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Abstract

A fundamental goal of cognitive neuroscience has been understanding how the

human visual cortex supports perceiving and interpreting visual information in the

world around us. Traditional approaches to mapping the visual cortex have relied

on manually assembled stimulus sets, often employing isolated objects in artificial

contexts with simplified backgrounds. These approaches do not fully capture the

complexity and richness of real-world visual experience, potentially biasing results

and limiting our understanding of visual processing. My thesis introduces a suite

of computational approaches leveraging naturalistic image stimuli to identify and

characterize the high-level organization of visual information in the human brain.

Specifically, I present:

1. Brain Diffusion for Visual Exploration (BrainDiVE): A method utilizing gra-

dient guidance from a differentiable image-to-fMRI encoder and a pre-trained

image diffusion model to generate naturalistic “most-exciting-inputs” that maxi-

mally activate specific brain regions.

2. Semantic Captioning Using Brain Alignments (BrainSCUBA): A technique

unifying the embedding spaces of CLIP image and text embeddings with fMRI

encoder weights to drive a vision-language model. This enables the generation

of natural language descriptions of voxel-wise selectivity within the visual

cortex.

3. Semantic Attribution and Image Localization (BrainSAIL): An approach em-

ploying vision foundation models and dense semantic features to localize ac-

tivating objects within complex naturalistic images across higher-level visual

areas.

These computational methods are complemented by human validation experiments

using synthetically generated stimuli. Overall, my thesis work demonstrates the power



of combining naturalistic stimuli with advanced computational techniques to reveal

the fine-grained organization of the human visual cortex. In addition to providing

a detailed overview of the computational models I have developed, I outline future

computational and fMRI experiments designed to further validate and extend these

findings. My research paves the way towards a more comprehensive and ecologically

valid understanding of visual processing, with implications for building more accurate

models of the brain and contributing to novel applications in artificial intelligence.
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Chapter 1

Introduction

Understanding how the human visual cortex extracts and organizes semantic information from the

complex visual stimulus is a long-standing question in cognitive neuroscience, with implications

for understanding human perception, cognition, and behavior. The brain’s ability to efficiently

process and interpret the complex stream of visual information is fundamental to our ability to

recognize objects, navigate the world around us, and perform social interactions. Traditional ap-

proaches to investigating this process have relied on controlled experiments employing simplified

stimuli, such as isolated images to identify preferential responses of specific brain regions to

broad semantic categories. While these studies have provided valuable insights into the functional

organization of the visual cortex, the hand-crafted nature of these stimuli limits the ecological

validity of such findings. Unlike simplified experimental paradigms, natural scenes are inherently

complex, characterized by multiple co-occurring objects, textures, and contextual associations.

This discrepancy raises concerns about the generalizability of findings based on hand-crafted

stimuli to real-world visual processing. The reliance on pre-defined stimulus categories introduces

researcher bias, potentially obscuring novel functional organizations or fine-grained selectivities

not encompassed by existing hypotheses. Relying solely on pre-defined categories may over-

look subtle but meaningful distinctions within categories and may fail to capture the impact of

contextual information on object recognition. To overcome these limitations and gain a more com-
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prehensive understanding of how the visual cortex processes semantic information in real-world

contexts, this thesis leverages recent advancements in computer vision, particularly models trained

on massive image datasets. These models provide a powerful tool for extracting semantically rich,

human-aligned representations from natural images, capturing the complexity and nuances present

in everyday visual experiences. By integrating these models with fMRI data collected during

naturalistic image viewing, I introduce three novel methodologies that advance our understanding

of visual cortex organization: First, I introduce Brain Diffusion for Visual Exploration (“Brain-

DiVE”), a method for synthesizing novel, naturalistic images specifically designed to maximally

activate a given brain region using diffusion models. This data-driven approach circumvents the

need for pre-defined category-specific stimuli, enabling the exploration of functional organization

and fine-grained selectivities without relying on a priori assumptions. Second, I introduce Seman-

tic Captioning using Brain Alignments (“BrainSCUBA”). This technique enables the generation

of natural language captions that describe the optimal stimuli for individual voxels. By leveraging

contrastive vision-language models and large-language models, this method provides concrete,

interpretable descriptions of voxel-wise semantic selectivity, offering a nuanced understanding of

feature preferences across visual sub-regions. Third, I introduce Semantic Attribution and Image

Localization (“BrainSAIL”), which can spatially attribute higher visual cortex selectivity within

natural images. This technique extracts dense, per-pixel semantic embeddings and integrates

them with whole-image representations to identify the specific image regions driving activation

in different cortical areas. This approach elucidates the neural mechanisms underlying semantic

visual processing in ecologically valid contexts.

This thesis leverages novel methodologies to uncover the fine-grained semantic organization of

the visual cortex, grounded in naturalistic stimuli and interpretable outputs. By demonstrating the

power of these techniques to reveal novel functional organizations, identify voxel-level semantic

preferences, and link image features to brain activity, this work contributes to a more nuanced and

ecologically valid understanding of visual cognition. Ultimately, these insights aim to bridge the

gap between artificial and biological vision systems, potentially informing the development of
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advanced artificial intelligence and deepening our understanding of the fundamental principles of

human visual perception.
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Chapter 2

Brain Diffusion for Visual Exploration:

Cortical Discovery using Large Scale

Generative Models

2.1 Introduction

The human visual cortex plays a fundamental role in our ability to process, interpret, and act

on visual information. While previous studies have provided important evidence that regions

in the higher visual cortex preferentially process complex semantic categories such as faces,

places, bodies, words, and food [Epstein and Kanwisher, 1998, Grill-Spector and Malach, 2004,

Jain et al., 2023, Kanwisher et al., 1997, Khosla et al., 2022a, Pennock et al., 2023a, Sergent

et al., 1992a], these important discoveries have been primarily achieved through the use of

researcher-crafted stimuli. However, hand-selected, synthetic stimuli may bias the results or may

not accurately capture the complexity and variability of natural scenes, sometimes leading to

debates about the interpretation and validity of identified functional regions [Ishai et al., 1999].

Furthermore, mapping selectivity based on responses to a fixed set of stimuli is necessarily limited,

in that it can only identify selectivity for the stimulus properties that are sampled. For these
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Place regions Body regions Word regions Food regionsFace regions

Figure 2.1: Images generated using BrainDiVE . Images are generated using a diffusion model
with maximization of voxels identified from functional localizer experiments as conditioning. We
find that brain signals recorded via fMRI can guide the synthesis of images with high semantic
specificity, strengthening the evidence for previously identified category selective regions. Select
images are shown, please see below for uncurated images.

reasons, data-driven methods for interpreting high-dimensional neural tuning are complementary

to traditional approaches. We introduce Brain Diffusion for Visual Exploration (“BrainDiVE”),

a generative approach for synthesizing images that are predicted to activate a given region in

the human visual cortex. Several recent studies have yielded intriguing results by combining

deep generative models with brain guidance [Gu et al., 2022, Ponce et al., 2019, Ratan Murty

et al., 2021]. BrainDiVE, enabled by the recent availability of large-scale fMRI datasets based on

natural scene images [Allen et al., 2022, Chang et al., 2019], allows us to further leverage state-of-

the-art diffusion models in identifying fine-grained functional specialization in an objective and

data-driven manner. BrainDiVE is based on image diffusion models which are typically driven by

text prompts in order to generate synthetic stimuli [Nichol et al., 2021]. We replace these prompts

with maximization of voxels in given brain areas. The result being that the resultant synthesized

images are tailored to targeted regions in higher-order visual areas. Analysis of these images

enables data-driven exploration of the underlying feature preferences for different visual cortical

sub-regions. Importantly, because the synthesized images are optimized to maximize the response

of a given sub-region, these images emphasize and isolate critical feature preferences beyond

what was present in the original stimulus images used in collecting the brain data. To validate

our findings, we further performed several human behavioral studies that confirmed the semantic

identities of our synthesized images.

More broadly, we establish that BrainDiVE can synthesize novel images (Figure 2.1) for
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category-selective brain regions with high semantic specificity. Importantly, we further show

that BrainDiVE can identify ROI-wise differences in selectivity that map to ecologically relevant

properties. Building on this result, we are able to identify novel functional distinctions within sub-

regions of existing ROIs. Such results demonstrate that BrainDiVE can be used in a data-driven

manner to enable new insights into the fine-grained functional organization of the human visual

cortex.

2.2 Related work

Mapping High-Level Selectivity in the Visual Cortex. Certain regions within the higher visual

cortex are believed to specialize in distinct aspects of visual processing, such as the perception of

faces, places, bodies, food, and words [Cohen et al., 2000, Desimone et al., 1984, Downing et al.,

2001, Epstein and Kanwisher, 1998, Grill-Spector and Malach, 2004, Jain et al., 2023, Kanwisher

et al., 1997, Khosla et al., 2022b, McCandliss et al., 2003, Pennock et al., 2023b]. Many of these

discoveries rely on carefully handcrafted stimuli specifically designed to activate targeted regions.

However, activity under natural viewing conditions is known to be different [Gallant et al., 1998].

Recent efforts using artificial neural networks as image-computable encoders/predictors of the

visual pathway [Conwell et al., 2022a, Eickenberg et al., 2017, Khaligh-Razavi and Kriegeskorte,

2014, Kubilius et al., 2019, la Tour et al., 2022, Naselaris et al., 2011, Wang et al., 2022, Wen

et al., 2018, Yamins et al., 2014] have facilitated the use of more naturalistic stimulus sets. Our

proposed method incorporates an image-computable encoding model in line with this past work.

Deep Generative Models. The recent rise of learned generative models has enabled sam-

pling from complex high dimensional distributions. Notable approaches include variational

autoencoders [Kingma and Welling, 2013, Van Den Oord et al., 2017], generative adversarial

networks [Goodfellow et al., 2020], flows [Dinh et al., 2014, Rezende and Mohamed, 2015], and

score/energy/diffusion models [Ho et al., 2022, Hyvärinen and Dayan, 2005, Sohl-Dickstein et al.,

2015, Song et al., 2020b]. It is possible to condition the model on category [Brock et al., 2018,
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Mirza and Osindero, 2014], text [Ramesh et al., 2022, Reed et al., 2016], or images [Rombach

et al., 2022]. Recent diffusion models have been conditioned with brain activations to reconstruct

observed images [Chen et al., 2022, Kneeland et al., 2023, Lu et al., 2023, Ozcelik and VanRullen,

2023, Takagi and Nishimoto, 2022]. Unlike BrainDiVE, these approaches tackle reconstruction

but not synthesis of novel images that are predicted to activate regions of the brain.

Brain-Conditioned Image Generation. The differentiable nature of deep encoding models

inspired work to create images from brain gradients in mice, macaques, and humans [Bashivan

et al., 2019, Khosla and Wehbe, 2022, Walker et al., 2019]. Without constraints, the images

recovered are not naturalistic. Other approaches have combined deep generative models with

optimization to recover natural images in macaque and humans [Gu et al., 2022, Ponce et al.,

2019, Ratan Murty et al., 2021]. Both [Gu et al., 2022, Ratan Murty et al., 2021] utilize fMRI

brain gradients combined with ImageNet trained BigGAN. In particular [Ratan Murty et al., 2021]

performs end-to-end differentiable optimization by assuming a soft relaxation over the 1, 000

ImageNet classes; while [Gu et al., 2022] trains an encoder on the NSD dataset [Allen et al., 2022]

and first searches for top-classes, then performs gradient optimization within the identified classes.

Both approaches are restricted to ImageNet images, which are primarily images of single objects.

Our work presents major improvements by enabling the use of diffusion models [Rombach et al.,

2022] trained on internet-scale datasets [Schuhmann et al., 2022a] over three magnitudes larger

than ImageNet. Concurrent work by [Pierzchlewicz et al., 2023] explore the use of gradients

from macaque V4 with diffusion models, however their approach focuses on early visual cortex

with grayscale image outputs, while our work focuses on higher-order visual areas and synthesize

complex compositional scenes. By avoiding the search-based optimization procedures used in [Gu

et al., 2022], our work is not restricted to images within a fixed class in ImageNet. Further, to the

authors’ knowledge we are the first work to use image synthesis methods in the identification of

functional specialization in sub-parts of ROIs.
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Figure 2.2: Architecture of brain guided diffusion (BrainDiVE). Top: Our framework consists
of two core components: (1) A diffusion model trained to synthesize natural images by iterative
denoising; we utilize pretrained LDMs. (2) An encoder trained to map from images to cortical
activity. Our framework can synthesize images that are predicted to activate any subset of voxels.
Shown here are scene-selective regions (RSC/PPA/OPA) on the right hemisphere. Bottom:
We visualize every 4 steps the magnitude of the gradient of the brain w.r.t. the latent and the
corresponding "predicted x0" [Song et al., 2020a] when targeting scene selective voxels in both
hemispheres. We find clear structure emerges.

2.3 Methods

We aim to generate stimuli that maximally activate a given region in visual cortex using paired

natural image stimuli and fMRI recordings. We first review relevant background information on

diffusion models. We then describe how we can parameterize encoding models that map from

images to brain data. Finally, we describe how our framework (Figure 2.2) can leverage brain

signals as guidance to diffusion models to synthesize images that activate a target brain region.

2.3.1 Background on Diffusion Models

Diffusion models enable sampling from a data distribution p(x) by iterative denoising. The

sampling process starts with xT ∼ N (0, I), and produces progressively denoised samples

xT−1, xT−2, xT−3 . . . until a sample x0 from the target distribution is reached. The noise level

varies by timestep t, where the sample at each timestep is a weighted combination of x0 and

9



ϵ ∼ N (0, I), with xt =
√
αtx0 + ϵ

√
1− αt. The value of α interpolates between N (0, I) and

p(x).

In the noise prediction setting, an autoencoder network ϵθ(xt, t) is trained using a mean-

squared error E(x,ϵ,t) [∥ϵθ(xt, t)− ϵ∥22]. In practice, we utilize a pretrained latent diffusion model

(LDM) [Rombach et al., 2022], with learned image encoder EΦ and decoder DΩ, which together

act as an autoencoder I ≈ DΩ(EΦ(I)). The diffusion model is trained to sample x0 from the

latent space of EΦ.

2.3.2 Brain-Encoding Model Construction

A learned voxel-wise brain encoding model is a function Mθ that maps an image I ∈ R3×H×W to

the corresponding brain activation fMRI beta values represented as an N element vector B ∈ RN :

Mθ(I) ⇒ B. Past work has identified later layers in neural networks as the best predictors of

higher visual cortex [Wang et al., 2021, 2022], with CLIP trained networks among the highest

performing brain encoders [Conwell et al., 2022a, Sun et al., 2023]. As our target is the higher

visual cortex, we utilize a two component design for our encoder. The first component consists of

a CLIP trained image encoder which outputs a K dimensional vector as the latent embedding.

The second component is a linear adaptation layer W ∈ RN×K , b ∈ RN , which maps euclidean

normalized image embeddings to brain activation.

B ≈ Mθ(I) = W × CLIPimg(I)
∥CLIPimg(I)∥2

+ b

Optimal W ∗, b∗ are found by optimizing the mean squared error loss over images. We observe

that use of a normalized CLIP embedding improves stability of gradient magnitudes w.r.t. the

image.
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2.3.3 Brain-Guided Diffusion Model

BrainDiVE seeks to generate images conditioned on maximizing brain activation in a given region.

In conventional text-conditioned diffusion models, the conditioning is done in one of two ways.

The first approach modifies the function ϵθ to further accept a conditioning vector c, resulting in

ϵθ(xt, t, c). The second approach uses a contrastive trained image-to-concept encoder, and seeks

to maximize a similarity measure with a text-to-concept encoder.

Conditioning on activation of a brain region using the first approach presents difficulties. We

do not know a priori the distribution of other non-targeted regions in the brain when a target

region is maximized. Overcoming this problem requires us to either have a prior p(B) that

captures the joint distribution for all voxels in the brain, to ignore the joint distribution that can

result in catastrophic effects, or to use a handcrafted prior that may be incorrect [Ozcelik and

VanRullen, 2023]. Instead, we propose to condition the diffusion model via our image-to-brain

encoder. During inference we perturb the denoising process using the gradient of the brain encoder

maximization objective, where γ is a scale, and S ⊆ N are the set of voxels used for guidance.

We seek to maximize the average activation of S predicted by Mθ:

ϵ′theta = ϵtheta −
√
1− αt∇xt(

γ

|S|
∑
i∈S

Mθ(DΩ(x
′
t))i)

Like [Dhariwal and Nichol, 2021, Li et al., 2022b, Nichol et al., 2021], we observe that conver-

gence using the current denoised xt is poor without changes to the guidance. This is because the

current image (latent) is high noise and may lie outside of the natural image distribution. We

instead use a weighted reformulation with an euler approximation [Li et al., 2022b, Song et al.,

2020a] of the final image:

x̂0 =
1√
α
(xt −

√
1− αϵt)

x′
t = (

√
1− α)x̂0 + (1−

√
1− α)xt

11



By combining an image diffusion model with a differentiable encoding model of the brain, we are

able to generate images that seek to maximize activation for any given brain region.

2.4 Results

In this section, we use BrainDiVE to highlight the semantic selectivity of pre-identified category-

selective voxels. We then show that our model can capture subtle differences in response properties

between ROIs belonging to the same broad category-selective network. Finally, we utilize

BrainDiVE to target finer-grained sub-regions within existing ROIs, and show consistent divisions

based on semantic and visual properties. We quantify these differences in selectivity across regions

using human perceptual studies, which confirm that BrainDiVE images can highlight differences

in tuning properties. These results demonstrate how BrainDiVE can elucidate the functional

properties of human cortical populations, making it a promising tool for exploratory neuroscience.

2.4.1 Setup

We utilize the Natural Scenes Dataset (NSD; Allen et al. [2022]), which consists of whole-brain 7T

fMRI data from 8 human subjects, 4 of whom viewed 10, 000 natural scene images repeated 3×.

These subjects, S1, S2, S5, and S7, are used for analyses in the main paper (see Supplemental for

results for additional subjects). All images are from the MS COCO dataset. We use beta-weights

(activations) computed using GLMSingle [Prince et al., 2022] and further normalize each voxel

to µ = 0, σ = 1 on a per-session basis. We average the fMRI activation across repeats of the

same image within a subject. The ∼9, 000 unique images for each subject [Allen et al., 2022]

are used to train the brain encoder for each subject, with the remaining ∼1, 000 shared images

used to evaluate R2. Image generation is on a per-subject basis and done on an Nvidia V100

using 1, 500 compute hours. As the original category ROIs in NSD are very generous, we utilize

a stricter t > 2 threshold to reduce overlap unless otherwise noted. The final category and ROI

masks used in our experiments are derived from the logical AND of the official NSD masks with

12



the masks derived from the official t-statistics.

We utilize stable-diffusion-2-1-base, which produces images of 512× 512 resolu-

tion using ϵ-prediction. Following best practices, we use multi-step 2nd order DPM-Solver++ [Lu

et al., 2022] with 50 steps and apply 0.75 SAG [Hong et al., 2022]. We set step size hyperparame-

ter γ = 130.0. Images are resized to 224× 224 for the brain encoder. “” (null prompt) is used as

the input prompt, thus the diffusion performs unconditional generation without brain guidance.

For the brain encoder we use ViT-B/16, for CLIP probes we use CoCa ViT-L/14. These

are the highest performing LAION-2B models of a given size provided by OpenCLIP [Ilharco

et al., 2021, Radford et al., 2021, Schuhmann et al., 2022b, Yu et al., 2022]. We train our brain

encoders on each human subject separately to predict the activation of all higher visual cortex

voxels. See Supplemental for visualization of test time brain encoder R2. To compare images

from different ROIs and sub-regions (OFA/FFA in 2.4.3, two clusters in 2.4.4), we asked human

evaluators select which of two image groups scored higher on various attributes. We used 100

images from each group randomly split into 10 non-overlapping subgroups. Each human evaluator

performed 80 comparisons, across 10 splits, 4 NSD subjects, and for both fMRI and generated

images. See Supplemental for standard error of responses. Human evaluators provided written

informed consent and were compensated at $12.00/hour. The study protocol was approved by the

institutional review board at the authors’ institution.

2.4.2 Broad Category-Selective Networks

In this experiment, we target large groups of category-selective voxels which can encompass

more than one ROI (Figure 2.3). These regions have been previously identified as selective

for broad semantic categories, and this experiment validates our method using these identified

regions. The face-, place-, body-, and word- selective ROIs are identified with standard localizer

stimuli [Stigliani et al., 2015]. The food-selective voxels were obtained from [Jain et al., 2023].

The same voxels were used to select the top activating NSD images (referred to as “NSD”) and to

guide the generation of BrainDiVE images.
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Figure 2.4: Results for category selective voxels (S1). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food
selective voxels.

ventral expanded

bodies

faces

places

words

food

multiple

Figure 2.3: Visualizing category-selective voxels in

S1. See text for details on how category selectivity was

defined.

In Figures 2.4 we visualize, for place-,

face-, word-, and body- selective voxels, the

top-5 out of 10, 000 images from the fMRI

stimulus set (NSD), and the top-5 images

out of 1, 000 total images as evaluated by

the encoding component of BrainDiVE. For

food selective voxels, the top-10 are visu-

alized. A visual inspection indicates that our method is able to generate diverse images that

semantically represent the target category. We further use CLIP to perform semantic probing

of the images, and force the images to be classified into one of five categories. We measure the

percentage of images that match the preferred category for a given set of voxels (Table 2.1). We
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find that our top-10% and 20% of images exceed the top-1% and 2% of natural images in accuracy,

indicating our method has high semantic specificity.

Faces Places Bodies Words Food Mean

S1↑ S2↑ S1↑ S2↑ S1↑ S2↑ S1↑ S2↑ S1↑ S2↑ S1↑ S2↑
NSD all stim 17.4 17.2 29.9 29.5 31.6 31.8 10.3 10.6 10.8 10.9 20.0 20.0
NSD top-200 42.5 41.5 66.5 80.0 56.0 65.0 31.5 34.5 68.0 85.5 52.9 61.3
NSD top-100 40.0 45.0 68.0 79.0 49.0 60.0 30.0 49.0 78.0 85.0 53.0 63.6
BrainDiVE-200 69.5 70.0 97.5 100 75.5 68.5 60.0 57.5 89.0 94.0 78.3 75.8
BrainDiVE-100 61.0 68.0 97.0 100 75.0 69.0 60.0 62.0 92.0 95.0 77.0 78.8

Table 2.1: Evaluating semantic specificity with zero-shot CLIP classification. We use CLIP to classify
images from each ROI into five semantic categories: face/place/body/word/food. Shown is the percentage
where the classified category of the image matches the preferred category of the brain region. We show this
for each subject’s entire NSD stimulus set (10, 000 images for S1&S2); the top-200 and top-100 images
(top-2% and top-1%) evaluated by mean true fMRI beta, and the top-200 and top-100 (20% and 10%) of
BrainDiVE images as self-evaluated by the encoding component of BrainDiVE. BrainDiVE generates
images with higher semantic specificity than the top 1% of natural images for each brain region.

2.4.3 Individual ROIs

In this section, we apply our method to individual ROIs that are selective for the same broad

semantic category. We focus on the occipital face area (OFA) and fusiform face area (FFA),

as initial tests suggested little differentiation between ROIs within the place-, word-, and body-

selective networks. In this experiment, we also compare our results against the top images for

FFA and OFA from NeuroGen [Gu et al., 2022], using the top 100 out of 500 images provided

by the authors. Following NeuroGen, we also generate 500 total images, targeting FFA and

OFA separately (Figure 2.5). We observe that both diffusion-generated and NSD images have

very high face content in FFA, whereas NeuroGen has higher animal face content. In OFA,

we observe both NSD and BrainDiVE images have a strong face component, although we also

observe text selectivity in S2 and animal face selectivity in S5. Again NeuroGen predicts a higher

animal component than face for S5. By avoiding the use of fixed categories, BrainDiVE images

are more diverse than those of NeuroGen. This trend of face and animals appears at t > 2

and the much stricter t > 5 threshold for identifying face-selective voxels (t > 5 used for
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Figure 2.5: Results for face-selective ROIs. For each ROI (OFA, FFA) we visualize the top-5
images from NSD and NeuroGen, and the top-10 from BrainDiVE. NSD images are selected
using the fMRI betas averaged within each ROI. NeuroGen images are ranked according to their
official predicted ROI activity means. BrainDiVE images are ranked using our predicted ROI
activities from 500 images. Red outlines in the NSD images indicate examples of responsiveness
to non-face content.

visualization/evaluation). The differences in images synthesized by BrainDiVE for FFA and OFA

are consistent with past work suggesting that FFA represents faces at a higher level of abstraction

than OFA, while OFA shows greater selectivity to low-level face features and sub-components,

which could explain its activation by off-target categories [Liu et al., 2010, Pitcher et al., 2011,

Tsantani et al., 2021].

To quantify these results, we perform a human study where subjects are asked to compare the
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Which ROI has more... photorealistic faces animals abstract shapes/lines

S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7
FFA-NSD 45 43 34 41 34 34 17 15 21 6 14 22
OFA-NSD 25 22 21 18 47 36 65 65 24 44 28 25

FFA-BrainDiVE 79 89 60 52 17 13 21 19 6 11 18 20
OFA-BrainDiVE 11 4 15 22 71 61 52 50 80 79 40 39

Table 2.2: Human evaluation of the difference between face-selective ROIs. Evaluators compare
groups of images corresponding to OFA and FFA; comparisons are done within GT and generated images
respectively. Questions are posed as: "Which group of images has more X?"; options are FFA/OFA/Same.
Results are in %. Note that the "Same" responses are not shown; responses across all three options sum to
100.

top-100 images between FFA & OFA, for both NSD and generated images. Results are shown in

Table 2.2. We find that OFA consistently has higher animal and abstract content than FFA. Most

notably, this difference is on average more pronounced in the images from BrainDiVE, indicating

that our approach is able to highlight subtle differences in semantic selectivity across regions.

S5 foodS1 food S5 OPAS1 OPA

food 1

food 2

OPA 1

OPA 2

Figure 2.6: Clustering within the food ROI and within OPA. Clustering of encoder model
weights for each region is shown for two example subjects on an inflated cortical surface.

2.4.4 Semantic Divisions within ROIs

In this experiment, we investigate if our model can identify novel sub-divisions within exist-

ing ROIs. We first perform clustering on normalized per-voxel encoder weights using vmf-

clustering [Banerjee et al., 2005]. We find consistent cosine difference between the cluster centers

in the food-selective ROI as well as in the occipital place area (OPA), clusters shown in Figure 2.6.

In all four subjects, we observe a relatively consistent anterior-posterior split of OPA. While

the clusters within the food ROI vary more anatomically, each subject appears to have a more
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Which cluster is more ... vegetables/fruits healthy colorful far away

S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7
Food-1 NSD 17 21 27 36 28 22 29 40 19 18 13 27 32 24 23 28
Food-2 NSD 65 56 56 49 50 47 54 45 42 52 53 42 34 39 36 42

Food-1 BrainDiVE 11 10 8 11 15 16 20 17 6 9 11 16 24 18 27 18
Food-2 BrainDiVE 80 75 67 64 68 68 46 51 79 82 65 61 39 51 39 40

Table 2.3: Human evaluation of the difference between food clusters. Evaluators compare groups
of images corresponding to food cluster 1 (Food-1) and food cluster 2 (Food-2), with questions posed
as "Which group of images has/is more X?". Comparisons are done within NSD and generated images
respectively. Note that the "Same" responses are not shown; responses across all three options sum to 100.
Results are in %.

medial and a more lateral cluster. We visualize the images for the two food clusters in Figure 2.7,

and for the two OPA clusters in Figure 2.8. We observe that for both the food ROI and OPA,

the BrainDiVE-generated images from each cluster have noticeable differences in their visual

and semantic properties. In particular, the BrainDiVE images from food cluster-2 have much

higher color saturation than those from cluster-1, and also have more objects that resemble fruits

and vegetables. In contrast, food cluster-1 generally lacks vegetables and mostly consist of

bread-like foods. In OPA, cluster-1 is dominated by indoor scenes (rooms, hallways), while 2

is overwhelmingly outdoor scenes, with a mixture of natural and man-made structures viewed

from a far perspective. Some of these differences are also present in the NSD images, but the

differences appear to be highlighted in the generated images.

To confirm these effects, we perform a human study (Table 2.3, Table 2.4) comparing the

images from different clusters in each ROI, for both NSD and generated images. As expected

from visual inspection of the images, we find that food cluster-2 is evaluated to have higher

vegetable/fruit content, judged to be healthier, more colorful, and slightly more distant than

food cluster-1. We find that OPA cluster-1 is evaluated to be more angular/geometric, include

more indoor scenes, to be less natural and consisting of less distant scenes. Again, while these

trends are present in the NSD images, they are more pronounced with the BrainDiVE images.

This not only suggests that our method has uncovered differences in semantic selectivity within

pre-existing ROIs, but also reinforces the ability of BrainDiVE to identify and highlight core
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Food cluster 1 NSD (fMRI)

S1

S2

S1

S2

Food cluster 2 NSD (fMRI)

Food cluster 1 BrainDiVE

Food cluster 2 BrainDiVE

Figure 2.7: Comparing results across the food clusters. We visualize top-10 NSD fMRI (out of
10,000) and diffusion images (out of 500) for each cluster. While the first cluster largely consists
of processed foods, the second cluster has more visible high color saturation foods, and more
vegetables/fruit like objects. BrainDiVE helps highlight the differences between clusters.

functional differences across visual cortex regions.

2.4.5 fMRI Scanning with Human Subjects

To investigate neural responses to different visual categories, we conducted an fMRI experiment

using a 3T Prisma scanner. Stimuli were presented using a mini-block design, with each block

consisting of 12 images presented over 6 seconds. Each image was shown for 400 milliseconds,

followed by a 100 millisecond grey background. A red fixation dot was continuously displayed at
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Which cluster is more... angular/geometric indoor natural far away

S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7
OPA-1 NSD 45 58 49 51 71 88 80 79 14 3 9 10 10 1 6 8
OPA-2 NSD 13 12 14 16 7 8 11 14 73 89 71 81 69 93 81 85

OPA-1 BrainDiVE 76 87 88 76 89 90 90 85 6 6 9 6 1 3 3 8
OPA-2 BrainDiVE 12 3 4 10 7 7 5 8 91 91 83 90 97 92 91 88

Table 2.4: Human evaluation of the difference between OPA clusters. Evaluators compare groups
of images corresponding to OPA cluster 1 (OPA-1) and OPA cluster 2 (OPA-2), with questions posed as
"Which group of images is more X?". Comparisons are done within NSD and generated images respectively.
Note that the "Same" responses are not shown; responses across all three options sum to 100. Results are in
%.

the center of the screen.

Functional localizer images were taken from Jain et al. [2023] and Stigliani et al. [2015].

These images were greyscale, and consisted of a single object each on scrambled backgrounds.

The classes consisted of faces (adult), bodies, places (houses), words, and food.

Natural images were selected from the Natural Scenes Dataset (NSD) for each category

selective region (faces, places, words, bodies, food). For each subject, images were ranked

based on their average beta values within the corresponding category selective voxels (i.e., voxels

previously identified as preferentially responding to that category). We then calculated the average

rank across four subjects (S1, S2, S5, S7) and selected the top 100 images for each category.

For synthetic images, we generated 1000 images per category using BrainDiVE. We then

used the encoder to obtain voxel-wise predictions for each image. As with the NSD images, we

ranked the synthetic images based on the average encoder predictions across the four subjects

and selected the top 100. Subjects were instructed to press a button if the same image was

presented consecutively (1-back task). We perform motion correction using SPM12, followed

by surface reconstruction using freesurfer. Functional data was aligned to the anatomical data

using bbregister. We visualize preliminary results in Figure 2.9 and Figure 2.10. These results

show that BrainDiVE images can generally trigger higher activations than the NSD images in the

functional areas identified by the localizer, and yield more concentrated and less diffuse patterns

on the brain, more specific to the region that we are targeting.

20



2.5 Discussion

Limitations and Future Work Here, we show that BrainDiVE generates diverse and realistic

images that can probe the human visual pathway. This approach relies on existing large datasets

of natural images paired with brain recordings. In that the evaluation of synthesized images is

necessarily qualitative, it will be important to validate whether our generated images and candidate

features derived from these images indeed maximize responses in their respective brain areas. As

such, future work will focus on additional collection of human fMRI recordings using both our

synthesized images and more focused stimuli designed to test our qualitative observations. Future

work may also explore the images generated when BrainDiVE is applied to additional sub-region,

new ROIs, or mixtures of ROIs.

Conclusion We introduce a novel method for guiding diffusion models using brain activations –

BrainDiVE – enabling us to leverage generative models trained on internet-scale image datasets for

data driven explorations of the brain. This allows us to better characterize fine-grained preferences

across the visual system. We demonstrate that BrainDiVE can accurately capture the semantic

selectivity of existing characterized regions. We further show that BrainDiVE can capture subtle

differences between ROIs within the face selective network. Finally, we identify and highlight

fine-grained subdivisions within existing food and place ROIs, differing in their selectivity for

mid-level image features and semantic scene content. We validate our conclusions with extensive

human evaluation of the images.
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OPA cluster 2 NSD (fMRI)

OPA cluster 1 BrainDiVE

OPA cluster 2 BrainDiVE

S7
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S2

OPA cluster 1 NSD (fMRI)

Figure 2.8: Comparing results across the OPA clusters. We visualize top-10 NSD fMRI
(out of 10,000) and diffusion images (out of 500) for each cluster. While both consist of scene
images, the first cluster have more indoor scenes, while the second has more outdoor scenes. The
BrainDiVE images help highlight the differences in semantic properties.
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Figure 2.9: Preliminary fMRI beta values for Subj1.. Top: Results using greyscale functional
localizer images. Middle: Results using top NSD images (natural). Bottom: Results using top
BrainDiVE images.
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Figure 2.10: Preliminary fMRI beta values for Subj2.. Top: Results using greyscale functional
localizer images. Middle: Results using top NSD images (natural). Bottom: Results using top
BrainDiVE images.
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2.6 Additional Results for BrainDiVE

2.6.1 Visualization of each subject’s category selective voxel images

Figure 2.11: Results for category selective voxels (S1). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food
selective voxels. Note the top NSD body voxel image for S1 was omitted from the main paper
due to content.
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Figure 2.12: Results for category selective voxels (S2). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food
selective voxels.
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Figure 2.13: Results for category selective voxels (S3). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food
selective voxels.
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Figure 2.14: Results for category selective voxels (S4). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food
selective voxels.
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Figure 2.15: Results for category selective voxels (S5). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food
selective voxels.
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Figure 2.16: Results for category selective voxels (S6). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food
selective voxels.
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Figure 2.17: Results for category selective voxels (S7). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food
selective voxels.
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Figure 2.18: Results for category selective voxels (S8). We identify the top-5 images from the
stimulus set or generated by our method with highest average activation in each set of category
selective voxels for the face/place/word/body categories, and the top-10 images for the food
selective voxels.
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2.6.2 CLIP zero-shot classification

In this section we show the CLIP classification results for S1 – S8, where Table 2.5 in this Supple-

mentary material matches that of Table 1 in the main paper. We use CLIP Radford et al. [2021] to

classify images from each ROI into five semantic categories: face/place/body/word/food. Shown

is the percentage where the classified category of the image matches the preferred category of the

brain region. We show this for the top-200 and top-100 images (top-2% and top-1%) evaluated by

mean true fMRI beta, and the top-200 and top-100 (20% and 10%) of BrainDiVE images as self-

evaluated by the encoding component of BrainDiVE. Please see Supplementary Section 2.6.13

for the prompts we use for CLIP classification.

Faces Places Bodies Words Food Mean

S1↑ S2↑ S1↑ S2↑ S1↑ S2↑ S1↑ S2↑ S1↑ S2↑ S1↑ S2↑
NSD top-200 42.5 41.5 66.5 80.0 56.0 65.0 31.5 34.5 68.0 85.5 52.9 61.3
NSD top-100 40.0 45.0 68.0 79.0 49.0 60.0 30.0 49.0 78.0 85.0 53.0 63.6
BrainDiVE-200 69.5 70.0 97.5 100 75.5 68.5 60.0 57.5 89.0 94.0 78.3 75.8
BrainDiVE-100 61.0 68.0 97.0 100 75.0 69.0 60.0 62.0 92.0 95.0 77.0 78.8

Table 2.5: Evaluating semantic specificity with zero-shot CLIP classification for S1 and S2

Faces Places Bodies Words Food Mean

S3↑ S4↑ S3↑ S4↑ S3↑ S4↑ S3↑ S4↑ S3↑ S4↑ S3↑ S4↑
NSD top-200 33.0 39.0 74.5 71.5 57.9 47.5 27.0 20.5 49.5 53.5 48.4 46.4
NSD top-100 38.0 41.0 81.0 72.0 60.0 49.0 30.0 25.0 46.0 57.9 51.0 49.0
BrainDiVE-200 67.5 73.5 99.0 100 59.0 66.5 61.0 31.0 85.0 89.0 74.3 72.0
BrainDiVE-100 67.0 71.0 100 100 59.0 72.0 61.0 34.0 89.0 93.0 75.2 74.0

Table 2.6: Evaluating semantic specificity with zero-shot CLIP classification for S3 and S4

Faces Places Bodies Words Food Mean

S5↑ S6↑ S5↑ S6↑ S5↑ S6↑ S5↑ S6↑ S5↑ S6↑ S5↑ S6↑
NSD top-200 41.0 38.5 89.5 56.9 57.9 56.5 33.5 34.0 77.0 55.5 59.8 48.3
NSD top-100 45.0 46.0 93.0 55.0 54.0 61.0 33.0 32.0 85.0 56.9 62.0 50.2
BrainDiVE-200 67.0 63.0 99.5 96.0 74.0 66.0 75.0 68.0 83.5 79.0 79.8 74.4
BrainDiVE-100 64.0 57.9 100 99.0 77.0 72.0 80.0 75.0 87.0 83.0 81.6 77.4

Table 2.7: Evaluating semantic specificity with zero-shot CLIP classification for S5 and S6
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Faces Places Bodies Words Food Mean

S7↑ S8↑ S7↑ S8↑ S7↑ S8↑ S7↑ S8↑ S7↑ S8↑ S7↑ S8↑
NSD top-200 38.5 34.0 71.0 57.5 61.0 56.5 20.5 24.5 52.0 36.5 48.6 41.8
NSD top-100 35.0 36.0 76.0 48.0 63.0 61.0 26.0 21.0 56.0 37.0 51.2 40.6
BrainDiVE-200 73.0 77.5 93.5 94.5 65.0 64.5 31.0 56.5 85.5 55.5 69.6 69.7
BrainDiVE-100 69.0 72.0 94.0 94.0 65.0 67.0 25.0 56.0 92.0 74.0 69.0 72.6

Table 2.8: Evaluating semantic specificity with zero-shot CLIP classification for S7 and S8.
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2.6.3 Image gradients and synthesis process

In this section, we show examples of the image at each step of the synthesis process. We perform

this visualization for face-, place-, body-, word-, and food- selective voxels. Two visualizations

are shown for each set of voxels, we use S1 for all visualizations in this section. The diffusion

model is guided only by the objective of maximizing a given set of voxels. We observe that

coarse image structure emerges very early on from brain guidance. Furthermore, the gradient and

diffusion model sometimes work against each other. For example in Figure 2.24 for body voxels,

the brain gradient induces the addition of an extra arm, while the diffusion has already generated

three natural bodies. Or in Figure 2.25 for word voxels, where the brain gradient attempts to add

horizontal words, but they are warped by the diffusion model. Future work could explore early

guidance only, as described in “SDEdit” and “MagicMix” Liew et al. [2022], Meng et al. [2021].

2.6.4 Face voxels

We show examples where the end result contains multiple faces (Figure 2.19), or a single face

(Figure 2.20).
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Figure 2.19: Example 1 of face voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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Figure 2.20: Example 2 of face voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom)
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2.6.5 Place voxels

We show examples where the end result contains an indoor scene (Figure 2.21), or an outdoor

scene (Figure 2.22).

Figure 2.21: Example 1 of place voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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Figure 2.22: Example 2 of place voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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2.6.6 Body voxels

We show examples where the end result contains an single person’s body (Figure 2.23), or an

multiple people (Figure 2.24).

Figure 2.23: Example 1 of body voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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Figure 2.24: Example 2 of body voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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2.6.7 Word voxels

We show examples where the end result contains recognizable words (Figure 2.25), or glyph like

objects (Figure 2.26).

Figure 2.25: Example 1 of word voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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Figure 2.26: Example 2 of word voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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2.6.8 Food voxels

We show examples where the end result contains highly processed foods (Figure 2.27, showing

what appears to be a cake), or cooked food containing vegetables (Figure 2.28).

Figure 2.27: Example 1 of food voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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Figure 2.28: Example 2 of food voxel guided image synthesis for S1. We utilize 50 steps of
Multistep DPM-Solver++. We visualize the gradient magnitude w.r.t. the latent (top, normalized
at each step for visualization) and the weighted euler RGB image that the brain encoder accepts
(bottom).
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2.6.9 Human behavioral study standard error

In this section, we show the human behavioral study results along with the standard error of the

responses. Each question was answered by exactly 10 subjects from prolific.co. In each

table, the results are show in the following format: Mean(SEM). Where Mean is the average

response, while SEM is the standard error of the mean ratio across 10 subjects: (SEM = σ√
10

).

Which ROI has more... photorealistic faces animals abstract shapes/lines

S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7
FFA-NSD 45(7.2) 43(8.3) 34(6.2) 41(6.5) 34(4.5) 34(3.5) 17(4.0) 15(3.8) 21(6.8) 6(4.0) 14(2.9) 22(6.6)
OFA-NSD 25(5.1) 22(6.4) 21(5.6) 18(5.3) 47(3.2) 36(2.5) 65(5.7) 65(6.4) 24(8.5) 44(9.2) 28(8.1) 25(6.4)

FFA-BrainDiVE 79(7.8) 89(4.8) 60(5.3) 52(5.3) 17(5.6) 13(3.5) 21(3.9) 19(2.2) 6(3.2) 11(6.4) 18(4.9) 20(6.6)
OFA-BrainDiVE 11(5.7) 4(2.5) 15(2.9) 22(5.1) 71(8.4) 61(8.2) 52(5.1) 50(3.5) 80(5.8) 79(7.4) 40(5.8) 39(7.1)

Table 2.9: Human evaluation of the difference between face-selective ROIs. Evaluators compare
groups of images corresponding to OFA and FFA; comparisons are done within GT and generated images
respectively. Questions are posed as: "Which group of images has more X?"; options are FFA/OFA/Same.
Results are in %. Note that the "Same" responses are not shown; responses across all three options sum to
100.

Which cluster is more... vegetables/fruits healthy

S1 S2 S5 S7 S1 S2 S5 S7
Food-1 NSD 17(4.3) 21(4.8) 27(5.1) 36(3.5) 28(5.8) 22(3.7) 29(6.2) 40(4.0)
Food-2 NSD 65(7.2) 56(6.4) 56(5.7) 49(3.9) 50(7.1) 47(4.9) 54(6.0) 45(4.3)

Food-1 BrainDiVE 11(7.0) 10(6.0) 8(6.6) 11(6.5) 15(6.2) 16(6.0) 20(7.2) 17(7.1)
Food-2 BrainDiVE 80(7.3) 75(8.0) 67(9.8) 64(7.4) 68(7.7) 68(7.3) 46(9.3) 51(7.8)

Which cluster is more... colorful far away

S1 S2 S5 S7 S1 S2 S5 S7
Food-1 NSD 19(5.5) 18(6.1) 13(2.8) 27(3.5) 32(6.6) 24(4.7) 23(6.5) 28(4.2)
Food-2 NSD 42(6.4) 52(5.6) 53(6.5) 42(6.4) 34(7.0) 39(8.1) 36(7.9) 42(7.3)

Food-1 BrainDiVE 6(3.8) 9(5.7) 11(5.7) 16(4.9) 24(6.8) 18(6.4) 27(8.9) 18(6.0)
Food-2 BrainDiVE 79(7.9) 82(6.9) 65(7.6) 61(8.9) 39(10.1) 51(9.0) 39(8.8) 40(8.8)

Table 2.10: Human evaluation of the difference between food clusters. Evaluators compare groups
of images corresponding to food cluster 1 (Food-1) and food cluster 2 (Food-2), with questions posed
as "Which group of images has/is more X?". Comparisons are done within NSD and generated images
respectively. Note that the "Same" responses are not shown; responses across all three options sum to 100.
Results are in %.
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Which cluster is more... angular/geometric indoor

S1 S2 S5 S7 S1 S2 S5 S7
OPA-1 NSD 45(7.2) 58(9.4) 49(7.7) 51(9.0) 71(5.6) 88(4.9) 80(5.1) 79(5.6)
OPA-2 NSD 13(4.0) 12(2.4) 14(2.9) 16(4.5) 7(3.2) 8(3.7) 11(3.0) 14(4.3)

OPA-1 BrainDiVE 76(7.8) 87(8.6) 88(6.6) 76(7.8) 89(5.6) 90(5.7) 90(4.7) 85(5.3)
OPA-2 BrainDiVE 12(4.9) 3(2.0) 4(1.5) 10(4.2) 7(3.2) 7(3.2) 5(2.1) 8(2.4)

Which cluster is more... natural far away

S1 S2 S5 S7 S1 S2 S5 S7
OPA-1 NSD 14(3.8) 3(2.0) 9(4.1) 10(2.8) 10(2.4) 1(0.9) 6(2.9) 8(2.4)
OPA-2 NSD 73(3.4) 89(7.4) 71(6.4) 81(6.1) 69(4.6) 93(3.8) 81(6.5) 85(5.5)

OPA-1 BrainDiVE 6(3.2) 6(1.5) 9(3.6) 6(2,9) 1(0.9) 3(2.8) 3(2.8) 8(5.6)
OPA-2 BrainDiVE 91(5.7) 91(3.6) 83(6.9) 90(5.5) 97(2.8) 92(6.6) 91(5.6) 88(7.4)

Table 2.11: Human evaluation of the difference between OPA clusters. Evaluators compare groups
of images corresponding to OPA cluster 1 (OPA-1) and OPA cluster 2 (OPA-2), with questions posed as
"Which group of images is more X?". Comparisons are done within NSD and generated images respectively.
Note that the "Same" responses are not shown; responses across all three options sum to 100. Results are in
%.
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2.6.10 Brain encoder R2

S1 S2

S3 S4

S5 S6

S7 S8

Figure 2.29: Visualization of R2 on test set images. We evaluate R2 on the ∼ 1000 images
shared by all subjects. Note that voxels in early visual or outside of higher visual are not modeled.

In Figure 2.6.10 we show the R2 of the brain encoder as evaluated on the test images. Our

brain encoder consists of a CLIP backbone and a linear adaptation layer. We do not model voxels

in the early visual cortex, nor do we model voxels outside of higher visual. Our model can
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generally achieve high R2 in regions in known regions of visual semantic selectivity.
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2.6.11 OFA and FFA visualizations

In this section, we visualize the top-10 NSD and BrainDiVE images for OFA and FFA. NSD

images are selected using the fMRI betas averaged within each ROI. BrainDiVE images are

ranked using our predicted ROI activities from 500 images.

Figure 2.30: Results for face-selective ROIs in S1.

Figure 2.31: Results for face-selective ROIs in S2.
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Figure 2.32: Results for face-selective ROIs in S5.

Figure 2.33: Results for face-selective ROIs in S7.
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2.6.12 OPA and food visualizations

S5 foodS1 food

food 1

food 2

OPA 1

OPA 2

S2 food S7 food

S5 OPAS2 OPAS1 OPA S7 OPA

Figure 2.34: Clustering within the food ROI and within OPA. Clustering of encoder model
weights for each region is shown for four subjects on an inflated cortical surface.

Consistent with Jain et al. [2023], we observe that the food voxels themselves are anatomically

variable across subjects, while the two food clusters form alternating patches within the food

patches. OPA generally yields anatomically consistent clusters in the four subjects we investigated,

with all four subjects showing an anterior-posterior split for OPA.
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OPA cluster 2 NSD (fMRI)

OPA cluster 1 BrainDiVE

OPA cluster 2 BrainDiVE

S2

S2

OPA cluster 1 NSD (fMRI)

S1

S1

Figure 2.35: Comparing results across the OPA clusters for S1 and S2.
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OPA cluster 2 NSD (fMRI)

OPA cluster 1 BrainDiVE

OPA cluster 2 BrainDiVE

S5

S7

S7

OPA cluster 1 NSD (fMRI)

S5

Figure 2.36: Comparing results across the OPA clusters for S5 and S7.
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Food cluster 1 NSD (fMRI)

S1

S2

S1

S2

Food cluster 2 NSD (fMRI)

Food cluster 1 BrainDiVE

Food cluster 2 BrainDiVE

Figure 2.37: Comparing results across the food clusters for S1 and S2.
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S7

S5

S7

Food cluster 1 NSD (fMRI) Food cluster 1 BrainDiVE

S5

Food cluster 2 NSD (fMRI) Food cluster 2 BrainDiVE

Figure 2.38: Comparing results across the food clusters for S5 and S7.
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2.6.13 Training, inference, and compute details

Encoder training. Our encoder backbone uses ViT-B/16 with CLIP pretrained weights

laion2b_s34b_b88k provided by OpenCLIP [Ilharco et al., 2021, Schuhmann et al., 2022b].

The ViT [Dosovitskiy et al., 2020] weights for the brain encoder are frozen. We train a linear layer

consisting of weight and bias to map from the 512 dimensional vector to higher visual voxels B.

The CLIP image branch outputs are normalized to the unit sphere.

Mθ(I) = W × CLIPimg(I)
∥CLIPimg(I)∥2

+ b

Training is done using the Adam optimizer [Kingma and Ba, 2014] with learning rate lrinit =

3e − 4 and lrend = 1.5e − 4, with learning rate adjusting exponentially each epoch. We

train for 100 epochs. Decoupled weight decay [Loshchilov and Hutter, 2017] of magnitude

decay = 2e − 2 is applied. Each subject is trained independently using the ∼ 9000 images

unique to each subject’s stimulus set, with R2 evaluated on the ∼ 1000 images shared by all

subjects.

During training of the encoder weights, the image is resized to 224× 224 to match the input

size of ViT-B/16. We augment the images by first randomly scaling the pixels by a value

between [0.95, 1.05], then normalize the image using OpenCLIP ViT image mean and variance.

Prior to input to the network, we further randomly offset the image spatially by up to 4 pixels along

the height and width dimensions. The empty pixels are filled in using edge value padding. A small

amount of gaussian noise N (0, 0.052) is added to each pixel prior to input to the encoder backbone.

Objective. For all experiments, the objective used is the maximization of a selected set of

voxels. Here we will further draw a link between the optimization objective we use and the

traditional CLIP text prompt guidance objective [Li et al., 2022b, Nichol et al., 2021]. Recall that

Mθ is our brain activation encoder that maps from the image to per-voxel activations. It accepts

as input an image, passes it through a ViT backbone, normalizes that vector to the unit sphere,
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then applies a linear mapping to go to per-voxel activations. S ∈ N are the set of voxels we

are currently trying to maximize (where N is the set of all voxels in the brain), γ is a step size

parameter, and DΩ is the decoder from the latent diffusion model that outputs an RGB image

(we ignore the euler approximation for clarity). Also recall that we use a diffusion model that

performs ϵ-prediction.

In the general case, we perturb the denoising process by trying to maximize a set of voxels S:

ϵ′theta = ϵtheta −
√
1− αt∇xt(

γ

|S|
∑
i∈S

Mθ(DΩ(x
′
t))i)

For the purpose of this section, we will focus on a single voxel first, then discuss the multi-voxel

objective.

In our case, the single voxel perturbation is (assuming W is a vector, and that ⟨·, ·⟩ is the inner

product):

ϵ′theta = ϵtheta −
√
1− αt∇xt(γMθ(DΩ(x

′
t)))

= ϵtheta −
√
1− αt∇xt(γMθ(Igen))

= ϵtheta − γ
√
1− αt∇xt(⟨W,

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
⟩+ b)

We can ignore b, as it does not affect optimal CLIPimg(Igen)

≡ ϵtheta − γ
√
1− αt∇xt(⟨W,

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
⟩)

Now let us consider the typical CLIP guidance objective for diffusion models, where Ptext is the

guidance prompt, and CLIPtext is the text encoder component of CLIP:

ϵ′theta = ϵtheta − γ
√
1− αt∇xt(⟨

CLIPtext(Ptext)

∥CLIPtext(Ptext)∥2
,

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
⟩)
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As such, the W that we find by linearly fitting CLIP image embeddings to brain activation plays

the role of a text prompt. In reality, ∥W∥2 ̸= 1 (but norm is a constant for each voxel), and there

is likely no computationally efficient way to “invert” W directly into a human interpretable text

prompt. By performing brain guidance, we are essentially using the diffusion model to synthesize

an image Igen where in addition to satisfying the natural image constraint, the image also attempts

to satisfy:

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
=

W

∥W∥2

Or put another way, it generates images where the CLIP latent is aligned with the direction of W .

Let us now consider the multi-voxel perturbation, where Wi, bi is the per-voxel weight vector and

bias:

ϵ′theta = ϵtheta −
√
1− αt∇xt(

γ

|S|
∑
i∈S

Mθ(DΩ(x
′
t))i)

We move
γ

|S|
outside of the gradient operation

= ϵtheta −
γ

|S|
√
1− αt∇xt(

∑
i∈S

Mθ(DΩ(x
′
t))i)

= ϵtheta −
γ

|S|
√
1− αt∇xt(

∑
i∈S

[
⟨Wi,

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
⟩+ bi

]
)

We again ignore bi as it does not affect gradient

≡ ϵtheta −
γ

|S|
√
1− αt∇xt(

∑
i∈S

⟨Wi,
CLIPimg(Igen)

∥CLIPimg(Igen)∥2
⟩)

We can move
∑

outside due to the distributive nature of gradients

= ϵtheta −
γ

|S|
√
1− αt

∑
i∈S

[
∇xt(⟨Wi,

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
⟩)
]
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Thus from a gradient perspective, the total gradient is the average of gradients from all voxels.

Recall that the inner product is a bilinear function, and that the CLIP image latent is on the unit

sphere. Then we are generating an image that

CLIPimg(Igen)

∥CLIPimg(Igen)∥2
=

∑
i∈S Wi

∥
∑

i∈S Wi∥2

Where the optimal image has a CLIP latent that is aligned with the direction of
∑

i∈S Wi.

Compute. We perform our experiments on a cluster of Nvidia V100 GPUs in either 16GB or

32GB VRAM configuration, and all experiments consumed approximately 1, 500 compute hours.

Each image takes between 20 and 30 seconds to synthesize. All experiments were performed

using PyTorch, with cortex visualizations done using PyCortex [Gao et al., 2015].

CLIP prompts. Here we list the text prompts that are used to classify the images for Table 1. in

the main paper.

face_class = ["A face facing the camera", "A photo of a face", "A

photo of a human face", "A photo of faces", "A photo of a person’s

face", "A person looking at the camera", "People looking at the camera","A

portrait of a person", "A portrait photo"]

body_class = ["A photo of a torso", "A photo of torsos", "A photo

of limbs", "A photo of bodies", "A photo of a person", "A photo of

people"]

scene_class = ["A photo of a bedroom", "A photo of an office","A

photo of a hallway", "A photo of a doorway", "A photo of interior

design", "A photo of a building", "A photo of a house", "A photo
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of nature", "A photo of landscape", "A landscape photo", "A photo

of trees", "A photo of grass"]

food_class = ["A photo of food"]

text_class = ["A photo of words", "A photo of glyphs", "A photo of

a glyph", "A photo of text", "A photo of numbers", "A photo of a

letter", "A photo of letters", "A photo of writing", "A photo of

text on an object"]

We classify an image as belonging to a category if the image’s CLIP latent has highest cosine

similarity with the CLIP latent of a prompt belonging to a given category. The same prompts are

used to classify the NSD and generated images.
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Chapter 3

BrainSCUBA: Fine-Grained Natural

Language Captions of Visual Cortex

Selectivity

3.1 Introduction

The recognition of complex objects and semantic visual concepts is supported by a network of

regions within higher visual cortex. Past research has identified the specialization of certain

regions in processing semantic categories such as faces, places, bodies, words, and food [Downing

et al., 2001, Epstein and Kanwisher, 1998, Grill-Spector, 2003, Jain et al., 2023, Kanwisher et al.,

1997, Khosla et al., 2022a, Maguire, 2001, McCarthy et al., 1997, Pennock et al., 2023b, Puce et al.,

1996]. Notably, the discovery of these regions has largely relied on a hypothesis-driven approach,

whereby the researcher hand-selects stimuli to study a specific hypothesis. This approach risk

biasing the results as it may fail to capture the complexity and variability inherent in real-world

images, which can lead to disagreements regarding a region’s functional selectivity [Gauthier

et al., 1999].

To better address these issues, we introduce BrainSCUBA (Semantic Captioning Using Brain
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Alignments), an approach for synthesizing per-voxel natural language captions that describe voxel-

wise preferred stimuli. Our method builds upon the availability of large-scale fMRI datasets [Allen

et al., 2022] with a natural image viewing task, and allows us to leverage contrastive vision-

language models and large-language models in identifying fine-grained voxel-wise functional

specialization in a data-driven manner. BrainSCUBA is conditioned on weights from an image-

computable fMRI encoder that maps from image to voxel-wise brain activations. The design of

our encoder allows us to extract the optimal encoder embedding for each voxel, and we use a

training-free method to close the modality gap between the encoder-weight space and natural

images. The output of BrainSCUBA describes (in words) the visual stimulus that maximally

activates a given voxel. Interpretation and visualization of these captions facilitates data-driven

investigation into the underlying feature preferences across various visual sub-regions in the brain.

In contrast to earlier studies that decode text from the brain activity related to an image, we

demonstrate voxel-wise captions of semantic selectivity. Concretely, we show that our method

captures the categorical selectivity of multiple regions in visual cortex. Critically, the content

of the captions replicates the field’s pre-existing knowledge of each region’s preferred category.

We further show that BrainSCUBA combined with a text-to-image model can generate images

semantically aligned with targeted brain regions and yield high predicted activations when

evaluated with a different encoder backbone. Finally, we use BrainSCUBA to perform data-

driven exploration for the coding of the category “person”, finding evidence for person-selective

regions outside of the commonly recognized face/body domains and discovering new finer-grained

selectivity within known body-selective areas.

3.2 Related Work

Several recent studies have yielded intriguing results by using large-scale vision-language models

to reconstruct images and text-descriptions from brain patterns when viewing images [Chen

et al., 2022, Doerig et al., 2022, Ferrante et al., 2023, Liu et al., 2023, Ozcelik and VanRullen,
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2023, Takagi and Nishimoto, 2022], or to generate novel images that are predicted to activate

a given region [Gu et al., 2022, Luo et al., 2023, Ratan Murty et al., 2021]. Broadly speak-

ing, these approaches require conditioning on broad regions of the visual cortex, and have not

demonstrated the ability to scale down and enable voxel-level understanding of neural selectivity.

Additionally, these methods produce images rather than interpretable captions. Work on artificial

neurons [Borowski et al., 2020, Zimmermann et al., 2021] have shown that feature visualization

may not be more informative than top images in artificial neural networks. In contrast, our work

tackles biological networks which have more noisy top-images that are less conducive to direct

analysis, and the synthesis of novel images/captions can act as a source of stimuli for future

hypothesis-driven neuroscience studies.

Semantic Selectivity in Higher Visual Cortex. Higher visual cortex in the human brain contains

regions which respond selectively to specific categories of visual stimuli, such as faces, places,

bodies, words, and food [Cohen et al., 2000, Desimone et al., 1984, Downing et al., 2001, Epstein

and Kanwisher, 1998, Grill-Spector, 2003, Jain et al., 2023, Kanwisher et al., 1997, Khosla et al.,

2022a, Maguire, 2001, McCarthy et al., 1997, Pennock et al., 2023b, Puce et al., 1996]. These

discoveries have predominantly relied on the use of hand-selected stimuli designed to trigger

responses of distinct regions. However the handcrafted nature of these stimuli may misrepresent

the complexity and diversity of visual information encountered in natural settings [Felsen and

Dan, 2005, Gallant et al., 1998]. In contrast, the recent progress in fMRI encoders that map from

stimulus to brain response have enabled data-driven computational tests of brain selectivity in

vision [Conwell et al., 2023, Eickenberg et al., 2017, Huth et al., 2012, Kubilius et al., 2019,

Naselaris et al., 2011, Wang et al., 2022, Wen et al., 2018, Yamins et al., 2014], language [Deniz

et al., 2019, Huth et al., 2016], and at the interface of vision and language [Popham et al., 2021].

Here, based on Conwell et al. [2023]’s evaluation of the brain alignment of various pre-trained

image models, we employ CLIP as our encoder backbone.
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Image-Captioning with CLIP and Language Models. Vision-language models trained with a

contrastive loss demonstrate remarkable capability across many discriminative tasks [Cherti et al.,

2023, Radford et al., 2021, Sun et al., 2023]. However, due to the lack of a text-decoder, these

models are typically paired with an adapted language model in order to produce captions. When

captioning, some models utilize the full spatial CLIP embedding [Li et al., 2023a, Shen et al.,

2021], whilst others use only the vector embedding [Li et al., 2023b, Mokady et al., 2021, Tewel

et al., 2022]. By leveraging the multi-modal latent space learned by CLIP, we are able to generate

voxel-wise captions without human-annotated voxel-caption data.

Brain-Conditioned Image and Caption Generation. There are two broad directions when it

comes to brain conditioned generative models for vision. The first seeks to decode (reconstruct)

visual inputs from the corresponding brain activations, including works that leverage retrieval, vari-

ational autoencoders (VAEs), generative adversarial networks (GANs), and score/energy/diffusion

models [Chen et al., 2023, Han et al., 2019, Kamitani and Tong, 2005, Lu et al., 2023, Ozcelik and

VanRullen, 2023, Ren et al., 2021, Seeliger et al., 2018, Shen et al., 2019, Takagi and Nishimoto,

2022]. Some approaches further utilize or generate captions that describe the observed visual

stimuli [Doerig et al., 2022, Ferrante et al., 2023, Liu et al., 2023, Mai and Zhang, 2023, Scotti

et al., 2024].

The second approach seeks to generate stimuli that activates a given region rather than exactly

reconstructing the input [Bashivan et al., 2019, Walker et al., 2019]. Some of these approaches

utilize GANs or Diffusion models to constrain the synthesized output [Gu et al., 2022, Luo

et al., 2023, Ponce et al., 2019, Ratan Murty et al., 2021]. BrainSCUBA falls under the broad

umbrella of this second approach. But unlike prior methods which were restricted to modeling

broad swathes of the brain, our method can be applied at voxel-level, and can output concrete

interpretable captions.
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A display of various 
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(c)

Figure 3.1: Architecture of BrainSCUBA. (a) Our framework relies on an fMRI encoder trained
to map from images to voxel-wise brain activations. The encoder consists of a frozen CLIP image
network with a unit norm output and a linear probe. (b) We decode the voxel-wise weights by
projecting the weights into the space of CLIP embeddings for natural images followed by sentence
generation. (c) Select sentences from each region, please see experiments for a full analysis.

3.3 Methods

We aim to generate fine-grained (voxel-level) natural language captions that describe a visual

scene which maximally activate a given voxel. We first describe the parameterization and training

of our voxel-wise fMRI encoder which goes from images to brain activations. We then describe

how we can analytically derive the optimal CLIP embedding given the encoder weights. Finally,

we describe how we close the gap between optimal CLIP embeddings and the natural image

embedding space to enable voxel-conditioned caption generation. We illustrate our framework in

Figure 3.1.

65



3.3.1 Image-to-Brain Encoder Construction

An image-computable brain encoder is a learned function Fθ that transforms an image I ∈

RH×W×3 to voxel-wise brain activation beta values represented as a 1D vector of N brain voxels

B ∈ R1×N , where Fθ(I) ⇒ B. Recent work identified models trained with a contrastive vision-

language objective as the highest performing feature extractor for visual cortex, with later CLIP

layers being more accurate for higher visual areas [Conwell et al., 2023, Wang et al., 2022]. As we

seek to solely model higher-order visual areas, we utilize a two part design for our encoder. First

is a frozen CLIP [Radford et al., 2021] backbone which outputs a R1×M dimensional embedding

vector for each image. The second is a linear probe W ∈ RM×N with bias b ∈ R1×N , which

transform a unit-norm image embedding to brain activations.

[
CLIPimg(I)

∥CLIPimg(I)∥2
×W + b

]
⇒ B (3.1)

After training with MSE loss, we evaluate the encoder on the test set in Figure 3.2(a) and find that

our encoder can achieve high R2.

3.3.2 Deriving the Optimal Embedding and Closing the Gap

The fMRI encoder we construct utilizes a linear probe applied to a unit-norm CLIP embedding. It

follows from the design that the maximizing embedding e∗i for a voxel i can be derived efficiently

from the weight, and the predicted activation is upper bounded by ∥Wi∥2 + b when

e∗i =
Wi

∥Wi∥2
(3.2)

In practice, a natural image I∗ that achieves CLIPimg(I∗)

∥CLIPimg(I∗)∥2 = e∗i does not typically exist. There is a

modality gap between the CLIP embeddings of natural images and the optimal embedding derived

from the linear weight matrix. We visualize this gap in Figure 3.2(b) in a joint UMAP [McInnes

et al., 2018] fitted on CLIP ViT-B/32 embeddings and fMRI encoder weights, both normalized to
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unit-norm. To close this modality gap, we utilize a softmax weighted sum to project the voxel

weights onto the space of natural images. Let the original voxel weight be W orig
i ∈ R1×M , which

we will assume to be unit-norm for convenience. We have a set with K natural images M =

{M1,M2,M3, · · · ,MK}. For each image, we compute the CLIP embedding ej = CLIPimg(Mj).

Given W orig
i , we use cosine similarity followed by softmax with temperature τ to compute a score

that sums to 1 across all images. For each weight W orig
i and example image Mj:

Scorei,j =
exp(W orig

i eTj /τ)

exp(
∑K

k=1W
orig
i eTk /τ)

(3.3)

We parameterize W proj
i using a weighted sum derived from the scores, applied to the norms and

directions of the image embeddings:

W proj
i =

(
K∑
k=1

Scorei,k ∗ ∥ek∥2

)
∗

(
K∑
k=1

Scorei,k ∗
ek

∥ek∥2

)
(3.4)

In Figure 3.2(c) we show the cosine similarity between W orig
i and W proj

i as we increase the size of

M . This projection operator can be treated as a special case of dot-product attention [Vaswani

et al., 2017], with query = W orig
i , key = {e1, e2, · · · , eK}, and value equal to norm or direction

of {e1, e2, · · · , eK}. A similar approach is leveraged by Li et al. [2023b], which shows a similar

operator outperforms nearest neighbor search for text-only caption inference. As W proj
i lies in the

space of CLIP embeddings for natural images, this allows us to leverage any existing captioning

system that is solely conditioned on the final CLIP embedding of an image. We utilize a frozen

CLIPCap network, consisting of a projection layer and finetuned GPT-2 [Mokady et al., 2021].

3.4 Results

In this section, we utilize BrainSCUBA to generate voxel-wise captions and demonstrate that it can

capture the selectivity in different semantic regions in the brain. We first show that the generated
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Figure 3.2: Projection of fMRI encoder weights. (a) We validate the encoder R2 on a test set,
and find it can achieve high accuracy in the higher visual cortex. (b) The joint-UMAP of image
CLIP embeddings, and pre-/post-projection of the encoder. All embeddings are normalized before
UMAP. (c) We measure the average cosine similarity between pre-/post-projection weights, and
find it increases as the images used are increased. Standard deviation of 5 projections shown in
light blue.

nouns are interpretable across the entire brain and exhibit a high degree of specificity within pre-

identified category-selective regions. Subsequently, we use the captions as input to text-to-image

diffusion models to generate novel images, and confirm the images are semantically consistent

within their respective regions. Finally, we utilize BrainSCUBA to analyze the distribution

of person representations across the brain to offer novel neuroscientific insight. These results

illustrate BrainSCUBA’s ability to characterize human visual cortical populations, rendering it a

promising framework for exploratory neuroscience.

3.4.1 Setup

We utilize the Natural Scenes Dataset (NSD; Allen et al. [2022]), the largest whole-brain 7T

human visual stimuli dataset. Of the 8 subjects, 4 subjects viewed the full 10, 000 image set

repeated 3×. We use these subjects, S1, S2, S5, S7, for experiments in the main paper, and

present additional results in the appendix. The fMRI activations (betas) are computed using

GLMSingle [Prince et al., 2022], and further normalized so each voxel’s response is µ = 0, σ2 = 1

on a session basis. The response across repeated viewings of the same image is averaged. The

brain encoder is trained on the ∼ 9000 unique images for each subject, while the remaining

∼ 1000 images viewed by all are used to validate R2.

The unpaired image projection set is a 2 million combination of LAION-A v2 (6+ subset) and

Open Images [Kuznetsova et al., 2020, Schuhmann et al., 2022a]. We utilize OpenAI’s ViT-B/32
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Figure 3.3: Interpreting the nouns generated by BrainSCUBA . We take the projected encoder
weights and fit a UMAP transform that goes to 4-dims. (a) The 50 most common noun embeddings
across the brain are projected & transformed using the fMRI UMAP. (b) Flatmap of S1 with ROIs
labeled. (c) Inflated view of S1. (d) Flatmaps of S2, S5, S7. We find that BrainSCUBA nouns
are aligned to previously identified functional regions. Shown here are body regions (EBA), face
regions (FFA-1/FFA-2/aTL-faces), place regions (RSC/OPA/PPA). Note that the yellow near FFA
match the food regions identified by Jain et al. [2023]. The visualization style is inspired by Huth
et al. [2016].

for the encoder backbone and embedding computation as this is the standard for CLIP conditioned

caption generation. For image generation, we use the same model as used by Luo et al. [2023] in

BrainDiVE, stable-diffusion-2-1-base with 50 steps of second order DPM-Solver++.

In order to ensure direct comparability with BrainDiVE results, OpenCLIP’s CoCa ViT-L/14 is

used for image retrieval and zero-shot classification. We define face/place/body/word regions
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using independent category localizer data provided with the NSD by Allen et al. [2022] (threshold

of t > 2), and use the masks provided by Jain et al. [2023] to define the food regions. For details

on the human study, please see the appendix.

3.4.2 Voxel-Wise Text Generations

In this section, we first investigate how BrainSCUBA outputs conceptually tile the higher visual

cortex. We perform part-of-speech (POS) tagging and lemmatization of the BrainSCUBA output

for four subjects, and extract the top-50 nouns. To extract noun specific CLIP embeddings, we

reconstitute them into sentences of the form "A photo of a/an [NOUN]" as suggested by CLIP.

Both the noun embeddings and the brain encoder voxel-wise weights are projected to the space

of CLIP image embeddings and normalized to the unit-sphere for UMAP. We utilize UMAP

fit on the encoder weights for S1. Results are shown in Figure 3.3. We observe that the nouns

generated by BrainSCUBA are conceptually aligned to pre-identified functional regions. Namely,

voxels in extrastriate body area (EBA) are selective to nouns that indicate bodies and activities

(green), fusiform face area (FFA-1/FFA-2) exhibits person/body noun selectivity (blue-green),

place regions – retrosplenial cortex (RSC), occipital place area (OPA), and parahippocampal place

area (PPA) – show selectivity for scene elements (magenta), and the food regions (yellow; Jain

et al. [2023]) surrounding FFA exhibit selectivity for food-related nouns. These results show

that our framework can characterize the broad semantic selectivity of visual cortex in a zero-shot

fashion.

We further quantify the top-10 nouns within each broad category selective region (Figure 3.4).

We observe that BrainSCUBA generates nouns that are conceptually matched to the expected

preferred category of each region. Note the multimodal selectivity for words/people/food within

the word region has also been observed by Khosla and Wehbe [2022], Mei et al. [2010].
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S1

S2

Faces Places Bodies Food Words

Figure 3.4: Top BrainSCUBA nouns via voxel-wise captioning in broad category selective
regions. We perform part-of-speech tagging and lemmatization to extract the nouns, y−axis
normalized by voxel count. We find that the generated captions are semantically related to the
functional selectivity of broad category selective regions. Note that the word “close” tended to
appear in the noun phrase “close-up”, which explains its high frequency in the captions from food-
and word-selective voxels.

Faces Places Bodies Words Food Mean

S2 S5 S2 S5 S2 S5 S2 S5 S2 S5 S2 S5
NSD all stim 17.1 17.5 29.4 30.7 31.5 30.3 11.0 10.1 10.9 11.4 20.0 20.0
NSD top-100 45.0 43.0 78.0 93.0 59.0 55.0 48.0 33.0 86.0 83.0 63.2 61.4
BrainDiVE-100 68.0 64.0 100 100 69.0 77.0 61.0 80.0 94.0 87.0 78.4 81.6
BrainSCUBA-100 67.0 62.0 100 99.0 54.0 73.0 55.0 34.0 97.0 92.0 74.6 72.0

Table 3.1: Semantic evaluation of images with zero-shot CLIP. We use CLIP to perform zero-shot
5-way classification. Show here is the percentage where category of the image matches the preferred
category for a brain region. This is shown for each subject’s NSD stimulus set (10, 000 images for S2&S5);
the top-100 images (top-1%) evaluated by average region true fMRI, the top-100 (10%) of BrainDiVE
and BrainSCUBA (bolded) as evaluated by their respective encoders. BrainSCUBA has selectivity that is
closer to the true NSD top 1%.

3.4.3 Text-Guided Brain Image Synthesis

Visualization of the captions can be helpful in highlighting subtle co-occurrence statistics, with

novel images critical for future hypothesis driven investigations of the visual cortex [Gu et al.,

2023, Jain et al., 2023, Ratan Murty et al., 2021]. We utilize a text-to-image diffusion model, and

condition the synthesis process on the voxel-wise captions within an ROI (Figure 3.5). We perform

1000 generations per-ROI, subsampling without replacement when the number of voxels/captions

in a ROI exceed 1000, and randomly sample the gap when there are fewer than 1000. For face-,

place-, word-, body-selective regions, we visualize the top-5 out of 10, 000 images ranked by
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Figure 3.5: Novel images for category selective voxels in S2. We visualize the top-5 images
from the fMRI stimuli and generated images for the place/word/face/body regions, and the top-10
images for the food region. We observe that images generated with BrainSCUBA appear more
coherent.

real average ROI response from the fMRI stimuli (NSD), and the top-5 out of 1, 000 generations

ranked by predicted response using the respective BrainDiVE [Luo et al., 2023] and BrainSCUBA

encoders. BrainDiVE is used for comparison as it is the state of the art method for synthesizing

activating images in the higher visual cortex, and we follow their evaluation procedure. For the

food region, we visualize the top-10. Predicted activation is shown in Figure 3.6, with semantic

classification shown in Table 3.1. Visual inspection suggests our method can generate diverse

images semantically aligned with the target category. Our images are generally more visually

coherent than those generated by BrainDiVE, and contain more clear text in word voxels, and

fewer degraded faces and bodies in the respective regions. This is likely because our images are
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BrainSCUBA

Figure 3.6: Evaluating the distribution of BrainSCUBA captions with a different encoder.
We train an encoder with a different backbone (EVA02-CLIP-B-16) from both BrainDiVE
and BrainSCUBA. For each region, we evaluate the response to all images a subject saw in
NSD, the response of the top-1% of images in NSD stimuli ranked using EVA02, the top-10%
of images generated by BrainDiVE and BrainSCUBA and ranked by their respective encoders.
Each region is normalized to [−1, 1] using the min/max of the predicted responses to NSD stimuli.
BrainSCUBA can achieve high predicted responses despite not performing explicit gradient based
maximization like BrainDiVE, and yields concretely interpretable captions. BrainSCUBA is also
∼ 10× faster per image.

conditioned on text, while BrainDiVE utilizes the gradient signal alone.

3.4.4 Investigating the Brain’s Social Network

The intrinsic social nature of humans significantly influences visual perception. This interplay is

evident in the heightened visual sensitivity towards social entities such as faces and bodies [Down-

ing et al., 2001, Kanwisher et al., 1997, Pitcher and Ungerleider, 2021]. In this section, we explore

if BrainSCUBA can provide insights on the finer-grained coding of people in the brain. We use

a rule based filter and count the number of captions that contain one of 140 nouns that describe

people (person, man, woman, child, boy, girl, family, occupations, and plurals). We visualize

the voxels whose captions contain people in Figure 3.7, and provide a quantitative evaluation

in Table 3.2. We observe that our captions can correctly identify non-person-selective scene,

food, and word regions as having lower person content than person-selective ROIs like the FFA

or the EBA. Going beyond traditional functional ROIs, we find that the precuneus visual area

(PCV) and the temporoparietal junction (TPJ) have a very high density of captions with people.
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The precuneus has been implicated in third-person mental representations of self [Cavanna and

Trimble, 2006, Petrini et al., 2014], while the TPJ has been suggested to be involved in theory

of mind and social cognition [Saxe and Kanwisher, 2013]. Our results lend support to these

hypotheses.

Person existence density

0.0 1.0

S1

(b)(a)

S7

EBAEBA

FFA-1 FFA-2

aTL-faces

FFA-1

PPA

RSCOPA OPA

FFA-2 FFA-2

Figure 3.7: Presence of people in captions. We perform rule-based filtering and identify voxels
where a caption contains at least one person. Data is surface smoothed for visualization. Dotted
orange oval shows approximate location of TPJ, which is linked to theory of mind; green circle
shows location of PCV, associated with third-person perspective of social interactions. Note that
TPJ is HCP defined following Igelström and Graziano [2017], while PCV is HCP atlas region
27 [Glasser et al., 2016].

Non-Person Person Other

RSC OPA PPA Food Word EBA FFA PCV TPJ
S1 12.9 17.3 10.6 11.5 32.0 87.2 88.5 89.7 92.1
S2 5.58 8.15 2.70 20.0 34.8 81.4 87.2 70.8 89.1
S5 9.31 6.43 1.95 17.8 38.4 79.5 89.4 78.5 79.9
S7 7.14 9.87 5.99 10.7 36.9 84.3 89.5 84.2 90.3

Mean 8.72 10.4 5.30 15.0 35.5 83.1 88.6 80.8 87.8
Table 3.2: Percentage of captions in each region that contain people. We observe a sharp difference
between non-person regions (Scene RSC/OPA/PPA, Food, Word), and regions that are believed to be
person selective (body EBA, face FFA). We also observe extremely high person density in PCV — a region
involved in third-person social interactions, and TPJ — a region involved in social self-other distinction.

A close visual examination of Figure 3.7 suggests a divide within EBA. We perform spherical

k-means clustering on joint encoder weights for t > 2 EBA from S1/S2/S5/S7, and identify two

stable clusters. These clusters are visualized in Figure 3.8. Utilizing the rule parser, we labels
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Figure 3.8: Clusters within EBA. (a) The EBA clusters for two subjects are shown on a flatmap.
(b) Number of people mentioned in each caption. (c) Top nouns within each cluster, y-axis is
normalized to the number of voxels within a cluster. Compared to Cluster-1, Cluster-2 has less
emphasis on multiple people and more emphasis on objects that can be held.

Which cluster is more... people per-img inanimate objs far away sports

S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7
EBA-1 (Cluster 1) 88 84 91 78 15 11 12 13 62 72 78 63 75 79 85 76
EBA-2 (Cluster 2) 5 10 4 13 72 80 81 65 21 21 14 25 9 12 6 11

Table 3.3: Human evaluation comparing two EBA clusters.. Evaluators compare the top 100
images for each cluster, with questions like "Which group of images is more X?", answers include
EBA-1/EBA-2/Same. We do not show "Same"; responses sum to 100 across all three options.
Results in %.

the voxels into those that contain a single individual or multiple people, and further visualize the

top-nouns within each of these two clusters. While both clusters include general person words

like “man” and “woman”, cluster 1 has more nouns that suggest groups of people interacting

together (group, game, people), and cluster 2 has words that suggest close-ups of individuals with

objects that may be hand-held. To validate our findings, we perform a study where subjects are

asked to evaluate the top-100 images from each of the clusters. Results are shown in Table 3.3.

Aligned with the top-nouns, the study suggests that cluster-1 has more groups of people, fewer

inanimate objects, and consists of larger scenes. This intriguing novel finding about the fine-

grained distinctions in EBA can lead to new hypotheses about its function. This finding also
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demonstrates the ability of BrainSCUBA to uncover broad functional differences across the visual

cortex.

3.5 Discussion

Limitations and Future Work. Although our methods can generate semantically faithful

descriptions for the broad category selective regions, our approach ultimately relies on a pre-

trained captioning model. Due to this, our method reflects the biases of the captioning model. It is

further not clear if the most selective object in each region can be perfectly captured by language.

Future work could explore the use of more unconstrained captioning models [Tewel et al., 2022]

or more powerful language models [Touvron et al., 2023].

Conclusion. To summarize, in this paper we propose BrainSCUBA, a method which can

generate voxel-wise captions to describe each voxel’s semantic selectivity. We explore how the

output tiles the higher visual cortex, perform text-conditioned image synthesis with the captions,

and apply it to uncover finer-grained patterns of selectivity in the brain within the person class.

Our results suggest that BrainSCUBA may be used to facilitate data-driven exploration of the

visual cortex.

3.6 Additional Results for BrainSCUBA

3.6.1 Visualization of each subject’s top-nouns for category selective voxels
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Figure 3.9: Top BrainSCUBA nouns via voxel-wise captioning in broad category selective
regions for all subjects. We see broad semantic alignment between the top-nouns and the
semantic selectivity of a region. Note that the category selective voxels were derived from the
intersection of official NSD functional localizer values t > 2 and their provided region masks.
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3.6.2 Visualization of UMAPs for all subjects
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Figure 3.10: UMAP transform results for S1-S4. All vectors are normalized to unit norm prior
to UMAP. UMAP is fit on S1. Both word and voxel vectors are projected onto the space of natural
images prior to transform using softmax weighted sum. Nouns are the most common across all
subjects.
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Figure 3.11: UMAP transform results for S5-S8. All vectors are normalized to unit norm prior
to UMAP. UMAP is fit on S1. Both word and voxel vectors are projected onto the space of natural
images prior to transform using softmax weighted sum. Nouns are the most common across all
subjects.
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3.6.3 Novel image generation for all subjects

Figure 3.12: Image generation for S1. We visualize the top-5 for face/place/body/word cate-
gories, and the top-10 for food. NSD images are ranked by ground truth response. BrainDiVE
and BrainSCUBA are ranked by their respective encoders. BrainSCUBA images have more
recognizable objects and fewer artifacts, likely due to the use of captions rather than gradients as
in BrainDiVE.
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Figure 3.13: Image generation for S2. We visualize the top-5 for face/place/body/word cate-
gories, and the top-10 for food. NSD images are ranked by ground truth response. BrainDiVE
and BrainSCUBA are ranked by their respective encoders. BrainSCUBA images have more
recognizable objects and fewer artifacts, likely due to the use of captions rather than gradients as
in BrainDiVE.

82



Figure 3.14: Image generation for S3. We visualize the top-5 for face/place/body/word cate-
gories, and the top-10 for food. NSD images are ranked by ground truth response. BrainDiVE
and BrainSCUBA are ranked by their respective encoders. BrainSCUBA images have more
recognizable objects and fewer artifacts, likely due to the use of captions rather than gradients as
in BrainDiVE.
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Figure 3.15: Image generation for S4. We visualize the top-5 for face/place/body/word cate-
gories, and the top-10 for food. NSD images are ranked by ground truth response. BrainDiVE
and BrainSCUBA are ranked by their respective encoders. BrainSCUBA images have more
recognizable objects and fewer artifacts, likely due to the use of captions rather than gradients as
in BrainDiVE.
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Figure 3.16: Image generation for S5. We visualize the top-5 for face/place/body/word cate-
gories, and the top-10 for food. NSD images are ranked by ground truth response. BrainDiVE
and BrainSCUBA are ranked by their respective encoders. BrainSCUBA images have more
recognizable objects and fewer artifacts, likely due to the use of captions rather than gradients as
in BrainDiVE.
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Figure 3.17: Image generation for S6. We visualize the top-5 for face/place/body/word cate-
gories, and the top-10 for food. NSD images are ranked by ground truth response. BrainDiVE
and BrainSCUBA are ranked by their respective encoders. BrainSCUBA images have more
recognizable objects and fewer artifacts, likely due to the use of captions rather than gradients as
in BrainDiVE.
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Figure 3.18: Image generation for S7. We visualize the top-5 for face/place/body/word cate-
gories, and the top-10 for food. NSD images are ranked by ground truth response. BrainDiVE
and BrainSCUBA are ranked by their respective encoders. BrainSCUBA images have more
recognizable objects and fewer artifacts, likely due to the use of captions rather than gradients as
in BrainDiVE.
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Figure 3.19: Image generation for S8. We visualize the top-5 for face/place/body/word cate-
gories, and the top-10 for food. NSD images are ranked by ground truth response. BrainDiVE
and BrainSCUBA are ranked by their respective encoders. BrainSCUBA images have more
recognizable objects and fewer artifacts, likely due to the use of captions rather than gradients as
in BrainDiVE.
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3.6.4 Distribution of “person” representations across the brain for all sub-

jects
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Figure 3.20: Presence of people in captions for S1-S8. (a) Flatmap of cortex. (b) Inflated map of
cortex. Dotted orange oval shows approximate location of TPJ, which is linked to theory of mind;
green circle shows location of PCV, associated with third-person perspective of social interactions.
For S5 alone we additionally label the mTL-bodies area.
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Non-Person Person Other

RSC OPA PPA Food Word EBA FFA PCV TPJ
S1 12.9 17.3 10.6 11.5 32.0 87.2 88.5 89.7 92.1
S2 5.58 8.15 2.70 20.0 34.8 81.4 87.2 70.8 89.1
S3 6.57 16.9 4.49 24.4 33.9 84.7 90.3 75.3 83.2
S4 4.40 14.7 4.47 20.0 37.8 78.9 90.3 66.5 88.9
S5 9.31 6.43 1.95 17.8 38.4 79.5 89.4 78.5 79.9
S6 16.7 28.2 6.93 27.1 48.8 91.8 97.8 75.4 79.1
S7 7.14 9.87 5.99 10.7 36.9 84.3 89.5 84.2 90.3
S8 15.7 30.9 9.84 42.6 57.5 86.7 96.2 71.2 89.7

Mean 9.78 16.5 5.86 21.8 40.0 84.3 91.2 76.4 86.5

Table 3.4: Percentage of captions in each region that contain people for S1-S8. We observe a sharp
difference between non-person regions (Scene RSC/OPA/PPA, Food, Word), and regions that are believed
to be person selective (body EBA, face FFA). We also observe extremely high person density in PCV
— a region involved in third-person social interactions, and TPJ — a region involved in social self-other
distinction.
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3.6.5 Additional extrastriate body area (EBA) clustering results
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Figure 3.21: EBA clustering for S1/S2/S5/S7. (a) EBA clusters. (b) Voxels which mention just a
single person and those that mention multiple people. (c) Top nouns. Note that clustering was
performed jointly on S1/S2/S5/S7.
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Single Multiple

EBA-1 EBA-2 EBA-1 EBA-2
S1 21.8 68.5 78.2 31.5
S2 31.5 69.5 68.6 30.5
S5 28.8 75.2 71.2 24.8
S7 29.0 63.8 71.0 36.2

Mean 27.8 69.3 72.3 30.8

Table 3.5: Distribution of single/multi-person voxels within each EBA cluster. After parsing each
voxel’s caption, we compute the single/multi voxels as a percentage of all voxels in the cluster that mention
“person” class. We observe that EBA cluster 1 (EBA-1) has a higher ratio of voxels that mention multiple
people. This is reflected in both the visualization, the nouns, and the human study on ground truth top NSD
images for each cluster.
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3.6.6 Human study details

Ten subjects were recruited via prolific.co. These subjects are aged 20 ∼ 48; 2 asian, 2 black, 6

white; 5 men, 5 women. For each NSD subject (S1/S2/S5/S7), we select the top-100 images for

each cluster as ranked by the real average fMRI response. Each of the 100 images were randomly

split into 10 non-overlapping subgroups.

Questions were posed in two formats. In the first format, subjects were simultaneously

presented with images from the two clusters, and select the set where an attribute was more

prominent, possible answers include cluster-1/cluster-2/same. The second format asked subjects

to evaluate a set of image from a single cluster, and answer yes/no on if an attribute/object-type

was present in most of the images.

For the human study results in section 4.4, a human evaluator would perform 40 comparisons,

from 10 splits and the 4 NSD subjects; with 10 human evaluators per question. We collected 1600

total responses for the four questions in the main text.

For the human study results below, a human evaluator would perform 16 judgements, from 4

splits and the 4 NSD subjects; with 10 human evaluators per question; across the 2 clusters of

images. We collected 2560 total responses for the eight questions below.

Due to space constraints, we present the single set attribute evaluation (second format described

above) results here in the appendix. We divide the results into two tables for presentation purposes.

Are most images... social sports large-scale scene animals

S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7
EBA-1 88 80 85 85 90 85 88 100 80 85 83 85 20 20 18 23
EBA-2 28 23 35 45 28 25 30 50 38 28 33 60 30 30 30 28

Table 3.6: Human study on EBA clustering, first set of image attributes. Each human study subject
was asked to evaluate groups of 10 images, and answer yes/no on if an attribute was present in most images.
Units are in %.
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Are most images... artificial objs body parts human faces multi person

S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7
EBA-1 78 78 80 75 73 80 78 83 85 78 75 75 100 60 100 85
EBA-2 85 75 83 80 35 30 40 55 28 20 15 45 23 8 18 25

Table 3.7: Human study on EBA clustering, second set of image attributes. Each human study subject
was asked to evaluate groups of 10 images, and answer yes/no on if an attribute was present in most images.
Units are in %.
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3.6.7 Training and inference details

We perform our experiments on a mixture of Nvidia V100 (16GB and 32GB variants), 4090, and

2080 Ti cards. Network training code was implemented using pytorch. Generating one caption

for every voxel in higher visual cortex (20, 000+ voxels) in a single subject can be completed in

less than an hour on a 4090. Compared to brainDiVE on the same V100 GPU type, caption based

image synthesis with 50 diffusion steps can be done in < 3 seconds, compared to their gradient

based approach of 25 ∼ 30 seconds.

For the encoder training, we use the Adam optimizer with decoupled weight decay set to

2e − 2. Initial learning rate is set to 3e − 4 and decays exponentially to 1.5e − 4 over the 100

training epochs. We train each subject independently. The CLIP ViT-B/32 backbone is executed

in half-precision (fp16) mode.

During training, we resize the image to 224×224. Images are augmented by randomly scaling

the pixel values between [0.95, 1.05], followed by normalization using CLIP image mean and

variance. Prior to input to the network, the image is randomly offset by up to 4 pixels along either

axis, with the empty pixels filled in with edge padding. A small amount of normal noise with

µ = 0, σ2 = 0.05 is independely added to each pixel.

During softmax projection, we set the temperature parameter to 1/150. We observe higher

cosine similarity between pre- and post- projection vectors with lower temperatures, but going

even lower causes numerical issues. Captions are generated using beam search with a beam width

of 5. A set of 2 million images are used for the projection, and we repeat this with 5 sets. We

select the best out of 5 by measuing the CLIP similarity between the caption and the fMRI weights

using the original encoder. Sentences are converted to lower case, and further stripped of leading

and trailing spaces for analysis.
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3.6.8 Top adjectives and more sentences

S1

Faces Places Bodies Food Words

(b)

(a)

A painting of a woman 
with a tie

A woman in a hat 
holding up a trophy

A man in a tuxedo 
poses for a picture

A view of a kitchen 
through a window

A scenic view of a lake 
and a bench

A view of a kitchen and 
a dining room

A man and woman 
dancing on the floor

A woman flying a kite 
next to a man

A group of people 
standing in a room

A close up of sliced fruit 
on a plate

A table topped with 
different types of food

A colorful display of 
food is shown on a 
table

A close up of a clock on 
a building

A man holding a cup 
and a sign

A close up of a logo for 
a company

Figure 3.22: Top adjectives. (a) We extract the most frequent adjectives in each category selective
region, note how the adjectives are related to the semantic category in the brain. (b) Additional
example sentences for each region. The category selective regions are identified via official NSD
functional localizer experiments with a different stimulus set.
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3.6.9 Encoder fitting stability

0.0 0.4

Max pairwise cosine distance

0.0 1.0

Average non-self cosine similarity

(a) (b)

Figure 3.23: Result on 10-fold cross-validation. (a) We measure the cosine distance of the
voxel-wise weights across 10-folds. Visualized is the maximum any-pair voxel-wise distance. We
find the average maximum any-pair across voxels is 0.02. (b) Average non-self pair-wise cosine
similarity across the 10-folds. Note that for each fold, we randomly initialize the weights with
kaiming uniform. We find that the fitting process is stable across repeats with an average non-self
cosine similarity of 0.98.
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EBAEBA

PPA PPA

RSC RSC

OPA OPA

FFA-2FFA-1 FFA-1
aTL-
faces

aTL-
faces

Figure 3.24: Projection of the 10-fold cross-validation encoders. We perform UMAP projection
using the basis from the main paper on each of the 10 encoder weights. We find that aside from
minor differences in the FFA/food intersection on the right hemisphere, the large-scale distribution
is similar.
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3.6.10 Ground truth functional localizer category distribution

Faces Places

Bodies Words

-8 8

t-value

EBAEBA

PPA PPA

RSC RSC

OPA OPA

FFA-2FFA-1 FFA-1

S1

aTL-
faces

aTL-
faces

Figure 3.25: Ground truth t-statistic from functional localizer experiments. We plot the
ground truth functional localizer result t-statistics. The official functional localizer results are
provided by NSD, and are collected using the Stanford VPNL fLoc dataset. Here red indicates a
region which is activated by images from a category. This plot shows the broad category selectivity
present in the high order visual areas.
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3.6.11 Fine-grained concept distribution outside EBA
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Figure 3.26: Additional UMAP visualizations. Here we plot the UMAP dimensionality reduction,
and identify the indoor/outdoor concept split in OPA using the 4th UMAP component. Note the
Indoor (orange) and Outdoor (purple) gradient along the anterior-posterior axis.
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3.6.12 Norm of the embeddings with and without decoupled projection

Norm with 
decoupled
projection 

Norm of 
natural images

Norm with 
coupled
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Figure 3.27: Norm of the embedding vectors. In the main paper we decouple the projection
of the norm and direction. Here we visualize the norm of natural image embeddings in orange,
the norm of the post-projection weights using decoupled projection in blue, and the norm of the
post-projection weights using coupled norm/direction projection in green. As vectors can cancel
each other out, the use of decoupled projection in the main paper yields a better distribution
alignment.
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Chapter 4

BrainSAIL – Semantic Attribution and

Image Localization

4.1 Introduction

Understanding how the human brain processes and represents visual information from natural

experience is a fundamental challenge in neuroscience. The vast majority of our knowledge of the

visual system comes from tightly controlled experiments using simplified, hand-crafted images or,

at best, real-world photographs of objects against noise backgrounds. Although this paradigm has

revealed a pattern of preferential neural responses to semantic categories such as faces, places,

bodies, words, objects, and food [Aguirre et al., 1996, Allison et al., 1994, Downing et al., 2001,

Epstein and Kanwisher, 1998, Grill-Spector, 2003, Jain et al., 2023, Kanwisher et al., 1997,

Khosla et al., 2022a, Malach et al., 1995, McCarthy et al., 1997, Pennock et al., 2023b, Sergent

et al., 1992b], the visual world we actually experience consists of rich, complex scenes containing

many co-occurring objects, textures, and contextual associations [Simoncelli and Olshausen, 2001,

Torralba and Oliva, 2003]. As such, using minimal or single-object stimuli narrows the space

of hypothesis testing and limits the ecological relevance of any conclusions, leaving us with an

incomplete characterization of how the brain represents and processes real-world visual stimuli.
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Recent developments in computer vision models trained on web-scale datasets have enabled

learning rich multimodal representations that capture semantic concepts in a human-aligned

manner [Conwell et al., 2022b, Wang et al., 2022]. In this work, we introduce a novel methodology

that leverages the power of such models to decompose selectivity patterns in visual cortex by

analyzing responses to dense, localized semantic features present in naturalistic images: Semantic

Attribution and Image Localization (“BrainSAIL”). BrainSAIL allows us to isolate the specific

image regions that activate different cortical areas when viewing naturalistic scenes. This method

advances our prior work by focusing on selectivity in single-object images at the broad category

level, thereby enabling a richer decomposition grounded in the full semantic complexity of natural

visual experiences.

The core of BrainSAIL involves extracting spatially dense semantic embeddings from images

using state-of-the-art models such as CLIP, DINO, or SigLIP [Caron et al., 2021, Radford et al.,

2021, Zhai et al., 2023]. These embeddings bridge the traditionally disparate domains of raw

vision data, dense deep semantic features, and measured neural responses. Within this rich

embedding space, we can isolate and identify the specific visual features and corresponding image

regions that drive selectivity effects in different cortical areas during perception of naturalistic

visual scenes. By concurrently modeling localized semantic information, high-level semantic

categories, and observed brain activity patterns, BrainSAIL can tease apart the image-level visual

drivers of neural tuning preferences across higher visual areas. We validate this dense feature

mapping method on a large-scale fMRI dataset consisting of human participants viewing many

thousands of diverse natural images that span a wide range of semantic categories and visual

statistics [Allen et al., 2022].

BrainSAIL’s dense embedding framework offers an interpretable view of feature representa-

tions across visual regions of the brain. Critically, this view explicitly grounds neural selectivity

to localized semantic characteristics inherent in real-world visual experiences. First, we demon-

strate the utility of our model for natural images applied to known category-selective regions

of the cortex. Second, we show that our model can be used to identify the preference of brain
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regions sensitive to scene statistics. Finally, we use our model to compare and contrast the feature

selectivity for different vision foundation models. In sum, the dense semantic grounding realized

in BrainSAIL enables exciting new directions towards understanding and modeling high-level

visual representation in humans.

4.2 Related Work
A growing body of work leveraging computational modeling and machine learning has explored

semantic representation in the higher visual cortex. Approaches include generative image mod-

els [Gu et al., 2022, Luo et al., 2024, 2023, Pierzchlewicz et al., 2023, Ratan Murty et al., 2021]

and the decoding of visual stimuli [Chen et al., 2022, Doerig et al., 2022, Ferrante et al., 2023,

Liu et al., 2023, Scotti et al., 2024, Takagi and Nishimoto, 2022]. These diverse studies are

united by their consideration of the stimulus image as a whole, primarily focusing on the global

information contained within the image rather than the individual scene components. In contrast,

the method we introduce explicitly decomposes an image into its semantic components, enabling

the identification of individual, semantically meaningful activating concepts within complex

natural images.

Semantic Representation in the Visual Cortex. Using hand-crafted image stimuli, functional

mapping studies have identified regions in the human brain that respond preferentially to stim-

uli representing distinct semantic concepts such as faces, places, bodies, words, objects, and

food [Aguirre et al., 1996, 1998, Allison et al., 1994, Aminoff et al., 2007, Cohen et al., 2000, Des-

imone et al., 1984, Downing et al., 2001, Epstein and Kanwisher, 1998, Gauthier and Tarr, 1997,

Grill-Spector, 2003, Jain et al., 2023, Kanwisher et al., 1997, Khosla et al., 2022a, McCarthy et al.,

1997, Nakamura et al., 2000, O’Craven and Kanwisher, 2000, Pennock et al., 2023b, Sergent et al.,

1992b]. One limitation of this simplified approach is that it may not fully capture the contextual

complexity of natural vision [Gallant et al., 1998, Mahon, 2022]. Addressing this concern, recent

work on image-computable encoders has enabled computational tests of visual selectivity using
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naturalistic images [Conwell et al., 2022b, Efird et al., 2024, Eickenberg et al., 2017, Huth et al.,

2012, Kubilius et al., 2019, Luo et al., 2024, 2023, Naselaris et al., 2011, Popham et al., 2021,

Prince et al., 2023, Wang et al., 2022, Wen et al., 2018, Yamins et al., 2014, Yang et al., 2024a,b].

Building on this work, our method leverages state-of-the-art brain encoding backbones based on

vision transformers [Dosovitskiy et al., 2020, Wang et al., 2022] to further explore finer-grained

semantic representation in visual cortex.

Visual Contrastive Representation Learning. Self- or weakly-supervised vision models

that use contrastive [Chopra et al., 2005, Musgrave et al., 2020, Schultz and Joachims, 2003,

Sohn, 2016, Wu et al., 2018, Xing et al., 2002] and masked prediction objectives [Chen et al.,

2020, Kolesnikov et al., 2019, Li et al., 2021, Pathak et al., 2016, Zhao et al., 2021, Zhou

et al., 2021] are scalable and can be trained on massive, diverse datasets to achieve high zero-

shot performance on downstream tasks. Contrastive models such as CLIP, DINO, and SigLIP

demonstrate strong classification performance without further fine-tuning [Caron et al., 2021,

Oquab et al., 2023, Radford et al., 2021, Zhai et al., 2023]. Models that jointly train on language

and vision (CLIP/SigLIP) can also classify images using text-based descriptions without fine-

tuning. Interestingly, this high level of performance is mirrored in the fact that contrastive models

show high performance for predicting neural responses in visual cortex when paired with linear

probes [Conwell et al., 2022b, Wang et al., 2022].

Exploring the Brain with Foundation Models. There has been strong interest in leveraging

generative models for decoding (reconstructing) visual stimuli conditioned on brain activations

either directly or via intermediate language-based captions [Chen et al., 2023, Doerig et al., 2022,

Ferrante et al., 2023, Han et al., 2019, Kamitani and Tong, 2005, Liu et al., 2023, Lu et al., 2023,

Mai and Zhang, 2023, Ozcelik and VanRullen, 2023, Ren et al., 2021, Scotti et al., 2024, Seeliger

et al., 2018, Shen et al., 2019, Takagi and Nishimoto, 2022]. A related approach generates novel

stimuli that are posited to best to activate a target brain region (as opposed to reconstructing the
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original stimulus) [Bashivan et al., 2019, Walker et al., 2019] with recent attempts utilizing GANs

or Diffusion models to constrain the synthesized output [Gu et al., 2022, Luo et al., 2024, 2023,

Ponce et al., 2019, Ratan Murty et al., 2021]. While these models have shown positive results,

they all rely on images as a whole, whereas BrainSAIL seeks to disentangle complex images

into their semantically meaningful components and localize those parts of the image that elicit

activation for different brain voxels or regions.

4.3 Methods

Our aim is to generate spatial attribution maps for arbitrary voxels in the higher visual cortex. Un-

like the early visual cortex, which is believed to be primarily selective for “simple features” [Stork

and Wilson, 1990], the higher visual cortex exhibits semantic selectivity – a pattern that, at present,

is best predicted by deep networks [Conwell et al., 2022b, Wang et al., 2022]. As illustrated in

Figure 3.1, to create spatial attributions maps for brain voxels, we first train voxel-wise fMRI

encoders to map images to brain activations. Second, we derive dense features from pre-trained

vision transformers (ViT) used as the backbone for these encoders. Third, we demonstrate that an

artifact-free dense feature map can be derived for high-throughput exploration of selectivity with

the visual cortex.

4.3.1 Image-to-Brain Encoders for the Higher Visual Cortex

A voxel-wise image-computable fMRI encoder is a model Fϕ that predicts fMRI activations

(betas) for B ∈ R1×N where N represents the number of voxels in the brain. The encoder is

conditioned on image input I ∈ RH×W×3, where Fϕ(I) ⇒ B. Recent work has demonstrated

that encoders that rely on features extracted from large vision foundation models achieve excellent

predictive performance, where higher visual cortex is best predicted by deeper layers in the

model [Wang et al., 2022]. In this setting, the backbone model is usually frozen, while a per-voxel

adapter typically parameterized as a linear layer is trained to map from network features to voxel
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Figure 4.1: The BrainSAIL framework leverages dense visual features. (a) An fMRI encoder
learns a map from images to voxel-wise activations in the brain. Encoders leveraging frozen
foundation models based on vision transformers (ViTs) with voxel-wise adapters are currently
the highest accuracy models for brain prediction [Conwell et al., 2022b, Wang et al., 2022]. (b)
Given an image and a ViT backbone for the fMRI encoder, we modify the backbone to output
dense features. The dense backbone is wrapped inside of a Learning-Free Distillation Module.
This module takes an image I and 2D image coordinates C, and generates transformed images
and coordinates (Ii, Ci) for a given transform θi. The dense features and transformed coordinates
are provided to a denoising module to generate clean dense features. A voxel-wise adapter then
generates dense relevance maps which highlight the image regions activating the voxel. (c) Using
CLIP ViT-B/16 with the latest NACLIP adapter, we show relevance maps using the CLIP
text encoder. The original, raw features are highly noisy and contain artifacts, while the distilled
features are localized to the relevant semantic components with high accuracy. Note that we
achieve state-of-the-art open vocabulary CLIP-based segmentation results using our method.

activations. In that we focus on the higher visual cortex exclusively, we utilize a two component

design for our encoder: (1) a frozen vision foundation model backbone G(I) which outputs a

R1×M dimension embedding vector for each image; (2) a per-voxel adapter parameterized as

a linear probe with weight W ∈ RM×N and bias b ∈ R1×N , which takes as input a unit-norm
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image embedding.

[
Gimg(I)

∥Gimg(I)∥2
×W + b

]
⇒ B (4.1)

It should be noted that BrainSAIL is not restricted to linear probes, and can work with arbitrary

voxel-wise parameterizations, including MLPs. Linear probes are used here as they are widely

adopted in fMRI encoder literature and empirically achieve good performance. BrainSAIL is

compatible with any Vision Transformer (ViT)-based model, making it readily applicable to the

vast majority of modern visual foundation models which predominantly employ ViT architectures.

Additional results are presented in the supplemental. We train our model with MSE loss, and

evaluate the encoder on the test set. In Figure 4.7 we show that our encoder achieves state-of-the-

art R2.

4.3.2 Deriving Dense Features from ViT backbones

The emergence of vision models trained on a contrastive image-text objective has fueled interest

in zero-shot open-vocabulary image classification methods. For example, CLIP has shown that

images can be classified without foreknowledge of the test time classes during training; instead

the category of interest can be described using language during test time. Of late, this capability

has been extended from classification to segmentation. Compared to methods that require human

annotation [Li et al., 2022a] and perform poorly on out-of-distribution images [Jatavallabhula

et al., 2023, Kerr et al., 2023], these new methods require no further training and directly extract

dense features that lie in the same space as the image/text embedding. These dense feature

extraction methods operate by modifying the last self-attention (SA) block within the typical

ViT architecture (MaskCLIP, Zhou et al. [2022]; SCLIP, Wang et al. [2023]; NACLIP, Hajimiri

et al. [2024]). For vision models of this sort trained on a contrastive objective, the output is

composed of a single [CLS] token, which is supervised using a contrastive loss; and numerous

patch tokens which correspond to specific spatial locations. Let (qi, ki, vi) be the query, key,
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Figure 4.2: The Learning-Free Distillation Module. (a) Given an image, we generate image-
space coordinates (u, v) for each pixel. We then randomly sample from θ1...n, where θi has
vertical/horizontal offset, and left-right flips. The augmented images are provided to a frozen
backbone with dense adapter. The features are projected to the original image space via an inverse
transform T −1(θi). (b) UMAP visualization of the dense features. The same fitted basis is used
for both visualizations. (c) With CLIP, we can perform zero-shot text queries. Note the artifacts
above the bird’s head. In practice artifact location is different for each image. The distilled results
are significantly better.

value features respectively for a single image patch i, with a total of m spatial patches. For a

given patch j at the final layer, where f denotes any function applied to the [CLS] after the last

self-attention, the [CLS] token and each dense token is a convex combination of v features:

Out_Origj = f

(
m∑
k=1

[
softmax(

qjk
T

C
)j · vk

])
Out_Maskj = f(vj) Out_NAj = f

(
m∑
k=1

[
softmax(

qjq
T + ωj

C
)j · vk

])
(2)

MaskCLIP proposes to directly remove the convex re-weighting and output the value feature

for each patch token directly. SCLIP and NACLIP reintroduce the weighting to reduce output

artifacts, but modify it with correlative self-attention (CSA); or by using CSA with a spatial

attentive bias ω. Here, we utilize NACLIP as the dense adaptor for CLIP. The other two backbones

in Section 4.4.4 use an updated ViT architecture with “register tokens” [Darcet et al., 2023]. As

these have not been explored in the context of CSA, we utilize MaskCLIP as the dense adaptor.

4.3.3 Learning-Free Feature Distillation
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Input: Image I;
Image space coordinates C;
Augmentation parameters

θ1...n;
Augmentation function T ;
ViT model with dense adapter

M ;
1. Zero init clean feature tensor Q
2. Zero init count tensor K
3: For i in {1...n}:
4. θi = (ui, vi,flipi)
5. (Ii, Ci) = T (I, C, θi)
6. Dense feature Fi = M(Ii)
7.
(F valid

i , Cvalid
i ) = T −1(Fi, Ci, θi)

8. Q[Cvalid
i ] = Q[Cvalid

i ] + F valid
i

9. K[Cvalid
i ] = K[Cvalid

i ] + 1
10. return Q/K

Algo 4.3: Learning-Free Feature Distilla-

tion

As only the [CLS] is supervised in these con-

trastive models, as shown in Figures 4.1 and 4.2,

the extracted dense embeddings often have arti-

facts – even when using the latest NACLIP method

which seeks to reduce artifacts. While methods

such as Darcet et al. [2023] improve spatial consis-

tency via architectural improvements, they require

training the model with architecture modifications

that are computationally costly. Consequently, in

order to facilitate high-throughput characterization

of the visual cortex over large datasets, we pro-

pose an efficient learning-free distillation module.

Given an image I, we first generate n augmenta-

tion parameters θ1...n, where θi consists of a hori-

zontal/vertical offset (ui, vi) and horizontal flipi ∈ {0, 1}. We further generate the image space

coordinates C = (u-coord, v-coord), where u ∈ [0, 1] goes from top-to-bottom, while v ∈ [0, 1]

goes left-to-right. We describe our full transform in Algorithm 4.3. Our method distills a clean

semantic map, as visual semantics are equivariant to shift and horizontal flips. We note that

averaging over the number of augmentation is extracting an optimal embedding under mean

squared error (squared euclidean). Let p⃗∗ be the optimal embedding under MSE for a given patch,

and p⃗i with i ∈ {1...n} be the feature candidates under image augmentation:

p⃗∗ = min
p̂

(
n∑

i=1

∥p⃗i − p̂∥22

)
= min

p̂

(
∥p⃗1 − p̂∥22 + ...+ ∥p⃗n − p̂∥22

)
(3)

= min
p̂

(
p⃗1

T p⃗1 − 2p⃗1
T p̂+ p̂T p̂+ ...+ p⃗n

T p⃗n − 2p⃗n
T p̂+ p̂T p̂

)
omitting p⃗i

T p⃗i (4)

= min
p̂

(
n · p̂T p̂− 2

n∑
i=1

(p⃗i
T p̂)

)
= min

p̂

(
n · p̂T p̂− 2n

n∑
i=1

((1/n) · p⃗iT p̂)

)
(5)
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ADE20k COCO Object COCO Stuff VOC20

mIoU↑ Pearson↑ mIoU↑ Pearson↑ mIoU↑ Pearson↑ mIoU↑ Pearson↑
SCLIP 16.45 0.308 33.52 0.353 21.95 0.309 81.54 0.551
NACLIP 17.69 0.425 33.14 0.418 22.58 0.393 77.09 0.473
+Distilled 18.19 0.443 34.15 0.435 23.08 0.405 79.09 0.489

Table 4.1: Open-vocabulary segmentation with dense CLIP features. We validate the effec-
tiveness of our learning-free smoothing approach on segmentation datasets in a zero-shot setting
(without any training). This performance is state-of-the-art for open vocabulary segmentation.
Note mIoU scores are multiplied by 100. Our smoothing improves the results.

The objective can be expressed as ∥p̂− (1/n)
∑

p⃗i∥22 ≥ 0, then p⃗∗ = (1/n)
∑

p⃗i.

In Table 4.1, we compare pre- and post- smoothing results. Under the Pearson metric, which

does not assume prior category knowledge, smoothing yields the best performance in three of

four datasets. We apply the voxel-wise adapters to the per patch dense features to derive the final

relevance map.

4.4 Results

We utilize BrainSAIL to localize the semantic selectivity of different brain regions and demonstrate

that the relevance maps are interpretable throughout the brain and correlate well with the known

category-selective regions. We then explore the selectivity of higher visual cortex with respect to

localized scene structure and image properties. Finally, we compare and contrast the localization

results from three different vision foundation models. These results establish BrainSAIL as a

novel technique for mapping and understanding the semantics of visual representations in the

brain.

4.4.1 Setup

We use the Natural Scenes Dataset (NSD; Allen et al. [2022]), the largest 7T fMRI dataset of

human visual responses, focusing on four subjects (S1, S2, S5, S7) who viewed the full 10,000

image set (a subset of COCO images) three times each. fMRI activations (betas) were derived
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Figure 4.4: Joint dimensional reduction of higher visual cortex encoder weights and images
using BrainSAIL. We use a UMAP to perform visualization of the encoder weights. This same
UMAP basis is reused for images. (a) Cortical flatmap of S1. Note that the overlaid white region
outlines and labels were derived from functional localizer data collected independently from the
visualized UMAP results. (b) Embeddings from novel images are computed with BrainSAIL and
transformed using the fMRI UMAP. For each quartet of images, the content is as follows. Top left:
Original RGB image; Top right: Dimension reduction of BrainSAIL embeddings for the image;
Bottom: Two text queries using CLIP text branch showing language-indicated relevance results.
(c) UMAP results on an inflated view of the brain for S1. (d) UMAP results on cortical flatmaps
for S2, S5 and S7. These results demonstrate that BrainSAIL can effectively localize semantically
meaningful components of natural images and map them to appropriate brain regions. The cortical
maps show color-coded mappings that align well with functionally-defined regions: body regions
(EBA), face regions (FFA/aTL-faces), place regions (RSC/OPA/PPA), and food regions (yellow).
Note that the food regions have been identified as flanking FFA by Jain et al. [2023], but we do
not have independent functional localizer data for food for these subjects.
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Region Faces Places Bodies Words Food

S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7 S1 S2 S5 S7
Face 46 48 54 40 1 1 2 2 12 11 12 13 9 11 12 11 1 2 1 5
Places 1 1 1 3 76 80 89 75 0 2 3 2 9 12 11 9 8 7 10 7
Bodies 26 16 21 27 5 1 0 1 50 41 55 48 15 13 21 30 9 5 1 5
Words 1 7 3 8 6 3 2 9 8 6 7 7 38 28 26 23 16 13 17 35
Food 26 28 21 22 12 15 7 13 30 40 23 30 29 36 30 27 66 73 71 48

Table 4.2: CLIP text alignment for each category selective brain region. For each category selective
brain region, we take the top-100 images from the NSD test set that elicit the highest fMRI response for
each region. We then use BrainSAIL to compute the relevance maps for the top-100 images for each region.
For each image, its relevance map is computed using the CLIP text encoder with text prompts from the five
relevant categories. The text prompt with the highest Pearson correlation to the BrainSAIL relevance map
is recorded as the category for that image. Units are in %.

using GLMSingle [Prince et al., 2022] and normalized per session (µ = 0, σ2 = 1). Responses to

repeated images were averaged. A brain encoder for each subject was trained on ∼ 9000 unique

images per subject, with the remaining ∼ 1000 images viewed by all subjects being used for R2

validation as the test set. Supplementary results for other subjects are included in the appendix.

Face, place, body, and word regions were defined using independent category localizer data from

NSD with a threshold of t > 2 [Stigliani et al., 2015]. Food regions were defined using masks

provided by Jain et al. [2023].

We train three encoders based on different neural network backbones. For all three, we utilize

the ViT-Base model size. (1) For CLIP, we utilize OpenAI’s official ViT-B/16 weights.

This is a network trained on an infoNCE contrastive image-text objective. (2) For DINO, we

utilize the latest official DINOv2 ViT-B/14+reg, and is a network trained on image-only

self-supervision [Darcet et al., 2023]. (3) For SigLIP, we utilize NVIDIA’s implementation based

on RADIOv2.5 ViT-B/16 [Ranzinger et al., 2024], as the original Google variant used a

non-standard architecture. SigLIP utilizes a pairwise non-contrastive image-text objective [Zhai

et al., 2023]. All fMRI encoders are trained using MSE loss, with the backbone frozen. We

validate the test time R2 in Figure 4.7 and find that we achieve state-of-the-art results similar

to Wang et al. [2022] and Luo et al. [2024]. We use CLIP for Sections 4.4.2 and 4.4.3, as it is the

most widely used backbone in fMRI literature. We use 51 augmentation steps unless otherwise
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Figure 4.5: Grounding results using BrainSAIL. We visualize the top test set images as
predicted by the CLIP fMRI encoder for each category selective region. For each image, we also
visualize the image-wise UMAP for the distilled dense features. Note the UMAP basis here is
computed imagewise, and not shared with Figure 3.3. For each image, we further visualize the
feature relevancy map for the category selective voxels illustrating that this method extracts the
semantically relevant regions in complex compositional images.

noted.

4.4.2 Image Factorization using the Brain

To explore how different areas in higher visual cortex align to different image parts we apply

UMAP [McInnes et al., 2018] with an angular metric to linear brain weights and apply the

same UMAP basis to dense features as produced by BrainSAIL. Note that during dimensionality

reduction we do not utilize any cortex category masks from NSD – the region of interest

outlines on the cortex in Figure 4.4a are for visualization purposes only and are derived from
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independent NSD functional localizers. As shown in Figure 4.4, we find that the factorization of

the brain is well aligned to pre-identified functional regions, and broadly segments the cortex into

axes along “people”, “scenes” and “food”. In particular, place regions, including the retrosplenial

cortex (RSC), occipital place area (OPA), and parahippocampal place area (PPA), show selectivity

for scene components (magenta). People regions, including the extrastriate body area (EBA),

fusiform face area (FFA), occipital face area (OFA), show selectivity for face and body parts in

the image (Green-Blue). Finally, we find that the recently identified food region that roughly

surrounds FFA (Yellow) Jain et al. [2023], Khosla et al. [2022a], Pennock et al. [2023b] strongly

corresponds to food in images. These results establish that BrainSAIL can be used to characterize

higher-level selectivity to individual semantic categories in complex natural images without prior

knowledge of their semantic selectivity.

We further quantify the feature relevance maps for broad category selective regions in Fig-

ure 4.5 and Table 4.2. We use the brain encoder to predict the top-5 images for the place/word/face/body

regions, and the top-10 images for the food region. We find that our method can effectively localize

the objects relevant to each category- selective brain region. Note that the word region is known

to have cross-selectivity to faces [Mei et al., 2010] and food [Khosla and Wehbe, 2022].

4.4.3 Cortex Selectivity to Image Features

Going beyond semantic categories, we seek to explore the low- and mid-level image feature

correlates that correspond to different brain regions. Prior work explored this by training a convo-

lutional encoder on each NSD subject, which is limited to ∼ 10, 000 images each [Sarch et al.,

2023]. One concern is that using a small dataset with a convolutional backbone can lead to overfit-

ting to the dataset’s specific features and exacerbate the inherent biases of convolutional networks.

To address this limitation, our method leverages vision transformers trained on massive datasets

of hundreds of millions of images, thereby avoiding the hard-coded inductive biases present in

CNNs [Raghu et al., 2021]. We visualize BrainSAIL feature dissection results in Figure 4.6. Our

method can successfully identify the known scene selective regions (RSC/OPA/PPA) as preferring
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Figure 4.6: Feature correlates with BrainSAIL. We visualize the depth, color saturation, and
color luminance (brightness) correlates for each brain region using BrainSAIL . (a) The scene
selective regions, retrosplenial cortex (RSC), parahippocampal place area (PPA), and occipital
place area (OPA) are all identified as having a preference for high depth. (b) On the ventral surface,
we identify two stripes on each hemisphere, surrounding FFA with high saturation preference.
These are the same brain regions identified by Jain et al. [2023] as being food selective. (c) In OPA,
we identify an anterior/posterior split, where one region has high color luminance preference, and
the other has low color luminance preference. This are the same regions identified by Luo et al.
[2023] as being outdoor/indoor selective.

high depth, and is successful even in OPA where Sarch et al. [2023] fails. We believe this is

likely because OPA processes higher-level associative content and affordances [Aminoff and Tarr,

2021, Bonner and Epstein, 2017]. Similarly, we identify the region surrounding FFA as being

selective to high color saturation, which correspond to the food regions identified by Jain et al.

[2023] and others. In OPA, we identify a split in color luminance preference, which is similar

to the indoor/outdoor preferring regions identified by Lescroart and Gallant [2019], Peer et al.

[2019], and Luo et al. [2023]. These results demonstrate that our method can identify fine-grained

selectivity with more broadly characterized brain regions.

4.4.4 Are Brain Encoders Equivalent?

Recent high-performing models such as CLIP, DINO, and SigLIP differ in their training objectives,

architectures, and datasets: CLIP employs a contrastive image-language objective, DINO utilizes

a self-supervised image loss without explicit linguistic guidance, and SigLIP leverages a non-

contrastive pairwise image-language loss. Despite these differences, when employed as the

backbone for fMRI encoders, these models exhibit similar performance in predicting brain

responses, achieving comparable R2 values on the test set as shown in Figure 4.7. This observation
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Figure 4.7: Comparing the brain prediction performance for different encoder backbones.
(a) We validate each encoder R2 on a test set and find that all three models achieve very high
performance (comparable to Wang et al. [2022]). (b) The voxel-wise correlation of test set R2

for the three models. CLIP and SigLIP, which rely on language supervision, achieve higher
performance than DINO (which trained via self-supervision with images).

raises an important question about the nature of each model’s learned features and their alignment

with one another: Do these models converge upon similar feature representations for category

selective brain regions despite their varied training paradigms?

To investigate the representational differences between the models, we perform BrainSAIL

analysis for scene, face, and food-selective brain regions and qualitatively visualize the results

in Figure 4.9. While all three models exhibit broad similarities in their grounding maps, DINO,

trained without language supervision, demonstrates a stronger sensitivity to low-level visual

features compared to CLIP and SigLIP (for comparisons between CLIP, ResNet, and simCLR

see Wang et al. [2022]). This is evident in the food region (Figure 4.9), where DINO’s grounding

map for a pizza image excludes the toppings and assigns lower relevance to non-orange elements

in a fruit bowl, suggesting a focus on color and texture rather than the concept of “food" itself.

Similarly, in the face region, DINO’s grounding map exhibits less reliance on semantically relevant

features such as eyes, nose, and mouth. We hypothesize that this greater sensitivity to visual

features in DINO stems from its lack of language guidance during training, preventing it from

learning the higher-level semantic correlations that link visually disparate parts and objects within

a category. As high-performing “proxy models” of visual brain representation [Leeds et al., 2013],

these and other underlying model characteristics – architecture, training objective, training dataset,

etc. – are important considerations for developing more robust encoding models that can bridge

the gap between artificial and biological vision systems.
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Figure 4.8: Model similarity across ROIs. Brain encoder backbone spatial similarity for the
ground truth top-100 images from the test set for each category-selective brain region. A ⋆ denotes
a domain-defined network of regions encompassing multiple ROIs. CLIP and SigLIP relevance
maps are more similar to one another than either is to DINO. Error bars indicate standard error
across the 100 images.

Figure 4.9: Comparing different brain encoder backbones with BrainSAIL. Visualization of
the top test set images for the place, face, and food category-selective brain regions as predicted
by CLIP, SigLIP, and DINO. While all models show broadly similar feature relevance for a given
brain area, there are important differences. DINO, with no language supervision, exhibits greater
sensitivity to visual similarity, at the cost of semantic coherence.
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4.5 Discussion

Limitations and Future Work. BrainSAIL achieves strong localization performance and

benefits from a pre-trained vision transformer, reducing reliance on the fMRI dataset for backbone

training. However, it is still necessary to train the fMRI encoder on these data, and thus potential

dataset biases in the human neural data and how it was collected can influence the learned

representations and conclusions. Future work should explore training on larger and more diverse

neural datasets to mitigate this limitation and enhance the generalizability of our findings.

Conclusion. We propose BrainSAIL, a method that leverages vision foundation models to

interrogate which semantic components of complex natural images lead to the neural activation of

specific regions of the brain. Based on the vision transformer architecture, we: (1) semantically

attribute and localize relevant objects in complex compositional images; (2) jointly factorize

images and semantically selective regions in the human brain; (3) identify the feature correlates

of depth, saturation, and luminance that underlie semantic selectivity; (4) explicate differences in

fMRI encoders that achieve similar overall brain prediction performance. In toto, these results

establish that BrainSAIL is a powerful new approach to data-driven explorations of the human

higher visual cortex.
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Chapter 5

Conclusion

This thesis presents three novel methods that leverage recent advancements in computer vision

to study the semantic selectivity of the human visual cortex in a data-driven and ecologically

valid manner. The methods I propose leverage powerful vision models trained on massive image

datasets. These models, capable of extracting semantically rich representations from natural

images, enabled us to develop techniques for image synthesis, voxel-wise semantic captioning,

and spatial attribution of semantic selectivity within the visual cortex.

My findings demonstrate the utility of these methods in uncovering previously unobserved

aspects of visual cortex organization. These include fine-grained functional distinctions within

established regions, novel functional subdivisions, and sensitivity to both high-level semantic

categories and lower-level visual features. The ability to synthesize images specifically designed

to activate targeted brain regions provides a powerful tool for exploring the underlying feature

preferences and generating novel stimuli for future experiments. Additionally, generating natural

language descriptions of voxel-wise preferred stimuli facilitates a deeper understanding of feature

representations across the visual cortex, going beyond traditional category-level analyses. Finally,

by spatially attributing selectivity within natural images, we gain valuable insights into the neural

mechanisms underlying semantic processing in real-world contexts. By grounding my analyses

in naturalistic images and generating interpretable outputs, this work paves the way for a more
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nuanced and data-driven understanding of the human visual system. The developed techniques

have broad implications for future research: 1. The data-driven nature of these methods can

lead to the formulation of novel hypotheses regarding functional organization and selectivity

within the visual cortex. 2. Synthesized images and captions can be used to create more effective

and targeted stimuli for future fMRI experiments, testing specific hypotheses generated by our

findings. 3. The framework allows for a direct comparison of different vision models in terms of

their alignment with human brain representations, aiding in the development of more biologically

plausible artificial vision systems. This thesis underscores the power of integrating advancements

in computer vision with neuroscience research. By leveraging these powerful tools, we can

move beyond the limitations of traditional approaches, ultimately gaining a more complete and

ecologically valid understanding of visual cognition.
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