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Abstract
A common use case of machine learning in real world settings is to learn a model

from historical data and then deploy the model on future unseen examples. When
the data distribution for the future examples differs from the historical data distribu-
tion, machine learning techniques that depend precariously on the i.i.d. assumption
tend to fail. So dealing with distribution shift is an important challenge when de-
veloping machine learning techniques for practical use. While it is unrealistic to
expect a learned model to predict accurately under any form of distribution shift,
well chosen research objectives may still lead to effective machine learning algo-
rithms that handle distribution shift properly. For example, when facing distribution
shift, we may expect to build machine learning models that (i) make accurate predic-
tions under specific assumptions on how the distribution shift happens; (ii) identify
out-of-distribution inputs where the model may not be able to predict well; and/or
(iii) act conservatively according to what it can predict well. While recent research
has produced practically successful methods in machine learning settings with in-
dependent and identically distributed data, progress on settings where dealing with
distribution shift is necessary has remained in a comparatively developmental stage.

In this thesis, we study the problem of learning under distribution shift in two
scenarios: prediction and decision making. The first part of the thesis addresses the
prediction problem, focusing on exploiting specific assumptions such as covariate
shift and label shift. We develop theoretical understanding and effective techniques
in these scenarios. In the second part of this thesis, we study the problem of offline
policy optimization, where the goal is to learn a good policy from a fixed set of data,
whose distribution may not be rich enough to inform the optimal policy. We first
present an extensive empirical study on behavior regularized offline reinforcement
learning algorithms. We then present a theoretical study on whether/why one should
follow the pessimistic principle in the offline policy optimization problem.
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Chapter 1

Introduction

1.1 Motivation

Despite success across a variety of challenging tasks, current machine learning techniques de-
pend on massive amounts of training data that is representative of potential test cases. Real world
settings, however, usually demand that learned models make predictions or decisions under sce-
narios that may or may not be well covered by the training data. The problem that the collected
dataset is non-representative cannot simply be dealt with by collecting more data from the same
source. Moreover, the performance of learned models tend to drop significantly even with a tiny
amount of distribution shift between training and test [115, 135], which makes it challenging to
reliably deploy machine learning in real world applications. Although one can always increase
training coverage by adding more sources of data [32], data augmentation [100, 124], or injecting
structural bias into models [45, 60, 145], the combinatorial nature of real world data and tasks
makes it unrealistic to collect sufficient data or inject perfect model bias for generalization to
any potential input for the learned model. On the other hand, even if it is hard to build a model
that is able to predict accurately under all potential distribution shift scenarios, under appropriate
assumptions and with appropriate modifications, machine learning may still be applicable in the
presence of distribution shift. For example, adapting a model to a specific type of distribution
shift might be more approachable than adapting to any potential shifts. Also by knowing where
the model can predict well, one can use the model to make conservative predictions or decisions,
and to guide future active data collection to covered shifted distributions. Therefore, in addition
to improving models’ generalization performance in general, methods that explicitly deal with
the presence of distribution shift are also desirable for machine learning to be used in practice.

1.2 Outline and Contributions

This thesis focuses on understanding and developing machine learning methods that explicitly
take distribution shift into consideration. More specifically, we investigate two research direc-
tions where addressing distribution shift plays an important role: (i) unsupervised domain adap-
tation; and (ii) offline policy optimization. In the rest of this section, we give a brief introduction
to these two directions as well as summarize the contributions of thesis in these directions.
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1.2.1 Part I Unsupervised Domain Adaptation
Domain adaptation addresses the common situation in which the target distribution pT (x, y)
generating our test data differs from the source distribution pS(x, y) generating our training data.
unsupervised domain adaptation aims at learning a classifier from labeled source domain data,
i.e., i.i.d. samples from pS(x, y) and unlabeled target domain data, i.e., i.i.d. samples from pT (x),
to maximize performance on the target distribution pT (x, y), e.g., by attempting to predict the
conditional label distribution pT (y|x) or its mean/mode, depending on the actual prediction task.

Without further assumptions on the relationship between pS and pT , guarantees of target-
domain accuracy are impossible [14]. However, well-chosen assumptions can make possible
algorithms with non-vacuous performance guarantees. For example, under the covariate shift
assumption [59, 123], although the input marginals can vary between source and target (pS(x) 6=
pT (x)), the conditional distribution of the labels (given features) exhibits invariance across do-
mains (pS(y|x) = pT (y|x)). Some consider the reverse setting, label shift [94, 116, 159], where
although the label distribution shifts (pS(y) 6= pT (y)), the class-conditional input distribution is
invariant (pS(x|y) = pT (x|y)). In the first part of this thesis, we investigate both covariate shift
and label shift assumptions. We develop better understanding of the limitations and properties
of existing methods in these scenarios, as well as propose new methods with both theoretical
guarantees and improved performance.

Chapter 2 Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment Tra-
ditional approaches to the covariate shift problem require the source distribution’s support to
cover the target support, estimating adapted classifiers via importance-weighted risk minimiza-
tion [54, 62, 123, 156]. In the covariate shift setting without the contained support assumption,
recently-proposed domain-adversarial approaches consist of aligning source and target encod-
ings, an approach often motivated as minimizing two (of three) terms in a theoretical bound on
target error [46]. Unfortunately, this minimization can cause arbitrary increases in the third term,
a problem guaranteed to arise under shifting label distributions. We propose asymmetrically-
relaxed distribution alignment, a new approach that overcomes some limitations of standard
domain-adversarial algorithms. Moreover, we characterize precise assumptions under which our
algorithm is theoretically principled and demonstrate empirical benefits on both synthetic and
real datasets. This chapter is largely based on previous work published in [149]. The thesis
author was the primary investigator and author of this paper.

Chapter 3 A Unified View of Label Shift Estimation In the label shift setting, the label distri-
bution might change (i.e, pS(y) 6= pT (y)) across domains but the class-conditional distributions
p(x|y) remains the same. We first consider the easier scenario where the source support covers
the target support (i.e., pT (y)/pS(y) ≤ β). With the contained support assumption, learning a
target domain classifier can also be done by importance risk minimization [94], where the first
task is to estimate the label marginal pT (y) , in order to compute the importance ratios. There
are two dominant approaches for estimating the label marginal. BBSE [94], a moment-matching
approach based on confusion matrices, is provably consistent and provides interpretable error
bounds. However, a maximum likelihood estimation approach, which we call MLLS, domi-
nates empirically [4]. In this paper, we present a unified view of the two methods and the first

2



theoretical characterization of MLLS. Our contributions include (i) consistency conditions for
MLLS, which include calibration of the classifier and a confusion matrix invertibility condition
that BBSE also requires; (ii) a unified framework, casting BBSE as roughly equivalent to MLLS
for a particular choice of calibration method; and (iii) a decomposition of MLLS’s finite-sample
error into terms reflecting miscalibration and estimation error. Our analysis attributes BBSE’s
statistical inefficiency to a loss of information due to coarse calibration. Experiments on synthetic
data, MNIST, and CIFAR10 support our findings. This chapter is largely based on previous work
published in [47]. The thesis author and Saurabh Garg jointly developed the theoretical part of
this paper. Saurabh Garg is the primary contributor of the experiments in this paper.

Chapter 4 Learning from Positive and Unlabeled Data We then consider the more chal-
lenging label shift setting where the contained support assumption is violated (i.e., there exists
some y such that pT (y) > 0 while pS(y) = 0). The simplest version of this scenario is that the
source distribution only contains a single positive class while the target distribution contains a
mixture of the positive class and an additional negative class, which is also known as Positive
and Unlabeled learning (PU learning). Given only positive examples and unlabeled examples
(from both positive and negative classes), we might hope nevertheless to estimate an accurate
positive-versus-negative classifier. Similarly to the contained support setting, this task is broken
down into two subtasks: (i) Label Shift Estimation (also known as Mixture Proportion Estimation
(MPE) in the literature)—determining the fraction of positive examples in the unlabeled data; and
(ii) Classification— learning the desired positive-versus-negative classifier. Unfortunately, clas-
sical methods for both problems break down in settings high-dimensional and complex inputs.
Meanwhile, recently proposed heuristics lack theoretical coherence and depend precariously on
hyperparameter tuning. We propose two simple techniques: Best Bin Estimation (BBE) (for
MPE); and Conditional Value Under Optimism (CVuO), a simple objective for classification us-
ing the MPE output. Both methods outperform previous approaches empirically, and for BBE,
we establish theoretical guarantees demonstrating that its good performance only requires access
to a blackbox classifier that approximately separates out a small subset of positive examples.
Our final algorithm (TED)n, alternates between the two procedures, significantly improving both
our mixture proportion estimator and classifier. This chapter is largely based on [48] which is
under submission. The thesis author and Saurabh Garg jointly developed the theoretical and al-
gorithmic part of this paper. Saurabh Garg is the primary contributor of the experiments in this
paper.

1.2.2 Part II Offline Policy Optimization
Decision making problems in machine learning are often formulated as learning a policy π that
takes actions to maximize future returns. For example, in multi-armed bandits the goal is to iden-
tify the action that achieves the best return, while in contextual bandits or reinforcement learning
the desired policy takes actions conditioned on the observed state, maximizing the one-step or
long-term returns respectively. 1 Offline policy optimization (also known as batch policy opti-

1In this thesis, since we focus on the offline setting, we only consider optimizing the performance of the policy
in the end rather than balancing the exploration-exploitation trade-off during the learning process.
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mization) aims at learning a good policy from a fixed datasetD of logged experience, as opposed
to online policy optimization where continual interaction with the environment is allowed for
active data collection.

A major challenge in offline policy optimization is to deal with distribution shift [89]. Al-
though here we may not have an explicit definition of a target distribution, the target distribution
in offline policy optimization can be regarded as an implicit distribution that is sufficient to in-
form the learning objective [52, 79, 84], which is the optimal policy. In this scenario, distribution
shift refers to the situation where the source distribution (training data distribution) is insufficient
to inform the optimal policy (i.e., different from any target distribution in hindsight). When learn-
ing the optimal policy becomes unrealistic because of the distribution shift, one may expect to
learn a good (but maybe suboptimal) policy from the limited training distribution. To achieve
this, one widely adopt principle in existing algorithms is pessimism in the face of uncertainty (re-
ferred to as the pessimistic principle, as opposed to the optimistic principle in online exploration),
which aims at finding the best policy among those whose return can be well estimated from the
data. In the second part of this thesis, we attempt to understand the implementation, properties
and limitations of the pessimistic principle in the offline policy optimization problem.

Arguably, the simplest and the hardest problems of decision making in machine learning cor-
respond to multi-armed bandits and reinforcement learning respectively. This thesis looks at both
end of the spectrum: We use the multi-armed bandit setting to understand the theoretical limits
and properties of the offline policy optimization problem and use the reinforcement learning set-
ting to explore the empirical effectiveness of certain algorithms. We first present an extensive
empirical study on offline reinforcement learning, understanding the effectiveness, limitations,
and the role of each building components in a family of offline RL algorithms based on the
pessimistic principle. We then ask the question of whether following the pessimistic principle
is optimal for offline policy optimization. We show that a simple theoretical argument for its
optimality is not possible even in the multi-armed bandit setting. We also propose alternative
arguments to justify the use of pessimistic algorithms in practice.

Chapter 5 An Empirical Study on Behavior regularized offline RL In the offline reinforce-
ment learning settings, standard RL algorithms have been shown to diverge or otherwise yield
poor performance. Accordingly, recent work has suggested a number of remedies to these issues.
In this chapter, we introduce a general framework, behavior regularized actor critic (BRAC), to
empirically evaluate recently proposed methods as well as a number of simple baselines across
a variety of offline continuous control tasks. Surprisingly, we find that many of the technical
complexities introduced in recent methods are unnecessary to achieve strong performance. Ad-
ditional ablations provide insights into which design choices – target value construction, type of
divergence regularizer, etc. – matter most in the offline RL setting. This chapter is largely based
on previous work published in [148]. The thesis author was the primary investigator and author
of this paper.

Chapter 6 On the Optimality of Offline Policy Optimization Algorithms Although interest
in the offline policy optimization problem has grown significantly in recent years, its theoretical
foundations remain under-developed. To advance the understanding of this problem, in this chap-
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ter we provide results that characterize the limits and possibilities of offline policy optimization
in the finite-armed stochastic bandit setting. First, we introduce a class of confidence-adjusted in-
dex algorithms that unifies optimistic and pessimistic principles in a common framework, which
enables a general analysis. For this family, we show that any confidence-adjusted index algo-
rithm is minimax optimal, whether it be optimistic, pessimistic or neutral. Our analysis reveals
that instance-dependent optimality, commonly used to establish optimality of on-line stochastic
bandit algorithms, cannot be achieved by any algorithm in the offline setting. In particular, for
any algorithm that performs optimally in some environment, there exists another environment
where the same algorithm suffers arbitrarily larger regret. In addition, we propose alternates
arguments which incorporates prior or weights over instances and can be potentially used to sup-
port the use of pessimistic algorithms. This chapter is largely based on previous work published
in [150]. The thesis author and Chenjun Xiao were the joint-primary investigators and authors
of this paper.

5



6



Part I

Unsupervised Domain Adaptation

7





Chapter 2

Domain Adaptation with
Asymmetrically-Relaxed Distribution
Alignment

2.1 Overview

Despite breakthroughs in supervised deep learning across a variety of challenging tasks, current
techniques depend precariously on the i.i.d. assumption. Unfortunately, real-world settings often
demand not just generalization to unseen examples but robustness under a variety of shocks to the
data distribution. Ideally, our models would leverage unlabeled test data, adapting in real time
to produce improved predictions. Unsupervised domain adaptation formalizes this problem as
learning a classifier from labeled source domain data and unlabeled data from a target domain,
to maximize performance on the target distribution.

Without further assumptions, guarantees of target-domain accuracy are impossible [14]. How-
ever, well-chosen assumptions can make possible algorithms with non-vacuous performance
guarantees. For example, under the covariate shift assumption [59, 123], although the input
marginals can vary between source and target (pS(x) 6= pT (x)), the conditional distribution of the
labels (given features) exhibits invariance across domains (pS(y|x) = pT (y|x)). Some consider
the reverse setting label shift [94, 116, 159], where although the label distribution shifts (pS(y) 6=
pT (y)), the class-conditional input distribution is invariant (pS(x|y) = pT (x|y)). Traditional ap-
proaches to both problems require the source distribution’s support to cover the target support,
estimating adapted classifiers via importance-weighted risk minimization [54, 62, 94, 123, 156].

Problematically, assumptions of contained support are violated in practice. Moreover, most
theoretical analyses do not guaranteed target accuracy when the source distribution support does
not cover that of the target. A notable exception, Ben-David et al. [13] leverages capacity con-
straints on the hypothesis class to enable generalization to out-of-support samples. However,
their results (i) do not hold for high-capacity hypothesis classes, e.g., neural networks; and (ii)
do not provide intuitive interpretations on what is sufficient to guarantee a good target domain
performance.

A recent sequence of deep learning papers have proposed empirically-supported adversarial
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(b) Relaxed matching

Figure 2.1: (a) In order to match the latent space distributions exactly, a model must map some
elements of positive class in the target domain to some elements of negative class in the source
domain. (b) A better mapping is achieved by requiring only that the source covers the target in
the latent space.

training schemes aimed at practical problems with non-overlapping supports [46, 139]. Exam-
ple problems include generalizing from gray-scale images to colored images or product images
on white backgrounds to photos of products in natural settings. While importance-weighting
solutions are useless here (with non-overlapping support, weights are unbounded), domain-
adversarial networks [46] and subsequently-proposed variants report favorable empirical results
on a variety of image recognition challenges.

The key idea of domain-adversarial networks is to simultaneously minimize the source error
and align the two distributions in representation space. The scheme consists of an encoder, a
label classifier, and a domain classifier. During training, the domain classifier is optimized to
predict each image’s domain given its encoding. The label classifier is optimized to predict labels
from encodings (for source images). The encoder weights are optimized for the twin objectives
of accurate label classification (of source data) and fooling the domain classifier (for all data).

Although Ganin et al. [46] motivate their idea via theoretical results due to Ben-David et al.
[13], the theory is insufficient to justify their method. Put simply, Ben-David et al. [13] bound the
test error by a sum of three terms. The domain-adversarial objective minimizes two among these,
but this minimization may cause the third term to increase. This is guaranteed to happen when
the label distribution shifts between source and target. Consider the case of cat-dog classification
with non-overlapping support. Say that the source distribution contains 50% dogs and 50%
cats, while the target distribution contains 25% dogs and 75% cats. Successfully aligning these
distributions in representation space requires the classifier to predict the same fraction of dogs
and cats on source and target. If one achieves 100% accuracy on the source data, then target
accuracy will be at most 75% (Figure 2.1(a)).

In this chapter, we propose asymmetrically-relaxed distribution alignment, a relaxed distance
for aligning data across domains that can be minimized without requiring latent-space distribu-
tions to match exactly. The new distance is minimized whenever the density ratios in represen-
tation space from target to source are upper-bounded by a certain constant, such that the target
representation support is contained in the source representation’s. The relaxed distribution align-
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ment need not lead to a poor classifier on the target domain under label distribution mismatch
(Figure 2.1(b)). We demonstrate theoretically that the relaxed alignment is sufficient to ensure
low error on the target domain under a concrete set of assumptions on the data distributions. Fur-
ther, we propose several practical ways to achieve the relaxed distribution alignment, translating
the new distance into adversarial learning objectives. Empirical results on synthetic and real
datasets show that incorporating our relaxed distribution alignment loss into adversarial domain
adaptation gives better classification performance on the target domain. We make the following
key contributions:
• We propose an asymmetrically relaxed distribution matching objective, overcoming the

limitation of standard objectives under label distribution shift.
• We provide theoretical analysis demonstrating that under a clear set of assumptions, the

asymmetrically-relaxed distribution alignment can provide target-domain performance guar-
antees.

• We propose several distances that satisfy the desired properties and are optimizable by
adversarial training.

• We empirically show that our asymmetrically-relaxed distribution matching losses improve
target performance when there is a label distribution shift in the target domain and perform
comparably otherwise.

2.2 Preliminaries

We use subscripts S and T to distinguish between source and target domains, e.g., pS and pT , and
employ the notation U for statements that are true for any domain U ∈ {S, T}. For simplicity,
we dispense with some rigorousness in notating probability measures. For example, we use the
terms measure and distribution interchangeably and assume that a density function exists when
necessary without explicitly stating the base measure and required regularity conditions. We
use a single lowercase letter, e.g. p, to denote both the probability measure function and the
probability density function: p(x) is a density when the input x is a single point while p(C) is a
probability when the input C is a set. We will use Supp(p) to denote the support of distribution
p, i.e., the set of points where the density is positive. Similarly, for a function mapping φ, φ(x)
denotes an output if x is a point and φ(C) denotes the image if C is a set. The inverse mapping
φ−1 always outputs a set (the inverse image) regardless of whether its input is a point or a set.
We will also be less careful about the use of sup v.s. max, inf v.s. min and “everywhere” v.s.
“almost everywhere”. For two functions f and g we use f ≡ g to denote that f(x) = g(x) for
every input x.

Unsupervised domain adaptation For simplicity, we address the binary classification sce-
nario. Let X be the input space and f : X 7→ {0, 1} be the (domain-invariant) ground truth
labeling function. Let pS and pT be the input distributions over X for source and target domain
respectively. Let Z be a latent space and Φ denote a class of mappings from X to Z . For a do-
main U , let pφU(·) be the induced probability distribution over Z such that pφU(C) = pU(φ−1(C))
for any C ⊂ Z . Given z ∈ Z let φU(·|z) be the conditional distribution induced by pU and φ
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such that
∫

dzpφU(z)φU(x|z) = pU(x) holds for all x ∈ X . Define H to be a class of predictors
over the latent space Z , i.e., each h ∈ Hmaps from Z to {0, 1}. Given a representation mapping
φ ∈ Φ, classifier h ∈ H, and input x ∈ X , our prediction is h(φ(x)). The risk for a single input
x can be written as |h(φ(x))− f(x)| and the expected risk for a domain U is

EU(φ, h) =

∫
dxpU(x) |h(φ(x))− f(x)|

.
=

∫
dzpφU(z)

∣∣∣h(z)− fφU(z)
∣∣∣

.
=

∫
dzpφU(z)rU(z;φ, h) (2.1)

where we define a domain-dependent latent space labeling function fφU(z) =
∫

dxφU(x|z)f(x)

and the risk for a classifier h as rU(z;φ, h) =
∣∣∣h(z)− fφU(z)

∣∣∣ ∈ [0, 1].
We are interested in bounding the classification risk of a (φ, h)-pair on the target domain:

ET (φ, h) =

∫
dzpφT (z)rT (z;φ, h) = ES(φ, h)

+

∫
dzpφT (z)rT (z;φ, h)−

∫
dzpφS(z)rS(z;φ, h)

= ES(φ, h) +

∫
dzpφT (z) (rT (z;φ, h)− rS(z;φ, h))

+

∫
dz
(
pφT (z)− pφS(z)

)
rS(z;φ, h) . (2.2)

The second term in (2.2) becomes zero if the latent space labeling function is domain-invariant.
To see this, we apply

rT (z;φ, h)− rS(z;φ, h) =
∣∣∣h(z)− fφT (z)

∣∣∣− ∣∣∣h(z)− fφS (z)
∣∣∣

≤
∣∣∣fφT (z)− fφS (z)

∣∣∣ . (2.3)

The third term in (2.2) is zero when pφT and pφS are the same.
In the unsupervised domain adaptation setting, we have access to labeled source data (x, f(x))

for x ∼ pS and unlabeled target data x ∼ pT , from which we can calculate1 the first and third
term in (2.2). For x ∈ Supp(pT ) \ Supp(pS), we have no information about its true label f(x)
and thus fφT (z) becomes inaccessible when z = φ(x) for such x. So the second term in (2.2) is
not directly controllable.

Domain-adversarial learning Domain-adversarial approaches focus on minimizing the first
and third term in (2.2) jointly. Informally, these approaches minimize the source domain classi-
fication risk and the distance between the two distributions in the latent space:

min
φ,h
ES(φ, h) + λD(pφS, p

φ
T ) + Ω(φ, h) , (2.4)

1In this work we focus on how domain adaption are able to generalize across distributions with different supports
so we will not talk about finite-sample approximations.
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where D is a distance metric between distributions and Ω is a regularization term. Standard
choices of D such as a domain classifier (Jensen-Shannon (JS) divergence 2 ) [46], Wasserstein
distance [122] or Maximum Mean Discrepancy [62] have the property that D(pφS, p

φ
T ) = 0 if

pφS ≡ pφT and D(pφS, p
φ
T ) > 0 otherwise. In the next section, we will show that minimizing (2.4)

with such D will lead to undesirable performance and propose an alternative objective to align
pφS and pφT instead of driving them to be identically distributed.

2.3 A Motivating Scenario

To motivate our approach, we formally show how exact distribution matching can lead to un-
desirable performance. More specifically, we will lower bound ET (φ, h) when both ES(φ, h)
and D(pφS, p

φ
T ) are zero with respect to the shift in the label distribution. Let ρS and ρT be the

proportion of data with positive label, i.e., ρU =
∫

dxpU(x)f(x). We formalize the result as
follows.
Proposition 2.3.1. If D(pφS, p

φ
T ) = 0 if and only if pφS ≡ pφT , ES(φ, h) = D(pφS, p

φ
T ) = 0 indicates

ET (φ, h) ≥ |ρS − ρT |.
The proof follows the intuition of Figure 2.1(a): If ρS < ρT , the best we can do is to map

ρT − ρS proportion of positive samples from the target inputs to regions of latent space corre-
sponding to negative examples from the source domain while maintaining the label consistency
for remaining ones. Switching the term positive/negative gives a similar argument for ρT < ρS .
Proposition 2.3.1 says that if there is a label distribution mismatch ρT 6= ρS , minimizing the
objective (2.4) to zero imposes a positive lower bound on the target error. This is especially
problematic in cases where a perfect pair φ, h may exist, achieving zero error on both source and
target data (Figure 2.1(b)).

Asymmetrically-relaxed distribution alignment It may appear contradictory that mini-
mizing the first and third term of (2.2) to zero guarantees a positive ET (φ, h) and thus a positive
second term when there exists a pair of φ, h such that ET (φ, h) = 0 (all three terms are zero).
However, this happens because although D(pφS, p

φ
T ) = 0 is a sufficient condition for the third

term of (2.2) to be zero, it is not a necessary condition. We now examine the third term of (2.2):∫
dz
(
pφT (z)− pφS(z)

)
rS(z;φ, h)

≤

(
sup
z∈Z

pφT (z)

pφS(z)
− 1

)
ES(φ, h). (2.5)

This expression (2.5) shows that if the source error ES(φ, h) is zero then it is sufficient to say the
third term of (2.2) is zero when the density ratio pφT (z)/pφS(z) is upper bounded by some constant
for all z. Note that it is impossible to bound pφT (z)/pφS(z) by a constant that is smaller than 1
so we write this condition as supz∈Z p

φ
T (z)/pφS(z) ≤ 1 + β for some β ≥ 0. Note that this is a

relaxed condition compared with pφT (z) ≡ pφS(z), which is a special case with β = 0.

2Per [109], there is a slight difference between JS-divergence and the original GAN objective [51]. We will use
the term JS-divergence for the GAN objective.
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Relaxing the exact matching condition to the more forgiving bounded density ratio condition
makes it possible to obtain a perfect target domain classifier in many cases where the stricter
condition does not, by requiring only that the (latent space) target domain support is contained in
the source domain support, as shown in Figure 2.1(b). The following proposition states that our
relaxed matching condition does not suffer from the previously-described problems concerning
shifting label distributions (Proposition 2.3.1), and provides intuition regarding just how large β
may need to be to admit a perfect target domain classifier.

Proposition 2.3.2. For every ρS, ρT , there exists a construction of (pS, pT , φ, h) such that ES(φ, h) =

0, ET (φ, h) = 0 and supz∈Z p
φ
T (z)/pφS(z) ≤ max

{
ρT
ρS
, 1−ρT

1−ρS

}
.

Given this motivation, we propose relaxing from exact distribution matching to bounding the
density ratio in the domain-adversarial learning objective (2.4). We call this asymmetrically-
relaxed distribution alignment since we aim at upper bounding pφT/p

φ
S (but not pφS/p

φ
T ). We now

introduce a class of distances between distributions that can be minimized to achieve the relaxed
alignment:

Definition 2.3.3 (β-admissible distances). Given a family of distributions defined on the same
space Z , a distance metric Dβ between distributions is called β-admissible if Dβ(p, q) = 0 when
supz∈Z p(z)/q(z) ≤ 1 + β and Dβ(p, q) > 0 otherwise.

Our proposed approach is to replace the typical distribution distance D in the domain-
adversarial objective (2.4) with a β-admissible distanceDβ so that minimizing the new objective
does not necessarily lead to a failure under label distribution shift. However, it is still premature
to claim the justification of our approach due to the following issues: (i) We may not be able get
a perfect source domain classifier with ES(φ, h) = 0. This also indicates a trade-off in selecting
β as (a) higher β will increase the upper bound (βES(φ, h) according to (2.5)) on the third term
in (2.2) (b) lower β will make a good target classifier impossible under label distribution shift.
(ii) Minimizing Dβ(pφT , p

φ
S) as part of an objective does not necessarily mean that we will obtain

a solution with Dβ(pφT , p
φ
S) = 0. There may still be some proportion of samples from the target

domain lying outside the support of source domain in the latent space Z . In this case, the density
ratio pφT/p

φ
S is unbounded and (2.5) becomes vacuous. (iii) Even when we are able optimize the

objective perfectly, i.e., ES(φ, h) = Dβ(pφS, p
φ
T ) = 0, with a proper choice of β such that there

exists φ, h such that ET (φ, h) = 0 holds simultaneously (e.g. Figure 2.1(b), Proposition 2.3.2),
it is still not guaranteed that such φ, h is learned (e.g. Figure 2.2(a)), as the second term of
(2.2) is unbounded and changes with φ. Put simply, the problem is that although there may exist
alignments perfect for prediction, there also exist other alignments that satisfy the objective but
predict poorly (on target data). To our knowledge this problem effects all domain-adversarial
methods proposed in the literature, and how to theoretically guarantee that the desired alignment
is learned remains an open question.

Next, we theoretically study the target classification error under asymmetrically-relaxed dis-
tribution alignment. Our analysis resolves the above issues by (i) working with imperfect source
domain classifier and relaxed distribution alignment; and (ii) providing concrete assumptions
under which a good target domain classifier can be learned.
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2.4 Bounding the Target Domain Error
In a manner similar to (2.2), Ben-David et al. [12, 13] bound the target domain error by a sum
of three terms: (i) the source domain error (ii) an H-divergence between pφS and pφT (iii) the
best possible classification error that can be achieved on the combination of pφS and pφT . We
motivate our analysis by explaining why their results are insufficient to give a meaningful bound
for domain-adversarial learning approaches. From a theoretical upper bound, we may desire to
make claims in the following pattern:

LetMA be a set of models that satisfy a set of propertiesA (e.g. with low training error), and
B be a set of assumptions on the data distributions (pS, pT , f). For any given model M ∈ MA,
its performance can be bounded by a certain quantity, i.e. ET (M) ≤ εA,B.

Ideally, A should be observable on available data information (i.e. without knowing target
labels), and assumptions B should be model-independent (independent of which model M =
(φ, h) is learned amongMA). In the results of Ben-David et al. [12, 13], terms (i) and (ii) are
observable so A can be set as achieving low quantities on these two terms. Since term (iii) is
unobservable we may want to make assumptions on it. This term, however, is model-dependent
when φ is learned jointly. To make a model-independent assumption on term (iii), we need to take
the supremum over all (φ, h) ∈ MA, i.e., all possible models that achieve low values on (i) and
(ii). This supremum can be vacuous without further assumptions as a cross-label mapping may
also achieve low source error and distribution alignment (e.g. Figure 2.2(a) v.s. Figure 2.1(b)).
Moreover, when H contains all possible binary classifiers, the H-divergence is minimized only
if the two distributions are the same, thus suffering the same problem as Proposition 2.3.1 and is
therefore not suitable for motivating a learning objective.

To overcome these limitations, we propose a new theoretical bound on the target domain error
which (a) treats the difference between pφS and pφT asymmetrically and (b) bounds the label con-
sistency (second term in 2.2) by exploiting the Lipschitz-ness of φ as well as the separation and
connectedness of data distributions. Our result can be interpreted as a combination of observable
model properties and unobservable model-independent assumptions while being non-vacuous:
it is able to guarantee correct classification for (some fraction of) data points from the target
domain even where the source domain has zero density.

2.4.1 A general bound
We introduce our result with the following construction:
Construction 2.4.1. The following statements hold simultaneously:

1. (Lipschitzness of representation mapping.) φ isL-Lipschitz: dZ(φ(x1), φ(x2)) ≤ LdX (x1, x2)
for any x1, x2 ∈ X .

2. (Imperfect asymmetrically-relaxed distribution alignment.) For some β ≥ 0, there exist a
set B ⊂ Z such that p

φ
T (z)

pφS(z)
≤ 1 + β holds for all z ∈ B and pφT (B) ≥ 1− δ1.

3. (Separation of source domain in the latent space.) There exist two sets C0, C1 ⊂ X that
satisfy:

(a) C0 ∩ C1 = ∅
(b) pS(C0 ∪ C1) ≥ 1− δ2.
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(c) For i ∈ {0, 1}, f(x) = i for all x ∈ Ci.
(d) infz0∈φ(C0),z1∈φ(C1) dZ(z0, z1) ≥ ∆ > 0.

Note that this construction does not require any information about target domain labels so
the statements [1-3] can be viewed as observable properties of φ. We now introduce our model-
independent assumption:
Assumption 2.4.2. (Connectedness from target domain to source domain.) Given constants
(L, β,∆, δ1, δ2, δ3), assume that, for any BS, BT ⊂ X with pS(BS) ≥ 1 − δ2 and pT (BT ) ≥
1− δ1 − (1 + β)δ2, there exists CT ⊂ BT that satisfies the following conditions:

1. For any x ∈ CT , there exists x′ ∈ CT ∩ BS such that one can find a sequence of points
x0, x1, ..., xm ∈ CT with x0 = x, xm = x′, f(x) = f(x′) and dX (xi−1, xi) <

∆
L

for all
i = 1, ...,m.

2. pT (CT ) ≥ 1− δ3.
We are ready to present our main result:

Theorem 2.4.3. Given a L-Lipschitz mapping φ ∈ Φ and a binary classifier h ∈ H, if φ satisfies
the properties in Construction 2.4.1 with constants (L, β,∆, δ1, δ2), and Assumption 2.4.2 holds
with the same set of constants plus δ3, then the target domain error can be bounded as

ET (φ, h) ≤ (1 + β)ES(φ, h) + 3δ1 + 2(1 + β)δ2 + δ3 .

Notice that it is always possible to make Construction 2.4.1 by adjusting the constants L, β,
∆, δ1, δ2. Given these constants, Assumption 2.4.2 can always be satisfied by adjusting δ3. So
Theorem 2.4.3 is a general bound.

The key challenge in bounding ET (φ, h) is to bound the second term in (2.2) by identifying
sufficient conditions that prevent cross-label mapping (e.g. Figure 2.2(a)). To resolve this chal-
lenge, we exploit the fact that if there exist a path from a target domain sample to a source domain
sample in the input space X and all samples along the path are mapped into two separate regions
in the latent space (due to distribution alignment), then these two connected samples cannot be
mapped to different regions, as shown in Figure 2.2(b).

2.4.2 Example of a perfect target domain classifier
To interpret our result, we construct a simple situation where ET (φ, h) = 0 is guaranteed when
the domain adversarial objective with relaxed distribution alignment is minimized to zero, ex-
ploiting pure data-dependent assumptions:
Assumption 2.4.4. Assume the target support consists of disjoint clusters Supp(pT ) = ST,0,1 ∪
...∪ST,0,m0∪ST,1,1∪...∪ST,1,m1 , where any cluster ST,i,j is connected and its labels are consistent:
f(x) = i for all x ∈ ST,i,j . Moreover, each of these cluster overlaps with source distribution.
That is, for any i ∈ {0, 1} and j ∈ {1, ...,mi}, ST,i,j ∩ Supp(pS) 6= ∅.
Corollary 2.4.5. If Assumption 2.4.4 holds and there exists a continuous mapping φ such that
(i) supz∈Z p

φ
T (z)/pφS(z) ≤ 1 + β for some β ≥ 0; (ii) for any pair x0, x1 ∈ Supp(pS) such that

f(x0) = 0 and f(x1) = 1, we have dZ(φ(x0), φ(x1)) ≥ ∆ > 0, then ES(φ, h) = 0 indicates
ET (φ, h) = 0.
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Figure 2.2: (a) Label consistency is broken even if φ satisfies the relaxed distribution aligning re-
quirement. (b) The main idea of our analysis: A continuous mapping cannot project a connected
region into two regions separated by a margin. So label consistency is preserved for a region that
is connected to the source domain.

Proof follows directly by observing that a construction of δ1 = δ2 = δ3 = 0 exists in
Theorem 2.4.3. A simple example that satisfies Assumption 2.4.4 is Figure 2.2(b). For a real
world example, consider the cat-dog classification problem. Say that source domain contains
small-to-medium cats and dogs while target domain contains medium-to-large cats and dogs.
The target domain consists of clusters (e.g. cats and dogs, or multiple sub-categories) and each
of them overlaps with the source domain (the medium ones).

2.5 Asymmetrically-relaxed distances
So far, we have motivated the use of asymmetrically-relaxed distribution alignment which aims
at bounding pφT/p

φ
S by a constant instead of driving towards pφS ≡ pφT . More specifically, we

propose to use a β-admissible (Definition 2.3.3) distanceDβ in objective (2.4) to align the source
and target encodings rather than the standard distances corresponding an adversarial domain
classifier. In this section, we derive several β-admissible distance metrics that can be practically
minimized with adversarial training. More specifically, we propose three types of distances (i)
f-divergences; (ii) modified Wasserstein distance; (iii) reweighting distances; and demonstrate
how to optimize them by adversarial training.

2.5.1 f -divergence
Given a convex and continuous function f which satisfies f(1) = 0, the f -divergence between
two distributions p and q can be written as Df (p, q) =

∫
dzp(z)f

(
q(z)
p(z)

)
. According to Jensen’s

inequality Df (p, q) ≥ f
(∫

dzp(z) q(z)
p(z)

)
= 0. Standard choices of f (see a list in Nowozin et al.

[109]) are strictly convex thus Df (p, q) = 0 if and only if p ≡ q when f is strictly convex. To
derive a β-adimissible variation for each standard choice of f , we linearize f(u) where u ≥ 1

1+β
.
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If and only if p(z)
q(z)
≤ 1 + β for all z, f becomes a linear function with respect to all q(z)/p(z)

and thus Jensen’s inequality holds with equality.
Given a convex, continuous function f : R+ 7→ R with f(1) = 0 and some β ≥ 0, we

introduce the partially linearized f̄β as follows

f̄β(u) =

{
f(u) + Cf,β if u ≤ 1

1+β
,

f ′( 1
1+β

)u− f ′( 1
1+β

) if u > 1
1+β

.

where Cf,β = −f( 1
1+β

) + f ′( 1
1+β

) 1
1+β
− f ′( 1

1+β
).

It can be shown that f̄β is continuous, convex and f̄β(1) = 0. As we already explained,
Df̄β(p, q) = 0 if and only if p(z)/q(z) ≤ 1 + β for all z. Hence is Df̄β is β-admissible.

Adversarial training According to Nowozin et al. [109], adversarial training [51] can be
viewed as minimizing the dual form of f -divergences

Df (p, q) = sup
T :Z7→dom(f∗)

Ez∼q [T (z)]− Ez∼p [f ∗(T (z))]

where f ∗ is the Fenchel Dual of f with f ∗(t) = supu∈dom(f) {ut− f(u)}. Applying the same
derivation for f̄β we get3

Df̄β(p, q) = sup
T :Z7→dom(f̄∗β )

Ez∼q [T (z)]− Ez∼p [f ∗(T (z))] (2.6)

where dom(f̄ ∗β) = dom(f ∗) ∩
(
−∞, f ′( 1

1+β
)
]
.

Plugging in the corresponding f for JS-divergence gives

Df̄β(p, q) =

sup
g:Z7→(0,1]

Ez∼q
[
log

g(z)

2 + β

]
+ Ez∼p

[
log

(
1− g(z)

2 + β

)]
(2.7)

where g(z) can be parameterized by a neural network with sigmoid output as typically used in
adversarial training.

2.5.2 Wasserstein distance
The idea behind modifying the Wasserstein distance is to model the optimal transport from p to
the region where distributions have 1 + β maximal density ratio with respect to q. We define the
relaxed Wassertein distance as

Wβ(p, q) = inf
γ∈
∏
β(p,q)

E(z1,z2)∼γ [‖z1 − z2‖] ,

where
∏

β(p, q) is defined as the set of joint distributions γ overZ×Z such that ∀z1

∫
dzγ(z1, z) =

p(z1) and ∀z2

∫
dzγ(z, z2) ≤ (1+β)q(z2). Wβ is β-admissible since no transportation is needed

if p already lies in the qualified region with respect to q.
3We are omitting some additive constant term.
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Adversarial training Following the derivation for the original Wasserstein distance, the
dual form becomes

Wβ(p, q) = sup
g

Ez∼p [g(z)]− (1 + β)Ez∼q [g(z)] (2.8)

s.t. ∀z ∈ Z , g(z) ≥ 0 ,

∀z1, z2 ∈ Z , g(z1)− g(z2) ≤ ‖z1 − z2‖ ,

Optimization with adversarial training can be done by parameterizing g as a non-negative func-
tion (e.g. with soft-plus output log(1 + ex) or RELU output max(0, x)) and following Arjovsky
et al. [5], Gulrajani et al. [55] to enforce its Lipschitz continuity approximately.

2.5.3 Reweighting distance
Given any distance metric D, a generic way to make it β-admissible is to allow reweighting for
one of the distances within a β-dependent range. The relaxed distance is then defined as the
minimum achievable distance by such reweighting.

Given a distribution q over Z and a reweighting function w : Z 7→ [0,∞). The reweighted
distribution qw is defined as qw(z) = q(z)w(z)∫

dzq(z)w(z)
. DefineWβ,q to be a set of β-qualified reweight-

ing with respect to q:

Wβ,q =

{
w : Z 7→ [0, 1],

∫
dzq(z)w(z) =

1

1 + β

}
.

Then the relaxed distance can be defined as

Dβ(p, q) = min
w∈Wβ,q

D(p, qw) . (2.9)

Such Dβ is β-admissible since the set {qw : w ∈ Wβ,q} is exactly the set of p such that
supz∈Z p(z)/q(z) ≤ 1 + β.

Adversarial training We propose an implicit-reweighting-by-sorting approach to optimize
Dβ without parameterizing the function w when D can be optimized by adversarial training.
Adversarially trainable D shares a general form as

D(p, q) = sup
g∈G

Ez∼p [f1(g(z))]− Ez∼q [f2(g(z))] ,

where f1 and f2 are monotonically increasing functions. According to (2.9), the relaxed distance
can be written as

Dβ(p, q) = min
w

sup
g∈G

Ez∼p [f1(g(z))]− Ez∼qw [f2(g(z))] ,

s.t. w : Z 7→ [0, 1] ,

∫
dzq(z)w(z) =

1

1 + β
. (2.10)

One step of alternating minimization on Dβ , could consist of fixing p, q, g and optimizing w.
Then the problem becomes

max
w∈Wβ,q

∫
dzq(z)w(z)f2(g(z)) . (2.11)
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Observe that the optimal solution to (2.11) is to assign w(z) = 1 for the 1
1+β

fraction of z from
distribution q, where f2(g(z)) take the largest values. Based on this observation, we propose
to do the following sub-steps when optimizing (2.11) as an alternating minimization step: (i)
Sample a minibatch of z ∼ q; (ii) Sort these z in descending order according to f2(g(z)); (iii)
Assign w(z) = 1 to the first 1

1+β
fraction of the list. Note that this optimization procedure is

not justified in principle with mini-batch adversarial training but we found it to work well in our
experiments.

Source, y=0
Source, y=1
Target, y=0
Target, y=1

(a) raw (synthetic) data

Source, y=0
Source, y=1
Target, y=0
Target, y=1

(b) latent representations (DANN)

Source, y=0
Source, y=1
Target, y=0
Target, y=1

(c) latent representations (ours)

Figure 2.3: Domain-adversarial training under label distribution shift on a synthetic dataset.

2.6 Experiments
To evaluate our approach, we implement Domain Adversarial Neural Networks (DANN), [46]
replacing the JS-divergence (domain classifier) with our proposed β-admissible distances (Sec-
tion 2.5). Our experiments address the following questions: (i) Does DANN suffer the limi-
tation as anticipated (Section 2.3) when faced with label distribution shift? (ii) If so, do our
β-admissible distances overcome these limitations? (iii) Absent shifting label distributions, is
our approach comparable to DANN?

We implement adversarial training with different β-admissible distances (Section 2.5) and
compare their performance with vanilla DANN. We name different implementations as follows.
(a) SOURCE: source-only training. (b) DANN: JS-divergence (original DANN). (c) WDANN:
original Wasserstein distance. (d) FDANN-β: β-admissible f -divergence, JS-version (2.7).
(e) SDANN-β: reweighting JS-divergence (2.10), optimized by our proposed implicit-reweight-
ing-by-sorting. (f) WDANN1-β: β-admissible Wasserstein distance (2.8) with soft-plus on
critic output. (g) WDANN2-β: β-admissible Wasserstein distance (2.8) with RELU on critic
output. (h) SWDANN-β: reweighting Wasserstein distance (2.10), optimized by implicit-reweight-
ing-by-sorting. Adversarial training on Wasserstein distances follows Gulrajani et al. [55] but
uses one-sided gradient-penalty. We always perform adversarial training with alternating mini-
mization.

Synthetic datasets We create a mixture-of-Gaussians binary classification dataset where each
domain contains two Gaussian distributions, one per label. For each label, the distributions in
source and target domain have a small overlap, validating the assumptions in our analysis. We
create a label distribution shift with balanced source data (50% 0’s v.s. 50% 1’s) and imbalanced
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target data (10% 0’s v.s. 90% 1’s) as shown in Figure 2.3(a). Table 2.1 shows the target domain
accuracy for different approaches. As expected, vanilla DANN fails under label distribution shift
because a proportion of samples from the target inputs are mapped to regions of latent space cor-
responding to negative samples from the source domain (Figure 2.3(b)). In contrast, with our β-
admissible distances, domain-adversarial networks are able to adapt successfully (Figure 2.3(c)),
improving target accuracy from 89% (source-only) to 99% accuracy (with adaptation), except
the cases where β is too small to admit a good target domain classifier (in this case we need
β ≥ 0.9/0.5 − 1 = 0.8). We also experiment with label-balanced target data (no label distri-
bution shift). All approaches except source-only achieve an accuracy above 99%, so we do not
present these results in a separate table.

Table 2.1: Classification accuracy on target domain with label distribution shift on a synthetic
dataset.

METHOD ACCURACY%

SOURCE 89.4±1.1
DANN 59.1±5.1 WDANN 50.8±32.1

β 0.5 2.0 4.0

FDANN-β 66.0± 41.6 99.9± 0.0 99.8±0.0
SDANN-β 99.9± 0.1 99.9± 0.0 99.9±0.0
WDANN1-β 45.7± 41.5 66.4± 41.1 99.9±0.0
WDANN2-β 97.6± 1.2 99.7± 0.2 99.5±0.3
SWDANN-β 79.0± 5.9 99.9± 0.0 99.9±0.0

Real datasets We experiment with the MNIST and USPS handwritten-digit datasets. For both
directions (MNIST→ USPS and USPS→MNIST), we experiment both with and without label
distribution shift. The source domain is always class-balanced. To simulate label distribution
shift, we sample target data from only half of the digits, e.g. [0-4] or [5-9]. Tables 2.2 and 2.3
show the target domain accuracy for different approaches with/without label distribution shift.
As on synthetic datasets, we observe that DANN performs much worse than source-only training
under label distribution shift. Compared to the original DANN, our approaches fare significantly
better while achieving comparable performance absent label distribution shift.

2.6.1 Experiment Details
Synthetic datasets For source distribution, we sample class 0 fromN ([−1,−0.3], diag(0.1, 0.4))
and class 1 from N ([1, 0.3], diag(0.1, 0.4)). For target distribution, we sample class 0 from
N ([−0.3,−1], diag(0.4, 0.1)) and class 1 from N ([0.3, 1], diag(0.4, 0.1)). For label classifier,
we use a fully-connect neural net with 3 hidden layers (50, 50, 2) and the latent space is set as the
last hidden layer. For domain classifier (critic) we use a fully-connect neural net with 2 hidden
layers (50, 50).
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Table 2.2: Classification accuracy on target domain with/without label distribution shift on
MNIST-USPS.

TARGET [0-4] [5-9] [0-9]
LABELS SHIFT SHIFT NO-SHIFT

SOURCE 74.3±1.0 59.5±3.0 66.7±2.1
DANN 50.0±1.9 28.2±2.8 78.5±1.6

FDANN-1 71.6±4.0 67.5±2.3 73.7±1.5
FDANN-2 74.3±2.5 61.9±2.9 72.6±0.9
FDANN-4 75.9±1.6 64.4±3.6 72.3±1.2
SDANN-1 71.6±3.7 49.1±6.3 81.0±1.3
SDANN-2 76.4±3.1 48.7±9.0 81.7±1.4
SDANN-4 81.0±1.6 60.8±7.5 82.0±0.4

Table 2.3: Classification accuracy on target domain with/without label distribution shift on
USPS-MNIST.

TARGET [0-4] [5-9] [0-9]
LABELS SHIFT SHIFT NO-SHIFT

SOURCE 69.4±2.3 30.3±2.8 49.4±2.1
DANN 57.6±1.1 37.1±3.5 81.9±6.7

FDANN-1 80.4±2.0 40.1±3.2 75.4±4.5
FDANN-2 86.6±4.9 41.7±6.6 70.0±3.3
FDANN-4 77.6±6.8 34.7±7.1 58.5±2.2
SDANN-1 68.2±2.7 45.4±7.1 78.8±5.3
SDANN-2 78.6±3.6 36.1±5.2 77.4±5.7
SDANN-4 83.5±2.7 41.1±6.6 75.6±6.9

Image datasets For MNIST we subsample 2000 data points and for USPS we subsample
1800 data points. The subsampling process depends on the given label distribution (e.g. shift or
no-shift). For label classifier, we use LeNet and the latent space is set as the last hidden layer.
For domain classifier (critic) we use a fully-connect neural net with 2 hidden layers (500, 500).

In all experiments, we use λ = 1 in the objective (2.4) and ADAM with learning rate 0.0001
and β1 = 0.5 as the optimizer. We also apply a l2-regularization on the weights of φ and h with
coefficient 0.001.

More discussion on synthetic experiments. The only unexcepted failure is WDANN1-2,
which achieves only 20% accuracy in 2-out-of-5 runs. Looking in to the low accuracy runs we
found that the l2-norm of the encoder weights is clearly higher than the successful runs. Large l2-
norm of weights in φ likely results in a high Lipschitz constant L, which is undesirable according
to our theory. We only implemented l2-regularization to encourage Lipschitz continuity of the
encoder φ, which might be insufficient. How to enforce Lipschitz continuity of a neural network
is still an open question. Trying more sophisticated approaches for Lipschitz continuity can a
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future direction.
Choice of β. Since a good value of β may depend on the knowledge of target label distribu-

tion which is unknown, we experiment with different values of β. Empirically we did not find
any clear pattern of correlation between value of β and performance as long as it is big enough
to accommodate label distribution shift so we would leave it as an open question. In practice we
suggest to use a moderate value such as 2 or 4, or estimate based on prior knowledge of target
label distribution.

2.7 Related work
Our work makes distinct theoretical and algorithmic contributions to the domain adaptation
literature. Concerning theory, we provide a risk bound that explains the behavior of domain-
adversarial methods with model-independent assumptions on data distributions. Existing theo-
ries without assumptions of contained support [11, 12, 13, 24, 101] do not exhibit this property
since (i) when applied to the input space, their results are not concerned with domain-adversarial
learning as no latent space is introduced, (ii) when applied to the latent space, their unobservable
constants/assumptions become φ-dependent, which is undesirable as explained in Section 2.4.
Concerning algorithms, several prior works demonstrate empirical success of domain-adversarial
approaches, [17, 46, 61, 125, 139, 140]. Among those, Cao et al. [21, 22] deal with the label dis-
tribution shift scenario through a heuristic reweighting scheme. However, their re-weighting
presumes that they have a good classifier in the first place, creating a cyclic dependency.

2.8 Conclusions
We propose to use asymmetrically-relaxed distribution distances in domain-adversarial learning
objectives, replacing standard ones which seek exact distribution matching in the latent space.
While overcoming some limitations of the standard objectives under label distribution mismatch,
we provide a theoretical guarantee for target domain performance under assumptions on data dis-
tributions. As our connectedness assumptions may not cover all cases where we expect domain
adaptation to work in practice, (e.g. when the two domains are completely disjoint), providing
analysis under other type of assumptions might of future interest.

2.9 Proofs
Derivation of (2.1).

EU(φ, h) =

∫
dxpU(x) |h(φ(x))− f(x)|

=

∫
dx

∫
dzpφU(z)φU(x|z) |h(φ(x))− f(x)|

=

∫
dzpφU(z)

∫
dxφU(x|z) |h(z)− f(x)|
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=

∫
dzpφU(z)

∣∣∣∣h(z)−
∫

dxφU(x|z)f(x)

∣∣∣∣
.
=

∫
dzpφU(z)

∣∣∣h(z)− fφU(z)
∣∣∣

.
=

∫
dzpφU(z)rU(z;φ, h)

where we use the following fact: For any fixed z, h(z) ∈ {0, 1}, if h(z) = 0 then |h(z)−f(x)| =
f(x)− h(z) for all x. Similarly, when h(z) = 1, we have |h(z)− f(x)| = h(z)− f(x) for all x.
Thus we can move the integral over x inside the absolute operation.

Proof of Proposition 2.3.1. First we have

ρU =

∫
dxpU(x)f(x) =

∫
dx

∫
dzpφU(z)φU(x|z)f(x) =

∫
dzpφU(z)fφU(z) .

When ES(φ, h) = 0 we have∣∣∣∣∫ dzpφS(z)h(z)− ρS
∣∣∣∣ =

∣∣∣∣∫ dzpφS(z)h(z)−
∫

dzpφS(z)fφS (z)

∣∣∣∣
≤
∫

dzpφS(z)
∣∣∣h(z)− fφS (z)

∣∣∣ = ES(φ, h) = 0

thus
∫

dzpφS(z)h(z) = ρS .
Applying the fact that pφS(z) = pφT (z) for all z ∈ Z ,

ET (φ, h) =

∫
dzpφT (z)

∣∣∣h(z)− fφT (z)
∣∣∣ ≥ ∣∣∣∣∫ dzpφT (z)h(z)−

∫
dzpφT (z)fφT (z)

∣∣∣∣
=

∣∣∣∣∫ dzpφS(z)h(z)−
∫

dzpφT (z)fφT (z)

∣∣∣∣ = |ρS − ρT | ,

which concludes the proof.

Proof of Proposition 2.3.2. Let pS be the uniform distribution over [0, 1] and pT be the uniform
distribution over [2, 3]. The labeling function f is set as f(x) = 1 iff x ∈ [0, ρS] ∪ [2, 2 + ρT ]
such that the definition of ρS and ρT is preserved. We construct the following mapping φ: For
x ∈ [0, 1] φ(x) = x. For x ∈ [2, 2 + ρT ] φ(x) = (x− 2)ρS/ρT . For x ∈ [2 + ρT , 3] φ(x) = 1−
(3−x)(1−ρS)/(1−ρT ). φmaps both source and target data into [0, 1] with pφS to be uniform over
[0, 1] and pφT (z) = ρT/ρS when z ∈ [0, ρS] and pφT (z) = (1−ρT )/(1−ρS) when z ∈ [ρS, 1]. Since
pφS(z) = 1 for all z ∈ [0, 1] we can conclude that supz∈Z p

φ
T (z)/pφS(z) ≤ max

{
ρT
ρS
, 1−ρT

1−ρS

}
.

Proof of Theorem 2.4.3. Instead of working with Assumption 2.4.2 we first extend Construc-
tion 2.4.1 with the following addition

Construction 2.9.1. (Connectedness from target domain to source domain.) Let CT ⊂ X be a
set of points in the raw data space that satisfy the following conditions:
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1. φ(CT ) ⊂ φ(C0 ∪ C1).
2. For any x ∈ CT , there exists x′ ∈ CT ∩ (C0 ∪ C1) such that one can find a sequence of

points x0, x1, ..., xm ∈ CT with x0 = x, xm = x′, f(x) = f(x′) and dX (xi−1, xi) <
∆
L

for
all i = 1, ...,m.

3. pT (CT ) ≥ 1− δ3.

We now proceed to prove bound based on Constructions 2.4.1 and 2.9.1. Later on we will
show that Assumption 2.4.2 indicates the existence of Construction 2.9.1 so that the bound holds
with a combination of Constructions 2.4.1 and Assumption 2.4.2.

The third term of (2.2) can be written as∫
dzpφS(z)

(
pφT (z)

pφS(z)
− 1

)
rS(z;φ, h)

≤ inf
B⊆Z

∫
B

dzpφS(z)

(
pφT (z)

pφS(z)
− 1

)
rS(z;φ, h) +

∫
Bc

dzpφS(z)

(
pφT (z)

pφS(z)
− 1

)
rS(z;φ, h)

≤ inf
B⊆Z

(
sup
z∈B

pφT (z)

pφS(z)
− 1

)∫
B

dzpφS(z)rS(z;φ, h) +

∫
Bc

dzpφT (z)rS(z;φ, h)

≤ inf
B⊆Z

(
sup
z∈B

pφT (z)

pφS(z)
− 1

)
ES(φ, h) + pφT (Bc)

≤ βES(φ, h) + δ1 . (2.12)

For the second term of (2.2), plugging in rU(z;φ, h) =
∣∣∣h(z)− fφU(z)

∣∣∣ gives∫
dzpφT (z) (rT (z;φ, h)− rS(z;φ, h))

=

∫
dzpφT (z)

(∣∣∣h(z)− fφT (z)
∣∣∣− ∣∣∣h(z)− fφS (z)

∣∣∣)
=

∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣

=

∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣ (1 {z ∈ φ(C0)}+ 1 {z ∈ φ(C1)}+ 1 {z ∈ (φ(C0) ∪ φ(C1))c})

=

∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣1 {z ∈ φ(C0)}+

∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣1 {z ∈ φ(C1)}

+

∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣1 {z ∈ (φ(C0) ∪ φ(C1))c} (2.13)

Applying
∣∣∣fφT (z)− fφS (z)

∣∣∣ ≤ fφT (z) + fφS (z) to the first part of (2.13) gives∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣1 {z ∈ φ(C0)}

≤
∫

dzpφT (z)fφT (z)1 {z ∈ φ(C0)}+

∫
dzpφT (z)fφS (z)1 {z ∈ φ(C0)}
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=

∫
dzpφT (z)

∫
dxφT (x|z)f(x)1 {z ∈ φ(C0)}+

∫
dzpφT (z)fφS (z)1 {z ∈ φ(C0)}

=

∫
dxf(x)

∫
dzpφT (z)φT (x|z)1 {z ∈ φ(C0)}+

∫
dzpφT (z)fφS (z)1 {z ∈ φ(C0)}

=

∫
dxf(x)pT (x)1 {φ(x) ∈ φ(C0)}+

∫
dzpφT (z)fφS (z)1 {z ∈ φ(C0)}

=

∫
dxpT (x)1 {f(x) = 1, φ(x) ∈ φ(C0)}+

∫
dzpφT (z)fφS (z)1 {z ∈ φ(C0)} (2.14)

Similarly, applying
∣∣∣fφT (z)− fφS (z)

∣∣∣ =
∣∣∣(1− fφT (z))− (1− fφS (z))

∣∣∣ ≤ (1−fφT (z))+(1−fφS (z))

to the second part of (2.13) gives∫
dzpφT (z)

∣∣∣fφT (z)− fφS (z)
∣∣∣1 {z ∈ φ(C1)}

≤
∫

dzpφT (z)(1− fφT (z))1 {z ∈ φ(C1)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)}

=

∫
dzpφT (z)

(
1−

∫
dxφT (x|z)f(x)

)
1 {z ∈ φ(C1)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)}

=

∫
dx(1− f(x))

∫
dzpφT (z)φT (x|z)1 {z ∈ φ(C1)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)}

=

∫
dx(1− f(x))pT (x)1 {φ(x) ∈ φ(C1)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)}

=

∫
dxpT (x)1 {f(x) = 0, φ(x) ∈ φ(C1)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)} (2.15)

Combining the second part of (2.14) and the second part of (2.15)∫
dzpφT (z)fφS (z)1 {z ∈ φ(C0)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)}

=

∫
dz
pφT (z)

pφS(z)
pφS(z)fφS (z)1 {z ∈ φ(C0)} (1 {z ∈ B}+ 1 {z ∈ Bc})

+

∫
dz
pφT (z)

pφS(z)
pφS(z)(1− fφS (z))1 {z ∈ φ(C1)} (1 {z ∈ B}+ 1 {z ∈ Bc})

≤ (1 + β)

∫
dzpφS(z)fφS (z)1 {z ∈ φ(C0)}+ (1 + β)

∫
dzpφS(z)(1− fφS (z))1 {z ∈ φ(C1)}

+

∫
dzpφT (z)1 {z ∈ Bc} (1 {z ∈ φ(C0)}+ 1 {z ∈ φ(C1)})

≤ (1 + β)

∫
dxpS(x)1 {f(x) = 1, φ(x) ∈ φ(C0)}

+ (1 + β)

∫
dxpS(x)1 {f(x) = 0, φ(x) ∈ φ(C1)}+ pT (Bc)

≤ (1 + β)

∫
dxpS(x) (1 {f(x) = 1, φ(x) ∈ φ(C0) ∨ f(x) = 0, φ(x) ∈ φ(C1)}) + δ1 (2.16)
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For i ∈ {0, 1} if x ∈ Ci then f(x) = i and φ(x) ∈ Ci. So if f(x) = 1, φ(x) ∈ φ(C0) or
f(x) = 0, φ(x) ∈ φ(C1) holds we must have x /∈ C0 ∪ C1. Therefore, following (2.16) gives∫

dzpφT (z)fφS (z)1 {z ∈ φ(C0)}+

∫
dzpφT (z)(1− fφS (z))1 {z ∈ φ(C1)}

≤ (1 + β)

∫
dxpS(x)1 {x /∈ C0 ∪ C1}+ δ1

= (1 + β)(1− pS(C0 ∪ C1)) + δ1

≤ (1 + β)δ2 + δ1 (2.17)

Now looking at the first part of (2.14) and the first part of (2.15)∫
dxpT (x)1 {f(x) = 1, φ(x) ∈ φ(C0)}+

∫
dxpT (x)1 {f(x) = 0, φ(x) ∈ φ(C1)}

=

∫
dxpT (x)1 {f(x) = 1, φ(x) ∈ φ(C0), x ∈ CT}

+

∫
dxpT (x)1 {f(x) = 1, φ(x) ∈ φ(C0), x /∈ CT}

+

∫
dxpT (x)1 {f(x) = 0, φ(x) ∈ φ(C1), x ∈ CT}+∫

dxpT (x)1 {f(x) = 0, φ(x) ∈ φ(C1), x /∈ CT}

≤
∫

dxpT (x) (1 {f(x) = 1, φ(x) ∈ φ(C0), x ∈ CT}+ 1 {f(x) = 0, φ(x) ∈ φ(C1), x ∈ CT})

+ pT (Cc
T )

≤
∫

dxpT (x)1 {x ∈ CT}1 {f(x) = 1, φ(x) ∈ φ(C0) ∨ f(x) = 0, φ(x) ∈ φ(C1)}+ δ3 .

(2.18)

Next we show that the first part of (2.18) is 0. Recall that φ(CT ) ⊂ φ(C0 ∪ C1) and if x ∈ CT
there exists x′ ∈ CT ∩ (C0 ∪ C1) with a sequence of points x0, x1, ..., xm ∈ CT such that
x0 = x, xm = x′, f(x) = f(x′) and dX (xi−1, xi) <

∆
L

for all i = 1, ...,m. So for x ∈ CT
and f(x) = i, we pick such x′. Since φ is L-Lipschitz and φ(CT ) ⊂ φ(C0 ∪ C1) we have
φ(x0), φ(x1), ..., φ(xm) ∈ φ(C0∪C1) and dZ(φ(xi−1), φ(xi)) < ∆ for all i = 1, ...,m. Applying
the fact that infz0∈φ(C0),z1∈φ(C1) dZ(z0, z1) ≥ ∆ > 0 we know that if φ(x) = φ(x0) ∈ φ(Cj) for
some j ∈ {0, 1} then φ(x′) = φ(xm) ∈ φ(Cj). From x′ ∈ C0∪C1 and f(x′) = f(x) = iwe have
φ(x′) ∈ φ(Ci). Since C0 ∩C1 = ∅ we can conclude i = j and thus φ(x) ∈ φ(Ci) if f(x) = i for
any x ∈ CT . Therefore, if x ∈ CT , neither f(x) = 1, φ(x) ∈ φ(C0) nor f(x) = 0, φ(x) ∈ φ(C1)
can hold. Hence the first part of (2.18) is 0.

So far by combining (2.17) and (2.18) we have shown that the sum of (2.14) and (2.15)
(which are the first two parts of (2.13)) can be upper bounded by δ1 + (1 + β)δ2 + δ3. For the
third part of (2.13) we have∫

dzpφT (z)
∣∣∣fφT (z)− fφS (z)

∣∣∣1 {z ∈ (φ(C0) ∪ φ(C1))c}
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≤
∫

dzpφT (z)1 {z ∈ (φ(C0) ∪ φ(C1))c}

=

∫
dz
pφT (z)

pφS(z)
pφS(z)1 {z ∈ (φ(C0) ∪ φ(C1))c} (1 {z ∈ B}+ 1 {z ∈ Bc})

≤
∫

dz
pφT (z)

pφS(z)
pφS(z)1 {z ∈ (φ(C0) ∪ φ(C1))c}1 {z ∈ B}+

∫
dzpφT (z)1 {z ∈ Bc}

≤ (1 + β)

∫
dzpφS(z)1 {z ∈ (φ(C0) ∪ φ(C1))c}+ δ1

= (1 + β)

(
1−

∫
dzpφS(z)1 {z ∈ φ(C0) ∪ φ(C1)}

)
+ δ1

= (1 + β)

(
1−

∫
dxpS(x)1

{
x ∈ φ−1 (φ(C0) ∪ φ(C1))

})
+ δ1

= (1 + β)
(
1− pS

(
φ−1 (φ(C0) ∪ φ(C1))

))
+ δ1

≤ (1 + β) (1− pS (C0 ∪ C1)) + δ1

≤ (1 + β)δ2 + δ1 . (2.19)

Putting (2.19) into (2.13) gives∫
dzpφT (z) (rT (z;φ, h)− rS(z;φ, h)) ≤ 2δ1 + 2(1 + β)δ2 + δ3 . (2.20)

Plugging (2.12) and (2.20) into (2.2) gives the result of Theorem 2.4.3 under Construc-
tions 2.4.1 and 2.9.1.

It remains to show that Assumption 2.4.2 implies the existence of a Construction 2.9.1. To
prove this, we first write φ(CT ) ⊂ φ(C0 ∪C1) as CT ⊂ φ−1(φ(C0 ∪C1)). By Construction 2.4.1
we have pS(C0 ∪ C1) ≥ 1− δ2. From (2.19) we have

pT
(
φ−1(φ(C0 ∪ C1))

)
=

∫
dxpT (x)1

{
x ∈ φ−1(φ(C0 ∪ C1))

}
=

∫
dzpφT (z)1 {z ∈ φ(C0 ∪ C1)} ≥ (1 + β)δ2 + δ1 .

Setting BS = C0 ∪ C1 and BT = φ−1(φ(C0 ∪ C1) in Assumption 2.4.2 gives a construction of
Construction 2.9.1, thus concluding the proof.

Proof of Corollary 2.4.5. Based on the statement of Corollary 2.4.5 it is obvious that Construc-
tion 2.4.1 can be made with δ1 = 0, δ2 = 0 and a finitely large L. (Here we implicitly assume
that φ is bounded on X ). It remains to show that Assumption 2.4.2 holds with δ3 = 0. As
δ1 = δ2 = 0, any BS and BT will be supersets of Supp(pS) and Supp(pT ) respectively. So it
sufficies to consider BS = Supp(pS) and BT = Supp(pT ).

Now we verify that CT = Supp(pT ) satisfies the requirements in Assumption 2.4.2. Accord-
ing to Assumption 2.4.4, for any x ∈ Supp(pT ), there must exist ST,i,j such that x ∈ ST,i,j , ST,i,j
is connected, f(x′) = i for all x′ ∈ ST,i,j and ST,i,j∩Supp(pS) 6= ∅. Pick x′ ∈ ST,i,j∩Supp(pS).
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Such x′ satisfies x′ ∈ CT ∩ BS with our choice of CT and BS . Since ST,i,j is connected we can
find a sequence of points x0, ..., xm ∈ ST,i,j with x0 = 0, xm = x′ and dX (xi−1, xi) < ε for any
ε > 0. As ST,i,j is label consistent we have f(x) = f(x′). Picking ε = ∆

L
concludes the fact that

CT = Supp(pT ) satisfies the requirements in Assumption 2.4.2.
Since pT (Supp(pT )) = 1 we have δ3 = 0. As a result, ET (φ, h) ≤ (1 + β)ES(φ, h) holds

according to Theorem 2.4.3, which concludes the proof of Corollary 2.4.5.

Derivation of (2.6). The Fenchel Dual of f̄β(u) can be written as

f̄ ∗β(t) =

{
tf ′−1(t)− f̄β(f ′−1(t)) if t ≤ f ′( 1

1+β
) ,

+∞ if t > f ′( 1
1+β

) .

=

{
tf ′−1(t)− f(f ′−1(t))− Cf,β if t ≤ f ′( 1

1+β
) ,

+∞ if t > f ′( 1
1+β

) .

=

{
f ∗(t)− Cf,β if t ≤ f ′( 1

1+β
) ,

+∞ if t > f ′( 1
1+β

) .
,

where Cf,β = −f( 1
1+β

) + f ′( 1
1+β

) 1
1+β
− f ′( 1

1+β
).

Therefore, the modified f̄β-divergence can be written as

Df,β(p, q) = sup
T :Z7→dom(f∗)∩(−∞,f ′( 1

1+β
)]

Ez∼q [T (z)]− Ez∼p [f ∗(T (z))] + Cf,β .

Derivation of (2.7). According to Nowozin et al. [109], the GAN objecitve uses f(u) = u log u−
(1 + u) log(1 + u). Hence f ∗(t) = − log(1 − et), f ′(u) = log u

u+1
and f ′( 1

1+β
) = log 1

2+β
. So

we need to parameterize T : Z 7→
(
−∞, log 1

2+β

]
. T (z) = log g(z)

2+β
with g(z) ∈ (0, 1] satisfies

the range constraint for T . Plugging T (z) = log g(z)
2+β

into (2.6) gives the result of (2.7).
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Chapter 3

A Unified View of Label Shift Estimation

3.1 Overview

This chapter focuses on label shift [94, 116, 130], which aligns with the anticausal setting in
which the labels y cause the features x [118]. Label shift arises in diagnostic problems because
diseases cause symptoms. In this setting, an intervention on p(y) induces the shift, but the process
generating x given y is fixed (pS(x|y) = pT (x|y)). Under label shift, the optimal predictor
may change, e.g., the probability that a patient suffers from a disease given their symptoms can
increase under a pandemic. Contrast label shift with the better-known covariate shift assumption,
which aligns with the assumption that x causes y, yielding the reverse implication that pS(y|x) =
pT (y|x).

Under label shift, our first task is to estimate the ratios w(y) = pT (y)/pS(y) for all labels
y. Two dominant approaches leverage off-the-shelf classifiers to estimate w: (i) Black Box Shift
Estimation (BBSE) [94] and a variant called Regularized Learning under Label Shift (RLLS) [7]:
moment-matching based estimators that leverage (possibly biased, uncalibrated, or inaccurate)
predictions to estimate the shift; and (ii) Maximum Likelihood Label Shift (MLLS) [116]: an
Expectation Maximization (EM) algorithm that assumes access to a classifier that outputs the
true source distribution conditional probabilities pS(y|x).

Given a predictor f̂ with an invertible confusion matrix, BBSE and RLLS have known con-
sistency results and finite-sample guarantees [7, 94]. However, MLLS, in combination with a
calibration heuristic called Bias-Corrected Temperature Scaling (BCTS), outperforms them em-
pirically [4].

In this work, we theoretically characterize MLLS, establishing conditions for consistency and
bounding its finite-sample error. To start, we observe that given the true label conditional pS(y|x),
MLLS is simply a Maximum Likelihood Estimation (MLE) problem and standard results apply.
However, because we never know pS(y|x) exactly, MLLS is always applied with an estimated
model f̂ and thus the procedure consists of MLE under model misspecification.

First, we prove that (i) canonical calibration (Definition 3.2.1) and (ii) an invertible con-
fusion matrix (as required by BBSE) are sufficient conditions to ensure MLLS’s consistency
(Proposition 3.4.4 and Theorems 3.4.3). Recall that neural network classifiers tend to be uncal-
ibrated absent post-hoc adjustments [56]. Second, we observe that confusion matrices can be
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instruments for calibrating a classifier. Applying MLLS with this technique, BBSE and MLLS
are distinguished only by their objective functions. Through extensive experiments, we show
that they perform similarly, concluding that MLLS’s superior performance (when applied with
more granular calibration techniques) is not due to its objective but rather to the information
lost by BBSE via confusion matrix calibration. Third, we analyze the finite-sample error of
the MLLS estimator by decomposing its error into terms reflecting the miscalibration error and
finite-sample error (Theorem 3.5.4). Our experiments relate MLLS’s MSE to the granularity of
the calibration.

In summary, we contribute the following: (i) Sufficient conditions for MLLS’s consistency;
(ii) Unification of MLLS and BBSE methods under a common framework, with BBSE corre-
sponding to a particular choice of calibration method; (iii) Finite-sample error bounds for MLLS;
(iv) Experiments that support our theoretical arguments.

3.2 Problem Setup

Let X be the input space and Y = {1, 2, . . . , k} the output space. Let pS, pT be the source and
target distributions and their corresponding probability density (or mass) functions. We use ES
and ET to denote expectations over the source and target distributions. In unsupervised domain
adaptation, we possess labeled source data {(x1, y1), (x2, y2), . . . , (xn, yn)} and unlabeled target
data {xn+1, xn+2, . . . , xn+m}. We also assume access to a black-box predictor f̂ : X 7→ ∆k−1,
e.g., a model trained to approximate the true probability function f ∗, where f ∗(x) := pS(·|x).
Here and in the rest of this chapter, we use ∆k−1 to denote the standard k-dimensional probability
simplex. For a vector v, we use vy to access the element at index y.

Absent assumptions relating the source and target distributions, domain adaptation is under-
specified [14]. We work with the label shift assumption, i.e., pS(x|y) = pT (x|y), focusing on
multiclass classification. Moreover, we assume non-zero support for all labels in the source dis-
tribution: for all y ∈ Y , pS(y) ≥ c > 0 [7, 94]. Under label shift, three common goals are (i)
detection—determining whether distribution shift has occurred; (ii) quantification—estimating
the target label distribution; and (iii) correction—producing a predictor that minimizes error on
the target distribution [94].

This work focuses on goal (ii), estimating importance weights w(y) = pT (y)/pS(y) for all
y ∈ Y . Given w, we can update our classifiers on the fly, either by retraining in an importance-
weighted ERM framework [7, 54, 94, 123]—a practice that may be problematic for overparam-
eterized neural networks [20], or by applying an analytic correction [4, 116]. Within the ERM
framework, the generalization result from Azizzadenesheli et al. [7] (Theorem 1) depends only
on the error of the estimated weights, and hence any method that improves weight estimates
tightens this bound.

There are multiple definitions of calibration in the multiclass setting. Guo et al. [56] study
the calibration of the arg-max prediction, while Kumar et al. [76] study a notion of per-label
calibration. We use canonical calibration [141] and the expected canonical calibration error on
the source data defined as follows:
Definition 3.2.1 (Canonical calibration). A prediction model f : X 7→ ∆k−1 is canonically
calibrated on the source domain if for all x ∈ X and j ∈ Y , pS(y = j|f(x)) = fj(x) .
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Definition 3.2.2 (Expected canonical calibration error). For a predictor f , the expected squared
canonical calibration error on the source domain is E2(f) = ES ‖f − fc‖2, where fc = pS(y = ·|f(x)).

Calibration methods typically work either by calibrating the model during training or by
calibrating a trained classifier on held-out data, post-hoc. We refer the interested reader to Kumar
et al. [76] and Guo et al. [56] for detailed studies on calibration. We focus on the latter category
of methods. Our experiments follow Alexandari et al. [4], who leverage BCTS 1 to calibrate their
models. BCTS extends temperature scaling [56] by incorporating per-class bias terms.

3.3 Related Work
Two families of solutions have been explored that leverage a blackbox predictor: BBSE [94], a
moment matching method, uses the predictor f̂ to compute a confusion matrixCf̂ := pS(ŷ, y) ∈ Rk×k

on the source data. Depending on how ŷ is defined, there are two types of confusion matrix for
a predictor f̂ : (i) the hard confusion matrix ŷ = arg max f̂(x); and (ii) the soft confusion ma-
trix, where ŷ is defined as a random prediction that follows the discrete distribution f̂(x) over
Y . Both soft and hard confusion matrix can be estimated from labeled source data samples.
The estimate ŵ is computed as ŵ := Ĉ−1

f̂
µ̂, where Ĉf̂ is the estimate of confusion matrix and

µ̂ is an estimate of pT (ŷ), computed by applying the predictor f̂ to the target data. In a related
vein, RLLS [7] incorporates an additional regularization term of the form ‖w − 1‖ and solves a
constrained optimization problem to estimate the shift ratios w.

MLLS estimates w as if performing maximum likelihood estimation, but substitutes the pre-
dictor outputs for the true probabilities pS(y|x). Saerens et al. [116], who introduce this pro-
cedure, describe it as an application of EM. However, as observed in [4, 36], the likelihood
objective is concave, and thus a variety of optimization algorithms may be applied to recover
the MLLS estimate. Alexandari et al. [4] also showed that MLLS underperforms BBSE when
applied naively, a phenomenon that we shed more light on in this work.

3.4 A Unified View
We now present a unified view that subsumes MLLS and BBSE and demonstrate how each is
instantiated under this framework. We also establish identifiability and consistency conditions for
MLLS, deferring a treatment of finite-sample issues to Section 3.5. For convenience, throughout
Sections 3.4 and 3.5, we use the term calibration exclusively to refer to canonical calibration
(Definition 3.2.1) on the source data.

3.4.1 A Unified Distribution Matching View
To start, we introduce a generalized distribution matching approach for estimatingw. Under label
shift, for any (possibly randomized) mapping from X to Z , we have that pS(z|y) = pT (z|y)
since, pS(z|y) = pT (z|y) =

∫
X p(z|x)p(x|y)dx. Throughout the chapter, we use the notation

1Motivated by the strong empirical results in Alexandari et al. [4], we use BCTS in our experiments as a surrogate
to canonical calibration.
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p(z|y) to represent either pS(z|y) or pT (z|y) (which are identical). We now define a family of
distributions over Z parameterized by w ∈ W as

pw(z) =
∑k

y=1
p(z|y)pS(y)wy =

∑k

y=1
pS(z, y)wy, (3.1)

where W = {w | ∀y , wy ≥ 0 and
∑k

y=1 wypS(y) = 1}. When w = w∗, we have that pw(z) =
pT (z). For fixed p(z|x), pT (z) and pS(z, y) are known because pT (x) and pS(x, y) are known.
So one potential strategy to estimate w∗ is to find a weight vector w such that∑k

y=1
pS(z, y)wy = pT (z) ∀z ∈ Z . (3.2)

At least one such weight vectorw must exist asw∗ satisfies (3.2). We now characterize conditions
under which the weight vector w satisfying (3.2) is unique:
Lemma 3.4.1 (Identifiability). If the set of distributions {p(z|y) : y = 1, ..., k} are linearly
independent, then for any w that satisfies (3.2), we must have w = w∗. This condition is also
necessary in general: if the linear independence does not hold then there exists a problem instance
where we have w,w∗ ∈ W satisfying (3.2) while w 6= w∗.

Lemma 3.4.1 follows from the fact that (3.2) is a linear system with at least one solution
w∗. This solution is unique when pS(z, y) is of rank k. The linear independence condition in
Lemma 3.4.1, in general, is sufficient for identifiability of discrete Z . However, for continuous
Z , the linear dependence condition has the undesirable property of being sensitive to changes
on sets of measure zero. By changing a collection of linearly dependent distributions on a set of
measure zero, we can make them linearly independent. As a consequence, we impose a stronger
notion of identifiability i.e., the set of distributions {p(z|y) : y = 1, ..., k} are such that there
does not exist v 6= 0 for which

∫
Z |
∑

y p(z|y)vy|dz = 0. We refer this condition as strict linear
independence.

In generalized distribution matching, one can set p(z|x) to be the Dirac delta function at δx2

such that Z is the same space as X , which leads to solving (3.2) with z replaced by x. In practice
where X is high-dimensional and/or continuous, approximating the solution to (3.2) from finite
samples can be hard when choosing z = x. Our motivation for generalizing distribution matching
from X to Z is that the solution to (3.2) can be better approximated using finite samples when
Z is chosen carefully. Under this framework, the design of a label shift estimation algorithm
can be decomposed into two parts: (i) the choice of p(z|x) and (ii) how to approximate the
solution to (3.2). Later on, we consider how these design choices may affect label shift estimation
procedures in practice.

3.4.2 The Confusion Matrix Approach

If Z is a discrete space, one can first estimate pS(z, y) ∈ R|Z|×k and pT (z) ∈ R, and then
subsequently attempt to solve (3.2). Confusion matrix approaches use Z = Y , and construct
p(z|x) using a black box predictor f̂ . There are two common choices to construct the confusion
matrix: (i) The soft confusion matrix approach: We set p(z|x) := f̂(x) ∈ ∆k−1. We then define a

2For simplicity we will use z = x to denote that p(z|x) = δx.
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random variable ŷ ∼ f̂(x) for each x. Then we construct pS(z, y) = pS(ŷ, y) and pT (z) = pT (ŷ).
(ii) The hard confusion matrix approach: Here we set p(z|x) = δarg max f̂(x). We then define a

random variable ŷ = arg max f̂(x) for each x. Then again we have pS(z, y) = pS(ŷ, y) and
pT (z) = pT (ŷ).

Since pS(z, y) is a square matrix, the identifiability condition becomes the invertibility of
the confusion matrix. Given an estimated confusion matrix, one can find w by inverting the
confusion matrix (BBSE) or minimizing some distance between the vectors on the two sides of
(3.2).

3.4.3 Maximum Likelihood Label Shift Estimation
When Z is a continuous space, the set of equations in (3.2) indexed by Z is intractable. In this
case, one possibility is to find a weight vector w̃ by minimizing the KL-divergence KL(pT (z), pw(z)) =
ET [log pT (z)/pw(z)], for pw defined in (3.1). This is equivalent to maximizing the population
log-likelihood: w̃ := arg maxw∈W ET [log pw(z)] . One can further show that ET [log pw(z)] =
ET [log

∑k
y=1 pS(z, y)wy] = ET [log

∑k
y=1 pS(y|z)pS(z)wy] = ET [log

∑k
y=1 pS(y|z)wy]+ET [log pS(z)] .

Therefore we can equivalently define:

w̃ := arg max
w∈W

ET
[

log
∑k

y=1
pS(y|z)wy

]
. (3.3)

This yields a straightforward convex optimization problem whose objective is bounded from be-
low [4, 36]. Assuming access to labeled source data and unlabeled target data, one can maximize
the empirical counterpart of the objective in (3.3), using either EM or an alternative iterative
optimization scheme. Saerens et al. [116] derived an EM algorithm to maximize the objective
(3.3) when z = x, assuming access to pS(y|x). Absent knowledge of the ground truth pS(y|x),
we can plug in any approximate predictor f and optimize the following objective:

wf := arg max
w∈W

L(w, f) := arg max
w∈W

ET
[
log f(x)Tw

]
. (3.4)

In practice, f is fit from a finite sample drawn from pS(x, y) and standard machine learning
methods often produce uncalibrated predictors. While BBSE and RLLS are provably consis-
tent whenever the predictor f yields an invertible confusion matrix, to our knowledge, no prior
works have established sufficient conditions to guarantee MLLS’ consistency when f differs
from pS(y|x).

It is intuitive that for some values of f 6= pS(y|x), MLLS will yield inconsistent estimates.
Supplying empirical evidence, Alexandari et al. [4] show that MLLS performs poorly when f is
a vanilla neural network predictor learned from data. However, Alexandari et al. [4] also show
that in combination with a particular post-hoc calibration technique, MLLS achieves low error,
significantly outperforming BBSE and RLLS. As the calibration error is not a distance metric
between f and pS(y|x) (zero calibration error does not indicate f = pS(y|x)), a calibrated
predictor f may still be substantially different from pS(y|x). Some natural questions then arise:

1. Why does calibration improve MLLS so dramatically?

2. Is calibration necessary or sufficient to ensure the consistency of MLLS?
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3. What accounts for the comparative efficiency of MLLS over BBSE? (Addressed in Sec-
tion 3.5)

To address the first two questions, we make the following observations. Suppose we define
z (for each x) with distribution p(z|x) := δf(x), for some calibrated predictor f . Then, because
f is calibrated, it holds that pS(y|z) = f(x). Note that in general, the MLLS objective (3.4)
can differ from (3.3). However, when p(z|x) := δf(x), the two objectives are identical. We can
formalize this as follows:
Lemma 3.4.2. If f is calibrated, then the two objectives (3.3) and (3.4) are identical when Z is
chosen as ∆k−1 and p(z|x) is defined to be δf(x).

Lemma 3.4.2 follows from changing the variable of expectation in (3.4) from x to f(x) and
applying f(x) = pS(y|f(x)) (definition of calibration). It shows that MLLS with a calibrated
predictor on the input space X is in fact equivalent to performing distribution matching in the
space Z . Building on this observation, we now state our population-level consistency theorem
for MLLS:
Theorem 3.4.3 (Population consistency of MLLS). If a predictor f : X 7→ ∆k−1 is calibrated
and the distributions {p(f(x)|y) : y = 1, . . . , k} are strictly linearly independent, then w∗ is the
unique maximizer of the MLLS objective (3.4).

Let x1, x2, . . . , xm
iid∼ pT (x). The finite sample objective for MLLS can be written as

ŵf := arg max
w∈W

1

m

∑m

i=1
log f(xi)

Tw := arg max
w∈W

Lm(w, f) . (3.5)

The consistency of MLLS relies on the linear independence of the collection of distribu-
tions {p(f(x)|y) : y = 1, . . . , k}. The following result develops several alternative equivalent
characterizations of this linear independence condition.
Proposition 3.4.4. For a calibrated predictor f , the following statements are equivalent:

(1) {p(f(x)|y) : y = 1, . . . , k} are strictly linearly independent.
(2) ES

[
f(x)f(x)T

]
is invertible.

(3) The soft confusion matrix of f is invertible.
Proposition 3.4.4 shows that with a calibrated predictor, the invertibility condition as re-

quired by BBSE (or RLLS) is exactly the same as the linear independence condition required for
MLLS’s consistency.

3.4.4 MLLS with Confusion Matrix
So far, we have shown that MLLS with any calibrated predictor can be viewed as distribution
matching in a latent space. Now we discuss a method to construct a predictor f to perform MLLS
given any p(z|x), e.g., those induced by confusion matrix approaches. Recall, we already have
the maximum log-likelihood objective. It just remains to construct a calibrated predictor f from
the confusion matrix.

This is straightforward when p(z|x) is deterministic, i.e., p(z|x) = δg(x) for some function g:
setting f(x) = pS(y|g(x)) makes the objectives (3.3) and (3.4) to be the same. Recall that for the
hard confusion matrix, the induced latent space is p(z|x) = δarg max f̂(x). So the corresponding
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predictor in MLLS is f(x) = pS(y|ŷx), where ŷx = arg max f̂(x). Then we obtain the MLLS
objective for the hard confusion matrix:

max
w∈W

ET
[
log
∑k

y=1
pS(y|ŷx)wy

]
. (3.6)

The confusion matrix Cf̂ and predictor f̂ directly give us pS(y|ŷx). Given an input x, one can
first get ŷx from f̂ , then normalize the ŷx-th row of Cf̂ as pS(y|ŷx). We denote MLLS with hard
confusion matrix calibration (3.6) by MLLS-CM.

When pS(z|x) is stochastic, we need to extend (3.4) to allow f to be a random predictor:
f(x) = pS(y|z) for z ∼ p(z|x)3. To incorporate the randomness of f , one only needs to change
the expectation in (3.4) to be over both x and f(x), then (3.4) becomes a rewrite of (3.3).

Proposition 3.4.5 indicates that constructing the confusion matrix is a calibration procedure.
Thus, the predictor constructed with constructed using confusion matrix is calibrated and suitable
for application with MLLS.
Proposition 3.4.5 (Vaicenavicius et al. [141]). For any function g, f(x) = pS(y|g(x)) is a cali-
brated predictor.

We can now summarize the relationship between BBSE and MLLS: A label shift estimator
involves two design choices: (i) designing the latent space p(z|x) (which is equivalent to de-
signing a calibrated predictor); and (ii) performing distribution matching in the new space Z . In
BBSE, we design a calibrated predictor via the confusion matrix and then perform distribution
matching by directly solving linear equations. In general, MLLS does not specify how to obtain a
calibrated predictor, but specifies KL minimization as the distribution matching procedure. One
can apply the confusion matrix approach to obtain a calibrated predictor and then plug it into
MLLS, which is the BBSE analog under MLLS, and is a special case of MLLS.

3.5 Finite-Sample Analysis

We now analyze the performance of MLLS estimator. Even when w∗ is the unique optimizer of
(3.4) for some calibrated predictor f , assuming convex optimization can be done perfectly, there
are still two sources of error preventing us from exactly computing w∗ in practice. First, we are
optimizing a sample-based approximation (3.5) to the objective in expectation (3.4). We call this
source of error finite-sample error. Second, the predictor f we use may not be perfectly cali-
brated on the source distribution as we only have access to samples from source data distribution
pS(x, y). We call this source of error miscalibration error. We will first analyze how these two
sources of errors affect the estimate of w∗ separately and then give a general error bound that
incorporates both.

Before presenting our analysis, we introduce some notation and regularity assumptions. For
any predictor f : X 7→ ∆k−1, we define wf and ŵf as in (3.4) and (3.5). If f satisfies the con-
ditions in Theorem 3.4.3 (calibration and linear independence) then we have that wf = w∗. Our
goal is to bound ‖ŵf − w∗‖ for a given (possibly miscalibrated) predictor f . We now introduce
a regularity condition:

3Here, by a random predictor we mean that the predictor outputs a random vector from ∆k−1, not Y .
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Condition 3.5.1 (Regularity condition for a predictor f ). For any x within the support of pT (x),
i.e. pT (x) > 0, we have both f(x)Twf ≥ τ , f(x)Tw∗ ≥ τ for some universal constant τ > 0.

Condition 3.5.1 is mild if f is calibrated since in this case wf = w∗ is the maximizer of
ET
[
log f(x)Tw

]
, and the condition is satisfied if the expectation is finite. Since f(x)Tw∗ and

f(x)Twf are upper-bounded (they are the inner products of two vectors which sum to 1), they
also must be lower-bounded away from 0 with arbitrarily high probability without any assump-
tions. For miscalibrated f , a similar justification holds for assumption that f(x)Twf is lower
bounded. Turning our attention to the assumption that f(x)Tw∗ is lower bounded, we note that
it is sufficient if f is close (pointwise) to some calibrated predictor. This in turn is a reasonable
assumption on the actual predictor we use for MLLS in practice as it is post-hoc calibrated on
source data samples.

Define σf,w to be the minimum eigenvalue of the Hessian −∇2
wL(w, f). To state our re-

sults compactly we use standard stochastic order notation (see, for instance, [142]). We first
bound the estimation error introduced by only having finite samples from the target distribution
in Lemma 3.5.2. Next, we bound the estimation error introduced by having a miscalibrated f in
Lemma 3.5.3.
Lemma 3.5.2. For any predictor f that satisfies Condition 3.5.1, we have

‖wf − ŵf‖ ≤ σ−1
f,wf
Op
(
m−1/2

)
.

Lemma 3.5.3. For any predictor f and any calibrated predictor fc that satisfies Condition 3.5.1,
we have

‖wf − w∗‖ ≤ σ−1
f,w∗ · C · ET [‖f − fc‖] ,

for some constant C.
If we set fc(x) = pS(y|f(x)), which is a calibrated predictor (Proposition 3.4.5), we can

bound the error in terms of the calibration error of f on the source data 4: ‖wf − w∗‖ ≤ σ−1
f,w∗ ·

C · E(f) .

Note that since pS(y) > 0 for all y, we can upper-bound the error in Lemma 3.5.3 with
calibration error on the source data. We combine the two sources of error to bound the estimation
error ‖ŵf − w∗‖:
Theorem 3.5.4. For any predictor f that satisfies Condition 3.5.1, we have

‖ŵf − w∗‖ ≤ σ−1
f,wf
Op
(
m−1/2

)
+ C · σ−1

f,w∗E(f) . (3.7)

The estimation error of MLLS can be decomposed into (i) finite-sample error, which decays
at a rate of m−1/2; and (ii) the calibration error of the predictor that we use. The proof is a direct
combination of Lemma 3.5.2 and Lemma 3.5.3 applied to the same f with the following error
decomposition:

‖ŵf − w∗‖ ≤ ‖wf − ŵf‖︸ ︷︷ ︸
finite-sample

+ ‖wf − w∗‖︸ ︷︷ ︸
miscalibration

.

4We present two upper bounds because the second is more interpretable while the first is tighter.
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Theorem 3.5.4 shows that the estimation error depends inversely on the minimum eigenvalue of
the Hessian at two different points wf and w∗. One can unify these two eigenvalues as a single
quantity σf , the minimum eigenvalue ET

[
f(x)f(x)T

]
:

Proposition 3.5.5. For any w ∈ W , we have σf,w ≥ pS,minσf where σf is the minimum eigen-
value of ET

[
f(x)f(x)T

]
and pS,min = miny∈Y pS(y). Furthermore, if f satisfies Condition 3.5.1,

we have p2
S,min · σf ≤ σf,w ≤ τ−2 · σf , for w ∈ {wf , w∗}.

The estimation error bound explains the efficiency of MLLS. Informally, the error of MLLS
depends inversely on the minimum eigenvalue of the Hessian of the likelihood σf . When we
apply coarse calibration via the confusion matrix (in MLLS-CM), we only decrease the value
of σf . Coarse calibration throws away information [75] and thus results in greater estimation
error for MLLS. In Section 3.6, we empirically show that MLLS-CM’s performance is similar
to that of BBSE. Moreover, we show that the minimum eigenvalue of the Hessian obtained us-
ing confusion matrix calibration is smaller than the minimum eigenvalue obtained with more
granular calibration. Our analysis and observations together suggest MLLS’s superior perfor-
mance than BBSE (or RLLS) is due to the granular calibration but not due to the difference in
the optimization objective.

Finally, we want to highlight one minor point regarding applicability of our result. If f
is calibrated, Theorem 3.5.4, together with Proposition 3.5.5, implies that MLLS is consistent
if ET

[
f(x)f(x)T

]
is invertible. Compared to the consistency condition in Theorem 3.4.3 that

ES
[
f(x)f(x)T

]
is invertible (together with Proposition 3.4.4), these two conditions are the same

if the likelihood ratio pT (f(x))/pS(f(x)) is lower-bounded. This is true if all entries in w∗

are non-zero. Even if w∗ contains non-zero entries, the two conditions are still the same if
there exists some w∗y > 0 such that p(f(x)|y) covers the full support of pS(f(x)). In general
however, the invertibility of ET

[
f(x)f(x)T

]
is a stronger requirement than the invertibility of

ES
[
f(x)f(x)T

]
. We leave further investigation of this gap for future work.

3.6 Experiments
We experimentally illustrate the performance of MLLS on synthetic data, MNIST [86], and
CIFAR10 [74]. Following Lipton et al. [94], we experiment with Dirichlet shift simulations.
On each run, we sample a target label distribution pT (y) from a Dirichlet with concentration
parameter α. We then generate each target example by first sampling a label y ∼ pT (y) and then
sampling (with replacement) an example conditioned on that label . Note that smaller values
of alpha correspond to more severe shift. In our experiments, the source label distribution is
uniform.

First, we consider a mixture of two Gaussians with µ = 1. With CIFAR10 and MNIST, we
split the full training set into two subsets: train and valid, and use the provided test set as is.
Then according to the label distribution, we randomly sample with replacement train, valid, and
test set from each of their respective pool to form the source and target set. To learn the black
box predictor on real datasets, we use the same architecture as Lipton et al. [94] for MNIST, and
for CIFAR10 we use ResNet-18 [58] as in Azizzadenesheli et al. [7]. For simulated data, we use
the true pS(y|x) as our predictor function. For each experiment, we sample 100 datasets for each
shift parameter and evaluate the empirical MSE and variance of the estimated weights.
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(a) GMM (b) MNIST (c) CIFAR-10

(d) GMM (e) MNIST (f) CIFAR-10

Figure 3.1: (top) MSE vs the degree of shift; For GMM, we control the shift in the label marginal
for class 1 with a fixed target sample size of 1000. For multiclass problems—-MNIST and
CIFAR-10, we control the Dirichlet shift parameter with a fixed sample size of 5000. (bottom)
MSE (in log scale) vs target sample size; For GMM, we fix the label marginal for class 1 at 0.01
whereas for multiclass problems, MNIST and CIFAR-10, we fix the Dirichlet parameter to 0.1.
In all plots, MLLS dominates other methods. All confusion matrix approaches perform similarly,
indicating that the advantage of MLLS comes from the choice of calibration but not the way of
performing distribution matching.

We consider three sets of experiments: (1) MSE vs degree of target shift; (2) MSE vs target
sample sizes; and (3) MSE vs calibrated predictors on the source distribution. We refer to MLLS-
CM as MLLS with hard confusion matrix calibration as in (3.6). In our experiments, we compare
MLLS estimator with BBSE, RLLS, and MLLS-CM. For RLLS and BBSE, we use the publicly
available code. To post-hoc calibration, we use BCTS [4] on the held-out validation set. Using
the same validation set, we calculate the confusion matrix for BBSE, RLLS, and MLLS-CM.

We examine the performance of various estimators across all three datasets for various target
dataset sizes and shift magnitudes (Figure 3.1). Across all shifts, MLLS (with BCTS-calibrated
classifiers) uniformly dominates BBSE, RLLS, and MLLS-CM in terms of MSE (Figure 3.1).
Observe for severe shifts, MLLS is comparatively dominant. As the available target data in-
creased, all methods improve rapidly, with MLLS outperforming all other methods by a sig-
nificant margin. Moreover, MLLS’s advantages grow more pronounced under extreme shifts.
Notice MLLS-CM is roughly equivalent to BBSE across all settings of dataset, target size, and
shift magnitude. This concludes MLLS’s superior performance is not because of differences
in loss function used for distribution matching but due to differences in the granularity of the
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predictions, caused by crude confusion matrix aggregation.

Figure 3.2: MSE (left-axis) with variation of minimum eigenvalue of the Hessian (right-axis) vs
number of bins used for aggregation. With increase in number of bins, MSE decrease and the
minimum eigenvalue increases.

Note that given a predictor f1, we can partition our input space and produce another predictor
f2 that, for any data-point gives the expected output of f1 on points belonging to that partition.
If f1 is calibrated, then f2 will also be calibrated [141]. On synthetic data, we vary the granu-
larity of calibration (for MLLS) by aggregating pS(y|x) over a variable number of equal-sized
bins. With more bins, less information is lost due to calibration. Consequently, the minimum
eigenvalue of the Hessian increases and the MSE decreases, supporting our theoretical bounds
(Figure 3.2). We also verify that the confusion matrix calibration performs poorly (Figure 3.2).
For MLLS-CM, the minimum eigenvalue of the Hessian is 0.195, significantly smaller than for
the binned predictor for #bin ≥ 4. Thus, the poor performance of MLLS-CM is predicted by
its looser upper bound per our analysis. Note that these experiments presume access to the true
predictor pS(y|x) and thus the MSE strictly improves with the number of bins. In practice, with
a fixed source dataset size, increasing the number of bins could lead to overfitting, worsening our
calibration.

3.7 Conclusions

This chapter provides a unified framework relating techniques that use off-the-shelf predictors
for label shift estimation. We argue that these methods all employ calibration, either explicitly
or implicitly, differing only in the choice of calibration method and their optimization objective.
Moreover, with our analysis we show that the choice of calibration method (and not the opti-
mization objective for distribution matching) accounts for the advantage of MLLS with BCTS
calibration over BBSE.
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3.8 Proofs

Proof of Lemma 3.4.1. First we prove sufficiency. If there exists w 6= w∗ such that (3.2) holds,
then we have

∑k
y=1 pS(z, y)(wy − w∗y) = 0 for all z ∈ Z . As w − w∗ is not the zero vector,

{pS(z, y), y = 1, ..., k} are linearly dependent. Since pS(z, y) = pS(y)p(z|y) and pS(y) > 0
for all y (by assumption), we also have that {p(z|y), y = 1, ..., k} are linearly dependent. By
contradiction, we show that the linear independence is necessary.

To show necessity, assume w∗y = 1
kpS(y)

for y = 1, ..., k. We know that w∗ satisfies (3.2) by
definition. If linear independence does not hold, then there exists a vector v ∈ Rk such that v 6= 0
and

∑k
y=1 pS(z, y)vy = 0 for all z ∈ Z . Since the w∗ we construct is not on the boundary ofW ,

we can scale v such that w∗+αv ∈ W where α ≥ 0 and v 6= 0. Therefore, setting w = w∗+αv
gives another solution for (3.2), which concludes the proof.

Proof of Lemma 3.4.2.

ET
[
log f(x)Tw

]
=

∫
pT (x) log[f(x)Tw]dx

=

∫ ∫
pT (x)p(z|x) log[f(x)Tw]dxdz

=

∫ ∫
pT (x)p(z|x)1 {f(x) = z} log[f(x)Tw]dxdz

=

∫ ∫
pT (x)p(z|x) log[zTw]dxdz

=

∫
pT (z) log[zTw]dz

=

∫
pT (z) log

[ k∑
y=1

pS(y|z)w
]
dz ,

where the final step uses the fact that f is calibrated.

Proof of Theorem 3.4.3. According to Lemma 3.4.2 we know that maximizing (3.4) is the same
as maximizing (3.3) with p(z|x) = δf(x), thus also the same as minimizing the KL divergence
between pT (z) and pw(z). Since pT (z) ≡ pw∗(z) we know that w∗ is a minimizer of the KL
divergence such that the KL divergence is 0. We also have that KL(pT (z), pw(z)) = 0 if and only
if pT (z) ≡ pw(z), so all maximizers of (3.4) should satisfy (3.2). According to Lemma 3.4.1,
if the strict linear independence holds, then w∗ is the unique solution of (3.2). Thus w∗ is the
unique maximizer of (3.4).

Proof of Proposition 3.4.4. We first show the equivalence of (1) and (2). If f is calibrated, we
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have pS(f(x))fy(x) = pS(y)p(f(x)|y) for any x, y. Then for any vector v ∈ Rk we have

k∑
y=1

vyp(f(x)|y) =
k∑
y=1

vy
pS(y)

pS(y)p(f(x)|y) =
k∑
y=1

vy
pS(y)

pS(f(x))fy(x) = pS(f(x))
k∑
y=1

vy
pS(y)

fy(x) .

(3.8)

On the other hand, we can have

ES
[
f(x)f(x)T

]
=

∫
f(x)f(x)TpS(f(x))d(f(x)) . (3.9)

If {p(f(x)|y) : y = 1, . . . , k} are linearly dependent, then there exist v 6= 0 such that (3.8)
is zero for any x. Consequently, there exists a non-zero vector u with uy = vy/pS(y) such that
uTf(x) = 0 for any x satisfying pS(f(x)) > 0, which means uTES

[
f(x)f(x)T

]
u = 0 and thus

ES
[
f(x)f(x)T

]
is not invertible. On the other hand, if ES

[
f(x)f(x)T

]
is non-invertible, then

there exist some u 6= 0 such that uTES
[
f(x)f(x)T

]
u = 0. Further as uTES

[
f(x)f(x)T

]
u =∫

uTf(x)f(x)Tu pS(x)dx =
∫ ∣∣f(x)Tu

∣∣ pS(x)dx. As a result, the vector v with vy = pS(y)uy
satisfies that (3.8) is zero for any x, which means {p(f(x)|y) : y = 1, . . . , k} are not strictly
linearly independent.

Let C be the soft confusion matrix of f , then

Cij = pS(ŷ = i, y = j) =

∫
d(f(x)) fi(x)p(f(x)|y = j)pS(y = j)

=

∫
fi(x)fj(x)pS(f(x))d(f(x)) .

Therefore, we have C = ES
[
f(x)f(x)T

]
, which means (2) and (3) are equivalent.

Proof of Proposition 3.5.5. For any v ∈ Rk, we have

vT
(
−∇2

wL(w, f)
)
v = ET

[(
vTf(x)

)2

(f(x)Tw)2

]
∈
[

1

a2
,

1

b2

]
· vTET

[
f(x)f(x)T

]
v ,

where

a = max
x:pS(x)>0

f(x)Tw ≤ 1

pS,min

and

b = min
x:pS(x)>0

f(x)Tw ≥ τ

if f satisfies Condition 3.5.1 and w ∈ {wf , w∗}. Therefore, we have

p2
S,min · σf ≤ σf,w ≤ τ−2 · σf

for w ∈ {wf , w∗}.
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3.8.1 Proof of Theorem 3.5.4
The gradient of the MLLS objective can be written as

∇wL(w, f) = ET
[
f(x)

f(x)Tw

]
, (3.10)

and the Hessian is

∇2
wL(w, f) = −ET

[
f(x)f(x)T

(f(x)Tw)2

]
. (3.11)

We use λmin(X) to denote the minimum eigenvalue of the matrix X .
Lemma 3.8.1 (Theorem 5.1.1 [137]). Let X1, X2, . . . , Xn be a finite sequence of identically
distributed independent, random, symmetric matrices with common dimension k. Assume 0 �
X � R · I and µminI � E [X] � µmaxI . With probability at least 1− δ,

λmin

(
1

n

n∑
i=1

Xi

)
≥ µmin −

√
2Rµmin log(k

δ
)

n
. (3.12)

Proof of Lemma 3.5.2. We present our proof in two steps. Step-1 is the non-probabilistic part,
i.e., bounding the error ‖ŵf − wf‖ in terms of the gradient difference ‖∇wL(wf , f)−∇wLm(wf , f)‖.
This step uses Taylor’s expansion upto second order terms for empirical log-likelihood around
the true w∗. Step-2 involves deriving a concentration on the gradient difference using the Lips-
chitz property implied by Condition 3.5.1. Combining these two steps along with Lemma 3.15
concludes the proof. Now we detail each of these steps.

Step-1. We represent the empirical Negative Log-Likelihood (NLL) function with Lm by
absorbing the negative sign to simplify notation. Using a Taylor expansion, we have

Lm(ŵf , f) = Lm(wf , f) + 〈∇wLm(wf , f), ŵf −wf〉+
1

2
(ŵf −wf )T∇2

wLm(w̃, fc)(ŵf −wf ) ,

where w̃ ∈ [ŵf , wf ]. With the assumption fTwf ≥ τ , we have∇2
wLm(w̃, f) ≥ τ2

min pS(y)2∇2
wLm(wf , f).

Let κ = τ2

min pS(y)2 . Using this we get,

Lm(ŵf , f) ≥ Lm(wf , f) + 〈∇wLm(wf , f), ŵf − wf〉+
κ

2
(ŵf − wf )T∇2

wLm(wf , f)(ŵf − wf )

Lm(ŵf , f)− Lm(wf , f)︸ ︷︷ ︸
I

−〈∇wLm(wf , f), ŵf −wf〉 ≥
κ

2
(ŵf −wf )T∇2

wLm(wf , f)(ŵf −wf ) ,

where term-I is less than zero as ŵf is the minimizer of empirical NLL Lm(ŵf , f). Ignoring
term-I and re-arranging a few terms we get:

−〈∇wLm(wf , f), ŵf − wf〉 ≥
κ

2
(ŵf − wf )T∇2

wLm(wf , f)(ŵf − wf ) ,
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With first order optimality on wf , 〈∇wL(wf , f), ŵf − wf〉 ≥ 0. Plugging in this, we have,

〈∇wL(wf , f)−∇wLm(wf , f), ŵf − wf〉 ≥
κ

2
(ŵf − wf )T∇2

wLm(wf , f)(ŵf − wf ) ,

Using Holder’s inequality on the LHS we have,

‖∇wL(wf , f)−∇wLm(wf , f)‖ ‖ŵf − wf‖ ≥
κ

2
(ŵf − wf )T∇2

wLm(wf , f)(ŵf − wf ) .

Let σ̂f,wf be the minimum eigenvalue of∇2
wLm(w∗, fc). Using the fact that (ŵf−wf )T∇2

wLm(wf , f)(ŵf−
wf ) ≥ σ̂min ‖ŵf − wf‖2, we get,

‖∇wL(wf , f)−∇wLm(wf , f)‖ ≥
κσ̂f,wf

2
‖ŵf − wf‖ . (3.13)

Step-2. The empirical gradient is∇wLm(wf , f) =
∑m

i=1
∇wL1(xi,wf ,f)

m
where∇L1(xi, wf , f) =[

f1(xi)
〈f(xi),wf 〉

. . . fl(xi)
〈f(xi),wf 〉

. . . fk(xi)
〈f(xi),wf 〉

]
(k)

. With the lower bound τ on fTwf , we can upper bound

the gradient terms as

‖∇wL1(x,wf , f)‖ ≤ ‖f‖
τ
≤ ‖f‖1

τ
≤ 1

τ
.

As the gradient terms decompose and are independent, using Hoeffding’s inequality we have
with probability at least 1− δ

2
,

‖∇wL(wf , f)−∇wLm(wf , f)‖ ≤ 1

2τ

√
log(4/δ)

m
. (3.14)

Let σf,wf be the minimum eigenvalue of ∇2
wL(wf , f). Using lemma 3.8.1, with probability

at least 1− δ
2
,

σ̂f,wf
σf,wf

≥ 1− τ
√

log(2k/δ)

m
. (3.15)

Plugging (3.14) and (3.15) in (3.13), and applying a union bound, we conclude that with
probability at least 1− δ,

‖ŵf − wf‖2 ≤
1

κτ

(
σf,wf − σf,wf τ

√
log(2k/δ)

m

)−1(√ log(4/δ)

m

)
≤ 1

κτ

1

σf,wf

(
1 + τ

√
log(2k/δ)

m

)√ log(4/δ)

m
.

Neglecting the order m term and letting c = 1
κτ

, we have

‖ŵf − wf‖ ≤
c

σf,wf

√
log(4/δ)

m
.
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Proof of Lemma 3.5.3. We present our proof in two steps. Note, all calculations are non-probabilistic.
Step-1 involves bounding the error ‖wf − w∗‖ in terms of the gradient difference ‖∇wL(w∗, fc)−∇wL(w∗, f)‖.
This step uses Taylor’s expansion on L(wf , f) upto the second orderth term for population log-
likelihood around the true w∗. Step-2 involves deriving a bound on the gradient difference in
terms of the difference ‖f − fc‖ using the Lipschitz property implied by Condition 3.5.1. Fur-
ther, for a crude calibration choice of fc(x) = pS(·|x), the gradient difference can be bounded
by miscalibration error. We now detail both of these steps.

Step-1. Similar to Lemma 3.5.2, we represent with L by absorbing the negative sign to
simplify notation. Using the Taylor expansion, we have

L(wf , f) ≥ L(w∗, f) + 〈∇wL(w∗, f), wf − w∗〉+
1

2
(wf − w∗)T∇2

wL(w̃, f)(wf − w∗) ,

where w̃ ∈ [wf , w
∗]. With the assumption fTw∗ ≥ τ , we have∇2

wL(w̃, f) ≥ τ2

min pS(y)2∇2
wL(w∗, f)

. Let κ = τ2

min pS(y)2 . Using this we get,

L(wf , f) ≥ L(w∗, f) + 〈∇wL(w∗, f), wf − w∗〉+
κ

2
(wf − w∗)T∇2

wL(w∗, f)(wf − w∗)

L(wf , f)− L(w∗, f)︸ ︷︷ ︸
I

≥ 〈∇wL(wf , f), wf − w∗〉+
κ

2
(wf − w∗)T∇2

wL(w∗, f)(wf − w∗) ,

where term-I is less than zero as wf is the minimizer of NLL L(w, f). Ignoring that term and
re-arranging a few terms we get

−〈∇wL(w∗, f), wf − w∗〉 ≥
κ

2
(wf − w∗)T∇2

wL(w∗, f)(wf − w∗) .

With first order optimality on w∗, 〈∇wL(w∗, fc), wf − w∗〉 ≥ 0. Using this we have:

〈∇wL(w∗, fc), wf − w∗〉 − 〈∇wL(w∗, f), wf − w∗〉 ≥
κ

2
(wf − w∗)T∇2

wL(w∗, f)(wf − w∗) ,

〈∇wL(w∗, fc)−∇wL(w∗, f), wf − w∗〉 ≥
κ

2
(wf − w∗)T∇2

wL(w∗, f)(wf − w∗) .

As before, let σf,w be the minimum eigenvalue of ∇2
wL(w∗, f). Using the fact that (wf −

w∗)T∇2
wL(w∗, f)(wf − w∗) ≥ σf,w ‖wf − w∗‖2, we get

〈∇wL(w∗, fc)−∇wL(w∗, f), wf − w∗〉 ≥
κσf,w

2
‖wf − w∗‖2 .

Using Holder’s inequality on the LHS and re-arranging terms gives

‖∇wL(w∗, fc)−∇wL(w∗, f)‖ ≥ κσf,w
2
‖wf − w∗‖ . (3.16)

Step-2. By lower bound assumptions fTc w
∗ ≥ τ and fTw∗ ≥ τ , we have

‖∇wL(w∗, fc)−∇L(w∗, f)‖ ≤ ET [‖∇L1(x,w∗, fc)−∇L1(x,w∗, f)‖] ≤ 1

τ 2
ET [‖fc(x)− f(x)‖] ,

(3.17)
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where the first inequality is implied by Jensen’s inequality and the second is implied by the
Lipschitz property of the gradient. Further, we have

ET [‖fc(x)− f(x)‖] = ES
[
pT (x)

pS(x)
‖fc(x)− f(x)‖

]
≤ ES

[
max
y

pT (y)

pS(y)
‖fc(x)− f(x)‖

]
≤ max

y

pT (y)

pS(y)
ES [‖fc(x)− f(x)‖] . (3.18)

Combining equations (3.16), (3.17), and (3.18), we have

‖wf − w∗‖ ≤
2

κσf,wτ 2
max
y

pT (y)

pS(y)
ES [‖fc(x)− f(x)‖] . (3.19)

Further, if we set fc(x) = pS(·|f(x)), which is a calibrated predictor according to Proposi-
tion 3.4.5, we can bound the error on the RHS in terms of the calibration error of f . Moreover, in
the label shift estimation problem, we have the assumption that pS(y) ≥ c > 0 for all y. Hence,
we have maxy pT (y)/pS(y) ≤ 1/c. Using Jensen’s inequality, we get

ES‖fc(x)− f(x)‖ ≤
(
ES‖fc(x)− f(x)‖2) 1

2 = E(f) . (3.20)

Plugging (3.20) back in (3.19),we get the required upper bound.
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Chapter 4

Learning from Positive and Unlabeled Data

4.1 Overview

When deploying k-way classifiers in the wild, what can we do when confronted with data from
a previously unseen class (y = k + 1)? Theory dictates that learning under distribution shift
is impossible absent assumptions. And yet people appear to exhibit this capability routinely.
Faced with new surprising symptoms, doctors can recognize the presence of a previously unseen
ailment and attempt to estimate its prevalence. Similarly, naturalists can discover new species,
estimate their range and population, and recognize them reliably going forward.

To begin making this problem tractable, we follow the label shift assumption [94, 116, 130],
i.e., that while the class balance p(y) can change, the class conditional distributions p(x|y) do not.
Moreover, we begin by focusing on the base case, where only one class has been seen previously,
i.e., k = 1. Here, we possess (labeled) positive data from the source distribution, and (unlabeled)
data from the target distribution, consisting of both positive and negative instances. This problem
has been studied in the literature as learning from positive and unlabeled data [28, 88] and has
typically been broken down into two subtasks: (i) Mixture Proportion Estimation (MPE) where
we estimate α, the fraction of positives among the unlabeled examples; and (ii) classification
where this estimate is incorporated into a scheme for learning a Positive-versus-Negative (PvN)
binary classifier.

Traditionally, PU-learning have been motivated by settings involving large databases where
unlabeled examples are abundant and a small fraction of the total positives have been extracted.
For example, medical records might be annotated indicating the presence of certain diagnoses,
but the unmarked passages are not necessarily negative. This setup has also been motivated
by protein and gene identification [39]. Databases in molecular biology often contain lists of
molecules known to exhibit some characteristic of interest. However, many other molecules may
exhibit the desired characteristic, even if this remains unknown to science.

Many methods have been proposed for both MPE [9, 35, 39, 64, 65, 114, 120] and clas-
sification [33, 34, 72]. However, classical MPE methods break down in high-dimensional set-
tings [114] or yield estimators whose accuracy depends on restrictive conditions [35, 120]. On
the other hand, most recent proposals either lack theoretical coherence, rely on heroic assump-
tions, or depend precariously on tuning hyperparameters that are, by the very problem setting,
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untunable to the best of our knowledge. For PU learning, Elkan and Noto [39] suggest train-
ing a classifier to distinguish positive from unlabeled data followed by a rescaling procedure.
Du Plessis et al. [33] suggest an unbiased risk estimation framework for PU learning. However,
these methods fail badly when applied with model classes capable of overfitting and thus imple-
mentations on high-dimensional datasets rely on extensive hyperparameter tuning and additional
ad-hoc heuristics that do not transport effectively across datasets.

In this chapter, we propose (i) Best Bin Estimation (BBE), an effective technique for MPE
that produces consistent estimates α̂ under mild assumptions and admits finite-sample statistical
guarantees ; and (ii) classification with the Conditional Value under Optimism (CVuO) objec-
tive, which discards the hardest-to-fit α̂ fraction of examples on each training epoch, removing
the incentive to overfit to the unlabeled positive examples. Both methods are simple to imple-
ment, compatible with arbitrary hypothesis classes (including deep networks), and outperform
existing methods in our experimental evaluation. Finally, we combine the two in an iterated
Transform-Estimate-Discard (TED)n framework that substantially improves both estimate MSE
and classifier error.

We build on label shift methods [4, 7, 47, 94], that leverage black-box classifiers to reduce
dimensionality, estimating the target label distribution as a functional of source and target push-
forward distributions. While label shift methods rely on classifiers trained to separate previously
seen classes, BBE is able to exploit a Positive-versus-Unlabeled (PvU) target classifier, which
gives each input a score indicating how likely it is to be a positive sample. In particular, BBE
identifies a threshold such that by estimating the ratio between the fractions of positive and
unlabeled points receiving scores above the threshold, we obtain of the the mixture proportion α.

BBE works because in practice, for many datasets, PvU classifiers, even when uncalibrated,
produce outputs with near monotonic calibration diagrams. Higher scores correspond to a higher
proportion of positives, and when the positive data contains a separable sub-domain, i.e. a re-
gion of the input space where only the positive distribution has support, classifiers often exhibit a
threshold above which the top bin contains mostly positive examples. We show that the existence
of a (nearly) pure top bin is sufficient for BBE to produce a (nearly) consistent estimate α̂, whose
finite sample convergence rates depend on the fraction of examples in the bin and whose bias
depends on the purity of the bin. Crucially, we can estimate the threshold from data.We con-
duct experiments to establish the outperformance of BBE, CVuO, and (TED)n over the previous
methods.

4.2 Related Work

Research on MPE and PU learning date to [28, 30, 88] (see review by [10]). Elkan and Noto
[39] first proposed to leverage a PvU classifier to estimate the mixture proportion. Du Plessis
and Sugiyama [36] propose a different method for estimating the mixture coefficient based on
Pearson divergence minimization. While they do not require a PvU classifier, they suffer the
same shortcoming. Both methods require that the positive and negative examples have disjoint
support. Our requirements are considerably milder. [16] observe that without assumptions on
the underlying positive and negative distributions, the mixture proportion is not identifiable. Fur-
thermore, [16] provide an irreducibility condition that identifies α and propose an estimator that
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converges to the true α. While their estimator can converge arbitrarily slowly, Scott [120] showed
faster convergence (O(1/

√
n)) under stronger conditions. Unfortunately, despite its appealing

theoretical properties Blanchard et al. [16]’s estimator is computationally infeasible. Building
on Blanchard et al. [16], Sanderson and Scott [117] and Scott [120] proposed estimating the
mixture proportion from a ROC curve constructed for the PvU classifier. However, when the
PvU classifier is not perfect, these methods are not clearly understood. Ramaswamy et al. [114]
proposed the first computationally feasible algorithm for mixture proportion estimation with con-
vergence guarantees to the true proportion. Their method KM, requires embedding distributions
onto an RKHS. However, their estimator underperforms on high dimensional datasets and scales
poorly with large datasets. Bekker and Davis [9] proposed TIcE, hoping to identify a positive
subdomain in the input space using decision tree induction. This method also underperforms in
high-dimensional settings.

In the most similar works, [65] and Ivanov [64] explore dimensionality reduction using a PvU
classifier. Both methods estimate α through a procedure operating on the PvU classifier’s output.
However, neither methods has provided theoretical backing [64] concede that their method often
fails and returns a zero estimate, requiring that they fall back to a different estimator. Moreover
while both papers state that their method require the Bayes-optimal PvU classifier to identify α in
the transformed space, we prove that even when hypothesis class is well specified for PvN learn-
ing, PvU training can fail to recover Bayes-optimal scoring function. By contrast, our estimator
BBE is theoretically coherent under mild conditions and outperforms both of these methods em-
pirically.

Given α, Elkan and Noto [39] propose a transformation via Bayes rule to obtain the PvN clas-
sifier. They also propose a weighted objective, with weights given by the PvU classifier. Other
propose unbiased risk estimators [33, 34] which require the mixture proportion α. Du Plessis
et al. [34] proposed an unbiased estimator with non-convex loss functions satisfying a specific
symmetric condition, and subsequently Du Plessis et al. [33] generalized it to convex loss func-
tions (denoted uPU in our experiments). in our experiments. Noting the problem of overfitting
in modern overparameterized models, Kiryo et al. [72] propose a regularized extension that clips
the loss on unlabeled data to zero. This is considered the current state-of-the-art in PU litera-
ture (denoted nnPU in our experiments). More recently, Ivanov [64] proposed Dedpul, which
finetunes the PvU classifiers using several heuristics, Bayes rule, and Expectation Maximiza-
tion (EM). Since their method only applies a post-processing procedure, they rely on a good
domain discriminator classifier in the first place and several hyperparameters for their heuris-
tics. Several classical methods attempt to learn weights that identify reliable negative examples
[87, 92, 95, 96, 158]. While our loss may be similar in spirit, these earlier methods have not been
successful with modern deep learning models.

4.3 Problem Setup

By ||·|| and 〈·, ·〉, we denote the Euclidean norm and inner product, respectively. For a vector
v ∈ Rd, we use vj to denote its j th entry, and for an event E, we let I [E] denote the binary
indicator of the event. By |A|, we denote the cardinality of set A. Let X ∈ Rd be the input
space and Y = {−1,+1} be the output space. Let P : X × Y → [0, 1] be the underlying joint
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Algorithm 1 Best Bin Estimation (BBE)
1: INPUT: Validation positive (Xp) and unlabeled (Xu) samples. Blackbox model classifier
f̂ : X → [0, 1]. Hyperparameter 0 < δ < 1, γ > 1.

2: Zp, Zu = f(Xp), f(Xu).

3: q̂u(z), q̂p(z) =
∑
zi∈Zp

I[zi≥z]
np

,
∑
zi∈Zu

I[zi≥z]
nu

for all z ∈ [0, 1].

4: Estimate ĉ := arg minc∈[0,1]

(
q̂u(c)
q̂p(c)

+ γ
q̂p(c)

(√
log(4/δ)

2nu
+
√

log(4/δ)
2np

))
.

5: OUTPUT: α̂ := q̂u(ĉ)
q̂p(ĉ)

distribution and let p denote its corresponding density.
Let Pp and Pn be the class-conditional distributions for positive and negative class and

pp(x) = p(x|y = +1) and pn(x) = p(x|y = −1) be the corresponding class-conditional densi-
ties. Pu denotes the distribution of the unlabeled data and pu denotes its density. Let α ∈ [0, 1]
be the fraction of positives among the unlabeled population, i.e., Pu = αPp + (1− α)Pn. When
learning from positive and unlabeled data, we obtain i.i.d. samples from the positive (class-
conditional) distribution, which we denote as Xp = {x1, x2, . . . , xnp} ∼ P

np
p and i.i.d samples

from unlabeled distribution as Xu = {xnp+1, xnp+2, . . . , xnp+nu} ∼ Pnu
u .

MPE is the problem of estimating α. Absent assumptions on Pp, Pn and Pu, the mixture
proportion α is not identifiable [16]. Indeed, if Pu = αPp + (1 − α)Pn, then any alternate
decomposition of the form Pu = (α− β)Pp + (1−α+ β)P′n, for β ∈ [0, α) and P′n = (1−α+
β)−1(βPp + (1 − α)Pn), is also valid. Since we do not observe samples from the distribution
Pn, the parameter α is not identifiable. Blanchard et al. [16] formulate an irreducibility condition
under which α is identifiable. Intuitively, the condition restricts Pn to ensure that it can not be a
(non-trivial) mixture of Pp and any other distribution. While this irreducibility condition makes
α identifiable, in the worst-case, the parameter α can be difficult to estimate and any estimator
must suffer an arbitrarily slow rate of convergence [16]. In this work, we show mild conditions
on the PvU classifier that make α identifiable and allows us to derive finite-sample convergence
guarantees.

The classification task in PU learning is to learn a classifier f : X → [0, 1] to approximate
p(y = +1|x). We assume that we are given a loss function ` : [0, 1] × Y → R, such that
`(z, y) is the loss incurred by predicting z when the true label is y. For a classifier f and a
sampled set X = {x1, x2, . . . , xn}, we let L̂+(f ;X) =

∑n
i=1 `(f(xi),+1)/n denote the loss

when predicting the samples as positive and L̂−(f ;X) =
∑n

i=1 `(f(xi),−1)/n the loss when
predicting the samples as negative. For a sample setX each with true label y, we define 0-1 error
as Êy(f ;X) =

∑n
i=1 I [y(f(xi)− t) ≤ 0] /n for some predefined threshold t . Unless stated

otherwise, the threshold is assumed to be 0.5.

4.4 Mixture Proportion Estimation

In this section, we propose BBE, a method that leverages a blackbox classifier f to perform
MPE and establish convergence guarantees. To begin, we assume access to a fixed classifier
f . For intuition, you may think of f as a PvU classifer trained to classify some portion of the
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positive v.s. unlabeled examples. In next sections, we discuss other ways to obtain a suitable
classifier from PU data.

We now introduce some additional notation. Assume f transforms an input x ∈ X to z ∈
[0, 1], i.e., z = f(x). For given probability density function p and a classifier f , define a function
q(z) =

∫
Az
p(x)dx, where Az = {x ∈ X : f(x) ≥ z} for all z ∈ [0, 1]. Intuitively, q(z) captures

the cumulative density of points in a top bin, the proportion of input domain that is assigned
a value larger than z by the classifier f in the transformed space. We now define an empirical
estimator ŵq(z) given a setX = {x1, x2, . . . , xn} sampled iid from p(x). Let Z = f(X). Define
q̂(z) =

∑n
i=1 I [zi ≥ z] /n. For each pdf pp, pn and pu, we define qp, qn and qu respectively.

Without any assumptions on the underlying distribution and the classifier f , we aim to esti-
mate α∗ = minc∈[0,1] qu(c)/qp(c). We now explain our procedure. First, given a held-out dataset
of positive (Xp) and unlabeled examples (Xu), we push all examples through the classifier f
to obtain one-dimensional outputs Zp = f(Xp) and Zu = f(Xu). Next, with Zp and Zu, we
estimate q̂p and q̂u. Finally, we return the ratio q̂u(ĉ)/q̂p(ĉ) at ĉ that minimizes the upper confi-
dence bound at a pre-specified level δ and a fixed parameter γ > 1. Our method is summarized
in Algorithm 1. For theoretical guarantees, we multiply the confidence bound term with γ > 1
although γ = 1 works well in our experiments. We now show that the proposed BBE estimator
comes with the following guarantee:

Theorem 4.4.1. Define α∗ = minc∈[0,1] qu(c)/qp(c), En =
√

log(4/δ)
2np

+
√

log(4/δ)
2nu

. Define

C =

{
c ∈ [0, 1] :

qu(c)

qp(c)
≤ 1 , qp(c) ≥ 2

√
log 4/δ

2np

}
,

c0 = arg min
c∈C

qu(c)

qp(c)
+

2(γ + 1)

qp(c)
En ,

and α0 = qu(c0)/qp(c0). If C = ∅ or α + 2(γ+1)
qp(c0)

En ≥ 1 we take the trivial guarantee α̂ ∈ [0, 1].
Otherwise, we have

α̂ ≤ α∗ + (α0 − α∗) +
2(γ + 1)

qp(c0)
En

and

α̂ ≥ α∗ − α0 − α∗

γ − 1
− 2(γ + 1)

(γ − 1)qp(c0)
En .

We now present the condition under which α̂ is a consistent estimator of α:
Corollary 4.4.2. If there exist cf ∈ (0, 1) such that qp(cf ) > 0 and qn(cf ) = 0, then |α̂− α| =
Op
(
min(np, nu)

−1/2
)
.

The condition in Corollary 4.4.2 means that the bin of samples x whose output f(x) ∈ [cf , 1]
only contains positive samples. We refer to this condition as the pure positive bin property. In
the more general case, α̂ is a consistent estimator of α∗ and our bound in Theorem 4.4.1 captures
the tradeoff due to the proportion of negative examples in the top bin (bias |α0 − α∗|) versus the
proportion of positives in the top bin (variance qp(c0)−1).

53



Algorithm 2 PU learning with Conditional Value under Optimism (CVuO) objective
1: INPUT: Labeled positive training data (Xp) and unlabeled training samples (Xu). Mixture

proportion estimate α.
2: Initialize a training model fθ and an stochastic optimization algorithm A.
3: Xn := Xu.
4: while training error Ê+(fθ;Xp) + Ê−(fθ;Xn) is not converged do
5: Rank samples xu ∈ Xu according to their loss values `(fθ(xu),−1).
6: Xn := Xu,1−α where Xu,1−α denote the lowest ranked 1− α fraction of samples.
7: Shuffle (Xp, Xn) into B mini-batches. With (X i

p, X
i
n) we denote i-th mini-batch.

8: for i = 1 to B do
9: Set the gradient∇θ

[
L̂+(fθ;X

i
p) + L̂−(fθ;X

i
n)
]

and update θ with algorithm A.
10: end for
11: end while
12: OUTPUT: Trained classifier fθ

4.5 Classification

Given positive and unlabeled data, we hope not only to identify α, but also to obtain a classi-
fier that distinguishes effectively between positive and negative samples. In supervised learning
with separable data (e.g., cleanly labeled image data), overparameterized models generalize well
even after achieving near-zero training error. However, with PvU training over-parameterized
models can memorize the unlabeled positives, assigning them confidently to the negative class,
which can severely hurt generalization on PN data [157]. Moreover, while unbiased losses exist
that estimate the PvN loss given PU data and the mixture proportion α, this unbiasedness only
holds before the loss is optimized, and becomes ineffective with powerful deep learning models
capable of memorization.

A variety of heuristics, including ad-hoc early stopping criteria, have been explored [64],
where training proceeds until the loss on unseen PU data ceases to decrease. However, this
approach leads to under-fitting. On the other hand by regularizing the loss function, nnPU Kiryo
et al. [72] mitigates overfitting issues due to memorization. However, we observe that nnPU
still leaves a substantial accuracy gap when compared to a model trained just on the positive and
negative (from the unlabeled) data. This leads us to ask the following question: can we improve
performance over nnPU of a model just trained with PU data and make this gap smaller? In
an ideal scenario, if we could identify and remove all the positive points from the unlabeled
data during training then we can hope to achieve improved performance over nnPU. Indeed, in
practice, we observe that in the initial stages of PvU training, the model assigns relatively higher
scores to positives than to negatives in the unlabeled data .

Inspired by this observation, we propose CVuO, a simple yet effective objective for PU learn-
ing. Below, we present our method assuming an access to the true MPE. Later (ref. Sec. 4.6),
we combine BBE with CVuO optimization, yielding (TED)n, an alternating optimization that
significantly improves both the BBE estimates and the PvU classifier.

Given a training set of positives Xp and unlabeled Xu and the mixture proportion α, we
begin by ranking the unlabeled data according the predicted probability (of being positive) by our
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classifier. Then, in every epoch of training, we create a (temporary) set of provisionally negative
samples Xn by removing α fraction of the unlabeled samples currently scored as most positive.
Next, we update our classifier by minimize the loss on the positives Xp and provisional negatives
Xn by treating them as negatives. We repeat this procedure until the training error on Xp and Xn

converges. Likewise nnPU, note that this procedure does not need early stopping. Summary in
Algorithm 2. The CVuO algorithm can be viewed as an alternating optimization algorithm that
jointly optimizes a classifier f and a weighting function w on the unlabeled distribution:

min
f∈F ,w

∫
dxpp(x)l(f(x), 1) +

1

1− α

∫
dxpu(x)w(x)l(f(x), 0) ,

s.t. w : X 7→ [0, 1] ,

∫
dxpu(x)w(x) = 1− α . (4.1)

We now justify our loss function in the scenario when the support of positives and negatives is
separable. We leave theoretic investigation on non-separable distributions for future work. We
assume that the true alpha α is known and we have access to populations of positive and unlabeled
data. We also assume that their exists a separator f ∗ : X 7→ {0, 1} that can perfectly separate the
positive and negative distribution, i.e.,

∫
dxpp(x)I [f ∗(x) 6= 1] +

∫
dxpn(x)I [f ∗(x) 6= 0] = 0.

The following proposition shows that minimizing the objective (4.1) on separable positive and
negative distributions gives a perfect classifier.
Proposition 4.5.1. For α ∈ (0, 1), if there exists a classifier f ∗ ∈ F that can perfectly sepa-
rate the positive and negative distributions, optimizing objective (4.1) with 0-1 loss leads to a
classifier f that achieves 0 classification error on the unlabeled distribution.

4.6 Combining MPE and Classification

We are now ready to present our algorithm Transfer, Estimate and Discard (TED)n that combines
BBE and CVuO objective.

First, we observe the interaction between BBE and CVuO objective. If we have an accurate
mixture proportion estimate, then it leads to improved classifier, in particular, we reject accurate
number of prospective positive samples from unlabeled. Consequently, updating the classifier
to minimize loss on positive versus retained unlabeled improves purity of top bin. This leads to
an obvious alternating procedure where at each epoch, we first use BBE to estimate α̂ and then
update the classifier with CVuO objective with α̂ as input. We repeat this until training error has
not converged. Our method is summarized in Algorithm 3.

Note that we need to warm start with PvU (positive versus negative) training, since in the
initial stages mixture proportion estimate is often close to 1 rejecting all the unlabeled examples.
However, in experiments, we find that our procedure is not sensitive to the choice of number of
warm start epochs and in a few cases with large datasets, we can even get away without warm
start (i.e., W = 0) without hurting the performance.

Finally, we discuss an important distinction with Dedpul which is also an alternating proce-
dure. While in our algorithm, after updating mixture proportion estimate we retrain the classifier,
Dedpul fixes the classifier, obtains output probabilities and then iteratively updates the mixture
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Algorithm 3 Transform-Estimate-Discard (TED)n

1: INPUT: Positive data (Xp) and unlabeled samples (Xu). Hyperparameter W, δ.
2: Initialize a training model fθ and an stochastic optimization algorithm A.
3: Randomly split positive and unlabeled data into training X1

p , X
1
u and hold-out set (X2

p , X
2
u).

4: X1
n := X1

u.
{// Warm start with domain discrimination training}

5: for i = 1 to W do
6: Shuffle (X1

p , X
1
n) into B mini-batches. With (X1

p
i
, X1

n
i
) we denote i-th mini-batch.

7: for i = 1 to B do
8: Set the gradient∇θ

[
L̂+(fθ;X

1
p
i
) + L̂−(fθ;X

1
n
i
)
]

and update θ with algorithm A.
9: end for

10: end for
11: while training error Ê+(fθ;X

1
p ) + Ê−(fθ;X

1
n) is not converged do

12: Estimate ŵα using Algorithm 1 with (X2
p , X

2
u) and fθ as input.

13: Rank samples xu ∈ X1
u according to their loss values l(fθ(xu),−1).

14: X1
n := X1

u,1−α̂ where X1
u,1−α̂ denote the lowest ranked 1− α̂ fraction of samples.

15: Train model fθ for one epoch on (X1
p , X

1
n) as in Lines 4-7.

16: end while
17: OUTPUT: Trained classifier fθ

proportion estimate (prior) and output probabilities (posterior). Dedpul doesn’t re-train the clas-
sifier.

4.7 Experiments

Having presented our MPE and classification algorithms, we now compare their performance
with other methods empirically.

Datasets and Evaluation We simulate PU tasks on CIFAR-10 [74], MNIST [86], and IMDb
sentiment analysis [99] datasets. We consider binarized versions of CIFAR-10 and MNIST.
On CIFAR-10 dataset, we consider two classification problems: (i) binarized CIFAR, i.e., first
5 classes vs rest; (ii) Dog vs Cat in CIFAR. Similarly on MNIST, we consider: (i) binarized
MNIST, i.e., digits 0-4 vs 5-9; (ii) MNIST17, i.e., digit 1 vs 7. IMDb dataset is binary. For MPE,
we use a held out PU validation set. To evaluate PU classifiers, we calculate accuracy on held
out positive versus negative dataset. For baselines that suffer from issues due to overfitting on
unlabeled data, we report results with an oracle early stopping criterion. We report the accuracy
averaged over 10 iterations of the best performing model. With nnPU and (TED)n, we report
average accuracy over 10 iterations of the final model.

Architectures For CIFAR datasets, we consider (fully connected) multilayer perceptrons
(MLPs) with ReLU activations, all convolution nets [129], and ResNet18 [58]. For MNIST, we
consider multilayer perceptrons (MLPs) with ReLU activations For the IMDb dataset, we fine-
tune an off-the-shelf uncased BERT model [32, 147]. We did not tune hyperparameters or the
optimization algorithm—instead we use the same benchmarked hyperparameters and optimiza-
tion algorithm for each dataset. For our method, we use cross-entropy loss. For uPU and nnPU,
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Dataset Model (TED)n BBE∗ Dedpul∗ AlphaMax∗ EN KM2 TiCE

Binarized
CIFAR

ResNet 0.018 0.072 0.075 0.125 0.175

All Conv 0.041 0.038 0.046 0.09 0.23 0.181 0.251

FCN 0.184 0.175 0.151 0.3 0.355

CIFAR Dog vs
Cat

ResNet 0.074 0.120 0.113 0.17 0.205 0.11 0.203

All Conv 0.073 0.093 0.098 0.19 0.274

Binarized MNIST FCN 0.021 0.028 0.027 0.09 0.067 0.102 0.247

MNIST17 FCN 0.003 0.008 0.006 0.075 0.065 0.03 0.117

IMDb BERT 0.008 0.011 0.016 0.07 0.12 - -

Table 4.1: Absolute estimation error when α is 0.5. ”*” denote oracle early stopping as defined
in Sec. 3.6. Results reported by aggregating absolute error over 10 epochs and 3 seeds.

we use Adam [71] with sigmoid loss.
Mixture Proportion Estimation First, we discuss results for MPE (Table 4.1). We compare

our method with KM2, TiCE, Dedpul, AlphaMax and EN. For KM2 and TiCE, datasets are
reduced to 100 dimensions with PCA. We use existing implementation for other methods. For
our method, Dedpul and Alphamax, we use the same PvU classifier as input. On all datasets,
classifier based estimators outperform KM and TiCE. With the same blackbox classifier, BBE
performs similar or better than best alternate(s).

Classification with known MPE Now, we discuss results for classification with known α.
We compare our method with uPU, nnPU, Dedpul and PvU training. Although, we solve both
MPE and classification, some comparison methods do not. Ergo, we compare our classification
algorithm with known MPE (Algorithm 2).

To begin, first we note that nnPU and PvU training with CVuO doesn’t need early stopping.
For all other methods, we report the best performance dictated by the aformentioned oracle
stopping criterion. On all datasets, PvU training with CVuO leads to improved classification
performance when compared with alternate approaches (Table 4.2).

Classification with unknown MPE Finally, we evaluate (TED)n, our alternating procedure
for MPE and PU learning. Across many tasks, we observe substantial improvements over ex-
isting methods. Note that these improvements often are over an oracle early stopping baselines
highlighting significance of our procedure.

4.8 Conclusions
In this chapter, we proposed two practical algorithms, BBE (for MPE) and CVuO optimization
(for PU learning). Our methods out perform others empirically and BBE’s mixture proportion es-
timates leverage black box classifiers to produce (nearly) consistent estimates with finite sample
convergence guarantees whenever we possess a classifier with a (nearly) pure top bin. Moreover,
(TED)n combines our procedures in an iterative fashion, achieving further gains.
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Dataset Model (TED)n

(unknown α)
CVuO

(known α)
PvU∗

(known α)
Dedpul∗

(unknown α)
nnPU

(known α)
uPU∗

(known α)

Binarized
CIFAR

ResNet 82.7 82.6 78.3 78.4 76.8 75.8

All Conv 76.8 77.1 74.1 76.9 72.1 71.3

FCN 63.2 65.9 61.4 62.5 63.9 64.8

CIFAR Dog vs
Cat

ResNet 76.1 74.0 71.6 70.9 72.6 69.5

All Conv 72.2 71.0 70.1 70.5 68.4 65.2

Binarized MNIST FCN 95.9 96.4 94.5 95.2 95.9 95.0

MNIST17 FCN 98.6 98.6 93.7 98.1 98.2 98.4

IMDb BERT 87.6 87.4 86.1 87.3 86.2 85.9

Table 4.2: Accuracy for PvN classification with PU learning. ”*” denote oracle early stopping
as defined in Sec. 3.6. Results reported by aggregating aggregating over 10 epochs and 3 seeds.

4.9 Proofs
Proof of Theorem 4.4.1. According to DKW inequality [38], with high probability, the empirical
pdfs q̂u and q̂p are bounded around qu and qp at any c ∈ [0, 1]:

P

∀c ∈ [0, 1], |q̂u(c)− qu(c)| ≤

√
log(2/δ)

2nu

 ≥ 1− δ

and

P

(
∀c ∈ [0, 1], |q̂p(c)− qp(c)| ≤

√
log(2/δ)

2np

)
≥ 1− δ .

For the remaining of the proof, we assume that |q̂u(c)− qu(c)| ≤
√

log(4/δ)
2nu

and |q̂p(c)− qp(c)| ≤√
log(4/δ)

2np
hold for all c ∈ [0, 1], which happens with probability 1− δ.

First, we give a general bound on the difference between q̂u(c)/q̂p(c) and qu(c)/qp(c):∣∣∣∣ q̂u(c)q̂p(c)
− qu(c)

qp(c)

∣∣∣∣ =
1

q̂p(c) · qp(c)
|q̂u(c) · qp(c)− qp(c) · qu(c) + qp(c) · qu(c)− q̂p(c) · qu(c)|

≤ 1

q̂p(c)
|q̂u(c)− qu(c)|+

qu(c)

q̂p(c) · qp(c)
|q̂p(c)− qp(c)| . (4.2)

Plugging the high probability bounds, we have∣∣∣∣ q̂u(c)q̂p(c)
− qu(c)

qp(c)

∣∣∣∣ ≤ 1

q̂p(c)

√ log(4/δ)

2nu
+
qu(c)

qp(c)

√
log(4/δ)

2np

 . (4.3)
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Recall that ĉ := arg minc∈[0,1]
q̂u(c)
q̂p(c)

+ γ
q̂p(c)
En and qu(c0)/qp(c0) ≤ 1. Applying (4.3) to c0

gives

q̂u(ĉ)

q̂p(ĉ)
+

γ

q̂p(ĉ)
En ≤

q̂u(c0)

q̂p(c0)
+

γ

q̂p(c0)
En ≤ α0 +

1 + γ

q̂p(c0)
En .

Since qp(c0) ≥ 2
√

log 4/δ
2np

and q̂p(c0) ≥ qp(c0)−
√

log 4/δ
2np

we have

q̂u(ĉ)

q̂p(ĉ)
+

γ

q̂p(ĉ)
En ≤ α0 +

2(1 + γ)

qp(c0)
En , (4.4)

which gives the upper bound α̂ ≤ α0 + 2(1+γ)
qp(c0)

En.
We now derive the lower bound for α̂. Applying (4.3) to ĉ gives

q̂u(ĉ)

q̂p(ĉ)
≥ qu(ĉ)

qp(ĉ)

(
1− 1

q̂p(ĉ)

√
log 4/δ

2np

)
− 1

q̂p(ĉ)

√
log 4/δ

2nu

≥ α∗ − 1

q̂p(ĉ)
En , (4.5)

where we use the fact that α∗ ≤ 1 and

1

q̂p(ĉ)

√
log 4/δ

2np
≤ 1

q̂p(ĉ)
En ≤ α0 +

2(1 + γ)

qp(c0)
En ≤ 1 .

Plugging (4.5) into (4.4) gives

γ − 1

q̂p(ĉ)
En ≤ α0 − α∗ +

2(1 + γ)

qp(c0)
En .

Plugging this upper bound on 1
q̂p(ĉ)
En back into (4.5) concludes the proof.

Proof of Corollary 4.4.2. We only consider large enough np such that cf ∈ C. According to the
condition we know that α∗ = α = qu(cf )/qp(cf ). According to the definition of c0 we have

α0 +
2(1 + γ)

qp(c0)
En ≤ α +

2(1 + γ)

qp(cf )
En .

Thus α0 − α + 2(1+γ)
qp(c0)

En ≤ 2(1+γ)
qp(cf )

En which concludes the proof.

Proof of Proposition 4.5.1. First we observe that having w(x) = 1−f ∗(x) leads to the objective
value being minimized to 0 as well as a perfect classifier f . This is because

1

1− α

∫
dxpu(x)(1− f ∗(x))l(f(x), 0) =

∫
dxpn(x)l(f(x), 0)
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thus the objective becomes classifying positive v.s. negative, which leads to a perfect classifier
if F contains one. Now we show that for any f such that the classification error is non-zero then
the objective (4.1) must be greater than zero no matter what w is. Suppose f satisfies∫

dxpp(x)l(f(x), 1) +

∫
dxpn(x)l(f(x), 0) > 0 .

We know that either
∫
dxpp(x)l(f(x), 1) > 0 or

∫
dxpn(x)l(f(x), 0) > 0 will hold.

If
∫
dxpp(x)l(f(x), 1) > 0 we know that (4.1) must be positive. If

∫
dxpp(x)l(f(x), 1) = 0

and
∫
dxpn(x)l(f(x), 0) > 0 we have l(f(x), 0) = 1 almost everywhere in pp(x) thus

1

1− α

∫
dxpu(x)w(x)l(f(x), 0)

=
α

1− α

∫
dxpp(x)w(x)l(f(x), 0) +

∫
dxpn(x)w(x)l(f(x), 0)

=
α

1− α

∫
dxpp(x)w(x) +

∫
dxpn(x)w(x)l(f(x), 0) .

If
∫
dxpp(x)w(x) > 0 we know that (4.1) must be positive. If

∫
dxpp(x)w(x) = 0, since we

know that ∫
dxpu(x)w(x) = α

∫
dxpp(x)w(x) + (1− α)

∫
dxpn(x)w(x) = 1− α

we have
∫
dxpn(x)w(x) = 1 which means w(x) = 1 almost everywhere in pn(x). This leads to

the fact that
∫
dxpn(x)l(f(x), 0) > 0 indicates

∫
dxpn(x)w(x)l(f(x), 0) > 0, which concludes

the proof.
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Part II

Offline Policy Optimization
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Chapter 5

An Empirical Study on Behavior
Regularized Offline Reinforcement
Learning

5.1 Overview

Offline reinforcement learning (RL) describes the setting in which a learner only has access to a
fixed dataset of experience. In contrast to online RL, additional interactions with the environment
during learning are not permitted. This setting is of particular interest for applications in which
deploying a policy is costly or there is a safety concern with updating the policy online [91].
For example, for recommendation systems [25, 90] or health applications [104], deploying a
new policy may only be done after extensive testing and evaluation. In these cases, the offline
dataset is often very large, potentially encompassing years of logged experience. Nevertheless,
the inability to interact with the environment directly poses a challenge to modern RL algorithms.

Issues with RL algorithms in the offline setting typically arise in cases where state and action
spaces are large or continuous, necessitating the use of function approximation. While off-policy
(deep) RL algorithms such as DQN [102], DDPG [93], and SAC [57] may be run directly on
offline datasets to learn a policy, the performance of these algorithms has been shown to be
sensitive to the experience dataset distribution, even in the online setting when using a replay
buffer [41, 143]. Moreover, Fujimoto et al. [42] and Kumar et al. [77] empirically confirm that
in the offline setting, DDPG fails to learn a good policy, even when the dataset is collected by a
single behavior policy, with or without noise added to the behavior policy. These striking failure
cases are hypothesized to be caused by erroneous generalization of the state-action value function
(Q-value function) learned with function approximators, as suggested by Baird [8], Sutton [133],
Tsitsiklis and Van Roy [138], Van Hasselt et al. [143].

To remedy this issue, several types of approaches have been proposed recently. One common
paradigm is to regularize the learned policy towards the behavior policy, based on the intuition
that unseen state-action pairs are more likely to receive overestimated Q-values [42, 66, 77, 82].
A number of works have also leveraged ensembles of target Q-values to stabilize and temper the
optimism in the learned Q-function [3, 42]. Yet another class of approaches proposes to learn the
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value function for the behavior policy first and then perform policy improvement via advantage
weighted regression [111, 146], although this is known to be approximately equivalent to the first
paradigm above of regularizing to the behavior policy [112]. These various proposed remedies
have been shown to improve upon DQN or DDPG at performing policy improvement based on
offline data.

Still, each proposal makes several modifications to the components of baseline off-policy RL
algorithms, and each modification may be implemented in many ways. So a natural question
to ask is, which of the design choices in these offline RL algorithms are necessary to achieve
good performance? For example, to estimate the target Q-value when minimizing the Bellman
error, Fujimoto et al. [42] uses a soft combination of two target Q-values, which is different
from TD3 [43], where the minimum of two target Q-values is used. This soft combination is
maintained by Kumar et al. [77], while further increasing the number of Q-networks from two to
four. As another example, when regularizing towards the behavior policy, Jaques et al. [66] uses
a Kullback-Leibler (KL) divergence with a fixed regularization weight while Kumar et al. [77]
proposes to use Maximum Mean Discrepancy (MMD) with an adaptively trained regularization
weight. Are these design choices crucial to success in offline settings? Or are they simply the
result of multiple, human-directed iterations of research?

In this chapter, we aim at evaluating the importance of different algorithmic building com-
ponents as well as comparing different design choices in offline RL approaches. We focus on
behavior regularized approaches applied to continuous action domains, encompassing many of
the recently demonstrated successes. We introduce behavior regularized actor critic (BRAC), a
general algorithmic framework which covers existing approaches while enabling us to compare
the performance of different variants in a modular way. We find that many simple variants of
the behavior regularized approach can yield good performance, while previously suggested so-
phisticated techniques such as weighted Q-ensembles and adaptive regularization weights are not
crucial. Experimental ablations reveal further insights into how different design choices affect
the performance and robustness of the behavior regularized approach in the offline RL setting
(summarized in Table 5.1).

5.2 Background

5.2.1 Markov Decision Processes

We consider the standard fully-observed Markov Decision Process (MDP) setting [113]. An
MDP can be represented as M = (S,A, P, R, γ) where S is the state space, A is the action
space, P (·|s, a) is the transition probability distribution function, R(s, a) is the reward function
and γ is the discount factor. The goal is to find a policy π(·|s) that maximizes the cumulative
discounted reward starting from any state s ∈ S. Let P π(·|s) denote the induced transition distri-
bution for policy π. For later convenience, we also introduce the notion of multi-step transition
distributions as P π

t , where P π
t (·|s) denotes the distribution over the state space after rolling out

P π for t steps starting from state s. For example, P π
0 (·|s) is the Dirac delta function at s and

P π
1 (·|s) = P π(·|s). We use Rπ(s) to denote the expected reward at state s when following policy
π, i.e. Rπ(s) = Ea∼π(·|s) [R(s, a)]. The state value function (a.k.a. value function) is defined
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by V π(s) =
∑∞

t=0 γ
tEst∼Pπt (s) [Rπ(st)]. The action-value function (a.k.a. Q-function) can be

written as Qπ(s, a) = R(s, a)+γEs′∼P (·|s,a) [V π(s′)]. The optimal policy is defined as the policy
π∗ that maximizes V π∗(s) at all states s ∈ S. In the commonly used actor critic paradigm, one
optimizes a policy πθ(·|s) by alternatively learning a Q-value function Qψ to minimize Bellman
errors over single step transitions (s, a, r, s′),

Ea′∼πθ(·|s′)

[(
r + γQ̄(s′, a′)−Qψ(s, a)

)2
]
, (5.1)

where Q̄ denotes a target Q function; e.g., it is common to use a slowly-updated target parameter
set ψ′ to determine the target Q function as Qψ′(s

′, a′). Then, the policy is updated to maximize
the Q-values, Ea∼π(·|s) [Qψ(s, a)].

5.2.2 Offline Reinforcement Learning
Offline RL (also known as batch RL [81]) considers the problem of learning a policy π from a
fixed dataset D consisting of single-step transitions (s, a, r, s′). Slightly abusing the notion of
“behavior”, we define the behavior policy πb(a|s) as the conditional distribution p(a|s) observed
in the dataset distribution D. Under this definition, such a behavior policy πb is always well-
defined even if the dataset was collected by multiple, distinct behavior policies. Because direct
access to πb is typically not available, it is common in previous work to approximate this behavior
policy via a max-likelihood optimization over D:

π̂b := arg max
π̂

E(s,a,r,s′)∼D [log π̂(a|s)] . (5.2)

We denote the learned policy as π̂b and refer to it as the “cloned policy” to distinguish it from the
true behavior policy.

In this work, we focus on the offline RL problem for complex continuous domains. We
briefly review two recently proposed approaches, BEAR [77] and BCQ [42].

BEAR Motivated by the hypothesis that deep RL algorithms generalize poorly to actions out-
side the support of the behavior policy, Kumar et al. [77] propose BEAR, which learns a pol-
icy to maximize Q-values while penalizing it for diverging from the behavior policy support.
BEAR measures divergence from the behavior policy using a sample-based estimate of kernel
MMD [53]:

MMD2
k(π(·|s), πb(·|s)) = E

x,x′∼π(·|s)
[K(x, x′)]

− 2Ex∼π(·|s)y∼πb(·|s) [K(x, y)] + E
y,y′∼πb(·|s)

[K(y, y′)] , (5.3)

where K is a kernel function. Furthermore, to avoid overestimation in the Q-values, the target
Q-value function Q̄ is calculated as,

Q̄(s′, a′) :=
3

4
min

j=1,...,k
Qψ′j

(s′, a′) +
1

4
max
j=1,...,k

Qψ′j
(s′, a′), (5.4)

where ψ′j denotes a soft-updated ensemble of target Q functions. BEAR uses size k = 4 en-
sembles. BEAR also penalizes target Q-values by an ensemble variance term. However, their
empirical results show that there is no clear benefit to doing so, thus we omit this term.
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BCQ BCQ enforces π to be close to πb via a specific parameterization of π:

πθ(a|s) := arg max
ai+ξθ(s,ai)

Qψ(s, ai + ξθ(s, ai))

for ai ∼ πb(a|s), i = 1, . . . , N, (5.5)

where ξθ is a function approximator with bounded output in [−Φ,Φ] where Φ is a hyperparame-
ter. N is an additional hyperparameter used during evaluation to compute πθ and during training
for Q-value updates. The target Q-value function Q̄ is calculated as in Equation 5.4 but with
k = 2.

5.3 Behavior Regularized Actor Critic

Encouraging the learned policy to be close to the behavior policy is a common theme in previous
approaches to offline RL. To evaluate the effect of different behavior policy regularizers, we in-
troduce behavior regularized actor critic (BRAC), an algorithmic framework which generalizes
existing approaches while providing more implementation options.

We begin by describing two common alternatives for adding a policy regularizer to the ob-
jective – through a penalty in the value function or as a penalty solely on the policy – and then
elaborate on the learning procedures for these regularizations. We then expand on some specific
choices of regularizers and how they can be used to reproduce previously proposed offline RL
algorithms.

Value penalty (vp) We begin by introducing value penalty, a mechanism for regularizing a
learned policy to the behavior policy through a penalty in the value function. Specifically, we
define the penalized value function as

V π
D(s) =

∑∞
t=0 γ

tEst∼Pπt (s) [Rπ(st)− αD (π, πb; st)] , (5.6)

where D is a divergence between distributions over actions (e.g., MMD or KL divergence)1. We
then learn a policy π to maximize V π

D at all states. This standard paradigm is commonly used in
the literature; for example, in SAC [57], Trust-PCL [105], and reg-MPI [49].

Geist et al. [49] show that when D is strongly convex in its first input π, there is a unique
regularized optimal policy π∗D that maximizes the penalized value function (5.6) at all states. The
following proposition gives a lower bound on the performance of the regularized optimal policy
π∗D in terms of the behavior policy πb and the unregularized optimal policy π∗.
Proposition 5.3.1. Let V π be the value function for policy π under the original (unpenalized)
value definition. For any s ∈ S we have

V π∗D(s) ≥ max
{
V πb(s) , V π∗(s)− α

1− γ
Dmax

}
, (5.7)

where Dmax = maxsD (π∗, πb; s).
1We use D (π, πb; st) to denote D (π(·|st), πb(·|st)).
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Proof. D is a divergence, hence non-negative, so we have V π∗D(s) ≥ V
π∗D
D (s). Thus, it suffices

to show that the RHS of (5.7) is a lower bound for V π∗D
D (s), which can be seen by plugging πb

and π∗ into (5.6) respectively then applying the fact that π∗D is the maximizer of (5.6).

Remark 5.3.2. The lower bound in (5.7) goes to V π∗(s) as α → 0 or πb → π∗, and goes to
V πb(s) as α→ +∞.

Proposition 5.3.1 characterizes the performance of the optimal regularized policy in terms of
the regularization weight α and the quality of the optimal policy, assuming a sufficient ability to
learn V π

D and π∗D
2. In practical offline settings, one must consider the error introduced into the

calculation of V π
D (and thus π∗D) due to finite samples. That is, in practice π∗D is learned via a

value function V̂ π
D on the empirical MDP (induced by the finite samples observed in the offline

dataset D). Confidence bounds on the true V π
D may be derived from confidence bounds on the

true P and R, which are inversely correlated with the number of samples [110]. Conceptually,
the regularization coefficient α should therefore be chosen to trade-off with these confidence
intervals; i.e., when the confidence bounds are large due to a limited finite dataset, it is better to
stay close to the behavior policy to avoid drastic degradation in quality of the policy on the true
MDP. As we focus on an empirical study of behavior regularized methods, a theoretical and more
specific characterization of the finite sample analysis with respect to α is outside the scope of this
work, although the curious reader may look to Laroche et al. [83] for one possible approach to
this question.

Policy regularization (pr) The second way to add the regularizer is to only regularize the pol-
icy during policy optimization. That is, we first learn unregularized state and Q-value functions
V π, Qπ. We then apply regularization during policy optimization. That is, at each state s we
aim to learn π to maximize Ea∼π(·|s)[Q

π(s, a) − αD(π, πb; s)], for an appropriate regularization
α ≥ 0. We call this variant of behavior regularized learning policy regularization (pr).

Policy regularization is similar to the regularization employed in many practical algorithms,
such as A3C [103]. Although this form of regularization enjoys much practical success, it
is important to note that in contrast to value penalty whose convergence properties are well-
understood [49, 107], the convergence of policy regularization is not well-characterized. In fact,
in certain settings it is known that value iteration with policy regularization is non-convergent [6].
Still, because it is a common choice in practice, we keep it as an option in our empirical study.

Learning with a regularizer We now describe how these two regularization approaches are
performed in BRAC. Following the typical actor critic framework, we learn a Q-value via the
objective,

min
Qψ

E(s,a,r,s′)∼D
a′∼πθ(·|s′)

[δ(s, a, r, s′, a′)2], (5.8)

where

δ(s, a, r, s′, a′) = −Qψ(s, a) + r + γ
(
Q̄(s′, a′)− αQD̂

(
πθ, πb; s

′)) ,
2For characterization of the convergence of value and policy-based instantiations of the value penalty regulariza-

tion, see Geist et al. [49], Laroche et al. [83], Neu et al. [107], Shani et al. [121].
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Q̄ denotes a target Q function (calculated using e.g., an ensemble, slowly updated target net-
works, etc.), and D̂ denotes a sample-based estimate of the divergence function D.

The policy learning objective can be written as,

max
πθ

E(s,a,r,s′)∼D
[
Ea′′∼πθ(·|s) [Qψ(s, a′′)]− απD̂ (πθ, πb; s)

]
. (5.9)

Accordingly, BRAC performs alternating gradient updates based on (5.8) and (5.9). Note that
for value penalty αQ = απ ≥ 0, whereas in policy regularization αQ = 0 and απ ≥ 0.

In addition to the choice of value penalty or policy regularization, the choice of D and how
to perform sample estimation of D̂ are key design choices of BRAC, and we elaborate on a few
options that we will evaluate in our empirical study:

Kernel MMD We can compute a sample based estimate of kernel MMD (Eq 5.3) by drawing
samples from both πθ and πb. Because we do not have access to multiple samples from πb, this
requires a pre-estimated cloned policy π̂b.

KL Divergence With KL Divergence, the behavior regularizer can be written as

DKL (πθ, πb; s) = Ea∼πθ(·|s) [log πθ(a|s)− log πb(a|s)] .

Directly estimating DKL via samples requires having access to the density of both πθ and πb; as
in MMD, the cloned π̂b can be used in place of πb. Alternatively, we can avoid estimating πb
explicitly, by using the dual form of the KL-divergence. Specifically, any f -divergence [26] has
a dual form [109] given by,

Df (p, q) = Ex∼p [f (q(x)/p(x))]

= max
g:X 7→dom(f∗)

Ex∼q [g(x)]− Ex∼p [f ∗(g(x))] ,

where f ∗ is the Fenchel dual of f . In this case, one no longer needs to estimate a cloned policy π̂b
but instead needs to learn a discriminator function g with minimax optimization as in [109]. This
sample based dual estimation can be applied to any f -divergence. In the case of a KL-divergence,
f(x) = − log x and f ∗(t) = − log(−t)− 1.

Wasserstein One may also use the Wassertein distance as the divergence D. For sample-based
estimation, one may use its dual form,

W (p, q) = sup
g:||g||L≤1

Ex∼p [g(x)]− Ex∼q [g(x)]

and maintain a discriminator g as in [55].
Now we discuss how existing approaches can be instantiated under the framework of BRAC.

BEAR To re-create BEAR with BRAC, one uses policy regularization with the sample-based
kernel MMD for D̂ and uses a min-max ensemble estimate for Q̄ (Equation 5.4). Furthermore,
BEAR adaptively trains the regularization weight α as a Lagrange multiplier: it sets a threshold
ε > 0 for the kernel MMD distance and increases α if the current average divergence is above
the threshold and decreases α if below the threshold.
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BCQ The BCQ algorithm does not use any regularizers (i.e. α = 0 for both value and policy
objectives). Still, the algorithm may be realized by BRAC if one restricts the policy optimization
in Equation 5.9 to be over parameterized policies based on Equation 5.5.

KL-Control There has been a rich set of work which investigates regularizing the learned
policy through KL-divergence with respect to another policy, e.g. [1, 68, 105, 119]. Notably,
Jaques et al. [66] apply this idea to offline RL in discrete action domains by introducing a KL
value penalty in the Q-value definition. BRAC can realize this algorithm as well.

To summarize, one can instantiate the behavior regularized actor critic framework with dif-
ferent design choices, including how to estimate the target Q value, which divergence to use,
whether to learn α adaptively, whether to use a value penalty in the Q function objective (5.8) or
just use policy regularization in (5.9) and so on. In the next section, we empirically evaluate a set
of these different design choices to provide insights into what actually matters when approaching
the offline RL problem.

5.4 Experiments

Table 5.1: Summary of our empirical findings on continuous control tasks we evaluate.

Design Choice Observation

Fixed v.s. adaptive training of α. Fixed α usually performs better than adaptive training (Figure 5.1).

Target Q-value construction. Taking the min of two target Q-functions is sufficient (Figures 5.2 & 5.3).

Value penalty v.s. policy regularization. Value penalty performs better (Figures 5.4 & 5.8 (Appendix)).

Divergence for regularization. MMD, KL, KL-dual and Wasserstein perform similarly well (Figure 5.5).

KL-control v.s. BEAR, BCQ, SAC, or BC. KL-control typically outperforms the other methods (Figure 5.6).

The BRAC framework encompasses several previously proposed methods depending on spe-
cific design choices (e.g., whether to use value penalty or policy regularization, how to compute
the target Q-value, and how to impose the behavior regularization). For a practitioner, key ques-
tions are: How should these design choices be made? Which variations among these different
algorithms actually matter? To answer these questions, we perform a systematic evaluation of
BRAC under different design choices.

Following Kumar et al. [77], we evaluate performance on four Mujoco [136] continuous con-
trol environments in OpenAI Gym [18]: Ant-v2, HalfCheetah-v2, Hopper-v2, and Walker2d-v2.
In many real-world applications of RL, one has logged data from sub-optimal policies (e.g.,
robotic control and recommendation systems). To simulate this scenario, we collect the of-
fline dataset with a sub-optimal policy perturbed by additional noise. We evaluate offline RL
algorithms by training on these fixed datasets and evaluating the learned policies on the real
environments. Currently, BEAR [77] provides state-of-the-art performance on these tasks, so
to understand the effect of variations under our BRAC framework, we start by implementing
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BEAR in BRAC and run a series of comparisons by varying different design choices: adaptive
vs. fixed regularization, different ensembles for estimating target Q-values, value penalty vs.
policy regularization and divergence choice for the regularizer. We then evaluate BCQ, which
has a different design in the BRAC framework, and compare it to other BRAC variants as well
as several baseline algorithms. We briefly summarize our findings in Table 5.1.

5.4.1 Fixed v.s. adaptive regularization weights
In BEAR, regularization is controlled by a threshold ε, which is used for adaptively training the
Lagrangian multiplier α, whereas typically (e.g., in KL-control) one uses a fixed α. In our initial
experiments with BEAR, we found that when using the recommended value of ε, the learned
value of α consistently increased during training, implying that the MMD constraint between
πθ and πb was almost never satisfied. This suggests that BEAR is effectively performing policy
regularization with a large α rather than constrained optimization. This led us to question if
adaptively training α is better than using a fixed α. To investigate this question, we evaluate the
performance of both approaches (with appropriate hyperparameter tuning for each, over either
α or ε) in Figure 5.1. On most datasets, both approaches learn a policy that is much better than
the partially trained policy3, although we do observe a consistent modest advantage when using
a fixed α. Because using a fixed α is simpler and performs better than adaptive training, we use
this approach in subsequent experiments.

5.4.2 Ensemble for target Q-values
Another important design choice in BRAC is how to compute the target Q-value, and specifically,
whether one should use the sophisticated ensemble strategies employed by BEAR and BCQ.
Both BEAR and BCQ use a weighted mixture of the minimum and maximum among multiple
learned Q-functions (compared to TD3 which simply uses the minimum of two). BEAR further
increases the number of Q-functions from 2 to 4. To investigate these design choices, we first
experiment with different number of Q-functions k = {1, 2, 4}. Results are shown in Figure 5.2.
Fujimoto et al. [43] show that using two Q-functions provides significant improvements in online
RL; similarly, we find that using k = 1 sometimes fails to learn a good policy (e.g., in Walker2d)
in the offline setting. Using k = 4 has a small advantage compared to k = 2 except in Hopper.
Both k = 2 and k = 4 significantly improve over the partially trained policy baseline. In general,
increasing the value of k in the ensemble will lead to more stable and/or better performance, but
requires more computation cost. On these domains we found that k = 4 only gives marginal
improvement over k = 2, so we use k = 2 in our remaining experiments.

Regarding whether using a weighed mixture of Q-values or the minimum, we compare these
two options under k = 2. Results are shown in Figure 5.3. We find that taking the minimum
performs slightly better than taking a mixture except in Hopper, and both successfully outperform
the partially trained policy in all cases. Due to the simplicity and strong performance of taking
the minimum of two Q-functions, we use this approach in subsequent experiments.

3The partially trained policy is the policy used to collect data without injected noise. The true behavior policy
and behavior cloning will usually result in worse performance due to injected noise when collecting the data.
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Figure 5.1: Comparing fixed αwith adaptively trained α. Black dashed lines are the performance
of the partially trained policies (distinct from the behavior policies which have injected noise).
We report the mean over the last 10 evaluation points (during training) averaged over 5 different
random seeds. Each evaluation point is the return averaged over 20 episodes. We omit the bar if
the performance is negative.

5.4.3 Value penalty or policy regularization

So far, we have evaluated variations in regularization weights and ensemble of Q-values. We
found that the technical complexity introduced in recent works is not always necessary to achieve
state-of-the-art performance. With these simplifications, we now evaluate a major variation of
design choices in BRAC — using value penalty or policy regularization. We follow our simpli-
fied version of BEAR: MMD policy regularization, fixed α, and computation of target Q-values
based on the minimum of a k = 2 ensemble. We compare this instantiation of BRAC to its
value penalty version, with results shown in Figure 5.4. While both variants outperform the
partially trained policy, we find that value penalty performs slightly better than policy regular-
ization in most cases. We consistently observed this advantage with other divergence choices
(see Appendix Figure 5.8 for a full comparison). The benefit of value penalty over policy regu-
larization may be partially explained by the stronger theoretical foundations possessed by value
penalty [49, 107].
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Figure 5.2: Comparing different number of Q-functions for target Q-value ensemble. We use a
weighted mixture to compute the target value for all of these variants. As expected, we find that
using an ensemble (k > 1) is better than using a single Q-function.

5.4.4 Divergences for regularization

We evaluated four choices of divergences used as the regularizer D: (a) MMD (as in BEAR),
(b) KL in the primal form with estimated behavior policy (as in KL-control), and (c) KL and (d)
Wasserstein in their dual forms without estimating a behavior policy. As shown in Figure 5.5,
we do not find any specific divergence performing consistently better or worse than the others.
All variants are able to learn a policy that significantly improves over the behavior policy in all
cases.

In contrast, Kumar et al. [77] argue that sampled MMD is superior to KL based on the idea
that it is better to regularize the support of the learned policy distribution to be within the support
of the behavior policy rather than forcing the two distributions to be similar. While conceptually
reasonable, we do not find support for that argument in our experiments: (i) we find that KL and
Wassertein can perform similarly well to MMD even though they are not designed for support
matching; (ii) we briefly tried divergences that are explicitly designed for support matching (the
relaxed KL and relaxed Wasserstein distances proposed by [149]), but did not observe a clear
benefit to the additional complexity. We conjecture that this is because even if one uses noisy
or multiple behavior policies to collect data, the noise is reflected more in the diversity of states
rather than the diversity of actions on a single state (due to the nature of environment dynamics).
However, we expect this support matching vs. distribution matching distinction may matter in
other scenarios such as smaller state spaces or contextual bandits, which is a potential direction
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Figure 5.3: Comparing taking the minimum v.s. a weighted mixture in Q-value ensemble. We
find that simply taking the minimum is usually slightly better, except in Hopper-v2.

for future work.

5.4.5 Comparison to BCQ and other baselines
We now compare one of our best performing algorithms so far, kl vp (value penalty with KL
divergence in the primal form), to BCQ, BEAR, and two other baselines: vanilla SAC (which
uses adaptive entropy regularization) and behavior cloning. Figure 5.6 shows the comparison.
We find that vanilla SAC only works in the HalfCheetah environment and fails in the other three
environments. Behavior cloning never learns a better policy than the partially trained policy used
to collect the data. Although BCQ consistently learns a policy that is better than the partially
trained policy, its performance is always clearly worse than kl vp (and other variants whose
performance is similar to kl vp, according to our previous experiments). We conclude that BCQ
is less favorable than explicitly using a divergence for behavior regularization (BEAR and kl vp).
Although, tuning additional hyperparameters beyond Φ for BCQ may improve performance.

5.4.6 Hyperparameter Sensitivity
In our experiments, we find that many simple algorithmic designs achieve good performance
under the framework of BRAC. For example, all of the 4 divergences we tried perform similarly
well when used for regularization. In these experiments, we allowed for appropriate hyperpa-
rameter tuning over policy learning rate and regularization weight, as we initially found that not
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Figure 5.4: Comparing policy regularization (pr) v.s. value penalty (vp) with MMD. The use of
value penalty is usually slightly better.

doing so can lead to premature and incorrect conclusions.4 However, some design choices may be
more robust to hyperparameters than others. To investigate this, we also analyzed the sensitivity
to hyperparameters for all algorithmic variants (Appendix Figures 5.9 and 5.10). To summarize,
we found that (i) MMD and KL Divergence are similar in terms of sensitivity to hyperparameters,
(ii) using the dual form of divergences (e.g. KL dual, Wasserstein) appears to be more sensitive
to hyperparameters, possibly because of the more complex training procedure (optimizing a min-
imax objective), and (iii) value penalty is slightly more sensitive to hyperparameters than policy
regularization despite its more favorable performance under the best hyperparameters.

Although we utilized hyperparameter searches in our results, in pure offline RL settings,
testing on the real environment is infeasible. Thus, a natural question is how to select the best
hyperparameter or the best learned policy among many without direct testing. As a preliminary
attempt, we evaluated whether the Q-values learned during training can be used as a proxy for
hyperparameter selection. Specifically, we look at the correlation between the average learned
Q-values (in mini-batches) and the true performance. Figure 5.7 shows sampled visualizations
of these Q-values. We find that the learned Q-values are not a good indicator of the performance,
even when they are within a reasonable range (i.e., not diverging during training). A more formal
direction for doing hyperparameter selection is to do off-policy evaluation. However, off-policy
evaluation is an open research problem with limited success on complex continuous control tasks

4 For example, taking the optimal hyperparameters from one design choice and then applying them to a different
design choice (e.g., MMD vs KL divergence) can lead to incorrect conclusions (specifically, that using KL is worse
than using MMD, only because one transferred the hyperparameters used for MMD to KL).
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(see Irpan et al. [63], Liu et al. [97], Nachum et al. [106] for recent attempts), we leave hyperpa-
rameter selection as future work and encourage more researchers to investigate this direction.

5.5 Conclusions

In this chapter, we introduced behavior regularized actor critic (BRAC), an algorithmic frame-
work, which generalizes existing approaches to solve the offline RL problem by regularizing to
the behavior policy. In our experiments, we showed that many sophisticated training techniques,
such as weighted target Q-value ensembles and adaptive regularization coefficients are not nec-
essary in order to achieve state-of-the-art performance. We found that the use of value penalty is
slightly better than policy regularization, while many possible divergences (KL, MMD, Wasser-
stein) can achieve similar performance. Perhaps the most important differentiator in these offline
settings is whether proper hyperparameters are used. Although some variants of BRAC are more
robust to hyperparameters than others, every variant relies on a suitable set of hyperparame-
ters to train well. Finding these hyperparameters without interacting with the environment is a
challenging open problem (i.e., off-policy evaluation).

5.6 Additional Experiment Results

5.6.1 Additional experiment details
Dataset collection Following Kumar et al. [77], we evaluate performance on four Mujoco
[136] continuous control environments in OpenAI Gym [18]: Ant-v2, HalfCheetah-v2, Hopper-
v2, and Walker2d-v2. In many real-world applications of RL, one has logged data from sub-
optimal policies (e.g., robotic control and recommendation systems). To simulate this scenario,
we collect the offline dataset with a sub-optimal policy perturbed by additional noise. To obtain
a partially trained policy, we train a policy with SAC and online interactions until the policy per-
formance achieves a performance threshold (1000, 4000, 1000, 1000 for Ant-v2, HalfCheetah-v2,
Hopper-v2, Walker2d-v2, respectively, similar to the protocol established by Kumar et al. [77]).
Then, we perturb the partially trained policy with noise (Gaussian noise or ε-greedy at different
levels) to simulate different exploration strategies resulting in five noisy behavior policies. We
collect 1 million transitions according to each behavior policy resulting in five datasets for each
environment.

For each environment, we collect five datasets: {no-noise, eps-0.1, eps-0.3, gauss-0.1, gauss-
0.3} using a partially trained policy π. Each dataset contains 1 million transitions. Different
datasets are collected with different injected noise, corresponding to different levels and strate-
gies of exploration. The specific noise configurations are shown below:
• no-noise : The dataset is collected by purely executing the partially trained policy π with-

out adding noise.
• eps-0.1: We make an epsilon greedy policy π′ with 0.1 probability. That is, at each step, π′

has 0.1 probability to take a uniformly random action, otherwise takes the action sampled
from π. The final dataset is a mixture of three parts: 40% transitions are collected by π′,
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40% transitions are collected by purely executing π, the remaining 20% are collected by a
random walk policy which takes a uniformly random action at every step. This mixture is
motivated by that one may only want to perform exploration in only a portion of episodes
when deploying a policy.

• eps-0.3: π′ is an epsilon greedy policy with 0.3 probability to take a random action. We do
the same mixture as in eps-0.1.

• gauss-0.1: π′ is taken as adding an independent N (0, 0.12) Gaussian noise to each action
sampled from π. We do the same mixture as in eps-0.1.

• gauss-0.3: π′ is taken as adding an independent N (0, 0.32) Gaussian noise to each action
sampled from π. We do the same mixture as in eps-0.1.

Hyperparameter search In preliminary experiments, we found that policy learning rate and
regularization strength have a significant effect on performance. As a result, for each variant of
BRAC and each environment, we do a grid search over policy learning rate and regularization
strength. For policy learning rate, we search over six values, ranging from 3 · 10−6 to 0.001. The
regularization strength is controlled differently in different algorithms. In the simplest case, the
regularization weight α is fixed; in BEAR the regularization weight is adaptively trained with
dual gradient ascent based on a divergence constraint ε that is tuned as a hyperparameter; in
BCQ the corresponding tuning is for the perturbation range Φ. For each of these options, we
search over five values. For existing algorithms such as BEAR and BCQ, the reported hyper-
parameters in their papers [42, 77] are included in this search range, and we further empirically
confirmed that our implementations of these previously proposed algorithms match the results of
the originally published implementations.

Mor specifically, for policy learning rate, we search over six values: {3 · 106, 1 · 105, 3 ·
105, 0.0001, 0.0003, 0.001}. The regularization strength is controlled differently in different al-
gorithms:
• In BCQ, we search for the perturbation range Φ ∈ {0.005, 0.015, 0.05, 0.15, 0.5}. 0.05 is

the reported value by its paper [42].
• In BEAR the regularization weight α is adaptively trained with dual gradient ascent based

on a divergence constraint ε that is tuned as a hyperparameter.
We search for ε ∈ {0.015, 0.05, 0.15, 0.5, 1.5}. 0.05 is the reported value by its paper [77].

• When MMD is used with a fixed α, we search for α ∈ {3, 10, 30, 100, 300}.
• When KL divergence is used with a fixed α (both KL and KL dual), we search for α ∈
{0.1, 0.3, 1.0, 3.0, 10.0}.

• When Wasserstein distance is used with a fixed α, we search for α ∈ {0.3, 1.0, 3.0, 10.0, 30.0}.
in BEAR the regularization weight is adaptively trained with dual gradient ascent based on a
divergence constraint ε that is tuned as a hyperparameter;

In the simplest case, the regularization weight α is fixed; in BCQ the corresponding tuning is
for the perturbation range Φ. For each of these options, we search over five values (see Appendix
for details). For existing algorithms such as BEAR and BCQ, the reported hyperparameters
in their papers [42, 77] are included in this search range, We select the best hyperparameters
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according to the average performance over all five datasets.

Implementation details All experiments are implemented with Tensorflow and executed on
CPUs. For all function approximators, we use fully connected neural networks with RELU
activations. For policy networks, we use tanh(Gaussian) on outputs following BEAR [77],
except for BCQ where we follow their open sourced implementation. For BEAR and BCQ we
follow the network sizes as in their papers. For other variants of BRAC, we shrink the policy
networks from (400, 300) to (200, 200) and Q-networks from (400, 300) to (300, 300) for saving
computation time without losing performance. Q-function learning rate is always 0.001. As
in other deep RL algorithms, we maintain source and target Q-functions with an update rate
0.005 per iteration. For MMD we use Laplacian kernels with bandwidth reported by [42]. For
divergences in the dual form (both KL dual and Wasserstein), we training a (300, 300) fully
connected network as the critic in the minimax objective. Gradient penalty (one sided version
of the penalty in [55] with coefficient 5.0) is applied to both KL and Wasserstein dual training.
In each training iteration, the dual critic is updated for 3 steps (which we find better than only
1 step) with learning rate 0.0001. We use Adam for all optimizers. Each agent is trained for
0.5 million steps with batch size 256 (except for BCQ we use 100 according their open sourced
implementation). At test time we follow [77] and [42] by sampling 10 actions from πθ at each
step and take the one with highest learned Q-value.

5.6.2 Value penalty v.s. policy regularization
See Figure 5.8.

5.6.3 Full performance results under different hyperparameters
See Figure 5.9 and 5.10.

5.6.4 Additional training curves
See FIgure 5.11, 5.12 and 5.13.

5.6.5 Full performance results under the best hyperparameters
See Table 5.2, 5.3, 5.4 and 5.5.
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Environment: Ant-v2 Partially trained policy: 1241

dataset no-noise eps-0.1 eps-0.3 gauss-0.1 gauss-0.3

SAC 0 -1109 -911 -1071 -1498
BC 1235 1300 1278 1203 1240
BCQ 1921 1864 1504 1731 1887
BEAR 2100 1897 2008 2054 2018
MMD vp 2839 2672 2602 2667 2640
KL vp 2514 2530 2484 2615 2661
KL dual vp 2626 2334 2256 2404 2433
W vp 2646 2417 2409 2474 2487
MMD pr 2583 2280 2285 2477 2435
KL pr 2241 2247 2181 2263 2233
KL dual pr 2218 1984 2144 2215 2201
W pr 2241 2186 2284 2365 2344

Table 5.2: Evaluation results with tuned hyperparameters. 0 performance means overflow en-
countered during training due to diverging Q-functions.

Environment: HalfCheetah-v2 Partially trained policy: 4206

dataset no-noise eps-0.1 eps-0.3 gauss-0.1 gauss-0.3

SAC 5093 6174 5978 6082 6090
BC 4465 3206 3751 4084 4033
BCQ 5064 5693 5588 5614 5837
BEAR 5325 5435 5149 5394 5329
MMD vp 6207 6307 6263 6323 6400
KL vp 6104 6212 6104 6219 6206
KL dual vp 6209 6087 6359 5972 6340
W vp 5957 6014 6001 5939 6025
MMD pr 5936 6242 6166 6200 6294
KL pr 6032 6116 6035 5969 6219
KL dual pr 5944 6183 6207 5789 6050
W pr 5897 5923 5970 5894 6031

Table 5.3: Evaluation results with tuned hyperparameters.
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Figure 5.5: Comparing different divergences under both policy regularization (top row) and value
penalty (bottom row). All variants yield similar performance, which is significantly better than
the partially trained policy.
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Figure 5.6: Comparing value penalty with KL divergence (kl vp) to vanilla SAC, behavior
cloning (bc), BCQ and BEAR. Bottom row shows sampled training curves with 1 out of the
5 datasets. See Appendix for training curves on all datasets.
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Figure 5.7: Correlation between learned Q-values and performance. x-axis is the average of
learned Qψ(s, a) over the last 500 training batches. y-axis is the average performance over the
last 10 evaluation points. Each plot corresponds to a (environment, algorithm, dataset) tuple.
Different points in each plot correspond to different hyperparameters and different random seeds.

Environment: Hopper-v2 Partially trained policy: 1202

dataset no-noise eps-0.1 eps-0.3 gauss-0.1 gauss-0.3

SAC 0.2655 661.7 701 311.2 592.6
BC 1330 129.4 828.3 221.1 284.6
BCQ 1543 1652 1632 1599 1590
BEAR 0 1620 2213 1825 1720
MMD vp 2291 2282 1892 2255 1458
KL vp 2774 2360 2892 1851 2066
KL dual vp 1735 2121 2043 1770 1872
W vp 2292 2187 2178 1390 1739
MMD pr 2334 1688 1725 1666 2097
KL pr 2574 1925 2064 1688 1947
KL dual pr 2053 1985 1719 1641 1551
W pr 2080 2089 2015 1635 2097

Table 5.4: Evaluation results with tuned hyperparameters.
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Figure 5.8: Comparing policy regularization (pr) v.s. value penalty (vp) with all four divergences.
The use of value penalty is usually slightly better.
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Figure 5.9: Visualization of performance under different hyperparameters. The performance is
averaged over all five datasets.
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Figure 5.10: Visualization of performance under different hyperparameters.
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Figure 5.11: Training curves on all five datasets when comparing kl vp to other baselines.
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Figure 5.12: Training curves when comparing different divergences with policy regularization.
All divergences perform similarly.
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Figure 5.13: Training curves when comparing different divergences with value penalty. All
divergences perform similarly.
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Environment: Walker-v2 Partially trained policy: 1439

dataset no-noise eps-0.1 eps-0.3 gauss-0.1 gauss-0.3

SAC 131.7 213.5 127.1 119.3 109.3
BC 1334 1092 1263 1199 1137
BCQ 2095 1921 1953 2094 1734
BEAR 2646 2695 2608 2539 2194
MMD vp 2694 3241 3255 2893 3368
KL vp 2907 3175 2942 3193 3261
KL dual vp 2575 3490 3236 3103 3333
W vp 2635 2863 2758 2856 2862
MMD pr 2670 2957 2897 2759 3004
KL pr 2744 2990 2747 2837 2981
KL dual pr 2682 3109 3080 2357 3155
W pr 2667 3140 2928 1804 2907

Table 5.5: Evaluation results with tuned hyperparameters.
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Chapter 6

On the Optimality of Offline Policy
Optimization Algorithms

6.1 Overview

We consider the problem of offline (or batch) policy optimization, where a learner must infer
a behavior policy given only access to a fixed dataset of previously collected experience, with
no further environment interaction available. Interest in this problem has grown recently, as
effective solutions hold the promise of extracting powerful decision making strategies from years
of logged experience, with important applications to many practical problems [25, 66, 89, 131,
134].

Despite the prevalence and importance of batch policy optimization, the theoretical under-
standing of this problem has, until recently, been rather limited. A fundamental challenge in
batch policy optimization is the insufficient coverage of the dataset. In online reinforcement
learning (RL), the learner is allowed to continually explore the environment to collect useful
information for the learning tasks. By contrast, in the batch setting, the learner has to evaluate
and optimize over various candidate policies based only on experience that has been collected a
priori. The distribution mismatch between the logged experience and agent-environment interac-
tion with a learned policy can cause erroneous value overestimation, which leads to the failure of
standard policy optimization methods [44]. To overcome this problem, recent studies propose to
use the pessimistic principle, by either learning a pessimistic value function [66, 77, 78, 134, 148]
or pessimistic surrogate [19], or planning with a pessimistic model [70, 155]. However, it still
remains unclear how to maximally exploit the logged experience without further exploration.

In this chapter, we investigate batch policy optimization with finite-armed stochastic bandits,
and make three contributions toward better understanding the statistical limits of this problem.
First, we prove a minimax lower bound of Ω(1/

√
minini) on the simple regret for batch policy

optimization with stochastic bandits, where ni is the number of times arm i was chosen in the
dataset. We then introduce the notion of a confidence-adjusted index algorithm that unifies both
the optimistic and pessimistic principles in a single algorithmic framework. Our analysis sug-
gests that any index algorithm with an appropriate adjustment, whether pessimistic or optimistic,
is minimax optimal.
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Second, we analyze the instance-dependent regret of batch policy optimization algorithms.
Perhaps surprisingly, our main result shows that instance-dependent optimality, which is com-
monly used in the literature of minimizing cumulative regret of stochastic bandits, does not exist
in the batch setting. Together with our first contribution, this finding challenges recent theoretical
findings in batch RL that claim pessimistic algorithms are an optimal choice [e.g., 19, 67]. In
fact, our analysis suggests that for any algorithm that performs optimally in some environment,
there must always exist another environment where the algorithm suffers arbitrarily larger regret
than an optimal strategy there. Therefore, any reasonable algorithm is equally optimal, or not
optimal, depending on the exact problem instance the algorithm is facing. In this sense, for batch
policy optimization, there remains a lack of a well-defined optimality criterion that can be used
to choose between algorithms.

Third, we provide a characterization of the pessimistic algorithm by introducing a weighted-
minimax objective. In particular, the pessimistic algorithm can be considered to be optimal in
the sense that it achieves a regret that is comparable to the inherent difficulty of optimal value
prediction on an instance-by-instance basis. Overall, the theoretical study we provide consol-
idates recent research findings on the impact of being pessimistic in batch policy optimization
[19, 67, 70, 78, 98, 155].

The remainder of the chapter is organized as follows. After defining the problem setup in
Sections 6.2, we present the three main contributions in Sections 6.3 to 6.5 as aforementioned.
Section 6.6 discusses the related works.

6.2 Problem setup
To simplify the exposition, we express our results for batch policy optimization in the setting of
stochastic finite-armed bandits. In particular, assume the action space consists of k > 0 arms,
where the available data takes the form of ni > 0 real-valued observations Xi,1, . . . , Xi,ni for
each arm i ∈ [k] := {1, . . . , k}. This data represents the outcomes of ni pulls of each arm i.
We assume further that the data for each arm i is i.i.d. with Xi,j ∼ Pi such that Pi is the reward
distribution for arm i. Let µi =

∫
xPi(dx) denote the mean reward that results from pulling arm

i. All observations in the data set X = (Xi,j)i∈[k],j∈[ni] are assumed to be independent.
We consider the problem of designing an algorithm that takes the counts (ni)i∈[k] and obser-

vations X ∈ ×i∈[k]Rni as inputs and returns the index of a single arm in [k], where the goal is to
select an arm with the highest mean reward. Let A(X) ∈ [k] be the output of algorithm A, Then
the (simple) regret of A is defined as

R(A, θ) = µ∗ − EX∼θ
[
µA(X)

]
,

where µ∗ = maxi µi is the maximum reward. Here, the expectation E [X ∼ θ] considers the ran-
domness of the data X generated from problem instance θ, and also any randomness in the algo-
rithmA, which together induce the distribution of the random choiceA(X). Note that this defini-
tion of regret depends both on the algorithmA and the problem instance θ = ((ni)i∈[k], (Pi)i∈[k]).
When θ is fixed, we will useR(A) to reduce clutter.

For convenience, we also let n =
∑

i ni and nmin denote the total number of observations and
the minimum number of observations in the data. The optimal arm is a∗ and the suboptimality
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gap is ∆i = µ∗ − µi. The largest and smallest non-zero gaps are ∆max = maxi ∆i and ∆min =
mini:∆i>0 ∆i. In what follows, we assume that the distributions Pi are 1-subgaussian with means
in the unit interval [0, 1]. We denote the set of these distributions by P . The set of all instances
where the distributions satisfy these properties is denoted by Θ. The set of instances with n =
(ni)i∈[k] fixed is denoted by Θn. Thus, Θ = ∪nΘn. Finally, we define |n| =

∑
i ni for n =

(ni)i∈[k].

6.3 Minimax Analysis
In this section, we introduce the notion of a confidence-adjusted index algorithm, and prove that
a broad range of such algorithms are minimax optimal up to a logarithmic factor. A confidence-
adjusted index algorithm is one that calculates an index for each arm based on the data for that
arm only, then chooses an arm that maximizes the index. We consider index algorithms where
the index of arm i ∈ [k] is defined as the sum of the sample mean of this arm, µ̂i = 1

ni

∑ni
j=1Xi,j

plus a bias term of the form α/
√
ni with α ∈ R. That is, given the input data X , the algorithm

selects an arm according to

arg max
i∈[k]

µ̂i +
α
√
ni
. (6.1)

The reason we call these confidence-adjusted is because for a given confidence level δ > 0, by
Hoeffding’s inequality, it follows that

µi ∈
[
µ̂i −

βδ√
ni
, µ̂i +

βδ√
ni

]
(6.2)

with probability at least 1− δ for all arms with

βδ =

√
2 log

(
k

δ

)
.

Thus, the family of confidence-adjusted index algorithms consists of all algorithms that follow
this strategy, where each particular algorithm is defined by a (data independent) choice of α. For
example, an algorithm specified by α = −βδ chooses the arm with highest lower-confidence
bound (highest LCB value), while an algorithm specified by α = βδ chooses the arm with the
highest upper-confidence bound (highest UCB value). Note that α = 0 corresponds to what is
known as the greedy (sample mean maximizing) choice.

Readers familiar with the literature on batch policy optimization will recognize that α = −βδ
implements what is known as the pessimistic algorithm [19, 67, 70, 153], or distributionally
robust choice, or risk-adverse strategy. It is therefore natural to question the utility of considering
batch policy optimization algorithms that maximize UCB values (i.e., implement optimism in
the presence of uncertainty, or risk-seeking behavior, even when there is no opportunity for
exploration). However, our first main result is that for batch policy optimization a risk-seeking
(or greedy) algorithm cannot be distinguished from the more commonly proposed pessimistic
approach in terms of minimax regret.

To establish this finding, we first provide a lower bound on the minimax regret:
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Theorem 6.3.1. Fix n = (ni)i∈[k] with n1 ≤ · · · ≤ nk. Then, there exists a universal constant
c > 0 such that

inf
A

sup
θ∈Θn

R(A, θ) ≥ cmax
m∈[k]

√
max(1, log(m))

nm
.

The assumption of increasing counts, n1 ≤ · · · ≤ nk, is only needed to simplify the state-
ment; the arm indices can always be re-ordered without loss of generality. The proof follows by
arguing that the minimax regret is lower bounded by the Bayesian regret of the Bayesian optimal
policy for any prior. Then, with a judicious choice of prior, the Bayesian optimal policy has a
simple form. Intuitively, the available data permits estimation of the mean of action a with accu-
racy O(

√
1/na). The additional logarithmic factor appears when n1, . . . , nm are relatively close,

in which case the lower bound is demonstrating the necessity of a union bound that appears in
the upper bound that follows.

Next we show that a wide range of confidence-adjusted index algorithms are nearly minimax
optimal when their confidence parameter is properly chosen:
Theorem 6.3.2. Fix n = (ni)i∈[k]. Let δ be the solution of δ =

√
32 log(k/δ)/mini ni, and I

be the confidence-adjusted index algorithm with parameter α. Then, for any α ∈ [−βδ, βδ], we
have

sup
θ∈Θn

R(I(α), θ) ≤ 12

√
log(k/δ)

mini ni
.

Remark 6.3.3. Theorem 6.3.2 also holds for algorithms that use different αi ∈ [−βδ, βδ] for
different arms.

Perhaps a little unexpectedly, we see that regardless of optimism vs. pessimism, index al-
gorithms with the right amount of adjustment, or even no adjustment, are minimax optimal, up
to an order

√
log(kn) factor. We note that although these algorithms have the same worst case

performance, they can behave very differently indeed on individual instances, as we show in the
next section.

In effect, what these two results tell us is that minimax optimality is too weak as a criterion to
distinguish between pessimistic versus optimistic (or greedy) algorithms when considering the
“fixed count” setting of batch policy optimization. This leads us to ask whether more refined
optimality criteria are able to provide nontrivial guidance in the selection of batch policy opti-
mization methods. One such criterion, considered next, is known as instance-optimality in the
literature of cumulative regret minimization for stochastic bandits.

6.4 Instance-Dependent Analysis
To better distinguish between algorithms we require a much more refined notion of performance
that goes beyond merely considering worst-case behavior over all problem instances. Even if two
algorithms have the same worst case performance, they can behave very differently on individual
instances. Therefore, we consider the instance dependent performance of confidence-adjusted
index algorithms.
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6.4.1 Instance-dependent Upper Bound
Our next result provides a regret upper bound for a general form of index algorithm. All upper
bounds in this section hold for any θ ∈ Θn unless otherwise specified, and we useR(A) instead
ofR(A, θ) to simplify the notation.
Theorem 6.4.1. Consider a general form of index algorithm, A(X) = arg maxi µ̂i + bi, where
bi denotes the bias for arm i ∈ [k] specified by the algorithm. For 2 ≤ i ≤ k and η ∈ R, define

gi(η) =
∑
j≥i

e−
nj
2

(η−µj−bj)2
+ + min

j<i
e−

nj
2

(µj+bj−η)2
+

and g∗i = minη gi(η). Assuming µ1 ≥ µ2 ≥ · · · ≥ µk, for the index algorithms (6.1) we have

P (A(X) ≥ i) ≤ min{1, g∗i } (6.3)

and

R(A) ≤
∑

2≤i≤k

∆i

(
min{1, g∗i } −min{1, g∗i+1}

)
(6.4)

where we define g∗k+1 = 0.
The assumption µ1 ≥ µ2 ≥ · · · ≥ µk is only required to express the statement simply; the

indices can be reordered without loss of generality. The expression in (6.3) is a bit difficult to
work with, so to make the subsequent analysis simpler we provide a looser but more interpretable
bound for general index algorithms as follows.
Corollary 6.4.2. Following the setting of Theorem 6.4.1, consider any index algorithm and any
δ ∈ (0, 1). Define Ui = µi + bi + βδ/

√
ni and Li = µi + bi − βδ/

√
ni. Let h = max{i ∈ [k] :

maxj<i Lj < maxj′≥i Uj′}. Then we have

R(A) ≤ ∆h +
δ

k
∆max

+
δ

k

∑
i>h

(∆i −∆i−1)
∑
j≥i

e−
nj
2 (maxj′<i Lj′−Uj)

2

.

Remark 6.4.3. The upper bound in Corollary 6.4.2 can be further relaxed as R(A) ≤ ∆h +
δ∆max.
Remark 6.4.4. The minimax regret upper bound (Theorem 6.3.2) can be recovered a result of
Corollary 6.4.2 (see supplement).

Corollary 6.4.2 highlights an inherent optimization property of index algorithms: they work
by designing an additive adjustment for each arm, such that all of the bad arms (i > h) can be
eliminated efficiently, i.e., it is desirable to make h as small as possible. We note that although
one can directly plug in the specific choices of {bi}i∈[k] to get instance-dependent upper bounds
for different algorithms, it is not clear how their performance compares to one another. There-
fore, we provide simpler relaxed upper bounds for the three specific cases, greedy, LCB and
UCB, to allow us to better differentiate their performance across different problem instances (see
supplement for details).
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Corollary 6.4.5 (Regret Upper bound for Greedy). Following the setting of Theorem 6.4.1, for
any 0 < δ < 1, the regret of greedy (α = 0) on any problem instance is upper bounded by

R(A) ≤ min
i∈[k]

(
∆i +

√
2

ni
log

k

δ
+ max

j>i

√
2

nj
log

k

δ

)
+ δ .

Corollary 6.4.6 (Regret Upper bound for LCB). Following the setting of Theorem 6.4.1, for any
0 < δ < 1, the regret of LCB (α = −βδ) on any problem instance is upper bounded by

R(A) ≤ min
i∈[k]

∆i +

√
8

ni
log

k

δ
+ δ .

Corollary 6.4.7 (Regret Upper bound for UCB). Following the setting of Theorem 6.4.1, for any
0 < δ < 1, the regret of UCB (α = βδ) on any problem instance is upper bounded by

R(A) ≤ min
i∈[k]

(
∆i + max

j>i

√
8

nj
log

k

δ

)
+ δ .

Remark 6.4.8. The results in these corollaries sacrifice the tightness of instance-dependence to
obtain cleaner bounds for the different algorithms. The tightest instance dependent bounds can
be derived from Theorem 6.4.1 by optimizing η.

Discussion. The regret upper bounds presented above suggest that although they are all nearly
minimax optimal, UCB, LCB and greedy exhibit distinct behavior on individual instances. Each
will eventually select the best arm with high probability when ni gets large for all i ∈ [k], but
their performance can be very different when ni gets large for only a subset of arms S ⊂ [k]. For
example, LCB performs well whenever S contains a good arm (i.e., with small ∆i and large ni).
UCB performs well when there is a good arm i such that all worse arms are in S (nj large for all
j > i). For the greedy algorithm, the regret upper bound is small only when there is a good arm
i where nj is large for all j ≥ i, in which situation both LCB and UCB perform well.

Clearly there are instances where LCB performs much better than UCB and vice versa. Con-
sider an environment where there are two groups of arms: one with higher rewards and another
with lower rewards. The behavior policy plays a subset of the arms S ⊂ [k] a large number of
times and ignores the rest. If S contains at least one good arm but no bad arm, LCB will select a
good played arm (with high probability) while UCB will select a bad unplayed arm. If S consists
of all bad arms, then LCB will select a bad arm by being pessimistic about the unobserved good
arms while UCB is guaranteed to select a good arm by being optimistic.

This example actually raises a potential reason to favor LCB, since the condition for UCB
to outperform LCB is stricter: requiring the behavior policy to play all bad arms while ignor-
ing all good arms. To formalize this, we compare the upper bounds for the two algorithms by
taking the ni for a subset of arms i ∈ S ⊂ [k] to infinity. For A ∈ {greedy,LCB,UCB}, let
R̂S(A) be the regret upper bounds with {ni}i∈S → ∞ and {ni}i/∈S = 1 while fixing µ1, ..., µk
in Corollary 6.4.5, 6.4.6, and 6.4.7 respectively. Then LCB dominates the three algorithms with
high probability under a uniform prior for S:
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Proposition 6.4.9. Suppose µ1 > µ2 > ... > µk and S ⊂ [k] is uniformly sampled from all
subsets with size m < k, then

P
(
R̂S(LCB) < R̂S(UCB)

)
≥ 1− (k −m)!m!

k!
.

This lower bound is 1/2 when k = 2 and approaches 1 when k increases for any 0 < m < k
since it is always lower bounded by 1− 1/k. The same argument applies when comparing LCB
to greedy.

To summarize, when comparing different algorithms by their upper bounds, we have the
following observations: (i) These algorithms behave differently on different instances, and none
of them outperforms the others on all instances. (ii) Both scenarios where LCB is better and
scenarios where UCB is better exist. (iii) LCB is more favorable when k is not too small because
it is the best option among these algorithms on most of the instances.

Simulation results. Since our discussion is based on comparing only the upper bounds (instead
of the exact regret) for different algorithms, it is a question that whether these statements still hold
in terms of their actual performance. To answer this question, we verify these statements through
experiments on synthetic problems. The details of these synthetic experiments can be found in
the supplementary material.

We first verify that there exist instances where LCB is the best among the three algorithms as
well as instances where UCB is the best. For LCB to perform well, we construct two ε-greedy
behavior policies on a 100-arm bandit where the best arm or a near-optimal arm is selected to be
played with a high frequency while the other arms are uniformly played with a low frequency.
Figure 6.1(a) and 6.1(b) show that LCB outperforms UCB and greedy on these two instances,
verifying our observation from the upper bound (Corollary 6.4.6) that LCB only requires a good
behavior policy while UCB and greedy require bad arms to be eliminated (which is not the case
for ε-greedy policies). For UCB to outperform LCB, we set the behavior policy to play a set of
near-optimal arms with only a small number of times and play the rest of the arms uniformly.
Figure 6.1(c) and 6.1(d) show that UCB outperforms LCB and greedy on these two instances,
verifying our observation from the upper bound (Corollary 6.4.7) that UCB only requires all
worse arms to be identified.

We now verify the statement that LCB is the best option on most of the instances when k is
not too small. We verify this statement in two aspects: First, we show that when k = 2, LCB and
UCB have an equal chance to be the better algorithm. More specifically, we fix n1 > n2 (note
that if n1 = n2 all index algorithms are the same as greedy) and vary µ1 − µ2 from −1 to
1. Intuitively, when |µ1 − µ2| is large, the problem is relatively easy for all algorithms. For
µ1 − µ2 in the medium range, as it becomes larger, the good arm is tried more often, thus the
problem becomes easier for LCB and harder for UCB. Figure 6.2(a) and 6.2(b) confirm this
and show that both LCB and UCB are the best option on half of the instances. Second, we
show that as k grows, LCB quickly becomes the more favorable algorithm, outperforming UCB
and greedy on an increasing fraction of instances. More specifically, we vary k and sample a
set of instances from the prior distribution introduced in Proposition 6.4.9 with |S| = k/2 and
|S| = k/4. Figure 6.2(c) and 6.2(d) shows that the fraction of instances where LCB is the best
quickly approaches 1 as k increases.
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(a) LCB-1
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(b) LCB-2
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(c) UCB-1
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Figure 6.1: Comparing UCB, LCB and greedy on synthetic problems (with k = 100). (a) and
(b): Problem instances where LCB has the best performance. The data set is generated by a
behavior policy that pulls an arm i with high frequency and the other arms uniformly. In (a) i is
the best arm while in (b) i is the 10th-best arm. (c) and (d): Problem instances where UCB has
the best performance. The data set is generated by a behavior policy that pulls a set of good arms
{j : j ≤ i} with very small frequency and the other arms uniformly. In (c) we use i = 1 while in
(d) we use i = 10. Experiment details are provided in the supplementary material.

6.4.2 Instance-dependent Lower Bound

We have established that, despite all being minimax optimal, index algorithms with different
adjustment can exhibit very different performance on specific problem instances. One might
therefore wonder if instance optimal algorithms exist for batch policy optimization with finite-
armed stochastic bandits. To answer this question, we next show that there is no instance optimal
algorithm in the batch optimization setting for stochastic bandits, which is a very different out-
come from the setting of cumulative regret minimization for online stochastic bandits.

For cumulative regret minimization, Lai and Robbins [79] introduced an asymptotic notion
of instance optimality [85]. The idea is to first remove algorithms that are insufficiently adaptive,
then define a yardstick (or benchmark) for each instance as the best (normalized) asymptotic
performance that can be achieved with the remaining adaptive algorithms. An algorithm that
meets this benchmark over all instances is then considered to be an instance optimal algorithm.

When adapting this notion of instance optimality to the batch setting there are two decisions
that need to be made: what is an appropriate notion of “sufficient adaptivity” and whether, of
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(c) |S| = k/2
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(d) |S| = k/4

Figure 6.2: Comparing UCB, LCB and greedy on synthetic problems. (a) and (b): A set of
two-armed bandit instances where both LCB and UCB dominate half of the instances. (c) and
(d): For each k, we first sample 100 vectors ~µ = [µ1, ..., µk] and for each ~µ we uniformly sample
100 (if exist) subsets S ⊂ k, |S| = m (m = k/2 in (c) and m = k/4 in (d)), to generate up
to 10k instances. We then count the fraction of instances where each algorithm performs better
than the other two algorithms among the randomly sampled set of instances. Experiment details
are provided in the supplementary material.

course, a similar asymptotic notion is sought or optimality can be adapted to the finite sample
setting. Here, we consider the asymptotic case, as one usually expects this to be easier.

We consider the 2-armed bandit case (k = 2) with Gaussian reward distributions N (µ1, 1)
and N (µ2, 1) for each arm respectively. Recall that, in this setting, fixing n = (n1, n2) each
instance θ ∈ Θn is defined by (µ1, µ2). We assume that algorithms only make decisions based
on the sufficient statistic — empirical means for each arm, which in this case reduces to X =
(X1, X2,n) with Xi ∼ N (µi, 1/ni).

To introduce an asymptotic notion, we further denote n = n1 + n2, π1 = n1/n, and π2 =
n2/n = 1 − π1. Assume π1, π2 > 0; then each n can be uniquely defined by (n, π1) for π1 ∈
(0, 1). We also ignore the fact that n1 and n2 should be integers since we assume the algorithms
can only make decisions based on the sufficient statisticXi ∼ N (µi, 1/ni), which is well defined
even when ni is not an integer.

Definition 6.4.10 (Minimax Optimality). Given a constant c ≥ 1, an algorithm is said to be
minimax optimal if its worst case regret is bounded by the minimax value of the problem up to a
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multiplicative factor c. We define the set of minimax optimal algorithms as

Mn,c =

{
A : sup

θ∈Θn

R(A, θ) ≤ c · inf
A′

sup
θ∈Θn

R(A′, θ)
}
.

Definition 6.4.11 (Instance-dependent Lower Bound). Given a set of algorithms M, for each
θ ∈ Θn, we define the instance-dependent lower bound asR∗M(θ) = infA∈MR(A, θ).

The following theorem states the non-existence of instance optimal algorithms up to a con-
stant multiplicative factor.
Theorem 6.4.12. Let c0 be the constant in minimax lower bound such that infA supθ∈Θn

R(A, θ) ≥
c0/
√
nmin. Then for any c > 2/c0 and any algorithm A, we have

sup
θ∈Θn

R(A, θ)
R∗Mn,c

(θ)
≥ nmin

nmin + 4
e
β2

4
+β

4

√
nmin

where β = cc0 − 2.
Corollary 6.4.13. There is no algorithm that is instance optimal up to a constant multiplicative
factor. That is, fixing π1 ∈ (0, 1), given any c > 2/c0 and for any algorithm A , we have

lim sup
n→∞

sup
θ∈Θn

R(A, θ)
R∗Mn,c

(θ)
= +∞ .

The proof of Theorem 6.4.12 follows by constructing two competing instances where the per-
formance of any single algorithm cannot simultaneously match the performance of the adapted
algorithm on each specific instance.

Step 1, define the algorithm Aβ as

Aβ(X) =

{
1 if X1 −X2 ≥ β√

nmin

2 otherwise
.

For any β within a certain range, it can be shown thatAβ ∈Mn,c, henceR∗Mn,c
(θ) ≤ R(Aβ, θ).

Step 2, construct two problem instances as follows. Fix a λ ∈ R and η > 0, and define

θ1 = (µ1, µ2) = (λ+
η

n1

, λ− η

n2

) ,

θ2 = (µ′1, µ
′
2) = (λ− η

n1

, λ+
η

n2

) .

Since we have X1−X2 ∼ N (∆, σ2) on instance θ1 and X1−X2 ∼ N (−∆, σ2) on instance θ2,
where ∆ = ( 1

n1
+ 1

n2
)η and σ2 = 1

n1
+ 1

n2
, the regret of Aβ on both instances can be computed

using the CDF of Gaussian distributions. Note that R(A−β, θ1) = R(Aβ, θ2). We now chose a
β1 < 0 for θ1 to upper bound R∗Mn,c

(θ1) by R(Aβ1 , θ1) and use β2 = −β1 > 0 to upper bound
R∗Mn,c

(θ2) byR(Aβ2 , θ1).
Then applying the Neyman-Pearson Lemma [108] to this scenario gives thatA0 is the optimal

algorithm in terms of balancing the regret on θ1 and θ2:

R(A0, θ1) = R(A0, θ2) = min
A

max{R(A, θ1),R(A, θ2)} .
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Step 3, combining the above results gives

sup
θ∈Θn

R(A, θ)
R∗Mn,c

(θ)
≥ max

{
R(A, θ1)

R∗Mn,c
(θ1)

,
R(A, θ2)

R∗Mn,c
(θ2)

}

≥ max

{
R(A, θ1)

R(Aβ1 , θ1)
,
R(A, θ2)

R(Aβ2 , θ2)

}
=

max {R(A, θ1),R(A, θ2)}
R(Aβ1 , θ1)

≥ R(A0, θ1)

R(Aβ1 , θ1)
.

Note that both the regretR(A0, θ1) andR(Aβ1 , θ1) can be exact expressed as CDFs of Gaus-
sian distributions: R(A0, θ1) = Φ (−∆/σ) andR(Aβ1 , θ1) = Φ

(
−β/(σ√nmin)−∆/σ

)
where

Φ is the CDF of the standard normal distribution.
Now we can conclude the proof by picking λ = 1/2 and η = nmin/2 such that θ1, θ2 ∈ [0, 1]2.

Then the result in Theorem 6.4.12 can then be proved by applying an approximation of Φ and
setting β1 = −β2 = 2−cc0 such that both β1 and β2 are within the range that makesAβ ∈Mn,c.

To summarize, in batch problems, unlike in online learning, there is no universally adaptive
algorithm, and in fact all the confidence-adjusted algorithms have a niche where they outperform
the others. Thus, any reasonable algorithm is equally optimal, or not optimal, depending on
whether the minimax or instance optimality is considered. In this sense, there remains a lack of a
well-defined optimality criterion that can be used to choose between algorithms for batch policy
optimization.

6.5 A Characterization of Pessimism
It is known that the pessimistic algorithm, maximizing a lower confidence bound on the value,
satisfies many desirable properties: it is consistent with rational decision making using prefer-
ences that satisfy uncertainty aversion and certainty-independence [50], it avoids the optimizer’s
curse [127], it allows for optimal inference in an asymptotic sense [80], and in a certain sense it is
the unique strategy that achieves these properties [132, 144]. However, a pure statistical decision
theoretic justification (in the sense of Berger [15]) is still lacking.

The instance-dependent lower bound presented above attempts to characterize the optimal
performance of an algorithm on an instance-by-instance basis. In particular, one can interpret
the objective R(A, θ)/R∗Mn,c

(θ) defined in Theorem 6.4.12 as weighting each instance θ by
1/R∗Mn,c

(θ), where this can be interpreted as a measure of instance difficulty. It is natural to
consider an algorithm to be optimal if it can perform well relative to this weighted criteria.
However, given that the performance of an algorithm can be arbitrarily different across instances,
no such optimal algorithm can exist under this criterion. The question we address here is whether
other measures of instance difficulty might be used to distinguish some algorithms as naturally
advantageous over others.

In a recent study, Jin et al. [67] show that the pessimistic algorithm is minimax optimal
when weighting each instance by the variance induced by the optimal policy. In another recent
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paper, Buckman et al. [19] point out that the pessimistic choice has the property that its regret
improves whenever the optimal choice’s value is easier to predict. In particular, with our notation,
their most relevant result (Theorem 3) implies the following: if bi defines an interval such that
µi ∈ [µ̂i − bi, µ̂i + bi] for all i ∈ [k], then for i′ = arg maxi µ̂i − bi one obtains 1

µ∗ − µi′ ≤ 2ba∗ . (6.5)

If we (liberally) interpret ba∗ as a measure of how hard it is to predict the value of the optimal
choice, this inequality suggests that the pessimistic choice could be justified as the choice that
makes the regret comparable to the error of predicting the optimal value.

To make this intuition precise, consider the same problem setup as discussed in Section 6.2.
Suppose that the reward distribution for each arm i ∈ [k] is a Gaussian with unit variance. Con-
sider the problem of estimating the optimal value µ∗ where the optimal arm a∗ is also provided
to the estimator. We define the set of minimax optimal estimators.
Definition 6.5.1 (Minimax Estimator). For fixed n = (ni)i∈[k], an estimator is said to be minimax
optimal if its worst case error is bounded by the minimax estimate error of the problem up to some
constant. We define the set of minimax optimal estimators as

V∗n =

{
ν : sup

θ∈Θn

Eθ [|µ∗ − ν|] ≤ c inf
ν′∈V

sup
θ∈Θn

Eθ [|µ∗ − ν ′|]
}

where c is a universal constant, and V is the set of all possible estimators.
Now consider using this optimal value estimation problem as a measure of how difficult a

problem instance is, and then use this to weight each problem instance as in the definition of
instance-dependent lower bound. In particular, let

E∗(θ) = inf
ν∈V∗n

Eθ [|µ∗ − ν|]

be the inherent difficulty of estimating the optimal value µ∗ on problem instance θ. The previous
result (6.5) suggests (but does not prove) that supθ

R(LCB,θ)
E∗(θ) < +∞. We now show that not only

does this hold, but up to a constant factor, the LCB algorithm is nearly weighted minimax optimal
with the weighting given by E∗(θ).
Proposition 6.5.2. For any n = (ni)i∈[k],

sup
θ∈Θn

R(LCB, θ)
E∗(θ)

< c
√

log |n| ,

where c is some universal constant.
Proposition 6.5.3. There exists a sequence {nj} such that

lim sup
j→∞

sup
θ∈Θnj

R(UCB, θ)√
log |nj| · E∗(θ)

= +∞

1 This inequality follows directly from the definitions: µ∗−µi′ ≤ µ∗−(µ̂i′−bi′) ≤ µ∗−(µ̂a∗−ba∗) ≤ 2ba∗ and
we believe this was known as a folklore result, although we are not able to point to a previous paper that includes this
inequality. The logic of this inequality is the same as that used in proving regret bounds for UCB policies [79, 85].
It is also clear that the result holds for any data-driven stochastic optimization problem regardless of the structure of
the problem. Theorem 3 of Buckman et al. [19] with this notation states that µ∗ − µi′ ≤ mini µ

∗ − µi + 2bi.
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lim sup
j→∞

sup
θ∈Θnj

R(greedy, θ)√
log |nj| · E∗(θ)

= +∞

That is, the pessimistic algorithm can be justified by weighting each instance using the diffi-
culty of predicting the optimal value. We note that this result does not contradict the no-instance-
optimality property of batch policy optimization with stochastic bandits (Corollary 6.4.13). In
fact, it only provides a characterization of pessimism: the pessimistic choice is beneficial when
the batch dataset contains enough information that is good for predicting the optimal value.

6.6 Related work

In the context of offline bandit and RL, a number of approaches based on the pessimistic principle
have been proposed and demonstrate great success in practical problems [19, 66, 70, 77, 78,
126, 134, 148, 155]. We refer interested readers to the survey by Levine et al. [89] for recent
developments on this topic. To implement the pessimistic principle, the distributional robust
optimization (DRO) becomes one powerful tool in bandit [40, 69] and RL [23, 27, 31, 151, 152,
154].

In terms of theoretical perspective, the statistical properties of general DRO, e.g., the con-
sistency and asymptotic expansion of DRO, is analyzed in [37]. Liu et al. [98] provides regret
analysis for a pessimistic algorithm based on stationary distribution estimation in offline RL
with insufficient data coverage. Jin et al. [67] and Kidambi et al. [70] recently prove that the
pessimistic algorithm is nearly minimax optimal for batch policy optimization. However, the
theoretical justification of the benefits of pessimitic principle vs. alternatives are missing in of-
fline RL.

Decision theory motivates DRO with an axiomatic characterization of min-max (or distribu-
tionally robust) utility: Preferences of decision makers who face an uncertain decision problem
and whose preference relationships over their choices satisfy certain axioms follow an ordering
given by assigning max-min utility to these preferences [50]. Thus, if we believe that the pref-
erences of the user follow the axioms stated in the above work, one must use a distributionally
optimal (pessimistic) choice. On the other hand, Smith and Winkler [128] raise the “optimizer’s
curse” due to statistical effect, which describes the phenomena that the resulting decision policy
may disappoint on unseen out-of-sample data, i.e., the actual value of the candidate decision
is below the predicted value. Sutter et al. [132], Van Parys et al. [144] justify the optimality
of DRO in combating with such an overfitting issue to avoid the optimizer’s curse. Moreover,
Delage et al. [29] demonstrate the benefits of randomized policy from DRO in the face of uncer-
tainty comparing with deterministic policy. While reassuring, these still leave open the question
whether there is a justification for the pessimistic choice dictated by some alternate logic, or
perhaps a more direct logic reasoning in terms of regret in decision problem itself [85].

Our theoretical analysis answer this question, and provides a complete and direct justifi-
cation for all confidence-based index algorithms. Specifically, we show all confidence-based
index algorithms are nearly minimax optimal in terms of regret. More importantly, our instance-
dependent analysis show that for any algorithm one can always find some problem instance where
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the algorithm will suffer arbitrarily large regret. Therefore, one cannot directly compare the per-
formance of two algorithms without specifying the problem instance. Buckman et al. [19] state
that for the pessimistic choice to be a good one, it suffices to have data that makes predicting the
value of the optimal policy feasible. We provide a formal analysis to support this intuition: the
pessimistic algorithm is nearly minimax optimal when weighting individual instance by its inher-
ent difficulty of estimating the optimal value. This weighted criterion can be used to distinguish
pessimistic algorithm from other confidence-adjusted index algorithms.

6.7 Conclusions
In this chapter we study the statistical limits of batch policy optimization with finite-armed ban-
dits. We introduce a family of confidence-adjusted index algorithms that provides a general
analysis framework to unify the commonly used optimistic and pessimistic principles. For this
family, we show that any index algorithm with an appropriate adjustment is nearly minimax op-
timal. Our analysis also reveals another important finding, that for any algorithm that performs
optimally in some environment, there exists another environment where the same algorithm can
suffer arbitrarily large regret. Therefore, the instance-dependent optimality cannot be achieved
by any algorithm. To distinguish the algorithms in offline setting, we introduce a weighted min-
imax objective and justify the pessimistic algorithm is nearly optimal under this criterion.

6.8 Additional Experiment Details

Figure 6.1 The reward distribution for each arm i ∈ [100] is a Gaussian with unit variance.
The mean rewards µi are uniformly spread over [0, 1]. In particular, we have µ1 ≥ . . . µ100,
µi − µi+1 = 0.01 for 1 ≤ i < 99, and µ1 = 1. When generating the data set, we split the arms
into two sets S1 and S2 = [k] \ S2. For each arm i ∈ S1, we collect πn data; for each arm
i ∈ S2, we collect n(1− π|S1|)/|S2| data, where n is the total sample size, and 0 ≤ π ≤ 1/|S1|
is a parameter to be chosen to generate different data sets. We consider four data sets: LCB-1
(S1 = {1}, π = 0.3); LCB-2 (S1 = {10}, π = 0.3); UCB-1 (S1 = {1}, π = 1e−4); UCB-2
(S1 = {1, . . . , 10}, π = 1e−4). For each instance, we run each algorithm 500 times and use
the average performance to approximate the expected simple regret. Error bars are the standard
deviation of the simple regret over the 500 runs.

Figure 6.2(a) and 6.2(b) The reward distribution for each arm i ∈ [2] is a Gaussian with
unit variance. We fix µ1 = 0 and vary µ2 accordingly. In Figure 6.2(a), n1 = 10, n2 = 5. In
Figure 6.2(b), n1 = 100, n2 = 10. For each instance, we run each algorithm 100 times and use
the average performance to approximate the expected simple regret. Error bars are the standard
deviation of the simple regret over the 100 runs.

Figure 6.2(c) and 6.2(d) For each k, we first sample 100 vectors ~µ = [µ1, ..., µk] in the follow-
ing way: We generate ~µ0 with ~µ0,i = i−1

2(k−1)
+ 1

4
such that all reward means are evenly distributed

with in [1
4
, 3

4
]. We then add independent Gaussian noise with standard deviation 0.05 to each ~µ0,i
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to get a sampled ~µ. Generating 100 noise vectors with size k gives 100 samples of ~µ. For each
~µ we uniformly sample 100 (if exist) subsets S ⊂ k, |S| = m (m = k/2 in (c) and m = k/4 in
(d)), to generate up to 10k instances. We set ni = 100 for i ∈ S and ni = 1 for i /∈ S. For each
instance, we run each algorithm 100 times and use the average performance to approximate the
expected simple regret. We then select the algorithm with the best average performance for each
instance and count the fraction of instances where each algorithm performs the best. Experi-
ment details are provided in the supplementary material. Error bars are representing the standard
deviation of the reported fraction over 5 different runs of the whole procedure.

6.9 Proofs

6.9.1 Proof of Minimax Results

Proof of Theorem 6.3.1. Let m ≥ 2 and µ1, . . . , µm be a collection of vectors in Rk with µba =
∆I{a = b} where ∆ > 0 is a constant to be chosen later. Next, let θb be the environment in
Θn with Pa a Gaussian distribution with mean µba and unit variance. Let B be a random variable
uniformly distributed on [m] where m ∈ [k]. The Bayesian regret of an algorithm A is

BR∗ = inf
A

E [R(A, θB)] = ∆E [I{A 6= B}] ,

whereA ∈ [k] is the σ(X)-measurable random variable representing the decision of the Bayesian
optimal policy, which is A = arg maxb∈[k] P{B = b|X}. By Bayes’ law and the choice of
uniform prior,

P{B = b|X} ∝ exp

(
−1

2

k∑
a=1

na(µ̂a − µba)2

)

= exp

(
−1

2

k∑
a=1

na(µ̂a −∆I{a = b})2

)
.

Therefore, the Bayesian optimal policy chooses

A = arg min
b∈[k]

nb(∆/2− µ̂b) .

On the other hand,

BR∗ = ∆P{A 6= B} =
∆

k

k∑
b=1

Pb(A 6= b) ,

where Pb = P{·|B = b}. Let b ∈ [m] be arbitrary. Then,

Pb{A 6= b}

≥ Pb
{
µ̂b ≤ ∆ and max

a∈[m]\{b}
µ̂a ≥

∆

2

(
1 +

nb
na

)}
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≥ 1

2

1−
∏

a∈[m]\{b}

(
1− Pb

{
µ̂a ≥

∆

2

(
1 +

nb
na

)})
≥ 1

2

(
1−

∏
a>b

(1− Pb {µ̂a ≥ ∆})

)
,

where in the second inequality we used independence and the fact that the law of µ̂b under Pb is
Gaussian with mean ∆ and variance 1/nb. The first inequality follows because{

µ̂b ≤ ∆ and max
a6=b

µ̂a ≥
∆

2

(
1 +

nb
na

)}
⊂ {A 6= b} .

Let b < a ≤ m and

δa(∆) =
1

∆
√
na +

√
4 + na∆2

√
2

π
exp

(
−na∆

2

2

)
.

Since for a 6= b, µ̂a has lawN (0, 1/na) under Pb, by standard Gaussian tail inequalities [2, §26],

Pb{µ̂a ≥ ∆} = Pb{µ̂a
√
na ≥ ∆

√
na} ≥ δa(∆) ≥ δm(∆) ,

where the last inequality follows from our assumption that n1 ≤ · · · ≤ nk. Therefore, choosing
∆ so that δm(∆) = 1/(2m),

BR∗ ≥ ∆

2m

∑
b∈[m]

(
1− (1− δm(∆))m−b

)
≥ ∆

2m

∑
b∈[m]

(
1−

(
1− 1

2m

)m−b)

≥ ∆

2m

∑
b≤m/2

(
1−

(
1− 1

2m

)m/2)

≥ ∆(m− 1)

20m
≥ ∆

40
.

A calculation shows there exists a universal constant c > 0 such that

∆ ≥ c

√
log(m)

nm
,

which shows there exists a (different) universal constant c > 0 such that

inf
A

sup
θ
R(A, θ) ≥ BR∗ ≥ max

m≥2
c

√
log(m)

nm
.
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The argument above relies on the assumption that m ≥ 2. A minor modification is needed to
handle the case where n1 is much smaller than n2. Let B be uniformly distributed on {1, 2} and
let θ1, θ2 ∈ Θn be defined as above, but with µ1 = (∆, 0) and µ2 = (−∆, 0) for some constant
∆ > 0 to be tuned momentarily. As before, the Bayesian optimal policy has a simple closed
form solution, which is

A =

{
1 if µ̂1 ≥ 0

2 otherwise .

The Bayesian regret of this policy satisfies

BR∗ =
1

2
R(A, θ1) +

1

2
R(A, θ2) ≥ 1

2
R(A, θ1)

≥ 1

2
P1{A = 2} ≥ ∆

2
P1{µ̂1 < 0}

≥
√

2

π

∆

2∆
√
n1 + 2

√
4 + n1∆2

exp

(
−n1∆2

2

)
≥ 1

13

√
1

n1

,

where the final inequality follows by tuning ∆.

Proof of Theorem 6.3.2. Let i′ = arg maxi µ̃i. Then, given that (6.2) is true for all arms, which
is with probability at least 1− δ, we have

µ∗ − µi′ = µ∗ − µ̃a∗ + µ̃a∗ − µ̃i′ + µ̃i′ − µi′
≤ µ∗ − µ̃a∗ + µ̃i′ − µi′

≤ µ∗ − µ̂a∗ + µ̂i′ − µi′ + 2

√
2 log(k/δ)

mini ni

≤

√
32 log(k/δ)

mini ni
,

where the first two inequalities follow from the definition of the index algorithm, and the last
follows from (6.2). Using the tower rule gives the desired result.

6.9.2 Proof of Instance-dependent Results
Proof of Theorem 6.4.1. Assuming µ1 ≥ µ2 ≥ ... ≥ µk, if we have P (A(X) ≥ i) ≤ bi, then we
can write

R(A) =
∑

2≤i≤k

∆iP (A(X) = i)

=
∑

2≤i≤k

∆i (P (A(X) ≥ i)− P (A(X) ≥ i+ 1))
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=
∑

2≤i≤k

(∆i −∆i−1)P (A(X) ≥ i)

≤
∑

2≤i≤k

(∆i −∆i−1) bi

=
∑

2≤i≤k

∆i(bi − bi+1) .

To upper bound P (A(X) ≥ i), let Ii be the index used by algorithm A, i.e., A(X) =
arg maxi Ii. Then

P (A(X) ≥ i) ≤ P
(

max
j≥i

Ij ≥ max
j<i

Ij

)
.

Hence we can further write

P (A(X) ≥ i) ≤ P
(

max
j≥i

Ij ≥ max
j<i

Ii,max
j<i

Ij ≥ η

)
+ P

(
max
j≥i

Ij ≥ max
j<i

Ii,max
j<i

Ij < η

)
≤ P

(
max
j≥i

Ij ≥ η

)
+ P

(
max
j<i

Ij < η

)
. (6.6)

Next we optimize the choice of η according to the specific choice of the index. For this let
Ii = µ̂i + bi.

Continuing with (6.6), for the first term, by the union bound we have

P
(

max
j≥i

Ij ≥ η

)
≤
∑
j≥i

P (Ij ≥ η) .

For each j ≥ i, by Hoeffding’s inequality we have

P (Ij ≥ η) ≤ e−
nj
2

(η−µj−bj)2
+ .

For the second term in (6.6), we have P (maxj<i Ij < η) ≤ P (Ij < η) for each j < i.
By Hoeffding’s inequality we have

P (Ij < η) ≤ e−
nj
2

(µj+bj−η)2
+ ,

and thus

P
(

max
j<i

Ij < η

)
≤ min

j<i
e−

nj
2

(µj+bj−η)2
+ .

Define

gi(η) =
∑
j≥i

e−
nj
2

(η−µj−bj)2
+ + min

j<i
e−

nj
2

(µj+bj−η)2
+
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and g∗i = minη gi(η). Then we have

P (A(X) ≥ i) ≤ min{1, g∗i } .

Putting everything together, we bound the expected regret as

R(A) ≤
∑

2≤i≤k

∆i

(
min{1, g∗i } −min{1, g∗i+1}

)
where we define g∗k+1 = 0.

Proof of Remark 6.4.4. Recall the definition of gi(η):

gi(η) =
∑
j≥i

e−
nj
2

(η−µj−bj)2
+ + min

j<i
e−

nj
2

(µj+bj−η)2
+ .

Let η = µ1 − 2
√

2
nmin

log k
δ
. Then, for the second term of gi(η),

min
j<i

e−
nj
2

(µj+bj−η)2
+ ≤ e

−n1
2

(
2
√

2
nmin

log k
δ
−
√

2
n1

log k
δ

)2

+ ≤ δ

k
.

For the first term,

∑
j≥i

e−
nj
2

(η−µj−bj)2
+ =

∑
j≥i

e
−
nj
2

(
µ1−2

√
2

nmin
log k

δ
−µj−bj

)2

+ ≤
∑
j≥i

e
−nmin

2

(
∆j−3

√
2

nmin
log k

δ

)2

+ .

Thus,

g∗i ≤
∑
j≥i

e
−nmin

2

(
∆j−3

√
2

nmin
log k

δ

)2

+ +
δ

k
.

For arm i such that ∆i ≥ 4
√

2
nmin

log k
δ
, by Theorem 6.4.1 we have P (A(X) ≥ i) ≤ g∗i ≤ δ.

The result then follows by the tower rule.

Proof of Corollary 6.4.2. For each i, let ηi = maxj<i Lj . Then,

gi(ηi) =
∑
j≥i

e−
nj
2

(maxj<i Lj−µj−bj)2
+ + min

j<i
e−

nj
2

(µj+bj−maxj<i Lj)
2
+ .

Let s = arg maxj<i Lj . For the second term we have,

min
j<i

e−
nj
2

(µj+bj−maxj<i Lj)
2
+ ≤ e−

ns
2

(µs+bs−Ls)2
+ ≤ δ

k
.
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Next we consider the first term. Recall that h = max{i ∈ [k] : maxj<i Lj < maxj′≥i Uj′}. Then
for any i > h, we have maxj<i Lj ≥ Uj′ for all j′ ≥ i. Therefore,

∑
j≥i

e
−
nj
2 (maxj′<i Lj′−µj−bj)

2

+ =
∑
j≥i

e
−
nj
2

(
maxj′<i Lj′−Uj+

√
2
nj

log k
δ

)2

+ ≤ δ

k

∑
j≥i

e−
nj
2 (maxj′<i Lj′−Uj)

2

.

Note that for i ≤ h, ∆i ≤ ∆h. Thus we have,

R(A) ≤ ∆h +
∑
i>h

(∆i −∆i−1)P(A(X) ≥ i)

≤ ∆h +
δ

k
∆max +

δ

k

∑
i>h

(∆i −∆i−1)
∑
j≥i

e−
nj
2 (maxj′<i Lj′−Uj)

2

,

which concludes the proof.

Proof of Corollary 6.4.5. Considering the greedy algorithm, for each i ≥ 2,

gi(η) =
∑
j≥i

e−
nj
2

(η−µj)2
+ + min

j<i
e−

nj
2

(µj−η)2
+ .

Define hi = arg maxj<i µj−
√

2
nj

log k
δ

and ηi = µhi−
√

2
nhi

log k
δ
. Then we have e−

nhi
2 (µhi−ηi)

2

+ =

δ/k. Then for j ≥ i we have

e−
nj
2

(ηi−µj)2
+ = e

−
nj
2

(
µhi−µj−

√
2
nhi

log k
δ

)2

+ .

When µhi − µj ≥
√

2
nhi

log k
δ

+
√

2
nj

log k
δ

we have e−
nj
2

(ηi−µj)2
+ ≤ δ/k.

Define

Ui = 1

{
∀j ≥ i, µhi − µj ≥

√
2

nhi
log

k

δ
+

√
2

nj
log

k

δ

}
.

Then we have g∗iUi ≤ k−i+2
k

δ ≤ δ. According to Theorem 6.4.1 we have P (A(X) ≥ i) ≤
min{1, g∗i }, so for any i such that P (A(X) ≥ i) > δ, we must have Ui = 0, which is equivalent
to

max
j<i

µj −

√
2

nj
log

k

δ
< max

j≥i
µj +

√
2

nj
log

k

δ
. (6.7)

Let î be the largest index i that satisfies (6.7). Then we have P
(
A(X) ≥ î+ 1

)
≤ δ. Therefore,

we have P
(
µ∗ − µA(X) ≤ ∆î

)
≥ 1− δ, and it remains to upper bound ∆î.

For any i ∈ [k], if î ≤ i then ∆î ≤ ∆i. If î > i we have

max
j<î

µj −

√
2

nj
log

k

δ
≥ µi −

√
2

ni
log

k

δ
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and

max
j≥î

µj +

√
2

nj
log

k

δ
≤ µî + max

j>i

√
2

nj
log

k

δ
.

Applying (6.7) gives

∆î −∆i = µi − µî ≤
√

2

ni
log

k

δ
+ max

j>i

√
2

nj
log

k

δ
,

so

∆î ≤ ∆i +

√
2

ni
log

k

δ
+ max

j>i

√
2

nj
log

k

δ

holds for any i ∈ [k], concluding the proof.

Proof of Corollary 6.4.6. Let η = maxi µi −
√

8
ni

log k
δ
. Considering the LCB algorithm, for

each i ≥ 2, we have

gi(η) =
∑
j≥i

e
−
nj
2

(
η−µj+

√
2
nj

log k
δ

)2

+ + min
j<i

e
−
nj
2

(
µj−η−

√
2
nj

log k
δ

)2

+ .

Define hi = arg maxj<i µj −
√

8
nj

log k
δ

and ηi = µhi −
√

8
nhi

log k
δ
. Then we have

e
−
nhi

2

(
µhi−ηi−

√
2
nj

log k
δ

)2

+ = δ/k .

Now, consider j ≥ i. Then,

e
−
nj
2

(
ηi−µj+

√
2
nj

log k
δ

)2

+ ≤ δ

k

whenever ηi − µj ≥ 0, i.e. µhi −
√

8
nhi

log k
δ
≥ µj .

Define

Ui = 1

{
∀j ≥ i, µhi −

√
8

nhi
log

k

δ
≥ µj

}
.

Then we have g∗iUi ≤ k−i+2
k

δ ≤ δ. According to Theorem 6.4.1 we have P (A(X) ≥ i) ≤
min{1, g∗i }, so for any i such that P (A(X) ≥ i) > δ, we must have Ui = 0, which is equivalent
to that there exists some s ≥ i such that

µs > max
j<i

µj −

√
8

nj
log

k

δ
. (6.8)
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Let î be the largest index i that satisfies (6.8). Then we have P
(
A(X) ≥ î+ 1

)
≤ δ and thus

P
(
µ∗ − µA(X) ≤ ∆î

)
≥ 1− δ. It remains to upper bound ∆î.

For any i ∈ [k], if î ≤ i then ∆î ≤ ∆i. If î > i we have

µî > max
j<î

µj −

√
8

nj
log

k

δ
≥ µi −

√
8

ni
log

k

δ
.

Therefore,

∆î = ∆i + µi − µî ≤ ∆i +

√
8

ni
log

k

δ
,

which concludes the proof.

Proof of Corollary 6.4.7. Consider now the UCB algorithm. Then, for each i ≥ 2,

gi(η) =
∑
j≥i

e
−
nj
2

(
η−µj−

√
2
nj

log k
δ

)2

+ + min
j<i

e
−
nj
2

(
µj−η+

√
2
nj

log k
δ

)2

+ .

Pick η = µ1 then the second term in gi(η) becomes δ/k. For j such that ∆j ≥
√

8
nj

log k
δ

we
have

e
−
nj
2

(
η−µj−

√
2
nj

log k
δ

)2

+ ≤ δ

k
.

Define

Ui = 1

{
∀j ≥ i,∆j ≥

√
8

nj
log

k

δ

}
.

Then we have g∗iUi ≤ k−i+2
k

δ ≤ δ. According to Theorem 6.4.1 we have P (A(X) ≥ i) ≤
min{1, g∗i }, so for any i such that P (A(X) ≥ i) > δ, we must have Ui = 0, which is equivalent
to

max
j≥i

µj +

√
8

nj
log

k

δ
> µ1 . (6.9)

Let î be the largest index i that satisfies (6.9). Then we have P
(
A(X) ≥ î+ 1

)
≤ δ. Therefore,

we have P
(
µ∗ − µA(X) ≤ ∆î

)
≥ 1− δ. It remains to upper bound ∆î.

For any i ∈ [k], if î ≤ i then ∆î ≤ ∆i. If î > i, we have

max
j≥î

µj +

√
8

nj
log

k

δ
≤ µî + max

j>i

√
8

nj
log

k

δ
.
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Applying (6.9) gives

∆î = µ1 − µî ≤ max
j>i

√
8

nj
log

k

δ
.

Therefore,

∆î ≤ max

{
∆i,max

j>i

√
8

nj
log

k

δ

}
≤ ∆i + max

j>i

√
8

nj
log

k

δ
.

for any i ∈ [k], which concludes the proof.

Proof of Proposition 6.4.9. Fixing S ⊂ [k], we take {ni}i∈S → ∞ and {ni}i/∈S = 1. The upper
bound for LCB in Corollary 6.4.6 can be written as

R̂S(LCB) = min

{
min
i∈S

∆i,min
i/∈S

(
∆i +

√
8 log

k

δ

)}
+ δ

= min
i∈S

∆i + δ

= ∆min{i∈[k]:i∈S} + δ .

Similarly, we have

R̂S(UCB) = min
i∈[k]

(
∆i + max

j>i,j /∈S

√
8 log

k

δ

)
+ δ

and

R̂S(greedy) ≥ min
i∈[k]

(
∆i + max

j>i,j /∈S

√
2 log

k

δ

)
+ δ .

Note that for δ ∈ (0, 1),
√

2 log k
δ
> 1 ≥ ∆max. So we can further lower bound R̂S(UCB) and

R̂S(greedy) by ∆h+δ where h = min{i ∈ [k] : ∀j > i, j ∈ S}. Letm = |S|. Notice that unless
S = {k −m + 1, ..., k}, we always have min{i ∈ [k] : i ∈ S} < min{i ∈ [k] : ∀j > i, j ∈ S}.
So we have R̂S(LCB) < R̂S(UCB) (or R̂S(greedy)) whenever S 6= {k −m + 1, ..., k}. Under
the uniform distribution over all possible subsets for S, the event S = {k−m+1, ..., k} happens
with probability

(
k
m

)−1
, which concludes the proof.

6.9.3 Instance-dependent Lower Bounds
Proof of Theorem 6.4.12. We first derive an upper bound forR∗Mn,c

(θ). AssumingX = (X1, X2,n)
with Xi ∼ N (µi, 1/ni), for any β ∈ R, we define algorithm Aβ as

Aβ(X) =

{
1, if X1 −X2 ≥ β√

nmin
;

2, otherwise .
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We now analyze the regret forAβ . By Hoeffding’s inequality we have the following instance-
dependent regret upper bound:

Proposition 6.9.1. Consider any β ∈ R and θ ∈ Θn. Let ∆ = |µ1 − µ2|. If µ1 ≥ µ2 then

R(Aβ, θ) ≤ 1

{
∆ ≤ β

√
nmin

}
β

√
nmin

+ 1

{
∆ >

β
√
nmin

}
e
−nmin

4

(
∆− β√

nmin

)2

+ .

Furthermore, if µ1 < µ2, we have

R(Aβ, θ) ≤ 1

{
∆ ≤ −β

√
nmin

}
−β
√
nmin

+ 1

{
∆ >

−β
√
nmin

}
e
−nmin

4

(
∆+ β√

nmin

)2

+ .

Maximizing over ∆ gives our worst case regret guarantee:

Proposition 6.9.2. For any β ∈ R,

sup
θ∈Θn

R(Aβ, θ) ≤
|β|+ 2
√
nmin

.

Aβ(X) is minimax optimal for a specific range of β:

Proposition 6.9.3. If |β| ≤ cc0 − 2 then Aβ ∈Mn,c.

Given θ ∈ Θn, to upper bound R∗Mn,c
(θ), we pick β such that Aβ ∈ Mn,c and Aβ performs

well on θ. For θ where µ1 ≥ µ2, we set β = 2− cc0 thusR∗Mn,c
(θ) ≤ R(A2−cc0 , θ). For θ where

µ1 < µ2, we set β = cc0 − 2 thusR∗Mn,c
(θ) ≤ R(Acc0−2, θ).

We now construct two instances θ1, θ2 ∈ Θn and show that no algorithm can achieve regret
close toR∗Mn,c

on both instances. Fixing some λ ∈ R and η > 0, we define

θ1 = (µ1, µ2) = (λ+
η

n1

, λ− η

n2

)

and
θ2 = (µ′1, µ

′
2) = (λ− η

n1

, λ+
η

n2

) .

On instance θ1 we have X1 − X2 ∼ N (( 1
n1

+ 1
n2

)η, 1
n1

+ 1
n2

) while on instance θ2 we have
X1 − X2 ∼ N (−( 1

n1
+ 1

n2
)η, 1

n1
+ 1

n2
). Let Φ be the CDF of the standard normal distribution

N (0, 1), ∆ = ( 1
n1

+ 1
n2

)η, and σ2 = 1
n1

+ 1
n2

. Then we have

R(Aβ, θ1) = ∆Pθ1 (Aβ = 2)

= ∆Pθ1
(
X1 −X2 <

β
√
nmin

)
= ∆Φ

(
β −∆

√
nmin

σ
√
nmin

)
,

and

R(A−β, θ2) = ∆Pθ2 (A−β = 1)

112



= ∆Pθ2
(
X1 −X2 ≥ −

β
√
nmin

)
= ∆Φ

(
β −∆

√
nmin

σ
√
nmin

)
.

It follows that our upper bound on R∗Mn,c
is the same for both instances, i.e., R(A2−cc0 , θ1) =

R(Acc0−2, θ2). Next we show that the greedy algorithmA0 is optimal in terms of minimizing the
worse regret between θ1 and θ2.

Lemma 6.9.4. Let A0 be the greedy algorithm where A0(X) = 1 if X1 ≥ X2 and A0(X) = 2
otherwise. Then we have

R(A0, θ1) = R(A0, θ2) = min
A

max{R(A, θ1),R(A, θ2)} .

Proof of Lemma 6.9.4. The first step is to show that by applying the Neyman-Pearson Lemma,
thresholding algorithms on X1−X2 perform the most powerful hypothesis tests between θ1 and
θ2.

Let fθ be the probability density function for the observation (X1, X2) under instance θ.
Then, the likelihood ratio function can be written as

fθ1(X1, X2)

fθ2(X1, X2)
=
e−

n1
2

(X1−λ−η/n1)2−n2
2

(X2−λ+η/n2)2

e−
n1
2

(X1−λ+η/n1)2−n2
2

(X2−λ−η/n2)2
= e2η(X1−X2) .

Applying the Neyman-Pearson Lemma to our scenario gives the following statement:

Proposition 6.9.5 (Neyman-Pearson Lemma). For any γ > 0 let Aγ be the algorithm where
Aγ(X) = 1 if fθ1 (X1,X2)

fθ2 (X1,X2)
≥ γ and Aγ(X) = 2 otherwise. Let α = Pθ1 (Aγ(X) = 2). Then for

any algorithmA′ such that Pθ1 (A′(X) = 2) = α, we have Pθ2 (A′(X) = 1) ≥ Pθ2 (Aγ(X) = 1).

Note that fθ1 (X1,X2)

fθ2 (X1,X2)
≥ γ is equivalent to X1 −X2 ≥ (2η)−1 log γ. Returning to the proof of

Lemma 6.9.4, consider an arbitrary algorithm A′ and let α = R(A′, θ1)/∆ = Pθ1 (A′(X) = 2).
Let γ be the threshold that satisfies Pθ1 (Aγ(X) = 2) = α. This exists because X1, X2 fol-
low a continuous distribution. According to Proposition 6.9.5 we have Pθ2 (A′(X) = 1) ≥
Pθ2 (Aγ(X) = 1). Therefore, we have shown that R(Aγ, θ1) = R(A′, θ1) and R(Aγ, θ2) ≤
R(A′, θ2), which means that for any algorithm A′ there exists some γ such that

max{R(Aγ, θ1),R(Aγ, θ2)} ≤ max{R(A′, θ1),R(A′, θ2)} .

It remains to show that γ = 1 is the minimizer of max{R(Aγ, θ1),R(Aγ, θ2)}. This comes
from the fact that R(Aγ, θ1) is a monotonically increasing function of γ while R(Aγ, θ2) is a
monotonically decreasing function of γ and γ = 1 makesR(Aγ, θ1) = R(Aγ, θ2), which means
that γ = 1 is the minimizer.
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We now continue with the proof of Theorem 6.4.12. Applying Lemma 6.9.4 gives

sup
θ∈Θn

R(A, θ)
R∗Mn,c

(θ)
≥ max

{
R(A, θ1)

R∗Mn,c
(θ1)

,
R(A, θ2)

R∗Mn,c
(θ2)

}

≥ max

{
R(A, θ1)

R(A2−cc0 , θ1)
,
R(A, θ2)

R(Acc0−2, θ2)

}
=

max {R(A, θ1),R(A, θ2)}
R(A2−cc0 , θ1)

≥ R(A0, θ1)

R(A2−cc0 , θ1)

=
Φ
(
−∆

σ

)
Φ
(
− cc0−2
σ
√
nmin
− ∆

σ

) . (6.10)

Now we apply the fact that for x > 0, x
1+x2φ(x) < Φ(−x) < 1

x
φ(x) to lower bound (6.10), where

φ is the probability density function of the standard normal distribution. Choosing β = cc0 − 2,
we have

Φ
(
−∆

σ

)
Φ
(
− β
σ
√
nmin
− ∆

σ

) ≥ β + ∆
√
nmin

σ
√
nmin

∆/σ

1 + (∆/σ)2
e

1
2

(
β2

σ2nmin
+ β∆

σ2√nmin

)
≥ η2

nmin + η2
e
β2

4
+ βη

2
√
nmin .

Picking λ = 1/2 and η = nmin/2 such that θ1, θ2 ∈ [0, 1]2, we have

sup
θ∈Θn

R(A, θ)
R∗Mn,c

(θ)
≥ nmin

nmin + 4
e
β2

4
+β

4

√
nmin ,

which concludes the proof.

6.9.4 Proof for Section 6.5
For any θ, let µ1 and n1 be the reward mean and sample count for the optimal arm. We first prove
that E∗(θ) is at the order of 1/

√
n1 for any θ.

Proposition 6.9.6. There exist universal constants c0 and c1 such that, for any θ ∈ Θn, c0/
√
n1 ≤

E∗(θ) ≤ c1/
√
n1.

Proof of Proposition 6.9.6. For any constant c > 0, define θ′ ∈ Θ such that the only difference
between θ′ and θ is the mean for the optimal arm: θ′ has µ′1 = µ1 + 4c√

n1
.

For any algorithm such that Eθ′ [|µ′1 − ν|] ≤ c√
n1

, we have Pθ′
(
ν ≥ µ1 + 2c√

n1

)
≥ 1

2
by

Markov inequality. Applying the fact that, when p and q are two Bernoulli distributions with
parameter p and q respectively, if p ≥ 1/2 we have KL(p, q) ≥ 1

2
log 1

4q
. Then we have

Pθ
(
ν ≥ µ1 +

2c
√
n1

)
≥ 1

4
e−KL(θ,θ′) =

1

4
e−4c2 .
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Therefore, we have

Eθ [|µ1 − ν|] ≥
2c
√
n1

Pθ
(
ν ≥ µ1 +

2c
√
n1

)
≥ ce−4c2

2
√
n1

.

Now we apply the fact that the empirical mean estimator ν = µ̂1 has Eθ [|µ1 − ν|] ≤ 1√
n1

for any
θ. We know that infν supθ Eθ [|µ1 − ν|] ≤ 1√

n1
. Let c2 be the constant in the definition of V∗n,

then c2e
−4c22

2
√
n1

is a lower bound on E∗(θ) for any θ due to the fact that relaxing the constraint on
the minimax optimality gives a lower instance dependent regret lower bound. Since the minimax
value is also an upper bound on E∗(θ) we know that, there exist universal constants c0 and c1

such that, for any θ ∈ Θn, c0/
√
n1 ≤ E∗(θ) ≤ c1/

√
n1.

Proof of Proposition 6.5.2. Picking δ = 1√
|n|

for the LCB algorithm, according to Corollary 6.4.6

gives that there exists a universal constant c (which may contain the term log k) such thatR(LCB, θ) ≤
c
√

log |n|
√
n1

. Applying Proposition 6.9.6 concludes the proof.

Proof of Proposition 6.5.3. Consider a sequence of counts n1,n2, ... with n2 = 1 and n1 =
2, 3, ...,+∞. Fix µ1 = µ2 + 0.1 and let ∆ = µ1 − µ2. For the UCB algorithm, we have

R(UCB, θ) = ∆Pθ
(
µ̂2 +

βδ√
n2

≥ µ̂1 +
βδ√
n1

)
= 0.1Pθ

(
µ̂1 − µ̂2 ≤

βδ√
n2

− βδ√
n1

)
≥ 0.1Pθ

(
µ̂1 − µ̂2 ≤

(
1− 1√

2

)
βδ

)
≥ 0.1Pθ

(
µ̂1 − µ̂2 ≤

(
1− 1√

2

))
≥ 0.1Pθ (µ̂1 − µ̂2 ≤ ∆)

= 0.05

where we applied the fact that βδ ≥ 1 for any δ ∈ (0, 1) and the random variable µ̂1− µ̂2 follows
a Gaussian distribution with mean ∆. Applying Proposition 6.9.6 gives

lim sup
j→∞

sup
θ∈Θnj

R(UCB, θ)√
log |nj| · E∗(θ)

≥ lim sup
j→∞

0.05
√
j + 1

c1

√
log(j + 2)

= +∞

For the greedy algorithm, we have

R(greedy, θ) = 0.1Pθ (µ̂1 − µ̂2 ≤ 0) .

The random variable µ̂1 − µ̂2 follows a Gaussian distribution with mean ∆ > 0 and variance
1
n1

+ 1
n2
≥ 1. Since shrinking the variance of µ̂1− µ̂2 will lower the probability Pθ (µ̂1 − µ̂2 ≤ 0),

115



we have R(greedy, θ) ≥ 0.1Φ(−0.1) where Φ is the CDF for the standard normal distribution.
Now using a similar statement as for the UCB algorithm gives the result.
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Chapter 7

Future Directions

For unsupervised domain adaptation, an immediate future problem is to extend the PU learning
setting to allow multiple classes in the source distribution. A more general future direction is to
explore other types of distribution shift that (i) do not assume contained support, (ii) go beyond
label shift, and (iii) are more tractable than general covariate shift.

For offline policy optimization, the question of how to implement the pessimistic princi-
ple in reinforcement learning is still largely under-explored. For example, following our work,
Kostrikov et al. [73], Kumar et al. [78] investigate how to better regularize the learned value
and/or policy function towards the behavior policy. One may notice that there is a distinction be-
tween regularizing towards the behavior policy (e.g. in Chapter 5) and optimizing the lower con-
fidence bound of value predictions (e.g. in Chapter 6). This is because, in behavior-regularized
algorithms, the input (action) distribution is used as a proxy for the uncertainty in value predic-
tion. So a natural question to ask is whether we can incorporate other off-the-shelf uncertainty
quantification techniques for deep learning (e.g., Bayesian neural networks, ensembles, or sim-
ply parameterize distributional outputs such as using softmax, etc) into the development of offline
RL algorithms. However, there is an additional complication in the reinforcement learning sce-
nario: Most of these uncertainty quantification techniques are built for the scenario of learning
to predict a fixed target. In reinforcement learning, successful algorithms such as DQN, DDPG
and their variants are training value functions to predict a moving target, while slowing down
the prediction-target movement may hurt the performance of these algorithms. This distinction
makes many of the uncertainty quantification techniques less applicable in the reinforcement
learning scenario. So one future direction can be to investigate how to develop reinforcement
learning algorithms that can be decomposed into fixed-target prediction problems such that off-
the-shelf uncertainty quantification techniques become more applicable.
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[88] Fabien Letouzey, François Denis, and Rémi Gilleron. Learning from positive and un-
labeled examples. In International Conference on Algorithmic Learning Theory, pages
71–85. Springer, 2000. 4.1, 4.2

[89] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learn-
ing: Tutorial, review, and perspectives on open problems. 2020. 1.2.2, 6.1, 6.6

[90] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of
contextual-bandit-based news article recommendation algorithms. In Proceedings of the
fourth ACM international conference on Web search and data mining, pages 297–306.
ACM, 2011. 5.1
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