, the restart condition should have triggered. This shows that the focus region
doesn’t get updated more than 12d log T times.

Lemma 46. Consider the setting of Theorem 38. Let T be the minimum between T and
the first time at which the modified algorithm restarts. Then for any t ≤ T ,

Mt � T 8(ν + 2
√
ν)2(∇2R(x1) + I).

Proof. First note that the iterates generated by the algorithm lie in Xξ, where ξ = T−4.
So using property P8 of SCB stated in Appendix C.7, we have

∀t ≤ T , ∇2R(xt) �
(
ν + 2

√
ν

ξ

)2

∇2R(x1) = T 8(ν + 2
√
ν)2∇2R(x1).

Next, since ft is T Lipschitz and since X contains a euclidean ball of radius 1 in it, we
have ∇2ft(x) � TI. We now use the above two inequalities to bound Mt

Mt = ∇2R(xt) +
t−1∑
s=1

ηsĤs � T 8(ν + 2
√
ν)2∇2R(x1) +

t−1∑
s=1

ηsTI

(a)

� T 8(ν + 2
√
ν)2(∇2R(x1) + I),

where (a) relied on the fact that ηs ≤ 10η1 for any s ≤ T which we proved in Lemma 45.

173

The following Lemma is concerned about concentration of loss estimates {f̂t}Tt=1 com-
puted by the modified algorithm. This Lemma helps us show that with high probability,
the iterates of the modified and the original algorithms are exactly the same. Before we
proceed, note that the focus region gets updated at most 12d log T times before the al-
gorithm restarts. So, for our choice of γ, we have (1 + γ)12d log T ≤ 10. Consequently, for
all t ≤ T , ηt ≤ 10η1. So the results of Lemma 44 apply to all the iterates in the first T
iterations of the modified algorithm.
Lemma 47 (Concentration of loss estimates). Let T be the minimum between T and the
first time at which the modified algorithm restarts. Then for any t ≤ T , the following
statement holds with probability at least 1− T−2

sup
x∈Ft

∣∣∣ t−1∑
s=1

η1(f̂s(x)− f̂s(xs)− ιsfs(x) + ιsfs(xs))
∣∣∣ ≤ Õ

(
λ−1d5/2αBη1

√
T
)
.

Proof. First, note that

f̂s(x)− f̂s(xs) =
1

2
(x− xs)

T Ĥs(x− xs) + 〈ĝs,x− xs〉

ιsfs(x)− ιsfs(xs) =
1

2
(x− xs)

T Ĥs(x− xs) + ιs〈∇fs(xs),x− xs〉.

So f̂s(x) − f̂s(xs) − ιsfs(x) + ιsfs(xs) = 〈ĝs − ιs∇fs(xs),x − xs〉. For any x ∈ Ft, define
random variables Zx,s as

Zx,s =

{
η1〈ĝs − ιs∇fs(xs),x− xs〉 if s ≤ T
0 otherwise

.

Since Es [ĝs] = ιs∇fs(xs), it is easy to see that {Zx,s}Ts=1 is a martingale difference sequence.
Moreover, Zx,s is a bounded random variable. This follows from the fact that ‖ĝs‖∗Ms

is
bounded and satisfies ‖ĝs‖∗Ms

≤ λ−1dB. Moreover, for any x ∈ Fs, ‖x− xs‖Ms ≤ 4dα (see
Lemma 44). So we have

|Zx,s| ≤ η1|〈ĝs − ιs∇fs(xs),x− xs〉| ≤ 8λ−1d2αBη1.

By relying on standard concentration bounds for martingale difference sequences (see
Lemma 42), we get that with probability at least 1− δ,

sup
t≤T
|
t−1∑
s=1

Zx,s| = O
(
λ−1d2αBη1

√
T log T/δ

)
.

Next, we bound supx∈Ft supt≤T |
∑t−1

s=1 Zx,s| using ε-net arguments. Let Nε be an ε-net over
Ft which satisfies the following: for every x, there exists a xε ∈ Nε such that ‖x−xε‖Mt ≤ ε.
Then

sup
x∈Ft

sup
t≤T
|
t−1∑
s=1

Zx,s| ≤ sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

Zxε,s|︸ ︷︷ ︸
T1

+ sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

Zxε,s − Zx,s|︸ ︷︷ ︸
T2

.

174

Using a simple union bound, T1 can be bounded as

T1 ≤ O
(
λ−1d2αBη1

√
T log T |Nε|/δ

) (a)

≤ O

(
λ−1d5/2αBη1

√
T log

αdT

εδ

)
,

where the bound holds with probability at least 1−δ and (a) holds since ∀x ∈ Ft, ‖x−xt‖ ≤
4dα and as a result |Nε| ≤

(
4dα
ε

)d. T2 can be bounded as follows

sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

Zxε,s − Zx,s| = sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

η1〈ĝs − ιs∇fs(xs),x− xε〉|

(a)

≤ 2η1λ
−1dB sup

x∈Ft
sup
t≤T

(
t−1∑
s=0

‖x− xε‖Ms

)
(b)

≤ 2(1 + 4dα)2η1λ
−1dB sup

x∈Ft
sup
t≤T

(
t−1∑
s=0

‖x− xε‖Mt

)
= O

(
λ−1d3α2Bη1εT

)
,

where (a) follows from the fact that ‖ĝs‖∗Ms
≤ λ−1dB and (b) follows from Lemma 44

where we showed that Ms � (1 + 4dα)2Mt. Choosing ε = 1
α
√
dT
, and plugging the above

bounds for T1, T2 in the upper bound for supx∈Ft supt≤T |
∑t−1

s=1 Zx,s| gives us the required
result.

Proof of Theorem 38. From Lemma 47, we know that with high probability, the
iterates of the modified algorithm which relies on indicator variables ιt are exactly same as
the original algorithm. So it suffices to prove the regret bound for the modified algorithm.
In the sequel, we work with the modified algorithm. Throughout the proof, we let T be
the minimum between T and the first time step at which the algorithm restarts. Let τ be
the minimum between T and the last time step where ιτ = 1. Our goal is to bound the
following quantity

T∑
s=1

ιsfs(ys)−min
x∈X

T∑
s=1

ιsfs(x) =
τ∑
s=1

fs(ys)−min
x∈X

τ∑
s=1

fs(x).

Case 1 (T = T). We first consider the case where the restart condition didn’t trigger in
the first T iterations (i.e., T = T). In this case, we show that the regret is Õ

(
T 1/2

)
. Since

the restart condition hasn’t triggered, we know that
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≥ − β
η1

.

From the proof of Lemma 45, this implies ∀x ∈ ∂Fτ ∩ int(Xξ)
τ∑
s=1

f̂s(x)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≥ 4

η1

.

175

For the sake of clarity, we reproduce the argument we used in Lemma 45. To show this,
we prove the contrapositive statement. Suppose

∑τ
s=1 f̂s(x)−miny∈Fτ

∑τ
s=1 f̂s(y) ≤ 4

η1
for

some x ∈ ∂Fτ ∩ int(Xξ). We now show that this implies the restart condition should have
triggered. Consider the following

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+
τ∑
s=1

f̂s(xs)− f̂s(x)

=
4

η1

+
τ∑
s=1

〈ĝs,xs − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

=
4

η1

+
τ∑
s=1

〈ĝs,xs − xs+1〉+ 〈ĝs,xs+1 − x〉

− 1

2
(x− xs)

T Ĥs(x− xs)

(a)

≤ 4

η1

+ 2λ−2d2B2

τ∑
s=1

ηs +
τ∑
s=1

〈ĝs,xs+1 − x〉

−
τ∑
s=1

1

2
(x− xs)

T Ĥs(x− xs),

where (a) follows from the stability of the iterates we proved in Lemma 44. Since xs+1 is
the minimizer of miny∈Fs ηs〈ĝs,y〉+ΦRs+1(y,xs), we have the following from the first order
optimality conditions

〈ĝs,xs+1 − x〉 ≤
ΦRs+1(x,xs)− ΦRs+1(x,xs+1)− ΦRs+1(xs+1,xs)

ηs
.

Using this in the previous display, we get
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+ 2λ−2d2B2

τ∑
s=1

ηs +
τ∑
s=1

ΦRs+1(x,xs)− ΦRs+1(x,xs+1)

ηs

−
τ∑
s=1

1

2
(x− xs)

T Ĥs(x− xs).

Rearranging the terms in the RHS above, we get
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+ 2λ−2d2B2

τ∑
s=1

ηs +
ΦR(x,x1)

η1

−
ΦRτ+1(x,xτ+1)

ητ

+
τ∑
s=2

(
1

ηs
− 1

ηs−1

)
ΦRs(x,xs).

Recall, x ∈ ∂Fτ ∩ int(X). Let τ ′ be such that x ∈ ∂Bα,Mτ ′
(xτ ′). Then

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+ 2λ−2d2B2

τ∑
s=1

ηs +
ΦR(x,x1)

η1

− γ
ΦRτ ′

(x,xτ ′)

ητ ′
.

176

Since ‖x − xτ ′‖Mτ ′
= α, we have the following lower bound on ΦRτ ′

(x,xτ ′) which follows
from property (P6) of SCB stated in Appendix C.7

ΦRτ ′
(x,xτ ′) ≥ α− log (1 + α) .

For our choice of α, ΦRτ ′
(x,xτ ′) can be lower bounded by α/2. We now upper bound

ΦR(x,x1). Since x ∈ Xξ, using property P8 of SCB stated in Appendix C.7, we can upper
bound ΦR(x,x1) as

ΦR(x,x1) = R(x) ≤ 4ν log T.

Substituting the above two bounds in the previous display and using the fact that ητ ≤
10η1, we get

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+ 20λ−2d2B2η1T +
4ν log T

η1

− αγ

20η1

≤ − β
η1

.

This implies, the restart condition should have triggered. But since the restart condition
hasn’t triggered, this result shows that ∀x ∈ ∂Fτ∩int(Xξ),

∑τ
s=1 f̂s(x)−miny∈Fτ

∑τ
s=1 f̂s(y) ≥

4
η1
. Next, since our cumulative loss estimate concentrates well around the true cumulative

loss (i.e., ιτ = 1), this implies

∀x ∈ ∂Fτ ∩ int(Xξ),
τ∑
s=1

fs(x)− min
y∈Fτ

τ∑
s=1

fs(y) ≥ 2

η1

.

Since fs’s are convex, this implies the minimizer of minx∈Xξ
∑T

s=0 fs(x) is in Fτ . So, the
regret of the algorithm can be bounded as follows

RegT =
τ∑
s=1

fs(ys)−min
x∈X

τ∑
s=1

fs(x)
(a)

≤ 1 +
τ∑
s=1

fs(ys)− min
x∈Xξ

τ∑
s=1

fs(x)

= 1 +
τ∑
s=1

fs(ys)− min
x∈Fτ

τ∑
s=1

fs(x),

where (a) follows from the definition of Xξ = (1 − ξ)X + ξx1 and the fact that the loss
functions are Lipschitz and the diameter of X is bounded. Next, consider the following for
any x ∈ Fτ

τ∑
s=1

fs(ys)−
τ∑
s=1

fs(x) =
τ∑
s=1

[fs(ys)− fs(xs)]︸ ︷︷ ︸
T1

+
τ∑
s=1

[
fs(xs)− fs(x)− f̂s(xs) + f̂s(x)

]
︸ ︷︷ ︸

T2

+
τ∑
s=1

[
f̂s(xs)− f̂s(x)

]
︸ ︷︷ ︸

T3

.

177

Bounding T1. We first bound T1. Since fs is a quadratic function with Hessian Ĥs, we
have
τ∑
s=1

fs(ys)− fs(xs) =
τ∑
s=1

λ〈∇fs(xs),M−1/2
s (v1,s + v2,s)〉+

λ2

2
(v1,s + v2,s)

TM−1/2
s ĤsM

−1/2
s (v1,s + v2,s)

Let Zs = λ〈∇fs(xs),M−1/2
s (v1,s + v2,s)〉 if s ≤ τ and 0 if s > τ . Note that {Zs}Ts=1 is a

martingale difference sequence with each Zs being bounded: |Zs| ≤ 2dB. This follows from
the observation that ∇fs(xs) = Es [ĝs] and the fact that M−1/2

s ĝs is a bounded random
variable. By relying on standard concentration bounds for martingale difference sequences
(see Lemma 42), we get that with probability at least 1−δ,

∑T
s=1 Zs = O

(
dB
√
T log 1/δ

)
.

We now bound the last term in the RHS above. Consider the following

(v1,s + v2,s)
TM−1/2

s ĤsM
−1/2
s (v1,s + v2,s) ≤ 4‖M−1/2

s ĤsM
−1/2
s ‖2

≤ 4‖M−1/2
s+1 ĤsM

−1/2
s+1 ‖2‖M−1/2

s Ms+1M
−1/2
s ‖2

From Lemma 44 we know that ‖M−1/2
s Ms+1M

−1/2
s ‖2 ≤ 1 + 12λ−2d2Bηt ≤ 2. So we have

(v1,s + v2,s)
TM−1/2

s ĤsM
−1/2
s (v1,s + v2,s) ≤ 8‖M−1/2

s+1 ĤsM
−1/2
s+1 ‖2 = 8‖Ĥ1/2

s M−1
s+1Ĥ

1/2
s ‖2.

Define Nt = (1 + 4dα)−2∇2R(x1) +
∑t−1

s=1 ηsĤs. From Lemma 44 we know that ∇2R(xt) �
(1 + 4dα)−2∇2R(x1). So Nt �Mt for all t. Using this in the previous inequality we get

(v1,s + v2,s)
TM−1/2

s ĤsM
−1/2
s (v1,s + v2,s) ≤ 8‖Ĥ1/2

s N−1
s+1Ĥ

1/2
s ‖2

≤ 8tr
(
N−1
s+1Ĥs

)
=

8

ηs
tr
(
N−1
s+1(Ns+1 −Ns)

)
By relying on Lemma 41 we can upper bound

∑τ
s=1

8
ηs
tr
(
N−1
s+1(Ns+1 −Ns)

)
as

τ∑
s=1

8

ηs
tr
(
N−1
s+1(Ns+1 −Ns)

)
≤ 8

η1

τ∑
s=1

tr
(
N−1
s+1(Ns+1 −Ns)

)
≤ 8

η1

log
detNT

detN1

(C.4)

From Lemma 46 we know that NT � poly(dT). Assuming ∇2R(x1) � 1
poly(dT)

I, the RHS

above can be upper bounded as O
(
d log dT
η1

)
. To summarize, we have the following upper

bound T1: O
(
dB
√
T log 1/δ + d log dT

η1

)
Bounding T2. Since ιτ = 1, T2 can be upper bounded as

T2 ≤
1

η1

+
[
fτ (xτ)− fτ (x)− f̂τ (xτ) + f̂τ (x)

]
=

1

η1

+ 〈ĝτ − Eτ [ĝτ] ,x− xτ 〉 ≤
2

η1

,

where the last inequality follows from the fact that ‖x−xτ‖Mτ ≤ 4dα and ‖ĝτ‖∗Mτ
≤ λ−1dB.

178

Bounding T3. To bound T3, we consider the following
τ∑
s=1

[
f̂s(xs)− f̂s(x)

]
=

τ∑
s=1

〈ĝs,xs − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

=
τ∑
s=1

〈ĝs,xs − xs+1〉+ 〈ĝs,xs+1 − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

Using similar arguments as at the beginning of Case 1, this can be bounded as
τ∑
s=1

[
f̂s(xs)− f̂s(x)

]
≤ 2λ−2d2B2

τ∑
s=1

ηs +
ΦR(x,x1)

η1

,

Since x ∈ Xξ, using property P8 of SCB stated in Appendix C.7, we can upper bound
ΦR(x,x1) as

ΦR(x,x1) = R(x) ≤ 4ν log T.

Combining the bounds for T1, T2, T3 shows that with probability at least 1−T−2 the regret
is upper bounded by

Õ

(
dB
√
T +

(ν + d)

η1

+ λ−2d2B2η1T

)
= Õ

(
d3.5(d+ ν)2

√
T
)
.

Case 2 (T < T). We now consider the case where the restart condition triggered at some
iteration T < T . Using the fact that the restart condition hasn’t triggered in iteration
T − 1 and using similar arguments as in the beginning of Case 1, we can again show that
the minimizer of the cumulative loss over the entire domain lies in the focus region FT ,
and ιT = 1. So regret until T is given by

RegT =
T∑
s=1

fs(ys)−min
x∈X

T∑
s=1

fs(x)
(a)

≤ 1 +
T∑
s=1

fs(ys)− min
x∈Xξ

T∑
s=1

fs(x)

= 1 +
T∑
s=1

fs(ys)− min
x∈FT

T∑
s=1

fs(x),

where (a) follows from the definition of Xξ. Using the same regret decomposition as in Case
1, for any x ∈ FT

T∑
s=1

fs(ys)−
T∑
s=1

fs(x) =
T∑
s=1

[fs(ys)− fs(xs)]︸ ︷︷ ︸
T1

+
T∑
s=1

[
fs(xs)− fs(x)− f̂s(xs) + f̂s(x)

]
︸ ︷︷ ︸

T2

+
T∑
s=1

[
f̂s(xs)− f̂s(x)

]
︸ ︷︷ ︸

T3

.

179

We use the same arguments as in Case 1 to bound T1, T2 as

T1 = O

(
dB
√
T log 1/δ +

d log dT

η1

)
, T2 =

2

η1

.

Since the restart condition triggered in round T , T3 is bounded by − β
η1
. Combining all

these bounds, we get the following bound on regret

RegT ≤ O

(
dB
√
T log 1/δ +

d log dT

η1

)
+

2

η1

− β

η1

.

For our choice of hyper-parameters, the above bound is less than 0.

C.5 Proof of Theorem 10
The proof of this Theorem uses similar arguments as the proof of “known Hessian” case
in Appendix C.4. The additional complexity in proving Theorem 10 comes from dealing
with Hessian estimates instead of exact Hessians used in Appendix C.4. In particular,
in Theorem 10, we need to prove one additional result regarding the concentration of
cumulative Hessian estimates.

We first introduce some notation we use in the proof. We let rt(x) = ft(x) − qt(x),
where qt(x) = 1

2
xTAtx + 〈bt,x〉 + ct. Recall, supx∈X |rt(x)| ≤ ε. We let Ht = 1

2
(At + ATt)

denote the Hessian of qt(x). Define random variable Zt as

Zt = 2−1λ−2d2ft(yt)
(
v1,tv

T
2,t + v2,tv

T
1,t

)
.

Since ft is bounded, it is easy to see that Zt is a bounded random variable (assuming Mt

is positive definite and yt ∈ X). In particular, Zt can be bounded as

‖Zt‖2 ≤ λ−2d2(B + ε). (C.5)

Another important thing to note here is that

Et
[
2−1λ−2d2qt(yt)

(
v1,tv

T
2,t + v2,tv

T
1,t

)]
= M

−1/2
t HtM

−1/2
t .

Consequently, ‖Zt −M−1/2
t HtM

−1/2
t ‖2 ≤ 2λ−2d2(B + ε).

Similar to Appendix C.4, to prove Theorem 10, we work with a slightly modified al-
gorithm and show that with high probability, the iterates of the modified algorithm are
exactly same as the original algorithm. Consequently, proving the Theorem for the modi-
fied algorithm entails that the Theorem also holds for the actual algorithm. In the modified
algorithm, we slightly change the random variables ĝt, Ĥt and work with the following se-
quence of random variables

ĝt = λ−1dιtft(yt)M
1/2
t v1,t, Ĥt =

λ−2

2
d2ιtft(yt)M

1/2
t

(
v1,tv

T
2,t + v2,tv

T
1,t

)
M

1/2
t .

180

where ιt is an indicator random variable which is equal to 1 if and only if the following two
events happen

‖I − M̃−1/2
t MtM̃

−1/2
t ‖2 ≤

1

10(1 + 8dα)2
,

sup
x∈Ft

∣∣∣ t−1∑
s=1

(f̂s(x)− f̂s(xs)− ιsqs(x) + ιsqs(xs))
∣∣∣ ≤ 1

η1

.

Here, we define M̃t as M̃t = ∇2R(xt) +
∑t−1

s=0 ηsιsHs. Intuitively, the first event happens
when Mt is spectrally close to M̃t, and the second event happens when the cumulative
loss estimate

∑t−1
s=1 f̂s(x) is close to the true cumulative loss

∑t−1
s=1 qs(x). We assume the

algorithm is run with these modified estimates of gradients and Hessians1. The main benefit
of working with the modified gradient and Hessian estimates is that they are bounded and
are more amenable to analysis. Our proof shows that with high probability, the modified
random variables ĝt, Ĥt are exactly equal to the original random variables. As a result, it
suffices to prove Theorem 10 for the hypothetical algorithm.

We now derive some useful properties of the iterates produced by the modified algo-
rithm.
Lemma 48 (Properties of iterates). Consider the setting of Theorem 10. Let T be the
minimum between T and the first iteration at which the modified algorithm restarts. For
any t < T such that ηt ≤ 10η1, the iterates of the algorithm satisfy the following stability
properties

1. Mt is positive definite and yt ∈ X .
2. Rt(x) is a strictly convex function over Ft.
3. For all x ∈ Ft, ‖x− xt‖Mt ≤ 4dα and ∇2R(x) � 1

(1+8dα)2∇2R(xt).

4. ‖xt+1−xt‖M̃t
≤ cηt and ‖I−M̃−1/2

t M̃t+1M̃
−1/2
t ‖2 ≤ 4cηt. Here c = 10(B + ε)(λ−1d+ λ−2d3α).

5. if ιt = 0, then ιt = ιt+1 = · · · = ιT , xt = xt+1 · · · = xT and Ft = Ft+1 · · · = FT .

Proof. The proof uses similar arguments as in the proof of Lemma 44. So to avoid redun-
dancy, we often directly rely on some of the results proved in Lemma 44. We use induction
to prove the lemma.

Base Case (t=1).

1. First note that M̃1 = M1 = ∇2R(x1). So the proof follows from the proof of corre-
sponding part in Lemma 44.

2. The proof of this part follows from the proof of corresponding part in Lemma 44.
3. The proof of this part follows from the proof of corresponding part in Lemma 44.
4. We now show that x2 and x1 are close to each other. Note that x2 is the minimizer of

the following objective

x2 ∈ argmin
x∈F1

η1〈ĝ1,x〉+ ΦR2(x,x1). (C.6)

1It should be noted that this is a hypothetical algorithm. We can not actually run this algorithm in
practice as we can not compute ιt

181

From first order optimality conditions we have

∀x ∈ F1, 〈∇R2(x2)−∇R2(x1) + η1ĝ1,x− x2〉 ≥ 0.

Substituting x1 in the above equation gives us

〈∇R2(x2)−∇R2(x1) + η1ĝ1,x1 − x2〉 ≥ 0.

This can equivalently be written as

〈∇R(x2)−∇R(x1) + η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1〉 ≤ 0. (C.7)

Now suppose ‖x2 − x1‖M1 > cη1, where c = 10(B + ε)(λ−1d+ λ−2d3α). Then we have

〈∇R(x2)−∇R(x1) + η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1〉
(a)

≥
‖x2 − x1‖2

M1

1 + ‖x2 − x1‖M1

+ 〈η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1〉

≥
‖x2 − x1‖2

M1

1 + ‖x2 − x1‖M1

− η1

(
‖ĝ1‖∗M1

+ ‖Ĥ1(x2 − x1)‖∗M1

)
‖x2 − x1‖M1

= ‖x2 − x1‖M1

(
‖x2 − x1‖M1

1 + ‖x2 − x1‖M1

− η1‖ĝ1‖∗M1
− η1‖Ĥ1(x2 − x1)‖∗M1

)
,

where (a) follows from property P7 of SCBs stated in Appendix C.7. Next, consider
the following

(‖ĝ1‖∗M1
)2 = ĝT1 M

−1
1 ĝ1 = λ−2d2f 2

1 (y1)vT1,1v1,1 ≤ λ−2d2(B + ε)2.

(‖Ĥ1(x2 − x1)‖∗M1
)2 = (x2 − x1)T Ĥ1M

−1
1 Ĥ1(x2 − x1)T

≤
(
d2f1(y1)

2λ2

)2

‖x2 − x1‖2
M1
‖v1,1v

T
2,1 + v2,1v

T
1,1‖2

2

(a)

≤ 16λ−4d6(B + ε)2α2,

where (a) follows from the fact that ‖x2−x1‖M1 ≤ 4dα proved in point (3). Substituting
this in the previous inequality and using the fact that ‖x2 − x1‖M1 > cη1 gives us

〈∇R(x2)−∇R(x1) + η1ĝ1 + η1Ĥ1(x2 − x1),x2 − x1〉

≥ c

2
η1‖x2 − x1‖M1

(
2

1 + cη1

− 1

)
(a)
> 0,

where (a) follows from the fact that cη1 < 1/2. This contradicts the first order optimality
condition in Equation (C.7). This shows that ‖x2 − x1‖M1 ≤ cη1.

Next, we show that M̃−1/2
1 M̃2M̃

−1/2
1 is close to identity. From the definitions of M̃1, M̃2,

we have

M̃
−1/2
1 M̃2M̃

−1/2
1 − I = M̃

−1/2
1 (∇2R(x2)−∇2R(x1))M̃

−1/2
1 + η1M̃

−1/2
1 H1M̃

−1/2
1 .

182

Since ‖x2 − x1‖M̃1
≤ cη1 < 1, we can rely on property P2 of SCB stated in Section 4.1

to infer that

∇2R(x2) � 1

(1− cη1)2
∇2R(x1) � (1 + 3cη1)∇2R(x1),

where the last inequality follows since cη1 < 1/10. Next, note that H1 can be written as

H1 = E
[
λ−2

2
d2f1(y1)M̃

1/2
1

(
v1,1v

T
2,1 + v2,1v

T
1,1

)
M̃

1/2
1

]
.

So we have M̃−1/2
1 H1M̃

−1/2
1 = E

[
λ−2

2
d2f1(y1)

(
v1,1v

T
2,1 + v2,1v

T
1,1

)]
which is a bounded

quantity. Substituting the previous two bounds in our expression for M̃−1/2
1 M̃2M̃

−1/2
1 −I,

we get

‖M̃−1/2
1 M̃2M̃

−1/2
1 − I‖2 ≤ 4cη1.

5. Since M1 = M̃1, ι1 is always equal to 1. So the last property trivially holds. This
finishes the proof of the base case.

Induction Step. Suppose the Lemma holds for the first t− 1 iterations. We now show
that it also holds for the tth iteration.

1. Invertibility. We first show that Mt is positive definite. If ιt−1 = 0, then it is easy to
see that Mt is equal to Mt−1, which we know is positive definite. So lets consider the
where ιt−1 = 1. We know that ι1 = ι2 = · · · = ιt−1 and ‖xt − xt−1‖M̃t−1

≤ cηt−1. Now,
consider the following

Mt = ∇2R(xt) +
t−1∑
s=1

ηsĤs

= Mt−1 + ηt−1Ĥt−1 +∇2R(xt)−∇2R(xt−1)

(a)

� Mt−1 + ηt−1Ĥt−1 − 2‖xt − xt−1‖∇2R(xt−1)∇2R(xt−1),

where (a) follows from the property of self-concordant functions stated in Equation (4.1).
From stability, we have

Mt �Mt−1 + ηt−1Ĥt−1 − 2cηt−1∇2R(xt−1)

= M
1/2
t−1

[
I + ηt−1Zt−1 − 2cηt−1M

−1/2
t−1 ∇2R(xt−1)M

−1/2
t−1

]
M

1/2
t−1.

We now show that
[
I + ηt−1Zt−1 − 2cηt−1M

−1/2
t−1 ∇2R(xt−1)M

−1/2
t−1

]
� 0. To show this,

we rely on the following argument

‖Zt−1 − 2cM
−1/2
t−1 ∇2R(xt−1)M

−1/2
t−1 ‖2

≤ ‖Zt−1‖2 + 2c‖M−1/2
t−1 M̃t−1M

−1/2
t−1 ‖2‖M̃−1/2

t−1 ∇2R(xt−1)M̃
−1/2
t−1 ‖2

≤ λ−2d2(B + ε) + 3c ≤ 4c,

183

where the last inequality follows from the fact that Zt is a bounded random variable,
and ‖I − M̃

−1/2
t−1 Mt−1M̃

−1/2
t−1 ‖2 ≤ 1

10
(consequently, ‖M−1/2

t−1 M̃t−1M
−1/2
t−1 ‖2 ≤ 3

2
). This

shows that for our choice of hyper-parameters, Mt is invertible.
Valid Iterates. Next, we show that yt ∈ X . If ιt−1 = 0, then it is easy to see that this
is the case (because Mt = Mt−1). So we assume ιt−1 = 1. In this case, we first bound
‖I − M̃−1/2

t MtM̃
−1/2
t ‖2 (i.e., we show that Mt and M̃t are spectrally close). Consider

the following

‖I − M̃−1/2
t MtM̃

−1/2
t ‖2 = ‖M̃−1/2

t (M̃t−1 −Mt−1 + ηt−1(Ĥt−1 −Ht−1))M̃
−1/2
t ‖2 (C.8)

≤ ‖M̃−1/2
t (M̃t−1 −Mt−1)M̃

−1/2
t ‖2 (C.9)

+ ηt−1‖M̃−1/2
t (Ĥt−1 −Ht−1)M̃

−1/2
t ‖2 (C.10)

Consider the first term in the RHS above

‖M̃−1/2
t (M̃t−1 −Mt−1)M̃

−1/2
t ‖2 ≤ ‖M̃−1/2

t−1 (M̃t−1 −Mt−1)M̃
−1/2
t−1 ‖‖M̃

−1/2
t M̃t−1M̃

−1/2
t ‖

≤ 1

5(1 + 8dα)2
,

where the last inequality follows from the fact that ‖I−M̃−1/2
t−1 Mt−1M̃

−1/2
t−1 ‖2 ≤ 1

10(1+8dα)2

and the fact that M̃t−1 is spectrally close to M̃t. Now consider the second term in the
RHS of Equation (C.8). Since Ĥt−1 = M

1/2
t−1Zt−1M

1/2
t−1, we have

‖M̃−1/2
t (Ĥt−1 −Ht−1)M̃

−1/2
t ‖2

= ‖M̃−1/2
t M

1/2
t−1(Zt−1 −M−1/2

t−1 Ht−1M
−1/2
t−1)M

1/2
t−1M̃

−1/2
t ‖2

≤ ‖M̃−1/2
t−1 M

1/2
t−1(Zt−1 −M−1/2

t−1 Ht−1M
−1/2
t−1)M

1/2
t−1M̃

−1/2
t−1 ‖2

(a)

≤ 2‖Zt−1 −M−1/2
t−1 Ht−1M

−1/2
t−1 ‖2

(b)

≤ 2 (B + ε) d2λ−2.

where (a) follows from the fact that ‖I−M̃−1/2
t−1 Mt−1M̃

−1/2
t−1 ‖2 ≤ 1

10(1+8dα)2 and (b) follows
from Equation (C.5). Combining the previous two displays shows that for our choice of
η1, ‖I−M̃−1/2

t MtM̃
−1/2
t ‖2 ≤ 1

4(1+8dα)2 . This shows that Mt is spectrally close to M̃t and

‖yt − xt‖M̃t
≤ 2‖yt − xt‖Mt ≤ 4λ < 1.

Since ‖yt − xt‖M̃t
≥ ‖yt − xt‖∇2R(xt), using the Dikin Ellipsoid property of SCB stated

in Section 4.1, we have yt ∈ X .
2. The focus region update condition of our algorithm always ensures that

Vol(Ft ∩Bα,Mt(xt)) ≥
1

2
Vol(Ft).

184

So, from Lemma 40 we know that for any x ∈ Ft, ‖x−xt‖Mt ≤ 4dα. Using this, together
with the fact that ‖I − M̃−1/2

t MtM̃
−1/2
t ‖2 ≤ 1

4(1+8dα)2 , we get ‖x − xt‖M̃t
≤ 8dα. By

relying on Assumption 1 on SCB R, we then get

∀x ∈ Ft, ∇2R(x) � 1

(1 + 8dα)2
∇2R(xt).

3. We now show that Rt(x) is strictly convex over interior of Ft. Consider the following
for any x ∈ int(Ft)

∇2R(x) + η1:t−1Ĥ1:t−1

(a)

� 1

(1 + 8dα)2
∇2R(xt) + η1:t−1Ĥ1:t−1

� 1

(1 + 8dα)2
∇2R(xt) + η1:t−1H1:t−1 + (Mt − M̃t)

(b)

� 1

(1 + 8dα)2
M̃t −

1

4(1 + 8dα)2
M̃t

� 0,

where (a) follows from the previous property and (b) follows from the fact that ‖I −
M̃
−1/2
t MtM̃

−1/2
t ‖2 ≤ 1

4(1+8dα)2 . This shows that Rt is strictly convex over Ft.

4. We now prove stability of the iterates. In particular, we show that ‖xt+1−xt‖M̃t
≤ cηt.

If ιt−1 = 0, then this trivially holds. So lets consider the case where ιt−1 = 1. From the
first order optimality conditions, we have

∀x ∈ Ft, 〈∇Rt+1(xt+1)−∇Rt+1(xt) + ηtĝt,x− xt+1〉 ≥ 0.

Note that from our definition of Ft, Ft−1 we always have Ft ⊆ Ft−1 and xt ∈ Ft. So
substituting xt in the first equation gives us

〈∇R(xt+1)−∇R(xt) + ηtĝt +
t∑

s=1

ηsĤs(xt+1 − xt),xt − xt+1〉 ≥ 0.

To prove the required result, we show that for any x such that ‖x − xt‖M̃t
> cηt, the

following holds

〈∇R(x)−∇R(xt) + η1:t−1Ĥ1:t−1(x− xt),x− xt〉
> ηt‖ĝt‖∗M̃t

‖x− xt‖M̃t
+ ηt‖Ĥt(x− xt)‖∗M̃t

‖x− xt‖M̃t
.

This would then imply that the above optimality condition doesn’t hold. We first lower
bound the LHS of the above equation. Consider the following for any x ∈ Ft such that

185

‖x− xt‖M̃t
> cηt

〈∇R(x)−∇R(xt) + η1:t−1Ĥ1:t−1(x− xt),x− xt〉

=

∫ 1

s=0

(x− xt)
T
[
∇2R(xt + s(x− xt)) + η1:t−1Ĥ1:t−1

]
(x− xt)ds

(a)

≥
∫ cηt
‖x−xt‖M̃t

s=0

(x− xt)
T
[
∇2R(xt + s(x− xt)) + η1:t−1Ĥ1:t−1

]
(x− xt)ds

(b)

≥ cηt
‖x− xt‖M̃t

(x− xt)
T
[
(1− cηt)2∇2R(xt) + η1:t−1Ĥ1:t−1

]
(x− xt),

where (a) uses the fact that ∇2R(x) + η1:t−1Ĥ1:t−1 is a PSD matrix for any x ∈ Ft and
(b) relies on property P1 of SCB stated in Equation (4.1). We further lower bound the
RHS of the above equation as follows

(1− cηt)2∇2R(xt) + η1:t−1Ĥ1:t−1

= (1− cηt)2∇2R(xt) + η1:t−1H1:t−1 +Mt − M̃t

� (1− cηt)2M̃t − M̃1/2
t

[
I − M̃−1/2

t MtM̃
−1/2
t

]
M̃

1/2
t

= M̃
1/2
t

[
(1− cηt)2I −

(
I − M̃−1/2

t MtM̃
−1/2
t

)]
M̃

1/2
t .

Substituting this in the previous equation gives us

〈∇R(x)−∇R(xt) + η1:t−1Ĥ1:t−1(x− xt),x− xt〉

≥ cηt‖x− xt‖M̃t
λmin

(
(1− cηt)2I −

(
I − M̃−1/2

t MtM̃
−1/2
t

))
>
cηt
2
‖x− xt‖M̃t

,

where the last inequality follows from the fact that ‖(I − M̃−1/2
t MtM̃

−1/2
t ‖2 ≤ 1

4(1+8dα)2 ,
and our choice of hyper-parameters. Next, consider the following

(‖ĝt‖∗M̃t
)2 = ĝTt M̃

−1
t ĝt

= λ−2d2f 2
t (yt)v

T
1,tM

1/2
t M̃−1

t M
1/2
t v1,t

≤ 2λ−2d2(B + ε)2.

(‖Ĥt(x− xt)‖∗M̃t
)2 = (x− xt)

T ĤtM̃
−1
t Ĥt(x− xt)

T

≤
(
d2ft(yt)

λ2

)2

‖x− xt‖2
Mt
‖M1/2

t M̃−1
t M

1/2
t ‖2

(a)

≤ 32λ−4d6(B + ε)2α2,

where (a) follows from the fact that for any x ∈ Ft, ‖x−xt‖Mt ≤ 4dα. This shows that

ηt‖ĝt‖∗M̃t
+ ηt‖Ĥt(x− xt)‖∗M̃t

≤ cηt
2

186

This shows that xt+1 should satisfy ‖xt+1 − xt‖M̃t
≤ cηt.

To shows that M̃t and M̃t+1 are spectrally close to each other, we rely on the closeness
of xt+1 and xt and use the same arguments as in the base case.

5. The last property that remains to be shown is that if ιt = 0, then ιt = ιt+1 = · · · = ιT ,
xt = xt+1 · · · = xT and Ft = Ft+1 · · · = FT . We assume ιt−1 = 1, since otherwise the
property is trivially true. In this case, we know that Rt(x) is strictly convex over Ft
and so the Newton update in line 19 of Algorithm 4 has a unique minimizer.
When ιt = 0, we have ĝt = 0, Ĥt = 0. So the OMD update in line 19 of Algorithm 4 is
given by xt+1 = argminx∈Ft ΦRt+1(x,xt). Since Rt+1(x) = Rt(x) and xt ∈ Ft, it is easy
to see that xt+1 = xt. So the algorithm wouldn’t make any progress in further rounds.

This finishes the proof of the lemma.

We now show that the focus region doesn’t get updated more than 12d log T times.
Lemma 49 (Focus region updates). Consider the setting of Theorem 10. Let T be the
minimum between T and the first time at which the modified algorithm restarts. Then the
focus region gets updated no more than 12d log T times before T .

Proof. The proof uses similar arguments as in Lemma 45. We prove the Lemma using
contradiction. Assume that the focus region gets updated more than 12d log T times before
the algorithm restarts. Let τ < T be the iteration where the focus region update happens
for 12d log T th time. We now show that the restart condition should have triggered in
iteration τ .

We have the following upper bound on the volume of Fτ+1 :

Vol(Fτ+1) ≤ Vol(Fτ) ≤
1

T 6d
Vol(Xξ).

This follows from the fact that the volume of the focus region reduces by a factor of 1/2
whenever the focus region update condition triggers. In the rest of the proof, we show that
if the volume of focus region is less than 1

T 6dVol(Xξ), then the restart condition should have
triggered.

Step 1. First of all, for our choice of γ, we have (1 + γ)12d log T ≤ 10. Consequently,
ητ ≤ 10η1. So the properties of the iterates we proved in Lemma 48 apply to our setting
here. From this Lemma, we can infer that ιτ = 1. Otherwise, we know that the focus
region shouldn’t have changed in the τ th iteration (recall, in Lemma 48 we showed that if
ιτ = 0, then Fτ = Fτ+1). Moreoever, from this Lemma we can infer that ∀t ≤ τ, ιt = 1. So
the cumulative loss estimate is close to the true cumulative loss and satisfies

sup
x∈Fτ

∣∣∣ τ−1∑
s=1

(f̂s(x)− f̂s(xs)− qs(x) + qs(xs))
∣∣∣ ≤ 1

η1

.

187

Step 2. Let uτ+1 be the minimizer of
∑τ

s=1 f̂s(x) over Fτ . SupposeB
(
uτ+1,

1
T 2

)
∩Xξ ⊂ Fτ .

Then
Vol(Fτ) ≥ Vol

(
B

(
uτ+1,

1

T 2

)
∩ Xξ

)
.

Next, from our assumption that X contains a euclidean ball of radius 1, we can infer that
Xξ = ξx1 + (1 − ξ)X contains a ball of radius (1 − ξ) in it. Let B̃ be the ball of radius
(1− ξ) that lies in Xξ. By convexity of X and the fact that the diameter of X is less than
or equal to T , we have(

1− 1

T 3

)
uτ+1 +

1

T 3
B̃ ⊆ B

(
uτ+1,

1

T 2

)
∩ Xξ.

This shows that Vol(Fτ) ≥ T−4dωd, where ωd is the volume of unit sphere in Rd. Combining
this with the previous upper bound on Vol(Fτ), we get

T−4dωd,≤ Vol(Fτ) ≤ T−6dVol(X)
(a)

≤ T−5dωd,

where (a) follows from the fact that the diameter of X is upper bounded by T . We arrived
at a contradiction. This shows that B

(
uτ+1,

1
T 2

)
∩ Xξ 6⊂ Fτ .

Step 3. Since B
(
uτ+1,

1
T 2

)
∩Xξ 6⊂ Fτ , the following holds: ∃x ∈ ∂Fτ ∩ int(Xξ) such that

‖x− uτ+1‖2 ≤ 1
T 2 . Now, consider the following for such an x

τ∑
s=1

f̂s(x)− f̂s(uτ+1) =
τ∑
s=1

qs(x)− qs(uτ+1)

+
τ∑
s=1

f̂s(x)− f̂s(uτ+1)− qs(x) + qs(uτ+1).

Since each qs is T -Lipschitz, the first term in the RHS above is upper bounded by 1. Since
the cumulative loss estimate is close to the true cumulative loss, the second term can be
bounded as

τ∑
s=1

f̂s(x)− f̂s(uτ+1)− qs(x) + qs(uτ+1) ≤ 2

η1

+ f̂τ (x)− f̂τ (uτ+1)− qτ (x) + qτ (uτ+1)

(a)

≤ 2

η1

+ 2B + f̂τ (x)− f̂τ (uτ+1),

where (a) follows from the fact that qs is a bounded function. f̂τ (x) − f̂τ (uτ+1) can be
bounded as follows

f̂τ (x)− f̂τ (uτ+1) =
1

2
(x− xτ)

T Ĥτ (x− xτ) + 〈ĝτ ,x− xτ 〉

− 1

2
(uτ+1 − xτ)

T Ĥτ (uτ+1 − xτ)− 〈ĝτ ,uτ+1 − xτ 〉

≤ 1

2
λ−2d2(B + ε)(‖x− xτ‖2

Mτ
+ ‖uτ+1 − xτ‖2

Mτ
)

+ λ−1d(B + ε)(‖x− xτ‖Mτ + ‖uτ+1 − xτ‖Mτ).

188

From Lemma 48, we know that for any x ∈ Fτ , ‖x − xτ‖Mτ ≤ 4dα. Substituting this in
the previous equation we get

f̂τ (x)− f̂τ (uτ+1) ≤ 16(B + ε)
(
λ−2d4α2 + λ−1d2α

)
≤ 1

η1

.

This shows that
∑τ

s=1 f̂s(x) − f̂s(uτ+1) ≤ 4
η1
. We now show that this implies the restart

condition should have triggered. Consider the following
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) =
τ∑
s=1

f̂s(xs)−
τ∑
s=1

f̂s(uτ+1)

≤ 4

η1

+
τ∑
s=1

f̂s(xs)− f̂s(x)

=
4

η1

+
τ∑
s=1

〈ĝs,xs − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

=
4

η1

+
τ∑
s=1

〈ĝs,xs − xs+1〉+ 〈ĝs,xs+1 − x〉

− 1

2
(x− xs)

T Ĥs(x− xs)

(a)

≤ 4

η1

+ 10λ−3αd4(B + ε)2

τ∑
s=1

ηs +
τ∑
s=1

〈ĝs,xs+1 − x〉

−
τ∑
s=1

1

2
(x− xs)

T Ĥs(x− xs),

where (a) follows from the stability of the iterates we proved in Lemma 48. Since xs+1 is
the minimizer of miny∈Fs ηs〈ĝs,y〉+ΦRs+1(y,xs), we have the following from the first order
optimality conditions

〈ĝs,xs+1 − x〉 ≤
ΦRs+1(x,xs)− ΦRs+1(x,xs+1)− ΦRs+1(xs+1,xs)

ηs
.

Using this in the previous display, we get
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+ 10λ−3αd4(B + ε)2

τ∑
s=1

ηs +
τ∑
s=1

ΦRs+1(x,xs)− ΦRs+1(x,xs+1)

ηs

−
τ∑
s=1

1

2
(x− xs)

T Ĥs(x− xs).

Rearranging the terms in the RHS above, we get
τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+ 10λ−3αd4(B + ε)2

τ∑
s=1

ηs +
ΦR(x,x1)

η1

−
ΦRτ+1(x,xτ+1)

ητ

+
τ∑
s=2

(
1

ηs
− 1

ηs−1

)
ΦRs(x,xs).

189

Recall, x ∈ ∂Fτ ∩ int(Xξ). Let τ ′ be such that x ∈ ∂Bα,Mτ ′
(xτ ′). Then

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+ 10λ−3αd4(B + ε)2

τ∑
s=1

ηs +
ΦR(x,x1)

η1

− γ
ΦRτ ′

(x,xτ ′)

ητ ′
.

Since Mτ ′ , M̃τ ′ are spectrally close to each other and since ‖x − xτ ′‖Mτ ′
= α, we have

‖x− xτ ′‖M̃τ ′
≥ α/2. Using this, we now lower bound ΦRτ ′

(x,xτ ′)

ΦRτ ′
(x,xτ ′) = ΦR(x,xτ ′) +

1

2
(x− xτ ′)

T

(
τ ′−1∑
s=1

ηsHs

)
(x− xτ ′)

+
1

2
(x− xτ ′)

T
(
Mτ ′ − M̃τ ′

)
(x− xτ ′)

(a)

≥ α

2
− log

(
1 +

α

2

)
+

1

2
(x− xτ ′)

T
(
Mτ ′ − M̃τ ′

)
(x− xτ ′)

(b)

≥ α

2
− log

(
1 +

α

2

)
− α

20(1 + 8dα)2
,

where (a) follows from property (P6) of SCB stated in Equation (C.20) and (b) follows from
the fact that Mτ ′ , M̃τ ′ are spectrally close to each other. For our choice of α, ΦRτ ′

(x,xτ ′)
can be lower bounded by α/4. We now upper bound ΦR(x,x1). Since x ∈ Xξ, using
property P8 of SCB stated in Appendix C.7, we can upper bound ΦR(x,x1) as

ΦR(x,x1) = R(x) ≤ 4ν log T.

Substituting the above two bounds in the previous display and using the fact that ητ ≤
10η1, we get

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≤ 4

η1

+ 100λ−3αd4(B + ε)2η1T +
4ν log T

η1

− αγ

20η1

≤ − β
η1

.

This implies, the restart condition should have triggered. This shows that the focus region
doesn’t get updated more than 12d log T times.

C.5.1 Proof of Proposition 6

In this section, we first show that the cumulative Hessian estimates and cumulative loss
function estimates generated by the modified algorithm concentrate well around their ex-
pected values. In particular, Lemma 50 is concerned about concentration of the Hessian
estimates {Ĥt}Tt=1, and Lemma 51 is concerned about loss estimates {f̂t}Tt=1 of the mod-
ifed algorithm. These two Lemmas immediately imply that ιt = 1 for any t ≤ T w.h.p,
where T is the minimum between T and the first time at which the modified algorithm
restarts. Consequently, with high probability, the iterates of the modified and the original
algorithms are exactly the same. These two Lemmas together prove Proposition 6.

190

Before we proceed, note that the focus region gets updated at most 12d log T times
before the algorithm restarts. So, for our choice of γ, we have (1 + γ)12d log T ≤ 10. Conse-
quently, for all t ≤ T , ηt ≤ 10η1. So the results of Lemma 48 apply to all the iterates in
the first T iterations of the modified algorithm.
Lemma 50 (Concentration of Hessian estimates). Let T be the minimum between T and
the first time at which the modified algorithm restarts. Then for any t ≤ T , the following
statement holds with probability at least 1− T−2

‖I − M̃−1/2
t MtM̃

−1/2
t ‖2 = O

(
α2η1λ

−2d5B
√
T log(dT)

)
.

Proof. We first try to derive upper and lower bounds for M̃t. From Lemma 48, we know
that for all s ≤ T , and for all x ∈ Fs, ‖x− xs‖M̃s

≤ 8dα. So, from Assumption 1 we have
M̃t � 1

(1+8dα)2M̃s for all s ≤ t. This implies

M̃t �
1

(1 + 8dα)2
M̃1 =

1

(1 + 8dα)2
∇2R(x1).

Moreover, from Lemma 46 we have M̃t � T 8(ν + 2
√
ν)2(∇2R(x1) + I). Since ∇2R(x1) is

a fixed quantity, for large enough T we have 1
poly(T)

I � ∇2R(x1) � poly(T)I. This then
shows that there exist positive constants cl, cu such that T−clI � M̃t � T cuI for any t ≤ T .

Next consider the following

I − M̃−1/2
t MtM̃

−1/2
t =

t−1∑
s=1

ηsM̃
−1/2
t

(
ιsHs − Ĥs

)
M̃
−1/2
t .

So we have

‖I − M̃−1/2
t MtM̃

−1/2
t ‖2

≤ sup
T−clI�A�T cuI

ῑA

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs − ιsHs

)
A−1/2I

(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2
,

where ῑA is an indicator random variable which is equal to 1 if and only if

∀s ≤ T , A � 1

(1 + 8dα)2
M̃s.

We now focus on bounding the RHS of the above equation. We write Ĥt as

Ĥt = Ĥt,1 + Ĥt,2 =
λ−2

2
d2ιt(rt(yt)︸ ︷︷ ︸

Ĥt,1

+ qt(yt)︸ ︷︷ ︸
Ĥt,2

)M
1/2
t

(
v1,tv

T
2,t + v2,tv

T
1,t

)
M

1/2
t

191

Now consider the RHS in the second-to-last display

ῑA

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,1 + Ĥs,2 − ιsHs

)
A−1/2I

(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣ t−1∑

s=1

ηsA
−1/2Ĥs,1A

−1/2I
(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

+ ῑA

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,2 − ιsHs

)
A−1/2I

(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

First consider the first term in the RHS above. We have∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2Ĥs,1A

−1/2I
(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

≤
t−1∑
s=1

∣∣∣∣∣∣ηsA−1/2Ĥs,1A
−1/2I

(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

If ιs = 0, then the sth term in the RHs above is 0. On the other hand if ιs = 1, then we
know that Ms, M̃s are spectrally close to each other. In this case, the sth term above is
upper bounded by 20ελ−2η1d

2(1 + 8dα)2. This follows from the fact that rt(yt) is bounded
by ε and A � 1

(1+8dα)2M̃s. So the RHS above is upper bounded by 20ελ−2η1d
2(1 + 8dα)2T .

Now consider the second term

ῑA

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,2 − ιsHs

)
A−1/2I

(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

= ῑA

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,2 − ιsHs

)
A−1/2φ

(
(1 + 8dα)2λmin(M̃−1/2

s AM̃−1/2
s)

) ∣∣∣∣∣∣
2
,

where φ : R+ → R+ is defined as

φ(x) =


1 if x ≥ 1

2x− 1 if 1 > x > 1/2

0 if 1
2
≥ x ≥ 0

.

Continuing, we get

ῑA

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,2 − ιsHs

)
A−1/2I

(
A � 1

(1 + 8dα)2
M̃s

) ∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣ t−1∑

s=1

ηsA
−1/2

(
Ĥs,2 − ιsHs

)
A−1/2φ

(
(1 + 8dα)2λmin(M̃−1/2

s AM̃−1/2
s)

) ∣∣∣∣∣∣
2
.

192

So we have

‖I − M̃−1/2
t MtM̃

−1/2
t ‖2 (C.11)

≤ sup
T−clI�A�T cuI

∣∣∣∣∣∣ t−1∑
s=1

ηsA
−1/2

(
Ĥs,2 − ιsHs

)
A−1/2φ

(
(1 + 8dα)2λmin(M̃−1/2

s AM̃−1/2
s)

) ∣∣∣∣∣∣
2

(C.12)
+ 20ελ−2η1d

2(1 + 8dα)2T. (C.13)

We now bound the first term in the RHS above using standard concentration results for
matrix-valued martingales (see Lemma 43). Define random variable ZA,s as follows

ZA,s =

{
ηsA

−1/2
(
Ĥs,2 − ιsHs

)
A−1/2φ

(
(1 + 8dα)2λmin(M̃

−1/2
s AM̃

−1/2
s)

)
, if s ≤ T ,

0 if T < s ≤ T
.

Note that {ZA,s}Ts=1 is a matrix-valued martingale difference sequence and satisfies Et [ZA,t] =
0.Moreover, ZA,s is a bounded random variable which satisfies ‖ZA,s‖2 = O (η1λ

−2d2(1 + 8αd)2B).
This is easy to see when ιs = 0. When ιs = 1, it follows from the facts that Ms, M̃s are
spectrally close to each other and A � 1

(1+8dα)2M̃s and qs(x) is bounded by B. By relying
on standard concentration results for matrix martingale sequences, we get with probability
at least 1− δ

∀t ≤ T, ‖
t∑

s=1

ZA,s‖2 ≤ O
(
α2η1λ

−2d4B
√
T log(2T/δ)

)
. (C.14)

We now do a union bound over all A such that T−clI � A � T cuI. We first construct an
∆-net so that the following holds: for every A, there exists a A∆ in the ∆-net such that
(1 + (Td)−1)A∆ � A � (1 − (Td)−1)A∆. We can show that the size of such an ∆-net is
Õ
(

(Td)cd
2
)
, for some positive constant c. Moreover, we can show that for every A, there

exists an A∆ in the ∆-net such that

‖
t−1∑
s=1

ZA,s − ZA∆,s‖2 ≤ Õ
(
α2η1λ

−2d4B
√
T
)
.

This follows from the fact that φ is bounded and Lipschitz. Now consider the following

sup
T−clI�A�T cuI

‖
t−1∑
s=0

ZA,s‖2 = sup
A
‖
t−1∑
s=0

ZA∆,s‖2 + sup
A
‖
t−1∑
s=0

ZA∆,s − ZA,s‖2

≤ sup
A∆ in ∆-net

‖
t−1∑
s=0

ZA∆,s‖2 +O
(
α2η1λ

−2Bd4
√
T
)
,

where A∆ is the point in ∆-net which is closest to A. Finally, by relying on the bound in
Equation (C.14) and performing a union bound over all the elements in the ∆-net gives us
supA ‖

∑t−1
s=0 ZA,s‖2 = Õ

(
α2η1λ

−2d5B
√
T
)
. Plugging this bound in Equation (C.11) and

using the fact that ε = O
(
dBT−1/2

)
gives us the required result.

193

Remark C.5.1 (Convexifying the restart condition). We note that a similar argument as
above can be used to show that the following two matrices are spectrally close to each other

Nt = ∇2R(xt) + η1(dα)2

t−1∑
s=1

Ĥs, Ñt = ∇2R(xt) + η1(dα)2

t−1∑
s=1

Hs.

In particular, we can show that ‖I − Ñ−1/2
t NtÑ

−1/2
t ‖2 ≤ 1

2
. This would entail that Nt is

invertible and positive definite. This in turn implies that the following objective is convex

min
y∈Ft

t∑
s=0

f̂s(y) + (d2α2η1)−1(y − xt)
T∇2R(xt)(y − xt).

Now consider the restart condition stated in line 16 of Algorithm 4. It involves solving
miny∈Ft

∑t
s=0 f̂s(y). Note that this objective itself may not be convex. However, it is

pointwise close to the above objective, which is convex. To see this, note that in Lemma 48
we showed that ∀x ∈ Ft, ‖x − xt‖M̃t

≤ 8dα. As a result, ∀x ∈ Ft, (d2α2η1)−1(y −
xt)

T∇2R(xt)(y−xt) = O
(
η−1

1

)
. Consequently, the two objectives are O

(
1
η1

)
close to each

other. So, one can efficiently check for an “approximate” restart condition by minimizing
the above convex objective.
Lemma 51 (Concentration of loss estimates). Let T be the minimum between T and the
first time at which the modified algorithm restarts. Then for any t ≤ T , the following
statement holds with probability at least 1− T−2

sup
x∈Ft

∣∣∣ t−1∑
s=1

η1(f̂s(x)− f̂s(xs)− ιsqs(x) + ιsqs(xs))
∣∣∣ ≤ Õ

(
α2η1λ

−2Bd9/2
√
T
)
.

Proof. First note that

f̂s(x)− f̂s(xs) =
1

2
(x− xs)

T Ĥs(x− xs) + 〈ĝs,x− xs〉.

We split Ĥs, ĝs into two components, one corresponding to rs and the other corresponding
to qs

Ĥt =
λ−2

2
d2ιt(rt(yt)︸ ︷︷ ︸

Ĥt,1

+ qt(yt)︸ ︷︷ ︸
Ĥt,2

)M
1/2
t

(
v1,tv

T
2,t + v2,tv

T
1,t

)
M

1/2
t

ĝt = λ−1dιt(qt(yt)︸ ︷︷ ︸
ĝt,2

+ rt(yt)︸ ︷︷ ︸
ĝt,1

)M
1/2
t v1,t.

Similarly, we define r̂s(x) and q̂s(x) as follows. These are obtained by splitting f̂s(x) into
two components based on rs and qs

r̂s(x)− r̂s(xs) =
1

2
(x− xs)

T Ĥs,1(x− xs) + 〈ĝs,1,x− xs〉

q̂s(x)− q̂s(xs) =
1

2
(x− xs)

T Ĥs,2(x− xs) + 〈ĝs,2,x− xs〉.

194

We first upper bound |
∑t−1

s=1 r̂s(x)− r̂s(xs)|. First note that from Lemma 48 we know that
for any x ∈ Ft, ‖x− xt‖Mt ≤ 4dα. Using this, we have the following for any x ∈ Ft.

|
t−1∑
s=1

r̂s(x)− r̂s(xs)| ≤
t−1∑
s=1

|r̂s(x)− r̂s(xs)| (C.15)

≤ 16εT (λ−2d4α2 + λ−1d2α) (C.16)
≤ 32α2ελ−2d4T. (C.17)

Next, we upper bound |
∑t−1

s=1 q̂s(x)− q̂s(xs)− ιsqs(x) + ιsqs(xs)|. Define random variables
Zx,s as

Zx,s =

{
η1(q̂s(x)− q̂s(xs)− ιsqs(x) + ιsqs(xs)) if s ≤ T
0 otherwise

.

It is easy to see that {Zx,s}Ts=1 is a martingale difference sequence. Moreover, Zx,s is a
bounded random variable which satisfies

|Zx,s| ≤ 32α2η1λ
−2Bd4.

This again follows from the fact that x ∈ Ft, ‖x − xt‖Mt ≤ 4dα which we proved in
Lemma 48. By relying on standard concentration bounds for martingale difference se-
quences (see Lemma 42), we get that with probability at least 1− δ,

sup
t≤T
|
t−1∑
s=1

Zx,s| = O
(
λ−2d4α2Bη1

√
T log T/δ

)
.

Next, we bound supx∈Ft supt≤T |
∑t−1

s=1 Zx,s| using ∆-net arguments. Let N∆ be an ∆-
net over Ft which satisfies the following: for every x, there exists a x∆ ∈ N∆ such that
‖x− x∆‖Mt ≤ ∆. Then

sup
x∈Ft

sup
t≤T
|
t−1∑
s=1

Zx,s| ≤ sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

Zx∆,s|︸ ︷︷ ︸
T1

+ sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

Zx∆,s − Zx,s|︸ ︷︷ ︸
T2

. (C.18)

Using a simple union bound, T1 can be bounded as

T1 ≤ O
(
λ−2d4α2Bη1

√
T log T |N∆|/δ

) (a)

≤ O

(
λ−2d9/2α2Bη1

√
T log

αdT

∆δ

)
,

where the bound holds with probability at least 1 − δ and (a) holds since ∀x ∈ Ft, ‖x −

195

xt‖Mt ≤ 4dα and as a result |N∆| ≤
(

4dα
∆

)d. T2 can be bounded as follows

sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

Zx∆,s − Zx,s|

(a)

≤ sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

η1〈ĝs,2 − ιs∇qs(xs),x− x∆〉|

+ sup
x∈Ft

sup
t≤T

∣∣∣ t−1∑
s=0

η1〈Ĥs,2 − ιsHs, (x− xs)(x− xs)
T − (x∆ − xs)(x∆ − xs)

T 〉F
∣∣∣

where (a) follows from the definitions of Zx,s and qs(x), q̂s(x) and 〈·, ·〉F is the frobenius
inner product. The first term in the RHS above can be bounded as

sup
x∈Ft

sup
t≤T
|
t−1∑
s=0

η1〈ĝs,2 − ιs∇qs(xs),x− x∆〉|

(a)

≤ 2η1λ
−1dB sup

x∈Ft
sup
t≤T

(
t−1∑
s=0

‖x− x∆‖Ms

)
(b)

≤ 2(1 + 8dα)2η1λ
−1dB sup

x∈Ft
sup
t≤T

(
t−1∑
s=0

‖x− x∆‖Mt

)
= O

(
λ−1d3α2Bη1∆T

)
,

where (a) follows from the facts that ‖ĝs,2‖∗Ms
≤ λ−1dB, Es [ĝs,2] = ιs∇qs(xs), and (b)

follows from Lemma 48 where we showed that Ms � (1 + 8dα)2Mt.
Using similar arguments and the fact that ∀x ∈ Ft, ‖x−xt‖Mt ≤ 4dα, the second term

in the RHS of the second-to-last display can be bounded as

sup
x∈Ft

sup
t≤T

∣∣∣ t−1∑
s=0

η1〈Ĥs,2 − ιsHs, (x− xs)(x− xs)
T − (x∆ − xs)(x∆ − xs)

T 〉F
∣∣∣

= O
(
λ−2d5α3Bη1∆T

)
.

Choosing ∆ = 1
α
√
dT
, and plugging the above bounds for T1, T2 in Equation (C.18) gives us

supx∈Ft supt≤T |
∑t−1

s=1 Zx,s| = Õ
(
α2η1λ

−2Bd9/2
√
T
)
. Finally, combining Equation (C.15)

and Equation (C.18), and using the fact that ε = O
(
dBT−1/2

)
gives us the requires result.

Remark C.5.2. For our choice of hyper-parameters, the concentration bounds in Lem-
mas 50, 51 show that the indicator random variables {ιt}Tt=1 are equal to 1 with high prob-
ability. This entails that the iterates produced by the modified algorithm are exactly equal
to the iterates produced by the actual algorithm with high probability. As a result all the
properties we showed for the modified algorithm in Lemmas 48, 49, 50, 51 also hold for the
original algorithm with high probability.

196

C.5.2 Main argument for Theorem 10

We are now ready to prove Theorem 10. Since we know that with high probability, the
iterates of the modified algorithm which relies on indicator variables ιt are exactly same
as the original algorithm, it suffices to prove the regret bound for the modified algorithm.
In the sequel, we work with the modified algorithm. Throughout the proof, we let T be
the minimum between T and the first time step at which the algorithm restarts. Let τ be
the minimum between T and the last time step where ιτ = 1. Our goal is to bound the
following quantity

T∑
s=1

ιsfs(ys)−min
x∈X

T∑
s=1

ιsfs(x) =
τ∑
s=1

fs(ys)−min
x∈X

τ∑
s=1

fs(x).

Case 1 (T = T). We first consider the case where the restart condition didn’t trigger in
the first T iterations (i.e., T = T). In this case, we show that the regret is Õ

(
T 1/2

)
. Since

the restart condition hasn’t triggered, we know that

τ∑
s=1

f̂s(xs)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≥ − β
η1

.

From the proof of Lemma 49, this implies ∀x ∈ ∂Fτ ∩ int(Xξ)

τ∑
s=1

f̂s(x)− min
y∈Fτ

τ∑
s=1

f̂s(y) ≥ 4

η1

.

(In Lemma 49, we proved a contrapositive statement. We showed that if ∃x ∈ ∂FT∩int(Xξ)
such that

∑T
s=0 f̂s(x)−miny∈FT

∑T
s=0 f̂s(y) ≤ 4

η1
, then

∑T
s=0 f̂s(xs)−miny∈FT

∑T
s=0 f̂s(y) ≤

− β
η1
). Since our cumulative loss estimate concentrates well around the true cumulative loss

(i.e., ιτ = 1), this implies

∀x ∈ ∂Fτ ∩ int(Xξ),
τ∑
s=1

qs(x)− min
y∈Fτ

τ∑
s=1

qs(y) ≥ 2

η1

.

Since qs’s are convex, this implies the minimizer of minx∈Xξ
∑τ

s=1 qs(x) is in Fτ . So, the
regret of the algorithm can be bounded as follows

RegT =
τ∑
s=1

fs(ys)−min
x∈X

τ∑
s=1

fs(x) ≤ εT +
τ∑
s=1

qs(ys)−min
x∈X

τ∑
s=1

qs(x)

(a)

≤ 1 + εT +
τ∑
s=1

qs(ys)− min
x∈Xξ

τ∑
s=1

qs(x)

= 1 + εT +
τ∑
s=1

qs(ys)− min
x∈Fτ

τ∑
s=1

qs(x),

197

where (a) follows from the definition of Xξ = (1 − ξ)X + ξx1 and the fact that the loss
functions are Lipschitz and the diameter of X is bounded. Next, consider the following for
any x ∈ Fτ

τ∑
s=1

qs(ys)−
τ∑
s=1

qs(x) =
τ∑
s=1

[qs(ys)− qs(xs)]︸ ︷︷ ︸
T1

+
τ∑
s=1

[
qs(xs)− qs(x)− f̂s(xs) + f̂s(x)

]
︸ ︷︷ ︸

T2

+
τ∑
s=1

[
f̂s(xs)− f̂s(x)

]
︸ ︷︷ ︸

T3

.

Bounding T1. Consider the following

T∑
s=0

qs(ys)− qs(xs) ≤
T∑
s=0

λ〈∇qs(xs),M−1/2
s (v1,s + v2,s)〉

+ λ2 1

2
(v1,s + v2,s)

TM−1/2
s HsM

−1/2
s (v1,s + v2,s).

Let Zs = λ〈∇fs(xs),M−1/2
s (v1,s + v2,s)〉 if s ≤ τ and 0 if s > τ . Note that {Zs}Ts=1 is a

martingale difference sequence with each Zs being bounded: |Zs| ≤ 2dB. This follows from
the observation that ∇qs(xs) = Es [ĝs] and the fact that M−1/2

s ĝs is a bounded random
variable. By relying on standard concentration bounds for martingale difference sequences
(see Lemma 42), we get that with probability at least 1−δ,

∑T
s=1 Zs = O

(
dB
√
T log 1/δ

)
.

Next, consider the last term in the RHS

(v1,s + v2,s)
TM−1/2

s HsM
−1/2
s (v1,s + v2,s) ≤ 4‖M−1/2

s HsM
−1/2
s ‖2

≤ 4‖M̃−1/2
s+1 HsM̃

−1/2
s+1 ‖2‖M−1/2

s M̃s+1M
−1/2
s ‖2

≤ 4‖M̃−1/2
s+1 HsM̃

−1/2
s+1 ‖2‖M−1/2

s M̃sM
−1/2
s ‖2‖M̃−1/2

s M̃s+1M̃
−1/2
s ‖2

Since M̃s,Ms,Ms+1 are spectrally close to each other, we can show that ‖M−1/2
s M̃sM

−1/2
s ‖2,

‖M̃−1/2
s M̃s+1M̃

−1/2
s ‖2 are close to 1. So we have

(v1,s + v2,s)
TM−1/2

s HsM
−1/2
s (v1,s + v2,s) ≤ 8‖M̃−1/2

s+1 HsM̃
−1/2
s+1 ‖2.

Using similar arguments as in the proof of Theorem 38 (see Equation (C.4)), we get the
following upper bound for T1: O

(
dB
√
T log 1/δ + d log dT

η1

)
.

198

Bounding T2. Since ιτ = 1, T2 can be upper bounded as

T2 ≤
1

η1

+
[
qτ (xτ)− qτ (x)− f̂τ (xτ) + f̂τ (x)

]
≤ 1

η1

+ +〈ĝτ −∇qτ (xτ),x− xτ 〉+
1

2
〈Ĥτ −Hτ , (x− xτ)(x− xτ)

T 〉F

≤ 2

η1

,

where the last inequality follows from the facts that ‖x−xτ‖Mτ ≤ 4dα, ‖ĝτ‖∗Mτ
≤ λ−1d(B+

ε), ‖M−1/2
τ ĤτM

−1/2
τ ‖2 ≤ λ−2d2(B + ε)..

Bounding T3. To bound T3, we consider the following

T∑
s=0

[
f̂s(xs)− f̂s(x)

]
=

T∑
s=1

〈ĝs,xs − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

=
T∑
s=1

〈ĝs,xs − xs+1〉+ 〈ĝs,xs+1 − x〉 − 1

2
(x− xs)

T Ĥs(x− xs)

(a)

≤ 10λ−3αd4(B + ε)2

T∑
s=1

ηs +
T∑
s=1

〈ĝs,xs+1 − x〉

−
T∑
s=1

1

2
(x− xs)

T Ĥs(x− xs),

where (a) follows from the stability of the iterates we proved in Lemma 48. Since xs+1 is
the minimizer of miny∈Fs ηs〈ĝs,y〉+ ΦRs+1(y,xs), we have

〈ĝs,xs+1 − x〉 ≤
ΦRs+1(x,xs)− ΦRs+1(x,xs+1)− ΦRs+1(xs+1,xs)

ηs
.

Using this in the previous display, we get

T∑
s=0

[
f̂s(xs)− f̂s(x)

]
≤ 10λ−3αd4(B + ε)2

T∑
s=1

ηs +
T∑
s=1

ΦRs+1(x,xs)− ΦRs+1(x,xs+1)

ηs

−
T∑
s=1

1

2
(x− xs)

T Ĥs(x− xs).

199

Rearranging the terms in the RHS above, we get

T∑
s=0

[
f̂s(xs)− f̂s(x)

]
≤ 10λ−3αd4(B + ε)2

T∑
s=1

ηs +
ΦR(x,x1)

η1

−
ΦRT+1

(x,xT+1)

ηT

+
T∑
s=2

(
1

ηs
− 1

ηs−1

)
ΦRs(x,xs)

(a)

≤ 10λ−3αd4(B + ε)2

T∑
s=1

ηs +
ΦR(x,x1)

η1

,

where (a) follows from the facts that Rs is convex, and ηs ≥ ηs−1 for all s. Hence the
last two terms are negatives and can be ignored. Since x ∈ Xξ, using property P8 of SCB
stated in Appendix C.7, we can upper bound ΦR(x,x1) as

ΦR(x,x1) = R(x) ≤ 4ν log T.

Combining the bounds for T1, T2, T3 shows that with probability at least 1−T−2 the regret
is upper bounded by

Õ

(
εT + dB

√
T +

(ν + d)

η1

+ λ−3αd4(B + ε)2η1T

)
= Õ

(
d11(d+ ν)5

√
T
)
.

Case 2 (T < T). We now consider the case where the restart condition triggered at some
iteration T < T . Using the fact that the restart condition hasn’t triggered in iteration
T − 1 and using similar arguments as in the beginning of Case 1, we can again show that
the minimizer of the cumulative loss over the entire domain lies in the focus region FT ,
and ιT = 1. So regret until T is given by

RegT =
T∑
s=1

fs(ys)−min
x∈X

T∑
s=1

fs(x)
(a)

≤ 1 +
T∑
s=1

fs(ys)− min
x∈Xξ

T∑
s=1

fs(x)

= 1 +
T∑
s=1

fs(ys)− min
x∈FT

T∑
s=1

fs(x),

where (a) follows from the definition of Xξ. Using the same regret decomposition as in Case
1, for any x ∈ FT
T∑
s=1

fs(ys)−
T∑
s=1

fs(x) ≤ εT +
T∑
s=1

[qs(ys)− qs(xs)]︸ ︷︷ ︸
T1

+
T∑
s=1

[
qs(xs)− qs(x)− f̂s(xs) + f̂s(x)

]
︸ ︷︷ ︸

T2

+
T∑
s=1

[
f̂s(xs)− f̂s(x)

]
︸ ︷︷ ︸

T3

.

200

We use the same arguments as in Case 1 to bound T1, T2 as

T1 = O

(
dB
√
T log 1/δ +

d log dT

η1

)
, T2 =

2

η1

.

Since the restart condition triggered in round T , T3 is bounded by − β
η1
. Combining all

these bounds, we get the following bound on regret

RegT ≤ εT +O

(
dB
√
T log 1/δ +

d log dT

η1

)
+

2

η1

− β

η1

.

For our choice of hyper-parameters, the above bound is less than 0.

C.6 Additional Results

Proposition 16 (Gaussian Smoothing). Let f : Rd → R be a potentially non-smooth func-
tion. Define the smoothed function f̂ as f̂(x) = Eu∼N (0,I) [f(x + Cu)] , for some symmetric
positive definite matrix C. Then f̂ is twice differentiable with the following gradient and
Hessian

∇f̂(x) = Eu∼N (0,I)

[
C−1uf(x + Cu)

]
, ∇2f̂(x) = Eu∼N (0,I)

[
C−1(uuT − I)C−1f(x + Cu)

]
.

Proof. Gradient. Using the expression for probability density function of a multivariate
Gaussian, we get

∇f̂(x) =
∂

∂x

∫
1

(2π)d/2
f(x + Cu)e−‖u‖

2/2du
(a)
=

∂

∂x

∫
1

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy

=

∫
∂

∂x

1

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy =

∫
C−2(y − x)

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy

(b)
=

∫
C−1u

(2π)d/2
f(x + Cu)e−‖u‖

2/2du,

where we used change of variables in (a) and (b). This shows that

∇f̂(x) = Eu∼N (0,I)

[
C−1uf(x + Cu)

]
.

Hessian. We use a similar argument as above to compute the Hessian. From the first
display above, we have

∇f̂(x) =

∫
C−2(y − x)

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy.

201

Using the definition of Hessian, we get

∇2f̂(x) =
∂

∂x
∇f̂(x) =

∂

∂x

∫
C−2(y − x)

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy

=

∫
∂

∂x

C−2(y − x)

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy

=

∫
C−2(y − x)(y − x)TC−2 − C−2

(2π|C|2)d/2
f(y)e−‖y−x‖

2
C−2/2dy

(a)
=

∫
C−1uuTC−1 − C−2

(2π|C|2)d/2
f(x + Cu)e−‖u‖

2/2du

where we used change of variables in (a). This shows that

Eu∼N (0,I)

[
C−1(uuT − I)C−1f(x + Cu)

]
.

C.7 Review of Self Concordant Barriers
This section reviews some useful properties of Self Concordant (SC) functions and Self Con-
cordant Barriers (SCBs). Most of the content in this section is from Nemirovski [Nem04]
and Nesterov [Nes18].
• (P3) Non-degeneracy : If X doesn’t contain straight lines, then the Hessian ∇2R(x) is
nondegenerate (i.e., ∇2R(x) � 0) at all points x ∈ int(X).

• (P4) For any x ∈ int(X), we have

X ∩ {y : 〈∇R(x),y − x〉 ≥ 0} ⊆ Bν+2
√
ν,∇2R(x)(x). (C.19)

• (P5) Semiboundedness : For any x ∈ int(X),y ∈ X , 〈∇R(x),y − x〉 ≤ ν.

• (P6) For any x,y ∈ int(X),

R(y)−R(x)− 〈∇R(x),y − x〉 ≥ ‖y − x‖∇2R(x) − log(1 + ‖y − x‖∇2R(x)). (C.20)

• (P7) For any x,y ∈ int(X), we have

〈∇R(y)−∇R(x),y − x〉 ≥
‖y − x‖2

∇2R(x)

1 + ‖y − x‖∇2R(x)

. (C.21)

• (P8) Define the Minkowsky function of X with the pole at x as

πx(y) = inf{t > 0|x + t−1(y − x) ∈ X}.

Then for any x,y ∈ int(X)

R(y) ≤ R(x) + ν log
1

1− πx(y)
(C.22)

∇2R(y) �
(
ν + 2

√
ν

1− πx(y)

)2

∇2R(x). (C.23)

202

Appendix D
Supplementary Material for Chapter 5

D.1 Measurability of Bayes Estimators
For any prior Π, define pΠ(Xn) as ∫

θ

n∏
i=1

p(Xi; θ)dΠ(θ).

For any prior Π, define estimator θ̂Π as follows

θ̂Π(Xn) ∈ argmin
θ̃∈Θ

Eθ∼Π(·|Xn)

[
M(θ̃, θ)

]
.

Certain regularity conditions need to hold for this to be a Bayes estimator of Π. θ̂Π defined
this way need not be a measurable function of Xn. We now provide sufficient conditions
on the statistical problem which guarantee measurability of θ̂Π. These conditions are
from Brown and Purves [BP73].
Assumption 2. The sample space X n and the parameter set Θ are non-empty Borel sets.
Assumption 3. Let B(X n) be the Borel σ-algebra corresponding to the sample space X n

and B(Θ) be the Borel σ-algebra corresponding to parameter space Θ. Let Π be a prior
probability measure on Θ. Suppose, for each θ ∈ Θ, Pθ is such that, for each B ∈ B(X n),
the function θ → Pθ(B) is measurable w.r.t B(Θ).
Assumption 4. The loss functionM defined on Θ×Θ and taking non-negative real values,
is measurable w.r.t B(Θ) × B(Θ). Moreover, M(·, θ) is lower semi-continuous on Θ, for
each θ ∈ Θ.

Under these assumptions, when Θ is compact, Brown and Purves [BP73] show that
there exists a Borel measurable function θ̂Π such that

θ̂Π(Xn) ∈ argmin
θ̃∈Θ

Eθ∼Π(·|Xn)

[
M(θ̃, θ)

]
.

Moreover, θ̂Π is the Bayes estimator for Π.

203

D.2 Minimax Estimators, LFPs and Nash Equilibirium

Proposition 17. Consider the statistical game in Equation (5.1). If (θ̂∗, P ∗) is a mixed
strategy NE of (5.1), then the minmax and maxmin values of the linearized game are equal
to each other. Moreover, θ̂∗ is a minimax estimator and P ∗ is an LFP. Conversely, if θ̂∗
is a minimax estimator, and P ∗ is an LFP, and the minmax and maxmin values of the
linearized game (5.4) are equal to each other, then (θ̂∗, P ∗) is a mixed strategy NE of (5.1).
Moreover, θ∗ is a Bayes estimator for P ∗.

Proof. Suppose (θ̂∗, P ∗) is a mixed strategy NE. Then, from the definition of mixed strategy
NE, we have

sup
P∈MΘ

R(θ̂∗, P) ≤ R(θ̂∗, P ∗) ≤ inf
θ̂∈MD

R(θ̂, P ∗).

This further implies

inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P)
(a)

≤ sup
P∈MΘ

R(θ̂∗, P) ≤ R(θ̂∗, P ∗)

(b)

≤ inf
θ̂∈MD

R(θ̂, P ∗)
(c)

≤ sup
P∈MΘ

inf
θ̂∈MD

R(θ̂, P).

Since inf θ̂∈MD supP∈MΘ
R(θ̂, P) ≥ supP∈MΘ

inf θ̂∈MD R(θ̂, P), the above set of inequali-
ties all hold with an equality and imply that the minmax and maxmin values of the
linearized game are equal to each other. Moreover, from (a), we have supP∈MΘ

R(θ̂∗, P) =

inf θ̂∈MD supP∈MΘ
R(θ̂, P). This implies θ̂∗ is a minimax estimator. From (c), we have

inf θ̂∈MD R(θ̂, P ∗) = supP∈MΘ
inf θ̂∈MD R(θ̂, P). This implies P ∗ is an LFP. Finally, from

(b), we have R(θ̂∗, P ∗) = inf θ̂∈MD R(θ̂, P ∗). This implies θ̂∗ is a Bayes estimator for P ∗.

We now prove the converse. Since θ̂∗ is a minimax estimator and P ∗ is an LFP, we
have

sup
P∈MΘ

R(θ̂∗, P) = inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P), inf
θ̂∈MD

R(θ̂, P ∗) = sup
P∈MΘ

inf
θ̂∈MD

R(θ̂, P).

Moreover, since minmax and maxmin values of the linearized game are equal to each other,
all the above 4 quantities are equal to each other. Since R(θ̂∗, P ∗) ≤ supP∈MΘ

R(θ̂∗, P)

and R(θ̂∗, P ∗) ≥ inf θ̂∈MD R(θ̂, P ∗), we have

sup
P∈MΘ

R(θ̂∗, P) = R(θ̂∗, P ∗) = inf
θ̂∈MD

R(θ̂, P ∗).

This shows that (θ̂∗, P ∗) is a mixed strategy NE of the linear game in Equation (5.4).

204

D.3 Minimax Estimation via Online Learning

D.3.1 Proof of Proposition 7

We have the following bounds on the regret of the minimization and maximization players

T∑
t=1

R(θ̂t, Pt)− inf
θ̂∈D

T∑
t=1

R(θ̂, Pt) ≤ ε1(T),

sup
θ∈Θ

T∑
t=1

R(θ̂t, θ)−
T∑
t=1

R(θ̂t, Pt) ≤ ε2(T).

Now consider the following

inf
θ̂∈D

1

T

T∑
t=1

R(θ̂, Pt)

≥ 1

T

T∑
t=1

R(θ̂t, Pt)−
ε1(T)

T

≥ sup
θ∈Θ

1

T

T∑
t=1

R(θ̂t, θ)−
ε1(T) + ε2(T)

T
,

(D.1)

where the first and the second inequalities follow from the regret bounds of the minimization
and maximization players. We further bound the LHS and RHS of the above inequality as
follows

inf
θ̂∈D

1

T

T∑
t=1

R(θ̂, Pt) ≤
1

T 2

T∑
t=1

T∑
t′=1

R(θ̂t′ , Pt) = R(θ̂rnd, Pavg),

sup
θ∈Θ

1

T

T∑
t=1

R(θ̂t, θ) ≥
1

T 2

T∑
t=1

T∑
t′=1

R(θ̂t′ , Pt) = R(θ̂rnd, Pavg).

Combining the previous two sets of inequalities gives us

R(θ̂rnd, Pavg) ≥ sup
θ∈Θ

R(θ̂rnd, θ)−
ε1(T) + ε2(T)

T
,

R(θ̂rnd, Pavg) ≤ inf
θ̂∈D

R(θ̂, Pavg) +
ε1(T) + ε2(T)

T
.

D.3.2 Proof of Theorem 11

To prove the Theorem we first bound the regret of each player and then rely on Propo-
sition 7 to show that the iterates converge to a NE. Since the maximization player is
responding using FTPL to the actions of minimization player, we rely on Theorem 1 to

205

bound her regret. First note that the sequence of reward functions seen by the maximiza-
tion player R(θ̂i, ·) are L-Lipschitz. Moreover, the domain Θ has `∞ diameter of D. So
applying Theorem 1 gives us the following regret bound

Eσ

[
sup
θ∈Θ

1

T

T∑
t=1

R(θ̂t, θ)−
1

T

T∑
t=1

R(θ̂t, θt(σ))

]
≤ O

(
ηd2DL2 +

d(βT +D)

ηT
+ α + βdL

)
.

Taking the expectation inside, we get the following

sup
θ∈Θ

1

T

T∑
t=1

R(θ̂t, θ)−
1

T

T∑
t=1

R(θ̂t, Pt) ≤ O

(
ηd2DL2 +

d(βT +D)

ηT
+ α + βdL

)
. (D.2)

Since the minimization player is using BR, her regret is upper bounded by 0. Plugging in
these two regret bounds in Proposition 7 gives us the required result.

D.3.3 Proof of Corollary 3

Note that this corollary is only concerned about existence of minimax estimators and LFPs,
and showing that minmax and maxmin values of Equation (5.4) are equal to each other. So
we can ignore the approximation errors introduced by the oracles and set α = β = α′ = 0
in the results of Theorem 11 (that is, we assume access to exact optimization oracles, as
we are only concerned with existence of NE and not about computational tractability of
the algorithm).

Minimax Theorem To prove the first part of the corollary, we set η =
√

1
dL2T

in
Theorem 11 and let T →∞. We get

sup
θ∈Θ

R(θ̂rnd, θ) = inf
θ̂∈D

R(θ̂, Pavg)

=⇒ sup
P∈MΘ

R(θ̂rnd, P) = inf
θ̂∈MD

R(θ̂, Pavg)

=⇒ inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P) ≤ sup
P∈MΘ

inf
θ̂∈MD

R(θ̂, P).

Since minmax value of any game is always greater than or equal to maxmin value of the
game, we get

inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P) = sup
P∈MΘ

inf
θ̂∈MD

R(θ̂, P)R∗.

Existence of LFP We now show that the statistical game has an LFP. To prove this
result, we make use of the following result on the compactness of probability spaces. If Θ
is a compact space, thenMΘ is sequentially compact; that is, any sequence Pn ∈MΘ has
a convergent subsequence converging to a point inMΘ (the notion of convergence here is
weak convergence). Let Pavg,t = 1

t

∑t
i=1 Pi be the mixture distribution obtained from the

first t iterates of Algorithm 5 when run with η =
√

1
dL2T

and exact optimization oracles.

206

Consider the sequence of probability measures {Pavg,t}∞t=1. Since the parameter space Θ is
compact, we know that there exists a converging subsequence {Pavg,ti}∞i=1. Let P ∗ ∈ MΘ

be the limit of this sequence. In the rest of the proof, we show that P ∗ is an LFP; that is,
inf θ̂∈D R(θ̂, P ∗) = R∗. Since R(θ̂, θ) is bounded, and Lipschitz in its second argument, we
have

∀θ̂ ∈MD lim
i→∞

R(θ̂, Pavg,ti) = R(θ̂, P ∗). (D.3)

This follows from the equivalent formulations of weak convergence of measures. We now
make use of the following result from Corollary 4 (which we prove later in Appendix D.3.4)

inf
θ̂∈D

R(θ̂, Pavg,t) ≥ R∗ −O(t−
1
2).

Combining this with the fact that supP∈MΘ
inf θ̂∈D R(θ̂, P) = R∗, we get

lim
i→∞

inf
θ̂∈D

R(θ̂, Pavg,ti) = R∗. (D.4)

Equations (D.3), (D.4) show that inf θ̂∈D R(θ̂, Pavg,ti), R(θ̃, Pavg,ti) are converging sequences
as i→∞. Since inf θ̂∈D R(θ̂, Pavg,ti) ≤ R(θ̃, Pavg,ti) for all i, θ̃ ∈ D, we have

lim
i→∞

inf
θ̂∈D

R(θ̂, Pavg,ti) ≤ lim
i→∞

R(θ̃, Pavg,ti), ∀θ̃ ∈ D.

From Equations (D.3), (D.4), we then have

R∗ ≤ R(θ̃, P ∗), ∀θ̃ ∈ D
=⇒ R∗ ≤ inf

θ̂∈D
R(θ̂, P ∗),

Combining this with the fact that supP∈MΘ
inf θ̂∈D R(θ̂, P) = R∗, we get

inf
θ̂∈D

R(θ̂, P ∗) = R∗.

This shows that P ∗ is an LFP.

Existence of Minimax Estimator To show the existence of a minimax estimator,
we make use of the following result from Wald [Wal49], which is concerned about the
“compactness” of the space of estimatorsMD.
Proposition 18. Suppose Θ is compact w.r.t ∆M(θ1, θ2) = supθ∈Θ |M(θ1, θ) −M(θ2, θ)|.
Moreover, suppose the risk R is bounded. Then for any sequence of {θ̂i}∞i=1 of estimators
there exists a subsequence {θ̂ij}∞j=1 such that limj→∞ θ̂ij = θ̂0 and for any θ ∈ Θ

lim inf
i→∞

R(θ̂ij , θ) ≥ R(θ̂0, θ).

207

Let θ̂rnd,t be the randomized estimator obtained by uniformly sampling an estimator
from {θ̂i}ti=1. Consider the sequence of estimators {θ̂rnd,t}∞t=1. From the above proposi-
tion, we know that there exists a subsequence {θ̂rnd,tj}∞j=1 and an estimator θ̂∗ such that
lim infj→∞R(θ̂rnd,tj , θ) ≥ R(θ̂∗, θ). We now show that θ̂∗ is a minimax estimator; that is,
we show that supθ∈ΘR(θ̂∗, θ) = R∗. We make use of the following result from Corollary 4

sup
θ∈Θ

R(θ̂rnd,t, θ) ≤ R∗ +O(t−
1
2).

Combining this with the fact that inf θ̂∈D supP∈MΘ
R(θ̂, P) = R∗, we get

lim
j→∞

sup
θ∈Θ

R(θ̂rnd,tj , θ) = R∗. (D.5)

Since supθ∈ΘR(θ̂rnd,tj , θ) ≥ R(θ̂rnd,tj , θ̃) for any j, θ̃ ∈ Θ, we have

lim inf
j→∞

sup
θ∈Θ

R(θ̂rnd,tj , θ) ≥ lim inf
j→∞

R(θ̂rnd,tj , θ̃) ≥ R(θ̂∗, θ), ∀θ̃ ∈ Θ.

Since {R(θ̂rnd,tj , θ)}∞j=1 is a converging sequence, we have

lim inf
j→∞

sup
θ∈Θ

R(θ̂rnd,tj , θ) = lim
j→∞

sup
θ∈Θ

R(θ̂rnd,tj , θ) = R∗.

This together with the previous inequality gives us supθ̃∈ΘR(θ̂rnd,tj , θ̃) ≤ R∗. This shows
that θ∗ is a minimax estimator.

D.3.4 Proof of Corollary 4

Minimax Estimator From Theorem 11 we have

sup
θ∈Θ

R(θ̂rnd, θ) = sup
θ∈Θ

1

T

T∑
i=1

R(θ̂i, θ)

≤ inf
θ̂∈D

1

T

T∑
i=1

R(θ̂, Pi) +O

(
ηd2DL2 +

d(βT +D)

ηT
+ α + α′ + βdL

)

= inf
θ̂∈MD

1

T

T∑
i=1

R(θ̂, Pi) +O

(
ηd2DL2 +

d(βT +D)

ηT
+ α + α′ + βdL

)
(a)

≤ inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P) +O

(
ηd2DL2 +

d(βT +D)

ηT
+ α + α′ + βdL

)
,

where (a) follows from the fact that supθ∈ΘR(θ̂, θ) ≥ 1
T

∑T
i=1R(θ̂, Pi). Substituting η =√

1
dL2T

in the above equation shows that the randomized estimator is approximately min-
imax. This completes the first part of the proof. If the metric M is convex in its first
argument, then from Jensen’s inequality we have

∀θ, R(θ̂avg, θ) ≤ R(θ̂rnd, θ).

208

This shows that the worst-case risk of θ̂avg is upper bounded as

sup
θ∈Θ

R(θ̂avg, θ) ≤ inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, θ) +O

(
ηd2DL2 +

d(βT +D)

ηT
+ α + α′ + βdL

)
.

(D.6)

Substituting η =
√

1
dL2T

in Equation (D.6) gives us the required bound on the worst-case

risk of θ̂avg.

LFP We now prove the results pertaining to LFP. From Theorem 11, we have

inf
θ̂∈MD

R(θ̂, Pavg) = inf
θ̂∈MD

1

T

T∑
i=1

R(θ̂, Pi)

≥ sup
P∈MΘ

1

T

T∑
i=1

R(θ̂i, P)−O
(
ηd2DL2 +

d(βT +D)

ηT
+ α + α′ + βdL

)
≥ inf

θ̂∈MD
sup
P∈MΘ

R(θ̂, P)−O
(
ηd2DL2 +

d(βT +D)

ηT
+ α + α′ + βdL

)
.

Substituting η =
√

1
dL2T

in the above equation shows that Pavg is approximately least
favourable. Now consider the case where M is convex in its first argument. To show that
θ̂avg is an approximate Bayes estimator for Pavg, we again rely on Theorem 11 where we
showed that

sup
P∈MΘ

1

T

T∑
i=1

R(θ̂i, P) ≤ inf
θ̂∈MD

1

T

T∑
t=1

R(θ̂, Pt)+O

(
ηd2DL2 +

d(βT +D)

ηT
+ α + α′ + βdL

)
.

Since 1
T 2

∑T
t=1

∑T
t′=1R(θ̂t′ , Pt) ≤ supP∈MΘ

1
T

∑T
i=1R(θ̂i, P), we have

1

T 2

T∑
t=1

T∑
t′=1

R(θ̂t′ , Pt) ≤ inf
θ̂∈MD

1

T

T∑
t=1

R(θ̂, Pt)+O

(
ηd2DL2 +

d(βT +D)

ηT
+ α + α′ + βdL

)
.

Since M is convex in its first argument, we have

1

T 2

T∑
t=1

T∑
t′=1

R(θ̂t′ , Pt) ≥
1

T

T∑
i=1

R(θ̂avg, Pi).

Combining the above two equations shows that θ̂avg is an approximate Bayes estimator for
Pavg.

209

D.4 Invariance of Minimax Estimators

D.4.1 Proof of Theorem 12

In our proof, we rely on the following property of left Haar measure µ of a compact group
G. For any real valued integrable function f on G and any g ∈ G [see Chapter 7 of Wij90]∫

G

f(g−1h)dµ(h) =

∫
G

f(h)dµ(h). (D.7)

We now proceed to the proof of the Theorem. For any estimator θ̂ : X n → Θ, define the
following estimator θ̂G

θ̂G(Xn) =

∫
G

gθ̂(g−1Xn)dµ(g),

where µ is the left Haar measure on G and gXn = {gX1, . . . gXn}. The above integral
is well defined because θ̂ is measurable, G is compact and the action of the group G is
continuous. We first show that θ̂G is invariant under group transformations G. For any
h ∈ G, consider the following

θ̂G(hXn) =

∫
G

gθ̂((g−1h)Xn)dµ(g)

=

∫
G

h(h−1g)θ̂((h−1g)−1Xn)dµ(g)

= h

[∫
G

(h−1g)θ̂((h−1g)−1Xn)dµ(g)

]
(a)
= h

[∫
G

gθ̂(g−1Xn)dµ(g)

]
= hθ̂G(Xn),

where (a) follows from Equation (D.7). This shows that θ̂G is an invariant estimator. We
now show that the worst case risk of θ̂G is less than or equal to the worst case risk of θ̂.
Consider the following upper bound on the risk of θ̂G at any θ ∈ Θ

R(θ̂G, θ) = EXn∼Pnθ

[
M(θ̂G(Xn), θ)

]
≤ EXn∼Pnθ

[∫
G

M(gθ̂(g−1Xn), θ)dµ(g)

]
(convexity of M)

= EXn∼Pnθ

[
Eg∼µ

[
M(gθ̂(g−1Xn), θ)

]]
(a)
= Eg∼µ

[
EXn∼Pn

g−1θ

[
M(gθ̂(Xn), θ)

]]
(change of variables)

(b)
= Eg∼µ

[
EXn∼Pn

g−1θ

[
M(θ̂(Xn), g−1θ)

]]
(invariance of M)

= Eg∼µ
[
R(θ̂, g−1θ)

]
≤ sup

θ′∈Θ
R(θ̂, θ′),

210

where (a) follows from Fubini’s theorem and change of variables X ′ = g−1X and the fact
that if X ∼ Pθ, then g−1X ∼ Pg−1θ. (b) follows from the invariance property of the metric
M . This shows that supθ∈ΘR(θ̂G, θ) ≤ supθ∈ΘR(θ̂, θ). This shows that we can always
improve a given estimator by averaging over the group G and hence there should be a
minimax estimator which is invariant under the action of G.

D.4.2 Proof of Theorem 13

We first prove some intermediate results which we require in the proof of the Theorem.

Intermediate Results

Lemma 52. Suppose θ̂ is a deterministic estimator that is invariant to group transforma-
tions G. Then R(θ̂, θ1) = R(θ̂, θ2), whenever θ1 ∼ θ2.

Proof. Suppose θ2 = gθ1 for some g ∈ G. From the definition of R(θ̂, gθ1) we have

R(θ̂, θ2) = R(θ̂, gθ1) = EXn∼Pngθ1

[
M(θ̂(Xn), gθ1)

]
= EXn∼Pngθ1

[
M(g−1θ̂(Xn), θ1)

]
(invariance of loss metric)

= EXn∼Pngθ1

[
M(θ̂(g−1Xn), θ1)

]
(invariance of estimator)

(a)
= EXn∼Pnθ1

[
M(θ̂(Xn), θ1)

]
= R(θ̂, θ1),

where (a) follows from the fact that gX ∼ Pgθ whenever X ∼ Pθ. This shows that
R(θ̂, θ1) = R(θ̂, θ2).

Lemma 53. Suppose Π is a probability distribution which is invariant to group transfor-
mations G. For any deterministic estimator θ̂, there exists an invariant estimator θ̂G such
that the Bayes risk of θ̂G is no larger than the Bayes risk of θ̂

R(θ̂,Π) ≥ R(θ̂G,Π).

Proof. Define estimator θ̂G as follows

θ̂G(Xn) =

∫
G

gθ̂(g−1Xn)dµ(g),

where µ is the left Haar measure on G. Note that, in the proof of Theorem 12 we showed
that this estimator is invariance to the action of group G. We now show that the Bayes

211

risk of θ̂G is less than equal to the Bayes risk of θ̂. Consider the following

R(θ̂G,Π) = Eθ∼Π[R(θ̂G, θ)]

= Eθ∼Π

[
EXn∼Pnθ

[
M

(∫
G

gθ̂(g−1Xn)dµ(g), θ

)]]
(a)

≤ Eθ∼Π

[
EXn∼Pnθ

[
Eg∼µ

[
M
(
gθ̂(g−1Xn), θ

)]]]
= Eg∼µ

[
Eθ∼Π

[
EXn∼Pnθ

[
M
(
gθ̂(g−1Xn), θ

)]]]
(b)
= Eg∼µ

[
Eθ∼Π

[
EXn∼Pnθ

[
M
(
θ̂(g−1Xn), g−1θ

)]]]
= Eg∼µ

[
Eθ∼Π

[
R(θ̂, g−1θ)

]]
(c)
= Eθ∼Π

[
R(θ̂, θ)

]
,

where (a) uses convexity of M and follows from Jensen’s inequality, (b) follows from the
invariance of M and (c) follows from the invariance of distribution Π to actions of group
G.

Main Argument

We now proceed to the proof of Theorem 13. We first prove the second part of the
Theorem. The first part immediately follows from the proof of second part. Suppose
(θ̂∗G, P

∗
G) is an ε-approximate mixed strategy Nash equilibirium of the reduced statistical

game in Equation (5.8). Our goal is to construct an approximate Nash equilibrium of the
original statistical game in Equation (5.1), using (θ̂∗G, P

∗
G).

Note that θ̂∗G is a randomized estimator over the set of deterministic invariant estimators
DG and P ∗G is a distribution on the quotient space Θ/G. To construct an approximate Nash
equilibrium of the original statistical game (5.1), we extend P ∗G to the entire parameter
space Θ. We rely on Bourbaki’s approach to measure theory, which is equivalent to classical
measure theory in the setting of locally compact spaces we consider in this work [Wij90]. In
Bourbaki’s approach, any measure ν on a set Θ is defined as a linear functional on the set
of integrable functions (that is, a measure is defined by its action on integrable functions)

ν[f] =

∫
Θ

f(θ)dν(θ).

We define P ∗, the extension of P ∗G to the entire parameter space Θ, as follows

P ∗[f] =

∫
Θ/G

f ′(Θβ)dP ∗G(Θβ),

where f ′ : Θ/G → R is a function that depends on f , and is defined as follows. First
define fI : Θ → R, an invariant function constructed using f , as fI(θ) =

∫
Θ
f(gθ)dµ(g),

where µ is the left invariant Haar measure of G. From Equation (D.7), it is easy to see

212

that fI(hθ) = fI(θ), for all h ∈ G. So fI is constant on the equivalence classes of Θ. So fI
can be written in terms of a function f ′ : Θ/G→ R, as follows

fI = f ′ ◦ γ,

where γ : Θ→ Θ/G is the orbit projection function which projects θ ∈ Θ onto the quotient
space. We first show that P ∗ defined this way is an invariant measure. To this end, we use
the following equivalent definition of an invariant measure.
Proposition 19. A probability measure ν on Θ is invariant to transformations of group
G iff for any ν-integrable function f and for any h ∈ G,

∫
f(θ)dν(θ) =

∫
f(hθ)dν(θ).

Since fI is an invariant function, relying on the above proposition, it is easy to see that
P ∗ is an invariant measure. We now show that (θ̂∗G, P

∗) is an ε-approximate mixed strategy
Nash equilibrium of Equation (5.1). Since (θ̂∗G, P

∗
G) is an ε-approximate Nash equilibrium

of Equation (5.8), we have

sup
Θβ∈Θ/G

RG(θ̂∗G,Θβ)− ε ≤ EΘβ∼P ∗G [RG(θ̂∗G,Θβ)] ≤ inf
θ̂∈DG

EΘβ∼P ∗G [RG(θ̂,Θβ)] + ε, (D.8)

where DG is the set of deterministic invariant estimators. Now consider the following

Eθ∼P ∗ [R(θ̂∗G, θ)]
(a)
= EΘβ∼P ∗G [RG(θ̂∗G,Θβ)] (Lemma 52)

≤ inf
θ̂∈DG

EΘβ∼P ∗G [RG(θ̂,Θβ)] + ε (Equation (D.8))

= inf
θ̂∈DG

Eθ∼P ∗ [R(θ̂, θ)] + ε (definition of P ∗)

(b)
= inf

θ̂∈D
Eθ∼P ∗ [R(θ̂, θ)] + ε (Lemma 53),

where (a) follows from the definition of P ∗ and Lemma 52. (b) follows from the fact
that for any invariant prior, there exists a Bayes estimator which is invariant to group
transformations (Lemma 53). Next, we provide a lower bound for Eθ∼P ∗ [R(θ̂∗G, θ)]

Eθ∼P ∗ [R(θ̂∗G, θ)] = EΘβ∼P ∗G [RG(θ̂∗G,Θβ)]

≥ sup
Θβ∈Θ/G

RG(θ̂∗G,Θβ)− ε

= sup
θ∈Θ

R(θ̂∗G, θ)− ε (Lemma 52)

The upper and lower bounds for Eθ∼P ∗ [R(θ̂∗G, θ)] derived in the previous two equations
shows that (θ̂∗G, P

∗) is an ε-approximate mixed strategy Nash equilibrium of the original
statistical game in Equation 5.1. The above inequalites also show that

sup
θ∈Θ

R(θ̂∗G, θ)− ε ≤ EΘβ∼P ∗G [RG(θ̂∗G,Θβ)] ≤ inf
θ̂∈D

Eθ∼P ∗ [R(θ̂, θ)] + ε.

This, together with Equation (D.8), shows that

inf
θ̂∈MD

sup
θ∈Θ

R(θ̂, θ) = inf
θ̂∈MD,G

sup
Θβ∈Θ/G

RG(θ̂,Θβ).

213

D.4.3 Applications of Invariance Theorem

In our proofs, we establish homeomorphisms between the quotient spaces and another
natural space over which we run our algorithm. Note that establishing a homeomorphism is
sufficient since we are only dealing with Borel σ-algebras on our spaces and homeomorphism
would imply that there is an isomorphism between the Borel σ-algebras of the two spaces.
Hence, measures learnt on one space can be transferred to another.

Proof of Theorem 14

First note that for any g ∈ O(d) and θ ∈ Θ, we have gθ ∈ Θ and the distribution of gX
is Pgθ. Moreover, for any orthogonal matrix g ∈ O(d) we have ‖gθ − gX‖2 = ‖θ − X‖2,
which implies the statistical game is invariant to group transformations G.

For the second part, note that for any θ1, θ2 ∈ Θ such that ‖θ1‖2 = ‖θ2‖2, ∃g ∈ O(d)
s.t. gθ1 = θ2. Mapping all elements to their norm gives us a bijection between the quotient
space and the interval [0, B]. The continuity of this bijection and it’s inverse can easily be
checked using the standard basis for both the topologies.

Proof of Theorem 15

Note that for any θ ∈ Θ, gθ = [g1θ
1:k, g2θ

k+1:d] ∈ Θ. Since g1 is orthogonal, for any
θ1, θ2 ∈ Θ we have ‖g1θ

1:k
1 − g1θ

1:k
2 ‖ = ‖θ1:k

1 − θ1:k
2 ‖. Hence the invariance of the statistical

game follows.
Now, for any θ1, θ2 ∈ Θ such that ‖θ1:k

1 ‖ = ‖θ1:k
2 ‖ and ‖θk+1:d

1 ‖ = ‖θk+1:d
2 ‖, ∃g1 ∈ O(k)

and g2 ∈ O(d−k) such that g1θ
1:k
1 = θ1:k

2 and g2θ
k+1:d
1 = θk+1:d

2 . Hence ∃g ∈ O(k)×O(d−k)
such that gθ1 = θ2. This means that in each equivalence class the parameters B1 = ‖θ1:k

1 ‖2

and B2 = ‖θk+1:d
1 ‖2 are constant. Since ‖θ‖2 ≤ B we have B1 + B2 ≤ B, this gives us a

bijection. The continuity of this bijection and it’s inverse can easily be checked using the
standard basis for both the topologies.

Proof of Theorem 16

We define the action of any g ∈ O(d) on the samples {(Xi, Yi)}ni=1 as transforming them
to {(gXi, Yi)}ni=1. Since Yi = XT

i θ + εi = XT
i g

Tgθ + εi = (gXi)
Tgθ + εi and ‖gθ1 − gθ2‖ =

‖θ1 − θ2‖ for any θ1, θ2 ∈ Θ we have the invariance of the statistical game. The rest of the
proof uses similar arguments as in Theorem 14.

Proof of Theorem 17

First note that for any Σ such that ‖Σ‖2 ≤ B, and any g ∈ O(d), we have ‖gΣgT‖ ≤ B.
If X ∼ N(0,Σ) then for any g ∈ O(d)

E[gXXTgT] = gE[XXT]gT = gΣgT .

214

Hence gX ∼ N(0, gΣgT). Moreover, we have

M(gΣ1g
T , gΣ2g

T)

= tr
(
(gΣ1g

T)−1gΣ2g
T
)
− log |(gΣ1g

T)−1gΣ2g
T | − d

= tr
(
gΣ−1

1 gTgΣ−1
2 gT

)
− log |gΣ−1

1 gTgΣ−1
2 gT | − d

= tr(gΣ−1
1 Σ2g

T)− log |gΣ−1
1 Σ2g

T | − d
= M(Σ1,Σ2),

where the last equality follows from the invariance of trace to multiplication with orthogonal
matrices and the property of the determinant to split over the multiplication of matrices.
This shows the desired invariance of the statistical game.

Now, consider two covariance matrices Σ1,Σ2 with singular value decompositions (SVD)
Σ1 = U1∆1U

T
1 and Σ2 = U2∆2U

T
2 respectively. Here all matrices are square and of full

rank. In particular, ∆1 and ∆2 are diagonal matrices with decreasing entries from left to
right and, U1 and U2 are orthogonal matrices. Since the orthogonal group is transitive
∃g ∈ O(d) such that gU1 = U2. If ∆1 = ∆2 we have gΣ1g

T = Σ2. Hence under the action
of O(d), all covariance matrices with the same singular values fall in the same equivalence
class. It is easy to see that this is also a necessary condition. These equivalence classes
naturally form a bijection with a sequence of d decreasing positive real numbers bounded
above by B. The continuity of this bijection and it’s inverse can easily be checked using
the standard basis for both the topologies.

Proof of Theorem 18

Let P,Q be any two distributions on d elements {1, . . . d} such that ∃g ∈ Sd s.t. gP = Q.
They are indistinguishable from the samples they generate. Since the entropy is defined as

f(P) = −
d∑
i=1

pi log(pi)

it doesn’t depend upon the ordering of the individual probabilites. Hence the statistical
game is invariant under the action of Sd.

Since using a permutation we can always order a given set of probabilities in decreasing
order, there is a natural bijection between the quotient space and the given space. The
continuity of this map and it’s inverse can easily be checked using the standard basis for
both the topologies.

Mixture of Gaussians

In the problem of mixture of Gaussians we are given n samples X1, . . . , Xn ∈ Rd which
come from a mixture distribution of k Gaussians with different means

Pθ =
k∑
i=1

piN (θi,Σi).

215

We assume that all k Gaussians have the same covariance, let’s say identity, and we also
assume that we know the mixture probabilities. Finally, we assume that the mean vectors
θi are such that ‖θi‖ ≤ B. Under this setting we want to estimate the k different means
while minimizing the sum of the L2

2 losses of all the estimates of the mean parameters.
We will show the invariance of this statistical game under the action of the group

G = O(d)×O(d− 1)× . . .×O(d− k + 1). But first we describe an element in the group
and it’s operation on the parameter and sample space.

An element of g ∈ G is made up of a sequence of k orthonormal matrices (g1, . . . , gk)
such that for a given set of parameters θ = (θ1, . . . , θk) ∈ Rd×k (where each θi ∈ Rd) the
matrix gi leaves the first (i− 1) parameters unchanged, i.e. for j = 1, . . . , i− 1 giθj = θj.
Hence the ith orthonormal matrix has (d− i+ 1) degrees of freedom and can be viewed as
an element in O(d− i+ 1).

The action of g on θ is defined as

gθ = g(θ1, . . . , θk)

= (gθ1, . . . , gθk)

= (gk . . . g1θ1, . . . , gk . . . g1θ1)

= (g1θ1, . . . , gi . . . g1θi, . . . , gk . . . g1θk)

where the last equality follows from the definition of our group. The group acts in a
similar manner on the sample space, i.e., for an X ∈ X gX = gk . . . g1X.
Theorem 54. The statistical game defined by mixture of k-Gaussians with identity covari-
ance and known mixture probabilities under L2

2 loss is invariant under the action of the
group O(d)×O(d− 1)× . . .×O(d− k+ 1). Moreover, the quotient space is homeomorphic
to (0, B]k × [0, π](

k
2).

Proof. First we show the invariance of the mixture distribution Pθ =
∑

i piN (θi, I), i.e.,
if X ∼ Pθ then gX ∼ Pgθ. Note that from the proof of Theorem 14 it follows that for
a given normal distribution N(θ̃, I) and an orthonormal matrix h ∈ O(d) s.t. hθ̃ = θ̃ if
X ∼ N(θ̃, I) then hX ∼ N(hθ̃, I) = N(θ̃, I). The invariance of P follows directly from this
by substituting each ‖X− θi‖2 in the pdf with ‖gk . . . g1X− gk . . . g1θi‖2 and the definition
of the group. The L2

2 loss is trivially invariant and hence we establish the invariance of the
statistical game.

Now, notice that for any two given parameters θ = (θ1, . . . , θk), φ = (φ1, . . . , φk) ∈ Rdk

if we have the property that ∀i ‖θi‖ = ‖φi‖ and ∀i, j θTi θj = φTi φj then we can find
orthonormal matrices g1, . . . , gk s.t. ∀i gi . . . g1θi = φi. This follows from the following
inductive argument: Assume we have g1, . . . , gi−1 which satisfy the given constraints. Con-
sider θ′ = gi−1 . . . g1θi. We have ∀j = 1, . . . , i − 1 θ′Tφj = θTi θj = φTi φj because gT = g−1.
Now if φi lies in the span of φ1, . . . , φi−1 then θ′ = φi and we can pick gi to be any or-
thonormal matrix which doesn’t transform this spanned space. Otherwise, we can pick an
orthonormal matrix which rotates the axis orthogonal to the spanned subspace and in the
direction of the high component of θ′ to the corresponding axis for φi. This completes the
desired construction.

216

It is easy to see that given θ, φ, g which satisfy gθ = φ, we have ∀i ‖θi‖ = ‖φi‖ and
∀i, j θTi θj = φTi φj. Hence the equivalence classes are defined uniquely by the norms of the
individual gaussians and the angles between them, since there are k different norms and

(
k
2

)
many angles we can establish a bijection between the quotient space and (0, B]k× [0, π](

k
2).

The continuity of this map and it’s inverse can easily be checked using the standard basis
for both the topologies.

D.5 Finite Gaussian Sequence Model

D.5.1 Proof of Proposition 8

In this section we derive a closed-form expression for the minimizer θ̂t of the following
objective

argmin
θ̂∈DG

Eb∼Pt
[
R(θ̂, be1)

]
,

where DG is the set of deterministic estimators which are invariant to transformations of
orthogonal group O(d). From Lemma 52, we know that for any invariant estimator θ̂ ∈ DG
and any g ∈ O(d), R(θ̂, be1) = R(θ̂, bge1). So the above problem can be rewritten as follows

argmin
θ̂∈DG

Eb∼Pt
[
Eθ∼Ub

[
R(θ̂, θ)

]]
,

where Ub is the uniform distribution over spherical shell of radius b, centered at origin; that
is, its density ub(θ) is defined as

ub(θ) ∝

{
0, if ‖θ‖2 6= b

b−d+1, otherwise
.

The above optimization problem can be further rewritten as

argmin
θ̂∈DG

R(θ̂,Πt),

where R(θ̂,Πt)
def
= Eθ∼Πt

[
R(θ̂, θ)

]
, and Πt is the distribution of a random variable θ which

is generated by first sampling b from Pt and then generating a sample from Ub. Note that Πt

is a spherically symmetric distribution. From Lemma 53, we know that the Bayes estimator
corresponding to any invariant prior is an invariant estimator. So the minimization over
DG in the above optimization problem can be replaced with minimization over the set of
all estimators D. This leads us to the following equivalent optimization problem

argmin
θ̂∈D

R(θ̂,Πt).

Let θ̂t be the minimizer of this equivalent problem. We now obtain an expression for θ̂t(X)
in terms of modified Bessel functions. Let Πt(·|X) be the posterior distribution of θ given

217

the data X and let p(X; θ) be the probability density function for distribution Pθ. Since
the risk is measured with respect to `2

2 metric, the Bayes estimator θ̂t(X) is given by the
posterior mean

θ̂t(X) = Eθ∼Πt(·|X) [θ]

=
Eθ∼Πt [θp(X; θ)]

Eθ∼Πt [p(X; θ)]

=
Eb∼Pt

[∫
θub(θ)p(X; θ)dθ

]
Eb∼Pt

[∫
ub(θ)p(X; θ)dθ

] (definition of Πt)

=
Eb∼Pt

[
b−d+1

∫
‖θ‖2=b

θp(X; θ)dθ
]

Eb∼Pt
[
b−d+1

∫
‖θ‖2=b

p(X; θ)dθ
] (since Ub is uniform on sphere)

=
Eb∼Pt

[
b−d+1e−b

2/2
∫
‖θ‖2=b

θe〈X,θ〉dθ
]

Eb∼Pt
[
b−d+1e−b2/2

∫
‖θ‖2=b

e〈X,θ〉dθ
]

=
Eb∼Pt

[
b2e−b

2/2
∫
‖θ‖2=1

θeb〈X,θ〉dθ
]

Eb∼Pt
[
be−b2/2

∫
‖θ‖2=1

eb〈X,θ〉dθ
] (change of variables).

We now obtain a closed-form expression for the terms
∫
‖θ‖2=1

θeb〈X,θ〉dθ and
∫
‖θ‖2=1

eb〈X,θ〉dθ
appearing in the RHS of the above equation. We do this by relating them to the mean
and normalization constant of Von Mises-Fisher (vMF) distribution, which is a probability
distribution on the unit sphere centered at origin in Rd. This distribution is usually studied
in directional statistics [MJ09]. The probability density function of a random unit vector
Z ∈ Rd distributed according to vMF distribution is given by

p(Z;µ, κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
exp(κ〈µ, Z〉),

where κ ≥ 0, ‖µ‖2 = 1, Iν is the modified Bessel function of the first kind of order ν. Using
the fact that a probability density function integrates to 1, we get the following closed-form
expression for

∫
‖θ‖2=1

eb〈X,θ〉dθ∫
‖θ‖2=1

eb〈X,θ〉dθ =
(2π)d/2Id/2−1(b‖X‖2)

(b‖X‖2)d/2−1
. (D.9)

To get a closed-form expression for
∫
‖θ‖2=1

θeb〈X,θ〉dθ, we relate it to mean of vMF distri-
bution. We have the following expression for the mean of a random vector distributed
according to vMF distribution [Ban+05]∫

‖Z‖=1

Zp(Z;µ, κ)dZ =
Id/2(κ)

Id/2−1(κ)
µ.

218

Using the above equality, we get the following expression for
∫
‖θ‖2=1

θeb〈X,θ〉dθ

∫
‖θ‖2=1

θeb〈X,θ〉dθ =
(2π)d/2Id/2(b‖X‖2)

(b‖X‖2)d/2−1

X

‖X‖2

. (D.10)

Substituting Equations (D.9), (D.10) in the expression for θ̂t(X) obtained above, we get
an expression for θ̂t(X) which involves the modified Bessel function Iν and integrals over
variable b. We note that Iν can be computed to very high accuracy and there exist accurate
implementations of Iν in a number of programming languages. So in our analysis of the
approximation error of Algorithm 7, we assume the error from the computation of Iν is 0.

D.5.2 Proof of Theorem 19

Before we present the proof of the Theorem we present useful intermediate results which
we require in our proof.

Intermediate Results

Lemma 55 (Lipschitz Continuity). Consider the problem of finite Gaussian sequence
model. Let Θ = {θ : θ ∈ Rd, ‖θ‖2 ≤ B} be the ball of radius B centered at origin in Rd. Let
θ̂ be any estimator which maps X to an element in Θ. Then the risk R(θ̂, θ) = EX∼N (θ,I)

[
‖θ̂(X)− θ‖2

2

]
is Lipschitz continuous in its second argument w.r.t `2 norm over the domain Θ, with Lips-
chitz constant 4(B+

√
dB2). Moreover, R(θ̂, be1) = EX∼N (θ,I)

[
‖θ̂(X)− be1‖2

2

]
is Lipschitz

continuous in b over the domain [0, B], with Lipschitz constant 4(B +B2).

Proof. Let Rθ̂(θ) = R(θ̂, θ). The gradient of Rθ̂(θ) with respect to θ is given by

∇θRθ̂(θ) = EX∼N (θ,I)

[
2(θ − θ̂(X)) + (X − θ)‖θ̂(X)− θ‖2

2

]
.

The norm of ∇θRθ̂(θ) can be upper bounded as follows

‖∇θRθ̂(θ)‖2 ≤
∣∣∣∣∣∣EX∼N (θ,I)

[
2(θ − θ̂(X))

] ∣∣∣∣∣∣
2

+
∣∣∣∣∣∣EX∼N (θ,I)

[
(X − θ)‖θ̂(X)− θ‖2

2

] ∣∣∣∣∣∣
2

(a)

≤ 4B + Ex∼N (θ,I)

[
‖X − θ‖2‖θ̂(X)− θ‖2

2

]
(b)

≤ 4B + 4B2EX∼N (θ,I) [‖X − θ‖2]

≤ 4B + 4
√
dB2,

where the first term in (a) follows from the fact that θ, θ̂(X) ∈ Θ and the second term
follows from Jensen’s inequality. This shows that Rθ̂(θ) is Lipschitz continuous over Θ.
This finishes the first part of the proof. To show that R(θ̂, be1) is Lipschitz continuous in

219

b, we use similar arguments. Let Rθ̂(b) = R(θ̂, be1). Then∣∣∣R′
θ̂
(b)
∣∣∣ =

∣∣∣ 〈e1,∇θRθ̂(θ)
∣∣∣
θ=be1

〉 ∣∣∣
(a)

≤
∣∣∣EX∼N (be1,I)

[
2(b− [θ̂(X)]1)

] ∣∣∣+
∣∣∣∣∣∣EX∼N (be1,I)

[
(X1 − b)‖θ̂(X)− be1‖2

2

] ∣∣∣∣∣∣
2

≤ 4B + Ex∼N (be1,I)

[
|X1 − b|‖θ̂(X)− be1‖2

2

]
≤ 4B + 4B2EX∼N (be1,I) [|X1 − b|]
≤ 4B + 4B2,

where (a) follows from the expression for ∇θRθ̂(θ) obtained above.

Lemma 56 (Approximation of risk). Consider the setting of Lemma 55. Let θ̂ be any
estimator which maps X to an element in Θ. Let {Xi}Ni=1 be N i.i.d samples from N (θ, I).
Then with probability at least 1− δ

∣∣∣ 1

N

N∑
i=1

‖θ̂(Xi)− θ‖2
2 −Rθ̂(θ)

∣∣∣ ≤ 4B2

√
log 1

δ

N
.

Proof. The proof of the Lemma relies on concentration properties of sub-Gaussian random
variables. Let Z(X) = ‖θ̂(X) − θ‖2. Note that Rθ̂(θ) = EX∼N (θ,I) [Z(X)]. Since Z(X) is
bounded by 4B2, it is a sub-Gaussian random variable. Using Hoeffding bound we get

∣∣∣ 1

N

N∑
i=1

Z(Xi)− E [Z(X)]
∣∣∣ ≤ 4B2

√
log 1

δ

N
, w.p ≥ 1− δ.

Main Argument

The proof relies on Corollary 4 to show that the averaged estimator θ̂avg is approximately
minimax and P̂LFP is approximately least favorable. Here is a rough sketch of the proof.
We first apply the corollaries on the following reduced statistical game that we are aiming
to solve

inf
θ̂∈DG

sup
b∈[0,B]

R(θ̂, be1).

To apply these corollaries, we need the risk R(θ̂, be1) to be Lipscthiz continuous in b.
This holds for us because of Lemma 55. Next, we convert the guarantees for the reduced
statistical game to the orginial statistical game to show that we learn a minimax estimator
and LFP for finite Gaussian sequence model.

To use Corollary 4, we first need to bound α, β, α′, the approximation errors of the
optimization subroutines described in Algorithms 6, 7. A major part of the proof involves
bounding these quantities.

220

Approximation error of Algorithm 6 There are two causes for error in the optimiza-
tion oracle described in Algorithm 6: (a) grid search and (b) approximate computation of
risk R(θ̂, be1). We now bound the error due to both (a) and (b). From Lemma 56 we know
that for any estimator θ̂i and grid point bj, the following holds with probability at least
1− δ ∣∣∣ 1

N1

N1∑
k=1

‖θ̂i(Xk)− bje1‖2
2 −R(θ̂i, bje1)

∣∣∣ ≤ 4B2

√
log 1

δ

N1

.

Taking a union bound over all estimators {θ̂i}Ti=1 and grid points {bj}B/wj=1 , we can show
that with probability at least 1− δ, the following holds for all i ∈ [T], j ∈ [B/w]

∣∣∣ 1

N1

N1∑
k=1

‖θ̂i(Xk)− bje1‖2
2 −R(θ̂i, bje1)

∣∣∣ ≤ 4B2

√
log BT

wδ

N1

. (D.11)

Let ft,σ(b) be the actual objective we would like to optimize in iteration t of Algorithm 5,
which is given by

ft,σ(b) =
t−1∑
i=1

R(θ̂i, be1) + σb.

Let f̂t,σ(b) be the approximate objective we are optimizing by replacing R(θ̂i, be1) with its
approximate estimate. Let b∗t be a maximizer of ft,σ(b) and b∗t,approx be the maximizer of
f̂t,σ(b) (which is also the output of Algorithm 6). Finally, let b∗t,NN be the point on the grid
which is closest to b∗t . Using Lemma 55 we first show that ft,σ(b) is Lipschitz continuous
in b. The derivative of ft,σ(b) with respect to b is given by

f ′t,σ(b) =
t−1∑
i=1

〈
e1,∇θR(θ̂i, θ)

∣∣∣
θ=be1

〉
+ σ

Using Lemma 55, the magnitude of f ′t,σ(b) can be upper bounded as

|f ′t,σ(b)| ≤ 4(t− 1)(B +B2) + σ.

This shows that ft,σ(b) is Lipschitz continuous in b. We now bound ft,σ(b∗t)− ft,σ(b∗t,approx),
the approximation error of the optimization oracle

ft,σ(b∗t)
(a)

≤ ft,σ(b∗t,NN) +
(
4t(B +B2) + σ

)
w

(b)

≤ f̂t,σ(b∗t,NN) + 4tB2

√
log BT

wδ

N1

+
(
4t(B +B2) + σ

)
w

(c)

≤ f̂t,σ(b∗t,approx) + 4tB2

√
log BT

wδ

N1

+
(
4t(B +B2) + σ

)
w

(d)

≤ ft,σ(b∗t,approx) + 8tB2

√
log BT

wδ

N1

+
(
4t(B +B2) + σ

)
w,

221

where (a) follows from Lipschitz property of the loss function and (b), (d) follow from
Equation (D.11) and hold with probability at least 1−δ and (c) follows from the optimality

of b∗t,approx. This shows that Algorithm 6 is a
(
O

(
TB2

√
log BT

wδ

N1
+ TB(1 +B)w

)
, w

)
-

approximate maximization oracle; that is

α = O

TB2

√
log BT

wδ

N1

+ TB(1 +B)w

 , β = w.

Approximation error of Algorithm 7 There are two sources of approximation error
in Algorithm 7: (a) computation of modified Bessel functions Iν , and (b) approximation
of Pt with its samples. In this analysis we assume that Iν can be computed to very high
accuracy. This is a reasonable assumption because many programming languages have
accurate and efficient implementations of Iν . So the main focus here is on bounding the
error from approximation of Pt.

First, note that since we are using grid search to optimize the maximization problem,
the true distribution Pt for which we are supposed to compute the Bayes estimator is a
discrete distribution supported on grid points {b1, . . . bB/w}. Algorithm 7 does not compute
the Bayes estimator for Pt. Instead, we generate samples from Pt and use them as a proxy
for Pt. Let P̂t be the empirical distribution obtained by sampling N2 points from Pt. Let
pt,j be the probability mass on grid point bj. Using Bernstein inequality we can show that
the following holds with probability at least 1− δ

∀j ∈ [B/w] |p̂t,j − pt,j| ≤

√
pt,j

log B
wδ

N2

. (D.12)

Define estimators θ̂′t, θ̂t as

θ̂′t ← argmin
θ̂∈DG

Eb∼Pt
[
R(θ̂, be1)

]
, θ̂t ← argmin

θ̂∈DG
Eb∼P̂t

[
R(θ̂, be1)

]
.

θ̂′t is what we ideally want to compute. θ̂t is what we end up computing using Algorithm 7.
We now show that θ̂t is an approximate minimizer of the left hand side optimization
problem above. To this end, we try to bound the following quantity

Eb∼Pt
[
R(θ̂t, be1)−R(θ̂′t, be1)

]
.

Let ft(θ̂) = Eb∼Pt
[
R(θ̂, be1)

]
and f̂t(θ̂) = Eb∼P̂t

[
R(θ̂, be1)

]
. We would like to bound the

222

quantity ft(θ̂t)− ft(θ̂′t). Consider the following

ft(θ̂t)
(a)

≤ f̂t(θ̂t) +
4B3

w

√
log B

wδ

N2

(b)

≤ f̂t(θ̂
′
t) +

4B3

w

√
log B

wδ

N2

(c)

≤ ft(θ̂
′
t) +

8B3

w

√
log B

wδ

N2

,

where (a) follows from Equation (D.12) and the fact that the risk R(θ̂, θ) of any esti-
mator is bounded by 4B2, (b) follows since θ̂t is a minimizer of f̂t and (c) follows from
Equation (D.12). This shows that with probability at least 1 − δ, Algorithm 7 is an

O

(
B3

w

√
log B

wδ

N2

)
-approximate optimization oracle; that is,

α′ = O

B3

w

√
log B

wδ

N2

 .

Minimax Estimator We are now ready to show that θ̂avg is an approximate minimax
estimator. Instantiating Corollary 4 for the reduced statistical game gives us the following
bound, which holds with probability at least 1− δ

sup
b∈[0,B]

R(θ̂avg, be1) ≤ inf
θ̂∈DG

sup
b∈[0,B]

R(θ̂, be1) + Õ

(
B2(B + 1)√

T
+ α + α′ + βB(B + 1)

√
T

)
,

where we used the fact that the risk R(θ̂, be1) is 4B(B + 1)-Lipschitz continuous w.r.t b.
The Õ notation in the above inequality hides logarithmic factors. Plugging in the values
of α, α′, β in the above equation gives us

sup
b∈[0,B]

R(θ̂avg, be1) ≤ inf
θ̂∈DG

sup
b∈[0,B]

R(θ̂, be1) + Õ

(
B2(B + 1)√

T

)
.

We now convert this bound to a bound on the original statistical game. From Theo-
rem 13 we know that inf θ̂∈DG supb∈[0,B] R(θ̂, be1) = inf θ̂∈D supθ∈Θ R(θ̂, θ) = R∗. Since the
estimator θ̂avg is invariant to transformations of orthogonal group, we have R(θ̂avg, θ) =
R(θ̂avg, ‖θ‖2e1) for any θ ∈ Θ. Using these two results in the above inequality, we get

sup
θ∈Θ

R(θ̂avg, θ) = sup
b∈[0,B]

R(θ̂avg, be1) ≤ R∗ + Õ

(
B2(B + 1)√

T

)
.

This shows that the worst-case risk of θ̂avg is close to the minimax risk R∗. This finishes
the first part of the proof.

223

LFP To prove the second part, we rely on Corollary 4. Instantiating it for the reduced
statistical game gives us

inf
θ̂∈DG

1

T

T∑
t=1

Eb∼Pt
[
R(θ̂, be1)

]
≥ R∗ − Õ

(
B2(B + 1)√

T
+ α + α′ + βB(B + 1)

√
T

)
.

Plugging in the values of α, α′, β in the above equation gives us

inf
θ̂∈DG

1

T

T∑
t=1

Eb∼Pt
[
R(θ̂, be1)

]
≥ R∗ − Õ

(
B2(B + 1)√

T

)
.

From Equation (D.12) we know that Pt is close to P̂t with high probability. Using this, we
can replace Pt in the above bound with P̂t and obtain the following bound, which holds
with probability at least 1− δ

inf
θ̂∈DG

1

T

T∑
t=1

Eb∼P̂t
[
R(θ̂, be1)

]
≥ R∗ − Õ

(
B2(B + 1)√

T

)
. (D.13)

In the rest of the proof, we show that inf θ̂∈DG
1
T

∑T
t=1 Eb∼P̂t

[
R(θ̂, be1)

]
= inf θ̂ R(θ̂, P̂LFP).

Recall, the density function of P̂LFP is given by: p̂LFP(θ) ∝ ‖θ‖1−d
2 P̂avg(‖θ‖2), where

P̂avg(‖θ‖2) is the probability mass placed by P̂avg at ‖θ‖2. This distribution is equiva-
lent to the distribution of a random variable which is generated by first sampling b from P̂t
and then sampling θ from the uniform distribution on (d− 1) dimensional sphere of radius
b, centered at origin in Rd. Using this equivalence, we can equivalently rewrite R(θ̂, P̂LFP)
for any estimator θ̂ as

R(θ̂, P̂LFP) =
1

T

T∑
t=1

Eb∼P̂t
[
Eθ∼U

[
R(θ̂, bθ)

]]
,

where U is the uniform distribution on the (d − 1) dimensional unit sphere centered at
origin, in Rd. Next, from Lemma 53, we know that the Bayes estimator corresponding to
any invariant prior is an invariant estimator. Since P̂LFP is an invariant distribution, we
have

inf
θ̂∈D

R(θ̂, P̂LFP) = inf
θ̂∈DG

R(θ̂, P̂LFP) = inf
θ̂∈DG

1

T

T∑
t=1

Eb∼P̂t
[
Eθ∼U

[
R(θ̂, bθ)

]]
.

From Lemma 52 we know that for any invariant estimator θ̂, we have R(θ̂, θ1) = R(θ̂, θ2),
whenever θ1 ∼ θ2. Using this result in the above equation gives us

inf
θ̂∈D

R(θ̂, P̂LFP) = inf
θ̂∈DG

1

T

T∑
t=1

Eb∼P̂t
[
R(θ̂, be1)

]
.

Combining the above result with Equation (D.13) shows that P̂LFP is approximately least
favorable.

224

D.5.3 Loss on few co-ordinates

In this section, we present the optimization oracles for the problem of finite Gaussian
sequence model, when the loss is evaluated on a few co-ordinates. Recall, in Theorem 15
we showed that the original min-max statistical game can be reduced to the following
simpler problem

inf
θ̂∈MD,G

sup
b:b[1]2+b[2]2≤B2

R(θ̂, [b[1]e1,k, b[2]e1,d−k]), (D.14)

where b[j] represents the jth co-ordinate of b. We now provide efficient implementations
of the optimization oracles required by Algorithm 5 for finding a Nash equilibrium of this
game. The optimization problems corresponding to the two optimization oracles are as
follows

θ̂t ← argmin
θ̂∈DG

Eb∼Pt
[
R(θ̂, [b[1]e1,k, b[2]e1,d−k])

]
,

bt(σ)← argmax
b:b[1]2+b[2]2≤B2

t−1∑
i=1

R(θ̂i, [b[1]e1,k, b[2]e1,d−k]) + 〈σ, b〉,

where DG is the set of deterministic invariant estimators and Pt is the distribution of
random variable bt(σ). The maximization oracle can be efficiently implemented via a grid
search over {b : b[1]2 + b[2]2 ≤ B2} (see Algorithm 15). The minimization oracle can also
be efficiently implemented. The minimizer has a closed form expression which depends on
Pt and modified Bessel functions (see Algorithm 16).

Algorithm 15 Maximization Oracle

1: Input: Number of coordinates to evaluate loss on k, estimators {θ̂i}t−1
i=1, perturbation σ, grid

width w, number of samples for computation of expected risk R(θ̂, θ): N1

2: Let {b1, b2 . . . bN(w)} be the w-covering of {b : b[1]2 + b[2]2 ≤ B2}
3: for j = 1 . . . N(w) do
4: for i = 1 . . . t− 1 do
5: Generate N1 independent samples {Xl}N1

l=1 from the following distribution

N ([bj [1]e1,k, bj [2]e1,d−k], I)

6: Estimate R(θ̂i, [bj [1]e1,k, bj [2]e1,d−k]) as

1

N1

N1∑
l=1

‖θ̂i(Xl)[1 : k]− bj [1]e1,k‖22.

7: end for
8: Evaluate the objective at bj using the above estimates
9: end for
10: Output: bj which maximizes the objective

225

Algorithm 16 Minimization Oracle

1: Input: Samples {bi}N2
i=1 generated from distribution Pt, number of coordinates to evaluate

loss on k.
2: For any X, compute θ̂t(X) as(∑N2

i=1wibi[1]Ak(bi[1]‖X[1 : k]‖2)∑N2
i=1wi

)
X[1 : k]

‖X[1 : k]‖2
,

where Ak(γ) =
Ik/2(γ)

Ik/2−1(γ)
,

wi = bi[1]2−
k
2 bi[2]2−

d−k
2 e−

‖b‖2
2 Ik/2−1(bi[1]‖X[1 : k]‖2)I(d−k)/2−1(bi[2]‖X[k + 1 : d]‖2),

and Iν is the modified Bessel function of the first kind of order ν.

D.6 Linear Regression

D.6.1 Proof of Proposition 9

In this section we derive a closed-form expression for the minimizer θ̂t of the following
objective

argmin
θ̂∈DG

Eb∼Pt
[
R(θ̂, be1)

]
.

Using the same arguments as in proof of Proposition 8, we can show that the above
optimization problem can be rewritten as the following equivalent optimization problem
over the set of all deterministic estimators

argmin
θ̂∈D

Eθ∼Πt

[
R(θ̂, θ)

]
,

where Πt is the distribution of a random variable θ which is generated by first sampling
a b from Pt and then drawing a random sample from Ub, the uniform distribution on a
spherical shell of radius b. The density function of Ub is given by

ub(θ) ∝

{
0, if ‖θ‖2 6= b

b−d+1, otherwise
.

226

Since the risk is measured with respect to `2
2 metric, the minimizer θ̂t(Dn) is given by the

posterior mean

θ̂t(Dn) = Eθ∼Πt(·|Dn) [θ]

=
Eθ∼Πt [θp(Dn; θ)]

Eθ∼Πt [p(Dn; θ)]

=
Eb∼Pt

[∫
θub(θ)p(Dn; θ)dθ

]
Eb∼Pt

[∫
ub(θ)p(Dn; θ)dθ

]
=

Eb∼Pt
[
b−d+1

∫
‖θ‖2=b

θp(Dn; θ)dθ
]

Eb∼Pt
[
b−d+1

∫
‖θ‖2=b

p(Dn; θ)dθ
]

=

Eb∼Pt
[
b−d+1

∫
‖θ‖2=b

θe−
‖Y−Xθ‖22

2 dθ

]
Eb∼Pt

[
b−d+1

∫
‖θ‖2=b

e−
‖Y−Xθ‖22

2 dθ

]

=

Eb∼Pt
[
b2
∫
‖θ‖2=1

θe−
b2‖Xθ‖22−2b〈θ,XTY〉

2 dθ

]
Eb∼Pt

[
b
∫
‖θ‖2=1

e−
b2‖Xθ‖22−2b〈θ,XTY〉

2 dθ

] (change of variables).

We now relate the terms appearing in the above expression to the mean and normalization
constant of Fisher-Bingham (FB) distribution. As stated in Section 5.5, the probability
density function of a random unit vector Z ∈ Rd distributed according to FB distribution
is given by

p(Z;A, γ) = C(A, γ)−1 exp
(
−ZTAZ + 〈γ, Z〉

)
,

where Z ∈ Sd−1, and γ ∈ Rd, A ∈ Rd×d are the parameters of the distribution with A being
positive semi-definite and C(A, γ) is the normalization constant which is given by

C(A, γ) =

∫
‖Z‖2=1

exp
(
−ZTAZ + 〈γ, Z〉

)
dZ.

The mean of Z is given by∫
‖Z‖2=1

Zp(Z;A, γ)dZ = C(A, γ)−1

∫
‖Z‖2=1

Z exp
(
−ZTAZ + 〈γ, Z〉

)
dZ

= C(A, γ)−1 ∂

∂γ
C(A, γ).

Using these in the previously derived expression for θ̂(Dn) gives us the required result.

D.6.2 Mean and normalization constant of Fisher-Bingham dis-
tribution

In this section, we present our technique for computation of C (A, γ). Once we have an
accurate technique for its computation, computing ∂

∂γ
C(A, γ) should be straight forward as

227

one can rely on efficient numerical differentiation techniques for its computation. Recall, to
implement Algorithm 9 we need to compute C

(
2−1b2XTX, bXTY

)
. Let Σ̂ = 1

n
XTX and

let UΛUT be its eigen decomposition. Then it is easy to see that C
(
2−1b2XTX, bXTY

)
can be rewritten as

C
(
2−1b2XTX, bXTY

)
= C(2−1nb2Λ, bUTXTY).

So it suffices to compute C(A, γ) for some positive semi-definite, diagonal matrix A and
vector γ. Let ai be the ith diagonal entry of A and let γi be the ith element of γ. Kume
and Wood [KW05] derive the following expression for C(A, γ)

C(A, γ) = (2π)d/2

(
d∏
i=1

a
−1/2
i

)
exp

(
1

4

d∑
i=1

γ2
i

ai

)
fA,γ(1),

where fA,γ is the probability density of a non-central chi-squared random variable
∑d

i=1 z
2
i

with zi ∼ N (γi
2ai
, 1

2ai
). There are number of efficient techniques for computation of fA,γ(1) [Imh61;

KW05]. We first present the technique of Imhof [Imh61] for exact computation of fA,γ(1).
Imhof [Imh61] showed that fA,γ(1) can be written as the following integral

fA,γ(1) = π−1

∫ ∞
0

[ρ(u)]−1 cos ζ(u)du,

where ρ : R→ R and ζ : R→ R are defined as

ζ(u) =
1

2

d∑
i=1

(
tan−1

(
u

2ai

)
+

γ2
i

8a3
i

(
1 +

u2

4a2
i

)−1

u

)
− 1

2
u,

ρ(u) =
d∏
i=1

(
1 +

u2

4a2
i

)1/4

exp

(
1

32

(uγi/a
2
i)

2

1 + u2

4a2
i

)
.

One can rely on numerical integration techniques to compute the above integral to desired
accuracy. In our analysis of the approximation error of Algorithm 9, we assume the error
from the computation of fA,γ(1) is negligible.

Before we conclude this subsection, we present another technique for computation of
fA,γ(1), which is typically faster than the above approach. This approach was proposed by
Kume and Wood [KW05] and relies on the saddle point density approximation technique.
While this approach is faster, the downside of it is that it only provides an approximate
estimate of fA,γ(1). To explain this method, we first present some facts about non-central
chi-squared random variables. The cumulant generating function of a non-central chi-
squared random variable with density fA,γ is given by

K(t) =
d∑
i=1

(
−1

2
log

(
1− t

ai

)
+

1

4

γ2
i

ai − t
− γ2

i

4ai

)
(t < min

i
ai).

228

The first derivative of K(t) is given by

K(1)(t) =
d∑
i=1

(
1

2

1

ai − t
+

1

4

γ2
i

(ai − t)2

)
,

and higher derivatives are given by

K(j)(t) =
d∑
i=1

(
(j − 1)!

2

1

(ai − t)j
+
j!

4

γ2
i

(ai − t)j+1

)
, (j ≥ 2).

Let t̂ be the unique solution in (−∞,mini ai) to the saddle point equation K(1)(t̂) = 1.
Kume and Wood [KW05] show that t̂ has finite upper and lower bounds

min
i
ai −

d

4
− 1

2

(
d2

4
+ dmax

i
γ2
i

)1/2

≤ t̂ ≤ min
i
ai −

1

4
− 1

2

(
1

4
+ γ2

min

)1/2

,

where γmin is equal to γi∗ for i∗ = argmini ai. So, to find t̂, one can perform grid search in
the above range. Given t̂, the first-order saddle point density approximation of fA,γ(1) is
given by

f̂A,γ,1(1) =
(
2πK(2)(t̂)

)−1/2
exp(K(t̂)− t̂).

The second-order saddle point density approximation of Zg,h(1) is given by

f̂A,γ,2(1) = f̂A,γ,1(1)(1 + T),

where T = 1
8
ρ̂4 − 5

24
ρ̂2

3, where ρ̂j = K(j)(t̂)/(K(2)(t̂))j/2.

D.6.3 Proof of Theorem 20

Before we present the proof of the Theorem we present useful intermediate results which
we require in our proof.

Intermediate Results

Lemma 57 (Lipschitz Continuity). Consider the problem of linear regression described in
Section 5.3.2. Let Θ = {θ : θ ∈ Rd, ‖θ‖2 ≤ B} and let θ̂ be any estimator which maps the
data Dn = {(Xi, Yi)}ni=1 to an element in Θ. Then the risk R(θ̂, θ) = EDn

[
‖θ̂(Dn)− θ‖2

2

]
is Lipschitz continuous in its second argument w.r.t `2 norm over the domain Θ, with
Lipschitz constant 4(B+B2

√
nd). Moreover, the risk R(θ̂, be1) = EDn

[
‖θ̂(Dn)− be1‖2

2

]
is

Lipschitz continuous in b over the domain [0, B], with Lipschitz constant 4(B +B2
√
n).

Proof. Let Rθ̂(θ) = R(θ̂, θ). The gradient of Rθ̂(θ) with respect to θ is given by

∇θRθ̂(θ) = EDn
[
2(θ − θ̂(Dn))

]
+ EDn

[
‖θ̂(Dn)− θ‖2

2X
T (Y −Xθ)

]
,

229

where X = [X1, X2, . . . Xn]T ,Y = [Y1, . . . Yn]. The norm of ∇θRθ̂(θ) can be upper bounded
as follows

‖∇θRθ̂(θ)‖2 ≤
∣∣∣∣∣∣EDn [2(θ − θ̂(Dn))

] ∣∣∣∣∣∣
2

+
∣∣∣∣∣∣EDn [‖θ̂(Dn)− θ‖2

2X
T (Y −Xθ)

] ∣∣∣∣∣∣
2

(a)

≤ 4B + EDn
[
‖XT (Y −Xθ)‖2‖θ̂(Dn)− θ‖2

2

]
(b)

≤ 4B + 4B2EDn
[
‖XT (Y −Xθ)‖2

]
≤ 4B + 4B2

√
nd,

where the first term in (a) follows from the fact that θ, θ̂(X) ∈ Θ and the second term
follows from Jensen’s inequality. This shows that Rθ̂(θ) is Lipschitz continuous over Θ.
This finishes the first part of the proof. To show that R(θ̂, be1) is Lipschitz continuous in
b, we use similar arguments. Let Rθ̂(b) = R(θ̂, be1). Then∣∣∣R′

θ̂
(b)
∣∣∣ =

∣∣∣ 〈e1,∇θRθ̂(θ)
∣∣∣
θ=be1

〉 ∣∣∣
(a)

≤
∣∣∣EDn [2(b− [θ̂(Dn)]1)

] ∣∣∣+
∣∣∣∣∣∣EDn [eT1 XT (Y −Xθ)‖θ̂(Dn)− be1‖2

2

] ∣∣∣∣∣∣
2

≤ 4B + 4B2EDn
[
|eT1 XT (Y −Xθ)|

]
≤ 4B + 4B2

√
n,

where (a) follows from our bound for ‖∇θRθ̂(θ)‖2 obtained above.

Lemma 58 (Approximation of risk). Consider the setting of Lemma 57. Let θ̂ be any
estimator which maps Dn to an element in Θ. Let {Dn,k}Nk=1 be N independent datasets
generated from the linear regression model with true parameter θ. Then with probability at
least 1− δ ∣∣∣ 1

N

N∑
i=1

‖θ̂(Dn,i)− θ‖2
2 −Rθ̂(θ)

∣∣∣ ≤ 4B2

√
log 1

δ

N

Proof. The proof of the Lemma relies on concentration properties of sub-Gaussian random
variables. Let Z(Dn) = ‖θ̂(Dn) − θ‖2. Note that Rθ̂(θ) = EDn [Z(Dn)]. Since Z(Dn) is
bounded by 4B2, it is a sub-Gaussian random variable. Using Hoeffding bound we get∣∣∣ 1

N

N∑
i=1

Z(Dn,i)− E [Z(Dn)]
∣∣∣ ≤ 4B2

√
log 1

δ

N
, w.p ≥ 1− δ.

Main Argument

The proof uses exactly the same arguments as in the proof of Theorem 19. The only
difference between the two proofs are the Lipschitz constants derived in Lemmas 55, 57.
The Lipschitz constant in the case of regression is O(B + B2

√
n), whereas in the case of

finite Gaussian sequence model it is O(B +B2).

230

Approximation Error of Algorithm 8 There are two causes for error in the optimiza-
tion oracle described in Algorithm 8: (a) grid search and (b) approximate computation of
risk R(θ̂, be1). We now bound the error due to both (a) and (b). From Lemma 58 we know
that for any estimator θ̂i and grid point bj, the following holds with probability at least
1− δ ∣∣∣ 1

N1

N1∑
k=1

‖θ̂i(Dn,k)− bje1‖2
2 −R(θ̂i, bje1)

∣∣∣ ≤ 4B2

√
log 1

δ

N1

.

Taking a union bound over all estimators {θ̂i}Ti=1 and grid points {bj}B/wj=1 , we can show
that with probability at least 1− δ, the following holds for all i ∈ [T], j ∈ [B/w]

∣∣∣ 1

N1

N1∑
k=1

‖θ̂i(Dn,k)− bje1‖2
2 −R(θ̂i, bje1)

∣∣∣ ≤ 4B2

√
log BT

wδ

N1

. (D.15)

Let ft,σ(b) be the actual objective we would like to optimize in iteration t of Algorithm 5,
which is given by

ft,σ(b) =
t−1∑
i=1

R(θ̂i, be1) + σb.

Let f̂t,σ(b) be the approximate objective we are optimizing by replacing R(θ̂i, be1) with its
approximate estimate. Let b∗t be a maximizer of ft,σ(b) and b∗t,approx be the maximizer of
f̂t,σ(b) (which is also the output of Algorithm 8). Finally, let b∗t,NN be the point on the grid
which is closest to b∗t . Using Lemma 57 we first show that ft,σ(b) is Lipschitz continuous
in b. The derivative of ft,σ(b) with respect to b is given by

f ′t,σ(b) =
t−1∑
i=1

〈
e1,∇θR(θ̂i, θ)

∣∣∣
θ=be1

〉
+ σ

Using Lemma 57, the magnitude of f ′t,σ(b) can be upper bounded as

|f ′t,σ(b)| ≤ 4(t− 1)(B +B2
√
n) + σ.

This shows that ft,σ(b) is Lipschitz continuous in b. We now bound ft,σ(b∗t)− ft,σ(b∗t,approx),
the approximation error of the optimization oracle

ft,σ(b∗t)
(a)

≤ ft,σ(b∗t,NN) +
(
4t(B +B2

√
n) + σ

)
w

(b)

≤ f̂t,σ(b∗t,NN) + 4tB2

√
log BT

wδ

N1

+
(
4t(B +B2

√
n) + σ

)
w

(c)

≤ f̂t,σ(b∗t,approx) + 4tB2

√
log BT

wδ

N1

+
(
4t(B +B2

√
n) + σ

)
w

(d)

≤ ft,σ(b∗t,approx) + 8tB2

√
log BT

wδ

N1

+
(
4t(B +B2

√
n) + σ

)
w,

231

where (a) follows from Lipschitz property of the loss function and (b), (d) follow from
Equation (D.15) and hold with probability at least 1−δ and (c) follows from the optimality

of b∗t,approx. This shows that Algorithm 8 is a
(
O

(
TB2

√
log BT

wδ

N1
+ TB(1 +B

√
n)w

)
, w

)
-

approximate maximization oracle; that is

α = O

TB2

√
log BT

wδ

N1

+ TB(1 +B
√
n)w

 , β = w.

Approximation Error of Algorithm 9 There are two sources of approximation error
in Algorithm 9: (a) computation of mean and normalization constant of FB distribution,
and (b) approximation of Pt with its samples. In this analysis we assume that mean and
normalization constant of FB distribution can be computed to very high accuracy. So the
main focus here is on bounding the error from approximation of Pt.

First, note that since we are using grid search to optimize the maximization problem,
the true distribution Pt for which we are supposed to compute the Bayes estimator is a
discrete distribution supported on grid points {b1, . . . bB/w}. Algorithm 9 does not compute
the Bayes estimator for Pt. Instead, we generate samples from Pt and use them as a proxy
for Pt. Let P̂t be the empirical distribution obtained by sampling N2 points from Pt. Let
pt,j be the probability mass on grid point bj. Using Bernstein inequality we can show that
the following holds with probability at least 1− δ

∀j ∈ [B/w] |p̂t,j − pt,j| ≤

√
pt,j

log B
wδ

N2

. (D.16)

Define estimators θ̂′t, θ̂t as

θ̂′t ← argmin
θ̂∈DG

Eb∼Pt
[
R(θ̂, be1)

]
, θ̂t ← argmin

θ̂∈DG
Eb∼P̂t

[
R(θ̂, be1)

]
.

θ̂′t is what we ideally want to compute. θ̂t is what we end up computing using Algorithm 9.
We now show that θ̂t is an approximate minimizer of the left hand side optimization
problem above. To this end, we try to bound the following quantity

Eb∼Pt
[
R(θ̂t, be1)−R(θ̂′t, be1)

]
.

Let ft(θ̂) = Eb∼Pt
[
R(θ̂, be1)

]
and f̂t(θ̂) = Eb∼P̂t

[
R(θ̂, be1)

]
. We would like to bound the

232

quantity ft(θ̂t)− ft(θ̂′t). Consider the following

ft(θ̂t)
(a)

≤ f̂t(θ̂t) +
4B3

w

√
log B

wδ

N2

(b)

≤ f̂t(θ̂
′
t) +

4B3

w

√
log B

wδ

N2

(c)

≤ ft(θ̂
′
t) +

8B3

w

√
log B

wδ

N2

,

where (a) follows from Equation (D.16) and the fact that the risk R(θ̂, θ) of any esti-
mator is bounded by 4B2, (b) follows since θ̂t is a minimizer of f̂t and (c) follows from
Equation (D.16). This shows that with probability at least 1 − δ, Algorithm 9 is an

O

(
B3

w

√
log B

wδ

N2

)
-approximate optimization oracle; that is,

α′ = O

B3

w

√
log B

wδ

N2

 .

The rest of the proof is same as the proof of Theorem 19 and involves substituting the
approximation errors computed above in Corollary 4.

Minimax Estimator We now show that θ̂avg is an approximate minimax estimator.
Instantiating Corollary 4 for the reduced statistical game gives us the following bound,
which holds with probability at least 1− δ

sup
b∈[0,B]

R(θ̂avg, be1) ≤ inf
θ̂∈DG

sup
b∈[0,B]

R(θ̂, be1)

+ Õ

(
B2(B

√
n+ 1)√
T

+ α + α′ + βB(B
√
n+ 1)

√
T

)
,

where we used the fact that the risk R(θ̂, be1) is 4B(B
√
n + 1)-Lipschitz continuous w.r.t

b. The Õ notation in the above inequality hides logarithmic factors. Plugging in the values
of α, α′, β in the above equation gives us

sup
b∈[0,B]

R(θ̂avg, be1) ≤ inf
θ̂∈DG

sup
b∈[0,B]

R(θ̂, be1) + Õ

(
B2(B

√
n+ 1)√
T

)
.

We now convert this bound to a bound on the original statistical game. From Theo-
rem 13 we know that inf θ̂∈DG supb∈[0,B] R(θ̂, be1) = inf θ̂∈D supθ∈Θ R(θ̂, θ) = R∗. Since the
estimator θ̂avg is invariant to transformations of orthogonal group, we have R(θ̂avg, θ) =
R(θ̂avg, ‖θ‖2e1) for any θ ∈ Θ. Using these two results in the above inequality, we get

sup
θ∈Θ

R(θ̂avg, θ) = sup
b∈[0,B]

R(θ̂avg, be1) ≤ R∗ + Õ

(
B2(B

√
n+ 1)√
T

)
.

233

This shows that the worst-case risk of θ̂avg is close to the minimax risk R∗. This finishes
the first part of the proof.

LFP To prove the second part, we rely on Corollary 4. Instantiating it for the reduced
statistical game gives us

inf
θ̂∈DG

1

T

T∑
t=1

Eb∼Pt
[
R(θ̂, be1)

]
≥ R∗ − Õ

(
B2(B

√
n+ 1)√
T

+ α + α′ + βB(B
√
n+ 1)

√
T

)
.

Plugging in the values of α, α′, β in the above equation gives us

inf
θ̂∈DG

1

T

T∑
t=1

Eb∼Pt
[
R(θ̂, be1)

]
≥ R∗ − Õ

(
B2(B

√
n+ 1)√
T

)
.

From Equation (D.12) we know that Pt is close to P̂t with high probability. Using this, we
can replace Pt in the above bound with P̂t and obtain the following bound, which holds
with probability at least 1− δ

inf
θ̂∈DG

1

T

T∑
t=1

Eb∼P̂t
[
R(θ̂, be1)

]
≥ R∗ − Õ

(
B2(B

√
n+ 1)√
T

)
. (D.17)

In the rest of the proof, we show that inf θ̂∈DG
1
T

∑T
t=1 Eb∼P̂t

[
R(θ̂, be1)

]
= inf θ̂ R(θ̂, P̂LFP).

From the definition of P̂LFP, we can equivalently rewrite R(θ̂, P̂LFP) for any estimator θ̂ as

R(θ̂, P̂LFP) =
1

T

T∑
t=1

Eb∼P̂t
[
Eθ∼U

[
R(θ̂, bθ)

]]
,

where U is the uniform distribution on the (d − 1) dimensional unit sphere centered at
origin, in Rd. Next, from Lemma 53, we know that the Bayes estimator corresponding to
any invariant prior is an invariant estimator. Since P̂LFP is an invariant distribution, we
have

inf
θ̂∈D

R(θ̂, P̂LFP) = inf
θ̂∈DG

R(θ̂, P̂LFP) = inf
θ̂∈DG

1

T

T∑
t=1

Eb∼P̂t
[
Eθ∼U

[
R(θ̂, bθ)

]]
.

From Lemma 52 we know that for any invariant estimator θ̂, we have R(θ̂, θ1) = R(θ̂, θ2),
whenever θ1 ∼ θ2. Using this result in the above equation gives us

inf
θ̂∈D

R(θ̂, P̂LFP) = inf
θ̂∈DG

1

T

T∑
t=1

Eb∼P̂t
[
R(θ̂, be1)

]
.

Combining the above result with Equation (D.17) shows that P̂LFP is approximately least
favorable.

234

D.7 Covariance Estimation

D.7.1 Proof of Proposition 10

In this proof, we rely on permutation invariant functions and a representer theorem for such
functions. A function f : Rd → R is called permutation invariant, if for any permutation
π and any X ∈ Rd

f(π(X)) = f(X).

The following proposition provides a representer theorem for such functions.
Proposition 20 (Zaheer, Kottur, Ravanbakhsh, Poczos, Salakhutdinov, and Smola [Zah+17]).
A function f(X) from Rd to R is permutation invariant and continuous iff it can be de-
composed in the form ρ(

∑d
i=1 φ(Xi)), for some suitable transformations φ : R→ Rd+1 and

ρ : Rd+1 → R.
We now prove Proposition 10. First note that from Blackwell’s theorem we know that

there exists a minimax estimator which is just a function of the sufficient statistic, which
in this case is the empirical covariance Sn = 1

n

∑n
i=1XiX

T
i [see Theorem 2.1 of IH81]. So

we restrict ourselves to estimators which are functions of Sn. This, together with Theorem
12, shows that there is a minimax estimator which is a function Sn and which is invariant
under the action of the orthogonal group O(d). Let Σ̂ be such an estimator. Since Σ̂ is an
invariant estimator, it satisfies the following equality for any orthogonal matrix V

Σ̂(V SnV
T) = V Σ̂(Sn)V T .

Setting V = UT in the above equation, we get Σ̂(Sn) = UΣ̂(∆)UT . Hence, Σ̂ is completely
determined by it’s action on diagonal matrices. So, in the rest of the proof we try to
understand Σ̂(∆). Again relying on invariance of Σ̂ and setting V = ∆′UT for some
diagonal matrix ∆′ with diagonal elements ±1, we get

Σ̂(∆′∆∆′) = ∆′UT Σ̂(Sn)U∆′
(a)
= ∆′Σ̂(∆)∆′,

where (a) follows from the fact that Σ̂(Sn) = UΣ̂(∆)UT . Since ∆′∆∆′ = ∆, the above
equation shows that ∆′Σ̂(∆)∆′ = Σ̂(∆) for any diagonal matrix ∆′ with diagonal elements
±1. This shows that Σ̂(∆) is a diagonal matrix. Next, we set V = PπU

T , where Pπ is the
permutation matrix corresponding to some permutation π. This gives us

Σ̂(Pπ∆P T
π) = PπΣ̂(∆)P T

π .

This shows that for any permutation π, Σ̂(π(∆)) = π(Σ̂(∆)), where π(∆) represents per-
mutation of the diagonal elements of ∆. In the rest of the proof, we use the notation ∆i

to denote the ith diagonal entry of ∆ and Σ̂i(∆) to denote the ith diagonal entry of Σ̂(∆).
The above property of Σ̂ shows that Σ̂i(∆) doesn’t depend on the ordering of the elements
in {∆j}j 6=i. This follows by choosing any permutation π which keeps the ith element fixed.
Next, by considering the permutation which only exchanges positions 1 and i, we get

Σ̂i(∆1, . . .∆i, . . .∆d) = Σ̂1(∆i, . . .∆1, . . .∆d).

235

Thus Σ̂i can be expressed in terms of Σ̂1. Represent Σ̂1 by Σ̂0. Combining the above two
properties, we have

Σ̂i(∆) = Σ̂0(∆i, {∆j}j 6=i),

where {∆j}j 6=i represents the independence of Σ̂0 on the ordering of elements {∆j}j 6=i.
Now, consider the function Σ̂0(∆1, {∆j}dj=2). For any fixed a, and ∆1 = a, Σ̂0(a, {∆j}dj=2)

is a permutation invariant function. Using Proposition 20, Σ̂0(a, {∆j}dj=2) can be written
as

Σ̂0(a, {∆j}dj=2) = fa

(
d∑
j=2

ga(∆j)

)
,

for some functions fa, ga. We overload the notation and define fa(x) = f(a, x) and ga(x) =
g(a, x). Using this, we can represent Σ̂i(∆) as

Σ̂i(∆) = f

(
∆i,
∑
j 6=i

g(∆i,∆j)

)
,

for some functions f, g. There is a small technicality which we ignored while using Propo-
sition 20 on Σ̂0. Proposition 20 only holds for continuous functions. Since Σ̂0 is not
guaranteed to be continuous, the proposition can’t be used on this function. However,
this is not an issue because any measurable function is a limit of continuous functions.
Since Σ̂0 is a measurable function, it can be approximated arbitrarily close in the form of
fa

(∑d
j=2 ga(∆j)

)
.

To conclude the proof of the proposition, we note that

inf
Σ̂∈MD,G

sup
λ∈ΞG

R(Σ̂,Diag(λ)) = inf
Σ̂∈Mf,g

sup
λ∈ΞG

R(Σ̂,Diag(λ)).

This is because the minimax estimator can be approximated arbitrarily well using estima-
tors of the form Σ̂i(∆) = f

(
∆i,
∑

j 6=i g(∆i,∆j)
)

and the fact that the model class has
absolutely continuous distributions.

D.8 Entropy Estimation

D.8.1 Proof of Proposition 11

First note that any estimator of entropy is a function of P̂n, which is a sufficient statistic
for the problem. This, together with Theorem 12, shows that there is a minimax estimator
which is a function of P̂n and which is invariant under the action of permutation group. Let
f̂ : Rd → R be such an estimator. Since f̂ is invariant, it satisfies the following property
for any permutation π

f̂(π(P̂n)) = f̂(P̂n).

236

If f̂(P̂n) is continuous, then Proposition 20 shows that it can written as g
(∑d

j=1 h(p̂j)
)
,

for some functions h : R → Rd+1, g : Rd+1 → R. Even if it is not continuous, since it is
a measurable function, it is a limit of continuous functions. So f̂ can be approximated
arbitrarily close in the form of g

(∑d
j=1 h(p̂j)

)
. This also implies the statistical game in

Equation (5.17) can reduced to the following problem

inf
f̂∈MD,G

sup
P∈PG

R(f̂, P) = inf
f̂∈Mg,h

sup
P∈PG

R(f̂, P).

D.9 Experiments

D.9.1 Covariance Estimation

In this section, we compare the performance of various estimators at randomly generated
Σ’s. We use beta distribution to randomly generate Σ’s with varying spectral decays and
compute the average risks of all the estimators at these Σ’s. Figure D.1 presents the
results from this experiment. It can be seen that our estimator has better average case
performance than empirical and James Stein estimators.

1

2

3
d=5

0

1

2

Empirical

James Stein

Avg. Estimator

0 2 4 6 8 10

B

0.5

1

1.5

n=8

n=10

n=15

2

4

6
d=10

0

2

4

0 2 4 6 8 10

B

1

2

3

n=16

n=20

n=30

Figure D.1: Risk of various estimators for covariance estimation evaluated at randomly generated
Σ’s. We generated multiple Σ’s whose eigenvalues are randomly sampled from a Beta distribution
with various parameters and averaged the risks of estimators at these Σ’s. Plots on the left
correspond to d = 5 and the plots on the right correspond to d = 10.

D.9.2 Entropy Estimation

In this section, we compare the performance of various estimators at randomly generated
P ’s. We use beta distribution to randomly generate P ’s and compute the average risks of
all the estimators at these P ’s. Figure D.2 presents the results from this experiment.

237

Figure D.2: Risk of various estimators for entropy estimation evaluated at randomly generated
distributions. We generated multiple P ’s with pi’s sampled from a Beta distribution and averaged
the risks of estimators at these P ’s.

238

Appendix E

Supplementary Material for Chapter 6

E.1 Notation and Terminology

Notation

239

Symbol Description
X feature vector
Y label
X domain of feature vector
Y domain of the label
K number of classes in multi-class classification problem
S data set
P true data distribution
PX , P Y marginal distributions of X, Y
Pn empirical distribution
PX
n , P

Y
n empirical marginal distributions of X, Y in data set S

f : X → RK score based classifier
φ feature transformer
W linear classifier on top of feature transformer
`0−1 0/1 classification loss
` convex surrogate of `0−1

R(f) population risk of classifier f , measured w.r.t `
R̂S(f) empirical risk of classifier f , measured w.r.t `
R(W,φ) population risk of classifier f = Wφ, measured w.r.t `
R̂S(W,φ) empirical risk of classifier f = Wφ, measured w.r.t `
L2(P) set of square integrable functions w.r.t P
f ◦ g(x) denotes function composition f(g(x))
[φ0, . . . , φt](x) denotes concatenation of vectors φ0(x) . . . φt(x)
F hypothesis class of weak classifiers
G hypothesis class of weak feature transformers
Gt hypothesis class of weak feature transformers used in the tth iteration of greedy
W hypothesis class of linear classifiers on top of feature transformers

Terminology

Term Description

Additive Boosting Classical boosting framework which constructs a strong classifier
using additive combinations of weak classifiers

Additive Feature Boosting
Feature boosting framework which constructs a strong classifier
using additive combinations of weak feature transformers with a
linear classifier on top of the feature transformer

Weak classifier Any classifier which by itself doesn’t achieve good performance on
a given classification task and whose performance we wish to boost

Weak feature transformer
Any feature transformation which by itself doesn’t provide good
performance on a given classification task and whose performance we
wish to boost

240

E.2 Proof of Proposition 12

Notation. We use the notation of Huang, Ash, Langford, and Schapire [Hua+17a] in
this proof. We note that this notation will only be used in this section. Later sections use
the notation introduced in Section 6.1. We let gt(x) be the output of the tth residual block,
which is given by the following recursion

gt(x) = ft−1 ◦ gt−1(x) + gt−1(x) =
t−1∑
i=0

fi ◦ gi(x),

with g0, f0 equal to identity functions. The final output of a depth-T ResNet, given input
x, is rendered after a linear classifier W ∈ RK×D on representation gT+1(x). Let Wt be the
auxiliary linear classifier on top of the residual block gt. Define ot(x) as

ot(x)
def
= Wtgt(x).

Note that ot(x) =
∑t

i=0Wtfi ◦ gi(x). Define ht(x) as ht(x)
def
= αt+1ot+1(x)−αtot(x), where

αt is a scalar. Huang, Ash, Langford, and Schapire [Hua+17a] consider exponential loss in
their work, which is defined as

`(o(x), y) =
∑
k 6=y

exp ([o(x)]k − [o(x)]y) .

Algorithm of Bengio, Lamblin, Popovici, and Larochelle [Ben+07]. Using this
notation, the greedy layer-by-layer training technique of Bengio, Lamblin, Popovici, and
Larochelle [Ben+07] for learning ResNets is given by the following update rule

Wt+1, ft ← argmin
W,f

1

n

n∑
i=1

` (W [f ◦ gt(xi) + gt(xi)] , yi) . (E.1)

Algorithm of Huang, Ash, Langford, and Schapire [Hua+17a]. The algorithm
of Huang, Ash, Langford, and Schapire [Hua+17a] for greedy learning of ResNets is given
in Algorithm 17, which is a reproduction of Algorithm 3 of Huang, Ash, Langford, and
Schapire [Hua+17a]. Note that the key update step is given in step 2 of Algorithm 18

ft, αt+1,Wt+1 ← argmin
f,α,W

n∑
i=1

`(αW [f ◦ gt(xi) + gt(xi)], yi). (E.2)

Since α is a scalar, it can be consumed into the linear classifier W . This shows that the
update step of Huang, Ash, Langford, and Schapire [Hua+17a] is equivalent to Equa-
tion (E.1).

241

Algorithm 17 Greedy algorithm of Huang, Ash, Langford, and Schapire [Hua+17a] for
learning ResNets
1: Input: Training data S = {(xi, yi)}ni=1, iterations T , threshold γ
2: Initialize t← 0, γ̃0 ← 0, α0 ← 0, o0 ← 0 ∈ RK , s0(xi) = 0 ∈ RK , ∀i ∈ [n]

3: Initialize cost function [C0(i)]k ←

{
1 if k 6= yi

1−K if k = yi
, ∀i ∈ [n], k ∈ [K]

4: while γt > γ do
5: ft, αt+1,Wt+1, ot+1 ← Algorithm 18(gt)

6: Compute γt ←
√

γ̃2
t+1−γ̃2

t

1−γ̃2
t

, where γ̃t+1 =
−

∑n
i=1 Ct(i)

T ot+1(xi)∑n
i=1

∑
k 6=yi

[Ct(i)]k

7: Update st+1(xi)← st(xi) + ht(xi), where ht(xi) = αt+1ot+1(xi)− αtot(xi)

8: Update cost function [Ct+1(i)]k ←

{
exp ([st+1(xi)]k − [st+1(xi)]yi) if k 6= yi

−
∑

k′ 6=yi exp ([st+1(xi)]k′ − [st+1(xi)]yi) if k = yi
,∀i ∈

[n], k ∈ [K]
9: t← t+ 1
10: end while
11: T ← t− 1
12: Return: WT+1, {ft(·), ∀t}

Algorithm 18 Training a ResNet module
1: Input: gt
2: (ft, αt+1,Wt+1)← argminf,α,W

∑n
i=1 `(αW [f ◦ gt(xi) + gt(xi)], yi)

3: ot+1(x) = Wt+1[ft ◦ gt(x) + gt(x)]
4: Return: ft, αt+1,Wt+1, ot+1

E.3 Proof of Proposition 13

Freund and Schapire [FS95] consider the problem of binary classification with Y = {−1,+1}.
Let F be a hypothesis space of weak classifiers mapping X to Y . Freund and Schapire
[FS95] consider the following weak learning condition. For any set of non-negative weights
{wi}ni=1 over points {(xi, yi)}ni=1 such that

∑
iwi = 1, there is a classifier f ∈ F which

achieves an error at most 1
2
− β

2
, for some β > 0. That is, there exists f ∈ F such that

n∑
i=1

wiI(yi 6= f(xi)) ≤
1

2
− β

2
.

242

This can equivalently be written as∑n
i=1wiyif(xi) =

∑
i:yi=f(xi)

wiyif(xi)−
∑

i:yi 6=f(xi)
wiyif(xi) + 2

∑
i:yi 6=f(xi)

wiyif(xi)

= 1 + 2
∑

i:yi 6=f(xi)
wiyif(xi)

≥ β

= β (
∑n

i=1wi)
(E.3)

We now show that this condition implies Definition 6.3.1 in the label space. We first
introduce the notion of inner product between functions mapping X to R. For any f, g
mapping X to R, we define 〈f, g〉n as

〈f, g〉n =
1

n

n∑
i=1

f(xi)g(xi).

Let the classification loss ` be such that `(f(x), y) = c(yf(x)) for some decreasing function
c : R → R. All the popular classification losses such as logistic, exponential, hinge losses
satisfy this assumption. The functional gradient of R̂S w.r.t f in the above inner product
space is defined as

∇f R̂S(f)(x) =

{
yic
′(yif(xi)), if x = xi

0, otherwise
,

where c′(z) is the derivative of c at z. Note that since c is a decreasing function, c′(z) < 0
for any z. Using this notation, it is easy to see that any hypothesis class F satisfying
Equation (E.3) satisfies the following condition for any function h : X → R

∃f ∈ F , 〈f,−∇f R̂S(h)〉n ≥ β‖∇f R̂S(h)‖1 ≥
β√
n
‖∇f R̂S(h)‖n,

where ‖∇f R̂S(h)‖1 = n−1
∑n

i=1 |∇f R̂S(h)(xi)|. This can be shown by substituting wi in
Equation (E.3) with −c′(yih(xi)). This shows that the weak learning condition of Freund
and Schapire [FS95] satisfies the weak learning condition in Definition 6.3.1, albeit in the
label space.

E.4 Discussion of Theorem 21

In this section, we discuss the results of Theorem 21.
Remark E.4.1 (Reference Classifier). The reference classifier (W ∗, φ∗) in the bound in
Theorem 21 can be any classifier, as long as ‖W ∗‖2 < ∞, ‖φ∗‖PX < ∞. In particular,
if there exists a Bayes optimal classifier satisfying this condition, then the above Theorem
provides an excess risk bound w.r.t the Bayes optimal classifier.

243

Remark E.4.2 (Breakdown of Rates). The T−α term in the bound corresponds to the
optimization error. The ηtεt term corresponds to the approximation error and the rest of the
terms correspond to the generalization error. As T increases, the optimization error goes
down, and as ñ increases, the generalization error goes down. If there is no approximation
error, that is εt = 0 for all t, then the excess risk goes down to 0 as ñ, T →∞ at appropriate
rate.
Remark E.4.3 (Optimization Error). If β = 1, then for appropriate choice of step size the
optimization error goes down as O

(
T−1/3+γ

)
, for some arbitrarily small γ > 0. This rate

is slower than the O(T−1) rates for inexact gradient descent obtained by Schmidt, Roux,
and Bach [SRB11] and Devolder, Glineur, and Nesterov [DGN14]. However, we note that
unlike our work, these works assume that the level sets of the objective are bounded. Under
the assumption that the level sets of population risk are bounded, the optimization error in
Theorem 21 can be improved to O(T−1). However, such a condition need not hold in the
our setting.
Remark E.4.4 (Lipschitzness of loss). The assumptions of smoothness and Lipschitzness
on ` are satisfied by popular loss functions such as logistic loss, softmax + cross entropy
loss. Consider logistic loss for binary classification `(z, y) = log(1 + e−yz). It is easy to
verify that `(z, y) is 1-Lipschitz and 1-smooth w.r.t. z. Similarly, the softmax + cross
entropy loss, which is given by, `(z, y) = −z[y] + log

(∑K
k=1 e

z[k]
)

is 1-Lipschitz and 1-
smooth w.r.t. z.
Remark E.4.5 (Bounded Feature Transformers). The boundedness assumption on the
functions in Gt is satisfied by neural networks made up of bounded activation functions
such as sigmoid, tanh.
Remark E.4.6 (Modular Bounds). Note that the risk bounds are modular and only depend
on the Rademacher complexity terms R(W ,Gt),R(Gt) which capture the complexity of Gt.
To instantiate Theorem 21 for specific choices of Gt, we need to bound these two complexity
terms.
Remark E.4.7 (Bounds on 0/1 risk). Since 0/1 loss is upper bounded by surrogate losses
such as exponential, logistic loss, our Theorem also provides generalization bounds for 0/1
loss.
Remark E.4.8 (Sample Splitting). A natural question that might arise regarding sample
splitting is: “does this make our approach similar to bagging and random forests (RFs)?”.
We would like to note that even with sample splitting, our approach is not similar to bagging
and RFs. Bagging and RFs create ensembles by independently training each base learner.
Whereas, in boosting, the base learners are fit greedily and are not independent of each
other. Another important distinction between RFs and boosting is that RFs work with
complex base classifiers with good predictive power and aim to reduce the variance of these
classifiers by averaging the predictions of multiple independently trained base classifiers.
Whereas in boosting, one works with base classifiers with very little predictive power (i.e.,
high bias) and combines multiple such base classifiers to create a strong classifier with good
predictive power (i.e., low bias). Viewed this way, our approach is very similar to boosting
than RFs.

244

E.5 Proof of Theorem 21

E.5.1 Intermediate Results

In this section we present some intermediate results which we use in the proof of Theo-
rem 21. The proof of the Theorem can be found in Section E.5.2.
Lemma 59. Consider the setting of Theorem 21. Let (Wt, φt) be the tth iterate generated
by Algorithm 10 with Algorithm 12 as update routine. Then for any t, the following holds
with probability at least 1− δ over datasets of size n

R(Wt, φt) ≤ R(Wt−1, φt) + 2ηtLR(W ,Gt) +
4cσmaxBLt

1−s

1− s

(√
log 2/δ

ñ
+

√
K

ñ

)
,

where R(W ,Gt) is the Rademacher complexity term, which is defined as

R(W ,Gt) = E

 sup
W∈W,
g∈Gt

1

ñ

ñ∑
i=1

K∑
k=1

ρik[Wg(xt,i)]k

 ,
and the expectation is over the randomness from St, ρ’s.

Proof. Throughout the proof, we condition on the past datasets S1, . . . St−1 and show that
the Lemma holds for any choice of S1, . . . St−1. Consider the following upper bound for
R(Wt, φt)

R(Wt, φt) ≤ R̂St(Wt, φt) + sup
W∈W,g∈Gt

|R(W,φt−1 + ηtg)− R̂St(W,φt−1 + ηtg)|

(a)

≤ R̂St(Wt−1, φt) + sup
W∈W,g∈Gt

|R(W,φt−1 + ηtg)− R̂St(W,φt−1 + ηtg)|

≤ R(Wt−1, φt) + 2 sup
W∈W,g∈Gt

|R(W,φt−1 + ηtg)− R̂St(W,φt−1 + ηtg)|,

where (a) follows from the definition of Wt. We now rely on Rademacher complexity
bounds in Theorem 62 to bound the supremum in the RHS. To apply the bound, we
first need to ensure `(Wφt−1(x) + ηtWg(x), y) is bounded. Since supX ‖g(X)‖2 ≤ B and
λmax

(
WW T

)
≤ σ2

max, it is easy to see that

sup
X
‖Wφt−1(x) + ηtWg(x)‖2 ≤ σmaxB

t∑
i=1

ηi ≤
cσmaxBt

1−s

1− s
,

where the last inequality follows from the definition of ηt. Since ` is L-Lipschitz in its
first argument, we can show that `(Wφt−1(x) + ηtWg(x), y) lies in an interval of width
2cσmaxBLt1−s

1−s . Applying Theorem 62, we get with probability at least 1− δ

R(Wt, φt) ≤R(Wt−1, φt) + 2E

[
sup

W∈W,g∈Gt

1

ñ

ñ∑
i=1

ρi`(Wφt−1(xt,i) + ηtWg(xt,i), yt,i)

]

+
4cσmaxBLt

1−s

1− s

√
log 2/δ

ñ
.

245

We now focus on bounding the Rademacher complexity term appearing above. To this end,
we rely on the composition property of Rademacher complexity. Since ` is L-Lipscthiz in
the first argument, applying Theorem 63 we get

R(Wt, φt) ≤R(Wt−1, φt) + 2LE

[
sup

W∈W,g∈Gt

1

ñ

ñ∑
i=1

K∑
k=1

ρik[Wφt−1(xt,i) + ηtWg(xt,i)]k

]

+
4cσmaxBLt

1−s

1− s

√
log 2/δ

ñ

≤R(Wt−1, φt) + 2ηtLR(W ,Gt) + 2LE

[
sup
W∈W

1

ñ

ñ∑
i=1

K∑
k=1

ρik[Wφt−1(xt,i)]k

]
︸ ︷︷ ︸

T1

+
4cσmaxBLt

1−s

1− s

√
log 2/δ

ñ

T1 can be bounded as follows. Let ρ ∈ RK×ñ be the matrix whose (k, i)th entry is given by
ρik and φt−1(St) ∈ RD×ñ be the matrix whose (j, i)th entry is given by [φt−1(xt,i)]j. T1 can
be rewritten in terms of ρ, φt−1(St) as

T1 = E
[

sup
W∈W

1

ñ

〈
ρφt−1(St)

T ,W
〉
F

]
≤
[

sup
W∈W

‖W‖2

]
E
[

1

ñ
‖ρφt−1(St)

T‖F
]

≤ σmaxE
[

1

ñ
‖ρφt−1(St)

T‖F
]

≤ σmax

ñ

√
E [‖ρφt−1(St)T‖2

F]

=
σmax

ñ

√
KE [‖φt−1(St)‖2

F] ≤ σmax

√
K

ñ
E
[
sup
X
‖φt−1(X)‖2

]
≤ cσmaxBt

1−s

1− s

√
K

ñ
,

where the last inequality follows from our choice of step size ηt and our assumption on the
boundedness of the outputs of functions in Gt. Substituting this upper bound on T1 in the
previous inequality gives us the required bound on R(Wt, φt).

Lemma 60. Consider the setting of Theorem 21. Let (Wt, φt) be the tth iterate generated
by Algorithm 10 with Algorithm 12 as update routine. Then for any t, the following holds
with probability at least 1− 2δ over datasets of size n

〈gt,−∇φR(Wt−1, φt−1)〉P ≥ βB‖∇φR(Wt−1, φt−1)‖P−εt−2σmaxLR(Gt)−4σmaxBL

√
log 2/δ

ñ
.

246

Proof. Let P̂ñ,t be the empirical distribution of dataset St. Since Gt satisfies the (β, εt)-weak
learning condition w.r.t dataset St, we have

〈gt,−∇φR̂St(Wt−1, φt−1)〉PXñ,t ≥ βB‖∇φR̂St(Wt−1, φt−1)‖PXñ,t − εt.

Consider the following lower bound for 〈gt,−∇φR(Wt−1, φt−1)〉P

〈gt,−∇φR(Wt−1, φt−1)〉P ≥〈gt,−∇φR̂St(Wt−1, φt−1)〉PXñ,t︸ ︷︷ ︸
T1

−
∣∣∣〈gt,−∇φR̂St(Wt−1, φt−1)〉PXñ,t − 〈gt,−∇φR(Wt−1, φt−1)〉P

∣∣∣︸ ︷︷ ︸
T2

We now lower bound each of the terms appearing the RHS of the above inequality. Sim-
ilar to the proof of Lemma 59, throughout the proof we condition on the past datasets
S1, . . . St−1 and show that the Lemma holds for any choice of S1, . . . St−1.

Bounding T1. Using the weak learning condition, T1 can be lower bounded as

T1 ≥ βB‖∇φR̂St(Wt−1, φt−1)‖PXñ,t − εt.

Using triangle inequality, this can be further lower bounded as

T1 ≥βB‖∇φR(Wt−1, φt−1)‖P − βB
∣∣∣‖∇φR(Wt−1, φt−1)‖P − ‖∇φR̂St(Wt−1, φt−1)‖PXñ,t

∣∣∣− εt.
We now bound the middle term in the RHS using standard concentration inequalities.
Define random variable Z as

Z = W T
t−1∇`(Wt−1φt−1(X), Y),

for (X, Y) ∼ P and define zt,i as

zt,i = W T
t−1∇`(Wt−1φt−1(xt,i), yt,i),

where ∇`(u, y) denotes the gradient of ` w.r.t its first argument. Then from the definition
of functional gradients ∇φR̂St(Wt−1, φt−1),∇φR(Wt−1, φt−1), we have

‖∇φR̂St(Wt−1, φt−1)‖2
PXñ,t

=
1

ñ

ñ∑
i=1

‖zt,i‖2, ‖∇φR(Wt−1, φt−1)‖2
P = E

[
‖Z‖2

]
.

Since ` is L-Lipschitz, it is easy to see that ‖Z‖ is a bounded random variable and always
lies in the interval [0, σmaxL]. So using Chernoff bounds in Theorem 61, we can show that
the following holds with probability at least 1− δ∣∣∣∣∣

ñ∑
i=1

1

ñ
‖zt,i‖2 − E

[
‖Z‖2

]∣∣∣∣∣ ≤ σmaxL

√
3E [‖Z‖2] log 1/δ

ñ
.

247

Now, consider the following

∣∣∣‖∇φR(Wt−1, φt−1)‖P − ‖∇φR̂St(Wt−1, φt−1)‖PXñ,t
∣∣∣ =

∣∣∣∣∣∣
√√√√ ñ∑

i=1

1

ñ
‖zt,i‖2 −

√
E [‖Z‖2]

∣∣∣∣∣∣
≤

∣∣∣∑ñ
i=1

1
ñ
‖zt,i‖2 − E [‖Z‖2]

∣∣∣√
E [‖Z‖2]

,

where the last inequality follows from the fact that |
√
a−
√
b| = |a−b|√

a+
√
b
≤ |a−b|√

b
. This shows

that, with probability at least 1− δ, T1 can be lower bounded as

T1 ≥ βB‖∇φR(Wt−1, φt−1)‖P − βσmaxBL

√
3 log 1/δ

ñ
− εt. (E.4)

Bounding T2. Using the definition of functional gradients, T2 can be rewritten as follows

T2 =

∣∣∣∣∣EX [〈gt(X),∇φR(Wt−1, φt−1)(X)〉]− 1

ñ

ñ∑
i=1

〈gt(xt,i),∇φR̂St(Wt−1, φt−1)(xt,i)〉

∣∣∣∣∣
=

∣∣∣∣∣EX,Y [〈gt(X),W T
t−1∇`(Wt−1φt−1(X), Y)〉

]
− 1

ñ

ñ∑
i=1

〈gt(xt,i),W T
t−1∇`(Wt−1φt−1(xt,i), yt,i)〉

∣∣∣∣∣
≤ sup

g∈Gt

∣∣∣∣∣EX,Y [〈g(X),W T
t−1∇`(Wt−1φt−1(X), Y)〉

]
− 1

ñ

ñ∑
i=1

〈g(xt,i),W
T
t−1∇`(Wt−1φt−1(xt,i), yt,i)〉

∣∣∣∣∣ .
We now rely on uniform convergence bounds and bound the RHS in terms of the Rademacher
complexity termR(Gt). First note that the random variable 〈g(X),W T

t−1∇`(Wt−1φt−1(X), Y)〉
is bounded and lies in the interval [−σmaxBL, σmaxBL]. This follows from the Lipschitz
property of the loss ` and the boundedness of the functions in Gt. Using Theorem 62, we
get the following upper bound for T2, which holds with probability at least 1− δ

T2 ≤ 2E

[
sup
g∈Gt

1

ñ

ñ∑
i=1

ρi〈g(xt,i),W
T
t−1∇`(Wt−1φt−1(xt,i), yt,i)〉

]
+ 2σmaxBL

√
log 2/δ

ñ
.

We now focus on bounding the Rademacher complexity term in the above inequality. Define
function hi : RD → R as follows

hi(u) = 〈u,W T
t−1∇`(Wt−1φt−1(xt,i), yt,i)〉.

Note that, hi(u) is σmaxL-Lipschitz in u. The Rademacher complexity can be written in
terms of hi’s as follows

E

[
sup
g∈Gt

1

ñ

ñ∑
i=1

ρi〈g(xt,i),W
T
t−1∇`(Wt−1φt−1(xt,i), yt,i)〉

]
= ESt

[
Eρ

[
sup
g∈Gt

1

ñ

ñ∑
i=1

ρihi(g(xt,i))
∣∣∣St]] .

248

Using the composition property of Rademacher complexities stated in Theorem 63, we get

E

[
sup
g∈Gt

1

ñ

ñ∑
i=1

ρi〈g(xt,i),W
T
t−1∇`(Wt−1φt−1(xt,i), yt,i)〉

]
≤ σmaxLESt

[
Eρ

[
sup
g∈Gt

1

ñ

ñ∑
i=1

D∑
j=1

ρij[g(xt,i)]j

∣∣∣St]]

= σmaxLE

[
sup
g∈Gt

1

ñ

ñ∑
i=1

D∑
j=1

ρij[g(xt,i)]j

]
= σmaxLR(Gt).

So we have the following bound for T2 which holds with probability at least 1− δ

T2 ≤ 2σmaxLR(Gt) + 2σmaxBL

√
log 2/δ

ñ
. (E.5)

Combining Equations (E.4), (E.5) gives us the required bound.

E.5.2 Main Argument

Our analysis of inexact gradient descent uses similar arguments as in Temlyakov [Tem14].
Let φt = φt−1 +ηtgt be the tth iterate generated by the algorithm. We first derive an upper
bound for the reduction in population risk in the tth iteration of the algorithm. From
Lemma 59 we know that with probability at least 1− δ/3T

R(Wt, φt) ≤ R(Wt−1, φt) + C1(t), (E.6)

where C1(t) = 2ηtLR(W ,Gt) + 4cσmaxBLt1−s

1−s

(√
log 6T/δ

ñ
+
√

K
ñ

)
. Since ` is M smooth, the

following holds for any two vectors u,v ∈ RK and y ∈ Y

`(u + v, y) ≤ `(u, y) + 〈v,∇`(u, y)〉+
M‖v‖2

2

2
.

Using this smoothness property, R(Wt−1, φt) = E [`(Wt−1φt−1(x) + ηtWt−1gt, y)] can be
upper bounded as

R(Wt−1, φt) ≤ R(Wt−1, φt−1) + ηt〈gt,∇φR(Wt−1, φt−1)〉P +
η2
tMσ2

max‖gt‖2
P

2
. (E.7)

Combining Equations (E.6), (E.7), we get the following bound on R(Wt, φt) which holds
with probability at least 1− δ/3T

R(Wt, φt) ≤ R(Wt−1, φt−1) + ηt〈gt,∇φR(Wt−1, φt−1)〉P +
η2
tMσ2

maxB
2

2
+ C1(t).

Next, from Lemma 60 we know that the gt chosen by the algorithm satisfies the following
with probability at least 1− 2δ/3T

〈gt,−∇φR(Wt−1, φt−1)〉P ≥ βB‖∇φR(Wt−1, φt−1)‖P − εt − C2(t),

249

where C2(t) = 2σmaxLR(Gt) + 4σmaxBL
√

log 6T/δ
ñ

. Substituting this in the previous equa-
tion, we get the following bound on R(Wt, φt) which holds with probability at least 1−δ/T

R(Wt, φt) ≤R(Wt−1, φt−1)− ηtβB‖∇φR(Wt−1, φt−1)‖P +
c2MB2σ2

max

2
t−2s (E.8)

+ ηtεt + C1(t) + ηtC2(t). (E.9)

Let rt = R(Wt, φt)− R(W ∗, φ∗)−
∑t

i=1(ηiεi + C1(t) + ηtC2(t)). Then the above equation
implies the following recurrence on rt

rt ≤ rt−1 +
c2MB2σ2

max

2
t−2s. (E.10)

We now try to tighten this recurrence. Let W †
t−1 be the pseudoinverse of Wt−1. From the

convexity of ` we have

R(Wt−1, φt−1)−R(W ∗, φ∗)
(a)
= R(Wt−1, φt−1)−R(Wt−1,W

†
t−1W

∗φ∗)

(b)

≤ −〈W †
t−1W

∗φ∗ − φt−1,∇φR(Wt−1, φt−1)〉P
≤ ‖∇φR(Wt−1, φt−1)‖P

(
σ−1

min‖W ∗‖2‖φ∗‖P + ‖φt−1‖P
)
,

where (a) follows from the definition of psuedoinverse and (b) follows from the convexity
of `. Letting At =

∑t
i=1 ηiB, we can lower bound ‖∇φR(Wt−1, φt−1)‖ as

‖∇φR(Wt−1, φt−1)‖ ≥ R(Wt−1, φt−1)−R(W ∗, φ∗)

σ−1
min‖W ∗‖2‖φ∗‖P + At−1

.

Substituting this in Equation (E.8), we get

R(Wt, φt) ≤R(Wt−1, φt−1)− ηtβB
(
R(Wt−1, φt−1)−R(W ∗, φ∗)

σ−1
min‖W ∗‖2‖φ∗‖P + At−1

)
+
c2MB2σ2

max

2
t−2s

+ ηtεt + C1(t) + ηtC2(t).

Rewriting the above equation in terms of rt, we get

rt ≤ rt−1 − ηtβB
(

rt−1

σ−1
min‖W ∗‖2‖φ∗‖P+At−1

)
+ c2MB2σ2

max
2

t−2s

=
(

1− ηtβB

σ−1
min‖W ∗‖2‖φ∗‖P+At−1

)
rt−1 + c2MB2σ2

max
2

t−2s.
(E.11)

In the rest of the proof, we try to solve the above recurrence relation on rt to obtain the
required excess risk bound. First note that there exists t0 such that for all t ≥ t0

1

ηtβB

σ−1
min‖W ∗‖2‖φ∗‖P + At−1

≥ α + 3β(1− s)
4t

. (E.12)

1To be precise, t0 is such that t1−s0 =
ασ−1

min‖W
∗‖2‖φ∗‖P

cβB .

250

This follows from the observation that ηt = ct−s and At−1 ≤ cBt1−s

1−s . We now make use of
Theorem 65 for solving the recurrence in Equation (E.11). We first show that rt satisfies
the conditions for Theorem 65 with a = α, b = (α + β(1− s))/2 and D = t0 and for some
A which we specify later. From Equation (E.10) we have

rt+1 ≤ rt +
c2MB2σ2

max

2
t−2s ≤ rt + A(t− 1)−α,

where the last inequality holds for any A ≥ c2MB2σ2
max

2
and for our choice of α, s specified

in the theorem statement. This shows that the first condition of Theorem 65 is satisfied
by rt. Next, suppose rt ≥ At−α, for some t ≥ t0. Then using Equations (E.11) and (E.12),
rt+1 can be bounded as follows

rt+1 ≤
(

1− α + 3β(1− s)
4t

)
rt +

c2MB2σ2
max

2
t−2s

=

(
1− α + β(1− s)

2t

)
rt−

(
β(1− s)− α

4t

)
rt +

c2MB2σ2
max

2
t−2s︸ ︷︷ ︸

T1

.

Following our choices for α, s and using the fact that rt ≥ At−α, it is easy to verify that
T1 ≤ 0 for sufficiently large A. This shows that for appropriately chosen A, we have

rt+1 ≤
(

1− α + β(1− s)
2t

)
rt.

Since the conditions for Theorem 65 are satisfied, using it to solve our recurrence gives us
the following bound on rt which holds with probability at least 1− δ

rT ≤ O

(
1

Tα

)
.

This finishes the proof of the Theorem.

E.6 Proof of Corollary 5

A simple intuition for why the exact greedy approach satisfies similar risk bounds as gra-
dient greedy approach is that in exact greedy approach one solves the greedy step in Equa-
tion (6.2) exactly. Whereas, in gradient greedy approach, the greedy step is only solved
approximately and so one would expect the objective value of exact greedy approach to
be smaller than gradient greedy approach. We formalize this intuition in the proof. Let
(Wt, φt), where φt = φt−1 +ηtgt, be the tth iterate generated by the exact greedy algorithm.
And let (W̃, φ̃t), where φ̃t = φt−1 +ηtg̃t, be the iterate obtained by running gradient greedy

251

update in the tth iteration of the algorithm. We now bound R(Wt, φt) in terms of R(W̃, φ̃t)

R(Wt, φt) ≤ R̂St(Wt, φt) + sup
W∈W,g∈Gt

|R(W,φt−1 + ηtg)− R̂St(W,φt−1 + ηtg)|

(a)

≤ R̂St(W̃t, φ̃t) + sup
W∈W,g∈Gt

|R(W,φt−1 + ηtg)− R̂St(W,φt−1 + ηtg)|

≤ R((W̃t, φ̃t)) + 2 sup
W∈W,g∈Gt

|R(W,φt−1 + ηtg)− R̂St(W,φt−1 + ηtg)|,

where (a) follows from the definition of Wt, φt which are obtained by minimizing Equa-
tion (6.2). Note that the supremum in the RHS above can be bounded using Lemma 59.

From the proof of Theorem 21, we know that R((W̃t, φ̃t)) can be upper bounded in
terms of R((Wt−1, φt−1)). To be precise, from Equation (E.8) in the proof of Theorem 21,
we know that with probability at least 1− 2δ/T

R(W̃t, φ̃t) ≤R(Wt−1, φt−1)− ηtβB‖∇φR(Wt−1, φt−1)‖P +
c2MB2σ2

max

2
t−2s

+ ηtεt + C1(t) + ηtC2(t).

This shows that

R(Wt, φt) ≤R(Wt−1, φt−1)− ηtβB‖∇φR(Wt−1, φt−1)‖P +
c2MB2σ2

max

2
t−2s

+ ηtεt + C1(t) + ηtC2(t).

Using the exact same techniques as in the proof of Theorem 21, we get the required risk
bound on R(WT , φT).

252

E.7 Proof of Corollary 6

The major part of the proof involves bounding the Rademacher complexity terms appearing
in the risk bound of Theorem 21. We first bound R(G).

R (G) = E

[
sup
g∈G

1

ñ

ñ∑
i=1

D∑
j=1

ρij[g(xt,i)]j

]

= E

[
sup

C:maxj ‖Cj,∗‖1≤Λ

1

ñ

ñ∑
i=1

D∑
j=1

ρijσ(〈Cj,∗,xt,i〉)

]

≤
D∑
j=1

E

[
sup

‖Cj,∗‖1≤Λ

1

ñ

ñ∑
i=1

ρijσ(〈Cj,∗,xt,i〉)

]
(a)

≤
D∑
j=1

E

[
sup

‖Cj,∗‖1≤Λ

1

ñ

ñ∑
i=1

ρij 〈Cj,∗,xt,i〉

]

≤
D∑
j=1

ΛE

[
1

ñ

∣∣∣∣∣
∣∣∣∣∣
ñ∑
i=1

ρijxt,i

∣∣∣∣∣
∣∣∣∣∣
∞

]

=
DΛ

ñ
E

[∣∣∣∣∣
∣∣∣∣∣
ñ∑
i=1

ρi1xt,i

∣∣∣∣∣
∣∣∣∣∣
∞

]
(b)

≤ 2DΛ

√
log d

ñ
,

where (a) follows from the Lipschitzness of sigmoid activation function and composition
property of Rademacher complexities(see Theorem 63) and (b) follows from the following
well known property of sub-Gaussian random variables. Let Z1, . . . Zn be n random vari-
ables, not necessarily independent. Moreover, lets suppose each Zi is sub-Gaussian with
parameter σ. Then E [maxi Zi] ≤

√
2σ2 log n. Since X ⊆ [0, 1]d, it is easy to see that

conditioned on data St, each co-ordinate of
∑ñ

i=1 ρi1xt,i is a sub-Gaussian random variable
with parameter

√
ñ. So using the above stated property of sub-Gaussian random variables,

we get

Eρ

[∣∣∣∣∣
∣∣∣∣∣
ñ∑
i=1

ρi1xt,i

∣∣∣∣∣
∣∣∣∣∣
∞

]
= Eρ

[
max
j∈[d]

max

{
ñ∑
i=1

ρi1[xt,i]j,−
ñ∑
i=1

ρi1[xt,i]j

}]
≤
√

2ñ log 2d.

253

Next, we bound R(W ,G)

R(W ,G) = E

 sup
W∈W,
g∈G

1

ñ

ñ∑
i=1

K∑
k=1

ρik[Wg(xt,i)]k


≤

K∑
k=1

E

 sup
W∈W,
g∈G

1

ñ

ñ∑
i=1

ρik 〈Wk,∗, g(xt,i)〉


(a)

≤ 2σmaxK
D∑
j=1

E

[
sup

‖Cj,∗‖1≤Λ

1

ñ

ñ∑
i=1

ρi 〈Cj,∗,xt,i〉

]
+O

(
σmaxK

√
D logD√
ñ

)
(b)

≤ 4σmaxKDΛ

√
log d

ñ
+O

(
σmaxK

√
D logD√
ñ

)

≤ O

(
σmaxKDΛ log (dD)√

ñ

)
.

where (a) follows from the property of Rademacher complexity stated in Theorem 64 and
(b) uses the arguments used to bound R(G) above. Substituting the above bounds for
R(G) and R(W ,G) in Theorem 21 and using the fact that supX ‖g(X)‖2 ≤

√
D, for all

g ∈ G, we get the required risk bound.

E.8 Proof of Corollary 7

Similar to the proof of Corollary 6, we focus on bounding the Radmacher complexity terms
R(Gt) and R(W ,Gt). To bound R(Gt), we use the same argument we used to bound R(G)

254

in Corollary 6.

R (Gt) = E

[
sup
g∈Gt

1

ñ

ñ∑
i=1

D∑
j=1

ρij[g(xt,i)]j

]

= E

[
sup

C:maxj ‖Cj,∗‖1≤Λ

1

ñ

ñ∑
i=1

D∑
j=1

ρijσ(〈Cj,∗, φt−1(xt,i)〉)

]

≤
D∑
j=1

E

[
sup

‖Cj,∗‖1≤Λ

1

ñ

ñ∑
i=1

ρijσ(〈Cj,∗, φt−1(xt,i)〉)

]

≤
D∑
j=1

E

[
sup

‖Cj,∗‖1≤Λ

1

ñ

ñ∑
i=1

ρij 〈Cj,∗, φt−1(xt,i)〉

]

≤
D∑
j=1

ΛE

[
1

ñ

∣∣∣∣∣
∣∣∣∣∣
ñ∑
i=1

ρijφt−1(xt,i)

∣∣∣∣∣
∣∣∣∣∣
∞

]

=
DΛ

ñ
E

[∣∣∣∣∣
∣∣∣∣∣
ñ∑
i=1

ρiφt−1(xt,i)

∣∣∣∣∣
∣∣∣∣∣
∞

]
(a)

≤ 2cDΛt1−s

1− s

√
log d

ñ
,

where (a) uses similar arguments as in the proof of Corollary 6 and relies on the fact that
‖φt−1(x)‖∞ ≤

∑t−1
i=1 ηi ≤

ct1−s

1−s . Next, we bound R(W ,Gt)

R(W ,Gt) = E

 sup
W∈W,
g∈Gt

1

ñ

ñ∑
i=1

K∑
k=1

ρik[Wg(xt,i)]k


≤

K∑
k=1

E

 sup
W∈W,
g∈Gt

1

ñ

ñ∑
i=1

ρik 〈Wk,∗, g(xt,i)〉


(a)

≤ 2σmaxK
D∑
j=1

E

[
sup

‖Cj,∗‖1≤Λ

1

ñ

ñ∑
i=1

ρi 〈Cj,∗, φt−1(xt,i)〉

]
+O

(
σmaxK

√
D logD√
ñ

)
(b)

≤ 4σmaxcDKΛt1−s

1− s

√
log d

ñ
+O

(
σmaxK

√
D logD√
ñ

)

≤ O

(
t1−s

σmaxKDΛ log dD√
ñ

)
,

where (a) follows from the property of Rademacher complexity stated in Theorem 64 and
(b) relies on arguments used to bound R(Gt). Substituting the above bounds for R(Gt)
and R(W ,Gt) in Theorem 21, we get the required risk bound.

255

E.9 Some Useful Results
Theorem 61 (Chernoff Bounds). Let X =

∑n
i=1Xi, where Xi’s are independently dis-

tributed in [0, 1]. Then, for ε ∈ (0, 1)

P (X > (1 + ε)E [X]) ≤ exp

(
−ε

2

3
E [X]

)
, P (X < (1− ε)E [X]) ≤ exp

(
−ε

2

2
E [X]

)
.

Theorem 62 (Bartlett and Mendelson [BM02]). Let F be a class of functions mapping X
to [a, b] and let {Xi}ni=1 be independently selected according to the probability measure P .
Then for any integer n and any 0 < δ < 1, with probability at least 1− δ over samples of
length n, every f in F satisfies∣∣∣ 1

n

n∑
i=1

f(Xi)− E [f(X)]
∣∣∣ ≤ 2R(F) + (b− a)

√
log 2/δ

n
,

where R(F) is the Rademacher complexity of F which is defined as

R(F) = E

[
sup
f∈F

1

n

n∑
i=1

ρif(Xi)

]
,

where the expectation is taken w.r.t the Rademacher random variables ρ’s and data {Xi}ni=1.
We next present an important result on the composition property of Rademacher com-

plexities.
Theorem 63 (Maurer [Mau16]). Let F be a class of functions mapping X to Rd and let
{hi}ni=1 be L-Lipschitz functions from Rd to R. Then

Eρ

[
sup
f∈F

1

n

n∑
i=1

ρihi(f(Xi))

]
≤ LEρ

[
sup
f∈F

1

n

n∑
i=1

d∑
j=1

ρij[f(Xi)]j

]
.

Theorem 64 (Proposition A.12 of Allen-Zhu, Li, and Liang [ALL19]). Let u : R→ R be
a fixed 1-Lipschitz function. Given F1 . . .Fm classes of functions X → R and suppose for
each j ∈ [m] there exists a function f (0)

j ∈ Fj satisfying supx∈X |u(f
(0)
j (x))| ≤ A, then

F ′ =

{
x→

m∑
j=1

vju(fj(x))
∣∣∣fj ∈ Fj ∧ ‖v‖1 ≤ B ∧ ‖v‖∞ ≤ D

}
satisfies

E

[
sup
f∈F ′

n∑
i=1

1

n
ρi

m∑
j=1

vju(fj(xi))

]
≤ 2D

m∑
j=1

E

[
sup
f∈Fj

n∑
i=1

1

n
ρif(xi)

]
+O

(
AB logm√

n

)
.

Theorem 65 (Temlyakov [Tem14]). Let four positive numbers a < b ≤ 1, A,D ∈ N be
given and let a sequence {rt}∞t=1 have the following properties: r1 ≤ A and for any t ≥ 2

rt ≤ rt−1 + A(t− 1)−a.

Moreover, suppose the sequence is such that if rt ≥ At−a for some t ≥ D, then rt+1 ≤
rt(1− b/t). Then there exists a constant C such that for all t ∈ N we have

rt ≤ Ct−a.

256

E.10 Experiments
This section provides experimental details, including the datasets, hyperparameter settings,
and additional experimental evidence not presented in the main paper.

We first note that in our experiments for DenseCompBoost, we use a slight variant of
Gt defined in Equation (6.3)

Gt =

{
h+ g ◦

(
t−1∑
i=0

αiφi

)
, for h ∈ H, g ∈ G, αi ∈ R

}
,

where H,G are weak feature transformer classes. We use this variant because the dimen-
sions of the input feature space and the representation space need not be the same, and as
a consequence Gt in Equation (6.3) can not always be used. Similar to StdCompBoost, we
consider two choices for H,G: one based on fully connected blocks and the other based on
convolution blocks.

E.10.1 Drawbacks of Layer-by-Layer fitting

In this section, we provide empirical evidence highlighting drawbacks of layer-by-layer
fitting and how our proposed techniques address these drawbacks. Similar to Section 6.4,
we use StdCompBoost to denote standard layer-by-layer fitting.

DenseCompBoost can recover from mistakes. We mentioned earlier that compared
to StdCompBoost, one advantage of DenseCompBoost is that the dense connections allow
it to more easily recover from mistakes made in earlier layers. We now provide empirical
evidence to support this claim. We introduce mistakes in the weights of the first layers
learned using StdCompBoost and DenseCompBoost. To be precise, we fix the weights
of the first layer of both StdCompBoost and DenseCompBoost to (a) the same random
matrix, (b) an all-0 matrix, and then continue the training of the later layers. Table
E.1 shows the results: while StdCompBoost suffers a significant performance drop (from
82.49% when every layer is greedily trained, to 72.99% with a random first layer), the
performance of dense greedy is barely affected (from 95.70% when every layer is trained,
to 95.0% with a random first layer). Similar trend occurs when setting the first layer to
0: dense greedy still achieves a 93.69% test accuracy, while standard greedy would fail to
train at all since any signal in the data has been cut off.

Narrow-to-Wide architecture of CmplxCompBoost. Note that in CmplxComp-
Boost, we increase the widths of layers over iterations. We now justify this choice of
architecture. There are two possible ways to vary the complexity of the G̃t, increasing or
decreasing. We tested both approaches on one tabular dataset CovType, and one image
dataset SVHN. On CovType, we started with a layer width of 4096, then increase or de-
crease the width of subsequent layers by 512 at each layer. On SVHN, the starting layer
width is 128, followed by 4 additional layers, each increasing or decreasing the width by
16. As can be seen in table E.2, increasing complexity gives slightly better results for both

257

layer 1 layer 2 layer 3 layer 4 layer 5
StdCompBoost Random 49.71 50.25 52.51 69.70 72.99

DenseCompBoost Random 49.71 50.86 70.07 92.31 95.00
Zero 50.06 61.76 89.19 93.17 93.69

Table E.1: Test accuracy at each layer, with the first layer being set to a random value or the
all-0 matrix. Compared to the performance without corrupted first layer, StdCompBoost
suffers a performance drop, while DenseCompBoost is almost unaffected, demonstrating
its ability to recover from mistakes made in early layers.

the datasets, therefore we choose to increase the width for CmplxCompBoost in all other
experiments.

Decreasing width Increasing width
CovType 95.58 ± 0.04 95.64 ± 0.16
SVHN 88.30 ± 0.28 89.05 ± 0.01

Table E.2: Test accuracy using CmplxCompBoost with decreasing or increasing layer
widths.

E.10.2 Datasets and Hyperparameters

In this section, we present the details of datasets used in our experiments and describe our
process for hyperparameter selection.

Simulated Datasets. We generated 3 synthetic binary classification datasets in R32.
Simulation 1 is a concentric ellipsoids dataset, where a point x is classified based on xTAx,
for some randomly generated positive semi-definite matrix A. Simulations 2 and 3 are
datasets whose classification boundaries are polynomials of degrees 8 and 9 respectively.
For each of these datasets, we generated 106 samples for training and testing.

Hyper-parameters. We used hold-out set validation to pick the best hyper-parameters
for all the methods. We used 20% of the training data as validation data and picked the
best parameters using grid search, based on validation accuracy. After picking the best
parameters, we train on the entire training data and report performance on the test data.
For all the greedy techniques based on neural networks, we used fully connected blocks and
tuned the following parameters: weight decay, width of weak feature transformers, number
of iterations T . For CmplxCompBoost, we set ∆ = D0/5. For end-to-end training, we
tuned weight decay, width of layers, depth. We used SGD for optimization of all these
techniques. The number of epochs and step size schedule of SGD are chosen to ensure
convergence. For XGBoost, we tuned the number of trees, depth of each tree, learning
rate.

258

Benchmark Datasets. We consider the following image datasets: CIFAR10, MNIST,
FashionMNIST [XRV17], MNIST-rot-back-image [Lar+07], convex [XRV17], SVHN [Net+11],
and the following tabular datasets from UCI repository [BM98]: letter recognition [FS91],
forest cover type (covtype), connect4. The convex dataset involves classifying shapes in
images as either convex or non-convex. MNIST-rot-back-image is generated from MNIST
by rotating the images and adding random images in the background.

Hyper-parameters. For covtype dataset, which doesn’t come with a test set, we ran-
domly sample 20% of the original data and use it as the test set. We use a similar hyper-
parameter selection technique as above and tune the same set of hyper-parameters as
described above. We use convolution blocks for CIFAR10, SVHN, FashionMNIST, convex,
MNIST-rot-back-image and fully connected blocks for the rest. We limit the width of fully
connected blocks to 4096, and the number of output channels in convolution blocks to 128
while tuning the hyper-parameters for the composition boosting techniques and end-to-end
training. For AdaBoost and additive representation boosting, we set these limits to 16000
and 350 respectively. For CmplxCompBoost with convolution blocks, we set ∆ = D0/8.
We do not use data augmentation in our experiments.

E.10.3 Further Experimental Details

Tables E.3, E.4 list the statistics of datasets used in our experiments. We now list the hyper-
parameters tuned for each dataset and learning algorithm. Table E.5 presents the list of
hyper-parameters tuned for XGBoost. All the other techniques we use in our experiments
rely on neural networks. We use SGD with momentum to learn these models. In all our
experiments, we set the initial learning rate of SGD to 0.01, momentum to 0.9, batch
size to 64 and tune the following weight decay values: {0.0001, 0.0005, 0.001, 0.005, 0.01}.
The number of epochs we used for SGD varied with the dataset and is chosen to be large
enough to ensure convergence. Over the course of the SGD optimization, we reduce the
learning rate by a factor of 0.5, if the training loss doesn’t decrease for certain number
of SGD iterations (we rely on scheduler-tolerance option in PyTorch to implement this).
We run all the greedy techniques (AdaBoost, additive feature boosting, StdCompBoost,
DenseCompBoost, CmplxCompBoost) for 10 iterations and use validation dataset to decide
the best early stopping rule. For End-2-End training, we tune two values of depth: 5, 10.
Tables E.6, E.7 presents the list of all the other hyper-parameters tuned.

Table E.3: Details of simulated datasets used in our experiments. We use 20% of the
training data as validation set for picking the best hyper-parameter

Dataset Simulation 1 Simulation 2 Simulation 3
Train samples 1000000 1000000 1000000
Test samples 500000 500000 500000

Classes 2 2 2

259

Table E.4: Details of benchmark datasets used in our experiments. We use 20% of the
training data as validation set for picking the best hyper-parameter

Image Datasets
Details SVHN FashionMNIST CIFAR10 Convex MNIST-rot-back-image

Train samples 73257 60000 50000 8000 12000
Test samples 26032 10000 10000 50000 50000

Classes 10 10 10 2 10

Tabular Datasets
Details MNIST Letter CovType Connect4

Train samples 60000 15000 464809 54045
Test samples 10000 5000 116203 13512

Classes 10 26 7 3

Table E.5: List of hyper-parameters tuned for XGBoost, on all the datasets used in our
experiments.

Parameter Values Tuned
Tree Depth {10, 15, 20}

Learning Rate {0.1, 0.2}
Number of Trees {400, 800, 1600}

Table E.6: List of hyper-parameters tuned for various compositional boosting techniques
and end-2-end training.

Dataset Hyper-parameters tuned
Simulation-1 width:{32, 64, 128}
Simulation-2 width:{64, 128, 256}
Simulation-3 width:{256, 512, 1024}

SVHN output channels:{32, 64, 128}
FashionMNIST output channels:{32, 64, 128}

Convex output channels:{32, 64, 128}
MNIST-rot-back-image output channels:{32, 64, 128}

CIFAR10 output channels:{32, 64, 128}
MNIST width:{256, 512, 1024}
LETTER width:{256, 512, 1024}
Covtype width:{1024, 2048, 4096}
Connect4 width:{256, 512, 1024}

260

Table E.7: List of hyper-parameters tuned for AdaBoost and additive feature boosting. To
be fair for additive boosting techniques, we considered wider weak learners than the ones
used for compositional boosting and end-2-end training.

Dataset Hyper-parameters tuned
Simulation-1 width:{256, 512, 1024}
Simulation-2 width:{256, 512, 1024}
Simulation-3 width:{4096, 8192, 16384}

SVHN output channels:{128, 256, 350, 512}
FashionMNIST output channels:{128, 256, 350, 512}

Convex output channels:{128, 256, 350, 512}
MNIST-rot-back-image output channels:{128, 256, 350, 512}

CIFAR10 output channels:{128, 256, 350, 512}
MNIST width:{256, 512, 1024}
LETTER width:{256, 512, 1024}
Covtype width:{4096, 8192, 16384}
Connect4 width:{256, 512, 1024}

261

	1 Introduction
	1.1 Part I: Online Learning with Full Information Feedback
	1.2 Part II. Bandit Optimization
	1.3 Part III: Minimax Statistical Estimation
	1.4 Part IV: Boosting
	1.5 Summary of publications

	I Online Learning with Full Information Feedback
	2 Following the Perturbed Leader for Nonconvex Losses
	2.1 Problem Setup and Main Results
	2.1.1 Main Result

	2.2 Background
	2.3 Non-Convex FTPL
	2.4 Discussion

	3 Optimistic Follow the Perturbed Leader for Convex & Nonconvex Losses
	3.1 Preliminaries and Background Material
	3.2 Dual view of Perturbation as Regularization
	3.3 Online Learning with OFTPL
	3.3.1 Online Convex Learning
	3.3.2 Online Nonconvex Learning

	3.4 Minimax Games
	3.5 Discussion

	II Bandit Optimization
	4 Efficient Bandit Optimization for Convex Quadratic Losses
	4.1 Problem Setting and Background
	4.1.1 One-point Gradient and Hessian Estimates
	4.1.2 Self Concordant Barriers

	4.2 Main Results
	4.3 Related Work
	4.4 Regularized Bandit Newton Algorithm
	4.4.1 Importance of Hessian Estimates

	4.5 Analysis
	4.6 Implementation
	4.7 Discussion

	III Minimax Statistical Estimation
	5 Learning Minimax Estimators via Online Learning
	5.1 Background and Problem Setup
	5.1.1 Minimax Estimation and Statistical Games

	5.2 Minimax Estimation via Online Learning
	5.3 Invariance of Minimax Estimators and LFPs
	5.3.1 Finite Gaussian Sequence Model
	5.3.2 Linear Regression
	5.3.3 Normal Covariance Estimation
	5.3.4 Entropy estimation

	5.4 Finite Gaussian Sequence Model
	5.5 Linear Regression
	5.6 Normal Covariance Estimation
	5.7 Entropy Estimation
	5.8 Experiments
	5.8.1 Finite Gaussian Sequence Model
	5.8.2 Linear Regression
	5.8.3 Normal Covariance Estimation
	5.8.4 Entropy Estimation

	5.9 Discussion

	IV Boosting
	6 Generalized Boosting
	6.1 Preliminaries
	6.2 Generalized Boosting
	6.2.1 Compositional Boosting

	6.3 Excess Risk Bounds
	6.4 Experiments
	6.4.1 Simulated Datasets
	6.4.2 Benchmark Datasets

	6.5 Discussion

	7 Conclusion and Future Work
	Bibliography

	V Appendix
	A Supplementary Material for Chapter 2
	A.1 Proof of Proposition 1
	A.2 Non-oblivious to Oblivious Adversary Model
	A.3 Proof of Lemma 2

	B Supplementary Material for Chapter 3
	B.1 Dual view of Perturbations as Regularization
	B.1.1 Proof of Theorem 2

	B.2 Online Convex Learning
	B.2.1 Proof of Theorem 5
	B.2.2 Proof of Corollary 1

	B.3 Online Nonconvex Learning
	B.3.1 Proof of Theorem 6
	B.3.2 Proof of Corollary 2

	B.4 Convex-Concave Games
	B.4.1 General Result
	B.4.2 Proof of Theorem 7

	B.5 Nonconvex-Nonconcave Games
	B.5.1 General Result
	B.5.2 Proof of Theorem 8

	B.6 Choice of Perturbation Distributions
	B.7 High Probability Bounds
	B.7.1 Online Convex Learning
	B.7.2 Convex-Concave Games
	B.7.3 Nonconvex-Nonconcave Games

	B.8 Background on Convex Analysis

	C Supplementary Material for Chapter 4
	C.1 Proof of Proposition 3
	C.2 Proof of Proposition 4
	C.3 Proof of Proposition 5
	C.4 Warm up: Hypothetical case of known Hessians
	C.4.1 Intermediate Results
	C.4.2 Proof of Theorem 38

	C.5 Proof of Theorem 10
	C.5.1 Proof of Proposition 6
	C.5.2 Main argument for Theorem 10

	C.6 Additional Results
	C.7 Review of Self Concordant Barriers

	D Supplementary Material for Chapter 5
	D.1 Measurability of Bayes Estimators
	D.2 Minimax Estimators, LFPs and Nash Equilibirium
	D.3 Minimax Estimation via Online Learning
	D.3.1 Proof of Proposition 7
	D.3.2 Proof of Theorem 11
	D.3.3 Proof of Corollary 3
	D.3.4 Proof of Corollary 4

	D.4 Invariance of Minimax Estimators
	D.4.1 Proof of Theorem 12
	D.4.2 Proof of Theorem 13
	D.4.3 Applications of Invariance Theorem

	D.5 Finite Gaussian Sequence Model
	D.5.1 Proof of Proposition 8
	D.5.2 Proof of Theorem 19
	D.5.3 Loss on few co-ordinates

	D.6 Linear Regression
	D.6.1 Proof of Proposition 9
	D.6.2 Mean and normalization constant of Fisher-Bingham distribution
	D.6.3 Proof of Theorem 20

	D.7 Covariance Estimation
	D.7.1 Proof of Proposition 10

	D.8 Entropy Estimation
	D.8.1 Proof of Proposition 11

	D.9 Experiments
	D.9.1 Covariance Estimation
	D.9.2 Entropy Estimation

	E Supplementary Material for Chapter 6
	E.1 Notation and Terminology
	E.2 Proof of Proposition 12
	E.3 Proof of Proposition 13
	E.4 Discussion of Theorem 21
	E.5 Proof of Theorem 21
	E.5.1 Intermediate Results
	E.5.2 Main Argument

	E.6 Proof of Corollary 5
	E.7 Proof of Corollary 6
	E.8 Proof of Corollary 7
	E.9 Some Useful Results
	E.10 Experiments
	E.10.1 Drawbacks of Layer-by-Layer fitting
	E.10.2 Datasets and Hyperparameters
	E.10.3 Further Experimental Details

