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Abstract
Deep learning works well when the problem is regular enough and there is abun-

dant training data to adequately and in a representative way reflect all the regular-
ity. As the ambition of researchers grows, problems with less regularity are being
addressed, where more data is needed to achieve great performance. In addition,
as researchers push the boundary of deep learning, state-of-the-art models become
more and more data-hungry due to the growing capacity. Hence, data annotation is
necessary to train deep learning models to perform well. However, data annotation
is a costly process that requires a significant amount of work for each new task of
interest.

To tackle this difficulty, we present algorithms that can leverage other kinds of in-
formation to achieve a better performance given a certain amount of data. In this the-
sis, we show how to leverage several kinds of information including: (1) unlabeled
data; (2) data from another domain; (3) prior knowledge. First, when unlabeled data
of the domain of interest is available, semi-supervised learning can effectively im-
prove the performance of deep learning models by regularizing the models to make
consistent predictions for similar examples; Second, when data from another domain
is available, transfer learning or domain adaptation can be applied to transfer general
knowledge or task-specific knowledge learned from another domain to the domain
of interest; Last, with prior knowledge, we can inject targeted inductive biases into
the models and make use of external knowledge bases.

With three possible directions, one might wonder what direction should be taken
given a new task. To offer practical suggestions to researchers and practitioners,
we analyze the effectiveness, the applicability and the engineering difficulty of each
algorithm. Specifically, we present the performance of different algorithms on dif-
ferent problems and study whether different algorithms can be combined together
for improved performance, analyze whether an algorithm can be applied to a broad
range of tasks or is restricted to certain tasks and discuss the required engineering
efforts for each algorithm.
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Chapter 1

Introduction

1.1 Background
In recent years, the rise of deep learning has led to significant breakthroughs in a wide variety
of domains. While these advancements are largely credited to the improved capacity of novel
neural architectures, the amount of training data plays an equally critical role. Specifically, the
early success of deep learning often relies on the construction of large-scale labeled datasets,
such as ImageNet that contains millions of images for classification, WMT with millions of
paralleled sentences for machine translation or a speech recognition dataset reaching over 10,000
hours of audio. In addition, the success of deep learning motivates researchers to tackle more
and more challenging problems such as question answering, reasoning and chatbots. In these
difficult problems, training models with a large capacity on a large amount of data is needed to
achieve a great performance. For example, the recently released chatbot Meena [1] uses a neural
network with 2.6 billion parameters and is trained on public domain social media conversation
datasets with 40 billion words. Hence, a large amount of labeled data is typically required for
deep learning to work well.

However, data annotation is an expensive process that requires a large amount of work for
each new task of interest. For better data efficiency, we present algorithms to leverage several
kinds of information that is easier to obtain. We show that deep learning can still work well
with limited data and additional easy-to-obtain information. We show methods that leverage (1)
unlabeled data by semi-supervised learning; (2) data from another domain by transfer learning;
(3) external knowledge that is useful for the task at hand.

1.2 Algorithms for Data-Efficient Learning

1.2.1 Semi-supervised Learning

Among many possible directions, exploiting unlabeled examples via semi-supervised learn-
ing [33] is arguably one of the most widely considered directions. Most recent efforts in semi-
supervised learning with deep model can be grouped into four categories: (1) graph-based label
propagation via graph convolution [126] and graph embeddings [274], (2) modeling prediction
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target as latent variables [125], (3) consistency training [8, 135, 171] and (4) self-training or
co-training [22, 224, 291].

Unsupervised Data Augmentation In Chapter 2, we present a method called unsupervised
data augmentation or UDA that makes use of better data augmentation in consistency training.
UDA brings substantial improvements across six language and three vision tasks under the same
consistency training framework.

In a nutshell, the consistency training methods simply regularize the model prediction to be
less sensitive to small noise applied to data examples (labeled or unlabeled). In the simplest
form, given an observed example x, consistency training methods first create a noised version
x̂ (e.g. by adding Gaussian noise or dropout), and enforce the two model predictions of x and
x̂ to be similar. Intuitively, a good model should be invariant to any superficial and small noise
that does not change the label of an example. Under this generic framework, methods in this
category differ mostly in how the perturbed sample x̂ is created, which in turn influences the
sample efficiency. Notably, this category of method is extremely simple and can be directly
applied to unlabeled samples without changing the model architecture for most problems.

Besides exploiting unlabeled examples, another more direct alternative to alleviating super-
vision scarcity is to perform data augmentation based on labeled examples. Typically, given a
labeled pair (x, y), data augmentation utilizes the prior knowledge of the data domain to construct
a transformation which maps the original example x to an augmented example x̂ that shares the
same label y as the original input. For example, for image classification, flipping or rotating an
image can lead to a new image with the same class.

Despite the distinct motivations of smoothness enforcing and data augmentation, the key
component in both methods is a noise or perturbation mapping that produces a new example from
an original example. In comparison, one desirable property of data augmentation is that it makes
sure x̃ shares the same label. On the other hand, consistency training can be directly applied
to unlabeled data while data augmentation requires label information. Hence, we investigate the
role of noise injection in consistency training and observe that advanced data augmentation meth-
ods, specifically those work best in supervised learning [48, 131, 234, 294], also perform well
in semi-supervised learning. There is indeed a strong correlation between the performance of
data augmentation operations in supervised learning and their performance in consistency train-
ing. We substitute the traditional noise injection methods with high quality data augmentation
methods in order to improve consistency training. UDA leads to significant improvements on
text classification and image classification tasks in low-data regime.

Noisy Student Training for ImageNet After presenting a method that leads to substantial im-
provements in low-data regime where the amount of training data is small, we turn to ImageNet
where we have a large amount of labeled training data. On ImageNet, state-of-the-art (SOTA)
vision models are still trained with supervised learning which requires a large corpus of labeled
images to work well. By showing the models only labeled images, we limit ourselves from
making use of unlabeled images available in much larger quantities to improve accuracy and
robustness of SOTA models.

In Chapter 3, we present a method called Noisy Student Training that uses unlabeled images
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to improve the SOTA ImageNet accuracy. We show that the accuracy gain has an outsized impact
on robustness (out-of-distribution generalization). We use a much larger corpus of unlabeled
images, where a large fraction of images do not belong to ImageNet training set distribution
(i.e., they do not belong to any category in ImageNet). Noisy Student Training has three main
steps: (1) train a teacher model on labeled images, (2) use the teacher to generate pseudo labels
on unlabeled images, and (3) train a student model on the combination of labeled images and
pseudo labeled images. We iterate this algorithm a few times by treating the student as a teacher
to relabel the unlabeled data and training a new student.

Noisy Student Training improves self-training and distillation in two ways. First, it makes
the student larger than, or at least equal to, the teacher so the student can better learn from a
larger dataset. Second, it adds noise to the student so the noised student is forced to learn harder
from the pseudo labels. To noise the student, we use input noise such as RandAugment data
augmentation [49] and model noise such as dropout [241] and stochastic depth [104] during
training.

Using Noisy Student Training, together with 300M unlabeled images, we improve Efficient-
Net’s [250] ImageNet top-1 accuracy to 88.4. This accuracy is 2.0 better than the previous SOTA
results which requires 3.5B weakly labeled Instagram images. Not only our method improves
standard ImageNet accuracy, it also improves classification robustness on much harder test sets
by large margins.

Noisy Student Training for a Complex Reading Comprehension Dataset RACE After study-
ing semi-supervised learning’s effectiveness on classification tasks. We are interested in whether
semi-supervised learning can lead to performance improvements on more complex tasks such as
reasoning and machine comprehension. In Chapter 4, we first present a reading comprehension
dataset that contains questions used to evaluate human’s reasoning abilities and that requires sig-
nificantly more reasoning than existing reading comprehension datasets. Then we evaluate the
performance of Noisy Student Training on this task. We find that Noisy Student Training leads
to significant improvements even for this complex task.

1.2.2 Transfer Learning

Transfer learning can also effectively reduce the need for using a large amount of annotation
data by transferring knowledge learned on another task or domain. It improves performance of
our model on a target task by using extra data available on a source task. Approaches in this
direction can be broadly categorized into two groups where the source task and the target task
are either similar or different. First, when the source task and the target task are similar, shared
statistical regularities can be better learned on the combined data on two tasks. For example, for
the task of sentiment classifications, book review data can be useful for the task of movie review
[28, 67, 68, 262]. Second, when the source task and the target task are different, the source
task is usually used to pretrain a neural representation to learn task-agnostic knowledge about
text, images or videos. Pretraining has given rises to a lot of breakthroughs in natural language
processing recently [50, 56, 101, 198, 201, 289].
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Transfer Learning by Parameter Sharing between Similar Sub-tasks In Chapter 5, we
present ITransF, a method that learns a parameter sharing mechanism for transferring knowl-
edge between sub-tasks for knowledge base completion. Specifically, as different sub-tasks,
many relations share common statistical regularities. At the core of ITransF is a sparse attention
mechanism, which learns to compose shared concept parameters into relation-specific param-
eters, leading to a better generalization property. ITransF improves mean rank and Hits@10
on two benchmark datasets on knowledge base completion, over all previous approaches of the
same kind. In addition, the parameter sharing is clearly indicated by the learned sparse attention
vectors, enabling us to interpret how knowledge transfer is carried out.

Transfer Learning by Domain-invariant Representation Learning In Chapter 6, we present
a method that uses adversarial training to learn domain-invariant representation to perform trans-
fer learning between similar domains. Adversarial training has been shown to able to learn an
invariant representation across domains [28, 67, 68, 262] and enables classifiers trained on the
source domain to be applicable to the target domain. Moment discrepancy regularizations can
also effectively remove domain-specific information [28, 298] for the same purpose. By learning
language-invariant representations, classifiers trained on the source language can be applied to
the target language [39, 281]. In our work, the representation learning process is formulated
as an adversarial minimax game. We analyze the optimal equilibrium of such a game and find
that it amounts to maximizing the uncertainty of inferring the detrimental factor given the rep-
resentation while maximizing the certainty of making task-specific predictions. We show that
the proposed framework induces an invariant representation, and leads to better generalization
evidenced by the improved performance on machine translation.

Transfer Learning by Pretraining Different from the previously mentioned approaches where
transfer learning happens between similar tasks, pretraining transfers knowledge from a source
task that is different from the target task. The pretraining task is used to learn a task-agnostic rep-
resentation of words, sentences and images. Pretraining has been widely used in natural language
processing. Collobert and Weston [45] demonstrated that word embeddings learned by language
modeling can improve the performance significantly on semantic role labeling. Later, the pre-
training of word embeddings was simplified and substantially scaled in Word2Vec [166] and
Glove [197]. More recently, Dai and Le [50], Devlin et al. [56], Howard and Ruder [101], Peters
et al. [198], Radford et al. [201], Yang et al. [289] have shown that pre-training using language
modeling and denoising auto-encoding leads to significant improvements on many tasks in the
language domain.

In Chapter 7, we first introduce a cloze test dataset CLOTH and then show that a language
model pretrained on the 1-Billion-Word corpus, a large scale language modeling corpus, can lead
to significant improvements on the CLOTH dataset. Specifically, the pretrained model achieves
an accuracy of 70.7, significantly outperforming the model trained only on the CLOTH dataset
which has an accuracy of 48.5. This shows that pretraining can leverage a large amount of
unlabeled data to learn general knowledge about natural language.
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1.2.3 Making use of External Knowledge
Lastly, when we have prior knowledge about the task at hand, we can improve models’ perfor-
mance by creating models that reflect or make use of the prior knowledge. The prior knowledge
can be inductive biases that one has about the current task or external world knowledge stored as
knowledge bases.

Inductive Biases as External Knowledge In Chapter 8, with the prior knowledge that token-
level training signals provides better credit assignments than sentence-level training signals, we
present methods that lead to improved performance for text generation by breaking down the
sentence-level training signals into token-level signals. Specifically, we use the sentence-level
training signal provided by RAML [183] and establish a theoretical equivalence between the
token-level counterpart of RAML and the entropy regularized reinforcement learning. Motivated
by this connection, we present two sequence prediction algorithms with improved performance.

Knowledge Bases as External Knowledge In Chapter 9, we present a method to incorporate
structured knowledge information from knowledge bases to enable the model to understand en-
tities that are usually not well covered in raw text. Prior work typically incorporate prior knowl-
edge in the form of knowledge base embeddings [36, 285] or enhance pretraining with external
knowledge bases [312]. However, different downstream tasks usually use different knowledge
bases and switching tasks would also require retraining the knowledge base embedding and fine-
tuning representation learning model. We present a method that incorporates external structured
knowledge from knowledge bases by Graph Convolutional Network.

1.3 A Comprehensive View for Data-Efficient Learning
Given a new task, one might wonder what would be the best strategy to achieve good empiri-
cal results. Specifically, what algorithm should one use? With this question in mind, we analyze
the effectiveness, the applicability and the engineering difficulty of each algorithm. More specifi-
cally, we evaluate different algorithms on different problems, discuss whether they can be applied
to a variety of tasks or are restricted to certain tasks and briefly discuss the engineering efforts
required for each algorithm.

Effectiveness In terms of effectiveness, we have the following observations:
• Semi-supervised learning is very effective both for natural language processing tasks and

computer vision tasks. On image classification tasks, Noisy Student Training achieves 88.4
top-1 accuracy on ImageNet, which is 2.0 percent better than the state-of-the-art model that
requires 3.5B weakly labeled Instagram images, as shown in Section 3.3. Noisy Student
Training also improves ImageNet-A top-1 accuracy from 61.0 to 83.7 and improves the
performance on RACE from 81.7 to 83.7 as shown in Section 4.6. Similarly, UDA leads
to significant improvements given limited labeled data. It achieves an error rate of 5.43 on
CIFAR-10 with only 250 labeled examples, which is similar to the error rate of 4.2 using
50,000 labeled examples, as shown in Section 2.5.2. On natural language processing tasks,
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UDA reduces the error rate from 43.27 to 25.23 for IMDb with 20 labeled examples and
from 50.80 to 41.35 for Yelp-5 with 2,500 labeled examples as shown in Section 2.5.3.

• Transfer learning from pretraining brings substantial gains on many natural language tasks.
For example, using a pretrained language model improves the accuracy from 48.7 to 70.7
on the CLOTH dataset as shown in Section 7.4.1. On text classifications, it reduces the
error rate from 43.27 to 11.72 for IMDb with 20 labeled examples and from 50.80 to 38.90
for Yelp-5 with 2,500 labeled examples as shown in Section 2.5.3. There is also a growing
interest in studying pretraining for computer vision tasks [92, 259, 302]. Transfer learning
between similar tasks brings respectful but smaller improvements: it improves BLEU score
from 35.2 to 36.1 for a French-to-English translation task and 27.3 to 28.1 for a German-
to-English translation task in Section 6.5.2 and improves the Hits@10 from 79.7 to 81.4
for knowledge base completion in Section 5.3.3.

• Using external knowledge bases is useful for tasks related to entities and relations. Specif-
ically, it improves the F1 score from 53.18 to 57.28 on relation extraction as shown in
Section 9.4.3. Injecting prior knowledge into model design improves the BLEU score
from 30.90 to 31.44 on image captioning and from 28.04 to 28.30 on German-to-English
translation as shown in Section 8.7.3.

• Lastly, different algorithms usually bring complementary benefits and they can be com-
bined to achieve better performance. For example, semi-supervised learning is comple-
mentary to transfer learning. When initialized with BERT, semi-supervised learning can
still significantly reduce the error rate from 11.72 to 4.78 for IMDb with 20 examples and
from 38.90 to 33.54 for Yelp-5 with 2,500 examples as shown in Section 2.5.3. Using
external knowledge bases also boost the the F1 score from 53.18 to 57.28 achieved by
transfer learning using BERT, as shown in Section 8.7.3.

Applicability Then, we discuss whether an algorithm is applicable to a variety of tasks.
• Semi-supervised learning is widely applicable to many tasks ranging from text tasks to

vision tasks. As shown in Section 2.5, Section 3.3 and Section 4.6, semi-supervised learn-
ing methods UDA and Noisy Student Training are effective for 7 language datasets and
3 computer vision datasets. Semi-supervised learning only requires using unlabeled data
which is usually available at large quantities for real-world applications.

• Transfer learning from pretraining works well for natural language processing tasks. It is
used for 10 natural language processing datasets as shown in Section 2.5, Section 7.4.1
and Section 9.4. We do not explore using transfer learning on vision tasks in this thesis
but there has been a growing interest in this line of research [37, 89, 92, 259, 302]. An
advantage of this approach is that it does not require extra task-specific data that is similar
to the task at hand and hence it can be easily used for any tasks. In comparison, it is harder
to apply transfer learning from similar tasks since it requires task-specific data though it is
also effective for 4 datasets as shown in Section 5.3.3 and Section 6.5.2.

• It is not very straightforward to use external knowledge in many cases. Usually, different
tasks require different external knowledge. For example, tasks of the medical domain and
legal domain may require the use of completely different knowledge bases. In addition, it
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is not clear whether most tasks can benefit from external knowledge.

Engineering Difficulty One might also be interested in the engineering difficulty to apply
different algorithms.

• Semi-supervised learning, especially the Noisy Student Training method, requires very
little engineering efforts since it does not require changing the underlying model or archi-
tecture.

• For natural language processing, transfer learning from pretraining is also easy to use and
has become the standard practice nowadays. In comparison, transfer learning from similar
tasks is harder since it requires significant changes to the architecture or learning algorithm.

• Using external knowledge also requires significant changes to the architecture or learning
algorithm.

Considering the effectiveness, applicability and the engineering difficulties, we have the fol-
lowing recommendations for readers: (1) Semi-supervised learning should be used by default
when unlabeled data is available since it leads to large performance improvements to both nat-
ural language processing tasks and computer vision tasks, while requiring little engineering; (2)
Transfer learning from pretraining models should be used by default for natural language pro-
cessing since it brings significant improvements and is easy to use; (3) Whether external knowl-
edge should be used should be determined on a case-by-case basis since each task may require
different external knowledge and it is significantly more costly in engineering efforts than using
transfer learning or semi-supervised learning.
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Part I

Data-Efficient Learning by
Semi-supervised Learning
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Chapter 2

Semi-supervised learning by Unsupervised
Data Augmentation

In this Chapter, we present a semi-supervised learning method called Unsupervised Data Aug-
mentation (UDA) that can effectively improve the model’s performance on various domains
given limited annotated data.

2.1 Introduction
A fundamental weakness of deep learning is that it typically requires a lot of labeled data to work
well. Semi-supervised learning (SSL) [33] is one of the most promising paradigms of leveraging
unlabeled data to address this weakness. The recent works in SSL are diverse but those that are
based on consistency training [8, 135, 205, 251] have shown to work well on many benchmarks.

In a nutshell, consistency training methods simply regularize model predictions to be invari-
ant to small noise applied to either input examples [43, 171, 219] or hidden states [8, 135]. This
framework makes sense intuitively because a good model should be robust to any small change
in an input example or hidden states. Under this framework, different methods in this category
differ mostly in how and where the noise injection is applied. Typical noise injection methods
are additive Gaussian noise, dropout noise or adversarial noise.

In this work, we investigate the role of noise injection in consistency training and observe
that advanced data augmentation methods, specifically those work best in supervised learning
[48, 131, 234, 294], also perform well in semi-supervised learning. There is indeed a strong
correlation between the performance of data augmentation operations in supervised learning and
their performance in consistency training. We, hence, substitute the traditional noise injection
methods with high quality data augmentation methods in order to improve consistency training.
To emphasize the use of better data augmentation in consistency training, we name our method
Unsupervised Data Augmentation or UDA.

We evaluate UDA on a wide variety of language and vision tasks. On six text classifica-
tion tasks, our method achieves significant improvements over state-of-the-art models. Notably,
on IMDb, UDA with 20 labeled examples outperforms the state-of-the-art model trained on
1250x more labeled data. On standard semi-supervised learning benchmarks CIFAR-10 and
SVHN, UDA outperforms all existing semi-supervised learning methods by significant margins
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and achieves an error rate of 5.4 and 2.72 with 250 labeled examples respectively. Finally, we
also find UDA to be beneficial when there is a large amount of supervised data. For instance, on
ImageNet, UDA leads to improvements of top-1 accuracy from 58.84 to 68.78 with 10% of the
labeled set and from 78.43 to 79.05 when we use the full labeled set and an external dataset with
1.3M unlabeled examples.

Our key contributions and findings can be summarized as follows:
• First, we show that state-of-the-art data augmentations found in supervised learning can also

serve as a superior source of noise under the consistency enforcing semi-supervised frame-
work. See results in Table 2.1 and Table 2.2.

• Second, we show that UDA can match and even outperform purely supervised learning that
uses orders of magnitude more labeled data. See results in Table 2.6 and Figure 2.4.

• Third, we show that UDA combines well with transfer learning, e.g., when fine-tuning from
BERT (see Table 2.6), and is effective at high-data regime, e.g. on ImageNet (see Table 3.3).

• Lastly, we also provide a theoretical analysis of how UDA improves the classification perfor-
mance and the corresponding role of the state-of-the-art augmentation in Section 8.2.

2.2 Unsupervised Data Augmentation (UDA)
In this section, we first formulate our task and then present the key method and insights behind
UDA. Throughout this work, we focus on classification problems and will use x to denote the
input and y∗ to denote its ground-truth prediction target. We are interested in learning a model
pθ(y | x) to predict y∗ based on the input x, where θ denotes the model parameters. Finally, we
will use pL(x) and pU(x) to denote the distributions of labeled and unlabeled examples respec-
tively and use f ∗ to denote the perfect classifier that we hope to learn.

2.2.1 Background: Supervised Data Augmentation
Data augmentation aims at creating novel and realistic-looking training data by applying a trans-
formation to an example, without changing its label. Formally, let q(x̂ | x) be the augmentation
transformation from which one can draw augmented examples x̂ based on an original example
x. For an augmentation transformation to be valid, it is required that any example x̂ ∼ q(x̂ | x)
drawn from the distribution shares the same ground-truth label as x. Given a valid augmentation
transformation, we can simply minimize the negative log-likelihood on augmented examples.

Supervised data augmentation can be equivalently seen as constructing an augmented labeled
set from the original supervised set and then training the model on the augmented set. Therefore,
the augmented set needs to provide additional inductive biases to be more effective. How to
design the augmentation transformation has, thus, become critical.

In recent years, there have been significant advancements on the design of data augmentations
for NLP [294], vision [48, 131] and speech [84, 190] in supervised settings. Despite the promis-
ing results, data augmentation is mostly regarded as the “cherry on the cake” which provides a
steady but limited performance boost because these augmentations has so far only been applied
to a set of labeled examples which is usually of a small size. Motivated by this limitation, via the
consistency training framework, we extend the advancement in supervised data augmentation to
semi-supervised learning where abundant unlabeled data is available.
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2.2.2 Unsupervised Data Augmentation
As discussed in the introduction, a recent line of work in semi-supervised learning has been
utilizing unlabeled examples to enforce smoothness of the model. The general form of these
works can be summarized as follows:
• Given an input x, compute the output distribution pθ(y | x) given x and a noised version
pθ(y | x, ε) by injecting a small noise ε. The noise can be applied to x or hidden states.

• Minimize a divergence metric between the two distributions D (pθ(y | x) ‖ pθ(y | x, ε)).
This procedure enforces the model to be insensitive to the noise ε and hence smoother with
respect to changes in the input (or hidden) space. From another perspective, minimizing the con-
sistency loss gradually propagates label information from labeled examples to unlabeled ones.

In this work, we are interested in a particular setting where the noise is injected to the input x,
i.e., x̂ = q(x, ε), as considered by prior works [135, 171, 219]. But different from existing work,
we focus on the unattended question of how the form or “quality” of the noising operation q can
influence the performance of this consistency training framework. Specifically, to enforce consis-
tency, prior methods generally employ simple noise injection methods such as adding Gaussian
noise, simple input augmentations to noise unlabeled examples. In contrast, we hypothesize that
stronger data augmentations in supervised learning can also lead to superior performance when
used to noise unlabeled examples in the semi-supervised consistency training framework, since
it has been shown that more advanced data augmentations that are more diverse and natural can
lead to significant performance gain in the supervised setting.

Following this idea, we use a rich set of state-of-the-art data augmentations verified in var-
ious supervised settings to inject noise and optimize the same consistency training objective on
unlabeled examples. When jointly trained with labeled examples, we utilize a weighting factor
λ to balance the supervised cross entropy and the unsupervised consistency training loss, which
is illustrated in Figure 2.1. Formally, the full objective can be written as follows:

min
θ

J (θ) = E
x∼pL(x)

[− log pθ(f
∗(x) | x)] + λ E

x∼pU (x)
E

x̂∼q(x̂|x)
[CE (pθ̃(y | x)‖pθ(y | x̂))]

where CE denotes cross entropy, q(x̂ | x) is a data augmentation transformation and θ̃ is a fixed
copy of the current parameters θ indicating that the gradient is not propagated through θ̃, as
suggested by VAT [171]. We set λ to 1 for most of our experiments and use different batch sizes
for the supervised data and the unsupervised data. In the vision domain, simple augmentations
including cropping and flipping are applied to labeled examples. To minimize the discrepancy
between supervised training and prediction on unlabeled examples, we apply the same simple
augmentations to unlabeled examples for computing pθ̃(y | x).

Discussion. Before detailing the augmentation operations used in this work, we first provide
some intuitions on how more advanced data augmentations can provide extra advantages over
simple ones used in earlier works from three aspects:
• Valid noise: Advanced data augmentation methods that achieve great performance in super-

vised learning usually generate realistic augmented examples that share the same ground-truth
labels with the original example. Thus, it is safe to encourage the consistency between predic-
tions on the original unlabeled example and the augmented unlabeled examples.

• Diverse noise: Advanced data augmentation can generate a diverse set of examples since it can
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Figure 2.1: Training objective for UDA, where M is a model that predicts a distribution of y
given x.

make large modifications to the input example without changing its label, while simple Gaus-
sian noise only make local changes. Encouraging consistency on a diverse set of augmented
examples can significantly improve the sample efficiency.

• Targeted inductive biases: Different tasks require different inductive biases. Data augmenta-
tion operations that work well in supervised training essentially provides the missing inductive
biases.

2.2.3 Augmentation Strategies for Different Tasks
We now detail the augmentation methods, tailored for different tasks, that we use in this work.

RandAugment for Image Classification. We use a data augmentation method called Ran-
dAugment [49], which is inspired by AutoAugment [48]. AutoAugment uses a search method
to combine all image processing transformations in the Python Image Library (PIL) to find a
good augmentation strategy. In RandAugment, we do not use search, but instead uniformly sam-
ple from the same set of augmentation transformations in PIL. In other words, RandAugment is
simpler and requires no labeled data as there is no need to search for optimal policies.

In our implementation of RandAugment, each sub-policy is composed of two operations,
where each operation is represented by the transformation name, probability, and magnitude that
is specific to that operation. For example, a sub-policy can be [(Sharpness, 0.6, 2), (Posterize,
0.3, 9)].

For each operation, we randomly sample a transformation from 15 possible transformations,
a magnitude in [1, 10) and fix the probability to 0.5. Specifically, we sample from the following
15 transformations: Invert, Cutout, Sharpness, AutoContrast, Posterize, ShearX, TranslateX,
TranslateY, ShearY, Rotate, Equalize, Contrast, Color, Solarize, Brightness. We find this setting
to work well in our first try and did not tune the magnitude range and the probability. Tuning
these hyperparameters might result in further gains in accuracy.

Back-translation for Text Classification. When used as an augmentation method, back-
translation [60, 225] refers to the procedure of translating an existing example x in language A
into another language B and then translating it back into A to obtain an augmented example x̂.
As observed by [294], back-translation can generate diverse paraphrases while preserving the
semantics of the original sentences, leading to significant performance improvements in ques-
tion answering. In our case, we use back-translation to paraphrase the training data of our text
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classification tasks.1

We find that the diversity of the paraphrases is important. Hence, we employ random sam-
pling with a tunable temperature instead of beam search for the generation. As shown in Figure
2.2, the paraphrases generated by back-translation sentence are diverse and have similar seman-
tic meanings. More specifically, we use WMT’14 English-French translation models (in both
directions) to perform back-translation on each sentence. To facilitate future research, we have
open-sourced our back-translation system together with the translation checkpoints.

Back-translationGiven the low budget and 
production limitations, this movie 
is very good.

Since it was highly limited in terms of 
budget, and the production restrictions, the 
film was cheerful.
There are few budget items and production 
limitations to make this film a really good 
one.
Due to the small dollar amount and 
production limitations the ouest film is very 
beautiful.

RandAugment

Figure 2.2: Augmented examples using back-translation and RandAugment.

Word replacing with TF-IDF for Text Classification. While back-translation is good at
maintaining the global semantics of a sentence, there is little control over which words will be
retained. This requirement is important for topic classification tasks, such as DBPedia, in which
some keywords are more informative than other words in determining the topic. We, therefore, an
augmentation method that replaces uninformative words with low TF-IDF scores while keeping
those with high TF-IDF values.

Ideally, we would like the augmentation method to generate both diverse and valid exam-
ples. Hence, the augmentation is designed to retain keywords and replace uninformative words
with other uninformative words. We use BERT’s word tokenizer since BERT first tokenizes sen-
tences into a sequence of words and then tokenize words into subwords although the model uses
subwords as input.

Specifically, Suppose IDF(w) is the IDF score for word w computed on the whole corpus, and
TF(w) is the TF score for word w in a sentence. We compute the TF-IDF score as TFIDF(w) =
TF(w)IDF(w). Suppose the maximum TF-IDF score in a sentence x is C = maxi TFIDF(xi).
To make the probability of having a word replaced to negatively correlate with its TF-IDF score,
we set the probability to min(p(C−TFIDF(xi))/Z, 1), where p is a hyperparameter that controls
the magnitude of the augmentation and Z =

!
i(C − TFIDF(xi))/|x| is the average score. p is

set to 0.7 for experiments on DBPedia.
When a word is replaced, we sample another word from the whole vocabulary for the replace-

ment. Intuitively, the sampled words should not be keywords to prevent changing the ground-
truth labels of the sentence. To measure if a word is keyword, we compute a score of each word

1We also note that while translation uses a labeled dataset, the translation task itself is quite distinctive from
a text classification task and does not make use of any text classification label. In addition, back-translation is a
general data augmentation method that can be applied to many tasks with the same model checkpoints.
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on the whole corpus. Specifically, we compute the score as S(w) = freq(w)IDF(w) where
freq(w) is the frequency of word w on the whole corpus. We set the probability of sampling
word w as (maxw′ S(w′) − S(w))/Z ′ where Z ′ =

!
w maxw′ S(w′) − S(w) is a normalization

term.
Discussion on Trade-off Between Diversity and Validity for Data Augmentation. De-

spite that state-of-the-art data augmentation methods can generate diverse and valid augmented
examples as discussed in section 2.2.2, there is a trade-off between diversity and validity since
diversity is achieved by changing a part of the original example, naturally leading to the risk of
altering the ground-truth label. We find it beneficial to tune the trade-off between diversity and
validity for data augmentation methods. For text classification, we tune the temperature of ran-
dom sampling. On the one hand, when we use a temperature of 0, decoding by random sampling
degenerates into greedy decoding and generates perfectly valid but identical paraphrases. On the
other hand, when we use a temperature of 1, random sampling generates very diverse but barely
readable paraphrases. We find that setting the Softmax temperature to 0.7, 0.8 or 0.9 leads to the
best performances.

2.2.4 Additional Training Techniques
In this section, we present additional techniques targeting at some commonly encountered prob-
lems.

Sharpening Predictions. We find it helpful to mask out examples that the current model is
not confident about and to use a low Softmax temperature to sharpen predictions when computing
the target distribution on unlabeled examples. Specifically, in each minibatch, the consistency
loss term is computed only on examples whose highest probability among classification cate-
gories is greater than a threshold.

Domain-relevance Data Filtering. Ideally, we would like to make use of out-of-domain
unlabeled data since it is usually much easier to collect, but the class distributions of out-of-
domain data are mismatched with those of in-domain data, which can result in performance loss
if directly used [184]. To obtain data relevant to the domain for the task at hand, we adopt a
common technique for detecting out-of-domain data. We use our baseline model trained on the
in-domain data to infer the labels of data in a large out-of-domain dataset and pick out examples
that the model is most confident about. Specifically, for each category, we sort all examples
based on the classified probabilities of being in that category and select the examples with the
highest probabilities.

Training Signal Annealing for Low-data Regime In semi-supervised learning, we often
encounter a situation where there is a huge gap between the amount of unlabeled data and that
of labeled data. Hence, the model often quickly overfits the limited amount of labeled data while
still underfitting the unlabeled data. To tackle this difficulty, we introduce a new training tech-
nique, called Training Signal Annealing (TSA), which gradually releases the “training signals”
of the labeled examples as training progresses. Intuitively, we only utilize a labeled example
if the model’s confidence on that example is lower than a predefined threshold which increases
according to a schedule. Specifically, at training step t, if the model’s predicted probability for
the correct category pθ(y

∗ | x) is higher than a threshold ηt, we remove that example from the
loss function. Suppose K is the number of categories, by gradually increasing ηt from 1

K
to 1,
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the threshold ηt serves as a ceiling to prevent over-training on easy labeled examples.
We consider three increasing schedules of ηt with different application scenarios. Let T be

the total number of training steps, the three schedules are shown in Figure 2.3. Intuitively, when
the model is prone to overfit, e.g., when the problem is relatively easy or the number of labeled
examples is very limited, the exp-schedule is most suitable as the supervised signal is mostly
released at the end of training. In contrast, when the model is less likely to overfit (e.g., when
we have abundant labeled examples or when the model employs effective regularization), the
log-schedule can serve well.

Figure 2.3: Three schedules of TSA. We set ηt = αt ∗ (1− 1
K
)+ 1

K
. αt is set to 1− exp(− t

T
∗ 5),

t
T

and exp(( t
T
− 1) ∗ 5) for the log, linear and exp schedules.

2.3 Theoretical Analysis
In this section, we theoretically analyze why UDA can improve the performance of a model
and the required number of labeled examples to achieve a certain error rate. Following previous
sections, we will use f ∗ to denote the perfect classifier that we hope to learn, use pU to denote
the marginal distribution of the unlabeled data and use q(x̂ | x) to denote the augmentation
distribution.

To make the analysis tractable, we make the following simplistic assumptions about the data
augmentation transformation:
• In-domain augmentation: data examples generated by data augmentation have non-zero prob-

ability under pU , i.e., pU(x̂) > 0 for x̂ ∼ q(x̂ | x), x ∼ pU(x).
• Label-preserving augmentation: data augmentation preserves the label of the original exam-

ple, i.e., f ∗(x) = f ∗(x̂) for x̂ ∼ q(x̂ | x), x ∼ pU(x).
• Reversible augmentation: the data augmentation operation can be reversed, i.e., if q(x̂ | x) >
0 then q(x | x̂) > 0 .

As the first step, we hope to provide an intuitive sketch of our formal analysis. Let us define
a graph GpU where each node corresponds to a data sample x ∈ X and an edge (x̂, x) exists
in the graph if and only if q(x̂ | x) > 0. Due to the label-preserving assumption, it is easy
to see that examples with different labels must reside on different components (disconnected
sub-graphs) of the graph GpU . Hence, for an N -category classification problems, the graph has
N components (sub-graphs) when all examples within each category can be traversed by the
augmentation operation. Otherwise, the graph will have more than N components.
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Given this construction, notice that for each component Ci of the graph, as long as there is a
single labeled example in the component, i.e. (x∗, y∗) ∈ Ci, one can propagate the label of the
node to the rest of the nodes in Ci by traversing Ci via the augmentation operation q(x̂ | x). More
importantly, if one only performs supervised data augmentation, one can only propagate the label
information to the directly connected neighbors of the labeled node. In contrast, performing
unsupervised data augmentation ensures the traversal of the entire sub-graph Ci. This provides
the first high-level intuition how UDA could help.

Taking one step further, in order to find a perfect classifier via such label propagation, it
requires that there exists at least one labeled example in each component. In other words, the
number of components lower bounds the minimum amount of labeled examples needed to learn
a perfect classifier. Importantly, number of components is actually decided by the quality of the
augmentation operation: an ideal augmentation should be able to reach all other examples of
the same category given a starting instance. This well matches our discussion of the benefits of
state-of-the-art data augmentation methods in generating more diverse examples. Effectively, the
augmentation diversity leads to more neighbors for each node, and hence reduces the number of
components in a graph.

With the intuition described, we state our formal results. Without loss of generality, as-
sume there are k components in the graph. For each component Ci(i = 1, . . . , k), let Pi be
the total probability mass that an observed labeled example fall into the i-th component, i.e.,
Pi =

!
x∈Ci

pL(x). The following theorem characterizes the relationship between UDA error
rate and the amount of labeled examples.
Theorem 1. Under UDA, let Pr(A) denote the probability that the algorithm cannot infer the
label of a new test example given m labeled examples from PL. Pr(A) is given by

Pr(A) =
"

i

Pi(1− Pi)
m.

In addition, O(k/ε) labeled examples can guarantee an error rate of O(ε), i.e.,

m = O(k/ε) =⇒ Pr(A) = O(ε).

Proof. Let x′ be the sampled test example. Then the probability of event A is

Pr(A) =
"

i

Pr(A and x′ ∈ Ci) =
"

i

Pi(1− Pi)
m

To bound the probability, we would like to find the maximum value of
!

i Pi(1 − Pi)
m. We

can define the following optimization function:

min
P

−
"

ci

Pi(1− Pi)
m

s.t.
"

ci

Pi = 1

The problem is a convex optimization problem and we can construct its the Lagrangian dual
function:

L =
"

i

Pi(1− Pi)
m − λ(

"

i

Pi − 1)
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Using the KKT condition, we can take derivatives to Pi and set it to zero. Then we have

λ = (1−mPi)(1− Pi)
m−1

Hence Pi = Pj for any i ∕= j. Using the fact that
!

i Pi = 1, we have

Pi =
1

k

Plugging the result back into Pr(A) =
!

i Pi(1− Pi)
m, we have

Pr(A) ≤ (1− 1

k
)m = exp(m log(1− 1

k
)) ≤ exp(−m

k
)

Hence when m = O(k
ε
), we have

Pr(A) = O(ε)

From the theorem, we can see the number of components, i.e. k, directly governs the amount
of labeled data required to reach a desired performance. As we have discussed above, the number
of components effectively relies on the quality of an augmentation function, where better aug-
mentation functions result in fewer components. This echoes our discussion of the benefits of
state-of-the-art data augmentation operations in generating more diverse examples. Hence, with
state-of-the-art augmentation operations, UDA is able to achieve good performance using fewer
labeled examples.

In addition, we can quantify how many unlabeled examples are needed so that we have k
connected components and all examples can be classified correctly given a minimum number of
labeled examples. For a given component Ci, as long as our sampled unlabeled examples and
labeled examples constitute a spanning tree of Ci, we can correctly classify all labeled examples
within the component. We can define a vertex cut as a set of nodes/unlabeled examples that the
component is not connected after removing the nodes in the set. Let αCi

be the value of the
minimum vertex cut (i.e., the minimum, over all vertex cuts of Ci, of the sum of weights on
the vertices). For our sample to contain a “spanning tree” of Ci, and therefore to include all of
labeled examples in Ci as one component, it must have at least one vertex / unlabeled example in
that vertex cut. The expected number of unlabeled examples needed for this to occur is at least
1

αCi
. Considering all components, at least minH

1
αCi

unlabeled examples are needed.

2.4 Experiment Details

2.4.1 Text Classifications
Datasets. In our semi-supervised setting, we randomly sampled labeled examples from the full
supervised set2 and use the same number of examples for each category. For unlabeled data, we

2http://bit.ly/2kRWoof, https://ai.stanford.edu/~amaas/data/sentiment/
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use the whole training set for DBPedia, the concatenation of the training set and the unlabeled
set for IMDb and external data for Yelp-2, Yelp-5, Amazon-2 and Amazon-5 [165]3. Note that
for Yelp and Amazon based datasets, the label distribution of the unlabeled set might not match
with that of labeled datasets since there are different number of examples in different categories.
Nevertheless, we find it works well to use all the unlabeled data.

Preprocessing. We find the sequence length to be an important factor in achieving good
performance. For all text classification datasets, we truncate the input to 512 subwords since
BERT is pretrained with a maximum sequence length of 512. Further, when the length of an
example is greater than 512, we keep the last 512 subwords instead of the first 512 subwords as
keeping the latter part of the sentence lead to better performances on IMDb.

Fine-tuning BERT on in-domain unsupervised data. We fine-tune the BERT model on in-
domain unsupervised data using the code released by BERT. We try learning rate of 2e-5, 5e-5
and 1e-4, batch size of 32, 64 and 128 and number of training steps of 30k, 100k and 300k. We
pick the fine-tuned models by the BERT loss on a held-out set instead of the performance on a
downstream task.

Random initialized Transformer. For the experiments with randomly initialized Trans-
former, we adopt hyperparameters for BERT base except that we only use 6 hidden layers and 8
attention heads. We also increase the dropout rate on the attention and the hidden states to 0.2,
When we train UDA with randomly initialized architectures, we train UDA for 500k or 1M steps
on Amazon-5 and Yelp-5 where we have abundant unlabeled data.

BERT hyperparameters. Following the common BERT fine-tuning procedure, we keep a
dropout rate of 0.1, and try learning rate of 1e-5, 2e-5 and 5e-5 and batch size of 32 and 128. We
also tune the number of steps ranging from 30 to 100k for various data sizes.

UDA hyperparameters. We set the weight on the unsupervised objective λ to 1 in all of our
experiments. We use a batch size of 32 for the supervised objective since 32 is the smallest batch
size on v3-32 Cloud TPU Pod. We use a batch size of 224 for the unsupervised objective when
the Transformer is initialized with BERT so that the model can be trained on more unlabeled
data. We find that generating one augmented example for each unlabeled example is enough for
BERTFINETUNE.

All experiments in this part are performed on a v3-32 Cloud TPU Pod.

2.4.2 Semi-supervised learning benchmarks CIFAR-10 and SVHN

Hyperparameters for Wide-ResNet-28-2. We train our model for 500K steps. We apply Expo-
nential Moving Average to the parameters with a decay rate of 0.9999. We use a batch size of 64
for labeled data and a batch size of 448 for unlabeled data. The softmax temperature is set to 0.4.
The softmax threshold is set to 0.8. We use a cosine learning rate decay schedule: cos( 7t

8T
∗ π

2
)

where t is the current step and T is the total number of steps. We use a SGD optimizer with
nesterov momentum with the momentum hyperparameter set to 0.9. In order to reduce training
time, we generate augmented examples before training and dump them to disk. For CIFAR-10,
we generate 100 augmented examples for each unlabeled example. Note that generating aug-

3https://www.kaggle.com/yelp-dataset/yelp-dataset, http://jmcauley.ucsd.
edu/data/amazon/
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mented examples in an online fashion is always better or as good as using dumped augmented
examples since the model can see different augmented examples in different epochs, leading to
more diverse samples. We report the average performance and the standard deviation for 10 runs.
Experiments in this part are performed on a Tesla V100 GPU.

Hyperparameters for Shake-Shake and PyramidNet. For the experiments with Shake-
Shake, we train UDA for 300k steps and use a batch size of 128 for the supervised objective
and use a batch size of 512 for the unsuperivsed objective. For the experiments with Pyramid-
Net+ShakeDrop, we train UDA for 700k steps and use a batch size of 64 for the supervised ob-
jective and a batch size of 128 for the unsupervised objective. For both models, we use a learning
rate of 0.03 and use a cosine learning decay with one annealing cycle following AutoAugment.
Experiments in this part are performed on a v3-32 Cloud TPU v3 Pod.

2.4.3 ImageNet
10% Labeled Set Setting. Unless otherwise stated, we follow the standard hyperparameters
used in an open-source implementation of ResNet.4 For the 10% labeled set setting, we use a
batch size of 512 for the supervised objective and a batch size of 15,360 for the unsupervised
objective. We use a base learning rate of 0.3 that is decayed by 10 for four times and set the
weight on the unsupervised objective λ to 20. We mask out unlabeled examples whose highest
probabilities across categories are less than 0.5 and set the Softmax temperature to 0.4. The
model is trained for 40k steps. Experiments in this part are performed on a v3-64 Cloud TPU v3
Pod.

Full Labeled Set Setting. For experiments on the full ImageNet, we use a batch size of
8,192 for the supervised objective and a batch size of 16,384 for the unsupervised objective. The
weight on the unsupervised objective λ is set to 1. We use entropy minimization to sharpen the
prediction. We use a base learning rate of 1.6 and decay it by 10 for four times. Experiments in
this part are performed on a v3-128 Cloud TPU v3 Pod.

2.5 Experiments
In this section, we evaluate UDA on a variety of language and vision tasks. For language, we
rely on six text classification benchmark datasets, including IMDb, Yelp-2, Yelp-5, Amazon-2
and Amazon-5 sentiment classification and DBPedia topic classification [158, 306]. For vision,
we employ two smaller datasets CIFAR-10 [130], SVHN [176], which are often used to compare
semi-supervised algorithms, as well as ImageNet [55] of a larger scale to test the scalability of
UDA.

2.5.1 Correlation between Supervised and Semi-supervised Performances
As the first step, we try to verify the fundamental idea of UDA, i.e., there is a positive correla-
tion of data augmentation’s effectiveness in supervised learning and semi-supervised learning.
Based on Yelp-5 (a language task) and CIFAR-10 (a vision task), we compare the performance

4https://github.com/tensorflow/tpu/tree/master/models/official/resnet
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of different data augmentation methods in either fully supervised or semi-supervised settings.
For Yelp-5, apart from back-translation, we include a simpler method Switchout [270] which
replaces a token with a random token uniformly sampled from the vocabulary. For CIFAR-10,
we compare RandAugment with two simpler methods: (1) cropping & flipping augmentation
and (2) Cutout.

Based on this setting, Table 2.1 and Table 2.2 exhibit a strong correlation of an augmenta-
tion’s effectiveness between supervised and semi-supervised settings. This validates our idea of
stronger data augmentations found in supervised learning can always lead to more gains when
applied to the semi-supervised learning settings.

Augmentation Sup Semi-Sup
(# Sup examples) (50k) (4k)

Crop & flip 5.36 10.94
Cutout 4.42 5.43
RandAugment 4.23 4.32

Table 2.1: Error rates on CIFAR-10.

Augmentation Sup Semi-sup
(# Sup examples) (650k) (2.5k)

✗ 38.36 50.80
Switchout 37.24 43.38
Back-translation 36.71 41.35

Table 2.2: Error rate on Yelp-5.

2.5.2 Algorithm Comparison on Vision Semi-supervised Learning Bench-
marks

With the correlation established above, the next question we ask is how well UDA performs
compared to existing semi-supervised learning algorithms. To answer the question, we focus on
the most commonly used semi-supervised learning benchmarks CIFAR-10 and SVHN.

Vary the size of labeled data. Firstly, we follow the settings in [184] and employ Wide-
ResNet-28-2 [88, 297] as the backbone model and evaluate UDA with varied supervised data
sizes.

In Table 2.3, we show results of Pseudo-Label [138], Π-Model [135], Mean Teacher [251],
VAT [171] and MixMatch [19]. Fully supervised learning using 50,000 examples achieves an
error rate of 4.23 and 5.36 with or without RandAugment. The performance of the baseline
models are reported by MixMatch [19]. The comparison with MixMatch and VAT is further
plotted in Figure 2.4a.

Methods / # Sup 250 500 1,000 2,000 4,000

Pseudo-Label 49.98 ± 1.17 40.55 ± 1.70 30.91 ± 1.73 21.96 ± 0.42 16.21 ± 0.11
Π-Model 53.02 ± 2.05 41.82 ± 1.52 31.53 ± 0.98 23.07 ± 0.66 17.41 ± 0.37
Mean Teacher 47.32 ± 4.71 42.01 ± 5.86 17.32 ± 4.00 12.17 ± 0.22 10.36 ± 0.25
VAT 36.03 ± 2.82 26.11 ± 1.52 18.68 ± 0.40 14.40 ± 0.15 11.05 ± 0.31
MixMatch 11.08 ± 0.87 9.65 ± 0.94 7.75 ± 0.32 7.03 ± 0.15 6.24 ± 0.06
UDA (RandAugment) 5.43 ± 0.96 4.80 ± 0.09 4.75 ± 0.10 4.73 ± 0.14 4.32 ± 0.08

Table 2.3: Error rate (%) for CIFAR-10.

In Table 2.4, we similarly show results for compared methods of Figure 2.4b and results of
methods mentioned above. Fully supervised learning using 73,257 examples achieves an error
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rate of 2.28 and 2.84 with or without RandAugment. The performance of the baseline models
are reported by MixMatch [19]. The comparison with MixMatch and VAT is further plotted in
Figure 2.4b.

Methods / # Sup 250 500 1,000 2,000 4,000

Pseudo-Label 21.16 ± 0.88 14.35 ± 0.37 10.19 ± 0.41 7.54 ± 0.27 5.71 ± 0.07
Π-Model 17.65 ± 0.27 11.44 ± 0.39 8.60 ± 0.18 6.94 ± 0.27 5.57 ± 0.14
Mean Teacher 6.45 ± 2.43 3.82 ± 0.17 3.75 ± 0.10 3.51 ± 0.09 3.39 ± 0.11
VAT 8.41 ± 1.01 7.44 ± 0.79 5.98 ± 0.21 4.85 ± 0.23 4.20 ± 0.15
MixMatch 3.78 ± 0.26 3.64 ± 0.46 3.27 ± 0.31 3.04 ± 0.13 2.89 ± 0.06
UDA (RandAugment) 2.72 ± 0.40 2.27 ± 0.09 2.23 ± 0.07 2.20 ± 0.06 2.28 ± 0.10

Table 2.4: Error rate (%) for SVHN.

We have the following observations for the performance on these two task:
• First, UDA consistently outperforms the two baselines given different sizes of labeled data.
• Moreover, the performance difference between UDA and VAT shows the superiority of data

augmentation based noise. The difference of UDA and VAT is essentially the noise process.
While the noise produced by VAT often contain high-frequency artifacts that do not exist in
real images, data augmentation mostly generates diverse and realistic images.

(a) CIFAR-10 (b) SVHN

Figure 2.4: Comparison with two semi-supervised learning methods on CIFAR-10 and SVHN
with varied number of labeled examples.

Comparisons with published results on CIFAR-10 and SVHN Here, we directly compare
UDA with previously published results under different model architectures. Following previous
work, 4k and 1k labeled examples are used for CIFAR-10 and SVHN respectively. As shown
in Table 2.5, given the same architecture, UDA outperforms all published results by significant
margins and nearly matches the fully supervised performance, which uses 10x more labeled
examples. This shows the huge potential of state-of-the-art data augmentations under the consis-
tency training framework in the vision domain.
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Method Model # Param CIFAR-10 (4k) SVHN (1k)

Π-Model [135] Conv-Large 3.1M 12.36 ± 0.31 4.82 ± 0.17
Mean Teacher [251] Conv-Large 3.1M 12.31 ± 0.28 3.95 ± 0.19
VAT + EntMin [171] Conv-Large 3.1M 10.55 ± 0.05 3.86 ± 0.11
SNTG [154] Conv-Large 3.1M 10.93 ± 0.14 3.86 ± 0.27
VAdD [192] Conv-Large 3.1M 11.32 ± 0.11 4.16 ± 0.08
Fast-SWA [4] Conv-Large 3.1M 9.05 -
ICT [266] Conv-Large 3.1M 7.29 ± 0.02 3.89 ± 0.04
Pseudo-Label [138] WRN-28-2 1.5M 16.21 ± 0.11 7.62 ± 0.29
LGA + VAT [110] WRN-28-2 1.5M 12.06 ± 0.19 6.58 ± 0.36
mixmixup [85] WRN-28-2 1.5M 10 -
ICT [266] WRN-28-2 1.5M 7.66 ± 0.17 3.53 ± 0.07
MixMatch [19] WRN-28-2 1.5M 6.24 ± 0.06 2.89 ± 0.06
Mean Teacher [251] Shake-Shake 26M 6.28 ± 0.15 -
Fast-SWA [4] Shake-Shake 26M 5.0 -
MixMatch [19] WRN 26M 4.95 ± 0.08 -

UDA (RandAugment) WRN-28-2 1.5M 4.32 ± 0.08 2.23 ± 0.07
UDA (RandAugment) Shake-Shake 26M 3.7 -
UDA (RandAugment) PyramidNet 26M 2.7 -

Table 2.5: Comparison between methods using different models where PyramidNet is used with
ShakeDrop regularization. On CIFAR-10, with only 4,000 labeled examples, UDA matches the
performance of fully supervised Wide-ResNet-28-2 and PyramidNet+ShakeDrop, where they
have an error rate of 5.4 and 2.7 respectively when trained on 50,000 examples without Ran-
dAugment. On SVHN, UDA also matches the performance of our fully supervised model trained
on 73,257 examples without RandAugment, which has an error rate of 2.84.

2.5.3 Evaluation on Text Classification Datasets

Next, we further evaluate UDA in the language domain. Moreover, in order to test whether UDA
can be combined with the success of unsupervised representation learning, such as BERT [56],
we further consider four initialization schemes: (a) random Transformer; (b) BERTBASE; (c)
BERTLARGE; (d) BERTFINETUNE: BERTLARGE fine-tuned on in-domain unlabeled data5. Under
each of these four initialization schemes, we compare the performances with and without UDA.

The results are presented in Table 2.6 where we would like to emphasize three observations:
• First, even with very few labeled examples, UDA can offer decent or even competitive perfor-

mances compared to the SOTA model trained with full supervised data. Particularly, on binary
sentiment analysis tasks, with only 20 supervised examples, UDA outperforms the previous
SOTA trained with full supervised data on IMDb and is competitive on Yelp-2 and Amazon-2.

• Second, UDA is complementary to transfer learning / representation learning. As we can see,
when initialized with BERT and further finetuned on in-domain data, UDA can still signifi-
cantly reduce the error rate from 6.50 to 4.20 on IMDb.

5One exception is that we do not pursue BERTFINETUNE on DBPedia as fine-tuning BERT on DBPedia does not
yield further performance gain. This is probably due to the fact that DBPedia is based on Wikipedia while BERT is
already trained on the whole Wikipedia corpus.
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Fully supervised baseline
Datasets IMDb Yelp-2 Yelp-5 Amazon-2 Amazon-5 DBpedia

(# Sup examples) (25k) (560k) (650k) (3.6m) (3m) (560k)

Pre-BERT SOTA 4.32 2.16 29.98 3.32 34.81 0.70
BERTLARGE 4.51 1.89 29.32 2.63 34.17 0.64

Semi-supervised setting

Initialization UDA IMDb Yelp-2 Yelp-5 Amazon-2 Amazon-5 DBpedia
(20) (20) (2.5k) (20) (2.5k) (140)

Random ✗ 43.27 40.25 50.80 45.39 55.70 41.14
✓ 25.23 8.33 41.35 16.16 44.19 7.24

BERTBASE
✗ 18.40 13.60 41.00 26.75 44.09 2.58
✓ 5.45 2.61 33.80 3.96 38.40 1.33

BERTLARGE
✗ 11.72 10.55 38.90 15.54 42.30 1.68
✓ 4.78 2.50 33.54 3.93 37.80 1.09

BERTFINETUNE
✗ 6.50 2.94 32.39 12.17 37.32 -
✓ 4.20 2.05 32.08 3.50 37.12 -

Table 2.6: Error rates on text classification datasets. In the fully supervised settings, the pre-
BERT SOTAs include ULMFiT [101] for Yelp-2 and Yelp-5, DPCNN [115] for Amazon-2 and
Amazon-5, Mixed VAT [216] for IMDb and DBPedia. All of our experiments use a sequence
length of 512.

• Finally, we also note that for five-category sentiment classification tasks, there still exists a
clear gap between UDA with 500 labeled examples per class and BERT trained on the entire
supervised set. Intuitively, five-category sentiment classifications are much more difficult than
their binary counterparts. This suggests a room for further improvement in the future.

(a) IMDb (b) Yelp-2

Figure 2.5: Accuracy on IMDb and Yelp-2 with different number of labeled examples. In the
large-data regime, with the full training set of IMDb, UDA also provides robust gains.

Experiments on Text Classification with Varied Label Set Sizes We also try different data
sizes on text classification tasks. As show in Figure 2.5, UDA leads to consistent improvements
across all labeled data sizes on IMDb and Yelp-2.
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2.5.4 Scalability Test on the ImageNet Dataset
Then, to evaluate whether UDA can scale to problems with a large scale and a higher difficulty,
we now turn to the ImageNet dataset with ResNet-50 being the underlying architecture. Specifi-
cally, we consider two experiment settings with different natures:
• We use 10% of the supervised data of ImageNet while using all other data as unlabeled data.

As a result, the unlabeled exmaples are entirely in-domain.
• In the second setting, we keep all images in ImageNet as supervised data. Then, we use the

domain-relevance data filtering method to filter out 1.3M images from JFT [42, 98]. Hence,
the unlabeled set is not necessarily in-domain.

The results are summarized in Table 3.3. In both 10% and the full data settings, UDA consis-
tently brings significant gains compared to the supervised baseline. This shows UDA is not only
able to scale but also able to utilize out-of-domain unlabeled examples to improve model perfor-
mance. In parallel to our work, S4L [302] and CPC [92] also show significant improvements on
ImageNet.

Methods SSL 10% 100%

ResNet-50
✗

55.09 / 77.26 77.28 / 93.73
w. RandAugment 58.84 / 80.56 78.43 / 94.37

UDA (RandAugment) ✓ 68.78 / 88.80 79.05 / 94.49

Table 2.7: Top-1 / top-5 accuracy on ImageNet with 10% and 100% of the labeled set. We use
image size 224 and 331 for the 10% and 100% experiments respectively.

2.5.5 Ablation Studies

Ablation Studies for Unlabeled Data Size Here we present an ablation study for unlabeled
data sizes. As shown in Table 2.8 and Table 2.9, given the same number of labeled examples,
reducing the number of unsupervised examples clearly leads to worse performance. In fact,
having abundant unsupervised examples is more important than having more labeled examples
since reducing the unlabeled data amount leads to worse performance than reducing the labeled
data by the same ratio.

# Unsup / # Sup 250 500 1,000 2,000 4,000

50,000 5.43 ± 0.96 4.80 ± 0.09 4.75 ± 0.10 4.73 ± 0.14 4.32 ± 0.08
20,000 11.01 ± 1.01 9.46 ± 0.14 8.57 ± 0.14 7.65 ± 0.17 7.31 ± 0.24
10,000 23.17 ± 0.71 18.43 ± 0.43 15.46 ± 0.58 12.52 ± 0.13 10.32 ± 0.20
5,000 35.41 ± 0.75 28.35 ± 0.60 22.06 ± 0.71 17.36 ± 0.15 13.19 ± 0.12

Table 2.8: Error rate (%) for CIFAR-10 with different amounts of labeled data and unlabeled
data.
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# Unsup / # Sup 250 500 1,000 2,000 4,000

73,257 2.72 ± 0.40 2.27 ± 0.09 2.23 ± 0.07 2.20 ± 0.06 2.28 ± 0.10
20,000 5.59 ± 0.74 4.43 ± 0.15 3.81 ± 0.11 3.86 ± 0.14 3.64 ± 0.20
10,000 17.13 ± 12.85 7.59 ± 1.01 5.76 ± 0.29 5.17 ± 0.12 5.40 ± 0.12
5,000 31.58 ± 7.39 12.66 ± 0.81 6.28 ± 0.25 8.35 ± 0.36 7.76 ± 0.28

Table 2.9: Error rate (%) for SVHN with different amounts of labeled data and unlabeled data.

Ablations Studies on RandAugment We hypothesize that the success of RandAugment should
be credited to the diversity of the augmentation transformations, since RandAugment works very
well for multiple different datasets while it does not require a search algorithm to find out the
most effective policies. To verify this hypothesis, we test UDA’s performance when we restrict
the number of possible transformations used in RandAugment. As shown in Figure 2.6, the
performance gradually improves as we use more augmentation transformations.

Figure 2.6: Error rate of UDA on CIFAR-10 with different numbers of possible transformations
in RandAugment. UDA achieves lower error rate when we increase the number of possible trans-
formations, which demonstrates the importance of a rich set of augmentation transformations.

Ablation Studies for TSA We study the effect of TSA on two tasks with different amounts of
unlabeled data on Yelp-5 where we have only 2.5k labeled examples and 6m unlabeled examples.

As shown in Table 2.10, on Yelp-5, where there is a lot more unlabeled data than labeled
data, TSA reduces the error rate from 50.81 to 41.35 when compared to the baseline without
TSA. More specifically, the best performance is achieved when we choose to postpone releas-
ing the supervised training signal to the end of the training, i.e, exp-schedule leads to the best
performance.

Ablation Studies for Data Augmentation on DBPedia Lastly, we study the performance of
different augmentations on DBPedia with 140 labeled examples. We initialize our model using
BERTLARGE and compare back-translation and TF-IDF based word replacement. As shown in
Table 2.11, using back-translation hurts the performance on DBPedia. We found that keywords
are often deleted after applying back-translation, which may lead to the significant performance
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TSA schedule Error rate

✗ 50.81
log-schedule 49.06
linear-schedule 45.41
exp-schedule 41.35

Table 2.10: Ablation study for Training Signal Annealing (TSA) on Yelp-5. The shown numbers
are error rates.

Augmentation Error rate

✗ 1.68
Back Translation 4.49
TF-IDF Word-Based Replacement 1.09

Table 2.11: Ablation study for augmentation on DBPedia.
drop. In comparison, TF-IDF based word replacement can preserve the keywords which has a
high TF-IDF score, leading to improved performance.

2.6 Related Work
Semi-supervised Learning. Due to the long history of semi-supervised learning (SSL), we re-
fer readers to [33] for a general review. More recently, many efforts have been made to renovate
classic ideas into deep neural instantiations. For example, graph-based label propagation [316]
has been extended to neural methods via graph embeddings [274, 287] and later graph convo-
lutions [126]. Similarly, with the variational auto-encoding framework and reinforce algorithm,
classic graphical models based SSL methods with target variable being latent can also take ad-
vantage of deep architectures [125, 157, 288]. Besides the direct extensions, it was found that
training neural classifiers to classify out-of-domain examples into an additional class [221] works
very well in practice. Later, Dai et al. [52] shows that this can be seen as an instantiation of low-
density separation.

Existing works in consistency training does make use of data augmentation [135, 219]; how-
ever, they only apply weak augmentation methods such as random translations and cropping. In
parallel to our work, ICT [266] and MixMatch [19] also show improvements for semi-supervised
learning. These methods employ mixup [304] on top of simple augmentations such as flipping
and cropping; instead, UDA emphasizes on the use of state-of-the-art data augmentations, lead-
ing to significantly better results on CIFAR-10 and SVHN. In addition, UDA is also applicable to
language domain and can also scale well to more challenging vision datasets, such as ImageNet.

Other works in the consistency training family mostly differ in how the noise is defined:
Pseudo-ensemble [8] directly applies Gaussian noise and Dropout noise; VAT [170, 171] de-
fines the noise by approximating the direction of change in the input space that the model is most
sensitive to; Cross-view training [43] masks out part of the input data. Apart from enforcing con-
sistency on the input examples and the hidden representations, another line of research enforces
consistency on the model parameter space. Works in this category include Mean Teacher [251],
fast-Stochastic Weight Averaging [4] and Smooth Neighbors on Teacher Graphs [154].
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Apart from enforcing consistency on the noised input examples and the hidden representa-
tions, another line of research enforces consistency under different model parameters, which is
complementary to our method. For example, Mean Teacher [251] maintains a teacher model with
parameters being the ensemble of a student model’s parameters and enforces the consistency be-
tween the predictions of the two models. Recently, Athiwaratkun et al. [4] present fast-SWA
that improves Mean Teacher by encouraging the model to explore a diverse set of plausible
parameters. In addition to parameter-level consistency, SNTG [154] also enforces input-level
consistency by constructing a similarity graph between unlabeled examples.

Data Augmentation. Also related to our work is the field of data augmentation research.
Besides the conventional approaches and two data augmentation methods mentioned in Section
2.2.1, a recent approach MixUp [304] goes beyond data augmentation from a single data point
and performs interpolation of data pairs to achieve augmentation. Recently, Hernández-García
and König [96] have shown that data augmentation can be regarded as a kind of explicit regular-
ization methods similar to Dropout.

Diverse Back Translation. Diverse paraphrases generated by back-translation has been a
key component in the significant performance improvements in our text classification experi-
ments. We use random sampling instead of beam search for decoding similar to the work by
Edunov et al. [60]. There are also recent works on generating diverse translations [91, 128, 230]
that might lead to further improvements when used as data augmentations.

Unsupervised Representation Learning. Apart from semi-supervised learning, unsuper-
vised representation learning offers another way to utilize unsupervised data. Collobert and
Weston [45] demonstrated that word embeddings learned by language modeling can improve the
performance significantly on semantic role labeling. Later, the pre-training of word embeddings
was simplified and substantially scaled in Word2Vec [166] and Glove [197]. More recently, Dai
and Le [50], Devlin et al. [56], Howard and Ruder [101], Peters et al. [198], Radford et al. [201]
have shown that pre-training using language modeling and denoising auto-encoding leads to sig-
nificant improvements on many tasks in the language domain. There is also a growing interest in
self-supervised learning for vision [92, 259, 302].

Consistency Training in Other Domains. Similar ideas of consistency training has also
been applied in other domains. For example, recently, enforcing adversarial consistency on un-
supervised data has also been shown to be helpful in adversarial robustness [30, 175, 242, 301].
Enforcing consistency w.r.t data augmentation has also been shown to work well for representa-
tion learning [103, 292]. Invariant representation learning [144, 220] applies the consistency loss
not only to the predicted distributions but also to representations and has been shown significant
improvements on speech recognition.

2.7 Discussions
In this work, we show that data augmentation and semi-supervised learning are well connected:
better data augmentation can lead to significantly better semi-supervised learning. Our method,
UDA, employs state-of-the-art data augmentation found in supervised learning to generate di-
verse and realistic noise and enforces the model to be consistent with respect to these noise. For
text, UDA combines well with representation learning, e.g., BERT, and is very effective in low-
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data regime where state-of-the-art performance is achieved on IMDb with only 20 examples. For
vision, UDA outperforms prior work by a clear margin and nearly matches the performance of
the fully supervised models trained on the full labeled sets which are one order of magnitude
larger. Lastly, UDA can effectively leverage out-of-domain unlabeled data and achieve improved
performances on ImageNet where we have a large amount of supervised data.
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Chapter 3

Semi-supervised Learning by Noisy
Student Training

In this chapter, we present a semi-supervised learning method that leads to great performance
gains at high-data regime and achieves the state-of-the-art results on ImageNet. This is the first
work that uses unlabeled data to achieve state-of-the-art on ImageNet. Apart from the great
performance, this method is very easy to use and does not require changing the underlying ar-
chitectures.

3.1 Introduction

Deep learning has shown remarkable successes in image recognition in recent years [88, 131,
236, 247, 250]. However state-of-the-art (SOTA) vision models are still trained with supervised
learning which requires a large corpus of labeled images to work well. By showing the models
only labeled images, we limit ourselves from making use of unlabeled images available in much
larger quantities to improve accuracy and robustness of SOTA models.

Here, we use unlabeled images to improve the SOTA ImageNet accuracy and show that the
accuracy gain has an outsized impact on robustness (out-of-distribution generalization). For this
purpose, we use a much larger corpus of unlabeled images, where a large fraction of images
do not belong to ImageNet training set distribution (i.e., they do not belong to any category
in ImageNet). We train our model with Noisy Student Training, a semi-supervised learning
approach, which has three main steps: (1) train a teacher model on labeled images, (2) use the
teacher to generate pseudo labels on unlabeled images, and (3) train a student model on the
combination of labeled images and pseudo labeled images. We iterate this algorithm a few times
by treating the student as a teacher to relabel the unlabeled data and training a new student.

Noisy Student Training improves self-training and distillation in two ways. First, it makes
the student larger than, or at least equal to, the teacher so the student can better learn from a
larger dataset. Second, it adds noise to the student so the noised student is forced to learn harder
from the pseudo labels. To noise the student, we use input noise such as RandAugment data
augmentation [49] and model noise such as dropout [241] and stochastic depth [104] during
training.
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Using Noisy Student Training, together with 300M unlabeled images, we improve Efficient-
Net’s [250] ImageNet top-1 accuracy to 88.4%. This accuracy is 2.0% better than the previous
SOTA results which requires 3.5B weakly labeled Instagram images. Not only our method im-
proves standard ImageNet accuracy, it also improves classification robustness on much harder
test sets by large margins: ImageNet-A [94] top-1 accuracy from 61.0% to 83.7%, ImageNet-
C [93] mean corruption error (mCE) from 45.7 to 28.3 and ImageNet-P [93] mean flip rate (mFR)
from 27.8 to 12.2. Our main results are shown in Table 3.1.

ImageNet ImageNet-A ImageNet-C ImageNet-P
top-1 acc. top-1 acc. mCE mFR

Prev. SOTA 86.4% 61.0% 45.7 27.8
Ours 88.4% 83.7% 28.3 12.2

Table 3.1: Summary of key results compared to previous state-of-the-art models [161, 257].
Lower is better for mean corruption error (mCE) and mean flip rate (mFR).

3.2 Noisy Student Training
Algorithm 1 gives an overview of Noisy Student Training. The inputs to the algorithm are both
labeled and unlabeled images. We use the labeled images to train a teacher model using the stan-
dard cross entropy loss. We then use the teacher model to generate pseudo labels on unlabeled
images. The pseudo labels can be soft (a continuous distribution) or hard (a one-hot distribution).
We then train a student model which minimizes the combined cross entropy loss on both labeled
images and unlabeled images. Finally, we iterate the process by putting back the student as a
teacher to generate new pseudo labels and train a new student. The algorithm is also illustrated
in Figure 3.1.

The algorithm is an improved version of self-training, a method in semi-supervised learning
(e.g., [224, 291]), and distillation [98]. More discussions on how our method is related to prior
work are included in Section 3.6.

Our key improvements lie in adding noise to the student and using student models that are
equal to or larger than the teacher. This makes our method different from Knowledge Distilla-
tion [98] where adding noise is not the core concern and a small model is often used as a student
to be faster than the teacher. One can think of our method as Knowledge Expansion in which we
want the student to be better than the teacher by giving the student model enough capacity and
difficult environments in terms of noise to learn through.

Noising Student – When the student is deliberately noised it is actually trained to be con-
sistent to the more powerful teacher that is not noised when it generates pseudo labels. In our
experiments, we use two types of noise: input noise and model noise. For input noise, we use data
augmentation with RandAugment [49]. For model noise, we use dropout [241] and stochastic
depth [104].

When applied to unlabeled data, noise has a compound benefit of enforcing local smooth-
ness in the decision function on both labeled and unlabeled data. Different kinds of noise have
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Algorithm 1 Noisy Student Training.
Require: Labeled images {(x1, y1), (x2, y2), ..., (xn, yn)} and unlabeled images {x̃1, x̃2, ..., x̃m}.

1: Learn teacher model θt∗ which minimizes the cross entropy loss on labeled images

1

n

n!

i=1

ℓ(yi, f
noised(xi, θ

t))

2: Use an unnoised teacher model to generate soft or hard pseudo labels for unlabeled images

ỹi = f(x̃i, θ
t
∗), ∀i = 1, · · · ,m

3: Learn an equal-or-larger student model θs∗ which minimizes the cross entropy loss on labeled images
and unlabeled images with noise added to the student model

1

n

n!

i=1

ℓ(yi, f
noised(xi, θ

s)) +
1

m

m!

i=1

ℓ(ỹi, f
noised(x̃i, θ

s))

4: Iterative training: Use the student as a teacher and go back to step 2.

Train equal-or-
larger student model 
with combined data 
and noise injected

Data augmentation

Stochastic depth

Dropout

… …

steel arch bridge canoe

Make the student a 
new teacher

Train teacher model 
with labeled data

Infer pseudo-labels 
on unlabeled data

Figure 3.1: Illustration of the Noisy Student Training. (All shown images are from ImageNet.)

different effects. With data augmentation noise, the student must ensure that an image, when
translated for example, should have the same category as a non-translated image. This invariant
constraint encourages the student model to learn beyond the teacher to make predictions with
more difficult images. When dropout and stochastic depth function are used as noise, the teacher
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behaves like an ensemble at inference time (during which it generates pseudo labels), whereas
the student behaves like a single model. In other words, the student is forced to mimic a more
powerful ensemble model. We present an ablation study on the effects of noise in Section 3.4.1.

Other Techniques – Noisy Student Training also work better with an additional trick: data
filtering and balancing, similar to [278, 284]. Specifically, we filter images that the teacher
model has low confidences on since they are usually out-of-domain images. To ensure that the
distribution of the unlabeled images match that of the training set, we also need to balance the
number of unlabeled images for each class, as all classes in ImageNet have a similar number
of labeled images. For this purpose, we duplicate images in classes where there are not enough
images. For classes where we have too many images, we take the images with the highest
confidence.1

Finally, we emphasize that our method can be used with soft or hard pseudo labels as both
work well in our experiments. Soft pseudo labels, in particular, work slightly better for out-of-
domain unlabeled data. Thus in the following, for consistency, we report results with soft pseudo
labels unless otherwise indicated.

Comparisons with Existing SSL Methods. Apart from self-training, another important line
of work in semi-supervised learning [33, 317] is based on consistency training [8, 20, 135, 171,
205, 251, 278] and pseudo labeling [3, 109, 138, 232]. Although they have produced promising
results, in our preliminary experiments, methods based on consistency regularization and pseudo
labeling work less well on ImageNet. Instead of using a teacher model trained on labeled data to
generate pseudo-labels, these methods do not have a separate teacher model and use the model
being trained to generate pseudo-labels. In the early phase of training, the model being trained
has low accuracy and high entropy, hence consistency training regularizes the model towards
high entropy predictions, and prevents it from achieving good accuracy. A common workaround
is to use entropy minimization, to filter examples with low confidence or to ramp up the con-
sistency loss. However, the additional hyperparameters introduced by the ramping up schedule,
confidence-based filtering and the entropy minimization make them more difficult to use at scale.
The self-training / teacher-student framework is better suited for ImageNet because we can train
a good teacher on ImageNet using labeled data.

3.3 Experiments

In this section, we will first describe our experiment details. We will then present our ImageNet
results compared with those of state-of-the-art models. Lastly, we demonstrate the surprising
improvements of our models on robustness datasets (such as ImageNet-A, C and P) as well as
under adversarial attacks.

1The benefits of data balancing is significant for small models while less significant for larger models.
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3.3.1 Experiment Details
Labeled dataset. We conduct experiments on ImageNet 2012 ILSVRC challenge prediction
task since it has been considered one of the most heavily benchmarked datasets in computer
vision and that improvements on ImageNet transfer to other datasets [129, 207].

Unlabeled dataset. We obtain unlabeled images from the JFT [42, 98], which has around
300M images. Although the images in the dataset have labels, we ignore the labels and treat them
as unlabeled data. We filter the ImageNet validation set images from the dataset (see [177]).

We then perform data filtering and balancing on this corpus. First, we run an EfficientNet-
B0 trained on ImageNet [250] over the JFT [42, 98] to predict a label for each image. We
then select images that have confidence of the label higher than 0.3. For each class, we select
at most 130K images that have the highest confidence. Finally, for classes that have less than
130K images, we duplicate some images at random so that each class can have 130K images.
Hence the total number of images that we use for training a student model is 130M (with some
duplicated images). Due to duplications, there are only 81M unique images among these 130M
images. We do not tune these hyperparameters extensively since our method is highly robust to
them.

To enable fair comparisons with our results, we also experiment with a public dataset YFCC100M [?
].

Architecture. We use EfficientNets [250] as our baseline models because they provide better
capacity for more data. In our experiments, we also further scale up EfficientNet-B7 and obtain
EfficientNet-L2. EfficientNet-L2 is wider and deeper than EfficientNet-B7 but uses a lower
resolution, which gives it more parameters to fit a large number of unlabeled images. Due to
the large model size, the training time of EfficientNet-L2 is approximately five times the training
time of EfficientNet-B7.

The architecture specifications of EfficientNet-L2 are listed in Table 3.2. We also list EfficientNet-
B7 as a reference. Scaling width and resolution by c leads to an increase factor of c2 in training
time and scaling depth by c leads to an increase factor of c. The training time of EfficientNet-L2
is around 5 times the training time of EfficientNet-B7.

Architecture Name w d Train Res. Test Res. # Params

EfficientNet-B7 2.0 3.1 600 600 66M
EfficientNet-L2 4.3 5.3 475 800 480M

Table 3.2: Architecture specifications for EfficientNets used in the work. The width w and depth
d are the scaling factors that need to be contextualized in EfficientNet [250]. Train Res. and Test
Res. denote training and testing resolutions respectively.

Training details. For labeled images, we use a batch size of 2048 by default and reduce the
batch size when we could not fit the model into the memory. We find that using a batch size of
512, 1024, and 2048 leads to the same performance. We determine the number of training steps
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and the learning rate schedule by the batch size for labeled images. Specifically, we train the
student model for 350 epochs for models larger than EfficientNet-B4, including EfficientNet-L2
and train smaller student models for 700 epochs. The learning rate starts at 0.128 for labeled
batch size 2048 and decays by 0.97 every 2.4 epochs if trained for 350 epochs or every 4.8
epochs if trained for 700 epochs.

We use a large batch size for unlabeled images, especially for large models, to make full use
of large quantities of unlabeled images. Labeled images and unlabeled images are concatenated
together to compute the average cross entropy loss. We apply the recently proposed technique to
fix train-test resolution discrepancy [257] for EfficientNet-L2. We first perform normal training
with a smaller resolution for 350 epochs. Then we finetune the model with a larger resolution for
1.5 epochs on unaugmented labeled images. Similar to [257], we fix the shallow layers during
finetuning.

Our largest model, EfficientNet-L2, needs to be trained for 6 days on a Cloud TPU v3 Pod,
which has 2048 cores, if the unlabeled batch size is 14x the labeled batch size.

Method # Params Extra Data Top-1 Acc. Top-5 Acc.

ResNet-50 [88] 26M - 76.0% 93.0%
ResNet-152 [88] 60M - 77.8% 93.8%
DenseNet-264 [105] 34M - 77.9% 93.9%
Inception-v3 [248] 24M - 78.8% 94.4%
Xception [42] 23M - 79.0% 94.5%
Inception-v4 [249] 48M - 80.0% 95.0%
Inception-resnet-v2 [249] 56M - 80.1% 95.1%
ResNeXt-101 [279] 84M - 80.9% 95.6%
PolyNet [307] 92M - 81.3% 95.8%
SENet [102] 146M - 82.7% 96.2%
NASNet-A [322] 89M - 82.7% 96.2%
AmoebaNet-A [206] 87M - 82.8% 96.1%
PNASNet [150] 86M - 82.9% 96.2%
AmoebaNet-C [48] 155M - 83.5% 96.5%
GPipe [107] 557M - 84.3% 97.0%
EfficientNet-B7 [250] 66M - 85.0% 97.2%
EfficientNet-L2 [250] 480M - 85.5% 97.5%

ResNet-50 Billion-scale [284] 26M

3.5B images labeled with tags

81.2% 96.0%
ResNeXt-101 Billion-scale [284] 193M 84.8% -
ResNeXt-101 WSL [161] 829M 85.4% 97.6%
FixRes ResNeXt-101 WSL [257] 829M 86.4% 98.0%

Big Transfer (BiT-L) [? ]† 928M 300M weakly labeled images from JFT 87.5% 98.5%

Noisy Student Training (EfficientNet-L2) 480M 300M unlabeled images from JFT 88.4% 98.7%

Table 3.3: Top-1 and Top-5 Accuracy of Noisy Student Training and previous state-of-the-art
methods on ImageNet. EfficientNet-L2 with Noisy Student Training is the result of iterative
training for multiple iterations by putting back the student model as the new teacher. It has better
tradeoff in terms of accuracy and model size compared to previous state-of-the-art models. †:
Big Transfer is a concurrent work that performs transfer learning from the JFT dataset.
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Noise. We use stochastic depth [104], dropout [241], and RandAugment [49] to noise the stu-
dent. The hyperparameters for these noise functions are the same for EfficientNet-B7 and L2. In
particular, we set the survival probability in stochastic depth to 0.8 for the final layer and follow
the linear decay rule for other layers. We apply dropout to the final layer with a dropout rate of
0.5. For RandAugment, we apply two random operations with magnitude set to 27.

Iterative training. The best model in our experiments is a result of three iterations of putting
back the student as the new teacher. We first trained an EfficientNet-B7 on ImageNet as the
teacher model. Then by using the B7 model as the teacher, we trained an EfficientNet-L2 model
with the unlabeled batch size set to 14 times the labeled batch size. Then, we trained a new
EfficientNet-L2 model with the EfficientNet-L2 model as the teacher. Lastly, we iterated again
and used an unlabeled batch size of 28 times the labeled batch size. The detailed results of the
three iterations are available in Section 3.4.2.

Robustness Benchmarks Metrics. For completeness, we provide brief descriptions of metrics
used in robustness benchmarks ImageNet-A, ImageNet-C and ImageNet-P.

• ImageNet-A. The top-1 and top-5 accuracy are measured on the 200 classes that ImageNet-
A includes. The mapping from the 200 classes to the original ImageNet classes are avail-
able online.2

• ImageNet-C. mCE (mean corruption error) is the weighted average of error rate on dif-
ferent corruptions, with AlexNet’s error rate as a baseline. The score is normalized by
AlexNet’s error rate so that corruptions with different difficulties lead to scores of a simi-
lar scale. Please refer to [93] for details about mCE and AlexNet’s error rate. The top-1
accuracy is simply the average top-1 accuracy for all corruptions and all severity degrees.
The top-1 accuracy of prior methods are computed from their reported corruption error on
each corruption.

• ImageNet-P. Flip probability is the probability that the model changes top-1 prediction for
different perturbations. mFR (mean flip rate) is the weighted average of flip probability on
different perturbations, with AlexNet’s flip probability as a baseline. Please refer to [93]
for details about mFR and AlexNet’s flip probability. The top-1 accuracy reported in this
paper is the average accuracy for all images included in ImageNet-P.

On Using RandAugment for ImageNet-C and ImageNet-P. Since Noisy Student Training
leads to significant improvements on ImageNet-C and ImageNet-P, we briefly discuss the influ-
ence of RandAugment on robustness results. First, note that our supervised baseline EfficientNet-
L2 also uses RandAugment. Noisy Student Training leads to significant improvements when
compared to the supervised baseline as shown in Table 3.5 and Table 3.6.

Second, the overlap between transformations of RandAugment and ImageNet-C, P is small.
For completeness, we list transformations in RandAugment and corruptions and perturbations in
ImageNet-C and ImageNet-P here:

2https://github.com/hendrycks/natural-adv-examples/blob/master/eval.py
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• RandAugment transformations: AutoContrast, Equalize, Invert, Rotate, Posterize, Solar-
ize, Color, Contrast, Brightness, Sharpness, ShearX, ShearY, TranslateX and TranslateY.

• Corruptions in ImageNet-C: Gaussian Noise, Shot Noise, Impulse Noise, Defocus Blur,
Frosted Glass Blur, Motion Blur, Zoom Blur, Snow, Frost, Fog, Brightness, Contrast, Elas-
tic, Pixelate, JPEG.

• Perturbations in ImageNet-P: Gaussian Noise, Shot Noise, Motion Blur, Zoom Blur, Snow,
Brightness, Translate, Rotate, Tilt, Scale.

The main overlap between RandAugment and ImageNet-C are Contrast, Brightness and
Sharpness. Among them, augmentation Contrast and Brightness are also used in ResNeXt-101
WSL [161] and in vision models that uses the Inception preprocessing [100, 247]. The overlap
between RandAugment and ImageNet-P includes Brightness, Translate and Rotate.

3.3.2 ImageNet Results

We first report the validation set accuracy on the ImageNet 2012 ILSVRC challenge prediction
task as commonly done in literature [88, 131, 247, 250] (see also [207]). As shown in Table 3.3,
EfficientNet-L2 with Noisy Student Training achieves 88.4% top-1 accuracy which is signifi-
cantly better than the best reported accuracy on EfficientNet of 85.0%. The total gain of 3.4%
comes from two sources: by making the model larger (+0.5%) and by Noisy Student Training
(+2.9%). In other words, Noisy Student Training makes a much larger impact on the accuracy
than changing the architecture.

Further, Noisy Student Training outperforms the state-of-the-art accuracy of 86.4% by FixRes
ResNeXt-101 WSL [161, 257] that requires 3.5 Billion Instagram images labeled with tags. As
a comparison, our method only requires 300M unlabeled images, which is perhaps more easy to
collect. Our model is also approximately twice as small in the number of parameters compared
to FixRes ResNeXt-101 WSL.

Model size study: Noisy Student Training for EfficientNet B0-B7 without Iterative Train-
ing. In addition to improving state-of-the-art results, we conduct experiments to verify if Noisy
Student Training can benefit other EfficienetNet models. In previous experiments, iterative train-
ing was used to optimize the accuracy of EfficientNet-L2 but here we skip it as it is difficult to
use iterative training for many experiments. We vary the model size from EfficientNet-B0 to
EfficientNet-B7 [250] and use the same model as both the teacher and the student. We apply
RandAugment to all EfficientNet baselines, leading to more competitive baselines. We set the
unlabeled batch size to be three times the batch size of labeled images for all model sizes except
for EfficientNet-B0. For EfficientNet-B0, we set the unlabeled batch size to be the same as the
batch size of labeled images. As shown in Figure 3.2, Noisy Student Training leads to a consis-
tent improvement of around 0.8% for all model sizes. Overall, EfficientNets with Noisy Student
Training provide a much better tradeoff between model size and accuracy than prior works. The
results also confirm that vision models can benefit from Noisy Student Training even without
iterative training.
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Figure 3.2: Noisy Student Training leads to significant improvements across all model sizes. We
use the same architecture for the teacher and the student and do not perform iterative training.

3.3.3 Robustness Results on ImageNet-A, ImageNet-C and ImageNet-P

We evaluate the best model, that achieves 88.4% top-1 accuracy, on three robustness test sets:
ImageNet-A, ImageNet-C and ImageNet-P. ImageNet-C and P test sets [93] include images
with common corruptions and perturbations such as blurring, fogging, rotation and scaling.
ImageNet-A test set [94] consists of difficult images that cause significant drops in accuracy
to state-of-the-art models. These test sets are considered as “robustness” benchmarks because
the test images are either much harder, for ImageNet-A, or the test images are different from the
training images, for ImageNet-C and P.

For ImageNet-C and ImageNet-P, we evaluate models on two released versions with resolu-
tion 224x224 and 299x299 and resize images to the resolution EfficientNet trained on. As shown
in Table 3.4, 3.5 and 3.6, Noisy Student Training yields substantial gains on robustness datasets
compared to the previous state-of-the-art model ResNeXt-101 WSL [161, 186] trained on 3.5B
weakly labeled images. On ImageNet-A, it improves the top-1 accuracy from 61.0% to 83.7%.
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Method Top-1 Acc. Top-5 Acc.

ResNet-101 [94] 4.7% -
ResNeXt-101 [94] (32x4d) 5.9% -
ResNet-152 [94] 6.1% -
ResNeXt-101 [94] (64x4d) 7.3% -
DPN-98 [94] 9.4% -
ResNeXt-101+SE [94] (32x4d) 14.2% -
ResNeXt-101 WSL [161, 186] 61.0% -

EfficientNet-L2 49.6% 78.6%
Noisy Student Training (L2) 83.7% 95.2%

Table 3.4: Robustness results on ImageNet-A.

Method Res. Top-1 Acc. mCE

ResNet-50 [93] 224 39.0% 76.7
SIN [71] 224 45.2% 69.3
Patch Gaussian [151] 299 52.3% 60.4
ResNeXt-101 WSL [161, 186] 224 - 45.7

EfficientNet-L2 224 62.6% 47.5
Noisy Student Training (L2) 224 76.5% 30.0
EfficientNet-L2 299 66.6% 42.5
Noisy Student Training (L2) 299 77.8% 28.3

Table 3.5: Robustness results on ImageNet-C. mCE is the weighted average of error rate on
different corruptions, with AlexNet’s error rate as a baseline (lower is better).

Method Res. Top-1 Acc. mFR

ResNet-50 [93] 224 - 58.0
Low Pass Filter Pooling [305] 224 - 51.2
ResNeXt-101 WSL [161, 186] 224 - 27.8

EfficientNet-L2 224 80.4% 27.2
Noisy Student Training (L2) 224 85.2% 14.2
EfficientNet-L2 299 81.6% 23.7
Noisy Student Training (L2) 299 86.4% 12.2

Table 3.6: Robustness results on ImageNet-P, where images are generated with a sequence of
perturbations. mFR measures the model’s probability of flipping predictions under perturbations
with AlexNet as a baseline (lower is better).

On ImageNet-C, it reduces mean corruption error (mCE) from 45.7 to 28.3. On ImageNet-P, it
leads to a mean flip rate (mFR) of 14.2 if we use a resolution of 224x224 (direct comparison) and
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Figure 3.3: Selected images from robustness benchmarks ImageNet-A, C and P. Test images
from ImageNet-C underwent artificial transformations (also known as common corruptions) that
cannot be found on the ImageNet training set. Test images on ImageNet-P underwent different
scales of perturbations. On ImageNet-A, C, EfficientNet with Noisy Student Tranining produces
correct top-1 predictions (shown in bold black texts) and EfficientNet without Noisy Student
Training produces incorrect top-1 predictions (shown in red texts). On ImageNet-P, EfficientNet
without Noisy Student Training flips predictions frequently.

12.2 if we use a resolution of 299x299.3 These significant gains in robustness in ImageNet-C and
ImageNet-P are surprising because our method was not deliberately optimized for robustness.4

Qualitative Analysis. To intuitively understand the significant improvements on the three ro-
bustness benchmarks, we show several images in Figure 3.3 where the predictions of the standard
model are incorrect while the predictions of the model with Noisy Student Training are correct.

Figure 3.3a shows example images from ImageNet-A and the predictions of our models. The
model with Noisy Student Training can successfully predict the correct labels of these highly
difficult images. For example, without Noisy Student Training, the model predicts bullfrog for
the image shown on the left of the second row, which might be resulted from the black lotus
leaf on the water. With Noisy Student Training, the model correctly predicts dragonfly for the

3For EfficientNet-L2, we use the model without finetuning with a larger test time resolution, since a larger
resolution results in a discrepancy with the resolution of data and leads to degraded performance on ImageNet-C
and ImageNet-P.

4Note that both our model and ResNeXt-101 WSL use augmentations that have a small overlap with corrup-
tions in ImageNet-C, which might result in better performance. Specifically, RandAugment includes augmentation
Brightness, Contrast and Sharpness. ResNeXt-101 WSL uses augmentation of Brightness and Contrast.
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image. At the top-left image, the model without Noisy Student Training ignores the sea lions
and mistakenly recognizes a buoy as a lighthouse, while the model with Noisy Student Training
can recognize the sea lions.

Figure 3.3b shows images from ImageNet-C and the corresponding predictions. As can be
seen from the figure, our model with Noisy Student Training makes correct predictions for im-
ages under severe corruptions and perturbations such as snow, motion blur and fog, while the
model without Noisy Student Training suffers greatly under these conditions. The most interest-
ing image is shown on the right of the first row. The swing in the picture is barely recognizable
by human while the model with Noisy Student Training still makes the correct prediction.

Figure 3.3c shows images from ImageNet-P and the corresponding predictions. As can be
seen, our model with Noisy Student Training makes correct and consistent predictions as images
undergone different perturbations while the model without Noisy Student Training flips predic-
tions frequently.

3.3.4 Adversarial Robustness Results
After testing our model’s robustness to common corruptions and perturbations, we also study
its performance on adversarial perturbations. We evaluate our EfficientNet-L2 models with and
without Noisy Student Training against an FGSM attack. This attack performs one gradient
descent step on the input image [76] with the update on each pixel set to ε. As shown in Figure
3.4, Noisy Student Training leads to very significant improvements in accuracy even though
the model is not optimized for adversarial robustness. Under a stronger attack PGD with 10
iterations [160], at ε = 16, Noisy Student Training improves EfficientNet-L2’s accuracy from
1.1% to 4.4%.

Note that these adversarial robustness results are not directly comparable to prior work since
we use a large input resolution of 800x800 and adversarial vulnerability can scale with the input
dimension [66, 74, 76, 235].

3.4 Ablation Study
In this section, we study the importance of noise and iterative training and summarize the abla-
tions for other components of our method.

3.4.1 The Importance of Noise in Self-training
Since we use soft pseudo labels generated from the teacher model, when the student is trained to
be exactly the same as the teacher model, the cross entropy loss on unlabeled data would be zero
and the training signal would vanish. Hence, a question that naturally arises is why the student
can outperform the teacher with soft pseudo labels. As stated earlier, we hypothesize that noising
the student is needed so that it does not merely learn the teacher’s knowledge. We investigate
the importance of noising in two scenarios with different amounts of unlabeled data and different
teacher model accuracies. In both cases, we gradually remove augmentation, stochastic depth and
dropout for unlabeled images when training the student model, while keeping them for labeled
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Figure 3.4: Noisy Student Training improves adversarial robustness against an FGSM attack
though the model is not optimized for adversarial robustness. The accuracy is improved by 11%
at ε = 2 and gets better as ε gets larger.

images. This way, we can isolate the influence of noising on unlabeled images from the influence
of preventing overfitting for labeled images. In addition, we compare using a noised teacher and
an unnoised teacher to study if it is necessary to disable noise when generating pseudo labels.

Here, we show the evidence in Table 3.7, noise such as stochastic depth, dropout and data
augmentation plays an important role in enabling the student model to perform better than the
teacher. The performance consistently drops with noise function removed. However, in the
case with 130M unlabeled images, when compared to the supervised baseline, the performance
is still improved to 84.3% from 84.0% with noise function removed. We hypothesize that the
improvement can be attributed to SGD, which introduces stochasticity into the training process.

One might argue that the improvements from using noise can be resulted from preventing
overfitting the pseudo labels on the unlabeled images. We verify that this is not the case when
we use 130M unlabeled images since the model does not overfit the unlabeled set from the
training loss. While removing noise leads to a much lower training loss for labeled images, we
observe that, for unlabeled images, removing noise leads to a smaller drop in training loss. This
is probably because it is harder to overfit the large unlabeled dataset.

Lastly, adding noise to the teacher model that generates pseudo labels leads to lower accuracy,
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Model / Unlabeled Set Size 1.3M 130M

EfficientNet-B5 83.3% 84.0%

Noisy Student Training (B5) 83.9% 85.1%
student w/o Aug 83.6% 84.6%
student w/o Aug, SD, Dropout 83.2% 84.3%
teacher w. Aug, SD, Dropout 83.7% 84.4%

Table 3.7: Ablation study of noising. We use EfficientNet-B5 as the teacher model and study
two cases with different numbers of unlabeled images and different augmentations. For the
experiment with 1.3M unlabeled images, we use the standard augmentation including random
translation and flipping for both the teacher and the student. For the experiment with 130M
unlabeled images, we use RandAugment. Aug and SD denote data augmentation and stochastic
depth respectively. We remove the noise for unlabeled images while keeping them for labeled
images. Here, iterative training is not used and unlabeled batch size is set to be the same as the
labeled batch size to save training time.

which shows the importance of having a powerful unnoised teacher model.

3.4.2 A Study of Iterative Training
Here, we show the detailed effects of iterative training. As mentioned in Section 3.3.1, we
first train an EfficientNet-B7 model on labeled data and then use it as the teacher to train an
EfficientNet-L2 student model. Then, we iterate this process by putting back the new student
model as the teacher model.

As shown in Table 3.8, the model performance improves to 87.6% in the first iteration and
then to 88.1% in the second iteration with the same hyperparameters (except using a teacher
model with better performance). These results indicate that iterative training is effective in pro-
ducing increasingly better models. For the last iteration, we make use of a larger ratio between
unlabeled batch size and labeled batch size to boost the final performance to 88.4%.

Iteration Model Batch Size Ratio Top-1 Acc.

1 EfficientNet-L2 14:1 87.6%
2 EfficientNet-L2 14:1 88.1%
3 EfficientNet-L2 28:1 88.4%

Table 3.8: Iterative training improves the accuracy, where batch size ratio denotes the ratio be-
tween unlabeled data and labeled data.

3.4.3 Additional Ablation Study Summarization
In this section, we provide comprehensive studies of various components of our method. Since
iterative training results in longer training time, we conduct ablation without it. To further save
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training time, we reduce the training epochs for small models from 700 to 350, starting from
Study #4. We also set the unlabeled batch size to be the same as the labeled batch size for
models smaller than EfficientNet-B7 starting from Study #2.

Study #1: Teacher Model’s Capacity. Here, we study if using a larger and better teacher
model would lead to better results. We use our best model Noisy Student Training with EfficientNet-
L2, that achieves a top-1 accuracy of 88.4%, to teach student models with sizes ranging from
EfficientNet-B0 to EfficientNet-B7. We use the standard augmentation instead of RandAugment
on unlabeled data in this experiment to give the student model more capacity. This setting is in
principle similar to distillation on unlabeled data.

The comparison is shown in Table 3.9. Using Noisy Student Training (EfficientNet-L2) as
the teacher leads to another 0.5% to 1.6% improvement on top of the improved results by using
the same model as the teacher. For example, we can train a medium-sized model EfficientNet-
B4, which has fewer parameters than ResNet-50, to an accuracy of 85.3%. Therefore, using a
large teacher model with better performance leads to better results.

Study #2: Unlabeled Data Size. Next, we conduct experiments to understand the effects of
using different amounts of unlabeled data. We start with the 130M unlabeled images and grad-
ually reduce the unlabeled set. We experiment with using 1

128
, 1
64
, 1
32
, 1
16
, 1
4

of the whole data by
uniformly sampling images from the the unlabeled set for simplicity, though taking images with
highest confidence may lead to better results. We use EfficientNet-B4 as both the teacher and the
student.

As can be seen from Table 3.10, the performance stays similar when we reduce the data
to 1

16
of the whole data,5 which amounts to 8.1M images after duplicating. The performance

drops when we further reduce it. Hence, using a large amount of unlabeled data leads to better
performance.

Study #3: Hard Pseudo-Label vs. Soft Pseudo-Label on Out-of-domain Data. Unlike pre-
vious studies in semi-supervised learning that use in-domain unlabeled data (e.g., CIFAR-10
images as unlabeled data for a small CIFAR-10 training set), to improve ImageNet, we must use
out-of-domain unlabeled data. Here we compare hard pseudo-label and soft pseudo-label for
out-of-domain data. Since a teacher model’s confidence on an image can be a good indicator
of whether it is an out-of-domain image, we consider the high-confidence images as in-domain
images and the low-confidence images as out-of-domain images. We sample 1.3M images in
each confidence interval [0.0, 0.1], [0.1, 0.2], · · · , [0.9, 1.0].

We use EfficientNet-B0 as both the teacher model and the student model and compare using
Noisy Student Training with soft pseudo labels and hard pseudo labels. The results are shown in
Figure 3.5 with the following observations: (1) Soft pseudo labels and hard pseudo labels can
both lead to significant improvements with in-domain unlabeled images, i.e., high-confidence
images. (2) With out-of-domain unlabeled images, hard pseudo labels can hurt the performance
while soft pseudo labels lead to robust performance.

5A larger model might benefit from more data while a small model with limited capacity can easily saturate.
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Model # Params Top-1 Acc. Top-5 Acc.

EfficientNet-B0
5.3M

77.3% 93.4%
Noisy Student Training (B0) 78.1% 94.2%
Noisy Student Training (B0, L2) 78.8% 94.5%

EfficientNet-B1
7.8M

79.2% 94.4%
Noisy Student Training (B1) 80.2% 95.2%
Noisy Student Training (B1, L2) 81.5% 95.8%

EfficientNet-B2
9.2M

80.0% 94.9%
Noisy Student Training (B2) 81.1% 95.5%
Noisy Student Training (B2, L2) 82.4% 96.3%

EfficientNet-B3
12M

81.7% 95.7%
Noisy Student Training (B3) 82.5% 96.4%
Noisy Student Training (B3, L2) 84.1% 96.9%

EfficientNet-B4
19M

83.2% 96.4%
Noisy Student Training (B4) 84.4% 97.0%
Noisy Student Training (B4, L2) 85.3% 97.5%

EfficientNet-B5
30M

84.0% 96.8%
Noisy Student Training (B5) 85.1% 97.3%
Noisy Student Training (B5, L2) 86.1% 97.8%

EfficientNet-B6
43M

84.5% 97.0%
Noisy Student Training (B6) 85.9% 97.6%
Noisy Student Training (B6, L2) 86.4% 97.9%

EfficientNet-B7
66M

85.0% 97.2%
Noisy Student Training (B7) 86.4% 97.9%
Noisy Student Training (B7, L2) 86.9% 98.1%

Table 3.9: Using our best model with 88.4% accuracy as the teacher (denoted as Noisy Student
Training (X, L2)) leads to more improvements than using the same model as the teacher (de-
noted as Noisy Student Training (X)). Models smaller than EfficientNet-B5 are trained for 700
epochs (better than training for 350 epochs as used in Study #4 to Study #8). Models other than
EfficientNet-B0 uses an unlabeled batch size of three times the labeled batch size, while other
ablation studies set the unlabeled batch size to be the same as labeled batch size by default for
models smaller than B7.

Data 1/128 1/64 1/32 1/16 1/4 1

Top-1 Acc. 83.4% 83.3% 83.7% 83.9% 83.8% 84.0%

Table 3.10: Noisy Student Training’s performance improves with more unlabeled data. Models
are trained for 700 epochs without iterative training. The baseline model achieves an accuracy
of 83.2%.

Note that we have also observed that using hard pseudo labels can achieve as good results or
slightly better results when a larger teacher is employed. Hence, whether soft pseudo labels or
hard pseudo labels work better might need to be determined on a case-by-case basis.
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Figure 3.5: Soft pseudo labels lead to better performance for low confidence data (out-of-domain
data). Each dot at p represents a Noisy Student Training model trained with 1.3M ImageNet
labeled images and 1.3M unlabeled images with confidence scores in [p, p+ 0.1].

Study #4: Student Model’s Capacity. Then, we investigate the effects of student models with
different capacities. For teacher models, we use EfficientNet-B0, B2 and B4 trained on labeled
data and EfficientNet-B7 trained using Noisy Student Training. We compare using a student
model with the same size or with a larger size. The comparison is shown in Table 3.11. With the
same teacher, using a larger student model leads to consistently better performance, showing that
using a large student model is important to enable the student to learn a more powerful model.

Study #5: Data Balancing. Here, we study the necessity of keeping the unlabeled data bal-
anced across categories. As a comparison, we use all unlabeled data that has a confidence score
higher than 0.3. We present results with EfficientNet-B0 to B3 as the backbone models in Table
3.12. Using data balancing leads to better performance for small models EfficientNet-B0 and
B1. Interestingly, the gap becomes smaller for larger models such as EfficientNet-B2 and B3,
which shows that more powerful models can learn from unbalanced data effectively. To enable
Noisy Student Training to work well for all model sizes, we use data balancing by default.
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Teacher Teacher Acc. Student Student Acc.

B0 77.3% B0 77.9%
B1 79.5%

B2 80.0% B2 80.7%
B3 82.0%

B4 83.2% B4 84.0%
B5 84.7%

B7 86.9% B7 86.9%
L2 87.2%

Table 3.11: Using a larger student model leads to better performance. Student models are trained
for 350 epochs instead of 700 epochs without iterative training. The B7 teacher with an accuracy
of 86.9% is trained by Noisy Student Training with multiple iterations using B7. The comparison
between B7 and L2 as student models is not completely fair for L2, since we use an unlabeled
batch size of 3x the labeled batch size for training L2, which is not as good as using an unlabeled
batch size of 7x the labeled batch size when training B7 (See Study #7 for more details).

Model B0 B1 B2 B3

Supervised Learning 77.3% 79.2% 80.0% 81.7%

Noisy Student Training 77.9% 79.9% 80.7% 82.1%
w/o Data Balancing 77.6% 79.6% 80.6% 82.1%

Table 3.12: Data balancing leads to better results for small models. Models are trained for 350
epochs instead of 700 epochs without iterative training.

Study #6: Joint Training. In our algorithm, we train the model with labeled images and
pseudo-labeled images jointly. Here, we also compare with an alternative approach used by
Yalniz et al. [284], which first pretrains the model on pseudo-labeled images and then finetunes
it on labeled images. For finetuning, we experiment with different steps and take the best results.
The comparison is shown in Table 3.13.

It is clear that joint training significantly outperforms pretraining + finetuning. Note that pre-
training only on pseudo-labeled images leads to a much lower accuracy than supervised learning
only on labeled data, which suggests that the distribution of unlabeled data is very different from
that of labeled data. In this case, joint training leads to a better solution that fits both types of
data.

Study #7: Ratio between Unlabeled Batch Size and Labeled Batch Size. Since we use
130M unlabeled images and 1.3M labeled images, if the batch sizes for unlabeled data and
labeled data are the same, the model is trained on unlabeled data only for one epoch every time
it is trained on labeled data for a hundred epochs. Ideally, we would also like the model to be
trained on unlabeled data for more epochs by using a larger unlabeled batch size so that it can fit
the unlabeled data better. Hence we study the importance of the ratio between unlabeled batch
size and labeled batch size.
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Model B0 B1 B2 B3

Supervised Learning 77.3% 79.2% 80.0% 81.7%

Pretraining 72.6% 75.1% 75.9% 76.5%
Pretraining + Finetuning 77.5% 79.4% 80.3% 81.7%
Joint Training 77.9% 79.9% 80.7% 82.1%

Table 3.13: Joint training work better than pretraining and finetuning. We vary the finetuning
steps and report the best results. Models are trained for 350 epochs instead of 700 epochs without
iterative training.

Teacher (Acc.) Batch Size Ratio Top-1 Acc.

B4 (83.2) 1:1 84.0%
3:1 84.0%

L2 (87.0) 1:1 86.7%
3:1 87.4%

L2 (87.4) 3:1 87.4%
6:1 87.9%

Table 3.14: With a fixed labeled batch size, a larger unlabeled batch size leads to better perfor-
mance for EfficientNet-L2. The Batch Size Ratio denotes the ratio between unlabeled batch size
and labeled batch size.

In this study, we try a medium-sized model EfficientNet-B4 as well as a larger model EfficientNet-
L2. We use models of the same size as both the teacher and the student. As shown in Table 3.14,
the larger model EfficientNet-L2 benefits from a large ratio while the smaller model EfficientNet-
B4 does not. Using a larger ratio between unlabeled batch size and labeled batch size, leads to
substantially better performance for a large model.

Study #8: Warm-starting the Student Model. Lastly, one might wonder if we should train
the student model from scratch when it can be initialized with a converged teacher model with
good accuracy. In this ablation, we first train an EfficientNet-B0 model on ImageNet and use it
to initialize the student model. We vary the number of epochs for training the student and use
the same exponential decay learning rate schedule. Training starts at different learning rates so
that the learning rate is decayed to the same value in all experiments. As shown in Table 3.15,
the accuracy drops significantly when we reduce the training epoch from 350 to 70 and drops
slightly when reduced to 280 or 140. Hence, the student still needs to be trained for a large
number of epochs even with warm-starting.

Further, we also observe that a student initialized with the teacher can sometimes be stuck in
a local optimal. For example, when we use EfficientNet-B7 with an accuracy of 86.4% as the
teacher, the student model initialized with the teacher achieves an accuracy of 86.4% halfway
through the training but gets stuck there when trained for 210 epochs, while a model trained
from scratch achieves an accuracy of 86.9%. Hence, though we can save training time by warm-
staring, we train our model from scratch to ensure the best performance.
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Warm-start Initializing student with teacher No Init
Epoch 35 70 140 280 350

Top-1 Acc. 77.4% 77.5% 77.7% 77.8% 77.9%

Table 3.15: A student initialized with the teacher still requires at least 140 epochs to perform
well. The baseline model, trained with labeled data only, has an accuracy of 77.3%.

3.4.4 Results with a Different Architecture and Dataset

Results with ResNet-50. To study whether other architectures can benefit from Noisy Student
Training, we conduct experiments with ResNet-50 [88]. We use the full ImageNet as the labeled
data and the 130M images from JFT as the unlabeled data. We train a ResNet-50 model on
ImageNet and use it as our teacher model. We use RandAugment with the magnitude set to 9 as
the noise.

The results are shown in Table 3.16. Noisy Student Training leads to an improvement of 1.3%
on the baseline model, which shows that Noisy Student Training is effective for architectures
other than EfficientNet.

Method Top-1 Acc. Top-5 Acc.

ResNet-50 77.6% 93.8%
Noisy Student Training (ResNet-50) 78.9% 94.3%

Table 3.16: Experiments on ResNet-50.

Results on SVHN. We also evaluate Noisy Student Training on a smaller dataset SVHN. We
use the core set with 73K images as the training set and the validation set. The extra set with
531K images are used as the unlabeled set. We use EfficientNet-B0 with strides of the second
and the third blocks set to 1 so that the final feature map is 4x4 when the input image size is
32x32.

As shown in Table 3.17, Noisy Student Training improves the baseline accuracy from 98.1%
to 98.6% and outperforms the previous state-of-the-art results achieved by RandAugment with
Wide-ResNet-28-10.

Method Accuracy

RandAugment (WRN) 98.3%

RandAugment (EfficientNet-B0) 98.1%
Noisy Student Training (B0) 98.6%

Table 3.17: Results on SVHN.
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Model Dataset Top-1 Acc. Top-5 Acc.

EfficientNet-B0 - 77.3% 93.4%
Noisy Student Training (B0) YFCC 79.9% 95.0%
Noisy Student Training (B0) JFT 78.1% 94.2%

EfficientNet-B1 - 79.2% 94.4%
Noisy Student Training (B1) YFCC 79.9% 95.0%
Noisy Student Training (B1) JFT 80.2% 95.2%

EfficientNet-B2 - 80.0% 94.9%
Noisy Student Training (B2) YFCC 81.0% 95.6%
Noisy Student Training (B2) JFT 81.1% 95.5%

EfficientNet-B3 - 81.7% 95.7%
Noisy Student Training (B3) YFCC 82.3% 96.2%
Noisy Student Training (B3) JFT 82.5% 96.4%

EfficientNet-B4 - 83.2% 96.4%
Noisy Student Training (B4) YFCC 84.2% 96.9%
Noisy Student Training (B4) JFT 84.4% 97.0%

EfficientNet-B5 - 84.0% 96.8%
Noisy Student Training (B5) YFCC 85.0% 97.2%
Noisy Student Training (B5) JFT 85.1% 97.3%

EfficientNet-B6 - 84.5% 97.0%
Noisy Student Training (B6) YFCC 85.4% 97.5%
Noisy Student Training (B6) JFT 85.6% 97.6%

EfficientNet-B7 - 85.0% 97.2%
Noisy Student Training (B7) YFCC 86.2% 97.9%
Noisy Student Training (B7) JFT 86.4% 97.9%

Table 3.18: Results using YFCC100M and JFT as the unlabeled dataset.

3.5 Results on YFCC100M

Since JFT is not a public dataset, we also experiment with a public unlabeled dataset YFCC100M [?
], so that researchers can make fair comparisons with our results. Similar to the setting in Sec-
tion 3.3.2, we experiment with different model sizes without iterative training. We use the same
model for both the teacher and the student. We also use the same hyperparamters when using JFT
and YFCC100M. Similar to the case for JFT, we first filter images from ImageNet validation set.
We then filter low confidence images according to B0’s prediction and only keep the top 130K
images for each class according to the top-1 predicted class. The resulting set has 34M images
since there are not enough images for most classes. We then balance the dataset and increase it to
130M images. As a comparison, before the data balancing stage, there are 81M images in JFT.

As shown in Table 3.18, Noisy Student Training also leads to significant improvements using
YFCC100M though it achieves better performance using JFT. The performance difference is
probably due to the dataset size difference.
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3.6 Related works
Self-training. Our work is based on self-training (e.g., [211, 224, 291? ]). Self-training first
uses labeled data to train a good teacher model, then use the teacher model to label unlabeled data
and finally use the labeled data and unlabeled data to jointly train a student model. In typical self-
training with the teacher-student framework, noise injection to the student is not used by default,
or the role of noise is not fully understood or justified. The main difference between our work
and prior work is that we identify the importance of noise, and aggressively inject noise to make
the student better.

Self-training was previously used to improve ResNet-50 from 76.4% to 81.2% top-1 accu-
racy [284] which is still far from the state-of-the-art accuracy. Yalniz et al. [284] also did not
show significant improvements in terms of robustness on ImageNet-A, C and P as we did. In
terms of methodology, they proposed to first only train on unlabeled images and then finetune
their model on labeled images as the final stage. In Noisy Student Training, we combine these
two steps into one because it simplifies the algorithm and leads to better performance in our
experiments.

Data Distillation [202], which ensembles predictions for an image with different transfor-
mations to strengthen the teacher, is the opposite of our approach of weakening the student.
Parthasarathi et al. [193] find a small and fast speech recognition model for deployment via
knowledge distillation on unlabeled data. As noise is not used and the student is also small, it is
difficult to make the student better than teacher. The domain adaptation framework in [214] is
related but highly optimized for videos, e.g., prediction on which frame to use in a video. The
method in [314] ensembles predictions from multiple teacher models, which is more expensive
than our method.

Co-training [22] divides features into two disjoint partitions and trains two models with the
two sets of features using labeled data. Their source of “noise" is the feature partitioning such
that two models do not always agree on unlabeled data. Our method of injecting noise to the
student model also enables the teacher and the student to make different predictions and is more
suitable for ImageNet than partitioning features.

Self-training / co-training has also been shown to work well for a variety of other tasks includ-
ing leveraging noisy data [264], semantic segmentation [7], text classification [120, 244]. Back
translation and self-training have led to significant improvements in machine translation [41, 60,
86, 87, 225, 277].

Semi-supervised Learning. Apart from self-training, another important line of work in semi-
supervised learning [33, 317] is based on consistency training [4, 8, 18, 20, 40, 43, 134, 135, 142,
154, 171, 192, 200, 205, 251, 266, 278, 302]. They constrain model predictions to be invariant
to noise injected to the input, hidden states or model parameters. As discussed in Section 9.3,
consistency regularization work less well on ImageNet because consistency regularization uses a
model being trained to generate the pseudo-labels. In the early phase of training, they regularize
the model towards high entropy predictions, and prevents it from achieving good accuracy.

Works based on pseudo label [3, 109, 138, 232] are similar to self-training, but also suffer
the same problem with consistency training, since they rely on a model being trained instead of
a converged model with high accuracy to generate pseudo labels. Finally, frameworks in semi-
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supervised learning also include graph-based methods [126, 274, 287, 316], methods that make
use of latent variables as target variables [125, 157, 288] and methods based on low-density
separation [52, 77, 221], which might provide complementary benefits to our method.

Knowledge Distillation. Our work is also related to methods in Knowledge Distillation [6,
13, 29, 65, 98] via the use of soft targets. The main use of knowledge distillation is model
compression by making the student model smaller. The main difference between our method
and knowledge distillation is that knowledge distillation does not consider unlabeled data and
does not aim to improve the student model.

Robustness. A number of studies, e.g. [78, 93, 207, 246], have shown that vision models lack
robustness. Addressing the lack of robustness has become an important research direction in
machine learning and computer vision in recent years. Our study shows that using unlabeled
data improves accuracy and general robustness. Our finding is consistent with arguments that
using unlabeled data can improve adversarial robustness [30, 175, 242, 301]. The main differ-
ence between our work and these work is that they directly optimize adversarial robustness on
unlabeled data, whereas we show that Noisy Student Training improves robustness greatly even
without directly optimizing robustness.

3.7 Discussion
Prior work on weakly-supervised learning required billions of weakly labeled data to improve
state-of-the-art ImageNet models. We showed that it is possible to use unlabeled images to
significantly advance both accuracy and robustness of state-of-the-art ImageNet models. We
found that self-training is a simple and effective algorithm to leverage unlabeled data at scale.
We improved it by adding noise to the student, hence the name Noisy Student Training, to learn
beyond the teacher’s knowledge.

Our experiments showed that Noisy Student Training and EfficientNet can achieve an accu-
racy of 88.4% which is 2.9% higher than without Noisy Student Training. This result is also a
new state-of-the-art and 2.0% better than the previous best method that used an order of magni-
tude more weakly labeled data [161, 257].

Since the method leads to great performance and is easy to apply, using this method on
different tasks is recommended whenever unlabeled data is available.
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Chapter 4

Semi-supervised Learning for Reading
Comprehension Dataset RACE

After studying semi-supervised learning’s effectiveness on classification tasks. We are interested
in whether semi-supervised learning can lead to performance improvements on more complex
tasks such as reasoning. We first present a reading comprehension dataset that contains questions
used to evaluate human’s reasoning abilities and that requires significantly more reasoning than
existing reading comprehension datasets. Then we evaluate the performance of Noisy Student
Training on this task. We find that Noisy Student Training works well for this task that requires
a lot of reasoning.

4.1 Introduction

Constructing an intelligence agent capable of understanding text as people is the major challenge
of NLP research. With recent advances in deep learning techniques, it seems possible to achieve
human-level performance in certain language understanding tasks, and a surge of effort has been
devoted to the machine comprehension task where people aim to construct a system with the
ability to answer questions related to a document that it has to comprehend [35, 58, 119, 288].

Towards this goal, several large-scale datasets [95, 97, 185, 203, 260] have been proposed,
which allow researchers to train deep learning systems and obtain results comparable to the hu-
man performance. While having a suitable dataset is crucial for evaluating the system’s true
ability in reading comprehension, the existing datasets suffer several critical limitations. Firstly,
in all datasets, the candidate options are directly extracted from the context (as a single en-
tity or a text span), which leads to the fact that lots of questions can be solved trivially via
word-based search and context-matching without deeper reasoning; this constrains the types of
questions as well. Secondly, answers and questions of most datasets are either crowd-sourced
or automatically-generated, bringing a significant amount of noises in the datasets and limits the
ceiling performance by domain experts, such as 82% for Children’s Book Test and 84% for
Who-did-What. Yet another issue in existing datasets is that the topic coverages are often bi-
ased due to the specific ways that the data were initially collected, making it hard to evaluate the
ability of systems in text comprehension over a broader range of topics.

55



To address the aforementioned limitations, we constructed a new dataset by collecting a
large set of questions, answers and associated passages in the English exams for middle-school
and high-school Chinese students within the 12–18 age range. Those exams were designed by
domain experts (instructors) for evaluating the reading comprehension ability of students, with
ensured quality and broad topic coverage. Furthermore, the answers by machines or by humans
can be objectively graded for evaluation and comparison using the same evaluation metrics.
Although efforts have been made with a similar motivation, including the MCTest dataset created
by [210] (containing 500 passages and 2000 questions) and several others [122, 195, 212, 233],
the usefulness of those datasets is significantly restricted due to their small sizes, especially not
suitable for training powerful deep neural networks whose success relies on the availability of
relatively large training sets.

Our new dataset, namely RACE, consists of 27,933 passages and 97,687 questions. After
reading each passage, each student is asked to answer several questions where each question is
provided with four candidate answers – only one of them is correct . Unlike existing datasets,
both the questions and candidate answers in RACE are not restricted to be the text spans in the
original passage; instead, they can be described in any words. A sample from our dataset is
presented in Table 7.1.

Our latter analysis shows that correctly answering a large portion of questions in RACE
requires the ability of reasoning, the most important feature as a machine comprehension dataset
[35]. RACE also offers two important subdivisions of the reasoning types in its questions, namely
passage summarization and attitude analysis, which have not been introduced by the any of the
existing large-scale datasets to our knowledge.

In addition, compared to other existing datasets where passages are either domain-specific or
of a single fixed style (namely news stories for CNN/Daily Mail, NEWSQA and Who-did-What,
fiction stories for Children’s Book Test and Book Test, and Wikipedia articles for SQUAD),
passages in RACE almost cover all types of human articles, such as news, stories, ads, biography,
philosophy, etc., in a variety of styles. This comprehensiveness of topic/style coverage makes
RACE a desirable resource for evaluating the reading comprehension ability of machine learning
systems in general.

The advantages of our dataset over existing large datasets in machine reading comprehension
can be summarized as follows:

• All questions and candidate options are generated by human experts, which are intention-
ally designed to test human agent’s ability in reading comprehension. This makes RACE a
relatively accurate indicator for reflecting the text comprehension ability of machine learn-
ing systems under human judge.

• The questions are substantially more difficult than those in existing datasets, in terms of
the large portion of questions involving reasoning. At the meantime, it is also sufficiently
large to support the training of deep learning models.

• Unlike existing large-scale datasets, candidate options in RACE are human generated sen-
tences which may not appear in the original passage. This makes the task more challenging
and allows a rich type of questions such as passage summarization and attitude analysis.

• Broad coverage in various domains and writing styles: a desirable property for evaluating
generic (in contrast to domain/style-specific) comprehension ability of learning models.
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Passage:
In a small village in England about 150 years ago, a mail coach was standing on the street. It didn’t come to that
village often. People had to pay a lot to get a letter. The person who sent the letter didn’t have to pay the postage,
while the receiver had to.
“Here’s a letter for Miss Alice Brown," said the mailman.
“ I’m Alice Brown," a girl of about 18 said in a low voice.
Alice looked at the envelope for a minute, and then handed it back to the mailman.
“I’m sorry I can’t take it, I don’t have enough money to pay it", she said.
A gentleman standing around were very sorry for her. Then he came up and paid the postage for her.
When the gentleman gave the letter to her, she said with a smile, “ Thank you very much, This letter is from Tom.
I’m going to marry him. He went to London to look for work. I’ve waited a long time for this letter, but now I
don’t need it, there is nothing in it."
“Really? How do you know that?" the gentleman said in surprise.
“He told me that he would put some signs on the envelope. Look, sir, this cross in the corner means that he is
well and this circle means he has found work. That’s good news."
The gentleman was Sir Rowland Hill. He didn’t forgot Alice and her letter.
“The postage to be paid by the receiver has to be changed," he said to himself and had a good plan.
“The postage has to be much lower, what about a penny? And the person who sends the letter pays the postage.
He has to buy a stamp and put it on the envelope." he said . The government accepted his plan. Then the first
stamp was put out in 1840. It was called the “Penny Black". It had a picture of the Queen on it.

Questions:

1): The first postage stamp was made _.
A. in England B. in America C. by Alice D. in 1910

2): The girl handed the letter back to the mailman be-
cause _ .
A. she didn’t know whose letter it was
B. she had no money to pay the postage
C. she received the letter but she didn’t want to open it
D. she had already known what was written in the letter

3): We can know from Alice’s words that _ .
A. Tom had told her what the signs meant before leav-
ing
B. Alice was clever and could guess the meaning of the
signs
C. Alice had put the signs on the envelope herself
D. Tom had put the signs as Alice had told him to

4): The idea of using stamps was thought of by _ .
A. the government
B. Sir Rowland Hill
C. Alice Brown
D. Tom

5): From the passage we know the high postage made
_ .
A. people never send each other letters
B. lovers almost lose every touch with each other
C. people try their best to avoid paying it
D. receivers refuse to pay the coming letters

Answer: ADABC

Table 4.1: Sample reading comprehension problems from our dataset.

4.2 Related Work

In this section, we briefly outline existing datasets for the machine reading comprehension task,
including their strengths and weaknesses.
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4.2.1 MCTest

MCTest [210] is a popular dataset for question answering in the same format as RACE, where
each question is associated with four candidate answers with a single correct answer. Although
questions in MCTest are of high-quality ensured by careful examinations through crowdsourcing,
it contains only 500 stores and 2000 questions, which substantially restricts its usage in training
advanced machine comprehension models. Moreover, while MCTest is designed for 7 years old
children, RACE is constructed for middle and high school students at 12–18 years old hence is
more complicated and requires stronger reasoning skills. In other words, RACE can be viewed
as a larger and more difficult version of the MCTest dataset.

4.2.2 Cloze-style datasets

The past few years have witnessed several large-scale cloze-style datasets [12, 95, 97, 185],
whose questions are formulated by obliterating a word or an entity in a sentence.

CNN/Daily Mail [95] are the largest machine comprehension datasets with 1.4M questions.
However, both require limited reasoning ability [35]. In fact, the best machine performance
obtained by researchers [35, 58] is close to human’s performance on CNN/Daily Mail.

Children’s Book Test (CBT) [97] and Book Test (BT) [12] are constructed in a similar
manner. Each passage in CBT consist of 20 contiguous sentences extracted from children’s
books and the next (21st) sentence is used to make the question. The main difference between
the two datasets is the size of BT being 60 times larger. Machine comprehension models have
also matched human performance on CBT [12].

Who Did What (WDW) [185] is yet another cloze-style dataset constructed from the LDC
English Gigaword newswire corpus. The authors generate passages and questions by picking two
news articles describing the same event, using one as the passage and the other as the question.

High noise is inevitable in cloze-style datasets due to their automatic generation process,
which is reflected in the human performance on these datasets: 82% for CBT and 84% for WDW.

4.2.3 Datasets with Span-based Answers

In datasets such as SQUAD [203], NEWSQA [260] MS MARCO [180] and recently proposed
TriviaQA [117]. the answer to each question is in the form of a text span in the article. Articles
of SQUAD, NEWSQA and MS MARCO come from Wikipedia, CNN news and the Bing search
engine respectively. The answer to a certain question may not be unique and could be multiple
spans. Instead of evaluating the accuracy, researchers need to use F1 score, BLEU [189] or
ROUGE [146] as metrics, which measure the overlap between the prediction and ground truth
answers since the questions come without candidate spans.

Datasets with span-based answers are challenging as the space of possible spans is usually
large. However, restricting answers to be text spans in the context passage may be unrealistic
and more importantly, may not be intuitive even for humans, indicated by the suffered human
performance of 80.3% on SQUAD (or 65% claimed by Trischler et al. [260]) and 46.5% on
NEWSQA. In other words, the format of span-based answers may not necessarily be a good
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examination of reading comprehension of machines whose aim is to approach the comprehension
ability of humans.

4.2.4 Datasets from Examinations
There have been several datasets extracted from examinations, aiming at evaluating systems un-
der the same conditions as how humans are evaluated in schools. E.g., the AI2 Elementary School
Science Questions dataset [122] contains 1080 questions for students in elementary schools; NT-
CIR QA Lab [233] evaluates systems by the task of solving real-world university entrance exam
questions; The Entrance Exams task at CLEF QA Track [195, 212] evaluates the system’s read-
ing comprehension ability. However, data provided in these existing tasks are far from sufficient
for the training of advanced data-driven machine reading models, partially due to the expensive
data generation process by human experts.

To the best of our knowledge, RACE is the first large-scale dataset of this type, where ques-
tions are created based on exams designed to evaluate human performance in reading compre-
hension.

4.3 Data Analysis

Dataset RACE-M RACE-H RACE
Subset Train Dev Test Train Dev Test Train Dev Test All
# passages 6,409 368 362 18,728 1,021 1,045 25,137 1,389 1,407 27,933
# questions 25,421 1,436 1,436 62,445 3,451 3,498 87,866 4,887 4,934 97,687

Table 4.2: The separation of the training, development and test sets of RACE-M,RACE-H and
RACE

Dataset RACE-M RACE-H RACE
Passage Len 231.1 353.1 321.9
Question Len 9.0 10.4 10.0
Option Len 3.9 5.8 5.3
Vocab size 32,811 125,120 136,629

Table 4.3: Statistics of RACE where Len denotes length and Vocab denotes Vocabulary.

In this section, we study the nature of questions covered in RACE at a detailed level. Specifi-
cally, we present the dataset statistics in Section 4.3.1, and then analyze different reasoning/ques-
tion types in RACE in the remaining subsections.

4.3.1 Dataset Statistics
As mentioned in section 9.1, RACE is collected from English examinations designed for 12–15
year-old middle school students, and 15–18 year-old high school students in China. To distin-
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Dataset RACE-M RACE-H RACE CNN SQuAD NewsQA
Word Matching 29.4% 11.3% 15.8% 13.0%† 39.8%* 32.7%*
Paraphrasing 14.8% 20.6% 19.2% 41.0%† 34.3%* 27.0%*
Single-Sentence Reasoning 31.3% 34.1% 33.4% 19.0%† 8.6%* 13.2%*
Multi-Sentence Reasoning 22.6% 26.9% 25.8% 2.0%† 11.9%* 20.7%*
Ambiguous/Insufficient 1.8% 7.1% 5.8% 25.0%† 5.4%* 6.4%*

Table 4.4: Statistic information about Reasoning type in different datasets. * denotes the numbers
coming from [260] based on 1000 samples per dataset, and numbers with † come from [35].

guish the two subgroups with drastic difficulty gap, RACE-M denotes the middle school exam-
inations and RACE-H denotes high school examinations. We split 5% data as the development
set and 5% as the test set for RACE-M and RACE-H respectively. The number of samples in
each set is shown in Table 4.2. The statistics for RACE-M and RACE-H is summarized in Table
4.3. We can find that the length of the passages and the vocabulary size in the RACE-H are much
larger than that of the RACE-M, an evidence of the higher difficulty of high school examinations.

However, notice that since the articles and questions are selected and designed to test Chinese
students learning English as a foreign language, the vocabulary size and the complexity of the
language constructs are simpler than news articles and Wikipedia articles in other QA datasets.

4.3.2 Reasoning Types of the Questions

To get a comprehensive picture about the reasoning difficulty requirement of RACE, we conduct
human annotations of questions types. Following Chen et al. [35], Trischler et al. [260], we
stratify the questions into five classes as follows with ascending order of difficulty:

• Word matching: The question exactly matches a span in the article. The answer is self-
evident.

• Paraphrasing: The question is entailed or paraphrased by exactly one sentence in the pas-
sage. The answer can be extracted within the sentence.

• Single-sentence reasoning: The answer could be inferred from a single sentence of the
article by recognizing incomplete information or conceptual overlap.

• Multi-sentence reasoning: The answer must be inferred from synthesizing information
distributed across multiple sentences.

• Insufficient/Ambiguous: The question has no answer or the answer is not unique based on
the given passage.

We refer readers to [35, 260] for examples of each category.
To obtain the proportion of different question types, we sample 100 passages from RACE

(50 from RACE-M and 50 from RACE-H), all of which have 5 questions hence there are 500
questions in total. We put the passages on Amazon Mechanical Turk1, and a Hit is generated
by a passage with 5 questions. Each question is labeled by two crowdworkers. We require the

1https://www.mturk.com/mturk/welcome
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turkers to both answer the questions and label the reasoning type. We pay $0.70 and $1.00 per
passage in RACE-M and RACE-H respectively, and restrict the access to master turkers only.
Finally, we get 1000 labels for the 500 questions.

The statistics about the reasoning type is summarized in Table 4.4. The higher difficulty
level of RACE is justified by its higher ratio of reasoning questions in comparison to CNN,
SQUAD and NEWSQA. Specifically, 59.2% questions of RACE are either in the category of
single-sentence reasoning or in the category of multi-sentence reasoning, while the ratio is 21%,
20.5% and 33.9% for CNN, SQUAD and NEWSQA respectively. Also notice that the ratio
of word matching questions on RACE is only 15.8%, the lowest among several categories. In
addition, questions in RACE-H are more complex than questions in RACE-M since RACE-M
has more word matching questions and fewer reasoning questions.

4.3.3 Subdividing Reasoning Types

To better understand our dataset and facilitate future research, we list the subdivisions of ques-
tions under the reasoning category. We find the most frequent reasoning subdivisions include: de-
tail reasoning, whole-picture understanding, passage summarization, attitude analysis and world
knowledge. One question may fall into multiple divisions. Definition of these subdivisions and
their associated examples are as follows:

1. Detail reasoning: to answer the question, the agent should be clear about the details of
the passage. The answer appears in the passage but it cannot be found by simply matching the
question with the passage. For example, Question 1 in the sample passage falls into this category.

2. Whole-picture reasoning: the agent needs to understand the whole picture of the story
to obtain the correct answer. For example, to answer the Question 2 in the sample passage, the
agent is required to comprehend the entire story.

3. Passage summarization: The question requires the agent to select the best summarization
of the passage among four candidate summarizations. A typical question of this type is “The
main idea of this passage is .”. An example question can be found in Table 4.5.

4. Attitude analysis: The question asks about the opinions/attitudes of the author or a char-
acter in the story towards somebody or something, e.g.,

• Evidence: “. . . Many people optimistically thought industry awards for better equipment would
stimulate the production of quieter appliances. It was even suggested that noise from building
sites could be alleviated . . . ”

• Question: What was the author’s attitude towards the industry awards for quieter?

• Options: A.suspicious B.positive C.enthusiastic D.indifferent

5. World knowledge: Certain external knowledge is needed. Most frequent questions under
this category involve simple arithmetic.
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• Evidence: “The park is open from 8 am to 5 pm.”

• Question: The park is open for hours a day.

• Options: A.eight B.nine C.ten D.eleven

To the best of our knowledge, questions like passage summarization and attitude analysis
have not been introduced by any of the existing large-scale machine comprehension datasets.
Both are crucial components in evaluating humans’ reading comprehension abilities.

Passage: Do you love holidays but hate gaining weight? You are not alone. Holidays are times for celebrating.
Many people are worried about their weight. With proper planning, though, it is possible to keep normal weight
during the holidays. The idea is to enjoy the holidays but not to eat too much. You don’t have to turn away from
the foods that you enjoy.
Here are some tips for preventing weight gain and maintaining physical fitness:
Don’t skip meals. Before you leave home, have a small, low-fat meal or snack. This may help to avoid getting
too excited before delicious foods.
Control the amount of food. Use a small plate that may encourage you to "load up". You should be most
comfortable eating an amount of food about the size of your fist.
Begin with soup and fruit or vegetables. Fill up beforehand on water-based soup and raw fruit or vegetables, or
drink a large glass of water before you eat to help you to feel full.
Avoid high-fat foods. Dishes that look oily or creamy may have large amount of fat. Choose lean meat . Fill your
plate with salad and green vegetables. Use lemon juice instead of creamy food.
Stick to physical activity. Don’t let exercise take a break during the holidays. A 20-minute walk helps to burn off
extra calories.
Questions:
1): What is the best title of the passage?
A. How to avoid holiday feasting
B. Do’s and don’ts for keeping slim and fit.
C. How to avoid weight gain over holidays.
D. Wonderful holidays, boring experiences.

Answer: C

Table 4.5: A sample reading comprehension problem passage summarization.

4.4 Collection Methodology
We collected the raw data from three large free public websites in China2, where the reading
comprehension problems are extracted from English examinations designed by teachers in China.
The data before cleaning contains 137,918 passages and 519,878 questions in total, where there
are 38,159 passages with 156,782 questions in the middle school group, and 99,759 passages
with 363,096 questions in the high school group.

2We checked that our dataset does not include example questions of exams with copyright, such as SSAT, SAT,
TOEFL and GRE.
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The following filtering steps are conducted to clean the raw data. Firstly, we remove all
problems and questions that do not have the same format as our problem setting, e.g., a question
would be removed if the number of its options is not four. Secondly, we filter all articles and
questions that are not self-contained based on the text information, i.e. we remove the articles
and questions containing images or tables. We also remove all questions containing keywords
“underlined" or “paragraph", since it is difficult to reproduce the effect of underlines and the
paragraph segment information. Thirdly, we remove all duplicated articles.

On one of the websites (xkw.com), the answers are stored as images. We used two standard
OCR programs tesseract 3 and ABBYY FineReader 4 to process the images. We remove all
the answers that two software disagree. The OCR task is easy since we only need to recognize
printed alphabet A, B, C, D with a standard font. Finally, we get the cleaned dataset RACE, with
27,933 passages and 97,687 questions.

4.5 Experiments

RACE-M RACE-H RACE MCTest CNN DM CBT-N CBT-C WDW
Random 24.6 25.0 24.9 24.8 0.06 0.06 10.6 10.2 32.0†

Sliding Window 37.3 30.4 32.2 51.5† 24.8 30.8 16.8† 19.6† 48.0†

Stanford AR 44.2 43.0 43.3 – 73.6† 76.6† – – 64.0†

GA 43.7 44.2 44.1 – 77.9† 80.9† 70.1† 67.3† 71.2†

Turkers 85.1 69.4 73.3 – – – – – –
Ceiling Performance 95.4 94.2 94.5 – – – 81.6† 81.6† 84†

Table 4.6: Accuracy of models and human on the each dataset, where † denotes the results
coming from previous publications. DM denotes Daily Mail and WDW denotes Who-Did-What
.

In this section, we compare the performance of several state-of-the-art reading comprehen-
sion models with human performance. We use accuracy as the metric to evaluate different mod-
els.

4.5.1 Methods for Comparison

Sliding Window Algorithm Firstly, we build the rule-based baseline introduced by Richard-
son et al. [210]. It chooses the answer having the highest matching score. Specifically, it first
concatenates the question and the answer and then calculates the TF-IDF style matching score
between the concatenated sentence with every window (a span of text) of the article. The window
size is decided by the model performance in the training and dev sets.

3https://github.com/tesseract-ocr
4https://www.abbyy.com/FineReader
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Figure 4.1: Test accuracy of different baselines on each question type category introduced in
Section 4.3.2, where Word-Match, Single-Reason, Multi-Reason and Ambiguous are the abbre-
viations for Word matching, Single-sentence Reasoning, Multi-sentence Reasoning and Insuffi-
cient/Ambiguous respectively.

Stanford Attentive Reader Stanford Attentive Reader (Stanford AR) [35] is a strong model
that achieves state-of-the-art results on CNN/Daily Mail. Moreover, the authors claim that their
model has nearly reached the ceiling performance on these two datasets.

Suppose that the triple of passage, question and options is denoted by (p, q, o1,··· ,4). We first
employ bidirectional GRUs to encode p and q respectively into hp

1, h
p
2, . . . , h

p
n and hq. Then we

summarize the most relevant part of the passage into sp with an attention model. Following Chen
et al. [35], we adopt a bilinear attention form. Specifically,

αi = Softmaxi((h
p
i )

TW1h
q)

sp =
"

i

αih
p
i

(4.1)

Similarly, we use bidirectional GRUs to encode option oi into a vector hoi . Finally, we
compute the matching score between the i-th option (i = 1, · · · , 4) and the summarized passage
using a bilinear attention. We pass the scores through softmax to get a probability distribution.
Specifically, the probability of option i being the right answer is calculated as

pi = Softmaxi(h
oiW2s

d) (4.2)

Gated-Attention Reader Gated AR [58] is the state-of-the-art model on multiple datasets. To
build query-specific representations of tokens in the document, it employs an attention mecha-
nism to model multiplicative interactions between the query embedding and the document repre-
sentation. With a multi-hop architecture, GA also enables a model to scan the document and the
question iteratively for multiple passes. In other words, the multi-hop structure makes it possible
for the reader to refine token representations iteratively and the attention mechanism find the
most relevant part of the document. We refer readers to [58] for more details.
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After obtaining a query specific document representation sd, we use the same method as
bilinear operation listed in Equation 4.2 to get the output.

Note that our implementation slightly differs from the original GA reader. Specifically, the
Attention Sum layer is not applied at the final layer and no character-level embeddings are used.

Implementation Details We follow Chen et al. [35] in our experiment settings. The vocabu-
lary size is set to 50k. We choose word embedding size d = 100 and use the 100-dimensional
Glove word embedding [197] as embedding initialization. GRU weights are initialized from
Gaussian distribution N (0, 0.1). Other parameters are initialized from a uniform distribution on
(−0.01, 0.01). The hidden dimensionality is set to 128 and the number of layers is set to one for
both Stanford AR and GA. We use vanilla stochastic gradient descent (SGD) to train our models.
We apply dropout on word embeddings and the gradient is clipped when the norm of the gradi-
ent is larger than 10. We use a grid search on validation set to choose the learning rate within
{0.05, 0.1, 0.3, 0.5} and dropout rate within {0.2, 0.5, 0.7}. The highest accuracy on validation
set is obtained by setting learning rate to 0.1 for Stanford AR and 0.3 for GA and dropout rate
to 0.5. The data of RACE-M and RACE-H is used together to train our model and testing is
performed separately.

4.5.2 Human Evaluation

As described in section 4.3.2, a randomly sampled subset of test set has been labeled by Amazon
Turkers, which contains 500 questions with half from RACE-H and with the other half from
RACE-M. The turkers’ performance is 85% for RACE-M and 70% for RACE-H. However, it
is hard to guarantee that every turker performs the survey carefully, given the difficult and long
passages of high school problems. Therefore, to obtain the ceiling human performance on RACE,
we manually labeled the proportion of valid questions. A question is valid if it is unambiguous
and has a correct answer. We found that 94.5% of the data is valid, which sets the ceiling human
performance. Similarly, the ceiling performance on RACE-M and RACE-H is 95.4% and 94.2%
respectively.

4.5.3 Main Results

We compare models’ and human ceiling performance on datasets which have the same evaluation
metric with RACE. The compared datasets include RACE, MCTest, CNN/Daily Mail (CNN and
DM), CBT and WDW. On CBT, we report performance on two subsets where the missing token is
either a common noun (CBT-C) or name entity (CBT-N) since the language models have already
reached human-level performance on other types [97]. The comparison is shown in Table 8.3.

Performance of Sliding Window We first compare MCTest with RACE using Sliding Win-
dow, where it is unable to train Stanford AR and Gated AR on MCTest’s limited training data.
Sliding Window achieves an accuracy of 51.5% on MCTest while only 37.3% on RACE, meaning
that to answer the questions of RACE requires more reasoning than MCTest.
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The performance of sliding window on RACE is not directly comparable with CBT and
WDW since CBT has ten candidate answers for each question and WDW has an average of three.
Instead, we evaluate the performance improvement of sliding window on the random baseline.
Larger improvement indicates more questions solvable by simple matching. On RACE, Sliding
Window is 28.6% better than the random baseline, while the improvement is 58.5%, 92.2% and
50% for CBT-N, CBT-C and WDW.

The accuracy on RACE-M (37.3%) and RACE-H (30.4%) indicates that the middle school
questions are simpler based on the matching algorithm.

Performance of Neural Models We further compare the difficulty of different datasets by
state-of-the-art neural models’ performance. A lower performance means that more problems are
unsolvable by machines. The Stanford AR and Gated AR achieve an accuracy of only 43.3% and
44.1% on RACE while their accuracy is much higher on CNN/Daily Mail, Children’s Book Test
and Who-Did-What. It justifies the fact that, among current large-scale machine comprehension
datasets, RACE is the most challenging one.

Human Ceiling Performance The human performance is 94.5% which shows our data is quite
clean compared to other large-scale machine comprehension datasets. Since we cannot enforce
every turker do the test cautiously, the result shows a gap between turkers’ performance and
human performance. Reasonably, problems in the high school group with longer passages and
more complex questions lead to more significant divergence. Nevertheless, the start-of-the-art
models still have a large room to be improved to reach turkers’ performance. The performance
gap is 41% for the middle school problems and 25% for the high school problems. What’s
more, The performance of Stanford AR and GA is only less than a half of the ceiling human
performance, which indicates that to match the humans’ reading comprehension ability, we still
have a long way to go.

4.5.4 Reason Types Analysis

We evaluate human and models on different types of questions, shown in Figure 4.1. Turkers
do the best on word matching problems while doing the worst on reasoning problems. Sliding
window performs better on word matching than problems needing reasoning or paraphrasing.
Surprisingly, Stanford AR does not have a stronger performance on the word matching category
than reasoning categories. A possible reason is that the proportion of data in reasoning categories
is larger than that of data. Also, the candidate answers of simple matching questions may share
similar word embeddings. For example, if the question is about color, it is difficult to distinguish
candidate answers, “green", “red", “blue" and “yellow", in the embedding vector space. The
similar performance on different categories also explains the reason that the performance of the
neural models is close in the middle and high school groups in Table 8.3.
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4.6 Noisy Student Training for RACE
Given the difficulties of the RACE dataset shown in previous sections, we are interested about
whether semi-supervised learning can help with such difficult problems. Here we show the
performance of the Noisy Student Training with Funnel-Transformer [53], which is a state-of-
the-art pretraining method, as the backbone model on RACE given different amounts of labeled
data. We use the B8-8-8H1024 model. As shown in Table 4.7, Noisy Student Training leads to
consistent improvements across all data sizes. For example, with noisy student training, we can
achieve similar performance with methods that use 2x labeled data. For example, Noisy Student
Training can use 20% labeled data to achieve the performance of using 50% labeled data on
RACE and RACE-M. Hence, Noisy Student Training is still effective for this problem. However,
even with Noisy Student Training, we still need a large amount of labeled data to do well on this
task.

Note that the noise used here only includes model noise such as dropout and attention
dropout. We hypothesize that investigating more advanced noise such as data augmentation
might lead to even better the performance.

Method 2% 5% 10% 20% 50%

RACE
Supervised 68.2 74.6 77.4 80.2 81.7

Noisy Student Training 71.1 77.0 79.7 82.0 83.7

RACE-M
Supervised 73.6 78.4 81.1 84.2 85.0

Noisy Student Training 77.1 81.5 83.8 85.9 87.1

RACE-H
Supervised 66.7 73.4 76.4 79.1 80.7

Noisy Student Training 68.6 75.1 78.0 80.4 82.3

Table 4.7: Accuracy on RACE with different amount of labeled data. The model achieves an
accuracy of 84.5/87.3/83.4 on RACE/RACE-M/RACE-H.

4.7 Discussion
We present a large, high-quality dataset for reading comprehension that is carefully designed
to examine human ability on this task. Some desirable properties of RACE include the broad
coverage of domains/styles and the richness in the question format. Most importantly, it requires
substantially more reasoning to do well on RACE than on other datasets, as there is a significant
gap between the performance of state-of-the-art machine comprehension models and that of the
human.

In addition, we show that semi-supervised learning bring significant gains even for this dif-
ficult reading comprehension task as evidenced by the improved performance with different
amounts of labeled data.
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Part II

Data-Efficient Learning by Transfer
Learning
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Chapter 5

Transfer Learning by Parameter Sharing

In this chapter, we present ITransF, a method that learns a parameter sharing mechanism for
transferring knowledge between different sub-tasks for knowledge base completion. Specifi-
cally, different relations can be treated as different sub-tasks and many relations share common
statistical regularities. At the core of ITransF is a sparse attention mechanism, which learns to
compose shared concept parameters into relation-specific parameters, leading to a better gen-
eralization property. ITransF improves mean rank and Hits@10 on two benchmark datasets on
knowledge base completion, over all previous approaches of the same kind. In addition, the
parameter sharing is clearly indicated by the learned sparse attention vectors, enabling us to
interpret how knowledge transfer is carried out.

5.1 Introduction

Knowledge bases (KB), such as WordNet [62], Freebase [23], YAGO [243] and DBpedia [139],
are useful resources for many applications such as question answering [16, 51, 293] and infor-
mation extraction [168]. However, knowledge bases suffer from incompleteness despite their
formidable sizes [239, 273], leading to a number of studies on automatic knowledge base com-
pletion (KBC) [182] or link prediction.

The fundamental motivation behind these studies is that there exist some statistical regular-
ities under the intertwined facts stored in the multi-relational knowledge base. By discovering
generalizable regularities in known facts, missing ones may be recovered in a faithful way. Due
to its excellent generalization capability, distributed representations, a.k.a. embeddings, have
been popularized to address the KBC task [25, 26, 27, 80, 178, 181, 239, 271].

As a seminal work, Bordes et al. [26] proposes the TransE, which models the statistical reg-
ularities with linear translations between entity embeddings operated by a relation embedding.
Implicitly, TransE assumes both entity embeddings and relation embeddings dwell in the same
vector space, posing an unnecessarily strong prior. To relax this requirement, a variety of mod-
els first project the entity embeddings to a relation-dependent space [27, 111, 149, 178], and
then model the translation property in the projected space. Typically, these relation-dependent
spaces are characterized by the projection matrices unique to each relation. As a benefit, differ-
ent aspects of the same entity can be temporarily emphasized or depressed as an effect of the
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projection. For instance, STransE [178] utilizes two projection matrices per relation, one for the
head entity and the other for the tail entity.

Despite the superior performance of STransE compared to TransE, it is more prone to the data
sparsity problem. Concretely, since the projection spaces are unique to each relation, projection
matrices associated with rare relations can only be exposed to very few facts during training,
resulting in poor generalization. For common relations, a similar issue exists. Without any
restrictions on the number of projection matrices, logically related or conceptually similar rela-
tions may have distinct projection spaces, hindering the discovery, sharing, and generalization of
statistical regularities.

Previously, a line of research makes use of external information such as textual relations from
web-scale corpus or node features [179, 255, 256], alleviating the sparsity problem. In parallel,
recent work has proposed to model regularities beyond local facts by considering multi-relation
paths [69, 148, 231]. Since the number of paths grows exponentially with its length, as a side
effect, path-based models enjoy much more training cases, suffering less from the problem.

In this work, we present an interpretable knowledge transfer model (ITransF), which encour-
ages the sharing of statistic regularities between the projection matrices of relations and alleviates
the data sparsity problem. At the core of ITransF is a sparse attention mechanism, which learns
to compose shared concept matrices into relation-specific projection matrices, leading to a bet-
ter generalization property. Without any external resources, ITransF improves mean rank and
Hits@10 on two benchmark datasets, over all previous approaches of the same kind. In addition,
the parameter sharing is clearly indicated by the learned sparse attention vectors, enabling us to
interpret how knowledge transfer is carried out. To induce the desired sparsity during optimiza-
tion, we further introduce a block iterative optimization algorithm.

In summary, the contributions of this work are: (i) proposing a novel knowledge embed-
ding model which enables knowledge transfer by learning to discover shared regularities; (ii)
introducing a learning algorithm to directly optimize a sparse representation from which the
knowledge transferring procedure is interpretable; (iii) showing the effectiveness of our model
by outperforming baselines on two benchmark datasets for knowledge base completion task.

Notation and Previous Models Let E denote the set of entities and R denote the set of rela-
tions. In knowledge base completion, given a training set P of triples (h, r, t) where h, t ∈ E
are the head and tail entities having a relation r ∈ R, e.g., (Steve Jobs, FounderOf, Apple), we
want to predict missing facts such as (Steve Jobs, Profession, Businessperson).

Most of the embedding models for knowledge base completion define an energy function
fr(h, t) according to the fact’s plausibility [25, 26, 27, 80, 178, 239, 271, 286]. The models are
learned to minimize energy fr(h, t) of a plausible triple (h, r, t) and to maximize energy fr(h

′, t′)
of an implausible triple (h′, r, t′).

Motivated by the linear translation phenomenon observed in well trained word embeddings [166],
TransE [26] represents the head entity h, the relation r and the tail entity t with vectors h, r and
t ∈ Rn respectively, which were trained so that h+ r ≈ t. They define the energy function as

fr(h, t) = ‖h+ r− t‖ℓ
where ℓ = 1 or 2, which means either the ℓ1 or the ℓ2 norm of the vector h + r− t will be used
depending on the performance on the validation set.
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To better model relation-specific aspects of the same entity, TransR [149] uses projection ma-
trices and projects the head entity and the tail entity to a relation-dependent space. STransE [178]
extends TransR by employing different matrices for mapping the head and the tail entity. The
energy function is

fr(h, t) = ‖Wr,1h+ r−Wr,2t‖ℓ
However, not all relations have abundant data to estimate the relation specific matrices as

most of the training samples are associated with only a few relations, leading to the data sparsity
problem for rare relations.

5.2 Interpretable Knowledge Transfer

5.2.1 Model
As discussed above, a fundamental weakness in TransR and STransE is that they equip each
relation with a set of unique projection matrices, which not only introduces more parameters but
also hinders knowledge sharing. Intuitively, many relations share some concepts with each other,
although they are stored as independent symbols in KB. For example, the relation “(somebody)
won award for (some work)” and “(somebody) was nominated for (some work)” both describe a
person’s high-quality work which wins an award or a nomination respectively. This phenomenon
suggests that one relation actually represents a collection of real-world concepts, and one concept
can be shared by several relations. Inspired by the existence of such lower-level concepts, instead
of defining a unique set of projection matrices for every relation, we can alternatively define
a small set of concept projection matrices and then compose them into customized projection
matrices. Effectively, the relation-dependent translation space is then reduced to the smaller
concept spaces.

However, in general, we do not have prior knowledge about what concepts exist out there and
how they are composed to form relations. Therefore, in ITransF, we aim to learn this information
simultaneously from data, together with all knowledge embeddings. Following this idea, we first
present the model details, then discuss the optimization techniques for training.

Energy function Specifically, we stack all the concept projection matrices to a 3-dimensional
tensor D ∈ Rm×n×n, where m is the pre-specified number of concept projection matrices and n
is the dimensionality of entity embeddings and relation embeddings. We let each relation select
the most useful projection matrices from the tensor, where the selection is represented by an
attention vector. The energy function of ITransF is defined as:

fr(h, t) = ‖αααH
r ·D · h+ r−αααT

r ·D · t‖ℓ (5.1)

where αααH
r ,ααα

T
r ∈ [0, 1]m, satisfying

!
iααα

H
r,i =

!
iααα

T
r,i = 1, are normalized attention vectors used

to compose all concept projection matrices in D by a convex combination. It is obvious that
STransE can be expressed as a special case of our model when we use m = 2|R| concept matrices
and set attention vectors to disjoint one-hot vectors. Hence our model space is a generalization
of STransE. Note that we can safely use fewer concept matrices in ITransF and obtain better
performance (see section 5.3.3), though STransE always requires 2|R| projection matrices.
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We follow previous work to minimize the following hinge loss function:

L =
"

(h,r,t)∼P,
(h′,r,t′)∼N

[γ + fr(h, t)− fr(h
′, t′)]+ (5.2)

where P is the training set consisting of correct triples, N is the distribution of corrupted triples
defined in section 5.2.3, and [·]+ = max(·, 0). Note that we have omitted the dependence of N
on (h, r, t) to avoid clutter. We normalize the entity vectors h, t, and the projected entity vectors
αααH

r ·D ·h andαααT
r ·D · t to have unit length after each update, which is an effective regularization

method that benefits all models.

Sparse attention vectors In Eq. (5.1), we have defined αααH
r ,ααα

T
r to be some normalized vectors

used for composition. With a dense attention vector, it is computationally expensive to perform
the convex combination of m matrices in each iteration. Moreover, a relation usually does not
consist of all existing concepts in practice. Furthermore, when the attention vectors are sparse,
it is often easier to interpret their behaviors and understand how concepts are shared by different
relations.

Motivated by these potential benefits, we further hope to learn sparse attention vectors in
ITransF. However, directly posing ℓ1 regularization [254] on the attention vectors fails to pro-
duce sparse representations in our preliminary experiment, which motivates us to enforce ℓ0
constraints on αααT

r ,ααα
H
r .

In order to satisfy both the normalization condition and the ℓ0 constraints, we reparameterize
the attention vectors in the following way:

αααH
r = SparseSoftmax(vH

r , I
H
r )

αααT
r = SparseSoftmax(vT

r , I
T
r )

where vH
r ,v

T
r ∈ Rm are the pre-softmax scores, IHr , I

T
r ∈ {0, 1}m are the sparse assignment

vectors, indicating the non-zero entries of attention vectors, and the SparseSoftmax is defined as

SparseSoftmax(v, I)i =
exp(vi/τ)Ii!
j exp(vj/τ)Ij

with τ being the temperature of Softmax.
With this reparameterization, vH

r ,v
T
r and IHr , I

T
r replace αααT

r ,ααα
H
r to become the real parame-

ters of the model. Also, note that it is equivalent to pose the ℓ0 constraints on IHr , I
T
r instead of

αααT
r ,ααα

H
r . Putting these modifications together, we can rewrite the optimization problem as

minimize L
subject to ‖IHr ‖0 ≤ k, ‖ITr ‖0 ≤ k

(5.3)

where L is the loss function defined in Eq. (5.2).
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5.2.2 Block Iterative Optimization
Though sparseness is favorable in practice, it is generally NP-hard to find the optimal solution
under ℓ0 constraints. Thus, we resort to an approximated algorithm in this work.

For convenience, we refer to the parameters with and without the sparse constraints as the
sparse partition and the dense partition, respectively. Based on this notion, the high-level idea
of the approximated algorithm is to iteratively optimize one of the two partitions while holding
the other one fixed. Since all parameters in the dense partition, including the embeddings, the
projection matrices, and the pre-softmax scores, are fully differentiable with the sparse partition
fixed, we can simply utilize SGD to optimize the dense partition. Then, the core difficulty lies in
the step of optimizing the sparse partition (i.e. the sparse assignment vectors), during which we
want the following two properties to hold

1. the sparsity required by the ℓ0 constaint is maintained, and
2. the cost define by Eq. (5.2) is decreased.
Satisfying the two criterion seems to highly resemble the original problem defined in Eq. (5.3).

However, the dramatic difference here is that with parameters in the dense partition regarded as
constant, the cost function is decoupled w.r.t. each relation r. In other words, the optimal choice
of IHr , I

T
r is independent of IHr′ , I

T
r′ for any r′ ∕= r. Therefore, we only need to consider the opti-

mization for a single relation r, which is essentially an assignment problem. Note that, however,
IHr and ITr are still coupled, without which we basically reach the situation in a backpack problem.
In principle, one can explore combinatorial optimization techniques to optimize IHr′ , I

T
r′ jointly,

which usually involve some iterative procedure. To avoid adding another inner loop to our algo-
rithm, we turn to a simple but fast approximation method based on the following single-matrix
cost.

Specifically, for each relation r, we consider the induced cost LH
r,i where only a single pro-

jection matrix i is used for the head entity:

LH
r,i =

"

(h,r,t)∼Pr,
(h′,r,t′)∼Nr

#
γ + fH

r,i(h, t)− fH
r,i(h

′, t′)
$
+

where fH
r,i(h, t) = ‖Di · h + r − αααT

r · D · t‖ is the corresponding energy function, and the
subscript in Pr and Nr denotes the subsets with relation r. Intuitively, LH

r,i measures, given the
current tail attention vector αααT

r , if only one project matrix could be chosen for the head entity,
how implausible Di would be. Hence, i∗ = argmini LH

r,i gives us the best single projection
matrix on the head side given αααT

r .
Now, in order to choose the best k matrices, we basically ignore the interaction among pro-

jection matrices, and update IHr in the following way:

IHr,i ←
%
1, i ∈ argpartitioni(LH

r,i, k)

0, otherwise

where the function argpartitioni(xi, k) produces the index set of the lowest-k values of xi.
Analogously, we can define the single-matrix cost LT

r,i and the energy function fT
r,i(h, t) on

the tail side in a symmetric way. Then, the update rule for IHr follows the same derivation.
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Admittedly, the approximation described here is relatively crude. But as we will show in section
??, the algorithm yields good performance empirically. We leave the further improvement of the
optimization method as future work.

5.2.3 Corrupted Sample Generating Method
Recall that we need to sample a negative triple (h′, r, t′) to compute hinge loss shown in Eq. 5.2,
given a positive triple (h, r, t) ∈ P . The distribution of negative triple is denoted by N(h, r, t).
Previous work [26, 149, 178, 286] generally constructs a set of corrupted triples by replacing the
head entity or tail entity with a random entity uniformly sampled from the KB.

However, uniformly sampling corrupted entities may not be optimal. Often, the head and tail
entities associated a relation can only belong to a specific domain. When the corrupted entity
comes from other domains, it is very easy for the model to induce a large energy gap between
true triple and corrupted one. As the energy gap exceeds γ, there will be no training signal from
this corrupted triple. In comparison, if the corrupted entity comes from the same domain, the
task becomes harder for the model, leading to more consistent training signal.

Motivated by this observation, we sample corrupted head or tail from entities in the same
domain with a probability pr and from the whole entity set with probability 1− pr.

We define the probability pr to generate a negative sample from the same domain mentioned
in Section 5.2.3. The probability cannot be too high to avoid generating negative samples that
are actually correct, since there are generally a lot of facts missing in KBs.

Specifically, let MH
r = {h | ∃t(h, r, t) ∈ P} and MT

r = {t | ∃h(h, r, t) ∈ P} denote the
head or tail domain of relation r. Suppose Nr = {(h, r, t) ∈ P} is the induced set of edges with
relation r. We define the probability pr as

pr = min(
λ|MT

r ||MH
r |

|Nr|
, 0.5) (5.4)

Our motivation of such a formulation is as follows: Suppose Or is the set that contains all
truthful fact triples on relation r, i.e., all triples in training set and all other missing correct
triples. If we assume all fact triples within the domain has uniform probability of being true, the
probability of a random triple being correct is Pr((h, r, t) ∈ Or | h ∈ MH

r , t ∈ MT
r ) =

|Or|
|MH

r ||MT
r |

Assume that all facts are missing with a probability λ, then |Nr| = λ|Or| and the above
probability can be approximated by |Nr|

λ|MH
r ||MT

r | . We want the probability of generating a negative
sample from the domain to be inversely proportional to the probability of the sample being true,
so we define the probability as Eq. 5.4. The results in section ?? are obtained with λ set to 0.001.

In the rest of the paper, we refer to the new sampling method as "domain sampling".

5.3 Experiments

5.3.1 Setup
To evaluate link prediction, we conduct experiments on the WN18 (WordNet) and FB15k (Free-
base) introduced by Bordes et al. [26] and use the same training/validation/test split as in [26].
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The information of the two datasets is given in Table 5.1.

Dataset #E #R #Train #Valid #Test
WN18 40,943 18 141,442 5,000 5,000
FB15k 14,951 1,345 483,142 50,000 59,071

Table 5.1: Statistics of FB15k and WN18 used in experiments. #E, #R denote the number of
entities and relation types respectively. #Train, #Valid and #Test are the numbers of triples in the
training, validation and test sets respectively.

In knowledge base completion task, we evaluate model’s performance of predicting the head
entity or the tail entity given the relation and the other entity. For example, to predict head given
relation r and tail t in triple (h, r, t), we compute the energy function fr(h

′, t) for each entity h′

in the knowledge base and rank all the entities according to the energy. We follow Bordes et al.
[26] to report the filter results, i.e., removing all other correct candidates h′ in ranking. The rank
of the correct entity is then obtained and we report the mean rank (mean of the predicted ranks)
and Hits@10 (top 10 accuracy). Lower mean rank or higher Hits@10 mean better performance.

5.3.2 Implementation Details

We initialize the projection matrices with identity matrices added with a small noise sampled
from normal distribution N (0, 0.0052). The entity and relation vectors of ITransF are initialized
by TransE [26], following García-Durán et al. [69, 70], Ji et al. [111], Lin et al. [148, 149]. We
ran mini-batch SGD until convergence. We employ the “Bernoulli” sampling method to generate
incorrect triples as used in Wang et al. [271], Lin et al. [149], He et al. [90], Ji et al. [111] and
Lin et al. [148].

STransE [178] is the most similar knowledge embedding model to ours except that they
use distinct projection matrices for each relation. We use the same hyperparameters as used in
STransE and no significant improvement is observed when we alter hyperparameters. We set the
margin γ to 5 and dimension of embedding n to 50 for WN18, and γ = 1, n = 100 for FB15k.
We set the batch size to 20 for WN18 and 1000 for FB15k. The learning rate is 0.01 on WN18
and 0.1 on FB15k. We use 30 matrices on WN18 and 300 matrices on FB15k. All the models
are implemented with Theano [17]. The Softmax temperature is set to 1/4.

5.3.3 Results and Analysis

The overall link prediction results1 are reported in Table 5.2. Our model consistently outperforms
previous models without external information on both the metrics of WN18 and FB15k. On
WN18, we even achieve a much better mean rank with comparable Hits@10 than current state-
of-the-art model IRN employing external information.

1Note that although IRN [231] does not explicitly exploit path information, it performs multi-step inference
through the multiple usages of external memory. When IRN is allowed to access memory once for each prediction,
its Hits@10 is 80.7, similar to models without path information.
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Model Additional Information WN18 FB15k
Mean Rank Hits@10 Mean Rank Hits@10

SE [25] No 985 80.5 162 39.8
Unstructured [27] No 304 38.2 979 6.3
TransE [26] No 251 89.2 125 47.1
TransH [271] No 303 86.7 87 64.4
TransR [149] No 225 92.0 77 68.7
CTransR [149] No 218 92.3 75 70.2
KG2E [90] No 348 93.2 59 74.0
TransD [111] No 212 92.2 91 77.3
TATEC [70] No - - 58 76.7
NTN [239] No - 66.1 - 41.4
DISTMULT [286] No - 94.2 - 57.7
STransE [178] No 206 (244) 93.4 (94.7) 69 79.7
ITransF No 205 94.2 65 81.0
ITransF (domain sampling) No 223 95.2 77 81.4
RTransE [69] Path - - 50 76.2
PTransE [148] Path - - 58 84.6
NLFeat [255] Node + Link Features - 94.3 - 87.0
Random Walk [272] Path - 94.8 - 74.7
IRN [231] External Memory 249 95.3 38 92.7

Table 5.2: Link prediction results on two datasets. Higher Hits@10 or lower Mean Rank indi-
cates better performance. Following Nguyen et al. [178] and Shen et al. [231], we divide the
models into two groups. The first group contains intrinsic models without using extra informa-
tion. The second group make use of additional information. Results in the brackets are another
set of results STransE reported.

We can see that path information is very helpful on FB15k and models taking advantage of
path information outperform intrinsic models by a significant margin. Indeed, a lot of facts are
easier to recover with the help of multi-step inference. For example, if we know Barack Obama
is born in Honolulu, a city in the United States, then we easily know the nationality of Obama is
the United States. An straightforward way of extending our model to k-step path P = {ri}ki=1 is
to define a path energy function ‖αααH

P ·D ·h+
!

ri∈P ri−αααT
P ·D ·t‖ℓ,αααH

P is a concept association
related to the path. We plan to extend our model to multi-step path in the future.

To provide a detailed understanding why the model achieves better performance, we present
some further analysis in the sequel.

Performance on Rare Relations In ITransF, we design an attention mechanism to encour-
age knowledge sharing across different relations. Naturally, facts associated with rare relations
should benefit most from such sharing, boosting the overall performance. To verify this hypoth-
esis, we investigate our model’s performance on relations with different frequency.

The overall distribution of relation frequencies resembles that of word frequencies, subject to
the zipf’s law. Since the frequencies of relations approximately follow a power distribution, their
log frequencies are linear. The statistics of relations on FB15k and WN18 are shown in Figure
5.1. We can clearly see that the distributions exhibit long tails, just like the Zipf’s law for word
frequency.
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Figure 5.1: Frequencies and log frequencies of relations on two datasets. The X-axis are relations
sorted by frequency.

In order to study the performance of relations with different frequencies, we sort all relations
by their frequency in the training set, and split them into 3 buckets evenly so that each bucket has
a similar interval length of log frequency.

Within each bucket, we compare our model with STransE, as shown in Figure 5.3.2 As we
can see, on WN18, ITransF outperforms STransE by a significant margin on rare relations. In
particular, in the last bin (rarest relations), the average Hits@10 increases from 74.4 to 92.0,
showing the great benefits of transferring statistical strength from common relations to rare ones.
We plot the performance of ITransF and STransE on each relation on WN18. We see that the
improvement is greater on rare relations.
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ITransF STransE

Figure 5.2: Hits@10 on each relation in WN18. The relations are sorted according to their
frequency.

On FB15k, we can also observe a similar pattern, although the degree of improvement is less
significant. We conjecture the difference roots in the fact that many rare relations on FB15k have
disjoint domains, knowledge transfer through common concepts is harder.

2Domain sampling is not employed.
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Figure 5.3: Hits@10 on relations with different amount of data. We give each relation the equal
weight and report the average Hits@10 of each relation in a bin instead of reporting the average
Hits@10 of each sample in a bin. Bins with smaller index corresponding to high-frequency
relations.

Interpretability In addition to the quantitative evidence supporting the effectiveness of knowl-
edge sharing, we provide some intuitive examples to show how knowledge is shared in our model.
As we mentioned earlier, the sparse attention vectors fully capture the association between re-
lations and concepts and hence the knowledge transfer among relations. Thus, we visualize the
attention vectors for several relations on both WN18 and FB15K in Figure 5.4.

For WN18, the words “hyponym” and “hypernym” refer to words with more specific or gen-
eral meaning respectively. For example, PhD is a hyponym of student and student is a hypernym
of PhD. As we can see, concepts associated with the head entities in one relation are also as-
sociated with the tail entities in its reverse relation. Further, “instance_hypernym” is a special
hypernym with the head entity being an instance, and the tail entity being an abstract notion.
A typical example is (New York,instance_hypernym, city). This connection has also been
discovered by our model, indicated by the fact that “instance_hypernym(T)” and “hypernym(T)”
share a common concept matrix. Finally, for symmetric relations like “similar_to”, we see the
head attention is identical to the tail attention, which well matches our intuition.

On FB15k, we also see the sharing between reverse relations, as in “(somebody) won_award_for
(some work)” and “(some work) award_winning_work (somebody)”. What’s more, although re-
lation “won_award_for” and “was_nominated_for” share the same concepts, their attention dis-
tributions are different, suggesting distinct emphasis. Finally, symmetric relations like spouse
behave similarly as mentioned before.

Model Compression A byproduct of parameter sharing mechanism employed by ITransF is a
much more compact model with equal performance. Figure 5.6 plots the average performance
of ITransF against the number of projection matrices m, together with two baseline models. On
FB15k, when we reduce the number of matrices from 2200 to 30 (∼ 90× compression), our
model performance decreases by only 0.09% on Hits@10, still outperforming STransE. Simi-
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(a) WN18 (b) FB15k

Figure 5.4: Heatmap visualization of attention vectors for ITransF on WN18 and FB15k. Each
row is an attention vector αααH

r or αααT
r for a relation’s head or tail concepts.

(a) WN18 (b) FB15k

Figure 5.5: Heatmap visualization of ℓ1 regularized dense attention vectors, which are not sparse.
Note that the colorscale is not from 0 to 1 since Softmax is not applied.

larly, on WN18, ITransF continues to achieve the best performance when we reduce the number
of concept project matrices to 18.
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Figure 5.6: Performance with different number of projection matrices. Note that the X-axis
denoting the number of matrices is not linearly scaled.
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5.3.4 Analysis on Sparseness

Sparseness is desirable since it contribute to interpretability and computational efficiency of our
model. We investigate whether enforcing sparseness would deteriorate the model performance
and compare our method with another sparse encoding methods in this section.

Dense Attention w/o ℓ1 regularization Although ℓ0 constrained model usually enjoys many
practical advantages, it may deteriorate the model performance when applied improperly. Here,
we show that our model employing sparse attention can achieve similar results with dense at-
tention with a significantly less computational burden. We also compare dense attention with ℓ1
regularization. We set the ℓ1 coefficient to 0.001 in our experiments and does not apply Softmax
since the ℓ1 of a vector after Softmax is always 1. We compare models in a setting where the
computation time of dense attention model is acceptable3. We use 22 weight matrices on WN18
and 15 weight matrices on FB15k and train both the models for 2000 epochs.

The results are reported in Table 5.3. Generally, ITransF with sparse attention has slightly
better or comparable performance comparing to dense attention. Further, we show the attention
vectors of model with ℓ1 regularized dense attention in Figure 5.5. We see that ℓ1 regularization
does not produce a sparse attention, especially on FB15k.

Method WN18 FB15k
MR H10 Time MR H10 Time

Dense 199 94.0 4m34s 69 79.4 4m30s
Dense + ℓ1 228 94.2 4m25s 131 78.9 5m47s
Sparse 207 94.1 2m32s 67 79.6 1m52s

Table 5.3: Performance of model with dense attention vectors or sparse attention vectors. MR,
H10 and Time denotes mean rank, Hits@10 and training time per epoch respectively

Nonnegative Sparse Encoding We induce the sparsity by a carefully designed iterative op-
timization procedure. Apart from this approach, one may utilize sparse encoding techniques to
obtain sparseness based on the pretrained projection matrices from STransE. Concretely, stacking
|2R| pretrained projection matrices into a 3-dimensional tensor X ∈ R2|R|×n×n, similar sparsity
can be induced by solving an ℓ1-regularized tensor completion problem minA,D ||X−DA||22 +
λ‖A‖ℓ1 . Basically, A plays the same role as the attention vectors in our model. For more details,
we refer readers to [61].

For completeness, we compare our model with the aforementioned approach4. The compari-
son is summarized in table 5.4. On both benchmarks, ITransF achieves significant improvement
against sparse encoding on pretrained model. This performance gap should be expected since
the objective function of sparse encoding methods is to minimize the reconstruction loss rather
than optimize the criterion for link prediction.

3With 300 projection matrices, it takes 1h1m to run one epoch for a model with dense attention.
4We use the toolkit provided by [61].
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Method WN18 FB15k
MR H10 MR H10

Sparse Encoding 211 86.6 66 79.1
ITransF 205 94.2 65 81.0

Table 5.4: Different methods to obtain sparse representations

5.4 Related Work
In KBC, CTransR [149] enables relation embedding sharing across similar relations, but they
cluster relations before training rather than learning it in a principled way. Further, they do not
solve the data sparsity problem because there is no sharing of projection matrices which have
a lot more parameters. Learning the association between semantic relations has been used in
related problems such as relational similarity measurement [261] and relation adaptation [24].

Data sparsity is a common problem in many fields. Transfer learning [187] has been shown to
be promising to transfer knowledge and statistical strengths across similar models or languages.
For example, Bharadwaj et al. [21] transfers models on resource-rich languages to low resource
languages by parameter sharing through common phonological features in name entity recog-
nition. Zoph et al. [321] initialize from models trained by resource-rich languages to translate
low-resource languages.

Several work on obtaining a sparse attention [162, 163, 228] share a similar idea of sorting
the values before softmax and only keeping the K largest values. However, the sorting operation
in these work is not GPU-friendly.

The block iterative optimization algorithm in our work is inspired by LightRNN [141]. They
allocate every word in the vocabulary in a table. A word is represented by a row vector and a
column vector depending on its position in the table. They iteratively optimize embeddings and
allocation of words in tables.

5.5 Discussion
In summary, we present a knowledge embedding model which can discover shared hidden con-
cepts, and design a learning algorithm to induce the interpretable sparse representation. Em-
pirically, we show our model can improve the performance on two benchmark datasets without
external resources, over all previous models of the same kind.

Such a transfer learning mechanism leads to knowledge sharing and better performance. One
drawback of the algorithm is that we need to design special optimization procedures since the
model is not fully differentiable due to the sparseness constraints, which makes it difficult to
apply for new tasks.
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Chapter 6

Transfer Learning through Invariant
Feature Learning

In this chapter, we present a method that uses adversarial training to learn domain-invariant rep-
resentation to perform transfer learning between similar domains. The representation learning
process is formulated as an adversarial minimax game. We analyze the optimal equilibrium of
such a game and find that it amounts to maximizing the uncertainty of inferring the detrimental
factor given the representation while maximizing the certainty of making task-specific predic-
tions. On three benchmark tasks, we show that the proposed framework induces an invariant
representation, and leads to better generalization evidenced by the improved performance.

6.1 Introduction

How to produce a data representation that maintains meaningful variations of data while elimi-
nating noisy signals is a consistent theme of machine learning research. In the last few years, the
dominant paradigm for finding such a representation has shifted from manual feature engineer-
ing based on specific domain knowledge to representation learning that is fully data-driven, and
often powered by deep neural networks [15]. Being universal function approximators [81], deep
neural networks can easily uncover the complicated variations in data [303], leading to powerful
representations. However, how to systematically incorporate a desired invariance into the learned
representation in a controllable way remains an open problem.

A possible avenue towards the solution is to devise a dedicated neural architecture that by
construction has the desired invariance property. As a typical example, the parameter sharing
scheme and pooling mechanism in modern deep convolutional neural networks (CNN) [137]
take advantage of the spatial structure of image processing problems, allowing them to induce
more generic feature representations than fully connected networks. Since the invariance we care
about can vary greatly across tasks, this approach requires us to design a new architecture each
time a new invariance desideratum shows up, which is time-consuming and inflexible.

When our belief of invariance is specific to some attribute of the input data, an alterna-
tive approach is to build a probabilistic model with a random variable corresponding to the at-
tribute, and explicitly reason about the invariance. For instance, the variational fair auto-encoder
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(VFAE) [152] employs the maximum mean discrepancy (MMD) to eliminate the negative in-
fluence of specific “nuisance variables”, such as removing the lighting conditions of images to
predict the person’s identity. Similarly, under the setting of domain adaptation, standard binary
adversarial cost [67, 68] and central moment discrepancy (CMD) [298] have been utilized to
learn features that are domain invariant. However, all these invariance inducing criteria suffer
from a similar drawback, which is they are defined to measure the divergence between a pair of
distributions. Consequently, they can only express the invariance belief w.r.t. a pair of values
of the random variable at a time. When the attribute is a multinomial variable that takes more
than two values, combinatorial number of pairs (specifically, O(n2)) have to be added to express
the belief that the representation should be invariant to the attribute. The problem is even more
dramatic when the attribute represents a structure that has exponentially many possible values
(e.g. the parse tree of a sentence) or when the attribute is simply a continuous variable.

Motivated by the aforementioned drawbacks and difficulties, in this work, we consider the
problem of learning a feature representation with the desired invariance. We aim at creating a
unified framework that is (1) generic enough such that it can be easily plugged into different
models, and (2) more flexible to express an invariance belief in quantities beyond discrete vari-
ables with limited value choices. Specifically, inspired by the recent advancement of adversarial
learning [75], we formulate the representation learning as a minimax game among three players:
an encoder which maps the observed data deterministically into a feature space, a discriminator
which looks at the representation and tries to identify a specific type of variation we hope to elim-
inate from the feature, and a predictor which makes use of the invariant representation to make
predictions as in typical discriminative models. We provide theoretical analysis of the equilib-
rium condition of the minimax game, and give an intuitive interpretation. On three benchmark
tasks from different domains, we show that the approach not only improves upon vanilla discrim-
inative approaches that do not encourage invariance, but also outperforms existing approaches
that enforce invariant features.

6.2 Adversarial Invariant Feature Learning
In this section, we formulate our problem and then present the framework of learning invariant
features.

(a) y and s are marginally independent (b) y and s are not marginally independent

Figure 6.1: Dependencies between x, s, y, where x is the observation and y is the target to be
predicted. s is the attribute to which the prediction should be invariant.

Given observation/input x, we are interested in the task of predicting the target y based on
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the value of x using a discriminative approach. In addition, we have access to some intrinsic
attribute s of x as well as a prior belief that the prediction result should be invariant to s.

There are two possible dependency scenarios of x, s and y here: (1) s and y can be marginally
independent. For example, in image classifications, lighting conditions s and identities of persons
y are independent. The data generation process is s ∼ p(s), y ∼ p(y), x ∼ p(x | s, y). (2) In
some cases, s and y are not marginally independent. For example, in fairness classifications, s
are the sensitive factors such as age and gender. y can be the saving, credit and health condition
of a person. s and y are related due to the inherent bias within the data. Using a latent variable
z to model the dependency between s and y, the data generation process is z ∼ p(z), s ∼ p(s |
z), y ∼ p(y | z), x ∼ p(x | s, y). We show the corresponding dependency graphs in Figure 6.1.

Unlike vanilla discriminative models that outputs the conditional distribution p(y | x), we
model p(y | x, s) to make predictions invariant to s. Our intuition is that, due to the explaining
away effect, y and s are not independent when conditioned on x although they can be marginally
independent. Consequently, p(y | x, s) is a more accurate estimation of y than p(y | x). Intu-
itively, this can inform and guide the model to remove information about undesired variations.
For example, if we want to learn a representation of image x that is invariant to the lighting con-
dition s, the model can learn to “brighten” the input if it knows the original picture is dark, and
vice versa. Also, in multi-lingual machine translation, a word with the same surface form may
have different meanings in different languages. For instance, “gift” means “present” in English
but means “poison” in German. Hence knowing the language of a source sentence helps inferring
the meaning of the sentence and conducting translation.

As the input x can have highly complicated structure, we employ a dedicated model or algo-
rithm to extract an expressive representation h from x. Thus, when we extract the representation
h from x, we want the representation h to preserve variations that are necessary to predict y while
eliminating information of s. To achieve the aforementioned goal, we employ a deterministic en-
coder E to obtain the representation by encoding x and s into h, namely, h = E(x, s). It should
be noted here that we are using s as an additional input. Given the obtained representation h,
the target y is predicted by a predictor M , which effectively models the distribution qM(y | h).
By construction, instead of modeling p(y | x) directly, the discriminative model we formulate
captures the conditional distribution p(y | x, s) with additional information coming from s.

Surely, feeding s into the encoder by no means guarantees the induced feature h will be
invariant to s. Thus, in order to enforce the desired invariance and eliminate variations of factor
s from h, we set up an adversarial game by introducing a discriminator D which inspects the
representation h and ensure that it is invariant to s. Concretely, the discriminator D is trained
to predict s based on the encoded representation h, which effectively maximizes the likelihood
qD(s | h). Simultaneously, the encoder fights to minimize the same likelihood of inferring the
correct s by the discriminator. Intuitively, the discriminator and the encoder form an adversarial
game where the discriminator tries to detect an attribute of the data while the encoder learns to
conceal it.

Note that under our framework, in theory, s can be any type of data as long as it represents
an attribute of x. For example, s can be a real value scalar/vector, which may take many possible
values, or a complex sub-structure such as the parse tree of a natural language sentence. But in
this work, we focus mainly on instances where s is a discrete label with multiple choices. We
plan to extend our framework to deal with continuous s and structured s in the future.
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Formally, E, M and D jointly play the following minimax game:

min
E,M

max
D

J(E,M,D)

where

J(E,M,D) = E
x,s,y∼p(x,s,y)

[γ log qD(s | h = E(x, s))− log qM(y | h = E(x, s))] (6.1)

where γ is a hyper-parameter to adjust the strength of the invariant constraint, and p(x, s, y) is
the true underlying distribution that the empirical observations are drawn from.

Note that the problem of domain adaption can be seen as a special case of our problem, where
s is a Bernoulli variable representing the domain and the model only has access to the target y
when s = “source domain” during training.

6.3 Theoretical Analysis
In this section, we theoretically analyze, given enough capacity and training time, whether such a
minimax game will converge to an equilibrium where variations of y are preserved and variations
of s are removed. The theoretical analysis is done in a non-parametric limit, i.e., we assume a
model with infinite capacity. In addition, we discuss the equilibriums of the minimax game when
s is independent/dependent to y.

Since both the discriminator and the predictor only use h which is transformed deterministi-
cally from x and s, we can substitute x with h and define a joint distribution p̃(h, s, y) of h, s and
y as follows

p̃(h, s, y) =

&

x

p̃(x, s, h, y)dx =

&

x

p(x, s, y)pE(h | x, s)dx =

&

x

p(x, s, y)δ(E(x, s) = h)dx

Here, we have used the fact that the encoder is a deterministic transformation and thus the dis-
tribution pE(h | x, s) is merely a delta function denoted by δ(·). Intuitively, h absorbs the
randomness in x and has an implicit distribution of its own. Also, note that the joint distribution
p̃(h, s, y) depends on the transformation defined by the encoder.

Thus, we can equivalently rewrite objective (6.1) as

J(E,M,D) = E
h,s,y∼p̃(h,s,y)

[γ log qD(s | h)− log qM(y | h)] (6.2)

To analyze the equilibrium condition of the new objective (6.2), we first deduce the optimal
discriminator D and the optimal predictor M for a given encoder E and then prove the global
optimality of the minimax game.
Claim 1. Given a fixed encoder E, the optimal discriminator outputs q∗D(s | h) = p̃(s | h) and
the optimal predictor corresponds to q∗M(y | h) = p̃(y | h).

Proof. We first prove the optimal solution of the discriminator. With a fixed encoder, we have
the following optimization problem
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min
qD

− J(E,M,D)

s.t.
"

s

qD(s | h) = 1, ∀h

Then L = J(E,M,D)−
!

h λ(h)(
!

s qD(s | h)− 1) is the Lagrangian dual function of the
above optimization problem where λ(h) are the dual variables introduced for equality constraints.

The optimal D satisfies the following equation

0 =
∂L

∂q∗D(s | h)

⇐⇒ 0 = − ∂J

∂q∗D(s | h)
− λ(h)

⇐⇒ λ(h) = −
!

y q̃(h, s, y)

q∗D(s | h)
⇐⇒ λ(h)q∗D(s | h) = −q̃(s, h)

(6.3)

Summing w.r.t. s on both sides of the last line of Eqn. (6.3) and using the fact that
!

s q
∗
D(s |

h) = 1, we get
λ(h) = −q̃(h) (6.4)

Substituting Eqn. 6.4 back into Eqn. 6.3, we can prove the optimal discriminator is

q∗D(s | h) = q̃(s | h)

Similarly, taking derivation w.r.t. qM(y | h) and setting it to 0, we can prove q∗M(y | h) = q̃(y |
h).

Note that the optimal q∗D(s | h) and q∗M(y | h) given in Claim 1 are both functions of the
encoder E. Thus, by plugging q∗D and q∗M into the original minimax objective (6.2), it can be
simplified as a minimization problem only w.r.t. the encoder E with the following form:

min
E

J(E) = min
E

E
h,s,y∼q̃(h,s,y)

[γ log q̃(s | h)− log q̃(y | h)]

= min
E

−γH(q̃(s | h)) +H(q̃(y | h))
(6.5)

where H(q̃(s | h)) is the conditional entropy of the distribution q̃(s | h).

Equilibrium Analysis As we can see, the objective (6.5) consists of two conditional entropies
with different signs. Optimizing the first term amounts to maximizing the uncertainty of inferring
s based on h, which is essentially filtering out any information of s from the representation. On
the contrary, optimizing the second term leads to increasing the certainty of predicting y based
on h. Implicitly, the objective defines the equilibrium of the minimax game.
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• Win-win equilibrium: Firstly, for cases where the attribute s is entirely irrelevant to the
prediction task (corresponding to the dependency graph shown in Figure 6.1a), the two terms
can reach the optimum at the same time, leading to a win-win equilibrium. For example,
with the lighting condition of an image removed, we can still/better classify the identity of the
people in that image. With enough model capacity, the optimal equilibrium solution would be
the same regardless of the value of γ.

• Competing equilibrium: However, there are cases where these two optimization objectives
are competing. For example, in fair classifications, sensitive factors such as gender and age
may help the overall prediction accuracies due to inherent biases within the data. In other
words, knowing s may help in predicting y since s and y are not marginally independent
(corresponding to the dependency graph shown in Figure 6.1b). Learning a fair/invariant rep-
resentation is harmful to predictions. In this case, the optimality of these two entropies cannot
be achieved simultaneously, and γ defines the relative strengths of the two objectives in the
final equilibrium.

6.4 Parametric Instantiation of the Proposed Framework

6.4.1 Models

To show the general applicability of our framework, we experiment on three different tasks in-
cluding sentence generation, image classification and fair classifications. Due to the different
natures of data of x and y, here we present the specific model instantiations we use.

Sentence Generation We use multi-lingual machine translation as the testbed for sentence
generation. Concretely, we have translation pairs between several source languages and a target
language. x is the source sentence to be translated and s is a scalar denoting which source
language x belongs to. y is the translated sentence for the target language.

Recall that s is used as an input of E to obtain a language-invariant representation. To make
full use of s, we employ separate encoders Encs for sentences in each language s. In other words,
h = E(s, x) = Encs(x) where each Encs is a different encoder. The representation of a sentence
is captured by the hidden states of an LSTM encoder [99] at each time step.

We employ a single LSTM predictor for different encoders. As often used in language gen-
eration, the probability qM output by the predictor is parametrized by an autoregressive process,
i.e.,

qM(y1:T | h) =
T'

t=1

qM(yt|y<t, h)

where we use an LSTM with attention model [9] to compute qM(yt|y<t, h).
The discriminator is also parameterized as an LSTM which gives it enough capacity to deal

with input of multiple timesteps. qD(s | h) is instantiated with the multinomial distribution
computed by a softmax layer on the last hidden state of the discriminator LSTM.
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Classification For our classification experiments, the input is either a picture or a feature vec-
tor. All of the three players in the minimax game are constructed by feedforward neural networks.
We feed s to the encoder as an embedding vector.

6.4.2 Optimization
There are two possible approaches to optimize our framework in an adversarial setting. The first
one is similar to the alternating approach used in Generative Adversarial Nets (GANs) [75]. We
can alternately train the two adversarial components while freezing the third one. This approach
has more control in balancing the encoder and the discriminator, which effectively avoids satu-
ration. Another method is to train all three components together with a gradient reversal layer
[67]. In particular, the encoder admits gradients from both the discriminator and the predictor,
with the gradient from the discriminator negated to push the encoder in the opposite direction
desired by the discriminator. Chen et al. [39] found the second approach easier to optimize since
the discriminator and the encoder are fully in sync being optimized altogether. Hence we adopt
the latter approach. In all of our experiments, we use Adam [123] with a learning rate of 0.001.

6.5 Experiments
In this section, we perform empirical experiments to evaluate the effectiveness of the framework.
We first introduce the tasks and corresponding datasets we consider. Then, we present the quan-
titative results showing the superior performance of our framework, and discuss some qualitative
analysis which verifies the learned representations have the desired invariance property.

6.5.1 Datasets
Our experiments include three tasks in different domains: (1) fair classification, in which pre-
dictions should be unaffected by nuisance factors; (2) language-independent generation which
is conducted on the multi-lingual machine translation problem; (3) lighting-independent image
classification.

Fair Classification For fair classification, we use three datasets to predict the savings, credit
ratings and health conditions of individuals with variables such as gender or age specified as
“nuisance variable” that we would like to not consider in our decisions [152, 299]. The Ger-
man dataset [64] is a small dataset with 1, 000 samples describing whether a person has a good
credit rating. The sensitive nuisance variable to be factored out is gender. The Adult income
dataset [64] has 45, 222 data points and the objective is to predict whether a person has savings
of over 50, 000 dollars with the sensitive factor being age. The task of the health dataset1 is to
predict whether a person will spend any days in the hospital in the following year. The sensitive
variable is also the age and the dataset contains 147, 473 entries. We follow the same 5-fold
train/validation/test splits and feature preprocessing used in [152, 299].

1www.heritagehealthprize.com
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Both the encoder and the predictor are parameterized by single-layer neural networks. A
three-layer neural network with batch normalization [108] is employed for the discriminator. We
use a batch size of 16 and the number of hidden units is set to 64. γ is set to 1 in our experiments.

Multi-lingual Machine Translation For the multi-lingual machine translation task we use
French to English (fr-en) and German to English (de-en) pairs from IWSLT 2015 dataset [31].
There are 198, 435 pairs of fr-en sentences and 188, 661 pairs of de-en sentences in the training
set. In the test set, there are 4, 632 pairs of fr-en sentences and 7, 054 pairs of de-en sentences.
We evaluate BLEU scores [189] using the standard Moses multi-bleu.perl script. Here, s
indicates the language of the source sentence.

We use the OpenNMT [127] in our multi-lingual MT experiments2. The encoder is a two-
layer bidirectional LSTM with 256 units for each direction. The discriminator is a one-layer
single-directional LSTM with 256 units. The predictor is a two-layer LSTM with 512 units and
attention mechanism [9]. We follow Johnson et al. [114] and use Byte Pair Encoding (BPE)
subword units [226] as the cross-lingual input. Every model is run for 20 epochs. γ is set to 8
and the batch size is set to 64.

Image Classification We use the Extended Yale B dataset [72] for our image classification
task. It comprises face images of 38 people under 5 different lighting conditions: upper right,
lower right, lower left, upper left, or the front. The variable s to be purged is the lighting condi-
tion. The label y is the identity of the person. We follow Li et al. [143], Louizos et al. [152]’s
train/test split and no validation is used: 38× 5 = 190 samples are used for training and all other
1, 096 data points are used for testing.

We use a one-layer neural network for the encoder and a one-layer neural network for pre-
diction. γ is set to 2. The discriminator is a two-layer neural network with batch normalization.
The batch size is set to 16 and the hidden size is set to 100.

6.5.2 Results
Fair Classification The results on three fairness tasks are shown in Figure 6.2. We compare
our model with two prior work on learning fair representations: Learning Fair Representations
(LFR) [299] and Variational Fair Autoencoder (VFAE) [152]. Results of VAE and directly using
x as the representation are also shown.

We first study how much information about s is retained in the learned representation h by
using a logistic regression to predict factor s. In the top row, we see that s cannot be recognized
from the representations learned by three models targeting at fair representations. The accuracy
of classifying s is similar to the trivial baseline predicting the majority label shown by the black
line.

The performance on predicting label y is shown in the second row. We see that LFR and
VFAE suffer on Adult and German datasets after removing information of s. In comparison,
our model’s performance does not suffer even when making fair predictions. Specifically, on
German, our model’s accuracy is 0.744 compared to 0.727 and 0.723 achieved by VFAE and

2Our MT code is available at https://github.com/qizhex/Controllable-Invariance
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(a) Accuracy on predicting s. The closer the result is to the majority line, the better the model is in
eliminating the effect of nuisance variables.
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(b) Accuracy on predicting y. High accuracy in predicting y is desireable.
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(c) Overall performance and performance on biased categories. Fair representations lead to high accuracy
on baised categories.

Figure 6.2: Fair classification results on different representations. x denotes directly using the
observation x as the representation. The black lines in the first and the second row show the
performance of predicting the majority label.

LFR. On Adult, our model’s accuracy is 0.844 while VFAE and LFR have accuracies of 0.813
and 0.823 respectively. On the health dataset, all models’ performances are barely better than
the majority baseline. The unsatisfactory performances of all models may be due to the extreme
imbalance of the dataset, in which 85% of the data has the same label.

We also investigate how fair representations would alleviate biases of machine learning mod-
els. We measure the unbiasedness by evaluating models’ performances on identifying minority
groups. For instance, suppose the task is to predict savings with the nuisance factor being age,
with savings above a threshold of $50, 000 being adequate, otherwise being insufficient. If peo-
ple of advanced age generally have fewer savings, then a biased model would tend to predict
insufficient savings for those with an advanced age. In contrast, an unbiased model can better
factor out age information and recognize people that do not fit into these stereotypes.

Concretely, for groups pooled by each possible value of y, we seek for the minority s in
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Model test (fr-en) test (de-en)
Bilingual Enc-Dec [9] 35.2 27.3
Multi-lingual Enc-Dec [114] 35.5 27.7
Our model 36.1 28.1

w.o. discriminator 35.3 27.6
w.o. separate encoders 35.4 27.7

Table 6.1: Results on multi-lingual machine translation.

each of these groups and define the minority s as the biased category for the group. Then we
first calculate the accuracy on each biased category and report the average performance for all
categories. We do not compute the instance-level average performance since one category may
hold the dominant amount of data among all categories.

As shown in the third row of Figure 6.2, on German and Adult, we achieve higher accuracy
on the biased categories, even though our overall accuracy is similar to or lower than the baseline
which does not employ fairness constraints. Specifically, on Adult, our performance on the
biased categories is 0.788 while the baseline’s accuracy is 0.748. On German, our accuracy on
biased categories is 0.676 while the baseline achieves 0.648. The results show that our model is
able to learn a more unbiased representation.

Multi-lingual Machine Translation The results of systems on multi-lingual machine transla-
tion are shown in Table 6.1. We compare our model with attention based encoder-decoder trained
on bilingual data [9] and multi-lingual data [114]. The encoder-decoder trained on multi-lingual
data employs a single encoder for both source languages. Firstly, both multi-lingual systems
outperform the bilingual encoder-decoder even though multi-lingual systems use similar num-
ber of parameters to translate two languages, which shows that learning invariant representation
leads to better generalization in this case. The better generalization may be due to transferring
statistical strength between data in two languages.

Comparing two multi-lingual systems, our model outperforms the baseline multi-lingual sys-
tem on both languages, where the improvement on French-to-English is 0.6 BLEU score. We
also verify the design decisions in our framework by ablation studies. Firstly, without the dis-
criminator, the model’s performance is worse than the standard multi-lingual system, which rules
out the possibility that the gain of our model comes from more parameters of separating encoders.
Secondly, when we do not employ separate encoders, the model’s performance deteriorates and
it is more difficult to learn a cross-lingual representation, which

• verifies the theoretical advantage of modeling p(y | x, s) instead of p(y | x) as mentioned in
Section 6.2. Intuitively, German and French have different grammars and vocabulary, so it is
hard to obtain a unified semantic representation by performing the same operations.

• means that the encoder needs to have enough capacity to reach the equilibrium in the minimax
game. We also observe that the discriminator needs enough capacity to provide faithful gra-
dients towards the equilibrium. Specifically, instantiating the discriminator with feedforward
neural network w./w.o. attention mechanism [9] does not work in our experiments.
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Method Accuracy of classifying s Accuracy of classifying y
Logistic regression 0.96 0.78
NN + MMD [143] - 0.82

VFAE [152] 0.57 0.85
Ours 0.57 0.89

Table 6.2: Results on Extended Yale B dataset. A better representation has lower accuracy of
classifying factor s and higher accuracy of classifying label y

(a) Using the original image x as the represen-
tation

(b) Representation learned by our model

Figure 6.3: t-SNE visualizations of images in the Extended Yale B. The original pictures are
clustered by the lighting conditions, while the representation learned by our model is clustered
by identities of individuals

Image Classification We report the results in Table 6.2 with two baselines [143, 152] that use
MMD regularizations to remove lighting conditions. The advantage of factoring out lighting
conditions is shown by the improved accuracy 89% for classifying identities, while the best
baseline achieves an accuracy of 85%.

In terms of removing s, our framework can filter the lighting conditions since the accuracy
of classifying s drops from 0.96 to 0.57, as shown in Table 6.2. We also visualize the learned
representation by t-SNE [159] in comparison to the visualization of original pictures in Figure
6.3. We see that, without removing lighting conditions, the images are clustered based on the
lighting conditions. After removing information of lighting conditions, images are clustered
according to the identity of each person.
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6.6 Related Work
As a specific case of our problem where s takes two values, domain adaption has attracted a large
amount of research interest. Domain adaptation aims to learn domain-invariant representations
that are transferable to other domains. For example, in image classification, adversarial training
has been shown to able to learn an invariant representation across domains [28, 67, 68, 262] and
enables classifiers trained on the source domain to be applicable to the target domain. Moment
discrepancy regularizations can also effectively remove domain specific information [28, 298]
for the same purpose. By learning language-invariant representations, classifiers trained on the
source language can be applied to the target language [39, 281].

Works targeting the development of fair, bias-free classifiers also aim to learn representations
invariant to “nuisance variables” that could induce bias and hence makes the predictions fair,
as data-driven models trained using historical data easily inherit the bias exhibited in the data.
Zemel et al. [299] proposes to regularize the ℓ1 distance between representation distributions for
data with different nuisance variables to enforce fairness. The Variational Fair Autoencoder [152]
targets the problem with a Variational Autoencoder [124, 209] approach with maximum mean
discrepancy regularization.

Our work is also related to learning disentangled representations, where the aim is to separate
different influencing factors of the input data into different parts of the representation. Ideally,
each part of the learned representation can be marginally independent to the other. An early work
by Tenenbaum and Freeman [253] propose a bilinear model to learn a representation with the
style and content disentangled. From information theory perspective, [38] augments standard
generative adversarial networks with an inference network, whose objective is to infer part of
the latent code that leads to the generated sample. This way, the information carried by the
chosen part of the latent code can be retained in the generative sample, leading to disentangled
representation.

As we have discussed in Section 9.1, these methods bear the same drawback that the cost used
to regularize the representation is pairwise, which does not scale well as the number of values
that the attribute can take could be large. Louppe et al. [153] propose an adversarial training
framework to learn representations independent to a categorical or continuous variable. A basic
assumption in their theoretical analysis is that the attribute is irrelevant to the prediction, which
limits its capabilities in analyzing the fairness classifications.

6.7 Discussion
In sum, we show a generic framework to learn representations invariant to a specified factor or
trait. We cast the representation learning problem as an adversarial game among an encoder, a
discriminator, and a predictor. We theoretically analyze the optimal equilibrium of the minimax
game and evaluate the performance of our framework on three tasks from different domains
empirically. We show that an invariant representation is learned, resulting in better generalization
and improvements on the three tasks.

The invariance inducing framework is applied to learn domain-invariant features for transfer
learning. It results in better generalization for two machine translation tasks though the algorithm
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requires additional effort in optimization.
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Chapter 7

Transfer Learning by Pretraining for Cloze
Test

In this chapter, we first present a cloze test dataset CLOTH collected from exams. We then show
that it is possible to achieve great performance on this dataset by transfer learning from LM-1B,
a language model pretrained on a large corpus. This shows that pretraining can leverage a large
amount of unlabeled data to learn general knowledge about natural language.

7.1 Introduction

Being a classic language exercise, the cloze test [252] is an accurate assessment of language
proficiency [63, 116, 258] and has been widely employed in language examinations. Under a
typical setting, a cloze test requires examinees to fill in missing words (or sentences) to best fit
the surrounding context. To facilitate natural language understanding, automatically-generated
cloze datasets are introduced to measure the ability of machines in reading comprehension [95,
97, 185]. In these datasets, each cloze question typically consists of a context paragraph and
a question sentence. By randomly replacing a particular word in the question sentence with a
blank symbol, a single test case is created. For instance, CNN/Daily Mail datasets [95] use news
articles as contexts and summary bullet points as the question sentence. Only named entities
are removed when creating the blanks. Similarly, in Children’s Books test (CBT) [97], cloze
questions are obtained by removing a word in the last sentence of every consecutive 21 sentences,
with the first 20 sentences being the context. Different from CNN/Daily Mail datasets, CBT also
provides each question with a candidate answer set, consisting of randomly sampled words with
the same part-of-speech tag from the context as that of the correct answer.

Thanks to the automatic generation process, these datasets can be very large in size, lead-
ing to significant research progresses. However, compared to how humans would create cloze
questions and evaluate reading comprehension ability, the automatic generation process bears
some inevitable issues. Firstly, blanks are chosen uniformly without considering which aspect
of the language phenomenon that questions will test. Hence, quite a portion of automatically-
generated questions can be purposeless or even trivial to answer. Another issue involves the
ambiguity of answers. Given a context and a sentence with a blank, there can be multiple words
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that fit almost equally well into the blank. A possible solution is to include a candidate option
set, as done by CBT, to get rid of the ambiguity. However, automatically generating the can-
didate option set can be problematic since it cannot guarantee the ambiguity is removed. More
importantly, automatically-generated candidates can be totally irrelevant or simply grammati-
cally unsuitable for the blank, resulting in again purposeless or trivial questions. Probably due to
these unsatisfactory issues, neural models have achieved comparable results to the human-level
performance within a very short time [35, 58, 227]. While there have been work trying to in-
corporate human design into cloze question generation [188, 324], due to the expensive labeling
process, the MSR Sentence Completion Challenge created by this effort has 1, 040 questions
and the LAMBADA [188] dataset has 10, 022 questions, limiting the possibility of developing
powerful neural models on it. As a result of the small size, human-created questions are only
used to compose development sets and test sets. Motivated by the aforementioned drawbacks,
we collect a large-scale cloze test dataset CLOTH from English exams. Questions in the dataset
are designed by middle-school and high-school teachers to prepare Chinese students for entrance
exams. To design a cloze test, teachers firstly determine the words that can test students’ knowl-
edge of vocabulary, reasoning or grammar; then replace those words with blanks and provide
other three candidate options for each blank. If a question does not specifically test grammar
usage, all of the candidate options would complete the sentence with correct grammar, leading
to highly nuanced questions. As a result, human-created questions are usually harder and are
a better assessment of language proficiency. A general cloze test evaluates several aspects of
language proficiency including vocabulary, reasoning and grammar, which are key components
of comprehending natural language.

To verify if human-created cloze questions are difficult for current models, we train and
evaluate the state-of-the-art language model (LM) and machine comprehension models on this
dataset, including a language model trained on the One Billion Word Corpus. We find that the
state-of-the-art model lags behind human performance even if the model is trained on a large
external corpus. We analyze where the model fails compared to humans who perform well.
After conducting error analysis, we assume the performance gap results from the model’s in-
ability to use a long-term context. To examine this assumption, we evaluate human-level per-
formance when the human subjects are only allowed to see one sentence as the context. Our
assumption is confirmed by the matched performances of the models and human when given
only one sentence. In addition, we demonstrate that human-created data is more difficult than
automatically-generated data. Specifically, it is much easier for the same model to perform well
on automatically-generated data.

Our motivation is to provide a valuable testbed for both the language modeling community
and the machine comprehension community. Specifically, the language modeling community
can use CLOTH to evaluate their models’ abilities in modeling long contexts, while the ma-
chine comprehension community can use CLOTH to test machine’s understanding of language
phenomena.
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7.2 Related Work
Large-scale automatically-generated cloze tests [95, 97, 185] lead to significant research ad-
vancements. However, generated questions do not consider language phenomenon to be tested
and are relatively easy to solve. Recently proposed reading comprehension datasets are all la-
beled by humans to ensure a high quality [117, 180, 203, 260].

Perhaps the closet work to CLOTH is the LAMBADA dataset [188]. LAMBADA also targets
at finding challenging words to test LM’s ability in comprehending a longer context. However,
LAMBADA does not provide a candidate set for each question, which can cause ambiguities
when multiple words can fit in. Furthermore, only test set and development set are labeled
manually. The provided training set is the unlabeled Book Corpus [318]. Such unlabeled data
do not emphasize long-dependency questions and have a mismatched distribution with the test
set, as showed in Section 7.5. Further, the Book Corpus is too large to allow rapid algorithm
development for researchers who do not have access to a huge amount of computational power.

Aiming to evaluate machines under the same conditions that the humans are evaluated, there
is a growing interest in obtaining data from examinations. NTCIR QA Lab [233] contains a set of
real-world college entrance exam questions. The Entrance Exams task at CLEF QA Track [195,
212] evaluates machine’s reading comprehension ability. The AI2 Reasoning Challenge [44,
222] contains approximately eight thousand scientific questions used in middle school. Lai et al.
[133] proposes the first large-scale machine comprehension dataset obtained from exams. They
show that questions designed by teachers have a significantly larger proportion of reasoning
questions. Our dataset focuses on evaluating both language proficiency and reasoning abilities.

7.3 CLOTH Dataset
In this section, we introduce the CLOTH dataset that is collected from English examinations, and
study its abilities of assessment.

7.3.1 Data Collection and Statistics
We collect the raw data from three free and public websites in China that gather exams created by
English teachers to prepare students for college/high school entrance exams1. Before cleaning,
there are 20, 605 passages and 332, 755 questions. We perform the following processes to ensure
the validity of data: Firstly, we remove questions with an inconsistent format such as questions
with more than four options. Then we filter all questions whose validity relies on external infor-
mation such as pictures or tables. Further, we find that half of the total passages are duplicates
and we delete those passages. Lastly, on one of the websites, the answers are stored as images.
We use two OCR software programs2 to extract the answers from images. We discard the ques-
tions when results from the two software are different. After the cleaning process, we obtain a
clean dataset of 7, 131 passages and 99, 433 questions.

1 The three websites include http://www.21cnjy.com/; http://5utk.ks5u.com/; http://zujuan.xkw.com/. We
checked that CLOTH does not contain sentence completion example questions from GRE, SAT and PSAT.

2tesseract: https://github.com/tesseract-ocr; ABBYY FineReader: https://www.abbyy.com/en-us/finereader/
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Since high school questions are more difficult than middle school questions, we divide the
datasets into CLOTH-M and CLOTH-H, which stand for the middle school part and the high
school part. We split 11% of the data for both the test set and the development set. The detailed
statistics of the whole dataset and two subsets are presented in Table ??. Note that the questions
were created to test non-native speakers, hence the vocabulary size is not very large.

Dataset CLOTH-M CLOTH-H CLOTH (Total)
Train Dev Test Train Dev Test Train Dev Test

# passages 2,341 355 335 3,172 450 478 5,513 805 813
# questions 22,056 3,273 3,198 54,794 7,794 8,318 76,850 11,067 11,516
Vocab. size 15,096 32,212 37,235

Avg. # sentence 16.26 18.92 17.79
Avg. # words 242.88 365.1 313.16

7.3.2 Question Type Analysis

In order to evaluate students’ mastery of a language, teachers usually design tests in a way that
questions cover different aspects of a language. Specifically, they first identify words in the
passage that can examine students’ knowledge in vocabulary, logic, or grammar. Then, they
replace the words with blanks and prepare three incorrect but nuanced candidate options to make
the test non-trivial. A sample passage is presented in Table 7.1.

To understand the abilities of assessment on this dataset, we divide questions into several
types and label the proportion of each type. According to English teachers who regularly cre-
ate cloze test questions for English exams in China, there are largely three types: grammar,
vocabulary and reasoning. Grammar questions are easily differentiated from other two cate-
gories. However, the teachers themselves cannot specify a clear distinction between reasoning
questions and vocabulary questions since all questions require comprehending the words within
the context and conducting some level of reasoning by recognizing incomplete information or
conceptual overlap.

Hence, we divided the questions except grammar questions based on the difficulty level
for a machine to answer the question, following work on analyzing machine comprehension
datasets [35, 260]. In particular, we divide them in terms of their dependency ranges, since ques-
tions that only involve a single sentence are easier to answer than questions involving evidence
distributed in multiple sentences. Further, we divided questions involving long-term dependency
into matching/paraphrasing questions and reasoning questions since matching questions are eas-
ier. The four types include:

• Grammar: The question is about grammar usage, involving tense, preposition usage, active/-
passive voices, subjunctive mood and so on.

• Short-term-reasoning: The question is about content words and can be answered based on the
information within the same sentence. Note that the content words can evaluate knowledge of
both vocabulary and reasoning.
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Passage: Nancy had just got a job as a secretary in a company. Monday was the first day she went to work, so
she was very _1_ and arrived early. She _2_ the door open and found nobody there. "I am the _3_ to arrive." She
thought and came to her desk. She was surprised to find a bunch of _4_ on it. They were fresh. She _5_ them and
they were sweet. She looked around for a _6_ to put them in. "Somebody has sent me flowers the very first day!"
she thought _7_ . " But who could it be?" she began to _8_ . The day passed quickly and Nancy did everything with
_9_ interest. For the following days of the _10_ , the first thing Nancy did was to change water for the followers and
then set about her work.
Then came another Monday. _11_ she came near her desk she was overjoyed to see a(n) _12_ bunch of flowers
there. She quickly put them in the vase, _13_ the old ones. The same thing happened again the next Monday. Nancy
began to think of ways to find out the _14_ . On Tuesday afternoon, she was sent to hand in a plan to the _15_ . She
waited for his directives at his secretary’s _16_ . She happened to see on the desk a half-opened notebook, which
_17_ : "In order to keep the secretaries in high spirits, the company has decided that every Monday morning a bunch
of fresh flowers should be put on each secretaryâĂŹs desk." Later, she was told that their general manager was a
business management psychologist.

Questions:
1. A. depressed B. encouraged C. excited D. surprised
2. A. turned B. pushed C. knocked D. forced
3. A. last B. second C. third D. first
4. A. keys B. grapes C. flowers D. bananas
5. A. smelled B. ate C. took D. held
6. A. vase B. room C. glass D. bottle
7. A. angrily B. quietly C. strangely D. happily
8. A. seek B. wonder C. work D. ask
9. A. low B. little C. great D. general
10. A. month B. period C. year D. week
11. A. Unless B. When C. Since D. Before
12. A. old B. red C. blue D. new
13. A. covering B. demanding C. replacing D. forbidding
14. A. sender B. receiver C. secretary D. waiter
15. A. assistant B. colleague C. employee D. manager
16. A. notebook B. desk C. office D. house
17. A. said B. written C. printed D. signed

Table 7.1: A Sample passage from our dataset. Bold faces highlight the correct answers. There
is only one best answer among four candidates, although several candidates may seem correct.

• Matching/paraphrasing: The question is answered by copying/paraphrasing a word in the con-
text.

• Long-term-reasoning: The answer must be inferred from synthesizing information distributed
across multiple sentences.

We sample 100 passages in the high school category and the middle school category respec-
tively with totally 3, 000 questions. The types of these questions are labeled on Amazon Turk.
We pay $1 and $0.5 for high school passages and middle school passages respectively. To label
the questions, we provided the definition and an example for each question category to the Ama-
zon Mechanical Turkers. To ensure quality, we limited the workers to master Turkers who are
experienced and maintain a high acceptance rate. However, we did not restrict the backgrounds
of the Turkers since master Turkers should have a reasonable amount of knowledge about English
to conduct previous tasks. In addition, the vocabulary used in CLOTH are usually not difficult
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since they are constructed to test non-native speakers in middle school or high school. To get a
concrete idea of the nature of question types, please refer to examples shown in Tab. 7.2.

Passage: Nancy had just got a job as a secretary in a company. Monday was the first
day she went to work, so she was very _1_ and arrived early. She _2_ the door open and
found nobody there. "I am the _3_ to arrive." She thought and came to her desk. She
was surprised to find a bunch of _4_ on it. They were fresh. She _5_ them and they were
sweet. She looked around for a _6_ to put them in. "Somebody has sent me flowers the
very first day!" she thought _7_ . " But who could it be?" she began to _8_ . The day
passed quickly and Nancy did everything with _9_ interest. For the following days of
the _10_ , the first thing Nancy did was to change water for the followers and then set
about her work.
Then came another Monday. _11_ she came near her desk she was overjoyed to see
a(n) _12_ bunch of flowers there. She quickly put them in the vase, _13_ the old ones.
The same thing happened again the next Monday. Nancy began to think of ways to find
out the _14_ . On Tuesday afternoon, she was sent to hand in a plan to the _15_ . She
waited for his directives at his secretary’s _16_ . She happened to see on the desk a
half-opened notebook, which _17_ : "In order to keep the secretaries in high spirits, the
company has decided that every Monday morning a bunch of fresh flowers should be put
on each secretary’s desk." Later, she was told that their general manager was a business
management psychologist.

Questions Question type
1. A. depressed B. encouraged C. excited D. surprised short-term reasoning
2. A. turned B. pushed C. knocked D. forced short-term reasoning
3. A. last B. second C. third D. first long-term reasoning
4. A. keys B. grapes C. flowers D. bananas matching
5. A. smelled B. ate C. took D. held short-term reasoning
6. A. vase B. room C. glass D. bottle long-term reasoning
7. A. angrily B. quietly C. strangely D. happily short-term reasoning
8. A. seek B. wonder C. work D. ask long-term reasoning
9. A. low B. little C. great D. general long-term reasoning
10. A. month B. period C. year D. week long-term reasoning
11. A. Unless B. When C. Since D. Before grammar
12. A. old B. red C. blue D. new long-term reasoning
13. A. covering B. demanding C. replacing D. forbidding long-term reasoning
14. A. sender B. receiver C. secretary D. waiter long-term reasoning
15. A. assistant B. colleague C. employee D. manager matching
16. A. notebook B. desk C. office D. house matching
17. A. said B. written C. printed D. signed grammar

Table 7.2: An Amazon Turker’s label for the sample passage

7.3.3 Type-specific Performance Analysis
We can also further verify the strengths and weaknesses of the 1B-LM by studying the per-
formance of models and human on different question categories. Note that the performance
presented here may be subject to a high variance due to the limited number of samples in each
category. From the comparison shown in Figure 7.1, we see that 1B-LM is indeed good at short-
term questions. Specifically, when the human only has access to the context of one sentence,
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Figure 7.1: Model and human’s performance on questions with different types. Our model will
be introduced in Sec. 7.6.

1B-LM is close to human’s performance on almost all categories. Further, comparing LM and
1B-LM, we find that training on the large corpus leads to improvements on all categories, show-
ing that training on a large amount of data leads to a substantial improvement in learning complex
language regularities.

The proportion of different questions is shown in Table 7.3. The majority of questions are
short-term-reasoning questions while approximately 22.4% of the data needs long-term informa-
tion, in which the long-term-reasoning questions constitute a large proportion.

Short-term Long-term

Dataset GM STR MP LTR O

CLOTH 0.265 0.503 0.044 0.180 0.007
CLOTH-M 0.330 0.413 0.068 0.174 0.014
CLOTH-H 0.240 0.539 0.035 0.183 0.004

Table 7.3: The question type statistics of 3000 sampled questions where GM, STR, MP, LTR
and O denotes grammar, short-term-reasoning, matching/paraphrasing, long-term-reasoning and
others respectively.

7.4 Exploring Models’ Limits

In this section, we investigate if human-created cloze test is a challenging problem for state-
of-the-art models. We find that LM trained on the One Billion Word Corpus can achieve a
remarkable score but cannot solve the cloze test. After conducting an error analysis, we hypothe-
size that the model is not able to deal with long-term dependencies. We verify the hypothesis by
comparing the model’s performance with the human performance when the information humans
obtain is limited to one sentence.
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7.4.1 Human and Model Performance
LSTM To test the performance of RNN-based supervised models, we train a bidirectional
LSTM [99] to predict the missing word given the context with only labeled data.

Attentive Readers To enable the model to gather information from a longer context, we aug-
ment the supervised LSTM model with the attention mechanism [9], so that the representation
at the blank is used as a query to find the relevant context in the document and a blank-specific
representation of the document is used to score each candidate answer. Specifically, we adapt
the Stanford Attentive Reader [35] and the position-aware attention model [308] to the cloze test
problem. With the position-aware attention model, the attention scores are based on both the
context match and the distance from a context to the blank. Both attention models are trained
only with human-created blanks just as the LSTM model.

LM In cloze test, the context on both sides may be enough to determine the correct answer.
Suppose xi is the missing word and x1, · · · , xi−1, xi+1, · · · , xn are the context, we choose xi

that maximizes the joint probability p(x1, · · · , xn), which essentially maximizes the conditional
likelihood p(xi | x1, · · · , xi−1, xi+1, · · · , xn). Therefore, LM can be naturally adapted to cloze
test.

In essence, LM treats each word as a possible blank and learns to predict it. As a result, it
receives more supervision than the LSTM trained on human-labeled questions. Besides training
a neural LM on our dataset, interested in whether the state-of-the-art LM can solve cloze test,
we also test the LM trained on the One Billion Word Benchmark [34] (referred as 1B-LM) that
achieves a perplexity of 30.0 [118]3. To make the evaluation time tractable, we limit the context
length to one sentence or three sentences. Note that the One Billion Word Corpus does not
overlap with the CLOTH corpus.

Human performance We measure the performance of Amazon Mechanical Turkers on 3, 000
sampled questions when the whole passage is given.

Implementation Details We implement our models using PyTorch [194]. We train our model
on all questions in CLOTH and test it on CLOTH-M and CLOTH-H separately. For our final
model, we use Adam [123] with the learning rate of 0.001. The hidden dimension is set to
650 and we initialize the word embedding by 300-dimensional Glove word vector [197]. The
temperature α is set to 2. We tried to increase the dimensionality of the model but do not observe
performance improvement.

When we train the small LM on CLOTH, we largely follow the recommended hyperparame-
ters in the Pytorch LM example4. Specifically, we employ a 2-layer LSTM with hidden dimen-
sion as 1024. The input embedding and output weight matrix are tied. We set the dropout rate to
0.5. The initial learning rate is set to 10 and divided by 4 whenever the PPL stops improving on
the dev set.

3The pre-trained model is obtained from https://github.com/tensorflow/models/tree/master/research/ lm_1b
4https://github.com/pytorch/examples/tree/master/word_language_model
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We predict the answer for each blank independently for all of the models mentioned in this
work, since we do not observe significant performance improvements in our preliminary experi-
ments when an auto-regressive approach is employed, i.e., when we fill all previous blanks with
predicted answers. We hypothesize that, regardless of whether there exist inter-blank dependen-
cies, since blanks are usually distributed far away from each other, LSTM is not able to capture
such long dependencies. When testing language models, we use the longest text spans that do
not contain blanks.

Model CLOTH CLOTH-M CLOTH-H

LSTM 0.484 0.518 0.471
Stanford AR 0.487 0.529 0.471
Position-aware AR 0.485 0.523 0.471

LM 0.548 0.646 0.506
1B-LM (one sent.) 0.695 0.723 0.685
1B-LM (three sent.) 0.707 0.745 0.693

Human performance 0.859 0.897 0.845

Table 7.4: Models’ performance and human-level performance on CLOTH. LSTM, Stanford At-
tentive Reader and Attentive Reader with position-aware attention shown in the top part only use
supervised data labelled by human. LM outperforms LSTM since it receives more supervisions
in learning to predict each word. Training on large external corpus further significantly enhances
LM’s accuracy.

Results The comparison is shown in Table 7.4. Both attentive readers achieve similar accuracy
to the LSTM. We hypothesize that the reason of the attention model’s unsatisfactory performance
is that the evidence of a question cannot be simply found by matching the context. Similarly,
on reading comprehension, though attention-based models [58, 227, 269] have reached human
performance on the SQuAD dataset [203], their performance is still not comparable to human
performance on datasets that focus more on reasoning where the evidence cannot be simply
found by a matching behavior [133, 283]. Since the focus of this work is to analyze CLOTH, we
leave the design of reasoning oriented attention models for future work.

The LM achieves much better performance than LSTM. The gap is larger when the LM
is trained on the 1 Billion Word Corpus, indicating that more training data results in a better
generalization. Specifically, the accuracy of 1B-LM is 0.695 when one sentence is used as the
context. It indicates that LM can learn sophisticated language regularities when given sufficient
data. The same conclusion can also be drawn from the success of a concurrent work ELMo which
uses LM representations as word vectors and achieves state-of-the-art results on six language
tasks [198]. However, if we increase the context length to three sentences, the accuracy of 1B-
LM only has a marginal improvement. In contrast, humans outperform 1B-LM by a significant
margin, which demonstrates that deliberately designed questions in CLOTH are not completely
solved even for state-of-the-art models.
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Context Options

She pushed the door open and found nobody there. "I am the __ to arrive." She A. last B. second C. third D. firstthought and came to her desk.

They were fresh. She __ them and they were sweet. She looked around for a vase A. smelled B. ate C. took D. heldto put them in.

She smelled them and they were sweet. She looked around for a __ to put them in. A. vase B. room C. glass D. bottle"Somebody has sent me flowers the very first day!"

"But who could it be?" she began to __ . The day passed quickly and Nancy did A. seek B. wonder C. work D. askeverything with great interest.

Table 7.5: Error analysis of 1-billion-language-model with three sentences as the context. The
questions are sampled from the sample passage shown in Table 7.1. The correct answer is in
bold text. The incorrectly selected options are in italics.

7.4.2 Analyzing 1B-LM’s Strengths and Weaknesses

In this section, we would like to understand why 1B-LM lags behind human performance. We
find that most of the errors involve long-term reasoning. Additionally, in a lot of cases, the
dependency is within the context of three sentences. We show several errors made by the 1B-LM
in Table 7.5. In the first example, the model does not know that Nancy found nobody in the
company means that Nancy was the first one to arrive at the company. In the second and third
example, the model fails probably because of not recognizing “they" referred to “flowers". The
dependency in the last case is longer. It depends on the fact that Nancy was alone in the company.

Based on the case study, we hypothesize that the LM is not able to take long-term information
into account, although it achieves a surprisingly good overall performance. Additionally, the 1B-
LM is trained on the sentence level, which might also result in the inability to track paragraph
level information. However, to investigate the differences between training on sentence level and
on paragraph level, a prohibitive amount of computational resource is required to train a large
model on the 1 Billion Word Corpus.

On the other hand, a practical comparison is to test the model’s performance on different types
of questions. We find that the model’s accuracy is 0.591 on long-term-reasoning questions of
CLOTH-H while it achieves 0.693 on short-term-reasoning, which partially confirms that long-
term-reasoning is harder. However, we could not completely rely on the performance on specific
questions types, partly due to a large variance caused by the small sample size. Another reason
is that the reliability of question type labels depends on whether turkers are careful enough.
For example, in the error analysis shown in Table 7.5, a careless turker would label the second
example as short-term-reasoning without noticing that the meaning of “they" relies on a long
context.

To objectively verify if the LM’s strengths lie in dealing with short-term information, we
obtain the ceiling performance of only utilizing short-term information. Showing only one sen-
tence as the context, we ask the Turkers to select an option based on their best guesses given the
insufficient information. By limiting the context span manually, the ceiling performance with the
access to only a short context is estimated accurately.

As shown in Table 7.6, The performance of 1B-LM using one sentence as the context can
almost match the human ceiling performance of only using short-term information. Hence we
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Model CLOTH CLOTH-M CLOTH-H

Short context 1B-LM 0.695 0.723 0.685
Human 0.713 0.771 0.691

Long context 1B-LM 0.707 0.745 0.693
Human 0.859 0.897 0.845

Table 7.6: Humans’ performance compared with 1-billion-language-model. In the short context
part, both 1B-LM and humans only use information of one sentence. In the long context part,
humans have the whole passage as the context, while 1B-LM uses contexts of three sentences.

conclude that the LM can almost perfectly solve all short-term cloze questions. However, the
performance of LM is not improved significantly when a long-term context is given, indicating
that the performance gap is due to the inability of long-term reasoning.

7.5 Comparing Human-created Data and Automatically-generated
Data

In this section, we demonstrate that human-created data is a better testbed than automatically-
generated cloze test since it results in a larger gap between model’s performance and human
performance.

A casual observation is that a cloze test can be created by randomly deleting words and ran-
domly sampling candidate options. In fact, to generate large-scale data, similar generation pro-
cesses have been introduced and widely used in machine comprehension [95, 97, 185]. However,
research on cloze test design [217] shows that tests created by deliberately deleting words are
more reliable than tests created by randomly or periodically deleting words. To design accurate
language proficiency assessment, teachers usually deliberately select words in order to examine
students’ proficiency in grammar, vocabulary and reasoning. Moreover, in order to make the
question non-trivial, three incorrect options provided by teachers are usually grammatically cor-
rect and relevant to the context. For instance, in the fourth problem of the sample passage shown
in Table 7.1, “grapes”, “flowers” and “bananas” all fit the description of being fresh.

Hence we naturally hypothesize that human-generated data has distinct characteristics when
compared with automatically-generated data. To verify this assumption, we compare the LSTM
model’s performance when given different proportions of the two types of data. Specifically, to
train a model with α percent of automatically-generated data, we randomly replace a percent
blanks with blanks at random positions, while keeping the remaining 1 − α percent questions
the same. The candidate options for the generated blanks are random words sampled from
the unigram distribution. We test models obtained with varying α on human-created data and
automatically-generated data respectively.

From the comparison in Table 7.7, we have the following observations: (1) human-created
data leads to a larger gap between model’s performance and the ceiling/human performance. The
model’s performance and human’s performance on the human-created data are 0.484 and 0.859
respectively, as shown in Tab. 7.4, leading to a gap of 0.376. In comparison, the performance gap
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!!!!!!!!Test
α%

0% 25% 50% 75% 100%

human-created 0.484 0.475 0.469 0.423 0.381
Generated 0.422 0.699 0.757 0.785 0.815

Table 7.7: The model’s performance when trained on α percent of automatically-generated data
and 100− α percent of human-created data

on the automatically-generated data is at most 0.185 since the model’s performance reaches an
accuracy of 0.815 when fully trained on generated data. (2) Although human-created data may
provide more information in distinguishing similar words, the distributional mismatch between
two types of data makes it non-trivial to transfer the knowledge gained from human-created data
to tackle automatically-generated data. Specifically, the model’s performance on automatically-
generated data monotonically decreases when given a higher ratio of human-created data.

7.6 Combining Human-created Data with Automatically-generated
Data

In Section 7.4.1, we show that LM is able to take advantage of more supervision since it predicts
each word based on the context. At the same time, we also show that human-created data and
the automatically-generated data are quite different in Section 7.5. In this section, we investigate
a model that takes advantage of both sources.

7.6.1 Representative-based Model
Specifically, for each question, regardless of being human-created or automatically-generated,
we can compute the negative log likelihood of the correct answer as the loss function. Suppose
JH is the average negative log likelihood loss for human-created questions and JR is the loss
function on generated questions, we combine losses on human-created questions and generated
questions by simply adding them together, i.e., JR + JH is used as the final loss function. We
will introduce the definition of JR in the following paragraphs.

Although automatically-generated data has a large quantity and is valuable to the model train-
ing, as shown in the previous Section, automatically-generated questions are quite different from
human-created questions. Ideally, a large amount of human-created questions is more desirable
than a large amount of automatically-generated questions. A possible avenue towards having
large-scale human-created data is to automatically pick out a large number of generated ques-
tions which are representative of or similar to human-created questions. In other words, we train
a network to predict whether a question is a generated question or a human-created question. A
generated question is representative of human-created questions if it has a high probability of
being a human-created question. Then we can give higher weights to questions that resemble
human-created question.

We first introduce our method to obtain the representativeness information. Let x denote the
passage and z denote whether a word is selected as a question by human, i.e., z is 1 if this word
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is selected to be filled in the original passage or 0 otherwise. Suppose hi is the representation of
i-th word given by a bidirectional LSTM. The network computes the probability pi of xi being a
human-created question as follows:

li = hT
i wxi

; pi = Sigmoid(li)

where li is the logit which will be used as in the final model and wxi
is the the word embedding.

We train the network to minimize the binary cross entropy between p and ground-truth labels at
each token.

After obtaining the representativeness information, we define the representativeness weighted
loss function as

JR =
"

i ∕∈H

Softmaxi(
l1
α
, · · · , ln

α
)Ji

where Ji denotes the negative log likelihood loss for the i−th question and let li be the output
representativeness of the i-th question and H is the set of all human-generated questions and α is
the temperature of the Softmax function. The model degenerates into assigning a uniform weight
to all questions when the temperature is +∞. We set α to 2 based on the performance on the dev
set. 5.

Figure 7.2: Representativeness prediction for each word. Lighter color means less representative.
The words deleted by human as blanks are in bold text.

Model Ex. CLOTH CLOTH-M CLOTH-H

Our model

No

0.583 0.673 0.549
LM 0.548 0.646 0.506
LSTM 0.484 0.518 0.471
Stanford AR 0.487 0.529 0.471

1B-LM Yes 0.707 0.745 0.693

Human 0.859 0.897 0.845

Table 7.8: Overall results on CLOTH. Ex. denotes external data.

5The code is available at https://github.com/qizhex/Large-scale-Cloze-Test-Dataset-Created-by-Teachers
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Model CLOTH CLOTH-M CLOTH-H

Our model 0.583 0.673 0.549
w.o. rep. 0.566 0.662 0.528
w.o. hum. 0.565 0.665 0.526
w.o. rep. or hum. 0.543 0.643 0.505

Table 7.9: Ablation study on using the representativeness information (denoted as rep.) and the
human-created data (denoted as hum.)

7.6.2 Results

We summarize performances of all models in Table 7.8. Our representativeness model outper-
forms all other models that do not use external data on CLOTH, CLOTH-H and CLOTH-M.

7.6.3 Analysis

In this section, we verify the effectiveness of the representativeness-based averaging by ablation
studies. When we remove the representativeness information by setting α to infinity, the accu-
racy drops from 0.583 to 0.566. When we further remove the human-created data so that only
generated data is employed, the accuracy drops to 0.543, similar to the performance of LM. The
results further confirm that it is beneficial to incorporate human-created questions into training.

A sample of the predicted representativeness is shown in Figure 7.26. Clearly, words that
are too obvious have low scores, such as punctuation marks, simple words “a" and “the". In
contrast, content words whose semantics are directly related to the context have a higher score,
e.g., “same", “similar", “difference" have a high score when the difference between two objects
is discussed and “secrets" has a high score since it is related to the subsequent sentence “does
not want to share with others". Our prediction model achieves an F1 score of 36.5 on the test set,
which is understandable since there are many plausible questions within a passage.

It has been shown that features such as morphology information and readability are beneficial
in cloze test prediction [46, 47, 132, 237]. We leave investigating the advanced approaches of
automatically designing cloze test to future work.

7.7 Discussion
In this work, we collect a large-scale cloze test dataset CLOTH that is designed by teachers.
With missing blanks and candidate options carefully created by teachers to test different aspects
of language phenomena, CLOTH requires a deep language understanding and better captures the
complexity of human language. We find that LM-1B achieves great performance on CLOTH
though human outperforms LM-1B by a significant margin.

In addition, the performance difference between transfer learning from a large out-of-domain
dataset 1-Billion-Word and transfer learning from a small in-domain dataset shows that it is nec-

6The script to generate the Figure is obtained at https://gist.github.com/ihsgnef/
f13c35cd46624c8f458a4d23589ac768
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essary to perform pretraining on a large corpus so that the model can learn a general knowledge
of text.
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Part III

Data-Efficient Learning by Using External
Knowledge
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Chapter 8

Making Use of Inductive Biases as External
Knowledge for Text Generation

In this chapter, with the prior knowledge that token-level training signals provides better credit
assignments than sentence-level training signals, we present methods that lead to improved per-
formance for text generation by breaking down the sentence-level training signals into token-
level signals. Specifically, we use the sentence-level training signal provided by RAML [183]
and establish a theoretical equivalence between the token-level counterpart of RAML and the en-
tropy regularized reinforcement learning. Motivated by this connection, we present two sequence
prediction algorithms with improved performance.

8.1 Introduction

Modeling and predicting discrete sequences is the central problem to many natural language
processing tasks. In the last few years, the adaption of recurrent neural networks (RNNs) and
the sequence-to-sequence model (seq2seq) [9, 245] has led to a wide range of successes in
conditional sequence prediction, including machine translation [9, 245], automatic summariza-
tion [215], image captioning [121, 267, 280] and speech recognition [32].

Despite the distinct evaluation metrics for the aforementioned tasks, the standard training al-
gorithm has been the same for all of them. Specifically, the algorithm is based on maximum like-
lihood estimation (MLE), which maximizes the log-likelihood of the “ground-truth” sequences
empirically observed.1

While largely effective, the MLE algorithm has two obvious weaknesses. Firstly, the MLE
training ignores the information of the task specific metric. As a result, the potentially large
discrepancy between the log-likelihood during training and the task evaluation metric at test time
can lead to a suboptimal solution. Secondly, MLE can suffer from the exposure bias, which
refers to the phenomenon that the model is never exposed to its own failures during training, and
thus cannot recover from an error at test time. Fundamentally, this issue roots from the difficulty

1In this work, we use the terms “ground-truth” and “reference” to refer to the empirical observations interchange-
ably.
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in statistically modeling the exponentially large space of sequences, where most combinations
cannot be covered by the observed data.

To tackle these two weaknesses, there have been various efforts recently, which we summa-
rize into two broad categories:

• A widely explored idea is to directly optimize the task metric for sequences produced by the
model, with the specific approaches ranging from minimum risk training (MRT) [229] and
learning as search optimization (LaSO) [54, 276] to reinforcement learning (RL) [10, 204]. In
spite of the technical differences, the key component to make these training algorithms prac-
tically efficient is often a delicate credit assignment scheme, which transforms the sequence-
level signal into dedicated smaller units (e.g., token-level or chunk-level), and allocates them
to specific decisions, allowing for efficient optimization with a much lower variance. For in-
stance, the beam search optimization (BSO) [276] utilizes the position of margin violations to
produce signals to the specific chunks, while the actor-critic (AC) algorithm [10] trains a critic
to enable token-level signals.

• Another alternative idea is to construct a task metric dependent target distribution, and train
the model to match this task-specific target instead of the empirical data distribution. As a
typical example, the reward augmented maximum likelihood (RAML) [183] defines the tar-
get distribution as the exponentiated pay-off (sequence-level reward) distribution. This way,
RAML not only can incorporate the task metric information into training, but it can also al-
leviate the exposure bias by exposing imperfect outputs to the model. However, RAML only
work on the sequence-level training signal.

In this work, we are intrigued by the question whether it is possible to incorporate the idea of
fine-grained credit assignment into RAML. More specifically, inspired by the token-level signal
used in AC, we aim to find the token-level counterpart of the sequence-level RAML, i.e., defin-
ing a token-level target distribution for each auto-regressive conditional factor to match. Motived
by the question, we first formally define the desiderata the token-level counterpart needs to sat-
isfy and derive the corresponding solution (§8.2). Then, we establish a theoretical connection
between the derived token-level RAML and entropy regularized RL (§8.3). Motivated by this
connection, we present two algorithms for neural sequence prediction, where one is the token-
level extension to RAML, and the other a RAML-inspired improvement to the AC (§8.4). We
empirically evaluate the two presented algorithms, and show different levels of improvement
over the corresponding baseline. We further study the importance of various techniques used in
our experiments, providing practical suggestions to readers (§8.7).

8.2 Token-level Equivalence of RAML
We first introduce the notations used throughout the chapter. Firstly, capital letters will denote
random variables and lower-case letters are the values to take. As we mainly focus on conditional
sequence prediction, we use x for the conditional input, and y for the target sequence. With y
denoting a sequence, yj

i then denotes the subsequence from position i to j inclusively, while yt
denotes the single value at position t. Also, we use |y| to indicate the length of the sequence. To
emphasize the ground-truth data used for training, we add superscript ∗ to the input and target,
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i.e., x∗ and y∗. In addition, we use Y to denote the set of all possible sequences with one and
only one eos symbol at the end, and W to denote the set of all possible symbols in a position.
Finally, we assume length of sequences in Y is bounded by T .

8.2.1 Background: RAML
As discussed in §9.1, given a ground-truth pair (x∗,y∗), RAML defines the target distribution
using the exponentiated pay-off of sequences, i.e.,

PR(y | x∗,y∗) =
exp (R(y;y∗)/τ)!

y′∈Y exp (R(y′;y∗)/τ)
, (8.1)

where R(y;y∗) is the sequence-level reward, such as BLEU score, and τ is the temperature
hyper-parameter controlling the sharpness. With the definition, the RAML algorithm simply
minimizes the cross entropy (CE) between the target distribution and the model distribution
Pθ(Y | x∗), i.e.,

min
θ

CE
"
PR(Y | x∗,y∗)‖Pθ(Y | x∗)

#
. (8.2)

Note that, this is quite similar to the MLE training, except that the target distribution is different.
With the particular choice of target distribution, RAML not only makes sure the ground-truth
reference remains the mode, but also allows the model to explore sequences that are not exactly
the same as the reference but have relatively high rewards.

Compared to algorithms trying to directly optimize task metric, RAML avoids the difficulty
of tracking and sampling from the model distribution that is consistently changing. Hence,
RAML enjoys a much more stable optimization without the need of pretraining. However, in
order to optimize the RAML objective (Eqn. (8.2)), one needs to sample from the exponentiated
pay-off distribution, which is quite challenging in practice. Thus, importance sampling is often
used [156, 183].

8.2.2 Token-level Target Distribution
Despite the appealing properties, RAML only operates on the sequence-level reward. As a result,
the reward gap between any two sequences cannot be attributed to the responsible decisions
precisely, which often leads to a low sample efficiency. Ideally, since we rely on the auto-
regressive factorization Pθ(y | x∗) =

(|y|
t=1 Pθ(yt | yt−1

1 ,x∗), the optimization would be much
more efficient if we have the target distribution for each token-level factor Pθ(Yt | yt−1

1 ,x∗) to
match. Conceptually, this is exactly how the AC algorithm improves upon the vanilla sequence-
level REINFORCE algorithm [204].

With this idea in mind, we set out to find such a token-level target. Firstly, we assume
the token-level target shares the form of a Boltzmann distribution but parameterized by some
unknown negative energy function QR, i.e.,2

PQR
(yt | yt−1

1 ,y∗) =
exp

"
QR(yt−1

1 , yt;y
∗)/τ

#
!

w∈W exp
"
QR(yt−1

1 , w;y∗)/τ
# . (8.3)

2To avoid clutter, the conditioning on x∗ will be omitted in the sequel, assuming it’s clear from the context.
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Intuitively, QR(y
t−1
1 , w;y∗) measures how much future pay-off one can expect if w is generated,

given the current status yt−1
1 and the reference y∗. This quantity highly resembles the action-

value function (Q-function) in reinforcement learning. As we will show later, it is indeed the
case.

Before we state the desiderata for QR, we need to extend the definition of R in order to
evaluate the goodness of an unfinished partial prediction, i.e., sequences without an eos suffix.
Let Y− be the set of unfinished sequences, following Bahdanau et al. [10], we define the pay-off
function R for a partial sequence ŷ ∈ Y−, |ŷ| < T as

R(ŷ;y∗) = R(ŷ + eos;y∗), (8.4)

where the + indicates string concatenation.
With the extension, we are ready to state two requirements for QR:

1. Marginal match: For PQR
to be the token-level equivalence of PR, the sequence-level marginal

distribution induced by PQR
must match PR, i.e., for any y ∈ Y ,

|y|$

t=1

PQR
(yt | yt−1

1 ) = PR(y). (8.5)

Note that there are infinitely many QR’s satisfying Eqn. (8.5), because adding any constant
value to QR does not change the Boltzmann distribution, known as shift-invariance w.r.t. the
energy.

2. Terminal condition: Secondly, let’s consider the value of QR when emitting an eos symbol
to immediately terminate the generation. As mentioned earlier, QR measures the expected
future pay-off. Since the emission of eos ends the generation, the future pay-off can only
come from the immediate increase of the pay-off. Thus, we require QR to be the incremental
pay-off when producing eos, i.e.

QR(ŷ,eos;y∗) = R(ŷ + eos;y∗)−R(ŷ;y∗), (8.6)

for any ŷ ∈ Y−. Since Eqn. (8.6) enforces the absolute of QR at a point, it also solves the
ambiguity caused by the shift-invariance property.

Based on the two requirements, we can derive the form QR, which is summarized by Proposition
1.
Proposition 1. PQR

and QR satisfy requirements (8.5) and (8.6) if and only if for any ground-
truth pair (x∗,y∗) and any sequence prediction y ∈ Y ,

QR(y
t−1
1 , yt;y

∗) =

%
R(yt

1;y
∗)−R(yt−1

1 ;y∗) + τ log
!

w∈W exp (QR(y
t
1, w;y

∗)/τ) , t < |y|
R(yt

1;y
∗)−R(yt−1

1 ;y∗), t = |y|
(8.7)

Proof. To avoid clutter, we drop the dependency on x∗ and y∗. The following proof holds for
each possible pair of (x∗,y∗).

Firstly, it is easy to see that the terminal condition in Eqn. (??) exactly corresponds to the
t = |y| case of Eqn. (8.7), since yt = eos for y ∈ Y . So, we will focus on the non-terminal case
next.
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Sufficiency For convenience, define VR(y
t
1) = τ log

!
w∈W exp (QR(y

t
1, w)/τ). Suppose Eqn.

(8.7) is true. Then for any y ∈ Y ,

PQR
(y) =

|y|'

t=1

PQR
(yt | yt−1

1 )

= exp

)!|y|
t=1 QR(y

t−1
1 , yt)− VR(y

t−1
1 )

τ

*

= exp

)!|y|
t=1

#
R(yt

1)−R(yt−1
1 )

$
+
!|y|−1

t=1 VR(y
t
1)−

!|y|
t=1 VR(y

t−1
1 )

τ

*

= exp

+
R(y)− VR(∅)

τ

,

where VR(∅) denotes VR(y
t
1) when t = 0 and yt

1 is an empty set. Since PQR
(y) is a valid

distribution by construction, we have

VR(∅) =
"

y∈Y

exp

+
R(y)

τ

,

Hence,

PQR
(y) =

R(y)/τ!
y′∈Y R(y′)/τ

= PR(y),

which satisfies the marginal match requirement.

Necessity Now, we show that the specific formulation of QR (Eqn. (8.7)) is also a necessary
condition of the marginal match condition (Eqn. (8.5)).

The token-level target distribution can be simplified as

PQR
(yt | yt−1

1 ) =
exp

-
QR(y

t−1
1 , yt)/τ

.
!

w∈W exp
-
QR(y

t−1
1 , w)/τ

. = exp

+
QR(y

t−1
1 , yt)− VR(y

t−1
1 )

τ

,
.

Suppose Eqn. (8.5) is true. For any y ∈ Y− and t ≤ |y| and define y′ = yt
1 + eos and

y′′ = yt−1
1 + eos. Obviously, it follows y′,y′′ ∈ Y . Also, by definition,

PR(y
′) = PR(eos | yt

1)× PR(yt | yt−1
1 )× PR(y

t−1
1 )

PR(y
′′) = PR(eos | yt−1

1 )× PR(y
t−1
1 )

Then, consider the ratio

PR(y
′)

PR(y′′)
=

PR(eos | yt
1)× PR(yt | yt−1

1 )×❳❳❳❳❳PR(y
t−1
1 )

PR(eos | yt−1
1 )×❳❳❳❳❳PR(y

t−1
1 )

exp

+
R(y′)−R(y′′)

τ

,
= exp

+
QR(y

t
1, eos)− VR(y

t
1)

τ

,
× exp

+
QR(y

t−1
1 , yt)−

❳❳❳❳❳VR(y
t−1
1 )

τ

,

/
exp

+
QR(y

t−1
1 , eos)−❳❳❳❳❳VR(y

t−1
1 )

τ

,

R(y′)−R(y′′) = QR(y
t
1, eos)−QR(y

t−1
1 , eos)− VR(y

t
1) +QR(y

t−1
1 , yt).
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Now, by the terminal condition (Eqn. (8.6)), we essentially have

QR(y
t
1, eos) = R(yt

1 + eos)−R(yt
1) = 0

QR(y
t−1
1 , eos) = R(yt−1

1 + eos)−R(yt−1
1 ) = 0

Thus, it follows

R(y′)−R(y′′) = QR(y
t−1
1 , yt)− VR(y

t
1)

⇐⇒ QR(y
t−1
1 , yt) = R(yt

1)−R(yt−1
1 ) + τ log

"

w∈W

exp
-
QR(y

t
1, w)/τ

.
,

which completes the proof.

Note that, instead of giving an explicit form for the token-level target distribution, Proposition
1 only provides an equivalent condition in the form of an implicit recursion. Thus, we haven’t
obtained a practical algorithm yet. However, as we will discuss next, the recursion has a deep
connection to entropy regularized RL, which ultimately inspires our presented algorithms.

8.3 Connection to Entropy-regularized RL
Before we dive into the connection, we first give a brief review of the entropy-regularized RL.
For an in-depth treatment, we refer readers to [223, 319].

8.3.1 Background: Entropy-regularized RL
Following the standard convention of RL, we denote a Markov decision process (MDP) by a tuple
M = (S,A, ps, r, γ), where S,A, ps, r, γ are the state space, action space, transition probability,
reward function and discounting factor respectively.3

Based on the notation, the goal of entropy-regularized RL augments is to learn a policy
π(at | st) which maximizes the discounted expected future return and causal entropy [319], i.e.,

max
π

%

t

E
st∼ρs,at∼π(·|st)

γt−1[r(st, at) + αH(π(· | st))],

where H denotes the entropy and α is a hyper-parameter controlling the relative importance
between the reward and the entropy. Intuitively, compared to standard RL, the extra entropy
term encourages exploration and promotes multi-modal behaviors. Such properties are highly
favorable in a complex environment.

Given an entropy-regularized MDP, for any fixed policy π, the state-value function V π(s)
and the action-value function Qπ can be defined as

V π(s) = E
a∼π(·|s)

[Qπ(s, a)] + αH(π(· | s)),

Qπ(s, a) = r(s, a) + E
s′∼ρs

[γV π(s′)].
(8.8)

3In sequence prediction, we are only interested in the periodic (finite horizon) case.
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With the definitions above, it can further be proved [223, 319] that the optimal state-value
function V ∗, the action-value function Q∗ and the corresponding optimal policy π∗ satisfy the
following equations

V ∗(s) = α log
%

a∈A
exp

"
Q∗(s, a)/α

#
, (8.9)

Q∗(s, a) = r(s, a) + γ E
s′∼ρs

[V ∗(s′)], (8.10)

π∗(a | s) = exp (Q∗(s, a)/α)!
a′∈A exp (Q∗(s, a′)/α)

. (8.11)

Here, Eqn. (8.9) and (8.10) are essentially the entropy-regularized counterparts of the optimal
Bellman equations in standard RL. Following previous literature, we will refer to Eqn. (8.9) and
(8.10) as the optimal soft Bellman equations, and the V ∗ and Q∗ as optimal soft value functions.

8.3.2 An RL Equivalence of the Token-level RAML

To reveal the connection, it is convenient to define the incremental pay-off

r(yt−1
1 , yt;y

∗) = R(yt
1;y

∗)−R(yt−1
1 ;y∗), (8.12)

and the last term of Eqn. (??) as

VR(yt
1;y

∗) = τ log
%

w∈W
exp

&
QR(yt

1, w;y∗)/τ
'

(8.13)

Substituting the two definitions into Eqn. (??), the recursion simplifies as

QR(yt−1
1 , yt;y

∗) = r(yt−1
1 , yt;y

∗) + VR(yt
1;y

∗). (8.14)

Now, it is easy to see that the Eqn. (8.13) and (8.14), which are derived from the token-
level RAML, highly resemble the optimal soft Bellman equations (8.9) and (8.10) in entropy-
regularized RL. The following Corollary formalizes the connection.
Corollary 1. For any ground-truth pair (x∗,y∗), the recursion specified by Eqn. (8.12), (8.13)
and (8.14) is equivalent to the optimal soft Bellman equation of a “deterministic” MDP in
entropy-regularized reinforcement learning, denoted as MR, where

• the state space S corresponds to Y−,
• the action space A corresponds to W ,
• the transition probability ρs is a deterministic process defined by string concatenation
• the reward function r corresponds to the incremental pay-off defined in Eqn. (8.12),
• the discounting factor γ = 1,
• the entropy hyper-parameter α = τ ,
• and a period terminates either when eos is emitted or when its length reaches T and we

enforce the generation of eos.
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Moreover, the optimal soft value functions V ∗ and Q∗ of the MDP exactly match the VR and QR

defined by Eqn. (8.13) and (8.14) respectively. The optimal policy π∗ is hence equivalent to the
token-level target distribution PQR

.

Proof. Similarly, we drop the dependency on x∗ and y∗ to avoid clutter. We first prove the
equivalence of Q∗(yt−1

1 , yt) with QR(y
t−1
1 , yt) by induction.

• Base case: When t = T , for any y ∈ Y , yT can only be eos. So, by definition, we have

V ∗(yT−1
1 ) = Q∗(yT−1

1 , eos)

⇐⇒ τ log
"

a∈W

exp
-
Q∗(yT−1

1 , a)/τ
.
= Q∗(yT−1

1 , eos)

=⇒ Q∗(yT−1
1 , a) = −∞, ∀a ∕= eos.

Hence,

Q∗(yT−1
1 , yT ) =

%
r(yT−1

1 , eos), if yT = eos

−∞, otherwise

For the first case, it directly follows

Q∗(yT−1
1 , eos) = r(yT−1

1 , eos) = R(yT−1
1 + eos)−R(yT−1

1 ) = QR(y
T−1
1 , eos).

For the second case, since only eos is allowed to be generated, the target distribution PQR

should be a single-point distribution at eos. This is equivalent to define

QR(y
T−1
1 , a) = −∞, ∀a ∕= eos,

which proves the second case. Combining the two cases, it concludes

Q∗(yT−1
1 , a) = QR(y

T−1
1 , a), ∀y ∈ Y , a ∈ W .

• Induction step: When 0 < t < T , assume the equivalence holds when k > t, i.e.,

Q∗(yk−1
1 , w) = QR(y

k−1
1 , w), ∀k > t, w ∈ W .

Then,

Q∗(yt−1
1 , yt) = r(yt−1

1 , yt) + γ E
s′∼ρs

[α log
"

a∈A

exp (Q∗(s′, a)/α)]

= r(yt−1
1 , yt) + τ log

"

a∈W

exp
-
Q∗(yt

1, a)/τ
.

(α = τ,A = W)

= r(yt−1
1 , yt) + τ log

"

a∈W

exp
-
QR(y

t
1, a)/τ

.
(Q∗(yk

1, a) = QR(y
k
1, a) for k ≥ t)

= QR(y
t−1
1 , yt).
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Thus, Q∗(yt−1
1 , yt) = QR(y

t−1
1 , yt) holds for t ∈ [1, T ].

With the equivalence between QR and Q∗, we can easily prove V ∗ = VR and π∗ = PQR
,

V ∗(yt−1
1 ) = α log

"

a∈A

exp
-
Q∗(yt−1

1 , a)/α
.

= τ log
"

a∈W

exp
-
Q∗(yt−1

1 , a)/τ
.

(α = τ,A = W)

= VR(y
t−1
1 )

π∗(yt | yt−1
1 ) =

exp
-
Q∗(yt−1

1 , yt)/τ
.

!
w∈W exp

-
Q∗(yt−1

1 , yt)/τ
.

=
exp

-
QR(y

t−1
1 , yt)/τ

.
!

w∈W exp
-
QR(y

t−1
1 , yt)/τ

.

= PQR
(yt | yt−1

1 )

The connection established by Corollary 1 is quite inspiring:

• Firstly, it provides a rigorous and generalized view of the connection between RAML and
entropy-regularized RL. In the original work, Norouzi et al. [183] point out RAML can be
seen as reversing the direction of KL (Pθ‖PR), which is a sequence-level view of the connec-
tion. Now, with the equivalence between the token-level target PQR

and the optimal Q∗, it
generalizes to matching the future action values consisting of both the reward and the entropy.

• Secondly, due to the equivalence, if we solve the optimal soft Q-function of the corresponding
MDP, we directly obtain the token-level target distribution. This hints at a practical algorithm
with token-level credit assignment.

• Moreover, since RAML is able to improve upon MLE by injecting entropy, the entropy-
regularized RL counterpart of the standard AC algorithm should also lead to an improvement
in a similar manner.

8.4 Proposed Algorithms
In this section, we explore the insights gained from Corollary 1 and present two new algorithms
for sequence prediction.

8.4.1 Value Augmented Maximum Likelihood
The first algorithm we consider is the token-level extension of RAML, which we have been
discussing since §8.2. As mentioned at the end of §8.2.2, Proposition 1 only gives an implicit
form of QR, and so is the token-level target distribution PQR

(Eqn. (8.3)). However, thanks to
Corollary 1, we now know that QR is the same as the optimal soft action-value function Q∗ of
the entropy-regularized MDP MR. Hence, by finding the Q∗, we will have access to PQR

.
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At the first sight, it seems recovering Q∗ is as difficult as solving the original sequence predic-
tion problem, because solving Q∗ from the MDP is essentially the same as learning the optimal
policy for sequence prediction. However, it is not true because QR (i.e., PQR

) can condition on
the correct reference y∗. In contrast, the model distribution Pθ can only depend on x∗. Therefore,
the function approximator trained to recover Q∗ can take y∗ as input, making the estimation task
much easier. Intuitively, when recovering Q∗, we are trying to train an ideal “oracle”, which
has access to the ground-truth reference output, to decide the best behavior (policy) given any
arbitrary (good or not) state.

Thus, following the reasoning above, we first train a parametric function approximator Qφ to
search the optimal soft action value. In this work, for simplicity, we employ the Soft Q-learning
algorithm [223] to perform the policy optimization. In a nutshell, Soft Q-Learning is the entropy-
regularized version of Q-Learning, an off-policy algorithm which minimizes the mean squared
soft Bellman residual according to Eqn. (8.10). Specifically, given ground-truth pair (x∗,y∗),
for any trajectory y ∈ Y , the training objective is

min
φ

|y|%

t=1

(
Qφ(y

t−1
1 , yt;y

∗)− Q̂φ(y
t−1
1 , yt;y

∗)
)2

, (8.15)

where Q̂φ(y
t−1
1 , yt;y

∗) = r(yt−1
1 , yt;y

∗) + Vφ(y
t
1;y

∗) is the one-step look-ahead target Q-value, and
Vφ(y

t
1;y

∗) = τ log
!

w∈W exp
"
Qφ(y

t
1, w;y∗)/τ

#
as defined in Eqn. (8.9). In the recent instantiation of

Q-Learning [172], to stabilize training, the target Q-value is often estimated by a separate slowly
updated target network. In our case, as we have access to a significant amount of reference se-
quences, we find the target network not necessary. Thus, we directly optimize Eqn. (8.15) using
gradient descent, and let the gradient flow through both Qφ(y

t−1
1 , yt;y

∗) and Vφ(y
t
1;y

∗) [11].

After the training of Qφ converges, we fix the parameters of Qφ, and optimize the cross
entropy CE

-
PQφ

‖Pθ

.
w.r.t. the model parameters θ, which is equivalent to

min
θ

E
y∼PQφ

!

"
|y|#

t=1

CE
$
PQφ(Yt | yt−1

1 )‖Pθ(Yt | yt−1
1 )

%
&

' . (8.16)

Here, we derive the equivalence between the VAML’s objective (Eqn. (8.16)) and the RAML’s
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objective (Eqn. (8.2)).

CE
-
PQφ

‖Pθ

.

=− E
y∼PQφ

logPθ(y)

=− E
y∼PQφ

|y|"

t=1

logPθ(yt | yt−1
1 )

=−
T"

t=1

E
yt
1∼PQφ

(Y t
1 )
logPθ(yt | yt−1

1 ) (T is longest possible length)

=
T"

t=1

E
yt−1
1 ∼PQφ

(Yt−1
1 )

0
− E

yt∼PQφ
(Yt|yt−1

1 )
logPθ(yt | yt−1

1 )

1

=
T"

t=1

E
yt−1
1 ∼PQφ

(Yt−1
1 )

CE
-
PQφ

(Yt | yt−1
1 )‖Pθ(Yt | yt−1

1 )
.

=
T"

t=1

E
yt−1
1 ∼PQφ

(Yt−1
1 )

"

yt∈W

PQφ
(yt | yt−1

1 ) CE
-
PQφ

(Yt | yt−1
1 )‖Pθ(Yt | yt−1

1 )
.

2 34 5
const. w.r.t. yt

=
T"

t=1

E
yt−1
1 ∼PQφ

(Yt−1
1 )

E
yt∈PQφ

(W |yt−1
1 )

2 34 5
Eyt1∼PQφ

(Yt
1)

#
CE

-
PQφ

(Yt | yt−1
1 )‖Pθ(Yt | yt−1

1 )
.$

=
T"

t=1

E
yt
1∼PQφ

(Yt
1)

#
CE

-
PQφ

(Yt | yt−1
1 )‖Pθ(Yt | yt−1

1 )
.$

= E
y∼PQφ

(Y)

|y|"

t=1

CE
-
PQφ

(Yt | yt−1
1 )‖Pθ(Yt | yt−1

1 )
.

Compared to the of objective of RAML in Eqn. (8.2), having access to PQφ
(Yt | yt−1

1 ) allows
us to provide a distinct token-level target for each conditional factor Pθ(Yt | yt−1

1 ) of the model.
While directly sampling from PR is practically infeasible (§8.2.1), having a parametric target
distribution PQφ

makes it theoretically possible to sample from PQφ
and perform the optimiza-

tion. However, empirically, we find the samples from PQφ
are not diverse enough (§8.7). Hence,

we fall back to the same importance sampling approach (see Appendix 8.6.2) as used in RAML.
Finally, since the algorithm utilizes the optimal soft action-value function to construct the

token-level target, we will refer to it as value augmented maximum likelihood (VAML) in the
sequel.

8.4.2 Entropy-regularized Actor Critic
The second algorithm follows the discussion at the end of §8.3.2, which is essentially an actor-
critic algorithm based on the entropy-regularized MDP in Corollary 1. For this reason, we name
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the algorithm entropy-regularized actor critic (ERAC). As with standard AC algorithm, the train-
ing process interleaves the evaluation of current policy using the parametric critic Qφ and the
optimization of the actor policy πθ given the current critic.

Critic Training. The critic is trained to perform policy evaluation using the temporal differ-
ence learning (TD), which minimizes the TD error

min
φ

E
y∼πθ

|y|%

t=1

(
Qφ(y

t−1
1 , yt;y

∗)− Q̂φ̄(y
t−1
1 , yt;y

∗)
)2

(8.17)

where the TD target Q̂φ̄ is constructed based on fixed policy iteration in Eqn. (8.8), i.e.,

Q̂φ̄(y
t−1
1 , yt;y

∗) = r(yt−1
1 , yt) + τ H(πθ(· | yt

1))

+
%

w∈W
πθ(w | yt

1)Qφ̄(y
t
1, w;y∗). (8.18)

It is worthwhile to emphasize that the objective (8.17) trains the critic Qφ to evaluate the cur-
rent policy. Hence, it is entirely different from the objective (8.15), which is performing policy
optimization by Soft Q-Learning. Also, the trajectories y used in (8.17) are sequences drawn
from the actor policy πθ, while objective (8.15) theoretically accepts any trajectory since Soft
Q-Learning can be fully off-policy.4 Finally, following Bahdanau et al. [10], the TD target Q̂φ̄

in Eqn. (8.8) is evaluated using a target network, which is indicated by the bar sign above the
parameters, i.e., φ̄. The target network is slowly updated by linearly interpolating with the up-to-
date network, i.e., the update is φ̄ ← βφ+ (1− β)φ̄ for β in (0, 1) [145].

We also adapt another technique proposed by Bahdanau et al. [10], which smooths the critic
by minimizing the “variance” of Q-values, i.e.,

min
φ

λvar E
y∼πθ

|y|#

t=1

#

w∈W

(
Qφ(y

t
1, w;y∗)− Q̄φ(y

t
1;y

∗)
)2

where Q̄φ(y
t
1;y

∗) = 1
|W|

!
w′∈W Qφ(y

t
1, w

′;y∗) is the mean Q-value, and λvar is a hyper-parameter
controlling the relative weight between the TD loss and the smooth loss.

Actor Training. Given the critic Qφ, the actor gradient (to maximize the expected return) is
given by the policy gradient theorem of the entropy-regularized RL [223], which has the form

E
y∼πθ

|y|#

t=1

#

w∈W

∇θπθ(w | yt−1
1 )Qφ(y

t−1
1 , w;y∗)

+ τ∇θH(πθ(· | yt−1
1 )). (8.19)

Here, for each step t, we follow Bahdanau et al. [10] to sum over the entire symbol set W ,
instead of using the single sample estimation often seen in RL. Hence, no baseline is employed.
It is worth mentioning that Eqn. (8.19) is not simply adding an entropy term to the standard

4Different from Bahdanau et al. [10], we don’t use a delayed actor network to collect trajectories for critic
training.
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policy gradient as in A3C [173]. The difference lies in that the critic Qφ trained by Eqn. (8.17)
additionally captures the entropy from future steps, while the ∇θH term only captures the entropy
of the current step.

Finally, similar to [10], we find it necessary to first pretrain the actor using MLE and then
pretrain the critic before the actor-critic training. Also, to prevent divergence during actor-critic
training, it is helpful to continue performing MLE training along with Eqn. (8.19), though using
a smaller weight λmle.

8.5 Related Work
Language Generation The sequence-to-sequence model (seq2seq) [9, 245] has results in suc-
cesses of many conditional sequence prediction problems, including machine translation [9, 245],
automatic summarization [215], image captioning [121, 267, 280] and speech recognition [32].

Task Loss Optimization and Exposure Bias Apart from the previously introduced RAML,
BSO, Actor-Critic (§9.1), MIXER [204] also utilizes chunk-level signals where the length of
chunk grows as training proceeds. In contrast, minimum risk training [229] directly optimizes
sentence-level BLEU. As a result, it requires a large number (100) of samples per data to work
well. To solve the exposure bias, scheduled sampling [14] adopts a curriculum learning strat-
egy to bridge the training and the inference. Professor forcing [136] introduces an adversarial
training mechanism to encourage the dynamics of the model to be the same at training time
and inference time. For image caption, self-critic sequence training (SCST) [208] extends the
MIXER algorithm with an improved baseline based on the current model performance.

Entropy-regularized RL Entropy regularization been explored by early work in RL and in-
verse RL [275, 320]. Lately, Schulman et al. [223] establish the equivalence between policy
gradients and Soft Q-Learning under entropy-regularized RL. Motivated by the multi-modal be-
havior induced by entropy-regularized RL, Haarnoja et al. [82] apply energy-based policy and
Soft Q-Learning to continuous domain. Later, Nachum et al. [174] proposes path consistency
learning, which can be seen as a multi-step extension to Soft Q-Learning. More recently, in the
domain of simulated control, Haarnoja et al. [83] also consider the actor critic algorithm under
the framework of entropy regularized reinforcement learning. Despite the conceptual similarity
to ERAC presented here, Haarnoja et al. [83] focuses on continuous control and employs the
advantage actor critic variant as in [173], while ERAC follows the Q actor critic as in [10].

8.6 Implementation

8.6.1 RAML
In RAML, we want to optimize the cross entropy CE (PR(Y | x∗,y∗)‖Pθ(Y | x∗)). As dis-
cussed in §8.2.1, directly sampling from the exponentiated pay-off distribution PR(Y | x∗) is
impractical. Hence, normalized importance sampling has been exploited in previous work [156,
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183]. Define the proposal distribution to be PS(Y | x∗,y∗). Then, the objective can be rewritten
as

CE (PR(Y | x∗,y∗)‖Pθ(Y | x∗)) = − E
y∼PS(Y|x∗,y∗)

PR(y | x∗,y∗)

PS(y | x∗,y∗)
logPθ(y | x∗)

= − E
y∼PS(Y|x∗,y∗)

exp(R(y,y∗)/τ)

P̃S(y|x∗,y∗)

Ey′∼PS(Y|x∗,y∗)
exp(R(y′,y∗)/τ)

P̃S(y′|x∗,y∗)

logPθ(y | x∗)

= − E
y∼PS(Y|x∗,y∗)

w(y,y∗)

Ey′∼PS(Y|x∗,y∗) w(y′,y∗)
logPθ(y | x∗)

≈ −
M"

i=1

w(y(i),y∗)
!M

i=1 w(y
(i),y∗)

logPθ(y
(i) | x∗),

where w(y,y∗) = exp(R(y,y∗)/τ)

P̃S(y|x∗,y∗)
is the unnormalized importance weight, P̃S denotes the unnor-

malized probability of PS = P̃S

Z
, M is the number of samples used, and y(i) is the i-th sample

drawn from the proposal distribution PS(Y | x∗,y∗).
With importance sampling, the problem turns to what proposal distribution we should use.

In the original work [183], the proposal distribution is defined by the hamming distance as used.
Ma et al. [156] find that it suffices to perform N -gram replacement of the reference sentence.
Specifically, PS(Y | x∗,y∗) can be a uniform distribution defined on set Yngram where Yngram is
obtained by randomly replacing an n-gram of y∗ (n ≤ 4).

In this work, we adapt the simple n-gram replacement distribution, denoted as Pngram(Y |
x∗,y∗), which simplifies the RAML objective into

min
θ

−
M"

i=1

exp
-
R(y(i),y∗)/τ

.
!M

i=1 exp (R(y(i),y∗)/τ)
logPθ(y

(i) | x∗)

Following Ma et al. [156], we make sure the reference sequence is always among the M samples
used.

8.6.2 VAML
As discussed in §8.4, the VAML training consists of two phases:
• In the first phase, Soft Q-Learning is used to train Qφ based on Eqn. (8.15). Since Soft

Q-Learning accepts off-policy trajectories, in this work, we use two types of off-policy se-
quences:

1. The first type is simply the ground-truth sequence, which provides strong learning sig-
nals.

2. The second type of sequences is actually drawn from the same n-gram replacement dis-
tribution discussed above. The reason is that in the second training phase, such n-gram
replaced trajectories will be used. Since the learned Qφ won’t be perfect, we hope the
exposing Qφ with these trajectories can improve its accuracy on them, making the second
phase of training easier.
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Algorithm 2 summarizes the first phase.

Algorithm 2 VAML Phase 1: Soft Q-Learning to approximate Q∗

Require: A Q-function approximator Qφ with parameter φ, and the hyper-parameters τ , M .
1: while Not Converged do
2: Receive a random example (x∗,y∗).
3: Sample M − 1 sequences {y(i)}M−1

i=1 from Pngram(Y | x∗,y∗) and let y(M) = y∗.
4: Compute all the rewards r(yt−1

1 , yt;y
∗) for each y ∈ {y(i)}Mi=1 and t = 1, . . . , |y|.

5: Compute the target Q-values for each y ∈ {y(i)}Mi=1 and t = 1, . . . , |y|

Q̂φ(y
t−1
1 , yt;y

∗) = r(yt−1
1 , yt;y

∗) + τ log
"

w∈W

exp
-
Qφ(y

t
1, w;y

∗)/τ
.
.

6: Compute the Soft-Q Learning loss

LSoftQ =
1

M

M"

i=1

|y(i)|"

t=1

666Qφ(y
(i)t−1

1 , y
(i)
t ;y∗)− Q̂φ(y

(i)t−1

1 , y
(i)
t ;y∗)

666
2

2
.

7: Update Qφ according to the loss LSoftQ.
8: end while

• Once the Qφ is well trained in the first phase, the second phase is to minimize the cross entropy
CE

-
PQφ

(Y | x∗,y∗)‖Pθ(Y | x∗)
.

based on Eqn. (8.16), i.e.,

min
θ

E
y∼PQφ

7

8
|y|"

t=1

CE
-
PQφ

(Yt | yt−1
1 )‖Pθ(Yt | yt−1

1 )
.
9

: .

Ideally, we would like to directly sample from PQφ
, and perform the optimization. However,

we find samples from PQφ
are quite similar to each other. We conjecture this results from both

the imperfect training in the first phase, and the intrinsic difficulty of getting diverse samples
from an exponentially large space when the distribution is high concentrated.
Nevertheless, for this work, we fall back to the same importance sampling method as used
in RAML and use the n-gram replacement distribution as the proposal. Hence, the objective
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becomes

E
y∼PQφ

7

8
|y|"

t=1

CE
-
PQφ

(Yt | yt−1
1 )‖Pθ(Yt | yt−1

1 )
.
9

:

= E
y∼Pngram

7

8 w(y,y∗)

Ey′∼Pngram(Y|x∗,y∗) w(y′,y∗)

|y|"

t=1

CE
-
PQφ

(Yt | yt−1
1 )‖Pθ(Yt | yt−1

1 )
.
9

:

≈
M"

i=1

exp
-
R(y(i),y∗)/τ

.
!M

i=1 exp (R(y(i),y∗)/τ)

7

8
|y(i)|"

t=1

CE
;
PQφ

(Yt | y(i)t−1

1 )‖Pθ(Yt | y(i)t−1

1 )
<
9

: .

However, we found directly using this objective does not yield improved performance com-
pared to RAML, mostly likely due to some erratic estimations of Qφ. Thus, we only use this
objective for some step with certain probability κ ∈ (0, 1), leaving others trained by MLE.
Formally, define

Jκ(y
t
1) = E

z∼Bernoulli(κ)

#
zCE

-
PQφ

(Yt | yt−1
1 )‖Pθ(Yt | yt−1

1 )
.
− (1− z) logPθ(yt | yt−1

1 )
$
,

the VAML objective practically used is

min
θ

M"

i=1

exp
-
R(y(i),y∗)/τ

.
!M

i=1 exp (R(y(i),y∗)/τ)

7

8
|y(i)|"

t=1

Jκ(y
(i)t

1)

9

: .

Algorithm 3 summarizes the second phase.

Algorithm 3 VAML Phase 2: Sequence model training with token-level target
Require: A sequence prediction model Pθ with parameter θ, a pre-trained Q-function approxi-

mator Qφ, and hyper-parameters τ , M , κ
1: while Not Converged do
2: Receive a random example (x∗,y∗).
3: Sample M − 1 sequences {y(i)}M−1

i=1 from Pngram(Y | x∗,y∗) and let y(M) = y∗.
4: Compute the VAML loss using

LVAML =
M"

i=1

exp
-
R(y(i),y∗)/τ

.
!M

i=1 exp (R(y(i),y∗)/τ)

7

8
|y(i)|"

t=1

Jκ(y
(i)t

1)

9

: .

5: Update Pθ according to the loss LVAML.
6: end while
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8.6.3 ERAC
Following Bahdanau et al. [10], we first pre-train the actor, then train the critic with the fixed
actor and finally fine-tune them together. The specific procedure for training ERAC is

• Pre-training the actor using maximum likelihood training
• Pre-training the critic using Algorithm 4 with the actor fixed
• Fine-tuning both the actor and critic with Algorithm 4

8.6.4 Hyper-parameters
RAML & VAML The hyper-parameters for RAML and VAML training are summarized in
Tab. 8.1. We set the gradient clipping value to 5.0 for both the Q-function approximator Qφ and
the sequence prediction model Pθ, except for the sequence prediction model in the captioning
task where the gradient clipping value is set to 1.0.

Machine Translation Image Captioning
Hyper-parameters VAML-1 VAML-2 RAML VAML-1 VAML-2 RAML

optimizer Adam SGD SGD Adam SGD SGD
learning rate 0.001 0.6 0.6 0.001 0.5 0.5
batch size 50 42 42 32 × 5 32 × 5 32 × 5
M 5 5 5 2 6 6
τ 0.4 0.4 0.4 0.7 0.7 0.7
κ N.A. 0.2 N.A. N.A. 0.1 N.A.

Table 8.1: Optimization related hyper-parameters of RAML and VAML for two tasks. “VAML-
1” and “VAML-2” indicate the phase 1 and phase 2 of VAML training respectively. “N.A.”
means not applicable. “32 × 5” indicates using 32 images each with 5 reference captions.

AC & ERAC As described in §8.6.3, the training using AC and ERAC involves three phases.
The hyper-parameters used for ERAC training in each phase are summarized in Table 8.2. In all
phases, the learning rate is halved when there is no improvement on the validation set. We use
the same hyper-parameters for AC training, except that the entropy regularization coefficient τ is
0. Similar to the VAML case, the gradient clipping value is set to 5.0 for both the actor and the
critic, except that we set the gradient clipping value to 1.0 for the actor in the captioning task.

8.7 Experiments

8.7.1 Experiment Settings
In this work, we focus on two sequence prediction tasks: machine translation and image caption-
ing. Due to the space limit, we only present the information necessary to compare the empirical
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Hyper-parameters MT w/ input feeding MT w/o input feeding Image Captioning

Pre-train Actor

optimizer SGD SGD SGD
learning rate 0.6 0.6 0.5
batch size 50 50 32 × 5

Pre-train Critic

optimizer Adam Adam Adam
learning rate 0.001 0.001 0.001
batch size 50 50 32 × 5
τ (entropy regularization) 0.045 0.04 0.01
β (target net speed) 0.001 0.001 0.001
λvar (smoothness) 0.001 0.001 0.001

Joint Training

optimizer Adam Adam Adam
learning rate 0.0001 0.0001 0.0001
batch size 50 50 32 × 5
τ (entropy regularization) 0.045 0.04 0.01
β (target net speed) 0.001 0.001 0.001
λvar (smoothness) 0.001 0.001 0.001
λMLE 0.1 0.1 0.1

Table 8.2: Hyper-parameters for ERAC training

results at this moment.

Machine Translation Following Ranzato et al. [204], we evaluate on IWSLT 2014 German-
to-English dataset [164]. The corpus contains approximately 153K sentence pairs in the training
set. We follow the pre-processing procedure used in [204].

Architecture wise, we employ a seq2seq model with dot-product attention [9, 155], where
the encoder is a bidirectional LSTM [99] with each direction being size 128, and the decoder is
another LSTM of size 256. Moreover, we consider two variants of the decoder, one using the
input feeding technique [155] and the other not.

For all algorithms, the sequence-level BLEU score is employed as the pay-off function R,
while the corpus-level BLEU score [189] is used for the final evaluation. The sequence-level
BLEU score is scaled up by the sentence length so that the scale of the immediate reward at each
step is invariant to the length.

Image Captioning For image captioning, we consider the MSCOCO dataset [147]. We adapt
the same preprocessing procedure and the train/dev/test split used by Karpathy and Fei-Fei [121].

The NIC [267] is employed as the baseline model, where a feature vector of the image is
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MT (w/o input feeding) MT (w/ input feeding) Image Captioning
Algorithm Mean Min Max Mean Min Max Mean Min Max

MLE 27.01 ± 0.20 26.72 27.27 28.06 ± 0.15 27.84 28.22 29.54 ± 0.21 29.27 29.89

RAML 27.74 ± 0.15 27.47 27.93 28.56 ± 0.15 28.35 28.80 29.84 ± 0.21 29.50 30.17
VAML 28.16 ± 0.11 28.00 28.26 28.84 ± 0.10 28.62 28.94 29.93 ± 0.22 29.51 30.24

AC 28.04 ± 0.05 27.97 28.10 29.05 ± 0.06 28.95 29.16 30.90 ± 0.20 30.49 31.16
ERAC 28.30 ± 0.06 28.25 28.42 29.31 ± 0.04 29.26 29.36 31.44 ± 0.22 31.07 31.82

Table 8.3: Test results on two benchmark tasks. Bold faces highlight the best in the corresponding
category.

extracted by a pre-trained CNN and then used to initialize the LSTM decoder. Different from the
original NIC model, we employ a pre-trained 101-layer ResNet [88] rather than a GoogLeNet as
the CNN encoder.

For training, each image-caption pair is treated as an i.i.d. sample, and sequence-level BLEU
score is used as the pay-off. For testing, the standard multi-reference BLEU4 is used.

8.7.2 Comparison with the Direct Baseline

Firstly, we compare ERAC and VAML with their corresponding direct baselines, namely AC [10]
and RAML [183] respectively. As a reference, the performance of MLE is also provided.

Due to non-neglected performance variance observed across different runs, we run each algo-
rithm for 9 times with different random seeds,5 and report the average performance, the standard
deviation and the performance range (min, max).

Machine Translation The results on MT are summarized in the left half of Tab. 8.3. Firstly,
all four advanced algorithms significantly outperform the MLE baseline. More importantly, both
VAML and ERAC improve upon their direct baselines, RAML and AC, by a clear margin on
average. The result suggests the two algorithms both well combine the benefits of a delicate
credit assignment scheme and the entropy regularization, achieving improved performance.

Image Captioning The results on image captioning are shown in the right half of Tab. 8.3.
Despite the similar overall trend, the improvement of VAML over RAML is smaller compared to
that in MT. Meanwhile, the improvement from AC to ERAC becomes larger in comparison. We
suspect this is due to the multi-reference nature of the MSCOCO dataset, where a larger entropy
is preferred. As a result, the explicit entropy regularization in ERAC becomes immediately
fruitful. On the other hand, with multiple references, it can be more difficult to learn a good
oracle Q∗ (Eqn. (8.14)). Hence, the token-level target can be less accurate, resulting in smaller
improvement.

5For AC, ERAC and VAML, 3 different critics are trained first, and each critic is then used to train 3 actors.
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8.7.3 Comparison with Existing Work
To further evaluate the algorithms, we compare ERAC and VAML with the large body of existing
algorithms evaluated on IWSTL 2014. As a note of caution, previous work don’t employ the
exactly same architectures (e.g. number of layers, hidden size, attention type, etc.). Despite that,
for VAML and ERAC, we use an architecture that is most similar to the majority of previous
works, which is the one described in §8.7.1 with input feeding.

Based on the setting, the comparison is summarized in Table 8.4. As we can see, both VAML
and ERAC outperform previous methods, with ERAC leading the comparison with a significant
margin. This further verifies the effectiveness of the two algorithms.

Algorithm BLEU

MIXER [204] 20.73
BSO [276] 27.9
Q(BLEU) [140] 28.3
AC [10] 28.53
RAML [156] 28.77

VAML 28.94
ERAC 29.36

Table 8.4: Comparison with existing algorithms on IWSTL 2014 dataset for MT. All numbers of
previous algorithms are from the original work.

8.7.4 Ablation Study
Due to the overall excellence of ERAC, we study the importance of various components of it,
hopefully offering a practical guide for readers. As the input feeding technique largely slows
down the training, we conduct the ablation based on the model variant without input feeding.

❍❍❍❍❍❍λvar

β
0.001 0.01 0.1 1

0 27.91 26.27† 28.88 27.38†

0.001 29.41 29.26 29.32 27.44

Table 8.5: Average validation BLEU of ERAC. As a reference, the average BLEU is 28.1 for
MLE. λvar = 0 means not using the smoothing technique. β = 1 means not using a target network.
† indicates excluding extreme values due to divergence.

Firstly, we study the importance of two techniques aimed for training stability, namely the
target network and the smoothing technique (§8.4.2). Based on the MT task, we vary the update
speed β of the target critic, and the λvar, which controls the strength of the smoothness regulariza-
tion. The average validation performances of different hyper-parameter values are summarized
in Tab. 8.5.
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• Comparing the two rows of Tab. 8.5, the smoothing technique consistently leads to perfor-
mance improvement across all values of τ . In fact, removing the smoothing objective often
causes the training to diverge, especially when β = 0.01 and 1. But interestingly, we find the
divergence does not happen if we update the target network a little bit faster (β = 0.1) or quite
slowly (β = 0.001).

• In addition, even with the smoothing technique, the target network is still necessary. When the
target network is not used (β = 1), the performance drops below the MLE baseline. However,
as long as a target network is employed to ensure the training stability, the specific choice
of target network update rate does not matter as much. Empirically, it seems using a slower
(β = 0.001) update rate yields the best result.

(a) Machine translation (b) Image captioning

Figure 8.1: ERAC’s average performance over multiple runs on two tasks when varying τ .

Next, we investigate the effect of enforcing different levels of entropy by varying the entropy
hyper-parameter τ . As shown in Fig. 8.1, it seems there is always a sweet spot for the level
of entropy. On the one hand, posing an over strong entropy regularization can easily cause the
actor to diverge. Specifically, the model diverges when τ reaches 0.03 on the image captioning
task or 0.06 on the machine translation task. On the other hand, as we decrease τ from the best
value to 0, the performance monotonically decreases as well. This observation further verifies
the effectiveness of entropy regularization in ERAC, which well matches our theoretical analysis.

Finally, as discussed in §8.4.2, ERAC takes the effect of future entropy into consideration,
and thus is different from simply adding an entropy term to the standard policy gradient as in
A3C [173]. To verify the importance of explicitly modeling the entropy from future steps, we
compared ERAC with the variant that only applies the entropy regularization to the actor but not
to the critic. In other words, the τ is set to 0 when performing policy evaluating according to
Eqn. (8.4.2), while the τ for the entropy gradient in Eqn. (8.19) remains. The comparison result
based on 9 runs on test set of IWSTL 2014 is shown in Table 8.6. As we can see, simply adding
a local entropy gradient does not even improve upon the AC. This further verifies the difference
between ERAC and A3C, and shows the importance of taking future entropy into consideration.
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Algorithm Mean Max

ERAC 28.30 ± 0.06 28.42
ERAC w/o Future Ent. 28.06 ± 0.05 28.11
AC 28.04 ± 0.05 28.10

Table 8.6: Comparing ERAC with the variant without considering future entropy.

8.7.5 Comparison with Previous Work
The detailed comparison with previous work in shown in Table 8.7. Under different comparable
architectures (1 layer or 2 layers), ERAC outperforms previous algorithms with a clear margin.

Algorithm Encoder Decoder BLEU
NN Type Size NN Type Size Attention Input Feed

MIXER [204] 1-layer CNN 256 1-layer LSTM 256 Dot-Prod N 20.73
BSO [276] 1-layer BiLSTM 128 × 2 1-layer LSTM 256 Dot-Prod Y 27.9
Q(BLEU) [140] 1-layer BiLSTM 128 × 2 1-layer LSTM 256 Dot-Prod Y 28.3
AC [10] 1-layer BiGRU 256 × 2 1-layer GRU 256 MLP Y 28.53
RAML [156] 1-layer BiLSTM 256 × 2 1-layer LSTM 256 Dot-Prod Y 28.77

VAML 1-layer BiLSTM 128 × 2 1-layer LSTM 256 Dot-Prod Y 28.94
ERAC 1-layer BiLSTM 128 × 2 1-layer LSTM 256 Dot-Prod Y 29.36

NPMT [106] 2-layer BiGRU 256 × 2 2-layer LSTM 512 N.A. N.A. 29.92
NPMT+LM [106] 2-layer BiGRU 256 × 2 2-layer LSTM 512 N.A. N.A. 30.08

ERAC 2-layer BiLSTM 256 × 2 2-layer LSTM 512 Dot-Prod Y 30.85

Table 8.7: Comparison of algorithms with detailed architecture information on the IWSTL 2014
dataset for MT.

8.8 Discussion
In this work, motivated by the intriguing connection between the token-level RAML and the
entropy-regularized RL, we present two algorithms for neural sequence prediction. Despite the
distinct training procedures, both algorithms combine the idea of fine-grained credit assignment
and the entropy regularization, leading to positive empirical results.

However, many problems remain widely open. In particular, the oracle Q-function Qφ we
obtain is far from perfect. We believe the ground-truth reference contains sufficient information
for such an oracle, and the current bottleneck lies in the RL algorithm. Given the numerous
potential applications of such an oracle, we believe improving its accuracy will be a promising
future direction.

Though the method has strong theoretical and leads to significant performance gains, the
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inductive bias is designed specifically for the language generation task. For a new problem, it
would require significant efforts to find out the desired inductive biases.
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Algorithm 4 ERAC Algorithm

Require: A critic Qφ(y
t−1
1 , yt;y

∗) and an actor πθ(w | yt
1) with weights φ and θ respectively,

and hyper-parameters τ , β, λvar, λmle

1: Initialize delayed target critic Qφ̄ with the same weights: φ̄ = φ.
2: while Not Converged do
3: Receive a random example (x∗,y∗).
4: Generate a sequence y from πθ.
5: Compute the rewards r(yt−1

1 , yt;y
∗) for t = 1, . . . , |y|.

6: Compute targets for the critic

Q̂φ̄(y
t−1
1 , yt;y

∗) = r(yt−1
1 , yt) + τ H(πθ(· | yt

1)) +
"

w∈W

πθ(w | yt
1)Qφ̄(y

t
1, w;y

∗).

7: Compute loss for critic

Lcritic =

|y|"

t=1

=
Qφ(y

t−1
1 , yt;y

∗)− Q̂φ̄(y
t−1
1 , yt;y

∗)
>2

+ λvar

"

w∈W

#
Qφ(y

t−1
1 , w;y∗)− Q̄φ(y

t−1
1 ;y∗)

$2
,

where Q̄φ(y
t−1
1 ;y∗) =

1

|W|
"

w′∈W

Qφ(y
t−1
1 , w′;y∗)

8: Compute loss for actor

Lactor = −

7

8
|y|"

t=1

"

w∈W

πθ(w | yt−1
1 )Qφ(y

t−1
1 , w;y∗) + τH(πθ(· | yt−1

1 )) + λmle

|y∗|"

t=1

log πθ(y
∗
t | y∗t−1

1 )

9

:

9: Update critic according to the loss Lcritic.
10: If actor is not fixed, update actor according to the loss Lactor

11: Update delayed target critic: φ̄ = βφ+ (1− β)φ̄
12: end while
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Chapter 9

Making Use of Knowledge Bases as
External Knowledge for Relation
Extraction

In this chapter, we present a method to incorporate structured knowledge information from
knowledge bases to enable the model to understand entities that are usually not well covered
in raw text. We show that using external knowledge bases is particularly useful for tasks related
to entities and relations and leads to significant performance gains.

9.1 Introduction
Relation Extraction (RE) has long been a core task in natural language processing and infor-
mation extraction, which aims to extract structured knowledge from unstructured text. Figure
9.1 shows a simple case, where the relation between Adolfo NicolÃąs PachÃşn and Roman

Catholic Church can be extracted based on the first sentence. The extracted relation triplets
can further be used in downstream tasks, such as knowledge base population [112] and question
answering [296].

Traditional methods focus on utilizing rich information from lexical and syntactic features
to help relation extraction [282, 295, 310]. More recently, unsupervised representation learn-
ing models such as BERT [57] have been shown to lead to significant improvements [238]. In
essence, representation learning’s effectiveness can be attributed to enabling model to understand
natural language by making use of large amounts of external unstructured text corpora.

Given the success of using large-scale external text corpora, researchers have proposed to
incorporate structured knowledge information to enable the model to understand entities that are
usually not well covered in raw text. Two recent work integrate pretrained knowledge embed-
dings into unsupervised representation learning models. Specifically, Zhang et al. [312] train
a representation learning model with entity mentions linked to their corresponding entities in
knowledge bases to use their knowledge embeddings. Peters et al. [199] propose to finetune
BERT by dynamically retrieving relevant entity embeddings from knowledge bases and updating
contextual word representations via word-to-entity attention. These models implicitly encode ex-
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Figure 9.1: An example adapted from the DocRED development set, where the blue arrow refers
to an intra-sentence, and the red arrow refers to an inter-sentence relation. From the input docu-
ment, we know that Benedict XVI’s occupation is a pope, but it is difficult to directly extract
the relation with the Roman Catholic Church. With the help of high-order relations retrieved
from external KG, we can easily deduce that the religion of the popes should be the church they
serve. Here, the Vatican City serves as a bridge entity and does not appear in the document.

ternal relational knowledge and achieve significant improvements on various downstream tasks.
However, considering the rapid growth of existing knowledge bases, it would take a consider-
able cost to retrain the knowledge base embedding and finetuning the unsupervised representa-
tion learning model after the corresponding knowledge base is updated. In addition, different
downstream tasks usually use different knowledge bases and switching tasks would also require
retraining the knowledge base embedding and finetuning representation learning model.

Motivated by these difficulties, in this paper, we propose a relation extraction model, Knowledge-
Enhanced Relation Extractor (KERE), which incorporates document-specific high-order entity
graphs from the knowledge bases without needing to use pretrained entity embeddings. Instead
of using knowledge embeddings pretrained on the whole knowledge bases, we believe that fo-
cusing on entities relevant to the document / sentence at hand would be sufficient to obtain
background knowledge. Specifically, for each input documents, we recognize a set of seed enti-
ties and link them to the items in a knowledge base. Based on these seed entities, we construct a
multi-hop entity graph containing high-order relational information and then prune it to a reason-
able size. We then encode this entity graph by multi-layer graph convolutional networks to get
knowledge aware entity representations. Lastly, we synthesis external structured representations
and contextual representations for multi-class relation classification. We evaluate our model on
a document-level relation extraction dataset DocRED and two sentence-level relation extraction
datasets TACRED and CoNLL03. Our model leads to an improvement of ranging from 1.9% to
4.5% in F1 on these datasets.

9.2 Related Work

9.2.1 Sentence-level Relation Extraction
Sentence-level relation extraction is a widely studied task in the NLP community. Various
existing methods mainly fall into two classes: dependency-based and sequence-based. For
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dependency-based models, Xu et al. [282] and Miwa and Bansal [169] introduce shortest de-
pendency paths between relation mentions into tree-LSTM to capture dependency information.
Zhang et al. [311] present a path-centric pruning technique to help dependency-based models
maximally remove irrelevant information. Guo et al. [79] improve this by proposing a soft-
pruning approach that automatically learns to select the most relevant sub-structures.

Despite the great success of the dependency-based model, some researchers also explored
the feasibility of performing relation classification directly from input sequences without com-
plicated pre-processing (such as dependency parsing, and pos tagging). Zeng et al. [300] and
dos Santos et al. [59] encode the sentences with convolutional neural network (CNN) and word
embeddings for relation extraction. Zhou et al. [315] and Zhang et al. [308] apply the attention
mechanism over Recurrent Neural Networks (RNN) which enables much better relation extrac-
tion performance. Zheng et al. [313] transform the relation extraction as a sequential tagging
problem (NovelTagging) and extract entities and their relations in an end-to-end style. Recently,
Soares et al. [238] propose to pretrain task-agnostic relation representations from large-scale
distant-supervised sentence pairs by matching the blanks, which significantly improves the per-
formance on intra-sentence RE. They also explore variants of input schema and relation repre-
sentation with deep Transformers network.

9.2.2 Document-level Relation Extraction
Document-level relation extraction was originally studied in the context of precision medicine
and biomedical text analysis. Peng et al. [196] first build a distant-supervised dataset from
biomedical literature for cross-sentence n-ary relation extraction. They employ Graph-LSTMs to
extract drug-gene-mutation interactions within 3-consecutive sentences. Song et al. [240] further
improve the Graph-LSTM framework by taking edge labels as part of the input to the gated net-
work. Verga et al. [265] extend the sentence-level relation extraction into document-level. They
use a Transformer Block to encode the documents and aggregated over mentions to form entity
pair representations, which allows the model to predict relationships between all mention pairs
in one pass. Sahu et al. [218] further replace Transformer with a GCNN model for full-abstract
encoding using non-local dependencies such as entity co-reference.

However, all these work above applied on biomedical or biochemical datasets, making it un-
suitable for developing general-purpose document-level relation extraction framework. In 2019,
Yao et al. [290] build a large-scale human-annotated document-level relation extraction dataset
from Wikipedia and Wikidata, named DocRED, which accelerates the research on inter-sentence
document-level relation extraction.

9.2.3 Incorporation of External Knowledge
With the population of existing knowledge bases, large amounts of structured and relational
knowledge become available, including manually annotated lexical database like WordNet [167]
and editable multilingual knowledge bases like Wikidata[268] and DBPedia[5].

The early work focuses on directly integrate knowledge base embeddings into task-specific
models, and optimize under task supervision. Yang and Mitchell [285] employ an attention
mechanism with a sentinel to adaptively attend to the most relevant background knowledge and
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surpass previous methods on entity extraction and event extraction tasks. Chen et al. [36] in-
corporate lexical semantic relations from WordNet [167] into premise and hypothesis sentences,
and further improves the state-of-the-art of natural language inference.

Recently, some pretrained language models like ERNIE [312] and KnowBERT [199] ex-
plore to enhance language representation with external knowledge. They propose to pretrain
entity-aware language models by retrieving entity embeddings from KB and combine them with
contextual representations. These knowledge enhanced language encoder achieved significant
improvements on various knowledge-driven tasks (such as relationship extraction, and entity
typing).

In this work, instead of using knowledge embedding, we proved that using the document-
specific graph structures from knowledge base can also bring great improvements on relation
extraction tasks.

9.3 Method

Deep Transformer (BERT)

[CLS] La ##rk Force was an Australian Army  ...   World War II ... [SEP]  

...

Multi-label Classification

Graph Construction

...

Mention Pooling

<Lark Force, operator, Australian Army> 
<Lark Force, conflict, World War II>

<Australian Army, conflict, World War II>
...

Predicted Triplets

Input Document

RA-GCN Layers

Entity Graph Learning high-order relations

Layer 1

Layer 2

Q6489555

Q781360 Q43056

Q408
Q362

Q184425

Seed entity

Bridge entity

Figure 9.2: Overview of the KERE architecture illustrated with an example document and its
simplified entity graph. (a) The model is composed of a sequence encoder and L identical RA-
GCN layers. Every RA-GCN layer takes node embeddings and adjacency matrices that represent
entity graph and its transpose. The contextual entity states {ei} are obtained by pooling over
mention representations of BERT encoder. (b) Illustration of learning high-order relations with
RA-GCN layers.

In this section, we first describe the entity graph construction algorithm over grounded knowl-
edge bases, and then we introduce the architecture of our Knowledge-Enhanced Relation Extrac-
tor (KERE) for document-level relation extraction.
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9.3.1 Constructing Entity Graphs for Input Documents

We first introduce the notations in this paper. Given a relational triplet 〈h, r, t〉 while h, t ∈ E
stand for head entity and tail entity respectively, and r ∈ R stands for relation. E is the set of
entities and R is the set of relations.

Algorithm 5 Entity Graph Construction
Input: Set of seed entities ES ; Set of all relation triplets in wikidata KG = {〈h, r, t〉} Output: Constructed graph
G Initialize the bridge entities with empty set EB ← {} For e in ES Extract Ge = {〈h, r, t〉 | h = e} from KG

Et = {t | 〈∗, ∗, t〉 ∈ Ge} G = G ∪Ge, EB = EB ∪ Et For e in EB Extract Ge = {〈h, r, t〉 | h = e} from KG.
For 〈e, r, t〉 in Ge If t ∈ ES ∪ EB G = {〈e, r, t〉} ∪ G For e in EB If outdegree(e) < 1 or indegree(e) ≤ 1

Remove all triplets containing e in G Remove all weak-links in G.

For each input document D, a set of named entities was recognized for supervised relation
extraction. However, limited by their surface form, we cannot obtain more properties of these
entities mentions beyond their context. Knowledge bases (KBs) provide a rich source of high
quality, human-curated knowledge that can be used to ground the entities. We investigate the
utility of knowledge bases, which breaks down the independent interaction assumption in intra-
sentence relation extraction and excavate high-order relations which is missing in sentence-level
relation extraction.

Let ES denotes the set of entities recognized in document D. We first link the entities in ES to
item ids in Wikidata and set them as the seeds. We denote the edge that links two seed entities as
a weak-link. We use Breadth-First Search to extract relevant 2 or 3-hop high-order relations from
a knowledge base. Here we choose the 97 wikidata relation types provided in [290] as the set
of relations R. Notice that there could be hubs with a large number of links that greatly exceeds
the average in the knowledge base. We believe that most of their neighboring entities are useless
for the document-level relation extraction, and even obfuscate the core structure that contains
the most important information. Therefore, we prune the graph by eliminating nodes with few
connections, which significantly reduces the scale of the graphs and improves its quality.

Furthermore, since we aim to extract the relationships between all entity pairs in the docu-
ment, however, some of these relationships may already exist in the knowledge base. To avoid
introducing gold answers to the model input and mask these relations, we eliminate all the edges
between seed entities, i.e. the weak-links. An overview of our approach is given in Algorithm 5.

9.3.2 Relation-aware Graph Convolution Network

Traditional graph convolutional networks (GCN) can be treated as a special case of differentiable
message-passing framework[73]. It aggregates the incoming messages from neighboring nodes
and effectively encodes the local structures in graphs with a homogeneous edge type. The orig-
inal GCN was designed for undirected graphs. To consider both incoming and outgoing entity
features and encode high-order relational structure, we proposed Relation-aware Graph Con-
volution Network (RA-GCN) to better exploit relational directed entity graphs extracted from
knowledge bases.
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Entity Embeddings Initialization

Denote h
(l)
i as the hidden state of entity i in the l-th layer of the RA-GCN. At the first layer, we

encode the initial representations of the entities through a pretrained BERT model, since it can
provide high quality language features and can better align with the entity representations from
input documents. Instead of just using the final output of BERT, we choose to integrate hidden
states from multiple Transformer layers. Recent study [263] has shown that the representations
from lower layers of BERT might be more applicable to certain language understanding tasks
(e.g. named entity recognition, coreference resolution) than others, which means the layer depth
should be chosen individually depending on the task at hand.

To this end, we initialize node embeddings by the weighted sum of multi-layer representa-
tions: h

(0)

i =
!

k λkT
(k)

i , where T
(k)

i is the hidden states of the i-th entity from the k-th layer,
λk are trainable weight parameters. It enables our model to learn the best initial combination by
itself.

Message Passing over Relational Entity Graphs

As described in Sec. 9.3.1, we construct a directed relational graph G for each input docu-
ment. By flipping the direction of each edge, we can obtain the transpose graph G⊤. These
document-specific graphs act as the backbone upon which the graph networks are constructed.
Then the model aggregate the message of neighboring entities from "source to target" and "target
to source" directions on G and G⊤. Here we also add self-connection to each entity, such that
the old representation vector of the entity itself is taken into consideration when updating each
representation:
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,
−→
N (i) and

←−
N (i) denotes the neighbors of entity i in graph G and G⊤, and rij refers to the

embedding of relation between entity i and j, which is initialized by the BERT representation
of its surface form. The normalization constant ci equals to the number of neighbors of entity i.
Notice that here we choose to bind the representations of entity and relation together by element-
wise product rather than concatenation and linear projections, since the latter one is equivalent
to a mean pooling operation over all the projected relation and entity representations.

After information aggregation, the representations from both directions are concatenated and
updated by passing through a linear layer with ReLu activation:

h
(l)

i = ReLU(W
(l)

[
−→
h

(l)

i ;
←−
h

(l)

i ] + b
(l)

) (9.3)

9.3.3 Integrating structured information with textual semantics
The input document is first tokenized into a sequence of word pieces {wi}ni=1, and then encoded
into hidden state sequence {hi} by a pretrained BERT-base model [57]. We encode the entity
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information by integrating the context information of the entire document to generate a context-
aware representation. Inspired by [265], for each entity mention ranging from s-th and t-th word,
we represent it as mk =

1
t−s+1

!t
i=s hi. The model compute the entity representation by pooling

over all word pieces in a mention span ei =
1
K

!
k mk.

Since multi-layer RA-GCN solely encoded the high-order relational information of each en-
tity over existing knowledge base, we try to combine it with the context-aware representations
through a linear layer with activation as equation 9.4. Then each entity pairs (i, j) together with
their relative distance embedding are concatenated to compute the probability for each relation
type.

êi = ReLu(W[ei;h
(l)

i ] + b) (9.4)
p(r|i, j) = sigmoid(Wr[êi; êj; dij] + br) (9.5)

where dij is the distance embedding vector corresponding to the relative distance of the first
mention of the two entities, W, b, Wr and br are trainable parameters.

Following [113] and [290], we formalize the document-level relation extraction as a multi-
label classification task. We maximize the log-likelihood of the correct relation triplets in the
training set D:

L = − 1

N

"

r

"

i ∕=j

[y log p(r|i, j)

− (1− y) log(1− p(r|i, j))]
(9.6)

where y ∈ {0, 1} is a binary label which indicates whether the triplet 〈i, r, j〉 is in the gold set,
and N is the total number of possible triplets of the input documents.

9.4 Experiments
In this section, we present the experimental results of the proposed KERE model. We first
describe implementation details, the datasets, and the baselines to compare. Then we show the
quantitative results for an document-level relation extraction dataset with ablation studies. We
also conduct experiments on two sentence-level relation extraction datasets and compared with
several baseline models. Finally, we demonstrate the improved effect via a case study.

9.4.1 Implementation Detail
In our experiments, we use the cased version of BERT Tokenizer [57] to tokenize all the docu-
ments and entity mentions. All input is encoded into 768-dimensional vectors with a pretrained
BERT base model. We tune the hyper-parameters according to results on the development sets.
We use d = 768 as the feature size in all layers, and set the dropout rate to 0.5, the learning
rate as 3e−5. We choose an Adam optimizer to optimize the KERE model. Our framework is
implemented with PyTorch, and the RA-GCN layers are built with PyG1. For entity graph con-

1pytorch-geometric(PyG): https://pytorch-geometric.readthedocs.io/en/latest/
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Model
Dev Test

Ingore F1 F1 AUC Ingore F1 F1 AUC
CNN† 37.99 43.45 39.41 36.44 42.33 38.98
LSTM† 44.41 50.66 49.48 43.60 50.12 49.31
Bi-LSTM† 45.12 50.95 50.27 44.73 51.06 50.43
Context-Aware† 44.84 51.10 50.20 43.93 50.64 49.70
BERT baseline‡ 51.74 53.66 50.92 51.16 53.18 -
KERE 56.14 57.69 60.83 55.70 57.28 -
KERE + weak-links 56.62 58.27 59.84 55.86 57.43 -

Table 9.1: Performance comparison on the public dev set and private test set of DocRED. We
submit our prediction and evaluated on its official competition site. † are baseline models imple-
mented by [290]. ‡ The BERT baseline is implemented in this paper, by using BERT encoder
followed by a multi-label classification layer.

struction, we use the is constructed from the English Wikidata dump 2 and link the entities with
MediaWiki API.

During training, we also introduced a pretraining technique to alleviate the cold-start prob-
lem. In early experiments, we observed that if we directly optimize all the parameters in KERE
from the very beginning, the model was hard to converge. Therefore, we first freeze the param-
eters in the BERT encoder and update the remaining components in the first 20 epochs, then
unfreeze them and train all parameters together. This pretraining technique shows a 1.5% gain in
the F1-score shown in Table 9.2.

9.4.2 Datasets
We use the DocRED [290] dataset to evaluate the performance on document-level relation ex-
traction. Cases in DocRED requires the model to infer entity relations by synthesizing all infor-
mation scattered among multiple sentences in the document. It provides 5, 053 human-annotated
documents and 101, 873 distant-supervised documents for training. In this work, we only chose
the human-annotated split for model training. Also, the authors proposed a new task to predict
the supporting evidences for relation instances. Since our focus is on relation extraction, we
have not designed modules specifically for this task. We also evaluate our model on TACRED
[309] and CoNLL 2004 [213], which are two human-annotated sentence-level relation extraction
datasets.

9.4.3 Experimental Results and Analysis
Main Results As is shown in Table 9.1, we report our experimental results on DocRED dataset.
Our model, KERE, outperforms all the baseline models and achieved state-of-the-art F1 score.
Specifically, compared with the best model (Context-Aware) reported in [290], our model ob-
tained about 4% improvements in ignore F1 compared with BERT baseline. Also, without the

2We use the 2019-09-10 version dumps of wikidata.
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weakly supervised links in our entity graph, KERE also achieves comparable performance, which
validates the effectiveness of high-ordered external knowledge introduced by RA-GCN. We also
implemented a BERT baseline to exclude the improvements induces by pretrained LM, and the
KERE still outperforms it by 4% in F1. We consider that it is because our model is capable of
incorporate external relevant knowledge and capture high-order relations. We will discuss this
further in the case study section.

Setting F1 Precision Recall
Best Model 57.69 61.84 54.07
- 1 RA-GCN layer 57.37 61.92 53.44
- 2 RA-GCN layer 56.71 65.55 49.97
- 3 RA-GCN layer 53.66 55.07 52.32
- dist embedding 55.95 61.00 51.68
- Pretraining 55.21 58.25 52.47
- BERT encoder 27.52 58.28 18.02
w/ weak-links 58.27 61.67 55.23
w/ GCN layer 56.62 63.15 51.31

Table 9.2: Ablation study of document-level relation extraction in the development set of Do-
cRED. We set the best model with 3 RA-GCN layers as default.

Ablation Study To evaluate the performance of different components in our model, we per-
form ablation study on model components, training procedure, and graph construction.

Table 9.2 illustrates the experiment result of ablation study. With fewer layers of RA-GCN,
the F1 score dropped 3% to 4%, which highlighted the effectiveness of aggregating the infor-
mation from multi-hop neighboring entities. The distance embedding and pretraining technique
(described in 9.4.1) also contribute to a 2 percent performance gain. In addition, by replacing
RA-GCN as vanilla GCN layers caused performance degrade, we thereby validate the impor-
tance of modeling relation types in the entity graph. By removing BERT encoder and use the
entity graphs as the only model input, the performance drastically decreased, which means it
is insufficient to infer relations with graph structure alone. It also indicates the decisive role of
jointly encoding input documents and entity graphs.

The ablation results shows that all the components play an important role in our model.

Effect on Number of Evidence The DocRED dataset provides the supporting evidence for
each relation triplet. i.e., the relevant sentences that are required to infer the relation. We also
conduct experiments to evaluate the model recall over different number of evidences. The num-
ber equals to one means the triplet is an intra-sentence relation, and the number greater to one
indicates an inter-sentence relation. We group the target relation triplets are by the number of
evidence and evaluate the recall score on these subsets. As is shown in Figure 9.3, our model
consistently improves the classification performance on both inter-sentence and intra-sentence
relation triplets. We also noticed the performance degradation when the number of RA-GCN
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Figure 9.3: Recall on the triplets with different number of evidences on DocRED development
set.

layers increase to 4, which is compliant with the graph construction algorithm because the entity
graph we build contains at most 3-hop neighbors.

9.4.4 Results on Sentence-level RE
Since most of the current relation extraction datasets focus on sentence-level relation extraction,
we also test our model on those datasets in this section. Table 9.3 shows the experiment results.

Model TACRED CoNLL04
GCN ([311]) 64.0 -
AGGCN ([79]) 65.1 -
TRE ([2]) 67.4 -
ERNIE ([312]) 68.0 -
MTB ([238]) 71.5 -
BERT baseline 66.8 68.6
KERE (Ours) 68.7 72.6

Table 9.3: Performace on two intra-sentence relation extraction dataset: TACRED [308] and
CoNLL04 [213]. We compare the F1-score on the test sets.

We compared with several published models. GCN [311] and AGGCN [79] are two dependency-
based model encoded by graph networks. TRE [2], ERNIE [312] and MTB [238] are sequence-
based model encode with pretrained LM, where ERNIE and MTB incorporate external knowl-
edge embeddings.

Following the input schema of [238], we modified our model by using special entity tokens
[E1],[/E1],[E2],[/E2] to bound the mention spans of the head and tail entities, then select
the contextual word representations for [E1] and [E2] as entity representations e1 and e2. We
also report the performance of BERT baseline implemented by ourselves for comparison.

The results in Table 9.3 shows that our model achieved comparable performance with the
state-of-the-art models. Compared with the document-level setting, the improvement is not very
significant, because most of these sentence-level relationships can be inferred by pattern match-
ing from plain text and are not highly dependent on high-order relationships.
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Figure 9.4: Case study: the examples are adapted from DocRED development set. Bold triples
are predictable by our method but missed by the BERT baseline. Supportive links were selected
from the document-specific entity graphs, and we believe they can help identify the missing
relationships.

9.4.5 Case Study

In this section, we select three cases from the development set of DocRED to show the benefit of
incorporating high-order external knowledge. These cases correspond to three typical high-order
relational patterns, as illustrated in Figure 9.4.

The first case shows an intra-sentence relation between a rock band named Tear for
Fears and a songwriter Curt Smith. The has_part relation cannot be inferred by the
two supportive links and was ignored by the BERT model. From the knowledge base, we know
the rock band and the songwriter both signed with Mercury Records. So the songwriter
was probably a member of this band. Together with the input document, our methods further
validates this hypothesis and retrieved the relation triplet, <Tear for Fears, has part,
Curt Smith>.

In the second case, it requires commonsense reasoning to infer the relation that Catalonia
is located in or next to the Mediterranean Sea based on the evidence that the Foix river is
in Catalonia, and it flows into the Mediterranean Sea. But for the BERT model, it cannot infer this
relation from the input document alone due to the lack of reasoning capability. Also, We cannot
rashly extract the target triplet from the knowledge base, because the Iberian Peninsula
locates next to the Mediterranean does not mean Catalonia also located next to it. By
integrating structural information from knowledge bases into plain text, our method successfully
identified the target relation.

The last example was the one shown in the introduction. The original descriptions about the
relation between Benedict XVI and Catholic Church is too vague to be identified by
the baseline model. The supportive links tell us that the man is the head of Vatican City, which is
also the “headquarter” of the Catholic Church. Combine with the fact that he is also a Pope. Our
model successfully extracts the relation that the religion of Benedict XVI is the Roman
Catholic Church.
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9.5 Discussion
We present Knowledge-Enhanced Relation Extractor (KERE) for document-level relation ex-
traction. Experimental results show that KERE achieves state-of-the-art results on both inter-
sentence and intra-sentence relation extraction tasks. Unlike previous approaches, KERE dynam-
ically construct document-specific entity graph from knowledge bases and operate bi-directionally
on the entity graph to distill the high-order information into contextual representations.

However, it is not clear that whether such significant improvements can generalize to other
tasks that do not heavily involve the understanding of entities and relations. In addition, to
apply this algorithm, we need to change the underlying architecture to integrate information
from knowledge bases, which introduce some engineering difficulties.
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Chapter 10

Conclusion

10.1 Contribution
In this thesis, we present data-efficient algorithms that uses (1) unlabeled data (2) data from
another domain and (3) external knowledge. Given a new task, whether an algorithm should
be applied depends on the effectiveness, the applicability and the engineering difficulty of the
algorithm. To provide practical suggestions to readers, , and discuss the engineering efforts
required for each algorithm.

Effectiveness We evaluate different algorithms on different problems and have the following
observations:

• Semi-supervised learning: For natural language processing tasks and computer vision
tasks, Semi-supervised learning leads to significant improvements in both high-data regime
and low-data regime. In low-data regime, on image classification tasks, UDA is very ef-
fective. It leads to an error rate of 5.43 on CIFAR-10 with only 250 labeled examples as
presented in Section 2.5.2. On natural language processing tasks, UDA reduces the error
rate from 43.27 to 25.23 for IMDb with 20 labeled examples and from 50.80 to 41.35
for Yelp-5 with 2,500 labeled examples as shown in Section 2.5.3. Noisy Student Train-
ing achieves 88.4 top-1 accuracy on ImageNet, 2.0 percent better than the state-of-the-art
model that uses 3.5B weakly labeled Instagram images, as shown in Section 3.3. Noisy
Student Training also leads to very significant improvements on robustness. It improves
ImageNet-A top-1 accuracy from 61.0 to 83.7.

• Transfer learning: Transfer learning using a pretrained model leads to significant im-
provements on many NLP tasks. For example, on text classifications, as shown in Section
2.5.3, it lowers the error rate from 43.27 to 11.72 for IMDb with 20 labeled examples and
from 50.80 to 38.90 for Yelp-5 with 2,500 labeled examples. Transfer learning from a
language model pretrained on 1-Billion-Word corpus leads to an accuracy of 70.7, signifi-
cantly outperforming a model trained on the CLOTH dataset achieving an accuracy of 48.7
as shown in Section 7.4.1. In comparison, transfer learning between similar tasks do not
achieve such big improvements though the improvements are still respectable: as shown in
Section 6.5.2, it improves BLEU score from 35.2 to 36.1 on French-to-English translation
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and 27.3 to 28.1 on German-to-English translation. It also improves the Hits@10 from
79.7 to 81.4 for knowledge base completion in Section 5.3.3.

• External knowledge: The improvements brought by external knowledge vary for different
tasks. External knowledge bases are useful for tasks that require modeling entities and
relations. Specifically, using external knowledge bases improves the F-1 score from 53.18
to 57.28 on relation extraction as shown in Section 9.4.3. Using prior knowledge to guide
the model design improves the BLEU score from 30.90 to 31.44 on image captioning and
from 28.04 to 28.30 on German-to-English translation as shown in Section 8.7.3.

• Complementariness: Luckily, algorithms in different categories are usually complemen-
tary. Hence, it is possible to combine different algorithms for a better performance. For
example, semi-supervised learning is complementary to transfer learning. Transfer learn-
ing from BERT achieves an error rate of 11.72 for IMDb with 20 examples and 38.90 for
Yelp-5 with 2,500 examples. Semi-supervised learning further reduce the error rate from
11.72 to 4.78 for IMDb and from 38.90 to 33.54 for Yelp-5 as shown in Section 2.5.3.
Using external knowledge bases also improve the the F-1 score of transfer learning using
BERT from 53.18 to 57.28, as shown in Section 8.7.3.

Applicability We are also interested in whether a presented algorithm can be applied to a
variety of tasks or is restricted to a certain task.

• Semi-supervised learning: Semi-supervised learning works well on many different tasks
including text classification, image classification and machine comprehension. Semi-
supervised learning methods UDA and Noisy Student Training are applied to 7 language
datasets and 3 computer vision datasets in Section 2.5, Section 3.3 and Section 4.6. More-
over, only unlabeled data is required for semi-supervised learning and unlabeled data is
usually easy to obtain.

• Transfer learning: Transfer learning from pretraining are applicable for many NLP tasks
and have become the standard practice. It is used for 10 natural NLP datasets as shown in
Section 2.5, Section 7.4.1 and Section 9.4. It does not require extra task-specific data that
is similar to the task at hand and hence it can be easily used for any tasks. On the other
hand, transfer learning from similar tasks is harder since it uses task-specific data from
similar tasks.

• External knowledge: Whether external knowledge is helpful for a task is not straightfor-
ward since different tasks require different external knowledge. For example, tasks of the
medical domain and legal domain relies on very different knowledge bases. In addition, it
requires a deep understanding to discover prior knowledge useful for a certain task.

Engineering Difficulty Lastly, we discuss the engineering difficulty so that readers know how
much efforts are required to apply an algorithm.

• Semi-supervised learning: Noisy Student Training is very easy to implement and since
only the loss function and the data loader need to be changed.

• Transfer learning: Transfer learning from pretraining has become the standard practice
due to its effectiveness and easy-to-use nature. In comparison, transfer learning from sim-
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ilar tasks requires more efforts since significant changes to the architecture or learning
algorithm are needed to achieve a great performance.

• External knowledge: Using external knowledge also requires more efforts for the model
to work well.

In summary, we have the following recommendations for a new task: (1) Whenever unlabeled
data is available, semi-supervised learning should be used by default because it requires little
engineering leads while bringing large gains to both NLP tasks and computer vision tasks; (2)
Transfer learning from pretraining models should be used by default for NLP tasks since it brings
significant improvements to many tasks and is easy to use; (3) Whether external knowledge
should be used can be determined case-by-case since each task may require different external
knowledge and it is significantly more costly in engineering efforts than using transfer learning
or semi-supervised learning.

10.2 Future Directions

In the thesis, we have taken several steps in exploring methods for data-efficient machine learn-
ing. We think that there are several interesting directions worth exploring in the future:

Algorithms: Further Advancing Data-Efficient Learning In this thesis, we show that semi-
supervised learning leads to consistent improvements in high-data regime and low-data regime.
We think that there are many problems worth investigations in the future. Advanced data aug-
mentation for supervised learning is an essential component for semi-supervised learning to work
well since it produces valid and diverse noised examples. As the noising function is an essential
component in semi-supervised learning, a question that naturally arises is: what are the best nois-
ing functions and how should we find them? In this thesis, we choose three noising functions for
different tasks at hand. Is it possible to automatically learn a noising function given a new task?
If it is possible to do so, does the qualities of the noising functions depend on the amount of la-
beled data and unlabeled data? Additionally, what unlabeled data is required for semi-supervised
learning to work well? We have shown that out-of-domain unlabeled data can serve well in the
case of image recognition. Going further, is unlabeled data generated by a model helpful? For
example, could we use images generated by Generative Adversarial Networks as unlabeled data?
Lastly, is it helpful to use an explicitly constructed graph for unlabeled data instead of the implicit
graph constructed by data augmentation?

Transfer learning from pretraining works well for NLP. It would also be interesting to ex-
plore pretraining for computer vision tasks. Recent studies [37, 89] show that using advanced
augmentations is essential for pretraining on computer vision. One interesting question is: What
are the characteristics of effective augmentations for pretraining? Are best augmentations for
supervised learning and semi-supervised learning also the best augmentations for pretraining?
In addition, would augmentation also be effective for pretraining for NLP? Given the pretrained
models, what knowledge bases is the most helpful for NLP tasks? Is there a knowledge base that
is universally helpful for all tasks?
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Theories: Bridging the Gap Between Applications and Theories A lot of deep learning
research is based on intuitions and empirical results. However, it is also very important to rigor-
ously prove why an algorithm works or not. However, at the current moment, there are funda-
mental difficulties in characterizing the capacity, the generalization power and the optimization
of deep learning models. Without solving these difficulties, analyzing a specific data-efficient
algorithm would also be less effective. For example, many theoretical analysis makes simplistic
assumptions that deep models have infinite capacity. However, in Noisy Student Training, we
find that a large model size plays an important role in the final performance. Hence, we might ask
ourselves how to quantify the correlation between the number of model parameters, the capacity
of the model and the final performance. In addition, it would be interesting to theoretically char-
acterize data augmentation methods. Specifically, what characterizes good data augmentations
in the high-dimensional space of text and image? What is the sweet spot in the tradeoff between
validity and diversity? And is the sweet spot the same for all tasks with different amounts of
data?

Applications: Applying Data-Efficient Algorithms on More Tasks In this thesis, we studied
various applications including text classification, image classification, reading comprehension,
machine translation and knowledge base completion. There are still many tasks that are worth
investigating such as speech recognition, chatbot, object detection and segmentation. Many al-
gorithms we presented may generalize and be easily applied to these new tasks. For example, it
has been that noisy student training can lead to significant improvements on speech recognition
and object detection and segmentation in recent works [191, 323].

In addition, there are more interesting applications involving an interactive environment, e.g.,
self-driving and stock prediction. Semi-supervised learning is particularly useful here since col-
lecting labeled data for these tasks is harder than labeling images or text as it requires interactions
with the environment over a long period of time. Semi-supervised learning provides the ability
to explore an exponential space resulted from the interactive sequential environment, which is
impossible for labeled data to cover. For the task of self-driving, apart from using generic model
noise and data augmentation noise, one can inject noise that have physical meanings, e.g., fog-
ging, blurring and snowing to make the model robust to these conditions. With snowing as a
noise, one can quickly adapt a self-driving model trained in California to be used in Alaska.

Similarly, we can use semi-supervised learning for the problem of stock prediction. For
high-frequency trading, one can generate features needed for stock price prediction to explore
the exponential feature space. For medium to low frequency trading that relies more on raw
text data, one can train a model to generate financial statements and social media trends as the
additional text data.

It is worth noting that there might be a risk that a system can compound its mistake in a
sequence of actions in an interactive environment. To minimize the effect of this risk, one needs
to have enough labeled data so that the model has a high accuracy. When we have enough labeled
data, the improvements of semi-supervised model on top of the supervised model might not be
huge, but any improvements in self-driving and stock price prediction result in a large number
of reduced accidents and much more money earned given the scale of those tasks. Moreover, the
improvements usually comes from better robustness and solving hard cases, which leads to more
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trustworthy models.
Transfer learning from pretraining also lead to consistent improvements for many NLP tasks.

Hence, it may require little effort to achieve significant improvements on these tasks. In addition
to directly applying the algorithms, it is more interesting to investigate what inductive biases
can lead to further gains on a specific task and whether these inductive biases can generalize
to other tasks. For example, better augmentation methods might need to be invented to make
semi-supervised learning even more effective on NLP tasks, since data augmentation is shown to
be effective in computer vision while data augmentation is less well-studied in NLP.
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[252] Wilson L Taylor. âĂIJcloze procedureâĂİ: a new tool for measuring readability. Journal-
ism Bulletin, 30(4):415–433, 1953. 97

[253] Joshua B Tenenbaum and William T Freeman. Separating style and content. NIPS, 1997.

[254] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996. 74

[255] Kristina Toutanova and Danqi Chen. Observed Versus Latent Features for Knowledge
Base and Text Inference. In Proceedings of the 3rd Workshop on Continuous Vector Space
Models and their Compositionality, pages 57–66, 2015. 72, 78

[256] Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and
Michael Gamon. Representing Text for Joint Embedding of Text and Knowledge Bases.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-

177



cessing, pages 1499–1509, 2015.

[257] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé Jégou. Fixing the train-test
resolution discrepancy. arXiv preprint arXiv:1906.06423, 2019.

[258] Annie Tremblay. Proficiency assessment standards in second language acquisition re-
search. Studies in Second Language Acquisition, 33(3):339–372, 2011. 97

[259] Trieu H Trinh, Minh-Thang Luong, and Quoc V Le. Selfie: Self-supervised pretraining
for image embedding. arXiv preprint arXiv:1906.02940, 2019.

[260] Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip
Bachman, and Kaheer Suleman. Newsqa: A machine comprehension dataset. arXiv
preprint arXiv:1611.09830, 2016. xxi, 55, 58, 60, 99, 100

[261] Peter D Turney. Domain and function: A dual-space model of semantic relations and
compositions. Journal of Artificial Intelligence Research, 44:533–585, 2012.

[262] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative
domain adaptation. arXiv preprint arXiv:1702.05464, 2017.

[263] Betty van Aken, Benjamin Winter, Alexander Löser, and Felix A. Gers. How does BERT
answer questions?: A layer-wise analysis of transformer representations. In Proceedings
of the 28th ACM International Conference on Information and Knowledge Management,
CIKM 2019, Beijing, China, November 3-7, 2019, pages 1823–1832, 2019. doi: 10.1145/
3357384.3358028. URL https://doi.org/10.1145/3357384.3358028.

[264] Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin, Abhinav Gupta, and Serge Be-
longie. Learning from noisy large-scale datasets with minimal supervision. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 839–847,
2017.

[265] Patrick Verga, Emma Strubell, and Andrew McCallum. Simultaneously self-attending to
all mentions for full-abstract biological relation extraction. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana,
USA, June 1-6, 2018, Volume 1 (Long Papers), pages 872–884, 2018. URL https:
//www.aclweb.org/anthology/N18-1080/.

[266] Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio, and David Lopez-Paz. Interpola-
tion consistency training for semi-supervised learning. arXiv preprint arXiv:1903.03825,
2019.

[267] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A
neural image caption generator. In Computer Vision and Pattern Recognition (CVPR),
2015 IEEE Conference on, pages 3156–3164. IEEE, 2015. 115, 127, 132
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