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Abstract

In medicine, we define and treat diseases based on their causes. We classify infections

as viral, fungal, parasitic, or bacterial with specialized treatments for each class. We

define and treat tumors according to which genetic abnormalities allow them to proliferate

uncontrollably. This tenet underlies almost every field of medicine except for the brain

where many diseases are largely defined by their symptoms. As a result, with a few notable

exceptions, we define treatments of the brain around which symptoms to use them for

rather than what root cause they solve. But what if we could peer inside somebody’s brain,

identify the pathological circuits and activity that drives a patient’s disease, and then

gear our treatment towards that? While past attempts at this have shown initial promise,

they have been limited by small sample sizes and difficulty in selecting appropriate study

populations. In this thesis, I explore how both these problems can be addressed by a

paradigm shift to study neural activity over very long timescales.
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CHAPTER 0

Introduction

The idea of identifying the anomalous brain activity driving a patient’s disease arguably

began in 1934-1935 when Fisher, Lowenbach, Gibbs, Davis, and Lennox used the recently

invented electroencephalogram to describe neural spike waves causing epileptic seizures [1].

Their discovery sparked several revolutions in the fields of neurology and neurosurgery

towards specifically identifying and targeting different kinds of neural activity, primarily

within epilepsy and movement disorders with very recent advances beginning to be made

in a few psychiatric conditions. These discoveries have been made possible by rapid

development in several technologies ranging from more effective ways to record neural

activity to therapies capable of precisely targeting and modulating it.

However, many diseases affecting the brain remain primarily defined as a collection of

symptoms either in isolation or due to a root cause that is several steps removed from

the clinical presentation. Major depressive disorder is defined as possessing five of eleven

symptoms such as depressed mood, loss of energy, insomnia, trouble concentrating, and

more [2]. Traumatic brain injuries are defined as the appearance of neurological symptoms

such as loss of consciousness or confusion following a physical trauma to the head [3].

Alzheimer’s disease is defined as progressive deterioration of cognition and memory we

believe is related to amyloid and/or tau depositions [4].

What is missing from all of these diseases is the capability to look at an individual
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patient and identify which abnormal neural activity in their brain is leading to the

symptoms disrupting their life. We may understand on the cellular level how individual

neurons degrade during these diseases, but how does that translate into the macroscopic

picture of a brain consisting of nearly a 100 billion neurons losing specific functions? As a

result, our understanding of these diseases is not unlike where cancer research was a few

decades ago when we knew many cancers were caused by smoking, toxins, or radiation

through some form of genetic mutation but were unable to readily detect which genetic

mutations were driving a patient’s tumor. But once we developed the capability to detect

these mutations, they provided a new avenue of therapeutic targets that revolutionized

the field of oncology. In the brain, we are already developing a host of new technologies

to precisely modulate and control the activity of different neural populations, but where

in the brain should we point them?

Artificial intelligence has been proposed as one piece of solving this puzzle due to its

strengths in pattern recognition that have been demonstrated in many non-medical fields.

For disorders of the brain, machine learning has seen increasing use over the past several

years in interpreting functional neuroimaging or intracranial recordings to diagnose and

classify the severity of various psychiatric disorders and predicting treatment response

[5–7]. It is starting to be used as a way to control closed-loop brain stimulation [8, 9]. It

is beginning to show efficacy in engineering new ways to treat depression [10, 11].

Despite these advances, a number of key challenges remain, one of the largest of which

is extremely small sample sizes. Modern machine learning is typically performed on

datasets that are orders of magnitude larger than the samples we conventionally use when

studying brain activity. One of the largest leaps forward in computer vision occurred

with the publication of the ImageNet database which originally contained over a million

images when it was first showcased in 2009 [12]. AlphaFold was trained on over 170,000

protein structures [13]. The natural language processor GPT-3 was trained on roughly

a billion pages of text [14]. In comparison, the average sample size of a functional MRI
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paper published in highly-cited journals from 2017-2018 was 24 subjects [15]. If we define

our analyses as “obtain a sample of brain activity from patients presenting with some

disease and compare their activity to healthy controls”, it will be highly non-trivial to

obtain hundreds of thousands of samples.

As a result, when analyzing neural data, we typically limit ourselves to simpler, smaller

models that are orders of magnitude less complex than what is commonly used in other

non-medical fields. And while we have made many remarkable discoveries in neuroscience

and medicine using these methods, this limitation will become a fundamental barrier if

not one we have reached already.

A second key challenge is in selecting the populations that go into these studies. If we

wanted to, for example, study “neural activity associated with major depressive disorder”,

a commonly used method would be to select a population of individuals meeting a diagnosis

for it and then compare their neural activity to healthy controls. Training an algorithm

to differentiate between the two is a logical method for asking “what neural signatures

are present in the vast majority of people with depressive symptoms”, a valuable line of

inquiry that we can learn much from. But it is also a method that is prone to overlooking

heterogeneity in these populations and the very possible situation that what we call

“major depressive disorder” is in reality several different diseases masquerading with a very

similar set of symptoms.

In this thesis, I argue that both of these problems can be elegantly solved by a paradigm

shift in cognitive neuroscience to study brain dynamics in a space orders of magnitude

slower than what has been conventionally done. I start by presenting two examples of

efforts that fall within these two “key challenges”. One project involving depression and

another involving movement disorders. Two projects that were able to uncover interesting

information about these diseases but also highlighted these fundamental limitations. I

end by presenting two examples of how to study long term brain dynamics in natural

situations in order to demonstrate how this new approach can be implemented.
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CHAPTER 1

Acute trajectories of neural activation predict

remission to pharmacotherapy in late-life depression

Pharmacological treatment of major depressive disorder (MDD) typically involves a

lengthy trial and error process to identify an effective intervention since most antide-

pressants have a ∼ 50% success rate but require two months to determine their efficacy.

Previous work by the group demonstrated that changes in neural activation during rest-

ing state and emotional regulation tasks throughout a 12-week trial of venlafaxine (a

commonly used antidepressant) could be measured using functional MRI. Here I showed

that changes occurring within the first day of treatment, particularly within the cingulate

and frontal cortex, could be used to predict the overall trials’ efficacy. I also found that

fMRI scans taken before treatment initiation could predict treatment response in isolation,

albeit at slightly worse accuracy. Taken together, this demonstrates the potential utility

of classifying patients with depression into subtypes based on their neural signature when

parsing through potential treatment options.

1.1 Introduction

In late-life depression (LLD), the time between initiating treatment and clinical response

generally takes 4-6 weeks. This delayed clinical effect is associated with prolonged suffering,
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exacerbated medical comorbidities, and increased risk of suicide [1]. While many studies

report changes in neural activation in depressed older adults during emotional reactivity

or regulation tasks, relatively few studies have focused on the predictive utility of the

identified changes or described changes within a timeframe that permits this information

to be used clinically.

There is emerging evidence that neural markers may have predictive capacity toward

reducing the number of trialed antidepressants and possibly improving antidepressant

outcomes [2, 3]. In a subset of the sample used in this chapter, previous members in the

group identified neural changes within a day of the first dose of antidepressants utilizing

functional magnetic resonance imaging (fMRI), which was dependent on remission status

[4, 5]. These early responses indicate that while behavioral changes often take weeks

to manifest, a patient’s underlying neural activity is quickly changed by antidepressant

treatment in a detectable fashion.

In this study, I investigated the treatment response predictive capacity of three neural

markers: activation during an emotion reactivity task, activation during an explicit

emotion regulation task, and whole brain voxel-wise connectivity (eigenvector centrality)

at rest in a sample of LLD participants (N = 49) receiving venlafaxine, a commonly used

antidepressant. I tested the predictive capacity of pre-treatment neural activation and

of the change in neural activation following a single dose of venlafaxine. I compared the

predictive capacity of these markers (both separately and in unison) to the predictive

capacity of baseline depression severity. At the time, this was one of few studies that

had investigated the predictive utility of acute change in neural activation for treatment

remission in LLD. Our group hypothesized that these markers would have greater predictive

capacity than baseline depression severity and that early changes in these tasks would

improve our predictive capacity more than pre-treatment neural markers alone.
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1.2 Methods

1.2.1 Study design and participants

The Aizenstein group collected neuroimaging data as part of a larger 5-year multi-site

study of treatment in LLD that collected neuroimaging data at one site (Pittsburgh,

USA). Participants were recruited and prescribed with open-label venlafaxine (a serotonin

and norepinephrine reuptake inhibitor). Participants were included if they were at least

50 years old, met Diagnostic and Statistical Manual for Mental Disorders-IV (SCID-IV)

criteria for major depressive disorder (MDD) and had a Montgomery-Asberg Depression

Rating Scale (MADRS) score of 15 or higher at baseline. Participants were excluded

if they had a history of mania or psychosis, alcohol or substance abuse (within last 3

months), dementia or neurodegenerative disease as well as conditions with known effects

on mood and cognition (e.g. stroke, multiple sclerosis, vasculitis, significant head trauma,

and/or unstable hypertension). Informed consent was obtained from all participants prior

to engaging in any research procedures, and the University of Pittsburgh Institutional

Review Board approved this study.

All MRI scanning was conducted in the morning. Five MRI scans were collected

during the treatment trial. Participants came in on the first day for a baseline scan (no

medication). In the same evening, they were given a placebo, after which they returned

the next day for another scan (placebo scan). The evening of that scan, they were given

their first dose of venlafaxine (37.5 mg), after which they returned the next day for another

scan (single dose scan). They continued their medication for one week and returned for

another scan (week one scan). They returned a final time after the end of the treatment

trial (12 weeks, end scan). This analysis does not utilize the week one or end of trial

scans as we intended to understand the predictive capacity of the neuroimaging data

over an acute period. Henceforth, we only describe the relevant scanning procedures and

analyses. During the trial, participants returned for weekly or bi-weekly clinical visits

10



Figure 1.1: The study design protocol: Functional and structural magnetic resonance
imaging (fMRI and sMRI, respectively) was performed in the morning during various
times through the trial. On the first day, participants came in for an fMRI scan (baseline)
and then were given a placebo following the scan. On the second day, they returned for
another fMRI scan and then were started on venlafaxine following the scan. They returned
the next day (∼ 12h later) for another fMRI scan (1st dose change). They continued their
medication as normal and came in for scans at the end of the first week and at the end of
the trial. Only the fMRI scans at baseline and 1st dose change were used in this paper.

and the venlafaxine dosage was increased as necessary (up to a maximum of 150 mg/day

by week 6). Participants who did not show signs of response by week 6 had the dosage

increased up to a maximum of 300 mg/day. At the end of the study, participants were

classified as remitters if they had a MADRS ≤ 10 for at least two weeks during the trial

(and remained so until the end of the trial). Figure 1.1 summarizes the study timeline.

A total of 62 participants signed consent. Eleven were excluded due to: side effects of

medication (N=2), non-adherence to protocol (N=2), inaccurate diagnosis of MDD (N=1),

and inability to determine remission status due to lost/missing data (N=6). Among

the remaining participants (N=51), two participants did not complete all MRI scanning

but did complete the treatment trial. In summary, 49 participants were included in this

analysis.

1.2.2 MRI protocols

All scanning was conducted at the University of Pittsburgh Medical Center on a

Research dedicated 3 T Siemens Trio TIM scanner (Munich, Germany) using a 12-channel
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head coil. The baseline and end scan protocol included both a structural and functional

image, while other scans collected only functional sequences. In this manuscript, we

limited our analysis to the functional sequences, which were a resting state sequence,

an explicit emotion regulation task sequence, and an emotional reactivity (faces/shapes)

sequence.

An axial, whole brain 3D magnetization prepared rapid gradient echo (MPRAGE) was

collected with repetition time (TR) = 2300 ms, echo time (TE) = 3.43 ms, flip angle

(FA) = 9 degrees, inversion time (TI) = 900 ms, field of view (FOV) = 256 × 224, 176

slices, 1 mm isotropic resolution and with Generalized Autocalibrating Partial Parallel

Acquisition (GRAPPA) factor = 2. An axial, whole brain 2D fluid attenuated inversion

recovery (FLAIR) was collected with TR = 9160 ms, TE = 90 ms, FA = 150 degrees, TI

= 2500 ms, FOV = 256 × 212, 48 slices, and 1 × 1 × 3 mm resolution.

An axial, whole brain (excluding cerebellum) echo planar (EPI) T2*-weighted functional

image was collected to measure the blood oxygen level dependent (BOLD) response with

TR = 2000 ms, TE = 34 ms, FA = 90 degrees, FOV = 128 × 128, 28 slices, 2 × 2 × 4 mm

resolution. The duration of the face/shapes task (see Functional Imaging Metrics) was 117

volumes (∼ 4 min), the explicit emotion regulation task (see Functional Imaging Metrics)

was 270 volumes (∼ 9 min), and the resting state was 150 volumes (∼ 5 min). Due to

variability in placement by MR technicians the coverage of the functional scans was in

general limited to above the cerebellum and below the top aspect of the motor cortex

(though this varied slightly between functional sequences). Participants were instructed

to lie awake and view a cross hair during resting state.

1.2.3 Emotional reactivity task

The face/shapes task is widely used and has been found to robustly activate the

amygdala [6, 7]. Participants were instructed to match either a face cue or a shape cue. A

cue was shown on the top center of the screen and they were instructed to respond with an
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MR-compatible glove (left or right index finger) by matching to one of two simultaneously

presented faces. The facial expressions shown were either angry or fearful. During the

shapes, they match a shape to one of simultaneously presented shapes. The shapes task (5

blocks) was interleaved with the faces task (4 blocks) and each block lasted 24 s containing

6 trials (4 s each). Before the beginning of each block participants were instructed visually

to “match emotion” or “match form” (2 s). The face images are presented from a set of

12 different images (six per block, three of each sex) and are all derived from a standard

set of pictures of facial affect. Stimulus presentation and responses were controlled using

E-prime software (Psychology Software Tools, Inc., Pittsburgh).

1.2.4 Explicit emotional regulation task

Participants were shown emotionally neutral or negative images from the standardized

International Affective Picture System (IAPS) [8] and were instructed to either “Look”

or “Decrease.” This task has been described previously [5] and has been used to activate

prefrontal cortex (especially the dorsolateral prefrontal cortex) as a means of explicitly

regulating limbic reactivity. During the look instruction, participants were to view content

naturally. During the decrease instruction, participants were instructed to reappraise

negative images to actively alter the elicited emotion. A master level staff member

instructed participants on how to reappraise prior to entering the scanner. After each

image they were asked to rate how negatively they felt from 1 to 5. The neutral (11

events), negative (15 events), and negative regulate (15 events) conditions were interleaved

and each event lasted 6 s. The inter-trial interval was 13 s with no jitter (though they were

not locked to a TR). This allowed for modeling of each individual response by allowing for

enough time in between each stimulus, but likely resulted in lower power to detect each

individual effect. The images are presented from a set of images and stimulus presentation

and responses were controlled using E-prime software (Psychology Software Tools, Inc.,

Pittsburgh).
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1.2.5 Structural Processing

All processing was conducted using statistical parametric mapping (SPM12) in MAT-

LAB (MATLAB 2016b, The MathWorks, Natick, 2016). Interpolation was conducted

using 4th degree B-spline interpolation, normalized mutual information similarity metric

for coregistration between images of different types, and mutual information similarity

metric for motion correction unless otherwise stated. The FLAIR was coregistered to the

MPRAGE (affine transform). Both images were input into a multi-spectral segmentation

[9], which (after bias correction) segmented them into gray, white matter, cerebrospinal

fluid, skull, soft-tissue, and air. Due to high white matter hyperintensity burden the

number of Gaussians used to identify white matter was set to two (which improves the

segmentation). This process generates a deformation field that can be used to normalize

other images to a standard anatomic space (Montreal Neurological Institute, MNI) (Ash-

burner and Friston, 2005). An automatic mask for the intracranial volume was generated

by thresholding the intracranial tissues with a probability of 0.1, filling the mask (imfill),

and then performing a morphological closing operation (imclose, sphere of one voxel) in

MATLAB. This mask (intracranial volume, ICV) was applied to the MPRAGE to remove

non-brain tissues (which improves functional-structural coregistration).

1.2.6 BOLD pre-processing

The explicit emotion regulation task and the resting state data were slice time corrected

(temporally middle slice was used as reference) prior to performing motion correction.

All functional BOLD data was motion corrected (rigid coregistration to the mean),

coregistered to the skull-stripped MPRAGE (mean functional image used to calculate

affine transformation), normalized to MNI space using the deformation field calculated

previously (2 mm isotropic resolution), and smoothed using a Gaussian kernel with FWHM

of 8 mm. All images were investigated by human eye to confirm that coregistration and

normalization steps were accurate.
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Motion was evaluated using ArtRepair toolbox [10]. During the emotional faces

reactivity task, participants had low maximum translations [mean = 1.26 mm (std =

1.21)], low root mean squared (RMS) [1.11 mm (0.81)], and low percentage of volumes

displaying head jerks above 0.5 mm [6.2% (10.7%)]. During the resting state, participants

had low maximum translations [1.27 mm (1.26)], low root mean squared (RMS) [1.04 mm

(0.85)], and slightly higher percentage of volumes displaying head jerks above 0.5 mm

[10.9% (19.9%)] that were corrected for using wavelet-despiking in later stages. During

the explicit emotion regulation task, participants had low maximum translations [1.87 mm

(1.91)], low root mean squared (RMS) [1.40 mm (1.08)], but slightly elevated percentage

of volumes displaying head jerks above 0.5 mm [9.4% (30.8%)], with a few particularly

bad cases that were removed. There were no group differences in any of these motion

metrics between remitters and non-remitters between any time points.

For resting state BOLD, spike artifacts were removed using a previously established

method that uses wavelets to filter spike artifacts [11]. Five principal components of white

matter and cerebrospinal fluid were extracted as well as 6 motion parameters and a vector

to model the mean of the time series [12]. Band-pass filtering was conducted by including

several regressors that represented cosines with all discrete frequencies except those within

the standard expected resting state frequencies (0.008 to 0.15 Hz).

1.2.7 Modeling task activation: emotion reactivity and emotion

regulation tasks

Mass-univariate general linear modeling (i.e. each voxel is independently modeled) was

performed to model the mean, faces task, shapes task, and six parameters of motion (from

motion correction). The canonical hemodynamic response function was used to convolve

the faces and shapes tasks to expected hemodynamic responses. A high-pass filter of

1/128 Hz was utilized to account for low frequency noise. An autoregressive [AR(1)] filter

was used to account for serial correlations due to aliased biorhythms and unmodelled
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activation. The contrast faces minus shapes was used to perform all voxel-wise analyses.

Similarly, the explicit emotion regulation task included similar parameters however

it modeled the activation during the neutral and negative viewing tasks as well as the

reappraisal task (during viewing of negative images). The contrast of interest was negative

reappraise minus negative viewing, which modeled the activation during reappraisal

adjusting for activation during the negative viewing task.

1.2.8 Resting state BOLD: eigenvector centrality

Eigenvector centrality was calculated using the fastECM toolbox [13]. Briefly, centrality

is a measure of connectedness of a voxel or region. Mean centrality is a related measure

that calculates the mean voxel-wise connectivity of a single voxel to all other voxels where

a greater centrality would imply that a voxel is more widely connected. FastECM uses

singular value decomposition to circumvent the calculation of large correlation matrices.

1.2.9 Response prediction

I used a combination of Principal Component Analysis (PCA), Least Angle Regression,

and Logistic Classification to identify differences on the individual level in our fMRI

features that could be linked to remission. Using SPM12, each individual’s fMRI maps

(resting state eigenvector centrality, emotional regulation, and emotional reactivity) were

averaged across 116 regions in MNI152 space outlined in the Automatic Anatomical

Labeling Atlas [14], resulting in a 348-length feature vector for each individual for a

given time point. PCA allows for the estimation of principal component vectors across

participants that vary together, thus it is likely that regions that activated similarly were

combined into a single vector.

I tested two major fMRI feature vectors. One was the fMRI features (116 regions of

activation during emotion reactivity, emotion regulation, or centrality) at baseline, prior

to treatment. The other was the change in fMRI features following a single dose (or

16



placebo), which was defined as the difference between the feature vector after a single

dose (or placebo) and baseline. Due to small-number error concerns, I chose this method

over a percentage change metric.

All analyses were performed within a ten-fold cross-validation scheme to address

over-fitting and multiple comparisons concerns. To avoid biasing our estimates, all data

demeaning, dimensionality reduction, feature selection, and hyper-parameter optimization

were performed via nested cross-validation loops. To establish bounds on the accuracy of

our algorithm, we repeated the cross-validation scheme 30 times, each time redrawing the

cross-validation folds.

I used a combination of PCA and Least Angle Regression to selectively reduce the

dimensionality of the dataset to components that were relevant to remission [15]. Least

Angle Regression has been proposed as a “less greedy” alternative to the popular LASSO

[16] algorithm that favors the net contribution by multiple features simultaneously over

identifying single features independently [17]. Using the components selected by these

two algorithms, a logistic classifier was then trained on these components and used to

predict remission on the test fold of the cross-validation scheme. Accuracy was assessed

using Receiver Operator Curves (ROC) analysis.

To determine predictors that utilized information from multiple scanning time points

or the baseline MADRS score, we averaged the predictors from each individual algorithm

to generate an averaged predictor, a concept commonly referred to as an unweighted

voting algorithm [18]. This procedure is meant to combine the predictive power of several

feature sets without suffering from over-fitting concerns.

1.2.10 Permutation testing

To determine which anatomical regions of the fMRI metric maps leant themselves

to accurate and reliable predictions of remission, we utilized permutation testing. More

specifically, we randomly shuffled the remitter/non-remitter labels within our dataset and
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recomputed the entire cross-validated classification pipeline. Each feature (a single region

for a given fMRI feature) was then ranked on its relative importance to the classifier

compared to all other regions across all metrics. This ranking procedure was repeated

1000 times and compared to the rankings found when using the “true” remission labels.

A region/task pair is significantly associated with remission if its true ranking is within

the top 5% of random permutation ranking trials.

To understand the relative contribution of the fMRI metrics to each prediction used in

this paper, I also applied an additional permutation test to the feature sets themselves (i.e.,

instead of permuting remitter/non-remitter labels, the images themselves were permuted).

For a given time point, I permuted the features from a single fMRI feature and repeated

the cross-validation and training/evaluation procedure. This was repeated 1000 times for

each fMRI feature at both time points to assess the individual contribution from each

fMRI map.

1.3 Results

Figure 1.2 illustrates the accuracy of the fMRI classification algorithm using the fMRI

scans collected at different time points using the Area under Curve (AUC) metric. Within

this context, AUC represents the probability that given two participants, one remitter

and one non-remitter, that the algorithm of interest will correctly classify the remitter

as being more likely to have a positive treatment response. This ranges from 50% for a

random-guessing algorithm to 100% for perfect accuracy. I found that utilizing our fMRI

procedures and classification algorithm yielded an approximate 15% increase in AUC over

that of simply using the MADRS alone. In general, I show that while there is no significant

difference in AUC between baseline and change in fMRI features, the two features together

significantly improve the overall AUC and adding baseline depression severity further

improves it. For comparison, I also show the accuracies when utilizing the MADRS at one

or two weeks after the trial start, as well as the composite accuracy of these values when
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Figure 1.2: The predictive accuracy of remission among 49 subjects was determined using
30 trials of repeating a 10-fold cross-validation scheme and is shown via interquartile range
boxplots. The second and third column represent the accuracy of using the classification
algorithm on only the functional imaging data (resting state centrality, emotional reactivity
task, and emotional regulation task) available at baseline or the change in imaging metric
a day after the first dose of venlafaxine. The fourth column represents averaging the
predictions from the second and third column, while the fifth column shows the accuracy
from averaging the predictions from the first four columns. We find that utilizing functional
imaging along with our proposed algorithms improves the predictive power of the MADRS
questionnaire by 15% (other demographic variables such as age, sex, education level,
and race had no significant predictive power and thus were not included). The last two
columns show the accuracy of utilizing the MADRS at one week (change in MADRS was
less accurate) and using that value in combination with the fMRI data at baseline and
post-first dosage. p-Values were calculated as one-sample t-tests with a null hypothesis
that the accuracy of the algorithm was equal to that to the MADRS at baseline or at one
week.

used with the fMRI results. I found that our imaging approach significantly outperforms

both these values by approximately 7% in AUC. The placebo minus baseline scan did

not predict remission [median AUC of 0.56 (IQR, 0.52-0.6)] better than MADRS (p =

2.8e-11). Placebo minus baseline combined with the baseline prediction [median AUC of

0.63 (IQR, 0.68-0.71)] was not significantly better than MADRS (p = 0.688). Thus, the

placebo results were excluded from further analysis.

Figure 1.3 shows the region/task pairs that passed permutation significance testing. As
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Figure 1.3: Axial slices of the relative importance of region/task pairs that passed statistical
permutation significance testing (p = 0.05) are shown above, with the z-coordinates in
MNI152 space shown for reference. Here, bright yellow shades indicate that the region/task
pair is positively associated with remission (i.e., higher baseline activation or greater
increase in activation is predictive of remission), whereas bright blue shades indicate a
negative association. As the 1st dose change of resting state centrality only displayed
one region that passed permutation testing, maps of that region (left superior temporal
gyrus) are not shown. These results were calculated by averaging the predictor importance
weights assigned by the classification across all ten folds of cross-validation and over all
thirty trials.

only one region from the 1st dose change in the fMRI resting state centrality metric passed

permutation testing, maps of that region (left superior temporal gyrus) were not shown.

Significant regions included frontal cortex, parahippocampus, hippocampus, caudate,

thalamus, medial temporal cortex, middle cingulate, and visual cortex.

Figure 1.4 illustrates the effects of permuting the feature set for a given fMRI metric

at a single time point. I found that the largest drop in AUC occurred when permuting the

emotional reactivity feature map, indicating the relative utility of this probe in finding

metrics that can be used for remission prediction.
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Figure 1.4: The impact to the classification accuracy of the fMRI predictor algorithm
when certain feature map sets are permuted between subjects is shown via interquartile
boxplots. The first three columns represent the result of shuffling the features of a given
fMRI metric map between subjects, while the last column represents the accuracy when no
features are permuted. Note that the largest drop in accuracy occurs when the emotional
reactivity features are permuted, indicating the utility of using a task to probe specific
features of neural activity. Statistical significance was determined via two-sample t-tests.
All the pairs marked by asterisks have a p-value bound below 10−3.

1.4 Discussion

In this chapter, I present a novel method of predicting treatment response in late-

life-depression by utilizing the functional imaging metrics in response to a single-dose

of a pharmacological intervention that demonstrates improvement over using baseline

(pre-treatment) clinical and neuroimaging information.

There is a small, but significant past literature in LLD that focuses on pre-treatment

activation [5, 19, 20]. These studies have identified hypoactive executive function during

emotion reactivity, changes in resting state connectivity, including work on a subset of this

study population that found lower pre-treatment centrality in the inferior frontal gyrus

(IFG) as well as greater pre-treatment MeFG centrality [4]. One large study identified

pre-treatment subtypes of depression, specifically that there exist four major subtypes

that have distinct abnormalities in resting state connectivity [21] that also demonstrated

a specificity for different treatments. In general, our results and previous studies support

the use of pre-treatment fMRI for improving treatment outcomes.
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One possible application of these results is facilitating neural target engagement -

where we would both find a neural target and engage it to significantly improve depressive

symptoms. Given the rising popularity of innovative methods to target neural markers

(using interventions such as transcranial magnetic stimulation, TMS, or transcranial

direct-current stimulation, tDCS), determining the appropriate neural targets to engage

is a field of rising interest [22]. Future studies investigating differential target engagement

are needed, as past studies seem to suggest that different therapies result in differential

engagement of similar neural targets [23]. This would allow for identification of a pre-

treatment neural target and matching with an appropriate antidepressant or therapy to

engage or alter that target.

There are several limitations in this study. While the sample size is comparatively

large, it is limited from a machine learning perspective. This limitation is especially

important in several ways. In particular, past literature has shown that depression is

a highly heterogeneous disorder and thus likely contributes to the relatively modest

improvement in prediction in our study as well as past work. Further, treatment response

itself is highly heterogeneous and it is likely that there are many paths to remission

even within a single antidepressant. Finally, there are other factors that may play an

important role, for instance individual variability in antidepressant metabolism may

contribute to the fMRI response. We employed a 10-fold cross-validation as well as

ensuring that any data reduction was done in fold (to avoid bias), to affirm the viability

of the algorithm and address over-fitting concerns. These approaches help ensure that the

improvement in prediction (above MADRS alone) is stable, and by performing all data

reduction in fold we further avoid biasing our model (as this would improve our estimate

of the different components within a sample). We also conducted the cross-validation

multiple times (redrawing the folds) as it is possible that certain folds are more predictive

than others. While these may address some over-fitting, it is not a replacement for

independent validation and future studies should include data on larger cohorts and allow
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for independent samples for verification.

This study builds on an already existing literature that has identified neural and

behavioral subtypes – as our pre-treatment markers predicted remission while also iden-

tifying a single dose engagement effect – building on a sparse literature that seems to

suggest that the neural activation occurs acutely. Thus, measuring this engagement is

likely an important part of improving the overall efficacy of these treatments. Utilizing

computational psychiatric approaches will allow for patients to be classified not only by

their clinical symptoms, but also a set of neural targets that may need to be engaged. By

engaging each target in a systematic manner, we may be able to improve overall response

rates for depression treatment.
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CHAPTER 2

Deep brain stimulation for Parkinson’s disease

induces spontaneous cortical hypersynchrony in

extended motor and cognitive networks

Parkinson’s disease is an interesting neurological disorder as one of few diseases of the

brain that we define by its root cause and neural activity: degeneration of dopaminergic

neurons in the substantia nigra leading to hypersynchrony of the basal ganglia. It is

simultaneously part of a small group of brain-related diseases that we have effective

treatments for (especially in context of being a neurodegenerative disorder), one of which

is deep brain stimulation (DBS). While DBS’s mechanism is still unclear, shedding light

on it can serve as a model for how targeted approaches can work in other neurological or

psychiatric diseases. Using magnetoencephalography and spectral graph theory, I compared

resting-state cortical connectivity between the off and on DBS stimulation states and to

healthy controls. I found that turning DBS on increased high beta and gamma band

synchrony (26 to 50 Hz) in a cortical circuit spanning the motor, occipitoparietal, middle

temporal, and prefrontal cortices. These changes appeared to introduce abnormalities

in the brain’s functional cortical architecture relative to healthy controls unlike DBS’s

previously known subcortical normalization of pathological basal ganglia activity. This

increased high beta/gamma synchronization may reflect compensatory mechanisms related
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to DBS’s clinical benefits, as well as undesirable non-motor side effects.

2.1 Introduction

Parkinson’s disease is a movement and cognitive disorder characterized by the pro-

gressive degeneration of nigrostriatal dopaminergic neurons. While traditionally treated

with dopaminergic medications, when pharmaceuticals no longer provide consistent ef-

ficacy or lead to severe dyskinesias, high frequency deep brain stimulation (DBS) of

the sensorimotor territory of the subthalamic nucleus (STN) or internal globus pallidus

(GPi) has been established as the most effective means of managing the symptoms of

Parkinson’s disease [1–4]. The therapeutic mechanism of action, however, is still elusive

and poorly understood, in part due to the difficulty of conducting neuroimaging studies in

the presence of DBS stimulator hardware, due to artifacts and potential safety concerns

with fMRI [5–7]. This limited knowledge has become a barrier to improving the efficacy

of DBS while minimizing side effects [5].

Numerous studies have implicated overactive oscillatory synchrony within the basal

ganglia, particularly within the beta band (13–30 Hz), as an important pathological feature

of untreated Parkinson’s disease [8–11]. Studies examining interregional interactions using

both fMRI and intraoperative recordings have demonstrated abnormal basal ganglia-motor

functional connectivity in Parkinson’s disease [12–14]. Network analyses have shown that

brain networks become less organized and less topologically efficient as Parkinson’s disease

progresses [15]. Beta band hypersynchrony has also been observed in essential tremor,

indicating its importance across other movement disorders [16, 17].

Studies comparing neural response when DBS is on to when DBS is off are critical to

relate this hypersynchrony to DBS’s downstream neural effects and therapeutic benefits.

Effective stimulation has been shown to decrease beta band hypersynchrony in the basal

ganglia, particularly within the high beta band region (21–30 Hz) [18, 19]. [20] used
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electrocorticography recordings in patients with Parkinson’s disease to show that STN DBS

reduces beta phase-amplitude coupling in the primary motor cortex, in conjunction with

reducing motor symptoms. [21] used magnetoencephalography in conjunction with STN

recordings 3–6 days after surgery, while DBS leads were still externalized, to demonstrate

that acutely after surgery STN DBS modulates connectivity between the basal ganglia

and mesial premotor regions in the high beta band range.

How do these results generalize to outside the basal ganglia and motor cortex? [22]

used invasive electrophysiology to show that stimulation of the STN could identify a

monosynaptic connection with the prefrontal lobe that was associated with stopping-

related activity. A meta-analytic study of fMRI and PET studies in [23] showed that both

the STN and GPi were coactivated with the inferior frontal gyrus.

A critical question for understanding the mechanism of DBS is how does long range

cortical to cortical synchronization differ when stimulation is turned on and do these

changes normalize prior Parkinson’s-related abnormalities or introduce new circuit dy-

namics? I investigated how DBS influences functional connectivity across cortical regions

not accessible intraoperatively during DBS surgery, utilizing MEG and graph theory anal-

yses. We hypothesized that DBS increases cortical connectivity, similar to dopaminergic

replacement therapy [24].

To test this hypothesis, I compared resting-state, whole cortex functional connectivity

using MEG in the absence of DBS stimulation (DBS-off) with recordings obtained during

clinically effective high frequency stimulation (DBS-on). After artifact removal, I used

data-driven analyses to assess network and subnetwork level differences between DBS-on

and DBS-off across all frequencies and between all pairs of brain regions (e.g. not restricted

to somatomotor networks) in an unbiased manner [6]. I also compared these results using

the same methods to age matched healthy control subjects to assess whether differences

in functional connectivity in the DBS-off condition compared to DBS-on represented a

normalization of functional connectivity. These data driven methods have the disadvantage
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of being relatively less sensitive to small differences between conditions and groups, but

have the advantage of casting a wide net to catch large effects in a statistically rigorous and

unbiased manner that can seed additional future hypothesis testing. These results suggest

that turning DBS on increases high beta and gamma band synchrony (26 to 50 Hz) across

a broad cortical circuit that includes both motor and non-motor systems. Furthermore,

functional connectivity patterns in the DBS-off condition is more similar to age matched

controls compared to the DBS-on condition, suggesting that rather than normalization,

the increased beta and gamma band synchrony is a result of non-normalizing functional

connectivity induced by DBS stimulation.

2.2 Methods

2.2.1 Subjects

DBS subjects were eleven patients with bilateral DBS implants for the treatment of

Parkinson’s disease, all of whom gave informed consent to participate under STUDY19030378

approved by the University of Pittsburgh Institutional Review Board. All subjects had

implants in either the subthalamic nucleus (STN) or globus pallidus internus (GPi).

Stimulation parameters are bilateral unless denoted with left (L) and right (R) designa-

tions. MDS-Unified Parkinson’s Disease Rating Scale (UPDRS) are shown for the on

and off medication conditions pre-operatively and while on DBS post-operatively. All

subjects were chosen based on clinician and self report to have strong clinical response to

stimulation (e.g. based on their charts and self-report, substantial improvement in clinical

symptoms were seen when DBS was turned on), but only three had clinical response

quantified using continuous and quantitative measures (UPDRS).

34 healthy controls were selected from a larger population on the basis of age and gender

matching. All participants gave informed consent to participate under protocols approved

by the University of Pittsburgh Institutional Review Board under STUDY19100015.
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Healthy controls did not differ in average age (67.8 years with a standard deviation of 5.6

years) compared to the DBS group (66.5± 6.3 years, p = 0.35). Controls had 21 males,

13 females compared to the 9 males, 2 females in the DBS group (p = 0.22).

2.2.2 Data Collection and Preprocessing

Data was collected from 204 gradiometers and 102 magnetometers arranged in or-

thogonal triplets on an Elekta Neuromag Vectorview MEG system (Elekta Oy, Helsinki,

Finland). Data were sampled at 1000 Hz. Electrooculogram and electrocardiogram

were concurrently measured to be corrected for during off-line analysis. Head position

indicators were used to continuously monitor head position during MEG data acquisi-

tion. Signal-space projection (SSP) was performed on MEG data that was subsequently

band-pass filtered from 1–70 Hz, notch filtered at 59-61 Hz, down-sampled to 250 Hz

via MNE C scripts, then processed via temporal signal-space separation (tSSS) using a

previously validated preprocessing pipeline that cleanses DBS artifacts across DBS-on

and DBS-off conditions [6]. Signal to noise ratio for the inverse calculation was set at nine

per [25] demonstrating that higher ratios yielded more accurate detection of changes in

connectivity.

Five minutes of resting-state data was collected when the DBS implant was turned

on. The implant was then turned off for a half hour, after which another five minutes of

resting-state data was collected while the DBS was still off. Resting-state was collected

while subjects had their eyes open and fixated on a centrally presented cross. Five minutes

of empty room data was also collected. Resting-state data for the controls were collected

using an identical protocol.

2.2.3 Connectivity Analysis

Spontaneous phase locking measures the variability over time of the phase difference

between every pairwise cortical location [26]. I calculated phase-locking values (PLVs)

32



from 1-60 Hz and corrected them using empty room noise as described in [27]. This yielded

a 5124 (number of cortical dipoles) x 5124 (number of cortical dipoles) adjacency matrix

of pairwise phase locking values between each cortical dipole relative to empty room for

each participant at each frequency. To make the data comparable across participants in

terms of differential coupling values across frequency bands, I normalized the PLVs with

regards to frequency [28]. For each participant, I took the distribution of PLVs over all

frequencies and calculated their cumulative distribution function and then scaled all phase

locking values to this distribution. Phase locking values were computed in MATLAB

using in-house analyses.

2.2.4 Frequency Band Analysis

To identify a frequency band that displayed significantly different connectivity between

deep brain stimulation on and off, I utilized nonparametric cluster level statistics [29].

First, I averaged the PLV across all pairs of dipoles resulting in a 60 (frequency) x 1 vector

of the “global connectivity” of a subject’s entire brain network at a given frequency. I used

cluster statistics to identify frequency bands whose overall connectivity changed when

DBS was turned on [29]. More specifically, I calculated a paired t-test at each frequency

between DBS on and off. Adjacent frequencies with a p-value below 0.05 were clustered

together into potentially significant bands. The t-statistic of all frequencies within a given

band were summed to give the overall t-statistic of that band. Using permutation trials

where the DBS on and off states were swapped randomly with each other, I calculated

a null distribution of the largest band t-statistic found each trial over 10000 trials. In

the real dataset, we found one frequency band that passed an α = 0.05 test as shown

in Figure 2.1 where we find one such band. The connectivity matrices for each subject

were then averaged over this frequency band to generate a 5124 (cortical dipoles) x 5124

adjacency matrix for each subject. I repeated this protocol except comparing DBS off

with health controls. I also repeated this protocol while separating the STN and GPi
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groups.

2.2.5 Laplacian Dimensionality Reduction

With only 11 subjects, it is very difficult to precisely identify “which” specific cortical

connections are being perturbed by DBS. To generate an initial estimate to inspire future

investigations, I used a data-driven dimensionality reduction approach with the caveat that

these results should be interpreted as preliminary analyses requiring further investigations

in a larger cohort.

I started by averaging each of the 5124 cortical dipoles across the 360 regions defined

in the Human Connectome Project (HCP) atlas [30], resulting in two 360 x 360 matrices

for each subject for DBS-ON and DBS-OFF. Using the graph Laplacian, I identify a single

set of sparse cuts across the graph for all subjects and then identified how the connectivity

across these sparse cuts changed when DBS is turned on. This method is based on finding

sparse cuts for spectral clustering. In general, measuring connectivity across sparse cuts

has been used as a way to summarize salient network features in a dimensionally compact

manner and has seen increasing usage in human connectome analysis [31–34].

I start by averaging the connectivity matrices for all subjects during the DBS-off state

to obtain an average matrix, Aoff. I calculate its Laplacian matrix as Loff = Doff − Aoff

with eigendecomposition Loffv
j

off
= λj

off
vj
off
. Each eigenvector/value, vj

off
, λj

off
, represents

a set of connections in the network that constitute a single sparse cut with the lowest

eigenvalues representing the sparsest cuts [35].

I then calculate the Laplacian of each subject’s connectivity matrices when DBS is

turned on and off and project them across these eigenvectors to determine their empirical

eigenvalues, a marker of their connectivity strength across these sparse cuts as defined in

Equation 2.1. This generated two 360× 1 vectors for each subject, λ⃗i,off and λ⃗i,on.
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λj
i,off =

(
Li,offv

j

off

)T

vj
off

(2.1)

I identified a linear weighting of eigenvalues that distinguished between DBS on and off

using a feature bagged support-vector-machine tested using leave-one-out cross-validation

using Python’s sklearn implementation under default settings. The training set was formed

as (xtr, ytr) = (λ⃗i,off − λ⃗i,on,−1), (λ⃗i,on − λ⃗i,off,+1) for all i representing in-fold subjects.

Features that enabled classification between the two label classes were eigenvalues that

showed consistent differences between the on and off states across subjects (as consistent

as one can get with 11 subjects). I evaluated the statistical significance of the SVM’s

accuracy using permutation testing with 1000 trials where I randomly exchanged the on

and off connectivity matrices for each subject.

To determine the change in connectivity associated with turning on DBS, I took the

classification weights assigned to each eigenvalue, wj, and calculated which connectivity

matrix changes were associated with those eigenvalues according to Equation 2.2.

∆A = −
∑
j

vj
off
wj

(
vj
off

)T

(2.2)

2.2.6 Identification of Stimulated and Suppressed Communities

To understand whether the changing connections due to DBS self-organized into a

specific circuit (sub-network), I utilized the protocol described in [36]. More specifically,

we clustered the change adjacency matrix calculated in Equation 2.2 according to the

Arenas, Fernández and Gómez community detection model [37]. The number of clusters

was determined according to Newman’s modularity [38]. Each cluster was then assigned a

C-score which detailed how strong the change in connectivity within that sub-network was

relative to how strong it would be if the clusters were chosen randomly. The supposition

is that a sub-network is considered more significant if connections within it were changing
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greatly relative to the rest of the network [36].

To generate a null distribution of C-scores, we generated a hundred thousand random

undirected, weighted graphs that preserved the edge density distribution of the change

adjacency matrix calculated in Equation 2.2. We repeated the clustering analyses on these

random graphs and selected the highest C-score of the resulting clusters to form our null

distribution. For a cluster to be considered statistically significant, its C-score would have

to be within the top five percent of this null distribution, which is shown in Figure 2.1.

We also repeated this process on the original resting DBS-off/on and control networks

to see whether the identified DBS-activated sub-network was activated significantly prior

to DBS and in healthy controls and was simply strengthened by DBS. The permutation

process was repeated for each DBS/control group.

2.3 Results

Figure 2.1 shows the average connectivity across all cortical dipoles over all subjects

for the DBS-on, off, and healthy control populations. A significant difference between

DBS-on and DBS-off was seen in the high beta/gamma band region from 26 to 50 Hz as

shown in Figure 2.1A (DBS-on greater than DBS-off, p < 0.05, cluster-level correction

for multiple frequency comparisons). In contrast, DBS-off did not show significant global

differences compared to age-matched controls in any frequency band, suggesting that

the increased synchrony observed in DBS-on did not reflect normalization of abnormal

functional connectivity. When STN and GPi stimulation groups were separated, no

significant difference in any frequency band was detected; a larger sample may be required

to determine whether there are more subtle differences between STN and GPi stimulation

than can be detected in the present study. To check for confounds, I tested correlation

between the average cortical synchrony to age and time after programming and found no

significant correlations.
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Figure 2.1: A) Spectral signature of global synchrony when deep brain stimulation is
turned on and off. Average phase locking between every pair of cortical points with
respect to frequency. Significantly increased beta and gamma band synchrony (26-50 Hz)
was seen during DBS-on. Error bars indicate paired t-test 95% confidence intervals. B)
The spectral signature of healthy controls does not show major deviations compared to
the deep brain stimulation off condition. Error bars indicate two sample t-test confidence
intervals.

All-to-all connectivity networks averaged across the high beta/gamma band (26-50

Hz) were computed for each subject for both DBS on and off. To identify a weighted

group of connections whose average was consistently changing when DBS was turned

on, I used a graph theory-based dimensionality reduction approach and a support vector

machine whose reliability and significance was assessed via cross-validation. I found that

we could identify a pattern of connectivity differences that accurately separated DBS on

and off in nine of the eleven subjects (82% leave-one-subject-out cross validated accuracy,

P = 0.0053 via permutation testing). Both of the GPi implanted patients were correctly

classified, reinforcing that using this relatively broad data-driven analysis, GPi and STN

stimulation show similar effects. We show which brain regions showed the largest increases

in connectivity in Figure 2.2A where we find large effects in the motor cortex bilaterally,

frontal cortex, occipitoparietal lobe, and the right middle temporal gyrus.

To quantify the relative similarity of DBS-on, DBS-off, and controls, I first used pattern
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Figure 2.2: Map of high beta/gamma band connectedness. A) Ensemble of connections that
were significantly synchronized by deep brain stimulation (DBS) (P = 0.005 permutation
testing). Brighter areas indicate larger increases in connectivity with the rest of the
cortex when DBS was turned on. B) The connectivity changes from the top figure that
forms an inter-connected circuit. A community detection model was used to identify
sub-networks whose connectivity within themselves were significantly different across
the DBS on and DBS off conditions. Permutation testing revealed one such network,
shown here. C) Cluster score of the identified sub-network in the DBS on/off conditions
and in healthy controls. The connectivity strength within the sub-network shown in the
bottom-left was compared to strength of equal-sized randomly selected sub-networks to
assess whether the identified circuit was significantly activated relative to the rest of the
cortex. The red line shows the false detection threshold (α = 0.05). The results indicate
that discovered circuit’s activation was not significantly distinguishable from the rest of
the cortex in healthy controls and when DBS was turned off but was significantly stronger
than background when DBS was turned on (P = 0.048).
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classification to train a model to discriminate the connectivity patterns from the DBS-on

and DBS-off conditions and used that model to classify the controls. The resting state

connectivity patterns of nearly all controls get classified as being more similar to the

DBS-off condition than the DBS-on condition (28/34). Similarly, we trained a model

to discriminate the DBS-on connectivity pattern from the control connectivity patterns

and used that model to classify the DBS-off data, which classified all but one of the

DBS-off patterns as controls (10/11). A classifier discriminating between controls and

DBS-off had a 48% accuracy rate at discriminating between these two classes as tested via

leave-one-out cross-validation. These results show that the connectivity patterns from the

DBS-off condition were more like the patterns in controls than in the DBS-on condition.

2.3.1 Identification of Stimulated Subnetworks

In order to identify interconnected neurological circuits that were being activated by

deep brain stimulation (subnetworks perturbed by DBS), we utilized the Arenas, Fernández,

and Gómez (AFG) community detection model. Using permutation testing, the full

cortical connectivity changes shown in Figure 2.2 were clustered into distinct sub-networks

[37]. Permutation testing revealed one sub-network that passed statistical significance

according to the AFG community detection model, which is illustrated in Figure 2.2B.

This sub-network consisted of four major areas of the cortex: the middle/inferior temporal,

occipitoparietal, motor, and the prefrontal cortices.

Figure 2.2C shows the cluster score for this circuit when DBS is on and off as well as in

the healthy controls. Cluster score indicates how well a given sub-network is interconnected

within itself relative to rest of the network using a permutation-generated null distribution

illustrated by the red line. The circuit illustrated in Figure Figure 2.2B only emerges as

statistically significant when DBS is turned on and is not significant in controls and the

DBS off-condition.
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2.4 Discussion

We studied the effects of basal ganglia DBS on cortical synchrony in patients with

Parkinson’s disease and found that DBS causes increased high beta and gamma band

corticocortical synchrony (26 to 50 Hz). We show that these changes displace cortical

networks relative to age-matched controls instead of normalizing them, with these effects

being particularly magnified within an interconnected circuit consisting of the motor,

occipitoparietal, temporal, and prefrontal cortices. This circuit does not appear to be

significantly more activated than the average cortical resting-state synchrony in healthy

controls and when DBS is turned off but emerges when DBS is turned on.

2.4.1 Study Limitations

Several caveats are necessary to consider when interpreting the results of this study.

First, we utilized a data-driven approach requiring substantial multiple-comparisons

corrections. While this allows us to detect networks that span across non-motor regions

that a more targeted approach would not even consider, the tradeoff is that we are only

powered to detect very large and straightforward changes. For example, [20] found that

DBS normalizes coupling locally in the motor cortex between beta phase and broadband

amplitude. By focusing on the motor cortex, such a study can pick up interesting changes

that our approach is not powered to detect. In general, a lack of detected differences in

any category should not be taken as evidence that those differences do not exist.

The second caveat is that the results rely on a sample size of 11 patients and would ben-

efit from validation in a larger cohort, in particular to replicate the non-motor connectivity

changes. Only relatively large effects can be detected reliably with a cohort of this size,

thus this study likely misses subtle effects of DBS on cortical networks. The data-driven

methods and small sample size likely also explain why few significant differences between

DBS-off and controls were found. However, the study was powered to determine a key

novel finding that cortical networks in the DBS-off condition were more like functional
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networks in controls than in DBS-on. Third, while DBS was able to effectively control

symptoms in the patients utilized in this study, metrics involving relative differences in

outcomes were not utilized. Additionally, clinically effective stimulation in most of our

patients was determined qualitatively rather than quantitatively. Therefore, while the

changes in connectivity that we identify can be associated with qualitatitively effective

treatment, their association to variability in the degree of individual treatment response

would require a more powered study. Similarly, a future study with greater power is

required to determine whether aspects of the changes seen in corticocortical connectivity

relate to non-motor side effects. And lastly, in order to have sufficient power to detect the

effects of DBS, we included all subjects with basal ganglia stimulation given that DBS

to both STN and GPi have small, if any, differences motor and cognitive effects [39, 40].

When we did separate the GPi and STN stimulation cohorts, neither group was powered

sufficiently to detect global cortical connectivity differences. Thus, these results are not

meant to represent specific changes resulting from stimulation in either region but rather

changes resulting from clinically effective basal ganglia deep brain stimulation.

2.4.2 DBS Modulates Long-Range Cortical Connectivity Involv-

ing the Prefrontal Cortex, Temporal Lobe, Motor Cortex,

and Occipitoparietal Regions

Using our network reduction model, we were able to identify a sub-network of increased

cortical connectivity involving the prefrontal cortex, temporal lobe, motor cortex, and the

occipitoparietal lobe at the 26–50 Hz frequency band.

Prior literature involving the subcortex in Parkinson’s, including ones studying the

effects of dopaminergic medication, typically highlights low beta band frequencies, which

generally fall right below the frequency band we identified [8, 10, 41]. Furthermore, [18]

also showed that deep brain stimulation of the basal ganglia predominantly attenuates

lower beta band power in that region.
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However, when these relationships are expanded to include the cortex, evidence for

higher frequencies emerge. [42] demonstrated that increased connectivity between the

basal ganglia and premotor areas associated with Parkinson’s occurred mostly in the

high beta band. [43] also found that dopaminergic medication decreased the number of

correlated pairs of scalp EEG pairs mostly at the high beta band (¿20 Hz). [21] showed

both properties by demonstrating that DBS decreases basal ganglia power at the low beta

band but decreases basal ganglia coherence with the mesial motor cortex in the high beta

band. The mechanism of this shift from low beta band synchrony effects subcortically to

high beta band synchrony changes in cortical areas may prove an important avenue of

future studies, especially in the context of the effects of Parkinson’s and its treatments.

Involvement of the lateral prefrontal cortex, somatosensory, motor/premotor, and

occipitoparietal areas are supported by diffusion-tensor-imaging (DTI) and probabilistic

tractography findings demonstrating structural connectivity between these regions and

the basal ganglia [44, 45]. [22] showed evidence of a monosynaptic STN to prefrontal

hyperdirect pathway involved in motor control inhibition, lending further credence to an

anatomic basis for this network. The involvement of these regions in Parkinson’s disease

and its treatment are also supported by several functional imaging studies (fMRI and PET)

[46, 47]. A recent MEG study supports the involvement of primary and supplementary

motor cortices in the effects of DBS [21]. Connectivity between the temporal lobe and

the basal ganglia has been validated by a combination of retrograde transneuronal viral

studies and PET studies [48, 49]. Interestingly, [50] demonstrated that DBS in the basal

ganglia was effective in controlling refractory partial epilepsy in patients with temporal

lobe epilepsy.
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2.4.3 Effects of DBS Displace Patients with Parkinson’s Relative

to Healthy Controls

In general, we did not find large differences between the DBS off condition and age-

matched controls. We do not believe this means they are absent, on the contrary, a large

ensemble of literature would indicate the opposite. As mentioned earlier, our sample was

most likely not powered enough to detect these differences using a data-driven approach

requiring substantial corrections for multiple comparisons. However, the fact that we

did see significant differences when DBS was turned on indicates that in contrast to

the reported subcortical effects of stimulation, where synchrony is reduced to resemble

states observed in subjects without PD, stimulation’s effect cortically appears to be in the

opposite direction. A key question for future studies is which of these effects of DBS are

associated with therapeutic outcomes, reflecting compensatory mechanisms to overcome

Parkinsonian symptoms, versus which drive undesired side-effects.

2.4.4 DBS Activated Circuit Stands Out from Background Syn-

chrony Only when DBS is Turned on

We found that our DBS-activated circuit’s synchrony was not significantly different

from the rest of the cortex in healthy controls and in patients with Parkinson’s when

the DBS device was turned off. When the DBS device was turned on, synchrony inside

the network increased significantly relative to the rest of the cortex (beyond the overall

activation induced by DBS). This increased cortical–cortical high beta/gamma synchrony

may be a consequence of the release of pathological basal ganglia hyperinhibition seen in

Parkinson’s by DBS, leading to the observed network becoming active in DBS-on relative

to both DBS-off and controls [51, 52]. There are two major possibilities for this finding.

One is that this cortical network is not typically activated at rest but only during specific

tasks, possibly higher-order motor control given the involvement of the premotor cortices.

However, when DBS is turned on, this circuit is perturbed as a unit, causing it to also be
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abnormally activated during resting state. Another is that the magnitude of this circuit’s

activation, including at rest, is typically small compared to other networks in the cortex,

causing it to disappear into the background of other stronger networks. DBS then causes

this circuit to become abnormally active. Further explorations into the state of this circuit

under using various stimulation parameters and examining how these effects relate to

motor and non-motor behavioral changes with DBS could help mediate between these

two hypotheses leading to better understanding of the mechanisms of DBS. In particular,

it will be important to determine if these changes are compensatory, and related to the

magnitude of treatment efficacy, incidental, or related to unwanted DBS side effects [53].
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CHAPTER 3

Long term brain dynamics form a punctuated

equilibrium of stable states interrupted by chaotic-like

transitions

Up to this point, I have primarily investigated how the brain changes in response to

various therapeutics using short snapshots of neural activity that were collected over a

few minutes in each participant. Approaches studying neural activity over this timescale

have been a staple of cognitive neuroscience for many decades that have uncovered a

large range of knowledge on how our brains interact with our environments and bodies.

However, many critical neurocognitive processes, such as performing natural activities and

fluctuations of arousal, take place over significantly longer timescales over minutes-to-days

in real-world environments.

Here I harnessed the opportunity to study brain dynamics during real-world behavior

mostly continuously for between 3-12 days using intracranial multi-electrode recordings in

twenty humans. During this time, participants engaged in natural activities, including

interacting with friends, family, and staff, watching TV, sleeping, etc., with simultaneous

neural and video recordings. We found that brain network dynamics predicted neurocog-

nitive phenomena such as circadian rhythm, arousal, and multiple aspects of behavior

(socializing, watching a screen, etc.). The individual functional networks, as well as their
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pairwise interactions, possessed simple and stable dynamic properties that were conserved

over days. In contrast to single or paired network behavior, the mixture of all functional

networks showed patterns of “punctuated equilibrium”: periods where networks would

remain in stable states that corresponded to behavior and were interrupted by transitory

bursts that were difficult to predict, displayed chaotic characteristics, and coincided with

behavioral transitions. Brain state statistics displayed power laws characteristic of critical

dynamics that are a trait of systems where complexity emerges from simple and stable

building blocks. These results indicate that the complex and flexible brain dynamics that

underpin real-world behavior are an emergent property of mixtures of individual, stable

networks with simple dynamics.

3.1 Introduction

Many important neurocognitive processes take place on the order of minutes to days

in dynamic, ever-changing “real” environments. Behaviorally, we transition between

tasks like reading and talking to friends over minutes to hours. Neurobiologically, the

interaction between someone’s brain and body is driven by hormones, sympathetic, and

parasympathetic drivers related to processes like arousal and circadian rhythms that

fluctuate over a similar timescale [1]. However, the vast majority of what we know

about human brain activity is based on studies that record neural signals on the scale

of milliseconds-to-seconds while participants perform well-controlled tasks or rest in an

artificial neuroimaging environment.

Some studies have analyzed brain state dynamics over minutes in a single sitting or

by repeatedly sampling a few minutes per day spread out over days to months in an

artificial setting using functional neuroimaging [2–10]. Longitudinal snapshots of a few

minutes over days have also been studied in real-world settings, though typically associated

with structured tasks or treatment interventions [11, 12]. While much has been learned

about human brain network dynamics in these types of studies, we still do not know how
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the brain continuously evolves over hours-to-days in real-world settings during natural

behavior.

To assess human brain network dynamics in a real-world setting continuously over

days, I leveraged chronic intracranial recordings in neurosurgical participants (80-126

electrodes implanted per participant) undergoing treatment for epilepsy (Figure 3.1 and

Supplemental Figure S1). Specifically, I examined brain network dynamics from neural

recordings in twenty humans for between 75 to 283 hours (near-continuous recordings

across approximately 3-12 days). During this time, the participants were confined to the

hospital but would freely socialize with friends, family, and staff, interact with digital

devices, sleep, watch TV, and perform other volitional natural behaviors while under

neural and video monitoring. Using these data, we built all-to-all electrode functional

connectivity matrices (partial connectomes) every five seconds across the entire recording

session (Figure 3.1), divided these connectivity matrices into data-driven networks, and

removed electrodes and activity related to each participant’s seizure onset zone and

propagation. We then asked, what are the properties of brain network dynamics during

continuous, natural behavior over the week?

Notably, the brain must balance competing demands of flexibility that allows people to

react to changing cognitive demands while maintaining anatomical stability of networks

and systems. Thus, we particularly asked what features of brain network dynamics

changed rapidly, what aspects were consistent from hour-to-hour and day-to-day, and

how these dynamics related to natural behavior. We investigated these questions over

increasing spatial scale: starting with individual areas (functionally defined “parcels”), to

the dynamics of covarying sets of parcel activity (“network components” acknowledging

that we only have partial brain coverage in individual participants), to patterns of pairwise

interactions between different network components, and finally to how the brain forms

states and transitions during its week-long trajectory through a space defined by all

network components (mixtures of all networks).
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Figure 3.1: (A) We took between 3-12 days of continuous neural recordings from twenty
participants and (B) split it into five-second-long non-overlapping windows, removing
windows around seizure activity and filtering/regressing out artifacts. (C) We generated
a functional connectome for each window as the coherence between all pairs of electrodes
and removed additional artifacts by regression and independent component analysis. (D)
We grouped electrodes with high coherence to each other over the week into parcels
that tended to be anatomically close together (e.g. functional parcellation of cortical
recordings). The parcel dynamics fell into temporal hierarchies that followed anatomical
trends (Figure 3.2). (E) Parcels and frequencies that covaried were grouped into network
components using a robust Principal Components Analysis. (F) The dynamics of these
networks showed consistent pair-wise interactions (Figure 3.3) and relations to circadian
rhythm, arousal, and behavior (Figure 3.4). (G) Overall brain state dynamics were
assessed by finding transition points in the overall mixture of all networks’ evolution over
time using change point detection. The mixture of all brain networks would fall into
stable states punctuated by transitions that were complex, unique, and showed consistent
power law distributions (Figures 3.5).
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3.2 Main Findings

3.2.1 Functional parcels show temporal consistency over days

and reveal anatomic trends

Before studying how the whole measured brain evolves over the course of a week, I

started by breaking it down into smaller pieces and studying how those pieces change over

the week in isolation. We used a data-driven approach to identify small groups of tightly

connected electrodes that made up coherent functional brain parcels (I use the term

brain “parcels” rather than brain “areas” because brain areas are traditionally defined

based on anatomical landmarks, and these brain parcels are anatomically compact but

defined based on similarity/high coherence of the neural activity within a parcel). Our

first question was whether these parcels showed stable temporal characteristics over the

week: e.g., if a brain parcel fluctuates quickly on one day relative to other parcels, does it

do so on other days as well?

After removing an hour before and after ictal (seizure) events as determined by the

clinical team, the coherence between all pairs of electrodes in a subject was calculated

every five seconds over five frequency bands: theta (θ: 4-8Hz), alpha (α: 8-12Hz), low

beta (βl: 14-20Hz), high beta (βu: 20-30Hz), and gamma (γ: 30-70Hz). The electrodes

were parcellated into tightly connected groups of electrodes (a coherent functional brain

“parcel”). The parcel assignments remained very stable throughout the week (Supple-

mentary Figure S2), which allowed us to define one set of parcels for the entire week.

Parcels consistently contained electrodes that were anatomically close together, hence our

description of this process as “parcellation” of the brain. To remove seizure-related activity

from our analyses, I first removed any parcels associated with the subject’s seizure onset

zone and early propagation. I cleaned the remaining parcels by using linear regression

on the activity of the seizure-related parcels to predict the activity on the remaining

non-seizure-related parcels and then removed this co-linearity from them. I found that the
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coherence within each parcel showed specific dynamical patterns or trajectories that would

be repeated over different hours and days of data (Figure 3.2A and Supplementary Figure

S3). This dynamical stability can be quantified by how slowly their autocorrelation curves

decayed (timescales). found that timescale differences between parcels were preserved

over time, indicating that parcels with relatively faster or slower timescales would remain

so throughout the week. Specifically, the autocorrelation magnitude at one hour and

the timescale of how quickly autocorrelation decayed showed reliable differences between

parcels that were conserved over different six-hour time blocks throughout the week

(Supplementary Figure S3).

These parcel-to-parcel differences were linked to anatomical trends over all twenty

subjects by assigning each parcel to one of five lobes (frontal, temporal, parietal, occipital,

and basal ganglia) and one of six canonical fMRI networks (“default mode”, “dorsal

attention”, “salience”, “somatomotor”, “control”, and “visual” as defined in 13) dependent

on which lobe/network it had the most overlap with (parcels with no clear overlap were

not considered for this analysis). Parcels in the default mode network and basal ganglia

consistently showed the longest and slowest timescales across our subjects and parcels of

the salience network had the shortest timescales (Figure 3.2B). These findings demonstrate

an intrinsic stability in neural dynamics that separates “slow” from “fast” brain parcels

over minutes to hours. A temporal hierarchy, typically measured using autocorrelation,

has been hypothesized in the brain with transmodal (e.g. default mode network) systems

being the slowest, integrating over multiple seconds [2, 3, 13–16]. These findings extend

the observation of slow default mode network dynamics to minutes and hours during

natural behavior in a real-world setting.
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Figure 3.2: A) The coherence within two parcels from a representative participant (left)
and the autocorrelations of those regions calculated on each day separately (right).
Autocorrelation curves of the same color represent the autocorrelation of that parcel on
different days of data. Each parcel’s coherence displays a “unique” temporal signature
that is conserved over days that is reflected by stability in their autocorrelation curves.
Breaks/skips in data represent windows removed due to seizure activity. Comparisons
between all parcels for each participant are shown in Supplementary Figure S3. B)
Pairwise comparisons between the autocorrelation of parcels (averaged over frequency and
participants) that belong to one lobe (F: frontal, T: temporal, P: parietal, O: occipital,
BG: basal ganglia, C: cingulate)/fMRI resting network versus another. Cell values indicate
the difference in autocorrelation (y axis minus x axis) between two regions or networks
found using linear mixed effect models. Autocorrelation decay timescale inverse is an
indicator on how sharply the autocorrelation curve decayed with lower values indicating
less autocorrelation decay at high timescales. Non-zero cells indicate statistically significant
differences post multiple comparisons correction (p < 0.05).
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3.2.2 Network components form dynamical relationships and

joint distributions that are preserved over days

After investigating how parcels of the brain would act on an individual basis, we

wanted to understand how they interacted with each other. As many parcels were highly

co-linear with each other (Supplementary Figure S17), I decided to group co-linear parcels

into networks1. After finding that those networks also possessed consistent timescales

as individual parcels did (Supplementary Figure S5), I examined how these networks

interacted with one another.

More specifically, I used robust principal components analysis to identify parcels and

frequencies that covaried with each other, defining each principal component as a “network

component” that captured the overall connectome dynamics in a data-driven fashion while

reducing the dimensionality of the dataset [17, 18] (I use the term “network components”

because the recordings did not have full brain coverage and therefore these covarying

parcels are components of brain networks). The activation of each network component

during a window was defined as the weighted average of the parcel coherences within a

network component (dot product between network activation and principal component

weights). These network component activations showed consistent temporal behavior over

time as individual functional regions did (Supplemental Figure S5).

I next examined the dynamics of individual networks of parcels and how these networks

interacted with one another. I used robust principal components analysis to identify

parcels and frequencies that covaried with each other, defining each principal component

as a “network component” that captured the overall connectome dynamics in a data-

driven fashion while reducing the dimensionality of the dataset (remaining results in this

manuscript still hold statistical significance without dimensionality reduction as shown in

1To ensure that the rest of the results were robust to this PCA procedure, I examined whether the
results held without using PCA for dimensionality reduction. The results in Supplementary Figures S12
to S16 show that our results remain statistically significant, though the effect sizes declined likely because
the power of our analysis increases by grouping together covarying parcel activity into functional network
components and by removing noisy, low variance PCs.
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Supplementary Figures S12 to S16 but some classifier performance unsurprisingly declines)

[17, 18]. I included the previously removed seizure-related parcels into the principal

components analysis and then removed any network components that overlapped with the

seizure-related areas (Supplemental Figure S4) to ensure I removed both the seizure foci

and all areas statistically linked to it. The activation of each network component during a

window was defined as the parcel coherences projected onto the corresponding principal

component. These network component activations showed consistent temporal behavior

over time as individual functional regions did (Supplemental Figure S5).

After investigating individual network components, going up one step in spatial scale,

we asked whether the activity of pairs of network components could be reliably linked to

one another. For each day, we calculated the joint distribution between all possible pairs of

network component activations and asked whether this joint distribution was both reliably

preserved across the week and indicated significant non-independent and/or non-linear

relationships (while principal components will group features with linear relationships

together, it will not do the same for non-linearities). More specifically, we calculated

the distance between the joint distributions on different days of recordings versus the

distance between these distributions and an independent null (more detail in Methods).

The joint distribution between brain networks covered characteristic areas in the space

that were well preserved over days, indicating that brain networks “dance” with one

another in idiosyncratic ways. Some had antagonistic relationships where one network

appears to suppress another; some would behave as if one network “gated” the other –

inactivity in one network (in other words low coherence within contained parcels) would

mandate inactivity in another. For example, the “V” shaped patterns in Figure 3.3A

indicate that either both networks would be inactive together, or when one was active,

the other would either be positively active or negatively active (but not inactive). All

participants possessed several networks that showed such pairwise interactions (Figure 3.3

and Supplemental Figure S6), indicating that not only do individual network components
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have consistent dynamics, but they also have consistent pair-wise interactions.

3.2.3 Network components predict both physiology and behavior

One critical question is whether these network dynamics are related to neurophysiology

and behavior. I specifically looked at how linear combinations of network components

correlated to circadian rhythm (time of day), predicted arousal (heart rate), and classified

behavior (video recordings).

I took the first half of the week for each participant and used canonical correlation

analysis (CCA) [19] to identify a network mixture that maximized correlation to time of

day (CCA was used over regression to allow encoding time of day via phase). I tested this

mixture in the second half of the week using permutation testing (out of sample validated

correlation) and found that 11 of 20 participants had a network mixture significantly

linked with circadian rhythm (Figure 3.4A and Supplementary Figure S7). Notably, six

of the nine participants that were not linked to circadian rhythm had notes in their

clinical file indicating various sleep disturbances such as nighttime-awakening seizures,

intentional sleep deprivation for clinical purposes, or difficulty sleeping suggesting that

these participants had disrupted circadian rhythms due to sleep issues during the week.

Seven subjects had sufficiently clean electrocardiogram (EKG) signals that were used

to track heart rate. Heart rate is strongly correlated with the degree of arousal and is

used here as an approximator [20]. I used L1-regularized [21] regression over the first half

of the week to identify a mixture of networks that predicted heart rate and tested it on

the remaining half (Figures 3.4B and Supplementary S8). I found that six of the seven

subjects had network components that were associated with arousal.

Nine subjects had video recording monitoring throughout the week at a sufficient

quality to determine what the subject was doing throughout each day. I randomly selected

two days from each subject and labeled times where the subject was watching a digital

screen, socializing with another person, or physically interacting and manipulating a held
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Figure 3.3: (A) A pair of networks/principal components from two subjects that showed
non-independent distributions that are conserved over different days of data. The null
distribution if the network components were independent of one another are also shown
for comparison. B) The distance between the joint distribution of each pair of net-
works/principal components compared to the null distribution where they are independent
of each other. Non-zero effect sizes represent statistically significant distances as deter-
mined via permutation testing. We find several pairs that demonstrate such relationships,
most notably the lower network components that capture most of the variance in the
dataset. Supplementary Figure S6 shows that all twenty subjects possessed several such
pairs.
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object. These three behavioral labels were not mutually exclusive. I trained L1-regularized

logistic classifiers on one day to identify a mixture of network components associated with

each behavior and then tested them on the second day. All subjects possessed network

components that were associated with behavior, with two subjects shown in Figure 3.4C

and all subjects in Supplementary S9.

Taken together, these three tests show that network components predict both physio-

logical metrics and behavior that was replicated on multiple days.

3.2.4 Mixtures of network components form a punctuated equi-

librium of stable states that coincide with behavior

After finding that mixtures of network components were linked to behavior and phys-

iology, we wanted to understand how the status of all network components changed

throughout the week. Up to this point, I have investigated how individual, or pairs of

network components change over time. This is analogous to studying how a humming-

bird transitions between hovering and flitting between flowers by only observing their

movement in one or two spatial dimensions at a time. Just as how a complete picture of

a hummingbird’s flight patterns requires a full three-dimensional space, I studied brain

trajectories through a high-dimensional neural space, with the dimensions defined by each

of the network component’s activity.

Figure 3.5A (left) shows the velocity of the brain over one participant’s week: how

quickly the participant’s brain network activations changed every five seconds. This is

analogous to the speed of a hummingbird’s movement: high when it’s flying, low when

it’s hovering. In this case, hovering means the network activations of someone’s brain are

remaining relatively steady while high velocity flight indicates that the network activations

are changing rapidly. Quantitatively, velocity was calculated by taking the vector of

all network activations from one time window and calculating the Euclidean distance

between it and the corresponding vector from the next time window. The results indicated
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Figure 3.4: (A) We linked a network component mixture to circadian rhythm by training
canonical correlation analysis on one half of the week and then testing on the other. The
network mixture activations during testing are shown on the left plotted against time with
the black line indicating a theoretical circadian rhythm. Skips in data are removals due
to seizures or disconnected hardware. The identified mixture’s anatomical and frequency
coverage are shown projected onto the canonical fMRI networks. B) Network components
were linked to heart rate by training linear regressors on one half of the week and testing
on the remaining half. Test predictions are plotted against heart rate along with their
anatomical and frequency coverage. C) Logistic classifiers identified network components
that reliably detected whether the subject was watching a digital screen, socializing with
another human, or physically interacting and manipulating a held object. The algorithm
was trained over one randomly selected day and tested on another. The classifier’s
anatomical and frequency coverage is shown on the right. Area under the curve (AUC), a
classifier performance metric, is provided in the figure title. All subjects for these analyses
are shown in Supplementary Figures S7-S9.
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that periods of stability (states), times of low velocity lasting for minutes-to-hours, were

interspersed with bursts of dynamic behavior marked by high velocity for periods lasting

up to minutes (state transitions).

To quantify that those times of high velocity occurred in “bursts”, I tested the

time between windows that fell into the top 1% or 10% of speed in each participant

(Supplementary Figure S18). I found that windows with high velocity tended to occur

temporally adjacent or close to one another (bursts of high velocity) at significantly

higher rates than if they occurred randomly via homogeneous Poisson process, just as

a hummingbird’s high velocity periods occur in bursts. The rest of the analyses in this

study examined the nature and statistics of these state transitions, defined as temporally

contiguous bursts of high velocity over which the brain is continuously reconfiguring itself

[22]. Long periods of stable states interspersed with bursts of high speed transitions is

characteristic of “punctuated equilibrium” [23], an observation that many systems and

processes in nature, particularly ones that involve adapting to a dynamic environment, do

not undergo steady gradual change but rather periods of stability interrupted by rapid

bursts of change.

The correspondence between behavioral and brain network transitions was next used to

assess the relevance of these brain network state transitions. Specifically, we calculated the

median time between a participant’s behavioral changepoint (any point one of their three

labeled behaviors changed) and the nearest identified neural state transition. We compared

this to the expected time if there were no relation between the two using permutation

testing. We found that for every participant, the median time was smaller than the

expected time using a paired t-test (Figure 3.5C, p<1e-4). This result demonstrates that

brain network transitions and behavioral transitions coincide with one another in time.
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B) Brain transitions occur when
     behavior changes
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        by taking a circuitious trajectory

D) Transition trajectories are non-repeated
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Figure 3.5: A (left) Overall change in network activations between consecutive time win-
dows for one participant (Euclidean distance between the vector of all network activations
from one time window to the next). Two segments of states and transitions are marked.
A (right) T-distributed stochastic neighbor embedding visualized the week-long time
course of network activations. (B) We detected when the brain state was transitioning
using change-point detection and asked whether these times corresponded to when the
participants’ behavior changed. We compared the median time between behavioral change-
points and the nearest brain transition to the expected time if random and found that
neural and behavioral changepoints occurred together (p=1e-4 by paired t-test). (C) We
tested whether brain transitions went directly from one state to another or whether they
took indirect, circuitous routes. We plotted the average total distance (sum of velocity)
traveled during transitions and stable states for all twenty participants versus their net
displacement (distance between start and end state). Net distances for all participants
were several times larger than the net displacement, indicating that transition trajectories
were lengthy and indirect. The ratio between distance and displacement were higher for
transitions than states (paired t-test). D (top) Average distance between pairs of transition
trajectories as a function of what proportion of the trajectory was complete. Trajectory
pairs are grouped into three categories: transitions with similar starting and ending points
(1, blue) vs similar starting points only (2, red) vs similar ending points only (3, yellow).
These distances are shown for one participant in the middle with all participants are shown
in Supplementary Figure S10. The effect size of the differences between these distances
over all participants is shown on the right. (E) We used autoregression to demonstrate
that the predictability of brain dynamics decreases during transitions. We used a 0-1
chaos test to demonstrate that the chaoticity of brain dynamics rises during transitions.
(F) The distribution of the size (net displacement) of each transition and the time between
them is shown for all participants in log-log form. Both distributions formed power laws
(linear on log-log axes) consistently across participants.
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3.2.5 Brain network transitions are circuitous, unpredictable,

and chaotic

After we found that stable networks and pairwise interactions could lead to the

formation of neural states that lasted for minutes to hours and were associated with

behavior, we asked how the brain transitions from one state to another. Specifically, does

the brain take relatively straight trajectories when transitioning between states, as a

hummingbird does when it moves between one hovering location to another, or are brain

trajectories more circuitous. We visualized the transitory bursts of high velocity and stable

states in Figure 3.5A (left) onto a t-distributed stochastic neighbor embedding (TSNE)

representation of the week-long data in Figure 3.5A (right). TSNE is a data visualization

technique that shows a two-dimensional representation of the data that preserves the

distance between points plotted; thus, points that are close together are ones that have

similar brain network activation vectors [24]. Visually, these transitions appeared to take

very indirect trajectories. Instead of the brain transitioning directly from one stable state

to another, it would appear to “wander around” and explore several possible intermediate

states of various network activations or deactivations before stabilizing into the destination.

We quantitatively tested this by comparing the total “distance” traveled by the brain

during a transition trajectory (the sum of the distance traversed during each step of the

trajectory during a transition) compared to the net “displacement” (the distance between

the starting and end states). For a straight-line trajectory (a hummingbird flying directly

from one flower to another), the distance equals the displacement. Transition trajectories

were defined as periods of high velocity surrounding detected change points (more details

in Methods). All quantitative analyses were done in the original network activation space,

TSNE was only used for visualization. Transitions across all participants showed total

distances several times larger than the net displacement on average, indicating they were

taking indirect routes between states (Figure 3.5C). Notably, the ratio of the distance

to displacement was larger during transitions than during stable states, indicating that

68



between-state trajectories were more circuitous than within state trajectories.

These results demonstrate that transition trajectories are indirect, but indirect routes

can still be consistent each time (e.g., when the brain transitions from stable states A

to B does the path taken remain the same each time?). To assess their consistency, we

compared transitions with the same start and end point both to transitions with the

same start point but different end points and to transitions with different start points but

same end point (Figure 3.5D and Supplementary Figure S10). If transition trajectories

were repeated over the course of the week, the distance between pairs of transitions that

started and ended in similar states (repeated transitions) would remain small compared

to the distance between pairs of transitions that started in the same state but ended up

in differing ones. On the contrary, the results indicated that transitions with the same

end state were no more similar than transitions with different end states until 40-50%

completion (Figure 3.5D). When they separated, the Cohen’s d effect size of this divergence

remained below 1 (less than one standard deviation apart) until 3/4 of the transition was

complete. Thus, even if two trajectories had the same start and end point, the trajectories

were typically very different from each other given that the distance between them was

comparable to the distance between trajectories with different ending points for much of

their journey.

Supporting the idea of diverse and hard to predict state transitions, autoregressive

prediction error increased during transitions compared to within state periods (Figure

3.5D bottom). Autoregressive predictors were trained on half the week and tested on the

remaining half, demonstrating lower error at predicting “within state” relative to “between

state” movement. In addition, transitions exhibited increased chaoticity compared to

within state dynamics, measured using the 0-1 chaos test [25]. Taken together, these

results indicate that when the brain transitions from one stable state to another, not only

would it rapidly explore a large set of intermediate states before settling down into the

destination, but that these intermediate states seemed to be chosen in a disorganized,
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chaotic-like manner.

3.2.6 Power laws indicate a consistent set of forces governing

these transitions across subjects

I sought to reconcile the picture of simple neural networks with reliable pairwise

interactions against the complex and chaotic-like transitory bursts that periodically spread

throughout the brain. Many hypotheses investigating how complex neural processes

can emerge from simple systems are distinguished by the distribution of various metrics

summarizing salient features of their dynamics. Up to this point, I have primarily

investigated the average value or variance of metrics on the brain’s long-term dynamics

such as timescales, mean chaoticity, or the predictability of neurocognitively interesting

variables. Here I investigated the distribution of two simple metrics of neural state

transitions: how large they are and how frequently they occur.

Figure 3.5F shows the distribution of the net displacement of these transitions and

the time between transitions. These distributions visually followed power laws (linear on

log-log plots), indicating that while transitions at first glance appeared to be disorganized

and chaotic-like, there were overlying patterns governing the transition statistics that

remained consistent from participant to participant. This overall dichotomy is illustrated

in Figure 3.6.

I quantitatively tested this finding using likelihood ratio and Kolmogorov-Smirnov tests.

I tested the likelihood that each subject’s distribution came from a power law distribution

vs exponential or log-normal distributions, finding that power law distributions were the

most likely fit in the transition size distribution of 16 of 20 subjects (p = 0.03) and the

most likely fit in all 20 time between transition distributions (p = 4.8 × 10−5). I used

Kolmogorov-Smirnov tests to see if I could reject a null hypothesis that each subject’s

distribution plausibly came from a power law distribution, finding that I failed to reject in

17/20 subjects’ transition size distribution and in 20/20 subjects’ time between transition
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Brain transitions occurred when
behavior changed (Fig. 5B)

Network activity predicted
behavior and physiology (Fig. 4)

How does the brain
leverage static anatomy

to accomplish diverse behavior?

While transitions were disorganized and chaotic-like, they consistently followed power laws across
our subjects (Fig. 5F). This suggests a conserved set of laws driving emergent complexity.
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Figure 3.6: Summary of results presented in this manuscript and of the overall dichotomy
between a brain made of simple, stable “parts” that is still capable of generating complex
group-level behavior as it reacts to an ever-changing environment over long time periods.

distributions. Together, these tests support that the brain network state transitions follow

power law distributions (Figure 3.5F) that occur when someone’s behavior also changes

(Figure 3.5B), linking power laws of the brain to real-world behavior and cognition. These

results are consistent with the “critical brain hypothesis” which claims complex group-level

behavior can emerge from simple and stable local activity in systems perched between

order and disorder [26]

3.3 Discussion

The results of this study demonstrate key properties of how the brain continuously

evolves over long timescales by recording roughly a week of near-continuous intracranial

recordings in each of twenty human participants. The results indicate a dichotomy between

relatively “local” brain dynamics that remained remarkably stable over time whereas

overall brain trajectories and state transitions were varied and chaotic.

Individual parcels and networks had characteristic time constants and trajectories
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that were well preserved across multiple days (Figure 3.2). Pairs of parcels and networks

displayed characteristic, non-random “dances” that also remained stable over time (Figure

3.3). In contrast, the global mixture of brain networks displayed stable states punctuated by

chaotic transitions between them (Figure 3.5). When the brain entered a stable state, the

balance of its networks would remain relatively consistent for periods lasting from minutes

to hours. We found that by using these networks, we could predict somebody’s behavior

(such as were they interacting with a screen or talking to a friend) and their physiological

status (circadian rhythm and arousal; Figure 3.4). When somebody’s behavior changes,

potentially reflecting environmental or cognitive changes such as deciding to switch from

reading a book to watching television or a friend walking into their room and beginning a

conversation, their brain state would also change [27]. These transitions did not occur by

the brain traveling from one state directly to the next but rather by circuitous, difficult to

predict, and chaotic-like routes where the brain would explore many intermediate stages

before settling down into a new stable state (Figure 3.5). While these transitions were

difficult to predict and remarkably varied, their overall statistics (size and frequency)

consistently followed power law distributions across participants (see Figure 3.6 for a

summary).

Stable brain states interrupted by chaotic-like transitions are akin to punctuated

equilibrium in evolutionary biology. Evolutionary history does not only show steady and

gradual development but also alternates between periods of stability and transient bursts

of rapid change [28]. These transitory periods are relatively disorganized: in evolution,

these bursts involve phylogenetic “explosions” that generate multiple species or variants

that quickly undergo environmental selection [23]. This also generalizes to large human

organizations and political systems [29]. In most successful businesses, innovation efforts

typically come in waves where an organization will explore several possible opportunities

before settling on a much smaller number to develop [30] Indeed, some studies suggest

that punctuated equilibrium is a hallmark of relatively efficient group decision-making
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[31]. In our participants, their long-term neural dynamics would typically explore a large

space before settling into stable behaviorally associated states.

Punctuated equilibrium may be how our brains deal with the chaotic and unpredictable

real-world environment. Just as Darwinian evolution does not know the true end-optimal

genetic state for the current ecosystem, our brains do not intrinsically know what will hap-

pen an hour in the future. Generating unpredictable and chaotic exploratory trajectories

may be a key strategy of how our brains react to changing environments.

How can the brain quickly generate chaotic-like trajectories from simple and stable

networks that are conserved over the week? While these trajectories were remarkably varied

and difficult to predict, their overall statistics did consistently follow power laws across our

subjects. Power law distributions have been a popular area of investigation in many fields

across nature due to their “fat-tailed” divergence from the “typical” normal/log-normal

or Poisson distributions that govern most systems. The ”standard” distribution used to

describe “when” events occur is the Poisson distribution: exponentially distributed time

between events. Compared to rapidly decaying exponential functions, power laws have

an increased probability of long times between events, aka long neural states. The same

holds true for the size of an object: most natural systems form normal or log-normal

distributions through the Central Limit Theorem, compared to which power laws showcase

an increased probability of large cascades of dynamism that avalanche throughout the

system.

All of this indicates that while these trajectories appeared at first glance to be almost

“pseudo-random”, consistently across our subjects, there was a consistent set of laws or

forces driving their distributions whose effects we could identify.

What these laws are is an interesting question. One intriguing hypothesis would be

self-organized criticality (SOC) from statistical mechanics which argues that systems

made up of many small actors with simple interactions can manifest complex group-level
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behavior by oscillating around a “critical point” – transition points between phases of

matter or system behavior [32]. For example, while freezing and melting will spread

simply from molecule to molecule to lead to ice cubes or simple liquids, a snowflake that

is oscillated between melting and freezing dynamics records the cumulative history of all

these oscillations which leads to their unique shapes. SOC argues that in systems that

achieve complexity in this manner, their dynamics form power law distributions which

have since been identified in a variety of fields ranging from how tectonic plates interact

to form earthquakes, solar flares, and COVID-19 outbreaks [33–35].

SOC may engender several benefits to neural systems. Punctuated equilibrium, which

is a necessary but not sufficient feature of critical systems, is seen in optimal group

behavior and decision-making [31]. Modeling has demonstrated that being at a critical

point optimizes the information processing and propagation capacities of a system [36].

Furthermore, being at a critical point yields a balance between the competing demands of

flexibility to adapt to changes in the environment while maintaining stable representations

of learned and predictable behavior [37].

One major caveat of this interpretation however is that while SOC is a compelling

theory that could conceivably explain many of our findings, there are alternative ways

to generate power laws such as long-range statistical processes, successive fractionation,

and combinations of exponentials [38, 39]. In general, the dynamics I found could stem

from a variety of causes ranging from neuroanatomy, endogenous physiological variation,

environmental variation, behavioral trends, the behaviors of others, and a host of other

factors.

Ultimately, the primary purpose of this work is to demonstrate that we can identify

properties of how the brain changes over minutes-to-days in the ever changing real-world

during natural behavior. Some of these properties remain consistent within a single subject

over time and some remain consistent between different subjects. Many of these patterns

are also meaningfully connected to someone’s physiological and cognitive status.
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Studying brain dynamics at this scale enables the study of cognitive and physiological

processes inaccessible on shorter timescales. Someone’s attention, mood, and arousal

oftentimes fluctuate on the order of hours-to-days. Physiological changes, such as dynamics

related to circadian rhythms, hormones, and gene expression do the same. Recent techno-

logical advances providing the ability to record both neural activity [40] and physiological

biomarkers [41] in an animal’s home environment can provide a fine-grained view into

the cell-to-circuit neural behavior underlying cognitive and physiological fluctuations over

hours-to-days. Clinically, many neuropathological states evolve and fluctuate over hours-

to-days-to-years. In humans, chronic and continuous neural recordings that are performed

as standard of care for certain patient populations (including fully natural and deployable

recordings in patients with certain deep-brain stimulation systems [42]) can provide the

opportunity to study real-world neural behavior on this timescale, both to understand

basic neural behavior (as in this study) and to better understand their pathology. Stable

and deployable wearable technologies for non-invasive neural recordings in real-world

setting are also starting to be developed [43]. I hope this chapter demonstrates that these

advances can lead to a new field of neuroscience dedicated to studying how the brain

slowly changes in the chaotic real world.

3.4 Methods and Supplement

3.4.1 Subjects

Twenty participants (nine males, 11 females; mean age 40 years with a standard

deviation of 12 years) had intracranial surface or depth electrodes implanted for the

treatment of pharmacologically intractable epilepsy. All participants gave informed

consent to participate under research protocols approved by the University of Pittsburgh

Institutional Review Board. Depth electrodes were produced by Ad-Tech Medical and

PMT and were 0.86 and 0.8 mm in diameter, respectively. Grid electrodes were produced
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by PMT and were 4 mm in diameter. Sixteen participants had depth electrodes only,

three had grids only, one had a combination of both.

3.4.2 Analysis overview

In summary, we collected and preprocessed lengthy intracranial recordings which we

divided into five second windows (Figure 3.1A-B), calculated the functional connectome of

each window via all-to-all electrode coherence (Figure 3.1C), grouped electrodes into tightly

connected parcels which we analyzed (Figure 3.1D), grouped parcels and frequencies into

functional network components using Principal Components Analysis (Figure 3.1E), and

then studied the overall mixture of all functional networks (e.g. all principal components,

Figure 3.1F). Artifacts were removed at multiple points in the analysis. Specifically, a

comb filter was applied to remove line noise, an hour before, during, and after all seizures

were removed to eliminate ictal and peri-ictal activity, spatial regression was used to

remove local and global artifacts (such as motion, respiratory, and cardiac artifacts that

tend to be similar in neighboring electrodes), ICA was used to remove large spike artifacts

that sometimes occur due to disturbing the cables or connections, and epileptogenic areas

and activity that correlated with the activity in these regions was removed to eliminate

interictal activity or other pathological activity.

3.4.3 Intracranial EEG data collection

Twenty patients (nine males, 11 females; mean age 40 years with a standard deviation

of 12 years) had intracranial surface or depth electrodes implanted for the treatment of

pharmacologically intractable epilepsy (Figure 3.1A). All subjects gave informed consent to

participate under research protocols approved by the University of Pittsburgh Institutional

Review Board. Depth electrodes were produced by Ad-Tech Medical and PMT and were

0.86 and 0.8 mm in diameter, respectively. Grid electrodes were produced by PMT and

were 4 mm in diameter. Sixteen subjects had depth electrodes only, three had grids only,
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one had a combination of both.

Electrodes were localized via postoperative MRI or CT scans coregistered to the

preoperative MRI using Brainstorm [44]. Surface electrodes were projected to the nearest

point on the preoperative cortical surface automatically parcellated via Freesurfer to correct

for brainshift [45, 46]. Electrode coordinates were then coregistered via surface-based

transformations to the fsaverage template using Freesurfer cortical reconstructions.

Intracranial electroencephalography data was collected using the Natus system at 1kHz.

Notch filters at 60/120/180Hz were applied with a subsequent bandpass filter from 0.2 to

115Hz. The spatial autocorrelation between an electrode and all electrodes within 2cm of

it was then measured and regressed out to eliminate local and global artifacts, including

motion and current spread due to volume conduction. Segments of time around all seizures,

electrographic or clinical, were removed starting an hour before and an hour afterwards

before calculating coherence (Figure 3.1B). A board-certified neurologist identified the

seizure network in all but two patients, with those two patients having no recorded seizures

during their stay in the hospital.

The data was then separated into five second windows (Figure 3.1B) with coherence

computed over each window between all pairs of electrodes over five frequency bands:

theta (4-8Hz), alpha (8-12Hz), low beta (14-20Hz), high beta (20-30Hz), and gamma

(30-70Hz). Using scipy’s coherence function under default settings (version 1.9.3), we

generated coherence matrices between all pairs of electrodes at 1Hz, 2Hz, . . . ,70Hz which

were then averaged according to the five frequency bands. In summary, this generated

five connectome structures every five seconds (Figure 3.1C).

Independent component analysis was then applied using sklearn’s FastICA implemen-

tation under default settings as of version 1.2.1, and components were visually inspected

for any artifacts which were then removed. Our criteria for removal were independent

components that possessed time course activations that were clearly non-neurological
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(such as step-functions or near dirac deltas).

3.4.4 Parcellation (Figure 3.1D)

For each subject, we parcellated their electrodes into groups of tightly coherent

electrodes (Figure 3.1D). We utilized the Leiden algorithm to identify a single regional

atlas that optimized graph modularity over the entire week-long period across all five

frequency bands46. Modularity (Equation 1) was calculated separately over each network

from every five-second window with the Leiden algorithm optimizing the average modularity

across all windows and frequencies. This generated on average 10-15 parcels for each

patient.

For each subject, we parcellated their electrodes into groups of tightly coherent

electrodes (Figure 3.1D). We utilized the Leiden algorithm to identify a single regional

atlas that optimized graph modularity over the entire week-long period across all five

frequency bands [47]. Modularity was calculated separately over each network from

every five-second window with the Leiden algorithm optimizing the average modularity

across all windows and frequencies as defined in Equation 3.1. Ab,t
i,j refers to the weighted

connectivity (coherence) between electrodes i and j at time window t and frequency band

b. kb,t
i is the degree of electrode i and mb,t is the sum total of all connections at that time

and frequency. δ(ci, cj) is an identity function as to whether electrodes i and j are in the

same parcel. This process generated on average 10-15 parcels for each subject.

modularity =
∑

b∈{θ,α,βl,βu,γ}

∑
t

∑
i,j

[
Ab,t

i,j −
kb,t
i kb,t

j

2mb,t

]
δ(ci, cj) (3.1)

To assess the stability of which electrodes would be grouped into which parcels, we

separated the data into six-hour non-overlapping segments (between 18-80 segments per

subject) and found the optimal community structure for each chunk. We quantified the

similarity between each segment’s parcel definitions using the Rand Index [48] (percentage
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of electrode pairs that were parcellated equivalently under the two parcel definitions)

which almost universally returned values greater than 0.9 as illustrated in Supplementary

Figure S2, indicating that the overall parcellation was well-preserved over time, motivating

our decision to use the same parcel structure over the entire work for interpretability.

3.4.5 Autocorrelation stability (Figure 3.2)

We tested whether the autocorrelation of each parcel’s coherence would show consistent

patterns of “fastness” or “slowness” throughout the week (Figure 3.2). We split the

week-long time course for each subject into six-hour non-overlapping segments. After

removing parcels associated with the seizure network, we then took the average coher-

ence between electrodes within a single parcel for a single frequency band and then

calculated its autocorrelation up to one hour. We fit this autocorrelation curve to a

power law (autocorrelation(t) = AC1 × time−AC2) to generate two timescale parameters:

AC1 (autocorrelation strength) and AC2 (autocorrelation steepness) which described the

autocorrelation of a single parcel at a single frequency at a single time segment. For

a given frequency band, we took the timescale parameters across all parcels and time

segments and grouped the parameters by which parcel they were measured in. We used

Kruskal-Wallis ANOVA tests to show that in almost all subjects and frequency bands,

there were statistically significant differences between the group means, mostly with high

effect sizes (η > 0.12, Supplementary Figure S3).

We tested whether parcels from different anatomical regions tended to have reliable

differences in their autocorrelation across subjects using linear mixed effect models48. We

assigned each parcel to a lobe and canonical fMRI network based on its largest overlap.

Parcels with less than 60% of their electrodes belonging to the same anatomical group

were excluded for this analysis. For each parcel, we calculated the autocorrelation of its

average intra-parcel coherence for a given frequency over the entire week out to one hour

and calculated AC1 and AC2 as described above. We then averaged both parameters
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across all frequency bands.

We then chose a single pair of lobes or fMRI networks (such as frontal vs temporal)

and selected all the parcels across our subjects that fell into one of those two anatomical

groups. We used MATLAB’s fitlme (linear mixed effect model) to model each parcels

autocorrelation parameters with both the subject and the anatomical group as fixed-

effects, allowing us to determine whether one anatomical group had a reliably higher

autocorrelation parameter than the other. We repeated this for all possible pairs of

lobes/fMRI networks and used Bonferroni multiple comparisons correction to identify

pairs with significant differences (Figure 3.2B).

3.4.6 Robust principal components analysis (Figure 3.1E)

We found that many parcels tended to be highly colinear with each other as shown in

Figure S17. To reduce dimensionality, we used a modified PCA protocol to take advantage

of this finding. While the results in this manuscript still hold statistical significance

without this dimensionality reduction as shown in Supplementary Figures S12 to S16,

parcel pair-wise interactions are less interpretable due to a high degree of covariance

between them, and some classifier performance degrades due to the added noise.

We grouped parcels and frequencies that tended to covary together using random

sample consensus PCA (RANSAC-PCA) on the parcel coherences (Figure 3.1E). By

taking the average intra-parcel coherence during each time window and frequency, we

formed a (number of parcels x 5 frequency bands) by (number of time windows) 2D

matrix which we then reduced to a (number of components) by (number of time windows)

matrix using a modified PCA protocol. This identifies parcels and frequencies that tend

to strongly covary together that we could easily interpret as a single network component

feature that captures cross-frequency relationships while also reducing the dimensionality

of the original dataset to simplify further analyses.

Our modified PCA protocol uses random sample consensus to avoid PCA’s susceptibility
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to noisy outliers by attempting to exclude outliers by taking multiple small subsamples of

the data and selecting one with the fewest number of outliers to train the model [17, 49].

We generated 1000 subsamples where in each subsample, we selected six 30-minute

segments of data from each day. Outliers were defined by calculating the Mahalanobis

distance between each time window’s feature vector and each subsample’s distribution.

In each subject, we found that these distances would take on clear bifurcations between

relatively small distances and short “spikes” of extremely high distances (more than

three standard deviations) away from the mean that typically lasted for a few minutes.

We manually drew a cutoff for each subject that was approximately half the average

Mahalanobis distance of these spikes. For each subsample, we calculated the number of

outliers within the subsample, and calculated PCA over the subsample with the fewest

outliers. We utilized enough PCs to capture 90% of the variance in the dataset, generally

resulting in 12-24 networks/PCs per subject.

The network component activation of a principal component was defined as the

projection of the parcel coherences onto the principal component weights. We repeated

the same autocorrelation stability analysis described above on each network component’s

activation (Supplemental Figure S5).

3.4.7 Seizure network removal

When analyzing parcel dynamics (Figure 3.2), we excluded all parcels with electrodes

part of the seizure onset zone and early propagation as defined by a board-certified

neurologist. For network component dynamics (Figure 3.3 onwards), we first re-added

these seizure-related areas before grouping parcels and frequencies into network components

through robust principal component analysis. We then removed any network components

that were associated with the seizure network before analyzing their dynamics. More

specifically, we calculated the dot product similarity between the absolute value of a

principal component vector (normalized to a magnitude of one) and a binary vector that
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marked all electrodes that were part of the seizure network (also normalized to one). The

similarity between these two vectors indicated how anatomically similar the driving factors

of a principal component and the seizure network were to each other. A null distribution

for this similarity was formed by randomly permuting the principal component vectors,

and all principal component vectors that showed statistically significant similarity to the

seizure network (p < 0.05) were removed from all further analyses.

3.4.8 Network components show non-independent relationships

that are well-preserved over days (Figure 3.3)

We tested whether network components had reliable interactions with each other by

examining their joint distribution stability. For each pair of network components in a

subject, we divided the total range of each component’s activation into 1000 discrete bins

to generate a 1000 x 1000 grid covering the space of both components’ activation. We

calculated the empirical joint distribution of the network component pair over these bins

for each day separately. We calculated the Bhattacharyaa distance [50] between each

day’s distribution to each other as well as the distance to the expected joint distribution

if each network were independent but possessed the same marginal distribution (which we

denote the expected independent distribution). The “effect size” metric shown in Figure

3.3 is the average distance between the real distributions on different days divided by the

distance to the expected independent distribution. Using permutation testing (10k trials),

we established a null distribution for effect size if the networks were in fact independent by

randomly drawing however many days of samples we had from the expected independent

distribution and calculating the effect size over these draws. Statistical significance

was then corrected for multiple comparisons across all possible pairs of joint network

distributions using Bonferroni correction.
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3.4.9 Network component activation is tied to circadian rhythm,

heart rate, and behavior (Figure 3.4)

We tested whether we could identify combinations of network components that were

associated with neurophysiologically relevant markers. More specifically, we looked at

circadian rhythm, heart rate, and behavior.

Canonical correlation analysis (CCA) was used to identify a mixture of network

components that matched a circadian sinusoid with a period of 24 hours. The circadian

sinusoid was defined as a1cos(t/24hrs) + a2sin(t/24hrs) where a1 and a2 are constants

learned by CCA. CCA simultaneously tried to find a linear combination/weighting of

network component activations to fit to this sinusoid.

The model was trained over the first half of the week and then tested on the second

half through Pearson correlation (out of sample validation of correlation). The Pearson

R of the fit on the test dataset was calculated and then compared to a null distribution

of R that was formed via permutation tests that temporally shifted each day’s network

component activity forward or backwards by a uniform random number ranging from

0-24 hours. This preserves the autocorrelation of the neural signals while eliminating any

consistent circadian-like pattern across days.

Heart rate was assessed using collected EKG signals that were processed using heartpy

[51]. The instantaneous heart rate for any window was the average heart rate for a

30-second period centered on the window. L1-regularized regression was trained on the

first half of the week to identify a mixture of networks that predicted heart rate using

sklearn’s implementation (out of sample validation of regression). Hyper parameterization

was optimized on the training set using ten-fold cross-validation. The quality of the

fit was assessed on the remaining half via Pearson correlation with a null distribution

formed using the same permutation tests used for circadian rhythm to preserve both the

autocorrelational properties of the heart rate and neural signals.
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Video and audio recordings of the subjects from two separate angles were used to assess

the subject’s behavior over two randomly selected days via manual annotation. Digital

device usage was defined as looking at any digital screen, such as a smartphone or laptop.

Socialization was defined as verbal communication with another human being, or in one

case a canine companion, either in person or over the phone. Physical manipulation was

defined as actively grasping and interacting with any physical object or person. These

three behaviors were not mutually exclusive with one another.

Windows with the desired behavior were manually annotated on two separate days

of data. L1-regularized logistic classification was used to identify a mixture of network

components that classified each behavior independently using one day for training and the

other for testing using sklearn’s implementation (out of sample validation of classification).

Hyper parameterization was optimized on the training set using ten-fold cross-validation.

The area-under-curve of the receiver-operator-curve of each network’s ability to classify

the desired behavior was calculated.

3.4.10 Transitions in the overall brain state fall into a punctuated

equilibrium (Figure 3.5)

We examined how the overall brain state (the status of all recorded network components

in the brain) would change over time by dividing the week into “transitions”, periods

when the brain was rapidly reconfiguring itself, and “states”, periods of time where the

brain’s functional connectome appeared to be relatively stable.

In Figure 3.5A and Supplementary Figure S18, we provide evidence that the brain falls

into states and transitions by examining the “velocity” of the brain. Velocity was defined

as how much the brain’s state changed between one five-second window and the next.

More specifically we took the vector of all network activations of each window (the parcel

coherences projected into the network PCA space) and calculated the Euclidean distance

between the network activation vector of one window and the next. Speed is technically a
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more appropriate term than velocity from a kinematics perspective. However, we avoided

the term speed due to its connotation with cognitive processing speed which is unrelated

to this analysis.

We calculated the distribution of the time between windows that fell into the top 1%

of velocity and compared that distribution to Poisson distributions with λ = 0.01. The

Poisson distribution captures what the expected time between high-speed windows would

be in a memoryless process (non-autocorrelated speed). By examining whether windows

with high speed tended to cluster next to each other temporally, we show that there are

specific periods of time when the brain is quickly changing and times when the brain

is relatively static. We also tested this between windows falling within the top 10% of

velocity (λ = 0.1) and found the same result.

In Figure 3.5B, we evaluated whether state transitions were linked to behavioral

changepoints by marking out times when the participant’s behavior changed in any of the

three categories. We calculated the median time between this changepoint and the nearest

state transition (zero if the changepoint occurred during a transition). We calculated

an expected value for this metric assuming no relationship by temporally shifting the

behavioral changepoints forward or backwards by a uniform random number ranging from

0-24 hours, calculating the median time difference, and then averaging over 1000 trials.

We tested whether the real time difference between behavior changes and state changes

was consistently smaller than the expected time difference using a non-parametric t-test

across participants (paired t-test).

Next, we analyzed properties of these transitions (Figures 3.5C-E). We defined transi-

tions in two different ways to ensure our conclusions were not overly method dependent.

The transitions described in the main text figures were identified using binary segmentation

change point detection on the overall brain state. The transition trajectory was defined

as the period around a change point that possessed above-average velocity (the Euclidean

distance between the vector of all network activations from one time point to another). If
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the trajectories associated with two neighboring change points overlapped, the change

points were “merged” into one.

We replicated Figures 3.5C/D with a different trajectory definition in Supplementary

Figure S11. We calculated the velocity over the week and took the moving average

of it over a 30 second window and defined trajectories as periods of time when this

smoothed speed reached the top 20% quantile over the week. We replicated Figure 3.5E

in Supplementary Figure S11 where we found the main relationships highlighted in these

figures still held true.

In Figure 3.5C, we examined the “distance” and “displacement” of these transitions.

During a transition, we calculated the speed between each window. The distance was

the sum of those speeds. The displacement was the distance between the first window

of the transition and the last. This comparison allowed us to determine how direct the

transitions were because in a “straight line” transition, distance would equal displacement,

but if distance is much greater than displacement, then the transition is more circuitous.

In Figure 3.5D (top), we examined the distance between the paths traversed by

different transition trajectories. We calculated the distance between the start points of all

trajectories in a participant and the distance between their end points. Two trajectories

were considered to have the same starting or ending point if the distance between the

points fell into the bottom 10% of trajectory pairs. We grouped trajectories into three

groups: trajectories with the same starting and ending point, trajectories with the same

starting point only, and trajectories with the same ending point only. We calculated the

average distance between trajectories that fell into each group as a function of how much

of the trajectory has been completed. More specifically, we used linear interpolation to

determine what was the brain state 5%, 10%, 15%, 20%, . . . , 95% of the way into each

trajectory. We calculated the distance between brain states of the same percentage in

each of the three groups. Figure 5D shows the distribution of these distances for a single

participant along with the effect size of the difference between these distances across all
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participants. For effect size, for each subject individually, we calculated the Cohen’s d

between the distances between trajectories that start and end the same to the distances

between trajectories that start the same but end differently or trajectories that end the

same but start differently. This measures the number of standard deviations that separate

the distributions in the trajectory categories at different points along the trajectory. We

then calculated the standard error of these Cohen’s d across all 20 subjects. The average

Cohen’s d and these standard errors are shown in Figure 3.5D.

In Figure 3.5E, we studied whether these transitions influenced the autoregressive

prediction error and chaoticity of the brain dynamics. Our autoregressive model was

vector autoregression with the number of previous time-steps being selected using Bayesian

Information Criterion. These models were trained and evaluated using cross-validation

by “holding out” one day of data and training on the remainder of the week. The

predictive error was the average mean-squared error on the held-out day during either

transition or state dynamics. Chaoticity was defined using the 0-1 chaos test using the

protocol described in [25] and was calculated over non-overlapping ten minute segments.

In summary, we calculated the chaoticity of each network component independently

over each time segment. The chaoticity of the overall neural dynamics for a given time

segment was defined as the median chaoticity of all network components. Segments with

a transition were compared to segments without one.

The 0-1 chaos test is described in Equations 3.2-3.5. Define ϕ(n) as the network

component activation of interest at time window n for a given ten-minute segment. This

is used to “drive” the dynamical system described in Equations 3.2 and 3.3 where c is a

randomly chosen “resonance” parameter between 0 and π that remains constant during

a single “iteration” of this process. M(n) is evaluated up to an n of N/10 where N is

the number of time windows in the ten-minute segment. Kc is estimated by fitting a

straight line between the numerator and denominator of Equation 2.4 and represents the

chaoticity of a single iteration. c is redrawn 1000 times and the median Kc is defined as
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the chaoticity of the network component over the ten-minute segment.

p(n+ 1) = p(n) + ϕ(n) cos cn (3.2)

q(n+ 1) = q(n) + ϕ(n) sin cn (3.3)

M(n) = lim
n→∞

1

N

N∑
j=1

(
[p(j + n)− p(j)]2 + [q(j + n)− q(j)]2

)
(3.4)

Kc = lim
n→∞

logM(n)

log n
(3.5)

In Figure 3.5E, we analyzed the distribution of the transition size which we defined

as the net displacement of a transition and the time-between transitions. We fit power

law exponents to these distributions using MATLAB’s nlinfit function with power laws

defined as a1 × frequency−a2 where a1 and a2 are learned.

We tested whether these distributions came from power law distributions using two

methods from [52]. First, we used Kolmogorov-Smirnov (KS) tests to test whether we

failed to reject the null hypothesis that the distributions plausibly came from power laws.

We fit power law distributions to each subject’s transition size and time between transi-

tions distributions separately and calculated the KS distance between the experimental

distributions and their theoretical power law ones. We formed a null distribution on these

distances by drawing 1000 random samples from the theoretical power law distribution,

fitting a power law distribution to those samples, and then calculating the KS distance

between the sampled distribution and the fitted one. If these distances were consistently

lower than the distance between the real distribution and its estimated power law one,

then we reject the null and conclude that the distribution did not come from a power

law. We found that 17/20 subjects had transition size distributions that plausibly came

from power law distributions (p > 0.05), and 20/20 subjects had time-between transition

distributions that plausibly came from power law distributions.
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We then used likelihood comparison tests to see whether the transition size and time-

between distributions were more likely to have come from power law, exponential, or

log-normal distributions. We calculated the log-likelihood that each subject’s distributions

came from each of the three categories. We used a Wilcoxon signed-rank test to test

whether the log-likelihood of power law distributions were higher than exponential and

log-normal distributions across subjects. We found that power law distributions were more

likely than exponential (p=0.007 for transition size and p=4.8e-5 for time-between) and

more likely than log-normal (p=0.03 for transition size and p=4.8e-5 for time-between).

3.4.11 Supplemental Figures

Figure S1: The location of each subject’s electrodes in MNI coordinate space. Electrodes
with the same color come from the same participant.

In Figure 3.2A, we showed an example from two parcels that consistently had different

timescales throughout the week: e.g. a parcel with a slow timescale on one day would

remain slow on other days. In Figure S3 we quantitatively tested this across all parcels

for all subjects by taking each subject’s weeklong period and dividing it into six-hour

non-overlapping windows and asking if some parcels had consistently faster or slower

timescales across windows using ANOVA tests.

We replicated the results shown in Figure 3.2A and Figure S3 using the timescales of
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Figure S2: Parcellation stayed steady over time. We divided each subject’s data into
non-overlapping six hour blocks and computed the optimal parcellation for each block.
The Rand Index, which represents the proportional overlap between two parcellations of
electrodes, is shown between all six hour blocks for each subject. All subjects generally show
over 90% similarity between blocks, indicating that the parcellation schemes discovered
are stable over time.

network components rather than individual parcels in Figure S5.

Figures S7 to S9 show the results in Figure 3.4 for all subjects.

We replicated the findings of Figures 3.2-3.5 without using PCA to group parcels into

network components to show the robustness of our results to changes in our methods

in Figures S12 to S16. In other words, instead of seeing how the (network component

activation x 1) vector would change from window to window over the week we tested how

the coherence of each parcel at each frequency band (parcels over frequencies x 1) vector

would change over the week. We found that the main results still held true, however,

some classifier performance unsurprisingly degrades without the dimensionality reduction

provided by PCA.

We primarily show the results of using PCA in the manuscript since many parcels
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Figure S3: We assessed whether parcels had consistently different timescales using nonpara-
metric ANOVA tests. For each subject individually, we divided their weeklong time-course
into six-hour non-overlapping blocks. We calculated the autocorrelation of each parcel’s
coherence at a given frequency band (θ: theta, α: alpha, βl: low beta, βu: high beta,
γ: gamma) across all blocks. We then tested whether the parcels from a single subject
and frequency band had different autocorrelations from each other over these blocks
using a Kruskal-Wallis one-way ANOVA test. Each group in the ANOVA test was the
autocorrelations of a single parcel across all blocks, and we tested for whether there were
differences in the group means. The effect size of the ANOVA test is shown above with
asterisks marking statistically significant differences (p¡0.05). η2 effect size indicates the
percentage of variance in autocorrelation that is explained by which region autocorrelation
was measured in.
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Figure S4: To ensure we remove all network components related to the subject’s seizure
related areas, we calculated the similarity between each subject’s network component and
their seizure zones and removed any network components showing above-chance similarity.
Seizure zones were defined as any electrodes marked as part of the seizure onset zone
or early propagation. Similarity was defined as the dot product between the absolute
value of each subject’s network component and their seizure zone and is shown above
for all 20 subjects. Subjects 17 and 18 did not have any determined seizure network. A
null distribution for the dot product similarity generated by randomly permuting each
network is shown with the red line to denote statistical significance threshold (p=0.05).
All network components with significant similarity to seizure related regions were removed
for all analyses on network components (Figure 3.3 and onwards).
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Figure S5: (A) To quantify the stability of a network’s timescale in the same way we did
in Figure S3, we used a nonparametric ANOVA test to see if different six hour blocks
of a network had reliably different autocorrelation from other networks. Asterisks mark
subjects that had a statistically significant difference in the autocorrelation across their
components in either autocorrelation at one hour (AC1, blue) or autocorrelation curve
steepness (AC2, red).

tended to be highly colinear with each other as shown in Figure S17. Additionally, since

we measure each parcel’s coherence across multiple frequency bands, PCA allows us to

group parcels and frequencies with strong co-linearities into network components that

reduce the dimensionality and noise within our dataset. This also coincides with the

neuroscience definition of network: group of parcels/regions that tend to covary together.
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Figure S6: This figure shows the results in Figure 3.3B for all twenty subjects. The
effect size of the distance between the joint distribution of each pair of networks/principal
components compared to if they were independent. Non-zero effect sizes represent
statistically significant distances determined via permutation testing.
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Figure S7: This figure shows the results in Figure 3.4A for all twenty subjects. The
anatomical and frequency coverage of the mixture of network components associated with
circadian rhythm in each subject are shown above. The correlation between the circadian
sinusoid and the mixture’s activation is shown above each plot (R). Asterisks indicate
statistically significant correlations.
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Figure S8: This figure shows the results in Figure 3.4B for all subjects with recorded
EKG. The anatomical and frequency coverage of the mixture of networks associated with
heart rate (which is used as a proxy for arousal) in each participant are shown above. The
correlation between the heart rate and the mixture’s activation is shown above each plot
(R). Asterisks indicate statistically significant correlations.

Figure S9: This figure shows the results in Figure 3.4C for all subjects with annotated
video recordings. The anatomical and frequency coverage of the mixture of networks
associated with each behavior in each participant are shown above. The area-under-curve
classification accuracy of the mixture’s activation is shown above each plot (AUC).
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Figure S10: This figure shows the results in Figure 3.5D for all twenty subjects. Average
distance between pairs of transition trajectories as a function of what proportion of the
trajectory was complete. Trajectory pairs are grouped into three categories: transitions
with similar starting and ending points (1, blue) vs similar starting but different ending
points (2, red) vs different starting but similar ending points (3, yellow).
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Figure S11: We replicated the results shown in Figure 3.5 using a different method of
defining what constituted a trajectory (identifying continuous periods with high speed
rather than change point detection) to further demonstrate the robustness of our results
to analysis choices. D) We used log-likelihood tests to ask if transition size and frequency
distributions were more likely to follow power-law vs exponential or log-normal distributions
on a subject-by-subject basis. We used Wilcoxon signed ranked tests on the difference
between power law likelihood vs alternative distributions across subjects to see if power law
distributions had consistently higher likelihood. Transition size distributions were more
likely to follow power law distributions over both exponential (p=0.02) and log-normal
(p=0.001) by log-likelihood comparison tests across subjects. The time between transitions
were also more likely to be best fit by power laws (p<1e-4 in both cases).
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Figure S12: We replicated the results in Figure S6 using the original parcel coherences
without any dimensionality reduction. The effect size of the distance between the joint
distribution of each pair of parcels over the five frequency bands is compared to an inde-
pendent null. Non-zero effect sizes represent statistically significant distances determined
via permutation testing. Parcels are ordered from left to right/top to down by all the
parcels for a single frequency band and then the same parcels in identical order for the
next frequency band and so on.
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Figure S13: We replicated the findings in Figure S7 using the original parcel coherences
without any dimensionality reduction. The anatomical and frequency coverage of the
mixture of parcels associated with circadian rhythm in each participant are shown above.
The correlation between the circadian sinusoid and the mixture’s activation is shown
above each plot (R). Asterisks indicate statistically significant correlations.

Figure S14: We replicated the findings in Figure S8 using the original parcel coherences
without any dimensionality reduction. The anatomical and frequency coverage of the
mixture of parcels associated with heart rate (which is used as a proxy for arousal)
in each participant are shown above. The correlation between the heart rate and the
mixture’s activation is shown above each plot (R). Asterisks indicate statistically significant
correlations.
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Figure S15: We replicated the findings in Figure S9 using the original parcel coherences
without any dimensionality reduction. The anatomical and frequency coverage of the
mixture of parcels associated with each behavior in each participant are shown above.
The area-under-curve classification accuracy of the mixture’s activation is shown above
each plot (AUC).
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Figure S16: We replicated the findings in Figures 3.5 using the original parcel coherences
without any dimensionality reduction. A(replication of Figure 3.5B) The total distance
traveled during transitions and stable states on average for all twenty subjects, versus the
net displacement (distance from start and end state). B(replication of Figure 3.5E) We
used vector autoregression in a leave-one-day-out cross-validation test to predict the future
evolution of brain states. We found that autoregression error significantly increases during
transitions, indicating that transitions were difficult to predict. By using a 0-1 chaos test
on non-overlapping ten-minute segments of data, we demonstrated that brain signals also
demonstrated elements consistent with high chaoticity during transitions. C(replication
of Figure 3.5D) The effect size of the difference in distance between trajectories that
start/end in similar brain states vs trajectories that only start in similar states (blue) or
those that only end in similar states (red). Error bars indicate confidence bounds over
all 20 participants. D(replication of Figure 3.5B) The median time between behavioral
changepoints and the nearest neural transition point is compared to the expected time
if neural transitions occurred randomly. E(replication of Figure 3.5F) The size (net
displacement) of each transition and the time between them is shown over all participants
in log-log form. We used Wilcoxon signed ranked tests on the difference between power law
likelihood vs alternative distributions across participants to see if power law distributions
had consistently higher likelihood. Transition size distributions were more likely to follow
power law distributions over both exponential (p=0.020) and log-normal (p=0.006) by log-
likelihood comparison tests across subjects. The time between transitions were also more
likely to be best fit by power laws (p=5e-4 for exponential and p=0.007 for log-normal).
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Figure S17: The pairwise distribution between the theta coherence of all non-seizure
related parcels for a single subject.

Figure S18: The average time between windows with the top 1% or 10% of velocity across
all participants is shown in blue vs the expected time if windows of high velocity occurred
via homogenous Poisson process (λ = 0.01, 0.1). Error bars show 95% confidence intervals
across participants.
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CHAPTER 4

Default mode network emerges as a homeostatic-like

attractor over weeklong recordings of the human

brain during natural behavior and wakeful rest

In the previous chapter, I asked the question “what are some of the largest and most

basic laws that seem to govern how the brain slowly changes over time?”. While this is a

logical first-pass approach to understanding what overall patterns surround the brain’s

long term dynamics, continuous brain activity recorded over a week offers the opportunity

to analyze the brain’s dynamics over hundreds of thousands of trials of neural activity

at a finer level. Here, I investigated the primary drivers of the brain’s dynamics using

Koopman operators.

4.1 Main Findings

Studying the brain as a dynamical system has a long history that arguably started

from early electroencephalography studies on how our brain propagates excitatory and

inhibitory activity in a way that allows it to remain responsive and ever-changing without

letting its dynamics become overwhelmed with either [1, 2]. At the heart of it are models

that attempt to capture and explain the temporal evolution of the brain’s activity in a
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similar manner to how we think about the movement of celestial bodies in the solar system

[3]. Comets or planets are drawn by gravity to the central attractor of our solar system,

the sun, and through this force can achieve complex, dynamical orbits and fluctuations.

This approach has had tremendous impact on our investigations of many human

physiological systems. We understand how physiological markers such as our blood

pressure, heart rate, and blood sugar oscillate throughout each day by observing how they

tend to be drawn towards a central state. Just as how we can launch a rocket from our

planet that will temporarily achieve great heights before plummeting back to the earth’s

surface, someone’s blood sugar will spike after consuming a meal before slowly returning

back to baseline over hours due to the force of the body’s insulin production. Compared

to what is typically studied in cognitive neuroscience, most of these processes evolve on

very slow timescales. If we receive a sharp, stressful shock that causes our heart rate to

double, it can take minutes for our body to calm itself back down.

What are the primary tendencies governing the brain’s dynamics over similarly long

timescales? Here I used the dataset described in the previous chapter to learn dynamical

systems models to investigate this question. Dynamical systems theory analyzes physical

and biological systems by their behavior surrounding “critical/equilibrium points”, places

where the first derivative of the system over time is zero [4]. A canonical example would

be a ball being kicked up and down a valley of hills. When the ball is at the bottom of

a hill, it can be kicked away from its current position, but given enough time, it will be

pulled back to the bottom (attractors). When it is at the top of the hill and is kicked

away, it will do the opposite (repellers). While finding these hills and valleys is very

straightforward when studying linear systems using eigendecomposition, we have observed

in the previous chapter that many networks in the brain appear to be interacting in a

nonlinear fashion.

To solve this, I turned to an idea in ergodic theory known as Koopman operators

[5]. Koopman operators find a non-linear embedding of neural activity onto a manifold
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Figure 1: (A) I took between 3-12 days of mostly continuous neural recordings from
twenty subjects and split it into five-second-long non-overlapping windows, removing
windows around seizure activity. I grouped electrodes into data-driven networks where
the activation of each network was defined as the weighted coherence of the contained
electrodes according to a robust PCA protocol. Networks showing high similarity to the
seizure onset zone and early propagation regions were removed. (B) I learned a Koopman
representation of the brain’s dynamical state by using a recurrent neural network to
project the original network activations into a higher-dimensional “Koopman space” where
the trajectories of the brain in this space could be captured by linear laws. (C) I found
that trajectories in Koopman space more accurately predicted natural behavior than the
original network activations by selecting two days of the week, annotating the subjects’
behavior during those days, and training/testing linear classifiers to predict behavior.
Paired t-test on the average difference in AUC between the two models showed statistical
significance (p=0.006).
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where its dynamics can be easily interpreted by conventional dynamical systems analyses

(eigendecomposition) [6]. I combined this idea with Kalman filters [7] by training recurrent

neural networks to find this non-linear embedding by using the ∼200k five-second windows

of data collected for each participant. The resulting network, which is generated for

each participant separately, takes a participant’s time course of network activations and

calculates an overall summary state (a numerical vector) for each five second window that

describes the salient features of the brain up to that time (Figure 1B). This summary

state, which we call “Koopman states”, is trained to capture two properties. First, does

the Koopman state accurately capture the most recent network activations. Second, does

the Koopman state encode the necessary information to predict its own temporal evolution

using linear models.

Our first question was whether these Koopman states accurately captured “useful”

neurocognitive information. I chose nine subjects that had video recording monitoring at a

sufficient quality to determine what the subject was doing throughout at least two days of

the week. I randomly selected two days out of those with sufficient recording quality from

each subject and labeled times where the subject was watching a digital screen, socializing

with another human, or physically interacting with a held object. These three behavioral

labels were not mutually exclusive, resulting in a three by one binary label vector for

each time window. I trained L1-regularized linear classifiers on one day and then tested

them on the second day. The input to these models were either the network activation

features described in Chapter 3 or the learned Koopman states. For this analysis, the

testing day was excluded when training the Koopman model. The resulting accuracies

are shown in Figure 1C where learning these Koopman states increased the algorithm’s

capability to predict natural behavior (average AUC across all three behaviors increased

by ∼ 14%, p=0.0062 by paired t-test), indicating that they contained neurocognitively

useful information that could be accurately decoded using linear methods.

Our second question was what were the overall properties of the Koopman state
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dynamics? Linear dynamical systems are primarily studied around what systems tend

to do relative to their “critical/equilibrium points”, places where the first derivative of

the system over time is zero. Critical points are broadly either attractors (system tends

to gravitate towards moving towards these points), repellers (points the system tends to

move away from), or saddle points (combination of the two) with all three being identified

in a variety of neuroscientific contexts [8–11]. Using eigendecomposition on the Koopman

operator, I found that over all twenty subjects, their dynamics were captured by a single

central attractor (only one equilibrium point and all eigenvalues were below one). This

attractor is visualized in Figure 2A where I plot the Koopman state trajectories associated

with behavior along with this central attractor in a subspace derived from the linear

classifiers to maximize behavioral separation. Qualitatively, I describe these behavioral

trajectories as “hourglasses” where different behaviors formed separate quadrants in the

top of the hourglass, sleep formed the bottom of the hourglass, and periods where the

participant is awake but not doing any of the three annotated behaviors formed the middle

funnel of the hourglass with the attractor state.

I quantitatively verified aspects of this finding in Figure 2C by asking whether times

with no active behavior tended to be closer to the central attractor state than times with

active behavior. All quantitative analyses were done in the full Koopman representation

space, not the subspace used for visualization in Figure 2A. For each subject, I calculated

the average distance between each subject’s Koopman state and the central attractor as a

function of whether they were awake and doing one of the three behaviors, awake and not

doing any of them, or asleep. Using paired t-tests I found that times of active behavior

tended to depart further away from the attractor state compared to times where the

subject was awake but not doing any of the three behaviors (p=0.03). The comparison

between times of active behavior versus sleep was non-significant (p=0.08).

Finally, I asked whether there was a consistent neural state at this central attractor.

In other words, when the brain was at the bottom of the valley, what was it doing? Using
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Figure 2: (A) Using eigendecomposition, I found that the linear operator modeling the
brain’s temporal evolution in Koopman space (Figure 1B) was dominated by a central
attractor in all twenty subjects. I plotted trajectories associated with different behaviors in
two subjects relative to the dynamical attractor state in a Koopman subspace derived from
the linear classification coefficients in Figure 1C along with points in this subspace where
the subject is either asleep or awake with no behavior. (B) I calculated which canonical
fMRI networks and frequencies tended to be activated at the attractor state relative to
the mean activation across each subject’s functional connectome. The t-statistics of that
activation/inactivation are shown with asterisks marking significant findings (p<0.05)
post multiple comparisons correction. The dagger marks a t-statistic that is significant
independently (p=0.02) but not significant post multiple comparisons correction. (C)
I found that times where the participants were doing one of the three active behaviors
tended to depart further away from the central dynamical attractor (DMN) state relative
to times when the patient was awake but not doing any of the three behaviors (p=0.03).
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a decoder model (which is trained as part of the Koopman model to assess autoencoding

error), I asked which brain networks tended to be activated at this central Koopman

attractor state. I then projected these networks onto the six canonical fMRI networks

(default mode, salience, dorsal attention, control, somatomotor, and visual networks as

defined in [12]) in Figure 2B. I found that the default mode network was consistently

activated at low frequencies at the attractor state (p<0.01). I also found that the visual

network trended towards being deactivated at the attractor state (p=0.02), but this did

not pass multiple comparisons correction.

In summary, this central attractor state appears quite similar to what is seen during

resting state functional MRI. According to long-standing fMRI studies, when our brains

are awake but not performing an externally driven task, the brain activates a set of

regions called the “default mode network” which has commonly been denoted the “resting

state” of the human brain [13]. When our brains are instructed to perform a task, such

as recognizing faces or words in an n-back experiment, this default mode network is

deactivated while task-specific ones are activated. Since then, resting state brain activity

has turned into the standard state assessed when studying how the brain’s activity changes

during various diseases ranging from dementia, mood disorders, traumatic brain injury,

and more [14–16].

But whether this resting state is a uniquely important state of the brain has been oft

debated. [17] argues that our brains do not simply “rest” when we are told to sit in a

functional MRI scanner without specific instructions other than to not sleep or move, but

rather engages in a mind wandering and internally focused state that is arguably more

active than many explicitly driven tasks set by experimenters. Under this interpretation,

resting state brain activity is still an interesting query of brain function, albeit one that

should be renamed to “inward mindfulness”, but not one that is uniquely more central or

significant than any other state of brain activity [18].

Critically, since the Koopman states and their corresponding attractor point is calcu-
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lated purely using unlabeled neural data with no information about behavior or rest, the

default mode network emerging as a central attractor point is completely independent

of any artificially derived experimental definition of resting state. All behavioral labels

were merely used to investigate the significance of this attractor point after we found its

location. I did not define this model around the concept of resting state: I used a model

designed to determine what were the primary dynamical tendencies of the brain’s evolution

over long time periods and attraction to the default mode network during wakeful rest

was the outcome.

While this finding suggests that the default mode network fulfills a centrally important

role in the brain’s dynamics, this finding is also compatible with the shift of the default

mode network from its original definition as a uniquely important “resting state” to

being a supporter of inwardly thoughtful cognitive actions that do not involve immediate

perceptual information. At this central attractor state, we found a contrast of default

mode network activation and a trend of visual network deactivation. [19] argues that the

default mode network is anatomically isolated from the sensory periphery and centrally

connected to the output of processing streams in the brain (such as the ventral visual

stream) that are responsible for taking sensory input and converting them into abstract

information. This allows it to focus on tasks such as mentally processing memories and

experiences that had occurred in the recent past [20], understanding abstract concepts

[21], and internally directed attention [22]; all tasks that have been linked to the default

mode network but also ones that do not neatly fit into a conventional definition of “resting

state brain”.

In these analyses, while I found that the central attractor state was associated with

“wakeful rest”, I defined wakeful rest as anytime our participants were awake but not inter-

facing with a digital screen, physically manipulating some object, or socially interacting

with somebody else. In practice, this meant that from the perspective of an external

camera, they were not doing anything other than being introspective. Taking time to
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reflect on and internally wander through our varied experiences is an intrinsic part of

how humans navigate our chaotic, ever-changing environments. Studying the brain over

very long time periods in a real-world environment is a unique way to investigate that

experience.

Why would the brain possess a central tendency of moving towards an attractor state?

In most physiological systems, there is a common word for this: homeostasis. The idea

that having a resting blood pressure of 120/80 mmHg, a resting heart rate of 60− 80 bpm,

and a fasting blood sugar of 70− 100 mmol/L is in some way optimal for physiological

well-being and maintenance. That while it is possible for the body to temporarily leave

these homeostatic ranges to achieve some task, once that task is over, mechanisms in the

body take over to return systems back to homeostasis. Is an introspective state commonly

associated with mind-wandering and mindfulness the cognitive equivalent of this? Is there

an evolutionary reason why our brains still use massive amounts of metabolic energy to

be inwardly introspective when we are not actively dealing with an immediate task in our

environment instead of simply entering a “shut-off/stand-by” state [23]? Is the specific

state of default mode network activation and visual network suppression important to

fulfilling whatever that task is?

Highly-controlled, short neuroimaging experiments have demonstrated that resting

state default mode activity is perturbed with various diseases such as Alzheimer’s disease,

traumatic brain injuries, and post-traumatic stress disorder [14–16]. Under this interpreta-

tion, these perturbations may be akin to elevated baseline blood pressure following kidney

damage: a shift in homeostatic equilibrium from an optimal, desired state to new, faulty

state that can cause long-term health detriment directly stemming from its existence.

One caveat of our approach is the use of a first-order dynamical systems model of the

brain’s Koopman state. No model is ever fully accurate. However, since our model was

able to capture and predict natural behavior more accurately than using the raw features

of brain activity (Figure 1C), I believe this model does capture neurocognitively useful
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information. More broadly, this approach demonstrates a way to leverage unannotated

neural data to better learn how to predict and understand labeled data. We faced the

challenge that manually annotating video recordings for what behavior a participant was

exhibiting is time-intensive, which is why we only annotated two of the on average seven

days of data we had for each participant. This does not mean that we had to ignore

the remaining five days of data. By learning statistical representations of the data over

those days in a self-supervised fashion, we can boost the performance of our classifiers

over labeled data. In general, due to the high cost of attaining curated labeled data, this

approach has seen widespread success in AI applications ranging from computer vision

[24], voice recognition [25], and natural language models such as GPT-3 [26, 27], one

that I now extend to analyzing neural recordings in natural environments. I hope this

demonstrates the intrinsic value of unlabeled neural data, even in the absence of any plans

to directly query it.

The default mode network may not truly be a “resting state” of the brain, but these

results indicate that it still fills a unique role in the brain’s dynamics that may indicate a

form of neural cognitive homeostasis.

4.2 Methods

For the analyses described in this chapter, I started with the same network activations

over a week of recordings from twenty human subjects described and used in Chapter 3. I

then used a recurrent neural network to learn a high-dimensional representation of these

network activations where the brain’s dynamics could be captured using linear laws. This

approach falls under the class of Koopman operators, a set of approaches popularized in

nonlinear control theory.

Broadly, a Koopman operator starts by taking a set of state variables observed from a

dynamical system, x(t) ∈ Rd1×1 a vector describing the overall state of a system at time
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Figure 3: The Koopman model described in Figure 1B. xt represents the network ac-
tivations at time t. kt is the output of the encoding model as is the Koopman state
representation at time t. Here the encoding model is a recurrent neural network imple-
mented via LSTM, the decoding model is a feedforward neural network, and the Koopman
operator (A, b) is a first-order discrete differential equation.

t, and uses a non-linear transform, f to map this vector onto a point in a new space,

k(t) = f(x(t)) ∈ Rd2×1. Here the dimensionality of this new space (Koopman space), d2,

is chosen by the user. This mapping is chosen such that the dynamics of how k(t) evolves

into k(t+ 1) can be modeled well using a linear operator that can be easily interpreted be

conventional dynamical systems analyses[5].

In the past, the non-linear transform (f) was chosen according to an underlying

intuition about the system, but it in recent years, it has been shown we can learn it

instead [28, 29] Here we learn f using a recurrent neural network with the overall model

shown in Figure 3.

To describe a single forward-pass through this model, I start with xt ∈ [−c1, c2]d×1,

the network activation vector at time t (the intraparcel coherences projected onto the

robust principal components found in Chapter 3) for a single subject. This vector is

bounded between two constant values since coherence is bounded from [0, 1] and the
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network activation is simply a linear projection of these coherences through PCA. d is the

number of networks found in that subject as described in Chapter 3.

This vector is first fed into the encoder, f , which is a long short-term memory (LSTM)

unit [30, 31]. This unit maintains/updates an internal cell state ct ∈ Rl×1 which it uses to

generate an output kt ∈ (−1, 1)l×1 (Koopman state) where l is the dimensionality of the

Koopman state which we choose later on. The LSTM updates are formalized in Equations

4.1-4.6 where σg is the sigmoid function, σc is the hyperbolic tangent function. The W ’s,

U ’s, and b’s are learnable parameters. ⊙ is the Hadamard product. f, i, o ∈ (0, 1)l×1 are

forget, input, and output gates respectively.

ft = σg(Wfxt + Ufkt−1 + bf ) (4.1)

it = σg(Wixt + Uikt−1 + bi) (4.2)

ot = σg(Woxt + Uokt−1 + bo) (4.3)

c̃t = σc(Wcxt + Uckt−1 + bc) (4.4)

ct = ft ⊙ ct−1 + it ⊙ c̃t (4.5)

kt = ot ⊙ σh(ct) (4.6)

In practice, this was implemented as an LSTM in tensorflow using default settings

(tf.keras.layers.LSTM layer, kernel initializer glorot uniform, bias initializer zero, tanh

activation, sigmoid recurrent activation)[31].

I tested the output of the LSTM (Koopman state kt) to have dimensionalities ranging

from l = 0.5d, d, 5d, 10d, 20d. For the main results section, I presented everything with

an l = 10d. This was the hyperparameter I first tried with the model due to wanting a

higher dimensionality than d to function as a nonlinear kernel but not being prohibitively

high enough to prevent a future behavioral classification task. Other dimensionalities did
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not significantly change the results in general as shown in Figures 4 and 5.

kt was passed to two models during training. The first was a linear autoregression

model with learnable parameters A, b that attempted to predict the next time step’s

Koopman state as k̂t+1 = Akt + b. The autoregressive error of this is ||k̂t+1 − kt+1||22.

In other words, how well does the information encoded in kt predict its own temporal

evolution using linear methods?

I also pass kt to a decoding model (d), a feedforward neural network that takes kt

and attempts to predict xt. This ensures kt still retains information about the most

recent network activations. This loss function is defined as ||d(xt)− xt||22. The decoding

model was three layers deep with each layer containing as many units as the Koopman

state dimensionality. The weights and bias term of each layer were all learnable. This

was implemented as a feedforward neural network in tensorflow using ReLU activation

functions and default settings (tf.keras.layers.Dense layer, kernel initializer glorot uniform,

bias initializer zero)[31].

I trained all models (f, d, A, b) simultaneously according to these two loss functions. A

single training step is described in Algorithm 1.

Algorithm 1 Training step

Feed the first half hour of x1, x2, . . . , x30min into the LSTM encoder f to initialize its
internal state
Define t = 30min + 1 where xt is the time window right after the initializing half hour
Define kt−1 = f(xt−1), the output of the LSTM on the previous network activation state
Define the current error to be ϵ = 0
while t <total number of time windows do

kt ← f(xt)
x̂t ← d(kt)
ϵ← ϵ+ ||x̂t − xt||22
k̂t ← A · kt−1 + b
ϵ← ϵ+ ||k̂t − kt||22
t← t+ 1

end while
ϵ← ϵ/t+ L-1 regularization term of all learnable parameters
Update f, d, A, b according to the gradient of ϵ w.r.t learnable parameters
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In practice this was done using Python’s tensorflow Adam optimizer under default

settings (tf.keras.optimizers.Adam, learning rate 1e-3) [32]. All networks used ReLU

activation functions and L-1 regularization.

In summary, this meant to make kt into a state that captures information that allows

me to predict the future state using linear methods while still retaining enough information

to predict the most recent network activation vector.

4.2.1 Behavioral Classification (Figure 1C)

To ensure that the Koopman state representation captured neurocognitively interest-

ing information, I used them to predict the subject’s behavior. I manually annotated

participant behavior on two separate days of the week for three behaviors: watching a

digital screen, socializing with someone else, or physically manipulating an object. These

three behaviors were not mutually exclusive. I denoted one day a training day, the other

the testing day. When training the Koopman model (Figure 3), I exclude the testing day

but include the rest of the week including days that I did not annotate videos for.

Behavioral classification was done using L1-regularized logistic classifiers using Python’s

sklearn toolbox. Hyper parameterization was optimized on the training set using ten-fold

cross-validation. The area-under-curve of the receiver-operator-curve of each network’s

ability to classify the desired behavior was calculated.

Figure 4 shows the behavioral classification accuracy when the Koopman state dimen-

sionality was varied. I found that classification accuracy rose compared to the original

network activations in all cases except when the Koopman state was half the dimensionality

of the original features in which case they performed roughly equally.
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Figure 4: The classification accuracy of behavior as the dimensionality of the Koopman
state was changed. Asterisks/p-values indicate whether the average classification accuracy
across behaviors was higher when using the Koopman states as the features rather than
the original network activations by paired t-test.

4.2.2 Behavioral trajectory visualization (Figure 2A)

For visualization purposes, I chose two subjects where we could accurately predict

all three behaviors and plotted their behavioral trajectories in Koopman space. First,

I calculated a subspace where all three behaviors are separated based on the linear

classifiers determined in the previous section. The first axis (Koopman subspace 1)

was the coefficient vector found to discriminate digital screen usage by the behavioral

logistic classifier. The second axis was the part of the socialization-associated feature

vector that was orthogonal to the first axis. The third axis was the part of the physical

manipulation-associated feature vector that was orthogonal to both the first and second

axes. This is formalized in Equations 4.7 to 4.7 where w1, w2, w3 ∈ R10d×1 are the weights

found by logistic classification to predict whether a subject is doing a behavior or not

from their Koopman state.
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s1 = w1 (4.7)

s2 = w2 − (wT
2 · s1)s1 (4.8)

s3 = w3 − (wT
3 · s1)s1 − (wT

3 · s2)s2 (4.9)

I then projected the Koopman state representation from both annotated days onto

these three axes and plotted trajectories when the subjects were partaking in each behavior

along with times where the subject was not doing any of the behaviors. No quantitative

analyses were done on these projections, they were done purely for visualization.

4.2.3 Attractor state analysis (Figure 2B)

I analyzed the overall dynamical systems properties of the Koopman operator (A, b

from Figure 3). The equilibrium point of a 1-st order discrete dynamical system is shown

in Equations 4.10-4.12[33].

kt+1 = Akt + b (4.10)

keq = Akeq + b (4.11)

keq = inv(I − A) · b (4.12)

If (I − A) is full rank, there is only a single equilibrium point. In all twenty subjects,

that matrix was full rank and non-ill conditioned.

To determine whether this point was an attractor or a repulsor, I calculated the

eigenvalues of A. If the magnitude of all eigenvalues are less than one, then the equilibrium

point is an attractor (which it was for all subjects). This can be proven in Equations
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4.13-4.18 where A has eigenvectors/values Avj = λjvj and we define a perturbation away

from keq, kt = keq + ϵ. The next time step, kt+1 is modeled as,

kt+1 = Akt + b (4.13)

= A(keq + ϵ) + b (4.14)

= keq + Aϵ (4.15)

= keq +
∑
j

(
vTj λjϵ

)
vj (4.16)

||kt+1 − keq||22 =

∣∣∣∣∣
∣∣∣∣∣∑

j

(
vTj λjϵ

)
vj

∣∣∣∣∣
∣∣∣∣∣
2

2

(4.17)

< ||ϵ||22 : ϵ ̸= 0 (4.18)

While dynamical systems may have multiple critical points, this single attractor by

the Koopman operator is conventionally thought to represent the “global” behavior of

the system (e.g. a system with both an attractor and repeller will show eigenfunctions

associated with the attractor if the system gravitates towards the attractor as time

approaches infinity [6]) with the caveat that interpreting systems with more than one

critical point using Koopman operators is an active area of investigation [34].

To see what brain networks tended to be activated when the brain is at this “attractor

state”, I calculated xeq = d(keq): the output of the decoding model (which predicts xt

from kt) when given the equilibrium Koopman state representation. One important con-

sideration with this approach is that the encoder (f) takes in a time series of x1, x2, . . . , xt

to generate each kt. I only ask the decoder to return the last xt. From a neuroscience

perspective, this is asking “when the brain reaches the attractor state, what are its

networks doing right then and there?” which sufficed for the basic question I wanted to

ask. It is not a complete picture of the overall dynamics where “reaching” the attractor
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state would encompass an entire time series.

I projected the output of the decoding model, xeq onto the six canonical fMRI networks

as defined in [12] by taking the dot product between xeq ∈ Rd×1 (activation of each of

the participant’s networks at central attractor) and a transformation matrix C ∈ Rd×6.

C details the proportional overlap between each of the participant’s d networks and the

six canonical fMRI networks (e.g. did one network fall halfway in the default mode and

halfway in visual network). This resulted in a six-by-one vector for each subject, the

“fMRI attractor state” which detailed which fMRI networks were activated at this attractor.

I subtracted each subject’s fMRI attractor state vector by its mean to ask “which networks

were activated or deactivated” relative to the rest of the brain. I used t-tests on each

network activation across subjects to see if any networks were consistently activated or

deactivated with Benjamini-Hochberg for multiple comparisons correction. Two subjects

that did not have electrodes in all six canonical networks were removed from this analysis.

I repeated this process except by averaging over networks to ask if any frequencies

were activated or inactivated.

This analysis for other Koopman state dimensionalities is shown in Figure 5 where we

continue to see a general trend of default mode network activation and visual network

deactivation.

4.2.4 Active behavior departs from attractor state (Figure 2C)

For the nine subjects with video annotations, I calculated the distance between each

window’s Koopman state representation and that subject’s attractor state. I then averaged

these distances across windows based on whether the subject was doing one of the three

behaviors, awake but not doing any of the marked behaviors (which practically meant

sitting idly), and asleep. This resulted in three metrics per subject. I used paired t-tests

to ask whether the average active behavior to attractor distance was larger than the awake

non-active to attractor distance or the asleep to attractor distances across subjects.
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CHAPTER 5

Discussion

Since the discovery that we can record electrical activity from the human cortex a

century ago [1], we have learned an enormous amount about the brain by taking short

snapshots of how it reacts to highly-controlled experiments, stimuli, or rest. In Chapters

3 and 4, I presented two examples of how we can take this knowledge and contextualize it

in understanding how our brains continuously change over very long time periods in the

chaotic real-world.

In Chapter 3, I asked the question “what are some of the biggest and most basic laws

that seem to govern how the brain slowly changes over time?” We found that when we

“zoomed into” individual regions and networks of the brain, their dynamics in isolation

showed characteristic timescales and trajectories that were consistent across the week and

were related to anatomy. In other words, if during the first day of recordings, one brain

region appeared to be activating according to slow wave patterns whereas another was

activating according to sharp bursts, those patterns would remain consistent throughout

the week. Across subjects, there were consistent anatomical differences driving these

trends. Additionally, the ways that these individual actors would interact in pairs also

remained consistent over time.

When we “zoomed out” and looked at all measured networks of the brain, we found

that they fell into a punctuated equilibrium of stable states and chaotic-like transitions.
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When the brain fell into a stable state, its networks would remain relatively static for

periods lasting from minutes to hours, and we could use this information to predict what

a participant was doing during that time as well as their physiological status. When

the brain transitioned between states, this corresponded to when the participant’s own

behavior was changing (such as going from reading a book to talking with a friend).

During these transitions, instead of transferring directly from one state to another, the

brain would explore a variety of intermediate states in a chaotic-like fashion before settling

into a new stable state. Despite this seemingly unpredictable behavior however, the

overall distributions on how these transitions occurred formed remarkably consistent

power laws across subjects, indicating a fundamental shared mechanism on how this

seemingly-random exploration was driven.

In Chapter 4, I took advantage of the hundreds of thousands of neural datapoints we

could easily collect in a single participant to investigate whether there were central forces

guiding the brain’s activity. Using a recurrent neural network formulation of a Koopman

operator, I found that the brain’s overall dynamics seemed to be driven by a central

attractor state at which the brain preferentially activates the default mode network while

suppressing visual sensory ones. When the brain was engaging in active behavior (such

as interacting with a friend), the brain would leave this central attractor in predictable

trajectories before returning back to this attractor during times of wakeful rest (times

when the participant was awake but not outwardly active).

The default mode network has long been under investigation as a “resting-state baseline”

state of the brain based on the observation that individuals inside an fMRI scanner who

are told to “not do anything other than stay awake” activate that network. Since then, it

has turned into the default way to study whether brain activity is perturbed in some neural

disease: collect resting state brain activity from individuals with the disease, compare this

activity to individuals without it. This sort of data formed a significant part of the dataset

used in Chapter 1 to predict depression treatment response. It formed the entirety of the
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dataset I used to study how deep brain stimulation affects brain activity in Chapter 2.

However, in recent years cognitive neuroscientists and psychologists have increasingly

argued that “sitting inside an fMRI machine and resting” in practice turns into “think

introspectively and be internally mindful” which is arguably a very active state of cognition.

Under this interpretation, what we call “resting-state” brain activity is simply one of

many tasks (such as reading, writing, listening to music, etc.) you could ask someone to

do while recording their brain activity. What does that mean for its clinical significance?

By taking long term recordings of the brain in the natural environment and asking

what overall dynamical patterns exist, I found that something very similar to what is

seen during resting-state fMRI emerges as a central attractor point. Cognitively, we are

all bombarded with a myriad of stimuli, stressors, deadlines, new memories, and more

throughout the course of an average day. These all pull our brains in various directions to

deal with our immediate environment. But when we remove these immediate pressures

and the need to take care of a current problem or challenge in our environment, what do

our brains do? We get pulled into a state of internal focus where we sort through our

thoughts and memories.

While this has not typically been labeled as such, this is not inconsistent with a

physiological definition of homeostasis, now applied to how the brain turns its many

networks on and off. If it is a homeostatic process, then what does that mean for the

plethora of neurological and psychiatric disorders that neuroscientists have identified

resting-state activity changes in? Shifts in homeostatic equilibrium points are commonly

associated with pathology in every other organ system. There’s a reason why our blood

pressure equilibrates to roughly 120/80mmHg: it is high enough pressure to perfuse our

organs while not being so high of a pressure that our heart has to work too hard to pump

against it. Similar logic applies to our fasting blood sugar, our thyroid hormones, our

sodium levels, and more. Is activation of the default mode network while suppressing

networks capturing sensory inputs optimal for inward mindfulness? If someone with post
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traumatic stress disorder [2] or traumatic brain injury [3] has hypersensitive or injured

brain networks that push this central attractor state off balance, is that detrimental to

our long-term cognitive health by the same logic that chronic hypertension is bad for our

long-term cardiovascular health?

More broadly, I hope that these two projects demonstrate the utility of analyzing

neural signals over continuous time periods orders of magnitude slower and longer than

what is conventionally done in neuroscience. That it is possible to use this information

to understand how the brain moves in and out of different behavioral and physiological

states.

If we can learn brain transitions around behavior and physiology, then how about

understanding transitions around pathological states? Most neurological and psychiatric

disorders change on the timescales investigated in Chapters 3 and 4. Delirium, post-

traumatic stress disorder, panic attacks, dementia, and more: these are not static diseases

of the brain, they wax and wane. Patients report “good days” and “bad days”, not good

milliseconds and bad milliseconds. There must be some slow, consistent neural pattern

underlying this fluctuation. Can we detect it?

Parts of this approach have been laid out in depression treatment trials performed

in [4–6] where the authors used intracranial electrodes to capture short snapshots of

neural activity as a patient’s depression severity fluctuated over the course of a week and

correlated the two together. Together with our work, this suggests a more comprehensive

study of “how does someone’s brain slowly enter and leave a pathological state” should

be possible.

This type of approach is highly geared towards exploiting heterogeneity in disease

patterns between different patients. If the goal of cancer genotyping is to answer “what is

the difference between an individual’s healthy cells and their tumorous ones”, then the

goal of this type of study would be “what is the difference between an individual’s good
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days and bad days”. Rather than targeting every patient with a similar set of symptoms

with an identical treatment, just as we tailor cancer therapeutics to specifically target

malignant cells, we can learn to target specific, personalized temporal patterns of neural

activity.

In the past, these approaches were limited by their sample size. By looking for short

snapshots of activity during tightly controlled experiments, realistically they could only

capture a modest number of samples from each patient. [5] used roughly a few dozen

samples of neural activity spread out over seven days to correlate the power of a patient’s

neural activity at various frequencies in different electrodes to their depression severity

using linear regression. While this demonstrates the feasibility of such an approach,

the complexity of the brain’s electrophysiology goes beyond simple “high activity” or

“low activity” in an electrode: there are complex bursts, waves, and long-term temporal

patterns underlying our neural states.

Detecting these temporal patterns requires more powerful methods that require sample

sizes magnitudes in excess of what is used in conventional neuroscience paradigms. Analysis

of continuous long term brain dynamics offers a feasible way to accumulate dataset sizes

that begin to reach parity with their counterparts in other fields of machine learning.

If we had a way to record neural activity from the brain of a single participant (either

through invasive or non-invasive means) over one month, there are 2.6 million seconds

in that month. 2.6 million examples of how their brain fluctuates through all manner of

different situations, physiological states, environments, and behaviors.

Even if most of those data points lack physiologically or behaviorally interesting labels

to directly link to their neural activity, these types of datasets are commonly used for

transfer learning in other fields. The popularly known ChatGPT algorithm was developed

by taking the GPT-3 family of models which were trained on massive amounts of unlabeled

text (text that has not been assigned any “ground-truth” label by a human) and then

fine-tuned these models based on feedback from a relatively small number of human
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trainers [7, 8]. Facebook’s wav2vec voice recognition algorithm demonstrated that by first

training algorithms to generate robust statistical representations of un-transcribed speech

audio alone, they could re-train these algorithms using a miniscule amount of transcribed

speech audio to outperform state of the art algorithms using orders of magnitude less

labeled data [9]. I used a similar approach in Chapter 4 to use unannotated long-term

continuous neural recordings to learn a dynamical state representation of the brain that

better allowed us to predict and understand how the brain enters different behavioral

states such as reading a book or watching YouTube on a smartphone. In general, a variety

of methods in machine learning exist to do this ranging from pretraining, self-learning,

self-supervised learning, fine-tuning, and more [10]. This approach can become a model

for investigating neural disease.

This proposal will be enabled by recent and ongoing dramatic improvements in wireless,

wearable, and implantable technologies to collect continuous neural data in the natural

environment. Surgically embedded wireless neural electronics are beginning to show

promise, raising the possibility of collecting high-electrode intracranial data outside of the

hospital over longer periods of time than previously feasible [11, 12]. We are also seeing

constant advances in our capability to record neural data using noninvasive devices [13, 14].

These technologies have been mostly advertised as ways to implement brain-computer

interfaces for those with sensory or motor deficits by translating rapid neural fluctuations

over milliseconds to seconds into desired commands. While these are undeniably important

problems to solve in medicine, this technology also has the potential to allow us to broadly

study diseases of the brain at incredible detail over very long time periods.

I hope that this thesis can serve as an early “proof-of-concept” to demonstrate the

viability of these kinds of analyses.

140



References
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