
Towards Theoretical and Empirical Foundations

of Machine Learning for Differential Equations

Tanya Marwah

February, 2025

CMU-ML-2025-102

Machine Learning Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA

Thesis Committee

Andrej Risteski Carnegie Mellon University (co-Chair)

Zachary Chase Lipton Carnegie Mellon University (co-Chair)

Jianfeng Lu Duke University

Maxim Raginsky University of Illinois Urbana-Champaign

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

Copyright ©Tanya Marwah

This research was funded by: Defense Advanced Research Projects Agency award FA8702-15-D-0002;

Department of the Interior award D17PC00340; National Science Foundation award IIS2211907; grants

from Ford, Highmark, the University of California; and a Fellowship from the Siebel Scholars Program.

Keywords: Partial Differential Equations, AI for Science, Machine Learning, Theory, Deep Equilibrium

Models, State-Space Models, Graphs

Abstract

Recent advances in machine learning have propelled the use of data-driven methods in scientific discov-

ery. In this we study the application of machine learning techniques to solve Partial Differential Equations

(PDEs), which form fundamental building blocks in analyzing and describing various scientific phenom-

ena, ranging from fluid dynamics to climate and weather forecasting and molecular dynamics. However,

as the dimensionality of the system increases, the computational cost of simulating PDE solutions grows

exponentially with the input dimension. Additionally, every new configuration of a PDE system neces-

sitates rerunning the numerical solver from scratch, adding on to the computational challenges.

This thesis aims to theoretically and empirically investigate the conditions under which data-driven ma-

chine learning can effectively solve PDEs. It establishes conditions under which for specific classes of

PDEs data driven machine learning techniques provide tangible benefits, especially in terms of reducing

computational costs. Furthermore, it explores the architectural design space of using neural networks

to approximate PDE solutions and fundamentally understands the choice of architecture that benefits

downstream applications.

The thesis is divided into three parts. The first part containing Chapters 2, 3 and 4 introduces theoret-

ical results that establish the representational capacity of neural networks for approximating solutions

to complex PDEs. These chapters show that for certain families of PDEs the using a neural network can

provably evade the curse of dimensionality. The second part includes Chapters 5, 6 and 7 and explores the

architectural design choices of neural operators: neural networks that approximate solutions to an entire

family of PDEs. We further use our insights towards designing efficient architectures for multi-physics

models that can approximate solutions to multiple families of PDEs at once. The third part includes re-

sults on approximating graph structured data—which includes various scientific data such as molecules

and PDEs on irregular meshes. In Chapter 8 we show how the state-space models based architectures such

as Mamba generalizes to graph structured data. Finally, in Chapter 9 we introduce a theoretical results

that establishes representational benefits of maintaining edge embeddings in graph neural networks.

To the journey and the people who make it worthwhile . . .

iv

Acknowledgements

This thesis was not finished in isolation but with the support of many.

I want to begin by thanking my advisors, Andrej Risteski and Zack Lipton. They took me on as a student

interested in working on machine learning theory and mathematics even though it was evident that I

had no background on the topic. It is through their encouragement that I could work on a topic that

was new for all of us. From them, I have not only learned the technical aspects of being a researcher but

importantly what makes a good researcher and a collaborator—patience, perseverance and kindness.

Andrej is perhaps the single most hardworking and tenacious person I know. He has taught me the nu-

ances involved in math and theory and shaped the way I approach problems and scientific method in

general. There is lot to be learned from Andrej, for example, if he decides to take on a project he will

give his hundred percent, else he will politely refuse to participate. He often comes up with key insights

about proofs that totally change the course of a project—although admittedly this usually happens two

days before a deadline. However, in the current state of machine learning research he hopes that his stu-

dents slow down, focus on learning and recognize that research in theory takes time. Finally, no matter

what he says I always listen to him—or almost always eventually do.

Zack has helped me build an empirical base for machine learning. He as an intuitive understanding of

ML methods and how they work in practice and has the uncanny ability to grasp new things in seconds.

From him, I have learned to be bold in choosing my work, to ask tough questions, and to challenge

every assumption. He has also emphasized the importance of clear and concise scientific writing—since

effective communication is key to conveying research and ideas. Finally, even though my PhD work didn’t

fully align with Zack’s research interests, he never pressured me to change direction and always supported

me in pursuing what I found meaningful.

I would also like to thank my committee members—Jianfeng Lu, and Maxim Raginsky. Jianfeng has

acted as an oracle for me (and Andrej), often filling in the gaps in my understanding and also my proofs.

Much has been said about his contributions across multiple fields, so I won’t repeat them here. Instead, I

want to highlight what an incredible mentor he is. After I spent nearly a year on Monge-Ampere problem

only to realize that it couldn’t be solved, he told me not to be discouraged but to recognize that every good

math PhD has unsolved problems in their closet—meaning, in a way, I have officially earned my place,

even tough I am not a math PhD student. Additionally, he is also very generous with his time, always

answering my questions on Slack without fail.

I have greatly benefited from the work done by Max and his group throughout my PhD. His research con-

sistently reflects deep thought, not only in tackling complex problems but also in the clarity with which

results are communicated. His dedication to his field is also evident in the effort he puts into his course

materials—many of us have benefited from his Stochastic Calculus notes. Beyond his research, Max ex-

emplifies true academia through his blog posts and social media presence, engaging deeply with ideas,

writing with clarity, and inspiring everyone by showing that being an academic is more than publishing—

it is about learning, and sharing knowledge.

I would also like to thank many mentors that I have had the privilege to work with throughout my PhD

journey. I would like to thank Jascha Sohl-Dickstein, Guy Gur-Ari, Behnam Neyshabur, Anders An-

v

dreassen and Yasaman Bahri for their mentorship during my internship at Google, and giving me an early

glimpse of the LLM revolution we are in the midst of. I want to give a special thanks to Jascha, who

has always taken the time to talk to me whenever I needed career advise. I also want to thank David

Alvarez-Melis, Lester Mackey and Nicolo Fusi for providing me with an amazing internship experience

at Microsoft, and for encouraging me to believe in myself and continue to work on more scientific ap-

plications of AI. At CMU, I like to specially thank Ameet Talwalkar for supporting me and encouraging

me to scale up my research on PDEs, and also for his advise at the tail end of my PhD. Finally, I want to

thank Albert Gu who has taught me how to think about various aspects of designing and training large

models and also provided me with important guidance and help whenever I needed it.

I am also grateful to my undergraduate mentors—Vineeth N. Balasubramanian, Sumohana Channap-

payya, and Saumya Jana—who sparked my love for learning and set me on this path. Vineeth sir, in partic-

ular, has been a constant source of support and encouragement since my junior year in undergrad, when

he took me on as a student and gave me the opportunity to work on a project in generative modeling.

I am grateful to the administrative staff at MLD, especially Diane Stidle and Laura Winter. Every student

who graduates from MLD owes Diane a great deal of appreciation for ensuring we complete our forms,

register for courses on time, and, most importantly, take care of ourselves. She is undoubtedly the reason

for the warm, friendly, and supportive environment in MLD. A special thanks to Diane for also sharing

photos of Sierra and Ruby with me. I also want to thank Laura for managing our schedules in the ACMI

lab, ensuring rooms are booked on time, and handling the chaos of Zack’s calendar.

Research is rarely a solo process, and that has certainly been the case for me. I want to start by thanking

Ashwini Pokle, who became my collaborator at a time when I was struggling with motivation. Her en-

thusiasm kept me going, and through our work together, we learned a lot from each other. She has been

the most dependable collaborator one could ask for. I am also grateful to Zhili Feng for working with

me during our internship at Microsoft, sharing his deep understanding of LLMs, and always being will-

ing to help whenever I needed it. His grasp of theory and extensive knowledge of the literature continue

to inspire me. I want to thank Junhong Shen for collaborating with me on scaling my work—she has

an incredible ability to execute research ideas effectively. I also want to thank Shanda Li, and appreciate

him for always being up for working with me on exploring interesting but less conventional topics in our

field with me, bringing genuine excitement to the process. I want to thank Ricardo Buitrago Ruiz, who

helped me turn a small idea into a proper paper, but more importantly for nudging me to give matcha a

try, which has now turned into an obsession. I also want to thank Misha Khodak for being such a fantastic

collaborator. I can’t help but wonder why we didn’t start working together sooner. Finally, a huge thanks

to Aakash Lahoti. He is hardworking, insightful, and thinks deeply about his research. I’ve seen his abil-

ity to execute ideas and debug complex models grow tremendously over time. I am also grateful to him

for taking the lead on our work together towards the end, especially when I was busy with other things.

During my time at CMU, I have had the privilege of befriending so many incredible people—some from

the research groups I’ve been part of and others from different departments. I have truly valued each and

every one of them. I apologize in advance for any names I may have unintentionally overlooked. From An-

drej’s group I would like to thank: Niki Hasarati, Stephen Huan, Yuchen Li, Bingbin Liu, Elan Rosen-

feld, and Anna Wei. From ACMI Lab I would like to thank Nil-jana Akpinar, Mel Andrews, Pravav

Mani, Pratyush Maini and Danish Pruthi. Michael Feffer, Saurabh Garg, Shantanu Gupta, Daniel Jeong,

vi

Simran Kaur, Divyansh Kaushik, Kundan Krishna, Leqi Liu, Pranav Mani, Pratyush Maini, Zachary No-

vack, Danish Pruthi, Manley Roberts, Jake Tyo, Tom Yan, and Helen Zhou. Special thanks to Saurabh

and Kundan for always giving me wise and pragmatic advice, Pratyush for being willing to always help

no matter what, Shantanu and Amrith Setlur for being my partners whenever I wanted a break, DK for

interesting take on things and Danish for being the person I can always go to whenever I need clarity on

things. I also want to thank my friends in MLD: Dhruv Malik for being my constant support since the

beginning of our PhD, Euxhen Hasanaj for patiently explaining to me the details of all the developments

in Biology, Youngseog Chung, Sachin Goyal, Daniel Jeong and Tom Yan for always being up for a chat.

I also want to thank Lucio Dery for the short chats whenever we saw each other in the corridors, Asher

Trockman for listening to be complain about things and Vaishnavh Nagarajan for encouraging me to talk

to Andrej when I started my PhD—pretty sure he does not remember this.

I want to give a special thanks to the members of IAM-Lab for always inviting me to their gatherings

and making me feel like an honorary member: Alex LaGrassa, Mark Lee, Tabitha Lee, Jacky Liang,

Sarvesh Patil, Saumya Saxena, Shivam Vats, Erin Zhang, and Kevin Zhang. A shout out to Oliver Kroe-

mer for bringing together such an incredible group of brilliant and kind students. This acknowledgment

wouldn’t be complete without a special thanks to Kevin for always showing up whenever I needed help—

his support has made so many things easier for me. And of course, thanks for adopting Lychee, Kev!

I want to thank my friends that I made during my internships. Yasaman Razeghi for always being hopeful

that I will take a break, and Eric Zelikman for brainstorming ideas. I also want to thank the wonderful

cohort of people that I met at Microsoft: Fernanda Del La Torre for inspiring us all through setting a

wonderful example through her work and life, Tobias Schroeder for making us laugh, Francisco Vargas

for being so smart and answering all my stochastic calculus questions at his midnight, Pearl Yu for always

being up for an adventure and Ruqing Xu for being so talented. And of course Zhili, but I have already

thanked him!

I also want to thank my friends outside of CMU, who made sure that I stay at CMU and actually finish

this thing. Gaurav Mittal for being my first collaborator, for pushing me through my masters and helping

me whenever (be it in terms of much needed words of encouragement, or GPUs) I needed it. Aman Jain

for being my friend since we were two years old, following me to CMU (seriously dude) and never running

away. I want to thank Oshin Paranjape for her visits to Pittsburgh and New York that gave me a much

needed break. I want to thank Rakshita Nagalla for always encouraging me to take a chance on myself.

Anshi Chitransh for being the sane person who makes sure I am taking care of myself—since we were

six years old. Manish Chandra Reddy for providing me a much needed respite from work and making

me laugh whenever we talked. I want to thank Himangi Mittal (even though she was in Pittsburgh) for

always inspiring me through her hard work. I also want to thank Cyril Zhang, who towards the end of my

PhD provided me with much needed perspective towards life and what to aim for. Finally to Annapurna

Kala, who was also doing her PhD at Johns Hopkins at the same time, we spoke almost every day, and

kept each other going, and remained the one unwavering source of support throughout this journey.

Now comes the time for acknowledging the most special, wonderfully kind, strong, hardworking, inspir-

ing group of women in MLD, that turned this entire PhD journey into a wholesome experience. They

have all, in their unique ways pushed me to keep going. I want to begin by thanking the girls from my

cohort: Arundhati Bannerjee, Bingin Liu, Yusha Liu, Stephanie Milani and Ashwini Pokle. Arundhati

vii

for laughing at my jokes and getting my humour, Bingbin for being the source of sunshine in my life,

Yusha for being Yusha (she is amazing, and I hope she knows that), Steph for perhaps being the wisest of

the group and encouraging all of us to speak up when we should, and Ashwini for making me laugh so

much (and for also cooking so well!). I want to thank Anna Bair for listening—maybe the only one who

does—to me talk about the new thing that I am obsessing about, and Valerie Chen for making sure she

checks up on me every time she is in New York. I want to thank Helen Zhou for being sweet, helpful and

going on long walks with me. Finally I want to thank Leqi Liu for giving me much needed guidance and

advice whenever I needed it. Words can not describe how much all of them have helped me, listened to

my disillusioned ramblings and offered their unique perspective.

I could go on endlessly about the incredible people I’ve met, but no words could truly capture how much

they mean to me. Before I thank my family, I want to give a special thanks to Aman Tyagi, who, through-

out the pandemic, joined me in all my crazy kitchen experiments and was a willing participant—unlike

Mohit who complained the entire time—in my quest to find the best wine. And a big thank you to

Divyanshi Tyagi for bringing much needed laughter when it was needed most.

I want to thank my aunts—Neelam Bagga, Banita Bhatia, Sharmila Raheja, and Anju Sood—for showing

me what it means to be both strong and compassionate, setting a standard to aspire to. I am also deeply

grateful to my grandparents—Brij Mohan Marwah and Shashi Marwah, as well as Madan Lal Rajpal and

Kaushalya Rani Rajpal. I try to live up to the example they have set for me and carry their values with me

in everything I do.

I want to thank my parents, Sangeeta Marwah and Man Mohan Marwah. I talk to them every day—often

twice—sharing everything with them. No matter what, things always feel better after our conversations.

Their love and support is all I ever need. Also a huge thanks to Jingle—through her memories—and

Nikku for bringing joy to my life. Finally, I want to thank my husband, Mohit Sharma, for being my

constant source of encouragement, wisdom, stability, laughter and happiness since the day I met him. I

can never thank him enough—but luckily, I have a lifetime!

viii

Contents

I Beginnings 1

1 Introduction 2

1.1 Theoretical Results . 3

1.2 Empirical Results . 3

1.3 Graphs . 4

II ML for PDEs: Theoretical Underpinnings 5

2 Parametric Complexity Bounds for Approximating PDEs with Neural Net-

works 6

2.1 Introduction . 6

2.2 Overview of Results . 7

2.3 Prior Work . 8

2.4 Notation and Definitions . 9

2.5 Main Result . 11

2.6 Proof of Main Result . 13

2.6.1 Defining a Convergent Sequence . 14

2.6.2 Approximating iterates by neural networks 19

2.7 Applications to Learning Operators . 21

2.8 Conclusion and Future Work . 21

3 Benefits of Depth in Neural Approximations of PDEs 23

3.1 Introduction . 23

3.2 Overview of Results . 24

3.3 Related Work . 25

3.4 Main Result . 27

3.5 Proof of Theorem 2 . 28

3.6 Conclusion and Future Work . 31

4 Neural Network Approximations of PDEs Beyond Linearity: A Representa-

tional Perspective 33

4.1 Introduction . 33

4.2 Overview of Results . 34

4.3 Related Work . 36

ix

Contents

4.4 Notation and Definition . 38

4.4.1 Barron Norms . 39

4.5 Main Result . 40

4.6 Proof of Main Result . 42

4.6.1 Convergence Rate of Sequence . 43

4.6.2 Bounding the Barron Norm . 45

4.7 Conclusion and Future Work . 47

III ML for PDEs: Empirical Validation and Large Models 48

5 Deep Equilibrium Based Neural Operators for Steady-State PDEs 49

5.1 Introduction . 49

5.2 Related Work . 51

5.3 Preliminaries . 52

5.3.1 Neural Operators . 52

5.3.2 Equilibrium Models . 53

5.4 Problem setting . 54

5.5 Experiments . 56

5.5.1 Darcy Flow . 57

5.5.2 Steady-state Navier-Stokes Equations for Incompressible Flow 58

5.6 Universal Approximation and Fast Convergence of FNO-DEQ 59

6 On the Benefits of Memory for Modeling Time-Dependent PDEs 61

6.1 Introduction . 61

6.2 Related Work . 63

6.3 Preliminaries . 63

6.3.1 Partial Differential Equations (PDEs) . 64

6.3.2 Mori-Zwanzig Formalism . 65

6.4 Theoretical motivation for memory: a simple example 66

6.5 Experimental Setup . 68

6.5.1 Dataset generation . 68

6.5.2 Training and evaluation procedure . 68

6.5.3 Architecture Framework: Memory Neural Operator 69

6.5.4 Instantiating the Memory Neural Operator framework: S4FFNO 70

6.6 Memory helps in low-resolution and input noise: a case study 70

6.6.1 Kuramoto–Sivashinsky equation (1D): study in low-resolution 71

6.6.2 Navier-Stokes equation (2D): study in observation noise 72

6.6.3 Relationship with fraction of unobserved modes 73

6.7 Conclusion and Future Work . 74

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal

Adaptation 75

7.1 Introduction . 75

7.2 Related Work . 77

x

Contents

7.3 Methodology . 78

7.3.1 Unified Data Representation . 79

7.3.2 Unified Architecture . 80

7.4 Full Workflow and Training . 81

7.5 Experiments . 82

7.5.1 Achieving State-of-the-Art Results on PDEBench with Compute Efficiency . . 83

7.5.2 Generalizing to Unseen PDEs with Data Efficiency 84

7.5.3 Ablation Studies . 86

7.6 Conclusion and Future Work . 88

IV Graph Neural Networks: Architectures and Theory 89

8 Chimera: State Space Models Beyond Sequences 90

8.1 Introduction . 90

8.2 Preliminaries . 92

8.2.1 Overview of State Space Models . 92

8.2.2 SSM in the Structured Masked Attention Representation 93

8.3 Chimera: Building Models for Any Topology . 94

8.3.1 Resolvent Of An Adjacency Matrix Accumulates Influence 94

8.3.2 SSMs operate on a Directed Line Graph . 95

8.3.3 Generalizing SSMs to Arbitrary Topologies 96

8.4 Chimera with improved efficiency . 97

8.4.1 Chimera on DAGs . 97

8.5 Experiments . 100

8.5.1 Masked Language Modeling . 101

8.5.2 ImageNet-1k Classification . 101

8.5.3 Long Range Graph Benchmark . 102

8.6 Conclusion and Future Work . 104

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Net-

works 105

9.1 Introduction . 105

9.2 Overview of results . 107

9.2.1 Representational benefits from maintaining edge embeddings. 107

9.2.2 Empirical benefits of edge-based architectures. 108

9.3 Related Works . 109

9.4 Setup . 110

9.5 Depth separation between edge and node message passing protocols under memory con-

straints . 112

9.6 Depth separation under memory and symmetry constraints 116

9.7 Symmetry alone provides no separation . 119

9.8 Empirical benefits of edge-based architectures . 120

9.8.1 Performance on common benchmarks . 120

9.8.2 A synthetic task for topologies with node bottlenecks 120

xi

Contents

9.8.3 A synthetic task for inference in Ising models 122

9.9 Conclusions and future work . 122

V Appendices 123

10 Appendix for Chapter 2 124

10.1 Brief Overview of Partial Differential Equations . 124

10.1.1 Proof of Proposition 1 . 126

10.2 Perturbation Analysis . 128

10.2.1 Proof of Lemma 3 . 128

10.2.2 Proof of Lemma 10 . 130

10.3 Technical Lemmas: Perturbation Bounds . 131

10.4 Technical Lemmas: Manipulating Operators . 136

11 Appendix for Chapter 4 145

11.1 Proofs from Section 4.6.1: Convergence Rate of Sequence 145

11.1.1 Proof of Lemma 17 . 145

11.1.2 Proof of Lemma 18 . 148

11.1.3 Proof of Lemma 19: Convergence of Preconditioned Gradient Descent 150

11.2 Error Analysis . 154

11.2.1 Proof of Lemma 24 . 154

11.3 Proofs for Section 4.6.2: Bounding the Barron Norm 158

11.3.1 Proof of Lemma 20: Barron Norm Increase after One Update 158

11.3.2 Proof of Lemma 22: Final Barron Norm Bound 159

11.3.3 Proof of Lemma 23 . 160

11.3.4 Proof of Lemma 21: Barron Norm Algebra 162

11.4 Existence Uniqueness and Definition of the Solution 164

11.4.1 Proof of Existence and Uniqueness of Minima 164

11.4.2 Proof of Lemma 15: Nonlinear Elliptic Variational PDEs 167

11.4.3 Proof of Lemma 16: Poincare constant of Unit Hypercube 169

11.5 Important Helper Lemmas . 170

11.5.1 Useful properties of Laplacian and Laplacian Inverse 170

11.5.2 Some properties of Sub-Matrices . 173

12 Appendix for Chapter 5 174

12.1 Implementation Details . 174

12.2 Datasets . 175

12.2.1 Darcy Flow . 175

12.2.2 Steady-State Incompressible Fluid Navier-Stoke 175

12.3 Proof of Universal Approximation . 179

12.4 Fast Convergence for Newton Method . 181

12.5 Additional experimental results . 183

xii

Contents

13 Appendix for Chapter 6 188

13.1 Training details . 188

13.2 Ablations on the Memory layer . 188

13.2.1 Ablation: Choice of sequential model . 189

13.2.2 Ablation: memory layer configuration . 189

13.3 Appendix: Quantifying the effect of memory . 190

14 Appendix for Chapter 7 195

14.0.1 Datasets . 195

14.0.2 Experiment Details . 198

14.0.3 Detailed Experiment Results . 199

14.0.4 Visualization . 201

15 Appendix for Chapter 8 204

15.1 Deferred Proofs . 204

15.1.1 Proof of Proposition 6 . 204

15.1.2 Proof of Proposition 9 . 204

15.1.3 Proof of Proposition 10 . 205

15.2 Additonal Experiments . 206

15.2.1 MLM: Chimera on Undirected Line Graphs 206

15.2.2 Imagenet: Parameter Sharing Ablation . 206

15.3 Architectural Details . 207

15.3.1 Masked Language Modeling . 207

15.3.2 Imagenet-1k Classification . 207

15.3.3 Long Range Graph Benchmark . 208

16 Appendix for Chapter 9 211

16.1 Omitted Proofs from Section 9.5 . 211

16.2 Omitted Proofs from Section 9.7 . 212

16.3 A quantitatively tight depth/memory separation . 214

16.4 Further details on synthetic task over Ising models 216

16.4.1 Background on belief propagation . 216

16.4.2 GCN-based architectures to calculate marginals 217

16.4.3 Edge-based models improve over node-based models 217

Bibliography 220

xiii

List of Figures

6.1 (First row) nRMSE for several models in the KS dataset at different resolutions, where each

column is a different viscosity. The final time is T = 2.5s and there are Nt = 25 timesteps.

(Second row) A visualization of the whole frequency spectrum at each of the 25 timesteps for

a single trajectory in the dataset. The spectrum is obtained with the ground truth solution at

resolution 512. 72

6.2 nRMSE of FFNO-2D and S4FFNO-2D trained on Navier-Stokes 2D with different noise stan-

dard deviations σ added to training and test inputs. Two configurations of viscosity ν and final

time T are shown. 73

6.3 Values ofωf and the difference in nRMSE between FFNO and S4FFNO for different resolutions

in the KS experiment of Section 6.6.1 with ν = 0.1. ωf is averaged across all trajectories in the

dataset and across all timesteps. 74

7.1 To adapt pretrained LLMs for PDE solving, UPS first transforms PDE of different dimensions,

channels, and resolutions into a unified representation (left panel). Then, the data is processed

with a unified architecture that integrates FNO layers, PDE metadata, and LLMs (right panel).

The architecture is trained in two stages. In stage 1, we pretrain the embedding network using a

joint loss that simultaneously optimizes (i) the distribution similarity between PDE features and

text embeddings to align the modalities, and (ii) the prediction performance of extracted PDE

features. In stage 2, we fine-tune the entire model on a dataset that combines multiple families of

spatiotemporal PDEs with varying domain dimensions, initial/boundary conditions, and coeffi-

cients. UPS achieves competitive results with significantly better sample-efficiency than existing

methods. 76

8.1 Real-world data exhibits inherent topology: (a) language follows a directed line graph,

(b) images a grid graph, and (c) structured data like molecules have explicit graph topology. 91

8.2 SSMs inherently operate on a directed line graph: SSMs modeling a sequence of tokens

(left), the structured mask matrix (center), Chimera on a directed line graph (right) . . 95

8.3 Recurrence on DAGs . 98

8.4 The undirected line graph structure (Left). The canonical DAG decomposition (Right) 98

8.5 Grid graph (left). The canonical 2D-DAG decomposition of the grid graph (right).

These graphs are sufficient to capture the influence between all pairs of nodes in the

undirected grid graph. 100

8.6 Progressively destroying the 2D grid graph topology. Fwd & Rev (top): 1D flattened

grid with bidirectional edges. Fwd (bottom): 1D flattened grid graph with only forward

edges. 102

12.1 Samples from Darcy Flow . 176

xiv

List of Figures

12.2 Samples from Steady-state Navier-Stokes dataset with viscosity 0.001. Each triplet visu-

alizes the inputs f1, f2 and the ground truth output i.e. ω⋆
. 177

12.3 Samples from Steady-state Navier-Stokes dataset with viscosity 0.01. Each triplet visu-

alizes the inputs f1, f2 and the ground truth output i.e. ω⋆
. 178

12.4 Training and Test Loss Curves for Steady-State Navier-Stokes with viscosity 0.01. The

x axis is the number of epochs and y axis is the MSE loss in log scale. Note that while

all the models converge to approximately the same MSE loss value while training, DEQs

and weight-tied networks get a better test loss in fewer epochs. 186

13.1 Performance of FFNO, S4FFNO and T-FFNO and LSTM-FFNO in KS with viscosity

ν = 0.15. 190

15.1 Chimera’s Architecture: The output of the Chimera layer is embedded within the gated

block introduced in Mamba-2 [Dao and Gu, 2024a]. Here X matrix denotes the in-

put to the block, and fc, fB, f∆ and fV are data dependent projections defined in Sec-

tion 8.2. The operator ⊙ denotes element-wise multiplications between matrices, and

⊕defines addition. The output from the Chimera layer is passed through a Gated-MLP,

a final projection fY , followed by a residual connection. 207

16.1 The graph G for which Theorem 11 exhibits a separation between edge message-passing

and node message-passing. The graph consists of

√
n paths of length

√
n, as well as a

single “hub vertex” connected to all other vertices. 212

16.2 Comparison of four architectures for calculating node marginals in an Ising model. The

architectures considered are node-embedding Equation 9.3 and edge-embedding Equa-

tion 9.4 versions of a GCN (correspondingly labeled Node-U and Edge-U), as well as

their “directed” counterparts, as described in Section 16.4.2, correspondingly labeled

Node-D and Edge-D. The x-axis groups results according to the topology of the graph,

the y-axis is MSE (lower is better). The mean and variances are reported over 3 runs for

the best choice of depth and width over the sweep described in Section 16.4.2. 218

xv

List of Tables

5.1 Results on Darcy flow: clean data (Col 4),noisy inputs (Col 5) and noisy observations

(Col 6) with max variance of added noise being (σ2
max)

i
and (σ2

max)
t
, respectively. Re-

ported test error has been averaged on three different runs with seeds 0, 1, and 2. Here,

S-FNO++, S-FNO-WT and S-FNO-DEQ are shallow versions of FNO++, FNO-WT

and FNO-DEQ respectively. 58

5.2 Results on incompressible steady-state Navier-Stokes (viscosity=0.001): clean data (Col

4), noisy inputs (Col 5) and noisy observations (Col 6) with max variance of added noise

being (σ2
max)

i
and (σ2

max)
t
, respectively. Reported test error has been averaged on three

different runs with seeds 0, 1, and 2. 59

5.3 Results on incompressible steady-state Navier-Stokes (viscosity=0.01): clean data (Col

4), noisy inputs (Col 5) and noisy observations (Col 6) with max variance of added noise

being (σ2
max)

i
and (σ2

max)
t
, respectively. Reported test error has been averaged on three

different runs with seeds 0, 1, and 2. 59

6.1 nRMSE values at different resolutions for Burgers’ and KS with different viscosities.

S4FFNO achieves up to 6x less error than its memoryless counterpart (FFNO) in KS

at resolution 32. The final time of KS is 2.5 seconds and it contains 25 timesteps. The

final times of Burgers’ is 1.4 seconds and it contains 20 timesteps. For the prediction

at time t, S4FFNO has access to the (compressed) memory of all previous timesteps,

whereas Multi Input FFNO takes as input the previous four timesteps. More details on

training are given in Appendix 13.1, and on the Burgers’ experiment in Appendix ??. . . 71

7.1 nRMSEs (lower is better) for in-distribution PDEBench families, with baseline results taken

from Takamoto et al. [2022], Shen et al. [2023], McCabe et al. [2023], Hao et al. [2024b]. ‘-’

means that the result is not available. On all datasets, UPS with RoBERTa-Base (UPS-B) achieves

the lowest nRMSEs among all smaller models and UPS with RoBERTa-Large (UPS-L) achieves

the lowest nRMSEs among all large models. Numbers are bolded for each model size group. . . 83

7.2 Zero- and few-shot transfer performance of UPS on unseen PDE families and coefficients. Our

few-shot results are competitive with baselines trained with more data. UPS-B refers to UPS with

RoBERTa-Base. 85

7.3 UPS with resolution 128 has an nRMSE of 0.0033 for Advection and 0.0931 for incompressible

Navier-Stokes. We directly test UPS on higher resolutions. 85

7.4 Results for the ablation studies. For each set of experiments, only the specified settings are dif-

ferent; all the other hyperparameters and training configurations are the same. Overall, the full

UPS-Base workflow (first row for every study) most effectively leverages the pretrained knowl-

edge of LLMs and obtains the best results. 86

xvi

List of Tables

8.1 Comparing Chimera on the undirected line graph (UG), and on DAG decomposed di-

rected line graphs (DAG) with other state-of-the-art models including M2 [Fu et al.,

2023], MLP-Mixer [Tolstikhin et al., 2021], FNet [Lee-Thorp et al., 2022], BERT [De-

vlin et al., 2019] on GLUE benchmark . 101

8.2 Top-1, Top-5 accuracies of various methods on ImageNet-1K. 102

8.3 Ablation: Comparing 2D grid structure with 1D flattening of patches. 102

8.4 Evaluation of Chimera on LRGB Tasks [Dwivedi et al., 2022]. The first section shows

the best performing numbers cited in the papers that introduce the given baselines. The

second section shows the result of better hyperparameter tuned baselines introduced

by Tönshoff et al. [2023]. Finally, we also compare with other baselines that use SSMs as

a blackbox replacement for a Transformer.bolding seems inconsistent (see 4th column) 103

8.5 Ablation: Chimera with approximate resolvent is competitive with the Transformer

baseline. 103

9.1 Comparison of node-based Equation 9.3 and edge-based Equation 9.4 GCN architec-

tures across various graph benchmarks. The performance of the edge-based architecture

robustly matches or improves the node-based architecture. 121

9.2 Performance (in RMSE ↓) of edge-based and node-based architectures on a star-graph

topology. The first number is the performance of the best edge-based model, and the

second is the best node-based model, across a range of depths up to 10 (2× the planted

model), widths∈ {16, 32, 64}, and a range of learning rates. 121

12.1 Results on incompressible Steady-State Navier-Stokes (viscosity=0.001): clean

data (Col 4), noisy inputs (Col 5) and noisy observations (Col 6) with max variance

of added noise being (σ2
max)

i
and (σ2

max)
t
, respectively. Reported test error has been

averaged on three different runs with seeds 0, 1, and 2. ‡ indicates that the network

diverges during training for one of the seeds. 184

12.2 Results on incompressible Steady-State Navier-Stokes (viscosity=0.01): clean data

(Col 4), noisy inputs (Col 5) and noisy observations (Col 6) with max variance of added

noise being (σ2
max)

i
and (σ2

max)
t
, respectively. Reported test error has been averaged on

three different runs with seeds 0, 1, and 2. ‡ indicates that the network diverges during

training for one of the seeds. 184

12.3 Convergence analysis of fixed point for noiseless Darcy Flow: The test error, absolute

residual ∥Gθ(zt) − zt∥2 and relative residual
∥Gθ(zt)−zt∥2

∥zt∥2 decrease with increase in the

number of fixed point solver iterations. The performance saturates after a certain point

once we have a reasonable estimate of the fixed point. We consider the noiseless case,

where we do not add any noise to inputs or targets. 185

12.4 Convergence analysis of fixed point for noiseless incompressible Steady-State Navier-

Stokes with viscosity=0.01: The test error, absolute residual ∥Gθ(zt)−zt∥2 and relative

residual
∥Gθ(zt)−zt∥2

∥zt∥2 decrease with increase in the number of fixed point solver iterations.

The performance saturates after a certain point once we have a reasonable estimate of the

fixed point. We consider the noiseless case, where we do not add any noise to inputs or

targets. 185

xvii

List of Tables

12.5 Results on Darcy flow: clean data (Col 4),noisy inputs (Col 5) and noisy observations

(Col 6) with max variance of added noise being (σ2
max)

i
and (σ2

max)
t
, respectively. Re-

ported test error has been averaged on three different runs with seeds 0, 1, and 2. Here,

S-FNO++, S-FNO-WT and S-FNO-DEQ are shallow versions of FNO++, FNO-WT

and FNO-DEQ respectively. 187

13.1 KS, ν = 0.1. The final time is 4 seconds and the trajectories contain 20 timesteps. For

each architecture, we tried 4 learning rates (0.002, 0.001, 0.0005 and 0.00025, each

with three different seeds. We present the results of the learning rate with the lowest

nRMSE averaged across the three seeds. The standard deviation is also with respect to

the seeds. 191

14.1 For each PDE family, we select one set of coefficients and use the data for training and

testing UPS. 197

14.2 Trainable parameters and training time for each LLM backbone. 198

14.3 Efficiency comparison for unified neural operators. 199

14.4 Training UPS with all of the 2D datasets in PDEBench and compare with MPP and

DPOT. Note that beyond these PDEBench datasets, MPP is also pretrained on PDEArena [Gupta

and Brandstetter, 2022] and DPOT is pretrained on PDEArena [Gupta and Brandstet-

ter, 2022] as well as CFDBench [Yining et al., 2023]. Baseline results taken from Hao

et al. [2024b]. ‘-’ means that the result is not available. 199

14.5 Time for few-shot experiments. Our model outperforms most existing baselines on

these tasks by using fewer than 500 samples and much shorter adaptation time. 200

15.1 Ablation: Diagonal parameter sharing works best. 206

15.2 Architectural and Training Details for BERT-B and Chimera on MLM 208

15.3 Hyperparameters used for ViT-B and Chimera for ImageNet-1k classification task . . . 209

15.5 Hyperparameters running Chimera on the Long Range Graph Benchmark 209

15.4 Key differences between the original and the ablation setting for Chimera 210

xviii

Part I

Beginnings

1

1 Introduction

Recent advancements in Machine Learning (ML) and Artificial Intelligence (AI) have revolutionized

modeling of language, vision, and video processing, inspiring a growing body of research leveraging these

tools for scientific applications. This thesis takes a step towards building a fundamental understanding of

how machine learning techniques apply to Partial Differential Equations (PDEs). Widely used to describe

scientific phenomena, PDEs are central to applications in physics, computational chemistry, climate sci-

ence, and weather modeling.

A partial differential equation (PDE) is a mathematical equation that describes the relationship between

a (potentially high-dimensional) function u ∈ Rd
and its partial derivatives. Unlike ordinary differential

equations (ODEs), which involve derivatives with respect to a single variable, PDEs can include partial

derivatives with respect to multiple dimensions. This additional complexity often makes PDEs signifi-

cantly more challenging to solve. For example, many PDEs that model complex phenomena, such as the

Navier-Stokes equations [Navier, 1821, 1822], lack closed-form solutions in most practical scenarios. As a

result, computational approximation methods are frequently employed to solve these equations. For low-

dimensional PDEs, widely used techniques include finite difference and finite element methods LeVeque

[2007], which discretize the domain into a mesh. However, these methods scale poorly with increasing

dimensionality, suffering from the so-called “curse of dimensionality”. This has motivated a rapidly grow-

ing area of research in data-driven approaches to solving PDEs, where recent experiments have shown

that for some PDEs deep networks can approximate solutions to high dimensional PDEs by seemingly

escaping the curse of dimensionality.

A PDE takes the following general form,

F

(
t, u,

∂u

∂t
,
∂2u

∂t2
, · · · , ∂

nu

∂tn
,
∂u

∂xi

,
∂u2

∂x2
i

, · · ·
)

= 0, t > 0, x ∈ Ω (1.1)

G

(
t, u,

∂u

∂t
,
∂2u

∂t2
, · · · , ∂

nu

∂tn
,
∂u

∂xi

,
∂u2

∂x2
i

, · · ·
)

= 0, t > 0, x ∈ ∂Ω (1.2)

u(0, x) = u0, x ∈ Ω, (1.3)

where, Ω ⊆ Rd
refers to the domain over which the PDE is defined, and x ∈ Rd

is the d-dimensional

spatial variable and t ∈ R denotes time. Here F in Equation 1.1 represents a general functional rela-

tionship between the function u ∈ Rd
with its partial derivatives over the domain Ω, and is referred to

as the governing equation. The function G in Equation 1.2 defines the relationship over the boundary

and is referred to as the boundary condition—and are typically less complex than the governing equation.

Finally, if the PDE evolves over time, in order to uniquely define the behavior of the solution we need to

define the initial conditions (Equation 1.3).

2

1 Introduction

The goal of applying machine learning techniques to PDEs is either to approximate the solution u di-

rectly using a neural network or to approximate the operator F , which defines the overall relationship,

using a neural network. Approaches that follow the former include Physics-Informed Neural Networks

(PINNs) [Raissi et al., 2019] and the Deep Ritz Method [Weinan and Yu, 2018]. These methods take as

input points sampled from the domain and train the neural network by minimizing a loss function that

enforces the constraints derived from the governing equations, boundary conditions, and initial condi-

tions—typically using the L2 norm.

While these techniques effectively leverage the function-approximation capabilities of neural networks,

they are limited to solving one specific PDE at a time. Recently, operator learning frameworks Chen and

Chen [1995], Li et al. [2020a], McCabe et al. [2023] have gained significant attention. These methods use

neural networks to approximate an infinite-dimensional operator that maps between functional spaces,

enabling them to learn solutions for entire families (or multiple families) of PDEs simultaneously.

In this thesis, we take a step towards building a foundational understanding of the algorithms, meth-

ods and benchmarks used in the ML for PDEs literature. We take both the theoretical and empirical

lens to answer important question such as representational and computational benefits of using neural

networks, as well as empirically exploring the architectural design space of neural operators.

1.1 Theoretical Results

This section aims at developing a theoretical understanding of when and for what families of PDEs, can

the solution be represented by a small neural network. Here, we show that for linear elliptic PDEs, if the

coefficients of the PDE can be approximated by small neural networks, then the neural network approxi-

mating the solution to the PDE will have polynomial in the input dimension number of parameters. We

then extend these results for a family of nonlinear elliptic PDEs by adopting the Barron norm of the func-

tion as the complexity measure. Here the results show that under certain conditions the Barron norm of

the solution will have a polynomial dependence on the input dimension.

This part of the thesis are based on the following papers:

• Tanya Marwah, Zachary C. Lipton, and Anderj Risteski. “Parametric Complexity Bounds for Ap-

proximating PDEs with Neural Networks”. In Advances in Neural Information Processing Systems,
2021.

• Tanya Marwah, Zachary C. Lipton, Jianfeng Lu, and Anderj Risteski. “Neural Network Approxi-

mations of PDEs Beyond Linearity: A Representational Perspective”. In International Conference
on Machine Learning, 2023.

1.2 Empirical Results

In this part we look into the empirical aspects of using machine learning and deep learning for model-

ing PDEs and explores the architectural design space of neural networks for approximating PDEs. First

3

1 Introduction

we study the effects of utilizing appropriate inductive biases in the design of neural network architec-

tures for approximating steady-state PDEs. Taking inspiration from classical numerical approaches of

fast-converging Newton-like iterative schemes, our results show the benefits of very deep, but heavily

weight-tied architectures as the appropriate architectural design choice for steady-state PDEs. We then

study the benefits of explicitly maintaining memory for modeling time-dependent PDEs and introduce a

framework that we refer to Memory Neural Operator (MemNO) which builds upon state space models

and neural operators to effectively model memory. This effect more pronounced under scenarios of par-

tial observability such as low-resolution grids and noise. We also shed light to how existing benchmarks

are too simple and can often result in incomplete conclusions in the field. Finally, we will see some of our

recent efforts towards building large multiphysics foundation models.

This part of the thesis are based on the following papers:

• Tanya Marwah, Ashwini Pokle, J. Zico Kolter, Zachary C. Lipton, Jianfeng Lu and Andrej Ris-

teski. “Deep Equilibrium Based Neural Operators for Steady-State PDEs”. In Advances in Neural
Information Processing Systems, 2023.

• Ricard Buitrago Ruiz, Tanya Marwah, Albert Gu, and Andrej Risteski. “On the Benefits of Mem-

ory for Modeling Time-Dependent PDEs”. In International Conference on Learning Representa-
tions, 2025.

• Junhong Shen, Tanya Marwah and Ameet Talwalkar. “UPS: Towards foundation models for pde

solving via cross-modal adaptation”. In Transactions of Machine Learning, 2024.

1.3 Graphs

In the final part of the thesis we take a detour and study Graph Neural Networks (GNNs) both from

architectural and representational perspectives. This is driven by the need to study and design architec-

tures capable of handling heterogeneous data—data sampled from irregular geometry, meshes, or other

scientific datasets such as molecules. First, we introduce Chimera, a unified framework that mathemat-

ically generalizes state space models to incorporate the topological structure of data in a principled way.

Chimera is topology aware and does not require any additional heuristics such as position encoding to

incorporate the graph structure of the underlying data. Finally, we theoretically study and empirically val-

idate the benefits of architectures that maintain and update edge embeddings when it comes to modeling

graph structured data. We show that architectures that maintain edge embeddings almost always improve

on their node-based counterparts—frequently significantly so in topologies that have “hub” nodes.

This part of the thesis are based on the following papers:

• Aakash Sunil Lahoti*, Tanya Marwah*, Ratish Pudupully, Albert Gu. “Chimera: State Space Mod-

els Beyond Sequences”. In Submission.

• Dhruv Rahotgi, Tanya Marwah, Zachary C. Lipton, Jianfeng Lu, Ankur Moitra and Andrej Ris-

teski. “Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks”. In
Submission.

4

Part II

Machine Learning for Partial

Differential Equations: Theoretical

Underpinnings

5

2 Parametric Complexity Bounds for

Approximating PDEs with Neural

Networks

Abstract: Recent experiments have shown that deep networks can approximate solutions to high-dimensional
PDEs, seemingly escaping the curse of dimensionality. However, questions regarding the theoretical basis for
such approximations, including the required network size remain open. In this paper, we investigate the rep-
resentational power of neural networks for approximating solutions to linear elliptic PDEs with Dirichlet
boundary conditions. We prove that when a PDE’s coefficients are representable by small neural networks,
the parameters required to approximate its solution scale polynomially with the input dimension d and pro-
portionally to the parameter counts of the coefficient networks. To this end, we develop a proof technique that
simulates gradient descent (in an appropriate Hilbert space) by growing a neural network architecture whose
iterates each participate as sub-networks in their (slightly larger) successors, and converge to the solution of
the PDE. We bound the size of the solution showing a polynomial dependence on d and no dependence on
the volume of the domain.

2.1 Introduction

A partial differential equation (PDE) relates a multivariate function defined over some domain to its par-

tial derivatives. Typically, one’s goal is to solve for the (unknown) function, often subject to additional

constraints, such as the function’s value on the boundary of the domain. PDEs are ubiquitous in both

the natural and social sciences, where they model such diverse processes as heat diffusion [Crank and

Nicolson, 1947, Özişik et al., 2017], fluid dynamics [Anderson and Wendt, 1995, Temam, 2001], and fi-

nancial markets [Black and Scholes, 1973, Ehrhardt and Mickens, 2008]. Because most PDEs of interest

lack closed-form solutions, computational approximation methods remain a vital and an active field of

research [Ames, 2014]. For low-dimensional functions, dominant approaches include the finite differ-

ences and finite element methods [LeVeque, 2007], which discretize the domain. After partitioning the

domain into a mesh, these methods solve for the function value at its vertices. However, these techniques

scale exponentially with the input dimension, rendering them unsuitable for high-dimensional problems.

Following breakthroughs in deep learning for approximating high-dimensional functions in such diverse

domains as computer vision [Krizhevsky et al., 2012, Radford et al., 2015] and natural language pro-

cessing [Bahdanau et al., 2014, Devlin et al., 2018, Vaswani et al., 2017b], a burgeoning line of research

leverages neural networks to approximate solutions to PDEs. This line of work has produced promising

empirical results for common PDEs such as the Hamilton-Jacobi-Bellman and Black-Scholes equations

6

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

[Han et al., 2018, Grohs et al., 2018, Sirignano and Spiliopoulos, 2018]. Because they do not explicitly

discretize the domain, and given their empirical success on high-dimensional problems, these methods

appear not to suffer the curse of dimensionality. However, these methods are not well understood the-

oretically, leaving open questions about when they are applicable, what their performance depends on,

and just how many parameters are required to approximate the solution to a given PDE.

Over the past three years, several theoretical works have investigated questions of representational power

under various assumptions. Exploring a variety of settings, Kutyniok et al. [2019], Grohs et al. [2018],

and Jentzen et al. [2018], proved that the number of parameters required to approximate a solution to a

PDE exhibits a less than exponential dependence on the input dimension for some special parabolic PDEs

that admit straightforward analysis. Grohs and Herrmann [2020] consider elliptic PDEs with Dirichlet

boundary conditions. However, their rate depends on the volume of the domain, and thus can have an

implicit exponential dependence on dimension (e.g., consider a hypercube with side length greater than

one).

In this paper, we focus on linear elliptic PDEs with Dirichlet boundary conditions, which are prevalent

in science and engineering (e.g., , the Laplace and Poisson equations). Notably, linear elliptic PDEs define

the steady state of processes like heat diffusion and fluid dynamics. Our work asks:

Question. How many parameters suffice to approximate the solution to a linear elliptic PDE up to a speci-
fied level of precision using a neural network?

We show that when the coefficients of the PDE are expressible as small neural networks (note that PDE

coefficients are functions), the number of parameters required to approximate the PDE’s solution is pro-

portional to the number of parameters required to express the coefficients. Furthermore, we show that

the number of parameters depends polynomially on the dimension and does not depend upon the vol-

ume of the domain.

2.2 Overview of Results

To begin, we formally define linear elliptic PDEs.

Definition 1 (Linear Elliptic PDE [Evans, 1998]). Linear elliptic PDEs with Dirichlet boundary condition
can be expressed in the following form:{

(Lu)(x) ≡ (−div(A∇u) + cu)(x) = f(x),∀x ∈ Ω,

u(x) = 0,∀x ∈ ∂Ω,

where Ω ⊂ Rd is a bounded open set with a boundary ∂Ω. Further, for all x ∈ Ω, A : Ω → Rd×d is a
matrix-valued function, s.t. A(x) ≻ 0, and c : Ω→ R, s.t. c(x) > 0. 1

We refer to A and c as the coefficients of the PDE. The divergence form in Definition 1 is one of two

canonical ways to define a linear elliptic PDE [Evans, 1998] and is convenient for several technical reasons

1
Here, div denotes the divergence operator. Given a vector field F : Rd → Rd

, div(F) = ∇ · F =
∑d

i=1
∂Fi

∂xi

7

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

(see Section 2.4). The Dirichlet boundary condition states that the solution takes a constant value (here

0) on the boundary ∂Ω.

Our goal is to express the number of parameters required to approximate the solution of a PDE in terms

of those required to approximate its coefficients A and c. Our key result shows:

Theorem (Informal). If the coefficients A, c and the function f are approximable by neural networks with
at most N parameters, the solution u⋆ to the PDE in Definition 1 is approximable by a neural network with
O(poly(d)N) parameters.

This result, formally expressed in Section 2.5, may help to explain the practical efficacy of neural net-

works in approximating solutions to high-dimensional PDEs with boundary conditions [Sirignano and

Spiliopoulos, 2018, Li et al., 2020a]. To establish this result, we develop a constructive proof technique

that simulates gradient descent (in an appropriate Hilbert space) through the very architecture of a neural

network. Each iterate, given by a neural network, is subsumed into the (slightly larger) network repre-

senting the subsequent iterate. The key to our analysis is to bound both (i) the growth in network size

across consecutive iterates; and (ii) the total number of iterates required.

2.3 Prior Work

Among the first papers to leverage neural networks to approximate solutions to PDEs with boundary

conditions are Lagaris et al. [1998], Lagaris et al. [2000], and Malek and Beidokhti [2006]. However,

these methods discretize the input space and thus are not suitable for high-dimensional input spaces.

More recently, mesh-free neural network approaches have been proposed for high-dimensional PDEs

[Han et al., 2018, Raissi et al., 2017, 2019], achieving impressive empirical results in various applications.

Sirignano and Spiliopoulos [2018] design a loss function that penalizes failure to satisfy the PDE, training

their network on minibatches sampled uniformly from the input domain. They also provide a universal

approximation result, showing that for sufficiently regularized PDEs, there exists a multilayer network

that approximates its solution. However, they do not comment on the complexity of the neural network

or how it scales with the input dimension. Khoo et al. [2017] also prove universal approximation power,

albeit with networks of size exponential in the input dimension. Recently, Grohs et al. [2018], Jentzen

et al. [2018] provided a better-than-exponential dependence on the input dimension for some special

parabolic PDEs, for which the simulating a PDE solver by a neural network is straightforward.

Several recent works [Bhattacharya et al., 2020, Kutyniok et al., 2019, Li et al., 2020b,a] show (experi-

mentally) that a single neural network can solve for an entire family of PDEs. They approximate the map

from a PDE’s parameters to its solution, potentially avoiding the trouble of retraining for every set of

coefficients. Among these, only Kutyniok et al. [2019] provides theoretical grounding. However, they

assume the existence of a finite low-dimensional space with basis functions that can approximate this

parametric map—and it is unclear when this would obtain. Our work proves the existence of such maps,

under the assumption that the family of PDEs has coefficients described by neural networks with a fixed

architecture (Section 2.7).

8

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

In the work most closely related to ours, Grohs and Herrmann [2020] provides approximation rates

polynomial in the input dimension d for the Poisson equation (a special kind of linear elliptic PDE)

with Dirichlet boundary conditions. They introduce a walk-on-the-sphere algorithm, which simulates

a stochastic differential equation that can be used to solve a Poisson equation with Dirichlet boundary

conditions (see, e.g., Oksendal [2013]’s Theorem 9.13). The rates provided in Grohs and Herrmann

[2020] depend on the volume of the domain, and thus depend, implicitly, exponentially on the input

dimensiond. Our result considers the boundary condition for the PDE and is independent of the volume

of the domain. Further, we note that our results are defined for a more general linear elliptic PDE, of

which the Poisson equation is a special case.

2.4 Notation and Definitions

We now introduce several key concepts from PDEs and some notation. For any open set Ω ⊂ Rd
, we

denote its boundary by ∂Ω and denote its closure by Ω̄ := Ω ∪ ∂Ω. By C0(Ω), we denote the space

of real-valued continuous functions defined over the domain Ω. Furthermore, for k ∈ N, a function g
belongs to Ck(Ω) if all partial derivatives ∂αg exist and are continuous for any multi-index α, such that

|α| ≤ k. Finally, a function g ∈ C∞(Ω) if g ∈ Ck(Ω) for all k ∈ N. Next, we define several relevant

function spaces:

Definition 2. For any k ∈ N ∪ {∞}, Ck
0 (Ω) := {g : g ∈ Ck(Ω), supp(g) ⊂ Ω}.

Definition 3. For a domain Ω, the function space L2(Ω) consists of all functions g : Ω→ R, s.t. ∥g∥2 <
∞ where ∥g∥2 =

(∫
Ω
|g(x)|2dx

) 1
2 . This function space is equipped with the inner product

⟨g, h⟩2 =
∫
Ω

g(x)h(x)dx.

Definition 4. For a domain Ω and a function g : Ω → R, the function space L∞(Ω) is defined analo-
gously, where ∥g∥L∞(Ω) = inf{c ≥ 0 : |g(x)| ≤ c for almost all x ∈ Ω}.

Definition 5. For a domain Ω and m ∈ N, we define the Hilbert space Hm(Ω) as

Hm(Ω) := {g : Ω→ R : ∂αg ∈ L2(Ω), ∀α s.t. |α| ≤ m}

Furthermore, Hm(Ω) is equipped with the inner product, ⟨g, h⟩Hm(Ω) =
∑

|α|≤m

∫
Ω
(∂αg)(∂αh)dx and

the corresponding norm

∥g∥Hm(Ω) =

∑
|α|≤m

∥∂αg∥2L2(Ω)

 1
2

.

Definition 6. The closure of C∞
0 (Ω) in Hm(Ω) is denoted by Hm

0 (Ω).

9

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

Informally, Hm
0 (Ω) is the set of functions belonging to Hm(Ω) that can be approximated by a sequence

of functions ϕn ∈ C∞
0 (Ω). This also implies that if a function g ∈ Hm

0 (Ω), then g(x) = 0 for all

x ∈ ∂Ω. This space (particularly withm = 1) is often useful when analyzing elliptic PDEs with Dirichlet

boundary conditions.

Definition 7 (Weak Solution). Given the PDE in Definition 1, if f ∈ 2, then a function u : Ω → R
solves the PDE in a weak sense if u ∈ H1

0 (Ω) and for all v ∈ H1
0 (Ω), we have∫

Ω

(A∇u · ∇v + cuv)dx =

∫
Ω

fvdx (2.1)

The left hand side of Equation 2.1 is also equal to ⟨Lu, v⟩2 for allu, v ∈ H1
0 (Ω) (see Lemma 27), whereas,

following the definition of the 2 norm, the right side is simply ⟨f, v⟩2. Having introduced these pre-

liminaries, we now introduce some important facts about linear PDEs that feature prominently in our

analysis.

Proposition 1. For the PDE in Definition 1, if f ∈ 2 the following hold:

1. The solution to Equation Equation 2.1 exists and is unique.

2. The weak solution is also the unique solution of the following minimization problem:

u⋆ = argmin
v∈H1

0 (Ω)

J(v) := argmin
v∈H1

0 (Ω)

{
1

2
⟨Lv, v⟩2 − ⟨f, v⟩2

}
. (2.2)

This proposition is standard (we include a proof in the Appendix, Section 10.1.1 for completeness) and

states that there exists a unique solution to the PDE (referred to as u⋆
), which is also the solution we get

from the variational formulation in Equation 2.2. In this work, we introduce a sequence of functions

that minimizes the loss in the variational formulation.

Definition 8 (Eigenvalues and Eigenfunctions, Evans [1998]). Given an operatorL, the tuples (λ, φ)∞i=1,
whereλi ∈ R andφi ∈ H1

0 (Ω) are (eigenvalue, eigenfunction) pairs that satisfyLφ = λφ, for allx ∈ Ω.
Since φ ∈ H1

0 (Ω), we know that φ|∂Ω = 0. The eigenvalue can be written as

λi = inf
u∈Xi

⟨Lu, u⟩2
∥u∥22

, (2.3)

where Xi := span{φ1, . . . , φi}⊥ = {u ∈ H1
0 (Ω) : ⟨u, φj⟩2 = 0 ∀j ∈ {1, · · · , i}} and 0 <

λ1 ≤ λ2 ≤ · · · . Furthermore, we define by Φk the span of the first k eigenfunctions of L, i.e., Φk :=
span{φ1, · · · , φk}.

We note that since the operator L is self-adjoint and elliptic (in particular, L−1
is compact), the eigen-

values are real and countable. Moreover, the eigenfunctions form an orthonormal basis of H1
0 (Ω) (see

Evans [1998], Section 6.5).

10

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

2.5 Main Result

Before stating our results, we provide the formal assumptions on the PDEs of interest: Assumptions:

1. Smoothness: We assume that ∂Ω ∈ C∞
. We also assume that the coefficient A ∈ Ω → Rd×d

is a symmetric matrix-valued function, i.e., A = (aij(x)) and aij(x) ∈ L∞(Ω) for all i, j ∈ [d]
and the function c ∈ L∞(Ω) and c(x) ≥ ζ > 0 for all x ∈ Ω. Furthermore, we assume that

aij, c ∈ C∞
. We define a constant

C := (2d2 + 1)max

{
max
α:|α|≤3

max
i,j
∥∂αaij∥L∞(Ω), max

α:|α|≤2
∥∂αc∥L∞(Ω)

}
.

Further, the function f ∈ 2 is also in C∞
and the projection of f onto span{φ1, · · · , φk}which

we denote fspan satisfies for any multi-index α: ∥∂αf − ∂αfspan∥2 ≤ ϵspan.
2

2. Ellipticity: There exist constants M ≥ m > 0 such that, for all x ∈ Ω and ξ ∈ Rd
,

m∥ξ∥2 ≤
d∑

i,j=1

aij(x)ξiξj ≤M∥ξ∥2.

3. Neural network approximability: There exist neural networks Ã and c̃ with NA, Nc ∈ N pa-

rameters, respectively, that approximate the functions A and c, i.e., ∥A − Ã∥L∞(Ω) ≤ ϵA and

∥c − c̃∥L∞(Ω) ≤ ϵc, for small ϵA, ϵc ≥ 0. We assume that for all u ∈ H1
0 (Ω) the operator L̃

defined as,

L̃u = −divx(Ã∇u) + c̃u. (2.4)

is elliptic with (λ̃i, φ̃i)
∞
i=1 (eigenvalue, eigenfunction) pairs. We also assume that there exists a

neural network fnn ∈ C∞
with Nf ∈ N parameters such that for any multi-index α, ∥∂αf −

∂αfnn∥2 ≤ ϵnn. By Σ, we denote the set of all (infinitely differentiable) activation functions used

by networks Ã, c̃, and fnn. By Σ′
, we denote the set that contains all the n-th order derivatives of

the activation functions in Σ, ∀n ∈ N0

Intuitively, ellipticity of L in a linear PDE Lu = f is analogous to positive definiteness of a matrix

Q ∈ Rd
in a linear equation Qx = k, where x, k ∈ Rd

.

In (iii), we assume that the coefficients A and c, and the function f can be approximated by neural net-

works. While this is true for any smooth functions given sufficiently large NA, Nc, Nf , our results are

most interesting when these quantities are small (e.g. subexponential in the input dimension d). For

many PDEs used in practice, approximating the coefficients using small neural networks is straightfor-

ward. For example, in heat diffusion (whose equilibrium is defined by a linear elliptic PDE) A(x) defines

the conductivity of the material at point x. If the conductivity is constant, then the coefficients can be

written as neural networks with O(1) parameters.

2
Since ∂Ω ∈ C∞

and the functions aij , c and f are all in C∞
, it follows from Nirenberg [1955] (Theorem, Section 5) the

eigenfuntions of L are also C∞
. Hence, the function fspan is in C∞

as well.

11

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

The part of assumption (i) that stipulates that f is close to fspan can be thought of as a smoothness condi-

tion onf . For instance, ifL = −∆ (the Laplacian operator), the Dirichlet form satisfies
⟨Lu,u⟩2
∥u∥22

= ∥∇u∥2
∥u∥2 ,

so eigenfunctions corresponding to higher eigenvalues tend to exhibit a higher degree of spikiness. The

reader can also think of the eigenfunctions corresponding to larger k as Fourier basis functions corre-

sponding to higher frequencies.

Finally, in (i) and (iii), while the requirement that the function pairs (f , fnn) and (f , fspan) are close not

only in their values, but their derivatives as well is a matter of analytical convenience, our key results do

not necessarily depend on this precise assumption. Alternatively, we could replace this assumption with

similar (but incomparable) conditions: e.g., we can also assume closeness of the values and a rapid decay

of theL2
norms of the derivatives. We require control over the derivatives because our method’s gradient

descent iterations involve repeatedly applying the operator L to f—which results in progressively higher

derivatives.

We can now formally state our main result:

Theorem 1 (Main Theorem). Consider a linear elliptic PDE satisfying Assumptions (i)-(iii), and letu⋆ ∈
H1

0 (Ω) denote its unique solution. If there exists a neural network u0 ∈ H1
0 (Ω) with N0 parameters, such

that ∥u⋆ − u0∥2 ≤ R, for some R < ∞, then for every T ∈ N such that T ≤ 1
20min(λk,1)δ

, there exists a
neural network uT with size

O
(
d2T (N0 +NA) + T (Nf +Nc)

)
such that ∥u⋆ − uT∥2 ≤ ϵ+ ϵ̃ where

ϵ :=

(
λ̃k − λ̃1

λ̃k + λ̃1

)T

R,

ϵ̃ :=
ϵspan
λ1

+
δ

λ1

∥f∥2
γ − δ

+ δ∥u⋆∥2 + (max{1, T 2Cη})T
(
ϵspan + ϵnn + 4

(
1 +

δ

γ − δ

)
λT
k ∥f∥2

)
,

and η := 2
λ̃1+λ̃k

, δ := max
{

ϵA
m
, ϵc
ζ

}
. Furthermore, the activation functions used in uT belong to the set

Σ ∪ Σ′ ∪ {ρ} where ρ(y) = y2 for all y ∈ R is the square activation function.

This theorem shows that given an initial neural network u0 ∈ H1
0 (Ω) containing N0 parameters, we

can recover a neural network that is ϵ close to the unique solution u⋆
. The number of parameters in uϵ

depend on how close the initial estimate u0 is to the solution u⋆
, and N0. This results in a trade-off,

where better approximations may require more parameters, compared to a poorer approximation with

fewer parameters.

Note that ϵ → 0 as T → ∞, while ϵ̃ is a “bias” error term that does not go to 0 as T → ∞. The

first three terms in the expression for ϵ̃ result from bounding the difference between the solutions to the

equations Lu = f and L̃u = fspan, whereas the third term is due to difference between f and fnn and

the fact that our proof involves simulating the gradient descent updates with neural networks. Further, if

the constant ζ is equal to 0 then the error term ϵc will also be 0, in which case the term δ will equal ϵA/m.

12

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

The fact that ϵ :=
(

λ̃k−λ̃1

λ̃k+λ̃1

)T
R comes from the fact that we are simulating T steps of a gradient descent-

like procedure on a strongly convex loss. The parameters λ̃k and λ̃1 can be thought of as the effective

Lipschitz and strong-convexity constants of the loss. Finally, to give a sense of whatR looks like, we show

in Lemma 1 that if u0 is initialized to be identically zero then R ≤ ∥f∥2
λ1

.

Lemma 1. If u0 = 0, then R ≤ ∥f∥2
λ1

.

Proof. Given that u0 is identically 0, the value of R in Theorem 1 equals ∥u⋆− u0∥2 = ∥u⋆∥2 Using the

inequality in (2), we have,

∥u⋆∥22 ≤
⟨Lu⋆, u⋆⟩

λ1

≤ 1

λ1

⟨f, u⋆⟩2

≤ 1

λ1

∥f∥2∥u⋆∥2

=⇒ ∥u⋆∥2 ≤
1

λ1

∥f∥2

We make few remarks about the theorem statement:

Remark 1. While we state our convergence results in 2 norm, our proof works for the H1
0 (Ω) norm as well.

This is because in the space defined by the top-k eigenfunctions of the operator L, 2 and H1
0 (Ω) norm are

equivalent (shown in Proposition 13). Further, note that even though we have assumed that u⋆ ∈ H1
0 (Ω) is

the unique solution of (2.1) from the boundary regularity condition, we have that u⋆ ∈ H2(Ω) (see Evans
[1998], Chapter 6, Section 6.3). This ensures that the solution u⋆ is twice differentiable as well.

Remark 2. To get a sense of the scale ofλ1 andλk, whenL = −∆ (the Laplacian operator), the eigenvalue
λ1 = infu∈H1

0 (Ω)
∥∇u∥2
∥u∥2 = 1

Cp
, where Cp is the Poincaré constant (see Theorem 14 in Appendix). For

geometrically well-behaved sets Ω (e.g. convex sets with a strongly convex boundary, like a sphere), Cp is even
dimension-independent. Further from the Weyl’s law operator (Evans [1998], Section 6.5) we have

lim
k→∞

λ
d/2
k

k
=

(2π)d

vol(Ω)α(d)

where α(d) is the volume of a unit ball in d dimensions. So, if vol(Ω) ≥ 1/α(d), λk grows as O(k2/d),
which is a constant so long as log kL2(Ω)d.

2.6 Proof of Main Result

First, we provide some intuition behind the proof, via an analogy between a uniformly elliptic operator

and a positive definite matrix in linear algebra. We can think of finding the solution to the equation

13

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

Lu = f for an elliptic L as analogous to finding the solution to the linear system of equations Qx = k,

where Q is a d×d positive definite matrix, and x and k are d-dimensional vectors. One way to solve such

a linear system is by minimizing the strongly convex function ∥Qx − b∥2 using gradient descent. Since

the objective is strongly convex, after O(log(1/ϵ)) gradient steps, we reach an ϵ-optimal point in an l2
sense.

Our proof uses a similar strategy. First, we show that for the operatorL, we can define a sequence of func-

tions that converge to an ϵ-optimal function approximation (in this case in the 2 norm) afterO(log(1/ϵ)
steps—similar to the rate of convergence for strongly convex functions. Next, we inductively show that

each iterate in the sequence can be approximated by a small neural network. More precisely, we show

that given a bound on the size of the t-th iterate ut, we can, in turn, upper bound the size of the (t+ 1)-

th iterate ut+1 because the update transforming ut to ut+1 can be simulated by a small neural network

(Lemma 7). These iterations look roughly likeut+1 ← ut−η(Lut−f), and we use a “backpropagation”

lemma (Lemma 8) which bounds the size of the derivative of a neural network.

2.6.1 Defining a Convergent Sequence

The rough idea is to perform gradient descent in 2 [Neuberger, 2009, Faragó and Karátson, 2001, 2002]

to define a convergent sequence whose iterates converge to u⋆
in 2 norm (and following Remark 1, in

H1
0 (Ω) as well). However, there are two obstacles to defining the iterates as simplyut+1 ← ut−η(Lut−

f): (1) L is unbounded—so the standard way of choosing a step size for gradient descent (roughly the

ratio of the minimum and maximum eigenvalues of L) would imply choosing a step size η = 0, and (2)

L does not necessarily preserve the boundary conditions, so if we start with ut ∈ H1
0 (Ω), it may be that

Lut − f does not even lie in H1
0 (Ω).

We resolve both issues by restricting the updates to the span of the first k eigenfunctions of L. More

concretely, as shown in Lemma 2, if a function u in span{φ1, · · · , φk}, then the function Lu will also

lie in span{φ1, · · · , φk}. We also show that within the span of the first k eigenfunctions, L is bounded

(with maximum eigenvalue λk), and can therefore be viewed as an operator from span{φ1, · · · , φk}
to span{φ1, · · · , φk}. Further, we use fspan instead of f in our updates, which now have the form

ut+1 ← ut− η(Lut− fspan). Since fspan belongs to span{φ1, · · · , φk}, for a ut in span{φ1, · · · , φk}
the next iterate ut+1 will now remain in span{φ1, · · · , φk}. Continuing the matrix analogy, we can

choose the usual step size of η = 2
λ1+λk

. Precisely, we show:

Lemma 2. Let L be an elliptic operator. Then, for all v ∈ Φk it holds:

1. Lv ∈ span{φ1, · · · , φk}.

2. λ1∥v∥2 ≤ ⟨Lv, v⟩2 ≤ λk∥v∥2

3.
∥∥∥(I − 2

λk+λk
L
)
u
∥∥∥
2
≤ λk−λ1

λk+λ1
∥u∥2

Proof. Writingu ∈ span{φ1, · · · , φk} asu =
∑

i diφi wheredi = ⟨u, φi⟩2, we haveLu =
∑k

i=1 λidiφi.

Therefore Lu ∈ Φ̃K and Lu lies in H1
0 (Ω), proving (1.).

14

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

Since v ∈ Φk, we use the definition of eigenvalues in (2.3) to get,

⟨Lv, v⟩2
∥v∥2

≤ sup
v

⟨Lv, v⟩2
∥v∥2

= λk

=⇒ ⟨Lv, v⟩2 ≤ λk∥v∥22

and similarly

⟨Lv, v⟩2
∥v∥2

≥ inf
v

⟨Lv, v⟩2
∥v∥2

= λ1

=⇒ ⟨Lv, v⟩2 ≥ λ1∥v∥22

In order to prove (2.) let us first denote L̄ :=
(
I − 2

λk+λ1
L
)

. Note if φ is an eigenfunction of L with

corresponding eigenvalue λ, it is also an eigenfunction of L̄ with corresponding eigenvalue
λk+λ1−2λ
λk+λ1

.

Hence, writing u ∈ Φk as u =
∑k

i=1 diφi, where di = ⟨u, φi⟩, we have

∥L̄u∥22 =

∥∥∥∥∥
k∑

i=1

λk + λ1 − 2λi

λk + λ1

diφi

∥∥∥∥∥
2

2

≤ max
i∈k

(
λk + λ1 − 2λi

λk + λ1

)2
∥∥∥∥∥

k∑
i=1

diφi

∥∥∥∥∥
2

2

(2.5)

By the orthogonality of {φi}ki=1, we have∥∥∥∥∥
k∑

i=1

diφi

∥∥∥∥∥
2

2

=
k∑

i=1

d2i = ∥u∥22

Since λ1 ≤ λ2 · · · ≤ λk, we have λk + λ1 − 2λi ≥ λ1 − λk and λk + λ1 − 2λi ≤ λk − λ1, so

|λk + λ1 − 2λi| ≤ λk − λ1. This implies maxi∈k

(
λk+λ1−2λi

λk+λ1

)2
≤
(

λ1−λk

λ1+λk

)2
. Plugging this back in

Equation 2.5, we get the claim we wanted.

In fact, we will use a slight variant of the updates and instead set ut+1 ← ut − η(L̃u − f̃span) as the

iterates of the convergent sequence, where f̃span is the projections of f onto Φ̃K . This sequence satisfies

two important properties: (1) The convergence point of the sequence and u⋆
, the solution to the original

PDE, are not too far from each other; (2) The sequence of functions converges exponentially fast. In

Section 2.6.2, we will see that updates defined thusly will be more convenient to simulate via a neural

network.

The first property is formalized as follows:

Lemma 3. Assume that ũ⋆
span is the solution to the PDE L̃u = f̃span, where f̃span : H1

0 (Ω) → R is
the projections of f onto Φ̃K . Given Assumptions (i)-(iii), we have ∥u⋆ − ũ⋆

span∥2 ≤ ϵ, such that ϵ =
ϵspan
λ1

+ δ
λ1

∥f∥2
γ−δ

+ δ∥ũ⋆
span∥2, where γ = 1

λk
− 1

λk+1
and δ = max

{
ϵA
m
, ϵc
ζ

}
.

15

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

The proof for Lemma 3 is provided in the Appendix (Section 10.2.1). Each of the three terms in the final

error captures different sources of perturbation: the first term comes from approximating f by fspan; the

second term comes from applying Davis-Kahan [Davis and Kahan, 1970] to bound the “misalignment”

between the eigenspaces span{φ1, · · · , φk} and Φ̃K (hence, the appearance of the eigengap between the

k and (k + 1)-st eigenvalue of L−1
); the third term is a type of “relative” error bounding the difference

between the solutions to the PDEs Lu = f̃span and L̃u = f̃span.

The “misalignment” term can be characterized through the following lemma:

Lemma 4 (Bounding distance between fspan and f̃span). Given Assumptions (i)-(iii)and denoting the
projection of f onto Φ̃K by f̃span we have:

∥fspan − f̃span∥2 ≤
∥f∥2δ
γ − δ

(2.6)

where δ = max
{

ϵA
m
, ϵc
ζ

}
.

Proof. Let us write fspan =
∑k

i=1 fiφi where fi = ⟨f, φi⟩2. Further, we can define a function f̃span ∈
Φ̃K such that f̃span =

∑k
i=1 f̃iφ̃i such that f̃i = ⟨f, φ̃i⟩2.

If Pkg :=
∑k

i=1⟨g, φi⟩2φi and P̃kg :=
∑k

i=1⟨g, φ̃i⟩2φ̃i denote the projection of a function g onto

span{φ1, · · · , φk} and Φ̃K , from Lemma 28, we have:

∥fspan − f̃span∥2 =

∥∥∥∥∥
k∑

i=1

⟨f, φi⟩2φi − ⟨f, φ̃i⟩2φ̃i

∥∥∥∥∥
2

=
∥∥∥Pkf − P̃kf

∥∥∥
2

≤ ∥Pk − P̃k∥∥f∥2

≤ δ

γ − δ
∥f∥2

where γ = 1
λk
− 1

λk+1
, and δ = max

{
ϵA
m
, ϵc
ζ

}
.

The main technical tool for bounding the difference between the operators L and L̃ can be formalized

through the lemma below. Note, the “relative” nature of the perturbation is because L and L̃ are not

bounded operators.

Lemma 5 (Relative operator perturbation bound). Consider the operator L̃ defined in Equation 2.4, then
for all u ∈ H1

0 (Ω) we have the following:

1. ⟨(L̃− L)u, u⟩ ≤ δ⟨Lu, u⟩

2. ⟨(L−1L̃− I)u, u⟩2 ≤ δ∥u∥22

16

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

where δ = max
{

ϵA
m
, ϵc
ζ

}
.

Proof.

⟨(L̃− L)u, u⟩ =
∫
Ω

(
(Ã− A)∇u · ∇u+ (c̃− c)u2

)
dx

≤
(
max
ij
∥Ãij − Aij∥L∞(Ω)

)
∥∇u∥22 + ∥c̃− c∥L∞(Ω)∥u∥22

≤ ϵA∥∇u∥22 + ϵc∥u∥22 (2.7)

Further, note that

⟨Lu, u⟩ =
∫
Ω

A∇u · ∇u+ cu2dx

≥ m∥∇u∥22 + ζ∥u∥22 (2.8)

Using the inequality
a+b
c+d
≥ min{a

c
, b
d
} from Equation 2.7 and Equation 2.8, we have

m∥∇u∥22 + ζ∥u∥22
ϵA∥∇u∥22 + ϵc∥u∥22

≥ min

{
m

ϵA
,
ζ

ϵc

}
(2.9)

Hence this implies that

⟨(L̃− L)u, u⟩ ≤ δ⟨Lu, u⟩

where δ = max
{

ϵA
m
, ϵc
ζ

}
proving part (1.).

Further, for part (2.) we have for all u ∈ H1
0 (Ω),

⟨(L̃− L)u, u⟩2 ≤ δ⟨Lu, u⟩2
=⇒ ⟨(L̃L−1 − I)Lu, u⟩2 ≤ δ⟨Lu, u⟩2
=⇒ ⟨(L̃L−1 − I)v, u⟩2 ≤ δ⟨v, u⟩2
=⇒ ⟨(L̃L−1)v, u⟩2 ≤ (1 + δ)⟨v, u⟩2 (2.10)

where v = Lu. Therefore using Equation 2.10 the following holds for all u ∈ H1
0 (Ω),

⟨(L̃L−1)u, u⟩2 ≤ (1 + δ)∥u∥22
(1)
=⇒ ⟨u, (L−1L̃)u⟩2 ≤ (1 + δ)∥u∥22
(2)
=⇒ ⟨(L−1L̃− I)u, u⟩2 ≤ δ∥u∥22 (2.11)

where we use the fact that the operators L̃ and L−1
are self-adjoint to get (1) and then bring the appro-

priate terms to the LHS in (2).

17

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

The second property of the sequence of functions is that they converge exponentially fast. Namely, we

show:

Lemma 6 (Convergence of gradient descent inL2
). Let ũ⋆

span denote the unique solution to the PDE L̃u =

f̃span, where f̃span ∈ Φ̃K , and the operator L̃ satisfies the conditions in Lemma 2. For any u0 ∈ H1
0 (Ω)

such that u0 ∈ Φ̃K , we define the sequence

ut+1 ← ut −
2

λ̃1 + λ̃k

(L̃ut − f̃span) (t ∈ N) (2.12)

where for all t ∈ N, ut ∈ H1
0 (Ω). Then for any t ∈ N, we have

∥ut − ũ⋆
span∥2 ≤

(
λ̃k − λ̃1

λ̃k + λ̃1

)t−1

∥u0 − ũ⋆
span∥2

The proof is essentially the same as the the analysis of the convergence time of gradient descent for strongly

convex losses. Namely, we have:

Proof. Given that u0 ∈ H1
0 (Ω) and u0 ∈ Φ̃K the function L̃u0 ∈ H1

0 (Ω) and L̃u0 ∈ Φ̃K as well (from

Lemma 2).

As f̃span ∈ Φ̃K , all the iterates in the sequence will also belong to H1
0 (Ω) and will lie in the Φ̃K .

Now at a step t the iteration looks like,

ut+1 = un −
2

λ̃k + λ̃1

(
L̃ut − f̃span

)
ut+1 − ũ⋆

span =

(
I − 2

λ̃k + λ̃1

L̃

)
(ut − ũ⋆

span)

Using the result from Lemma 2, part 3. we have,

∥ut+1 − ũ⋆
span∥2 ≤

(
λ̃k − λ̃1

λ̃k + λ̃1

)
∥ut − ũ⋆

span∥2

=⇒ ∥ut+1 − ũ⋆
span∥2 ≤

(
λ̃k − λ̃1

λ̃k + λ̃1

)t

∥u0 − ũ⋆
span∥2

This finishes the proof.

Combining the results from Lemma 3 and Lemma 6 via triangle inequality, we have:

∥u⋆ − uT∥2 ≤ ∥u⋆ − ũ⋆
span∥2 + ∥ũ⋆

span − uT∥2

18

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

and the first term on the RHS subsumes the first three summands of ϵ̃ defined in Theorem 1.

2.6.2 Approximating iterates by neural networks

In Lemma 6, we show that there exists a sequence of functions (2.12) which converge fast to a function

close to u⋆
. The next step in the proof is to approximate the iterates by neural networks.

The main idea is as follows. Suppose first the iteratesut+1 = ut−η(L̃ut− f̃span) are such that f̃span is ex-

actly representable as a neural network. Then, the iterateut+1 can be written in terms of three operations

performed on ut, a and f : taking derivatives, multiplication and addition. Moreover, if g is representable

as a neural network with N parameters, the coordinates of the vector∇g can be represented by a neu-

ral network with O(N) parameters. This is a classic result (Lemma 8), essentially following from the

backpropagation algorithm. Finally, addition or multiplication of two functions representable as neural

networks with sizes N1, N2 can be represented as neural networks with size O(N1+N2) (see Lemma 9).

Using these facts, we can write down a recurrence upper bounding the size of neural network approxi-

mation ut+1, denoted by ût+1, in terms of the number of parameters in ût (which is the neural network

approximation to ut). Formally, we have:

Lemma 7 (Recursion Lemma). Given the Assumptions (i)-(iii), consider the update equation

ût+1 ← ût −
2

λ̃1 + λ̃k

(
L̃ût − fnn

)
(2.13)

If at step t, ût : Rd → R is a neural network withNt parameters, then the function ût+1 is a neural network
with O(d2(NA +Nt) +Nt +Nf̃ +Nc) parameters.

Proof. Expand the update ût+1 ← ût − η
(
L̃ût − fnn

)
as follows:

ût+1 ← ût − η

(
d∑

i,j=1

ãij∂ijût +
d∑

j=1

(
d∑

i=1

∂iãij

)
∂jût + c̃ût − fnn

)
.

Using Lemma 8, ∂ijût, ∂jût and ∂iãij can be represented by a neural network with O(Nt), O(Nt) and

O(NA) parameters, respectively. Further, ∂iãij∂ju and ãij∂ijû can be represented by a neural network

with O(NA + Nt) parameters, and c̃ût can be represented by a network with O(Nt + Nc) parameters,

from Lemma 9. Hence ût+1 can be represented in O(d2(NA+Nt)+Nf +Nc+Nt) parameters. Note

that, throughout the entire proofs O hides independent constants.

Combining the results of Lemma 6 and Lemma 7, we can get a recurrence for the number of parameters

required to represent the neural network ût:

Nt+1 ≤ d2Nt + d2NA +Nt +Nf̃ +Nc

19

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

Unfolding this recurrence, we get NT ≤ d2TN0 +
d2(dT−1)

d2−1
NA + T (Nf) +Nc).

The formal lemmas for the different operations on neural networks we can simulate using a new neural

network are as follows:

Lemma 8 (Backpropagation, Rumelhart et al. [1986]). Consider neural network g : Rm → Rwith depth
l, N parameters and differentiable activation functions in the set {σi}Ai=1. There exists a neural network of
sizeO(l+N) and activation functions in the set {σi, σ

′
i}Ai=1 that calculates the gradient dg

di
for all i ∈ [m].

Lemma 9 (Addition and Multiplication). Given neural networks g : Ω → R, h : Ω → R, with Ng

and Nh parameters respectively, the operations g(x) + h(x) and g(x) · h(x) can be represented by neural
networks of size O(Ng +Nh), and square activation functions.

Proof. For Addition, there exists a network h containing both networks f and g as subnetworks and an

extra layer to compute the addition between their outputs. Hence, the total number of parameters in

such a network will be O(Nf +Ng).

For Multiplication, consider the operation f(x) · g(x) = 1
2

(
(f(x) + g(x))2 − f(x)2 − g(x)2

)
. Then

following the same argument as for addition of two networks, we can construct a network h containing

both networks and square activation function.

While the representation result in Lemma 9 is shown using square activation, we refer to Yarotsky [2017]

for approximation results with ReLU activation. The scaling with respect to the number of parameters

in the network remains the same.

Finally, we have to deal with the fact that f̃span is not exactly a neural network, but only approximately

so. The error due to this discrepancy can be characterized through the following lemma:

Lemma 10 (Error using fnn). Consider the update equation in Equation 2.13, where fnn is a neural net-
work with Nf . Then the neural network ût approximates the function ut such that ∥ut− ût∥2 ≤ ϵ

(t)
nn where

ϵ
(t)
nn is

O

(
(max{1, t2ηeC})t

(
ϵspan + ϵnn + 4

(
1 +

δ

γ − δ

)
λt
k∥f∥2

))
where δ = max

{
ϵA
m
, ϵc
ζ

}
, γ = 1

λk
− 1

λk+1
, and α is a multi-index.

The proof for the lemma is deferred to Section 10.2.2 of the Appendix. The main strategy to prove this

lemma involves tracking the “residual” non-neural-network part of the iterates. Precisely, for every t ∈ N,

we will write ut = ût + rt, s.t. ût is a neural network and bound ∥rt∥2. {ût}∞t=0 is defined such that{
û0 = u0,

ût+1 = ût − η
(
L̃ût − fnn

)

20

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

Correspondingly, as rt = ut − ût, we have:{
r0 = 0,

rt+1 = (I − ηL̃)rt − r

Unfolding the recurrence, we have rt =
∑t−1

i=0(I−ηL̃)(i)r, which reduces the proof to bounding ∥(I−
ηL̃)(i)∥2.

3

2.7 Applications to Learning Operators

A number of recent works attempt to simultaneously approximate the solutions for an entire family of

PDEs by learning a parametric map that takes as inputs (some representation of) the coefficients of a

PDE and returns its solution [Bhattacharya et al., 2020, Li et al., 2020b,a]. For example, given a set of

observations that {aj, uj}Nj=1, where each aj denotes a coefficient of a PDE with corresponding solution

uj , they learn a neural network G such that for all j, uj = G(aj). Our parametric results provide useful

insights for why simultaneously solving an entire family of PDEs with a single neural networkG is possible

in the case of linear elliptic PDEs.

Consider the case where the coefficients aj in the family of PDEs are given by neural networks with a

fixed architecture, but where each instance of a PDE is characterized by a different setting of the weights

in the models representing the coefficients. Lemma 7 shows that each iteration of our sequence (2.12)

constructs a new network containing both the current solution and the coefficient networks as subnet-

works. We can view our approximation as not merely approximating the solution to a single PDE but to

every PDE in the family, by treating the coefficient networks as placeholder architectures whose weights

are provided as inputs. Thus, our construction provides a parametric map between the coefficients of an

elliptic PDE in this family and its solution.

2.8 Conclusion and Future Work

We derive parametric complexity bounds for neural network approximations for solving linear elliptic

PDEs with Dirichlet boundary conditions, whenever the coefficients can be approximated by are neural

networks with finite parameter counts. By simulating gradient descent in function spaces using neural

networks, we construct a neural network that approximates the solution of a PDE. We show that the

number of parameters in the neural network depends on the parameters required to represent the coef-

fcients and has a poly(d) dependence on the dimension of the input space, therefore avoiding the curse

of dimensionality.

An immediate open question is related to the tightening our results: our current error bound is sensitive

to the neural network approximation lying close to span{φ1, · · · , φk} which could be alleviated by re-

3
The reason we require that fnn is close to f not only in the L2 sense but also in terms of their higher order derivatives is

since L̃(t)r involves 2t-order derivatives of r to be bounded at each step.

21

2 Parametric Complexity Bounds for Approximating PDEs with Neural Networks

laxing (by adding some kind of “regularity” assumptions) the dependence of our analysis on the first k
eigenfunctions. Further, the dependencies in the exponent of d on R and κ in parametric bound may

also be improvable. Finally, the idea of simulating an iterative algorithm by a neural network to derive a

representation-theoretic result is broadly applicable, and may be a fertile ground for further work, both

theoretically and empirically, as it suggest a particular kind of weight tying.

22

3 Benefits of Depth in Neural

Approximations of PDEs

Abstract A wave of experimental papers have recently demonstrated the promise of deep neural networks for
approximating the solutions to high-dimensional Partial Differential Equations (PDEs). Recently, several
theoretical works have addressed some attendant expressivity problems (e.g., conditions under which such
solutions might escape the curse of dimensionality). However, a number of questions remain open, including
whether approximating the solution to classical PDEs really requires that networks be deep. In this paper, we
focus on benefits of depth, showing that even for approximating simple linear PDEs with constant boundary
conditions, depth can provide significant advantages. Our analysis addresses the Helmholtz family ∆u +
k2π2u = 0, k ∈ R with zero boundary condition, proving that approximating the solution with networks
with less than

√
log k layers requires O(2

√
log(k))-sized networks. Our paper sets work on the theory of deep

learning in dialogue with the nascent neural PDE literature, Our paper shows utilizes results from deep
learning theory to show that neural network solutions to even simple PDEs may often lie amont the set of
functions characterized by by depth separation.

3.1 Introduction

By now, the broad success of neural network methods for producing approximate solutions to high-

dimensional learning problems, e.g., those arising in in computer vision [Krizhevsky et al., 2012, Si-

monyan and Zisserman, 2014, He et al., 2016], and natural language processing [Bahdanau et al., 2014,

Devlin et al., 2018]. More recently, a burgeoning line of research has successfully applied neural net-

works to approximate solutions to partial differential equations (PDEs) [Yu et al., 2017, Raissi et al.,

2017]. PDEs are multivariate equations that define the relation of a function to its partial and are often

used to model important scientific and social phenomena such as wave scattering [Bendali and Lemrabet,

1996], fluid dynamics [Anderson and Wendt, 1995] and the financial markets [Black and Scholes, 1973,

Ehrhardt and Mickens, 2008]. Recent empirical work, including Yu et al. [2017], Raissi et al. [2017],

Han et al. [2018], Grohs and Herrmann [2020], Moseley et al. [2020] have introduced scores of differ-

ent architectures to approximate solutions of various PDEs. These papers demonstrate that for many

families of PDEs such as the Hamilton-Jacobi-Bellman (HJB) and Black-Scholes equations (for exam-

ple, Han et al. [2018] solve a 1000 dimensional HJB equation) neural networks are superior to classical

grid-based methods.

However, unlike classical domains like images and text, where the architecture design is guided by strong

intuitions about structural properties of the domain data, it is still unclear how neural network architec-

23

3 Benefits of Depth in Neural Approximations of PDEs

tures should be chosen when applied to PDEs—though some recent works Li et al. [2020a], Marwah

et al. [2021] suggest that a deep architecture with blocks that have some form of weight-tying may be

appropriate.

On the theoretical front, our understanding of the representational capabilities of neural networks in the

context of PDE solvers is still nascent. Earlier works such as Sirignano and Spiliopoulos [2018] use univer-

sal approximation to show the existence of neural networks that approximate the solutions to parabolic

PDEs. Works like Grohs and Herrmann [2020], Marwah et al. [2021] focused on exhibiting examples of

PDE families for which neural networks can avoid the curse of dimensionality. Finally, Chen et al. [2021]

characterized the Barron norms of solutions to PDEs, which are intimately tied to the size of shallow net-

works required to approximate them.

On the other hand, the limitations of neural network-based approaches to PDEs are not well understood.

More broadly, concerning the representational power of neural networks, seminal works by Telgarsky

[2016] and Eldan and Shamir [2016] proved that there exist functions that can be approximated by small

deep networks, but not small shallow ones.

In this paper, we observe that these tools for understanding the benefit of depth in neural networks can

be naturally applied to understand the need for deep architectures for PDEs—even for exceedingly simple

types of PDEs and boundary conditions.

Precisely, we focus on the Helmholtz family of PDEs ∆u + k2π2u = 0, k ∈ R—an exceedingly sim-

ple one-parameter family of linear PDEs, with zero Dirichlet boundary conditions. We show that for

approximating the solutions to such PDEs with a shallow network requires that the size of each layer is

large. Precisely, we show a network with less than

√
log(k) layers necessitates that the network is of size

O(2
√

log(k)). By standard results on approximating trigonometric functions [Perekrestenko et al., 2018],

this dependence on k is nearly tight—in the one-dimensional setting, a network with O(log(k)) layers

of size O(1) can approximate the solution to the Helmholtz PDE.

We note that Helmholtz equations are independently of interest in many domains: they arise as a time-

independent form of the wave equation in problems associated with electromagnetic wave scattering,

seismology, and acoustics. Developing efficient numerical algorithms for Helmholtz equations has been

an active area of research, including those in the high frequency regime (k ≫ 1), such as the celebrated

fast multipole method [Cheng et al., 2006] and fast directional multilevel method [Engquist and Ying,

2007]. As a result, there is also considerable interest in developing neural network based solution methods

[Khoo and Ying, 2019, Wang et al., 2020].

3.2 Overview of Results

We will focus on the following one-parameter family of linear PDEs:

24

3 Benefits of Depth in Neural Approximations of PDEs

Definition 9 (Helmholtz PDE). A Helmholtz PDE with Dirichlet boundary condition takes the following
form: 1 {

∆u+ k2π2u = 0, ∀x ∈ D

u(x) = 0 ∀x ∈ ∂D
(3.1)

where u : Rd → R. Here, D is a bounded open set with boundary ∂D.

In this work, we focus on the case where the domain D is a d-dimensional hypercube, that is D̄ = [0, 1]d

(D̄ := D ∪ ∂D). In this case a solution to the PDE in Definition 9 takes the following form:

u⋆(x) =
d∏

i=1

sin(kiπxi)

subject to
d∑
i

k2
i = k2

(3.2)

Specifically, when d = 1, we have:

u⋆
1(x) = sin(kπx) (3.3)

We will show that:

Theorem (Informal). A ReLU neural network with depth O
(√

log(k)
)

that approximates a solution to

the Helmholtz equation in Equation 3.2 has size Ω(2
√

log(k)). .

Our proof proceeds by first establishing the lower bound for the one-dimensional case, and then general-

izing it to the multi-dimensional case. In the one-dimensional case, we leverage the fact that the solution

is highly oscillatory—namely, changes sign frequently. This allows us to estimate the error arising from

regions where the approximating neural network f and u⋆
1 have opposite sign. In the case d > 1, we re-

duce the problem to a one-dimensional one by only tracking the error in one of the dimensions—coupled

with the fact that the u⋆
factorizes over the individual dimensions.

We note that the dependence on k in the result is almost tight: by results from Perekrestenko et al. [2018],

in the case of d = 1, a deep network with depth and size O(log(k)) can approximate the solution of

Equation 3.3.

3.3 Related Work

Over the past few years there has been a growing line of work that utilizes neural networks to parameter-

ize the solution to a PDE. Works such as Weinan et al. [2017], Yu et al. [2017], Sirignano and Spiliopou-

los [2018], Raissi et al. [2017] achieved impressive results on a variety of different applications and have

1
Here, ∆ is the Laplacian operator. For a twice differentiable function f : Rd → R, ∆f =

∑d
i=1

∂2f
∂x2

i
.

25

3 Benefits of Depth in Neural Approximations of PDEs

demonstrated the empirical efficacy of neural networks in solving high dimensional PDEs. This is a great

and promising direction for solving PDEs since erstwhile dominant numerical approaches like the finite

differences and finite element methods [LeVeque, 2007] depend primarily upon discretizing the input

space, hence limiting their use for problems on low dimensional input space.

Several recent work look to theoretically analyse these neural network based approaches for solving PDEs.

Mishra and Molinaro [2020] look at the generalization properties of physics informed neural networks.

In Lu et al. [2021] show the generalization analysis for the Deep Ritz method for elliptic equations like the

Poissoin equation and Lu and Lu [2021] extends their analysis to the Schrodinger eigenvalue problem.

In addition to analyzing the generalization capabilities of the neural networks, theoretical analysis into

their representational capabilities has also gained a lot of attention. Khoo et al. [2021] show the existence

of a network by discretizing the input space into a mesh and then using convolutional NNs, where the

size of the layers is exponential in the input dimension. Sirignano and Spiliopoulos [2018] provide a

universal approximation result, showing that for sufficiently regularized PDEs, there exists a multilayer

network that approximates its solution. However, they do not comment on the complexity of the neural

network, how it scales with the input dimension and also how to design such a network. In Jentzen

et al. [2018], Grohs and Herrmann [2020], Hutzenthaler et al. [2020] show that provided a better-than-

exponential dependence on the input dimension for some special parabolic PDEs, based on a stochastic

representation using the Feynman-Kac Lemma, thus limiting the applicability of their approach to PDEs

that have such a probabilistic interpretation. Moreover, their results avoid the curse of dimensionality

only over domains that with unit volume (for example a hypercube with side length one). Furthermore,

their construction does not provide any insight into architectural choices such as the depth of the neural

network.

In Marwah et al. [2021] the authors show that for an elliptic PDE’s coefficients are approximable by small

neural networks with at mostN , then for a sufficiently smooth solution, the neural network that approx-

imates the solution avoids the curse of dimensionality and has a O(poly(dN)). Their analysis suggests

that a certain weight-tied network architecture can be useful for approximating solutions to PDEs. In

Chen et al. [2021] extends this analysis to the Barron space and shows that if the coefficients are in Bar-

ron spaces [Barron, 1993]. While these works show important representation theoretic results, they do

not discuss the types of architectures that would enable the approximation of the solutions.

In Li et al. [2020a,b] the authors show (experimentally) that an entire family of different types of PDEs,

such as elliptic, parabolic PDES, can be approximated by a single neural network. They approximate a

map from a PDE’s parameters to its solution and avoid the need for retraining for each set of coefficient.

Furthermore, they show that construction of such a network follows an iterative architecture whereby

each layer of the network is a function of the previous layer and a kernel operator. This paper does provide

some key insights into architectures that could be useful for designing neural networks that approximate

the solution/family of PDEs. However, they do not mention how many layers these networks would

need or what the size of each layer should be.

Our work proves that for neural networks approximating solutions to a Helmholtz PDE (Definition 9)

depth is key, and show that deep neural networks withO(log(k)) depth and sizeO(1). Furthermore, we

show that shallow neural networks with less than

√
log(k) would need Ω(2

√
log(k)) sized networks.

26

3 Benefits of Depth in Neural Approximations of PDEs

3.4 Main Result

Definition 10 (ReLU Network). An L-layer ReLU network is a function

x 7→ wLσ(. . . σ(w
T
1 x+ b1) . . .) + bL.

where σ(x) = max{0, x}. The size of a neural network is the total number of nodes in the network.

We now state our main result:

Theorem 2 (Depth Lower Bound). Consider the PDE in Definition 9 with solution u⋆ defined by Equa-
tion 3.2. Furthermore, let kmax := max{k1, k2, · · · , kd} . Then, for any ReLU network f : Rd → R
with depth less than

√
log(⌊kmax⌋) and size less than 2

√
log(⌊kmax⌋), we have,∫

[0,1]d
|u⋆(x)− f(x)|dx ≥ 1

2
∥u∗∥L1 .

We remark on several aspects of the above statement.

Remark 1: The error on the left-hand-size is the l1 error in approximating u∗
by f . The right hand

side has a natural scaling by the l1 norm of the function u∗
we are approximating.

Remark 2: While the proof of the above theorem relies on the highly oscillatory nature of the solution

of the PDE, the coefficients of the PDE itself are exceedingly simple: in fact they are constant—as are

the boundary conditions. This is particularly relevant in light of recent theoretical work providing upper

bounds on the necessary size to approximate the solution of a PDE as a function of the size of the networks

required to approximate the coefficients of the PDE [Marwah et al., 2021, Chen et al., 2021]. These

result suggest that from the point of view of neural network approximation, PDEs whose coefficients are

approximable by small networks are easier to represent by neural networks. Our lower bound show that

even for PDEs that are easy in this sense, a very deep network is needed.

Remark 3: In this paper we consider a fully connected network with ReLU activation function. How-

ever, as mentioned in Hornik et al. [1990] and Telgarsky [2017] one can approximate a neural network

with one choice of nonlinearity via a (comparably sized) neural network with another choice of nonlin-

earity, under very mild conditions on the nonlinearities. Crucially, this simulation only increases the size

by a dimension-independent factor, and keeping the depth separation same. However, we note that the

effect of using other architectures like convolutional neural networks are outside the scope of current

work.

The proof for the above theorem is provided in Section 3.5. Moreover, the dependence on k is nearly

optimal. Namely, in the case d = 1, a result by Perekrestenko et al. [2018] for approximating trigono-

27

3 Benefits of Depth in Neural Approximations of PDEs

metric functions can be directly applied to conclude that a network of depth and size O(log k) suffices

to approximate u∗
. Precisely:

Theorem 3 (Depth Upper Bound, Theorem 4.1 in Perekrestenko et al. [2018]). Consider the function
u⋆
1, which is the solution to the Helmholtz PDE in Definition 9 for d = 1. There exists a neural network

f : R → R with ReLU activation function with depth O((log(1/ϵ)2 + log(k)) and width O(1) such
that

sup
x∈[0,1]

|u⋆(x)− f(x)| ≤ ϵ

We note that the gap between the lower and upper bound (O(
√
log k) vs O(log k)) is expected, as such

gaps in our understanding of depth separation for neural networks also exist outside of the context of

PDEs [Telgarsky, 2016].

3.5 Proof of Theorem 2

The main intuition for the proof follows that from Telgarsky [2016]. A function with many oscillations

will be poorly approximated by a network with fewer oscillations. We further use the fact that a deep

neural network can represent a function with more oscillations (relative to the number of parameters)

than its shallow counterpart, which will have fewer oscillations.

We begin the proof by stating two ingredients from Telgarsky [2016].

First, we lower bound the distance between two functions roughly by counting the number of times they

change sign in one dimension. Precisely, consider that the function u⋆
1 : [0, 1]→ R partitions the set D

into intervals Iu⋆ such that for each interval f̃(x) = 1[f(x) ≥ 0] is constant. Therefore, the number

of times the function f changes sign is given by |If |. We show that if a function f changes sign a much

fewer number of times than u⋆
1, i.e., |If |L2(Ω)|Iu⋆

1
| then it will poorly approximate the function u⋆

1.

Precisely:

Lemma 11 (Lemma 3.1 in Telgarsky [2016]). Let u⋆
1 : R → R and f : R → R be given functions, and

denote

ũ⋆
1 := 1[u⋆

1 ≥ 0],

f̃ := 1[f ≥ 0].

Then we have,

1

⌊k⌋+ 1

∑
U∈Iu⋆

1
[
∀x ∈ U ; ũ⋆

1(x) ̸= f̃(x)
]

≥ 1

2

(
1− 2

|If |
⌊k⌋+ 1

)

28

3 Benefits of Depth in Neural Approximations of PDEs

Next, we state a result that relates the number of layers and size of a neural network with the number of

sign changes of the function.

Lemma 12 (Number of sign changes, Lemma 3.2 in Telgarsky [2016]). Let g be a ReLU network with
L layers with widths (m1,m2, . . . ,mL) that partitions the domain D into Ig intervals. If m = ΠL

i=1mi,
then

|Ig| ≤
(
2m

L

)L

.

Given Lemma 11 and Lemma 12 we now show the result for the lower bound on the error for the one-

dimensional case.

Lemma 13 (Depth lower bound in one dimension). Consider the function u⋆
1 : R → R, the solution to

the Helmholtz PDE (Definition 9) for d = 1. Let f be a ReLU network with L layers with L ≤
√

log(k)

and size of each layer less than 2
√

log(k). Then we have:∫
[0,1]

|u⋆
1(x)− f(x)|dx ≥ 1

2π
.

Proof. Let Au⋆
1
(U) denote the area under the curve defined by the function u⋆

1 calculated over the set U .

Note that for all U ∈ Iu⋆
1

, the area of the curve u⋆
1 (Au⋆

1
(U)) will be the same and can be calculated as the

following,

Au⋆
1
(U) =

∫
U

sin(kπx)dx

=

∫
[0, 1

k
]

sin(kπx)dx

=
1

kπ

(
1− cos(kπ · 1

k
)

)
=

2

kπ

Since f is a ReLU network with less than

√
log(⌊k⌋)− 2 layers and less than 2

√
log(⌊k⌋−2)

nodes in each

layer, using the result from Lemma 12 we have that the total number of sign changes of f is bounded as:

|If | ≤

(
2 · 2
√

log(⌊k⌋−2)

L

)√log(⌊k⌋−2)

≤ 2log(⌊k⌋)−2 =
⌊k⌋
4

Here we have used the fact that
2√

log(⌊k⌋)−2
≤ 1.

29

3 Benefits of Depth in Neural Approximations of PDEs

Therefore, by Lemma 11 and Lemma 12 we can lower bound the error between the solution u⋆
1 and f as:∫

Ω

| sin(kπx)− f(x)|dx

=
∑

U∈Iu⋆1

∫
U

| sin(kπx)− f(x)|dx

≥
∑

U∈Iu⋆1

∫
U

| sin(kπx)|1[∀x ∈ U : ũ⋆
1(x) ̸= f̃(x)]dx

≥
∑

U∈Iu⋆1

∫
U

| sin(kπx)|1[∀x ∈ U : ũ⋆
1(x) ̸= f̃(x)]dx

≥ 2

kπ

∑
U∈Iu⋆1

1[∀x ∈ U : ũ⋆
1(x) ̸= f̃(x)]

(i)

≥ 2

kπ

|Iu⋆
1
|

2

(
1− 2|If |
|Iu⋆

1
|

)
(ii)

≥ ⌊k⌋+ 1

kπ

(
1− ⌊k⌋

2(⌊k⌋+ 1)

)
≥ ⌊k⌋+ 1

2kπ

≥ 1

2π

Where we get (i) from Lemma 11 and we use the fact that
⌊k⌋

⌊k⌋+1
≤ 1 in (ii).

We now extend the proof for Lemma 13 for theddimensional case and complete the proof for Theorem 2.

Proof for Theorem 2. Let x := (x1, x2, · · · , xn) be a d-dimensional vector. Furthermore, will denote

by x−i := (x1, · · · , xi−1, xi+1, · · ·xd).

We wish to lower bound the following error:∫
[0,1]d
|u⋆(x)− f(x)|dx

=

∫
[0,1]d
|

d∏
j=1

sin(kjπxj)− f(x)|dx

=

∫
[0,1]d−1

∫
xi∈[0,1]

|
d∏

i=1

sin(kiπxi)− f(x)|dxidx−i (3.4)

30

3 Benefits of Depth in Neural Approximations of PDEs

Consider a fixed value for the coordinates other than the i-th one, i.e. x−i = (c1, · · · , ci−1, ci+1, · · · , cd)
and define f̃(xi) := f(c;xi) and

∏
j=1
j ̸=i

sin(kjπcj) =: C . Hence, we wish to lower bound the following

error, ∫
xi∈[0,1]

|C sin(kiπxi)− f̃(xi)|dxi (3.5)

From the proof of Lemma 13, we know that if the network f̃ has less than

√
log(ki)− 2 layers of size

less than 2
√

log(ki)−2
then the error in Equation 3.5 can be lower bounded as the following:∫

xi∈[0,1]
|C sin(kiπxi)− f̃(xi)|dxi ≥

|C|
2π

(3.6)

Substituting Equation 3.6 into Equation 3.4 we have,

∫
[0,1]d−1

∫
xi∈[0,1]

|
d∏

i=1

sin(kiπxi)− f(x)|dxidx−i

=

∫
[0,1]d−1

∫
xi∈[0,1]

|C sin(kiπxi)− f̃(x)|dxidx−i

≥
∫
[0,1]d−1

|C|
2π

dx−i

=
1

2π

∫
[0,1]d−1

∣∣∣∣∣∣∣∣
d∏

j=1
j ̸=i

sin(kjπxj)

∣∣∣∣∣∣∣∣dx−i

≥(1) 1

2π

∫
[0,1]d−1

∣∣∣∣∣
d∏

j=1

sin(kjπxj)

∣∣∣∣∣dx−i

=
1

2π
∥u∥L1

where (1) follows from sin(x) ≤ 1.

3.6 Conclusion and Future Work

In this paper, we explore the role of depth in neural network architectures used to approximate PDEs.

We show that in order to approximate the solution of linear Helmholtz PDE, a network with number

of layers less than O(
√

log(k)) would required layers of size O(2
√

log(k))—which is nearly tight in the

one-dimensional case, as a network of depth and size O(log(k)) suffices.

Exploring the limitations of neural networks when applied to PDE solvers is a wide open area — an

immediate open question is to extend our lower bounds to more restricted classes of PDEs, e.g. elliptic

31

3 Benefits of Depth in Neural Approximations of PDEs

and parabolic PDEs. Studying more fine-grained architectural aspects (e.g. weight tieing, as suggested by

results in Li et al. [2020a], Marwah et al. [2021]) seems also a promising direction for further work.

32

4 Neural Network Approximations of

PDEs Beyond Linearity: A

Representational Perspective

Abstract: A burgeoning line of research leverages deep neural networks to approximate the solutions to
high dimensional PDEs, opening lines of theoretical inquiry focused on explaining how it is that these mod-
els appear to evade the curse of dimensionality. However, most prior theoretical analyses have been lim-
ited to linear PDEs. In this work, we take a step towards studying the representational power of neural
networks for approximating solutions to nonlinear PDEs. We focus on a class of PDEs known as non-

linear elliptic variational PDEs, whose solutions minimize an Euler-Lagrange energy functional E(u) =∫
Ω
L(x, u(x),∇u(x)) − f(x)u(x)dx. We show that if composing a function with Barron norm b with

partial derivatives of L produces a function of Barron norm at most BLb
p, the solution to the PDE can

be ϵ-approximated in the L2 sense by a function with Barron norm O
(
(dBL)

max{p log(1/ϵ),plog(1/ϵ)}
)

. By a
classical result due to Barron [1993], this correspondingly bounds the size of a 2-layer neural network needed
to approximate the solution. Treating p, ϵ, BL as constants, this quantity is polynomial in dimension, thus
showing neural networks can evade the curse of dimensionality. Our proof technique involves neurally sim-
ulating (preconditioned) gradient in an appropriate Hilbert space, which converges exponentially fast to the
solution of the PDE, and such that we can bound the increase of the Barron norm at each iterate. Our results
subsume and substantially generalize analogous prior results for linear elliptic PDEs over a unit hypercube.

4.1 Introduction

Scientific applications have become one of the new frontiers for the application of deep learning [Jumper

et al., 2021, Tunyasuvunakool et al., 2021, Sønderby et al., 2020]. PDEs are a fundamental modeling tech-

niques, and designing neural networks-aided solvers, particularly in high-dimensions, is of widespread

usage in many scientific domains [Hsieh et al., 2019, Brandstetter et al., 2022]. One of the most com-

mon approaches for applying neural networks to solve PDEs is to parametrize the solution as a neural

network and minimize a variational objective that represents the solution [Sirignano and Spiliopoulos,

2018, Yu et al., 2017]. The hope in doing so is to have a method which computationally avoids the “curse

of dimensionality”—i.e., that scales less than exponentially with the ambient dimension.

To date, neither theoretical analysis nor empirical applications have yielded a precise characterization

of the range of PDEs for which neural networks-aided methods outperform classical methods. Active

research on the empirical side [Han et al., 2018, Weinan et al., 2017, Li et al., 2020a,b] has explored

33

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

several families of PDEs, e.g., Hamilton-Bellman-Jacobi and Black-Scholes, where neural networks have

been demonstrated to outperform classical grid-based methods. On the theory side, a recent line of works

[Marwah et al., 2021, Chen et al., 2021, 2022] has considered the following fundamental question:

For what families of PDEs, can the solution be represented by a small neural network?

The motivation for this question is computational: fitting the neural network (by minimizing some ob-

jective) is at least as expensive as the neural network required to represent it. Specifically, these works focus

on understanding when the approximating neural network can be sub-exponential in size, thus avoiding

the curse of dimensionality. However, to date, these results have only been applicable to linear PDEs.

In this paper, we take the first step beyond such work, considering a nonlinear family of PDEs and study

nonlinear variational PDEs. These equations have the form−divx(∂∇uL(x, u,∇u))+∂uL(x, u,∇u) =
f and are a (very general) family of nonlinear Euler-Lagrange equations. Equivalently, the solution to the

PDE is the minimizer of the energy functional E(u) =
∫
Ω
(L(x, u(X),∇u(x))− f(x)u(x))dx. This

paradigm is very general: it originated with Lagrangian formulations of classical mechanics, and for dif-

ferent L, a variety of variational problems can be modeled or learned [Schmidt and Lipson, 2009, Cran-

mer et al., 2020]. These PDEs have a variety of applications in scientific domains, e.g., (non-Newtonian)

fluid dynamics [Koleva and Vulkov, 2018], meteorology [Weller et al., 2016], and nonlinear diffusion

equations [Burgers, 2013].

Our main result is to show that when the function L has “low complexity”, so does the solution. The notion

of complexity we work with is the Barron norm of the function, similar to Chen et al. [2021], Lee et al.

[2017]. This is a frequently used notion of complexity, as a function with small Barron norm can be

represented by a small, two-layer neural network, due to a classical result [Barron, 1993]. Mathematically,

our proof techniques are based on “neurally unfolding” an iterative preconditioned gradient descent in

an appropriate function space: namely, we show that each of the iterates can be represented by a neural

network with Barron norm not much worse than the Barron norm of the previous iterate—along with

showing a bound on the number of required steps.

Importantly, our results go beyond the typical non-parametric bounds on the size of an approximator

network that can be easily shown by classical regularity results of the solution to the nonlinear variational

PDEs [De Giorgi, 1957, Nash, 1957, 1958] along with universal approximation results [Yarotsky, 2017].

4.2 Overview of Results

Let Ω := [0, 1]d be a d-dimensional hypercube and let ∂Ω denote its boundary.

We first define the energy functional whose minimizers are represented by a nonlinear variational PDE—

i.e., the Euler-Lagrange equation of the energy functional.

34

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

Definition 11 (Energy functional). For all u : Ω → R such that u|∂Ω = 0, we consider an energy
functional of the following form:

E(u) =
∫
Ω

(
L(x, u(x),∇u(x))− f(x)u(x)

)
dx, (4.1)

where L : Ω× R× Rd → R and there exist constants 0 < λ ≤ Λ such that for every x ∈ Ω the function
L(x, ·, ·) : R× Rd → R is smooth and convex, i.e.,

diag([0, λ1d]) ≤ ∇2
(y,z)L(x, y, z) ≤ diag([Λ,Λ1d]) (4.2)

for all (y, z) ∈ R× Rd.

Further, we assume that the function f : Ω → R is such that ∥f∥L2(Ω) < ∞. Note that without loss of
generality1 we assume that λ ≤ 1/Cp (where Cp is the Poincare constant defined in Theorem 14).

The minimizeru⋆
of the energy functional E exists and is unique. The proof of existence and uniqueness

is standard (following essentially along the same lines as Theorem 3.3 in Fernández-Real and Ros-Oton

[2020]), and is stated in the following Lemma (with the full proof provided in Section 11.4.1 of the Ap-

pendix for completeness).

Lemma 14. Let L : Ω × R × Rd → R be the function as defined in Definition 11. Then the minimizer
of the energy functional E exists and is unique.

Writing down the condition for stationarity, we can derive a (nonlinear) elliptic PDE for the minimizer

of the energy functional in Definition 11 .

Lemma 15. Let u⋆ : Ω→ R be the unique minimizer for the energy functional in Definition 11. Then for
all φ ∈ H1

0 (Ω), u⋆ satisfies the following condition:

DE [u](φ)

=

∫
Ω

(∂∇uL(x, u,∇u)∇φ+ ∂uL(x, u,∇u)φ− fφ)dx

= 0,

(4.3)

where dE [u](φ) denotes the directional derivative of the energy functional calculated at u in the direction
of φ. Thus, the minimizers of the energy functional satisfy the following PDE with Dirichlet boundary
condition:

DE(u)
:= −divx(∂∇uL(x, u,∇u)) + ∂uL(x, u,∇u) = f

(4.4)

for all x ∈ Ω and u(x) = 0, ∀x ∈ ∂Ω. Here divx denotes the divergence operator.

1
Since λ is a lower bound on the strong convexity constant. If we choose a weaker lower bound, we can always ensure

λ ≤ 1/Cp.

35

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

The proof for the Lemma can be found in Appendix 11.4.2. Here−divx(∂∇uL(∇·)) and ∂uL(x, ·,∇·)
are operators that acts on a function (in this case u).

2

Our goal is to determine if the solution to the PDE in Equation 4.4 can be expressed by a neural network

with a small number of parameters. In order do so, we rely on the concept of a Barron norm, which

measures the complexity of a function in terms of its Fourier representation. We show that if composing

with the function partial derivatives of the function L increases the Barron norm of u in a bounded

fashion, then the solution to the PDE in Equation 4.4 will have a bounded Barron norm. The motivation

for using this norm is a seminal paper [Barron, 1993], which established that any function with Barron

normC can be ϵ-approximated by a two-layer neural network in theL2
sense by a 2-layer neural network

with sizeO(C2/ϵ), thus evading the curse of dimensionality ifC is substantially smaller than exponential

in d. Informally, we will show the following result:

Theorem 4 (Informal). Given the functionL in Definition 11, such that composing a function with Barron
norm bwith ∂∇uL or ∂uL produces a function of Barron norm at mostBLb

p for some constantsBL, p > 0.
Then, ∀ϵ > 0, the minimizer of the energy functional in Definition 11 can be ϵ-approximated in the L2

sense by a function with Barron norm

O
(
(dBL)

max{p log(1/ϵ),plog(1/ϵ)}
)
.

As a consequence, when ϵ, p, BL are thought of as constants, we can represent the solution to the Euler-

Lagrange PDE Equation 4.4 by a polynomially-sized network, as opposed to an exponentially sized net-

work, which is what we would get by standard universal approximation results and using regularity re-

sults for the solutions of the PDE.

We establish this by neurally simulating a preconditioned gradient descent (for a strongly-convex loss) in

an appropriate Hilbert space, and show that the Barron norm of each iterate—which is a function—is

finite, and at most polynomially bigger than the Barron norm of the previous iterate. We get the final

bound by (i) bounding the growth of the Barron norm at every iteration; and (ii) bounding the number

of iterations required to reach an ϵ-approximation to the solution. The result in formally stated in Sec-

tion 4.5.

4.3 Related Work

Over the past few years there has been a growing line of work that utilizes neural networks to parameter-

ize the solution to a PDE. Works such as Weinan et al. [2017], Yu et al. [2017], Sirignano and Spiliopou-

los [2018], Raissi et al. [2017] achieved impressive results on a variety of different applications and have

demonstrated the empirical efficacy of neural networks in solving high dimensional PDEs. This is a

great and promising direction for solving high dimensional PDEs since erstwhile dominant numerical ap-

2
For a vector valued function F : Rd → Rd

we will denote the divergence operator either by divxF or by∇ · F , where

divxF = ∇ · F =
∑d

i=1
∂iF
∂xi

36

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

proaches like the finite differences and finite element methods [LeVeque, 2007] depend primarily upon

discretizing the input space, hence limiting their use for problems on low dimensional input space.

Several recent works look into the theoretical analysis into their representational capabilities has also

gained a lot of attention. Khoo et al. [2021] show the existence of a network by discretizing the input space

into a mesh and then using convolutional NNs, where the size of the layers is exponential in the input di-

mension. Sirignano and Spiliopoulos [2018] provide a universal approximation result, showing that for

sufficiently regularized PDEs, there exists a multilayer network that approximates its solution. Jentzen

et al. [2018], Grohs and Herrmann [2020], Hutzenthaler et al. [2020] show that provided a better-than-

exponential dependence on the input dimension for some specific parabolic PDEs, based on a stochastic

representation using the Feynman-Kac Lemma, thus limiting the applicability of their approach to PDEs

that have such a probabilistic interpretation.

These representational results can be further be utilized towards analyzing the generalization properties of

neural network approximations to PDE solutions. For example, Lu et al. [2021] show the generalization

analysis for the Deep Ritz method for elliptic equations like the Poisson equation and Lu and Lu [2021]

extends their analysis to the Schrodinger eigenvalue problem. Furthermore, Mishra and Molinaro [2020]

look at the generalization properties of physics informed neural networks for a linear operators or for

non-linear operators with well-defined linearization.

Closest to our work is a recent line of study that has focused on families of PDEs for which neural net-

works evade the curse of dimensionality—i.e. the solution can be approximated by a neural network

with a subexponential size. In Marwah et al. [2021] the authors show that for elliptic PDEs whose co-

efficients are approximable by neural networks with at most N parameters, a neural network exists that

ϵ-approximates the solution and has size O(dlog(1/ϵ)N). Chen et al. [2021] extends this analysis to ellip-

tic PDEs with coefficients with small Barron norm, and shows that if the coefficients have Barron norm

bounded by B, an ϵ-approximate solution exists with Barron norm at most O(dlog(1/ϵ)B). The work by

Chen et al. [2022] derives related results for the Schrödinger equation on the whole space.

As mentioned, while most of previous works show key regularity results for neural network approxima-

tions of solution to PDEs, most of their analysis is limited to simple linear PDEs. The focus of this paper

is towards extending these results to a family of PDEs referred to as nonlinear variational PDEs. This par-

ticular family of PDEs consists of many famous PDEs such as p−Laplacian (on a bounded domain) and

is used to model phenomena like non-Newtonian fluid dynamics and nonlinear diffusion processes. The

regularity results for these family of PDEs was posed as Hilbert’s XIX
th

problem. We note that there are

classical results like De Giorgi [1957] and Nash [1957, 1958] that provide regularity estimates on the so-

lutions of a nonlinear variational PDE of the form in Equation 4.4. One can easily use these regularity es-

timates, along with standard universal approximation results Yarotsky [2017] to show that the solutions

can be approximated arbitrarily well. However, the size of the resulting networks will be exponentially

large (i.e. they will suffer from the curse of dimensionality)—so are of no use for our desired results.

37

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

4.4 Notation and Definition

In this section we introduce some key concepts and notation that will be used throughout the paper.

For a vector x ∈ Rd
we use ∥x∥2 to denote its ℓ2 norm. C∞(Ω) is the set of function f : Ω → R

that are infinitely differentiable. For a functionF (x, y, z) of multiple variables we use∇xF (x, y, z) and

∂xF (x, y, z) to denote the (partial) derivative w.r.t the variable x (we drop the subscript if the function

takes in only a single variable). Similarly, ∆x denotes the Laplacian operator where the derivatives are

taken w.r.t x ∈ Rd
. With a slight abuse of notation, if a function L : Ω×R×Rd → R takes functions

u and ∇u as input, we will denote the partial derivatives w.r.t second and third set of coordinates as,

∂uL(x, u,∇u) and ∂∇uL(x, u,∇u), respectively.

We also define some important function spaces and associated key results below.

Definition 12. For a vector valued function g : R→ Rd we define the Lp(Ω) norm for p ∈ [1,∞) as

∥g∥Lp(Ω) =

(∫
Ω

d∑
i

|gi(x)|pdx

)1/p

,

For p =∞ we have
∥g∥L∞(Ω) = max

i
∥gi∥L∞(Ω),

Definition 13. For a domain Ω, the space of functions H1
0 (Ω) is defined as,

H1
0 (Ω) := {g : Ω→ R : g ∈ L2(Ω),

∇g ∈ L2(Ω), g|∂Ω = 0}.

The corresponding norm for H1
0 (Ω) is defined as, ∥g∥H1

0 (Ω) = ∥∇g∥L2(Ω).

Finally, we will make use of the Poincaré inequality throughout several of our results.

Theorem 5 (Poincaré inequality, Poincaré [1890]). For any domain Θ ⊂ Rd which is open and bounded,
there exists a constant Cp > 0 such that for all u ∈ H1

0 (Θ)

∥u∥L2(Θ) ≤ Cp∥∇u∥L2(Θ).

This constant can be very benignly behaved with dimension for many natural domains—even dimension

independent. One such example are convex domains [Payne and Weinberger, 1960], for which Cp ≤
π2

diam(Ω). Furthermore, for Ω = [0, 1]d, the value of Cp can be explicitly calculated and is equal to

1/π2d. This is a simple calculation, but we include it for completeness as the following lemma (proved

in Section 11.4.3):

Lemma 16. For the domain Ω := [0, 1]d, the Poincare constant is equal to 1
π2d

.

38

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

4.4.1 Barron Norms

For a function f : [0, 1]d → R the Fourier transform is defined as,

f̂(ω) =

∫
[0,1]d

f(x)e−i2πxTωdx, ω ∈ Nd, (4.5)

where Nd
is the set of vectors with natural numbers as coordinates. The inverse Fourier transform of a

function is defined as,

f(x) =
∑
ω∈Nd

ei2πx
Tωf̂(ω) (4.6)

The Barron norm is an average of the norm of the frequency vector weighted by the Fourier magnitude

|f̂(ω)|.

Definition 14 (Spectral Barron Norm, [Barron, 1993]). Let Γ define a set of functions defined over Ω :=

[0, 1]d such that f̂(ω) and ωf̂(ω) are absolutely summable, i.e.,

Γ =

{
f : Ω→ R :

∑
ω∈Nd

|f̂(ω)| <∞,

&
∑
ω∈Nd

∥ω∥2|f̂(ω)| <∞

}

Then we define the spectral Barron norm ∥ · ∥B(Ω) as

∥f∥B(Ω) =
∑
ω∈Nd

(1 + ∥ω∥2)|f̂(ω)|.

The Barron norm can be thought of as an L1 relaxation of requiring sparsity in the Fourier basis—which

is intuitively why it confers representational benefits in terms of the size of a neural network required. We

refer to Barron [1993] for a more exhaustive list of the Barron norms of some common function classes.

The main theorem from Barron [1993] formalizes this intuition, by bounding the size of a 2-layer network

approximating a function with small Barron norm:

Theorem 6 (Theorem 1, Barron [1993]). Let f ∈ Γ such that ∥f∥B(Ω) ≤ C and µ be a probability
measure defined over Ω. There exists ai ∈ Rd, bi ∈ R and ci ∈ R such that

∑k
i=1 |ci| ≤ 2C , there exists

a function fk(x) =
∑k

i=1 ciσ
(
aTi x+ bi

)
, such that we have,∫

Ω

(f(x)− fk(x))
2µ(dx) ≲

C2

k
.

Here σ denotes a sigmoidal activation function, i.e., limx→∞ σ(x) = 1 and limx→−∞ σ(x) = 0.

39

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

Note that while Theorem 6 is stated for sigmoidal activations like sigmoid and tanh (after appropriate

rescaling), the results are also valid for ReLU activation functions, since ReLU(x) − ReLU(x − 1) is

in fact sigmoidal. We will also need to work with functions that do not have Fourier coefficients beyond

some size (i.e. are band limited), so we introduce the following definition:

Definition 15. We will define the set ΓW as the set of functions whose Fourier coefficients vanish outside a
bounded ball, that is

ΓW ={f : Ω→ R : s.t. f ∈ Γ,

& ∀w, ∥w∥∞ ≥ W, f̂(w) = 0}.

Finally, as we will work with vector valued functions, we will also define the Barron norm of a vector-

valued function as the maximum of the Barron norms of its coordinates:

Definition 16. For a vector valued function g : Ω→ Rd, we define ∥g∥B(Ω) = maxi ∥gi∥B(Ω).

4.5 Main Result

Before stating the main result we introduce the key assumption.

Assumption 1. The functionL in Definition 11 can be approximated by a function L : Ω×R×Rd → R
such that there exists a constant ϵL ∈ [0, λ) for allx ∈ Ωandu ∈ H1

0 (Ω)define q := (x, u(x),∇u(x)) ∈
Ω× R× Rd

sup
q
∥∂uL(q)− ∂uL(q)∥2 ≤ ϵL∥u(x)∥2,

and, sup
q
∥∂∇uL(q)− ∂∇uL(q)∥2 ≤ ϵL∥u(x)∥2,

Furthermore, we assume that L is such that for allg ∈ H1
0 (Ω), we have L(x, g,∇g) ∈ H1

0 (Ω), L(x, g,∇g) ∈
Γ and for all x ∈ Ω

∥∂uL(x, g,∇g)∥B(Ω) ≤ BL∥g∥pL
B(Ω),

and, ∥∂∇uL(x, g,∇g)∥B(Ω) ≤ BL∥g∥pL
B(Ω).

(4.7)

for some constants BL ≥ 0, and pL ≥ 0. Finally, if g ∈ ΓW then ∂uL(x, g,∇g) ∈ ΓkLW and
∂∇uL(x, g,∇g) ∈ ΓkLW for a kL > 0.

We refer to Remark 4 for an example of how the conditions in the assumption manifest for a linear elliptic

PDE.

This assumption is fairly natural: it states that the function L is such that its partial derivatives w.r.t u
and∇u can be approximated (up to ϵL) by a function L̃ with partial derivatives that have the property

that when applied to a function g with small Barron norm, the new Barron norm is not much bigger

40

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

than that of g. The constant p specifies the order of this growth. The functions for which our results

are most interesting are when the dependence of BL on d is at most polynomial—so that the final size of

the approximating network does not exhibit curse of dimensionality. For instance, we can take L to be a

multivariate polynomial of degree up to P : we show in Lemma 23 the constant BL is O(dP) (intuitively,

this dependence comes from the total number of monomials of this degree), whereas p and k are both

O(P).

With all the assumptions stated, we now state our main theorem,

Theorem 7 (Main Result). Consider the nonlinear variational PDE in Equation 4.4 which satisfies As-
sumption 1 and let u⋆ ∈ H1

0 (Ω) denote the unique solution to the PDE. If u0 ∈ H1
0 (Ω) is a function such

that u0 ∈ ΓW0 , then for all sufficiently small ϵ > 0, and

T :=

⌈
log

(
2

ϵ

E(u0)− E(u⋆)

λ

)
/ log

(
1

1− λ6

(1+Cp)10Λ5

)⌉
,

there exists a function uT ∈ H1
0 (Ω) such that uT ∈ Γ(2πkL)TW0

with Barron norm ∥uT∥B(Ω) bounded by

(
(1 + η2πkLW0(2πkLd+ 1)BL̃)

(
1 + η∥f∥B(Ω)

))pt+ pt−1
p−1

·
(
max{1, ∥u0∥p

t

B(Ω)}
)
.

(4.8)

Furthermore uT satisfies ∥uT − u⋆∥H1
0 (Ω) ≤ ϵ+ ϵ̃ where,

ϵ̃ ≤ ϵLR

ϵL + Λ

((
1 + η(1 + Cp)

2(ϵL + Λ))
)T − 1

)
,

where R := ∥u⋆∥H1
0 (Ω) +

1
λ
E(u0) and η = λ4

4(1+Cp)7Λ4 .

Remark 1: The function u0 can be seen as an initial estimate of the solution, that can be refined to an

estimate uT , which is progressively better at the expense of a larger Barron norm. A trivial choice could

be u0 = 0, which has Barron norm 1, and which by Lemma 17 would result in E(u0) ≤ Λ∥u∗∥2
H1

0 (Ω)
.

Remark 2: The final approximation error has two terms, and note that T goes to infinity as ϵ tends to

zero and is a consequence of the way uT is constructed — by simulating a functional (preconditioned)

gradient descent which converges to the solution to the PDE. ϵ̃ stems from the approximation that we

make between L̃ and L, which grows as T increases — it is a consequence of the fact that the gradient

descent updates with L̃ and L progressively drift apart as T →∞.

Remark 3: As in the informal theorem, if we think of p,Λ, λ, Cp, k, ∥u0∥B(Ω) as constants, the theorem

implies thatu⋆
can be ϵ-approximated in theL2

sense by a function with Barron normO
(
(dBL)

max{p log(1/ϵ),plog(1/ϵ)}
)

.

41

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

Therefore, combining results from Theorem 8 and Theorem 6 the total number of parameters required

to ϵ−approximate the solution u⋆
by a 2−layer neural network is

O

(
1

ϵ2
(dBL)

2max{p log(1/ϵ),plog(1/ϵ)}
)
.

Remark 4: The theorem recovers (and vastly generalizes) prior results which bound the Barron norm of

linear elliptic PDEs like Chen et al. [2021] over the hypercube. In these results, the elliptic PDE takes

the form that for all u ∈ H1
0 (Ω), −divx(A∇u) + cu = f and the functions A : Rd → Rd×d

and

c : Rd → R are such that ∀x ∈ Ω, A(x) is positive definite and c(x) is non-negative and bounded.

Further, the functions A and c are assumed to have bounded Barron norm. To recover this setting from

our result, consider choosing

L(x, u(x),∇u(x)) := 1

2
(∇u(x))TA(x)(∇u(x)) + 1

2
c(x)u(x)2.

For this L, we have ∂2
∇uL(x, u(x),∇u(x)) = A(x) and ∂2

uL(x, u(x),∇u(x)) = c(x). The conditions

in Equation 4.2 in Definition 1 require that λ ≤ A(x) ≤ Λ and 0 ≤ c(x) ≤ Λ, which match the

conditions on the coefficients A and c in Chen et al. [2021].

Further, by a simple application of Lemma 21, one can show,∥∂∇uL(x, u,∇u)∥B(Ω) ≤ d2∥A∥B(Ω)∥u∥B(Ω),
and ∥∂uL(x, u,∇u)∥B(Ω) ≤ ∥A∥B(Ω)∥u∥B(Ω) and therefore satisfy Equation 4.7 in Assumption 1 with

BL̃ = max{d2∥A∥B(Ω), ∥c∥B(Ω)} and p = 1. Plugging these quantities in Theorem 8, we recover the

exact same bound from Chen et al. [2021].

4.6 Proof of Main Result

The proof will proceed by “neurally unfolding” a preconditioned gradient descent on the objective E in

the Hilbert space H1
0 (Ω). This is inspired by previous works by Marwah et al. [2021], Chen et al. [2021]

where the authors show that for a linear elliptic PDE, an objective which is quadratic can be designed. In

our case, we show that E is “strongly convex” in some suitable sense — thus again, bounding the amount

of steps needed.

More precisely, the result will proceed in two parts:

1. First, we will show that the sequence of functions{ut}∞t=0, whereut+1 ← ut−η(I−∆x)
−1dE(ut)

can be interpreted as performing preconditioned gradient descent, with the (constant) precondi-

tioner (I −∆x)
−1

. We show that in some appropriate sense (Lemma 17), E is strongly convex in

H1
0 (Ω) — thus the updates converge at a rate of O(log(1/ϵ)).

2. We then show that the Barron norm of each iterate ut+1 can be bounded in terms of the Barron

norm of the prior iterate ut. We show this in Lemma 20, where we show that given Assumption

1, ∥ut+1∥B(Ω) can be bounded as O(d∥ut∥pB(Ω)). By unrolling this recursion we show that the

Barron norm of the ϵ-approximation of u⋆
is of the order O(dp

T ∥u0∥pB(Ω)) where T are the total

42

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

steps required for ϵ-approximation and ∥u0∥B(Ω) is the Barron norm of the first function in the

iterative updates.

We now proceed to delineate the main technical ingredients for both of these parts.

4.6.1 Convergence Rate of Sequence

The proof to show the convergence to the solution u⋆
is based on adapting the standard proof (in finite

dimension) for convergence of gradient descent when minimizing a strongly convex function f . Recall,

the basic idea is to Taylor expand f(x + δ) ≈ f(x) +∇f(x)T δ + O(∥δ∥2). Taking δ = η∇f(x), we

lower bound the progress term η∥∇f(x)∥2 using the convexity of f , and upper bound the second-order

term η2∥∇f(x)∥2 using the smoothness of f .

We follow analogous steps, and prove that we can lower bound the progress term by using some appro-

priate sense of convexity of E , and upper bound using some appropriate sense of smoothness of E , when

considered as a function over H1
0 (Ω). Precisely, we show:

Lemma 17 (Strong convexity of E in H1
0). If E , L are as in Definition 11, we have

1. ∀u, v ∈ H1
0 (Ω) : ⟨DE(u), v⟩L2(Ω) =

∫
Ω
(−divx(∂∇uL(x, u,∇u)) + ∂u(x, u,∇u))vdx =∫

Ω
∂∇uL(x, u,∇u) · ∇v + ∂uL(x, u,∇u)v dx.

2. ∀u, v ∈ H1
0 (Ω) : λ∥u−v∥2

H1
0 (Ω)
≤ ⟨DE(u)−DE(v), u−v⟩L2(Ω) ≤ (1+C2

p)Λ∥u−v∥2
H1

0 (Ω)
.

3. ∀u, v ∈ H1
0 (Ω) : λ

2
∥∇v∥2L2(Ω) + ⟨DE(u) − f, v⟩L2(Ω) ≤ E(u + v) − E(u) ≤ ⟨DE(u) −

f, v⟩L2(Ω) +
(1+Cp)2Λ

2
∥∇v∥2L2(Ω).

4. ∀u ∈ H1
0 (Ω) :

λ
2
∥u− u⋆∥2

H1
0 (Ω)
≤ E(u)− E(u⋆) ≤ (1+Cp)2Λ

2
∥u− u⋆∥2

H1
0 (Ω)

.

Part 1 is a helpful way to rewrite an inner product of a “direction” v with DE(u)—it is essentially a

consequence of integration by parts and the Dirichlet boundary condition. Part 2 and 3 are common

proxies of convexity and smoothness: they are ways of formalizing the notion that E is strongly convex

has “Lipschitz gradients”, when viewed as a function over H1
0 (Ω). Finally, Part 4 is a consequence of

strong convexity, capturing the fact that if the value of E(u) is suboptimal, u must be (quantitatively) far

from u∗
. The proof of the Lemma can be found in Appendix 11.1.1.

When analyzing gradient descent in (finite dimensions) to minimize a loss function E , the standard con-

dition for progress is that the inner product of the gradient with the direction towards the optimum is

lower bounded as ⟨DE(u), u∗ − u⟩L2(Ω) ≥ α∥u − u∗∥2L2(Ω) (we have L2(Ω) inner product vs H1
0 (Ω)

norm). From Parts 2 and 3 of Lemma 17 one can readily see that the above condition is only satisfied

“with the wrong norm”: i.e. we only have ⟨DE(u), u∗−u⟩L2(Ω) ≥ α∥u−u∗∥2
H1

0 (Ω)
. Moreover, since in

general, ∥∇g∥L2(Ω) can be arbitrarily bigger than ∥g∥L2(Ω), there is no way to upper bound the H1
0 (Ω)

norm by the L2(Ω) norm.

43

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

We can fix this mismatch by instead doing preconditioned gradient, using the fixed preconditioner (I −
∆x)

−1
. Towards that, the main lemma about the preconditioner we will need is the following one:

Lemma 18 (Norms with preconditioning). For all u ∈ H1
0 (Ω) we have

1. ∥(I −∆x)
−1∇x · ∇xu∥L2(Ω) = ∥(I −∆x)

−1∆xu∥L2(Ω) ≤ ∥u∥L2(Ω).

2. ∥(I −∆x)
−1u∥L2(Ω) ≤ ∥u∥L2(Ω)

3. ⟨(I −∆x)
−1u, u⟩L2(Ω) ≥ 1

1+Cp
⟨(−∆x)

−1u, u⟩L2(Ω).

The first part of the lemma is a relatively simple consequence of the fact that ∆x and ∇x “commute”,

thus can be re-ordered, and the second part that the operator (I − ∆x)
−1

only decreases the H1
0 (Ω)

norm. The latter lemma can be understood intuitively as (I−∆x)
−1

and∆−1
x act as similar operators on

eigenfunctions of ∆x with large eigenvalues (the extra I does not do much) – and are only different for

eigenfunctions for small eigenvalues. However, since the smallest eigenvalue is lower bounded by 1/Cp,

their gap can be bounded.

Combining Lemma 17 and Lemma 18, we can show that preconditioned gradient descent exponentially

converges to the solution to the nonlinear variational PDE in 4.4.

Lemma 19 (Convergence of Preconditioned Gradient Descent). Let u⋆ denote the unique solution to the
PDE in Definition 4.4 For all t ∈ N, we define the sequence of functions

ut+1 ← ut − η(I −∆x)
−1(DE(ut)− f). (4.9)

where η = λ4

4(1+Cp)7Λ4 . If u0 ∈ H1
0 (Ω), then after t iterations we have,

E(ut+1)− E(u⋆) ≤
(
1− λ6

(1 + Cp)10Λ5

)
(E(u0)− E(u⋆)).

The complete proof for convergence can be found in Section 11.1.3 of the Appendix.

Therefore, using the result from Lemma 17 part 4, i.e., ∥ut − u⋆∥2
H1

0 (Ω)
≤ 2

λ
(E(ut)− E(u⋆)), we have

∥ut − u⋆∥2H1
0 (Ω)

≤ 2

λ

(
1− λ6

(1 + Cp)10Λ5

)t

(E(u0)− E(u⋆)).

and ∥uT − u⋆∥2
H1

0 (Ω)
≤ ϵ after T steps, where,

T ≥ log

(
E(u0)− E(u⋆)

λϵ/2

)
/ log

(
1

1− λ6

(1+Cp)10Λ5

)
. (4.10)

44

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

4.6.2 Bounding the Barron Norm

Having obtained a sequence of functions that converge to the solution u⋆
, we bound the Barron norms

of the iterates. We draw inspiration from Marwah et al. [2021], Lu et al. [2021] and show that the Barron

norm of each iterate in the sequence increases the Barron norm of the previous iterate in a bounded fash-

ion. Note that in general, the Fourier spectrum of a composition of functions cannot easily be expressed

in terms of the Fourier spectrum of the functions being composed. However, from Assumption 1 we

know that the function L can be approximated by L such that ∂∇uL(x, u,∇u) and ∂uL(x, u,∇u) in-

creases the Barron norm of u in a bounded fashion. Thus, if we instead of tracking the iterates in Equa-

tion 11.16 we track

ũt+1 = ũt − η(I −∆)−1DẼ(ũt). (4.11)

we can derive the following result (the proof is deferred to Section 11.3.1 of the Appendix):

Lemma 20. For the updates in Equation 4.11, if ũt ∈ ΓWt then for all η ∈ (0, η] we have ũt+1 ∈ ΓkLWt

and the Barron norm ∥ũt+1∥|B(Ω) can be bounded as follows,

(1 + η(2πkLd+ 1)BL(2πWt)
pL)∥ũ∥pL

B(Ω) + η∥f∥B(Ω).

The proof consists of using the result in Equation 4.7 about the Barron norm of composition of a func-

tion with L, as well as counting the increase in the Barron norm of a function by any basic algebraic op-

eration, as established in Lemma 21. Precisely we show:

Lemma 21 (Barron norm algebra). If g, g1, g2 ∈ Γ, then the following set of results hold,

• Addition: ∥g1 + g2∥B(Ω) ≤ ∥g1∥B(Ω) + ∥g2∥B(Ω) .

• Multiplication: ∥g1 · g2∥B(Ω) ≤ ∥g1∥B(Ω)∥g2∥B(Ω)

• Derivative: if h ∈ ΓW for i ∈ [d] we have ∥∂ig∥B(Ω) ≤ 2πW∥g∥B(Ω).

• Preconditioning: if g ∈ Γ, then ∥(I −∆)−1g∥B(Ω) ≤ ∥g∥B(Ω).

The proof for the above lemma can be found in Appendix 11.3.4. It bears similarity to an analogous

result in Chen et al. [2021], with the difference being that our bounds are defined in the spectral Barron

space which is different from the definition of the Barron norm used in Chen et al. [2021]. Other than

preconditioning, the other properties follow by a straightforward calculation. For preconditioning, the

main observation is that (I − ∆)−1
acts as a diagonal operator in the Fourier basis—thus the Fourier

coefficients of (I −∆)−1h can be easily expressed in terms of those of h.

Expanding on the recurrence in Lemma 21 we can bound the Barron norm of the function uT after T
iterations as:

45

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

Lemma 22. Given the updates in Equation 4.11 and function u0 ∈ ΓW0 with Barron norm ∥u0∥B(Ω),
then after T iterations we have ũT ∈ Γ(2πkL)TW0

and ∥u0∥B(Ω) is bounded by,

(
(1 + η2πkLW0(2πkLd+ 1)BL̃)

(
1 + η∥f∥B(Ω)

))pt+ pt−1
p−1

·
(
max{1, ∥u0∥p

t

B(Ω)}
) (4.12)

Finally, we exhibit a natural class of functions that satisfy the main Barron growth property in Equa-

tions 4.7. Precisely, we show (multivariate) polynomials of bounded degree have an effective bound on p
and BL:

Lemma 23. Let f(x) =
∑

α,|α|≤P

(
Aα

∏d
i=1 x

αi
i

)
where α is a multi-index and x ∈ Rd. If g : Rd →

Rd is such that g ∈ ΓW , then we have f ◦g ∈ ΓPW and the Barron norm can be bounded as ∥f ◦g∥B(Ω) ≤

dP/2
(∑

α,|α|≤P |Aα|2
)1/2
∥g∥PB(Ω)

Hence if L is a polynomial of degree P then using the fact that for a functions g : Ω → R such that

g ∈ ΓW , from Lemma 21 max{∥g∥B(Ω), ∥∇g∥B(Ω)} ≤ 2πW∥g∥B(Ω), we will have

∥L(x, g,∇g)∥B(Ω)

≤ dP/2

 ∑
α,|α|≤P

|Aα|2
1/2

(2πW)P∥g∥PB(Ω).

Using the derivative result from Lemma 21, the constants in Assumption 1 will take the following values

BL = dP/2(2πW)P+1
(∑

α,|α|≤P |Aα|2
)1/2

, and r = 2πWP .

Finally, since we are using an approximation of the function L we will incur an error at each step of the

iteration. The following Lemma shows that the error between the iteratesut and the approximate iterates

ũt increases with t. The error is calculated by recursively tracking the error between ut and ũt for each t
in terms of the error at t− 1. Note that this error can be controlled by using smaller values of η.

Lemma 24. Let L : Rd → R be the function satisfying the properties in Assumption 1 and we have

E(u) =
∫
Ω

L(x, u(x),∇u(x))− f(x)u(x) dx

and Ẽ(u) =
∫
Ω

L(x, u(x),∇u(x))− f(x)u(x)dx.

For η ∈ (0, λ4

4(1+Cp)7Λ4] consider the sequences,

ut+1 = ut − η(I −∆)−1DE(ut),

and, ũt+1 = ũt − η(I −∆)−1DẼ(ut)

46

4 Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

then for all t ∈ N and denoting R := ∥u⋆∥H1
0 (Ω) +

1
λ
E(u0) we have,

∥ut − ũt∥H1
0 (Ω)

≤ ϵLR

ϵL + Λ

((
1 + η(1 + Cp)

2(ϵL + Λ))
)t − 1

)

4.7 Conclusion and Future Work

In this work, we take a representational complexity perspective on neural networks, as they are used to

approximate solutions of nonlinear elliptic variational PDEs of the form −divx(∂∇uL(x, u,∇u)) +
∂uL(x, u,∇u) = f . We prove that if L is such that composing partial derivatives of L with function of

bounded Barron norm increases the Barron norm in a bounded fashion, then we can bound the Barron

norm of the solution u⋆
to the PDE—potentially evading the curse of dimensionality depending on the

rate of this increase. Our results subsume and vastly generalize prior work on the linear case [Marwah

et al., 2021, Chen et al., 2021] when the domain is a hypercube. Our proof consists of neurally simulating

preconditioned gradient descent on the energy function defining the PDE, which we prove is strongly

convex in an appropriate sense.

There are many potential avenues for future work. Our techniques (and prior techniques) strongly rely

on the existence of a variational principle characterizing the solution of the PDE. In classical PDE litera-

ture, these classes of PDEs are also considered better behaved: e.g. proving regularity bounds is much eas-

ier for such PDEs [Fernández-Real and Ros-Oton, 2020]. There are many non-linear PDEs that come

without a variational formulation for which regularity estimates are derived using non-constructive meth-

ods like comparison principles. It is a wide open question to construct representational bounds for any

interesting family of PDEs of this kind. It is also a very interesting question to explore other notions of

complexity—e.g. number of parameters in a (potentially deep) network like in Marwah et al. [2021],

Rademacher complexity, among others.

47

Part III

Empirical Validation and Large Models

48

5 Deep Equilibrium Based Neural

Operators for Steady-State PDEs

Abstract: Data-driven machine learning approaches are being increasingly used to solve partial differen-
tial equations (PDEs). They have shown particularly striking successes when training an operator, which
takes as input a PDE in some family, and outputs its solution. However, the architectural design space, es-
pecially given structural knowledge of the PDE family of interest, is still poorly understood. We seek to rem-
edy this gap by studying the benefits of weight-tied neural network architectures for steady-state PDEs. To
achieve this, we first demonstrate that the solution of most steady-state PDEs can be expressed as a fixed point
of a non-linear operator. Motivated by this observation, we propose FNO-DEQ, a deep equilibrium vari-
ant of the FNO architecture that directly solves for the solution of a steady-state PDE as the infinite-depth
fixed point of an implicit operator layer using a black-box root solver and differentiates analytically through
this fixed point resulting inO(1) training memory. Our experiments indicate that FNO-DEQ-based ar-
chitectures outperform FNO-based baselines with 4× the number of parameters in predicting the solution to
steady-state PDEs such as Darcy Flow and steady-state incompressible Navier-Stokes. Finally, we show FNO-
DEQ is more robust when trained with datasets with more noisy observations than the FNO-based baselines,
demonstrating the benefits of using appropriate inductive biases in architectural design for different neural
network based PDE solvers. Further, we show a universal approximation result that demonstrates that FNO-
DEQ can approximate the solution to any steady-state PDE that can be written as a fixed point equation.

5.1 Introduction

Partial differential equations (PDEs) are used to model a wide range of processes in science and engineer-

ing. They define a relationship of (unknown) function and its partial derivatives. Most PDEs do not ad-

mit a closed form solution, and are solved using a variety of classical numerical methods such as finite el-

ement [LeVeque, 2007], finite volume [Moukalled et al., 2016], and spectral methods [Kopriva, 2009,

Boyd, 2001]. These methods are often very computationally expensive, both as the ambient dimension

grows, and as the desired accuracy increases.

This has motivated a rapidly growing area of research in data-driven approaches to PDE solving. One

promising approach involves learning neural solution operators [Chen and Chen, 1995, Lu et al., 2019,

Bhattacharya et al., 2021, Li et al., 2020b], which take in the coefficients of a PDE in some family and

output its solution—and are trained by examples of coefficient-solution pairs.

While several architectures for this task have been proposed, the design space—in particular taking into

account structural properties of the PDEs the operator is trained on—is still largely unexplored. Most

49

5 Deep Equilibrium Based Neural Operators for Steady-State PDEs

present architectures are based on “neuralizing” a classical numerical method. For instance, Li et al.

[2020a] take inspiration from spectral methods, and introduce FNO: a trained composition of (parametrized)

kernels in Fourier space. Brandstetter et al. [2022] instead consider finite-difference methods and gener-

alize them into (learnable) graph neural networks using message-passing.

Our work focuses on families of PDEs that describe the steady-state of a system (that is, there is no time

variable). Namely, we consider equations of the form:

L(a(x), u(x)) = f(x), ∀x ∈ Ω, (5.1)

where u : Ω→ Rdu
, a : Ω→ Rda

and f : Ω→ Rdf
are functions defined over the domain Ω, and L is

a (possibly non-linear) operator. This family includes many natural PDE families like Poisson equations,

electrostatic equations, and steady-state Navier-Stokes.

We take inspiration from classical numerical approaches of fast-converging Newton-like iterative schemes

[LeVeque, 2007, Faragó and Karátson, 2002] to solve steady-state PDEs, as well as recent theoretical

works for elliptic (linear and non-linear PDEs) [Marwah et al., 2021, Chen et al., 2021, Marwah et al.,

2022] to hypothesize that very deep, but heavily weight-tied architectures would provide a useful archi-

tectural design choice for steady-state PDEs.

In this paper, we show that for steady state equations it is often more beneficial to weight-tie an existing

neural operator, as opposed to making the model deeper—thus increasing its size. To this end, we in-

troduce FNO-DEQ, a new architecture for solving steady-state PDEs. FNO-DEQ is a deep equilibrium

model (DEQ) that utilizes weight-tied FNO layers along with implicit differentiation and root-solvers

to approximate the solution of a steady-state PDE. DEQs are a perfect match to the desiderata laid out

above: they can be viewed alternately as directly parameterizing the fixed points of some iterative process;

or by explicitly expanding some iterative fixed point solver like Newton’s or Broyden’s method as an in-

finitely deep, weight-tied model.

Such an architecture has a distinct computational advantage: implicit layer models effectively backpropa-

gate through the infinite-depth network while using only constant memory (equivalent to a single layer’s

activations). Empirically, we show that for steady-state PDEs, weight-tied and DEQ based models per-

form better than baselines with 4× the number of parameters, and are robust to training data noise. In

summary, we make the following contributions:

• We show the benefits of weight-tying as an effective architectural choice for neural operators when

applied to steady-state PDEs.

• We introduce FNO-DEQ, a FNO based deep equilibrium model (DEQ) that uses implicit layers

and root solving to approximate the solution of a steady-state PDE. We further attest to the empir-

ical performance of FNO-DEQ by showing that it performs as well as FNO and its variants with

4× number of parameters.

50

5 Deep Equilibrium Based Neural Operators for Steady-State PDEs

• We show that FNO-DEQ and weight tied architectures are more robust to both input and obser-

vation noise, thus showing that weight-tying is a useful inductive bias for architectural design for

steady-state PDEs.

• By leveraging the universal approximation results of FNO [Kovachki et al., 2021a] we show that

FNO-DEQ based architectures can universally approximate the solution operator for a wide vari-

ety of steady-state PDE families.

• Finally, we create a dataset of pairs of steady-state incompressible Navier-Stokes equations with

different forcing functions and viscosities, along with their solutions, which we will make public

as a community benchmark for steady-state PDE solvers.

5.2 Related Work

Neural network based approaches for solving PDEs can broadly be divided into two categories. First are

hybrid solvers [Bar-Sinai et al., 2019, Kochkov et al., 2021, Hsieh et al., 2019] which use neural networks

in conjunction with existing numerical solvers. The main motivation is to not only improve upon the

existing solvers, but to also replace the more computationally inefficient parts of the solver with a learned

counter part. Second set of approaches are full machine learning based approaches that aim to leverage

the approximation capabilities of neural networks [Hornik et al., 1989] to directly learn the dynamics of

the physical system from observations.

Hybrid solvers like Hsieh et al. [2019] use a neural network to learn a correction term to correct over an

existing hand designed solver for a Poisson equation, and also provide convergence guarantees of their

method to the solution of the PDE. However, the experiments in their paper are limited to linear el-

liptic PDEs. Further, solvers like Bar-Sinai et al. [2019] use neural networks to derive the discretiza-

tions for a given PDE, thus enabling the use of a low-resolution grid in the numerical solver. Further-

more, Kochkov et al. [2021] use neural networks to interpolate differential operators between grid points

of a low-resolution grid with high accuracy. This work specifically focuses on solving Navier-Stokes equa-

tions, their method is more accurate than numerical techniques like Direct Numerical Simulation (DNS)

with a low-resolution grid, and is also 80×more faster. Brandstetter et al. [2022] introduced a message

passing based hybrid scheme to train a hybrid solver and also propose a loss term which helps improve

the stability of hybrid solvers for time dependent PDEs. However, most of these methods are equation

specific, and are not easily transferable to other PDEs from the same family.

The neural network based approach that has recently garnered the most interest by the community is

that of the operator learning framework [Chen and Chen, 1995, Kovachki et al., 2021b, Lu et al., 2019,

Li et al., 2020a, Bhattacharya et al., 2021], which uses a neural network to approximate and infinite di-

mensional operator between two Banach spaces, thus learning an entire family of PDEs at once. Lu et al.

[2019] introduces DeepONet, which uses two deep neural networks, referred to as the branch net and

trunk net, which are trained concurrently to learn from data. Another line of operator learning frame-

work is that of neural operators Kovachki et al. [2021b]. The most successful methodology for neural

operators being the Fourier neural operators (FNO) [Li et al., 2020a]. FNO uses convolution based in-

tegral kernels which are evaluated in the Fourier space. Future works like Tran et al. [2021] introduce ar-

51

5 Deep Equilibrium Based Neural Operators for Steady-State PDEs

chitectural improvements that enables one to train deeper FNO networks, thus increasing their size and

improving their the performance on a variety of (time-dependent) PDEs. Moreover, the success of Trans-

formers in domains like language and vision has also inspired transformer based neural operators in works

like Li et al. [2022], Hao et al. [2023a] and Liu et al. [2022]. Theoretical results pertaining to the neural

operators mostly include universal approximation results Kovachki et al. [2021a], Lanthaler et al. [2022]

which show that architectures like FNO and DeepONet can indeed approximate the infinite dimension

operators.

In this work, we focus on steady-state equations and show the benefits of weight-tying in improving the

performance of FNO for steady-state equations. We show that instead of making a network deeper and

hence increasing the size of a network, weight-tied FNO architectures can outperform FNO and its vari-

ants 4× its size. We further introduce FNO-DEQ, a deep equilibrium based architecture to simulate an

infinitely deep weight-tied network (by solving for a fixed point) withO(1) training memory. Our work

takes inspiration from recent theoretical works like Marwah et al. [2021], Chen et al. [2021], Marwah

et al. [2022] which derive parametric rates for some-steady state equations, and in fact prove that neural

networks can approximate solutions to some families of PDEs with just poly(d) parameters, thus evad-

ing the curse of dimensionality.

5.3 Preliminaries

We now introduce some key concepts and notation.

Definition 17 (L2(Ω;Rd)). For a domain Ω we denote by L2(Ω;Rd) the space of square integrable func-
tions g : Ω→ Rd such that ∥g∥L2(Ω) <∞, where ∥g∥L2(Ω) =

(∫
Ω
∥g(x)∥2ℓ2dx

)1/2.

5.3.1 Neural Operators

Neural operators [Lu et al., 2019, Li et al., 2020a, Bhattacharya et al., 2021, Patel et al., 2021, Kovachki

et al., 2023] are a deep learning approach to learning solution operators which map a PDE to its solu-

tion. Fourier Neural Operator (FNO) [Li et al., 2020a] is a particularly successful recent architecture

parametrized as a sequence of kernel integral operator layers followed by non-linear activation functions.

Each kernel integral operator layer is a convolution-based kernel function that is instantiated through

a linear transformation in Fourier domain, making it less sensitive to the level of spatial discretization.

Specifically, an L-layered FNO Gθ : Rdu → Rdu
with learnable parameters θ, is defined as

Gθ := Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ P (5.2)

where P : L2(Ω;Rdu) → L2(Rdv ;Rdv) and Q : L2(Rdv ;Rdv) → L2(Rdv ;Rdu) are projection

operators, andLl : L
2(Rdv ;Rdv)→ L2(Rdv ;Rdv) for l ∈ [L] is the lth

FNO layer defined as,

Ll(vl) = σ(Wlvl + bl +Kl(vl))). (5.3)

52

5 Deep Equilibrium Based Neural Operators for Steady-State PDEs

Here σ is a non-linear activation function, Wl, bl are the lth layer weight matrix and bias terms. Finally

Kl is the lth integral kernel operator which is calculated using the Fourier transform as introduced in Li

et al. [2020a] defined as follows,

Kl(vl) = F−1(Rl · (Fvl))(x) ∀x ∈ Ω, (5.4)

where F and F−1
are the Fourier transform and the inverse Fourier transform, with Rl representing

the learnable weight-matrix in the Fourier domain. Therefore, ultimately, the trainable parameters θ is a

collection of all the weight matrices and biases, i.e, θ := {Wl, bl, Rl, · · · ,W1, b1, R1}.

5.3.2 Equilibrium Models

Equilibrium models [Liao et al., 2018, Bai et al., 2019, Revay et al., 2020, Winston and Kolter, 2020]

compute internal representations by solving for a fixed point in their forward pass. Specifically, consider

a deep feedforward network with L layers :

z[i+1] = f
[i]
θ

(
z[i];x

)
for i = 0, ..., L− 1 (5.5)

where x ∈ Rnx
is the input injection, z[i] ∈ Rnz

is the hidden state of ith layer with z[0] = 0, and

f
[i]
θ : Rnx×nz 7→ Rnz

is the feature transformation of ith layer, parametrized by θ. Suppose the above

model is weight-tied, i.e., f [i]
θ = fθ,∀i, and limi→∞ fθ

(
z[i];x

)
exists and its value is z⋆. Further, assume

that for this z⋆, it holds that fθ(z
⋆;x) = z⋆. Then, equilibrium models can be interpreted as the infinite-

depth limit of the above network such that f∞
θ (z⋆;x) = z⋆

Under certain conditions
1
, and for certain classes of fθ

2
, the output z⋆ of the above weight-tied net-

work is a fixed point. A simple way to solve for this fixed point is to use fixed point iterations, i.e., re-

peatedly apply the update z[t+1] = fθ(z
[t];x) some fixed number of times, and backpropagate through

the network to compute gradients. However, this can be computationally expensive. Deep equilibrium

(DEQ) models [Bai et al., 2019] explicitly solve for z⋆ through iterative root finding methods like Broy-

den’s method [Broyden, 1965], Newton’s method, Anderson acceleration [Anderson, 1965]. DEQs use

implicit function theorem to directly differentiate through the fixed point z⋆ at equilibrium, thus requir-

ing constant memory to backpropagate through an infinite-depth network:

∂z⋆

∂θ
=

(
I − ∂fθ(z

⋆;x)

∂z⋆

)−1
∂fθ(z

⋆;x)

∂θ
(5.6)

Computing the inverse of Jacobian can quickly become intractable as we deal with high-dimensional fea-

ture maps. One can replace the inverse-Jacobian term with an identity matrix i.e., Jacobian-free [Fung

et al., 2022] or an approximate inverse-Jacobian [Geng et al., 2021] without affecting the final perfor-

mance. There are alternate formulations of DEQs [Winston and Kolter, 2020] that guarantee existence

1
The fixed point can be reached if the dynamical system is globally contractive. This is usually not true in practice for most

choices of fθ , and divergence is possible.

2
Bai et al. [2019] state that fθ needs to be stable and constrained. In general, by Banach’s fixed point theorem, global con-

vergence is guaranteed if fθ is contractive over its input domain.

53

5 Deep Equilibrium Based Neural Operators for Steady-State PDEs

of a unique equilibrium point. However, designing fθ for these formulations can be challenging, and in

this work we use the formulation by Bai et al. [2019].

5.4 Problem setting

We first formally define the system of steady-state PDEs that we will solve for:

Definition 18 (Steady-State PDE). Given a bounded open set Ω ⊂ Rd, a steady-state PDE can be written
in the following general form:

L(a(x), u(x)) = f(x), ∀x ∈ Ω (5.7)

HereL is a continuous operator, the function u ∈ L2
(
Ω;Rdu

)
is the unknown function that we wish to solve

for and a ∈ L2
(
Ω;Rda

)
collects all the coefficients describing the PDE, and f ∈ L2

(
Ω;Rdf

)
is a function

independent of u. We will, for concreteness, assume periodic boundary conditions, i.e. ∀z ∈ Nd,∀x ∈ Ω
we have u(x+ z) = u(x). (Equivalently, Ω := Td = [0, 2π]d can be identified with the torus.) 3 Finally,
we will denote u⋆ : Ω→ R as the solution to the PDE.

Steady-state models a system at stationarity, i.e., when some quantity of interest like temperature or ve-

locity no longer changes over time. Classical numerical solvers for these PDEs include iterative methods

like Newton updates or conjugate gradient descent, typically with carefully chosen preconditioning to

ensure benign conditioning and fast convergence. Furthermore, recent theoretical works [Marwah et al.,

2021, Chen et al., 2021, Marwah et al., 2022] show that for many families of PDEs (e.g., steady-state ellip-

tic PDEs that admit a variational formulation), iterative algorithms can be efficiently “neuralized”, that

is, the iterative algorithm can be represented by a compact neural network, so long as the coefficients of

the PDE are also representable by a compact neural network. Moreover, the architectures constructed in

these works are heavily weight-tied.

We will operationalize these developments through the additional observation that all these iterative

schemes can be viewed as algorithms to find a fixed point of a suitably chosen operator. Namely, we can

design an operatorG : L2(Ω;Rdu)×L2(Ω;Rdf)→ L2(Ω;Rdu) 4
such that u⋆ = G(u⋆, f) and a lot of

common (preconditioned) first and second-order methods are natural ways to recover the fixed pointsu⋆
.

Before describing our architectures, we introduce two components that we will repeatedly use.

3
This is for convenience of exposition, our methods can readily be extended to other boundary conditions like Dirichet,

Neumann etc.

4
We note that the choice of defining the operator with the forcing function f is made for purely expository purposes the

operator G can be defined as G : L2(Ω;Rdu)× L2(Ω;Rda)→ L2(Ω;Rdu) as well.

54

5 Deep Equilibrium Based Neural Operators for Steady-State PDEs

Definition 19 (Projection and embedding layers). A projection and embedding layer, respectively P :
L2(Ω;Rdu)×L2(Ω;Rdf)→ L2(Rdv ;Rdv)×L2(Rdv ;Rdv) andQ : L2(Rdv ;Rdv)→ L2(Rdv ;Rdu),
are defined as

P(v, f) =
(
σ
(
W

(1)
P v + b

(1)
P

)
, σ
(
W

(2)
P f + b

(2)
P

))
,

Q(v) = σ(WQv + bQ)

where W (1)
P ∈ Rdu×dv ,W

(2)
P ∈ Rdf×dv ,WQ ∈ Rdv×du and b

(1)
P , b

(2)
P ∈ Rdv , bQ ∈ Rdu .

Definition 20 (Input-injected FNO layer). An input-injected FNO layerL : L2(Rdv ;Rdv)×L2(Rdv ;Rdv)→
L2(Rdv ;Rdv) is defined as

L(v, g) := g + σ
(
Wv + b+ F−1(R(k) · (Fv)

)
. (5.8)

where W ∈ Rdv×dv , b ∈ Rdv and R(k) ∈ Rdv×dv for all k ∈ [K] are learnable parameters.

Note the difference between the FNO layer specified above, and the standard FNO layer Equation 5.3 is

the extra input g to the layer, which in our architecture will correspond to a projection of (some or all) of

the PDE coefficients. We also note that this change to the FNO layer also enables us to learn deeper FNO

architectures, as shown in Section 9.8. With this in mind, we can discuss the architectures we propose.

Weight-tied architecture I: Weight-tied FNO The first architecture we consider is a weight-

tied version of FNO (introduced in Section 5.3), in which we repeatedly apply (M times) the same trans-

formation in each layer. More precisely, we have:

Definition 21 (FNO Weight-Tied). We define a M times weight-tied neural operator GM
θ as,

GM
θ = Q ◦ BL ◦ BL ◦ · · · ◦ BL︸ ︷︷ ︸

M times

◦P

such that:P ,Qare projection and embedding layers as in Definition 19 anBL : L2(Rdv ;Rdv)×L2(Rdv ;Rdv)→
L2(Rdv ;Rdv) is anL-layer FNO block, i.e,BL = LL◦LL−1◦LL−2◦L1 where for all l ∈ [L],Ll(·,P(f))
5 is an input-injected FNO block as in Definition 20.

Weight-tied architecture II: FNO-DEQ In cases where we believe a weight-tied GM
θ converges

to some fixed point as M → ∞, unrolling GM
θ for a large M requires a lot of hardware memory for

training: training the model requires one to store intermediate hidden units for each weight-tied layer for

backpropagation, resulting in aO(M) increase in the amount of memory required.

To this end, we use Deep Equilibrium models (DEQs) which enables us to implicitly trainGθ := limM→∞GM
θ

by directly solving for the fixed point by leveraging black-box root finding algorithms like quasi-Newton

5
We are abusing the notation somewhat and denoting byP(f) the second coordinate ofP , which only depends on f .

55

5 Deep Equilibrium Based Neural Operators for Steady-State PDEs

methods, [Broyden, 1965, Anderson, 1965]. Therefore we can think of this approach as an infinite-depth

(or infinitely unrolled) weight-tied network. We refer to this architecture as FNO-DEQ.

Definition 22 (FNO-DEQ). GivenP ,Q andBL in Definition 21, FNO-DEQ is trained to parametrize
the fixed point equation BL(v⋆,P(f)) = v⋆ and outputs u⋆ = Q(v⋆).

Usually, it is non-trivial to differentiate through these black-box root solvers. DEQs enable us to implicitly

differentiate through the equilibrium fixed point efficiently without any need to backpropagate through

these root solvers, therefore resulting inO(1) training memory.

5.5 Experiments

Network architectures. We consider the following network architectures in our experiments.

FNO: We closely follow the architecture proposed by Li et al. [2020a] and construct this network by

stacking four FNO layers and four convolutional layers, separated by GELU activation [Hendrycks and

Gimpel, 2016]. Note that in our current set up, we recover the original FNO architecture if the input to

the lth
layer is the output of (l − 1)th

layer i.e., vl = Bl−1(vl−1).

Improved FNO (FNO++): The original FNO architecture suffers from vanishing gradients, which

prohibits it from being made deeper [Tran et al., 2021]. We overcome this limitation by introducing

residual connections within each block of FNO, with each FNO blockBl comprising of three FNO layers

L i.e., Bl = Ll
L1
◦ Ll

L2
◦ Ll

L3
and three convolutional layers, whereL is defined in Equation 5.8.

Weight-tied network (FNO-WT): This is the weight-tied architecture introduced in Definition 21,

where we initialize v0(x) = 0 for all x ∈ Ω.

FNO-DEQ : As introduced in Definition 22, FNO-DEQ is a weight-tied network where we explicitly

solve for the fixed point in the forward pass with a root finding algorithm. We use Anderson acceleration

[Anderson, 1965] as the root solver. For the backward pass, we use approximate implicit gradients [Geng

et al., 2021] which are light-weight and more stable in practice, compared to implicit gradients computed

by inverting Jacobian.

Note that both weight-tied networks and FNO-DEQs leverage weight-tying but the two models differ in

the ultimate goal of the forward pass: DEQs explicitly solve for the fixed point during the forward pass,

while weight-tied networks trained with backpropagation may or may-not reach a fixed point [Anil et al.,

2022]. Furthermore, DEQs requireO(1) memory, as they differentiate through the fixed point implic-

itly, whereas weight-tied networks need to explicitly create the entire computation graph for backpropa-

gation, which can become very large as the network depth increases. Additionally, FNO++ serves as a non

weight-tied counterpart to a weight-tied input-injected network. Like weight-tied networks, FNO++

does not aim to solve for a fixed point in the forward pass.

Experimental setup. We test the aforementioned network architectures on two families of steady-state

PDEs: Darcy Flow equation and steady-state Navier-Stokes equation for incompressible fluids. For ex-

periments with Darcy Flow, we use the dataset provided by Li et al. [2020a], and generate our own dataset

56

5 Deep Equilibrium Based Neural Operators for Steady-State PDEs

for steady-state Navier-Stokes. For more details on the datasets and the data generation processes we refer

to Sections 12.2.1 and 12.2.2 of the Appendix. For each family of PDE, we train networks under 3 dif-

ferent training setups: clean data, noisy inputs and noisy observations. For experiments with noisy data,

both input and observations, we add noise sampled from a sequence of standard Gaussians with increas-

ing values of variance {N (0, (σ2
k))}M−1

k=0 , where M is the total number of Gaussians we sample from.

We set σ2
0 = 0 and σ2

max
= σ2

M−1 ≤ 1/r, where r is the resolution of the grid. Thus, the training data

includes equal number of PDEs with different levels of Gaussian noise added to their input or observa-

tions. We add noise to training data, and always test on clean data. We follow prior work [Li et al., 2020b]

and report relative L2 norm between ground truth u⋆
and prediction on test data. The total depth of all

networks besides FNO is given by 6B + 4, where B is the number of FNO blocks. Each FNO block

has 3 FNO layers and convolutional layers. In addition, we include the depth due toP ,Q, and an addi-

tional final FNO layer and a convolutional layer. We further elaborate upon network architectures and

loss functions in in 12.1.

5.5.1 Darcy Flow

For our first set of experiments we consider stationary Darcy Flow equations, a form of linear elliptic PDE

with in two dimensions. The PDE is defined as follows,

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2

u(x) = 0 x ∈ ∂(0, 1)2.
(5.9)

Note that the diffusion coefficient a ∈ L∞(Ω)(Ω;R+), i.e., the coefficients are always positive, and f ∈
L2(Ω;Rdf) is the forcing term. These PDEs are used to model the steady-state pressure of fluids flowing

through a porous media. They can also be used to model the stationary state of the diffusive process with

u(x) modeling the temperature distribution through the space with a defining the thermal conductivity

of the medium. The task is to learn an operator Gθ : L2(Ω;Rdu) × L2(Ω;Rda) → L2(Ω;Rdu) such

that u⋆ = Gθ(u
⋆, a).

We report the results of our experiments on Darcy Flow in Table 12.5. The original FNO architecture

does not improve its performance with increased number of FNO blocksB. FNO++ with residual con-

nections scales better but saturates at around 4 FNO blocks. In contrast, FNO-WT and FNO-DEQ with

just a single FNO block outperform deeper non-weight-tied architectures on clean data and on data with

noisy inputs. When observations are noisy, FNO-WT and FNO-DEQ outperform FNO++ with a simi-

lar number of parameters, and perform comparably to FNO++ with 4× parameters.

We also report results on shallow FNO-DEQ, FNO-WT and FNO++ architectures. An FNO block in

these shallow networks has a single FNO layer instead of three layers. In our experiments, shallow weight-

tied networks outperform non-weight-tied architectures including FNO++ with 7×parameters on clean

data and on data with noisy inputs, and perform comparably to deep FNO++ on noisy observations. In

case of noisy observations, we encounter training instability issues in FNO-DEQ. We believe that this

shallow network lacks sufficient representation power and cannot accurately solve for the fixed point

during the forward pass. These errors in fixed point estimation accumulate over time, leading to incorrect

values of implicit gradients, which in turn result in training instability issues.

57

5 Deep Equilibrium Based Neural Operators for Steady-State PDEs

Architecture Parameters #Blocks

Test error ↓
σ2
max = 0 (σ2

max)
i = 0.001 (σ2

max)
t = 0.001

FNO 2.37M 1 0.0080± 5e-4 0.0079± 2e-4 0.0125± 4e-5

FNO 4.15M 2 0.0105± 6e-4 0.0106± 4e-4 0.0136± 2e-5

FNO 7.71M 4 0.2550± 2e-8 0.2557± 8e-9 0.2617± 2e-9

FNO++ 2.37M 1 0.0075± 2e-4 0.0075± 2e-4 0.0145± 7e-4

FNO++ 4.15M 2 0.0065± 2e-4 0.0065± 9e-5 0.0117± 5e-5

FNO++ 7.71M 4 0.0064± 2e-4 0.0064± 2e-4 0.0109 ± 5e-4
S-FNO++ 1.78M 0.66 0.0093± 5e-4 0.0094± 7e-4 0.0402± 6e-3

FNO-WT 2.37M 1 0.0055 ± 1e-4 0.0056 ± 5e-5 0.0112± 4e-4

FNO-DEQ 2.37M 1 0.0055 ± 1e-4 0.0056 ± 7e-5 0.0112± 4e-4

S-FNO-WT 1.19M 0.33 0.0057± 3e-5 0.0057± 5e-5 0.0112± 1e-4

S-FNO-DEQ 1.19M 0.33 0.0056± 4e-5 0.0056± 5e-5 0.0136± 0.011

Table 5.1: Results on Darcy flow: clean data (Col 4),noisy inputs (Col 5) and noisy observations (Col 6) with max

variance of added noise being (σ2
max)

i
and (σ2

max)
t
, respectively. Reported test error has been averaged

on three different runs with seeds 0, 1, and 2. Here, S-FNO++, S-FNO-WT and S-FNO-DEQ are shallow

versions of FNO++, FNO-WT and FNO-DEQ respectively.

5.5.2 Steady-state Navier-Stokes Equations for Incompressible Flow

We consider the steady-state Navier-Stokes equation for an incompressible viscous fluid in the vorticity

form defined on a torus, i.e., with periodic boundary condition,

u · ∇ω = ν∆ω + f, x ∈ Ω

∇ · u = 0 x ∈ Ω
(5.10)

where Ω := (0, 2π)2, and u : Ω → R2
is the velocity and ω : Ω → R where ω = ∇ × u, ν ∈ R+

is the viscosity and f : Ω → R is the external force term. We learn an operator Gθ : L2(Ω;Rdu) ×
L2(Ω;Rdf) → L2(Ω;Rdu), such that u⋆ = Gθ(u

⋆, f). We train all the models on data with viscosity

values ν = 0.01 and ν = 0.001, and create a dataset for steady-state incompressible Navier-Stokes,

which we will make public as a community benchmark for steady-state PDE solvers.

Results for Navier-Stokes equation have been reported in Table 5.2 and Table 5.3. For both values of

viscosity, FNO-DEQ outperforms other architectures for all three cases: clean data, noisy inputs and

noisy observations. FNO-DEQ is more robust to noisy inputs compared to non-weight-tied architec-

tures. For noisy inputs, FNO-DEQ matches the test-error of noiseless case in case of viscosity 0.01 and

almost matches the test-error of noiseless case in case of viscosity 0.001. We provide additional results for

noise level 0.004 in Appendix 12.5. FNO-DEQ and FNO-WT consistently outperform non-weight-tied

architectures for higher levels of noise as well.

In general, DEQ-based architectures are slower to train (upto∼2.5× compared to feedforward networks

of similar size) as we solve for the fixed point in the forward pass. However, their inductive bias provides

58

5 Deep Equilibrium Based Neural Operators for Steady-State PDEs

performance gains that cannot be achieved by simply stacking non-weight-tied FNO layers. In general,

we observe diminishing returns in FNO++ beyond 4 blocks. Additionally, training the original FNO

network on more than 4 FNO blocks is challenging, with the network often diverging during training,

and therefore we do not include these results in the paper.

Architecture Parameters #Blocks

Test error ↓
σ2
max = 0 (σ2

max)
i = 0.001 (σ2

max)
t = 0.001

FNO 2.37M 1 0.184± 0.002 0.218± 0.003 0.184± 0.001

FNO 4.15M 2 0.162± 0.024 0.176± 0.004 0.152± 0.005

FNO 7.71M 4 0.157± 0.012 0.187± 0.004 0.166± 0.013

FNO++ 2.37M 1 0.199± 0.001 0.230± 0.001 0.197± 0.001

FNO++ 4.15M 2 0.154± 0.005 0.173± 0.003 0.154± 0.006

FNO++ 7.71M 4 0.151± 0.003 0.165± 0.004 0.149± 0.003

FNO-WT 2.37M 1 0.123 ± 0.004 0.129 ± 0.004 0.124± 0.005

FNO-DEQ 2.37M 1 0.123 ± 0.005 0.129 ± 0.004 0.123 ± 0.006

Table 5.2: Results on incompressible steady-state Navier-Stokes (viscosity=0.001): clean data (Col 4), noisy inputs

(Col 5) and noisy observations (Col 6) with max variance of added noise being (σ2
max)

i
and (σ2

max)
t
,

respectively. Reported test error has been averaged on three different runs with seeds 0, 1, and 2.

Architecture Parameters #Blocks

Test error ↓
σ2
max = 0 (σ2

max)
i = 0.001 (σ2

max)
t = 0.001

FNO 2.37M 1 0.181± 0.005 0.186± 0.003 0.178± 0.006

FNO 4.15M 2 0.138± 0.007 0.150± 0.006 0.137± 0.012

FNO 7.71M 4 0.152± 0.006 0.163± 0.002 0.151± 0.008

FNO++ 2.37M 1 0.188± 0.002 0.207± 0.004 0.187± 0.003

FNO++ 4.15M 2 0.139± 0.004 0.153± 0.002 0.140± 0.005

FNO++ 7.71M 4 0.130± 0.005 0.151± 0.004 0.128± 0.009

FNO-WT 2.37M 1 0.089± 0.004 0.089 ± 0.003 0.089± 0.004

FNO-DEQ 2.37M 1 0.085 ± 0.005 0.090± 0.003 0.087 ± 0.007

Table 5.3: Results on incompressible steady-state Navier-Stokes (viscosity=0.01): clean data (Col 4), noisy inputs

(Col 5) and noisy observations (Col 6) with max variance of added noise being (σ2
max)

i
and (σ2

max)
t
,

respectively. Reported test error has been averaged on three different runs with seeds 0, 1, and 2.

5.6 Universal Approximation and Fast Convergence of

FNO-DEQ

Though the primary contribution of our paper is empirical, we show (by fairly standard techniques) that

FNO-DEQ is a universal approximator, under mild conditions on the steady-state PDEs. Moreover, we

also show that in some cases, we can hope the fixed-point solver can converge rapidly.

59

5 Deep Equilibrium Based Neural Operators for Steady-State PDEs

As noted in Definition 18, we have Ω := Td
. We note that all continuous function f ∈ L2(Ω;R)

and

∫
Ω
|f(x)|dx < ∞ can be written as, f(x) =

∑
ω∈Nd eix

Tωf̂w. where {f̂ω}ω∈Nd are the Fourier

coefficients of the functionf . We define asL2
N(Ω) as the space of functions such that for allfN ∈ L2

N(Ω)
with Fourier coefficients that vanish outside a bounded ball. Finally, we define an orthogonal projection

operator ΠN : L2(Ω)→ L2
N(Ω), such that for all f ∈ L2(Ω) we have,

fn = ΠN(f) = ΠN

(∑
ω∈Nd

fωe
ixTω

)
=

∑
∥ω∥∞≤N

f̂ωe
ixTω. (5.11)

That is, the projection operator ΠN takes an infinite dimensional function and projects it to a finite

dimensional space. We prove the following universal approximation result:

Theorem 8. Let u⋆ ∈ L2(Ω;Rdu) define the solution to a steady-state PDE in Definition 18, Then there
exists an operator G : L2(Ω;Rdu)×L2(Ω;Rdf)→ L2(Ω;Rdu) such that, u⋆ = G(u⋆, f). Furthermore,
for every ϵ > 0 there exists anN ∈ N such that for compact setsKu ⊂ L2(Ω;Rdu) andKf ⊂ L2(Ω;Rdf)
there exists a neural network Gθ : L2

N(Ω;Rdu) × L2
N(Ω;Rdf) → L2

N(Ω;Rdu) with parameters θ, such
that,

sup
u∈Ku,f∈Kf

∥u⋆ −Gθ(ΠNu
⋆,ΠNf)∥L2(Ω) ≤ ϵ.

The proof for the above theorem is relatively straightforward and provided in Appendix 12.3. The proof

uses the fact that u⋆
is a fixed-point of the operator G(u, f) = u − (L(u) − f), allowing us to use the

the results in Kovachki et al. [2021a] that show a continuous operator can be approximated by a network

as defined in Equation 5.2. Note that the choice of G is by no means unique: one can “universally ap-

proximate” any operator G(u, f) = u − A(L(u) − f), for a continuous operator A. Such a G can be

thought of as a form of “preconditioned” gradient descent, for a preconditioner A. For example, a New-

ton update has the form G(u, f) = u − L′(u)−1(L(u)− f) , where L′ : L2(Ω;Rdu) → L2(Ω;Rdu)
is the Frechet derivative of the operator L.

The reason this is relevant is that the DEQ can choose to universally approximate a fixed-point equation

for which the fixed-point solver it is trained with also converges rapidly. As an example, the following

classical result shows that under Lax-Milgram-like conditions (a kind of strong convexity condition),

Newton’s method converges doubly exponentially fast:

Lemma 25 (Faragó and Karátson [2002], Chapter 5). Consider the PDE defined Definition 18, such
that du = dv = df = 1. such that L′(u) defines the Frechet derivative of the operator L. If for all
u, v ∈ L2(Ω;R)we have ∥L′(u)v∥L2(Ω) ≥ λ∥v∥L2(Ω) and ∥L′(u)−L′(v)∥L2(Ω) ≤ Λ∥u−v∥L2(Ω) for
0 < λ ≤ Λ <∞, then for the Newton update,ut+1 ← ut−L′(ut)

−1(L(ut)− f),withu0 ∈ L2(Ω;R),
there exists an ϵ > 0, such that ∥uT − u⋆∥L2(Ω) ≤ ϵ if T ≥ log

(
log
(
1
ϵ

)
/ log

(
2λ2

Λ∥L(u0)−f∥L2(Ω)

))
.

For completeness, we include the proof of the above lemma in the Appendix (Section 12.4). We note

that the conditions of the above lemma are satisfied for elliptic PDEs like Darcy Flow, as well as many

variational non-linear elliptic PDEs (e.g., those considered in Marwah et al. [2022]). Hence, we can

expect FNO-DEQs to quickly converge to the fixed point, since they employ quasi-Newton methods like

Broyden and Anderson methods [Broyden, 1965, Anderson, 1965].

60

6 On the Benefits of Memory for

Modeling Time-Dependent PDEs

Abstract: Data-driven techniques have emerged as a promising alternative to traditional numerical
methods. For time-dependent PDEs, many approaches are Markovian—the evolution of the trained system
only depends on the current state, and not the past states. In this work, we investigate the benefits of using
memory for modeling time-dependent PDEs: that is, when past states are explicitly used to predict the fu-
ture. Motivated by the Mori-Zwanzig theory of model reduction, we theoretically exhibit examples of simple
(even linear) PDEs, in which a solution that uses memory is arbitrarily better than a Markovian solution.
Additionally, we introduce Memory Neural Operator (MemNO), a neural operator architecture that com-
bines recent state space models (specifically, S4) and Fourier Neural Operators (FNOs) to effectively model
memory. We empirically demonstrate that when the PDEs are supplied in low resolution or contain observa-
tion noise at train and test time, MemNO significantly outperforms the baselines without memory—with
up to 6× reduction in test error. Furthermore, we show that this benefit is particularly pronounced when
the PDE solutions have significant high-frequency Fourier modes (e.g., low-viscosity fluid dynamics) and we
construct a challenging benchmark dataset consisting of such PDEs.

6.1 Introduction

Time-dependent partial differential equations (PDEs) are central to modeling various scientific and physi-

cal phenomena, necessitating the design of accurate and computationally efficient solvers. Recently, data-

driven approaches based on neural networks [Li et al., 2021b, Lu et al., 2019] have emerged as an attrac-

tive alternative to classical numerical solvers, such as finite element and finite difference methods [LeV-

eque, 2007]. Classical approaches are computationally expensive in high dimension and struggle with

PDEs which are sensitive to initial conditions. Learned approaches can often negotiate these difficulties

better, at least for the PDE family they are trained on.

One example of a data-driven approach is learning a neural solution operator, which for a time-dependent

PDE learns to predict future states based on previous ones [Li et al., 2021a, 2022]. Recent works [Tran

et al., 2023, Lippe et al., 2023b] suggest that optimal performance across various PDE families can be

achieved by conditioning the models only on the immediate past state—i.e., treating the system as Marko-

vian. In contrast, other works propose architectures that explicitly use memory of past states [Li et al.,

2021a, 2022, Hao et al., 2024a]. None of these works elucidate whether and when modeling memory is

helpful.

61

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

In this work, we demonstrate that when the solution of the PDE is only partially observed (e.g. observed

at low resolution), explicitly modeling memory can be beneficial. Partial observability is natural in many

practical settings. This could be due to limited resolution of the measurement devices collecting the data,

inherent observational errors in the system, or prohibitive computational difficulty in generating high-

quality synthetic data. This can lead to significant information loss, particularly in systems like turbulent

flows [Pope, 2001] or shock formation in fluid dynamics [Christodoulou, 2007], where PDEs change

abruptly in space and time. In such situations, classical results from dynamical systems (Mori-Zwanzig

theory), suggest that the system becomes strongly non-Markovian.

More precisely, Mori-Zwanzig theory [Mori, 1965, Zwanzig, 1961, Ma et al., 2018] is an ansatz to under-

stand the evolution of a subspace of a system (e.g., the span of the k largest Fourier components). Un-

der certain conditions, this evolution can be divided into a Markovian term (the evolution of the chosen

subspace under the PDE), a memory term (which is a weighted sum of the values of all previous iterates

in the chosen subspace), and an “unobservable” term, which depends on the values of the initial condi-

tions orthogonal to the selected subspace.

The main focus of this paper is studying when explicitly modeling this memory term is useful. We give

an example of a very simple (in fact, linear) PDE where we show theoretically that the solution which

takes into account the memory term can be arbitrarily better than the Markovian solution. We also pro-

vide a way to operationalize the Mori-Zwanzig formalism by introducing Memory Neural Operator
(MemNO), a neural operator architecture that combines the Fourier Neural Operator (FNO) [Li et al.,

2021a, Tran et al., 2023] to model the spatial dynamics of the PDE, and the S4 state space model [Gu

et al., 2022b, 2023] to maintain a compressed representation of the past states. We show that MemNO

outperforms its Markovian (memoryless) counterpart in PDEs observed on low resolution grids or with

observation noise —achieving up to 6× less test error. Our contributions are as follows:

• We identify a setting in which explicitly modeling memory is helpful: namely, when there is a com-

bination of lossy observations of the solution of the PDE (e.g., due to limited resolution or obser-

vation noise) and significant contributions from high-frequency Fourier modes in the solution.

• Even in simple (in fact, linear) PDEs, we theoretically show the memory term can result in a solution

that is (arbitrarily) closer to the correct solution, compared to the Markovian approximation —in

particular when the operator describing the PDE “mixes” the observed and unobserved subspace.

• Across several families of one-dimensional and two-dimensional PDEs, we empirically demon-

strate that when the input is supplied on a low-resolution grid, or contains observation noise, neu-

ral operators with memory outperform Markovian operators by a significant margin. More pre-

cisely, to operationalize memory, we introduce MemNO, a neural operator architecture combin-

ing Fourier Neural Operators (FNOs) and S4, which achieves the best performance across several

Markovian and memory baselines.

• We observe that many current benchmarks for PDE solvers predominantly include PDEs in which

there is little contribution from high-frequency Fourier modes. Consequently, we construct more
challenging datasets where the solutions have significant high-frequency modes, which we believe

will be of broader significance to the community beyond testing the effects of memory— especially

62

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

given recent meta-studies suggesting many current PDE benchmarks are too easy [McGreivy and

Hakim, 2024].

6.2 Related Work

Data-driven neural solution operators [Chen and Chen, 1995, Bhattacharya et al., 2021, Lu et al., 2019,

Kovachki et al., 2023] have emerged as the dominant approach for approximating PDEs, given their

ability to model multiple families of PDEs at once, and their computational efficiency at inference time.

Many architectures have been proposed to improve their performance across different families of PDEs:

Li et al. [2021a] introduced the Fourier Neural Operator (FNO), a resolution invariant architecture that

uses a convolution-based integral kernel evaluated in the Fourier space; Tran et al. [2023] later introduced

the Factorized FNO (FFNO) architecture, which builds upon and improves the FNO architecture by

adding separable spectral layers and residual connections; Cao [2021] proposed a Transformer method

with linear attention over the spatial sequence; other recent works have used U-Net-based architectures

[Gupta and Brandstetter, 2023, Rahman et al., 2023].

Focusing on memory, Tran et al. [2023] performed ablations that suggest the Markov assumption is op-

timal and outperforms models that use the history of past timesteps as input. Lippe et al. [2023b] per-

formed a similar study for long rollouts of the PDE solution and concluded the optimal performance is

indeed achieved under the Markovian assumption. We show that these findings can be replicated only

when the resolution of the observation grid is high. On the other hand, we show that MemNO effec-

tively models memory to achieve much superior performance than Markovian operators in low resolu-

tion, while not dropping performance in the high resolution case.

Our work is motivated by the Mori-Zwanzig formalism [Zwanzig, 1961, Mori, 1965] which shows that a

partial observation of the current state of the system can be compensated using memory of past states. Ma

et al. [2018] also study the effects of memory, but when modeling the dynamics of a single PDE by a neural

architecture. The authors draw parallels to the Mori-Zwanzig equations and LSTM [Hochreiter and

Schmidhuber, 1997] to model the dynamics of thek largest Fourier components of a time-dependent 1-D

Kuramoto-Sivashinsky and 2-D shear flow equations, for a single PDE. However, in our work, we study

the benefits of memory in neural operator settings, i.e., we have a single model that learns the dynamics

of an entire family of PDE at once, and also show conditions under which not maintaining memory can

result in arbitrarily large errors.

6.3 Preliminaries

In this section, we introduce several definitions, as well as background on the Mori-Zwanzig formalism

as applied to our setting.

63

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

6.3.1 Partial Differential Equations (PDEs)

Definition 23 (Space of square integrable functions). For integers d, V and an open set Ω ⊂ Rd, we
define L2

(
Ω;RV

)
as the space of square integrable functions u : Ω → RV such that ∥u∥L2 ≤ ∞, where

∥u∥L2 =
(∫

Ω
∥u(x)∥22dx

) 1
2 .

Definition 24 (Restriction). Given a function u : Ω → RV and a subset A ⊂ Ω, we denote u|A as the
restriction of u to the domain A, i.e. u|A : A→ RV .

The general form of the PDEs we consider in this paper will be the following:

Definition 25 (Time-Dependent PDE). For an open set Ω ⊂ Rd and an interval [0, T] ⊂ R, a Time-
Dependent PDE is the following expression:

∂u

∂t
(t, x) = L[u](t, x), ∀t ∈ [0, T], x ∈ Ω, (6.1)

u(0, x) = u0(x), ∀x ∈ Ω, (6.2)

B[u|∂Ω](t) = 0, ∀t ∈ [0, T] (6.3)

whereL : L2
(
Ω;RV

)
→ L2

(
Ω;RV

)
is a differential operator inxwhich is independent of time,u0(x) ∈

L2
(
Ω;RV

)
and B is an operator defined on the boundary of ∂Ω, commonly referred to as the boundary

condition.

Finally, we will frequently talk about a grid of a given resolution:

Definition 26 (Equispaced grid with resolution f). Let Ω = [0, L]d. An equispaced grid with resolution
f in Ω is the following set S ⊂ Rd:

S =

{(
i1
L

f
, · · · , ik

L

f

)∣∣∣∣0 ≤ ik ≤ f − 1 for 1 ≤ k ≤ d

}
.

We will also denote by |S| the number of points in S .

In our theory and experiments, we will work with periodic boundary conditions. For completeness, we

give a precise definition of periodic boundary conditions for the PDE defined in Definition 25:

Definition 27 (Periodic Boundary Conditions). For a PDE given by Definition 25 withΩ = [0, L]d, we
define the periodic boundary conditions as the condition:

u(x1, · · · , xk−1, 0, xk+1, · · ·xd) = u(x1, · · · , xk−1, L, xk+1, · · ·xd)

for all (x1, · · · , xk−1, xk+1, · · · , xL) ∈ [0, L]d−1 and all k = 1, · · · , d.

64

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

6.3.2 Mori-Zwanzig Formalism

The Mori-Zwanzig formalism [Zwanzig, 2001] considers the setting in which an equation is known for

a full system, but only a part of it is observed. It leverages the knowledge of past states of a system to

compensate for the loss of information that arises from the partial observation of the current state. In our

work, partial observation can refer to observing the solution at a discretized grid in space or only observing

the Fourier modes up to a critical frequency. In the context of time-dependent PDEs, the Mori-Zwanzig

principle is formalized as the Nakajima–Zwanzig equation [Nakajima, 1958].

We will give an overview of the Nakajima-Zwanzig equation and set up the notation for the rest of the

paper. Assume we have a PDE as in Definition 25. Let P : L2
(
Ω;RV

)
→ L2

(
Ω;RV

)
be a linear

projection operator. We defineQ = I −P , where I is the identity operator. In our setting, for the PDE

solution at timestep t ut ∈ L2
(
Ω;RV

)
,P [ut] is the part of the solution that we observe andQ[ut] is the

unobserved part. Thus, the initial information we receive for the system isP [u0]. ApplyingP andQ to

Equation 6.1 and using u = P [u] +Q[u], we get:

∂

∂t
P [u](t, x) = PL[u](t, x) = PLP [u](t, x) + PLQ[u](t, x) (6.4)

∂

∂t
Q[u](t, x) = QL[u](t, x) = QLP [u](t, x) +QLQ[u](t, x) (6.5)

Solving for 6.5 yieldsQ[u](t, x) =
∫ t

0
expQL(t− s)QLP [u](s, x)ds+ eQLtQ[u0](t, x).

Plugging into 6.4, we obtain a Generalized Langevin Equation [Mori, 1965] forP [u]:

∂

∂t
P [u](t, x) = PLP [u](t, x) + PL

∫ t

0

exp(QL(t− s))QLP [u](s, x)ds+ PLeQLtQ[u0](t, x)

(6.6)

We will refer to the first summand on the right hand side of Equation 6.6 as the Markovian term be-

cause it only depends on P [u](t, x), the second summand as the memory term because it depends on

P [u](s, x) for 0 ≤ s ≤ t, and the third summand as the unobserved residual as it depends onQ[u0]
which is never observed.

Since Equation 6.6 is exact, it is equivalent to solving the full system. The term that is typically most

difficult to compute is the memory term, and many methods to approximate it have been proposed.

In the physics literature, some techniques include a perturbation expansion of the exponential exp(QL(t−
s)) [Breuer and Petruccione, 2002], or approximations using operators defined in P

[
L2
(
Ω;RV

)]
[Shi

and Geva, 2003, Zhang et al., 2006, Montoya-Castillo and Reichman, 2016, Kelly et al., 2016]. In the clas-
sical numerical PDE solver literature, the memory term has been approximated by leveraging the struc-

ture of the orthogonal dynamics of theP semi-group [Gouasmi et al., 2017], and the Mori-Zwanzig for-

malism has been applied to a variety of fluid dynamics PDEs [Parish and Duraisamy, 2017]. In the ma-
chine learning literature, Ma et al. [2018] develop the equations for the case when the operator P keeps

65

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

only the k largest Fourier modes, and designed a hybrid approach where the memory term was approx-

imated with an LSTM [Hochreiter and Schmidhuber, 1997]. In this work, we consider a single neural

operator that learns the temporal (e.g. memory) and spatial dynamics of a PDE at once.

6.4 Theoretical motivation for memory: a simple example

In this section, we provide a simple, but natural example of a (linear) PDE, along with (in the nomencla-

ture of Section 6.3.2) a natural projection operator given by a Fourier truncation measurement operator,

such that the memory term in the generalized Langevin equation (GLE) can have an arbitrarily large im-

pact on the quality of the calculated solution. We will work with periodic functions over [0, 2π] which

have a convenient basis:

Definition 28 (Basis for 2π-periodic functions). A function f : R→ R is 2π-periodic if f(x+ 2π) =
f(x). We can identify 2π-periodic functions with functions over the torus T := {eiθ : θ ∈ R} ⊆ C by the
map f̃(eix) = f(x). Note that {eixn}n∈Z is a basis for the set of 2π-periodic functions.

We will define the following measurement operator:

Definition 29 (Fourier truncation measurement). The operator Pk : L2(T ;R) → L2(T ;R) acts on
f ∈ L2(T ;R), f(x) =

∑∞
n=−∞ ane

inx asPk(f) =
∑k

n=−k ane
inx.

For notational convenience, we will also define the functions {en}n∈Z, where en(x) := e−inx + einx.

Now, we consider the following operator to define a linear time-dependent PDE:

Proposition 2. LetL : L2(T ;R)→ L2(T ;R) be defined asLu(x) = −∆u(x)+B ·(e−ix+eix)u(x)
for B > 0. Then, we have:

∀1 ≤ n ∈ N, L(en) = n2en +B(en−1 + en+1) & L(e0) = 2Be1

The crucial property of this operator is that it acts by “mixing” the n-th Fourier basis with the (n−1)-th

and (n+1)-th: thus information is propagated to both the higher and lower-order part of the spectrum.

Given the above proposition, we can easily write down the evolution of a PDE with operator L in the

basis {en}n∈Z:

Proposition 3. LetL be defined as in Proposition 2. Consider the PDE

∂

∂t
u(t, x) = Lu(t, x)

u(0, x) =
∑
n∈N0

an(0)en

66

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

Let u(t, x) =
∑

n∈N0
a
(t)
n en. Then, the coefficients a(t)n satisfy:

∀1 ≤ n ∈ N,
∂

∂t
a(t)n = n2a(t)n +B

(
a
(t)
n−1 + a

(t)
n+1

)
(6.7)

∂

∂t
a
(t)
0 = 2Ba

(t)
1 (6.8)

With this setup in mind, we will show that as B grows, the memory term in Equation 6.6 can have an

arbitrarily large effect on the calculated solution:

Theorem 9 (Effect of memory). Consider the operatorL defined in Proposition 2, the Fourier truncation
operatorP1, and letQ = I −P1. Let u(0, x) have the form in Proposition 3 for B > 0 sufficiently large,
and let a(0)n > 0,∀n > 0. Consider the memoryless and memory-augmented PDEs:

∂u1

∂t
= P1Lu1 (6.9)

∂u2

∂t
= P1Lu2 + P1L

∫ t

0

expQL(t− s)QLu2(s)ds (6.10)

with u1(0, x) = u2(0, x) = P1u(0, x). Then, u1 and u2 satisfy:

∀t > 0, ∥u1(t)− u2(t)∥L2 ≳ Bt∥u1(t)∥L2 (6.11)

∀t > 0, ∥u1(t)− u2(t)∥L2 ≳ Bt exp(
√
2Bt) (6.12)

Remark 3. Note that the two conclusions of the theorem mean that both the absolute difference, and the rel-
ative difference between the PDE including the memory term Equation 6.10 and not including the memory
term Equation 6.9 can be arbitrarily large as B, t→∞.

Remark 4. The choice of L is made for ease of calculation of the Markovian and memory term. Concep-
tually, we expect the solution to Equation 6.10 will differ a lot from the solution to Equation 6.9 if the action
of the operatorL tends to “mix” components in the span ofP and the span ofQ.

Remark 5. If we solve the equation ∂
∂t
u(t, x) = Lu(t, x) exactly, we can calculate that ∥u(t)∥L2 will

be on the order of exp(2Bt). This can be seen by writing the evolution of the coefficients of u(t) in the

basis {en}, which looks like: ∂
∂t

a0
a1
. . .

 = O

a0
a1
. . .

 where O is roughly a tridiagonal Toeplitz operator

O =


...

...
...

...
. . . B n2 B 0 . . .
. . . 0 B (n+ 1)2 B . . .

...
...

...
...

. The largest eigenvalue of this operator can be shown to be on

the order of at least 2B (Equation 4 in Noschese et al. [2013]). The Markovian term results in a solution
of order exp(

√
2Bt) (Equation 13.3 and Equation 13.4), which is multiplicatively smaller by a factor of

67

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

exp(
(
2−
√
2
)
Bt). The result in this Theorem shows that the memory-based PDE Equation 6.10 results in

a multiplicative “first order” correction which can be seen by Taylor expanding exp(
√
2Bt) ≈ 1+

√
2Bt+

1
2
(
√
2B)2t2 +

6.5 Experimental Setup

6.5.1 Dataset generation

PDEs with high-frequency Fourier modes: From the expression for the memory term in Equa-

tion 6.6 and the presence of high-frequency terms in the solution of the PDE of Theorem 9, we should

intuitively expect that memory will be most useful when the PDE solutions contain significant contribu-

tions from high-frequency Fourier modes
1
. Nevertheless, current benchmarks like PDEBench [Takamoto

et al., 2023] rarely contain PDEs whose solutions have substantial high-frequency components, as we

quantitatively show in Appendix ??. A solution which predominantly contains low-frequency Fourier

modes can be accurately approximated by its Fourier truncation (Definition 29), so it can be represented

by a finite-dimensional space, which implies that the unobserved part of the solution (Q[u] in the nota-

tion of Section 6.3.2) should be small.

Therefore, we construct a new benchmark dataset which is specifically designed to contain PDEs in which

the high-frequency Fourier modes have substantial contribution. Specifically, we generate a benchmark

from solutions to the Kuramoto-Sivashinsky equation with low viscosity (Section 6.6.1). In the case of

Navier-Stokes (Section 6.6.2) and Burgers’ equation (Section ??), we directly take datasets from previous

works. Details on data generation procedure are provided in Appendix ??.

Datasets with different resolutions: To construct our datasets, we first take discretized tra-

jectories of a PDE on a high resolution discretized spatial grid SHR ⊂ Rd
, i.e. u(t) ∈ R|SHR|

. We then

produce datasets that consist of lower resolution versions of the above trajectories, i.e. on a grid SLR
of

lower resolution f , and show the performance of models that were trained and tested at such resolution.

For 1-dimensional datasets, the discretized trajectory on SLR
is obtained by cubic interpolation of the

trajectory in the highest resolution grid. In 2D, the discretized trajectory is obtained by downsampling.

6.5.2 Training and evaluation procedure

Task: Let u ∈ C
(
[0, T];L2

(
Ω;RV

))
be the solution of the PDE given by Definition 25. Let S be an

equispaced grid inΩwith resolution f , and letT be another equispaced grid in [0, T]withNt+1 points.

Given u0(x)|S , our goal is to predict u(t, x)|S for t ∈ T using a neural operator.

1
Note, this is meant to be an intuitive rule-of-thumb rather than a formal statement. In general, the “observation” operator

and the PDE will interact in complicated ways, but the combination of low-resolution grids and examining high-frequency

components in the Fourier basis seems to be very predictive in practice.

68

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

Training objective: As is standard, we proceed by empirical risk minimization on a dataset of trajec-

tories. More specifically, given a loss function ℓ : (R|S|,R|S|) → R, a dataset of training trajectories(
u(t, x)(i)

)N
i=0

, and parametrized maps GΘt : R|S| → R|S|
for t ∈ T , we optimize:

Θ∗ = argminΘ

1

N

N−1∑
i=0

1

Nt

Nt∑
t=1

ℓ
(
u(t, x)(i)|S ,GΘt

[
u
(i)
0 (x)|S

])

Training and evaluation metric: Our training loss and evaluation metric is normalized Root Mean
Squared Error (nRMSE):

nRMSE(u(t, x)|S , û(t)) :=
∥u(t, x)|S − û(t)∥2
∥u(t, x)|S∥2

,

where ∥ · ∥2 is the Euclidean norm in R|S|
.

Further details on training hyperparameters are given in Appendix 13.1.

6.5.3 Architecture Framework: Memory Neural Operator

In this section we describe Memory Neural Operator (MemNO), a deep learning framework to incorpo-

rate memory into neural operators. Let NO
Θ
t be a neural operator with L layers, and denote NO

Θ
t [u0]

the prediction of the solution of the PDE at time t. We will assume that this Neural Operator follows the

Markovian assumption, i.e. we can write:

NO
Θ
ti+1

[u0] = rout ◦ ℓL ◦ ℓL−1 ◦ ... ◦ ℓ0 ◦ rin[NO
Θ
ti
[u0]], (6.13)

where rin : R|S| → R|S|×h0
and rout : R|S|×hL+1 → R|S|

are projector operators; ℓj : R|S|×hj →
R|S|×hj+1

are parametrized layers; and hj is the dimension of the j-th hidden layer. Essentially, the so-

lution for each new timestep is obtained by applying the same L layers to the immediately previous pre-

dicted timestep.

Our goal is to define a networkGΘt that builds upon NO
Θ
t and can incorporate memory. For this, we take

inspiration from the Mori-Zwanzig formalism summarized in Section 6.3.2. Comparing Equation 6.13

with Equation 6.6, we identify ℓL ◦ ℓL−1 ◦ ... ◦ ℓ0 with the Markov term which models the spatial dy-

namics. To introduce the memory term, we interleave an additional residual sequential layerM that acts

on hidden representations of the solution at previous timesteps. Concretely, the MemNO architecture

can be written as:

GΘti+1
[u0] = rout ◦ ℓL ◦ ... ◦ ℓk+1 ◦M ◦ ℓk ◦ ... ◦ ℓ0 ◦ rin

[
GΘti [u0],GΘti−1

[u0], ..., u0

]
,

69

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

where−1 ≤ k ≤ L is a chosen hyperparameter.
2

For notation, we will refer to v(j)(t′) ∈ R|S|×hj
as the

hidden representation at the j-th layer for a timestep t′ ≤ ti, and v(j)(t′, x) ∈ Rhj
as the value of such

hidden representation at a spatial point x ∈ S . Then, the spatial ℓj layers are understood to be applied

timestep-wise, i.e. ℓj
[
v(j)(ti), ..., v

(j)(t0)
]
:=
[
ℓj[v

(j)(ti)], ..., ℓj[v
(j)(t0)]

]
, and analogously for rin and

rout. Thus, the ℓj layers still follow the Markovian assumption. The memory is introduced throughM,

which is a sequential model that uses the history of the previous timesteps to predict the next one. For

computational efficiency, we consider a sequential modelM : Ri×hk −→ Rhk
that is applied to each el-

ement of the spatial dimension |S| independently, i.e. for eachx ∈ S ,

(
M[v(k)(ti), ..., v

(k)(t0)]
)
(x) :=

M[v(k)(ti, x), ..., v
(k)(t0, x)]. We provide PyTorch pseudocode for this architecture in Appendix ??.

Note that our MemNO framework can be combined with any existing neural operator layer ℓ, and with

any (causal) sequential modelM. Thus it provides a modular architecture design framework which we

hope can serve as a useful tool for practitioners.

6.5.4 Instantiating the Memory Neural Operator framework: S4FFNO

For our experiments, we introduce S4 Factorized Fourier Neural Operator (S4FFNO), which instantiates

the MemNO framework by combining the Factorized Fourier Neural Operator (FFNO) [Tran et al.,

2023] as the Markovian neural operator and S4 [Gu et al., 2022b] as the sequential layer. We choose

S4 models over recurrent architectures like LSTM [Hochreiter and Schmidhuber, 1997] due to superior

performance in modeling long range dependencies [Gu et al., 2022b, Tay et al., 2020], ease of training,

and favorable memory and computational scaling with both state dimension and sequence length. An

ablation comparing S4 to LSTM and Transformers is provided in Appendix 13.2.

6.6 Memory helps in low-resolution and input noise: a

case study

In this section we present a case study for several PDEs of practical interest, showing that neural operators

with memory confer accuracy benefits when the data is supplied in low resolution or with observation

noise. We will use three Markovian baselines: The Galerkin Transformer (GKT) [Cao, 2021], the U-Net

Neural Operator (U-Net) [Gupta and Brandstetter, 2023], and the Factorized Fourier Neural Operator

(FFNO) [Tran et al., 2023]. For a memory-augmented baseline, we consider the Multi Input Factorized

Fourier Neural Operator (Multi input FFNO), which takes as input the last 4 timesteps of the solution

of the PDE to predict the next one, as proposed in the original FNO paper [Li et al., 2021a], yet using

the architectural design of FFNO. The architectural details for all the models are elaborated upon in

Appendix ??.

2k = L refers to inserting M after all the S layers, and k = −1 refers to inserting M as the first layer. In Appendix 13.2.2,

we show our experiments are not very sensitive to the choice of k.

70

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

Architecture Uses memory Resolution

nRMSE ↓

KS Burgers’

ν = 0.075 ν = 0.1 ν = 0.125 ν = 0.001

GKT No

32

0.588 0.601 0.314 0.356

U-Net No 0.542 0.511 0.249 0.188

FFNO No 0.500 0.446 0.187 0.207

Multi Input FFNO Yes 0.364 0.308 0.092 0.099

S4FFNO (Ours) Yes 0.139 0.108 0.031 0.053

GKT No

64

0.401 0.120 0.016 0.349

U-Net No 0.147 0.062 0.022 0.171

FFNO No 0.107 0.033 0.004 0.146

Multi Input FFNO Yes 0.108 0.046 0.005 0.054

S4FFNO (Ours) Yes 0.036 0.011 0.004 0.037

GKT No

128

0.028 0.013 0.007 0.307

U-Net No 0.033 0.027 0.014 0.112

FFNO No 0.006 0.004 0.002 0.099

Multi Input FFNO Yes 0.057 0.052 0.023 0.028
S4FFNO (Ours) Yes 0.008 0.005 0.003 0.030

Table 6.1: nRMSE values at different resolutions for Burgers’ and KS with different viscosities. S4FFNO achieves

up to 6x less error than its memoryless counterpart (FFNO) in KS at resolution 32. The final time of KS

is 2.5 seconds and it contains 25 timesteps. The final times of Burgers’ is 1.4 seconds and it contains 20

timesteps. For the prediction at time t, S4FFNO has access to the (compressed) memory of all previous

timesteps, whereas Multi Input FFNO takes as input the previous four timesteps. More details on train-

ing are given in Appendix 13.1, and on the Burgers’ experiment in Appendix ??.

6.6.1 Kuramoto–Sivashinsky equation (1D): study in low-resolution

The Kuramoto-Sivashinsky equation (KS) is a nonlinear PDE that is used as a modeling tool in fluid

dynamics, chemical reaction dynamics, and ion interactions. Due to its chaotic behavior it can model

instabilities in various physical systems. For viscosity ν ∈ R+, it is written as ut+uux+uxx+νuxxxx =
0. We generated datasets for KS at different viscosities and resolutions, and show the results in Table

6.1. At resolutions 32 and 64, the memory models (S4FFNO and Multi Input FFNO) outperform the

Markovian baselines. In particular, S4FFNO can achieve up to 6× less error than the best performing

Markovian Neural Operator (FFNO) and additionally 3× less error than Multi Input FFNO. We note

that S4FFNO only has around 1% more parameters than FFNO (see Table ??).

By contrast, at resolution 128, FFNO has similar performance compared to S4FFNO, and it outperforms

Multi Input FFNO. This is in agreement with other works which propose following the Markovian as-

sumption in neural operators [Tran et al., 2023, Lippe et al., 2023b], where it is argued that incorporat-

ing previous timesteps as input is not necessary and can lead to difficulties in learning, as it seems to hap-

pen with Multi Input FFNO. By contrast, S4FFNO effectively models memory when it is useful (reso-

lutions 32 and 64) without compromising performance at higher resolutions.

71

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

In Figure 6.1 we show the performance of all models across a continuous range of resolutions. It can

be seen that there is a “cutoff” resolution at which memory models (i.e. S4FFNO) start outperforming

Markovian (i.e. FFNO) by a large margin. Very importantly, this cutoff resolution depends on the viscos-

ity, being around 76 when ν = 0.075, 68 when ν = 0.1, and 52 when ν = 0.125. In the KS equation, a

lower viscosity leads to the appearance of higher frequencies in the Fourier spectrum (see second row of

Figure 6.1), which are not well captured at low resolutions. Thus, we identify the resolution relative to the
Fourier frequency spectrum of the solution as a key factor for the improved performance of MemNO over

memoryless neural operators. We provide a similar study on 1D Burgers equation in Appendix ??.

We note that even if the initial condition does not contain high frequencies, in the KS equation high

frequencies will appear as the system evolves—indeed, this dataset was generated with initial conditions

whose maximum Fourier mode was 8.

(a) ν = 0.075 (b) ν = 0.1 (c) ν = 0.125

Figure 6.1: (First row) nRMSE for several models in the KS dataset at different resolutions, where each column is

a different viscosity. The final time is T = 2.5s and there are Nt = 25 timesteps. (Second row) A

visualization of the whole frequency spectrum at each of the 25 timesteps for a single trajectory in the

dataset. The spectrum is obtained with the ground truth solution at resolution 512.

6.6.2 Navier-Stokes equation (2D): study in observation noise

The Navier-Stokes equation describes the motion of a viscous fluid. Like in Li et al. [2021a], we consider

the incompressible form in the 2D unit torus, which is given by:

∂w(x, t)

∂t
+ u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T]

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T]

w(x, 0) = w0(x), x ∈ (0, 1)2

72

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

Where w = ∇ × u is the vorticity, w0 ∈ L2((0, 1)2;R) is the initial vorticity, ν ∈ R+ is the viscosity

coefficient, and f ∈ L2((0, 1)2;R) is the forcing function. In general, the lower the viscosity, the more

rapid the changes in the solution and the harder it is to solve it numerically or with a neural operator. We

investigate the effect of memory when adding i.i.d. Gaussian noise to the inputs of our neural networks.

The noise is sampled i.i.d. from a Gaussian distribution N (0, σ), and then added to training and test

inputs. During training, for each trajectory a different noise (with the sameσ) is sampled at each iteration

of the optimization algorithm. The targets in training and testing represent our ground truth, and do

not contain added noise. In Figure 6.2a, we show the results for ν = 10−3
when adding noise levels from

(a) ν = 10−3
, T = 16s, Nt = 32 (b) ν = 10−5

, T = 3.2s, Nt = 32

Figure 6.2: nRMSE of FFNO-2D and S4FFNO-2D trained on Navier-Stokes 2D with different noise standard

deviations σ added to training and test inputs. Two configurations of viscosity ν and final time T are

shown.

σ = 0.0 (no noise) to σ = 2.048. S4FFNO-2D outperforms FFNO-2D across most noise levels, and

the difference between the two is especially significant for noise levels beyond 0.128, where FFNO-2D is

around 50% higher than S4FFNO-2D (note the logarithmic scale). For this viscosity, adding small levels

of noise actually helps training, which was also observed in other settings in Tran et al. [2023]. Figure 6.2b

shows the same experiment performed with ν = 10−5
. Again, S4FFNO-2D outperforms FFNO-2D

across most noise levels. FFNO-2D losses are similarly around 50% higher for noise levels above 0.032.

In this viscosity, adding these levels of noise does not help performance.

6.6.3 Relationship with fraction of unobserved modes

In this section, we provide a simple experiment to quantify the effect of the fraction of unobserved modes

on the performance of memory based models. Precisely, suppose u ∈ L2(Ω;RV) is the solution of a 1-

dimensional PDE at a certain timestep, and an for n ∈ Z is its Fourier Transform. If we observe it at

a resolution f, we can only estimate its top ⌊f
2
⌋ modes

3
. Thus, we define ωf as the ratio of unobserved

modes at resolution f :

ωf :=

∑
|n|>⌊ f

2
⌋ |an|2∑

n∈Z |an|2
(6.14)

3
This is a consequence of the Nyquist–Shannon sampling theorem.

73

6 On the Benefits of Memory for Modeling Time-Dependent PDEs

Figure 6.3: Values of ωf and the difference in nRMSE between FFNO and S4FFNO for different resolutions in

the KS experiment of Section 6.6.1 with ν = 0.1. ωf is averaged across all trajectories in the dataset and

across all timesteps.

ωf is an approximate indicator of the amount of information that is lost when the solution of the PDE

is observed at resolution f . In practice, ωf can be computed by approximating the an with the discrete

Fourier modes of the solution in the highest resolution available. We show that there is a positive cor-

relation between ωf and the difference in nRMSE between FFNO and S4FFNO for the KS experiment

in Figure 6.3, and also the for Burgers’ experiments of Appendix ?? in Figure ??. This demonstrates the

benefits of memory as a way to compensate for missing information in the observations.

6.7 Conclusion and Future Work

We study the benefits of maintaining memory while modeling time dependent PDE systems. When we

only observe part of the initial conditions (for example, PDEs observed on low-resolution or with input

noise), the system is no longer Markovian, and the dynamics depend on a memory term. Taking inspira-

tion from the Mori-Zwanzig formalism, we introduce MemNO, an architecture that combines Fourier

Neural Operators (FNO) to model the spatial dynamics of the PDE, and the S4 sequence model to in-

corporate memory of past states. Through our experiments on different 1D and 2D PDEs, we show that

the MemNO architecture outperforms the memoryless baselines, particularly when the solution to the

PDE has large components on high-frequency Fourier modes.

We present several avenues for future work. First, our experiments on observation noise are limited to

the setting where the input noise is i.i.d. Further, extending the experiments and observing the effects

of memory in more real-world settings (for example, with non-i.i.d. noise or in the presence of aliasing)

seems fertile ground for future work, and also necessary to ensure that the application of this method

does not have unintended negative consequences when broadly applied in society. Lastly, while we limit

our study of the effects of memory to FNO-based architectures, performing similar studies for differ-

ent architectures like Transformer based neural operators [Hao et al., 2023a] and diffusion based opera-

tors [Lippe et al., 2023b] is an interesting direction for future work.

74

7 UPS: Efficiently Building

Foundation Models for PDE Solving

via Cross-Modal Adaptation

Abstract: We present Unified PDE Solvers (UPS), a data- and compute-efficient approach to developing
unified neural operators for diverse families of spatiotemporal PDEs from various domains, dimensions,
and resolutions. UPS embeds different PDEs into a shared representation space and processes them using a
FNO-transformer architecture. Rather than training the network from scratch, which is data-demanding
and computationally expensive, we warm-start the transformer from pretrained LLMs and perform explicit
alignment to reduce the modality gap while improving data and compute efficiency. The cross-modal UPS
achieves state-of-the-art results on a wide range of 1D and 2D PDE families from PDEBench, outperforming
existing unified models using 4 times less data and 26 times less compute. Meanwhile, it is capable of few-
shot transfer to unseen PDE families and coefficients.

7.1 Introduction

Partial Differential Equations (PDEs) play a pivotal role in modeling and understanding real-world phe-

nomena, such as fluid dynamics and heat transfer. Although there exists a rich body of classical PDE

solvers [Boyd, 2001, LeVeque, 2007, Moukalled et al., 2016] that are effective and mathematically proven,

these solvers often incur substantial computational costs when used in practice, as they need to be re-run

every time a coefficient or boundary condition changes. This motivates the development of neural op-
erators [Li et al., 2020a, Chen and Chen, 1995, Lu et al., 2019], which use neural networks to approxi-

mate a solution map for a PDE family and can generalize to different initial/boundary conditions or co-

efficients. While existing neural operators [Lippe et al., 2023a, Hao et al., 2023a, Marwah et al., 2023]

have demonstrated strong performance on various practical benchmarks [Takamoto et al., 2022, Gupta

and Brandstetter, 2022], most of them are designed to work with a single PDE family. Training a sepa-

rate model for each PDE family remains costly.

Several recent works, such as Subramanian et al. [2023], MPP [McCabe et al., 2023], and DPOT
1

[Hao

et al., 2024b], have taken initial steps towards developing foundation models for PDE solving, learning

unified operators that transfer across PDE families. These models are pretrained from scratch using ex-

tensive amounts of data and compute. For example, MPP is trained with over 80,000 PDE trajectories

on 8 NVIDIA H100 GPUs for 200,000 steps. Despite the development costs, the resulting models are

1
This work was done at the same time as ours.

75

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

Figure 7.1: To adapt pretrained LLMs for PDE solving, UPS first transforms PDE of different dimensions, chan-

nels, and resolutions into a unified representation (left panel). Then, the data is processed with a uni-
fied architecture that integrates FNO layers, PDE metadata, and LLMs (right panel). The architecture

is trained in two stages. In stage 1, we pretrain the embedding network using a joint loss that simulta-

neously optimizes (i) the distribution similarity between PDE features and text embeddings to align the

modalities, and (ii) the prediction performance of extracted PDE features. In stage 2, we fine-tune the

entire model on a dataset that combines multiple families of spatiotemporal PDEs with varying domain

dimensions, initial/boundary conditions, and coefficients. UPS achieves competitive results with sig-

nificantly better sample-efficiency than existing methods.

limited in generalization ability—all existing unified models focus on pretraining with 2D PDEs. Finally,

as these models are developed using only PDE trajectories, they do not leverage meta information that

could help distinguish between various PDE families, such as the name of the family and the coefficients.

We present Unified PDE Solvers (UPS), which learns unified neural operators for complex time-dependent

PDEs with improved efficiency and generalization ability. Unlike existing efforts that train models from

scratch, we propose a novel method to adapt pretrained Large Language Models (LLMs) to PDE solv-

ing. This is inspired by the line of work that repurposes LLMs for scientific domains like mathemat-

ics [Lewkowycz et al., 2022], computational biology [Shen et al., 2023, Vinod et al., 2023, Joachimiak

et al., 2023], and chemistry [Bran et al., 2023, Shen et al., 2024]. These works not only show how LLMs

utilize both text and non-text information to solve scientific problems and transfer effectively to unseen

tasks, but also provide strong evidence that the general-purpose pretraining and inductive biases of LLMs

could substantially reduce the sample complexity needed for adaptation.

Concretely, UPS adapts pretrained LLMs to time-evolution operators that map the current state of a PDE

to its future state for general spatiotemporal PDEs (see Section 7.3 Equation 7.1 for definition) using two

key designs (see also Figure 7.1 and Section 7.3):

1. We propose a unified data representation scheme to align PDEs with varying dimensions and

physical quantities into the same feature space. Given the space and time discretization u =
{ḡt(x)}Tt=0, where x ∈ Rd

is the spatial variable and ḡt(x) is the state variable, UPS homogenizes

ḡt(x) from diverse PDEs into a shared “superspace” RN×ndmax
, where dmax is the maximum di-

mension of x among all PDEs considered, N is the superset of the physical quantities, and n is the

resolution. This framework of embedding lower-dimensional PDEs in a higher dimension enables

76

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

UPS to model cross-dimensional PDEs simultaneously and distinguishes us from all existing uni-

fied operators, which do not consider low dimensional PDEs in 1D.

2. We employ a unified network architecture to predict ḡt+1(x) based on ḡt(x). To leverage pre-

trained LLMs, we design a three-way architecture that consists of (i) a FNO [Li et al., 2020a]

based embedding network to convert PDE data into resolution-invariant, sequential features; (ii)

an LLM body to process the PDE features and the text embeddings of the PDE metadata; and (iii)

a prediction network to generate the final output. Inspired by previous cross-modality adaptation

work [Shen et al., 2023], we employ a two-stage align-then-refine process for model training. How-

ever, we improve the align stage by using a joint loss that adds feature extraction on top of align-

ment to pretrain the embedding network. We improve the refine stage by fine-tuning on a collec-

tion of PDE tasks rather than a single task. Our enhanced workflow outperforms naive transfer

and previous cross-modal approaches, reducing both the data and compute needed for training.

By design, UPS can handle diverse PDE families, data dimensions, channels, and resolutions. More cru-

cially, by warm-starting with pretrained LLM weights and applying explicit alignment, UPS strikes a bal-

ance between effectiveness and efficiency—it achieves state-of-the-art performance across 9 datasets from

PDEBench [Takamoto et al., 2022] (7 in-distribution, 2 out-of-distribution), using about 20,000 train-

ing trajectories , a single A6000, 60,000 train steps, and under 100 GPU hours. This means that we

achieve better results than existing unified models using 4 times less data and 26 times less compute.

Beyond prediction accuracy, we confirm that UPS preserves key properties of neural operators, such as

grid- and resolution-invariance. We also show that UPS is compatible with a variety of LLM backbones,

including RoBERTa [Liu et al., 2019], T5 [Raffel et al., 2020b], and CLIP [Radford et al., 2021], and

demonstrates better performance when scaled to larger backbones. We believe that the model-agnostic

design of UPS offers a systematic approach to harnessing the advancements in LLMs for PDE solving,

and it takes a further step towards building generalized foundation models for more complex physical

systems efficiently. Code is available at https://github.com/sjunhongshen/UnifiedPDESolvers.

7.2 Related Work

Recent years has seen a variety of neural-network-based methods for approximating PDE solutions. Hy-

brid solvers [Hsieh et al., 2019, Bar-Sinai et al., 2019, Kochkov et al., 2021] apply classical solvers like finite

element/volumn methods [LeVeque, 2007, Moukalled et al., 2016] to a low-resolution grid and use neu-

ral networks to predict the correction terms. Others directly approximate the PDE solutions with neural

networks [Sirignano and DGM, 2017, Raissi et al., 2019, Khoo et al., 2021, Shen et al., 2022], using vari-

ational losses [Yu et al., 2018] or physical constraints defined by the PDE [Raissi et al., 2019, Bruna et al.,

2024]. Being mostly equation-specific, these methods can solve one PDE at a time. The learned models

do not apply to other PDEs in the same family, let alone other families.

A more general approach involves learning neural operators [Lu et al., 2019, Li et al., 2020a,b] which

approximate an infinite-dimensional operator between two functional spaces. For time-dependent PDEs,

a neural operator maps the current state of a PDE to the next state, with quantities like initial conditions

provided as input. Neural operators can be implemented using any architecture. For example, Fourier

77

https://github.com/sjunhongshen/UnifiedPDESolvers

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

neural operator (FNO) [Li et al., 2020a] uses convolution-based integral kernels evaluated in the Fourier

space. Other works also use transformer models [Cao, 2021, Li et al., 2022, Hao et al., 2023a] or U-

Net [Lippe et al., 2023a]. Learning neural operators enables solving an entire family of PDE and they

can easily adapt to new parameterizations of a PDE without fine-tuning. However, the learned operators

cannot extend to different PDE families.

To facilitate operator transfer across PDE families, two recent works develop large pretrained models for

multiple physical systems: Subramanian et al. [2023] train FNOs on steady-state linear PDEs with peri-

odic boundary conditions; McCabe et al. [2023] design a new transformer architecture based on the axial

attention [Ho et al., 2020] and train it using various 2D non-linear, time-dependent PDEs. While these

methods show that a unified operator can outperform single-family operators, they are limited in two as-

pects. First, existing unified methods consider mainly 2D PDEs for pretraining and evaluation. In con-

trast, UPS leverages a unified representation scheme to tackle both 1D and 2D PDEs. This method can

be also extended to any d-dimensional systems in theory. Second, existing methods pretrain large models

from scratch and necessitate extensive GPU resources and pretraining data, which can be prohibitive to

collect for high-dimensional complex PDEs. However, by adapting from pretrained LLMs and closing

the modality gap between text and PDE efficiently, UPS achieves competitive results using 4x less data

and 26x less compute.

Beyond the aforementioned works, DPOT [Hao et al., 2024b] was developed concurrently with our

work and presents an auto-regressive denoising strategy for pretraining. While DPOT has shown better

transferability to unseen PDE tasks than MPP, it shares the same limitations of focusing on 2D problems

for pretraining and requiring large amount of data and compute (8 A800 GPUs for 500,000 steps).

A final work that is related to ours is ORCA [Shen et al., 2023], which proposes a general workflow for

adapting pretrained language/vision transformers to non-text/vision inputs. While ORCA uses PDEBench

in its evaluation, it is not tailored to PDE solving and requires adapting a separate model for every dataset.

The resulting models are not grid- or resolution-invariant, which are key properties of neural operators

and achieved by UPS. Moreover, by learning from multiple PDEs and sharing knowledge across families,

UPS obtains significantly better empirical results than ORCA.

7.3 Methodology

Our goal is to train unified neural operators for spatiotemporal PDEs with varying domain dimensions,

coefficients, initial and boundary conditions. These PDEs could model a range of quantities that evolve

over time, from scalars (e.g., pressure, density) to vectors (e.g., velocity). To achieve this, we propose UPS,

which consists of a unified way to represent the PDE and a LLM-based network to model them.

78

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

7.3.1 Unified Data Representation

We model PDEs that follow the general form:

∂ḡ(t, x)
∂t

= L

(
ḡ(t, x),

∂ḡ(t, x)
∂x

,
∂ḡ(t, x)
∂x2

, · · ·
)

u(0, x) = u0(x) B(ḡ(t,y)) = h(y)

(7.1)

where x ∈ Ω ⊂ Rd
is the spatial variable, ḡ : [0, T]× Ω→ Rdu

is a time-varying function defined over

the domain Ω for finite time T . Here, L is a (possibly non-linear) operator which acts on ḡ and multiple

partial derivatives of ḡ w.r.t the spatial variable x. ḡ0(x) : Ω→ Rdu
denotes PDE’s initial condition, and

the operator B defines the boundary condition where y ∈ ∂Ω is a point on domain’s boundary, and

h : ∂Ω→ Rdu
defines the given function over the boundary

2
PDE families in this form include Navier-

Stokes equations, Reaction-Diffusion equations, Burgers equations, and many others that describe phe-

nomena like fluid dynamics and heat flow over time. They also constitute most PDE benchmarks in the

field of machine learning [Takamoto et al., 2022, Tu et al., 2022, Roberts et al., 2021].

Consider a set of S spatiotemporal PDEs {ḡs}Ss=1. Here, each ḡs = {ḡst (x)}Ts
t=1 is a solution to a PDE

of the form defined in Equation 7.1 such that for all t ∈ [Ts], we have ḡst (x) ∈ Rdsu and x ∈ Ωs ⊂ Rds
,

where ds is the dimension of the PDE s. For each ḡst , we assume that we have ann-point discretization of

the functions {ḡst}Ts
t=1 at points W s

n = {xs
1, xs

2, · · · , xs
nds}, where each xs

i ∈ Rds
. That is, for each PDE

s ∈ S and t ∈ Ts, we have the realization of the function ḡst on a grid with each dimension divided inton
parts, thus giving rise to nds

points in the set. We assume that n is constant across PDE families. We note

that this value n is a hyperparameter, and ideally should be the minimum number of points that work

well for all the PDEs considered, for example, low-viscosity Navier-Stokes may require more discretization

points compared to the high viscosity counterparts. Denote the set of N physical quantities considered

for each PDE as V = {v1, v2, · · · vN}. Our goal is to learn an operator Gθ which, for a given PDE s,

predicts the state of the PDE at time t + 1 based on its state at time t ∈ [Ts], i.e., ˆ̄gst+1(x) = Gθ(ḡst (x)).

We thus need a unified representation for the inputs so a model can handle different quantities at once.

Unifying Dimension Let ds denote the dimension of the PDE s and d = maxs∈S d
s
. We want to

represent all datasets in Rd
. Thus, for PDEs with ds < d, the final d − ds coordinates of xs

i ∈ W s
n are

set to zero. In this work, we mainly consider PDEs defined over one- and two-dimensional domains, i.e.,

ds ∈ {1, 2} ∀s ∈ S. Hence, for PDEs with ds = 1, the point x ∈ Ωs
is represented with the 2D-

coordinate (x, 0). Note that our methodology to unify the total number of dimensions in the PDE is

general and can be adapted to PDEs defined in higher-dimensional domains as well. In the following, we

will denote ḡst (x) as the value of the function ḡst on all the points in W s
n , unless stated otherwise.

Unifying Physical Quantities We consider a fixed set V = {v1, v2, · · · vN} of N physical quantities

and train our model on the quantities that belong to V for each PDE. The quantities we consider in

this paper are velocity (in both x and y directions), pressure, and density, and they are the superset of all

quantities for the PDE families we evaluate. This leads to N = 4. If a dataset does not use a particular

quantity, the entire dimension corresponding to it is set to 0.

2
Unless stated otherwise, we assume that the value of the function is 0 at the boundary, i.e, h(y) = 0 for all y ∈ ∂Ω.

79

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

With the above procedure, we lift every PDE to a unified space so ḡs ∈ RTs×N×nd ∀s ∈ S. To obtain

the datasets for forward prediction, we generate input-output pairs via autoregressive teacher-forcing: for

each time step t ∈ [Ts], we use ḡst to predict ˆ̄gst+1, yielding Ts − 1 pairs of data from a single trajectory.

We append the coordinates of each xs
i ∈ W s

n to the input and maintain an output mask to mask out the

zero-padded dimensions when computing the loss.

7.3.2 Unified Architecture

Transformer models have demonstrated success in various domains like natural language [Touvron et al.,

2023a], vision [Dosovitskiy et al., 2021a], and audio processing [Lu et al., 2023]. In this work, we explore

the potential of transformers for PDE solving. We break down the UPS architecture into 3 parts: an

embedding network that transforms the unified representation into sequence features; the model body,

consisting of the pretrained LLM layers; and a predictor that generates the prediction (Figure 7.1).

FNO Embedding Network The embedding network plays two roles. First, it projects the PDE ḡst (x)
into the LLM’s sequential embedding space Rl×e

, where l denotes the sequence length of the embedded

features and e denotes the LLM’s hidden dimension. Second, it should extract key features of the PDE

input to enable subsequent transformer layers to make predictions. Therefore, we design a PDE-specific

embedding network with FNO layers for feature extraction, a linear layer for dimensionality matching,

and a concatenation operator for adding metadata (Figure 7.1).

We use FNO due to its strong empirical performance [Li et al., 2020a, Takamoto et al., 2022] and its

ability to extract resolution-invariant features. As we consider maximum two-dimensional PDEs in this

work, we use a series of 2D FNO layers with l channels to obtain PDE features inRl×nd
. Then, to map the

FNO output to the LLM’s embedding dimension, we apply a pointwise convolution with input channel

nd
, output channel e, kernel size 1, stride 1. This yields the desired sequential features hPDE ∈ Rl×e

.

Since UPS is intended to handle diverse data from various generating sources, we leverage the PDE’s

metadata in addition to the input dynamics. The motivation is that LLMs can use the textual information

to better understand the context and characteristics of different PDEs. To implement this, we specify the

metadata in the form “[PDE family][coefficients]” which is embedded into sequential features hmeta

using the LLM’s tokenizer and text embedding layer. We then concatenate the meta features and the PDE

features to gethmix := [hmeta, hPDE]. Finally, we apply positional encoding and layer norm tohmix. This

will be the input to the subsequent transformer layers.

In Section 7.5.3, we perform various ablation studies on the embedding network. We investigate the

effect different hyperparameters, such as the channel dimension l in FNO, and show that incorporating

metadata improves both prediction performance and generalization ability of UPS.

Utilizing Pretrained LLMs The main body of a UPS model consists of pretrained transformer layers

from an LLM. Thus, we pass hmix to the pretrained transformer layers, which produce the hidden states

ĥ ∈ Rl×e
. Since there is no causal structure in the spatial dimensions of a PDE, we do not apply autore-

gressive masking to hmix and allow the embedded features to attend to each other.

80

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

Our design provides flexibility for using different LLMs as the model body. We show experiment results

with multiple LLMs in Section 7.5.3. While different LLMs have different performance, they are com-

petitive with existing baselines. We also show that adapting from pretrained weights outperforms train-

ing the same architecture from scratch, so UPS is especially useful for low-data regimes.

Linear Predictor Finally, we define a prediction head to transform the hidden state of the LLM body ĥ

to the predicted next step of the input ˆ̄gst+1(x) ∈ RN×nd
(we predict all the physical quantities in the set

V). This is achieved by averaging over the sequence dimension of ĥ to get shapeRe
, applying a linear layer

to map it to RNnd
, and reshaping the results to obtain the final prediction ˆ̄gst+1(x). The linear predictor

is shared for all PDEs.

7.4 Full Workflow and Training

We train UPS in two stages. In the first stage, we train the embedding network to align hmix with the

LLM’s embedding space. This is because LLMs are trained for the text modality, which has distinct

characteristics and features from physical processes like fluid dynamics and heat flow. Stage 1 reduces the

modality gap to prevent the distortion of pretrained weights. Next, we fine-tune the entire model on a

dataset of multiple families of spatiotemporal PDEs.

Stage 1: Embedding Pretraining Intuitively, there is a modality gap between text data used to train

general-purpose LLMs and PDEs. Previous work has also shown that directly fine-tuning pretrained

LLMs on non-text inputs can result in suboptimal performance [Lu et al., 2022]. To address this, Shen

et al. [2023] introduced ORCA, which performs distribution matching before fine-tuning to enable

cross-modal adaptation. That is, given a randomly initialized embedding network, we first pretrain it to

minimize the distribution distance between the embedding network’s output—in our case hmix—and

the text embeddings of a external reference NLP dataset, which we denote as hLM. This process makes

the cross-modal distribution resemble the text distribution that the LLM is pretrained on. Following the

ORCA work, we use the CoNLL-2003 dataset [Sang and Meulder, 2003] as the reference dataset for

alignment.

We propose several PDE-specific improvements to the alignment process. First, unlike ORCA which uses

an optimal transport (OT) based metric for measuring the distribution distance, we use the maximum

mean discrepancy (MMD) distance for UPS. This is because the OT-based metric requires discrete class

labels to compute, making it unsuitable for PDEs. In contrast, MMD acts directly on the features hmix

and is more computationally efficient. Thus, we define

Lalign = ∥µDhmix
− µDhLM

∥L2 = E
Dhmix

[k(a, a′)]− 2 E
Dhmix

,DhLM

[k(a, b)]− E
DhLM

[k(b, b′)]
(7.2)

where k(a, a′) = exp(∥a− a′∥2/2) denotes the Gaussian kernel;Dhmix
andDhLM

denote the distribu-

tions of the PDE embeddings hmix and the reference text embeddings hLM.

81

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

Second, to improve the feature extraction ability of the embedding network in the context of our down-

stream task, we introduce a task loss for PDE forward prediction, i.e., the normalized root mean squared

(nRMSE) loss between the prediction ˆ̄gst+1(x) and the ground truth ḡst+1(x):

Ltask =
1

S

S∑
s=0

1

Ts

Ts−1∑
t=0

∥ḡst+1(x)− ˆ̄gst+1(x)∥2
∥ḡst+1(x)∥2

(7.3)

Thus, the final objective for pretraining the embedding network is the joint lossLemb = Lalign + Ltask.

We show in Section 7.5.3 that both objectives are essential to the overall performance of UPS.

Stage 2: Multi-Task Fine-Tuning In contrast to most existing neural PDE solvers, which train a sep-

arate model for each dataset, UPS is trained using one large dataset consisting of PDE data from multi-

ple generating sources (all of S). Hence, after learning the embedding network, we fine-tune the entire

model (the embedding network, the LLM body, and the linear predictor) using Ltask defined in Equa-

tion 7.3. We evaluate the performance of UPS in Section 7.5.1 and find it outperforms existing single-

dataset neural operators. We also show that UPS generalizes to unseen PDE families and coefficients (Sec-

tion 7.5.2)—the zero-shot and few-shot adaptation performance is competitive with models specifically

trained on the entire target dataset.

7.5 Experiments

Data We train and evaluate our method using PDEBench [Takamoto et al., 2022]. For training, we com-

bine 7 datasets from different PDE families: Burgers Equation (1D), Advection (1D), Diffusion-Sportion

(1D), Shallow-Water (2D), compressible Navier-Stokes (1D and 2D), and incompressible Navier-Stokes

(2D). We explicitly hold out two families, 1D and 2D Diffusion-Reaction, to evaluate the generalization

ability of UPS. The dataset details can be found in Appendix 14.0.1. We autoregressively generate the

predictions and use the scale-independent normalized root mean squared error (nRMSE) as the evalua-

tion metric, defined as follows:

nRMSE =
1

Stest

Stest∑
s=1

∥ḡs(x)− ˆ̄gs(x)∥2
∥ḡs(x)∥2

(7.4)

We preprocess all the PDEs by normalizing each dataset along the channel dimension to ensure the scale

of ḡst (x) across datasets is similar
3
.

Baselines We compare against two sets of baselines: (i) single-family models trained on individual PDE

datasets, including the widely used U-Net [Ronneberger et al., 2015], FNO [Li et al., 2020b], the im-

proved version FFNO [Tran et al., 2023], the transformer-based GNOT [Hao et al., 2023b] and OFormer [Li

et al., 2023], as well as the cross-modal ORCA [Shen et al., 2023]; (ii) unified models trained on mul-

tiple datasets, including MPP [McCabe et al., 2023], DPOT [Hao et al., 2024b], and a unified FNO

3
We standardize the data by subtracting the mean and dividing by the standard deviation to ensure training stability when

using pretrained model weights. For loss computation, we apply an inverse transformation to the outputs to revert them

to the original scale. Although data normalization may affect non-linear equations, it is essential to prevent loss explosion

during fine-tuning. We leave exploring alternative methods to minimize distortion in non-linear dynamics as future work.

82

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

Table 7.1: nRMSEs (lower is better) for in-distribution PDEBench families, with baseline results taken from

Takamoto et al. [2022], Shen et al. [2023], McCabe et al. [2023], Hao et al. [2024b]. ‘-’ means that the

result is not available. On all datasets, UPS with RoBERTa-Base (UPS-B) achieves the lowest nRMSEs

among all smaller models and UPS with RoBERTa-Large (UPS-L) achieves the lowest nRMSEs among

all large models. Numbers are bolded for each model size group.

Params Advection Burgers Diffusion-Sorption Navier-Stokes Shallow-Water Navier-Stokes Incomp Navier-Stokes

(sorted) 1D 1D 1D 1D 2D 2D 2D

Single-Family
FNO 466K 0.011 0.042 0.0017 0.068 0.0044 0.36 0.0942

GNOT 1.8M - - - - 0.0068 0.0373 -

OFormer 1.9M - - - - 0.0072 0.0521 -

U-Net 7.7M 0.67 0.34 0.15 0.72 0.083 5.1 0.1903

ORCA 125M 0.0098 0.12 0.0016 0.062 0.006 0.3549 0.1529

Unified (Small)
Unified FNO 466K 0.013 0.0501 0.0041 0.0101 0.0033 0.152 0.1064

MPP-B 116M - - - - 0.0024 0.0281 -

DPOT-M 122M - - - - 0.0029 0.0177 -

UPS-B (Ours) 149M 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931
Unified (Large)
UPS-L (Ours) 387M 0.0022 0.0373 0.0009 0.0045 0.0015 0.015 0.0924
MPP-L 409M - - - - 0.0022 0.0208 -

DPOT-L 500M - - - - 0.0023 0.0158 -

trained using data transformed by our unified representation scheme. We note that MPP and DPOT fo-

cus on 2D PDEs and are pretrained on 2D Navier-Stokes, Shallow-Water, and Diffusion-Reaction from

PDEBench. Subramanian et al. [2023] is not included as a baseline because its models are pretrained on

different PDE families (e.g., Poisson’s and Helmholtz equations) not present in PDEBench.

Implementation Details As noted in Section 7.3, UPS is compatible with any pretrained LLM. We

present our main results using RoBERTa [Liu et al., 2019] and study other backbones in ablation studies

(Table 7.4). We set the embedding FNO channel l to 32. Since the resolution of the 2D datasets in

PDEBench is 128, we set the model resolutionn to 128 and downsample datasets with higher resolutions.

All of our experiments can be run on a single NVIDIA A6000 GPU. See Appendix 14.0.2 for training

details. Due to computational constraints, results are based on a single run per network configuration.

7.5.1 Achieving State-of-the-Art Results on PDEBench with Compute

Efficiency

We first study the in-distribution performance of UPS, i.e., we evaluate UPS on the test splits of the

datasets that are used to train UPS, which consists of PDEs that share the same boundary conditions and

coefficients with the training samples, but have different initial conditions. The results are shown in Ta-

ble 7.1. In general, UPS with RoBERTa ranks first on all 7 datasets and improves the state-of-the-art by

an order of magnitude on many 1D datasets. We analyze the results in more details below.

Compare with Single-Family Operators We outperform all single-family models like FNO and ORCA,

which train a different model for every PDE family. This shows the benefits of learning a versatile neu-

ral operator rather than multiple specialized ones, and our model is capable of extracting universal rules

when learning to model multiple PDE equations.

83

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

Compare with Unified Operators We note that existing unified models like MPP and DPOT do not

pretrain or evaluate on 1D problems due to the limitation of their data representation. In contrast, UPS

embeds low-dimensional PDEs in high-dimensional spaces and model all PDEs uniformly despite the di-

mensionality difference, achieving state-of-the-art results on all 1D datasets in PDEBench. As for the 2D

problems considered, UPS with RoBERTa-Base outperforms MPP-B and DPOT-M, which have similar

model sizes. UPS with RoBERTa-Large outperforms MPP-L and DPOT-L. We emphasize that UPS is

trained on significantly fewer trajectories per PDE family (<5K) compared to the baselines. Besides, UPS

can be run on a single A6000 for less time while maintaining good performance. This shows the data and

compute benefits of adapting from pretrained LLMs.

Since MPP and DPOT focus on 2D problems and use a different set of pretraining datasets from ours, we

train a 2D-only UPS on all 2D datasets in PDEBench to provide a more direct comparison. The results

are shown in Appendix Table 14.4. Notably, while 2D UPS is still trained with less data (since the other

methods use additional datasets like PDEArena [Gupta and Brandstetter, 2022]), our method ranks first

on 4 of 8 datasets, outperforming DPOT on 5 of 8 datasets and outperforming MPP on 3 of 4 datasets.

Recall also that we train a 2D unified FNO using the datasets processed by our dimension unification

scheme. The unified FNO does not always outperform single-family FNOs, especially on 1D tasks, pos-

sibly because the network is 2D, and the relatively simple architecture might not be able to extract shared

information across PDE families and leverage it to improve performance. More crucially, UPS outper-

forms unified FNO on all datasets, showing the efficacy of our LLM-based architecture.

Scaling Up LLM Backbones To study the scaling behavior of our method, we adapt from both RoBERTa-

Base (149M parameters) and RoBERTa-Large (387M parameters) and report the results in Table 7.1. The

first observation is that the two versions of UPS all outperform baselines of similar sizes, achieving both

effectiveness and efficiency. Besides, UPS-Large generally outperforms UPS-Base, which shows that scal-

ing up the backbone has the potential to yield better results.

In addition to prediction errors in Table 7.1, we visualize some of the UPS outputs in Appendix 14.0.4

and show that it is indeed able to capture the key features and dynamics of different PDE families. For

efficiency metrics, we report the training compute requirement, FLOPs, and inference time for UPS in

Appendix 14.0.2. Compared to existing work, our method has lower FLOPs and shorter inference time.

This shows that our method can be deployed in practical environments where both computational effi-

ciency and speed are critical.

7.5.2 Generalizing to Unseen PDEs with Data Efficiency

In this section, we investigate the generalization (out-of-distribution) performance of UPS under three

scenarios: (i) unseen PDE families, (ii) PDEs belonging to the training families but with different coeffi-

cients, and (iii) PDEs with higher-resolution grids. Unless otherwise specified, UPS-B is used.

Unseen PDE Families As mentioned earlier, we hold out the Diffusion-Reaction equations from de-

veloping UPS. We first directly evaluate UPS on these two tasks and report the zero-shot transfer perfor-

mance. Then, we study few-shot transfer by randomly sampling k ∈ {10, 100} trajectories from the

training sets of the held-out tasks and use them to fine-tune UPS. Lastly, we report the fine-tuning results

84

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

Table 7.2: Zero- and few-shot transfer performance of UPS on unseen PDE families and coefficients. Our few-shot

results are competitive with baselines trained with more data. UPS-B refers to UPS with RoBERTa-Base.

Unseen PDE Families Unseen Coefficients

Samples Model 1D Diff-React 2D Diff-React 1D Burgers 2D Navier-Stokes

ν = 1.0 M = 1, η = ζ = 0.1

UPS-B 0.0557 1.0593 0.0566 0.103
0 FNO 0.1839 1.2 1.0342 1.4302

ORCA 0.1818 1.0812 1.6316 1.6399

UPS-B 0.0107 0.3327 0.0134 0.0809
10 FNO 0.1698 0.8193 0.67 0.567

ORCA 0.1004 0.5376 0.4829 0.1623

UPS-B 0.0034 0.2508 0.0022 0.0543
100 FNO 0.0037 0.1869 0.0123 0.3962

ORCA 0.0051 0.1362 0.027 0.0898

UPS-B 0.0003 0.041 0.0008 0.0191
9K (Full) FNO 0.0014 0.12 0.0031 0.098

ORCA 0.0034 0.082 0.012 0.0287

Table 7.3: UPS with resolution 128 has an nRMSE of 0.0033 for Advection and 0.0931 for incompressible Navier-

Stokes. We directly test UPS on higher resolutions.

Test Resolution 256 512 1024

Advection (nRMSE) 0.0057 0.0064 0.0068

Incomp Navier-Stokes (nRMSE) 0.119 0.126 -

with the full training dataset. The results are shown in Table 7.2. As the number of adaptation samples

increases, the prediction error decreases. Notably, the 100-shot result of UPS on 1D datasets is better than

the baselines trained on 9,000 data, i.e., we use 90x less data to match the performance of single-family

operators. This makes UPS useful for low-resource PDE problems where data collection is costly and

training models from scratch is challenging. On 2D Diffusion-Reaction, we are slightly worse than pre-

trained MPP (0.0292) and DPOT (0.0106) since this dataset is considered as in-distrubution for MPP

and DPOT.

Unseen Coefficients UPS also generalizes to PDEs in the same families as the training data but with

different coefficients. We verify this by adapting UPS to Burgers Equation with ν = 1.0 (the model is

trained on ν = 0.001) and compressible Navier-Stokes with M = 1, η = ζ = 0.1 (the model is trained

on M = η = ζ = 0.1). The last two columns in Table 7.2 shows that while our zero-shot performance

is already competitive, the performance after further adaptation outperforms most considered baselines.

Unseen Resolutions Zero-shot resolution refers to training the model on a lower resolution of the in-

put data and evaluating them directly on a higher resolution. PDE solvers with this ability are better

equipped to handle real-world scenarios where input data may vary in resolution due to practical con-

straints or sensor-based limitations. Recall that UPS is trained with n-point discretization W s
n , and we

set n = 128 because most 2D datasets in PDEBench has resolution 128. Now, we evaluate the perfor-

mance of UPS forn ∈ {256, 512, 1024}, increasing the resolution of the input PDE. This is achieved by

85

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

Table 7.4: Results for the ablation studies. For each set of experiments, only the specified settings are different; all

the other hyperparameters and training configurations are the same. Overall, the full UPS-Base workflow

(first row for every study) most effectively leverages the pretrained knowledge of LLMs and obtains the

best results.

Study No. Settings Advection Burgers Diff-Sorp Navier-Stokes Shallow-Water Navier-Stokes Incomp Navier-Stokes

1D 1D 1D 1D 2D 2D 2D

S1

Pretrained LLM 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931
Training From Scratch 0.017 0.0546 0.0036 0.0159 0.0032 0.0461 0.1442

S2

Align and Task 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931
Task Only 0.0048 0.0389 0.0009 0.0065 0.002 0.0184 0.1046

Align Only 0.0039 0.043 0.0011 0.0063 0.0022 0.0187 0.1092

No Embedding Pretraining 0.0049 0.0436 0.0019 0.0072 0.0024 0.0197 0.1079

S3

Concatenate Pretrained Text 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931
Cross-Attention Pretrained Text 0.003 0.0420 0.0009 0.0065 0.0023 0.0189 0.1082

Concatenate One-Hot 0.0029 0.0447 0.0011 0.006 0.0018 0.0198 0.095

Concatenate Learned Embeddings 0.0041 0.0474 0.0014 0.0119 0.0036 0.0295 0.1103

No Meta Information 0.0122 0.0453 0.001 0.0091 0.0026 0.0238 0.1171

S4

RoBERTa-Base 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931

Flan-T5-Base 0.0094 0.0404 0.0076 0.0098 0.0028 0.037 0.1166

CLIP-Base 0.0046 0.0321 0.0018 0.0063 0.0019 0.0151 0.0905

S5

l = 32 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931
l = 20 0.0024 0.0423 0.0009 0.0068 0.0022 0.0157 0.1043

l = 8 0.0032 0.0429 0.0009 0.0071 0.0024 0.0195 0.1064

downsampling the higher-resolution inputs to make them compatible with UPS and then upsampling

the output prediction to the desired resolution. We do not fine-tune the model at all.

We report the resolution generalization performance for 1D Advection Equation and 2D incompressible

Navier-Stokes in Table 7.3. Although the nRMSEs for both PDEs slightly increase compared to the

nRMSE for the training resolution, they outperform all baselines in Table 7.1. Since the numbers are

similar across columns, UPS generalizes to higher resolutions in a zero-shot manner.

7.5.3 Ablation Studies

We perform five sets of studies to ablate various design decisions in UPS. S1-S4 demonstrate why adapting

from pretrained LLMs is beneficial, while S5 is related to the FNO embedding network.

S1: Pretrained LLMs vs. Training From Scratch Compared to existing single-family models like

FNO, UPS uses a transformer-based architecture with more parameters and reuses the pretrained LLM

weights for the model body. To show that our results are not solely attributed to the model size and that

cross-modal adaptation is important, we evaluate the model’s performance when we train a transformer

model from scratch using the same PDE datasets without doing anything more complicated. As shown

in Table 7.4, training from scratch results in much worse performance than UPS, showing the benefits

of adapting a pretrained LLM.

S2: Cross-Modal Alignment We also test the importance of the two objectives used in stage 1, i.e.,

alignment loss with MMD, and task loss with nRMSE. We study three settings: (i) using only Lalign

for stage 1 as in Shen et al. [2023]; (ii) using only Ltask for stage 1; and (iii) removing stage 1 from our

workflow entirely. As shown in Table 7.4, while removing any objective reduces the performance across

all datasets, removing the task loss has a more significant negative effect. Meanwhile, removing the entire

86

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

stage of embedding pretraining hurts prediction accuracy. This shows that simply fine-tuning the LLM

without considering the modality gap or learning to extract PDE features is ineffective.

S3: Incorporating Text-Form Metadata UPS leverages the PDE’s metadata by combining its text

embeddings with the learned PDE embeddings. To study whether incorporating such metadata is help-

ful and identify an optimal approach, we compare our workflow with two alternatives: (i) we do not

use metadata, so hmix := hPDE; (ii) we use metadata, but instead of concatenating features from two

modalities, we apply a cross-attention mechanism: hmix := softmax(QKT
√
e
)V , where Q = WQhPDE,

K = WKhmeta, and V = WV hmeta. To further investigate whether the pretrained text embeddings

contribute beyond merely labeling the PDE type, we also study alternative embedding strategies that do

not leverage language pretraining: (iii) we replace the pretrained text embeddings of the PDE meta infor-

mation with one-hot encoded vectors representing each PDE type. This setting serve as a baseline to as-

sess the impact of merely labeling the PDE types without any semantic understanding; (iv) we also test a

setting where PDE types were embedded using a randomly initialized embedding layer that was trained

from scratch along with the rest of the network, i.e., each new token represents a PDE family.

The results are shown in Table 7.4. UPS outperforms the non-metadata baseline, demonstrating the ef-

fect of incorporating metadata as a textual form of domain knowledge, which LLMs are able to under-

stand. The results also suggest that feature concatenation is better than cross-modal attention, possibly

because the latter is harder to optimize. Lastly, the setting utilizing pretrained text embeddings consis-

tently outperforms the one-hot and embedding-from-scratch settings. In terms of learning dynamics, we

also observe that using pretrained embeddings demonstrated faster convergence compared to the alterna-

tive strategies. This suggests that the pretrained semantic knowledge in the LLM indeed contributes to

processing the PDE data, not just in labeling PDE types but might also in understanding the underlying

physical phenomena. However, we leave studying the the exact mechanism of cross-modal transfer and

the optimal combination of metadata and PDE data as a future direction.

S4: Other LLMs/VLMs To study whether UPS applies to other pretrained models, we further inves-

tigate Flan-T5 [Chung et al., 2022] and the vision language model CLIP [Radford et al., 2021]. In par-

ticular, for CLIP, we use its text model to encode the metadata and its vision model to process the PDE

data. The results are reported in Table 7.4. Since these models are trained using the same datasets and op-

timizer configuration as RoBERTa, the results are not fully optimized. Nonetheless, their performance

is competitive with existing baselines, and CLIP further outperforms RoBERTa on 3 tasks. This shows

the compatibility of UPS with diverse pretrained backbones. A future direction is to study whether op-

timizing the training hyperparameters for each pretrained model—especially VLMs like CLIP that are

trained for an additional vision modality—could improve downstream performance.

S5: FNO Embedder & Target Sequence Length As discussed in Section 7.3, the channel l of the

FNO layers in the embedding network determines the sequence length of the PDE features that will be

fed into the transformer layers. To study how this hyperparameter affects learning outcomes, we vary

l ∈ {8, 20, 32} and report the results in Table 7.4. In general, increasing l improves the size and capacity

of the embedding network, as well as the expressivity of the PDE features. This leads to lower prediction

error. However, using too many parameters for the embedding network may result in a trade-off between

effectiveness and efficiency. For instance, we also experimented with l = 64 (Appendix 14.0.3) and

87

7 UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation

find that the longer sequence length leads to slight performance improvements but with much higher

computational costs. Thus, we opt for l = 32 in our main experiments.

7.6 Conclusion and Future Work

In this paper, we present UPS, a method for adapting pretrained LLMs to unified time-evolution opera-

tors that predict the next state of a PDE from the current state. UPS applies to a diverse set of PDE fam-

ilies defined over one- and two-dimensional domains, with varying initial conditions, boundary condi-

tions, coefficients, and resolutions. To train UPS, we develop a two-stage cross-modal adaptation proto-

col that first pretrains a FNO-based embedding network and aligns its hidden representations with the

LLM’s embedding space, and then fine-tunes the entire model on a dataset containing diverse families of

PDEs. Since UPS is adapted from pretrained models, it requires fewer training samples and compute than

previous approaches for training unified PDE solvers from scratch. We show that UPS achieves state-of-

the-art performance across multiple datasets from PDEBench and is capable of zero- and few-shot trans-

fer to different PDE families, coefficients, and resolutions.

We identify several future directions based on our work. First, we can validate our method on a broader

range of PDEs with higher-order temporal derivatives or three-dimensional domains. Meanwhile, to seek

a truly general foundation model for PDE, we aim to extend the types of tasks that UPS can solve. Cur-

rently, UPS is only applicable to forward prediction. It is important to study inverse problems of param-

eter estimation for different PDEs as well. For an impact statement, see Appendix ??.

88

Part IV

Graph Neural Networks: Architectures

and Theory

89

8 Chimera: State Space Models

Beyond Sequences

Abstract: Powerful deep learning methods based on Transformers are used to model diverse data modali-
ties such as sequences, images, and graphs. These methods typically use off-the-shelf modules like self-attention,
which are domain-agnostic and treat data as an unordered set of elements. To improve performance, re-
searchers employ inductive biases—such as position embeddings in sequences and images, and random walks
in graphs—to inject the domain structure, or topology into the model. However, these inductive biases are
carefully engineered heuristics that must be designed for each modality, requiring significant research ef-
fort. In this work, we propose Chimera, a unified framework that mathematically generalizes state space
models to incorporate the topological structure of data in a principled way. We demonstrate that our method
achieves state-of-the-art performance across domains including language, vision, and graphs. Chimera out-
performs BERT on the GLUE benchmark by 0.7 points, surpasses ViT by 2.6% on ImageNet-1k classifica-
tion accuracy, and outperforms all baselines on the Long Range Graph Benchmark with a 12% improvement
on PascalVOC. This validates Chimera’s methodological improvement which allows it to directly capture
the underlying topology, providing a strong inductive bias across modalities. Furthermore, being topologi-
cally aware enables our method to achieve a linear time complexity for sequences and images, in contrast to
the quadratic complexity of attention.

8.1 Introduction

Real-world data is heterogeneous, ranging from sequential language data to high-dimensional image data,

and structured data of proteins and molecules. Despite this heterogeneity, many domains exhibit an in-

herent topology that encodes the neighborhood of each element (node) of the data. For instance, language

and audio have a directed line graph topology, where each node (token) is arranged sequentially (Fig 8.1a).

Similarly, images possess an undirected grid-graph topology, where each node (image patch) is connected

to its immediate local neighbors in a grid (Fig 8.1b). Structured data like proteins have predefined nodes

(atoms) and edges (bonds), which constitute their topology (Fig 8.1c).

Typical approaches to model data build upon Transformers [Vaswani et al., 2017a] with self-attention

at their core [Devlin et al., 2019, Dosovitskiy et al., 2021b, Rampášek et al., 2022]. However, since self-

attention is permutation invariant, it treats data as an unordered set of elements and completely disregards

the data’s topology. To address this, significant research effort has focused on developing domain-specific

heuristics, such as position embeddings [Su et al., 2023, Devlin et al., 2019], and random walks [Behrouz

and Hashemi, 2024, Wang et al., 2024], to serve as the inductive bias for the underlying topology. How-

ever, developing these heuristics requires navigating a large search space for each domain. For instance,

90

8 Chimera: State Space Models Beyond Sequences

(a) Language (Line Graph) (b) Images (Grid Graph) (c) Molecules (General Graph)

Figure 8.1: Real-world data exhibits inherent topology: (a) language follows a directed line graph, (b) images a grid

graph, and (c) structured data like molecules have explicit graph topology.

RoPE embeddings [Su et al., 2023] work well in language [Touvron et al., 2023b]; in vision, absolute po-

sition embeddings are widely used [Dosovitskiy et al., 2021b, Heo et al., 2024]; Moreover, given the lack

of systematic underpinnings, it is unclear how effectively they capture the underlying topology.

In this paper, we consider the following problem: “Can we develop a principled method that captures
the underlying data topology, and achieves state-of-the-art performance across domains?”. We propose

Chimera, a domain-agnostic framework built on recent State Space Models (SSMs)—Mamba-2 [Dao

and Gu, 2024a], RetNet [Sun et al., 2023], Linear Attention (LA) [Katharopoulos et al., 2020]—that

mathematically generalizes SSMs to any topology and achieves state-of-the-art performance across diverse

domains including language, images, and graphs. These consistently superior results validate Chimera’s

methodological improvement which allows it to directly capture the underlying topology, providing a

strong inductive bias across various modalities. This contrasts with existing approaches that instead ap-

ply attention or SSMs as a black box to “flattened data”, supplemented by heuristics. Furthermore, be-

ing topologically aware allows Chimera to leverage the simpler topology of line and grid graphs to avoid

“unnecessary computation”, thus reducing its computational cost to linear in the number of nodes. This

recovers the linear complexity of SSMs while maintaining strong performance.

To derive Chimera, we consider SSMs for causal language modeling and formally show that SSMs inher-
ently capture the underlying directed line graph topology through their recurrence structure (Sec 8.3.2). For

this, we leverage the Structured Masked Attention (SMA) representation [Dao and Gu, 2024a]: Mul-

tiple methods including Mamba-2, RetNet, LA are SSMs, and these SSMs are equivalent to the matrix

M = L⊙ (QKT) acting on the input, where Q and K are the query and key matrices respectively, and

L is a (data dependent) mask matrix. This mask matrix L is analogous to the causal masked attention

matrix used in Transformers. We show that for SSMs, the mask matrix L can be represented as the resol-

vent of the adjacency matrix, A, of a directed line graph, i.e., L = (I −A)−1 =
∑

Ai
, where I is the

identity matrix. Thus, L characterizes a specific SSM model and is also equivalent to the resolvent of the

adjacency matrix, connecting SSMs and the underlying topology.

We extend this result to generalize SSMs to any topology. Specifically, we appropriately parameterize

the adjacency matrix A, and compute the SMA matrix M = L ⊙ (QKT), where L = (I − A)−1
.

Intuitively, Aij captures the influence between neighbor i and j, and the resolvent then accumulates

the influence between each pair of nodes through all possible paths between them, thus capturing the

underlying topology. We present a detailed scheme to parameterize A

91

8 Chimera: State Space Models Beyond Sequences

Central to Chimera is the computation of the mask matrix whose naive implementation incurs cubic

cost. To avoid this, Chimera leverages structure in the topology to significantly speed up this calculation.

Specifically, for the class of directed acyclic graphs (DAGs), the resolvent operation can be computed in

linear time. This is especially useful for topologies like undirected line graphs and grid graphs, which

can be canonically decomposed into multiple DAGs: An undirected line graph decomposes into two di-

rected line graphs (Fig 8.4), while a grid graph divides into four directed grid graphs (Fig 8.5). This allows

us to implement Chimera in linear time—recovering the complexity of SSMs—while preserving the un-

derlying topology. We further show that for general graphs, we can efficiently compute the finite sum

approximation of the resolvent, capturing the global topological structure while achieving performance

competitive with state-of-the-art baselines. Overall, we make the following contributions:

• We propose Chimera, a unified framework that generalizes SSMs to any data topology.

• We introduce a technique that leverages the underlying data topology using DAGs to improve the

efficiency of Chimera, achieving linear time complexity for sequences and images.

• We validate that Chimera consistently achieves state-of-the-art results across diverse domains in-

cluding language, images, and graphs: It outperforms BERT [Devlin et al., 2019] by a GLUE

score [Wang et al., 2019] of 0.7, surpasses ViT [Dosovitskiy et al., 2021b] on ImageNet-1k [Deng

et al., 2009] classification by 2.6%, and outperforms strong baselines on the Long Range Graph

Benchmark (LRGB) [Dwivedi et al., 2022], notably increasing PascalVOC’s F1 score by 12% .

8.2 Preliminaries

In this section, we introduce State Space Models (SSMs), which are recurrent models designed to process

sequential data, such as language and audio. We first formulate SSMs in their recurrent form and then

introduce the Structured Masked Attention (SMA) [Dao and Gu, 2024a] representation that interprets

this recurrence as a matrix M acting on the input X. In the subsequent section, we use the SMA repre-

sentation to show that SSMs inherently operate on a directed line graph topology.

8.2.1 Overview of State Space Models

SSMs, such as Mamba-2 [Dao and Gu, 2024a], Linear Attention (LA) [Katharopoulos et al., 2020], Ret-

Net [Sun et al., 2023], are recurrent sequence-to-sequence models that feature a linear hidden-state tran-

sition function. This linearity enables a hardware-efficient, vectorized implementation of SSMs, allow-

ing them to scale effectively. Furthermore, this transition function is typically data-dependent which is

known to improve model performance [Hwang et al., 2024].

Formally, let X ∈ RT×D
denote the input sequence of T tokens, where each token has D channels.

Let the size of the hidden state be d. Let Y ∈ RT×D
be the output of the sequence-to-sequence model.

Then, SSMs begin by computing the following matrices:

B = fB(X) ∈ RT×d, C = fC(X) ∈ RT×d, V = fV (X) ∈ RT×d, (8.1)

92

8 Chimera: State Space Models Beyond Sequences

where fB , fC , fV are model specific data dependent functions. For instance, in Mamba-2 each of these

functions is a composition of a linear projection of X along the channel dimension, followed by a short

convolution layer along the sequence dimension and a Swish activation function [Ramachandran et al.,

2017]. In Dao and Gu [2024a], it was shown that we can view the B, C , and V matrices as analogs of

the key, query, and value matrices in self-attention.

Let vi ∈ RT
denote the input corresponding to channel i (i.e., vi = V [:, i]). For any time t, define

Bt = B[t, :], Ct = C[t, :], yit = Y [t, i] and vit = vi[t]. Then, the model computes a recurrence,

which is a function fromB,C,∆,V to the outputY , starting with the hidden statehi
−1 = 0 ∈ Rd

as,

hi
t = ath

i
t−1 + btBtv

i
t, (8.2)

yit = CT
t h

i
t, (8.3)

where at, bt are model-specific parameters that characterize the SSM. For instance, Linear Attention sets

at = bt = 1, RetNet chooses at = γ, bt = 1 for some learnable parameter γ. In contrast, Mamba-2 sets

at, bt in a data-dependent manner to implicitly encode a gated memory mechanism known as selectivity
or the selection mechanism. This mechanism allows the model to select and propagate important tokens

across long sequences. Specifically, define,

∆ = f∆(X) ∈ RT , at = exp(−∆t) ∈ R, bt = ∆t ∈ R, (8.4)

where ∆ is the selectivity matrix, and f∆ like fB , fC , fV is a data-dependent function. The selection

mechanism operates as follows: for an important token, ∆t is large, and the model gives more weight to

token t while reducing the contribution of the previous hidden state. Conversely, for an unimportant

token, ∆t is small and the model retains most of the past hidden state, with minimal contribution from

token t. This allows Mamba-2 to retain important tokens through long recurrences.

8.2.2 SSM in the Structured Masked Attention Representation

In Dao and Gu [2024a], the authors introduced the Structured Masked Attention (SMA) representation,

which computes the same function as the SSM recurrence (Eq. 8.3) described in the previous section

but instead interprets the function computation as a matrix M acting on the value matrix V .
1

They

demonstrate that such an M is a function of B,C,∆ matrices (defined above) and can be expressed as

M = L ◦CBT
, where L is a data-dependent mask matrix derived from the ∆ matrix.

Formally, define B̄t = btBt, and recall from Section 8.2.1 that bt = ∆t, at = exp(−∆t) for Mamba-2;

bt = 1, at = γ for RetNet; and bt = 1, at = 1 for Linear Attention. Then the output Y computed by

the recurrence (Eq. 8.3) can be vectorized as,

Y = MV = (L⊙CB̄T)V , (8.5)

1
Note that not all SSMs have an SMA representation, but you focus throughout this paper on ones that do (LA, RetNet,

Mamba-2) and use we will use “SSMs” to refer specifically to this restricted class.

93

8 Chimera: State Space Models Beyond Sequences

where the structured mask matrix Lij = 1[i ≥ j] Πj<k≤iak, for all i, j,

L =


1 0 0 · · · 0
a1 1 0 · · · 0
a1a2 a2 1 · · · 0

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

a1a2 · · · aT−1 a2a3 · · · aT−1 a3a4 · · · aT−1 · · · 1

. (8.6)

The SMA representation is useful because, as we will demonstrate in Section 8.3, it neatly isolates the ef-

fect of the underlying topology within the recurrence computation into the mask matrix L. This prop-

erty allows us to generalize SSMs to arbitrary topologies by appropriately formulating the mask L.

8.3 Chimera: Building Models for Any Topology

In this section, we introduce Chimera, a unified framework that generalizes SSMs to any arbitrary topol-

ogy, enabling the development of performant models across diverse domains. Existing approaches such

as Behrouz and Hashemi [2024], Devlin et al. [2019], Liu et al. [2021], treat attention and SSMs as black-

box modules operating on fixed topologies such as sets or sequences and rely on heuristics to incorpo-

rate structural information. In contrast Chimera opens up this black box and mathematically adapts it

to handle any topology.

To motivate Chimera, we first analyze the setting of SSMs applied to the causal language modeling task.

We show that the recurrence in SSMs naturally operates on a directed line graph topology. To formalize

this result, we first define the resolvent of a linear operator and interpret its action when this operator is

a weighted adjacency matrix of a topology.

8.3.1 Resolvent Of An Adjacency Matrix Accumulates Influence

A graph topology consists of a set of nodes V that represent data elements, and edges E that encode the

underlying topological structure. We conceptualize the associated adjacency matrix A ∈ R|V|×|V|
as

capturing the influence between neighboring nodes. Specifically, Aij is the influence that node j has on

node i, for each edge (i, j). The natural desideratum then is to extend the notion of influence to all node

pairs by incorporating the graph’s structure, accounting for all possible paths between them. To model

this cumulative influence, we introduce the concept of the resolvent of a linear operator

Definition 30 (Resolvent of a Linear Operator [Reed and Simon, 1980]). Let A ∈ RT×T be a linear
operator, I the identity operator, and λ a complex number. Then, the resolvent operator is defined as:

R(λ,A) = (λI −A)−1, (8.7)

which exists for all complex numbers λ that are not in the spectrum of A, i.e., λ /∈ σ(A). In this work, we
set λ = 1 to remain in the field of real numbers, and this is done without loss of generality, as any choice of
λ is equivalent upto scaling of the model.

94

8 Chimera: State Space Models Beyond Sequences

Figure 8.2: SSMs inherently operate on a directed line graph: SSMs modeling a sequence of tokens (left), the struc-

tured mask matrix (center), Chimera on a directed line graph (right)

We now demonstrate how the resolvent operator captures the influence between any two nodes in the

graph. Observe that the resolvent operation can be expanded using the Liouville-Neumann series if the

operator norm of the adjacency matrix, ∥A∥, is less than 1,

R(1,A) = (I −A)−1 =
∞∑
k=0

Ak. (8.8)

Intuitively, each term Ak
in this expansion represents the influence between any two nodes i and j

through all paths of length exactly k connecting them. This is formalized in Proposition 4.

Proposition 4 (Ak
accumulate influence through paths of length k). Given the weighted adjacency ma-

trix A ∈ RT×T of a graph G = (V , E) with |V| = T , the (i, j)th entry of Ak is:

(Ak)ij =
∑

p1,p2,...,pk−1

Aip1Ap1p2 · · ·Apk−1j,

where (p1, . . . , pk−1) is an ordered sequence of vertices forming a path of length k from node i to j.

Therefore, the series (I − A)−1
(Eq. 8.8) sums up the influence of node i on node j over all possible

paths and path lengths. Additionally, we also note that Eq. 8.8 provides a sufficient condition for the

existence of the resolvent: the series converges when the operator norm of A is less than one.

8.3.2 SSMs operate on a Directed Line Graph

We now show that SSMs naturally operate on a directed line graph. Specifically, letV be the set of tokens,

and E be the edges connecting token t to the next token t+ 1. The weighted adjacency matrix is defined

as As,t = 1[t=s+1]at, where at is the method-specific parameter described in Section 8.2.2.

We recall from Section 8.2.2 that SSMs can be represented as the SMA matrix M = L ⊙ (CBT). We

make the key observation that L is precisely the resolvent of A, that is L = (I −A)−1
. This ties SSMs to

the directed line graph topology, with the mask matrix encoding the topology (Fig 8.2).

95

8 Chimera: State Space Models Beyond Sequences

Proposition 5. Under the notation established in Section 8.2, consider a weighted directed graph G with
nodesV = {0, · · · , T − 1}, edges E = {(i− 1, i)|i ∈ V , i > 0}, and the edge weightsW = {wi−1→i =
ai|i ∈ V , i > 0}. Let A be the weighted adjacency matrix of incoming edges,

A =


0 0 0 · · · 0
a1 0 0 · · · 0
0 a2 0 · · · 0
...

...
...

0 · · · 0 0 · · · 0 0 aT−1 0

, (8.9)

then L =
∑∞

i=0A
i = (I −A)−1, and consequently, y = ((I −A)−1 ⊙CB̄T)V .

We can interpret this result intuitively: in a directed line graph, there is exactly one path between tokens

i,j with i < j, and the corresponding entry in L, Lij =
∏

i≥k>j ak, reflects the cumulative influence of

the intervening tokens along this path. Furthermore, Lij = 0 for i < j restricts influence in the forward

direction, ensuring that the model remains causal. This shows that SSMs inherently operate on a directed

line graph with the L matrix encoding the topology.

8.3.3 Generalizing SSMs to Arbitrary Topologies

We now build on Proposition 5 to generalize SSMs to arbitrary topologies. Specifically, we compute the

resolvent of an “appropriately parameterized” adjacency matrix, A, and model the output in the SMA

representation as ((I − A)−1 ⊙ (CB̄T))V . In this section, we focus on the parameterization of A
for arbitrary topologies and ensuring the numerical stability of the method, particularly in cases of non-

invertibility or poor conditioning of I −A.

Formally, consider a graph G = (V , E) with |V| = T nodes, where each node has D channels. Let d
denote the generalized hidden state size. For each node, we compute the following matrices,

B = fB(X) ∈ RT×d, C = fC(X) ∈ RT×d, V = fV (X) ∈ RT×d, ∆ = f∆(X) ∈ RT , (8.10)

where the functions fB , fC , fV (X), f∆ are linear projections applied to the input, followed by a local

graph convolution over neighboring nodes and a Swish activation as chosen in Mamba-2. Our parame-

terization is inspired by Mamba-2 [Dao and Gu, 2024a]—one of the latest iterations of SSMs—as it fea-

tures selectivity, which allows it to effectively model long-range dependencies. However, we note that our

approach can generalize any SSM with an SMA representation.

We parameterize the A matrix for each edge (i, j) ∈ E as,

Aij =
exp(−∆i) + exp(−∆j)

2
, (8.11)

to incorporate context from both ends of the edge (i, j). To add directionality to the edge representation

and to further increase the representational power of our model, we can also maintain two (different)∆’s

such that Aij = (exp(−∆(1)
i) + exp(−∆(2)

j))/2).

96

8 Chimera: State Space Models Beyond Sequences

Note that the matrix I −A may be either non-invertible or poorly conditioned, which could hinder the

stable training of the model. To address this, we introduce a data-dependent normalization parameter

Ψ = fΨ(X) ∈ RT
, computed similarly to ∆, and perform a row-wise normalization of the adjacency

matrix using Ψ. Specifically, for each row i ∈ [T], we apply:

A[i, :] =
γA[i, :]

1TA[i, :] + exp(−Ψi)
,

where γ is a scaling hyperparameter. In the following proposition, we show that this normalization guar-

antees the convergence of the Neumann series for the adjacency matrix A.

Proposition 6. Under Gaussian initialization, the row-wise normalization strategy ensures that ∥A∥ <
1 and ∥(I −A)−1∥ is bounded with probability greater than 1− Φ(−1

γ
).

We provide the proof for this proposition in Appendix 15.1.1. Finally, we compute the resolvent matrix

L = (I −A)−1
and the output y as (L⊙CB̄T)V .

8.4 Chimera with improved efficiency

While Chimera works with arbitrary graph topologies, directly computing the resolvent incurs a cubic

cost in the number of nodes. However, we show that we can significantly reduce this computational cost

when the underlying topology is more structured. Specifically, we consider the class of directed acyclic

graphs (DAGs), a generalization of directed line graphs, and show that the resolvent can be computed in

linear time, matching the complexity of SSMs like Mamba-2.

8.4.1 Chimera on DAGs

We tailor Chimera to DAGs with a specialized normalization scheme and an algorithm to compute the

output in linear time. Our choice of DAGs is motivated by the fact that topologies such as undirected

line and grid graphs can be canonically decomposed into DAGs: a line graph divides into two directed

line graphs (Fig 8.4) and a grid graph divides into four directed grid graphs (Fig 8.5). This decomposition

enables Chimera to operate efficiently with a linear complexity while preserving topology.

Formally, consider a DAG G = (V , E) with |V| = T nodes, each with D channels and a hidden state

size of d. For any node i, let p(i) be the set of its parents. Let B,C,V ,∆ be the input projections as

defined in Section 8.3. We define the adjacency matrix A as Aij = exp(−∆i[j]) for each (i, j) ∈ E ,

and set B̄i = ∆iBi for each node i. We first show that the resolvent (I −A)−1
exists.

Proposition 7. For a DAG, A is nilpotent, that is AT = 0. Therefore, the inverse (I −A)−1 exists and
is given by the finite sum:

L = (I −A)−1 =
T−1∑
t=0

At. (8.12)

97

8 Chimera: State Space Models Beyond Sequences

Figure 8.3: Recurrence on DAGs

As in previous sections, we compute the output of the model as

y = (L ⊙ (CB̄T))V . Furthermore, this method admits an

equivalent recurrent view (Prop. 8).

Proposition 8. Our method computes the following recurrence on
each channel v of V :

hi =
∑
j∈p(i)

Aijhj − B̄ivi, yi = CT
i hi, (8.13)

where hl = 0 for all leaf nodes l.

Observe that while the resolvent always exists, its entries can be-

come exceedingly large which can cause numerical instabilities. Recall from Section 8.3.1 that each Lij

represents the cumulative sum of all paths from node j to i, and in the worst case, the number of such

paths grows exponentially with distance. To address this, we introduce a normalization scheme that is

built directly into the recurrence:

Proposition 9. The normalized method computes the following recurrence:

hi =
1√
|p(i)|

∑
j∈p(i)

(Aijhj − ln(Aij)Bivi), (8.14)

yi = CT
i hi. (8.15)

This normalization ensures that Var(CT
i hi) ≤ 1 under the assumption that the vectors {Bivi,Ci}i are

i.i.d. Gaussians, that is Bivi,Ci ∼ N (0, Id).

The proof follows by induction on the time step t, where at each time step, we ensure that the output

variance is bounded by 1, Var(CT
i hi) ≤ 1, which guarantees that the output remains a well-behaved

random variable. We provide the detailed proof in Appendix 15.1.2. To incorporate this normalization

in the SMA representation, we define,

Ā = 1√
|p(i)|

A, B̄ =
ln(Aij)√

|p(i)|
B, L = (I − Ā)−1, (8.16)

and compute the output y = (L⊙ (CB̄T))V .

Chimera is efficient on DAGs

Finally, we highlight that DAGs are a particularly important case of Chimera because of additional effi-

ciency benefits, both theoretically and through optimized implementations.

Figure 8.4: The undirected line graph structure (Left). The canonical DAG decomposition (Right)

98

8 Chimera: State Space Models Beyond Sequences

Linear-time Complexity The intuition for the linear complexity is that the resolvent operation for

DAGs is finite because of the lack of cycles. From the adjacency matrix perspective, A is nilpotent, i.e.

Ak = 0, where k is the diameter of the graph (Prop 7). Since Chimera can be equivalently viewed

as a recurrence on the DAG, the resolvent operation converges after one pass through the graph in the

topological order which takes linear time.

Proposition 10. The Chimera structured mask matrix L can be computed in O(|V + |E|) complexity
where |V|, |E| is the number of vertices and edges of the graph, respectively.

The proof is provided in Appendix 15.1.3. We note that the linear-time complexity of Mamba can be seen

as a special case of Proposition 10 specialized to the directed line graph, where both |V| and |E| is equal

to the sequence length.

Improving Efficiency Through Matrix Multiplications Finally, we note that on modern

hardware accelerators such as GPUs and TPUs, various computational algorithms can have different ef-

ficiency tradeoffs. For example, on directed line graphs, the naive computation of SSMs and RNNs as a

recurrence is not parallelizable and is inefficient in practice [Gu and Dao, 2023a]. In the case of DAGs,

we present a technique to reduce both the forward and backward pass for Chimera to leverage only ma-

trix multiplications which are heavily optimized on modern accelerators.

Theorem 10. In case of Chimera on DAGs, the forward pass can be computed with O(log(dia(G))) ma-
trix multiplications where dia(G) is the diameter of the graph (i.e. length of the longest path), and the back-
ward pass can be computed with O(1) matrix multiplications.

Backward pass. The local update rule of backpropagation requires applying the chain rule through

the matrix inverse operation, in particular, using the following identity applied to Y = (I −A),

∂Y −1

∂θ
= −Y −1∂Y

∂θ
Y −1

(8.17)

Because Y −1
is already computed in the forward pass, it can be cached, and then the marginal cost of the

local backpropagation is simply two extra matrix multiplications.

Forward pass. To computeL = (I−A)−1
more efficiently for DAGs, we leverage the equivalence

of Neumann series to the series L = I +A+A2 + · · · , which comes to a finite sum for DAGs due to

the nilpotence of A matrix. We compute this sum more efficiently using the “squaring trick” as,

(I −A)−1 = (I +A)(I +A2)(I +A4) · · · (I +Ak), (8.18)

where k is the smallest power of 2 larger than the graph diameter dia(G). This can be computed using

O(log(dia(G))) matrix multiplications to compute the powers of A for powers-of-two exponents, and

then O(log(dia(G))) matrix multiplications to multiply together the right-hand side.

99

8 Chimera: State Space Models Beyond Sequences

Approximate Chimera for General Topology

While DAGs allow for efficient computation in structured domains like images and language, directly

computing the resolvent L for general graph topology remains computationally expensive. To address

this, we use a finite-sum relaxation of the resolvent operator and truncate its corresponding Neumann

series sum (Eq. 8.8) at some maximum power k ∈ N > 0. Specifically, let A be the adjacency matrix of

the graph topology defined in Section 8.3.3, then,

L =
∞∑
i=0

Ai ≈ L̂ =
k∑

i=0

Ai. (8.19)

We choose k = diam(G), the diameter of the graph, to ensure that L̂ has access to the global structure

of the graph, that is, it includes contributions from every edge and node in the graph.

Proposition 11. If k ≥ dia(G), then for any pair of nodes (i, j), if Lij > 0 in the original method, then
L̂ij > 0 in the finite-sum relaxation.

As in Section 8.4.1, we can compute this approximation efficiently using the squaring trick:

L̂ = (I +A)(I +A2)(I +A4) · · · (I +Ap), (8.20)

where p is the smallest power of 2 larger than or equal to the graph diameter dia(G). This reduces the

computational cost of the method to O(log(dia(G))) matrix multiplications.

8.5 Experiments

In this section, we will demonstrate that directly incorporating topology is a powerful inductive bias for di-
verse domains such as language, images and graphs, eliminating the need for domain-specific heuristics.

Chimera consistently achieves state-of-the-art performance in these domains. On language, it outper-

forms BERT on the GLUE benchmark [Wang, 2018] by a GLUE score of 0.7. On images, it surpasses ViT

models on the ImageNet-1k classification [Deng et al., 2009] task by 2.6%. On general graphs, Chimera

outperforms strong baselines on the Long Range Graph Benchmark [Dwivedi et al., 2021] which high-

lights our method’s ability to model long range interactions on graphs. Notably, our method improves

upon PascalVOC dataset’s F1 score by over 12%.

Figure 8.5: Grid graph (left). The canonical 2D-DAG decomposition of the grid graph (right). These graphs are

sufficient to capture the influence between all pairs of nodes in the undirected grid graph.

100

8 Chimera: State Space Models Beyond Sequences

8.5.1 Masked Language Modeling

We evaluate Chimera on bidirectional language modeling, which has a line graph topology (Fig. 8.4). We

test two Chimera variants: the general method
2

(Sec. 8.3) applied to an undirected line graph, and the

DAG method (Sec. 8.4.1), applied to the canonical DAG decomposition of undirected line graphs into

two directed line graphs and summing the resolvents of both DAGs (Fig. 8.4). Both methods are trained

on the Masked Language Modeling (MLM) [Devlin et al., 2019] task on the C4 dataset [Raffel et al.,

2020a] for 70k steps, following the recipe used in M2 [Fu et al., 2023]. The models are then fine-tuned

on the GLUE benchmark. We refer the reader to Appendix 15.3 for details.

Table 8.1: Comparing Chimera on the undirected line graph (UG), and on DAG decomposed directed line graphs

(DAG) with other state-of-the-art models including M2 [Fu et al., 2023], MLP-Mixer [Tolstikhin et al.,

2021], FNet [Lee-Thorp et al., 2022], BERT [Devlin et al., 2019] on GLUE benchmark

Method #Params

Pretrain GLUE Tasks
GLUE

AvgLce Acc (%) MNLI QNLI QQP RTE SST2 MRPC COLA STS

BERT-Base 110M 1.59 67.3 84.1 89.8 91.2 77.2 91.2 87.5 54.6 88.9 83.2

MLP-Mixer 112M 1.77 63.5 77.2 82.4 87.6 67.3 90.5 86.5 43.0 85.2 77.5

FNet 112M 1.94 61.3 74.9 82.1 85.7 63.6 87.6 86.4 42.7 83.1 75.8

M2 116M 1.65 65.9 80.5 86.0 87.0 69.3 92.3 89.2 56.0 86.9 80.9

Chimera (UG) 110M 1.49 68.5 83.63 88.98 89.32 73 93.67 89.4 56.95 88.82 82.97

Chimera (DAG) 110M 1.46 68.9 84.11 89.78 89.77 77.98 93.69 90.36 57.08 88.68 83.93

From Table 8.1, observe that while BERT outperforms other linear baselines such as M2, MLP-Mixer,

FNet it does so with an additional quadratic cost. In contrast, Chimera achieves the best of both worlds,

incurring a linear time complexity while achieving state-of-the-art performance. This capability arises

from two key factors: first, our parameterization of the adjacency matrix allows the model to effectively

modulate the influence between tokens in the sequence, leading to strong performance. Second, the

structured nature of the adjacency matrix enables a fast, linear-time resolvent operation, improving the

method’s computational efficiency. Additionally, note that our undirected graph (UG) variant performs

competitively with BERT while surpassing other recent baselines with a linear time complexity.

8.5.2 ImageNet-1k Classification

We evaluate Chimera on the ImageNet-1k [Deng et al., 2009] classification task that has a grid graph

topology. We compare Chimera applied to the 2D-DAG decomposition (Figure 8.5) topology against

state-of-the-art ViT based models, specifically we use ViT-B which has 88M parameters. We also compare

against other latest linear time baselines like Hyena [Poli et al., 2023], S4 [Gu et al., 2022a] in Table 8.2.

We note that all these baselines flatten the image into a 1D sequence and apply 1D sequence models, and do
not take into account the underlying topology. For our experiments, we simply replace the SSD layer in the

Mamba block introduced in Dao and Gu [2024a] with Chimera, and use the ViT-B training recipe with

no additional hyperparameter tuning.

2
We use a slightly modified normalization scheme for the undirected line graph method to allow for larger selectivity values

in the adjacency matrix. See Appendix 15.2.1 for details

101

8 Chimera: State Space Models Beyond Sequences

Table 8.2: Top-1, Top-5 accuracies of various methods

on ImageNet-1K.

Method (88M)

Top-1 (%) Top-5 (%)

Acc AccEMA Acc AccEMA

ViT-B 78.8 80.6 94.2 95.2

S4-ViT-B 79.4 80.4 94.2 95.1

Hyena-ViT-B 78.4 76.4 94.0 93.0

Chimera-ViT-B 81.4 82.1 95.4 95.9

Table 8.3: Ablation: Comparing 2D grid structure with

1D flattening of patches.

Method (22M)

Top-1 (%) Top-5 (%)

Acc AccEMA Acc AccEMA

Fwd (1D) 73.8 73.8 91.6 91.6

Fwd & Rev (1D) 76.5 75.6 93.4 92.8

2D DAG 77.8 76.7 93.9 93.5

Table 8.2 shows that Chimera’s 2D-DAG decomposition outperforms ViT by 2.6%. We note that our

method does not require any additional position embeddings which are still an active area of research for

ViT [Heo et al., 2024]. Furthermore, we outperform methods such as Hyena [Poli et al., 2023] by 3%,

and S4 [Gu et al., 2022a] by 2% that linearize the data and then apply an SSM on it.

To demonstrate the importance of incorporating topology, we perform an ablation where we progres-

sively degrade the grid-graph structure, observing a monotonic drop in performance. We consider three

topologies: 2D DAG is the 2D DAG decomposition that retains the grid structure (Fig 8.5, right); Fwd
& Rev (1D) flattens the grid into a 1D sequence with bidirectional edges like ViT (Fig 8.6, top); Fwd (1D)
is a 1D graph with only forward edges (Fig 8.6, bottom). We observe from Table 8.3 that as the topology

is lost, the accuracy drops from 77.8% (2D-DAG) to 76.5% (Fwd & Rev) to 73.8% (Fwd).

8.5.3 Long Range Graph Benchmark

We evaluate Chimera on the Long Range Graph Benchmark (LRGB) [Dwivedi et al., 2022]. This bench-

mark comprises tasks designed to challenge models in their ability to effectively capture both local and

long-range interactions within graph structures. We compare against convolution-based (GCN Kipf and

Welling [2016], GatedGCN Bresson and Laurent [2017]), Transformer-based (GraphGPS Rampášek

et al. [2022]), Mamba-based (Graph-Mamba Wang et al. [2024], Graph Mamba Behrouz and Hashemi

[2024]), and other baselines like GINE Hu et al. [2019], as well as their hyperparameter tuned versions

introduced in Tönshoff et al. [2023]. These baselines incorporate topology using a variety of techniques:

convolution ones use local aggregation, transformer ones use local and global aggregation via position

embeddings, and Mamba ones use “data flattening” along with random walks, position embeddings, and

Figure 8.6: Progressively destroying the 2D grid graph topology. Fwd & Rev (top): 1D flattened grid with bidirec-

tional edges. Fwd (bottom): 1D flattened grid graph with only forward edges.

102

8 Chimera: State Space Models Beyond Sequences

Table 8.4: Evaluation of Chimera on LRGB Tasks [Dwivedi et al., 2022]. The first section shows the best per-

forming numbers cited in the papers that introduce the given baselines. The second section shows the

result of better hyperparameter tuned baselines introduced by Tönshoff et al. [2023]. Finally, we also

compare with other baselines that use SSMs as a blackbox replacement for a Transformer.bolding seems

inconsistent (see 4th column)

Method (< 500k params)

Peptides-Func Peptides-Struct PascalVOC-SP COCO-SP

AP (↑) MAE (↓) F1 (↑) F1 (↑)

GCN [Kipf and Welling, 2016] 0.5930±0.0023 0.3496±0.0013 0.1268±0.0060 0.0841±0.0010

GINE [Hu et al., 2019] 0.5498±0.0079 0.3547±0.0045 0.1265±0.0076 0.1339±0.0044

Gated-GCN [Bresson and Laurent, 2017] 0.5864±0.0077 0.3420±0.0013 0.2873±0.0219 0.2641±0.0045

SAN+LapPE [Kreuzer et al., 2021] 0.6384±0.0121 0.2683±0.0043 0.3230±0.0039 0.2592±0.0158

Exphormer [Shirzad et al., 2023] 0.6527±0.0043 0.2481±0.0007 0.3975±0.0037 0.3430±0.0108

GPS+BigBird [Rampášek et al., 2022] 0.5854±0.0079 0.2842±0.0130 0.2762±0.0069 0.2622±0.0008

GraphGPS+Transformer [Rampášek et al., 2022] 0.6575±0.0049 0.2510±0.0015 0.3689±0.0131 0.3774±0.0150

GCN [Tönshoff et al., 2023] 0.6860± 0.0050 0.2460± 0.0007 0.2078± 0.0031 0.1338± 0.0007
Gated-GCN [Tönshoff et al., 2023] 0.6765± 0.0047 0.2477± 0.0009 0.3880± 0.0040 0.2922± 0.0018
GINE [Tönshoff et al., 2023] 0.6621± 0.0067 0.2473± 0.0017 0.2718± 0.0054 0.2125± 0.0009
GraphGPS+Transformer [Tönshoff et al., 2023] 0.6534± 0.0091 0.2509± 0.0014 0.4440± 0.0054 0.3884± 0.0055

Graph-Mamba [Wang et al., 2024] 0.6739± 0.0087 0.2478± 0.0016 0.4191± 0.0126 0.3960± 0.0175
Graph Mamba [Behrouz and Hashemi, 2024] 0.7071± 0.0083 0.2473± 0.0025 0.4393± 0.0112 0.3974± 0.0101

Chimera (Ours) 0.7021± 0.003 0.2460± 0.0002 0.496± 0.007 0.3977± 0.016

Table 8.5: Ablation: Chimera with approximate resolvent is competitive with the Transformer baseline.

Method

Peptides-Func Peptides-Struct PascalVOC-SP COCO-SP

AP (↑) MAE (↓) F1 (↑) F1 (↑)

GraphGPS+Transformer 0.6534± 0.0091 0.2509± 0.0014 0.4440± 0.0054 0.3884± 0.0055
Chimera (Approx) 0.6709± 0.0089 0.2521± 0.0006 0.4508± 0.0367 0.3709± 0.0009
Chimera (Ours) 0.7021± 0.003 0.2460± 0.0002 0.496± 0.007 0.3977± 0.016

local encodings. The diversity of these methods highlights the significant research effort dedicated to

heuristics to incorporate topology, in contrast to our unified approach.

We show that Chimera achieves state-of-the-art results across all LRGB tasks (Table 8.4). Notably, we

observe that on tasks such as Peptides-Func and Peptides-Struct, where convolution-based models typ-

ically outperform transformers, Chimera outperforms or matches their performance. Furthermore, on

tasks like PascalVOC and COCO where transformers do well, Chimera consistently surpasses all base-

lines, with a more than 12% improvement on PascalVOC. This validates our grounded approach which

effectively captures both local and global information.

In Table 8.5, we evaluate the approximate variant of Chimera with a finite-sum relaxation (Sec 8.4.1) that

truncates the Neumann series at the average graph diameter of the graph. We show that the approxima-

tion variant matches the strong transformer baseline of GraphGPS, however fully leveraging the entire

graph structure in Chimera provides clear performance benefits.

103

8 Chimera: State Space Models Beyond Sequences

8.6 Conclusion and Future Work

In this work, we propose Chimera, a unified framework that mathematically generalizes State Space Mod-

els (SSMs) to incorporate the underlying data topology. Unlike previous approaches that rely on carefully

engineered heuristics and treat attention and SSMs as black boxes, our method breaks open this black

box by providing a principled, domain-agnostic framework for modeling diverse data modalities. We

show that Chimera achieves state-of-the-art performance across domains including language, vision, and

graph tasks, consistently surpassing highly tuned domain-specific baselines, which validates our premise

and the proposed solution. Furthermore, we also show that for structured domains like sequences and

images, Chimera has an efficient linear complexity by leveraging our DAG decomposition technique, re-

covering the complexity of SSMs like Mamba-2.

Our work is the first step toward developing unified models for diverse data modalities. We believe that

extending the DAG decomposition technique to general graphs to achieve linear complexity is an exciting

direction for future work. Furthermore, we hope that the research community applies Chimera to more

domains with an inherent underlying topology, and establishes Chimera as a strong baseline for further

research in those domains.

104

9 Towards Characterizing the Value

of Edge Embeddings in Graph

Neural Networks

Abstract: Graph neural networks (GNNs) are the dominant approach to solving machine learning prob-
lems defined over graphs. Despite much theoretical and empirical work in recent years, our understanding
of finer-grained aspects of architectural design for GNNs remains impoverished. In this paper, we consider
the benefits of architectures that maintain and update edge embeddings. On the theoretical front, under a
suitable computational abstraction for a layer in the model, as well as memory constraints on the embed-
dings, we show that there are natural tasks on graphical models for which architectures leveraging edge em-
beddings can be much shallower. Our techniques are inspired by results on time-space tradeoffs in theoreti-
cal computer science. Empirically, we show architectures that maintain edge embeddings almost always im-
prove on their node-based counterparts—frequently significantly so in topologies that have “hub” nodes.

9.1 Introduction

Graph neural networks (GNNs) have emerged as the dominant approach for solving machine learning

tasks on graphs. Over the span of the last decade, many different architectures have been proposed, both

in order to improve different notions of efficiency, and to improve performance on a variety of bench-

marks. Nevertheless, theoretical and empirical understanding of the impact of different architectural de-

sign choices remains elusive.

One previous line of work [Xu et al., 2018] has focused on characterizing the representational limitations

stemming from the symmetry-preserving properties of GNNs when the node features are not informa-

tive (also called “anonymous GNNs”) — in particular, relating GNNs to the Weisfeiler-Lehman graph

isomorphism test [Leman and Weisfeiler, 1968]. Another line of work [Oono and Suzuki, 2019] focuses

on the potential pitfalls of the (over)smoothing effect of deep GNN architectures, with particular choices

of weights and non-linearities, in an effort to explain the difficulties of training deep GNN models. Yet

another [Black et al., 2023] focuses on training difficulties akin to vanishing introduced by “bottlenecks”
in the graph topology.

105

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

In this paper, we focus on the benefits of maintaining and updating edge embeddings over the course of

the computation of the GNN. More concretely, a typical way to parametrize a layer l of a GNN [Xu et al.,

2018] is to maintain, for each node v in the graph, a node embedding h
(l)
v , which is calculated as

a(l+1)
v = AGGREGATE

(
h(l)
u : u ∈ NG(v)

)
h(l+1)
v = COMBINE

(
a(l+1)
v , h(l)

v

)
(9.1)

where NG(v) denotes the neighborhood of vertex v. These updates can be viewed as implementing a

(trained) message-passing algorithm, in which nodes pass messages to their neighbors, which are then

aggregated and combined with the current state (i.e., embedding) of a node. The initial node embeddings

h
(0)
v are frequently part of the task specification (e.g., a vector of fixed features that can be associated with

each node). When this is not the case, they can be set to fixed values (e.g., the all-ones vector) or random

values.

But a more expressive way to parametrize a layer of computation is to maintain, for each edge e, an edge

embedding h
(l)
e which is calculated as:

a(l+1)
e = AGGREGATE

(
h(l)
a : a ∈MG(e)

)
h(l+1)
e = COMBINE

(
a(l+1)
e , h(l)

e

)
(9.2)

where MG(e) denotes the “neighborhood” of edge e: that is, all edges a that share a vertex with e1
.

This paradigm is at least as expressive as Equation 9.1: we can simulate a layer of Equation 9.1 by designat-

ing the embedding of an edge to be the concatenation of the node embeddings of its endpoints, and notic-

ing thatMG(e) includes all the neighbors of both endpoints of e. In particular, if a task has natural initial

node embeddings, then their concatenations along edges can be used as initial edge embeddings. Addi-

tionally, there may be tasks where initial features are most naturally associated with edges (e.g., attributes

of the relationship between two nodes) — or the final predictions of the network are most naturally asso-

ciated with edges (e.g., in link prediction, where we want to decide which potential links are true links).

GNNs that fall in the general paradigm of Equation 9.2 have been used for various applications – includ-

ing link prediction [Cai et al., 2021, Liang and Pu, 2023] as well as reasoning about relations between ob-

jects [Battaglia et al., 2016], molecular property prediction [Gilmer et al., 2017, Choudhary and DeCost,

2021], and detecting clusters of communities in graphs [Chen et al., 2017] – with robust empirical ben-

efits. These approaches instantiate the edge-based paradigm in a plethora of ways. However, it is difficult

to disentangle to what degree performance improvements come from added information from domain-

specific initial edge embeddings, versus properties of the particular architectural choices for the aggrega-

tion functions in Equation 9.2, versus inherent benefits of the edge-based paradigm itself (whether rep-

resentational, or via improved training dynamics).

We focus on theoretically and empirically quantifying the added representational benefit from maintain-

ing edge embeddings. Viewing the GNN as a computational model, we can think of the intermediate em-

beddings as a “scratch pad”. Since we maintain more information per layer compared to the node-based

paradigm Equation 9.1, we might intuitively hope to be able to use a shallower edge embedding model.

However, formally proving depth lower bounds both for general neural networks [Telgarsky, 2016] and

for specific architectures [Sanford et al., 2024b,a] frequently requires non-trivial theoretical insights – as

is the case for our question of interest. In this paper, we show that:

1
The graph is assumed to be undirected, as is most common in the GNN literature.

106

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

• Theoretically, for certain graph topologies, edge embeddings can have substantial representational
benefits in terms of the depth of the model, when the amount of memory (i.e., total bit complexity)

per node or edge embedding is bounded. Our results illuminate some subtleties of using particular

lenses to understand design aspects of GNNs: for instance, we prove that taking memory into

account reveals depth separations that the classical lens of invariance [Xu et al., 2018] alone cannot.

• Empirically, when given the same input information, edge-based models almost always lead to per-

formance improvements compared to their node-based counterpart — and often by a large mar-

gin if the graph topology includes “hub” nodes with high degree.

9.2 Overview of results

9.2.1 Representational benefits from maintaining edge embeddings.

Our theoretical results elucidate the representational benefits of maintaining edge embeddings. More

precisely, we show that there are natural tasks on graphs that can be solved by a shallow model maintain-

ing constant-size edge embeddings, but can only be solved by a model maintaining constant-size node

embeddings if it is much deeper.

To reason about the impact of depth on the representational power of edge-embedding-based and node-

embedding-based architectures, we introduce two local computation models. In the node-embedding case,

we assume each node of the graph G supports a processor that maintains a state with a fixed amount of
memory. In one round of computation, each node receives messages from the adjacent nodes, which are

aggregated by the node into a new state. In this abstraction, we think of the memory of the processor as

the total bits of information each embedding can retain, and we think of one round of the protocol as

corresponding to one layer of a GNN. The edge-embedding case is formalized in a similar fashion, except

that the processors are placed on the edges of the graph, and two edge processors are “adjacent” if the

edges share a vertex in common. In both cases, the input is distributed across the edges of the graph, and

is only locally accessible.

With this setup in mind, our first result focuses on probabilistic inference on graphs, specifically, the task

of maximum a-posteriori (MAP) estimation in a pairwise graphical model on a graph G = (V,E).

For this task, given edge attributes describing the pairwise interactions ϕ{a,b}, the goal is to compute

argmaxx∈{0,1}V pϕ(x), where pϕ(x) ∝ exp
(∑

{a,b}∈E ϕ{a,b}(xa, xb)
)
.

Theorem (Informal). Consider the task of using a GNN to calculate MAP (maximum a-posteriori) values
in a pairwise graphical model, in which the pairwise interactions are given as input embeddings to a node-
embedding or edge-embedding architecture. Then, there exists a graph with O(n) vertices and edges, such
that:

• Any node message-passing protocol withT rounds andO(1) bits of memory per node processor requires
T = Ω(

√
n).

• There is an edge message-passing protocol with O(1) rounds and O(1) bits of memory.

107

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

The proof techniques are of standalone interest: the lower bound on node message-passing protocols is

inspired by tracking the “flow of information” in the graph, reminiscent of graph pebbling techniques

used to prove time-space tradeoffs in theoretical computer science [Grigor’ev, 1976, Abrahamson, 1991].

The formal result is Theorem 11, and the proof sketch is included in Section 9.5.

The view from symmetry. Above, we are not imposing any symmetry constraints – that is, invari-

ance of the computation at a node or edge to its identity and the identities of its neighbors. Indeed, the

edge message-passing protocol constructed above is highly non-symmetric. However, we show there is

a (different, but also natural) task where even symmetric edge message-passing protocols achieve a better

depth/memory tradeoff than node message-passing protocols. We state the informal result below; the

formal result is Theorem 12.

Theorem (Informal). Let n be a positive integer. There is a graph G with O(n) vertices and O(n) edges,
and a computational task on G, such that:

• Any node message-passing protocol withT rounds andO(1) bits of memory per node processor requires
T = Ω(

√
n) to solve this task.

• There is a symmetric edge message-passing protocol that solves this task with O(1) rounds and O(1)
bits of memory.

Importance of the memory lens. The memory constraints are crucial for the results above. With-

out memory constraints, we can show that the node message-passing architecture can simulate the edge

message-passing architecture, while only increasing the depth by 1 (Proposition 12). Moreover, the sym-
metric node message-passing architecture can simulate the symmetric edge message-passing architecture,

again while only increasing the depth by 1. We state the informal result below; the formal result is Theo-

rem 13.

Theorem (Informal). For any graph G, any symmetric edge message-passing protocol on G with T rounds
can be represented by a symmetric node message-passing protocol with T + 1 rounds.

We note that unlike prior work that focuses on understanding the representational power of GNN archi-

tectures under symmetry constraints [Xu et al., 2018] — which requires that the initial node features are

the same for all nodes — our simulation theorem above holds for arbitrary choices of initial node features.

We view this as evidence that many fine-grained properties of architectural design for GNNs cannot be

adjudicated by solely considering them through the lens of symmetries of the network.

9.2.2 Empirical benefits of edge-based architectures.

The theory, while only characterizing representational power, suggests that architectures that maintain

edge embeddings should have strictly better performance compared to their node embedding counter-

parts. We verify this in both real-life benchmarks and natural synthetic sandboxes.

108

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

First, we consider several popular GNN benchmarks (inspired by both predicting molecular properties,

and image-like data), and show that equalizing for all other aspects of the architecture (e.g., depth, di-

mensionality of the embeddings) — the accuracy the edge-based architectures achieve is at least as good

as their node-based counterparts. Note, the goal of these experiments is not to propose a new architec-

ture — there are already a variety of (very computationally efficient) GNNs that in some manner main-

tain edge embeddings. The goal is to confirm that — all other things being equal — the representational

advantages of edge-based architectures do not introduce additional training difficulties. Details are in-

cluded in Section 9.8.1.

Next, we consider two synthetic settings to stress test the performance of edge-based architectures. In-

spired by the graph topology that provides a theoretical separation between edge and node-based proto-

cols (Theorem 11 and Theorem 12), we consider graphs in which there is a hub node, and tasks that are

“naturally” solved by an edge-based architecture. Precisely, we consider a star graph, in which the labels

on the leaves are generated by a “planted” edge-based architecture with randomly chosen weights. The

node-based architecture, on the other hand, has to pass messages between the leaves indirectly through

the center of the star. Empirically, we indeed observe that the performance of edge-based architectures is

significantly better. Details are included in Section 9.8.2.

Finally, again inspired by the theoretical setting in Theorem 11, we consider probabilistic inference on tree
graphs — precisely, learning a GNN that calculates node marginals for an Ising model, a pairwise graphical

model in which the pairwise interactions are just the product of the end points. An added motivation

for this setting is the fact that belief propagation — a natural algorithm to calculate the marginals —

can be written as an edge-based message-passing algorithm. Again, empirically we see that edge-based

architectures perform at least as well as node-based architectures. This advantage is maintained even if

we consider “directed” versions of both architectures, in which case embeddings are maintained to be

sent along each direction of the edge, and the message for the outgoing direction of an edge depends

only on the embeddings corresponding to the incoming directions of the edges. Details are included in

Section 9.8.3.

9.3 Related Works

The symmetry lens on GNNs: The most extensive theoretical work on GNNs has concerned itself

with the representational power of different GNN architectures, while trying to preserve equivariance (to

permuting the neighbors) of each layer. [Xu et al., 2018] connected the expressive power of such architec-

tures to the Weisfeiler-Lehman (WL) test for graph isomorphism. Subsequent works [Maron et al., 2019,

Zhao et al., 2021] focused on strengthening the representational power of the standard GNN architec-

tures from the perspective of symmetries—more precisely, to simulate the k-WL test, which for k as large

as the size of the graph becomes as powerful as testing graph isomorphism. Our work suggests that this

perspective may be insufficient to fully understand the representational power of different architectures.

GNNs as a computational machine: Two recent papers [Loukas, 2019, 2020] considered prop-

erties of GNNs when viewed as “local computation” machines, in which a layer of computation allows a

109

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

node to aggregate the current values of the neighbors (in an arbitrary fashion, without necessarily consid-

ering symmetries). Using reductions from the CONGEST model, they provide lower bounds on width

and depth for the standard node-embedding based architecture. However, they do not consider architec-

tures with edge embeddings, which is a focus of our work.

Communication complexity methods to prove representational separations: Tools

from distributed computation and communication complexity have recently been applied not only to

understand the representational power of GNNs [Loukas, 2019, 2020], but also the representational

power of other architectures like transformers [Sanford et al., 2024b,a]. In particular, [Sanford et al.,

2024a] draws a connection between number of rounds for a MPC (Massively Parallel Computation)

protocol, and the depth of attention-based architectures.

GNNs for inference and graphical models: The paper [Xu and Zou, 2023] considers the ap-

proximation power of GNNs for calculating marginals for pairwise graphical models, if the family of po-

tentials satisfies strong symmetry constraints. They do not consider the role of edge embeddings or mem-

ory.

9.4 Setup

Notation. We will denote the graph associated with the GNN as G = (V,E), denoting the vertex

set as V and the edge set as E. The graph induces adjacency relations on both edges and nodes, namely

for v, v′ ∈ V and e, e′ ∈ E, we have: v ∼ v′ if {v, v′} ∈ E; v ∼ e if e = {u, v} for some u ∈ V ; and

e ∼ e′ if e, e′ share at least one vertex. For all graphs considered in this paper, we assume that {v, v} ∈ E
for all v ∈ V , so that adjacency is reflexive. We then define adjacency functions NG : V ∪ E → V and

MG : V ∪ E → E as NG(a) := {v ∈ V : a ∼ v} and MG(a) := {e ∈ E : a ∼ e}.

Local memory-constrained computation. In order to reason about the required depth with

different architectures, we will define a mathematical abstraction for one layer of computation in the

GNN. We will define two models for local computation, one for each of the edge-embedding and node-

embedding architecture. Unlike much prior work on GNNs and distributed computation, we will also

have memory constraints — more precisely, we will constrain the bit complexity of the node and edge

embeddings being maintained.

In both models, there is an underlying graph G = (V,E), and the goal is to compute a function g :
ΦE → {0, 1}V , where Φ is the fixed-size input alphabet,via several rounds of message-passing on the

graph G. This domain of g is ΦE
because in both models, the inputs are given on the edges of the graph

— the node model will just be unable to store any additional information on the edges. As we will see in

Section 9.5, this is a natural setup for probabilistic inference on graphs.

In both models, a protocol is parametrized by the number of roundsT required, and the amount of mem-

ory B required per local processor. For notational convenience, for B ∈ N we define XB := {0, 1}B ,

110

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

i.e. the length-B binary strings. Recall that NG(v),MG(v) denote the sets of vertices and edges adjacent

to vertex v in graph G, respectively.

Definition 31 (Node message-passing protocol). Let T,B ∈ N and let G = (V,E) be a graph. A node

message-passing protocol P on graph G with T rounds and B bits of memory is a collection of functions
(ft,v)t∈[T],v∈V where ft,v : XNG(v)

B ×ΦMG(v) → XB for all t, v. For an input I ∈ ΦE , the computation

of P at a round t ∈ [T] is the map Pt(·; I) : V → XB defined inductively by

Pt(v; I) := ft,v((Pt−1(v
′; I))v′∈NG(v), (I(e))e∈MG(v))

where P0 ≡ 0. We say that P computes a function g : ΦE → {0, 1}V on inputs I ⊆ ΦE if PT (v; I)1 =
g(I)v for all v ∈ V and all I ∈ I .

In words, the value computed by vertex v at round t is some function of the previous values stored

at the neighbors v′ ∈ NG(v), as well as possibly the problem inputs on the edges adjacent to v (i.e.

(I(e))e∈MG(v))). Note that Pt(v; I) may indeed depend on Pt−1(v; I), due to our convention that v ∈
NG(v). We can define the edge message-passing protocol analogously:

Definition 32 (Edge message-passing protocol). Let T,B ∈ N and let G = (V,E) be a graph. An edge

message-passing protocol P on graph G with T rounds and B bits of memory is a collection of functions
(ft,e)t∈[T],e∈E where ft,e : XMG(e)

B ×Φ→ XB for all t, e, together with a collection of functions (f̃v)v∈[V]

where f̃v : XMG(v)
B → {0, 1}. For an input I ∈ ΦE , the computation of P at a timestep t ∈ [T] is the

map Pt(·; I) : E → XB defined inductively by:

Pt(e; I) := ft,e((Pt−1(e
′; I))e′∈MG(e), I(e))

where P0 ≡ 0. We say that P computes a function g : ΦE → {0, 1}V on inputs I ⊆ ΦE if

f̃v((PT (e; I))e∈MG(v)) = g(I)v

for all v ∈ V and all I ∈ I .

Remark 6 (Relation to distributed computation literature). These models are very related to classical
models in distributed computation like LOCAL [Linial, 1992] and CONGEST [Peleg, 2000]. However,
the latter models ignore memory constraints, so we cannot usefully port lower and upper bounds from this
literature.

Remark 7 (Computational efficiency). In the definitions above, we allow the update rules ft,v, ft,e to be
arbitrary functions. In particular, a priori they may not be efficiently computable. However, our results
showing a function can be implemented by an edge message-passing protocol (Theorem 11, Part 2 and Theo-
rem 12, Part 2) in fact use simple functions (computable in linear time in the size of the neighborhood), im-
plying the protocol can be implemented in parallel (with one processor per node/edge respectively) with par-
allel time complexity O(TB ·maxv |MG(v)|). On the other hand, for the results showing a function can-
not be implemented by a node message-passing protocol (Theorem 11, Part 1 and Theorem 12, Part 1), we
prove an impossibility result for a stronger model (one in which the computational complexity of ft,v is un-
restricted) — which makes our results only stronger.

111

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

Symmetry-constrained protocols. Typically, GNNs are architecturally constrained to respect

the symmetries of the underlying graph. Below we formalize the most natural notion of symmetry in our

models of computation. Note, our abstraction of a round in the message-passing protocol generalizes

the notion of a layer in a graph neural network—and the abstraction defined below correspondingly

generalizes the standard definition of permutation equivariance [Xu et al., 2018]. We use the notation

{{}} to denote a multiset.

Definition 33 (Symmetric node message-passing protocol). A node message-passing protocolP = (ft,v)t∈[T],v∈V
on graph G = (V,E) is symmetric if there are functions (f sym

t)t∈[T] so that for every t ∈ [T] and v ∈ V ,
the function ft,v can be written as:

ft,v((c(v
′))v′∈NG(v), (I(e))e∈MG(v)) = f sym

t (c(v), {{(c(v′), I({v, v′})) : v′ ∈ NG(v)}}).

Definition 34 (Symmetric edge message-passing protocol). An edge message-passing protocol

P = ((ft,e)t∈[T],e∈E, (f̃v)v∈V)

on graph G = (V,E) is symmetric if there are functions (f sym
t)t∈[T] and f̃ sym so that for every t ∈ [T]

and e = {u, v} ∈ E, the function ft,e can be written as:

ft,e((c(e
′))e′∈MG(e), I(e)) = f sym

t (I(e), c(e), {{{{c({u, v′}) : v′ ∈ NG(u)}}, {{c({u′, v}) : u′ ∈ NG(v)}}}}),

and for every v ∈ V , f̃v can be written as f̃v((c(e))e∈MG(v)) = f̃ sym({{c(e) : e ∈MG(v)}}).

9.5 Depth separation between edge and node message

passing protocols under memory constraints

We will consider a common task in probabilistic inference on a pairwise graphical model: calculating the

MAP (maximum a-posterior) configuration.

Definition 35 (Pairwise graphical model). For any graph G = (V,E), the pairwise graphical model on
G with potential functions ϕ{a,b} : {0, 1}2 → R is the distribution pϕ ∈ ∆({0, 1}V) defined as

pϕ(x) ∝ exp

− ∑
{a,b}∈E

ϕ{a,b}(xa, xb)

.

Definition 36 (MAP evaluation). Let Φ ⊆ {ϕ : {0, 1}2 → R} be a finite set of potential functions. A
MAP (maximum a-posteriori) evaluator for G (with potential function class Φ) is any function g : ΦE →
{0, 1}V that satisfies

g(ϕ) ∈ argmax
x∈{0,1}V

pϕ(x)

for all ϕ ∈ ΦE .

With this setup in mind, we will show that there exists a pairwise graphical model, and a local function

class Φ, such that an edge message passing protocol can implement MAP evaluation with a constant

112

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

number of rounds and a constant amount of memory, while any node message protocol with T rounds

and B bits of memory requires TB = Ω(
√
|V |). Precisely, we show:

Theorem 11 (Main, separation between node and edge message-passing protocols). Fix n ∈ N. There is
a graph G with O(n) vertices and O(n) edges, and a function class Φ of size O(1), so that:

1. Let g be any MAP evaluator forGwith potential function classΦ. Any node message-passing protocol
on G with T rounds and B bits of memory that computes g requires TB ≥

√
n− 1.

2. There is an edge message-passing protocol (ft,e)t,e on G with O(1) rounds and O(1) bits of memory
that computes a MAP evaluator for G with potential function class Φ. Additionally, for all t, e, the
update rule ft,e can be evaluated in O(|MG(e)|) time.

We provide a proof sketch of the main techniques here, and relegate the full proofs to Appendix 16.1.

The graph G that exhibits the claimed separation is a disjoint union of

√
n path graphs, with an addi-

tional “hub vertex” that is connected to all other vertices in the graph (Figure 16.1). The intuition for the

separation is that MAP estimation requires information to disseminate from one end of each path to the

other, and the hub node is a bottleneck for node message-passing but not edge message-passing. We ex-

pand upon both aspects of this intuition below.

Lower bound for node message-passing protocols: Our main technical lemma for the first

half of the theorem is Lemma 26. It gives a generic framework for lower bounding the complexity of any

node message-passing protocol that computes some function g, by exhibiting a set of nodesS ⊂ V where

computing g requires large “information flow” from distant nodes. More precisely, for any fixed set of

“bottleneck nodes” K , consider the radius-T neighborhood of S when K is removed from the graph. In

any T -round protocol, input data from outside this neighborhood can only reach S by passing through

K . But the total number of bits of information computed byK throughout the protocol is onlyTB|K|.
This gives a bound on the number of values achievable by g on S. We formalize this argument below:

Lemma 26. Let G = (V,E) be a graph. Let P be a node message-passing protocol on G with T rounds
and B bits of memory, which computes a function g : ΦE → {0, 1}V . Pick any disjoint sets K,S ⊆ V .
Define H := G[K̄], F := MG(N

T−1
H (S)). Then:

TB ≥ 1

|K|
log max

IF∈ΦF

∣∣∣{gS(IF , IF) : IF ∈ ΦF
}∣∣∣.

Proof. First, we argue by induction that for each t ∈ [T] and v ∈ V \ K , Pt(v; I) is determined by

IMG(Nt−1
H (v)) and (Pℓ(k; I))ℓ∈[t],k∈K . Indeed, by definition,P1(v; I) is determined by IM1

G(v) for any v ∈
V \K . For any t > 1 and v ∈ V \K ,Pt(v; I) is determined by (Pt−1(v

′; I))v′∈NG(v) and (I(e))e∈MG(v).

Note that NG(v) ⊆ NH(v) ∪ K . Thus, using the induction hypothesis for each v′ ∈ NH(v), we get

that (Pt−1(v
′; I))v′∈NG(v) is determined by

⋃
v′∈NH(v) IMG(Nt−2

H (v′)) and (Pℓ(k; I))ℓ∈[t],k∈K . SoPt(v; I)

is determined by IMG(Nt−1
H (v)) and (Pℓ(k; I))ℓ∈[t],k∈K , completing the induction.

113

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

Since P computes g and S ⊆ V \ K , we get that gS(I) is determined by IMG(NT−1
H (S)) = IF and

(Pℓ(k; I))ℓ∈[T],k∈K . Thus, for any fixed IF ∈ ΦF , we have∣∣∣{gS(IF , IF) : IF ∈ ΦF
}∣∣∣ ≤ ∣∣∣{(Pℓ(k; (IF , IF)))ℓ∈[T],k∈K) : IF ∈ ΦF

}∣∣∣ ≤ |XB|T |K| = 2TB|K|.

The lemma follows.

Remark 8. The proof technique is inspired by and related to classic techniques (specifically, Grigoriev’s
method) for proving time-space tradeoffs for restricted models of computation like branching programs ([Grigor’ev,
1976], see Chapter 10 in Savage [1998] for a survey). There, one defines the “flow” of a function, which quan-
tifies the existence of subsets of coordinates, such that setting them to some value, and varying the remaining
variables results in many possible outputs. In our case, the choice of subsets is inherently tied to the topology
of the graph G. Our technique is also inspired by and closely related to the “light cone” technique for proving
round lower bounds in the LOCAL computation model [Linial, 1992]. However, our technique takes ad-
vantage of bottlenecks in the graph to prove stronger lower bounds (which would be impossible in the LOCAL
model where memory constraints are ignored).

The proof of Part 1 of Theorem 11 now follows from an application of Lemma 26 with a particular

choice of K and S. Specifically, we choose K to be the “hub” node (i.e. K = {0}) and S to be the

set of left endpoints of each path. To show that any MAP evaluator has large information flow to S
(in the quantitative sense of Lemma 26), it suffices to observe that in a pairwise graphical model on G
where a different external field is applied to the right endpoint of each path, and all pairwise interactions

along paths are positive, the MAP estimate on each vertex in S must match the external field on the

corresponding right endpoint.

Upper bound for edge message-passing protocols: The key observation for constructing a

constant-round edge message-passing protocol for MAP estimation on G is that all of the input data can

be collected on the edges adjacent to the hub vertex. At this point, every such edge has access to all of

the input data, and hence can evaluate the function. If G were an arbitrary graph, this final step would

potentially be NP-hard. However, since the induced subgraph after removing the hub vertex is a disjoint

union of paths, in fact there is a linear-time dynamic programming algorithm for MAP estimation on G
(Lemma 48). This completes the proof overview for Theorem 11; we now provide the formal proof.

Proof of Theorem 11. Let G be the graph on vertex set V := {0} ∪ [
√
n] × [

√
n] with edge set defined

below (see also Figure 16.1):

E := {{0, (i, j)} : i, j ∈ [
√
n]} ∪ {{(i, j), (i+ 1, j)} : 2 ≤ i ≤

√
n, 1 ≤ j ≤

√
n}.

Define

Φ := {(xa, xb) 7→ 1[xa ̸= xb], (xa, xb) 7→ 1[xa ̸= 1∨xb ̸= 1], (xa, xb) 7→ 1[xa ̸= 0∨xb ̸= 0], (xa, xb) 7→ 0}.

First, let g : ΦE → {0, 1}V be any MAP evaluator for G with potential function class Φ, and consider

any node message-passing protocol on G with T rounds and B bits of memory that computes g. Let

K = {0} and S = {(1, j) : j ∈ [
√
n]}. Suppose that T ≤

√
n − 2. Let F := MG(N

T−1
H (S))

114

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

and note that {(
√
n − 1, j), (

√
n, j)} ̸∈ F for all j ∈ [

√
n]. Let IF : F → Φ be the mapping that

assigns the function (xa, xb) 7→ 0 to each edge {0, (i, j)} ∈ F and (xa, xb) 7→ 1[xa ̸= xb] to each edge

{(i, j), (i+ 1, j)} ∈ F . We claim that∣∣∣{gS(IF , IF) : IF ∈ ΦF
}∣∣∣ ≥ 2

√
n.

Indeed, for any string y ∈ {0, 1}
√
n

, consider the mapping IF : F → Φ that assigns the function

(xa, xb) 7→ 1[xa ̸= yj ∨ xb ̸= yj] to each edge {(
√
n − 1, j), (

√
n, j)} ∈ F , assigns (xa, xb) 7→ 0

to each edge {0, (i, j)} ∈ E \ F , and assigns (xa, xb) 7→ 1[xa ̸= xb] to all remaining edges in E \ F .

Then every minimizer of

min
x∈{0,1}V

∑
{a,b}∈E

I{a,b}(xa, xb)

satisfies x(1,j) = · · · = x(
√
n,j) = yj for all j ∈ [

√
n]. Hence, gS(IF , IF) = y. Since y was chosen

arbitrarily, this proves the claim. But now Lemma 26 implies that TB ≥
√
n.

We now construct an edge message-passing protocol P on G with T = 3 and B = 4. We (arbitrarily)

identify Φ with {0, 1}2. For all i, j ∈
√
n, define

f1,{(i,j),(i+1,j)}(x, y) := y if i <
√
n

f2,{0,(i,j)}(x, y) := (x{(i,j),(i+1,j)}, x{0,(i,j)}) if i <
√
n

f3,{0,(i,j)}(x, y) := (g0(J(x)), g(i,j)(J(x)))

where the second line is well-defined since edge {0, (i, j)} is adjacent to both itself and edge {(i, j), (i+
1, j)}; and in the third line the function is computing g0 and g(i,j) on the input J(x) ∈ ΦE

defined as

J(x)e :=

{
(x{0,(k,ℓ)})1:2 if e = {(k, ℓ), (k + 1, ℓ)}
(x{0,(k,ℓ)})3:4 if e = {0, (k, ℓ)}

,

where we use the notation va:b for a vector v and indices a, b ∈ N to denote (va, va+1, . . . , vb). Note

that J(x) is a well-defined function of x for every edge {0, (i, j)}, because {0, (i, j)} ∼ {0, (k, ℓ)} for

all i, j, k, ℓ ∈ [n]. Finally, define all other functions ft,e to compute the all-zero function, and define

f̃v(x) :=

{
(x{0,(1,1)})1:2 if v = 0

(x{0,v})3:4 otherwise

.

This function is well-defined since v = 0 is adjacent to edge {0, (1, 1)} and any vertex v ∈ V \ {0} is

adjacent to edge {0, v}.

Fix any I ∈ ΦE
. From the definition, it’s clear that P2({0, (i, j)}; I) = (I{(i,j),(i+1,j)}, I{0,(i,j)}) for

all I and (i, j) ∈ [
√
n − 1] × [

√
n]. Hence J((P2(e

′; I))e′∈MG(e))e = I for all edges e of the form

(0, {i, j}), and so P3({0, (i, j)}; I) = (g0(I), g(i,j)(I)) for all (i, j) ∈ [
√
n]× [

√
n]. This means that

f̃v((P3(e; I))e∈MG(v)) = g(I)v for all v ∈ V , so the protocol indeed computes g.

It remains to argue about the computational complexity of the updates ft,e. It’s clear that for all e ∈ E
and t ∈ {1, 2}, the function ft,e can be evaluated in input-linear time. The only case that requires proof

is when t = 3 and e = {0, (i, j)} for some i, j ∈
√
n. In this case |MG(e)| = Θ(n), so it suffices to

115

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

give an algorithm for evaluating the function g : ΦE → {0, 1}V on an explicit input J in O(n) time.

This can be accomplished via dynamic programming (Lemma 48).

Remark 9. A quantitatively stronger (and in fact tight) separation is possible if one considers general tasks
rather than MAP estimation tasks – see Appendix 16.3.

The separation discussed above crucially relies on the existence of a high-degree vertex in G. When the

maximum degree of G is bounded by some parameter ∆, it turns out that any edge message-passing pro-

tocol can be simulated by a node message-passing protocol with roughly the same number of rounds and

only a ∆ factor more memory per processor. The idea is for each node to simulate the computation that

would have been performed (in the edge message-passing protocol) on the adjacent edges. The following

proposition formalizes this idea (proof in Appendix 16.1):

Proposition 12. Let T,B ≥ 1. Let G = (V,E) be a graph with maximum degree ∆. Let P be an edge
message-passing protocol on G with T rounds and B bits of memory. Then there is a node message-passing
protocol P ′ on G that computes P with T + 1 rounds and O(∆B) bits of memory.

9.6 Depth separation under memory and symmetry

constraints

One drawback of the separation in the previous section is that the constructed edge protocol was highly

non-symmetric, whereas in practice GNN protocols are typically architecturally constrained to respect

the symmetries of the underlying graph. In this section we prove that there is a separation between the

memory/round trade-offs for node and edge message-passing protocols even under additional symmetry

constraints.

Theorem 12. Letn ∈ N. There is a graphG = (V,E)withO(n) vertices andO(n) edges, and a function
g : {0, 1}E → {0, 1}V , so that:

1. Any node message-passing protocol onGwithT rounds andB bits of memory that computesg requires
TB ≥ Ω(

√
n).

2. There is a symmetric edge message-passing protocol on G with O(1) rounds and O(log n) bits of
memory that computes g.

For intuition, we start by sketching the proof of a relaxed version of the theorem, where the input alphabet

is [n] instead of {0, 1}. We then discuss how to adapt the construction to binary alphabet.

Large-alphabet construction. Let G = (V,E) be a star graph with root node 0 and leaves

{1, . . . , n}. We define a function g : [n]E → {0, 1}V by g(I)v = 1 if and only if there is some edge

e ̸= {0, v} such that I(e) = I({0, v}), i.e. the input on edge{0, v} equals the input on some other edge.

Since g is defined to be equivariant to relabelling the edges, and all edges are incident to each other, it is

straightforward to see that there is a symmetric one-round edge message-passing protocol that computes

116

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

g with O(log n) memory (in contrast, the edge message-passing protocol constructed in Section 9.5 was

not symmetric, as it required that the edges incident to the high-degree vertex were labelled by which

path they belonged to). However, there is no low-memory, low-round node message-passing algorithm.

Informally, this is because vertex 0 is an information bottleneck, and Ω(n) bits of information need to

pass through it. Similar to in Section 9.5, this intuition can be made formal using Lemma 26.

Modifying for small alphabet. The large alphabet size seems crucial to the above construction:

if we were to naively modify the above construction so that each edge takes input in {0, 1} (without

changing the graph topology or the function g), then there would be a low-memory, low-round message-

passing protocol, since the root node simply needs to compute the histogram of the leaves’ inputs, which

takes space O(log n). Each leaf node can use this information together with its own input value to com-

pute its output. Essentially, there is no information bottleneck because there is a concise, sufficient “sum-

mary" of the input data.

However, the above construction can in fact be adapted to work with binary alphabet, by modifying the

graph topology. At a high level, for each leaf node u in the above construction, we addn descendants and

encode the input that was originally on u on the descendants of u, in unary. Of course, this new graph

has n2
nodes, so we must rescale parameters accordingly.

We now make this idea formal. For notational convenience, define m = ⌊
√
n⌋. We define a graph

G = (V,E) that is a perfect n-ary tree of depth two. Formally, the graph G has vertex set V = {0} ∪
[m] ∪ ([m] × [m]). Vertex 0 is adjacent to each i ∈ [m], and each i ∈ [m] is additionally adjacent to

(i, j) for all j ∈ [m]. We define a function g : {0, 1}E → {0, 1}V as follows. On input I ∈ {0, 1}E ,

for each edge e ∈ E, define the input summation at e to be

C(I)e :=
∑

e′∈MG(e)

I(e′).

Intuitively, one may think of C(I)e as simulating the input on e in the “large alphabet” construction

described in Section 9.6. Next, define

g(I)(u,j) := 0.

g(I)u := 1[#|e ∈MG({0, u}) : C(I)e = C(I){0,u}| > m+ 1].

g(I)0 := 1[∃u ∈ [m] : g(I)u = 1].

In words, g(I)u is the indicator for the event that, among the 2m + 1 edges adjacent to {0, u} (which

include {0, u} itself), more than m+ 1 edges have the same input summation as {0, u}. At a high level,

this definition of g was designed to satisfy three criteria. First, g(I)u depends on the input values on

other branches of the tree: in particular, if I{0,v} = 0 for all v ∈ [n], then C(I)e = C(I){0,u} for all

edges e in the subtree of u, so g(I)u exactly measures the event that there is at least one edge e outside the

subtree of u for which C(I)e = C(I){0,u}. Second, there is no concise “summary” of I such that g(I)u
can be determined from this summary in conjunction with the inputs on the subtree of u. Third, g(I)
is equivariant to re-labelings of the tree.

117

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

The first two criteria, together with the fact that the root vertex 0 is an “information bottleneck” for G,

can be used to show that any node message-passing algorithm that computes g on G requires either large

memory or many rounds. The third criterion enables construction of a symmetric edge message-passing

protocol for g. The arguments are formalized in the claims below.

Claim 1. For graph G and function g as defined above, any node message-passing protocol on G that com-
putes g with T rounds and B bits of memory requires TB ≥ Ω(m).

Proof. Consider any input I ∈ {0, 1}E with I({0, u}) = 0 for all u ∈ [m]. Then for any u, j ∈ [m],
we have

C(I){u,(u,j)} = C(I){0,u} =
m∑
i=1

I({u, (u, i)}).

Thus g(I)u = 1 if and only if there exists some v ∈ [m] \ {u} with C(I){0,u} = C(I){0,v}, or equiva-

lently

∑m
i=1 I({u, (u, i)}) =

∑m
i=1 I({v, (v, i)}).

Fix T,B and suppose that P is a node message-passing protocol on G that computes g with T rounds

and B bits of memory. Define sets of vertices K := {0} and S := {1, . . . ,m/2}. Let H := G[K] and

F := MG(N
T−1
H (S)). Then for any T , we have that

F = {{0, u} : 1 ≤ u ≤ m/2} ∪ {{u, (u, j)} : 1 ≤ u ≤ m/2, 1 ≤ j ≤ m}.

Define a vector IF ∈ ΦF
by

I{0,u} = 0 for 1 ≤ u ≤ m/2

I{u,(u,j)} = 1[j ≤ u] for 1 ≤ u ≤ m/2, 1 ≤ j ≤ m.

Now fix any x ∈ {0, 1}S . We claim that there is some IF ∈ ΦF
such that gS(IF , IF) = x. Indeed, let

us define IF by:

I{0,v} = 0 for m/2 < v ≤ m

I{v,(v,j)} = xv−m/21[j ≤ v −m/2] for m/2 < v ≤ m, 1 ≤ j ≤ m.

Then C(I){0,u} = u for all 1 ≤ u ≤ m/2, and C(I){0,v} = (v −m/2)xv−m/2 for all m/2 < v ≤ m.

It follows that for any 1 ≤ u ≤ n/2, xu = 1 if and only if there exists some v ∈ [m] \ u with

C(I){0,u} = C(I){0,v}, and hence xu = g(I)u. We conclude that∣∣∣{gS(IF , IF) : IF ∈ ΦF
}∣∣∣ ≥ 2m/2.

Applying Lemma 26 we conclude that TB ≥ Ω(m) as claimed.

Claim 2. For graph G and function g as defined above, there is a symmetric edge message-passing protocol
on G that computes g with O(1) rounds and O(logm) bits of memory.

Proof. In the first round, each edge processor reads its input value. In the second round, each edge pro-

cessor sums the values computed by all neighboring edges (including itself). In the third round, each edge

processor computes the indicator for the event that strictly more than m+1 neighboring edges (includ-

118

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

ing itself) have the same value as itself. In the final aggregation round, the output of a vertex is the indi-

cator for the event that any neighbor has value 1.

By construction, the value computed by any edge e after the second round is exactly C(I)e. Thus, after

the third round, the value computed by any edge {0, u} is exactly g(I)u. Moreover, the value computed

by any edge {u, (u, j)} is 0 after the third round, since such edges only have m+1 neighbors. It follows

by construction of the final aggregation step that the protocol computes g.

Proof of Theorem12. Immediate from Claim 1 and Claim 2.

9.7 Symmetry alone provides no separation

In the previous sections we saw that examining memory constraints yields a separation between different

GNN architectures (whether or not we take symmetry into consideration). In this section, we consider

what happens if we solely consider symmetry constraints (that is, constraints imposed by requiring that

the computation in a round of the protocol is invariant to permutations of the order of the neighbors).

This viewpoint was initiated by Xu et al. [2018], who showed that when the initial node features are

uninformative (that is, the same for each node), a standard GNN necessarily outputs the same answer for

two graphs that are 1-Weisfeiler-Lehman equivalent (that is, graphs that cannot be distinguished by the

Weisfeiler-Lehman test, even though they may not be isomorphic).

To be precise, we revisit the representational power of symmetric GNN architectures in the setting where

the input features may be distinct and informative. We show that if we remove the memory constraints
from Section 9.5, but impose permutation invariance for the computation in each round, any function

that is computable by a T -layer edge message-passing protocol can be computed by a (T + 1)-layer node

message-passing protocol. Note that this statement is incomparable to Proposition 12 because we impose

constraints on symmetry, but remove constraints on memory.

Theorem 13 (No separation under symmetry constraints). Let T ≥ 1. Let P be a symmetric edge
message-passing protocol (Definition 34) on graph G = (V,E) with T rounds. Then there is a (T + 1)-
round symmetric node message-passing protocol (Definition 33)P ′ onG that computes the same function as
P .

Remark 10. Theorem 13 and its proof are closely related to the fact that the 1-Weisfeiler-Lehman test is
equivalent to the 2-Weisfeiler-Lehman test, which was reintroduced in the context of higher-order GNNs
[Huang and Villar, 2021]. However, the k-Weisfeiler-Lehman test only characterizes the representational
power ofk-GNNs with uninformative input features (i.e. that are identical for all nodes). Theorem 13 shows
that even with arbitrary input features on the edges, the computation of a GNN with edge embeddings and
symmetric updates can be simulated by a GNN with only node embeddings, without losing symmetry.

To prove Theorem 13, note that it suffices to simulate the protocolP for which the update rulesf sym, f̃ sym

in Definition 34 are identity functions on the appropriate domains. In order to simulate P , we con-

struct a symmetric node message-passing protocol P ′
for which the computation at time t+1 and node

v on input I is the multiset of features computed by P at time t at edges adjacent to v: Qt(v; I) :=

119

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

{{Pt(e; I) : e ∈MG(v)}}. This is possible since the computation of P at time t and edge e = (u, v) is

Pt(e; I) = (I(e), Pt−1(e; I), {{Qt−1(u; I), Qt−1(v; I)}}). The node message-passing protocol is track-

ingQt−1(·; I); moreover, it can recursively computePt−1(e; I)using the same formula. See Appendix 16.2

for the formal proof.

9.8 Empirical benefits of edge-based architectures

In this section we demonstrate that the representational advantages the theory suggests are borne out by

experimental evaluations, both on real-life benchmarks and two natural synthetic tasks we provide. Note

that all the experiments were done on a machine with 8 Nvidia A6000 GPUs.

9.8.1 Performance on common benchmarks

First we compare the performance of the most basic GNN architecture (Graph Convolutional Network,

Kipf and Welling [2016]) with node versus edge embeddings. In the notation of Equation 9.1 and Equa-

tion 9.2, the AGGREGATE and COMBINE operations are integrated as a transformation that looks

like Equation 9.3 or Equation 9.4:
2

h(l+1)
v = h(l)

v + σ
(
W (l)

MEAN

(
h(l)
w : w ∈ NG(v) \ {v}

))
(9.3)

h(l+1)
e = h(l)

e + σ
(
W (l)

MEAN

(
h
(l)
f : f ∈MG(e) \ {e}

))
(9.4)

for trained matrices W (l)
and a choice of non-linearity σ. The only difference between these architec-

tures is that in the latter case, the message passing happens over the line graph of the original graph (i.e.

the neighborhood of an edge is given by the other edges that share a vertex with it) — thus, this can be

viewed as an ablation experiment in which the only salient difference is the type of embeddings being

maintained. To also equalize the information in the input embeddings, we only use the node embed-

dings in the benchmarks we consider: for the edge-based architecture Equation 9.2, we initialize the edge

embeddings by the concatenation of the node embeddings of the endpoints.

In Table 9.1, we show that this single change (without any other architectural modifications) uniformly

results in the edge-based architecture at least matching the performance of the node-based architecture,

sometimes improving upon it. Note, the purpose of this table is not to advocate a new GNN architecture3
—

but to confirm that the increased representational power of the edge-based architecture indicated by the

theory also translates to improved performance when the model is trained. For each benchmark, we

follow the best performing training configuration as delineated in [Dwivedi et al., 2023].

9.8.2 A synthetic task for topologies with node bottlenecks

The topologies of the graphs in Theorem 11 and Theorem 12 both involve a “hub” node, which is con-

nected to all other nodes in the graph. Intuitively, in node-embedding architectures, such nodes have to

mediate messages between many pairs of other nodes, which is difficult when the node is constrained by

2
This is the “residual” parametrization, which we use in experiments unless otherwise stated.

3
In particular, the edge-based architecture is often much more computationally costly to evaluate.

120

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

Model

ZINC MNIST CIFAR-10 Peptides-Func Peptides-Struct

MAE (↓) ACCURACY (↑) ACCURACY (↑) AP (↑) MAE (↓)

GCN 0.3430± 0.034 95.29± 0.163 55.71± 0.381 0.6816± 0.007 0.2453± 0.0001
Edge-GCN (Ours) 0.3297± 0.011 94.37± 0.065 57.44± 0.387 0.6867± 0.004 0.2437± 0.0005

Table 9.1: Comparison of node-based Equation 9.3 and edge-based Equation 9.4 GCN architectures across various

graph benchmarks. The performance of the edge-based architecture robustly matches or improves the

node-based architecture.

memory. To empirically stress test this intuition, we produce a synthetic dataset and train a GNN to solve

a regression task on a graph with a fixed star-graph topology—a simpler topology than the constructions

in Theorem 11 and Theorem 12—but capturing the core aspect of both. A star graph is a graph with a

center node v0, a set ofn leaf nodes {vi}i∈[n], and edge set {{v0, vi}i∈[n]}. A training point in the dataset

is a list (xi, yi)
n
i=1 where xi is the input feature and yi is the label for leaf node vi.

The input features are in R10
, and sampled from a standard Gaussian. The labels yi are produced as

outputs of a planted edge-based architecture. Namely, for a standard edge-based GCN as in Equation 9.4,

we randomly choose values for the matrices{Wi}i∈[k] for some number of layersk, and set the labels to be

the output of this edge-based GCN, when the initial edge features to the GCN are set ash
(0)
{v0,vi} := xi, i.e.

the input feature xi at the corresponding leaf i. In Table 9.2, we show the performance of edge-based and

node-based architectures on this dataset, varying the number of leaves n in the star graph and the depth

k of the planted edge-based model. In each case, the numbers indicate RMSE of the best-performing

edge-based and node-based architecture, sweeping over depths up to 10 (2× the planted model), widths

∈ {16, 32, 64}, and a range of learning rates.

Since the planted edge-based model satisfies both invariance constraints (by design of the GCN architec-

ture) and memory constraints (since the planted model maintains 10-dimensional embeddings), we view

these results as empirical corroboration of Theorem 12—and even for simpler topologies than the proof

construction.

Depth of Planted Model (RMSE)

Number of

Leaves

5 3 1

Edge Node Edge Node Edge Node

64 0.004 0.3790 0.011 0.3596 0.008 0.3752
32 0.003 0.3664 0.005 0.3626 0.003 0.3614
16 0.007 0.3336 0.002 0.2100 0.002 0.2847

Table 9.2: Performance (in RMSE↓) of edge-based and node-based architectures on a star-graph topology. The first

number is the performance of the best edge-based model, and the second is the best node-based model,

across a range of depths up to 10 (2× the planted model), widths∈ {16, 32, 64}, and a range of learning

rates.

121

9 Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks

9.8.3 A synthetic task for inference in Ising models

Finally, motivated by the probabilistic inference setting in Theorem 11, we consider a synthetic sandbox

of using GNNs to predict the values of marginals in an Ising model [Ising, 1924, Onsager, 1944] – a

natural type of pairwise graphical model where each node takes a value in {±1}, and each edge potential

is a weighted product of the edge endpoint values. Concretely, the probability distribution of an Ising

model over graph G = (V,E) has the form:

∀x ∈ {±1}n : pJ,h(x) ∝ exp
(∑
{i,j}∈E

J{i,j}xixj +
∑
i∈V

hixi

)
.

Similar to in Section9.8.2, we construct a training set where the graph G and and edge potentials stay

fixed (precisely, Ji,j = 1 for all {i, j} ∈ E). A training data-point consists of a vector of node potentials

{hi}i∈[n], and labels {E[xi]}i∈[n] consisting of the marginals from the resulting Ising model pJ,h. The

node potentials are sampled from a standard Gaussian distribution.

There is a natural connection between GNNs and calculating marginals: a classical way to calculate

{E[xi]}when G is a tree is to iterate a message passing algorithm called belief propagation Equation 16.1,

in which for each edge{i, j} and direction i→ j, a message ν
(t+1)
i→j is calculated that depends on messages

{ν(t)
k→i}{k,i}∈E . The belief-propagation updates Equation 16.1 naturally fit the general edge-message pass-

ing paradigm from Equation 9.2. In fact, they fit even more closely a “directed” version of the paradigm,

in which each edge {i, j}maintains two embeddings hi→j, hj→i, such that the embedding for direction

hi→j depends on the embeddings {hk→i}{k,i}∈E — and it is possible to derive a similar “directed” node-

based architecture (See Section 16.4.2). For both the undirected and directed version of the architecture,

we see that maintaining edge embeddings gives robust benefits over maintaining node embeddings—for

a variety of tree topologies including complete binary trees, path graphs, and uniformly randomly sam-

pled trees of a fixed size. More details are included in Appendix 16.4.

9.9 Conclusions and future work

Graph neural networks are the best-performing machine learning method for many tasks over graphs.

There is a wide variety of GNN architectures, which frequently make opaque design choices and whose

causal influence on the final performance is difficult to understand and estimate. In this paper, we fo-

cused on understanding the impact of maintaining edge embeddings on the representational power, as

well as the subtleties of considering constraints like memory and invariance. One significant downside

of maintaining edge embeddings is the computational overhead on dense graphs. Hence, a fruitful direc-

tion for future research would be to explore more computationally efficient variants of edge-based archi-

tectures that preserve their representational power and performance.

122

Part V

Appendices

123

10 Appendix for Chapter 2

We begin by providing a brief overview of partial differential equations, some key results and useful lem-

mas. Hopefully this will also be useful for readers new to the field and want to learn and familiarize them-

selves with key definitions and basics.

10.1 Brief Overview of Partial Differential Equations

In this section, we introduce few key definitions and results from PDE literature. We note that the results

in this section are standard and have been included in the Appendix for completeness. We refer the reader

to classical texts on PDEs [Evans, 1998, Gilbarg and Trudinger, 2001] for more details.

We will use the following Poincaré inequality throughout our proofs.

Theorem 14 (Poincaré inequality). Given Ω ⊂ Rd, a bounded open subset, there exists a constant Cp > 0
such that for all u ∈ H1

0 (Ω)
∥u∥L2(Ω) ≤ Cp∥∇u∥L2(Ω).

Corollary 1. For the bounded open subset Ω ⊂ Rd, for all u ∈ H1
0 (Ω), we define the norm in the Hilbert

space H1
0 (Ω) as

∥u∥H1
0 (Ω) = ∥∇u∥2. (10.1)

Further, the norm in H1
0 (Ω) is equivalent to the norm H1(Ω).

Proof. Note that for u ∈ H1
0 (Ω) we have,

∥u∥H1(Ω) = ∥∇u∥2 + ∥u∥2
≥ ∥∇u∥2

=⇒ ∥u∥H1(Ω) ≥ ∥u∥H1
0 (Ω).

Where we have used the definition of the norm in H1
0 (Ω) space.

Further, using the result in Theorem 14 we have

∥u∥2H1(Ω) =
(
∥u∥22 + ∥∇u∥2L2(Ω)

)
≤
(
C2

p + 1
)
∥∇u∥2H1(Ω) (10.2)

Therefore, combining the two inequalities we have

∥u∥H1
0 (Ω) ≤ ∥u∥H1(Ω) ≤ Ch∥u∥H1

0 (Ω) (10.3)

124

10 Appendix for Chapter 2

where Ch = (C2
p + 1). Hence we have that the norm in H1

0 (Ω) and H1(Ω) spaces are equivalent.

Proposition 13 (Equivalence between 2 and H1
0 (Ω) norms). If v ∈ span{φ1, · · · , φk} then we have

that ∥v∥2 is equivalent to ∥v∥H1
0 (Ω).

Proof. We have from the Poincare inequality in Theorem 14 that for all v ∈ H1
0 (Ω), the norm in 2 is

upper bounded by the norm in H1
0 (Ω), i.e.,

∥v∥22 ≤ ∥v∥2H1
0 (Ω)

Further, using results from Equation 10.5 and Equation 10.4 (where b(u, v) := ⟨Lu, v⟩2), we know that

for all v ∈ H1
0 (Ω) we have

m∥v∥2H1
0 (Ω) ≤ ⟨Lv, v⟩2 ≤ max{M,Cp∥c∥L∞(Ω)}∥v∥2H1

0 (Ω)

This implies that ⟨Lu, v⟩2 is equivalent to the inner product ⟨u, v⟩H1
0 (Ω), i.e., for all u, v ∈ H1

0 (Ω),

m⟨u, v⟩H1
0 (Ω) ≤ ⟨Lu, v⟩2 ≤ max

{
M,Cp∥c∥L∞(Ω)

}
⟨u, v⟩H1

0 (Ω)

Further, since v ∈ span{φ1, · · · , φk}, we have from Lemma 2 that

⟨Lv, v⟩2 ≤ λk∥v∥22

=⇒ ∥v∥H1
0 (Ω) ≤

λk

c1
∥v∥22

Hence we have that for all v ∈ span{φ1, · · · , φk} ∥v∥2 is equivalent to ∥v∥H1
0 (Ω) and by Corollary 1 is

also equivalent to ∥v∥H1(Ω).

Now introduce a form for ⟨Lu, v⟩2 that is more amenable for the existence and uniqueness results.

Lemma 27. For all u, v ∈ H1
0 (Ω), we have the following,

1. The inner product ⟨Lu, v⟩2 equals,

⟨Lu, v⟩2 =
∫
Ω

(A∇u · ∇v + cuv) dx

2. The operator L is self-adjoint.

Proof. 1. We will be using the following integration by parts formula,∫
Ω

∂u

∂xi

dx = −
∫
Ω

u
∂v

∂xi

dx+

∫
∂Ω

uvni∂Γ

Where ni is a normal at the boundary and ∂Γ is an infinitesimal element of the boundary.

125

10 Appendix for Chapter 2

Hence we have for all u, v ∈ H1
0 (Ω),

⟨Lu, v⟩2 =
∫
Ω

−

(
d∑

i=1

(∂i(A∇u)i)

)
v + cuv dx

=

∫
Ω

A∇u · ∇vdx−
∫
∂Ω

(
d∑

i=1

(A∇u)ini

)
vdΓ +

∫
Ω

cuvdx

=

∫
Ω

A∇u · ∇vdx+

∫
Ω

cuvdx (∵ v|∂Ω = 0)

2. To show that the operatorL : H1
0 (Ω)→ H1

0 (Ω) is self-adjoint, we show that for allu, v ∈ H1
0 (Ω)

we have ⟨Lu, v⟩ = ⟨u, Lv⟩.

From Proposition 27, for functions u, v ∈ H1
0 (Ω) we have

⟨Lu, v⟩2 =
∫
Ω

A∇u · ∇vdx+

∫
Ω

cuvdx

=

∫
Ω

A∇v · ∇udx+

∫
Ω

cvudx

= ⟨u, Lv⟩

10.1.1 Proof of Proposition 1

We first show that if u is the unique solution then it minimizes the variational norm.

Let u denote the weak solution, further for all w ∈ H1
0 (Ω) let v = u + w. Using the fact that L is self-

adjoint (as shown in Lemma 27) we have

J(v) = J(u+ w) =
1

2
⟨L(u+ w), (u+ w)⟩2 − ⟨f, u+ w⟩2

=
1

2
⟨Lu, u⟩2 +

1

2
⟨Lw,w⟩2 + ⟨Lu,w⟩2 − ⟨f, u⟩2 − ⟨f, w⟩2

= J(u) +
1

2
⟨Lw,w⟩2 + ⟨Lu,w⟩2 − ⟨f, w⟩2

≥ J(u)

where we use the fact that ⟨Lu, u⟩2 > 0 and that u is a weak solution hence Equation 2.1 holds for all

w ∈ H1
0 (Ω).

126

10 Appendix for Chapter 2

To show the other side, assume that u minimizes J , i.e., for all λ > 0 and v ∈ H1
0 (Ω) we have, J(u +

λv) ≥ J(u),

J(u+ λv) ≥ J(u)

1

2
⟨L(u+ λv), (u+ λv)⟩2 − ⟨f, (u+ λv)⟩2 ≥

1

2
⟨Lu, u⟩2 − ⟨f, u⟩2

=⇒ λ

2
⟨Lv, v⟩2 + ⟨Lu, v⟩2 − ⟨f, v⟩2 ≥ 0

Taking λ→ 0, we get

⟨Lu, v⟩2 − ⟨f, v⟩2 ≥ 0

and also taking v as−v, we have

⟨Lu, v⟩2 − ⟨f, v⟩2 ≤ 0

Together, this implies that if u is the solution to Equation 2.2, then u is also the weak solution, i.e, for all

v ∈ H1
0 (Ω) we have

⟨Lu, v⟩2 = ⟨f, v⟩2

Proof for Existence and Uniqueness of the Solution

In order to prove for the uniqueness of the solution, we first state the Lax-Milgram theorem.

Theorem 15 (Lax-Milgram, Lax and Milgram [1954]). LetH be a Hilbert space with inner-product (·, ·) :
H×H → R, and let b : H×H → R and l : H → R be the bilinear form and linear form, respectively.
Assume that there exists constants C1, C2, C3 > 0 such that for all u, v ∈ H we have,

C1∥u∥2H ≤ b(u, u), |b(u, v)| ≤ C2∥u∥H∥v∥H, and |l(u)| ≤ C3∥u∥H.

Then there exists a unique u ∈ H such that,

b(u, v) = l(v) for all v ∈ H.

Having stated the Lax-Milgram Theorem, we make the following proposition,

Proposition 14. Given the assumptions (i)-(iii), solution to the variational formulation in Equation 2.1
exists and is unique.

Proof. Using the variational formulation defined in (2.1), we introduce the bilinear form b(·, ·) : H1
0 (Ω)×

H1
0 (Ω)→ Rwhere b(u, v) := ⟨Lu, v⟩. Hence, we prove the theorem by showing that the bilinear form

b(u, v) satisfies the conditions in Theorem 15.

127

10 Appendix for Chapter 2

We first show that for all u, v ∈ H1
0 (Ω) the following holds,

|b(u, v)| =
∣∣∣∣∫

Ω

(A∇u · ∇v + cuv)dx

∣∣∣∣
≤
∫
Ω

|(A∇u · ∇v + cuv)|dx

≤
∫
Ω

|A∇u · ∇v|dx+

∫
Ω

|cuv|dx

≤ ∥A∥L∞(Ω)∥∇u∥L2(Ω)∥∇v∥L2(Ω) + ∥c∥L∞(Ω)∥u∥L2(Ω)∥v∥L2(Ω

≤M∥∇u∥L2(Ω)∥∇v∥L2(Ω) + ∥c∥L∞(Ω)∥u∥L2(Ω)∥v∥L2(Ω)

≤ max
{
M,Cp∥c∥L∞(Ω)

}
∥u∥H1

0 (Ω)∥v∥H1
0 (Ω) (10.4)

Now we show that the bilinear form a(u, u) is lower bounded.

b(v, v) =

∫
Ω

(
A∇v · ∇v + cv2

)
dx

≥ m

∫
Ω

∥∇v∥2dx = m∥v∥H1
0 (Ω) (10.5)

Finally, for v ∈ H1
0 (Ω)

|(f, v)| =
∣∣∣∣∫

Ω

fvdx

∣∣∣∣ ≤ ∥f∥L2(Ω)∥v∥2 ≤ Cp∥f∥2∥v∥H1
0 (Ω)

Hence, we satisfy the assumptions in required in Theorem 15 and therefore the variational problem de-

fined in (2.1) has a unique solution.

10.2 Perturbation Analysis

10.2.1 Proof of Lemma 3

Proof. Using the triangle inequality the error between u⋆
and ũ⋆

span, we have,

∥u⋆ − ũ⋆
span∥2 ≤ ∥u⋆ − u⋆

span∥2︸ ︷︷ ︸
(I)

+ ∥u⋆
span − ũ⋆

span∥2︸ ︷︷ ︸
(II)

(10.6)

where u⋆
span is the solution to the PDE Lu = fspan.

128

10 Appendix for Chapter 2

In order to bound Term (I), we use the inequality in Equation 2 to get,

∥u⋆ − u⋆
span∥22 ≤

1

λ1

⟨L(u⋆ − u⋆
span), u

⋆ − u⋆
span⟩2

=
1

λ1

⟨f − fspan, u
⋆ − u⋆

span⟩2

≤ 1

λ1

∥f − fspan∥2∥u⋆ − u⋆
span∥2

=⇒ ∥u⋆ − u⋆
span∥2 ≤

1

λ1

∥f − fspan∥2 ≤
ϵspan
λ1

(10.7)

We now bound Term (II).

First we introduce an intermediate PDE Lu = f̃span, and denote the solution ũ. Therefore, by utilizing

triangle inequality again Term (II) can be expanded as the following,

∥u⋆
span − ũ⋆

span∥2 ≤ ∥u⋆
span − ũ∥2 + ∥ũ− ũ⋆

span∥2 (10.8)

We will tackle the second term in Equation 10.8 first.

Using ũ = L−1f̃span and ũ⋆
span = L̃−1f̃span,

∥ũ− ũ⋆
span∥2 = ∥(L−1 − L̃−1)f̃span∥2

= ∥(L−1L̃− I)L̃−1f̃span∥2
=⇒ ∥ũ− ũ⋆

span∥2 = ∥(L−1L̃− I)ũ⋆
span∥2 (10.9)

Therefore, using the inequality in Lemma 5 part (2.) we can upper bounded Equation 10.9 to get,

∥ũ− ũ⋆
span∥2 ≤ δ∥ũ⋆

span∥2 (10.10)

where δ = max
{

ϵA
m
, ϵc
ζ

}
.

Proceeding to the first term in Equation 10.8, using Lemma 4, and the inequality in Equation 2, the term

∥u⋆
span − ũ∥2 can be upper bounded by,

∥u⋆
span − ũ∥22 ≤

1

λ1

⟨L(u⋆
span − ũ), u⋆

span − ũ⟩2

≤ 1

λ1

⟨fspan − f̃span, u
⋆
span − ũ⟩2

≤ 1

λ1

∥fspan − f̃span∥2∥u⋆
span − ũ∥2

=⇒ ∥u⋆
span − ũ∥2 ≤

1

λ1

∥fspan − f̃span∥2 ≤
δ

λ1

· ∥f∥2
γ − δ

(10.11)

Therefore Term (II), i.e., ∥u⋆
span − ũ⋆

span∥2 can be upper bounded by

∥u⋆
span − ũ⋆

span∥2 ≤ ∥u⋆
span − ũ∥2 + ∥ũ− ũ⋆

span∥2 ≤
ϵ̂f
λ1

+ δ∥ũ⋆
span∥2 (10.12)

129

10 Appendix for Chapter 2

Putting everything together, we can upper bound Equation 10.6 as

∥u⋆ − ũ⋆
span∥2 ≤ ∥u⋆ − u⋆

span∥2 + ∥u⋆
span − ũ⋆

span∥2

≤ ϵspan
λ1

+
δ

λ1

∥f∥2
γ − δ

+ δ∥ũ⋆
span∥2

where γ = 1
λk
− 1

λk+1
and δ = max

{
ϵA
m
, ϵc
ζ

}
.

10.2.2 Proof of Lemma 10

Proof. We define r = f̃span − fnn, therefore from Lemma 29 we have that for any multi-index α,

∥L̃tr∥2 ≤ (t!)2 · Ct(ϵnn + ϵspan) + 4

(
1 +

δ

γ − δ

)
λt
k∥fspan∥2.

For every t ∈ N, we will write ut = ût + rt, s.t. ût is a neural network and we (iteratively) bound ∥rt∥2.

Precisely, we define a sequence of neural networks {ût}∞t=0, s.t.{
û0 = u0,

ût+1 = ût − η
(
L̃ût − fnn

)
Since rt = ut − ût, we can define a corresponding recurrence for rt:{

r0 = 0,

rt+1 = (I − ηL̃)rt − r

Unfolding the recurrence, we get

rt+1 =
t∑

i=0

(I − ηL̃)ir (10.13)

130

10 Appendix for Chapter 2

Using the binomial expansion we can write:

(I − ηL̃)tr =
t∑

i=0

(
t

i

)
(−1)i(ηL̃)ir

=⇒ ∥(I − ηL̃)(t)r∥2 =

∥∥∥∥∥
t∑

i=0

(
t

i

)
(−1)i(ηL̃)ir

∥∥∥∥∥
2

≤
t∑

i=0

(
t

i

)
ηi∥L̃ir∥2

≤
t∑

i=0

(
te

i

)i

ηi∥L̃ir∥2 ∵

(
t

i

)
≤
(
te

i

)i

(1)

≤
t∑

i=0

(
te

i
η

)i(
(i!)2Ci(ϵnn + ϵspan) + 4

(
1 +

δ

γ − δ

)
λi
k∥fspan∥2

)

≤
t∑

i=0

(
te

i
η

)i

(i!)2Ci

(
(ϵnn + ϵspan) + 4

(
1 +

δ

γ − δ

)
λi
k

(i!)2Ci
∥fspan∥2

)
(2)

≤
t∑

i=0

(
te

i
ηi2C

)i(
(ϵnn + ϵspan) + 4

(
1 +

δ

γ − δ

)
λi
k

(i!)2Ci
∥fspan∥2

)
(3)

≤
t∑

i=0

(
te

i
ηi2C

)i(
(ϵnn + ϵspan) + 4

(
1 +

δ

γ − δ

)
λi
k∥fspan∥2

)

≤
t∑

i=0

(tieηC)i
(
(ϵnn + ϵspan) + 4

(
1 +

δ

γ − δ

)
λi
k∥fspan∥2

)
≤ tmax{1, (t2eηC)t}

(
(ϵnn + ϵspan) + 4

(
1 +

δ

γ − δ

)
λt
k∥fspan∥2

)
Here the inequality (1) follows by using the bound derived in Lemma 29. Further, we use that all i ∈ N
we have i! ≤ ii in (2) and the inequality (3) follows from the fact that

1
(i!)2Ci ≤ 1.

Hence we have the the final upper bound:

∥rt∥2 ≤ t2max{1, (t2eηC)t}
(
ϵnn + ϵspan + 4

(
1 +

δ

γ − δ

)
λt
k∥fspan∥2

)

10.3 Technical Lemmas: Perturbation Bounds

In this section we introduce some useful lemmas about perturbation bounds used in the preceding parts

of the appendix.

131

10 Appendix for Chapter 2

First we show a lemma that’s ostensibly an application of Davis-Kahan to the (bounded) operators L−1

and L̃−1
.

Lemma 28 (Subspace alignment). Consider linear elliptic operators L and L̃ with eigenvalues λ1 ≤
λ2 ≤ · · · and λ1 ≤ λ2 ≤ · · · respectively. Assume that γ := 1

λk
− 1

λk+1
> 0. For any function

g ∈ H1
0 (Ω), we define Pkg :=

∑k
i=1⟨g, φi⟩2φi and P̃kg :=

∑k
i=1⟨g, φ̃i⟩2φ̃i as the projection of g onto

span{φ1, · · · , φk} and Φ̃K , respectively. Then we have:

∥Pkg − P̃kg∥2 ≤
δ

γ − δ
∥g∥2 (10.14)

where δ = max
{

ϵA
m
, ϵc
ζ

}
.

Proof. We begin the proof by first showing that the inverse of the operators L and L̃ are close. Using the

result from Lemma 5 with δ = max
{

ϵA
m
, ϵc
ζ

}
, we have:

⟨(L−1L̃− I)u, u⟩2 ≤ δ∥u∥22
=⇒ ⟨(L−1 − L̃−1)L̃u, u⟩2 ≤ δ∥u∥22
=⇒ ⟨(L−1 − L̃−1)v, u⟩2 ≤ δ∥u∥22

Now, the operator norm ∥L−1 − L̃−1∥ can be written as,

∥L−1 − L̃−1∥ = sup
v∈H1

0 (Ω)

⟨(L−1 − L̃−1)v, v⟩2
∥v∥22

≤ δ (10.15)

Further note that, { 1
λi
}∞i=1 and { 1

λ̃i
}∞i=1 are the eigenvalues of the operators L−1

and L̃−1
, respectively.

Therefore from Weyl’s Inequality and Equation 10.15 we have:

sup
i

∣∣∣∣ 1λi

− 1

λ̃i

∣∣∣∣ ≤ ∥L−1 − L̃−1∥ ≤ δ (10.16)

Therefore, for all i ∈ N, we have that
1
λ̃i
∈ [1

λi
− δ, 1

λi
+ δ], i.e., all the eigenvalues of L̃−1

are within δ

of the eigenvalue of L−1
. which therefore implies that the difference between kth

eigenvalues is,

1

λ̃k

− 1

λk+1

≥ 1

λk

− 1

λk+1

− δ

Since the operatorsL−1
, L̃−1

are bounded, the Davis-Kahan sinΘ theorem [Davis and Kahan, 1970] can

be used to conclude that:

∥ sinΘ(span{φ1, · · · , φk}, Φ̃K)∥ = ∥Pk − P̃k∥ ≤
∥L−1 − L̃−1∥

γ − δ
≤ δ

γ − δ
(10.17)

132

10 Appendix for Chapter 2

where ∥ · ∥ is understood to be the operator norm, and γ = 1
λk
− 1

λk+1
. Therefore for any function

g ∈ H1
0 (Ω) we have

∥Pkg − P̃kg∥2 ≤ ∥Pk − P̃k∥∥g∥2

≤ ∥L
−1 − L̃−1∥
γ − δ

∥g∥2

By Equation 10.17, we then get ∥Pkg − P̃kg∥2 ≤ δ
γ−δ
∥g∥2, which finishes the proof.

Finally, we show that repeated applications of L̃ to fnn − f have also bounded norms:

Lemma 29 (Bounding norms of applications of L̃). The functions fnn and f satisfy:

1. ∥L̃n(fnn − fspan)∥2 ≤ (n!)2 · Cn(ϵspan + ϵnn)

2. ∥L̃n(fnn − f̃span)∥2 ≤ (n!)2 · Cn(ϵspan + ϵnn) + 4
(
1 + δ

γ−δ

)
λn
k∥f∥2

where δ = max
{

ϵA
m
, ϵc
ζ

}
.

Proof. For Part 1, by Lemma 33 we have that

∥L̃n(fnn − fspan)∥2 ≤ (n!)2 · Cn max
α:|α|≤n+2

∥∂α(fnn − fspan)∥2 (10.18)

From Assumptions (i)-(iii), for any multi-index α we have:

∥∂αfnn − ∂αfspan∥2 ≤ ∥∂αfnn − ∂αf∥2 + ∥∂αf − ∂αfspan∥2
≤ ϵnn + ϵspan (10.19)

Combining Equation 10.18 and Equation 10.19 we get the result for Part 1.

For Part 2 we have,

∥L̃n(f̃span − fnn)∥2 = ∥L̃n(f̃span − fspan + fspan − fnn)∥2 (10.20)

≤ ∥L̃n(f̃span − fspan)∥2 + ∥L̃n(fspan − fnn)∥2 (10.21)

Note that from Lemma 5 part (2.) we have that ∥L−1L̃ − I∥ ≤ δ (where ∥ · ∥ denotes the operator

norm). This implies that there exists an operator Σ, such that ∥Σ∥ ≤ δ and we can express L̃ as:

L̃ = L(I + Σ)

We will show that there exists a Σ̃, s.t. ∥Σ̃∥ ≤ n2δ and L̃n = (I + Σ̃)Ln
. Towards that, we will denote

L−n := L−1 ◦ L−1 ◦ · · ·L−1︸ ︷︷ ︸
n times

and show that

∥∥∥L−nL̃n
∥∥∥ ≤ 1 + n2δ (10.22)

We have:

133

10 Appendix for Chapter 2

∥∥∥L−nL̃n
∥∥∥ =

∥∥L−n(L(I + Σ))n
∥∥

=

∥∥∥∥∥L−n

(
Ln +

n∑
j=1

Lj−1 ◦ (L ◦ Σ) ◦ Ln−j + · · ·+ (L ◦ Σ)n
)∥∥∥∥∥

=

∥∥∥∥∥I +
n∑

j=1

L−n ◦ Lj−1 ◦ Σ ◦ Ln−j + · · ·+ L−n ◦ (L ◦ Σ)(n)
∥∥∥∥∥

(1)

≤ 1 +

∥∥∥∥∥
n∑

j=1

L−n ◦ Lj−1 ◦ Σ ◦ Ln−j

∥∥∥∥∥+ · · ·+ ∥L−n ◦ (L ◦ Σ)n∥

(2)

≤ 1 +
n∑

i=1

(
n

i

)
δi

= (1 + δ)n

(3)

≤ enδ

≤ 1 + 2nδ

where (1) follows from triangle inequality, (2) follows from Lemma 34, (3) follows from 1 + x ≤ ex,

and the last part follows from nδ ≤ 1/10 and Taylor expanding ex. Next, since L and L̃ are elliptic

operators, we have ∥L−nL̃n∥ = ∥L̃nL−n∥. From this, it immediately follows that there exists a Σ̃, s.t.

L̃n = (I + Σ̃)Ln
with ∥Σ̃∥ ≤ n2δ.

Plugging this into the first term of Equation 10.21, we have

∥L̃n(f̃span − fspan)∥2 = ∥L̃nf̃span − L̃nfspan∥2
= ∥L̃nf̃span − (I + Σ̃)Lnfspan∥2
≤ ∥L̃nf̃span − Lnfspan∥2 + ∥Σ̃Lnfspan∥2
≤ ∥L̃nf̃span − Lnfspan∥2 + ∥Σ̃∥∥Lnfspan∥2
≤ ∥L̃nf̃span − Lnfspan∥2 + n2δλn

k∥fspan∥2 (10.23)

The first term in first term in Equation 10.23 can be expanded as follows:

∥L̃nf̃span − Lnfspan∥2 = ∥L̃nf̃span − Lnf̃span + Lnf̃span + Lnfspan∥2
≤ ∥L̃nf̃span − Lnf̃span∥+ ∥Lnf̃span − Lnfspan∥2 (10.24)

We’ll consider the two terms in turn.

134

10 Appendix for Chapter 2

For the first term, the same proof as that of Equation 10.22 shows that there exists an operator Σ̂, s.t.

∥Σ̂∥ ≤ 2nδ and Ln = (I + Σ̂)L̃n
. Hence, we have:

∥L̃nf̃span − Lnf̃span∥ = ∥L̃nf̃span − (I + Σ̂)L̃nf̃span∥
= ∥Σ̂L̃nf̃span∥
≤ λ̃n

k∥Σ̂∥∥f̃span∥2
≤ 2nδλ̃n

k∥f∥2 (∵ ∥f̃span∥2 ≤ ∥f∥2) (10.25)

For the second term in Equation 10.23 we have:

∥Ln(f̃span − fspan)∥2 ≤ sup
v:v=v1−v2,v1∈Φk,v2∈Φ̃k

∥Lnv∥2
∥v∥2

∥f̃span − fspan∥2 (10.26)

To bound the first factor we have:

∥Lnv∥2 = ∥Ln(v1 − v2)∥2
≤ ∥Lnv1∥2 + ∥Lnv2∥2
= ∥Lnv1∥2 + ∥(I + Σ̂)L̃nv2∥2
≤ λn

k∥v1∥2 + λ̃n
k∥I + Σ̂∥2∥v2∥2

≤ (λn
k + λ̃n

k(1 + 2nδ))∥v∥2

where we use the fact that ∥v1∥2, ∥v2∥2 ≤ ∥v∥2 and ∥Σ̂∥ ≤ 2nδ. Hence, we can bound

sup
v:v=v1−v2,v1∈Φk,v2∈Φ̃k

∥Lnv∥2
∥v∥2

≤ (λn
k + λ̃n

k(1 + 2nδ)) (10.27)

From Equation 10.27 and Lemma 4 we have:

∥Ln(f̃span − fspan)∥2 ≤ sup
v:v=v1−v2,v1∈Φk,v2∈Φ̃k

∥Lnv∥2
∥v∥2

∥f̃span − fspan∥2

≤ (λn
k + λ̃n

k(1 + 2nδ))
δ

γ − δ
∥f∥2 (10.28)

Therefore from Equation 10.25 and Equation 10.28, we can upper bound ∥L̃n(f̃span − fspan)∥2 using

Equation 10.23 as follows:

∥L̃n(f̃span − fspan)∥2 ≤ ∥L̃nf̃span − Lnfspan∥2 + 2nδλn
k∥f∥2

≤ 2nδλ̃n
k∥f∥2 + (λn

k + λ̃n
k(1 + 2nδ))

δ

γ − δ
∥f∥2 + 2nδλn

k∥f∥2
(i)

≤ (1 + 2nδλk)(1 + (1 + 2nδ))
δ

γ − δ
λn
k∥f∥2 + 2nδλn

k∥f∥2
(ii)

≤ 4

(
1 +

δ

γ − δ

)
λn
k∥f∥2

Here in (i) we use the result from Lemma 30 and write
λ̃n
k

λn
k
≤ 1 + 2nδλk. In (iii), we use n ≤ T and

the fact that 2T min(1, λk)δ ≤ 1/10 ≤ 1

135

10 Appendix for Chapter 2

Therefore, finally we have:

∥L̃nf̃span − Lnfspan∥2 ≤ 4

(
δ

γ − δ
+ 1

)
λn
k∥f∥2

Combining with the result for Part 1, Therefore we have the following:

∥L̃n(f̃span − fnn)∥2 ≤ (n!)2 · Cn(ϵspan + ϵnn) + 4

(
1 +

δ

γ − δ

)
λn
k∥f∥2

10.4 Technical Lemmas: Manipulating Operators

Before we state the lemmas we introduce some common notation used throughout this section. We de-

note Ln = L ◦ L ◦ · · · ◦ L︸ ︷︷ ︸
n times

. Further we use Lk to denote the operator with ∂kaij for all i, j ∈ [d] and

∂kc as coefficients, that is:

Lku =
d∑

i,j=1

−(∂kaij)∂iju−
d∑

i,j=1

∂k(∂iai)∂ju+ (∂kc)u

Similarly the operator Lkl is defined as:

Lklu =
d∑

i,j=1

−(∂klaij)∂iju−
d∑

i,j=1

∂kl(∂iai)∂ju+ (∂klc)u

Lemma 30. Given φi and φ̃i for all i ∈ [k] are top k eigenvalues of operators L and L̃ respectively, such
that ∥L−1 − L̃−1∥ is bounded. Then for all n ∈ N we have that

λ̃n
i ≤ (1 + ê)λn

i

where i ∈ [k] and |ê| ≤ 2nδλk and δ = max
{

ϵA
m
, ϵc
ζ

}
.

Proof. From Equation 10.15 and Weyl’s inequality we have for all i ∈ N

sup
i

∣∣∣∣ 1λi

− 1

λ̃i

∣∣∣∣ ≤ ∥L−1 − L̃−1∥ ≤ δ

From this, we can conclude that: ∣∣∣λ̃i − λi

∣∣∣ ≤ δλiλ̃i

=⇒ λ̃i(1− δλi) ≤ λi

=⇒ λ̃i ≤
λi

(1− δλi)

=⇒ λ̃i ≤ (1 + δλi)λi

136

10 Appendix for Chapter 2

Writing λ̃i = (1 + ẽi)λi (where ẽi = δλi), we have∣∣∣λ̃n
i − λn

i

∣∣∣ = |((1 + ẽi)λi)
n − λn

i |

= |λn
i ((1 + ẽi)

n − 1)|
(1)

≤ λn
i |ẽ|i

∣∣∣∣∣
n∑

j=1

(1 + ẽi)
j

∣∣∣∣∣
(2)

≤ λn
i n|ẽi|en|ẽi|

(3)

≤ λn
i n|ẽi|(1 + |2nẽi|)

≤ 2λn
i n|ẽi|

where (1) follows from the factorizationan−bn = (a−b)(
∑n−1

i=0 aibn−i−i), (2) follows from1+x ≤ ex,

and (3) follows fromn|ẽi| ≤ 1/20 and Taylor expanding ex. Hence, there exists a êi, s.t. λ̃n
i = (1+êi)λ

n
i

and |êi| ≤ 2n|ẽi| (i.e., |êi| ≤ 2nδλi). Using the fact thatλi ≤ λk for all i ∈ [k] completes the proof.

Lemma 31 (Operator Chain Rule). Given an elliptic operatorL, for all v ∈ C∞(Ω)we have the following

∇kL
nu =

n∑
i=1

(
Ln−i ◦ Lk ◦ Li−1

)
(u) + Ln(∇ku) (10.29)

∇kl(L
nu) =

∑
i,j
i<j

(
Ln−i ◦ Lk ◦ Lj−i−1 ◦ Ll ◦ Lj−1

)
u

+
∑
i,j
i>j

(
Ln−j ◦ Lk ◦ Li−j−1 ◦ Ll ◦ Li−1

)
u

+
∑
i

(
Ln−i ◦ Lkl ◦ Li−1

)
u+ Ln(∇klu)

(10.30)

where we assume that L(0) = I .

Proof. We show the proof using induction on n. To handle the base case, for n = 1, we have

∇k(Lu) = ∇k(−divx(A∇u) + cu)

= ∇k

(
−
∑
ij

aij∂iju−
∑
ij

∂iaij∂ju+ cu

)

=

(
−
∑
ij

aij∂ij(∂ku)−
∑
ij

∂iaij∂j∂ku+ c∂ku

)

+

(
−
∑
ij

∂kaij∂iju−
∑
ij

∂i∂kaij∂ju+ ∂kcu

)
= L(∇ku) + Lku (10.31)

137

10 Appendix for Chapter 2

Similarly n = 1 and k, l ∈ [d],

∇kl(Lu) = ∇kl(−divx(A∇u) + cu)

= ∇kl

(
−
∑
ij

aij∂iju−
∑
ij

∂iaij∂ju+ cu

)

=

(
−
∑
ij

aij∂ij(∂klu)−
∑
ij

∂iaij∂j∂klu+ c∂klu

)

+

(
−
∑
ij

∂kaij∂ij∂lu−
∑
ij

∂i∂kaij∂j∂lu+ ∂kc∂lu

)

+

(
−
∑
ij

∂laij∂ij∂ku−
∑
ij

∂i∂laij∂j∂ku+ ∂lc∂ku

)

+

(
−
∑
ij

∂klaij∂iju−
∑
ij

∂i∂klaij∂ju+ ∂klcu

)
= L(∇klu) + Lk(∇lu) + Ll(∇ku) + Lklu (10.32)

For the inductive case, assume that for all m < n, Equation 10.29 and Equation 10.30 hold. Then, for

any k ∈ [d] we have:

∇k(L
nu) = ∇k

(
L ◦ Ln−1(u)

)
= L

(
∇k(L

n−1u)
)
+ Lk

(
Ln−1u

)
= L

(
n−1∑
i=1

(
Ln−1−i ◦ Lk ◦ Li−1

)
u+ Ln−1(∇ku)

)
+ Lk

(
Ln−1

)
u

=
n∑

i=1

(
Ln−i ◦ Lk ◦ Li−1

)
(u) + Ln(∇ku) (10.33)

138

10 Appendix for Chapter 2

Similarly, for all k, l ∈ [d] we have:

∇kl(L
nu) = ∇kl

(
L ◦ Ln−1(u)

)
= L

(
∇kl(L

n−1u)
)
+ Lk

(
∇l

(
Ln−1u

))
+ Ll

(
∇k

(
Ln−1u

))
+ Lkl

(
Ln−1u

)
= L

(
n−1∑
i,j
i<j

(
Ln−1−i ◦ Lk ◦ Lj−i−1 ◦ Ll ◦ Lj−1

)
u

+
n−1∑
i,j
i>j

(
Ln−1−j ◦ Lk ◦ Li−j−1 ◦ Ll ◦ Li−1

)
u

+
n−1∑
i=1

(
Ln−1−i ◦ Lkl ◦ Li−1

)
u+ Ln−1(∇klu)

)

+ Lk

(
n−1∑
i=1

(
Ln−1−i ◦ Ll ◦ Li−1

)
(u) + Ln−1(∇lu)

)
(from Equation 10.33)

+ Ll

(
n−1∑
i=1

(
Ln−1−i ◦ Lk ◦ Li−1

)
(u) + Ln−1(∇ku)

)
(from Equation 10.33)

+ Lkl

(
Ln−1u

)
=

n∑
i,j
i<j

(
Ln−i ◦ Lk ◦ Lj−i−1 ◦ Ll ◦ Lj−1

)
u

+
n∑
i,j
i>j

(
Ln−j ◦ Lk ◦ Li−j−1 ◦ Ll ◦ Li−1

)
u

+
n∑
i

(
Ln−i ◦ Lkl ◦ Li−1

)
u+ Ln(∇klu) (10.34)

By induction, the claim follows.

Lemma 32. For all u ∈ C∞(Ω) then for all k, l ∈ [d] the following upper bounds hold,

∥Lu∥2 ≤ C max
α:|α|≤2

∥∂αu∥2 (10.35)

∥∇k(Lu)∥2 ≤ 2 · C max
α:|α|≤3

∥∂αu∥2 (10.36)

and
∥∇kl(Lu)∥2 ≤ 4 · C max

α:|α|≤4
∥∂αu∥2 (10.37)

where
C := (2d2 + 1)max

{
max
α:|α|≤3

max
i,j
∥∂αaij∥L∞(Ω), max

α:|α|≤2
∥∂αc∥L∞(Ω)

}
.

139

10 Appendix for Chapter 2

Proof. We first show the upper bound on ∥Lu∥2:

∥Lu∥2 ≤

∥∥∥∥∥−
d∑

i,j=1

aij∂iju−
d∑

i,j=1

∂iaij∂ju+ cu

∥∥∥∥∥
2

≤(1) (2d2 + 1)max

{
max
i,j
∥∂iaij∥L∞(Ω),max

i,j
∥aij∥L∞(Ω), ∥c∥L∞(Ω)

}
︸ ︷︷ ︸

C1

max
α:|α|≤2

∥∂αu∥2

≤ C1 max
α:|α|≤2

∥∂αu∥2 (10.38)

where (1) follows by Hölder.

Proceeding to ∥∇k(Lu)∥2, from Lemma 33 we have

∥∇k(Lu)∥2 ≤ ∥Lku∥2 + ∥L(∇ku)∥2

≤

∥∥∥∥∥∥−
d∑

i,j=1

∂kaij∂iju−
d∑

i,j=1

∂ikaij∂ju+ ∂kcu

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥−
d∑

i,j=1

aij∂ijku−
d∑

i,j=1

∂iaij∂jku+ c∂ku

∥∥∥∥∥∥
2

≤ (2d2 + 1)max

{
max

α:|α|≤2
max
i,j
∥∂αaij∥L∞(Ω), ∥∂kc∥L∞(Ω)

}
max

α:|α|≤2
∥∂αu∥2

+ (2d2 + 1)max

{
max

α:|α|≤1
max
i,j
∥∂αaij∥L∞(Ω), ∥c∥L∞(Ω)

}
max

α:|α|≤3
∥∂αu∥2

=⇒ ∥∇k(Lu)∥2 ≤ 2 · (2d2 + 1)max

{
max

α:|α|≤2
max
i,j
∥∂αaij∥L∞(Ω), max

α:|α|≤1
∥∂αc∥L∞(Ω)

}
︸ ︷︷ ︸

C2

max
α:|α|≤3

∥∂αu∥2

≤ 2 · C2 max
α:|α|≤3

∥∂αu∥2 (10.39)

140

10 Appendix for Chapter 2

We use the result from Lemma 31 (equation Equation 10.32), to upper bound the quantity ∥∇kl(Lu)∥2

∥∇kl(Lu)∥2 ≤ ∥Lklu∥2 + ∥Lk(∇lu)∥2 + ∥Ll(∇ku)∥2 + ∥L(∇klu)∥2

≤

∥∥∥∥∥∥−
d∑

i,j=1

∂klaij∂iju−
d∑

i,j=1

∂iklaij∂ju+ ∂klcu

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥−
d∑

i,j=1

∂kaij∂ij∂lu−
d∑

i,j=1

∂i∂kaij∂j∂lu+ ∂kc∂lu

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥−
d∑

i,j=1

∂laij∂ij∂ku−
d∑

i,j=1

∂i∂laij∂j∂ku+ ∂lc∂ku

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥−
d∑

i,j=1

aij∂ijklu−
d∑

i,j=1

∂iaij∂jklu+ c∂klu

∥∥∥∥∥∥
2

≤ (2d2 + 1)max

{
max

α:|α|≤3
max
i,j
∥∂αaij∥L∞(Ω), ∥∂klc∥L∞(Ω)

}
max

α:|α|≤2
∥∂αu∥2

+ 2(2d2 + 1)max

{
max

α:|α|≤2
max
i,j
∥∂αaij∥L∞(Ω), ∥c∥L∞(Ω)

}
max

α:|α|≤3
∥∂αu∥2

+ (2d2 + 1)max

{
max

α:|α|≤2
max
i,j
∥∂αaij∥L∞(Ω), ∥c∥L∞(Ω)

}
max

α:|α|≤4
∥∂αu∥2

=⇒ ∥∇kl(Lu)∥2 ≤ 4 · (2d2 + 1)max

{
max

α:|α|≤3
max
i,j
∥∂αaij∥L∞(Ω), max

α:|α|≤2
∥∂αc∥L∞(Ω)

}
︸ ︷︷ ︸

C3

max
α:|α|≤4

∥∂αu∥2

≤ 4 · C3 max
α:|α|≤4

∥∂αu∥2 (10.40)

SinceC1 ≤ C2 ≤ C3, we defineC := C3 and therefore from equations Equation 10.38, Equation 10.39

and Equation 10.40 the claim follows.

Further, we note that from Equation 10.39, we also have that

∥Lk(u)∥2, ∥L(∇ku)∥2 ≤ C max
α:|α|≤3

∥∂αu∥2 (10.41)

and similarly from Equation 10.40 we have that,

∥Lkl(u)∥2, ∥Lk(∇lu)∥2, ∥Ll(∇ku)∥2, ∥L(∇klu)∥2 ≤ C max
α:|α|≤4

∥∂αu∥2 (10.42)

Lemma 33. For all u ∈ C∞(Ω) and k, l ∈ [d] then for all n ∈ N we have the following upper bounds,

∥Lnu∥2 ≤ (n!)2 · Cn max
α:|α|≤n+2

∥∂αu∥2 (10.43)

∥∇k(L
nu)∥2 ≤ (n+ 1) · (n!)2 · Cn max

α:|α|≤n+2
∥∂αu∥2 (10.44)

141

10 Appendix for Chapter 2

∥∇kl(L
nu)∥2 ≤ ((n+ 1)!)2 · Cn max

α:|α|≤n+3
∥∂αu∥2 (10.45)

where C = (2d2 + 1)max
{
maxα:|α|≤3maxi,j ∥∂αaij∥L∞(Ω),maxα:|α|≤2 ∥∂αc∥L∞(Ω)

}
.

Proof. We prove the Lemma by induction on n. The base case n = 1 follows from Lemma 32, along

with the fact that maxα:|α|≤2 ∥∂αu∥2 ≤ maxα:|α|≤3 ∥∂αu∥2.

To show the inductive case, assume that the claim holds for all m ≤ (n− 1). By Lemma 32, we have

∥Lnu∥2 = ∥L(Ln−1u)∥2

≤

∥∥∥∥∥−
d∑

i,j=1

aij∂ij(L
n−1u)−

d∑
i,j=1

∂iaij∂j(L
n−1u) + c(Ln−1u)

∥∥∥∥∥
2

≤ C ·max

{
∥Ln−1u∥2,max

i
∥∇i(L

n−1u)∥2,max
i,j
∥∇ij(L

n−1u)∥2
}

≤ C · (n!)2 · Cn−1 max
α:|α|≤(n−1)+3

∥∂αu∥2

Thus, we have

∥Lnu∥2 ≤ (n!)2 · Cn max
α:|α|≤n+2

∥∂αu∥2

as we need.

Similarly, for k ∈ [d], we have:

∥∇k(L
nu)∥2 ≤

n∑
i=1

∥∥(Ln−i ◦ Lk ◦ Li−1
)
(u)
∥∥
2
+ ∥Ln(∇ku)∥2

≤ (n) · (n!)2 · Cn max
α:|α|≤n+2

∥∂αu∥2 + (n!)2 · Cn max
α:|α|≤n+2

∥∂αu∥2

≤ (n+ 1) · (n!)2 · Cn max
α:|α|≤n+2

∥∂αu∥2 (10.46)

142

10 Appendix for Chapter 2

Finally, for k, l ∈ [d] we have

∥∇kl(L
nu)∥2 ≤

∑
i,j
i<j

∥∥(Ln−i ◦ Lk ◦ Lj−i−1 ◦ Ll ◦ Lj−1
)
u
∥∥
2

+
∑
i,j
i>j

∥∥(Ln−j ◦ Lk ◦ Li−j−1 ◦ Ll ◦ Li−1
)
u
∥∥
2

+
∑
i

∥∥(Ln−i ◦ Lkl ◦ Li−1
)
u
∥∥
2
+ ∥Ln(∇klu)∥2

≤ n(n+ 1) · (n!)2 · Cn max
α:|α|≤n+2

∥∂αu∥2

+ n · (n!)2 · Cn max
α:|α|≤n+2

∥∂αu∥2 + Cn max
α:|α|≤n+3

∥∂αu∥2

=⇒ ∥∇kl(L
nu)∥2 ≤ ((n+ 1)!)2 · Cn max

α:|α|≤n+3
∥∂αu∥2

(10.47)

Thus, the claim follows.

Lemma 34. Let Ai
n, i ∈ [n] be defined as a composition of (n− i) applications of L and i applications of

L ◦ Σ (in any order), s.t. ∥Σ∥ ≤ δ. Then, we have:

∥L−nAi
n∥ ≤ δi (10.48)

Proof. We prove the above claim by induction on n.

For n = 1 we have two cases. If A(1) = L ◦ Σ, we have:

∥L−1 ◦ L ◦ Σ∥ ≤ δ

If A(1) = L we have:

∥L−1L∥ = 1

Towards the inductive hypothesis, assume that for m ≤ n− 1 and i ∈ [n− 1] it holds that,

∥Ln−1Ai
n−1∥ ≤ δi

Forn, we will have two cases. First, ifAi+1
n = Ai

n−1 ◦L◦Σ, by submultiplicativity of the operator norm,

as well as the fact that similar operators have identical spectra (hence equal operator norm) we have:

∥L−n ◦ Ai+1
n ∥ = ∥L−1 ◦ L−(n−1) ◦ A(i)

n−1 ◦ L ◦ Σ∥
= ∥L−(n−1) ◦ Ai

n−1 ◦ L ◦ Σ ◦ L−1∥
≤ δ∥L−(n−1)Ai−1

(n−1)∥∥L ◦ Σ ◦ L
−1∥

≤ δiδ = δi+1

143

10 Appendix for Chapter 2

so the inductive claim is proved. In the second case, Ai
n = Ai

n−1L and we have, by using the fact that the

similar operators have identical spectra:

∥L−n ◦ Ai
n ◦ L∥ = ∥L−(n−1) ◦ Ai

n−1 ◦ L ◦ L−1∥
= ∥L−(n−1) ◦ Ai

n−1∥ ≤ δi

where the last inequality follows by the inductive hypothesis.

144

11 Appendix for Chapter 4

11.1 Proofs from Section 4.6.1: Convergence Rate of

Sequence

11.1.1 Proof of Lemma 17

Proof. In order to prove part 1, we will use the following integration by parts identity, for functions r :
Ω→ R such that and s : Ω→ R, and r, s ∈ H1

0 (Ω),∫
Ω

∂r

∂xi

sdx = −
∫
Ω

r
∂s

∂xi

dx+

∫
∂Ω

rsndΓ (11.1)

where ni is a normal at the boundary and dΓ is an infinitesimal element of the boundary ∂Ω.

Using the formula in Equation 11.1 for functions u, v ∈ H1
0 (Ω), we have

⟨DE(u), v⟩L2(Ω) = ⟨−∇x · ∂∇uL(x, u,∇u) + ∂uL(x, u,∇u), v⟩L2(Ω)

= −
∫
Ω

∇x · ∂∇uL(x, u,∇u)v + ∂uL(x, u,∇u)v dx

= −
∫
Ω

d∑
i=1

∂(∂∇uL(x, u,∇u))i
∂xi

v + ∂uL(x, u,∇u)v dx

=

∫
Ω

d∑
i=1

(∂∇uL(x, u,∇u))i
∂v

∂xi

dx+

∫
Ω

d∑
i=1

(∂∇uL(x, u,∇u))ivnidx+

∫
Ω

∂uL(x, u,∇u)v dx

=

∫
∂∇uL(∇u) · ∇v + ∂uL(x, u,∇u)v dx

where in the last equality we use the fact that the function v ∈ H1
0 (Ω), thus v(x) = 0,∀x ∈ ∂Ω.

To prove part 2. first note from Part 1. we know that ⟨DE(u)−DE(v), u− v⟩L2(Ω) takes the following

form,

⟨DE(u)−DE(v), u− v⟩L2(Ω)

= ⟨∂∇uL(x, u,∇u)− ∂∇vL(x, v,∇v),∇u−∇v⟩L2(Ω) + ⟨∂uL(x, u,∇u)− ∂vL(x, v,∇v), u− v⟩L2(Ω)

(11.2)

We know that for x ∈ Ω, we have

∇2
(u,∇u)L(x, u,∇u) ≤ diag([Λ,Λ1d])

145

11 Appendix for Chapter 4

Note that∇(u,∇u)L(x, u,∇u) is a vector, and we can write,∂(u,∇u)L(x, u,∇u) = [∂uL(x, u,∇u), ∂∇uL(x, u,∇u)]
(here for two vectors a, b we define a new vector c := [a, b] as their concatenation).

Using the smoothness of L can write,

[∂uL(x, u,∇u)− ∂uL(x, v,∇v), ∂∇uL(x, u,∇u)− ∂∇uL(x, v,∇v)]T ([u− v,∇u−∇v])
≤ [u− v,∇u−∇v]T (diag([Λ,Λ1d]))[u− v,∇u−∇v]
≤ Λ[u− v,∇u−∇v]T [u− v,∇u−∇v]

This implies that for x ∈ Ω we have

(∂∇uL(x, u(x),∇u(x))− ∂∇uL(x, v(x),∇v(x))T (∇u(x)−∇v(x))
+ (∂uL(x, u(x),∇u(x))− ∂uL(x, v(x),∇v(x))T (u(x)− v(x))

≤ Λ∥∇u(x)−∇v(x)∥22 + Λ∥u(x)− v(x)∥22
Integrating over Ω on both sides we get

⟨∂∇uL(x, u,∇u)− ∂∇vL(x, v,∇v),∇u−∇v⟩L2(Ω) + ⟨∂uL(x, u,∇u)− ∂vL(x, v,∇v), u− v⟩L2(Ω)

≤ Λ∥∇u−∇v∥2L2(Ω) + Λ∥u− v∥2L2(Ω)

≤ Λ(1 + C2
p) · ∥u− v∥2H1

0 (Ω).

the Poincare inequaltiy from Theorem 14 in the final equation. Hence plugging this result in Equa-

tion 11.2 we have,

⟨DE(u)−DE(v), u− v⟩L2(Ω) ≤ (Λ + C2
pΛ)∥u− v∥2H1

0 (Ω)

This proves the right hand side of the inequality in part 2.

To prove the left and side we use similar to the upper bound, using the convexity of theL(x, ·, ·) : R×Rd
,

we can lower bound the following term,

[∂uL(x, u,∇u)− ∂uL(x, v,∇v), ∂∇uL(x, u,∇u)− ∂∇uL(x, v,∇v)]T ([u− v,∇u−∇v])
≥ [u− v,∇u−∇v]T (diag([0, λ1d]))[u− v,∇u−∇v]
≥ λ(∇u−∇v)T (∇u−∇v)

Therefore, for all x ∈ Ω we have

(∂∇uL(x, u(x),∇u(x))− ∂∇uL(x, v(x),∇v(x))T (∇u(x)−∇v(x))
+ (∂uL(x, u(x),∇u(x))− ∂uL(x, v(x),∇v(x))T (u(x)− v(x))

≥ λ∥∇u(x)−∇v(x)∥22
Integrating over Ω on both sides we get

⟨∂∇uL(x, u,∇u)− ∂∇vL(x, v,∇v),∇u−∇v⟩L2(Ω)

+ ⟨∂uL(x, u,∇u)− ∂vL(x, v,∇v), u− v⟩L2(Ω)

≥ λ∥∇u−∇v∥2L2(Ω)

= λ∥u− v∥2H1
0 (Ω).

146

11 Appendix for Chapter 4

Therefore we have,

λ∥u− v∥2H1
0 (Ω) ≤ ⟨DE(u)−DE(v), u− v⟩L2(Ω) ≤ (Λ + C2

pΛ)∥u− v∥2H1
0 (Ω)

as we wanted.

To show part 3, we will again use the fact that the function for a given x ∈ Ω the function L(x, ·, ·) is

strongly convex and smooth. Therefore using Taylor’s TheoremL(x, u+v,∇u+∇v) alongL(x, u,∇u)
we can re-write the energy function as:

E(u+ v)

=

∫
Ω

L(x, u(x) + v(x),∇u(x) +∇v(x))− f(x)(u(x) + v(x))dx

=

∫
Ω

L(x, u(x),∇u(x)) +∇(u,∇u)L(x, u(x),∇u(x))T [v(x),∇v(x)]

+
1

2
[v(x),∇v(x)]T∇2

(u,∇u)L(x̃, u(x̃),∇x̃)[u(x),∇u(x)]−
∫

f(x)(u(x) + v(x))dx

=

∫
Ω

L(x, u(x),∇u(x)) + [∂uL(u, u(x),∇u(x)), ∂∇uL(x, u(x),∇u(x))]T [v(x),∇v(x)]

+
1

2
[v(x),∇v(x)]T∇2

(u,∇u)L(x̃, u(x̃),∇u(x̃))[v(x),∇v(x)]−
∫

f(x)(u(x) + v(x))dx

(11.3)

From Equation 4.2 of Definition 11 we know that for a given x ∈ Ω the function L(x, ·, ·) is smooth

and convex. In particular we know that,

diag([0, λId]) ≤ ∇2
(u,∇u) ≤ diag[Λ,ΛId].

Using this to upper bound Equation 11.3 we get,

E(u+ v) ≤
∫
Ω

L(x, u(x),∇u(x)) + [∂uL(u, u(x),∇u(x)), ∂∇uL(x, u(x),∇u(x))]T [v(x),∇v(x)]

+
Λ

2
[v(x),∇v(x)]T [v(x),∇v(x)]−

∫
f(x)(u(x) + v(x))dx

=

∫
Ω

L(x, u(x),∇u(x)) + ∂uL(u, u(x),∇u(x))v(x) + ∂∇uL(x, u(x),∇u(x))∇v(x)

+
Λ

2

(
v(x)2 + ∥∇v(x)∥22

)
−
∫

f(x)(u(x) + v(x))dx

= E(u) + ⟨DE(u)− f, v⟩L2(Ω) +
Λ

2

(
∥v∥L2(Ω) + ∥v∥H1

0 (Ω)

)
=⇒ E(u+ v) ≤ E(u) + ⟨DE(u)− f, v⟩L2(Ω) +

Λ(1 + C2
p)

2
∥v∥H1

0 (Ω) (11.4)

147

11 Appendix for Chapter 4

We can similarly lower bound Equation 11.3 by using the convexity of∇2
(u,∇u)L as

E(u+ v) ≥
∫
Ω

L(x, u(x),∇u(x)) + [∂uL(u, u(x),∇u(x)), ∂∇uL(x, u(x),∇u(x))]T [v(x),∇v(x)]

+
Λ

2
∇v(x)T∇v(x)−

∫
f(x)(u(x) + v(x))dx

=

∫
Ω

L(x, u(x),∇u(x)) + ∂uL(u, u(x),∇u(x))v(x) + ∂∇uL(x, u(x),∇u(x))∇v(x)

+
λ

2
∥∇v(x)∥22 −

∫
f(x)(u(x) + v(x))dx

=⇒ E(u+ v) ≥ E(u) + ⟨DE(u)− f, v⟩L2(Ω) +
λ

2
∥v∥H1

0 (Ω) (11.5)

Combining Equation 11.4 and Equation 11.5 we get,

λ

2
∥∇v∥2L2(Ω) + ⟨DE(u)− f, v⟩L2(Ω) ≤ E(u+ v)− E(u) ≤ ⟨DE(u)− f, v⟩L2(Ω) +

(1 + Cp)
2Λ

2
∥∇v∥2L2(Ω)

Finally, part 4 follows by plugging in u = u⋆
and v = u−u⋆

in part 3 and using the fact that DE(u⋆) =
f .

11.1.2 Proof of Lemma 18

Proof. Let {λi, ϕi}∞i=1 denote the (eigenvalue, eigenfunction) pairs of the operator−∆where 0 < λ1 ≤
λ2 ≤ · · · , which are real and countable. (Evans [2010], Theorem 1, Section 6.5)

Using the definition of eigenvalues and eigenfunctions, we have

λ1 = inf
v∈H1

0 (Ω)

⟨−∆v, v⟩L2(Ω)

∥v∥2L2(Ω)

= inf
v∈H1

0 (Ω)

⟨∇v,∇v⟩L2(Ω)

∥v∥2L2(Ω)

=
1

Cp

.

where in the last equality we use Theorem 14.

Let us write the functions v, w in the eigenbasis as v =
∑

i µiϕi. Notice that an eigenfunction of−∆ is

also an eigenfunction for (I −∆)−1
, with correspondinding eigenvalue

1
1+λi

.

148

11 Appendix for Chapter 4

Thus, to show part 1, we have,∥∥(I −∆)−1∇x · ∇v
∥∥2
L2(Ω)

=
∥∥(I −∆)−1∆v

∥∥2
L2(Ω)

=

∥∥∥∥∥
∞∑
i=1

λi

1 + λi

µiϕi

∥∥∥∥∥
2

L2(Ω)

≤

∥∥∥∥∥
∞∑
i=1

µiϕi

∥∥∥∥∥
2

L2(Ω)

=
∞∑
i=1

µ2
i = ∥u∥2L2(Ω)

where in the last equality we use the fact that ϕi are orthogonal.

Now, bounding ⟨(I − ∆)−1v, v⟩L2(Ω) for part 2. we use the fact that eigenvalues of the operator (I −
∆)−1

are of the form

{
1

1+λi

}∞

i=1
we have,

⟨(I −∆)−1v, v⟩L2(Ω) =

〈
∞∑
i=1

µi

1 + λi

ϕi,
∞∑
i=1

µiϕi

〉
L2(Ω)

≤

〈
∞∑
i=1

µiϕi,
∞∑
i=1

µiϕi

〉
L2(Ω)

= ∥u∥2L2(Ω) (11.6)

Before proving part 3., note that since λ1 ≤ λ2 ≤ · · · and
x

1+x
is monotonically increasing, we have for

all i ∈ N
1

1 + λi

≥ 1

(1 + Cp)λi

(11.7)

and note that
1
λi

are the eigenvalues for (−∆)−1
for all i ∈ N. Using the inequality in Equation 11.7 and

the fact that ϕ′
is are orthogonal, we can further lower bound ⟨(I −∆)−1v, v⟩L2(Ω) as follows,

⟨(I −∆)−1v, v⟩L2(Ω) =
∞∑
i=1

µ2
i

1 + λi

∥ϕi∥2L2(Ω)

≥
∞∑
i=1

µ2
i

(1 + pc)λi

∥ϕi∥2L2(Ω)

=
1

1 + Cp

⟨(−∆)−1v, v⟩L2(Ω),

where we use the following set of equalities in the last step,

⟨(−∆)−1v, v⟩L2(Ω) =

〈
∞∑
i=1

µi

λi

ϕi,
∞∑
i=1

µiϕi

〉
L2(Ω)

=
∞∑
i=1

µ2
i

λi

∥ϕi∥2L2(Ω).

149

11 Appendix for Chapter 4

11.1.3 Proof of Lemma 19: Convergence of Preconditioned Gradient

Descent

Proof. For the analysis we consider η = λ4

4(1+Cp)7Λ4

Taylor expanding as in Equation 11.4, we have

E(ut+1) ≤ E(ut)− η
〈
DE(∇ut)− f, (I −∆x)

−1(DE(ut)− f)
〉
L2(Ω)︸ ︷︷ ︸

Term 1

+
η2(1 + Cp)

2Λ

2

∥∥∇x(I −∆x)
−1(DE(ut)− f)

∥∥2
L2(Ω)︸ ︷︷ ︸

Term 2

. (11.8)

where we have in Equation 11.4 plugged in ut+1 − ut = −η(I −∆x)
−1(DE(ut)− f).

First we lower bound Term 1. Since u⋆
is the solution to the PDE in Equation 4.4, we have DE(u⋆) = f .

Therefore we have〈
DE(ut)− f, (I −∆x)

−1(DE(ut)− f)
〉
L2(Ω)

=
〈
DE(ut)−DE(u⋆), (I −∆x)

−1(DE(ut)−DE(u⋆))
〉
L2(Ω)

(11.9)

Using the result from Lemma 18 part 3., we have,

⟨DE(ut)−DE(u⋆), (I −∆x)
−1DE(ut)−DE(u⋆)⟩L2(Ω)

≥ 1

1 + Cp

(
⟨DE(ut)−DE(u⋆), (−∆x)

−1DE(ut)−DE(u⋆)⟩L2(Ω)

)
Using the Equation Equation 11.9 and the fact that ⟨DE(u), v⟩L2(Ω) = ⟨∂∇uL(x, u,∇u),∇v⟩L2(Ω) +
⟨∂uL(x, u,∇u), v⟩L2(Ω) from Lemma 17 we get,

⟨DE(ut)−DE(u⋆), (I −∆x)
−1DE(ut)−DE(u⋆)⟩L2(Ω)

≥ 1

1 + Cp

(
⟨DE(ut)−DE(u⋆), (−∆x)

−1DE(ut)−DE(u⋆)⟩L2(Ω)

)
=

1

1 + Cp

(
⟨∂∇uL(x, ut,∇ut)− ∂∇uL(x, u

⋆,∇u⋆),∇x(−∆x)
−1(DE(ut)−DE(u⋆))⟩L2(Ω)

)
+

1

1 + Cp

(
⟨∂uL(x, ut,∇ut)− ∂uL(x, u

⋆,∇u⋆), (−∆x)
−1(DE(ut)−DE(u⋆))⟩L2(Ω)

)
=

1

1 + Cp

〈
∇(u,∇u)L(x, ut,∇ut)−∇(u,∇u)L(x, u

⋆,∇u⋆),

[
(−∆x)

−1(DE(ut)−DE(u⋆)),∇x(−∆x)
−1(DE(ut)−DE(u⋆))

]〉
L2(Ω)

(11.10)

where we combine the terms∇x (−∆x)
−1(DE(ut)−DE(u⋆)) and∇x(−∆x)

−1(DE(ut)−DE(u⋆))
into a single vector in the last step.

Now, note that since for any x ∈ Ω the function L(x, ·, ·) is strongly convex, we have

∇2
(u,∇u)L(x,∇u,∇x) ≥ diag([0, λ1d])

150

11 Appendix for Chapter 4

Therefore for all x we can bound∇(u,∇u)L(x, ut(x),∇ut(x))−∇(u,∇u)L(x, u
⋆(x),∇u⋆(x))

∇(u,∇u)L(x, ut(x),∇ut(x))−∇(u,∇u)L(x, u
⋆(x),∇u⋆(x))

= [ut(x)− u⋆(x),∇ut(x)−∇u⋆(x)]T
(
∇2

(u,∇u)L(x̃, u(x̃),∇u(x̃)
)

(11.11)

where x̃ ∈ Ω (and potentially different from x).

Using Equation 11.11 in Equation 11.10, we can lower bound the term as follows:

⟨DE(ut)−DE(u⋆), (I −∆x)
−1DE(ut)−DE(u⋆)⟩L2(Ω)

≥ 1

1 + Cp

〈
[ut − u⋆,∇ut −∇u⋆]T

(
∇2

(u,∇u)L(x̃, u(x̃),∇u(x̃)
)
,[

(−∆x)
−1(DE(ut)−DE(u⋆)),∇x(−∆x)

−1(DE(ut)−DE(u⋆))

]〉
L2(Ω)

≥ 1

1 + Cp

〈
[0, λ(∇ut(x)−∇u⋆(x))],

[
(−∆x)

−1(DE(ut)−DE(u⋆)),∇x(−∆x)
−1(DE(ut)−DE(u⋆))

]〉
L2(Ω)

=
λ

1 + Cp

〈
∇ut −∇u⋆,∇x(−∆x)

−1(DE(ut)−DE(u⋆))
〉
L2(Ω)

(i)
=

λ

1 + Cp

〈
(−∆)ut − (−∆)u⋆, (−∆x)

−1(DE(ut)−DE(u⋆))
〉
L2(Ω)

(ii)
=

λ

1 + Cp

〈
(−∆)−1(−∆)ut − (−∆)−1(−∆)u⋆, (DE(ut)−DE(u⋆))

〉
L2(Ω)

(iii)
=

λ

1 + Cp

⟨ut − u⋆, (DE(ut)−DE(u⋆))⟩L2(Ω)

(iv)

≥ λ2

1 + Cp

∥ut − u⋆∥2H1
0 (Ω) (11.12)

Here, we use the fact that for all u, v ∈ H1
0 (Ω) we have ⟨∇u,∇v⟩L2(Ω) = ⟨−∆u, v⟩L2(Ω), i.e., Green’s

identity (along with the fact that we have a Dirichlet Boundary condition) to get step (i). We use the sym-

metry of the operator (−∆)−1
in step (ii), and the fact that for a functiong ∈ H1

0 (Ω) (−∆)−1(−∆)g =
g in step (iii). We finally use Part 2 of Lemma 17 in the final step.

Hence finally Term 1 can be simplified as,

⟨DE(ut)−DE(u⋆), (I −∆x)
−1DE(ut)−DE(u⋆)⟩L2(Ω)

≥ λ2

1 + Cp

∥ut − u⋆∥2H1
0 (Ω)

≥ 2λ2

(1 + Cp)3Λ
(E(ut)− E(u⋆))

where we use Part 4 from Lemma 17 in the final step.

151

11 Appendix for Chapter 4

We will proceed to upper bounding Term 2. Using the definition of H1
0 (Ω) norm, we can re-write Term

2 as, ∥∥∇x(1−∆x)
−1(DE(ut)− f)

∥∥2
L2(Ω)

=
∥∥(1−∆x)

−1(DE(ut)− f)
∥∥2
H1

0 (Ω)

Writing theH1
0 (Ω)norm in its variational form (sinceH1

0 (Ω)norm is self-adjoint, Lemma 39) and upper

bounding it, ∥∥(1−∆x)
−1(DE(ut)− f)

∥∥
H1

0 (Ω)

= sup
v∈H1

0 (Ω)
∥v∥

H1
0(Ω)

=1

〈
∇x(1−∆x)

−1(DE(ut)− f),∇v
〉
L2(Ω)

= sup
v∈H1

0 (Ω)
∥v∥

H1
0(Ω)

=1

〈
∇x(1−∆x)

−1(DE(ut)−DE(u⋆)),∇v
〉
L2(Ω)

(i)
= sup

v∈H1
0 (Ω)

∥v∥
H1
0(Ω)

=1

〈
(1−∆x)

−1(DE(ut)−DE(u⋆)),−∆v
〉
L2(Ω)

(ii)
= sup

v∈H1
0 (Ω)

∥v∥
H1
0(Ω)

=1

〈
(−∆)(1−∆x)

−1(DE(ut)−DE(u⋆)), v
〉
L2(Ω)

≤ sup
v∈H1

0 (Ω)
∥v∥

H1
0(Ω)

=1

⟨DE(ut)−DE(u⋆), v⟩L2(Ω) (11.13)

here, step (i) follows from the equality that for allu, v ∈ H1
0 (Ω)we have ⟨∇u,∇v⟩L2(Ω) = ⟨−∆u, v⟩L2(Ω)

and the fact that−∆ is a symmetric operator in step (ii).

Finally we use Lemma 18 Part 1 for the final step. More precisely, we use Part 1 of Lemma 18 as follows,

where for a g ∈ H1
0 (Ω) we can write,

sup
v∈L2(Ω)

∥v∥L2(Ω)=1

⟨(−∆)(I −∆)−1g, v⟩L2(Ω) = ∥ −∆(I −∆)−1g∥L2(Ω) ≤ ∥g∥L2(Ω) =: sup
v∈L2(Ω)

∥v∥L2(Ω)=1

⟨g, v⟩L2(Ω)

Note that, from Lemma 17 we know that for allu, v we can write the inner product ⟨DE(u), v⟩ as follows

⟨DE(u), v⟩L2(Ω) = ⟨∂∇uL(x, u,∇u), v⟩L2(Ω) + ⟨∂uL(x, u,∇u), v⟩L2(Ω)

= ⟨∇(u,∇u)L(x, u,∇u), [v,∇v]⟩L2(Ω)

that is, we we combine∂∇uL and∂uL into a single vector∇(u,∇u)L := [∂uL(x, u,∇u), ∂∇uL(x, u,∇u)] ∈
Rd+1

and combining u and∇u as a vector [u,∇u].

152

11 Appendix for Chapter 4

Using this form and re-writing Equation 11.13 and using the fact that for x ∈ Ω L(x, ·, ·) is convex and

smooth in step (i), we have∥∥(1−∆x)
−1(DE(ut)− f)

∥∥
H1

0 (Ω)

≤ sup
v∈H1

0 (Ω)
∥v∥

H1
0(Ω)

=1

〈
∇(u,∇u)L(x, ut,∇ut)−∇(u,∇u)L(x, u

⋆,∇u⋆), [v,∇v]
〉
L2(Ω)

(i)
= sup

v∈H1
0 (Ω)

∥v∥
H1
0(Ω)

=1

〈
[ut − u⋆,∇ut −∇u⋆]T∇2

(u,∇u)L(x̃, u(x̃),∇u(x̃)), [v,∇v]
〉
L2(Ω)

≤ sup
v∈H1

0 (Ω)
∥v∥

H1
0(Ω)

=1

Λ
〈
[ut − u⋆,∇ut −∇u⋆]T , [v,∇v]

〉
L2(Ω)

= sup
v∈H1

0 (Ω)
∥v∥

H1
0(Ω)

=1

Λ⟨ut − u⋆, v⟩L2(Ω) + Λ⟨∇(ut − u⋆),∇v⟩L2(Ω)

= sup
v∈H1

0 (Ω)
∥v∥

H1
0(Ω)

=1

ΛC2
p∥ut − u⋆∥H1

0 (Ω)∥v∥H1
0 (Ω) + Λ∥ut − u⋆∥H1

0 (Ω)∥v∥H1
0 (Ω)

= Λ(1 + C2
p)∥ut − u⋆∥H1

0 (Ω) ≤ Λ(1 + Cp)
2∥ut − u⋆∥H1

0 (Ω) (11.14)

where we use the Poincare Inequality 14 in the final step.

Therefore, from the final result in Equation 11.14 we can upper bound Term 2 in Equation 11.8 to get,∥∥∇x(I −∆x)
−1DE(ut)

∥∥2
L2(Ω)

≤ Λ2(1 + Cp)
2∥ut − u⋆∥2H1

0 (Ω)

≤ Λ2(1 + Cp)
2

λ
(E(ut)− E(u⋆))

where we use the result from part 4 from Lemma 17.

=⇒ E(ut+1)− E(u⋆) ≤ E(ut)− E(u⋆)−
(

2λ2

(1 + Cp)3Λ
− η

(1 + Cp)
4Λ3

λ

)
η(E(ut)− E(u⋆))

Since η = λ4

4(1+Cp)7Λ4 we have

E(ut+1)− E(u⋆) ≤ E(ut)− E(u⋆)− λ2

(1 + Cp)3Λ
η(E(ut)− E(u⋆))

=⇒ E(ut+1)− E(u⋆) ≤
(
1− λ6

(1 + Cp)10Λ5

)t

(E(u0)− E(u⋆)).

153

11 Appendix for Chapter 4

11.2 Error Analysis

11.2.1 Proof of Lemma 24

Proof. We define for all t rt = ũt − ut, and will iteratively bound ∥rt∥L2(Ω).

Starting with u0 = 0 and ũt = 0, we define the iterative sequences as,{
u0 = u0

ut+1 = ut − η(I −∆x)
−1DE(ut){

ũt = u0

ũt+1 = ũt − η(I −∆x)
−1DẼ(ũt)

where η ∈
(
0, λ4

4(1+Cp)7Λ4

]
. Subtracting the two we get,

ũt+1 − ut+1 = ũt − ut − η(I −∆x)
−1
(
DẼ(ũt)−DE(ut)

)
=⇒ rt+1 = rt − η(I −∆x)

−1
(
DẼ(ut + rt)−DE(ut)

)
(11.15)

Taking H1
0 (Ω) norm on both sides we get,

∥rt+1∥H1
0 (Ω) ≤ ∥rt∥H1

0 (Ω) + η
∥∥∥(I −∆x)

−1
(
DẼ(ut + rt)−DE(ut)

)∥∥∥
H1

0 (Ω)
(11.16)

154

11 Appendix for Chapter 4

Towards bounding

∥∥∥(I −∆x)
−1DẼ(ut + rt)−DE(ut)

∥∥∥
H1

0 (Ω)
, from Lemma 38 we know that the

dual norm of ∥w∥H1
0 (Ω) is ∥w∥H1

0 (Ω), thus,∥∥∥(I −∆x)
−1DẼ(ut + rt)−DE(ut)

∥∥∥
H1

0 (Ω)

= sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

〈
∇(I −∆x)

−1
(
DẼ(ut + rt)−DE(ut)

)
,∇φ

〉
L2(Ω)

= sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

〈
∇(I −∆x)

−1
(
DẼ(ut + rt)−DE(ut + rt)

)
,∇φ

〉
L2(Ω)

+ sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

〈
∇(I −∆x)

−1(DE(ut + rt)−DE(ut)),∇φ
〉
L2(Ω)

= sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

〈
(I −∆x)

−1
(
DẼ(ut + rt)−DE(ut + rt)

)
,∆φ

〉
L2(Ω)

+ sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

〈
(I −∆x)

−1(DE(ut + rt)−DE(ut)),∆φ
〉
L2(Ω)

= sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

〈(
DẼ(ut + rt)−DE(ut + rt)

)
, (I −∆)−1∆φ

〉
L2(Ω)

+ sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

〈
(DE(ut + rt)−DE(ut)), (I −∆)−1∆φ

〉
L2(Ω)

≤ sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

〈(
DẼ(ut + rt)−DE(ut + rt)

)
, φ
〉
L2(Ω)

+ sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

⟨(DE(ut + rt)−DE(ut)), φ⟩L2(Ω) (11.17)

Now from Assumption 1, we know that for all x ∈ Ω and u ∈ H1
0 (Ω) we have the following bounds on

the difference of partials of L and L:

sup∥∂uL(x, u(x),∇u(x))− ∂uL(x, u(x),∇u(x))∥2 ≤ ϵL∥u(x)∥2, (11.18)

and

sup∥∂∇uL(x, u(x),∇u(x))− ∂∇uL(x, u(x),∇u(x))∥2 ≤ ϵL∥u(x)∥2, (11.19)

Therefore, note that we can bound the difference of ∇(u,∇u)L and ∇(u,∇u)L for all x ∈ Ω and u ∈
H1

0 (Ω) as follows,

sup
∥∥∇(u,∇u)L(x, u(x),∇u(x))−∇(u,∇u)L(x, u(x),∇u(x))

∥∥
2

≤ sup∥∂∇uL(x, u(x),∇u(x))− ∂∇uL(x, u(x),∇u(x))∥2 + sup∥∂∇uL(x, u(x),∇u(x))− ∂∇uL(x, u(x),∇u(x))∥2
≤ 2ϵL∥u(x)∥2 (11.20)

155

11 Appendix for Chapter 4

Note that, from Lemma 17 we know that for allu, v we can write the inner product ⟨DE(u), v⟩ as follows

⟨DE(u), v⟩L2(Ω) = ⟨∂∇uL(x, u,∇u), v⟩L2(Ω) + ⟨∂uL(x, u,∇u), v⟩L2(Ω)

= ⟨∇(u,∇u)L(x, u,∇u), [v,∇v]⟩L2(Ω) (11.21)

that is, we we combine∂∇uL and∂uL into a single vector∇(u,∇u)L := [∂uL(x, u,∇u), ∂∇uL(x, u,∇u)] ∈
Rd+1

and combining u and∇u as a vector [u,∇u].

Using upper bound in Equation 11.20 we can upper bound sup φ∈H1
0 (Ω)

∥φ∥
H1
0(Ω)

=1

〈(
DẼ(ut + rt)−DE(ut + rt)

)
, φ
〉
L2(Ω)

(by expanding it as in Equation 11.21) as follows,

sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

〈(
DẼ(ut + rt)−DE(ut + rt)

)
, φ
〉
L2(Ω)

= sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

〈
∇(u,∇u)L(x, ut + rt,∇ut +∇rt)−∇(u,∇u)L(x, ut + rt,∇ut +∇rt), [φ,∇φ]

〉
L2(Ω)

= sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

⟨∂∇uL(x, ut + rt,∇ut +∇rt)− ∂∇uL(x, ut + rt,∇ut +∇rt),∇φ⟩L2(Ω)

= sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

⟨∂∇uL(x, ut + rt,∇ut +∇rt)− ∂∇uL(x, ut + rt,∇ut +∇rt), φ⟩L2(Ω)

+ sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

⟨∂uL(x, ut + rt,∇ut +∇rt)− ∂uL(x, ut + rt,∇ut +∇rt), φ⟩L2(Ω)

≤ sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

ϵL∥ut + rt∥L2(Ω)(1 + Cp)∥φ∥L2(Ω)

≤ ϵL(1 + Cp)∥ut + rt∥L2(Ω)

≤ ϵL(1 + Cp)
2∥ut + rt∥H1

0 (Ω) (11.22)

We can similarly bound sup φ∈H1
0 (Ω)

∥φ∥
H1
0(Ω)

=1

⟨(DE(ut + rt)−DE(ut)), φ⟩L2(Ω) where will use the convexity

of the function L(x, ·, ·) for all u ∈ H1
0 (Ω) to bound the gradient∇(u,∇u)L(x, ut + rt,∇ut + ∇rt)

using Taylor’s theorem in the following way,

∇(u,∇u)L(x, ut + rt,∇ut +∇rt) = ∇(u,∇u)L(x, ut,∇ut) + [rt,∇rt]T∇2
(u,∇u)L(x̃, ut(x̃),∇u(x̃))

=⇒ ∇(u,∇u)L(x, ut + rt,∇ut +∇rt)−∇(u,∇u)L(x, ut,∇ut) = [rt,∇rt]T∇2
(u,∇u)L(x̃, ut(x̃),∇u(x̃))

156

11 Appendix for Chapter 4

here x̃ ∈ Ω. Therefore, bounding sup φ∈H1
0 (Ω)

∥φ∥
H1
0(Ω)

=1

⟨(DE(ut + rt)−DE(ut)), φ⟩L2(Ω) we get,

sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

⟨(DE(ut + rt)−DE(ut)), φ⟩L2(Ω)

= sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

〈
∇(u,∇u)L(x, ut + rt,∇ut +∇rt)−∇(u,∇u)L(x, ut,∇ut), [φ,∇φ]

〉
L2(Ω)

= sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

〈
[rt,∇rt]T∇2

(u,∇u)L(x̃, u(x̃),∇u(x̃)), [φ,∇φ]
〉
L2(Ω)

≤ sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

Λ
〈
[rt,∇rt]T , [φ,∇φ]

〉
L2(Ω)

≤ sup
φ∈H1

0 (Ω)
∥φ∥

H1
0(Ω)

=1

Λ
(
∥rt∥L2(Ω)∥φ∥L2(Ω) + ∥∇rt∥L2(Ω)∥∇φ∥L2(Ω)

)
≤ Λ(1 + Cp)

2∥r∥H1
0 (Ω) (11.23)

Plugging in Equations Equation 11.22 and Equation 11.23 in Equation 11.17 we get,∥∥∥(I −∆x)
−1DẼ(ut + rt)−DE(ut)

∥∥∥
H1

0 (Ω)
≤ ϵL(1 + Cp)

2∥ut + rt∥H1
0 (Ω) + Λ(1 + Cp)

2∥r∥H1
0 (Ω)

= (1 + Cp)
2(ϵL + Λ)∥rt∥H1

0 (Ω) + ϵ(1 + Cp)
2∥ut∥

(11.24)

Furthermore, from Lemma 19 we have for all t ∈ N,

E(ut+1)− E(u⋆) ≤
(
1− λ6

(1 + Cp)8Λ5

)t

E(u0)

≤ E(u0)

and

∥ut − u⋆∥H1
0 (Ω) ≤

2

λ
(E(ut)− E(u0))

≤ 2

λ
E(u0)

Hence we have that for all t ∈ N,

∥ut∥H1
0 (Ω) ≤ ∥u⋆∥H1

0 (Ω) +
2

λ
E(u0) =: R.

Putting this all together, we have∥∥∥(I −∆x)
−1DẼ(ut + rt)−DE(ut)

∥∥∥
H1

0 (Ω)
≤ (1+Cp)

2(ϵL+Λ)∥rt∥H1
0 (Ω)+ϵL(1+Cp)

2R (11.25)

157

11 Appendix for Chapter 4

Hence using the result from Equation 11.25 in Equation 11.16 and unfolding the recursion, we get,

∥rt+1∥H1
0 (Ω) ≤

(
1 + η(1 + Cp)

2(ϵL + Λ)
)
∥rt∥H1

0 (Ω) + (1 + Cp)
2ϵLηR

=⇒ ∥rt+1∥H1
0 (Ω) ≤

(1 + Cp)
2ϵLηR

η(1 + Cp)2(ϵL + Λ)

((
1 + η(1 + Cp)

2(ϵL + Λ))
)t − 1

)
=⇒ ∥rt+1∥H1

0 (Ω) ≤
ϵLR

ϵL + Λ

((
1 + η(1 + Cp)

2(ϵL + Λ))
)t − 1

)
(11.26)

as we needed.

11.3 Proofs for Section 4.6.2: Bounding the Barron Norm

11.3.1 Proof of Lemma 20: Barron Norm Increase after One Update

Proof. Note that the update equation looks like,

ũt+1 = ũt − η(I −∆x)
−1DE(ut)

= ũt − η(I −∆x)
−1(−∇ · ∂∇uL(x, ũt,∇ũt) + ∂uL(x, ũt,∇ũt)− f)

= ũt − η(I −∆x)
−1

(
−

d∑
i=1

∂i∂∇uL(x, ũt,∇ũt) + ∂uL(x, ũt,∇ũt)− f

)
(11.27)

From Lemma 21 we have

∥∇ũt∥B(Ω) = max
i∈[d]
∥∂iũt∥B(Ω) ≤ 2πWt∥ũt∥B(Ω) (11.28)

This also implies that

max{∥ũt∥B(Ω), ∥∇ũt∥B(Ω)} ≤ 2πWt∥ũt∥B(Ω).

Note that since ũt ∈ ΓWt we have∇ũt ∈ Γ2πWt and L(x, ũt,∇ũt) ∈ Γ2πkLWt (from Assumption 1).

Therefore, we can bound the Barron norm as,∥∥∥∥∥(I −∆x)
−1

(
−

d∑
i=1

∂i∂∇uL(x, ũt,∇ũt) + ∂uL(x, ũt,∇ũt)− f

)∥∥∥∥∥
B(Ω)

(i)

≤

∥∥∥∥∥−
d∑

i=1

∂i∂∇uL(x, ũt,∇ũt)

∥∥∥∥∥
B(Ω)

+ ∥∂uL(x, ũt,∇ũt)∥B(Ω) + ∥f∥B(Ω)

(ii)

≤ d∥∂i∂∇uL(x, ũt,∇ũt)∥B(Ω) + ∥∂uL(x, ũt,∇ũt)∥B(Ω) + ∥f∥B(Ω)

≤ dBL2πkL(2πWt)
pL∥u∥pL

B(Ω) +BL(2πWt)
pL∥u∥pL

B(Ω) + ∥f∥B(Ω)

≤ (2πkLd+ 1)BL(2πWt)
pL∥u∥pL

B(Ω) + ∥f∥B(Ω)

where we use the fact that for a function h, we have ∥(I −∆x)
−1h∥B(Ω) ≤ ∥h∥B(Ω) from Lemma 21 in

(i) and the bound from Equation 11.28 in (ii).

158

11 Appendix for Chapter 4

Using the result of Addition from Lemma 21 we have

∥ũt+1∥B(Ω) ≤ ∥ũt∥B(Ω) + η
(
2πkLd+ 1)BL(2πWt)

pL∥u∥pL
B(Ω) + ∥f∥B(Ω)

)
≤ (1 + η(2πkLd+ 1)BL(2πWt)

pL)∥ũ∥pL
B(Ω) + η∥f∥B(Ω)

11.3.2 Proof of Lemma 22: Final Barron Norm Bound

Proof. From Lemma 20 we have

∥ũt+1∥B(Ω) ≤ ∥ũt∥B(Ω) + η
(
(2πkLd+ 1)B(2πWt)

p∥u∥pB(Ω) + ∥f∥B(Ω)

)
≤ (1 + η(2πkLd+ 1)B(2πWt)

p)∥u∥pB(Ω) + η∥f∥B(Ω)

Denoting the constant A = (1 + η(2πkLd+ 1)B(2πWt)
p) we have

∥ũt+1∥B(Ω) = A∥ũt∥pB(Ω) + η∥f∥B(Ω)

log
(
∥ũt+1∥B(Ω)

)
= log

(
A∥ũt∥pB(Ω) + η∥f∥B(Ω)

)
= log

(
A∥ũt∥pB(Ω)

(
1 +

η∥f∥B(Ω)

A∥ũt∥pB(Ω)

))

≤ log

(
A∥ũt∥pB(Ω)

(
1 +

η∥f∥B(Ω)

max{1, A∥ũt∥pB(Ω)}

))
= log

(
A∥ũt∥pB(Ω)

(
1 + η∥f∥B(Ω)

))
= log

(
∥ũt∥pB(Ω)

)
+ log

(
A
(
1 + η∥f∥B(Ω)

))
= r log(∥ũt∥B(Ω)) + log

(
A
(
1 + η∥f∥B(Ω)

))
(11.29)

The above equation is a recursion of the form

xt+1 ≤ rxt + c

which implies

xt+1 ≤ c
pt − 1

p− 1
+ ptx0.

159

11 Appendix for Chapter 4

Therefore the final bound in Equation 11.29 is,

log
(
∥ũt+1∥B(Ω)

)
≤ r log(∥ũt∥B(Ω)) + log

(
A
(
1 + η∥f∥B(Ω)

))
=⇒ log

(
∥ũt+1∥B(Ω)

)
≤ rn − 1

r − 1
log
(
A
(
1 + η∥f∥B(Ω)

))
+ pt log(∥ũ0∥B(Ω))

=⇒ ∥ũt+1∥B(Ω) ≤
(
A
(
1 + η∥f∥B(Ω)

)) pt−1
p−1 ∥ũ0∥p

t

B(Ω)

=⇒ ∥ũt+1∥B(Ω) ≤
(
(1 + η(2πkLd+ 1)BL̃(2πWt)

p)
(
1 + η∥f∥B(Ω)

)) pt−1
p−1 ∥ũ0∥p

t

B(Ω)

(i)
=⇒ ∥ũt+1∥B(Ω) ≤

((
1 + η(2πkLd+ 1)BL̃(2πk

t
LW0)

p
)(
1 + η∥f∥B(Ω)

)) pt−1
p−1 ∥ũ0∥p

t

B(Ω)

(ii)
=⇒ ∥ũt+1∥B(Ω) ≤

(
(1 + η(2πkLd+ 1)BL̃(2πkLW0))

(
1 + η∥f∥B(Ω)

))pt+ pt−1
p−1 ∥ũ0∥p

t

B(Ω)

=⇒ ∥ũt+1∥B(Ω) ≤
(
(1 + η2πkLW0(2πkd+ 1)BL̃)

(
1 + η∥f∥B(Ω)

))pt+ pt−1
p−1

(
max{1, ∥ũ0∥p

t

B(Ω)}
)

where we use the fact thatWt = kT
L W0 since ũt ∈ ΓkTL W0

in step (i) and use the property that (1+xp) ≤
(1 + x)p since x > 0 in step (ii).

11.3.3 Proof of Lemma 23

Lemma 35 (Lemma 23 restated). Let

f(x) =
∑

α,|α|≤P

(
Aα

d∏
i=1

xαi
i

)
where α is a multi-index and x ∈ Rd and Aα ∈ R is a scalar. If g : Rd → Rd is a function such that
g ∈ ΓW , then we have f ◦ g ∈ ΓPW and the Barron norm can be bounded as,

∥f ◦ g∥B(Ω) ≤ dP/2

 P∑
α,|α|=1

|Aα|2
1/2

∥g∥PB(Ω)

Proof. Recall from Definition 16 we know that for a vector valued function g : Rd → Rd
, we have

∥g∥B(Ω) = max
i∈[d]
∥gi∥B(Ω).

Then, using Lemma 21, we have

160

11 Appendix for Chapter 4

∥f(g)∥B(Ω) =

∥∥∥∥∥∥
P∑

α,|α|=0

Aα

d∏
i=1

gαi
i

∥∥∥∥∥∥
B(Ω)

≤
P∑

α,|α|=0

∥∥∥∥∥Aα

d∏
i=1

gαi
i

∥∥∥∥∥
B(Ω)

≤
P∑

α,|α|=0

|Aα|

∥∥∥∥∥
d∏

i=1

gαi
i

∥∥∥∥∥
B(Ω)

≤
P∑

α,|α|=0

|Aα|

∥∥∥∥∥
d∏

i=1

gαi
i

∥∥∥∥∥
B(Ω)

≤
P∑

α,|α|=0

|Aα|

(
d∏

i=1

∥gαi
i ∥B(Ω)

)

≤
P∑

α,|α|=0

|Aα|

(
d∏

i=1

∥gi∥αi

B(Ω)

)

=
P∑

α,|α|=0

|Aα|

(
d∏

i=1

∥gi∥αi

B(Ω)

)

≤

 P∑
α,|α|=0

|Aα|2
1/2 P∑

α,|α|=1

(
d∏

i=1

∥gi∥αi

B(Ω)

)2
1/2

(11.30)

where we have repeatedly used Lemma 21 and Cauchy-Schwartz in the last line. Using the fact that for a

multivariate function g : Rd → Rd
we have for all i ∈ [d]

∥g∥B(Ω) ≥ ∥gi∥B(Ω).

Therefore, from Equation 11.30 we get,

∥f(g)∥B(Ω) ≤

 P∑
α,|α|=0

|Aα|2
1/2 P∑

α,|α|=1

(
∥g∥

∑d
i=1 αi

B(Ω)

)21/2

≤

 P∑
α,|α|=0

|Aα|2
1/2 P∑

α,|α|=1

(
∥g∥αB(Ω)

)21/2

≤ dP/2

 P∑
α,|α|=0

|Aα|2
1/2

∥g∥PB(Ω)

Since the maximum power of the polynomial can take is P from Corollary 2 we will have f ◦ g ∈ ΓPW .

161

11 Appendix for Chapter 4

11.3.4 Proof of Lemma 21: Barron Norm Algebra

The proof of Lemma 21 is fairly similar to the proof of Lemma 3.3 in Chen et al. [2021]—the change

stemming from the difference of the Barron norm being considered

Proof. We first show the result for Addition and bound ∥h1 + h2∥B(Ω),

∥g1 + g2∥B(Ω) =
∑
ω∈Nd

(1 + ∥ω∥2)|ĝ1 + g2(ω)|

=
∑
ω∈Nd

(1 + ∥ω∥2)|ĝ1(ω) + ĝ2(ω)|

≤
∑
ω∈Nd

(1 + ∥ω∥2)|ĝ1(ω)|+
∑
ω∈Nd

(1 + ∥ω∥2)|ĝ2(ω)|

=⇒ ∥h1 + h2∥B(Ω) ≤ ∥h1∥B(Ω) + ∥h2∥B(Ω).

For Multiplication, first note that multiplication of functions is equal to convolution of the functions in

the frequency domain, i.e., for functions g1 : Rd → d and g2 : Rd → d, we have,

ĝ1 · g2 = ĝ1 ∗ ĝ2 (11.31)

Now, to bound the Barron norm for the multiplication of two functions,

∥g1 · g2∥B(Ω) =
∑
ω∈Nd

(1 + ∥ω∥2)|ĝ1 · g2(ω)|

=
∑
ω∈Nd

(1 + ∥ω∥2)|ĝ1 ∗ ĝ2(ω)|

=
∑
ω∈Nd

∑
z∈Nd

(1 + ∥ω∥2)|ĝ1(z)ĝ2(ω − z)|

≤
∑
ω∈Nd

∑
z∈Nd

(1 + ∥ω − z∥2 + ∥z∥2 + ∥z∥2∥ω − z∥2)|ĝ1(z)ĝ2(ω − z)|

Where we use ∥ω∥2 ≤ ∥ω − z∥2 + ∥z∥2 and the fact that∑
ω

∑
z

∥z∥2∥ω − z∥2|ĝ1(z)ĝ2(ω − z)| > 0.

Collecting the relevant terms together we get,

∥g1 · g2∥B(Ω) ≤
∑
ω∈Nd

∑
z∈Nd

(1 + ∥ω − z∥2) · (1 + ∥z∥2)|ĝ1(z)||ĝ2(ω − z)|

= ((1 + ∥ω∥2)ĝ1(ω)) ∗ ((1 + ∥ω∥2)ĝ2(ω))

162

11 Appendix for Chapter 4

Hence using Young’s convolution identity from Lemma 36 we have

∥g1 · g2∥B(Ω) ≤

(∑
ω∈Rd

(1 + ∥w∥2)ĝ1(ω)dω

)(∑
ω∈Rd

(1 + ∥w∥2)ĝ2(ω)dω

)
=⇒ ∥g1 · g2∥B(Ω) ≤ ∥h1∥B(Ω)∥h2∥B(Ω).

In order to show the bound for Derivative, since h ∈ ΓW , there exists a function g : Rd → R such that,

g(x) =
∑

∥ω∥∞≤W

e2πiω
T xĝ(ω)dω

Now taking derivative on both sides we get,

∂jg(x) =
∑

∥ω∥∞≤W

ieiω
T x2πωj ĝ(ω) (11.32)

This implies that we can upper bound |∂̂ig(ω)| as

∂̂jg(ω) = i2πωj ĝ(ω)

=⇒ |∂̂jg(ω)| ≤ 2πW |ĝ(ω)| (11.33)

Hence we can bound the Barron norm of ∂jh as follows:

∥∂jg∥B(Ω) =
∑

∥ω∥∞≤W

(1 + ∥ω∥∞)|∂̂jg(ω)|dω

≤
∑

∥ω∥∞≤W

(1 + ∥ω∥∞)|2πWĝ(ω)|dω

≤ 2πW
∑

∥ω∥∞≤W

(1 + ∥ω∥∞)|ĝ(ω)|dω

≤ 2πW∥h∥B(Ω)

In order to show the preconditioning, note that for functions g, f : Ωd → R, if f = (I −∆)−1g then

we have then we have (I −∆)f = g. Furthermore, by Lemma 37 we have

(1 + ∥ω∥22)f̂(ω) = ĝ(ω) =⇒ f̂(ω) =
ĝ(ω)

1 + ∥ω∥22
. (11.34)

Bounding ∥(I −∆)−1f∥B(Ω),

∥(I −∆)−1g∥B(Ω) =
∑
ω∈Nd

1 + ∥ω∥2
(1 + ∥ω∥22)

ĝ(ω)dω

≤
∑
ω∈Nd

(1 + ∥ω∥2)ĝ(ω)dω

=⇒ ∥(I −∆)−1g∥B(Ω) ≤ ∥g∥B(Ω).

163

11 Appendix for Chapter 4

Corollary 2. Let g : Rd → R then for any k ∈ N we have ∥gk∥B(Ω) ≤ ∥g∥kB(Ω). Furthermore, if the
function g ∈ ΓW then the function gk ∈ ΓkW .

Proof. The result from ∥gk∥B(Ω) follows from the multiplication result in Lemma 21 and we can show

this by induction. For n = 2, we have from Lemma 21 we have,

∥g2∥B(Ω) ≤ ∥g∥2B(Ω) (11.35)

Assuming that we have for all n till k − 1 we have

∥gn∥B(Ω) ≤ ∥g∥nB(Ω) (11.36)

for n = k we get,

∥gk∥B(Ω) = ∥ggk−1∥B(Ω) ≤ ∥g∥B(Ω)∥gk−1∥B(Ω) ≤ ∥g∥kB(Ω). (11.37)

To show that for any k the function gk ∈ ΓkW , we write gk in the Fourier basis. We have:

gk(x) =
k∏

j=1

 ∑
∥ωj∥∞≤W

ĝ(ωj)e
2iπωT

j xdωj


=

∑
∥ω∥∞≤kW

 ∑
∑k

l=1 ωl=ω

k∏
j=1

ĝ(ωj)dω1 . . . dωk

ei2πω
T kdω

In particular, the coefficients with ∥ω∥∞ > kW vanish, as we needed.

Lemma 36 (Young’s convolution identity). For functions g ∈ Lp(Rd) and h ∈ Lq(Rd) and
1

p
+

1

q
=

1

r
+ 1

where 1 ≤ p, q, r ≤ ∞ we have
∥f ∗ g∥r ≤ ∥g∥p∥h∥q.

Here ∗ denotes the convolution operator.

Lemma 37. For a differentiable function f : [0, 1]d → R, such that f ∈ L1(Rd) we have

∇̂f(ω) = i2πωf̂(ω)

11.4 Existence Uniqueness and Definition of the Solution

11.4.1 Proof of Existence and Uniqueness of Minima

Proof. The proof follows a similar sketch of that provided in Fernández-Real and Ros-Oton [2020]

Chapter 3, Theorem 3.3.

164

11 Appendix for Chapter 4

We first show that the minimizer u⋆
of the energy functional E(u) exists.

Note that from Definition 11 we have for a fixed x ∈ Ω the function L(x, ·, ·) is convex and smooth it

has a unique minimum, i.e., there exists a (yL, zL) ∈ R × Rd
such that for all (y, z) ∈ R × Rd

we

have L(x, y, z) ≥ L(x, yL, zL) and that∇L(x, yL, zL) = 0. Furthermore, using Equation 4.2 from

Definition 11 this also implies the following,

λ∥z − zL∥22 ≤ L(x, y, z)− L(x, yL, zL) ≤ Λ
(
∥y − yL∥22 + ∥z − zL∥22

)
.

Note we can (w.l.o.g) assume that for a fixed x ∈ Ω we have, L(x, 0, 0) = 0, and∇y,zL(x, 0, 0) = 0

(we can redefine L as L̃(x, y, z) = L(x, y + yL, z + zL) − L(x, yL, zL) if necessary), hence the above

equation can be simplified to,

λ∥z∥22 ≤ L(x, y, z) ≤ Λ
(
∥y∥22 + ∥z∥22

)
, ∀p ∈ Ω× R× Rd. (11.38)

Now, we define,

E◦ = inf

{∫
Ω

L(x, v,∇v)− fv dx : x ∈ Ω, v ∈ H1
0 (Ω)

}
. Let us first show that E◦ is finite. Indeed, using Equation 11.38 for any v ∈ H1

0 (Ω) and x ∈ Ω, we have

E(v) =
∫
Ω

L(x, v,∇v)− fv dx

≤
∫
Ω

Λ
(
∥v(x)∥22 + ∥∇v(x)∥22

)
+ ∥f(x)v(x)∥2dx

≤ Λ
(
∥v∥2L2(Ω) + ∥∇v∥2L2(Ω)

)
+ ∥f∥L2(Ω)∥v∥L2(Ω)

and is thus finite.

Moreover, using Equation 11.38 for all v ∈ H1
0 (Ω) and x ∈ Ω, E(v) can be lower bounded as

E(v) =
∫
Ω

L(x, v,∇v)− fv dx

≥
∫
Ω

λ∥∇v(x)∥2 − ∥f(x)v(x)∥2 dx

≥ λ∥∇v∥2L2(Ω) − ∥f∥L2(Ω)∥v∥L2(Ω)

≥ λ

2
∥∇v∥2L2(Ω) +

(
λ

2Cp

− 1

C

)
∥v∥2L2(Ω) − C∥f∥2L2(Ω) (11.39)

for some large constant C so that λ/2Cp − 1/C > 0., where we have used the Poincare inequality

(Theorem 14) and Cauchy-Schwarz inequality to get the last inequality.

Let {uk} where uk ∈ H1
0 (Ω) ∀k define a minimizing sequence of function, that is, we have E(uk) →

E◦ = infv E(v) as k → 0. From 11.39 we have for all k

λ

2
∥∇uk∥2L2(Ω) +

(
λ

2Cp

− 1

C

)
∥uk∥2L2(Ω) − C∥f∥2L2(Ω) ≤ E(uk).

165

11 Appendix for Chapter 4

Therefore sinceE(uk) is bounded, we have that∥uk∥H1
0 (Ω) is uniformly bounded, and thus we can extract

a weakly convergent subsequence. With some abuse of notations, let us without loss of generality assume

that uk ⇀ u.

We will now show that if uk ⇀ u,

E(u) ≤ lim inf
k→∞

E(uk) = E◦

and therefore conclude that the limit u is a minimizer. This property is also referred to as weak-lower

semi-continuity of E .

In order to show the weak-lower semicontinuity of E we define the following set,

A(t) := {v ∈ H1
0 (Ω) : E(v) ≤ t}.

Furthermore, note that the functional E(v) is convex in v (since the function L is convex and the term

f(x)v(x) is linear), and this also implies that the setA(t) is convex.

Further, for any sequence of functions {wk}wherewk ∈ A(t) such thatwk → w from Fatou’s Lemma,

E(w) =
∫
Ω

L(x,w(x),∇w(x))− f(x)w(x)dx ≤ lim inf
k→∞

∫
Ω

L(x,wk(x),∇wk(x))− f(x)wk(x)dx ≤ t

hence we also have that the function w ∈ A(t). Therefore the setA(t) is closed (w.r.t H1
0 (Ω) norm),

and it is convex. Since the set A(t) is closed and convex (it is also weakly closed) therefore if wk → w it

also implies that wk ⇀ w in H1
0 (Ω).

Hence, consider a weakly converging sequence in H1
0 (Ω), i.e., wk ⇀ w and define

t∗ := lim inf
k→∞

E(wk)

Now, for any ε > 0, there exists a subsequence wkj,ε ⇀ w in H1
0 (Ω) and Ewkj,ε

≤ t⋆ + ε, that is,

wkj,ε ∈ A(t∗ + ε). This this is true for all ϵ > 0 this implies that E(w) ≤ t∗ = lim infk→0 E . Hence

the function E is lower-semi-continuous, and hence the minimizer exists!

Now to show that the minimum is unique. Note the function E is convex in u. We will prove that the

minima is unique by contradiction.

Let u, v ∈ H1
0 (Ω) be two (distinct) minima of E , i.e., we have, E(u) = E◦ and E(v) = E◦.

166

11 Appendix for Chapter 4

Now using the fact that the function L : Ω×R×Rd → R is convex, and the minimality of E◦, we have

for all x ∈ Ω we have

E◦ ≤ E
(
u+ v

2

)
=

∫
Ω

L

(
x,

u(x) + v(x)

2
,
∇u(x) +∇v(x)

2

)
+ f(x)

u(x) + v(x)

2

=

∫
Ω

L

(
x+ x

2
,
u(x) + v(x)

2
,
∇u(x) +∇v(x)

2

)
+ f(x)

u(x) + v(x)

2

≤
∫
Ω

1

2
(L(x, u(x),∇u(x)) + u(x)) +

∫
Ω

1

2
(L(x, v(x),∇v(x)) + v(x))

≤ 1

2
E(u) + 1

2
E(v)

=⇒ E◦ ≤ E
(
u+ v

2

)
≤ 1

2
E(u) + 1

2
E(v) = E◦.

The last inequality is a contradiction and therefore the minima is unique.

11.4.2 Proof of Lemma 15: Nonlinear Elliptic Variational PDEs

Proof of Lemma 15. If the functionu⋆
minimizes the energy functional in Definition 11 then we have for

all ϵ ∈ R
E(u) ≤ E(u+ ϵφ)

where φ ∈ C∞
c (Ω). That is, we have a minima at ϵ = 0 and taking a derivative w.r.t ϵ and using Taylor

expansion we get,

dE [u](φ) = lim
ϵ→0

E(u+ ϵφ)− E(u)
ϵ

= 0

= lim
ϵ→0

∫
Ω
L(x, u+ ϵφ,∇u+ ϵ∇φ)− f(x)(u(x) + ϵφ(x))− L(x, u,∇u) + f(x)u(x) dx

ϵ

= lim
ϵ→0

∫
Ω
L(x, u+ ϵφ,∇u) + ∂∇uL(x, u+ ϵφ,∇u) + r1(x)− ϵf(x)ϵφ(x)− L(x, u,∇u) dx

ϵ

= lim
ϵ→0

∫
Ω
L(x, u,∇u) + ϵ∂uL(x, u,∇u)φ+ r2(x)

ϵ

+ lim
ϵ→0

ϵ∂∇uL(x, u,∇u)∇φ+ ϵ2∂u∂∇uL(x, u,∇u)∇φ · φ+ r1(x)− ϵf(x)ϵφ(x)− L(x, u,∇u) dx
ϵ

= lim
ϵ→0

∫
Ω
ϵ∂∇uL(x, u,∇u)∇φ+ ϵ∂uL(x, u,∇u)u+ r1(x) + r2(x)− ϵf(x)φ(x) dx

ϵ
(11.40)

where for all x ∈ Ω we have,

|r1(x)| ≤
ϵ2

2
sup
y∈Ω

∣∣∣((∇u(x))T∂2
∇uL(y, u+ ϵφ,∇u)∇u(x)

)∣∣∣
≤ Λϵ2

2
∥∇u(x)∥22 (11.41)

167

11 Appendix for Chapter 4

Similarity we have,

|r2(x)| ≤
ϵ2

2
sup
y∈Ω

∣∣∂uL(y, u,∇u)u(x)2∣∣
≤ Λϵ2

2
u(x)2 (11.42)

Using results from Equation 11.40 and Equation 11.42 in Equation Equation 11.41 and taking ϵ → 0,

the derivative in the direction of φ is,

dE [u](φ) = lim
ϵ→0

∫
Ω
∂∇uL(x, u,∇u)∇φ+ ∂uL(x, u,∇u)u− f(x)φ(x) dx

ϵ

Since ϵ→ 0 the final derivative is of the form,

dE [u](φ) =
∫
Ω

(
∂∇uL(x, u,∇u)∇φ+ ∂uL(x, u,∇v)φ− fφ

)
dx = 0. (11.43)

We will now use the following integration by parts identity, for functions r : Ω → R such that and

s : Ω→ R, and r, s ∈ H1
0 (Ω),∫

Ω

∂r

∂xi

sdx = −
∫
Ω

r
∂s

∂xi

dx+

∫
∂Ω

rsndΓ (11.44)

where ni is a normal at the boundary and dΓ is an infinitesimal element of the boundary ∂Ω.

Using the identity in Equation 11.44 in Equation 11.43 we get,

dE [u](φ) =
∫
Ω

(
∂∇uL(x, u,∇u)∇φ++∂uL(x, u,∇v)φ− fφ

)
dx

=

∫
Ω

(d∑
i=1

(∂∇uL(x, u,∇u))i∂iφ+ ∂uL(x, u,∇v)φ− fφ

)
dx

=

∫
Ω

(d∑
i=1

−∂i(∂∇uL(x, u,∇u))iφ+ ∂uL(x, u,∇v)φ− fφ

)
dx

=

∫
Ω

(
−∇x · (∂∇uL(x, u,∇u))φ+ ∂uL(x, u,∇u)φ− fφ

)
dx = 0

=⇒ dE [u](φ) =
∫
Ω

(
− divx(∂∇uL(x, u,∇u))φ+ ∂uL(x, u,∇u)φ− fφ

)
dx = 0

That is the minima for the energy functional is reached at a u which solves the following PDE,

dE(u) := −divx(∂∇uL(x, u,∇u)) + ∂uL(x, u,∇u) = f.

where we define dE(·) as the operator−divx(∂∇uL(x, ·,∇·)) + ∂uL(x, ·,∇·).

168

11 Appendix for Chapter 4

11.4.3 Proof of Lemma 16: Poincare constant of Unit Hypercube

Proof of Lemma 16. We use the fact that the Poincare constant is the smallest eigenvalue of ∆, i.e.,

1

Cp

:= inf
u∈L2(Ω)

∥∆u∥L2(Ω)

∥u∥L2(Ω)

.

Note that the eigenfunctions of ∆ for the domain Ω := [0, 1]d are defined as

ϕω(x) =
d∏

i=1

sin(πiωixi), ∀ω ∈ Nd & x ∈ Ω.

Furthermore, this also implies that for all ω ∈ Nd
we have,

∆ϕω = π2∥ω∥22ϕω.

We can expand any function u ∈ H1
0 (Ω) in terms of ϕω as u(x) =

∑
ω∈Nd dωϕω(x) where dω =

⟨u, ϕω⟩L2(Ω).

Note that for all x ∈ Ω, we have,

∆u(x) =
∑
ω∈Nd

π2∥ω∥22dωϕω(x).

Taking square L2(Ω) norm on both sides, we get,

∥∆u∥2L2(Ω) = π4

∥∥∥∥∥∑
ω∈Nd

∥ω∥22dωϕω

∥∥∥∥∥
2

L2(Ω)

(i)

≥ π4d2

∥∥∥∥∥∑
ω∈Nd

dωϕω

∥∥∥∥∥
2

L2(Ω)

(ii)
= π4d2∥u∥2L2(Ω)

=⇒
∥∆u∥L2(Ω)

∥u∥L2(Ω)

≥ π2d

where we use the fact that ∥ω∥2 ≥
√
d (since ∀i ∈ [d] we have ωi ∈ N) in step (i), and use the orthogo-

nality of{ϕω}ω∈Nd in (ii). Moreover, it’s easy to see that equality can be achieved by takingu = ϕ(1,1,...,1).

Hence the Poincare constant can be calculated as,

1

Cp

:= inf
u∈L2(Ω)

∥∆u∥L2(Ω)

∥u∥L2(Ω)

= π2d

=⇒ Cp =
1

π2d
.

169

11 Appendix for Chapter 4

11.5 Important Helper Lemmas

Lemma 38. The dual norm of ∥ · ∥H1
0 (Ω) is ∥ · ∥H1

0 (Ω).

Proof. If ∥u∥∗ denotes the dual norm of ∥u∥H1
0 (Ω), by definition we have,

∥u∥∗ = sup
v∈H1

0 (Ω)
∥v∥

H1
0(Ω)

=1

⟨u, v⟩H1
0 (Ω)

= sup
v∈H1

0 (Ω)
∥v∥

H1
0(Ω)

=1

⟨∇u,∇v⟩L2(Ω)

≤ sup
v∈H1

0 (Ω)
∥v∥

H1
0(Ω)

=1

∥∇u∥L2(Ω)∥∇v∥L2(Ω)

= ∥∇u∥L2(Ω)

where the inequality follows by Cauchy- Schwarz. On the other hand, equality can be achieved by taking

v = u
∥∇u∥2 . Thus, ∥u∥∗ = ∥∇u∥L2(Ω) = ∥u∥H1

0 (Ω) as we wanted.

11.5.1 Useful properties of Laplacian and Laplacian Inverse

Lemma 39. The operator (−∆)−1 is self-adjoint.

Proof. Note that since the operator (−∆)−1
is bounded, to show that it is self-adjoint, we only need to

show that the operator is also symmetric, i.e., for all u, v ∈ H1
0 (Ω) we have

⟨(−∆)−1u, v⟩L2(Ω) = ⟨u, (−∆)−1v⟩L2(Ω).

To show this, we first show that the operator ∆ is symmetric. i.e, we have

⟨−∆u, v⟩L2(Ω) = ⟨u,−∆v⟩L2(Ω) (11.45)

This is a direct consequence of the Green’s Identity where for functions u, v ∈ C∞
0 the following holds,∫

Ω

−(∆u)vdx =

∫
Ω

∇u · ∇vdx+

∫
∂Ω

∂u

∂n
vdΓ

=

∫
Ω

∇u · ∇vdx

= −
∫
Ω

u∆vdx+

∫
∂Ω

∂v

∂n
udΓ

where we use the fact that since u, v ∈ H1
0 (Ω) we have u(x) = 0 and v(x) = 0 for all x ∈ ∂Ω.

170

11 Appendix for Chapter 4

Now, taking ũ = −∆u and ṽ = (−∆)−1v from Equation Equation 11.45 we get,

⟨−∆u, v⟩L2(Ω) = ⟨u,∆v⟩L2(Ω)

⟨ũ, (−∆)−1ṽ⟩L2(Ω) = ⟨(−∆)−1ũ, ṽ⟩L2(Ω).

Hence we have that the operator (−∆)−1
is symmetric and bounded and therefore is self-adjoint.

Lemma 40. Given a vector valued function f : Rd → Rd, such that f ∈ C2 the following identity holds,

∇divx(f) = divx(∇f). (11.46)

Proof. We first simplify the right hand side of Equation Equation 11.46. Note that since∇f : Rd →
Rd×d

is a is a matrix valued function the divergence of∇f is going to be vector valued. More precisely

for all x ∈ Ω,−divx(∇f) is defined as

divx(∇f(x)) =

[
d∑

j=1

∂j[∇f(x)]i

]d
i=1

=

[
d∑

j=1

∂j∂if(x)

]d
i=1

(11.47)

where for a vector valued function the notation [g(x)]i denotes its ith
coordinate, and the notation

[g(x)]di=1 := (g(x)1, g(x)2, · · · , g(x)d) denotes a d dimensional vector.

Now, simplifying the left hand side, for all x ∈ Ω we get,

∇divx(f(x)) = ∇

(
d∑

j=1

∂jf(x)

)

=

[
∂i

(
d∑

j=1

∂jf(x)

)]d
i=1

=

[(
d∑

j=1

∂i∂jf(x)

)]d
i=1

(11.48)

Since the term in Equation 11.47 is equal to Equation 11.48 we have∇divx(f) = divx(∇f).

Lemma 41. For a function g : Rd → R such that g ∈ C3 the following identity holds,

∆∇g = ∇∆g

171

11 Appendix for Chapter 4

Proof. The term ∆∇g can be simplified as follows,

∆∇g = ∆

(
∂f

∂x1

,
∂f

∂x2

, · · · , ∂f
∂xd

)
= ∆

[
∂f

∂xi

]d
i=1

=

[
∆

∂f

∂xi

]d
i=1

=

[
d∑

j=1

∂

∂x2
j

∂f

∂xi

]d
i=1

=

[
d∑

j=1

∂2f

∂x2
j∂xi

]d
i=1

(11.49)

Further,∇∆g can be simplified as follows,

∇∆g = ∇

(
d∑

j=1

∂g

∂x2
j

)

=

[
d∑

j=1

∂

∂x1

∂g

∂x2
j

,
d∑

j=1

∂

∂x2

∂g

∂x2
j

, · · · ,
d∑

j=1

∂

∂xd

∂g

∂x2
j

,

]

=

[
d∑

j=1

∂2g

∂xi∂x2
j

,

]d
i=1

(11.50)

Since Equation 11.49 is equal to Equation 11.50 it implies that

∆∇g = ∇∆g.

Corollary 3. For all vector valued function f : Rd → Rd functions the following holds,

∇(−∆)−1divx(f) = (−∆)−1divx(∇f). (11.51)

Proof. We know from Lemma 40 that for a vector valued function f : Rd → Rd
that we have

∇divx(f) = divx(∇f).

Now, using for a fact that any function g can be written as, g = (−∆)(−∆)−1g we get,

∇divx(f) = divx(∇f)
=⇒ ∇(−∆)(−∆)−1divx(f) = divx(∇f)
(i)
=⇒ (−∆)∇(−∆)−1divx(f) = divx(∇f)
=⇒ ∇(−∆)−1divx(f) = (−∆)−1divx(∇f)

where (i) follows from Lemma 41, i.e., for any function g ∈ C3
, we have,∇∆g = ∆∇g.

172

11 Appendix for Chapter 4

11.5.2 Some properties of Sub-Matrices

Lemma 42. Given matrices A ∈ Rd×d and B ∈ Rd×d if we have A ⪯ B then for any set of indices
U ⊆ {1, 2, · · · d}where |U | = n ≤ d then for all y ∈ Rn we have yTAUy ≤ yTBUy. where AU = Ai,j

for all i, j ∈ U . Similarly if if we have A ⪰ B for all y ∈ Rn we have, yTAUy ≥ yTBUy.

Proof. We will show that A ⪯ B =⇒ AU ⪯ BU . The proof for A ⪰ B =⇒ AU ⪰ BU will follow

similarly.

Without loss of generality we can assume thatU = {1, 2, · · ·n} and a setV = {n, · · · d}, wheren ≤ d.

Since A ⪯ B we know that there exists x ∈ Rd
we have xTAx ≤ xTBx.

For all y ∈ Rd
define x := (y,0d−n), and let AU,V = Ai,j be i ∈ U and j ∈ V[

y 0
]T[AU AU,V

AV,U AV

][
y 0

]T ≤ [y 0
]T[BU BU,V

BV,U BV

][
y 0

]T
=⇒

[
y 0

]T[BU − AU BU,V − AU,V

BV,U − AV,U BV − AV

][
y 0

]T ≥ 0

=⇒ yT (BU − AU)y ≥ 0

Since we have for all y ∈ Rn
we have yT (BU − AU)y ≥ 0, therefore this implies that AU ⪯ BU .

173

12 Appendix for Chapter 5

12.1 Implementation Details

Training details. We train all the networks for 500 epochs with Adam optimizer. The learning rate

is set to 0.001 for Darcy flow and 0.005 for Navier-Stokes. We use learning rate weight decay of 1e-4 for

both Navier-Stokes and Darcy flow. The batch size is set to 32. In case of Darcy flow, we also use cosine

annealing for learning rate scheduling. We run all our experiments on a combination of NVIDIA RTX

A6000, NVIDIA GeForce RTX 2080 Ti and 3080 Ti. All networks can easily fit on a single NVIDIA

RTX A6000, but training time varies between the networks.

For FNO-DEQ, we use Anderson solver [Anderson, 1965] to solve for the fixed point in the forward

pass. The maximum number of Anderson solver steps is kept fixed at 32 for Dary Flow, and 16 for Navier

Stokes. For the backward pass, we use phantom gradients [Geng et al., 2021] which are computed as:

u⋆ = τGθ(u
⋆, a) + (1− τ)u⋆

(12.1)

where τ is a tunable damping factor and u⋆
is the fixed point computed using Anderson solver in the

forward pass. This step can be repeatedS times. We use τ = 0.5 andS = 1 for Darcy Flow, and τ = 0.8
and S = 3 for Navier-Stokes.

For the S-FNO-DEQ used in Table 12.5, we use Broyden’s method [Broyden, 1965] to solve for the fixed

point in the forward pass and use exact implicit gradients, computed through implicit function theorem

as shown in Equation 5.6, for the backward pass through DEQ. The maximum number of solver steps is

fixed at 32.

For weight-tied networks, we repeatedly apply the FNO block to the input 12 times for Darcy flow, and

6 times for Navier-Stokes.

Network architecture details. The width of an FNO layer set to 32 across all the networks.

Additionally, we retain only 12 Fourier modes in FNO layer, and truncate higher Fourier modes. We use

the code provided by Li et al. [2020a] to replicate the results for FNO, and construct rest of the networks

on top of this as described in Section 9.8.

174

12 Appendix for Chapter 5

12.2 Datasets

12.2.1 Darcy Flow

As mentioned in Section 9.8 we use the dataset provided by Li et al. [2020a] for our experiments with

steady-state Darcy-Flow.

All the models are trained on 1024 data samples and tested on 500 samples. The resolution of original

images is 421× 421 which we downsample to 85× 85 for our experiments. For experiments with noisy

inputs/observations, the variance of Gaussian noise that we add to PDEs are [0, 1e-9, 1e-8, 1e-7, 1e-6, 1e-

5, 1e-4, 1e-3].

12.2.2 Steady-State Incompressible Fluid Navier-Stoke

u · ∇ω = ν∆ω + f, x ∈ Ω

∇ · u = 0 x ∈ Ω

To generate the dataset for steady-state Navier-Stokes, instead of solving the steady state PDE using

steady-state solvers like the SIMPLE algorithm Patankar and Spalding [1983], we first choose the solu-

tion ω⋆ := ∇ × u⋆
of the PDE and then generate the corresponding equation, i.e. calculate the corre-

sponding force term f = u⋆ · ∇ω⋆ − ν∆ω⋆.

To generate the solutions ω⋆
, we forward propagate a relatively simple initial distribution of ω0 (sampled

from a Gaussian random field) through a time-dependent Navier-Stokes equation in the vorticity form

for a short period of time. This ensures our dataset contains solutions ω∗
that are rich and complex.

Precisely, recall the Navier-Stokes equations in their vorticity form:

∂tω(x, t) + u(x, t) · ∇ω(x, t) = ν∆ω(x, t) + g(x) x ∈ (0, 2π)2, t ∈ [0, T]

∇ · u(x, t) = 0 x ∈ (0, 2π)2, t ∈ [0, T]

ω(x, 0) = ω0(x) x ∈ (0, 2π)2
(12.2)

where g(x) = ∇ × g̃(x) and g̃(x) = sin(5x1)x̂2 is a divergence free forcing term and x = (x1, x2)
are the two coordinates of the input vector. We forward propagate the equations Equation 12.2 using

a pseudo-spectral method using the functions provided in JAX-CFD [Kochkov et al., 2021, Dresdner

et al., 2022] package. The initial vorticity ω0 is sampled from a Gaussian random fieldN (0, (53/2(I +
25∆)−2.5)), which is then made divergence free. We forward propagate the Navier-Stokes equation

in Equation 12.2 for time T = 0.5 with dt = 0.002 to get ω(1, x), which we choose as the solution to

the steady-state PDE in Equation 5.10, i.e, ω⋆
for Equation 5.10.

Subsequently, we use the stream functionΨ [Batchelor and Batchelor, 1967] to calculateu = (∂Ψ/∂x1, ∂Ψ/∂x2)
by solving the Poisson equation ∆Ψ = ω in the Fourier domain. Furthermore, since f = u⋆ · ∇ω⋆ −
ν∆ω⋆

we use the stream function to calculate (f1, f2), i.e., the different components of the force term.

We use 4500 training samples and 500 testing samples. The input to the network is the vector field f̃ =
(f1, f2) and we learn a map that outputs the vorticity ω⋆

. The resolution of grid used to generate the

dataset is 256 × 256 which we downsample to 128 × 128 while training the models. For experiments

175

12 Appendix for Chapter 5

Figure 12.1: Samples from Darcy Flow

176

12 Appendix for Chapter 5

with noisy inputs/observations, we consider two values of maximum variance of Gaussian noise: 1e-3 and

4e-3. The variances of the Gaussian noise that we add to the PDEs for the latter case are [0, 1e-9, 1e-8, 1e-

7, 1e-6, 1e-5, 1e-4, 1e-3, 2e-3, 4e-3]. However, when conducting experiments with a variance of 1e-3, we

exclude the last two values of variance from this list.

Figure 12.2: Samples from Steady-state Navier-Stokes dataset with viscosity0.001. Each triplet visualizes the inputs

f1, f2 and the ground truth output i.e. ω⋆
.

177

12 Appendix for Chapter 5

Figure 12.3: Samples from Steady-state Navier-Stokes dataset with viscosity 0.01. Each triplet visualizes the inputs

f1, f2 and the ground truth output i.e. ω⋆
.

178

12 Appendix for Chapter 5

12.3 Proof of Universal Approximation

The proof of the universal approximation essentially follows from the result on the universal approxima-

tion capabilities of FNO layers in Kovachki et al. [2021a], applied to G(v, f) = v − (Lv − f). For the

sake of completeness, we reitarate the key steps.

For simplicity, we will assume that du = dv = df = 1. (The results straightforwardly generalize.) We

will first establish some key technical lemmas and introduce some notation and definitions useful for the

proof for Theorem 8.

Definition 37. An operatorT : L2(Ω;R)→ L2(Ω;R) is continuous atu ∈ L2(Ω;R) if for every ϵ > 0,
there exists a δ > 0, such that for all v ∈ L2(Ω)with ∥u−v∥L2(Ω) ≤ δ, we have ∥L(u)−L(v)∥L2(Ω) ≤ ϵ.

First, we approximate the infinite dimensional operator G : L2(Ω) × L2(Ω) → L2(Ω) by projecting

the functions in L2(Ω) to a finite-dimensional approximation L2
N(Ω), and considering the action of the

operator on this subspace. The linear projection we use is the one introduced in Equation 5.11. More

precisely we show the following result,

Lemma 43. Given a continuous operatorL : L2(Ω)→ L2(Ω) as defined in Equation 5.1, let us define an
operator G : L2(Ω)×L2(Ω)→ L2(Ω) as G(v, f) := v− (L(v)− f). Then, for every ϵ > 0 there exists
an N ∈ N such that for all v, f in any compact set K ⊂ L2(Ω), the operator GN = ΠNG(ΠNv,ΠNf) is
an ϵ-approximation of G(v, f), i.e., we have,

sup
v,f∈K

∥G(v, f)− GN(v, f)∥L2(Ω) ≤ ϵ.

Proof. Note that for an ϵ > 0 there exists an N = N(ϵ, d) such that for all v ∈ K we have

sup
v∈K
∥v − ΠNv∥L2(Ω) ≤ ϵ.

Therefore, using the definition of GN we can bound the L2(Ω) norm of the difference between G and

GN as follows,

∥G(v, f)− ΠNG(vn, fn)∥L2(Ω)

≤ ∥G(v, f)− ΠNG(v, f)∥L2(Ω) + ∥ΠNG(v, f)− ΠNG(ΠNv,ΠNf)∥L2(Ω)

≤ ∥G(v, f)− ΠNG(v, f)∥L2(Ω)︸ ︷︷ ︸
I

+ ∥G(v, f)− G(ΠNv,ΠNf)∥L2(Ω)︸ ︷︷ ︸
II

We first bound the term I as follows:

∥G(v, f)− ΠNG(v, f)∥L2(Ω)

= ∥v − (L(v)− f)− ΠN(v − (L(v)− f))∥L2(Ω)

= ∥v − ΠNv∥L2(Ω) + ∥f − ΠNf∥L2(Ω) + ∥L(v)− ΠNL(v)∥L2(Ω)

= ϵ+ ϵ+ ∥L(v)− ΠNL(v)∥L2(Ω) (12.3)

179

12 Appendix for Chapter 5

Since L is continuous, for all compact sets K ⊂ L2(Ω), L(K) is compact as well. This is because: (1) for

any u ∈ K , ∥L(u)∥L2(Ω) is finite; (2) for any v ∈ K , ∥L(v)∥L2(Ω) ≤ ∥L(u)∥L2(Ω) + C∥u − v∥L2(Ω).

Therefore, for every ϵ > 0, there exists an N ∈ N such that

sup
v∈K
∥L(v)− ΠNL(v)∥L2(Ω) ≤ ϵ.

Substituting the above result in Equation 12.3, we have

∥G(v, f)− ΠNG(v, f)∥L2(Ω) ≤ 3ϵ. (12.4)

Similarly, for all v ∈ K where K is compact, we can bound Term II as following,

∥G(v, f)− G(ΠNv,ΠNf)∥L2(Ω)

≤ ∥v − (L(v)− f)− ΠNv − (L(ΠNv)− ΠNf)∥L2(Ω)

≤ ∥v − ΠNv∥L2(Ω) + ∥f − ΠNf∥L2(Ω) + ∥L(v)− L(ΠNv)∥L2(Ω)

≤ ϵ+ ϵ+ ∥L(v)− L(ΠNv)∥L2(Ω). (12.5)

Now, since v ∈ K and L : L2(Ω) → L2(Ω) is a continuous operator, there exists a modulus of

continuity (an increasing real valued function) α ∈ [0,∞), such that for all v ∈ K , we have

∥L(v)− L(ΠNv)∥L2(Ω) ≤ α
(
∥v − ΠNv∥L2(Ω)

)
Hence for every ϵ > 0 there exists an N ∈ N such that,

α(∥v − ΠNv∥L2(Ω)) ≤ ϵ.

Plugging these bounds in Equation 12.5, we get,

∥G(v, f)− G(ΠNv,ΠNf)∥L2(Ω) ≤ 3ϵ. (12.6)

Therefore, combining Equation 12.4 and Equation 12.6 then for ϵ > 0, there exists anN ∈ N, such that

for all v, f ∈ K we have

sup
v,f∈K

∥G(v, f)− ΠNG(vn, fn)∥L2(Ω) ≤ 6ϵ. (12.7)

Taking ϵ′ = 6ϵ proves the claim.

Proof of Theorem 8. For Lemma 43 we know that there exists a finite dimensional projection for the op-

erator G, defined as GN(v, f) such that for all v, f ∈ L2(Ω) we have

∥G(v, f)− GN(v, f)∥L2(Ω) ≤ ϵ.

Now using the definition of GN(v, f) we have

GN(v, f) = ΠNG(ΠNv,ΠNf)

= ΠNv − (ΠNL(ΠNv)− ΠNf)

From Kovachki et al. [2021a], Theorem 2.4 we know that there exists an FNO network GθL of the form

defined in Equation 5.2 such that for all v ∈ K , where K is a compact set, there exists an ϵL we have

sup
v∈K
∥ΠNL(ΠNv)−GθL∥L2(Ω) ≤ ϵL (12.8)

180

12 Appendix for Chapter 5

Finally, note that from Lemma D.1 in Kovachki et al. [2021a], we have that for any v ∈ K , there exists

an FNO layers Gθf ∈ L2(Ω) and Gθv ∈ L2(Ω) defined in Equation 5.3 such that

sup
v∈K
∥ΠNv −Gθv∥L2(Ω) ≤ ϵv (12.9)

and

sup
f∈K
∥ΠNf −Gθf∥L2(Ω) ≤ ϵf (12.10)

for ϵv > 0 and ϵf > 0.

Therefore there exists an ϵ̃ > such that there is an FNO network Gθ : L
2(Ω)×L2(Ω)→ L2(Ω) where

θ := {θL, θv, θf} such that

sup
v∈K,f∈L2(Ω)

∥GN(v, f)−Gθ(v, f)∥L2(Ω) ≤ ϵ̃ (12.11)

Now, since we know that u⋆
is the fixed point of the operator G we have from Lemma 43 and Equa-

tion 12.11,

∥G(u⋆, f)−Gθ(u
⋆, f)∥L2(Ω) ≤ ∥u⋆ − GN(u⋆, f)∥L2(Ω) + ∥GN(u⋆, f)−Gθ(u

⋆, f)∥L2(Ω)

≤ ϵ̃+ ϵ.

12.4 Fast Convergence for Newton Method

Definition 38 (Frechet Derivative inL2(Ω)). For a continuous operatorF : L2(Ω)→ L2(Ω), the Frechet
derivative atu ∈ L2(Ω) is a linear operatorF ′(u) : L2(Ω)→ L2(Ω) such that for allv ∈ L2(Ω)we have

lim
∥v∥L2(Ω)→0

∥F (u+ v)− F (u)− F ′(u)(v)∥L2(Ω)

∥v∥L2(Ω)

= 0.

Lemma 44. Given the operator L : L2(Ω) → L2(Ω) with Frechet derivative L′, such that for all u, v ∈
L2(Ω), we have ∥L′(u)(v)∥L2(Ω) ≥ λ∥v∥L2(Ω), then L′(u)−1 exists and we have, for all v1, v2 ∈ L2(Ω):

1. ∥L′(u)−1(v1)∥L2(Ω) ≤ 1
λ
∥v1∥L2(Ω).

2. ∥v1 − v2∥L2(Ω) ≤ 1
λ
∥L(v1)− L(v2)∥L2(Ω)

Proof. Note that for all u, v′ ∈ L2(Ω) we have,

∥L′(u)v′∥L2(Ω) ≥ λ∥v′∥L2(Ω)

Taking v = L′(u)−1(v′), we have

∥L′(u)
(
L′(u)−1(v)

)
∥L2(Ω) ≥ λ∥L−1(u)(v)∥L2(Ω)

=⇒ 1

λ
∥v∥L2(Ω) ≥ ∥L−1(u)(v)∥L2(Ω).

181

12 Appendix for Chapter 5

For part 2, note that there exists a c ∈ [0, 1] such that

∥L(v1)− L(v2)∥L2(Ω) ≥ inf
c∈[0,1]

∥L′(cv1 + (1− c)v2)∥2∥v1 − v2∥L2(Ω) ≥ λ∥v1 − v2∥L2(Ω).

We now show the proof for Lemma 45. The proof is standard and can be found in Faragó and Karátson

[2002], however we include the complete proof here for the sake of completeness.

We restate the Lemma here for the convenience of the reader.

Lemma 45 (Faragó and Karátson [2002], Chapter 5). Consider the PDE defined Definition 18, such that
du = dv = df = 1. such that L′(u) defines the Frechet derivative of the operator L. If for all u, v ∈
L2(Ω;R) we have ∥L′(u)v∥L2(Ω) ≥ λ∥v∥L2(Ω)

1 and ∥L′(u) − L′(v)∥L2(Ω) ≤ Λ∥u − v∥L2(Ω) for
0 < λ ≤ Λ <∞, then for the Newton update,ut+1 ← ut−L′(ut)

−1(L(ut)− f),withu0 ∈ L2(Ω;R),
there exists an ϵ > 0, such that ∥uT − u⋆∥L2(Ω) ≤ ϵ if 2 T ≥ log

(
log
(
1
ϵ

)
/ log

(
2λ2

Λ∥L(u0)−f∥L2(Ω)

))
.

Proof of Lemma 45. Re-writing the updates in Lemma 45 as,

ut+1 = ut + pt (12.12)

L′(ut)pt = −(L(ut)− f) (12.13)

Now, upper bounding L(ut+1)− f for all x ∈ Ω we have,

L(ut+1(x))− f(x)

= L(ut(x))− f(x) +

∫ 1

0

(L′(ut(x) + t(ut+1(x)− ut(x))))(ut+1(x)− ut(x))dt

= L(ut(x))− f(x) + L′(ut(x))pt(x) +

∫ 1

0

(L′(ut(x) + t(ut+1(x)− ut(x)))− L′(ut(x)))pt(x)dt

=

∫ 1

0

(L′(ut(x) + t(ut+1(x)− ut(x)))− L′(ut(x)))pt(x)dt

where we use Equation 12.13 in the final step.

Taking L2(Ω) norm on both sides and using the fact that ∥L′(u)− L′(v)∥L2(Ω) ≤ Λ∥u− v∥L2(Ω), we

have

∥L(ut+1)− f∥L2(Ω) ≤
∫ 1

0

Λt∥ut+1 − ut∥L2(Ω)∥pt∥L2(Ω)dt

1
We note that this condition is different from the condition on the inner-product in the submitted version of the paper,

which had. ⟨L′(u), v⟩L2(Ω) ≥ λ∥v∥L2(Ω).

2
We note that this rate is different from the one in the submitted version of the paper.

182

12 Appendix for Chapter 5

Noting that for allx ∈ Ω, we haveut+1−ut = pt, and using the fact that for allu, v ∥L′(u)−1v∥L2(Ω) ≤
1
λ
∥v∥L2(Ω) we have, ∥L′(ut)pt∥L2(Ω) ≤ 1

λ
∥pt∥L2(Ω)

∥L(ut+1)− f∥L2(Ω) ≤
∫ 1

0

Λt∥ut+1 − u∥L2(Ω)∥pt∥L2(Ω)dt

≤ Λ/2∥pt∥2L2(Ω)

≤ Λ/2∥ − L′(ut)
−1(L(ut)− f)∥2L2(Ω)

≤ Λ

2λ2
∥L(ut)− f)∥2L2(Ω)

where we use the result from Lemma 44 in the last step.

Therefore we have

∥L(ut+1)− f∥L2(Ω) ≤
(

Λ

2λ2

)2t−1

(L(u0)− f)2
t

=⇒ ∥L(ut+1)− f∥L2(Ω) ≤
(

Λ

2λ2

)2t−1

(L(u0)− L(u⋆))2
t

=⇒ ∥ut+1 − u⋆∥L2(Ω) ≤
1

λ

(
Λ

2λ2

)2t−1

∥L(u0)− L(u⋆)∥2
t

L2(Ω).

Therefore, if

Λ

2λ2
∥L(u0)− L(u⋆)∥L2(Ω) ≤ 1,

then we have

∥ut+1 − u⋆∥L2(Ω) ≤ ϵ,

for

T ≥ log

(
log

(
1

ϵ

)
/ log

(
2λ2

Λ∥L(u0)− f∥L2(Ω)

))
.

12.5 Additional experimental results

We provide additional results for Navier-Stokes equation for noisy inputs and observations in Table 12.1

and Table 12.2. For these experiments, the maximum variance of Gaussian noise added to inputs and

observations is 0.004. We observe that weight-tied FNO and FNO-DEQ outperform non-weight-tied

architectures.

Convergence analysis of fixed point. We report variations in test error, absolute residual∥Gθ(zt)−
zt∥2, and relative residual

∥Gθ(zt)−zt∥2
∥zt∥2 with an increase in the number of solver steps while solving for

the fixed point in FNO-DEQ, for both Darcy Flow (See Table 12.3) and Steady-State Navier Stokes (See

Table 12.4). We observe that all these values decrease with increase in the number of fixed point solver it-

183

12 Appendix for Chapter 5

Architecture Parameters #Blocks

Test error ↓
σ2
max = 0 (σ2

max)
i = 0.004 (σ2

max)
t = 0.004

FNO 2.37M 1 0.184± 0.002 0.238± 0.008 0.179± 0.004

FNO 4.15M 2 0.162± 0.024 0.196± 0.011 0.151± 0.010

FNO 7.71M 4 0.157± 0.012 0.216± 0.002 0.158± 0.009

FNO++ 2.37M 1 0.199± 0.001 0.255± 0.002 0.197± 0.004

FNO++ 4.15M 2 0.154± 0.005 0.188± 0.006 0.157± 0.006

FNO++ 7.71M 4 0.151± 0.003 0.184± 0.008 0.147± 0.004

FNO-WT 2.37M 1 0.123 ± 0.004 0.141± 0.003 0.125 ± 0.007
FNO-DEQ 2.37M 1 0.123 ± 0.005 0.139 ± 0.007 0.127± 0.002

Table 12.1: Results on incompressible Steady-State Navier-Stokes (viscosity=0.001): clean data (Col 4), noisy

inputs (Col 5) and noisy observations (Col 6) with max variance of added noise being (σ2
max)

i
and

(σ2
max)

t
, respectively. Reported test error has been averaged on three different runs with seeds 0, 1, and 2.

‡ indicates that the network diverges during training for one of the seeds.

Architecture Parameters #Blocks

Test error ↓
σ2
max = 0 (σ2

max)
i = 0.004 (σ2

max)
t = 0.004

FNO 2.37M 1 0.181± 0.005 0.207± 0.003 0.178± 0.008

FNO 4.15M 2 0.138± 0.007 0.163± 0.003 0.137± 0.006

FNO 7.71M 4 0.152± 0.006 0.203± 0.055 0.151± 0.008

FNO++ 2.37M 1 0.188± 0.002 0.217± 0.001 0.187± 0.005

FNO++ 4.15M 2 0.139± 0.004 0.170± 0.005 0.138± 0.005

FNO++ 7.71M 4 0.130± 0.005 0.168± 0.007 0.126± 0.007

FNO-WT 2.37M 1 0.089± 0.004 0.097± 0.008 0.087 ± 0.003
FNO-DEQ 2.37M 1 0.085 ± 0.005 0.096 ± 0.008 0.087 ± 0.004

Table 12.2: Results on incompressible Steady-State Navier-Stokes (viscosity=0.01): clean data (Col 4), noisy

inputs (Col 5) and noisy observations (Col 6) with max variance of added noise being (σ2
max)

i
and

(σ2
max)

t
, respectively. Reported test error has been averaged on three different runs with seeds 0, 1, and

2.

‡ indicates that the network diverges during training for one of the seeds.

erations and eventually saturate once we have a reasonable estimate of the fixed point. We observe that

increasing the number of fixed point solver iterations results in a better estimation of the fixed point.

For steady state PDEs, we expect the test error to reduce as the estimation of the fixed point improves.

Furthermore, at inference time we observe that the test error improves (i.e. reduces) with increase in the

number of fixed point solver iterations even though the FNO-DEQ is trained with fewer solver steps. For

Navier-Stokes with viscosity 0.01, at inference time we get a test MSE loss of 0.0744 with 48 solver steps

from 0.0847 when used with 24 solver steps.

184

12 Appendix for Chapter 5

This further bolsters the benefits of DEQs (and weight-tied architectures in general) for training neural

operators for steady-state PDEs. Moreover, performance saturates after a certain point once we have a

reasonable estimate of the fixed point, hence showing that more solver steps stabilize to the same solution.

Solver steps Absolute residual ↓ Relative residual ↓ Test Error ↓

2 212.86 0.8533 0.0777

4 18.166 0.0878 0.0269

8 0.3530 0.00166 0.00567

16 0.00239 1.13e-5 0.00566

32 0.000234 1.1e-6 0.00566

Table 12.3: Convergence analysis of fixed point for noiseless Darcy Flow: The test error, absolute residual

∥Gθ(zt)− zt∥2 and relative residual
∥Gθ(zt)−zt∥2

∥zt∥2 decrease with increase in the number of fixed point

solver iterations. The performance saturates after a certain point once we have a reasonable estimate of

the fixed point. We consider the noiseless case, where we do not add any noise to inputs or targets.

Solver steps Absolute residual ↓ Relative residual ↓ Test Error ↓

4 544.16 0.542 0.926

8 397.75 0.408 0.515

16 150.33 0.157 0.147

24 37.671 0.0396 0.0847

48 5.625 0.0059 0.0744

64 3.3 0.0034 0.0746

Table 12.4: Convergence analysis of fixed point for noiseless incompressible Steady-State Navier-Stokes with viscos-

ity=0.01: The test error, absolute residual ∥Gθ(zt) − zt∥2 and relative residual
∥Gθ(zt)−zt∥2

∥zt∥2 decrease

with increase in the number of fixed point solver iterations. The performance saturates after a certain

point once we have a reasonable estimate of the fixed point. We consider the noiseless case, where we do

not add any noise to inputs or targets.

185

12 Appendix for Chapter 5

(a) Training Loss Curve

(b) Test Loss Curve

Figure 12.4: Training and Test Loss Curves for Steady-State Navier-Stokes with viscosity 0.01. The x axis is the

number of epochs and y axis is the MSE loss in log scale. Note that while all the models converge to

approximately the same MSE loss value while training, DEQs and weight-tied networks get a better

test loss in fewer epochs.

186

12 Appendix for Chapter 5

Architecture Parameters #Blocks

Test error ↓
σ2
max = 0 (σ2

max)
i = 0.001 (σ2

max)
t = 0.001

FNO 2.37M 1 0.0080± 5e-4 0.0079± 2e-4 0.0125± 4e-5

FNO 4.15M 2 0.0105± 6e-4 0.0106± 4e-4 0.0136± 2e-5

FNO 7.71M 4 0.2550± 2e-8 0.2557± 8e-9 0.2617± 2e-9

FNO++ 2.37M 1 0.0075± 2e-4 0.0075± 2e-4 0.0145± 7e-4

FNO++ 4.15M 2 0.0065± 2e-4 0.0065± 9e-5 0.0117± 5e-5

FNO++ 7.71M 4 0.0064± 2e-4 0.0064± 2e-4 0.0109 ± 5e-4

FNO-WT 2.37M 1 0.0055 ± 1e-4 0.0056 ± 5e-5 0.0112± 4e-4

FNO-DEQ 2.37M 1 0.0055 ± 1e-4 0.0056 ± 7e-5 0.0112± 4e-4

Table 12.5: Results on Darcy flow: clean data (Col 4),noisy inputs (Col 5) and noisy observations (Col 6) with max

variance of added noise being (σ2
max)

i
and (σ2

max)
t
, respectively. Reported test error has been averaged

on three different runs with seeds 0, 1, and 2. Here, S-FNO++, S-FNO-WT and S-FNO-DEQ are

shallow versions of FNO++, FNO-WT and FNO-DEQ respectively.

187

13 Appendix for Chapter 6

13.1 Training details

In this section, we will provide a detailed description of the training hyperparameters used in the KS

experiments of Section 6.6.1, in the Burgers experimente of section ?? and the Navier Stokes experiments

of section 6.6.2. We start with the training hyperparameters. All our experiments used a learning rate of

0.001. For the number of epochs, in KS and Burgers, the training was done over 200 epochs with cosine

annealing learning scheduling [Loshchilov and Hutter, 2017]; whereas in Navier Stokes we trained for

300 epochs and halved the learning rate every 90. As for the number of samples, KS and Burgers were

trained with 2048 samples and Navier Stokes with 1024 samples. Lastly, we observed that the batch size

was a sensitive hyperparameter for both the memory and memoryless models (it seemed to affect both

equally) so we ran a sweep at each experiment to select the best performing one. In the results shown in

the paper, KS and Navier Stokes use a batch size of 32, and Burgers a batch size of 64.

Another relevant detail is the memory length in training, that is, the number of past states that were fed

to the memory layer in the MemNO model. In the KS and Burgers experiments, the maximum memory

lengths are 20 and 25 (which are the same as the number of timesteps of the dataset). That means that for

the last timestep, the previous 19 or 24 states were fed into the memory layer. However, for GPU memory

limitations in Navier Stokes the memory length was 16, half the number of timesteps of each trajectory

in the dataset. In this case, the memory was reset after the 16th timestep, i.e. for the 16th timestep the 15

past states were fed to the memory model, yet for the 17th timestep only the 16th timestep was fed. Then,

for the 18th timestep, the 17th and 16th were fed, and so on.

As in [Tran et al., 2023], experiments were trained using teacher forcing. This means that for the pre-

diction of the i-th timestep during training, the ground truth of the i − 1 previous steps was fed to the

model (as opposed to the prediction of the model for such steps).

We ran our experiments on A6000/A6000-Ada GPUs. The Navier Stokes 2D experiments required

around 34GB of GPU memory for the batch size of 32 and took around 5 hours to finish, whereas the

rest of experiments in 1D required a lower GPU memory (less than 10GB) and each run took around 1

or 2 hours, depending on the resolution.

13.2 Ablations on the Memory layer

In this section we present two ablations regarding the memory layer of MemNO.

188

13 Appendix for Chapter 6

13.2.1 Ablation: Choice of sequential model

In section 6.5.3 we introduced MemNO as an architecture framework which allowed the introduction

of memory through any choice of a sequential layer, which we chose as S4 in the previous experiments.

In this section, we explore two other candidates for the sequential layers: a Transformer and an LSTM.

We introduce Transformer-FFNO (T-FFNO) and LSTM-FFNO as two models that are identical to

S4FFNO except in the sequential layer, where a Transformer and an LSTM are used respectively. The

Transformer layer includes causal masking and a positional encoding, which is defined for pos across the

time dimension and i across the hidden dimension by:

PE(pos, 2i) = sin

(
pos

10000
2i

dim_model

)
PE(pos, 2i+ 1) = cos

(
pos

10000
2i

dim_model

)
We show results for the KS dataset with viscosityν = 0.15 and different resolutions. This dataset was gen-

erated using a resolution of 256 and contains 4096 samples, twice as many compared to the KS datasets of

??, given that Transformers are known to perform better in high-data regimes. The results are shown in

Figure 13.1. TFFNO performs significantly worse than S4FFNO across almost all resolutions, and even

performs worse than FFNO. In contrast, LSTM-FFNO outperforms FFNO, which shows that MemNO

can work with other sequential models apart from S4. The memory term in Equation 6.6 is a convolu-

tion in time, which is equivalent to the S4 layer and very similar to a Recurrent Neural Network (RNN)

style layer, as showed in Gu et al. [2022b]. We believe that this inductive bias in the memory layer is the

reason why both S4FFNO and LSTM-FFNO outperform FFNO. However, S4 was designed with a bias

for continuous signals and has empirically proven better performance in these kind of tasks [Gu et al.,

2022b], which is in agreement with its increased performance over LSTMs in this experiment. Addition-

ally, we observed that LSTMs were unstable to train in Navier Stokes 2D datasets.

Lastly, we make two remarks. Firstly, we believe that Transformers performed worse due to overfitting,

given that the train losses were normally comparable or even smaller than the train losses of the rest of the

models at each resolution. We hypothesize that the full access to the past of Transformers models might

lead to exploiting spurious correlations during training. Modifications of the Transformer layer or to

the training hyperparameters as in other works [Hao et al., 2024a, Cao, 2021, Hao et al., 2023a] might

solve this issue. Secondly, recently there has been a surge of new sequential models such as Mamba [Gu

and Dao, 2023b, Dao and Gu, 2024b], RWQK [Peng et al., 2023], xLSTM [Beck et al., 2024] or LRU

[Orvieto et al., 2023]. We chose S4 over Mamba-type architectures because in our experiments the PDE

temporal dynamics do not change, and thus we do not expect the input-dependent selectivity mechanism

to be necessary. However, we leave it as future work to study which of these sequential model has better

overall performance, and hope that our study on the settings where the memory effect is relevant can help

make accurate comparisons between them.

13.2.2 Ablation: memory layer configuration

In Section 6.5.3 we introduced the memory layer in MemNO as a single layer to be interleaved with neural

operator layers. In our experiments, we inserted it after the second layer of a four layer neural operator.

189

13 Appendix for Chapter 6

Figure 13.1: Performance of FFNO, S4FFNO and T-FFNO and LSTM-FFNO in KS with viscosity ν = 0.15.

In this section, we explore the impact of having different layer configurations, including the possibility

of having several memory layers. We will denote the configurations with a sequence of S and T letters.

S means a neural operator layer (some sort of Spatial convolution), and T a memory layer (some sort of

Time convolution). For example, SSTSS denotes the architecture of our experiments, where we have 2

neural operators layers, followed by a memory layer, followed by other 2 neural operator layers. Similarly,

SSSST denotes 4 neural operators layers followed by a memory layer. In Table 13.1, we present the results

for the KS dataset with ν = 0.1 and final time of 4 seconds for several models. We include the S4FFNO

model we used in previous experiments in the first row (with configuration SSTSS), and the FFNO model

in the last row. In the middle rows, we show different configurations of memory and neural operator

layers. It can be observed that all models with at least a memory layer outperform FFNO. There are slight

differences between configurations, yet we focused mainly on the comparison to the memoryless model.

For that reason, we fixed SSTSS configuration in our previous experiment, which was the most efficient

(only one memory layer) and symmetric. We leave as further work determining if there are settings where

a given configuration pattern can be substantially better than the rest.

13.3 Appendix: Quantifying the effect of memory

Proof. We proceed to the Equation 6.9 first. Note that u1(t), ∀t ≥ 0 can be written as u1(t) = a
(t)
0 e0+

a
(t)
1 e1. Moreover, by Proposition 2, we have

∂a
(t)
0

∂t
= 2Ba

(t)
1 (13.1)

∂a
(t)
1

∂t
= a

(t)
1 +Ba

(t)
0 (13.2)

190

13 Appendix for Chapter 6

Architecture

nRMSE ↓
Resolution 32 Resolution 48 Resolution 64

S4FFNO (SSTSS) 0.123± 0.011 0.086± 0.004 0.015 ± 0.001

S4FFNO (SSSST) 0.142± 0.009 0.069± 0.001 0.017± 0.001

S4FFNO (STSSTS) 0.141± 0.006 0.064 ± 0.002 0.019± 0.001

S4FFNO (STSTSTST) 0.113 ± 0.006 0.070± 0.004 0.017± 0.001

S4FFNO (TSSSS) 0.129± 0.007 0.080± 0.003 0.017± 0.001

FFNO 0.294± 0.004 0.138± 0.013 0.021± 0.002

Table 13.1: KS, ν = 0.1. The final time is 4 seconds and the trajectories contain 20 timesteps. For each architecture,

we tried 4 learning rates (0.002, 0.001, 0.0005 and 0.00025, each with three different seeds. We present

the results of the learning rate with the lowest nRMSE averaged across the three seeds. The standard

deviation is also with respect to the seeds.

In matrix form, these equations form a linear matrix ODE:

∂

∂t

(
a
(t)
0

a
(t)
1

)
=

(
0 2B
B 1

)(
a
(t)
0

a
(t)
1

)

The solution of this ODE is given by

(
a
(t)
0

a
(t)
1

)
= exp

(
t

(
0 2B
B 1

))(
a
(0)
0

a
(0)
1

)
. By the first statement of

Lemma 46 and the non-negativity of a
(0)
0 , a

(0)
1 , we get:

a
(t)
0 ≤ 10e

√
2Bt
(
a
(0)
0 + a

(0)
1

)
, (13.3)

a
(t)
1 ≤ 10e

√
2Bt
(
a
(0)
0 + a

(0)
1

)
(13.4)

We proceed to Equation 6.10. Note that for any s ≥ 0, we can write u2(s) = â
(s)
0 e0 + â

(s)
1 e1 with

â
(0)
0 = a

(0)
0 and â

(0)
1 = a

(0)
1 . By Proposition 2, we have

QLu2(x) = Bâ
(s)
1 e2(x)

Moreover, given a function v(x), the action of the operator expQL(t̃) on v is given by the solution

w(t̃, x) to the PDE

∂

∂t
w(t, x) = QLw(t, x)

w(0, x) = v(x)

If w(t, x) =
∑

n∈N0
b
(t)
n en and ∀n ∈ N0, b

(0)
n ≥ 0, we are interested in solving the previous PDE with

initial conditions b
(0)
2 = Bâ

(s)
1 and b

(0)
n = 0 ∀n ̸= 2.

We claim that the coefficients â
(t)
n ≥ 0 ∀t > 0 and ∀n ∈ {0, 1}. For t = 0 this is by definition, and we

will prove it for all t by way of contradiction. Suppose the claim is not true, then there exists a t∗ > 0,

191

13 Appendix for Chapter 6

and some n∗ ∈ {0, 1} such that â
(t∗)
n∗ = 0, and â

(s)
n > 0 ∀n ∈ {0, 1} and ∀s < t∗. But from continuity

this implies that there exists 0 < t′ < t∗ such that
∂
∂t
â
(t′)
n∗ < 0. However, it can be easy to see that if

â
(s)
n > 0 ∀s ≤ t′, then P1Lu2(t

′) > 0 and P1L
∫ t′

0
expQL(t− s)u2(s)ds > 0. Therefore, from

Equation 6.10,
∂
∂t
â
(t′)
n∗ > 0, which is a contradiction.

This claim implies that b
(0)
n ≥ 0 ∀n ∈ N, and in turn it implies that b

(t)
n ≥ 0 ∀n ∈ N, t > 0. Applying

QL results in the following inequalities for the coefficients b
(t)
1 , b

(t)
2 , b

(t)
3 :

∂

∂t
b
(t)
1 ≥ b

(t)
1 +Bb

(t)
2 ≥ Bb

(t)
2 (13.5)

∂

∂t
b
(t)
2 ≥ Bb

(t)
1 + 4b

(t)
2 +Bb

(t)
3 ≥ Bb

(t)
1 +Bb

(t)
3 (13.6)

∂

∂t
b
(t)
3 ≥ Bb

(t)
2 + 9b

(t)
3 ≥ Bb

(t)
2 (13.7)

Thus, we can write a linear matrix ODE for the vector (b
(t)
1 , b

(t)
2 , b

(t)
3):

∂

∂t

b
(t)
1

b
(t)
2

b
(t)
3

 ≥
 0 B 0
B 0 B
0 B 0


b

(t)
1

b
(t)
2

b
(t)
3

 (13.8)

Therefore, using Lemma 47, for sufficiently large B we have b
(t−s)
2 ≥ Be

√
2B(t−s)

10
â
(s)
1 .

Hence, if we write

∫ t

0
expQL(t− s)QLu2(s)ds in the basis {en}n∈N0 , the coefficient for e2 will be

lower bounded by ∫ t

0

1

10
BeB(t−s)a

(s)
1 ds

Applying the second statement of Lemma 46 and using the non-negativity of a
(0)
0 and a

(0)
1 , we have

â
(s)
1 ≥ 1

10
e
√
2Bs
(
a
(0)
0 + a

(0)
1

)
. Hence, the coefficient for e2 is lower bounded by∫ t

0

1

10
Be

√
2B(t−s) 1

10
e
√
2Bs
(
a
(0)
0 + a

(0)
1

)
ds ≥ Bt

100
e
√
2Bt
(
a
(0)
0 + a

(0)
1

)
We finally need to consider what happens after applying the outermost operatorP1L. Because of Propo-

sition 2 again, applying L makes the coefficient in front of e1 at least
B2t
100

e
√
2Bt
(
a
(0)
0 + a

(0)
1

)
. Finally,

applyingP1 preserves the coefficient in front of e1.

192

13 Appendix for Chapter 6

Hence, equation Equation 6.10 results in the following evolution inequalities:

∂â
(t)
0

∂t
≥ 2Bâ

(t)
1 (13.9)

∂â
(t)
1

∂t
≥ â

(t)
1 +Bâ

(t)
0 +

B2t

100
e
√
2Bt
(
a
(0)
0 + a

(0)
1

)
(13.10)

Using the second statement of Lemma 46 again we have that â0(t) ≥ 1
10
e
√
2Bs
(
a
(0)
0 + a

(0)
1

)
. Thus,

dropping the (positive) term â
(t)
1 in equation 13.10, we have:

∂â
(t)
1

∂t
≥
(

1

10
+

Bt

100

)
Be

√
2Bt
(
a
(0)
0 + a

(0)
1

)
(13.11)

Integrating this equation yields:

â
(t)
1 ≥ a

(0)
1 +

1

200
e
√
2Bt
(√

2Bt+ 10
√
2− 1

)(
a
(0)
0 + a

(0)
1

)
(13.12)

Thus, we have a
(t)
1 ≳ Bte

√
2Bt
(
a
(0)
0 + a

(0)
1

)
. Together with equation 13.3, the claim of the Theorem

follows.

Lemma 46. There exists B > 0 sufficiently large such that for all t > 0 the matrix
(

0 2Bt
Bt t

)
satisfies:

∀i, j ∈ {1, 2}, exp(
(

0 2Bt
Bt t

)
)i,j ≤ 10 exp(

√
2Bt) (13.13)

∀i, j ∈ {1, 2}, exp(
(

0 2Bt
Bt t

)
)i,j ≥

1

10
exp(
√
2Bt) (13.14)

Proof. By direct calculation, we have:

exp(

(
0 2Bt
Bt t

)
) =

1

2
√
8B2 + 1

(√
8B2 + 1g(B, t)− h(B, t) 4Bh(B, t)

2Bh(B, t)
√
8B2 + 1g(B, t) + h(B, t)

)
where:

g(B, t) = e
1
2(

√
8B2+1+1)t + e−

1
2(

√
8B2+1−1)t

h(B, t) = e
1
2(

√
8B2+1+1)t − e−

1
2(

√
8B2+1−1)t

Thus, the statement follows.

193

13 Appendix for Chapter 6

Lemma 47. For all B > 0, the matrix

 0 B 0
B 0 B
0 B 0

 satisfies:

∀i, j ∈ {1, 2, 3}, exp(

 0 B 0
B 0 B
0 B 0

)i,j ≥
1

10
exp(
√
2B) (13.15)

Proof. By direct calculation:

exp(

 0 B 0
B 0 B
0 B 0

)i,j =

1

4
e−

√
2B

 2e
√
2B + e2

√
2B + 1

√
2e2

√
2B −

√
2 −2e

√
2B + e2

√
2B + 1√

2e2
√
2B −

√
2 2(e2

√
2B + 1)

√
2e2

√
2B −

√
2

−2e
√
2B + e2

√
2B + 1

√
2e2

√
2B −

√
2 2e

√
2B + e2

√
2B + 1


Thus, the statement follows.

194

14 Appendix for Chapter 7

14.0.1 Datasets

As mentioned in Section 9.8, we train our models using the datasets provided in the PDEBench [Takamoto

et al., 2022]. The time-dependent PDE families considered by our models are: Burgers Equation (1D),

Diffusion-Sportion (1D), Shallow-Water (2D), compressible Navier-Stokes (1D and 2D), incompressible

Navier-Stokes (2D), and Diffusion-Reaction (1D and 2D). For each s ∈ S, the number of points in the

n-point discretization W s
n is 128, i.e, n = 128. For PDEs where the PDEbench-provided grid has more

than 128 points in each dimension, we sample 128 equispaced points.

In this section, we provide few key properties and considerations for the PDEs used in this paper. The

initial conditions ḡ(0, x) for most of the datasets are sampled from a superposition of sinusoidal waves.

The set of coefficients and number of trajectories used per PDE are reported in Appendix Table 14.1. For

full details on the data generation process and the hyperparameters used to generate the PDE dataset, we

refer the reader to Takamoto et al. [2022].

Burgers Equation (1D)

Burgers equation is commonly used to model the nonlinear dynamics of various fluid dynamics systems.

Given the field u(t, x) ∈ (0, 2]× (0, 1)→ R the PDE is defined as follows:

∂tu(t, x) + ∂x
u2(t, x)

2
=

ν

π
∂xxu(t, x) (14.1)

Here ν is the diffusion coefficient or the viscosity of the liquid, and π is the density of the liquid.

Diffusion-Sorption Equation (1D)

Diffusion-Sorption is a nonlinear diffusive process slowed down by an external force that is dependent of

the state variable u R. This PDE is used to model groundwater contamination transport processes. The

PDE is defined as the following:

∂tu(t, x) =
D

R(u)
∂xxu(t, x), (14.2)

where x ∈ (0, 1), t ∈ (0, 500], and D = 5× 10−4
. For more details on the initial conditions, boundary

conditions and the function R(u), we refer the reader to Takamoto et al. [2022]. For our training, we

use 4500 trajectories for this PDE generated by varying the initial conditions.

195

14 Appendix for Chapter 7

Advection Equation (1D)

Given advection speed β, the advection equations are expressed as:

∂tu(t, x) + β∂xu(t, x) = 0

u(0, x) = u0(x)
(14.3)

where x ∈ (0, 1) and t ∈ (0, 2]. Various examples in this dataset are generated by sampling multiple

initial conditions from a super-position of sinusoidal waves as used in Takamoto et al. [2022].

Compressible Navier-Stokes (1D and 2D)

Given density ρ, velocity ḡ, pressure p, internal energy of the system ϵ the compressible Navier-Stokes

equations are defined as follows.

∂tp+∇ · (ρḡ) = 0,

ρ(∂tḡ + ḡ · ∇ḡ) = −∇p+ η∆ḡ +
(
ξ +

η

3

)
∇(∇ · ḡ)

∂t

(
ϵ+ ρ

∥ḡ∥22
2

)
+∇ ·

((
p+ ϵ+ ρ

ḡ2

2

)
ḡ − ḡ · σ′

)
= 0

(14.4)

Here, x ∈ (−1, 1) for 1D Navier-Stokes and x ∈ (0, 1)2 for 2D Navier-Stokes, and t ∈ (0, 1). Com-

pressible Navier-Stokes stokes are used to model multiple real-world phenomena in aerodynamics and

fluid dynamics.

Incompressible Fluid Navier-Stokes (2D)

We define the equations for incompressible fluid Navier-Stokes where we impose the condition that the

fluid is “incommpressible." That is, the equation follows the following condition:

∇ · u = 0 (14.5)

For density ρ and pressure p, the equations used to generate the data in Takamoto et al. [2022] are as

follows:

ρ(∂tu+ u · ∇u) = −∇pu+ η∆u+ f (14.6)

where f is an external forcing function, and Dirichlet boundary conditions. Here x ∈ [0, 1]2 and the

initial conditions u and the forcing term f are sampled from two-dimensional Gaussian random fields.

Please refer to Takamoto et al. [2022] for more details on the data generation process.

Reaction Diffusion (1D and 2D)

Reaction Diffusion are diffusive processes with external force applied to the system that may or may not

depend over the field variable ḡ. They are often used to model many thermodynamical systems.

1D reaction diffusion is defined as follows:

∂tu(t, x)− ν∂xxu(t, x) = ρu(t, x)(1− u(t, x)) (14.7)

196

14 Appendix for Chapter 7

for all x ∈ (0, 1) and t ∈ (0, 1].

For 2D reaction diffusion, let ḡ(t, x) = [u1(t, x), u2(t, x)]. Then the equations are defined as:

∂tu1(t, x) = ν1∂x1x1u1 + ν1∂x2x2u1 + u1 − u3
1 − k − u2

∂tu1(t, x) = ν2∂x1x1u2 + ν2∂x2x2u2 + u1 − u2

(14.8)

where k = 5× 10−3
and ν1 and ν2 are diffusion coefficients. Here x1 ∈ (−1, 1) and x2 ∈ (−1, 1) and

the initial conditions are sampled from a Gaussian random field.

Shallow-Water Equations (2D)

These are derived from Navier-Stokes and are a framework for modelling free-surface flow problems. We

denote by u1(x), and u2(x) as the velocities in the horizontal and vertical directions and h as the height

of the water and b defining the spatially varying bathymetry (the measurement of the depth of water in

oceans, rivers, or lakes). The shallow-water equations are defined as follows:

∂th+ ∂x1hu1 + ∂x2hu2 = 0,

∂thu1 + ∂x1

(
u2
1h+

1

2
grh

2

)
+ ∂x2u1u2h = −grh∂x1b,

∂thu2 + ∂x2

(
u2
2h+

1

2
grh

2

)
+ ∂x1u1u2h = −grh∂x2b,

(14.9)

where x ∈ [−2.5, 2.5]2 and gr is the gravitational acceleration.

Summary

The following table summarizes the coefficients of the datasets used to train and test our model (note

that 1D/2D Diffusion-Reaction only appear in the test set but not the training set). We also provide the

number of training and test trajectories. We generate the input-output pairs using autoregressive teacher-

forcing.

Table 14.1: For each PDE family, we select one set of coefficients and use the data for training and testing UPS.

Dimension Dataset Coefficients Num Train Trajectories Num Test Trajectories Timesteps Resolution

1D

Advection β = 0.4 4500 1000 41 128

Burgers ν = 0.001 4500 1000 41 128

Diffusion-Reaction ν = 0.5, ρ = 1.0 4500 1000 21 128

Diffusion-Sorption - 4050 100 21 128

Compressible Navier-Stokes η = ζ = 0.1, rand_periodic 4500 1000 21 128

2D

Shallow-Water - 405 10 101 128

Diffusion-Reaction - 405 10 101 128

Compressible Navier-Stokes M = η = ζ = 0.1, periodic 4500 1000 21 128

Incompressible Navier-Stokes M = 0.1, η = ζ = 1E − 8 4500 1000 21 128

197

14 Appendix for Chapter 7

14.0.2 Experiment Details

Training Hyperparameters

We use the following training hyperparameters for all of our experiments, unless otherwise specified. Due

to time constraint, we have not performed exhausitive hyperparameter search or tailor the hyperparame-

ters to each experiment setting.

• Batch size: 32

• Gradient accumulation: 1

• Gradient clipping: -1

• Dropout: 0

• Optimizer: Adam

• Learning rate: 5E-5

• Weight decay: 1E-5

• Training epoch: 20 for stage 1, 100 for stage 2

We use the CoNLL-2003 dataset [Sang and Meulder, 2003] as the reference dataset for alignment in stage

1.

Efficiency Analysis

We run all of our experiments on a single NVIDIA A6000. Table 14.2 show the detailed model size, per

epoch training time (in seconds), and total training time (in hours) for different network configurations.

Note that we train the models for 100 epochs.

Table 14.2: Trainable parameters and training time for each LLM backbone.

RoBERTa-Base RoBERTa-Large Flan-T5-Base CLIP-Base

Num Params 149M 387M 176M 132M

Per Epoch (s) 3200 7600 3500 3000

Total (hrs) 88 211 97 83

We reported additional metrics such as FLOPs and the time required for predicting a single step for a

PDE instance in Table 14.3, assuming the input data is 2D with 4 channels and resolution 128. We mainly

compared with unified models that have similar model sizes. Compared to these existing work, UPS has

lower FLOPs and shorter inference time. This shows that our model is ideal for deployment in practical

environments where both computational efficiency and speed are critical.

198

14 Appendix for Chapter 7

Table 14.3: Efficiency comparison for unified neural operators.

UPS-B MPP-B DPOT-M

Num Params 149M 116M 122M

Per Forward Pass FLOPs (G) 72.66 102.12 75.44

Single Step Inference Time (ms) 1.77 2.34 1.88

14.0.3 Detailed Experiment Results

2D-Only UPS

Table 14.4: Training UPS with all of the 2D datasets in PDEBench and compare with MPP and DPOT. Note

that beyond these PDEBench datasets, MPP is also pretrained on PDEArena [Gupta and Brandstet-

ter, 2022] and DPOT is pretrained on PDEArena [Gupta and Brandstetter, 2022] as well as CFD-

Bench [Yining et al., 2023]. Baseline results taken from Hao et al. [2024b]. ‘-’ means that the result is

not available.

Params PDEBench 2D Navier Stokes-(η, ζ) 2D Diff-React 2D Shallow-Water

(sorted within groups) 1,0.1 1,0.01 M1 0.1,0.1 0.1,0.01 M0.1

Small-

Sized

FNO 0.5M 0.098 0.096 0.097 0.360 0.170 0.265 0.12 0.0044

FFNO 1.3M 0.0212 0.052 0.0366 0.162 0.0452 0.104 0.0571 0.0116

GNOT 1.8M 0.0325 0.0420 0.0373 0.0228 0.0341 0.0285 0.0311 0.00678

Oformer 1.9M 0.0417 0.0625 0.0521 0.0254 0.0205 0.0229 0.0192 0.00717

Medium-

Sized

MPP-Ti 7M – – 0.0442 – – 0.0312 0.0168 0.0066

DPOT-Ti 7M 0.0173 0.0397 0.0285 0.0132 0.0220 0.0176 0.0321 0.00560

MPP-S 30M – – 0.0319 – – 0.0213 0.0112 0.0024

DPOT-S 30M 0.0153 0.0337 0.0245 0.0119 0.0187 0.0153 0.0379 0.00657

DPOT-M 122M 0.0116 0.0238 0.0177 0.00866 0.0129 0.0108 0.0292 0.0029

UPS-B (Ours) 149M 0.0112 0.0605 0.0277 0.0085 0.0124 0.0211 0.0243 0.0018

Large-

Sized

UPS-L (Ours) 387M 0.0102 0.0596 0.024 0.0083 0.0102 0.0209 0.0236 0.0015
MPP-L 400M – – 0.0208 – – 0.0147 0.0098 0.00220

DPOT-L 500M 0.0100 0.0216 0.0158 0.00872 0.0115 0.0101 0.0232 0.00233

DPOT-H 1.03B 0.00961 0.0180 0.0138 0.00847 0.0105 0.00948 0.0191 0.00199

Few-Shot Adaptation

Compared to full fine-tuning of stage 2, we lower the learning rate when performing few-shot adaptation

to prevent catastrophic forgetting.

• Batch size: 32

• Gradient accumulation: 1

• Gradient clipping: -1

• Dropout: 0

• Optimizer: Adam

199

14 Appendix for Chapter 7

• Learning rate: 1E-5

• Weight decay: 1E-5

• Epoch: 100

The following table reports the time required for few-shot experiments. Note that for Burgers equation,

we train the model using ν = 0.001, but the results here are for ν = 1.0.

Table 14.5: Time for few-shot experiments. Our model outperforms most existing baselines on these tasks by using

fewer than 500 samples and much shorter adaptation time.

Num Samples 1D Diffusion-Reaction 2D Diffusion-Reaction Burgers ν = 1.0
Per Epoch (s) Total (hrs) Per Epoch (s) Total (hrs) Per Epoch (s) Total (hrs)

10 2 0.05 12 0.33 3 0.08

50 10 0.28 48 1.33 10 0.28

100 23 0.64 112 3.11 40 1.11

500 112 3.11 512 14.22 96 2.67

Ablation on Longer Sequence Length

We studied the effect of embedding sequence length in Section 7.5.3 paragraph S5 of the main paper. The

results show that among l = {8, 20, 32}, larger l indeed leads to better performance. However, since

LLMs can support sequence lengths much longer than l = 32, we consider expanding the feature length

(the number of “tokens”) used to represent PDE data. See results below.

Advection Burgers Diffusion-Sorption Navier-Stokes Shallow-Water Navier-Stokes Incomp Navier-Stokes

1D 1D 1D 1D 2D 2D 2D

l = 32 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931
l = 64 0.0034 0.038 0.0009 0.0054 0.0015 0.0162 0.0988

While l = 64 performs slightly better on some tasks, increasing the sequence length means that (i) the

embedding network is going to be larger (since l also corresponds to the width of the FNO layers), and

(ii) the training time will increase as each sequence is longer. Both increase the training cost. Hence, we

want to select the l that achieves a balance between efficiency and effectiveness. That’s why we use l = 32
for our main experiments.

Long-Horizon Prediction

As stated in Section 7.3, our method mainly focuses on predicting the next step from the current step,

i.e., ˆ̄gst+1(x) = Gθ(ḡst (x)). However, we are also interested in the prediction capacity of our method

over a longer period of time. Thus, we study an additional setting that predicts ˆ̄gst+10(x). We show non-

autogressive evaluation results since otherwise we will only have very few time steps for each test PDE

trajectory. The table below shows that UPS is still effective for long-horizon prediction compared to

baselines like FNO. Even though the prediction interval is longer, the error rates only slightly increase

possible because we use non-autoregressive evaluation, so the errors do not accumulate.

200

14 Appendix for Chapter 7

Advection Burgers Diffusion-Sorption Navier-Stokes Shallow-Water Navier-Stokes Incomp Navier-Stokes

1D 1D 1D 1D 2D 2D 2D

∆t = 1 0.0027 0.0399 0.0009 0.0056 0.0016 0.0153 0.0931

∆t = 10 0.0034 0.04 0.0011 0.0074 0.0026 0.0189 0.134

14.0.4 Visualization

Burgers Equation

Diffusion-Sorption

201

14 Appendix for Chapter 7

1D Navier Stokes

We show Vx, density, and pressure.

Shallow Water

202

14 Appendix for Chapter 7

2D Navier Stokes

We show Vx, Vy, density, and pressure.

In the prediction for 2D compressible Navier-Stokes we see a few artifacts in our generation. Further-

more, for quantities like pressure, our network often seems to generate an overly smoothened output.

This could be because the 2D Navier-Stokes is the only PDE in our dataset that requires us to model pres-

sure, and therefore the network is biased towards predicting a uniform value, which in our case is 0. We

believe this can be avoided by adding more families of PDEs that model pressure, and is a fertile ground

for future work.

203

15 Appendix for Chapter 8

15.1 Deferred Proofs

15.1.1 Proof of Proposition 6

Proof. Let ϵi ∼ T (0, IT) be T i.i.d. random Gaussian vectors. Assuming Gaussian initialization for the

adjacency matrix A, it can be expressed as:

A[i, :] =
γϵi

∥ϵi∥+ exp(−Ψi)
. (15.1)

We first show that ∥A∥ ≤ γ < 1. From the concentration of the norm of a Gaussian random vector,

with high probability ∥ϵi∥ ≥
√
T for all tokens i. Since exp(−Ψi) ≥ 0, ∥ϵi∥ + exp(−Ψi) ≥

√
T .

Consider any unit vector u, then

∥Au∥ =
T∑
i=1

γϵTi u

∥ϵi∥+ exp(−Ψi)
≤ γ

T∑
i=1

ϵi√
T
≤ γ

√
Tϵ√
T

= γϵ < 1, (15.2)

with probability greater than 1−Φ(−1
γ
), were ϵi, ϵ ∼ N (0, 1). Finally, since the operator norm of ∥A∥

is less than one, we apply Banach’s Lemma to get,

∥(I −A)−1∥ ≤ 1

1− ∥A∥
, (15.3)

which implies that the inverse exists.

15.1.2 Proof of Proposition 9

Proof.

Var(CT
i hi) =

1

|p(i)|

∑
j∈p(i)

AijVar(CT
i hj) + ln(Aij)Var(CT

i Bivi)

, (15.4)

=
1

|p(i)|

∑
j∈p(i)

AijVar(CT
j hj) +

2

d
ln(Aij)

, (15.5)

204

15 Appendix for Chapter 8

where we have used the fact that Var(CT
j hj) = Var(CT

i hj), and that the variance of X 2
distribution

with d degrees of freedom is 2d. Let d ≥ 4, then

Var(CT
i hi) ≤

1

|p(i)|

∑
j∈p(i)

Aij +
2

d
ln(Aij)

 ≤ 1

|p(i)|
∑
j∈p(i)

1 ≤ 1, (15.6)

where we have used the fact that Aij ∈ [0, 1].

15.1.3 Proof of Proposition 10

Proof. In the structured masked attention (SMA) framework Dao and Gu [2024c], the computational

complexity is the cost of the matrix-vector multiplication by the mask matrix L = (I −A)−1
. In the

case of DAGs, A is (up to conjugation by a permutation) a lower-triangular matrix with |E| (number of

edges) non-zero entries. It suffices to analyze the cost of computing the multiplicationy = (I−A)−1x.

Rewriting as (I −A)y = x, y can be computed through Gaussian elimination on the matrix I −A,

which takes time proportional to the number of non-zero entries or |V|+ |E|.

In graph terminology, this operation can be viewed as a dynamic programming algorithm to propagate

features through the SSM update, where the ordering of edges to perform the update rule is given by the

Gaussian elimination ordering.

205

15 Appendix for Chapter 8

15.2 Additonal Experiments

15.2.1 MLM: Chimera on Undirected Line Graphs

For an undirected line graph (Figure 8.4, left), the adjacency matrix A takes the following form:

A =


0 a12 0 · · · 0
a21 0 a23 · · · 0
0 a32 0 · · · 0
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

0 · · · 0 0 · · · 0 0 aT−1,T 0

.
As discussed in Section 8.3.3, to ensure the existence of (I −A)−1

, we introduced a row-wise sum nor-

malization strategy, wherein we normalized each row of the adjacency matrix with

∑
j Aij +Ψi. How-

ever, since this constraint is designed for general graphs, it is not sufficiently expressive. Therefore, we in-

stead use a strictyly more expressive constraint for line graphs which enforces Aij · Aji + Ψi ≤ 1
4

on

each simple cycle of the graph.

Proposition 15. Under the above constraint, the inverse (I −A)−1 exists as for any two nodes, the sum of
all paths between them is upper bounded by

∑
i(1/4)

i ≤ 1/3.

15.2.2 Imagenet: Parameter Sharing Ablation

We study the trade-off between sharing parameters forB,C across different graphs as a domain-dependent

design choice. We explore four settings: No sharing, Complete sharing, Row-wise sharing, and Diagonal
sharing across the four DAGs. From Table 15.1, we observe that diagonal sharing achieves the best perfor-

mance, indicating it strikes the optimal tradeoff between parameter sharing and other modes of increas-

ing expressivity for modeling image data.

Method (22M)

Top-1 (%) Top-5 (%)

Acc AccEMA Acc AccEMA

None 77.10 76.13 93.55 93.15

Complete 77.25 76.09 93.75 93.21

Row-wise 77.46 76.57 93.76 93.37

Diagonal 77.80 76.69 93.87 93.53

Table 15.1: Ablation: Diagonal parameter sharing works

best.

206

15 Appendix for Chapter 8

15.3 Architectural Details

Figure 15.1: Chimera’s Architecture: The output of the Chimera layer is embedded within the gated block in-

troduced in Mamba-2 [Dao and Gu, 2024a]. Here X matrix denotes the input to the block, and

fc, fB, f∆ and fV are data dependent projections defined in Section 8.2. The operator ⊙ denotes

element-wise multiplications between matrices, and⊕ defines addition. The output from the Chimera

layer is passed through a Gated-MLP, a final projection fY , followed by a residual connection.

15.3.1 Masked Language Modeling

In Table 15.2, we provide the architectural and training details for BERT-B and Chimera on the MLM

task. For both the models, we follow the M2 recipe from Fu et al. [2023], adjusting the number of layers

to 12 for BERT-B and 23 for Chimera to control for the number of parameters. We conducted a small

sweep to fine-tune the learning rate for Chimera, choosing 8e− 4 over BERT-B’s 5e− 4.

15.3.2 Imagenet-1k Classification

For the image classification experiments, we largely follow the ViT-B recipe with the following adjust-

ments as shown in Table 15.4: To control for the number of parameters, we adjust the number of layers

207

15 Appendix for Chapter 8

Table 15.2: Architectural and Training Details for BERT-B and Chimera on MLM

Parameter BERT-B (110M) Chimera (110M)

Model dimension (dmodel) 768 768

Layers 12 23

Max sequence length 128 128

Num Heads 12 12

Head size 64 64

Optimizer Decoupled AdamW Decoupled AdamW

Learning rate 5e− 4 8e− 4
Optimizer momentum β1 = 0.9, β2 = 0.98 β1 = 0.9, β2 = 0.98
Weight decay 1e− 5 1e− 5
Batch size 4096 4096

Learning rate schedule Linear decay with warmup Linear decay with warmup

Training steps 70k 70k

MLM Probability 0.3 0.3

from 12 for ViT-B to 22 for Chimera. Additionally, we reduce the Cutmix augmentation from 1.0 to 0.1,

as Chimera’s stronger inductive bias mitigates the risk of overfitting.

In Table 15.4, we present the reduced setting used for our ablation studies in Tables 15.1 and 8.3, where

we match the number of parameters of ViT-S (22M).

15.3.3 Long Range Graph Benchmark

To train Chimera on the Long Range Graph Benchmark we follow a similar training recipe to that pro-

vided in Rampášek et al. [2022] where we replace the Transformer layers with Chimera layers. Moreover,

in line with the baselines, we make sure that our models have less than 500k parameters. While train-

ing Chimera on graphs we remove the Gated-MLP layer Z defined in Figure 15.1. We did this to keep

our training recipe as close to that provided in Rampášek et al. [2022] and highlight the effectiveness of

Chimera. The hyperparameters used to train Chimera are provided in Table 15.5.

208

15 Appendix for Chapter 8

Table 15.3: Hyperparameters used for ViT-B and Chimera for ImageNet-1k classification task

Parameter ViT-B (88M) Chimera (88M)
Image size 2242 2242

Optimizer AdamW AdamW

Optimizer momentum β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.999
Weight init trunc. normal (std=0.02) trunc. normal (std=0.02)

Learning rate 1e− 3 1e− 3
Weight decay 0.05 0.05

Batch size 1024 1024

Training epochs 310 310

Learning rate schedule cosine decay cosine decay

Warmup epochs 10 10

Warmup schedule linear linear

Patch Size 16 16

Layers 12 22

Num Heads 12 12

Droppath 0.3 0.3

Randaugment (9,0.5,layers=2) (9,0.5,layers=2)

Mixup 0.8 0.8

Cutmix 1.0 0.1

Random erasing 0.25 0.25

Label smoothing 0.1 0.25

Stochastic depth 0.1 0.25

Exp. mov. avg (EMA) 0.99996 0.99996

Table 15.5: Hyperparameters running Chimera on the Long Range Graph Benchmark

Peptides-Func Peptides-Struct PascalVOC-SP COCO-SP

Learning Rate 0.001 0.001 0.001 0.001

Optimizer Adam Adam Adam Adam

dropout 0.1 0.1 0.1 0.1

#layers 2 2 4 4

hidden dim. 256 256 128 128

head depth 2 2 2 2

batch size 32 32 32 32

#epochs 250 250 200 200

norm BatchNorm BatchNorm BatchNorm BatchNorm

MPNN GCN GCN GCN GCN

#Param. 461k 447k 498k 498k

209

15 Appendix for Chapter 8

Table 15.4: Key differences between the original and the ablation setting for Chimera

Parameter Chimera-S (2D)

Model dimension (dmodel) 384

Number of layers 22

Number of Heads 3

Droppath 0.1

210

16 Appendix for Chapter 9

16.1 Omitted Proofs from Section 9.5

In this section we give omitted proofs and lemmas from Section 9.5.

Lemma 48. Fixn ∈ N. LetG, Φ be as defined in Theorem 11. Then there is anO(n)-time algorithm that
computes a MAP evaluator for G with potential function class Φ.

Proof. Fix any J ∈ ΦE
. As preliminary notation, for each c, c0 ∈ {0, 1} and i, j ∈

√
n, let V (i, j) :=

{0} ∪ {(k, j) : 1 ≤ k ≤ i}, and let E(i, j) be the edge set of the induced subgraph G[V (i, j)]. Let

x̂i,j(c, c0; J) := argmin
x∈{0,1}V (i,j):

x0=c0 ∧x(i,j)=c

∑
(a,b)∈E(i,j)

J{a,b}(xa, xb),

Ĉi,j(c, c0; J) := min
x∈{0,1}V (i,j):

x0=c0 ∧x(i,j)=c

∑
(a,b)∈E(i,j)

J{a,b}(xa, xb).

For each j ∈ [
√
n], let

x̂j(c0; J) := x̂√
n,j

((
argmin
c∈{0,1}

Ĉ√
n,j(c, c0; J)

)
, c0; J

)
.

Finally, let x̂(c0; J) ∈ {0, 1}V be the vector which takes value c0 on vertex 0, and value x̂j(c0; J)i on

vertex (i, j) for all i, j ∈
√
n. Let

x̂(J) := argmax
c0∈{0,1}

pJ(x̂(c0; J)).

We claim that x̂(J) is a maximizer of pJ(x). Indeed, for any fixed c0 ∈ {0, 1}, x̂(c0; J) is a maxi-

mizer of pJ(x) subject to x0 = c0, because under this constraint the maximization problem decomposes

into

√
n independent maximization problems, one for each path in G, which by definition are solved by

x̂1(c0; J), . . . , x̂√
n(c0; J).

Moreover, it’s straightforward to see that for any fixed j, Ĉj(c0; J) can be computed in O(
√
n) time by

dynamic programming. Indeed for any i, j, Ĉi,j(c, c0; J) can be computed inO(1) time from Ĉi−1,j(0, c0; J)

and Ĉi−1,j(1, c0; J) as well as J{0,(i,j)} and J{(i−1,j),(i,j)}. Once the values Ĉi,j(c, c0; J) have been com-

puted for all i ∈ [
√
n] and c ∈ {0, 1}, the vector x̂j(c0; J) can be computed inO(

√
n) time via a reverse

scan over i =
√
n, . . . , 1. It follows that x̂(J) can be computed in O(n) time.

211

16 Appendix for Chapter 9

Figure 16.1: The graph G for which Theorem 11 exhibits a separation between edge message-passing and node

message-passing. The graph consists of

√
n paths of length

√
n, as well as a single “hub vertex” con-

nected to all other vertices.

Proof of Proposition 12. We claim that there is a node message-passing protocolP ′
onGwithT+1 rounds

that at each time t ∈ [T + 1] has computed

P ′
t(v; I) = (Pt−1(e; I))e∈MG(v).

We argue inductively. Since P0 ≡ 0, it’s clear that this can be achieved for t = 1. Fix any t > 1 and

suppose that P ′
t−1(u; I) = (Pt−2(e; I))e∈MG(u) for all u ∈ V and inputs I . For each v ∈ V , we define

a function f ′
t,v by

f ′
t,v((c(v

′))v′∈NG(v), (I(e))e∈MG(v))e⋆ := ft−1,e⋆((c(v)e)e∈MG(v), (c(v
⋆)e)e∈MG(v⋆), I(e

⋆))

for each e⋆ = (v, v⋆) ∈MG(v). Then by definition and the inductive hypothesis, we have

P ′
t(v; I)e⋆ = f ′

t,v((P
′
t−1(v

′; I))v′∈NG(v), (I(e))e∈MG(v))e⋆

= ft−1,e⋆((P
′
t−1(v; I)e)e∈MG(v), (P

′
t−1(v

⋆; I)e)e∈MG(v⋆), I(e
⋆))

= ft−1,e⋆((Pt−2(e; I))e∈MG(v), (Pt−2(e; I)e)e∈MG(v⋆), I(e
⋆))

= Pt−1(e
⋆; I)

for any edge e⋆ = (v, v⋆) ∈ E, since MG(e) = MG(v) ∪MG(v
⋆). This completes the induction and

shows that P ′
T+1(v; I) = (PT (e; I))e∈MG(v) for all v, I . Replacing f ′

T+1,v by f̃T,v ◦ f ′
T+1,v completes

the proof.

16.2 Omitted Proofs from Section 9.7

Proof of Theorem 13. Without loss of generality, we may assume that the functions (f sym
t)t∈[T] and f̃ sym

are all the identity function (on the appropriate domains). The reason is that any symmetric edge message-

passing protocol P̃ on T rounds may be simulated by running P and then applying a universal function

(depending only on P̃) to each node’s output value – see Lemma 49.

We argue by induction that for each t ∈ [T], there is a (t + 1)-round symmetric node message-passing

protocol that, on any input I , computes the function Qt(u; I) := {{Pt(e; I) : e ∈MG(u)}} for every

node u ∈ V . Consider t = 1. For any e = (u, v) ∈ E, we have by symmetry and the initial assumption

that

P1(e; I) = (I(e), 0, {{{{0 : v′ ∈ NG(u)}}, {{0 : u′ ∈ NG(v)}}}}).

212

16 Appendix for Chapter 9

We define a two-round node message-passing protocol on G where the first update at node u computes

P ′
1(u; I) = {{I({u, v}) : v ∈ NG(u)}}

and the second update at node u computes

(P ′
1(u; I), {{(P ′

1(v; I), I({u, v})) : v ∈ NG(u)}}) 7→ {{(I({u, v}), 0, |NG(u)|, |P ′
1(v; I)|) : v ∈ NG(u)}}

7→ {{(I({u, v}), 0, {{|NG(u)|, |P ′
1(v; I)|}}) : v ∈ NG(u)}}

= {{P1({u, v}; I) : v ∈ NG(u)}} =: P ′
2(u; I)

since |P ′
1(v; I)| = |NG(v)|. By construction, this protocol is symmetric, which proves the induction for

step t = 1.

Now pick any t > 1. For any e = {u, v} ∈ E, we have

Pt(e; I) = (I(e), Pt−1(e; I), {{Qt−1(u; I), Qt−1(v; I)}})

By the induction hypothesis, there is a t-round symmetric node message-passing protocolP ′
that, at node

v on input I , computes

P ′
t(v; I) = {{Pt−1({v, v′}; I) : v′ ∈ NG(v)}} = Qt−1(v; I).

Note that since Pt−1(e; I) is an element of the tuple Pt(e; I), for each 1 ≤ s ≤ t − 1 there is a fixed

function γs such that γs(Qt−1(v; I)) = Qs(v; I) for all v, I . Using this fact, we extend P ′
to t + 1

rounds, defining the update at round t+ 1 and node u as follows:

(P ′
t(u; I), {{(P ′

t(v; I), I({u, v})) : v ∈ NG(u)}})
= (Qt−1(u; I), {{(Qt−1(v; I), I({u, v})) : v ∈ NG(u)}})
7→ (Q1:t−1(u; I), {{(Q1:t−1(v; I), I({u, v})) : v ∈ NG(u)}})
7→ (Q1:t−1(u; I), {{(Q1:t−1(v; I), I({u, v})) : v ∈ NG(u)}})
= {{(I({u, v}), {{Q1:t−1(u; I), Q1:t−1(v; I)}}) : v ∈ NG(u)}}
7→ {{(I({u, v}), Pt−1({u, v}; I), {{Qt−1(u; I), Qt−1(v; I)}}) : v ∈ NG(u)}} =: P ′

t+1(u; I)

where Q1:t−1(u; I) refers to the tuple (Q1(u; I), . . . , Qt−1(u; I)). The first map is well-defined due to

the existence of the functions γ1, . . . , γt−1, and the final map is well-defined because the definition of

Pt−1({u, v}; I) can be iteratively unpacked, and it is ultimately a function of

(I({u, v}), {{Q1:t−1(u; I), Q1:t−1(v; I)}}).

This shows that P ′
computes Qt(v; I) at node u on input I . By construction, P ′

is symmetric. This

completes the induction. Since QT (u; I) is precisely the output of P at node u on input I (after the

node aggregation step), this shows thatP can be simulated by a (T +1)-round symmetric node message-

passing protocol on G.

Lemma 49. LetT ≥ 1, and letP = ((ft,e)t∈[T],e∈E, (f̃v)v∈V) be a symmetric edge message-passing proto-
col onG = (V,E)withT rounds. Consider theT -round edge message-passing protocolP ◦ = ((f ◦

t,e)t∈[T],e∈E, (f̃
◦
v)v∈V)

where for all t, e,

f ◦
t,e((c(e

′))e′∈MG(e), I(e)) := (I(e), c(e), {{c({u, v′}) : v′ ∈ NG(u)}}, {{c({u′, v}) : u′ ∈ NG(v)}}),

213

16 Appendix for Chapter 9

and for every v ∈ V ,
f̃ ◦
v ((c(e))e∈MG(v)) := {{c(e) : e ∈MG(v)}}.

Then there is a function h such that f̃v((PT (e; I))e∈MG(v)) = h(f̃ ◦
v ((P

◦
T (e; I))e∈MG(v))) for all v, I .

Proof. We prove by induction that for each t ∈ {0, . . . , T} there is a function ht such that Pt(e; I) =
ht(P

◦
t (e; I)) for all e, I . For t = 0 this is immediate from the convention thatP0 ≡ P ◦

0 ≡ 0. Fix any t ∈
{1, . . . , T}. Since P is symmetric, there is a function f sym

t so that for all e = (u, v) ∈ E and inputs I ,

Pt(e; I) = f sym
t (I(e), Pt−1(e; I), {{Pt−1({u, v′}; I) : v′ ∼ u}}, {{Pt−1({u′, v}; I) : u′ ∼ v}})

= f sym
t (I(e), ht−1(P

◦
t−1(e; I)), {{ht−1(P

◦
t−1({u, v′}; I)) : v′ ∼ u}}, {{ht−1(P

◦
t−1({u′, v}; I)) : u′ ∼ v}})

which is indeed a well-defined function (independent of e, I) of

P ◦
t (e; I) = (I(e), P ◦

t−1(e; I), {{P ◦
t−1({u, v′}; I) : v′ ∼ u}}, {{P ◦

t−1({u′, v}; I) : u′ ∼ v}}).

This completes the induction. Finally, sinceP is symmetric, there is a function f̃ sym
such that f̃v((PT (e; I))e∈MG(v)) =

f̃ sym({{PT (e; I) : e ∈MG(v)}}) for all v, I . Hence we can write

f̃v((PT (e; I))e∈MG(v)) = f̃ sym({{PT (e; I) : e ∈MG(v)}})
= f̃ sym({{hT (P

◦
T (e; I)) : e ∈MG(v)}})

which is a well-defined function (independent of v, I) of {{P ◦
T (e; I) : e ∈MG(v)}} as needed.

16.3 A quantitatively tight depth/memory separation

For each n ∈ N, let Kn := ([n], En) be the complete graph on [n]. In this section we show that there is

a function that can be computed by an edge message-passing protocol on Kn with constant rounds and

constant memory per processor, but for which any node message-passing protocol with T rounds and

B bits of memory requires TB ≥ Ω(n). We remark that this separation is quantitatively tight due to

Proposition 12, although it is possible that a larger (e.g. even super-polynomial in n) depth separation

may be possible if the node message-passing protocol is restricted to constant memory per processor.

At a technical level, the lower bound proceeds via a reduction from the set disjointness problem in com-

munication complexity, similar to the lower bounds in Loukas [2019].

Definition 39. Fix m ∈ N. The set disjointness function DISJm : {0, 1}m × {0, 1}m → {0, 1} is
defined as

DISJm(A,B) := 1[∀i ∈ [m] : AiBi = 0].

The following fact is well-known; see e.g. discussion in Håstad and Wigderson [2007].

Lemma 50. In the two-party deterministic communication model, the deterministic communication com-
plexity of DISJm is at least m.

The main result of this section is the following:

214

16 Appendix for Chapter 9

Theorem 16. Fix any even n ∈ N. Define g : {0, 1}En → {0, 1}n by

g(I)v := 1[∃{i, j} ∈ En : i, j ≤ n/2 ∧ I({i, j}) = I({n+ 1− i, n+ 1− j}) = 1]

for all I ∈ {0, 1}En and v ∈ [n]. Then the following properties hold:

• Any node message-passing protocol on Kn with T rounds and B bits of memory that computes g
requires TB ≥ Ω(n)

• There is an edge message-passing protocol on Kn with O(1) rounds and O(1) bits of memory that
computes g.

Proof. Let m :=
(
n/2
2

)
. Let P = (ft,v)t,v be a node message-passing protocol on Kn that computes

g with T rounds and B bits of memory. We design a two-party communication protocol for DISJm as

follows. Suppose that Alice holds input X ∈ {0, 1}m and Bob holds input Y ∈ {0, 1}m. Let us index

the edges {i, j} ∈ En with i, j ≤ n/2 by [m], and similarly index the edges {i, j} ∈ En with i, j > n/2
by [m], in such a way that edge {i, j} has the same index as edge {n+1− i, n+1−j}. Let I ∈ {0, 1}En

be defined by

I({i, j}) :=


X{i,j} if i, j ≤ n/2

Y{i,j} if i, j > n/2

0 otherwise

.

Initially, Alice computes P̂0(v) := 0 for all v ∈ {1, . . . , n/2}, and Bob computes P̂0(v) := 0 for all

v ∈ {n/2 + 1, . . . , n}. The communication protocol then proceeds in T rounds. At round t ∈ [T],

Alice sends (P̂t−1(v))1≤v≤n/2 to Bob, and Bob sends (P̂t−1(v))n/2+1≤v≤n to Alice. Alice then computes

P̂t(v) := ft,v((P̂t−1(v
′))v′∈[n], (I(e))e∈MKn (v)

)

for each 1 ≤ v ≤ n/2, and Bob computes the same for each n/2 < v ≤ n. Note that for any i ≤ n/2
and edge e ∈ MKn(i), Alice can compute I(e). Similarly, for any i > n/2 and edge e ∈ MKn(i),

Bob can compute I(e). Thus, this computation is well-defined. After round T , Alice and Bob output

1− P̂T (1) and 1− P̂T (n) respectively.

This defines a communication protocol. Since P̂t(v) ∈ {0, 1}B for each v ∈ [n] and t ∈ [T], the total

number of bits communicated is at most nBT . Moreover, by induction it’s clear that Alice and Bob

output 1−PT (1; I) and 1−PT (n; I) respectively. By assumption that P computes g and the fact that

g(I)v = 1−DISJm(X, Y) for all v ∈ [n], we have that1−PT (1; I) = 1−PT (n; I) = 0 ifDISJm(I) =
0, and 1 − PT (1; I) = 1 − PT (n; I) = 1 if DISJm(I) = 1. Thus, this communication protocol

computes DISJm. By Lemma 50, it follows that nBT ≥ m = Ω(n2), so BT = Ω(n) as claimed.

215

16 Appendix for Chapter 9

Next, we exhibit an edge message-passing protocol on Kn that computes g with six rounds and one bit

of memory. For 1 ≤ t ≤ 6 and e ∈ En, define ft,e : {0, 1}MG(e) × {0, 1} → {0, 1} as follows:

f1,{i,j}(x, y) := y

f2,{i,j}(x, y) := x{n+1−i,j}

f3,{i,j}(x, y) := x{i,n+1−j}

f4,{i,j}(x, y) := 1[y = x{i,j} ∧ i, j ≤ n/2]

f5,{i,j}(x, y) := 1[∃k ∈ [n] : x{i,k} = 1]

f6,{i,j}(x, y) := 1[∃k ∈ [n] : x{i,k} = 1].

Also define f̃v : {0, 1}MG(v) → {0, 1} for each v ∈ [n] by f̃v(x) := x{x,1}. It can be checked that the

computation of P at timestep t = 6 is

P6({i, j}; I) := 1[∃k, ℓ ∈ [n/2] : I({k, ℓ}) = I({n+ 1− k, n+ 1− ℓ})] = g(I).

From the definition of f̃ , it follows that P computes g.

16.4 Further details on synthetic task over Ising models

16.4.1 Background on belief propagation

A classical way to calculate the marginals {E[xi]} of an Ising model, when the associated graph is a tree,

is to iterate the message passing algorithm:

ν
(t+1)
i→j = tanh

hi +
∑

k∈∂i\j

tanh−1
(
tanh(Jik)ν

(t)
k→i

) (16.1)

When the graph is a tree, it is a classical result ([Mezard and Montanari, 2009], Theorem 14.1) that the

above message-passing algorithm converge to values ν∗
that yield the correct marginals, namely:

E[xi] = tanh

(
hi +

∑
k∈∂i

tanh−1(tanh(Jik)ν
∗
k→i)

)
.

The reason the updates converge to the correct values on a tree topology is that they implicitly simulate

a dynamic program. Namely, we can write down a recursive formula for the marginal of node i which

depends on sums spanning each of the subtrees of the neighbors of i (i.e., for each neighbor j, the sub-

graph containing j that we would get if we removed edge {i, j}).

If we root the tree at an arbitrary node r, we can see that after completing a round of message passing

from the leaves to the root, and another from the root to the leaves, each subtree of i will be (inductively)

calculated correctly.

Moreover, even though the updates Equation 16.1 are written over edges, the dynamic programming view

makes it clear an equivalent message-passing scheme can be written down where states are maintained

over the nodes in the graph. Namely, for each node v, we can maintain two values h
v,down

and hv,up,

216

16 Appendix for Chapter 9

which correspond to the values that will be used when v sends a message upwards (towards the root) or

downwards (away from the root). Then, for appropriately defined functions F,G (depending on the

potentials J and h), one can “simulate” the updates in Equation 16.1:

h
(t+1)
v,up

← F
(
{h(t)

w,up
: w ∈ v ∪ Children(v)}

)
(16.2)

h
(t+1)

v,down
← G

(
h
(t)

Parent(v),down
,
{
h
(t)
w,up

}
w∈Children(v)

)
(16.3)

Intuitively,hv,up captures the effective external field induced by the subtree rooted at v on Parent(v). Af-

ter the upward messages propagate, the root r can compute its correct marginal. Once h
Parent(v),down

is the correct marginal for Parent(v) at some step, h
v,down

will be the correct marginal for v at all subse-

quent steps.

16.4.2 GCN-based architectures to calculate marginals

The belief-propagation updates Equation 16.1 naturally fit the general edge-message passing paradigm

from Equation 9.2. In fact, they fit even more closely a “directed” version of the paradigm, in which

each edge {i, j}maintains two embeddings hi→j, hj→i, such that the embedding for direction hi→j de-

pends on the embeddings {hk→i}{k,i}∈E . With this modification to the standard edge GCN architecture

Equation 9.4, it is straightforward to implement Equation 16.1 with one layer, using a particular choice

of activation functions and weight matrices W (since, in particular, in our dataset all edge potentials Ji,j
are set to 1). Similarly, with a directed version of the node GCN architecture Equation 9.3, where each

node maintains an “up” embedding as well as a “down” embedding, it is straightforward to implement

the “node-based” dynamic programming solution Equation 16.2-Equation 16.3.

We call the architectures that do not maintain directionality Node-U and Edge-U (depending on whether

they use a node-based or edge-based GCN). We call the “directed” architectures Node-D and Edge-D

respectively. Since there are only initial node features (input as node potentials {hi}i∈), for the edge

based architectures we initialize the edge features as a concatenation of the node features of the end-

points of the edge. The results we report for each architecture are the best over a sweep of depth ∈
{5, 10, 15, 20, 25, 30} and width∈ {10, 32, 64}.

16.4.3 Edge-based models improve over node-based models

In Figure 16.2 we show the results for several tree topologies: a complete binary tree (of size 31), a path

graph (of size 30), and uniformly randomly chosen trees of size 30 (the results in Figure 16.2 are averaged

over 3 samples of tree). The architectures in the legend (Node-U, Edge-U, Node-D, Edge-D) are based

on a standard GCN, and detailed in Section 16.4.2

We can see that for both the undirected and directed versions, adding edge embeddings improves per-

formance. The improved performance of all directed versions compared to their undirected counterpart

is not very surprising: the standard, undirected GCN architecture treats all neighbors symmetrically —

217

16 Appendix for Chapter 9

Figure 16.2: Comparison of four architectures for calculating node marginals in an Ising model. The architectures

considered are node-embedding Equation 9.3 and edge-embedding Equation 9.4 versions of a GCN

(correspondingly labeled Node-U and Edge-U), as well as their “directed” counterparts, as described

in Section 16.4.2, correspondingly labeled Node-D and Edge-D. The x-axis groups results according

to the topology of the graph, the y-axis is MSE (lower is better). The mean and variances are reported

over 3 runs for the best choice of depth and width over the sweep described in Section 16.4.2.

hence, the directed versions can more easily simulate something akin to the belief propagation updates

Equation 16.1 as well as the node-based dynamic programming Equation 16.2-Equation 16.3.

218

16 Appendix for Chapter 9

219

Bibliography

Karl Abrahamson. Time-space tradeoffs for algebraic problems on general sequential machines. Journal
of Computer and System Sciences, 43(2):269–289, 1991.

William F Ames. Numerical methods for partial differential equations. Academic press, 2014.

Donald G Anderson. Iterative procedures for nonlinear integral equations. Journal of the ACM (JACM),

1965.

John David Anderson and J Wendt. Computational fluid dynamics, volume 206. Springer, 1995.

Cem Anil, Ashwini Pokle, Kaiqu Liang, Johannes Treutlein, Yuhuai Wu, Shaojie Bai, J Zico Kolter,

and Roger B Grosse. Path independent equilibrium models can better exploit test-time computation.

Advances in Neural Information Processing Systems, 35:7796–7809, 2022.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning

to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven discretiza-

tions for partial differential equations. Proceedings of the National Academy of Sciences, 116(31):15344–

15349, 2019.

Andrew R Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory, 39(3):930–945, 1993.

Cx K Batchelor and George Keith Batchelor. An introduction to fluid dynamics. Cambridge university

press, 1967.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks for

learning about objects, relations and physics. Advances in neural information processing systems, 29,

2016.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova, Michael

Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended long short-

term memory, 2024.

Ali Behrouz and Farnoosh Hashemi. Graph mamba: Towards learning on graphs with state space models,

2024.

220

Bibliography

Abderrahmane Bendali and Keddour Lemrabet. The effect of a thin coating on the scattering of a time-

harmonic wave for the helmholtz equation. SIAM Journal on Applied Mathematics, 56(6):1664–1693,

1996.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduction

and neural networks for parametric pdes. arXiv preprint arXiv:2005.03180, 2020.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduction

and neural networks for parametric PDEs. The SMAI journal of computational mathematics, 7:121–

157, 2021.

Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of political
economy, 81(3):637–654, 1973.

Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing in gnns

through the lens of effective resistance. In International Conference on Machine Learning, pages 2528–

2547. PMLR, 2023.

John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

Andres M Bran, Sam Cox, Andrew D White, and Philippe Schwaller. Chemcrow: Augmenting large-

language models with chemistry tools. arXiv preprint arXiv:2304.05376, 2023.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint arXiv:1711.07553,

2017.

Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Systems. Oxford University

Press, 2002.

Charles G Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics of
computation, 1965.

Joan Bruna, Benjamin Peherstorfer, and Eric Vanden-Eijnden. Neural galerkin schemes with active learn-

ing for high-dimensional evolution equations. Journal of Computational Physics, 496:112588, 2024.

Johannes Martinus Burgers. The nonlinear diffusion equation: asymptotic solutions and statistical prob-
lems. Springer Science & Business Media, 2013.

Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 44(9):5103–5113, 2021.

Shuhao Cao. Choose a transformer: Fourier or Galerkin. Advances in Neural Information Processing
Systems (NeurIPS 2021), 34, 2021. URL https://openreview.net/forum?id=ssohLcmn4-r.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks

with arbitrary activation functions and its application to dynamical systems. IEEE Transactions on
Neural Networks, 6(4):911–917, 1995.

221

https://openreview.net/forum?id=ssohLcmn4-r

Bibliography

Zhengdao Chen, Xiang Li, and Joan Bruna. Supervised community detection with line graph neural

networks. arXiv preprint arXiv:1705.08415, 2017.

Ziang Chen, Jianfeng Lu, and Yulong Lu. On the representation of solutions to elliptic PDEs in Barron

spaces. Advances in Neural Information Processing Systems, 34, 2021.

Ziang Chen, Jianfeng Lu, Yulong Lu, and Shengxuan Zhou. A regularity theory for static Schrödinger

equations on Rd
in spectral Barron spaces. arXiv preprint arXiv:2201.10072, 2022.

Hongwei Cheng, William Y Crutchfield, Zydrunas Gimbutas, Leslie F Greengard, J Frank Ethridge,

Jingfang Huang, Vladimir Rokhlin, Norman Yarvin, and Junsheng Zhao. A wideband fast multipole

method for the helmholtz equation in three dimensions. Journal of Computational Physics, 216(1):

300–325, 2006.

Kamal Choudhary and Brian DeCost. Atomistic line graph neural network for improved materials prop-

erty predictions. npj Computational Materials, 7(1):185, 2021.

Demetrios Christodoulou. The formation of shocks in 3-dimensional fluids, volume 2. European Math-

ematical Society, 2007.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi

Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai,

Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robin-

son, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, An-

drew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou,

Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language models, 2022.

John Crank and Phyllis Nicolson. A practical method for numerical evaluation of solutions of partial

differential equations of the heat-conduction type. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 43, pages 50–67. Cambridge University Press, 1947.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley Ho. La-

grangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through

structured state space duality. arXiv preprint arXiv:2405.21060, 2024a.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through

structured state space duality. In International Conference on Machine Learning (ICML), 2024b.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through

structured state space duality. In International Conference on Machine Learning (ICML), 2024c.

Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation. iii. SIAM
Journal on Numerical Analysis, 7(1):1–46, 1970.

Memoria di Ennio De Giorgi. Sulla differenziabilitae l’analiticita delle estremali degli integrali multipli

regolari. Ennio De Giorgi, page 167, 1957.

222

Bibliography

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical

image database. In CVPR, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-

rectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-

rectional transformers for language understanding. NAACL, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-

terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and

Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. Interna-
tional Conference on Learning Representations, 2021a.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-

terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is

worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021b.

Gideon Dresdner, Dmitrii Kochkov, Peter Norgaard, Leonardo Zepeda-Núñez, Jamie A. Smith,

Michael P. Brenner, and Stephan Hoyer. Learning to correct spectral methods for simulating turbu-

lent flows. 2022. doi: 10.48550/ARXIV.2207.00556. URL https://arxiv.org/abs/2207.00556.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.

Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, and

Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing Systems,
35:22326–22340, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier

Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24(43):1–48,

2023.

Matthias Ehrhardt and Ronald E Mickens. A fast, stable and accurate numerical method for the black–

scholes equation of american options. International Journal of Theoretical and Applied Finance, 11

(05):471–501, 2008.

Ronen Eldan and Ohad Shamir. The power of depth for feedforward neural networks. In Conference on
learning theory, pages 907–940. PMLR, 2016.

Björn Engquist and Lexing Ying. Fast directional multilevel algorithms for oscillatory kernels. SIAM
Journal on Scientific Computing, 29(4):1710–1737, 2007.

Lawrence C Evans. Partial Differential Equations. graduate studies in mathematics. american mathe-

matical society, 1998. ISBN 9780821807729.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.

223

https://arxiv.org/abs/2207.00556

Bibliography

I Faragó and J Karátson. The gradient-finite element method for elliptic problems. Computers & Math-
ematics with Applications, 42(8-9):1043–1053, 2001.

István Faragó and János Karátson. Numerical solution of nonlinear elliptic problems via preconditioning
operators: Theory and applications, volume 11. Nova Publishers, 2002.

Xavier Fernández-Real and Xavier Ros-Oton. Regularity theory for elliptic PDE. Forthcoming book,

2020.

Daniel Y Fu, Simran Arora, Jessica Grogan, Isys Johnson, Sabri Eyuboglu, Armin W Thomas, Benjamin

Spector, Michael Poli, Atri Rudra, and Christopher Ré. Monarch mixer: A simple sub-quadratic

gemm-based architecture. NeurIPS, 2023.

Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel McKenzie, Stanley Osher, and Wotao Yin. Jfb:

Jacobian-free backpropagation for implicit networks. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 36, pages 6648–6656, 2022.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit

models. Advances in Neural Information Processing Systems, 34:24247–24260, 2021.

David Gilbarg and Neil S Trudinger. Elliptic partial differential equations of second order. 2001.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message

passing for quantum chemistry. In International conference on machine learning, pages 1263–1272.

PMLR, 2017.

A. Gouasmi, E.J. Parish, and K. Duraisamy. A priori estimation of memory effects in reduced-order mod-

els of nonlinear systems using the mori–zwanzig formalism. Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, 473(2205):20170385, 2017. doi: 10.1098/rspa.2017.0385.

URL http://dx.doi.org/10.1098/rspa.2017.0385.

Dmitrii Yur’evich Grigor’ev. Application of separability and independence notions for proving lower

bounds of circuit complexity. Zapiski Nauchnykh Seminarov POMI, 60:38–48, 1976.

Philipp Grohs and Lukas Herrmann. Deep neural network approximation for high-dimensional elliptic

pdes with boundary conditions. arXiv preprint arXiv:2007.05384, 2020.

Philipp Grohs, Fabian Hornung, Arnulf Jentzen, and Philippe Von Wurstemberger. A proof that arti-

ficial neural networks overcome the curse of dimensionality in the numerical approximation of black-

scholes partial differential equations. arXiv preprint arXiv:1809.02362, 2018.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023a.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023b.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state

spaces. ICLR, 2022a.

224

http://dx.doi.org/10.1098/rspa.2017.0385

Bibliography

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state

spaces. In The International Conference on Learning Representations (ICLR), 2022b.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Re. How to train your HIPPO:

State space models with generalized orthogonal basis projections. In International Conference on
Learning Representations, 2023.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde model-

ing. arXiv preprint arXiv:2209.15616, 2022.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized PDE mod-

eling. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

Jiequn Han, Arnulf Jentzen, and E Weinan. Solving high-dimensional partial differential equations using

deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng,

Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In Inter-
national Conference on Machine Learning, pages 12556–12569. PMLR, 2023a.

Zhongkai Hao, Chengyang Ying, Zhengyi Wang, Hang Su, Yinpeng Dong, Songming Liu, Ze Cheng,

Jun Zhu, and Jian Song. Gnot: A general neural operator transformer for operator learning. arXiv
preprint arXiv:2302.14376, 2023b.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anandku-

mar, Jian Song, and Jun Zhu. DPOT: Auto-regressive denoising operator transformer for large-scale

PDE pre-training. March 2024a. URL https://github.com/thu-ml/DPOT.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anandku-

mar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-scale

pde pre-training, 2024b.

Johan Håstad and Avi Wigderson. The randomized communication complexity of set disjointness. The-
ory of Computing, 3(1):211–219, 2007.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,

2016.

Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary position embedding for vision

transformer. arXiv preprint arXiv:2403.13298, 2024.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in multidimen-

sional transformers. International Conference on Learning Representations, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–

1780, 11 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL https://doi.org/10.1162/

neco.1997.9.8.1735.

225

https://github.com/thu-ml/DPOT
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Bibliography

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal

approximators. Neural networks, 2(5):359–366, 1989.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation of an unknown map-

ping and its derivatives using multilayer feedforward networks. Neural networks, 3(5):551–560, 1990.

Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning neural

pde solvers with convergence guarantees. arXiv preprint arXiv:1906.01200, 2019.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.

Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265, 2019.

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its vari-

ants. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 8533–8537. IEEE, 2021.

Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, and Tuan Anh Nguyen. A proof that rectified

deep neural networks overcome the curse of dimensionality in the numerical approximation of semi-

linear heat equations. SN Partial Differential Equations and Applications, 1:1–34, 2020.

Sukjun Hwang, Aakash Lahoti, Tri Dao, and Albert Gu. Hydra: Bidirectional state space models through

generalized matrix mixers. arXiv preprint arXiv:2407.09941, 2024.

Ernst Ising. Beitrag zur theorie des ferro-und paramagnetismus. PhD thesis, Grefe & Tiedemann Ham-

burg, Germany, 1924.

Arnulf Jentzen, Diyora Salimova, and Timo Welti. A proof that deep artificial neural networks overcome

the curse of dimensionality in the numerical approximation of kolmogorov partial differential equa-

tions with constant diffusion and nonlinear drift coefficients. arXiv preprint arXiv:1809.07321, 2018.

Marcin P Joachimiak, J Harry Caufield, Nomi L Harris, Hyeongsik Kim, and Christopher J Mungall.

Gene set summarization using large language models. ArXiv, 2023.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,

Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate pro-

tein structure prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:

Fast autoregressive transformers with linear attention. In ICML, 2020.

Aaron Kelly, Andrés Montoya-Castillo, Lu Wang, and Thomas E. Markland. Generalized quantum

master equations in and out of equilibrium: When can one win? The Journal of Chemical Physics, 144

(18):184105, 05 2016. ISSN 0021-9606. doi: 10.1063/1.4948612. URL https://doi.org/10.1063/1.

4948612.

Yuehaw Khoo and Lexing Ying. Switchnet: a neural network model for forward and inverse scattering

problems. SIAM Journal on Scientific Computing, 41(5):A3182–A3201, 2019.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric pde problems with artificial neural

networks. arXiv preprint arXiv:1707.03351, 2017.

226

https://doi.org/10.1063/1.4948612
https://doi.org/10.1063/1.4948612

Bibliography

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric PDE problems with artificial neural

networks. European Journal of Applied Mathematics, 32(3):421–435, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907, 2016.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer.

Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy of
Sciences, 118(21):e2101784118, 2021.

Miglena N Koleva and Lubin G Vulkov. Numerical solution of the Monge-Ampère equation with an

application to fluid dynamics. In AIP Conference Proceedings, volume 2048, page 030002. AIP Pub-

lishing LLC, 2018.

David A Kopriva. Implementing spectral methods for partial differential equations: Algorithms for scien-
tists and engineers. Springer Science & Business Media, 2009.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error

bounds for Fourier neural operators. The Journal of Machine Learning Research, 22(1):13237–13312,

2021a.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew

Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021b.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stu-

art, and Anima Anandkumar. Neural operator: Learning maps between function spaces with appli-

cations to PDEs. Journal of Machine Learning Research, 24(89):1–97, 2023.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-

thinking graph transformers with spectral attention. Advances in Neural Information Processing Sys-
tems, 34:21618–21629, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional

neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25, pages 1097–1105. Curran Associates, Inc., 2012.

Gitta Kutyniok, Philipp Petersen, Mones Raslan, and Reinhold Schneider. A theoretical analysis of deep

neural networks and parametric pdes. arXiv preprint arXiv:1904.00377, 2019.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving ordinary

and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000, 1998.

Isaac E Lagaris, Aristidis C Likas, and Dimitris G Papageorgiou. Neural-network methods for boundary

value problems with irregular boundaries. IEEE Transactions on Neural Networks, 11(5):1041–1049,

2000.

Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for deeponets: A deep

learning framework in infinite dimensions. Transactions of Mathematics and Its Applications, 6(1):

tnac001, 2022.

227

Bibliography

Peter D Lax and Arthur N Milgram. Parabolic equations, volume 33 of annals of mathematics studies,

1954.

Holden Lee, Rong Ge, Tengyu Ma, Andrej Risteski, and Sanjeev Arora. On the ability of neural nets to

express distributions. arXiv preprint arXiv:1702.07028, 2017.

James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with fourier

transforms. NAACL, 2022.

AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra arising during

this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12–16, 1968.

Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-state
and time-dependent problems. SIAM, 2007.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-

masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative

reasoning problems with language models. Advances in Neural Information Processing Systems, 35:

3843–3857, 2022.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’ oper-

ator learning. arXiv preprint arXiv:2205.13671, 2022.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’ op-

erator learning. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:

//openreview.net/forum?id=EPPqt3uERT.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stu-

art, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.

arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stu-

art, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential equa-

tions. arXiv preprint arXiv:2003.03485, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stu-

art, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. In

Proceedings of the International Conference on Learning Representations (ICLR). ICLR, 2021a.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar Aziz-

zadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial differen-

tial equations. arXiv preprint arXiv:2111.03794, 2021b.

Jinbi Liang and Cunlai Pu. Line graph neural networks for link weight prediction. arXiv preprint
arXiv:2309.15728, 2023.

Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel Urtasun, and

Richard Zemel. Reviving and improving recurrent back-propagation. In International Conference on
Machine Learning, pages 3082–3091. PMLR, 2018.

228

https://openreview.net/forum?id=EPPqt3uERT
https://openreview.net/forum?id=EPPqt3uERT

Bibliography

Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on computing, 21(1):193–201,

1992.

Phillip Lippe, Bastiaan S Veeling, Paris Perdikaris, Richard E Turner, and Johannes Brandstetter. Pde-

refiner: Achieving accurate long rollouts with neural pde solvers. arXiv preprint arXiv:2308.05732,

2023a.

Phillip Lippe, Bastiaan S. Veeling, Paris Perdikaris, Richard E Turner, and Johannes Brandstetter. PDE-

refiner: Achieving accurate long rollouts with neural PDE solvers. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023b.

Xinliang Liu, Bo Xu, and Lei Zhang. Mitigating spectral bias for the multiscale operator learning with

hierarchical attention. October 2022. URL http://arxiv.org/abs/2210.10890.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,

Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach.

arXiv preprint arXiv:1907.11692, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin

Transformer: Hierarchical vision Transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations, 2017.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint
arXiv:1907.03199, 2019.

Andreas Loukas. How hard is to distinguish graphs with graph neural networks? Advances in neural
information processing systems, 33:3465–3476, 2020.

Jianfeng Lu and Yulong Lu. A priori generalization error analysis of two-layer neural networks for solving

high dimensional Schrödinger eigenvalue problems. arXiv preprint arXiv:2105.01228, 2021.

Jianfeng Lu, Yulong Lu, and Min Wang. A priori generalization analysis of the deep ritz method for

solving high dimensional elliptic equations. arXiv preprint arXiv:2101.01708, 2021.

Jiasen Lu, Christopher Clark, Sangho Lee, Zichen Zhang, Savya Khosla, Ryan Marten, Derek Hoiem,

and Aniruddha Kembhavi. Unified-io 2: Scaling autoregressive multimodal models with vision, lan-

guage, audio, and action. ArXiv, abs/2312.17172, 2023. URL https://api.semanticscholar.org/

CorpusID:266573555.

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Frozen pretrained transformers as universal

computation engines. Proceedings of the AAAI Conference on Artificial Intelligence, 36(7):7628–7636,

Jun. 2022.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for identify-

ing differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193, 2019.

229

http://arxiv.org/abs/2210.10890
https://api.semanticscholar.org/CorpusID:266573555
https://api.semanticscholar.org/CorpusID:266573555

Bibliography

Chao Ma, Jianchun Wang, and E Weinan. Model reduction with memory and the machine learning of

dynamical systems. August 2018. URL http://arxiv.org/abs/1808.04258.

Alaeddin Malek and R Shekari Beidokhti. Numerical solution for high order differential equations us-

ing a hybrid neural network—optimization method. Applied Mathematics and Computation, 183(1):

260–271, 2006.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph net-

works. Advances in neural information processing systems, 32, 2019.

Tanya Marwah, Zachary C Lipton, and Andrej Risteski. Parametric complexity bounds for approximat-

ing pdes with neural networks. arXiv preprint arXiv:2103.02138, 2021.

Tanya Marwah, Zachary C Lipton, Jianfeng Lu, and Andrej Risteski. Neural network approximations

of PDEs beyond linearity: Representational perspective. arXiv preprint arXiv:2210.12101, 2022.

Tanya Marwah, Ashwini Pokle, J Zico Kolter, Zachary Lipton, Jianfeng Lu, and Andrej Risteski. Deep

equilibrium based neural operators for steady-state pdes. Advances in Neural Information Processing
Systems, 36:15716–15737, 2023.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cranmer,

Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse, et al. Multi-

ple physics pretraining for physical surrogate models. arXiv preprint arXiv:2310.02994, 2023.

Nick McGreivy and Ammar Hakim. Weak baselines and reporting biases lead to overoptimism in ma-

chine learning for fluid-related partial differential equations. Nature Machine Intelligence, 2024. doi:

10.1038/s42256-024-00897-5. URL https://doi.org/10.1038/s42256-024-00897-5. Published on

September 25, 2024.

Marc Mezard and Andrea Montanari. Information, physics, and computation. Oxford University Press,

2009.

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics informed

neural networks (PINNs) for approximating PDEs. arXiv preprint arXiv:2006.16144, 2020.

Andrés Montoya-Castillo and David R. Reichman. Approximate but accurate quantum dynamics from

the Mori formalism: I. Nonequilibrium dynamics. The Journal of Chemical Physics, 144(18):184104,

05 2016. ISSN 0021-9606. doi: 10.1063/1.4948408. URL https://doi.org/10.1063/1.4948408.

Hazime Mori. Transport, collective motion, and brownian motion. Progress of theoretical physics, 33(3):

423–455, 1965.

Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Solving the wave equation with physics-

informed deep learning. arXiv preprint arXiv:2006.11894, 2020.

Fadl Moukalled, Luca Mangani, Marwan Darwish, F Moukalled, L Mangani, and M Darwish. The finite
volume method. Springer, 2016.

230

http://arxiv.org/abs/1808.04258
https://doi.org/10.1038/s42256-024-00897-5
https://doi.org/10.1063/1.4948408

Bibliography

Sadao Nakajima. On Quantum Theory of Transport Phenomena: Steady Diffusion. Progress of Theo-
retical Physics, 20(6):948–959, 12 1958. ISSN 0033-068X. doi: 10.1143/PTP.20.948. URL https:

//doi.org/10.1143/PTP.20.948.

John Nash. Parabolic equations. Proceedings of the National Academy of Sciences, 43(8):754–758, 1957.

John Nash. Continuity of solutions of parabolic and elliptic equations. American Journal of Mathemat-
ics, 80(4):931–954, 1958.

Claude Navier. Mémoire sur les lois du mouvement des fluides. éditeur inconnu, 1822.

CLMH Navier. Sur les lois des mouvement des fluides, en ayant egard a l’adhesion des molecules. In

Annales de Chimie et de Physique, volume 19, page 1821. Lavoisier Paris, France, 1821.

John Neuberger. Sobolev gradients and differential equations. Springer Science & Business Media, 2009.

Louis Nirenberg. Remarks on strongly elliptic partial differential equations. Communications on pure
and applied mathematics, 8(4):648–674, 1955.

Silvia Noschese, Lionello Pasquini, and Lothar Reichel. Tridiagonal toeplitz matrices: properties and

novel applications. Numerical linear algebra with applications, 20(2):302–326, 2013.

Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer Science &

Business Media, 2013.

Lars Onsager. Crystal statistics. i. a two-dimensional model with an order-disorder transition. Physical
Review, 65(3-4):117, 1944.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node clas-

sification. arXiv preprint arXiv:1905.10947, 2019.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,

and Soham De. Resurrecting recurrent neural networks for long sequences. In Andreas Krause, Emma

Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceed-
ings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 26670–26698. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.

press/v202/orvieto23a.html.

M Necati Özişik, Helcio RB Orlande, Marcelo J Colaço, and Renato M Cotta. Finite difference methods
in heat transfer. CRC press, 2017.

Eric Parish and Karthik Duraisamy. Non-markovian closure models for large eddy simulations using the

mori-zwanzig formalism. Physical Review Fluids, 2:014604, 01 2017. doi: 10.1103/PhysRevFluids.2.

014604.

Suhas V Patankar and D Brian Spalding. A calculation procedure for heat, mass and momentum transfer

in three-dimensional parabolic flows. In Numerical prediction of flow, heat transfer, turbulence and
combustion, pages 54–73. Elsevier, 1983.

231

https://doi.org/10.1143/PTP.20.948
https://doi.org/10.1143/PTP.20.948
https://proceedings.mlr.press/v202/orvieto23a.html
https://proceedings.mlr.press/v202/orvieto23a.html

Bibliography

Ravi G Patel, Nathaniel A Trask, Mitchell A Wood, and Eric C Cyr. A physics-informed operator re-

gression framework for extracting data-driven continuum models. Computer Methods in Applied Me-
chanics and Engineering, 373:113500, 2021.

Lawrence E Payne and Hans F Weinberger. An optimal Poincaré inequality for convex domains. Archive
for Rational Mechanics and Analysis, 5(1):286–292, 1960.

David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi

Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran Gv, Xuzheng He, Haowen Hou,

Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Krishna

Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang, Bolun Wang, Johan S

Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang Zhao, Peng Zhou, Qinghua

Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: Reinventing RNNs for the transformer era. May 2023.

URL http://arxiv.org/abs/2305.13048.

Dmytro Perekrestenko, Philipp Grohs, Dennis Elbrächter, and Helmut Bölcskei. The universal approx-

imation power of finite-width deep relu networks. arXiv preprint arXiv:1806.01528, 2018.

Henri Poincaré. Sur les équations aux dérivées partielles de la physique mathématique. American Journal
of Mathematics, pages 211–294, 1890.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua Bengio,

Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language models.

In ICML, 2023.

Stephen B Pope. Turbulent flows. Measurement Science and Technology, 12(11):2020–2021, 2001.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep con-

volutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish

Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from

natural language supervision. In International conference on machine learning, pages 8748–8763.

PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi

Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text

transformer. JMLR, 2020a.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi

Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text

transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020b.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-NO: U-shaped neural operators.

Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

232

http://arxiv.org/abs/2305.13048

Bibliography

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning (part i):

Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561,

2017.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial differential

equations. Journal of Computational Physics, 378:686–707, 2019.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique

Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Michael Reed and Barry Simon. Methods of modern mathematical physics. vol. 1. Functional analysis.
Academic San Diego, 1980.

Max Revay, Ruigang Wang, and Ian R Manchester. Lipschitz bounded equilibrium networks. arXiv
preprint arXiv:2010.01732, 2020.

Nicholas Roberts, Samuel Guo, Cong Xu, Ameet Talwalkar, David Lander, Lvfang Tao, Linhang Cai,

Shuaicheng Niu, Jianyu Heng, Hongyang Qin, Minwen Deng, Johannes Hog, Alexander Pfefferle,

Sushil Ammanaghatta Shivakumar, Arjun Krishnakumar, Yubo Wang, Rhea Sanjay Sukthanker,

Frank Hutter, Euxhen Hasanaj, Tien-Dung Le, Mikhail Khodak, Yuriy Nevmyvaka, Kashif Rasul,

Frederic Sala, Anderson Schneider, Junhong Shen, and Evan R. Sparks. Automl decathlon: Diverse

tasks, modern methods, and efficiency at scale. In Neural Information Processing Systems, 2021. URL

https://api.semanticscholar.org/CorpusID:265536645.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-

ical image segmentation. ArXiv, abs/1505.04597, 2015. URL https://api.semanticscholar.org/

CorpusID:3719281.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-

propagating errors. nature, 323(6088):533–536, 1986.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarithmic

depth. arXiv preprint arXiv:2402.09268, 2024a.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of

transformers. Advances in Neural Information Processing Systems, 36, 2024b.

Erik Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task: Language-

independent named entity recognition. In Conference on Computational Natural Language Learning,

2003. URL https://api.semanticscholar.org/CorpusID:2470716.

John E Savage. Models of computation, volume 136. Addison-Wesley Reading, 1998.

233

https://api.semanticscholar.org/CorpusID:265536645
https://api.semanticscholar.org/CorpusID:3719281
https://api.semanticscholar.org/CorpusID:3719281
https://api.semanticscholar.org/CorpusID:2470716

Bibliography

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science,

324(5923):81–85, 2009.

Junhong Shen, Mikhail Khodak, and Ameet Talwalkar. Efficient architecture search for diverse tasks. In

Advances in Neural Information Processing Systems (NeurIPS), 2022.

Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, and Ameet

Talwalkar. Cross-modal fine-tuning: align then refine. In Proceedings of the 40th International Con-
ference on Machine Learning, 2023.

Junhong Shen, Neil Tenenholtz, James Brian Hall, David Alvarez-Melis, and Nicolo Fusi. Tag-llm: Re-

purposing general-purpose llms for specialized domains, 2024.

Qiang Shi and Eitan Geva. A new approach to calculating the memory kernel of the generalized quan-

tum master equation for an arbitrary system–bath coupling. The Journal of chemical physics, 119(23):

12063–12076, 2003.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.

Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning, pages

31613–31632. PMLR, 2023.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recog-

nition. arXiv preprint arXiv:1409.1556, 2014.

J Sirignano and K Spiliopoulos DGM. A deep learning algorithm for solving partial differential equations.

ArXiv e-prints, 2017.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial

differential equations. Journal of computational physics, 375:1339–1364, 2018.

Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa Dehghani, Avital Oliver, Tim Salimans,

Shreya Agrawal, Jason Hickey, and Nal Kalchbrenner. Metnet: A neural weather model for precipita-

tion forecasting. arXiv preprint arXiv:2003.12140, 2020.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced

transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.09864.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael Ma-

honey, and Amir Gholami. Towards foundation models for scientific machine learning: Characteriz-

ing scaling and transfer behavior. arXiv preprint arXiv:2306.00258, 2023.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and Furu

Wei. Retentive network: A successor to transformer for large language models, 2023.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk

Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning.

Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

234

https://arxiv.org/abs/2104.09864

Bibliography

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk

Pflüger, and Mathias Niepert. PDEBENCH: An extensive benchmark for scientific machine learnin.

In ICLR 2023 Workshop on Physics for Machine Learning, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,

Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient transformers.

arXiv preprint arXiv:2011.04006, 2020.

Matus Telgarsky. Benefits of depth in neural networks. In Conference on learning theory, pages 1517–

1539. PMLR, 2016.

Matus Telgarsky. Neural networks and rational functions. arXiv preprint arXiv:1706.03301, 2017.

Roger Temam. Navier-Stokes equations: theory and numerical analysis, volume 343. American Mathe-

matical Soc., 2001.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-

terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An all-

mlp architecture for vision. NeurIPS, 2021.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing

the long-range graph benchmark. arXiv preprint arXiv:2309.00367, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée

Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand

Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language mod-

els. ArXiv, abs/2302.13971, 2023a. URL https://api.semanticscholar.org/CorpusID:257219404.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée

Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand

Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language mod-

els, 2023b. URL https://arxiv.org/abs/2302.13971.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized Fourier neural opera-

tors. arXiv preprint arXiv:2111.13802, 2021.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural opera-

tors. In The Eleventh International Conference on Learning Representations, 2023.

Renbo Tu, Nicholas Roberts, Mikhail Khodak, Junhong Shen, Frederic Sala, and Ameet Talwalkar.

NAS-bench-360: Benchmarking neural architecture search on diverse tasks. In Advances in Neural
Information Processing Systems (NeurIPS) Datasets and Benchmarks Track, 2022.

Kathryn Tunyasuvunakool, Jonas Adler, Zachary Wu, Tim Green, Michal Zielinski, Augustin Žídek,

Alex Bridgland, Andrew Cowie, Clemens Meyer, Agata Laydon, et al. Highly accurate protein struc-

ture prediction for the human proteome. Nature, 596(7873):590–596, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017a.

235

https://api.semanticscholar.org/CorpusID:257219404
https://arxiv.org/abs/2302.13971

Bibliography

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz

Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008, 2017b.

Ria Vinod, Pin-Yu Chen, and Payel Das. Reprogramming pretrained language models for protein se-

quence representation learning. arXiv preprint arXiv:2301.02120, 2023.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.

arXiv preprint arXiv:1804.07461, 2018.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue: A

multi-task benchmark and analysis platform for natural language understanding. In ICLR, 2019.

Chloe Wang, Oleksii Tsepa, Jun Ma, and Bo Wang. Graph-mamba: Towards long-range graph sequence

modeling with selective state spaces, 2024.

Ziming Wang, Tao Cui, and Xueshuang Xiang. A neural network with plane wave activation for

helmholtz equation, 2020.

E Weinan and Bing Yu. The deep ritz method: a deep learning-based numerical algorithm for solving

variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

E Weinan, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for high-

dimensional parabolic partial differential equations and backward stochastic differential equations.

Communications in Mathematics and Statistics, 5(4):349–380, 2017.

Hilary Weller, Philip Browne, Chris Budd, and Mike Cullen. Mesh adaptation on the sphere using op-

timal transport and the numerical solution of a Monge–Ampère type equation. Journal of Computa-
tional Physics, 308:102–123, 2016.

Ezra Winston and J Zico Kolter. Monotone operator equilibrium networks. Advances in neural infor-
mation processing systems, 33:10718–10728, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?

arXiv preprint arXiv:1810.00826, 2018.

Tuo Xu and Lei Zou. Rethinking and extending the probabilistic inference capacity of gnns. In The
Twelfth International Conference on Learning Representations, 2023.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:103–

114, 2017.

Luo Yining, Chen Yingfa, and Zhang Zhen. Cfdbench: A large-scale benchmark for machine learning

methods in fluid dynamics. 2023. URL https://arxiv.org/abs/2310.05963.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational

problems. arXiv preprint arXiv:1710.00211, 2017.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational

problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

236

https://arxiv.org/abs/2310.05963

Bibliography

Ming-Liang Zhang, Being J Ka, and Eitan Geva. Nonequilibrium quantum dynamics in the condensed

phase via the generalized quantum master equation. The Journal of chemical physics, 125(4), 2006.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn with

local structure awareness. arXiv preprint arXiv:2110.03753, 2021.

Robert Zwanzig. Memory effects in irreversible thermodynamics. Physical Review, 124(4):983, 1961.

Robert Zwanzig. Nonequilibrium Statistical Mechanics. Oxford University Press, New York, 2001.

ISBN 9780195140187.

237

	Beginnings
	Introduction
	Theoretical Results
	Empirical Results
	Graphs

	ML for PDEs: Theoretical Underpinnings
	Parametric Complexity Bounds for Approximating PDEs with Neural Networks
	Introduction
	Overview of Results
	Prior Work
	Notation and Definitions
	Main Result
	Proof of Main Result
	Defining a Convergent Sequence
	Approximating iterates by neural networks

	Applications to Learning Operators
	Conclusion and Future Work

	Benefits of Depth in Neural Approximations of PDEs
	Introduction
	Overview of Results
	Related Work
	Main Result
	Proof of Theorem 2
	Conclusion and Future Work

	Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
	Introduction
	Overview of Results
	Related Work
	Notation and Definition
	Barron Norms

	Main Result
	Proof of Main Result
	Convergence Rate of Sequence
	Bounding the Barron Norm

	Conclusion and Future Work

	ML for PDEs: Empirical Validation and Large Models
	Deep Equilibrium Based Neural Operators for Steady-State PDEs
	Introduction
	Related Work
	Preliminaries
	Neural Operators
	Equilibrium Models

	Problem setting
	Experiments
	Darcy Flow
	Steady-state Navier-Stokes Equations for Incompressible Flow

	Universal Approximation and Fast Convergence of FNO-DEQ

	On the Benefits of Memory for Modeling Time-Dependent PDEs
	Introduction
	Related Work
	Preliminaries
	Partial Differential Equations (PDEs)
	Mori-Zwanzig Formalism

	Theoretical motivation for memory: a simple example
	Experimental Setup
	Dataset generation
	Training and evaluation procedure
	Architecture Framework: Memory Neural Operator
	Instantiating the Memory Neural Operator framework: S4FFNO

	Memory helps in low-resolution and input noise: a case study
	Kuramoto–Sivashinsky equation (1D): study in low-resolution
	Navier-Stokes equation (2D): study in observation noise
	Relationship with fraction of unobserved modes

	Conclusion and Future Work

	UPS: Efficiently Building Foundation Models for PDE Solving via Cross-Modal Adaptation
	Introduction
	Related Work
	Methodology
	Unified Data Representation
	Unified Architecture

	Full Workflow and Training
	Experiments
	Achieving State-of-the-Art Results on PDEBench with Compute Efficiency
	Generalizing to Unseen PDEs with Data Efficiency
	Ablation Studies

	Conclusion and Future Work

	Graph Neural Networks: Architectures and Theory
	Chimera: State Space Models Beyond Sequences
	Introduction
	Preliminaries
	Overview of State Space Models
	SSM in the Structured Masked Attention Representation

	Chimera: Building Models for Any Topology
	Resolvent Of An Adjacency Matrix Accumulates Influence
	SSMs operate on a Directed Line Graph
	Generalizing SSMs to Arbitrary Topologies

	Chimera with improved efficiency
	Chimera on DAGs

	Experiments
	Masked Language Modeling
	ImageNet-1k Classification
	Long Range Graph Benchmark

	Conclusion and Future Work

	Towards Characterizing the Value of Edge Embeddings in Graph Neural Networks
	Introduction
	Overview of results
	Representational benefits from maintaining edge embeddings.
	Empirical benefits of edge-based architectures.

	Related Works
	Setup
	Depth separation between edge and node message passing protocols under memory constraints
	Depth separation under memory and symmetry constraints
	Symmetry alone provides no separation
	Empirical benefits of edge-based architectures
	Performance on common benchmarks
	A synthetic task for topologies with node bottlenecks
	A synthetic task for inference in Ising models

	Conclusions and future work

	Appendices
	Appendix for Chapter 2
	Brief Overview of Partial Differential Equations
	Proof of Proposition 1

	Perturbation Analysis
	Proof of Lemma 3
	Proof of Lemma 10

	Technical Lemmas: Perturbation Bounds
	Technical Lemmas: Manipulating Operators

	Appendix for Chapter 4
	Proofs from Section 4.6.1: Convergence Rate of Sequence
	Proof of Lemma 17
	Proof of Lemma 18
	Proof of Lemma 19: Convergence of Preconditioned Gradient Descent

	Error Analysis
	Proof of Lemma 24

	Proofs for Section 4.6.2: Bounding the Barron Norm
	Proof of Lemma 20: Barron Norm Increase after One Update
	Proof of Lemma 22: Final Barron Norm Bound
	Proof of Lemma 23
	Proof of Lemma 21: Barron Norm Algebra

	Existence Uniqueness and Definition of the Solution
	Proof of Existence and Uniqueness of Minima
	Proof of Lemma 15: Nonlinear Elliptic Variational PDEs
	Proof of Lemma 16: Poincare constant of Unit Hypercube

	Important Helper Lemmas
	Useful properties of Laplacian and Laplacian Inverse
	Some properties of Sub-Matrices

	Appendix for Chapter 5
	Implementation Details
	Datasets
	Darcy Flow
	Steady-State Incompressible Fluid Navier-Stoke

	Proof of Universal Approximation
	Fast Convergence for Newton Method
	Additional experimental results

	Appendix for Chapter 6
	Training details
	Ablations on the Memory layer
	Ablation: Choice of sequential model
	Ablation: memory layer configuration

	Appendix: Quantifying the effect of memory

	Appendix for Chapter 7
	Datasets
	Experiment Details
	Detailed Experiment Results
	Visualization

	Appendix for Chapter 8
	Deferred Proofs
	Proof of Proposition 6
	Proof of Proposition 9
	Proof of Proposition 10

	Additonal Experiments
	MLM: Chimera on Undirected Line Graphs
	Imagenet: Parameter Sharing Ablation

	Architectural Details
	Masked Language Modeling
	Imagenet-1k Classification
	Long Range Graph Benchmark

	Appendix for Chapter 9
	Omitted Proofs from Section 9.5
	Omitted Proofs from Section 9.7
	A quantitatively tight depth/memory separation
	Further details on synthetic task over Ising models
	Background on belief propagation
	GCN-based architectures to calculate marginals
	Edge-based models improve over node-based models

	Bibliography

