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Abstract

Machine learning algorithms are widely used for decision-making in societally high-stakes
settings such as child welfare, criminal justice, healthcare, hiring, and consumer lending.
Recent history has illuminated numerous examples where these algorithms proved unreliable
or inequitable. This thesis proposes a principled approach to the use of machine learning in
societally high-stakes settings, guided by three pillars: validity, equity, and oversight. We
draw on methods from a variety of fields including statistics, machine learning, and the social
sciences to develop novel methods that address data challenges and complex biases embedded
in sociotechnical systems. We address data problems that challenge the validity of algorithmic
decision support systems by developing methods for algorithmic risk assessments that account
for selection bias, confounding, and bandit feedback. We conduct causal audits for bias
throughout the system in which algorithms are used to inform decision-making. Throughout
we propose novel methods that use doubly-robust techniques for bias correction. We present
empirical results in the child welfare, consumer credit lending, and criminal justice settings
using data from Allegheny County’s Department of Human Services, the Commonwealth Bank
of Australia, and the Stanford Open Policing Project.
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Introduction

Machine learning is increasingly used to make decisions in high-stakes settings, such as
child welfare, criminal justice, consumer lending, education, and healthcare (Saxena et al.,
2020; Vaithianathan et al., 2017; Raghavan et al., 2020a; Chouldechova, 2017; Cattell et al.,
2021). These decisions affect future health and economic opportunities, and in aggregate
they shape our societal structures. Often the data available for such tasks is abundant but
nonetheless noisy, biased, or incomplete. Failure to properly address these data challenges can
disproportionately harm vulnerable and historically marginalized groups (Barocas and Selbst,
2016b; Obermeyer et al., 2019a; Coston et al., 2020b, 2021a). In this thesis, we develop
statistical methodologies and a deliberation framework to identify and address data issues that
challenge the responsible use of machine learning in consequential settings.
When machine learning is used for high-stakes decision making, a common approach applies
the standard supervised learning paradigm. Under this approach, one identifies an outcome of
interest (typically a proxy for the actual outcome of interest) in the available data and builds
a predictive model for this outcome using the other variables as predictors. This standard
approach is often ill-suited when, as is common in real-world applications, the datasets are not
representative of the target population on which the machine learning tool will be deployed
and the predicted outcome can be markedly different from the outcome relevant to the
decision-making task (Mullainathan and Obermeyer, 2021; Coston et al., 2020b; Fogliato
et al., 2021; Wang et al., 2022). Moreover, the standard approach to performance evaluation
that computes test metrics on a held-out set often fails to provide a valid assessment of
performance on the target population (Kallus and Zhou, 2018b; Coston et al., 2021b).
A core principle of this thesis is that we must have alignment between what we intend to
measure (e.g., what we intend for the ML tool to predict, or what we intend for the evaluation
to assess) and what the method actually measures.This property is known as validity (Coston
et al., 2023). Unaddressed data problems such as selection bias or missing data can induce
misalignment and render machine learning tools invalid. We discuss examples of these problems
in the child welfare, criminal justice, and consumer lending settings, and we propose methods
of solution.
We demonstrate the connection between validity and our second principle, equity , which
requires that the ML tool does not unjustifiably advantage certain demographic groups over
others. We show that often it is vulnerable or historically disadvantaged populations who
are most likely to be under-represented or misrepresented in the available data. We present
methods for reliably assessing demographic biases in algorithms and for scrutinizing validity and
equity in the broader context in which the algorithmic tools are deployed. Analyzing validity

1



LIST OF TABLES

and equity effectively in practice requires tools of governance that provide safeguarding and
structure processes to carefully design and evaluate ML tools. We develop a framework to
guide deliberation around common issues that threaten the validity and legitimacy of predictive
algorithms.

The methods presented in this thesis constitute an alternative approach to the standard
machine learning paradigm for consequential decision making. Our principled approach makes
explicit the target population and target outcome, makes adjustments for any differences
between the data sample and the target population, and makes reasonable assumptions to
identify the target outcome and evaluation metrics. We develop efficient methods to estimate
these quantities using influence-function based techniques from causal inference, a discipline
that is suited to decision-making settings where the decision can change downstream outcomes.
We present theoretical analysis for our methods that informs how to appropriately quantify
uncertainty. The suite of methods proposed in this thesis comprise a toolkit for responsible
use in model construction, evaluation, and fairness assessments.

We describe the problem setting and notation in § 0.1. The subsequent three sections
consider how to obtain valid predictions, evaluations, and fairness assessments under different
assumptions on the nature of missing data. § 1 describes methods when we have measured
all confounding factors that jointly affect the decision and outcome of interest. In a number
of decision support settings, confounding factors may be difficult to measure and input into
a prediction model at runtime but may nonetheless be available in an offline dataset for
training and evaluation. § 2 provides methods for this “runtime confounding" setting. § 3
delves into issues of fairness and equity through the lens of the Rashomon effect, an empirical
phenomenon whereby a multiplicity of models achieve comparably good performance overall
but differ notably in their individual predictions. § 4 describes a framework to scrutinize
for validity in algorithmic design and ultimately to inform the decision to deploy a tool in a
high-stakes setting. Expanding our scope to the broader contexts in which algorithms are
trained and used, § 5 proposes a retrospective statistical audit for racial bias in human decisions
in the criminal justice system. The methodology we propose in this section also shows how
machine learning can be used in societally consequential domains to assess these systems and
the actors who wield power within in them. We connect the work presented in this thesis to
our three guiding principles of validity, equity, and governance.

0.1 Notation
We use Y to denote the observed outcome which we generally assume is binary except in
§ 2 which considers the more general case that Y ∈ Y ⊆ R. We let T ∈ {0, 1} denote a
binary decision of interest. We will use the terms ‘decision’ and ‘treatment’ and ’intervention’
interchangeably. In describing our proposed learning and evaluation methods, we rely on
the potential outcomes framework common in causal inference (Rubin, 2005; Neyman, 1923;
Kennedy et al., 2013). In this framework, Y t denotes the outcome under treatment t. For
any given case we only get to observe Y 0 or Y 1, depending on whether the case was treated.
We let X ∈ X ⊆ Rd denote the covariates (or features) which may include a protected or
sensitive attribute A ∈ {0, 1}. We use subscripts i to index our data; e.g., Xi are the features
for instance i. π(X) = P(T = 1 | X) denotes the propensity score, whose estimate we denote
by π̂(X). For the binary outcome setting, we use Ŷ : X 7→ {0, 1} to denote our predicted
label and f̂ : X 7→ [0, 1] to denote the predicted score which is the model’s estimate of the
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target outcome.1 We let p(x) denote probability density functions; f̂ denote an estimate of f ;
L ≲ R indicate that L ≤ C ·R for some universal constant C; I denote the indicator function;
and define ∥f∥2 :=

∫
(f(x))2p(x)dx.

1Ŷ (X) is typically obtained by thresholding f̂(X).
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Counterfactual Risk Assessments, Evaluation,
and Fairness

Much of the activity in using machine learning to help address societal problems focuses on
decision-making algorithms. In settings such as health, education, child welfare and criminal
justice, decision-making algorithms commonly take the form of risk assessment instruments
(RAIs), which distill rich case information into risk scores that reflect the likelihood of the
case resulting in one or more adverse outcomes (Chouldechova et al., 2018; Kube et al., 2019;
Ferguson, 2016; Kehl and Kessler, 2017; Stevenson, 2018; Caruana et al., 2015; Smith et al.,
2012). RAIs are typically trained and evaluated as though the task were prediction when in
reality the associated decision-making tasks are often interventions. In this chapter, we show
how RAIs trained as such typically fall short of our requirement for validity. Models trained
and evaluated in this way answer the question: What is the likelihood of an adverse outcome
under the observed historical decisions? Yet the question relevant to the decision maker is:
What is the likelihood of an adverse outcome under the proposed decision?

In order to meet requirements for validity, RAIs for these settings must be developed and
evaluated taking into account the effect of historical decisions on the observed outcomes.
Failure to do so will result in RAIs that, despite appearing to perform well according to standard
evaluation practices, are not valid predictors for the target of interest. We demonstrate the
resulting harms, showing how these RAIs underperform on cases that have been historically
receptive to intervention.

In this chapter we present an approach to address this using counterfactual risk modeling
and evaluation based on work in Coston et al. (2020b). Counterfactual modeling has been
proposed for medical RAIs (Schulam and Saria, 2017b; Shalit et al., 2017; Alaa and van der
Schaar, 2017), and prior work has used counterfactual evaluation for off-policy learning in bandit
settings (Dudík et al., 2011). However, the question of adapting counterfactual evaluation for
risk assessments and in particular for predictive bias assessments remains open. As a solution,
we propose a new evaluation method for RAIs that uses doubly-robust estimation techniques
from causal inference (Van der Laan et al., 2003; Robins and Rotnitzky, 2001). We also argue
that fairness metrics that are functions of the outcome should be defined counterfactually,
and we use our evaluation method to estimate these metrics. We theoretically and empirically
characterize the relationship between the standard fairness metrics and their counterfactual
analogues. Our results suggest that in many cases, achieving parity in the standard metric will
not achieve parity in the counterfactual metric.

In this chapter we make the following contributions: 1) We define counterfactual versions
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of standard predictive performance metrics and propose doubly-robust estimators of these
metrics (§ 1.2); 2) We provide empirical support that this evaluation outperforms existing
methods using a synthetic dataset and a real-world child welfare hotline screening dataset
(§ 1.2); 3) We propose counterfactual formulations of three standard fairness metrics that
are more appropriate for decision-making settings (§ 1.10); 4) We provide theoretical results
showing that only under strong conditions, which are unlikely to hold in general, does fairness
according to standard metrics imply fairness according to counterfactual metrics (§ 1.10); 5)
We demonstrate empirically that applying existing fairness-corrective methods can increase
disparity in the counterfactual redefinition of the metric they target (§ 1.10).

1.1 Background and Related Work

1.1.1 Counterfactual learning and evaluation
Literature on contextual bandits has considered counterfactual learning and evaluation of
decision policies. While this literature is methodologically relevant, as we discuss below, it
addresses a different problem. In the decision support setting we are considering, human users
will ultimately decide what action to take. The goal of the learning and evaluation task is not
to learn a decision policy, but rather to learn a risk model that will inform human decisions.
That is, the risk assessment task is to accurately and fairly estimate the probability of an
outcome under a given intervention.

While the underlying task is different, the statistical methods used in evaluation are related.
Swaminathan and Joachims (2015) use propensity score weighting, a form of importance
sampling, to correct for the effect of the historical treatment on the observed outcome, and
they propose learning the optimal policy based on the minimization of the propensity-score
weighted empirical risk. Propensity-score methods are a good candidate when one has a good
model of the historical decision-making policy, but may otherwise be biased. Doubly robust
(DR) methods, by contrast, are robust to parametric misspecification of the propensity score
model if instead one has the correct specification of the model of the regression outcome
E[Y |X] where Y is the outcome and X are the features/covariates (Van der Laan et al.,
2003; Robins et al., 1994; Robins and Rotnitzky, 1995). In a nonparametric setting, DR
methods have faster rates of convergence than propensity-score methods (Kennedy, 2016).
DR methods have been used for policy learning in the offline bandit setting (Dudík et al.,
2011). The policy learned minimizes a DR estimate of the loss. Their framework can also be
used to evaluate a policy by computing the DR estimate of its expected reward.

Prior work has considered counterfactual RAIs in a temporal setting (Schulam and Saria,
2017b). In this work, the trained model is evaluated on real data using the observed outcomes,
and on simulated data. Evaluating against the observed outcomes can be misleading in settings
in which treatment was not assigned randomly (see § 1.7). In our work we propose instead to
adapt DR techniques, as have been used in the bandit literature for evaluating policies, to
provide evaluations of counterfactual RAIs.

Counterfactual learning in the causal inference literature uses model selection based on DR
estimation of counterfactual loss (Van der Laan et al., 2003). Whereas this approach evaluates
counterfactual metrics implicitly, our approach does so explicitly, providing the estimators for
standard classification metrics in § 1.7.
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1.1.2 Fairness and causality
The literature on counterfactual fairness offers notions of fairness based on the counterfactual
of the protected attribute (or its proxy) (Kusner et al., 2017; Wang et al., 2019; Kilbertus
et al., 2017). In this work, a policy is considered fair if it would have made the same decision
had the individual had a different value of the protected attribute (and hence, potentially
different values of features affected by the attribute). In this setting, the treatment decision
is the outcome, and the protected attribute is the ‘treatment’. By contrast, we consider
counterfactual treatment decisions and consider a future observation to be the outcome.1

Another line of work considers unfair causal pathways between the protected attribute (or
its proxy) and the outcome variable or target of prediction (Nabi and Shpitser, 2018; Zhang
and Bareinboim, 2018b). These papers characterize or explain discrimination via path-specific
effects, which are defined by interventions on the protected attribute. We do not consider
interventions on (i.e. counterfactuals of) the protected attribute; rather, we propose methods
that account for interventions on treatment decisions in training and evaluation.

Fairness definitions based on the counterfactual of the protected attribute are not widely used
in RAI settings for two reasons: one technical and one practical. The technical challenge is
that the assumptions required to estimate these counterfactual metrics prohibit the use of
important features, such as prior history, or require full specification of the structural causal
model (SCM) (Zhang and Bareinboim, 2018a; Kusner et al., 2017, 2019) These requirements
are too restrictive for our settings of interest where we have insufficient domain knowledge
to construct the SCM and where we are unable to disregard important predictors like prior
history. More significantly, the practical concern is that these definitions are ill-suited for risk
assessment settings like child welfare screening. As we discuss in § 1.10, decisions made based
on the counterfactual protected attribute may cause further harm to the protected groups.

Our work bears conceptual similarity to the analysis of residual unfairness when there is
selection bias in the training data that induces covariate shift at test time as discussed in
(Kallus and Zhou, 2018b). In settings where cases are systematically screened out from the
training set, such as loan approvals in which we do not get to see whether someone who
was denied a loan would have repaid, they find that applying fairness-corrective methods is
insufficient to achieve parity. We consider a different but related setting in which we observe
outcomes for all cases, but these outcomes are under different treatments. We propose fairness
definitions that account for the effect of these treatments on the observed outcomes, and
analyze the conditions under which existing methods can achieve this notion of counterfactual
fairness.

Before proceeding to introduce the learning approaches and evaluation methods considered in
this work, we pause to clarify the types of risk-based decision policies to which our evaluation
strategy as presented is tailored, and provide some background on algorithm-assisted decision
making in child welfare hotline screening.

1.2 Problem Formulation and Additional Notation
RAIs typically inform human decisions either by identifying cases that are the most (or least)
risky, or by identifying cases that are the most (or least) responsive. The evaluation metrics
we consider are most directly relevant in the paradigm where human decision-makers wish to

1This distinction is also made in a survey of fairness literature (Mitchell et al., 2018).
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intervene on the riskiest cases. However, our method can readily be adapted (as discussed in
§ 1.5) for paradigms in which interventions are being targeted based on responsiveness.
The motivating application for our work is child welfare screening. Child welfare service
agencies across the nation field over 4.1 million child abuse and neglect calls each year (U.S.
Department of Health & Human Services, 2019). Call workers must decide whether to “screen
in” a call, which refers to opening an investigation into the family. The child welfare system is
responsible for responding to all cases where there is significant suspicion that the child is in
present or impending danger. The standard of practice is therefore to identify the riskiest cases.
Jurisdictions in California, Colorado, Oregon, Texas and Pennsylvania have either considered
or are using RAIs for call screening processes. The RAIs are trained on historical data to
predict adverse child welfare outcomes, such as re-referral to the hotline or out-of-home foster
care placement (Chouldechova et al., 2018). The decision to investigate a call can affect the
likelihood of the target outcomes.
Recall that we use Y t to denote the outcome under treatment t. We will take T = 0 to be the
baseline treatment, the decision under which it is relevant to assess risk. Most risk assessment
settings have a natural baseline, which is often the decision to not intervene. For instance,
in education one might wish to assess the likelihood of poor outcomes if a student is not
offered support; in child welfare it is natural to assess the risk of re-referral if the call is not
investigated. We refer to the baseline treatment as control and the not-baseline treatment as
treatment.

1.3 Standard Practice for Learning Models of Risk
In this section we introduce the standard practice for model training, which we term the
“observational” method of model training.

Observational

The observational RAI produces risk estimates by regressing Y on X for the entire observed
dataset. i.e., this RAI estimates E[Y | X]. This model answers the question: What is the
likelihood of an adverse outcome under the observed historical decisions? The observational
RAI is not a valid predictor for the likelihood of outcomes under the proposed decision.
The observational RAI is therefore ill-suited for guiding future decisions; it will, for instance,
underestimate (baseline) risk for cases that were historically responsive to treatment.

1.4 Methodology for Learning Valid Models of Risk
In this section we introduce the “counterfactual” form of model training.

Counterfactual

The counterfactual model of risk estimates the outcome under the baseline treatment. Our
counterfactual model of risk targets E[Y 0 | X]. Even though we only observe Y 0 or Y 1 for any
given observation, we may nevertheless draw valid inference about both potential outcomes
under a set of standard identifying assumptions2. These assumptions hold by design in our

2Identification is the process of using a set of assumptions to write a counterfactual quantity in terms of
observable quantities.
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synthetic dataset, and we discuss why they may be reasonable in the child welfare setting
under each point. When these assumptions hold, the counterfactual RAI is a valid predictor of
outcomes under the proposed decision.

1. Consistency: Y = TY 1 + (1− T )Y 0.
This assumes there is no interference between treated and control units. This is a
reasonable assumption in the child welfare setting since opening an investigation into
one case will not likely affect another case’s observed outcome.3

2. Exchangeability: Y 0 ⊥ T | X. This assumes that we measured all variables X that
jointly influence the intervention decision T and the potential outcome Y 0. This is an
untestable assumption but it may be reasonable in the child welfare setting where the
measured variables capture most of the information the call screeners use to make their
decision (see § 1.9 for more details).

3. Weak positivity requirement: P(π(X) < 1) = 1 requires that each example have some
non-zero chance of the baseline treatment. This can hold by construction in decision
support settings. We can filter out cases that violate this assumption since the decision
for these cases is nearly certain.4

Our assumptions identify the target E[Y 0|X] = E[Y |X,T = 0].
The counterfactual model estimates E[Y 0 | X] by computing an estimate of E[Y | X,T = 0].
We can train such a model by applying any probabilistic classifier to the control population.
Since the control population may have a different covariate distribution than the full population,
reweighing can be used to correct this covariate shift (Quionero-Candela et al., 2009). This
may be useful in a setting with limited data or where model misspecification is a concern
(Sugiyama et al., 2007).

1.5 Problem Formulation for Evaluating Models of Risk
To evaluate how well our models of risk might inform decision-making in the paradigm where
interventions should be targeted at the riskiest cases, we assess performance metrics such as
precision, true positive rate (TPR), false positive rate (FPR), and calibration.5 Since the task
is to evaluate how well the model predicts risk under a baseline intervention, we specify the
performance metrics in terms of Y 0. The target counterfactual TPR is

E[Ŷ | Y 0 = 1] (1.1)

The target counterfactual precision is

E[Y 0 | Ŷ = 1] (1.2)

The target counterfactual FPR is
E[Ŷ | Y 0 = 0] (1.3)

3We set the treatment to be the same value for all children in a family.
4Risk assessments are unnecessary for these cases since the decision-maker already knows what to do.
5In the paradigm where interventions are to be targeted at the most responsive cases, performance metrics

such as discounted cumulative gain (DCG) or Spearman’s rank correlation coefficients are more natural choices
for evaluation. DR estimates can be constructed for these metrics as well.
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A model is well-calibrated in the counterfactual sense when

E
[
Y 0 | r1 ≤ f̂(X) ≤ r2

]
≈ r1 + r2

2 (1.4)

where r1, r2 define a bin of predictions. We next describe two standard practice approaches
for evaluation, noting why these approaches do not adequately estimate the counterfactual
targets. We subsequently introduce our proposed approach for obtaining valid estimates of
the target.6

1.6 Standard Practice for Evaluating Models of Risk
Observational Evaluation

A standard practice approach evaluates the model against the observed outcomes. An obser-
vational Precision-Recall (PR) curve plots estimates of observational precision, E[Y | Ŷ = 1],
against estimates of observational TPR7, E[Ŷ | Y = 1]. An observational ROC curve plots
estimated observational TPR against estimates of observational FPR, E[Ŷ | Y = 0]. An
observational calibration curve plots our estimate of E[Y | r1 < f̂(X) < r2], the observational
outcome rate for scores in the interval [r1, r2], across intervals. The observational evaluation
answers the question: Does the RAI accurately predict the likelihood of an adverse outcome
under the observed historical decisions? This evaluation approach can be misleading since
Y ̸= Y 0. For instance, it will conclude that a valid counterfactual model of risk under baseline
performs poorly because its predictions will be systematically inaccurate for cases that are
responsive to treatment.

Evaluation on the Control Population

The standard practice counterfactual approach to evaluation computes error metrics on the
control population (Schulam and Saria, 2017b). The PR curve evaluated on the control
population plots estimates of E[Y | Ŷ = 1, T = 0] against estimates of E[Ŷ | Y = 1, T = 0],
and the ROC and calibration curve target estimands are similarly defined by conditioning
on T = 0. When the control population is not representative of the full population (i.e.
T ̸⊥ X), as is the case in non-experimental settings, this evaluation may be misleading since
E[Y | T = 0] = E[Y 0 | T = 0] ̸= E[Y 0]. A method that performs well on the control
population may perform poorly on the treated population (or vice-versa). In child welfare,
cases where the perpetrator has a history of abuse are more likely to be screened in. Since
there is more information associated with these cases, a model may be able to discriminate
risk better for these cases than on cases in the control population with little history.

1.7 Methodology for Valid Evaluations of Models of Risk
Doubly-robust (DR) Counterfactual Evaluation

We propose to improve upon the control population evaluation procedure by using DR
estimation to perform counterfactual evaluation using both treated and control cases. This
ensures that performance is assessed on a representative sample of the population. Our method

6All evaluations are computed on a test partition that is separate from the train partition
7TPR and recall are equivalent.
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estimates the counterfactual outcome for all cases and evaluates metrics on this estimate.
Other approaches such as inverse-probability weighing (IPW) or plug-in estimates could be
used for a counterfacutal evaluation, but DR techniques are preferable because they have faster
rates of convergence for nonparametric methods, and for parametric methods they are robust
to misspecification in one of the nuisance functions, which estimate treatment propensity
π(X) and the outcome regression E[Y 0 | X] (Robins et al., 1994; Robins and Rotnitzky,
1995; Kennedy, 2016). Under sample splitting and n1/4 convergence in the nuisance function
error terms, these estimates are √n-consistent and asymptotically normal. This enables us to
compute confidence intervals (see Calibration below for an example).

We first consider estimates of the average outcome under control E[Y 0]. Under our causal
assumptions in § 1.4, E[Y 0] = E[E[Y | X,T = 0]]. The plug-in estimate is:

1
n

n∑
i=1

ŝ0(Xi)

where ŝ0(X) denotes the score of our counterfactual model. The IPW estimate uses the
observed outcome on the control population and reweighs the control population to resemble
the full population:

1
n

n∑
i=1

1− Ti

1− π̂(Xi)
Yi

DR estimators8 combine the plug-in estimate with an IPW-residual bias-correction term for
the control cases:

DRY 0 = 1
n

n∑
i=1

[ 1− Ti

1− π̂(Xi)
(Yi − ŝ0(Xi)) + ŝ0(Xi)

]
(1.5)

Next we consider the counterfactual targets in Equations 1.1- 1.4. We identify the target under
our causal assumptions and then state the DR estimator. We emphasize the distinction that
f̂ is the score of any model we wish to evaluate whereas ŝ0 is the score of our counterfactual
model in § 1.4.

TPR (Recall): Counterfactual TPR is identified as

E[Ŷ | Y 0 = 1] =
E

[
Ŷ E[Y | X,T = 0]

]
E

[
E[Y | X,T = 0]

] (1.6)

.

The DR estimate for the numerator is

1
n

n∑
i=1

Ŷi

[ 1− Ti

1− π̂(Xi)
(Yi − ŝ0(Xi)) + ŝ0(Xi)

]
(1.7)

The DR estimate for the denominator is DRY 0 in Equation 1.5.
8In survey inference, this is known as the generalized regression estimator (Särndal et al., 1989).
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Precision: The target counterfactual precision is identified as

E[Y 0 | Ŷ = 1] = E[E[Y | X,T = 0] | Ŷ = 1] (1.8)

The DR estimator for precision is

1
n

∑n
i=1

[
1−Ti

1−π̂(Xi)(Yi − ŝ0(Xi)) + ŝ0(Xi)
]
I{Ŷi = 1}

P (Ŷi = 1)
(1.9)

where I denotes the indicator function.

Calibration: The target in Equation 1.4 is identified as

E
[
E[Y | X,T = 0] | r1 ≤ f̂(X) ≤ r2

]
The DR estimate for calibration is

1
n

∑n
i=1

[
1−Ti

1−π̂(Xi)(Yi − ŝ0(Xi)) + ŝ0(Xi)
]
I{r1 ≤ f̂(Xi) ≤ r2}

P (r1 ≤ f̂(Xi) ≤ r2)
(1.10)

To compute the confidence interval for this estimate, we compute the number of data points
in the bin nr = ∑n

i=1 I{r1 ≤ f̂(Xi) ≤ r2} and the variance in the bin

var(ϕr) = var
( 1− Ti

1− π̂(Xi)
(Yi − ŝ0(Xi)) + ŝ0(Xi) | r1 ≤ f̂(Xi) ≤ r2

)
.
Then we use the normal approximation to compute the interval: ±z

√
var(ϕr)

nr
where z = 1.96

for a 95% confidence interval.

FPR: The target counterfactual FPR is identified as

E[Ŷ | Y 0 = 0] =
E

[
Ŷ E[1− Y | X,T = 0]

]
E

[
E[1− Y | X,T = 0]

] (1.11)

The DR estimator for the numerator is
1
n

n∑
i=1

Ŷi

[ 1− Ti

1− π̂(Xi)
(ŝ0(Xi)− Yi) + (1− ŝ0(Xi))

]
(1.12)

For the denominator we use 1−DRY 0 where DRY 0 is in Eq 1.5.
We next present the results of these three evaluations on a synthetic dataset and our child
welfare dataset. Comparing to the true counterfactual for the synthetic data, we find that our
DR evaluation is more accurate than either the observational or control evaluations. On the
real world child welfare data, where we do not have access to all counterfactuals, we perform
a comparison to expert assessment of risk to give further credence to the conclusions from our
DR evaluation.
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1.8 Empirical Results for Evaluating Models of Risk on
Synthetic Data

We begin our empirical analysis with a synthetic dataset so that we can compare methods in
a setting where we observe both potential outcomes. We specify two groups with different
treatment propensities, but the treatment is constructed to be equally effective at reducing
the likelihood of adverse outcome (Y = 1) for both groups. We generate 100,000 data points
(Xi, Y

0
i , Y

1
i , Ti) where Xi = (Zi, Ai) and Zi ∼ N (0, 1), a normal distribution with mean

0 and variance 1. Ai ∼ Bern(0.5), a Bernoulli with mean 0.5. Y 0
i ∼ Bern(σ(Zi − 0.5))

where σ(z) = 1
1+e−z . Y 1

i ∼ Bern(cσ(Zi − 0.5)) where c = 0.1 controls the treatment effect.
Ti ∼ Bern(σ(Zi − 0.5 + kAi)) where k = 1.6 describes the bias in treatment assignment
toward group A = 1. We set Y = TY 1 + (1− T )Y 0. The base rates are E[Y ] = 0.17;
E[Y 0] = 0.4; and E[Y 1] = 0.04. The treatment rates are E[T ] = 0.55; E[T | a = 0] = 0.4;
and E[T | a = 1] = 0.71.

We use logistic regression to train both the observational model of E[Y | X] and counterfactual
model of E[Y 0 | X] as well as the propensity model of E[T | X]. Under this choice of model,
the propensity model and counterfactual model are both correctly specified, and accordingly,
the plug-in and IPW estimates are both consistent in this setting. However, in practice, there
is no way to know whether the models are correctly specified, so DR estimates are preferable
for real-world settings. We use X = (Z,A) as the features.

Figure 1.1 displays PR, ROC, and calibration curves.9 DR evaluation most closely aligns with
the true counterfactual evaluation. Notably, the observational evaluation suggests that the
observational model outperforms the counterfactual model whereas the true counterfactual
evaluation shows the counterfactual model performs better.

1.9 Empirical Results for Evaluating Models of Risk on
Real-world Child Welfare Data

We also apply counterfactual learning and evaluation to the problem of child welfare screening.
The baseline intervention is screen-out (which means no investigation occurs). The data
consists of over 30,000 calls to the hotline in Allegheny County, Pennsylvania, each containing
more than 1000 features describing the call information as well as county records for all
individuals associated with the call. The call features are categorical variables describing the
allegation types and worker-assessed risk and danger ratings. The county records include
demographic information such as age, race and gender as well as criminal justice, child
welfare, and behavioral health history. The outcome is re-referral within a six month period.
Our approach contrasts to prior work which used placement out-of-home as the outcome
(Chouldechova et al., 2018; De-Arteaga et al., 2018). This outcome is only observed for cases
under investigation; therefore it cannot be used to identify Y 0, the risk under no investigation.

We use random forests to train the observational and counterfactual risk assessments as well
as the propensity score model. We used reweighing to correct for covariate shift but did
not observe a boost in performance, likely because we have sufficient data and we used a
nonparametric model.

9The code for this analysis is given in https://github.com/mandycoston/counterfactual
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(c) Calibration curves. 95% pointwise confidence bounds shown.

Figure 1.1: Synthetic data results for several approaches to evaluating risk assessments.
Our evaluation (DR) most accurately represents the true counterfactual evaluation. The
observational evaluation erroneously suggests the observational model performs better than
the counterfactual model because it evaluates against observed outcomes which includes units
whose risk was mitigated by treatment. The control evaluation produces inaccurate curves
because it does not assess how well the models perform on the treated population. (See § 1.8
for details)
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We present the PR, ROC and calibration curves for the child welfare screening task in
Figure 1.2. The observational evaluation suggests that the observational model performs
better. The control evaluation suggests that the counterfactual and observational models
of risk perform equally well. Our DR evaluation suggests the counterfactual model has
both better discrimination and calibration in estimating the probability of re-referral under
screen-out. In Figure 1.2c, the observational evaluation suggests that the observational model
is well-calibrated whereas the counterfactual model is overestimating risk; this is expected
because the counterfactual model assesses risk under no investigation whereas the observed
outcomes include cases whose risk was mitigated by child welfare services. The control
evaluation suggests that the two models are similarly calibrated. The DR evaluation shows
that the counterfactual model is well-calibrated and the observational model underestimates
risk. This makes intuitive sense because the observational model is not accounting for that
fact that treatment likely reduced risk for the screened-in cases.
We see further evidence that the observational model performs poorly on the treated population
in the drop in ROC curves between the control evaluation and DR evaluation in Figure 1.2b.
Deploying such a model would mean failing to identify the people who need and would benefit
from treatment. The observational and control evaluations do not show this significant
limitation; DR evaluation is the only evaluation that illustrates the poor performance of the
observational model on the treated population.
We also evaluate the different models according to whether they are equally predictive, in the
sense of being equally well calibrated, across racial groups. Research suggests child welfare
processes may disproportionately involve black families (Dettlaff et al., 2011). Here we ask
whether the observational or counterfactual model is more equitable. We compare calibration
rates by race in Figure 1.3. The observational evaluation suggests that the counterfactual
model of risk is poorly calibrated by race. The DR evaluation shows that the counterfactual
model is well-calibrated by race and indicates that the observational model underestimates
risk on both black and white cases.
Overall the observational evaluation suggests that the observational model performs better
whereas the DR evaluation suggests the counterfactual model performs better. Since we do
not have access to the true counterfactual to validate these results, we further consider how
well the models align with expert assessment of risk.

Expert Evaluation

At various stages in the child welfare process, social workers assign treatment based on their
assessment of risk. Social workers sequentially make three treatment decisions:

1. Whether to screen in a case for investigation;

2. Whether to offer services for a case under investigation; and

3. Whether to place a child out-of-home after an investigation.

Assuming that social workers are competent at assessing risk, we expect the group placed
out-of-home (3) to have the highest risk distribution, followed by the group offered services
(2), followed by those screened in, and finally we expect the screened out group to have the
lowest risk. Figure 1.4 shows that the counterfactual model exhibits this expected behavior
whereas the observational model does not. The observational model assesses the screened
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(c) Calibration curves. 95% pointwise confidence bounds shown.

Figure 1.2: Child welfare results for several approaches to evaluating risk assessments. Our
evaluation (DR) is the only method that exposes the poor performance of the observational
model on treated cases. The control evaluation suggests the two models perform similarly
on cases that did not receive treatment. The observational evaluation would suggest the
observational model has better discrimination and calibration than the counterfactual model
because it evaluates against the observed outcomes which include cases whose risk was likely
mitigated by child welfare services.(See § 1.9 and 1.9 for details)
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Figure 1.3: Calibration curves by race for child welfare data. The counterfactual model
is well-calibrated by race according to the control and DR evaluations but shows inequities
according to the observational evaluation because black cases were more likely to get treatment
which mitigates risk (see § 1.9 for more details). The observational model is poorly calibrated
for both black and white cases according to the DR evaluation.

out population to have more high risk cases than any other treatment group. This suggests
that the observational model may be underestimating risk on the treated groups (investigated,
services, and placed) since it fails to account for any risk-mitigating effects of these treatments.
The observational model underestimates risk on those who were assigned effective treatments.
These cases should be assigned treatment, but the observational model would suggest that
they are low risk and should be screened out.
Such a mistake can have cascading effects downstream. We are particularly concerned about
screening out cases that, had they been screened in, would have been accepted for services
or placed out-of-home. Figure 1.5 shows the recall for placed cases and serviced cases as we
vary the proportion of cases classified as high-risk. This plot shows that at any proportion the
counterfactual model has significantly higher recall for both services and placement cases. In
particular, at the 0.5 proportion (which is the rate of screen in), the counterfactual model
screens in 74% of cases that were placed whereas the observational model only screens in 53%.
At the 0.5 proportion the counterfactual model screens in 69% of cases that were accepted for
services versus 31% for the observational model.

Task adaptation: Predicting Placement

Another way to evaluate the models is to assess their performance on related risk tasks. While
the counterfactual risk models E[Y 0|X], we can assess how well it estimates E[Y 1|X], which
is the risk under investigation. If we have reason to believe there will be common risk factors
for risk under no investigation and risk under investigation, then we expect our model to
perform well on this task. We use placement out-of-home, an adverse child welfare outcome
that is observed for cases under investigation.
Table 1.1 shows the area under the ROC and PR curves for the placement task. The
observational model performs worse than a random classifier, whereas the counterfactual
model shows some degree of discrimination. This suggests that the counterfactual model is
learning a risk model that is useful in related risk tasks whereas the observational model is not.
The comparison to expert assessment of risk and the performance on a downstream risk task
support the conclusions of our DR evaluation: the counterfactual model outperforms the
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Figure 1.4: Child welfare risk distributions by treatment type for counterfactual and observa-
tional risk models. We expect risk to increase with the severity of treatment assigned, with
‘Placed’ out-of-home having the highest risk distribution and ‘Screened out’ of investigation
having the lowest (see § 1.9). The counterfactual model displays this expected trend whereas
the observational model does not. The observational model underestimates risk on cases
where child welfare effectively mitigated the risk
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Figure 1.5: Recall of the counterfactual and observational risk models for downstream child
welfare decisions. At current screen-in rates (0.5), the observational model would screen out
nearly 50% of very high risk cases that were placed out-of-home. The counterfactual model
has higher recall at 73%. The gap is even larger for cases that were accepted for services.
(See § 1.9).

observational model. In decision-making contexts, failure to account for treatment effects
can lead one to the wrong conclusions about model performance, even potentially leading to
the deployment of a model that underestimates risk for those who stand to gain most from
treatment. In the next section, we consider how failure to account for treatment effects can
impact fairness.

1.10 Problem Formulation for Algorithmic Fairness
Standard observational notions of algorithmic fairness are subject to the same pitfalls as
observational model evaluation. In this section we propose counterfactual formulations of
several fairness metrics and analyze the conditions under which the standard (observational)
metric implies the counterfactual one.
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1.11. Theoretical Results for Algorithmic Fairness

Observ. model Counterfact. model Random
AUROC 0.48 (0.46,0.49) 0.62 (0.61,0.63) 0.50

AUPR 0.13 (0.11,0.14) 0.18 (0.16,0.19) 0.14

Table 1.1: Empirical analysis of whether the models of re-referral risk transfer to related risk
tasks in the child welfare domain. This table presents the area under ROC and PR curves
using the models of re-referral risk to predict a related risk task, out-of-home placement (95%
confidence intervals given in parentheses). The observational model performs worse than a
random classifier. The counterfactual model performs better; it learns a model of risk that
transfers to related risk tasks whereas the observational model does not. (See § 1.9)

We motivate the importance of defining these metrics counterfactually with an example.
Suppose teachers are assessing the effectiveness and fairness of a model that predicts who is
likely to fail an exam which they intend to use to assign tutoring resources. Suppose anyone
tutored will pass. The tutoring session conflicts with girls’ sports practice so only male students
are tutored. A model that perfectly predicts who will fail without the help of a tutor will have
a higher observational FPR for men than women because some male students were tutored,
which enabled them to pass. It would be wrong to conclude that this model is unfair with
regards to FPR. Someone who would have been high-risk had they not been treated but whose
risk was mitigated under treatment should not be considered a false positive. Failure to make
this distinction could lead to unfairness, not only in settings where the treatment assignment
varies according to the protected attribute but also in settings where the risk under treatment
varies according to the protected attribute, as we can see in the next example.

Suppose that the classroom next door is also evaluating the model. This classroom offers
tutoring during lunch so girls and boys both can attend; however they hired a tutor who
happens to only be effective in preparing male students to pass. The teachers don’t know this
and randomly assign this tutor to students regardless of gender. The model that perfectly
predicts who will fail without a tutor has a higher observational FPR for men, but as before, it
is wrong to conclude that the model is unfair with regards to FPR.

We distinguish our notion of counterfactual fairness from prior work which considered counter-
factuals of the protected attribute (Kusner et al., 2017; Kilbertus et al., 2017; Wang et al.,
2019), an approach which is counterproductive in our settings of interest. Consider a female
student who is at high risk of failing because of gender discrimination at home or in the
classroom e.g. parents or previous teachers have not given her the support they would have
had she been male. Treating this student "counterfactually as if she had been male all along"
may suggest that we should not assign this student a tutor. In fact we must assign her a tutor
in order to correct historical discrimination. Similar arguments can be made in settings like
child welfare screening and loan approvals.

1.11 Theoretical Results for Algorithmic Fairness
For three definitions of fairness (parity), we show that observational parity implies counterfactual
parity if and only if a balance condition holds. We further show that an independence condition
is sufficient for observational parity to imply counterfactual parity. We discuss why it is
generally unlikely that the independence condition holds and even more unlikely that the finer
balance condition holds when the independence condition fails.
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Base Rate Parity

Base rate plays a core role in statistical definitions of fairness (also known as group fairness).
Base rate parity is similar to the fairness notion of demographic parity, which requires Ŷ ⊥ A
(Dwork et al., 2012a; Calders et al., 2009; Zafar et al., 2015). In § 1.12, we perform empirical
analysis on a fairness corrective method that targets base rate parity in order to encourage
demographic parity (Kamiran and Calders, 2012). A related fairness notion, prediction-
prevalence parity, requires E[Y | a] = E[Ŷ | a]. Satisfying both prediction-prevalence parity
and demographic parity requires parity in the base rates. We distinguish observational base
rate parity (oBP) Y ⊥ A from counterfactual base rate parity (cBP), which requires Y 0 ⊥ A,
where Y 0 is the potential outcome under the baseline treatment.

Theorem 1.11.1 (Base Rate Parity). Assume P (T = 0 | y0, a) ̸= 0. If oBP holds, then cBP
holds if and only if the following balance condition holds.

Condition 1.11.0.1 (balBP).

P (Y 1 = y)P (T = 1 | Y 1 = y)− P (Y 1 = y | a)P (T = 1 | Y 1 = y, a)

= P (Y 0 = y)
(
P (T = 1 | Y 0 = y)− P (T = 1 | Y 0 = y, a)

) (1.13)

BalBP holds under the following independence conditions, which provide sufficient conditions
for oBP to imply cBP.

Condition 1.11.0.2 (indBP).

T ⊥ A | Y 0

(Y 1, T ) ⊥ A
(1.14)

It is unlikely that indBP (1.14) holds in many contexts. In settings such as child welfare
screening and criminal justice, research suggests that even when controlling for the true risk,
certain races are more likely to receive treatment (Dettlaff et al., 2011; Alexander, 2011;
Mauer, 2010). indBP cannot hold in these settings since T ̸⊥ A | Y 0. Even in settings where
there is no such bias, indBP will not hold if the risk distributions under treatment vary by
protected attribute since indBP requires that Y 1 ⊥ A. indBP also requires T ⊥ A | Y 1,
which forbids discrimination in treatment assignment when controlling for risk under treatment.
If indBP does not hold, it is possible that balBP (1.13) still holds if the conditional and
marginal probabilities are such that all terms in Condition 1.13 exactly cancel; however there
is no semantic reason why this should hold. Theorem 1 assumes P (T = 0 | y0, a) ̸= 0, a
mild positivity-like assumption that holds in all settings that are suitable for algorithmic risk
assessment. Violations of this assumption indicate either completely perfect or imperfect
treatment assignment historically for a demographic group.

Proof of Base Rate Necessary Condition. By consistency Y = TY 1 + (1− T )Y 0. Then we
have P (Y = y) =

P (Y 1 = y)P(T = 1 | Y 1 = y) + ¶(Y 0 = y)P (T = 0 | Y 0 = y)

Likewise for P (Y = y | a) =

P (Y 1 = y | a)P (T = 1 | Y 1 = y, a) + P (Y 0 = y | a)P (T = 0 | Y 0 = y, a)
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By oBP, P (Y = y) = P (Y = y | a). We assume cBP holds so P (Y 0 = y) = P (Y 0 = y | a).
Then, we have

P (Y 1 = y)P (T = 1 | Y 1 = y)− P (Y 1 = y | a)P (T = 1 | Y 1 = y, a)

= P (Y 0 = y)
(
P (T = 1 | Y 0 = y)− P (T = 1 | Y 0 = 0, a)

)

Proof of Base Rate Parity Sufficiency.

P (Y = 1 | a) = P (TY 1 + (1− T )Y 0 = 1 | a)
= P (TY 1 = 1) + P

(
(1− T )Y 0 = 1 | a

)
where the first line used consistency and the second line applied linearity of expectation and
(Y 1, T ) ⊥ A. By oBP, P (Y = 1) = P (Y = 1 | a), so it must be true that

P
(
(1− T )Y 0 = 1

)
= P

(
(1− T )Y 0 = 1 | a

)
=⇒ (T, Y 0) ⊥ A

=⇒ Y 0 ⊥ A

Predictive parity

Base parity and demographic parity may be ill-suited for settings where base rates differ by
protected attribute due to disparate needs. Here we may instead desire parity in an error
metric, such as precision. Positive predictive parity requires the precision (also known as
positive predictive value) to be independent of the protected attribute, and negative predictive
parity requires the negative predictive value to be independent of the protected attribute
(Chouldechova, 2017; Kleinberg et al., 2016). We define observational Predictive Parity (oPP)
as Y ⊥ A | Ŷ = ŷ and counterfactual Predictive Parity (cPP) as Y 0 ⊥ A | Ŷ = ŷ where
ŷ = 0 corresponds to negative predictive parity and ŷ = 1 corresponds to positive predictive
parity.

Theorem 1.11.2 (Predictive Parity). Assume P (T = 0 | y0, a, ŷ) ̸= 0. If oPP holds, then
cPP holds if and only if the following balance condition holds.

Condition 1.11.0.3 (balPP).

P (Y 1 = y | ŷ)P (T = 1 | Y 1 = y, ŷ)
− P (Y 1 = y | a, ŷ)P (T = 1 | Y 1 = y, a, ŷ)

= P (Y 0 = y | ŷ)
(
P (T = 1 | Y 0 = y, ŷ)− P (T = 1 | Y 0 = y, a, ŷ)

) (1.15)

BalPP is satisfied under the following independence conditions, which provide sufficient
conditions for oPP to imply cPP.

Condition 1.11.0.4 (indPP).

T ⊥ A | Y 0, Ŷ

(Y 1, T ) ⊥ A | Ŷ
(1.16)
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IndPP will not hold in many settings. Note that (Y 1, T ) ⊥ A | Ŷ ⇐⇒ T ⊥ A | Y 1, Ŷ and
Y 1 ⊥ A | Ŷ . Conditions T ⊥ A | Y t, Ŷ require Ŷ to contain all the information that A tells
us about treatment assignment that is not contained in Y t. Since Ŷ is typically trained to
predict Y and not T , it is quite unlikely that these conditions will hold in settings where there is
bias in treatment assignment even when controlling for true risk. Condition Y 1 ⊥ A | Ŷ allows
differences in the risk distribution under treatment if we can fully explain these differences with
Ŷ . In the best case Ŷ ≈ Y , but it is unlikely that the observed outcome, which is not causally
well-defined, would explain differences in the risk distribution under treatment. As above, even
if indPP does not hold, balPP may hold but it is difficult to reason why this should hold in
any setting. Like Theorem 1, Theorem 2 also assumes a mild positivity-like assumption that is
reasonable in risk assessment settings.
The proofs use the same techniques as for base rate parity.

Equalized odds

In settings where TPR and FPR are more important than predictive value, we may desire
parity in TPR and FPR, a fairness notion known as Equalized Odds (Hardt et al., 2016b). Let
observational Equalized Odds (oEO) require that Ŷ ⊥ A | Y and counterfactual Equalized
Odds (cEO) require that Ŷ ⊥ A | Y 0.

Theorem 1.11.3 (Equalized Odds). Assume P (Y = y | a) ̸= 0 and P (T = 0 | y0, a, ŷ) ̸= 0.
If oEO holds, then cEO holds if and only if the following balance condition holds. .

Condition 1.11.0.5 (balEO).

P (Ŷ = 1 | Y 1 = y)P (T = 1 | Ŷ = 1, Y 1 = y)P (Y 1 = y)
P (Y = y)

− P (Ŷ = 1 | Y 1 = y, a)P (T = 1 | Ŷ = 1, Y 1 = y, a)P (Y 1 = y | a)
P (Y = y | a)

= P (Ŷ = 1 | Y 0 = y)
P (T = 0 | Ŷ = 1, Y 0 = y, a)P (Y 0 = y | a)

P (Y = y | a)

− P (T = 0 | Ŷ = 1, Y 0 = y)P (Y 0 = y)
P (Y = y)



(1.17)

The balance condition is satisfied under the following independence conditions, which comprise
sufficient conditions for oEO to imply cEO.

Condition 1.11.0.6 (indEO).

Y ⊥ A

Y 0 ⊥ A

T ⊥ A | Ŷ , Y 0

(Y 1, Ŷ , T ) ⊥ A

(1.18)

The first two conditions of indEO require oBP and cBP, so indEO requires balBP to hold.
In settings where there is discrimination in treatment assignment even when controlling for
true risk, indEO is unlikely to hold. Even if there is no such discrimination, indEO will not
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hold if there are differences in the risk distributions under treatment since the last condition
of 1.18 requires Y 1 ⊥ A. indEO requires further conditions such as parity in the TPR/FPR
against the outcome under treatment. If these conditions are not met, oEO could imply cEO
if balEO holds, but it is difficult to reason about why this would hold for a setting when
the independencies do not. Theorem 3 assumes two mild assumptions: the positivity-like
assumption of Theorem 2 and P (Y 0 = y | a) ̸= 0.

Proof that BalEO is Necessary and Sufficient. We first expand P (Ŷ = 1 | Y = y)

= P (Ŷ = 1, Y = y)
P (Y = y)

= P (Ŷ = 1, Y 1 = y, T = 1) + P (Ŷ = 1, Y 0 = y, T = 0)
P (Y = y)

(1.19)

which we can further expand to get P (Ŷ = 1 | Y = y)

= P (T = 1 | Ŷ = 1, Y 1 = y)P (Ŷ = 1 | Y 1 = y)P (Y 1 = y)
P (Y = y)

+ P (T = 0 | Ŷ = 1, Y 0 = y)P (Ŷ = 1 | Y 0 = y)P (Y 0 = y)
P (Y = y)

(1.20)

Since oEO holds by assumption, then P (Ŷ = 1 | Y = y) = P (Ŷ = 1 | Y = y, A = a). Using
the expansion in Equation 1.20, we have

P (T = 1 | Ŷ = 1, Y 1 = y)P (Ŷ = 1 | Y 1 = y)P (Y 1 = y)
P (Y = y)

+ P (T = 0 | Ŷ = 1, Y 0 = y)P (Ŷ = 1 | Y 0 = y)P (Y 0 = y)
P (Y = y)

= P (T = 1 | Ŷ = 1, Y 1 = y, a)P (Ŷ = 1 | Y 1 = y, a)P (Y 1 = y | a)
P (Y = y | a)

+ P (T = 0 | Ŷ = 1, Y 0 = y, a)P (Ŷ = 1 | Y 0 = y, a)P (Y 0 = y | a)
P (Y = y | a)

(1.21)

Rearranging gives

P (Ŷ = 1 | Y 1 = y)P (T = 1 | Ŷ = 1, Y 1 = y)P (Y 1 = y)
P (Y = y)

− P (Ŷ = 1 | Y 1 = y, a)P (T = 1 | Ŷ = 1, Y 1 = y, a)P (Y 1 = y | a)
P (Y = y | a)

= −P (Ŷ = 1 | Y 0 = y)P (T = 0 | Ŷ = 1, Y 0 = y)P (Y 0 = y)
P (Y = y)

+ P (Ŷ = 1 | Y 0 = y, a)P (T = 0 | Ŷ = 1, Y 0 = y, a)P (Y 0 = y | a)
P (Y = y | a) .

(1.22)
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Necessary For oEO to imply cEO, both conditions must hold. By cEO, P (Ŷ = 1 | Y 0 =
y) = P (Ŷ = 1 | Y 0 = y, A = a) which would imply that

P (Ŷ = 1 | Y 1 = y)P (T = 1 | Ŷ = 1, Y 1 = y)P (Y 1 = y)
P (Y = y)

− P (Ŷ = 1 | Y 1 = y, a)P (T = 1 | Ŷ = 1, Y 1 = y, a)P (Y 1 = y | a)
P (Y = y | a)

= P (Ŷ = 1 | Y 0 = y)
P (T = 0 | Ŷ = 1, Y 0 = y, a)P (Y 0 = y | a)

P (Y = y | a)

− P (T = 0 | Ŷ = 1, Y 0 = y)P (Y 0 = y)
P (Y = y)



(1.23)

Sufficient In addition to oEO, we assume balEO holds. From oEO we have equation 1.22
and balEO is equation 1.23. The left-hand sides of equations 1.22 and 1.23 are the same so
by the transitive property,

− P (Ŷ = 1 | Y 0 = y)P (T = 0 | Ŷ = 1, Y 0 = y)P (Y 0 = y)
P (Y = y)

+ P (Ŷ = 1 | Y 0 = y, a)P (T = 0 | Ŷ = 1, Y 0 = y, a)P (Y 0 = y | a)
P (Y = y | a)

= P (Ŷ = 1 | Y 0 = y)
P (T = 0 | Ŷ = 1, Y 0 = y, A = a)P (Y 0 = y | a)

P (Y = y | a)

− P (T = 0 | Ŷ = 1, Y 0 = y)P (Y 0 = y)
P (Y = y)



(1.24)

Simplifying gives

P (Ŷ = 1 | Y 0 = y, a)P (T = 0 | Ŷ = 1, Y 0 = y, a)P (Y 0 = y | a)
P (Y = y | a)

= P (Ŷ = 1 | Y 0 = y)
P (T = 0 | Ŷ = 1, Y 0 = y, a)P (Y 0 = y | a)

P (Y = y | a)

 (1.25)

Assuming P (T = 0 | Ŷ = 1, y0, a) ̸= 0 and P (Y = y | a) ̸= 0, then we conclude that
P (Ŷ = 1 | Y 0 = y, a) = P (Ŷ = 1 | Y 0 = y) =⇒ cEO

indEO Sufficiency The following conditions are sufficient for oEO to imply cEO:

Y ⊥ A

Y 0 ⊥ A

T ⊥ A | Ŷ , Y 0

(Y 1, Ŷ , T ) ⊥ A

(1.26)
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1.12. Empirical Results for Algorithmic Fairness on Synthetic Data
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Figure 1.6: Counterfactual and observational base rates before and after applying a fairness-
corrective method that reweighs training data (§ 1.12). X-axis controls the bias of treatment
assignment toward group A = 1. Before reweighing (“Original"), counterfactual base rates
are equal (cBP holds), but observational base rates are different (oBP doesn’t hold) for k > 0
since group A = 1 is more likely to get treated. Reweighing achieves oBP but cBP no longer
holds.

Proof of indEO Sufficiency. By contraction, the indEO conditions are equivalently written as
Ŷ ⊥ A | Y 1; Y ⊥ A; Y 1 ⊥ A; Y 0 ⊥ A; T ⊥ A | Ŷ , Y 0; T ⊥ A | Ŷ , Y 1. Under these
assumptions, both sides of Equation 1.23 are 0, so the balEO condition holds under these
independencies. Since balEO is sufficient, then indEO is sufficient for oEO to imply cEO.

Our theoretical analysis suggests that in many settings equalizing the observational fairness
metric will not equalize the counterfactual fairness metric. We conclude by noting that the
theorems hold when conditioning on any feature(s) ⊆ X, and in this context, these theorems
are relevant to individual notions of fairness.

1.12 Empirical Results for Algorithmic Fairness on
Synthetic Data

We empirically demonstrate that equalizing the observational metric via fairness-corrective
methods can increase disparity in the counterfactual metric on the synthetic data described in
§ 1.8.10

Reweighing

One approach to encourage demographic parity reweighs the training data to achieve base
rate parity (Kamiran and Calders, 2012). Figure 1.6 shows that without any processing
(“Original"), the counterfactual base rates are equal while the observational base rates show
increasing disparity with K. Reweighing applied to the observational outcome achieves oBP
but induces disparity in the counterfactual base rate. Theorem 1.11.1 suggested this result:
For k > 0, A ̸⊥ T | Y 0; then it is unlikely that oBP implies cBP.

10We do not perform this empirical analysis on the child welfare data since it is balanced in terms of base
rates and FPR/TPR with respect to race.
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Group Method cGFNR cGFPR oGFNR oGFPR
A=1 Original 0.50 0.33 0.58 0.39
A=0 Original 0.50 0.33 0.56 0.39
A=1 Post-Proc. 0.58 0.30 0.63 0.35
A=0 Post-Proc. 0.64 0.34 0.63 0.35

Table 1.2: Empirical results on synthetic data show that post-processing methods to achieve
parity in standard group fairness metrics can induce unfairness in the counterfactual fairness
metric. This table gives the counterfactual and observational generalized FNR/FPR before and
after post-processing to equalize odds (§ 1.12) using threshold = 0.5. Before post-processing
(“Original"), the counterfactual generalized rates (cGFNR and cGFPR) are the same for both
groups. Post-processing equalizes the observational rates (oGFNR and oGFPR) but induces
noticeable disparity in both cGFNR and cGFPR.
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Figure 1.7: Counterfactual ROC curves before and after post-processing to equalize odds
(§ 1.12). Before post-processing, ROC curves are identical for both groups, indicating that
counterfactual equalized odds (cEO) holds. Post-processing induces imbalance, harming group
A = 0 and compounding initial unfairness in treatment assignment.

Post-processing for equalized odds

We evaluate a method that modifies scores to achieve a generalized version of equalized odds
(Pleiss et al., 2017; Hardt et al., 2016b).11 This method targets parity in the generalized
FNR/FPR, where GFPR is E[f̂(X) | Y = 0] and GFNR is E[1− f̂(X) | Y = 1]. We refer
to these observational rates as oGFPR/oGFNR and define their counterfactual counterpart:
cGFPR = E[f̂(X) | Y 0 = 0] and cGFNR = E[1− f̂(X) | Y 0 = 1]. We use the scores of the
counterfactual model as inputs. We compute the cGFNR and cGFPR using our DR method
from § 1.7.12

Table 1.2 shows that post-processing to equalize oGFPR and oGFNR induces imbalance
in cGFPR and cGFNR. In Figure 1.7 we see that the original model achieved cEO, but
post-processing induced disparity to the detriment of the group that was less likely to be
treated. Since treatment is beneficial, this “fairness" adjustment actually compounded the
discrimination in the treatment assignment.

11We use the Pleiss implementation on https://github.com/gpleiss/equalized_odds_and_
calibration that extends the method in Hardt et al. (2016b) to probabilistic classifiers.

12The estimator is nearly identical to the estimators for FPR/FNR if we use f̂(X) in place of the predicted
label Ŷ (X).
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1.13. Conclusion

1.13 Conclusion
This chapter demonstrates that training and evaluating models using observed outcomes
produces invalid models that notably misestimate risk for those likely to be receptive to
treatment. Furthermore, fairness-correcting methods that seek to achieve observational parity
can lead to disparities on the relevant counterfactual metrics, and may further compound
inequities in intial treatment assignment. To obtain valid risk assessments, evaluation metrics,
and predictive fairness assessments, we developed counterfactual approaches to learning,
evaluation and predictive fairness assessment. A key condition for the validity of these
approaches is measuring all confounding factors. However, in many consequential decision-
making settings, this condition may be hard to attain. We next consider how to proceed when
some confounding factors are inaccessible.
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2

Counterfactual Predictions under Runtime
Confounding

Generally, to learn counterfactual prediction models from observational data on historical
decisions and corresponding outcomes, one must measure all factors that jointly affect the
outcome and the decision taken. Motivated by decision support applications, we study
the counterfactual prediction task in the setting where all relevant factors are captured
in the historical data, but it is infeasible, undesirable, or impermissible to use some such
factors in the prediction model. We refer to this setting as runtime confounding. We
propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
Our theoretical analysis and empirical results suggest that our method often outperforms
competing approaches. We also present a validation procedure for evaluating the performance
of counterfactual prediction methods. The methods and results presented in this chapter
comprise work first published in Coston et al. (2020a).
Runtime confounding naturally arises in a number of different settings. First, relevant factors
may not yet be available at the desired runtime. For instance, in child welfare screening, call
workers decide which allegations coming in to the child abuse hotline should be investigated
based on the information in the call and historical administrative data (Chouldechova et al.,
2018). The call worker’s decision-making process can be informed by a risk assessment if the
call worker can access the risk score in real-time. Since existing case management software
cannot run speech/NLP models in realtime, the call information (although recorded) is not
available at runtime, thereby leading to runtime confounding. Second, runtime confounding
arises when historical decisions and outcomes have been affected by sensitive or protected
attributes which for legal or ethical reasons are deemed ineligible as inputs to algorithmic
predictions. We may for instance be concerned that call workers implicitly relied on race
in their decisions, but it would not be permissible to include race as a model input. Third,
runtime confounding may result from interpretability or simplicity requirements. For example,
a university may require algorithmic tools used for case management to be interpretable.
While information conveyed during student-advisor meetings is likely informative both of
case management decisions and student outcomes, natural language processing models are
not classically interpretable, and thus the university may wish instead to only use structured
information like GPA in their tools.
Drawing upon techniques used in low-dimensional treatment effect estimation (Van der Laan
et al., 2003; Zimmert and Lechner, 2019; Chernozhukov et al., 2018b), we develop a procedure
for the full pipeline of learning and evaluating prediction models under runtime confounding.
We (1) formalize the problem of counterfactual prediction with runtime confounding [§ 2.2];
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(2) propose a solution based on doubly-robust techniques that has desirable theoretical
properties [§ 2.4.2]; (3) theoretically and empirically compare this solution to an alternative
counterfactually valid approach as well as the standard practice, describing the conditions
under which we expect each to perform well [§ 2.4 & 2.7]; and (4) provide an evaluation
procedure to assess performance of the methods in the real-world [§ 2.6].

2.1 Background and Related Work
This chapter builds on the work in the previous chapter. As before, our goal here is to predict
outcomes under a proposed decision (interchageably referred to as ‘treatment’ or ‘intervention’)
in order to inform human decision-makers about what is likely to happen under that treatment.

Our proposed prediction (Contribution 2) and evaluation methods (Contribution 4) draw
upon the literature on double machine learning and doubly-robust estimation, which uses the
efficient influence function to produce estimators with reduced bias (Van der Laan et al., 2003;
Robins et al., 1994; Robins and Rotnitzky, 1995; Kennedy, 2016; Chernozhukov et al., 2018a;
Kennedy, 2020). These techniques are commonly used for treatment effect estimation, and of
particular note for our setting are methods for estimating treatment effects conditional on only
a subset of confounders (Semenova and Chernozhukov, 2017; Chernozhukov et al., 2018b;
Zimmert and Lechner, 2019; Fan et al., 2020). Semenova and Chernozhukov (2017) propose
a two-stage doubly-robust procedure that uses series estimators in the second stage to achieve
asymptotic normality guarantees. Zimmert and Lechner (2019) propose a similar approach
that uses local constant regression in the second stage, and Fan et al. (2020) propose using a
local linear regression in the second stage. These approaches can obtain rate double-robustness
under the notably strict condition that the product of nuisance errors to converge faster than√
n rates. In a related work, Foster and Syrgkanis (2019) proposes an orthogonal estimator of

treatment effects which, under certain conditions, guarantees the excess risk is second-order
but not doubly robust.1 Our work is most similar to the approach taken in Kennedy (2020),
which proposes a model-agnostic two-stage doubly robust estimation procedure for conditional
average treatment effects that attains a model-free doubly robust guarantee on the prediction
error. Treatment effects can be identified under weaker assumptions than required to individual
the potential outcomes, and prior work has proposed a procedure to find the minimal set of
confounders for estimating conditional treatment effects (Makar et al., 2019).

Our prediction task is different from the common causal inference problem of treatment effect
estimation, which targets a contrast of outcomes under two different treatments (Wager and
Athey, 2018; Shalit et al., 2017). Treatment effects are useful for describing responsiveness to
treatment. While responsiveness is relevant to some types of decisions, it is insufficient, or
even irrelevant, to consider for others. For instance, a doctor considering an invasive procedure
may make a different recommendation for two patients with the same responsiveness if one
has a good probability of successful recovery without the procedure and the other does not.
In lending settings, the responsiveness to different loan terms is irrelevant; all that matters is
that the likelihood of default be sufficiently small under feasible terms. In such settings, we
are interested in predictions conditional on only those features that are permissible or desirable
to consider at runtime. Our methods are specifically designed for minimizing prediction error,

1A second order but not doubly robust guarantee requires sufficiently fast rates on both nuisance functions.
By contrast, rate double robustness imposes a weaker assumption on the product of nuisance function errors,
allowing e.g., fast rates on the propensity function and slow rates on the outcome regression function.
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rather than providing inferential guarantees such as confidence intervals, as is common in the
treatment effect estimation setting.
The practical challenge that we often need to make decisions based on only a subset of the
confounders has been discussed in the policy learning literature (Zhang et al., 2012; Athey
and Wager, 2017; Kitagawa and Tetenov, 2018). For instance, it may be necessary to use
only a subset of confounders to meet ethical requirements, model simplicity desiderata, or
budget limitations (Athey and Wager, 2017). Doubly robust methods for learning treatment
assignment policies have been proposed for such settings (Zhang et al., 2012; Athey and
Wager, 2017).
Our work is also related to the literature on marginal structure models (MSMs) (Robins et al.,
2000; Robins, 2000). An MSM is a model for a marginal mean of a counterfactual, possibly
conditional on a subset of baseline covariates. The standard MSM approach is semiparametric,
employing parametric assumptions for the marginal mean but leaving other components of
the data-generating process unspecified (Van der Laan et al., 2003). Nonparametric variants
were studied in the unconditional case for continuous treatments by Rubin and van der Laan
(2006). In contrast our setting can be viewed as a nonparametric MSM for a binary treatment,
conditional on a large subset of covariates. This is similar in spirit to partly-conditional
treatment effect estimation (van der Laan and Luedtke, 2014); however we do not target a
contrast since our interest is in predictions rather than treatment effects. Our results are also
less focused on model selection (Van Der Laan and Dudoit, 2003), and more on error rates
for particular estimators. We draw on techniques for sample-splitting and cross-fitting, which
have been used in the regression setting for model selection and tuning (Györfi et al., 2006;
Van der Laan et al., 2003) and in treatment effect estimation (Robins et al., 2008; Zheng and
van der Laan, 2010; Chernozhukov et al., 2018b).
Our method is relevant to settings where the outcome is selectively observed. This selective
labels problem (Lakkaraju et al., 2017; Kleinberg et al., 2018) is common in settings like
lending where the repayment/default outcome is only observed for applicants whose loan is
approved. Runtime confounding can arise in such settings if some factors that are used for
decision-making are unavailable for prediction.
Recent work has considered methods to accommodate confounding due to sources other than
missing confounders at runtime. A line of work has considered how to use causal techniques to
correct runtime dataset shift (Subbaswamy et al., 2018; Magliacane et al., 2018; Subbaswamy
and Saria, 2018). In our case the runtime setting is different from the training setting not
because of distributional shift but because we can no longer access all confounders. These
methods also differ from ours in that they are not seeking to predict outcomes under specific
decisions.
There is also a line of work that considers confounding in the training data (Kallus and
Zhou, 2018a; Madras et al., 2019). While confounded training data is common in various
applications, our work targets decision support settings where the factors used by decision-
makers are recorded in the training data but are not available for prediction.
Lastly, there are connections between runtime confounding and the literature on privileged
learning and algorithmic fairness that use features during training time that are not available
for prediction. Learning using Privileged Information (LUPI) has been proposed for settings in
which the training data contains additional features that are not available at runtime (Vapnik
and Vashist, 2009). In algorithmic fairness, disparate learning processes (DLPs) use the
sensitive attribute during training to produce models that achieve a target notion of parity
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without requiring access to the protected attribute at test time (Lipton et al., 2018). LUPI and
DLPs both make use of variables that are only available at train time, but if these variables
affect the decisions under which outcomes are observed, predictions from LUPI and DLPs
will be confounded because neither accounts for how these variables affect decisions. By
contrast, our method uses confounding variables during training to produce valid counterfactual
predictions.

2.2 Problem Formulation and Additional Notation
We denote the confounding factors as X = (V, Z) where V ∈ V ⊆ RdV are available at
both traintime and runtime while Z ∈ Z ⊆ RdZ are only available for training (not at
runtime).2 Our goal is to predict outcomes under a proposed decision t based on runtime-
available predictors V . Using the potential outcomes framework (Rubin, 2005; Neyman,
1923), our prediction target is νt(v) := E[Y t | V = v] where Y t ∈ Y ⊆ R is the potential
outcome we would observe under treatment T = t. We denote the propensity to receive
treatment t by πt(v, z) := P (T = t | V = v, Z = z). We also define the outcome regression
by µa(v, z) := E[Y t | V = v, Z = z]. For brevity, we will generally omit the subscript, using
notation ν, π and µ to denote the functions for a generic treatment t.

Definition 2.2.1. Formally, the task of counterfactual prediction under runtime-only con-
founding is to estimate ν(v) from iid training data (V, Z, T, Y ) under the following two
conditions:

Condition 2.2.1.1 (Training Ignorability). Decisions are unconfounded given V and Z:
Y t ⊥ T | V, Z.

Condition 2.2.1.2 (Runtime Confounding). Decisions are confounded given only V : Y t ̸⊥
T | V ; equivalently, T ̸⊥ Z | V and Y t ̸⊥ Z | V

To ensure that the target quantity is identifiable, we require two further assumptions, which
are standard in causal inference and not specific to the runtime confounding setting.

Condition 2.2.1.3 (Consistency). A case that receives treatment t has outcome Y = Y t.

Condition 2.2.1.4 (Positivity). P (πt(V, Z) ≥ ϵ > 0) = 1 ∀t

Identifications. Under these conditions, we can write the counterfactual regression functions
µ and ν in terms of observable quantities. We can identify µ(v, z) = E[Y | V = v, Z = z, T =
t] and our target ν(v) = E[E[Y | V = v, Z = z, T = t] | V = v] = E[µ(V, Z) | V = v]. The
iterated expectation in the identification of ν suggests a two-stage approach that we propose
in § 2.4.1 after reviewing current approaches.

2For settings where it is impossible to obtain an offline dataset containing Z, an outcome sensitivity model
can be used to partially identify the target learning and evaluation estimands (Rambachan et al., 2022).
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2.3 Standard Practice for Learning Counterfactual
Prediction Models

2.3.1 Standard practice: Treatment-conditional regression (TCR)
As we saw in the previous chapter, standard counterfactual prediction methods train models
on the cases that received treatment t (Schulam and Saria, 2017b; Coston et al., 2020b),
a procedure we will refer to as treatment-conditional regression (TCR). This procedure
estimates ω(v) = E[Y | T = t, V = v]. This method works well given access to all the
confounders at runtime; if T ⊥ Y t | V , then ω(v) = E[Y t | V = v] = ν(v). However, under
runtime confounding, this method does not produce valid counterfactual predictions because
ω(v) ̸= E[Y t | V = v]. This method does not target the right counterfactual quantity, and
may produce misleading predictions.3 For instance, consider a risk assessment setting that
historically assigned risk-mitigating treatment to cases that have higher risk under the null
treatment (T = 0). Using TCR to predict outcomes under the null treatment will underestimate
risk since E[Y | V, T = 0] = E[Y 0 | V, T = 0] < E[Y 0 | V ]. We can characterize the bias of
this approach by analyzing b(v) := ω(v)− ν(v), a quantity we term the pointwise confounding
bias.

Proposition 2.3.1. Under runtime confounding, ω(v) has pointwise confounding bias

b(v) =
∫

Z
µ(v, z)

(
p(z | V = v, T = t)− p(z | V = v)

)
dz ̸= 0 (2.1)

By Condition 2.2.1.2, this confounding bias will be non-zero. Nonetheless we might expect
the TCR method to perform well if b(v) is small enough. We can formalize this intuition by
decomposing the error of a TCR predictive model ν̂TCR into estimation error and confounding
bias:

Proposition 2.3.2. The pointwise regression error of the TCR method can be bounded as
follows:

E[(ν(v)− ν̂TCR(v))2] ≲ E[(ω(v)− ν̂TCR(v))2] + b(v)2

The first term gives the estimation error and the second term bounds the bias in targeting the
wrong counterfactual quantity.

2.4 Methodology for Learning Valid Counterfactual
Prediction Models under Runtime Confounding

2.4.1 A simple proposal: Plug-in (PL) approach
We can avoid the confounding bias of TCR through a simple two-stage procedure we call the
plug-in approach that targets the proper counterfactual quantity. This approach, described in
Algorithm 1, first estimates µ as µ̂ and then uses µ̂ to construct a pseudo-outcome which is
regressed on V to yield prediction ν̂PL. Cross-fitting techniques (Alg. 2) can be applied to
prevent issues that may arise due to potential overfitting when learning both µ̂ and ν̂PL on
the same training data. Sample-splitting (or cross-fitting) also enables us to get the following
upper bound on the error of the PL approach.

3Runtime imputation of Z will not eliminate this bias since E[Y | T = t, V = v, f(v)] = ω(v).
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Algorithm 1 The plug-in (PL) approach for counterfactual predictions under runtime con-
founding

Stage 1: Learn µ̂(v, z) by regressing Y ∼ V, Z | T = t
Stage 2: Learn ν̂PL(v) by regressing µ̂(V, Z) ∼ V

Algorithm 2 The plug-in (PL) approach for counterfactual predictions under runtime con-
founding with cross-fitting

Randomly divide training data into two partitions W1 and W2.
for (p, q) ∈ {(1, 2), (2, 1)} do

Stage 1: On partition Wp, learn µ̂p(v, z) by regressing Y ∼ V, Z | T = t
Stage 2: On partition Wq, learn ν̂q

PL(v) by regressing µ̂p(V, Z) ∼ V

PL prediction: ν̂PL(v) = 1
2

∑2
i=1 ν̂i

PL(v)

We now introduce stability conditions that will be used in the subsequent analysis.
Definition 2.4.1. (Stability conditions) The results assume the following two stability condi-
tions on the second-stage regression estimators:
Condition 2.4.1.1. Ên[Y | V = v] + c = Ên[Y + c | V = v] for any constant c
Condition 2.4.1.2. For two random variables R and Q, if E[R | V = v] = E[Q | V = v],
then

E

(
Ên[R | V = v]− E[R | V = v]

)2
 ≍ E

(
Ên[Q | V = v]− E[Q | V = v]

)2


where L ≍ R denotes L ≲ R and R ≲ L and Ên[Y | V = v] denotes an estimator of the
regression function E[Y | V = v].

The second condition is satisfied for instance by local estimation techniques. While global
methods (such as linear regression) may not satisfy this property, a weaker stability condition
(see Kennedy (2020)) can be used to achieve a bound on the integrated mean squared error.
Proposition 2.4.1. Under these stability conditions on the 2nd stage estimators and sample-
splitting for stages 1 and 2, the PL method has pointwise regression error bounded by

E
[(
ν̂PL(v)− ν(v)

)2
]
≲ E

[(
ν̃(v)− ν(v)

)2
]

+ E
[(
µ̂(V, Z)− µ(V, Z)

)2
| V = v

]
where the oracle-quantity ν̃(v) describes the function we would get in the second-stage if we
had oracle access to Y t.

This simple approach can consistently estimate our target ν(v). However, it solves a harder
problem (estimation of µ(v, z)) than what our lower-dimensional target ν requires. Notably
the bound depends linearly on the MSE of µ̂. We next propose an approach that avoids such
strong dependence.

2.4.2 Our main proposal: Doubly-robust (DR) approach
Our main proposed method is what we call the doubly-robust (DR) approach, which improves
upon the PL procedure by using a bias-corrected pseudo-outcome in the second stage (Alg. 4).
The DR approach estimates both µ and π, which enables the method to perform well in
situations in which π is easier to estimate than µ. We propose a cross-fitting (Alg. 3) variant
that satisfies the sample-splitting requirements of Theorem 2.5.1.
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Algorithm 3 Our doubly-robust (DR) approach for counterfactual predictions under runtime
confounding

Stage 1: Learn µ̂(v, z) by regressing Y ∼ V, Z | T = t.
Learn π̂(v, z) by regressing I{T = t} ∼ V, Z

Stage 2: Learn ν̂DR(v) by regressing
(

I{T =t}
π̂(V,Z) (Y − µ̂(V, Z)) + µ̂(V, Z)

)
∼ V

Algorithm 4 Our doubly-robust (DR) approach for counterfactual predictions under runtime
confounding with cross fitting

Randomly divide training data into three partitions W1, W2, W3.
for (p, q, r) ∈ {(1, 2, 3), (3, 1, 2), (2, 3, 1)} do

Stage 1: On Wp, learn µ̂p(v, z) by regressing Y ∼ V, Z | T = t.
On Wq, learn π̂q(v, z) by regressing I{T = t} ∼ V, Z

Stage 2: On Wr, learn ν̂r
DR by regressing

(
I{T =t}
π̂q(V,Z) (Y − µ̂p(V, Z)) + µ̂p(V, Z)

)
∼ V

DR prediction: ν̂DR(v) = 1
3

∑3
i=1 ν̂i

DR(v)

2.5 Theoretical Results for Counterfactual Prediction
Methods

Theorem 2.5.1. Under sample-splitting to learn µ̂, π̂, and ν̂DR and stability conditions on
the 2nd stage estimators, the DR method has pointwise error bounded by:

E
[(
ν̂DR(v)− ν(v)

)2
]
≲ E

[(
ν̃(v)− ν(v)

)2
]

+ E
[
(π̂(V, Z)− π(V, Z))2 | V = v

]
E

[
(µ̂(V, Z)− µ(V, Z))2 | V = v

]

The DR error is bounded by the error of an oracle with access to Y t and a product of nuisance
function errors. This product can be substantially smaller than the error of µ̂ in the PL bound.
When this product is less than the oracle error, the DR approach is oracle-efficient, in the
sense that it achieves (up to a constant factor) the same error rate as an oracle.

Proof. We begin with additional notation needed for the proof. For brevity let W =
(V, Z,A, Y ) indicate a training observation. The theoretical guarantees for our methods
rely on a two-stage training procedure that assumes independent training samples. We denote
the first-stage training dataset as W1 := {W 1

1 ,W
1
2 ,W

1
3 , ...W

1
n} and the second-stage training

dataset as W2 := {W 2
1 ,W

2
2 ,W

2
3 , ...W

2
n}.

The first step is to derive the form of the error function for our DR approach. For clarity and
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brevity, we denote the measure of the expectation in the subscript.

r̂DR(v) = EW |V =v,W1

I{T = t}
π̂(v, Z) (Y − µ̂(v, Z)) + µ̂(v, Z)

− ν(v)

= EZ,T |V =v,W1

EW |T =t,V =v,Z=z,W1

I{T = t}
π̂(v, Z) (Y − µ̂(v, z)) + µ̂(v, z)

− ν(v)

= EZ,T |V =v,W1

EY |T =t,V =v,Z=z,W1

I{T = t}
π̂(v, Z) (Y − µ̂(v, z))

 + µ̂(v, Z)
− ν(v)

= EZ,T |V =v,W1

I{T = t}
π̂(v, Z) (EY |T =t,V =v,Z=z,W1 [Y ]− µ̂(v, Z)) + µ̂(v, Z)

− ν(v)

= EW |V =v,W1

I{T = t}
π̂(v, Z) (µ(v, Z)− µ̂(v, Z)) + µ̂(v, Z)

− ν(v)

= EZ|V =v,,W1

EW |V =v,Z=z,W1

I{T = t}
π̂(v, Z) (µ(v, z)− µ̂(v, z)) + µ̂(v, z)

− ν(v)

= EZ|V =v,W1

P (A = a | V = v, Z = z)
π̂(v, Z) (µ(v, Z)− µ̂(v, Z)) + µ̂(v, Z)

− ν(v)

= EZ|V =v,W1

π(v, Z)
π̂(v, Z)(µ(v, Z)− µ̂(v, Z)) + µ̂(v, Z)

− ν(v)

= EZ|V =v,W1

π(v, Z)
π̂(v, Z)(µ(v, Z)− µ̂(v, Z)) + µ̂(v, Z)− µ(v, Z)


= E

(µ(v, Z)− µ̂(v, Z))(π(v, Z)− π̂(v, Z))
π̂(v, Z) | V = v,W1

.
Where the first line holds by definition of the error function r̂ and the second line by iterated
expectation. The third line uses the fact that conditional on Z = z, V = v, T = t, then the
only randomness in W is Y (and therefore µ̂ is constant). The fourth line makes use of the
(I{T = t}) term to allow us to condition on only T = t ( since the term conditioning on
any other t′ ̸= t will evaluate to zero). The fifth line applies the definition of µ. The sixth
line again uses iterated expectation and the seventh makes use of the fact that conditional
on Z, the only randomness now is in T and that W1 is an independent randomly sampled
set. The seventh line applies the definition of π(v, z) = P(T = 1 | V = v, Z = z) which since
T ∈ {0, 1} is equal to E[T | V = v, Z = z]. The eight line uses iterated expectation and the
fact that W1 is an independent randomly sampled set to rewrite ν(v) = EZ|V =v,W1 [µ(v, Z)].
The ninth line rearranges the terms.
By Cauchy-Schwarz and the positivity assumption,

r̂DR(v) ≤ C
√
E[(µ(v, Z)− µ̂(v, Z))2 | V = v,W1]

√
E[(π(v, Z)− π̂(v, Z))2 | V = v,W1]

for a constant C.
Squaring both sides yields

r̂2
DR(v) ≤ C2 E[(µ(v, Z)− µ̂(v, Z))2 | V = v,W1] E[(π(v, Z)− π̂(v, Z))2 | V = v,W1]
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If π̂ and µ̂ are estimated using separate training samples, then taking the expectation over the
first-stage training sample W1 yields:

E[r̂2
DR(v)] ≤ C2 E[(µ(v, Z)− µ̂(v, Z))2] | V = v] E[(π(v, Z)− π̂(v, Z))2] | V = v]

Applying Theorem 1 of Kennedy (2020) gets the pointwise bound:

E

(
ν̂DR(v)− ν(v)

)2
 ≲ E

(
ν̃(v)− ν(v)

)2


+ E
[
(π̂(V, Z)− π(V, Z))2 | V = v

]
E

[
(µ̂(V, Z)− µ(V, Z))2 | V = v

]

This model-free result provides bounds that hold for any regression method. It is nonetheless
instructive to consider the form of these bounds in a couple common contexts. The next result
is specialized to the sparse high-dimensional setting, and subsequently we consider the smooth
non-parametric setting.

Corollary 2.5.1. Assume stability conditions on the 2nd stage regression estimator and that a
k-sparse model can be estimated with squared error k2

√
log d

n
(e.g. Chatterjee (2013)).4 With

kω-sparse ω, the pointwise error for the TCR method is

E
[(
ν̂TCR(v)− ν(v)

)2
]
≲ k2

ω

√
log dV

n
+ b(v)2

With kµ-sparse µ and kν-sparse ν, the pointwise error for the PL method is

E
[(
ν̂PL(v)− ν(v)

)2
]
≲ k2

ν

√
log dV

n
+ k2

µ

√
log d
n

Additionally with kπ-sparse π, the pointwise error for the DR method is

E
[(
ν̂DR(v)− ν(v)

)2
]
≲ k2

ν

√
log dV

n
+ k2

µk
2
π

log d
n

The DR approach is therefore oracle efficient when
(

kµkπ

kν

)2
≲

(√
n log dV
log d

)
.

Based on the upper bound, we cannot claim efficiency for the PL approach because kµ > kν

and d > dV. For exposition, consider the simple case where kν ≈ kµ ≈ kπ. Corollary 2.5.1
indicates that when dV ≈ d, the DR and PL methods will perform similarly. When dV ≪ d,
we expect the DR to outperform the PL method because the second term of the PL bound
dominates the error whereas the first term of the DR bound dominates in high-dimensional
settings. When dV ≪ d and the amount of confounding is small, we expect the TCR to
perform well.

4We use the sparsity parameter k to indicate k covariates have non-zero coefficients in the model.
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Corollary 2.5.2. Assume stability conditions on the 2nd stage regression estimator and that a
β-smooth function of a p-dimensional vector can be estimated with squared error n

−2β
2β+p . With

βω-smooth ω, the pointwise error for the TCR method is

E
[(
ν̂TCR(v)− ν(v)

)2
]
≲ n−2βω/(2βω+dV) + b(v)2

With βµ-smooth µ and βν-smooth ν, the pointwise error for the PL method is

E
[(
ν̂PL(v)− ν(v)

)2
]
≲ n−2βν/(2βν+dV) + n−2βµ/(2βµ+d)

Additionally with βπ-smooth π, the pointwise error for the DR method is

E
[(
ν̂DR(v)− ν(v)

)2
]
≲ n−2βν/(2βν+dV) + n

−2βµ
2βµ+d

+ −2βπ
2βπ+d

The DR approach is therefore oracle efficient when βν

βν+dV/2 ≤
βµ

βµ+d/2 + βπ

βπ+d/2 which simplifies
to s ≥ d/2

1+ dV
βν

when βπ = βµ = s.

As in the sparse setting above, we cannot claim oracle efficiency for PL approach based on
this upper bound because βµ ≤ βν and d > dV. For exposition, consider an example where
βν ≈ βµ ≈ βπ. Corollary 2.5.2 indicates that when dV ≈ d, the DR and PL methods will
perform similarly. When dV ≪ d, we expect the DR to outperform the PL method because
the second term of the PL bound dominates the error whereas the first term of the DR bound
dominates. When dV ≪ d and the amount of confounding is small, we expect the TCR to
perform well.
This theoretical analysis helps us understand when we expect the prediction methods to
perform well. However, in practice, these upper bounds may not be tight and the degree of
confounding is typically unknown. To compare the prediction methods in practice, we require
a method for counterfactual model evaluation.

2.6 Methodology for Valid Evaluations of Counterfactual
Prediction Models using Observational Data

We describe an approach for evaluating the prediction methods using observed data. In our
problem setting (§ 2.2.1), the mean-squared prediction error of a model ν̂ is identified as
E[(Y t − ν̂(V ))2] = E[E[(Y − ν̂(V ))2 | V, Z, T = t]]. We propose a doubly-robust procedure
to estimate the prediction error that follows the approach in Chapter 1, which focused on
classification metrics. Defining the error regression η(v, z) := E[(Y t − ν̂(V ))2|V = v, Z = z],
which is identified as E[(Y − ν̂(V ))2 | V = v, Z = z, T = t], the doubly-robust estimate
of the MSE of ν is

1
n

n∑
i=1

I{Ti = t}
π̂(Vi, Zi)

((
Yi − ν̂(Vi)

)2
− η̂(Vi, Zi)

)
+ η̂(Vi, Zi)


The doubly-robust estimation of MSE is √n-consistent under sample-splitting and n1/4

convergence in the nuisance function error terms, enabling us to get estimates with confidence
intervals. Algorithm 5 describes this procedure. This evaluation method can also be used to
select the regression estimators for the first and second stages.
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Algorithm 5 Cross-fitting approach to evaluation of counterfactual prediction methods
Input: Test samples {(Vj , Zj , Tj , Yj)}2n

j=1 and prediction models {ν̂1, ...ν̂h}
Randomly divide test data into two partitions W0 = {(V 0

j , Z0
j , T 0

j , Y 0
j )}n

j=1 and W1 = {(V 1
j , Z1

j , T 1
j , Y 1

j )}n
j=1.

for (p, q) ∈ {(0, 1), (1, 0)} do
On Wp, learn π̂p(v, z) by regressing I{T = t} ∼ V, Z.
for m ∈ {1, ...., h} do

On Wp, learn η̂p
m(v, z) by regressing (Y − ν̂m(V ))2 ∼ V, Z | T = t

On Wq, for j ∈ {1, ..., n} compute ϕq
m,j =

I{T
q
j

=t}
π̂p(V

q
j

,Z
q
j

) ((Y q
j − ν̂m(V q

j ))2 − η̂p
m(V q

j , Zq
j )) + η̂p

m(V q
j , Zq

j )
Output error estimate confidence intervals: for m ∈ {1, ..., h}:

MSEm =
(

1
2n

1∑
i=0

n∑
j=1

ϕi
m,j

)
± 1.96

√
1

2n
var(ϕm)

2.7 Empirical Results on Synthetic Data
We evaluate our methods against ground truth by performing empirical analysis on simulated
data, where we can vary the amount of confounding in order to assess the effect on predictive
performance. While our theoretical results for PL and DR are obtained under sample splitting,
in practice there may be a reluctance to perform sample splitting in training predictive models
due to the potential loss in efficiency. We present results where we use the full training data
to learn the 1st-stage nuisance functions and 2nd-stage regressions for DR and PL and we use
the full training data for the one-stage TCR.5 This allows us to examine performance in a
setting outside what our theory covers.
We first analyze how the methods perform in a sparse linear model. This simple setup enables
us to explore how properties like correlation between V and Z impact performance. We
simulate data as

Vi ∼ N (0, 1) ; 1 ≤ i ≤ dV

Zi ∼ N (ρVi, 1− ρ2) ; 1 ≤ i ≤ dZ

µ(V, Z) = kv

kv + ρkz

( kv∑
i=1

Vi +
kz∑

i=1
Zi

)
Y t = µ(V, Z) + ϵ ; ϵ ∼ N

0, 1
2n ∥µ(V, Z)∥2

2


ν(V ) = kv

kv + ρkz

( kv∑
i=1

Vi + ρ
kz∑

i=1
Vi

)

π(V, Z) = 1− σ
 1√

kv + kz

( kv∑
i=1

Vi +
kz∑

i=1
Zi

) T ∼ Bernoulli(π(V, Z))

where σ(x) = 1
1+e−x . We normalize π(v, z) by 1√

kv+kz
to satisfy Condition 2.2.1.4 and use the

coefficient kv/(kv + ρkz) to facilitate a fair comparison as we vary ρ. For all empirical results,
we report test MSE for 300 simulations where each simulation generates n = 2000 data points
split randomly and evenly into train and test sets.6 In the first set of experiments, for fixed
d = dV + dZ = 500, we vary dV (and correspondingly dZ). We also vary kz, which governs
the runtime confounding. Larger values of kz correspond to more confounding variables. The
theoretical analysis (§ 2.4) suggests that when confounding (kz) is small, then the TCR and
DR methods will perform well. More confounding (larger kz) should increase error for all
methods, and we expect this increase to be significantly larger for the TCR method that has
confounding bias. We expect the TCR and DR methods to perform better at smaller values

5We report error metrics on a random heldout test set.
6Source code is available at https://github.com/mandycoston/confound_sim
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Figure 2.1: Results for several approaches (each a different color) to learning predictive models
under runtime confounding on synthetic data where the runtime predictors are uncorrelated
with the runtime confounders. (a) MSE as we vary kz using cross-validated LASSO to learn
π̂, µ̂, ν̂TCR, ν̂PL, ν̂DR for ρ = 0, dV = 400 and kv = 25. At low levels of confounding (kz),
the TCR method does well but performance degrades with kz. For any non-zero confounding,
our DR method performs best.
(b) MSE against dV using cross-validated LASSO and ρ = 0, kv = 25 and kz = 20. The DR
method performs the best across the range of dV. When dV is small, the TCR method also
does well since its estimation error is small. The PL method has higher error since it suffers
from the full d-dimensional estimating error in the first stage.
(c) MSE as we vary kz using random forests and ρ = 0, dV = 400 and kv = 25. Compared to
LASSO in (a), there is a relatively small increase in error as we increase kz, suggesting that
estimation error dominates the confounding error. The TCR method performs best at lower
levels of confounding and on par with the DR method for larger values of kz.
Error bars denote 95% confidence intervals.

of dV; by contrast, we expect the PL performance to vary less with dV since the PL method
suffers from the full d-dimensionality in the first stage regardless of dV. For large values of
dV, we expect the PL method to perform similarly to the DR method. Fig. 2.1 plots the
MSE in estimating ν for ρ = 0 and kv = 25 using LASSO and random forests. The LASSO
plots in Fig. 2.1a and 2.1b show the expected trends. Random forests have much higher error
than the LASSO (compare Fig. 2.1a to 2.1c) and we only see a small increase in error as we
increase confounding (Fig. 2.1c) because the random forest estimation error dominates the
confounding error. In this setting, the TCR method may outperform the other methods, and
in fact the TCR performs best at low levels of confounding.

We next consider the case were V and Z are correlated. If V and Z are perfectly correlated,
there is no confounding. For our data where higher values of V and Z both decrease π and
increase µ, a positive correlation should reduce confounding, and a negative correlation may
exacerbate confounding by increasing the probability that Z is small given T = t and V is large
and therefore increasing the gap E[Y t | V = v]− E[Y t | V = v, T = t]. Fig. 2.2 gives MSE
for correlated V and Z. As expected, error overall decreases with ρ (Fig. 2.2a). Relative to the
uncorrelated setting (Fig. 2.1), the weak positive correlation reduces MSE for all methods,
particularly for large kz and dV. The DR method achieves the lowest error for settings with
confounding, performing on par with the TCR when dV = 50.
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(c) LASSO

Figure 2.2: Results for several approaches (each a different color) to learning predictive models
under runtime confounding on synthetic data where the runtime predictors are correlated
with the runtime confounders. (a) MSE against correlation ρVi,Zi

for kz = 20, kv = 25, and
dV = 400. Error decreases with ρ for all methods. Our DR method achieves the lowest
error under confounding (ρ < 1). (b) MSE as we increase kz for ρ = 0.25, kv = 25, and
dV = 400. Compare to Figure 2.1a; the weak positive correlation reduces MSE, particularly
for kv < i ≤ kz when Vi is only a correlate for the confounder Zi but not a confounder itself.
(c) MSE against dV for ρ = 0.25, kz = 20, and kv = 25. The DR method is among the
best-performing for all dV. As with the uncorrelated setting (2.1b), the DR and TCR methods
are better able to take advantage of low dV than the PL method.
Error bars denote 95% confidence intervals.

Empirical Results under Second-Stage Misspecification Next, we explore a more
complex data generating process through the lens of model interpretability. Interpretability
requirements allow for a complex training process as long as the final model outputs interpretable
predictions (Tan et al., 2018; Zeng et al., 2017; Rudin, 2019b). Since the PL and DR first
stage regressions are only a part of the training process, we can use any flexible model to
learn the first stage functions as accurately as possible without impacting interpretability.
Constraining the second-stage learning class to interpretable models (e.g. linear classifiers)
may cause misspecification since the interpretable class may not contain the true model. We
simulate such a setting by modifying the setup (for ρ = 0):

Vi ∼ N (0, 1) for 1 ≤ i ≤ dV

2 ; Vi := V 2
j for dV

2 < i ≤ dV, j = i− dV

2

µ(V, Z) =
kv/2∑
i=1

(
Vi + (2(i mod 2)− 1)V 2

i

)
+

kz∑
i=1

Zi ; ν(V ) =
kv/2∑
i=1

(
Vi + (2(i mod 2)− 1)V 2

i

)

We restrict our second stage models and the TCR model to predictors Vi for 1 ≤ i ≤ dV
2 to

simulate a real-world setting where we are constrained to linear classifiers using only V at
runtime. We allow the first stage models access to the full V and Z since the first stage is not
constrained by variables or model class. We use cross-validated LASSO models for both stages
and compare this setup to the setting where the model is correctly specified. The DR method
achieves the lowest error for both settings (Table 2.1), although the error is significantly higher
for all methods under misspecification.
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Method Correct specification 2nd-stage misspecification
TCR 16.64 (16.28, 17.00) 35.52 (35.18, 35.85)

PL 12.32 (12.03, 12.61) 32.09 (31.82, 32.36)
DR (ours) 11.10 (10.84, 11.37) 31.33 (31.06, 31.59)

Table 2.1: Synthetic results for prediction error of several learning methods under runtime
confounding. This table provides the MSE E[

(
ν(V ) − ν̂(V )

)2
] under correct specification

and misspecification in the 2nd stage for d = 500, dV = 400, kv = 24, kz = 20 and n = 3000
(with 95% confidence intervals). Our DR method has the lowest error in both settings. Errors
are larger for all methods under misspecification.

2.8 Empirical Results on Real-world Child Welfare Data
In this section we present empirical results on the child welfare screening task introduced in
the previous chapter. In agencies that have adopted risk assessment tools, the worker relies on
(immediate risk) information communicated during the call and an algorithmic risk score that
summarizes (longer term) risk based on historical administrative data (Chouldechova et al.,
2018). The call is recorded but is not used as a predictor for three reasons: (1) the inadequacy
of existing case management software to run speech/NLP models on calls in realtime; (2) model
interpretability requirements; and (3) the need to maintain distinction between immediate risk
(as may be conveyed during the call) and longer-term risk the model seeks to estimate. Since
it is not possible to use call information as a predictor, we encounter runtime confounding.
Additionally, we would like to account for the disproportionate involvement of families of color
in the child welfare system (Dettlaff et al., 2011), but due to its sensitivity, we do not want to
use race in the prediction model.

The task is to predict which cases are likely to be offered services under the decision t =
“screened in for investigation” using historical administrative data as predictors (V ) and
accounting for confounders race and allegations in the call (Z). Our dataset consists of over
30,000 calls to the hotline in Allegheny County, PA. We use random forests in the first stage for
flexibility and LASSO in the second stage for interpretability. Table 2.2 presents the MSE using
our evaluation method (§ 2.6).7 The PL and DR methods achieve a statistically significant
lower MSE than the TCR approach, suggesting these approaches could help workers better
identify at-risk children than standard practice.

MSE
TCR 0.290 (0.287, 0.293)

PL 0.249 (0.246, 0.251)
DR (ours) 0.248 (0.245, 0.250)

Table 2.2: Child welfare screening results for prediction error of several learning methods
under runtime confounding. This table shows the MSE estimated via our evaluation procedure
(§ 2.6). The PL and DR approaches achieve lower MSE than the TCR approach. 95%
confidence intervals given in parentheses.

7We report error metrics on a random held-out test set.

42



2.9. Conclusion

2.9 Conclusion
This chapters presents a generic procedure for learning counterfactual predictions under runtime
confounding that can be used with any parametric or nonparametric learning algorithm. Our
theoretical and empirical analysis suggests this procedure will often outperform other methods,
particularly when the level of runtime confounding is significant. Our method is backed by a
doubly-robust guarantee on the mean-squared error (MSE) that implies oracle efficiency when
the product of nuisance function errors is less than the MSE of an oracle with access to the
potential outcomes.
In this chapter we focused largely on issues of validity – how to obtain valid counterfactual
predictions and evaluations under runtime confounding. Next, we delve into our second
principle for responsible use, equity, as we analyze the impact of algorithms on historically
marginalized groups. During this discussion, we will see how threats to validity, such as
selection bias, impact equity.
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3

Characterizing Fairness Properties over the Set
of Good Models

Algorithms used in high-stakes settings can disproportionately harm marginalized groups
(Barocas and Selbst, 2016a; Dastin, 2018; Vigdor, 2019). The vast literature on algorithmic
fairness offers numerous methods for learning anew the best performing model among those
that satisfy a chosen notion of predictive fairness (e.g. Zemel et al. (2013), Agarwal et al.
(2018), Agarwal et al. (2019)). However, for real-world settings where a risk assessment is
already in use, practitioners and auditors may instead want to assess disparities with respect
to the current model, which we term the benchmark model. In this chapter, we propose a
method to answer the question: Can we improve upon the benchmark model in terms of
predictive fairness with minimal change in overall accuracy? To answer this question, this
chapter provides methods that were first published in Coston et al. (2021b).

We explore this question through the lens of the “Rashomon Effect,” a common empirical
phenomenon whereby multiple models perform similarly overall but differ markedly in their
predictions for individual cases (Breiman, 2001). These models may perform quite differently
over various groups, and therefore have different predictive fairness properties. We propose an
algorithm, Fairness in the Rashomon Set (FaiRS), to characterize predictive fairness properties
over the set of models that perform similarly to a chosen benchmark model. We refer to this
set as the set of good models (Dong and Rudin, 2020). FaiRS is designed to efficiently answer
the following questions: What are the range of predictive disparities that could be generated
over the set of good models? What is the disparity minimizing model within the set of good
models?

A key empirical challenge to validity in domains such as credit lending is that outcomes are
not observed for all cases (Lakkaraju et al., 2017; Kleinberg et al., 2018). This selective labels
problem is particularly vexing in the context of assessing predictive fairness. Our framework
addresses selectively labelled data in contexts where the selection decision and outcome are
unconfounded given the observed data features.

Our methods are useful for legal audits of disparate impact. In various domains, decisions
that generate disparate impact must be justified by “business necessity" (CRA, 1964; ECOA,
1974; Barocas and Selbst, 2016a). For instance, financial regulators investigate whether credit
lenders could have offered more loans to minority applicants without affecting default rates
(Gillis, 2020). Employment regulators may investigate whether resume screening software
screens out underrepresented applicants for reasons that cannot be attributed to the job criteria
(Raghavan et al., 2020b). Our methods provide one possible formalization of the business
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necessity criteria. An auditor can use FaiRS to assess whether there exists an alternative
model that reduces predictive disparities without compromising performance relative to the
benchmark model. If possible, then it is difficult to justify the benchmark model on the
grounds of business necessity.

Our methods can also be a useful tool for decision makers who want to improve upon an
existing model. A decision maker may use FaiRS to search for a prediction function that
reduces predictive disparities without compromising performance relative to the benchmark
model. We emphasize that the effective usage of our methods requires careful thought about
the broader social context surrounding the setting of interest (Selbst et al., 2019; Holstein
et al., 2019a).

In this chapter, we develop an algorithmic framework, Fairness in the Rashomon Set (FaiRS),
to investigate predictive disparities over the set of good models. We provide theoretical
guarantees on the generalization error and predictive disparities of FaiRS [§ 3.3]. Next we
propose a variant of FaiRS that addresses the selective labels problem and achieves the same
guarantees under oracle access to the outcome regression function [§ 3.5]. We then use FaiRS
to audit the COMPAS risk assessment, finding that it generates larger predictive disparities
between black and white defendants than any model in the set of good models [§ 3.7]. Finally
we use FaiRS on a selectively labelled credit-scoring dataset to build a model with lower
predictive disparities than a benchmark model [§ 3.8].

3.1 Background and Related Work
3.1.1 Rashomon Effect
In a seminal paper on statistical modeling, Breiman (2001) observed that often a multiplicity
of good models achieve similar accuracy by relying on different features, which he termed the
“Rashomon effect.” Even though they have similar accuracy, these models may differ along
other key dimensions, and recent work considers the implications of the Rashomon effect for
model simplicity, interpretability, and explainability (Fisher et al., 2019; Marx et al., 2019;
Rudin, 2019a; Dong and Rudin, 2020; Semenova et al., 2020).

We introduce these ideas into research on algorithmic fairness by studying the range of predictive
disparities that can be achieved over the set of good models. We provide computational
techniques to directly and efficiently investigate the range of predictive disparities that may
be generated over the set of good models. Our recidivism risk prediction and credit scoring
applications demonstrate that the set of good models is a rich empirical object, and we
illustrate how characterizing the range of achievable predictive fairness properties over this set
can be used for model learning and evaluation.

3.1.2 Fair Classification and Fair Regression
An influential literature on fair classification and fair regression constructs prediction functions
that minimize loss subject to a predictive fairness constraint chosen by the decision maker
(Dwork et al., 2012b; Zemel et al., 2013; Hardt et al., 2016b; Menon and Williamson, 2018;
Donini et al., 2018; Agarwal et al., 2018, 2019; Zafar et al., 2019). In contrast, we construct
prediction functions that minimize a chosen measure of predictive disparities subject to a
constraint on overall performance. This is useful when decision makers find it difficult to
specify acceptable levels of predictive disparities, but instead know what performance loss is
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tolerable. It may be unclear, for instance, how a lending institution should specify acceptable
differences in credit risk scores across groups, but the lending institution can easily specify an
acceptable average default rate among approved loans. Our methods allow users to directly
search for prediction functions that reduce disparities given such a specified loss tolerance.
Similar in spirit to our work, Zafar et al. (2019) provide a method for selecting a classifier that
minimizes a particular notion of predictive fairness, “decision boundary covariance,” subject to
a performance constraint. Our method applies more generally to a large class of predictive
disparities and covers both classification and regression tasks.

While originally developed to solve fair classification and fair regression problems, we show
that the “reductions approach” used in Agarwal et al. (2018, 2019) can be suitably adapted
to solve general optimization problems over the set of good models. This provides a general
computational approach that may be useful for investigating the implications of the Rashomon
Effect for other model properties.

In constructing the set of good models with comparable performance to a benchmark model,
our work bears resemblance to techniques that “post-process” existing models. Post-processing
techniques typically modify the predictions from an existing model to achieve a target notion of
fairness (Hardt et al., 2016b; Pleiss et al., 2017; Kim et al., 2019). By contrast, our methods
only use the existing model to calibrate the performance constraint, but need not share any
other properties with the benchmark model. While post-processing techniques often require
access to individual predictions from the benchmark model, our approach only requires that
we know its average loss.

3.1.3 Selective Labels and Missing Data
In settings such as criminal justice and credit lending, the training data only contain labeled
outcomes for a selectively observed sample from the full population of interest. For example,
banks use risk scores to assess all loan applicants, yet the historical data only contains
default/repayment outcomes for those applicants whose loans were approved. This is a missing
data problem (Little and Rubin, 2019). Because the outcome label is missing based on
a selection mechanism, this type of missing data is known as the selective labels problem
(Lakkaraju et al., 2017; Kleinberg et al., 2018). One solution treats the selectively labelled
population as if it were the population of interest, and proceeds with training and evaluation
on the selectively labelled population only. This is also called the “known good-bad” (KGB)
approach (Zeng and Zhao, 2014; Nguyen et al., 2016). The problem with such an approach,
as we saw in Chapter 1, is that evaluating a model on a population different than the one on
which it will be used can produce invalid assessments, particularly with regards to predictive
fairness measures. Unfortunately, most fair classification and fair regression methods do not
offer modifications to address the selective labels problem. Our framework does [§ 3.5].

Popular in credit lending applications, “reject inference” procedures incorporate information
from the selectively unobserved cases (i.e., rejected applicants) in model construction and
evaluation by imputing missing outcomes using augmentation, reweighing or extrapolation-
based approaches (Li et al., 2020; Mancisidor et al., 2020). These approaches are similar to
domain adaptation techniques, and indeed the selective labels problem can be cast as domain
adaptation since the labelled training data is not a random sample of the target distribution.
Most relevant to our setting are covariate shift methods for domain adaptation. Reweighing
procedures have been proposed for jointly addressing covariate shift and fairness (Coston et al.,
2019; Singh et al., 2021). While FaiRS similarly uses iterative reweighing to solve our joint
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3. Characterizing Fairness Properties over the Set of Good Models

optimization problem, we explicitly use extrapolation to address covariate shift. Empirically
we find extrapolation can achieve lower disparities than reweighing.

3.2 Problem Formulation and Additional Notation
The training data consist of n i.i.d. draws from the joint distribution (Xi, Ai, Ti, Y

∗
i ) ∼ P

and may suffer from a selective labels problem: There exists T ∗ ⊆ T such that the outcome
is observed if and only if the decision satisfies Ti ∈ T ∗. Hence, the training data are
{(Xi, Ai, Ti, Yi)}n

i=1, where Yi = Y ∗
i I{Ti ∈ T ∗}) is the observed outcome.

Given a specified set of prediction functions F with elements f : X → [0, 1], we search for
the prediction function f ∈ F that minimizes or maximizes a measure of predictive disparities
with respect to the sensitive attribute subject to a constraint on predictive performance. We
measure performance using average loss, where l : Y × [0, 1]→ [0, 1] is the loss function and
loss(f) := E [l(Y ∗

i , f(Xi))]. The loss function is assumed to be 1-Lipshitz under the l1-norm
following Agarwal et al. (2019). The constraint on performance takes the form loss(f) ≤ ϵ for
some specified loss tolerance ϵ ≥ 0. The set of prediction functions satisfying this constraint
is the set of good models.

The loss tolerance may be chosen based on an existing benchmark model f̃ such as an existing
risk score, e.g., by setting ϵ = (1 + δ) loss(f̃) for some δ ∈ [0, 1]. The set of good models now
describes the set of models whose performance lies within a δ-neighborhood of the benchmark
model. When defined in this manner, the set of good models is also called the “Rashomon
set” (Rudin, 2019a; Fisher et al., 2019; Dong and Rudin, 2020; Semenova et al., 2020).

3.2.1 Measures of Predictive Disparities
We consider measures of predictive disparity of the form

disp(f) := β0E [f(Xi)|Ei,0] + β1E [f(Xi)|Ei,1] , (3.1)

where Ei,a is a group-specific conditioning event that depends on (Ai, Y
∗

i ) and βa ∈ R for
a ∈ {0, 1} are chosen parameters. Note that we measure predictive disparities over the full
population (i.e., not conditional on Ti).

For different choices of the conditioning events Ei,0, Ei,1 and parameters β0, β1, our predictive
disparity measure summarizes violations of common definitions of predictive fairness.

Definition 3.2.1. Statistical parity (SP) requires the prediction f(Xi) to be independent of
the attribute Ai (Dwork et al., 2012b; Zemel et al., 2013; Feldman et al., 2015). By setting
Ei,a = {Ai = a} for a ∈ {0, 1} and β0 = −1, β1 = 1, disp(f) measures the difference in
average predictions across values of the sensitive attribute.

Definition 3.2.2. Suppose Y = {0, 1}. Balance for the positive class (BFPC) and
balance for the negative class (BFNC) requires the prediction f(Xi) to be independent of
the attribute Ai conditional on Y ∗

i = 1 and Y ∗
i = 0 respectively (e.g., Chapter 2 of (Barocas

et al., 2019)). Defining Ei,a = {Y ∗
i = 1, Ai = a} for a ∈ {0, 1} and β0 = −1, β1 = 1, disp(f)

describes the difference in average predictions across values of the sensitive attribute given
Y ∗

i = 1. If instead Ei,a = {Y ∗
i = 0, Ai = a} for a ∈ {0, 1}, then disp(f) equals the difference

in average predictions across values of the sensitive attribute given Y ∗
i = 0.
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Our focus on differences in average predictions across groups is a common relaxation of
parity-based predictive fairness definitions (Corbett-Davies et al., 2017; Mitchell et al., 2019b).

Our predictive disparity measure can also be used for fairness promoting interventions, which
aim to increase opportunities for a particular group. For instance, the decision maker may
wish to search for the prediction function among the set of good models that minimizes the
average predicted risk score f(Xi) for a historically disadvantaged group.

Definition 3.2.3. Defining Ei,1 = {Ai = 1} and β0 = 0, β1 = 1, disp(f) measures the
average risk score for the group with Ai = 1. This is an affirmative action-based fairness
promoting intervention. Further assuming Y = {0, 1} and defining Ei,1 = {Y ∗

i = 1, Ai = 1},
disp(f) measures the average risk score for the group with both Y ∗

i = 1, Ai = 1. This is a
qualified affirmative action-based fairness promoting intervention.

3.2.2 Characterizing Predictive Disparities over the Set of Good
Models

We develop the algorithmic framework, Fairness in the Rashomon Set (FaiRS), to solve two
related problems over the set of good models. First, we characterize the range of predictive
disparities by minimizing or maximizing the predictive disparity measure over the set of good
models. We focus on the minimization problem

min
f∈F

disp(f) s.t. loss(f) ≤ ϵ. (3.2)

Second, we search for the prediction function that minimizes the absolute predictive disparity
over the set of good models

min
f∈F
|disp(f)| s.t. loss(f) ≤ ϵ. (3.3)

The solutions to these problems tell us whether there exist alternative prediction functions
that achieve similar performance yet generate different predictive disparities. The existence of
such a model is relevant to both decision makers, who may want to replace an existing model
with a more equitable but equally performant one, and to auditors, who may want to know
whether “business necessity”-type defenses to disparate impact hold in a given setting (CRA,
1964; ECOA, 1974; Barocas and Selbst, 2016a).

3.3 Methodology for Optimizing over the Set of Good
Models

We characterize the range of predictive disparities (3.2) and find the absolute predictive
disparity minimizing model (3.3) over the set of good models using techniques inspired by the
reductions approach in Agarwal et al. (2018, 2019). Although originally developed to solve
fair classification and fair regression problems in the case without selective labels, we extend
the reductions approach to solve general optimization problems over the set of good models
in the presence of selective labels. For exposition, we present our method for (3.2) in the case
without selective labels, where T ∗ = T and the outcome Y ∗

i is observed for all observations.
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3.3.1 Computing the Range of Predictive Disparities
We consider randomized prediction functions that select f ∈ F according to some distribution
Q ∈ ∆(F) where ∆ denotes the probability simplex. Let loss(Q) := ∑

f∈F Q(f) loss(f) and
disp(Q) := ∑

f∈F Q(f) disp(f). We solve

min
Q∈∆(F)

disp(Q) s.t. loss(Q) ≤ ϵ. (3.4)

While it may be possible to solve this problem directly for certain parametric function classes,
we develop an approach that can be applied to any generic function class.1 A key object for
doing so will be classifiers obtained by thresholding prediction functions. For cutoff z ∈ [0, 1],
define hf (x, z) = I{f(x) ≥ z} and let H := {hf : f ∈ F} be the set of all classifiers obtained
by thresholding prediction functions f ∈ F . We first reduce the optimization problem (3.4) to
a constrained classification problem through a discretization argument, and then solve the
resulting constrained classification problem through a further reduction to finding the saddle
point of a min-max problem.

Algorithm 6 Algorithm for finding the predictive disparity minimizing model
Input: Training data {(Xi, Yi, Ai)}n

i=1, parameters β0, β1, events Ei,0, Ei,1, empirical loss
tolerance ϵ̂, bound Bλ, accuracy ν and learning rate η.

Result: ν-approximate saddle point (Q̂h, λ̂)
Set θ1 = 0 ∈ R for t = 1, 2, . . . do

Set λt = Bλ
exp(θt)

1+exp(θt) ;
ht ← Besth(λt);
Q̂h,t ← 1

t

∑t
s=1 hs, L̄← L(Q̂h,t,Bestλ(Q̂h,t);

λ̂t ← 1
t

∑t
s=1 λs, L← L(Besth(λ̂t), λ̂t);

νt ← max
{
L(Q̂h,t, λ̂t)− L, L̄− L(Q̂h,t, λ̂t)

}
;

if νt ≤ ν then
if ĉost(Q̂h,t) ≤ ϵ̂+ |β0|+|β1|+2ν

Bλ
then

return (Q̂h,t, λ̂t);
else

return null
end

end
Set θt+1 = θt + η

(
ĉost(ht)− ϵ̂

)
;

end

Following the notation in Agarwal et al. (2019), we define a discretization grid for [0, 1] of size
N with α := 1/N and Zα := {jα : j = 1, . . . , N}. Let Ỹα be an α

2 -cover of Y . The piecewise
approximation to the loss function is lα(y, u) := l(y, [u]α + α

2 ), where y is the smallest ỹ ∈ Ỹα

such that |y − ỹ| ≤ α
2 and [u]α rounds u down to the nearest integer multiple of α. For a fine

enough discretization grid, lossα(f) := E [lα(Y ∗
i , f(Xi))] approximates loss(f).

Define c(y, z) := N ×
(
l(y, z + α

2 )− l(y, z − α
2 )

)
and Zα to be the random variable that

uniformly samples zα ∈ Zα and is independent of the data (Xi, Ai, Y
∗

i ). For hf ∈ H, define
1Our error analysis only covers function classes whose Rademacher complexity can be bounded as in

Assumption 3.4.1.
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3.3. Methodology for Optimizing over the Set of Good Models

the cost-sensitive average loss function as cost(hf) := E [c(Y ∗
i , Zα)hf (Xi, Zα)]. Lemma 1

in Agarwal et al. (2019) shows cost(hf) + c0 = lossα(f) for any f ∈ F , where c0 ≥ 0 is
a constant that does not depend on f . Since lossα(f) approximates loss(f), cost(hf) also
approximates loss(f). For Q ∈ ∆(F), define Qh ∈ ∆(H) to be the induced distribution
over threshold classifiers hf . By the same argument, cost(Qh) + c0 = lossα(Q), where
cost(Qh) := ∑

hf ∈H Qh(h) cost(hf ) and lossα(Q) is defined analogously.

We next relate the predictive disparity measure defined on prediction functions to a predictive
disparity measure defined on threshold classifiers. Define disp(hf ) := β0E [hf (Xi, Zα) | Ei,0] +
β1E [hf (Xi, Zα) | Ei,1] .

Lemma 3.3.1. Given any distribution over (Xi, Ai, Y
∗

i ) and f ∈ F , |disp(hf )− disp(f)| ≤
(|β0|+ |β1|)α.

Proof. Fix f ∈ F . For x ∈ X and zα ∈ Zα

hf (x, zα) = 1{f(x) ≥ zα} = 1{f(x) ≥ zα},

Therefore,
EZα [hf (x, Zα)] = EZα

[
1{f(x) ≥ Zα}

]
= f(x),

and for any a ∈ {0, 1},

|E [hf (X,Zα)|Ei,a]− E [f(X)|Ei,a] |
= |E [EZα [hf (X,Zα)]− f(X)|Ei,a] |
= |E

[
f(X)− f(X)|Ei,a

]
| ≤ α

where the first equality uses iterated expectations plus the fact that Zα is independent of
(X,A, Y ∗) and the final equality follows by the definition of f(X). The claim is immediate after
noticing disp(hf )−disp(f) equals β0 (E [hf (X,Zα)− f(X)|Ei,0])+β1 (E [hf (X,Zα)− f(X)|Ei,1])
and applying the triangle inequality. □

Lemma 3.3.1 combined with Jensen’s Inequality imply | disp(Qh)− disp(Q)| ≤ (|β0|+ |β1|)α.

Based on these results, we approximate (3.4) with its analogue over threshold classifiers

min
Qh∈∆(H)

disp(Qh) s.t. cost(Qh) ≤ ϵ− c0. (3.5)

We solve the sample analogue in which we minimize d̂isp(Qh) subject to ĉost(Qh) ≤ ϵ̂,
where ϵ̂ := ϵ− ĉ0 plus additional slack, and ĉ0, d̂isp(Qh), ĉost(Qh) are the associated sample
analogues. We form the Lagrangian L(Qh, λ) := d̂isp(Qh) + λ(ĉost(Qh) − ϵ̂) with primal
variable Qh ∈ ∆(H) and dual variable λ ∈ R+. Solving the sample analogue is equivalent
to finding the saddle point of the min-max problem minQh∈∆(H) max0≤λ≤Bλ

L(Qh, λ), where
Bλ ≥ 0 bounds the Lagrange multiplier. We search for the saddle point by adapting the
exponentiated gradient algorithm used in Agarwal et al. (2018, 2019). The algorithm delivers
a ν-approximate saddle point of the Lagrangian, denoted (Q̂h, λ̂).
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3. Characterizing Fairness Properties over the Set of Good Models

3.4 Theoretical Results for Optimizing over the Set of
Good Models

The suboptimality of the returned solution Q̂h can be controlled under conditions on the
complexity of the model class F and how various parameters are set.

Assumption 3.4.1. Let Rn(H) be the Radermacher complexity of H. There exists constants
C,C ′, C ′′ > 0 and ϕ ≤ 1/2 such that Rn(H) ≤ Cn−ϕ and ϵ̂ = ϵ− ĉ0 + C ′n−ϕ − C ′′n−1/2.

Theorem 3.4.1. Suppose Assumption 3.4.1 holds for C ′ ≥ 2C + 2 +
√

2 ln(8N/δ) and
C ′′ ≥

√
− log(δ/8)

2 . Let n0, n1 denote the number of samples satisfying the events Ei,0, Ei,1
respectively.

Then, the exponentiated gradient algorithm with ν ∝ n−ϕ, Bλ ∝ nϕ and N ∝ nϕ terminates
in O(n4ϕ) iterations and returns Q̂h, which when viewed as a distribution over F , satisfies
with probability at least 1− δ one of the following: 1) Q̂h ̸= null, loss(Q̂h) ≤ ϵ+ Õ(n−ϕ) and
disp(Q̂h) ≤ disp(Q̃) + Õ(n−ϕ

0 ) + Õ(n−ϕ
1 ) for any Q̃ that is feasible in (3.4); or 2) Q̂h = null

and (3.4) is infeasible.2

Proof. The proof strategy follows that of Theorems 2-3 in Agarwal et al. (2019). We consider
two cases.

Case 1: There is a feasible solution Q∗ to the population problem (3.4) Using
Lemmas 3.4.2-3.4.3, the ν-approximate saddle point Q̂h satisfies

d̂isp(Q̂h) ≤ d̂isp(Qh) + 2ν (3.6)

ĉost(Q̂h) ≤ ϵ̂+ |β0|+ |β1|+ 2ν
B

(3.7)

for any distribution Qh that is feasible in the empirical problem. This implies that Algorithm 6
returns Q̂ ̸= null. We now show that the returned Q̂h provides an approximate solution to
the discretized population problem.

First, define ĉostz(h) := Ê [c(Y ∗
i , z)h(Xi, z)] and costz(h) := E [c(Y ∗

i , z)h(Xi, z)]. Since
c(Y ∗

i , z) ∈ [−1, 1], we invoke Lemma 2 in Agarwal et al. (2019) with Si = c(Y ∗
i , zi),

Ui = (Xi, z), G = H and ψ(s, t) = st to obtain that with probability at least 1 − δ
4 for all

z ∈ Zα and h ∈ H ∣∣∣ĉostz(h)− costz(h)
∣∣∣ ≤

2Rn(H) + 2√
n

+
√

2 ln(8N/δ)
n

= Õ(n−ϕ),

where the last equality follows by the bound onRn(H) in Assumption 3.4.1 and settingN ∝ nϕ.
Averaging over z ∈ Zα and taking a convex combination of according to Qh ∈ ∆(H) then
delivers via Jensen’s Inequality that with probability at least 1− δ/4 for all Q ∈ ∆(H)∣∣∣ĉost(Qh)− cost(Qh)

∣∣∣ ≤ Õ(n−ϕ). (3.8)
2The notation Õ(·) suppresses polynomial dependence on ln(n) and ln(1/δ)
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Next, define d̂ispz(h) := β0Ê [h(Xi, z)|Ei,0]+β1Ê [h(Xi, z)|Ei,1] and dispz(h) := β0E [h(Xi, z)|Ei,0]+
β1E [h(Xi, z)|Ei,1], where the difference can be expressed as

d̂ispz(h)− dispz(h) =
β0

(
Ê [h(Xi, z)|Ei,0]− E [h(Xi, z)|Ei,0]

)
+

β1
(
Ê [h(Xi, z)|Ei,1]− E [h(Xi, z)|Ei,1]

)
.

Therefore, by the triangle inequality,∣∣∣d̂ispz(h)− dispz(h)
∣∣∣ ≤

|β0|
∣∣∣Ê [h(Xi, z)|Ei,0]− E [h(Xi, z)|Ei,0]

∣∣∣ +

|β1|
∣∣∣Ê [h(Xi, z)|Ei,1]− E [h(Xi, z)|Ei,1]

∣∣∣ .
For each term on the right-hand side of the previous display, we invoke Lemma 2 in Agarwal
et al. (2019) applied to the data distribution conditional on E0 and E1. We set S = 1,
U = (Xi, z), G = H and ψ(s, t) = st. With probability at least 1− δ

4 for all z ∈ Zα,∣∣∣Ê [h(Xi, z)|Ei,0]− E [h(Xi, z)|Ei,0]
∣∣∣ ≤

Rn0(H) + 2
√
n0

+
√

2 ln(8N/δ)
n0

,

∣∣∣Ê [h(Xi, z)|Ei,1]− E [h(Xi, z)|Ei,1]
∣∣∣ ≤

Rn1(H) + 2
√
n1

+
√

2 ln(8N/δ)
n1

.

Then, averaging over z ∈ Zα and taking a convex combination according to Qh ∈ ∆(H)
delivers via Jensen’s Inequality that with probability at least 1− δ/4 for all Q ∈ ∆(H)

∣∣∣Ê [Qh|Ei,0]− E [Qh|Ei,0]
∣∣∣ ≤ Rn0(H) + 2

√
n0

+
√

2 ln(8N/δ)
n0

(3.9)

∣∣∣Ê [Qh|Ei,1]− E [Qh|Ei,1]
∣∣∣ ≤ Rn1(H) + 2

√
n1

+
√

2 ln(8N/δ)
n1

(3.10)

By the union bound, both inequalities hold with probability at least 1− δ/2.

Finally, Hoeffding’s Inequality implies that with probability at least 1− δ/4,

|ĉ0 − c0| ≤
√
− log(δ/8)

2n . (3.11)
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From Lemma 3.4.5, we have that Algorithm 6 terminates and delivers a distribution Q̂h that
compares favorably against any feasible Q in the discretized sample problem. That is, for any
such Qh,

d̂isp(Q̂h) ≤ d̂isp(Qh) +O(n−ϕ) (3.12)
ĉost(Q̂h) ≤ ϵ̂+O(n−ϕ) (3.13)

where we used the fact that ν ∝ n−ϕ and B ∝ nϕ by assumption. First, (3.8), (3.11), (3.13)
imply

cost(Q̂h) ≤ ϵ̂+ Õ(n−ϕ) ≤ ϵ− c0 + Õ(n−ϕ), (3.14)
where we used that ϵ̂ = ϵ − Ê[l(Y ∗

i ,
α
2 )] + C ′n−ϕ − C ′′n−1/2. by assumption. Second, the

bounds in (3.9), (3.10) imply

disp(Q̂h) ≤ disp(Qh) + Õ(n−β
0 ) + Õ(n−ϕ

1 ). (3.15)

We assumed that Qh was a feasible point in the discretized sample problem. Assuming that
(3.8) holds implies that any feasible solution of the population problem is also feasible in the
empirical problem due to how we have set C ′ and C ′′. Therefore, we have just shown in
(3.14), (3.15) that Q̂h is approximately feasible and approximately optimal in the discretized
population problem (3.5). Our last step is to relate Q̂h to the original problem over f ∈ F
(3.2).
From Lemma 1 in Agarwal et al. (2019) and (3.14), we observe that

lossα(Q̂h)
(1)
≤ ϵ+ Õ(n−ϕ),

loss(Q̂h)
(2)
≤ ϵ+ Õ(n−ϕ),

where (1) used Lemma 1 in Agarwal et al. (2019) and we now view Q̂h as a distribution of risk
scores f ∈ F , (2) used that loss(Q) ≤ lossα(Q) + α. Next, from Lemma 3.3.1 and (3.15),
we observe that

disp(Q̂h) ≤ disp(Q̃) + (|β0|+ |β1|)α + Õ(n−ϕ
0 ) + Õ(n−ϕ

1 ).

where Q̂h is viewed as a distribution over risk scores f ∈ F and Q̃ is now any distribution
over risk scores f ∈ F that is feasible in the fairness frontier problem. This proves the result
for Case I.

Case II: There is no feasible solution to the population problem (3.4) This follows
the proof of Case II in Theorem 3 of Agarwal et al. (2019). If the algorithm returns a
ν-approximate saddle point Q̂h, then the theorem holds vacuously since there is no feasible Q̃.
Similarly, if the algorithm returns null, then the theorem also holds. □

Theorem 3.4.1 shows that the returned solution Q̂h is approximately feasible and achieves the
lowest possible predictive disparity up to some error. Infeasibility is a concern if no prediction
function f ∈ F satisfies the average loss constraint. Assumption 3.4.1 is satisfied for instance
under LASSO and ridge regression. If Assumption 1 does not hold, FaiRS still delivers good
solutions to the sample analogue of Eq. 3.5.
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A practical challenge is that the solution returned by the exponentiated gradient algorithm Q̂h

is a stochastic prediction function with possibly large support. Therefore it may be difficult to
describe, time-intensive to evaluate, and memory-intensive to store. Results from Cotter et al.
(2019) show that the support of the returned stochastic prediction function may be shrunk
while maintaining the same guarantees on its performance by solving a simple linear program.
The linear programming reduction reduces the stochastic prediction function to have at most
two support points and we use this linear programming reduction in our empirical work.

3.4.1 Auxiliary Lemmas for Theoretical Results
Here we provide auxiliary results and their proofs that are used to prove the main theorems
and lemmas presented above.

Let Λ := {λ ∈ R+ : λ ≤ B} denote the domain of λ. Throughout this section, we assume we
are given a pair (Q̂h, λ̂) that is a ν-approximate saddle point of the Lagrangian

L(Q̂h, λ̂) ≤ L(Qh, λ̂) + ν for all Qh ∈ ∆(H),
L(Q̂h, λ̂) ≥ L(Q̂h, λ)− ν for all 0 ≤ λ ≤ B.

We extend Lemma 1, Lemma 2 and Lemma 3 of Agarwal et al. (2018) to our setting.

Lemma 3.4.1. The pair (Q̂h, λ̂) satisfies

λ̂
(
ĉost(Q̂h)− ϵ̂

)
≥ B

(
ĉost(Q̂h)− ϵ̂

)
+
− ν,

where (x)+ = max{x, 0}.

Proof. We consider a dual variable λ that is defined as

λ =

0 if ĉost(Q̂h) ≤ ϵ̂

B otherwise.

From the ν-approximate optimality conditions,

d̂isp(Q̂) + λ̂
(
ĉost(Q̂)− ϵ̂

)
= L(Q̂, λ̂)

≥ L(Q̂, λ)− ν
= d̂isp(Q̂) + λ

(
ĉost(Q)− ϵ̂

)
,

and the claim follows by our choice of λ.

Lemma 3.4.2. The distribution Q̂h satisfies

d̂isp(Q̂h) ≤ d̂isp(Qh) + 2ν

for any Qh satisfying the empirical constraint (i.e., any Qh such that ĉost(Qh) ≤ ϵ̂).

Proof. Assume Qh satisfies ĉost(Qh) ≤ ϵ̂. Since λ̂ ≥ 0, we have that

L(Qh, λ̂) = d̂isp(Qh) + λ̂
(
ĉost(Qh)− ϵ̂

)
≤ d̂isp(Qh).
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Moreover, the ν-approximate optimality conditions imply that L(Q̂h, λ̂) ≤ L(Qh, λ̂) + ν.
Together, these inequalities imply that

L(Q̂h, λ̂) ≤ d̂isp(Qh) + ν.

Next, we use Lemma 3.4.1 to construct a lower bound for L(Q̂h, λ̂). We have that

L(Q̂h, λ̂) = d̂isp(Q̂h) + λ̂
(
ĉost(Qh)− ϵ̂′

)
≥ d̂isp(Q̂h) +B

(
ĉost(Q̂)− ϵ̂′

)
+
− ν

≥ d̂isp(Q̂h)− ν.

By combining the inequalities L(Q̂h, λ̂) ≥ d̂isp(Q̂h)− ν and L(Q̂h, λ̂) ≤ d̂isp(Qh) + ν, we
arrive at the claim.

Lemma 3.4.3. Assume the empirical constraint ĉost(Qh) ≤ ϵ̂ is feasible. Then, the distribution
Q̂h approximately satisfies the empirical cost constraint with

ĉost(Q̂h)− ϵ̂ ≤ |β0|+ |β1|+ 2ν
B

.

Proof. Let Qh satisfy ĉost(Qh) ≤ ϵ̂. Recall from the proof of Lemma 3.4.2, we showed that

d̂isp(Q̂h) +B
(
ĉost(Q̂h)− ϵ̂

)
+
− ν ≤ L(Q̂h, λ̂) ≤

d̂isp(Qh) + ν.

Therefore, we observe that

B
(
ĉost(Qh)− ϵ̂

)
≤

(
d̂isp(Qh)− d̂isp(Q̂h)

)
+ 2ν.

Since we can bound d̂isp(Qh)− d̂isp(Q̂h) by |β0|+ |β1|, the result follows.

Lemma 3.4.4. Letting ρ := maxh∈H |ĉost(h)− ϵ̂|, Algorithm 6 satisfies the inequality

νt ≤
B log(2)

ηt
+ ηρ2B.

For η = ν
2ρ2B

, Algorithm 6 will return a ν-approximate saddle point of L in at most 4ρ2B2 log(2)
ν2 .

Since in our setting, ρ ≤ 1, the iteration complexity of Algorithm 6 is 4B2 log(2)/ν2.

Proof. Follows immediately from the proof of iteration complexity in Theorem 3 of Agarwal
et al. (2019). Since the cost is bounded on [−1, 1] and ĉost(h) − ϵ̂ ≤ ĉost(h) ≤ 1 for any
h ∈ H, we see that ρ ≤ 1.

Lemma 3.4.5. Suppose that Qh is any feasible solution to discretized sample problem. Then,
the solution Q̂h returned by Algorithm 6 satisfies

d̂isp(Q̂h) ≤ d̂isp(Qh) + 2ν

ĉost(Q̂h) ≤ ϵ̂+ |β0|+ |β1|+ 2ν
B

.

Proof. This is an immediate consequence of Lemma 3.4.4, Lemma 3.4.2 and Lemma 3.4.3. If
the algorithm returns null, then these inequalities are vacuously satisfied.
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3.5 Methodology for Optimizing Over the Set of Good
Models Under Selective Labels

We now modify the reductions approach to the empirically relevant case in which the training
data suffer from the selective labels problem, whereby the outcome Y ∗

i is observed only if
Ti ∈ T ∗ with T ∗ ⊂ T . The main challenge concerns evaluating model properties over
the target population when we only observe labels for a selective (i.e., biased) sample. We
propose a solution that uses outcome modeling, also known as extrapolation, to estimate these
properties.

To motivate this approach, we observe that average loss and measures of predictive disparity
(3.1) that condition on Y ∗

i are not identified under selective labels without further assumptions.
We introduce the following assumption on the nature of the selective labels problem for the
binary decision setting with T = {0, 1} and T ∗ = {1}.

Assumption 3.5.1. The joint distribution (Xi, Ai, Ti, Y
∗

i ) ∼ P satisfies 1) selection on
observables: Ti ⊥⊥ Y ∗

i | Xi, and 2) positivity: P (Ti = 1 | Xi = x) > 0 with probability
one.

This assumption is common in causal inference and selection bias settings (e.g., Chapter 12 of
Imbens and Rubin (2015) and Heckman (1990))3 and in covariate shift learning (Moreno-Torres
et al., 2012). Under Assumption 3.5.1, the regression function µ(x) := E[Y ∗

i | Xi = x] is
identified as E[Yi | Xi, Ti = 1], and may be estimated by regressing the observed outcome Yi

on the features Xi among observations with Ti = 1, yielding the outcome model µ̂(x), as we
saw in Chapter 1.

We can use the outcome model to estimate loss on the full population. One approach, Reject
inference by extrapolation (RIE), uses µ̂(x) as pseudo-outcomes for the unknown observations
(Crook and Banasik, 2004). We consider a second approach, Interpolation & extrapolation
(IE), which uses µ̂(x) as pseudo-outcomes for all applicants, replacing the {0, 1} labels for
known cases with smoothed estimates of their underlying risks. Algorithms 7-8 summarize the
RIE and IE methods. If the outcome model could perfectly recover µ(x), then the IE approach
recovers an oracle setting for which the FaiRS error analysis continues to hold (Theorem 3.6.1
below).

Algorithm 7 The Reject inference by extrapolation (RIE) approach for addressing missing
outcomes due to the the selective labels problem
Input: {(Xi, Yi, Ti = 1, Ai)}n

i=1;
Estimate µ̂(x) by regressing Yi ∼ Xi | Ti = 1;
Ŷ (Xi)← (1− Ti)µ̂(Xi) + TiYi;

Output: {(Xi, Ŷi(Xi), Ti, Ai)}n
i=1;

Estimating predictive disparity measures on the full population requires a more general definition
of predictive disparity than previously given in Eq. 3.1. Define the modified predictive disparity

3Casting this into potential outcomes notation where Y d
i is the counterfactual outcome if decision d were

assigned, we define Y 0
i = 0 and Y 1

i = Y ∗
i (e.g., a rejected loan application cannot default). The observed

outcome Yi then equals Y 1
i Ti.
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3. Characterizing Fairness Properties over the Set of Good Models

Algorithm 8 The Interpolation and extrapolation (IE) method for addressing missing outcomes
due to the the selective labels problem
Input: {(Xi, Yi, Ti = 1, Ai)}n

i=1;
Estimate µ̂(x) by regressing Yi ∼ Xi | Ti = 1;
Ŷ (Xi)← µ̂(Xi);

Output: {(Xi, Ŷi(Xi), Ti, Ai)}n
i=1;

measure over threshold classifiers as

disp(hf ) =β0
E [g(Xi, Yi)hf (Xi, Zα) | Ei,0]

E[g(Xi, Yi) | Ei,0]
+

β1
E [g(Xi, Yi)hf (Xi, Zα)|Ei,1]

E[g(Xi, Yi) | Ei,1]
,

(3.16)

where the nuisance function g(Xi, Yi) is constructed to identify the measure of interest.4
To illustrate, the qualified affirmative action fairness-promoting intervention (Def. 3.2.3) is
identified as E[f(Xi)|Y ∗

i = 1, Ai = 1] = E[f(Xi)µ(Xi)|Ai=1]
E[µ(Xi)|Ai=1] under Assumption 3.5.1. This may

be estimated by plugging in the outcome model estimate µ̂(x). Therefore, Eq. 3.16 specifies the
qualified affirmative action fairness-promoting intervention by setting β0 = 0, β1 = 1, Ei,1 =
1 {Ai = 1}, and g(Xi, Yi) = µ̂(Xi). This more general definition (Eq. 3.16) is only required
for predictive disparity measures that condition on events E depending on both Y ∗ and A; it is
straightforward to compute disparities based on events E that only depend on A over the full
population. To compute disparities based on events E that also depend on Y ∗, we find the saddle
point of the following Lagrangian: L(hf , λ) = Ê

[
EZα

[
cλ(µ̂

i
, Ai, Zα)hf (Xi, Zα)

]]
− λϵ̂, where

we now use case weights cλ(µ̂
i
, Ai, Zα) := β0

p̂0
g(Xi, Yi)(1− Ai) + β1

p̂1
g(Xi, Yi)Ai + λc(µ̂

i
, Zα)

with p̂a = Ê[g(Xi, Yi)1 {Ai = a}] for a ∈ {0, 1}. Finally, as before, we find the saddle point
using the exponentiated gradient algorithm.

3.6 Theoretical Results for Optimizing over the Set of
Good Models under Selective Labels

Define lossµ(f) := E[l(µ(Xi), f(Xi))] for f ∈ F with lossµ(Q) defined analogously for
Q ∈ ∆(F). The error analysis of the exponentiated gradient algorithm continues to hold in
the presence of selective labels under oracle access to the true outcome regression function µ.

Theorem 3.6.1 (Selective Labels). Suppose Assumption 3.5.1 holds and the exponentiated
gradient algorithm is given as input the modified training data {(Xi, Ai, µ(Xi)}n

i=1.
Under the same conditions as Theorem 3.4.1, the exponentiated gradient algorithm returns
Q̂h, which when viewed as a distribution over F , satisfies with probability at least 1 − δ
either one of the following: 1) Q̂h ̸= null, lossµ(Q̂h) ≤ ϵ + Õ(n−ϕ) and disp(Q̂h) ≤
disp(Q̃) + Õ(n−ϕ

0 ) + Õ(n−ϕ
1 ) for any Q̃ that is feasible in (3.4); or 2) Q̂h = null and (3.4) is

infeasible.

Proof. Under oracle access to µ(x), the bound on cost hold immediately from Theorem 3.4.1.
The bound on disparity holds immediately for choices Ei,0, Ei,1 that depend on only A. For

4Note that we state this general form of g to allow g to use Yi, for doubly-robust style estimates.
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choices of Ei,0, Ei,1 that depends on Yi, such as the qualified affirmative action fairness-
enhancing intervention, we rely on Lemma 3.6.1. We first observe that under oracle access to
µ(x), we can identify any disparity as

β1E[f(X)g(µ(X)) | A = 1]
E[g(µ(X)) | A = 1] − β0E[f(X)g(µ(X)) | A = 0]

E[g(µ(X)) | A = 0] , (3.17)

where g(x) = x for the balance for the positive class and qualified affirmative action criteria;
g(x) = (1− x) for balance for the negative class; and g(x) = 1 for the statistical parity and
the affirmative action criteria (see proof of Lemma 3.6.1 below proof for an example). We
define the shorthand

ω1 := E[f(X)g(µ(X)) | A = 1]
ω̄1 := E[g(µ(X)) | A = 1]

ω0 := E[f(X)g(µ(X)) | A = 0]
ω̄0 := E[g(µ(X)) | A = 0],

and we use ω̂1, ˆ̄ω1, ω̂0, and ˆ̄ω0 to denote their empirical estimates. Lemma 3.6.1 gives the
following bound on the empirical estimate of the disparity:

P

 ∣∣∣∣∣β1ω̂1
ˆ̄ω1
− β0ω̂0

ˆ̄ω0
−

(
β1ω1

ω̄1
− β0ω0

ω̄0

)∣∣∣∣∣ ≥ ϵ


≤ 4 exp

− n

2

ϵω̄∧

8β − 4Rn(G)− 2√
n

2 + 2 exp
[−nϵ2ω̄4

∧
64β2ω2

∨

]

+ 2 exp
[−nω̄2

∧
4

]
,

where ω∨ = max(ω1, ω0), ω̄∧ = min(ω̄1, ω̄0) and β = max(|β1| , |β0|).
We now proceed to relax and simplify the bound. For ϵ ≤ 4βω∨

ω̄∧
, we have

2 exp
[−nϵ2ω̄4

∧
64β2ω2

∨

]
≥ 2 exp

[−nω̄2
∧

4

]
.

Case 1: We first consider the likely case that ω̄∧ ≥ ω∨. Then we have

2 exp
[−nϵ2ω̄4

∧
64β2ω2

∨

]
≤ 2 exp

[−nϵ2ω̄2
∧

64β2

]
.

1a) If
ϵω̄∧

8β ≥ 4Rn(G) + 2√
n

(3.18)

then

exp
[−nϵ2ω̄2

∧
64β2

]
≤ exp

− n

2

ϵω̄∧

8β − 4Rn(G)− 2√
n

2.
Then we have

P

 ∣∣∣∣β1ω̂1
ˆ̄ω1
− β0ω̂0

ˆ̄ω0
−

(
β1ω1
ω̄1
− β0ω0

ω̄0

)∣∣∣∣ ≥ ϵ

 (3.19)

≤ 8 exp
− n

2

 ϵω̄∧
8β
− 4Rn(G)− 2√

n

2. (3.20)
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Inverting this bound yields the following: with probability at least 1− δ,∣∣∣∣∣β1ω̂1
ˆ̄ω1
− β0ω̂0

ˆ̄ω0
−

(
β1ω1

ω̄1
− β0ω0

ω̄0

)∣∣∣∣∣ ≤
8β
ω̄∧

4Rn(G) + 2√
n

+
√

2
n

log
(8
δ

).
1b)

ϵω̄∧

8β < 4Rn(G) + 2√
n

(3.21)

implies that ∣∣∣∣∣β1ω̂1
ˆ̄ω1
− β0ω̂0

ˆ̄ω0
−

(
β1ω1

ω̄1
− β0ω0

ω̄0

)∣∣∣∣∣ ≤
8β
ω̄∧

4Rn(G) + 2√
n

.
Case 2: We now consider the unlikely but plausible case that ω̄∧ < ω∨. Then we have

exp
− n

2

ϵω̄∧

8β − 4Rn(G)− 2√
n

2 ≤

exp
− n

2

ϵω∨

8β − 4Rn(G)− 2√
n

2
and

exp
[−nϵ2ω̄4

∧
64β2ω2

∨

]
≤ exp

[−nϵ2ω2
∨

64β2

]
.

We proceed with the same steps as in Case 1 to conclude that with probability at least 1− δ,∣∣∣∣∣β1ω̂1
ˆ̄ω1
− β0ω̂0

ˆ̄ω0
−

(
β1ω1

ω̄1
− β0ω0

ω̄0

)∣∣∣∣∣ ≤
8β
ω̄∧

4Rn(G) + 2√
n

+
√

2
n

log
(8
δ

).
Applying our assumption that

Rn(H) ≤ Cn−ϕ and ϵ̂ = ϵ− ĉ0 + C ′n−ϕ − C ′′n−1/2,

for ϕ ≤ 1/2 and C ′ ≥ 2C + 2 +
√

2 ln(8N/δ) and C ′′ ≥
√

− log(δ/8)
2 , then

disp(Q̂h) ≤ disp(Q̃) + Õ(n−ϕ), (3.22)

which implies
disp(Q̂h) ≤ disp(Q̃) + Õ(n−ϕ

0 ) + Õ(n−ϕ
1 ). (3.23)

□

In practice, estimation error in µ̂ will affect the bounds in Theorem 3.6.1. The empirical
analysis in § 3.8 finds that our method nonetheless performs well when using µ̂.
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3.6.1 Auxiliary Lemmas for the Proof of Theorem 3.6.1
Concentration result for disparity under selective labels

Lemma 3.6.1.

P

 ∣∣∣∣∣β1ω̂1
ˆ̄ω1
− β0ω̂0

ˆ̄ω0
−

(
β1ω1

ω̄1
− β0ω0

ω̄0

)∣∣∣∣∣ ≥ ϵ


≤ 4 exp

− n

2

ϵω̄∧

8β − 4Rn(G)− 2√
n

2 + 2 exp
[−nϵ2ω̄4

∧
64β2ω2

∨

]

+ 2 exp
[−nω̄2

∧
4

]
,

where ω∨ = max(ω1, ω0), ω̄∧ = min(ω̄1, ω̄0) and β = max(|β1| , |β0|).

Proof. For exposition, we first show the steps for qualified affirmative action and then extend
the result to the general disparity. We can rewrite the qualified affirmative action criterion as

E[f(X)|Y = 1, A = 1] = E[f(X)µ(X)|A = 1]
E[µ(X)|A = 1] (3.24)

where µ(x) := E[Y | X = x].
E[f(X)|Y = 1, A = 1]

= E[f(X)1{Y =1}|A=1]
P (Y =1|A=1) (3.25)

= E[f(X)E[1{Y =1}|X,A=1]|A=1]
E[P (Y =1|X,A=1)|A=1] (3.26)

= E[f(X)P (Y =1|X,A=1)|A=1]
E[µ(X)|A=1] (3.27)

= E[f(X)µ(X)|A=1]
E[µ(X)|A=1] . (3.28)

Assuming access to the oracle µ function, we can estimate this on the full training data as

Ê[f(X)µ(X,A = 1)|A = 1]
Ê[µ(X,A = 1)|A = 1]

. (3.29)

Next we will make use of Lemma 2 of Agarwal et al. (2019), which we restate here again for
convenience. Under certain conditions on ϕ and g, with probability at least 1− δ∣∣∣Ê [ϕ(S, g(U))]− E [ϕ(S, g(U))]

∣∣∣ ≤
4Rn(G) + 2√

n
+

√
2 ln(2/δ)

n
.

We invert the bound by setting ϵ = 4Rn(G) + 2√
n

+
√

2 ln(2/δ)
n

and solving for δ to get

δ = 2 exp
− n

2

ϵ− 4Rn(G)− 2√
n

2. (3.30)
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Now we can restate Lemma 2 of Agarwal et al. (2019) as

P
[ ∣∣∣Ê [ϕ(S, g(U))]− E [ϕ(S, g(U))]

∣∣∣ > ϵ
]

(3.31)

≤ 2 exp
− n

2

ϵ− 4Rn(G)− 2√
n

2.
Next we revisit the quantity that we want to bound:∣∣∣∣∣ωω̄ − ω̂

ˆ̄ω

∣∣∣∣∣ (3.32)

where ω = E[f(X)µ(X,A = 1)|A = 1] and ω̄ = E[µ(X,A = 1)|A = 1] and correspondingly
for ω̂ and ˆ̄ω. We will rewrite Expression 3.32 as a ratio of differences. We have∣∣∣∣∣ ω̂ˆ̄ω − ω

ω̄

∣∣∣∣∣ =
∣∣∣ ω̂ω̄− ˆ̄ωω

ˆ̄ωω̄

∣∣∣ (3.33)

=
∣∣∣ ω̄(ω̂−ω)−ω(ˆ̄ω−ω̄)

ω̄(ˆ̄ω−ω̄)+ω̄2

∣∣∣ . (3.34)
(3.35)

By triangle inequality and union bound, we have

P
[
| ω̄(ω̂ − ω)− ω(ˆ̄ω − ω̄)

ω̄(ˆ̄ω − ω̄) + ω̄2
| ≥ t

ω̄2/2

]

< P
[
|ω̄(ω̂ − ω)|+ |ω(ˆ̄ω − ω̄)| ≥ t

]
+ P

[
|(ˆ̄ω − ω̄) + ω̄2| ≤ ω̄2

2

]

< P
[
|ω̄(ω̂ − ω)| ≥ t

2
]

+ P
[
|ω(ˆ̄ω − ω̄)| ≥ t

2
]

+ P
[
|ω̄(ˆ̄ω − ω̄) + ω̄2| ≤ ω̄2

2

]

Since 0 ≤ µ(X,A = 1) ≤ 1, we can use a Hoeffding bound for the quantity |(ˆ̄ω − ω̄)|. Note
that 0 ≤ ω ≤ ω̄ ≤ 1. Then applying Hoeffding’s inequality gives us

P
[ ∣∣∣ω(ˆ̄ω − ω̄)

∣∣∣ ≥ t

2
]
≤ 2 exp

[−nt2
4ω2

]
(3.36)

Next we bound the third term:

P
[
|ω̄(ˆ̄ω − ω̄) + ω̄2| ≤ ω̄2

2

]
≤ P

[
|ω̄(ˆ̄ω − ω̄)| ≥ ω̄2

2

]
(3.37)

= P
[
|(ˆ̄ω − ω̄)| ≥ ω̄

2

]
(3.38)

≤ 2 exp
[

−nω̄2

4

]
(3.39)

where we again used Hoeffding’s inequality for the last line.
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We bound the first term using the restated Lemma in 3.31:

P
[
|ω̄(ω̂ − ω)| ≥ t

2
]
≤ 2 exp

− n

2

 t

2ω̄ − 4Rn(G)− 2√
n

2. (3.40)

Now we let ϵ̃ = t
ω̄2/2 to get

P
[ ∣∣∣∣∣ ω̂ˆ̄ω − ω

ω̄

∣∣∣∣∣ ≥ ϵ̃
]

(3.41)

≤ 2 exp
− n

2

 ϵ̃ω̄
4 − 4Rn(G)− 2√

n

2 + exp
[−nϵ̃2ω̄4

16ω2

]
+ exp

[−nω̄2

4

]
.

Now we turn to the general case. Recalling that we define β = max(|β1, β0|), we have

P

 ∣∣∣∣∣β1ω̂1
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+2 exp
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]
where the first inequality holds by triangle inequality, the second inequality holds by the union
bound, the third inequality applies (3.41) for ϵ̃ = ϵ

2β
, and the final inequality simplifies the

bound using the notation ω∨ = max(ω1, ω0) and ω̄∧ = min(ω̄1, ω̄0).

3.7 Empirical Results on Benchmark Recidivism Data
We use FaiRS to empirically characterize the range of disparities over the set of good models
in a recidivism risk prediction task applied to ProPublica’s COMPAS data (Angwin et al.,
2016a). Our goal is to illustrate (i) how FaiRS may be used to tractably characterize the range
of predictive disparities over the set of good models; (ii) that the range of predictive disparities
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over the set of good models can be quite large empirically; and (iii) how an auditor may use the
set of good models to assess whether the COMPAS risk assessment generates larger disparities
than other competing good models. Such an analysis is relevant to business-necessity-type
audits of disparate impact (ECOA, 1974; CRA, 1964).

COMPAS is a proprietary risk assessment developed by Northpointe (now Equivant) using up
to 137 features (Rudin et al., 2020). As this data is not publicly available, our audit makes use
of ProPublica’s COMPAS dataset which contains demographic information and prior criminal
history for criminal defendants in Broward County, Florida. Lacking access to the data used
to train COMPAS, our set of good models may not include COMPAS itself (Angwin et al.,
2016a). Nonetheless, prior work has shown that simple models using age and criminal history
perform on par with COMPAS (Angelino et al., 2018). These features will therefore suffice to
perform our audit. A notable limitation of the ProPublica COMPAS dataset is that it does
not contain information for defendants who remained incarcerated. Lacking both features and
outcomes for this group, we proceed without addressing this source of selection bias. We also
make no distinction between criminal defendants who had varying lengths of incarceration
before release, effectively assuming a null treatment effect of incarceration on recidivism. This
assumption is based on findings in Mishler (2019) that a counterfactual audit of COMPAS
yields equivalent conclusions.

We analyze the range of predictive disparities with respect to race for three common notions of
fairness (Definitions 3.2.1-3.2.2) among logistic regression models on a quadratic polynomial
of the defendant’s age and number of prior offenses whose training loss is near-comparable to
COMPAS (loss tolerance ϵ = 1% of COMPAS training loss).5 We split the data 50%-50%
into a train and test set. Table 3.1 summarizes the range of predictive disparities on the test
set. The disparity minimizing and disparity maximizing models over the set of good of models
achieve a test loss that is comparable to COMPAS.

For each predictive disparity measure, the set of good models includes models that achieve
significantly lower disparities than COMPAS. In this sense, COMPAS generates “unjustified”
disparate impact as there exists competing models that would reduce disparities without
compromising performance. Notably, COMPAS’ disparities are also larger than the maximum
disparity over the set of good models. For example, the difference in COMPAS’ average
predictions for black relative to white defendants is strictly larger than that of any model in
the set of good models (Table 3.1, SP). Interestingly, the minimal balance for the positive
class and balance for the negative class disparities between black and white defendants over
the set of good models are strictly positive (Table 3.1, BFPC and BFNC). For example any
model whose performance lies in a neighborhood of COMPAS’ loss has a higher false positive
rate for black defendants than white defendants. This suggests while we can reduce predictive
disparities between black and white defendants relative to COMPAS on all measures, we
may be unable to eliminate balance for the positive class and balance for the negative class
disparities without harming predictive performance.

In addition to the retrospective auditing considered in this section, characterizing the range of
predictive disparities over the set of good models is also important for model development and
selection. The next section shows how to construct a more equitable model that performs
comparably to a benchmark.

5We use a quadratic form following the analysis in Rudin et al. (2020).
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Table 3.1: Results showing fairness properties over the set of good models trained on
Propublica’s recidivism prediction dataset. Our optimization method shows that the redicivism
prediction model used in practice, COMPAS, fails to satisfy the “business necessity" defense
for disparate impact by race. The set of good models (performing within 1% of COMPAS’s
training loss) includes models that achieve significantly lower disparities than COMPAS. The
first panel (SP) displays the disparity in average predictions for black versus white defendants
(Def. 3.2.1). The second panel (BFPC) analyzes the disparity in average predictions for
black versus white defendants in the positive class, and the third panel examines the disparity
in average predictions for black versus white defendants in the negative class (Def. 3.2.2).
Standard errors are reported in parentheses. See § 3.7 for details.

Min. Disp. Max. Disp. COMPAS
SP −0.060 0.120 0.194

(0.004) (0.007) (0.013)
BFPC 0.049 0.125 0.156

(0.005) (0.012) (0.016)
BFNC 0.044 0.117 0.174

(0.005) (0.009) (0.016)

3.8 Empirical Results on Real-World Consumer Lending
Data

Suppose a financial institution wishes to replace an existing credit scoring model with one that
has better fairness properties and comparable performance, if such a model exists. We show
how to accomplish this task by using FaiRS to find the absolute predictive disparity-minimizing
model over the set of good models. On a real world consumer lending dataset with selectively
labeled outcomes, we find that this approach yields a model that reduces predictive disparities
relative to the benchmark without compromising overall performance.

We use data from Commonwealth Bank of Australia, a large financial institution in Australia
(henceforth, "CommBank"), on a sample of 7,414 personal loan applications submitted from
July 2017 to July 2019 by customers that did not have a prior financial relationship with
CommBank. A personal loan is a credit product that is paid back with monthly installments
and used for a variety of purposes such as purchasing a used car or refinancing existing debt.
In our sample, the median personal loan size is AU$10,000 and the median interest rate is
13.9% per annum. For each loan application, we observe application-level information such
as the applicant’s credit score and reported income, whether the application was approved
by CommBank, the offered terms of the loan, and whether the applicant defaulted on the
loan. There is a selective labels problem as we only observe whether an applicant defaulted
on the loan within 5 months (Yi) if the application was funded, where “funded" denotes
that the application is both approved by CommBank and the offered terms were accepted by
the applicant. In our sample, 44.9% of applications were funded and 2.0% of funded loans
defaulted within 5 months.

Motivated by a decision maker that wishes to reduce credit access disparities across geographic
regions, we focus on the task of predicting the likelihood of default Y ∗

i = 1 based on information
in the loan application Xi while limiting predictive disparities across SA4 geographic regions
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within Australia. SA4 regions are statistical geographic areas defined by the Australian Bureau
of Statistics (ABS) and are analogous to counties in the United States. An SA4 region is
classified as socioeconomically disadvantaged (Ai = 1) if it falls in the top quartile of SA4
regions based on the ABS’ Index of Relative Socioeconomic Disadvantage (IRSD), which is
an index that aggregates census data related to socioeconomic disadvantage.6 Applicants
from disadvantaged SA4 regions are under-represented among funded applications, comprising
21.7% of all loan applications, but only 19.7% of all funded loan applications.

Our experiment investigates the performance of FaiRS under our two proposed extrapolation-
based solutions to selective labels, RIE and IE (See Algorithms 7-8), as well as the Known-Good
Bad (KGB) approach that uses only the selectively labelled population. Because we do not
observe default outcomes for all applications, we conduct a semi-synthetic simulation experiment
by generating synthetic funding decisions and default outcomes. On a 20% sample of applicants,
we learn π(x) := P̂ (Ti = 1|Xi = x) and µ(x) := P̂ (Yi = 1|Xi = x, Ti = 1) using random
forests. We generate synthetic funding decisions T̃i according to T̃i | Xi ∼ Bernoulli(π(Xi))
and synthetic default outcomes Ỹ ∗

i according to Ỹ ∗
i | Xi ∼ Bernoulli(µ(Xi)). We train all

models as if we only knew the synthetic outcome for the synthetically funded applications. We
estimate µ̂(x) := P̂ (Ỹi = 1|Xi = x, T̃i = 1) using random forests and use µ̂(Xi) to generate
the pseudo-outcomes Ŷ (Xi) for RIE and IE as described in Algorithms 7 and 8. As benchmark
models, we use the loss-minimizing linear models learned using KGB, RIE, and IE approaches,
whose respective training losses are used to select the corresponding loss tolerances ϵ. We use
the class of linear models for the FaiRS algorithm for KGB, RIE, and IE approaches.

We compare against the fair reductions approach to classification (fairlearn) and the Target-Fair
Covariate Shift (TFCS) method in Coston et al. (2019). TFCS iteratively reweighs the training
data via gradient descent on an objective function comprised of the covariate shift-reweighed
classification loss and a fairness loss. Fairlearn searches for the loss-minimizing model subject
to a fairness parity constraint (Agarwal et al., 2018). The fairlearn model is effectively a KGB
model since the fairlearn package does not offer modifications for selective labels.7 We use
logistic regression as the base model for both fairlearn and TFCS. Results are reported on all
applicants in a held-out test set, and performance metrics are constructed with respect to the
synthetic outcome Ỹ ∗

i .

Figure 3.1 shows the AUC (y-axis) against disparity (x-axis) for the KGB, RIE, IE benchmarks
and their FaiRS variants as well as the TFCS models and fairlearn models. Colors denote the
adjustment strategy for selective labels, and the shape specifies the optimization method. The
first row evaluates the models on all applicants in the test set (i.e., the target population). On
the target population, FaiRS with reject extrapolation (RIE and IE) reduces disparities while
achieving performance comparable to the benchmarks and to the reweighing approach (TFCS).
It also achieves lower disparities than TFCS, likely because TFCS optimizes a non-convex
objective function and may therefore converge to a local minimum. Reject extrapolation
achieves better AUC than all KGB models, and only one KGB model (fairlearn) achieves a lower
disparity. The second row evaluates the models on only the funded applicants. Evaluation on
the funded cases underestimates disparities across the methods and overestimates AUC for
the TFCS and KGB models. This highlights that failure to account for the selective labels
problem can lead to invalid models and invalid evaluations.

6Complete details on the IRSD may be found in Australian Bureau of Statistics (2016).
7To accommodate reject inference, a method must support real-valued outcomes. The fairlearn package

does not, but the related fair regressions does (Agarwal et al., 2019). This is sufficient for SP (Def. 3.2.1),
but other parities such as BFPC and BFNC (Def. 3.2.2) require further modifications as discussed in § 3.5.
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Figure 3.1: Semi-synthetic results for characterizing fairness properties over the set of good
models trained on real-world credit lending data. This plot shows the area under the ROC curve
(AUC) with respect to the synthetic outcome against disparity in the average risk prediction
for the disadvantaged (Ai = 1) vs advantaged (Ai = 0) groups. FaiRS reduces disparities for
the RIE and IE approaches while maintaining AUCs comparable to the benchmark models
(first row). Evaluation on only funded applicants (second row) overestimates the performance
of TFCS and KGB models and underestimates disparities for all models. Error bars show the
95% confidence intervals. See § 3.8 for details.

3.9 Conclusion
This chapter developed a framework, Fairness in the Rashomon Set (FaiRS), to characterize
the range of predictive disparities and find the absolute disparity minimizing model over the
set of good models. FaiRS is suitable for a variety of applications including settings with
selectively labelled outcomes where the selection decision and outcome are unconfounded given
the observed features. The method is generic, applying to both a large class of prediction
functions and a large class of predictive disparities.
This concludes our discussion, guided by the principles of validity and equity, on methods
for constructing and evaluating counterfactual risk assessments. We next turn to the more
existential question of whether algorithmic risk assessments are suitable for use in a particular
setting. Our investigation into this question will continue to consider aspects of validity and
equity alongside our third principle, governance.
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4

Framework for Evaluating the Validity of
Algorithms in Consequential Decisions

Data-driven algorithmic decision-making, in theory, can afford improvements in efficiency
and the benefits of evidence-based decision making. Yet in practice, data-driven decision
systems, often taking the form of algorithmic risk assessments, have caused significant adverse
consequences in high-stakes settings. Investigators have identified unintended and often biased
behavior in algorithmic decision systems used in a variety of applications, from detecting
unemployment and welfare fraud to determining pre-trial release decisions and child welfare
screening decisions, as well as in algorithms used to inform medical care and set insurance
premiums (Eubanks, 2018; Angwin et al., 2016b; Obermeyer et al., 2019b; Vyas et al., 2020;
Gilman, 2020; Charette, 2018; Angwin et al., 2017; Fabris et al., 2021). These high-profile
incidents have brought into focus key questions such as how we can anticipate these harms
before deployment and whether algorithms are suitable for decision-making tasks.
In this chapter, we argue that these questions of governance require that we evaluate the
validity of algorithms. We present a framework for using validity considerations to help govern
decisions about whether to build and deploy algorithmic decision systems. The contributions
in this chapter were originally published in Coston et al. (2023).
To anticipate harms before deployment, researchers and practitioners have proposed a suite of
tools and processes to address value-alignment, such as how to promote fairness and establish
transparency and accountability (Digital and Office, 2018; Madaio et al., 2020b; Raji et al.,
2020; Mitchell et al., 2019a; Gebru et al., 2021). More recently, there have been growing
calls to assess the appropriateness of using predictive tools for complex, real-world tasks from
a validity perspective (Raji et al., 2022). In many cases where algorithms prove unsuitable
for real-world use, the problem originates in the initial problem formulation stages (Passi
and Barocas, 2019; Barocas and Selbst, 2016b), or in the process of operationalizing latent
constructs of interest (e.g., worker well-being, risk of recidivism, or socioeconomic status) via
more readily observable measures and indicators (Jacobs and Wallach, 2021; Narayanan, 2019;
Recht, 2022).
Without addressing these issues directly, it may be challenging or impossible to align the
resulting model with human values after the fact. In some cases, efforts to do so may actually
backfire because of unaddressed upstream issues.
Our work seeks to center validity considerations, a crucial criterion for the justified use of
algorithmic tools in real-world decision-making (Jacobs and Wallach, 2021; Narayanan, 2019;
Recht, 2022). In doing so, we situate our work at the intersection of research that debates
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algorithm refusal versus repair and research that develops artifacts for responsible ML. Guided
by the goal of delivering an accessible tool to promote deliberation and reflection around
validity, we propose a structure for a question-and-answer (Q&A)-based protocol.

The main components of this chapter are as follows:

1. We provide a working taxonomy of criteria for the justified use of algorithms in high-
stakes settings. We utilize this taxonomy to illuminate two important principles for
substantiating/refuting the use of ML for decision making: validity and reliability (§ 4.1).

2. We use this taxonomy to conduct an interdisciplinary literature review on validity,
reliability, and value-alignment (§ 4.2).

3. We connect modern validity theory from the social sciences to common challenges in
problem formulation and data issues that jeopardize the validity of predictive algorithms
in decision making (§ 4.3).

4. We demonstrate how this systematization can inform future work by sketching the
structure for a protocol to promote deliberation on validity.

Throughout the chapter we will discuss validity in the context of several high-stakes settings
where predictive algorithms are increasingly used to inform human decisions: pre-trial release in
the criminal justice system and screening decisions in the child welfare system. In the criminal
justice setting, judges must decide whether to release a defendant before trial based on the
likelihood that, if released, the defendant will fail to appear for trial as well as the likelihood
the defendant will be arrested for a new crime before trial (Kleinberg et al., 2018). For the
child welfare screening task, call workers must decide which reports of alleged child abuse
or neglect should be screened in for investigation based on an assessment of the likelihood
of immediate danger or long-term neglect if no further action is taken (Chouldechova et al.,
2018).

4.1 A Taxonomy of Criteria for Justified Use of
Data-driven Algorithms

To assess whether the use of data-driven algorithms is adequately justified in a given decision
making context, one must account for a wide range of factors. To give structure to this vast
array of considerations, we propose a high-level taxonomy: we posit that the justified use of
algorithmic tools requires at minimum accounting for validity, value-alignment, and reliability.
In this section, we offer a precise definition for these terms. § 4.2 offers an overview of existing
literature on each of these topics.

The rationale for our taxonomy: To evaluate whether the use of predictive tools is
sufficiently justified in a high-stakes decision making domain, at a minimum, we need to answer
the following sequence of questions:

• Can we translate (parts of) the decision-making task into a prediction problem where
both a measure representing the construct we’d like to predict and predictive attributes
are available in the observed data?
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• If the answer to the above question is affirmative, does the model we train align with
stakeholders’ values, such as impartiality and non-discrimination?

• Do we understand the longer-term consequences of deploying the model in decision
making processes? For example, how might the deployment setting change over time
and can the model be reliably utilized under this changing environment?

The above questions motivate our three high-level categories of considerations for justify-
ing/refuting the use of data-driven algorithms in decision making: validity, value alignment,
and reliability.

Before we elaborate on our taxonomy, two remarks are in order. First, we emphasize that
a formal, comprehensive taxonomy of considerations around justified-use of algorithms is a
formidable research question in itself, and the purpose of our taxonomy is limited to structuring
our review of the available literature, tools and resources. We make no claims regarding the
comprehensiveness of our taxonomy. We refer the interested reader to treatises on the subject
including Fjeld et al. (2020); Floridi and Cowls (2021); Golbin et al. (2020). Additionally, we
note that the three categories at the heart of our taxonomy are intimately connected, rather
than mutually exclusive.

Our first category of considerations, validity, aims to establish that the system does what it
purports to do. As we have seen throughout this dissertation, this quality is much harder
to satisfy than one might initially expect. For an additional example, consider the task of
predicting which criminal defendants are likely to reoffend. Predictive models are often trained
using re-arrest outcomes (Fogliato et al., 2021). Whether a model predicting re-arrest actually
predicts reoffense is subject to considerable debate, particularly given that a large body of
work has established racial disparities in arrests even for crimes which have little differences
in prevalence by race (Alexander, 2011). A model that appears accurate with respect to
re-arrests may be quite inaccurate with respect to actual crime. More broadly, the notion of
validity requires not only that the system has to predict what it purports to predict, but also
must achieve acceptable accuracy both within and outside the training environment (in the
real-world deployment). These validity criteria are adapted from validity considerations (e.g.,
construct validity, internal validity, and external validity) that are widely adopted in social
sciences, including psychology, psychometrics, and Human-Computer Interaction (Campbell,
1957; Messick, 1995; Gergle and Tan, 2014).

Definition 4.1.1 (Validity). A measure, test, or model is valid if it closely reflects or assesses
the specific concept/construct that the designer intends to measure (Drost, 2011).

We say that a predictive algorithm is valid when it predicts the quantity that we think it does,
and similarly we say that an audit or assessment is valid when it evaluates the quantity that we
would like to audit or assess. Threats to validity can arise as early as the problem formulation
stage where decisions about how to operationalize the problem can induce misalignment
between what we intend to predict versus what the model actually predicts (Passi and Barocas,
2019; Jacobs and Wallach, 2021). When validity does not hold, it is quite challenging to assess
value-alignment—our next category of considerations. In this sense, we claim that validity is a
prerequisite for the more commonly discussed values such as fairness.

Our second category of considerations focuses on the compliance of the system with stake-
holders’ values.
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Figure 4.1: Visual representation of our proposed taxonomy for the justified use of algorithms
in high-stakes decision making. Validity, reliability and value alignment are required for justified
use. These concepts are overlapping and interconnected, encompassing many aspects of
responsible machine learning.

Definition 4.1.2 (Value-alignment). Value-alignment requires that the goals and behavior of
the system comply with values of relevant stakeholders and communities (Sierra et al., 2021).

Relevant stakeholders might include the communities that will impacted by the algorithmic
system or the frontline workers who will work with the system. Commonly discussed values
include fairness, privacy, transparency, and accountability. Properties like simplicity and
interpretability are often desired as a means to ensure these values (Rudin et al., 2020), and
within this taxonomy, we include these properties under the broad umbrella of value-alignment.

The final set of considerations that we will discuss concern reliability over time and context.

Definition 4.1.3 (Reliability). Reliability is the extent to which the output of a measure-
ment/test/model is repeatable, consistent, and stable — when different persons utilize it, on
different occasions, under different conditions, with alternative instruments that measure the
same thing (Drost, 2011).

Reliability concerns in part the dynamical nature of systems in the real world. A system that
satisfies our previous two criteria at a given snapshot in time may soon after experience a
policy, population, or other notable change that can have profound effects on its validity and
value-alignment. Threats to reliability include changes in the population characteristics and/or
risk profiles (i.e., distribution shift) or strategic behavior in response to the algorithmic model
predictions.

We use this taxonomy to structure a literature review of related work in the following section.

4.2 Background and Related Work
In this section we conduct a structured literature review of prior work in validity, value-alignment,
and reliability.
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4.2.1 Validity
We begin our literature review with validity. The machine learning literature has vibrant
communities addressing validity-related considerations, such as selection bias and representation
bias, but, to the best of our knowledge, there is no unifying validity framework around these
issues. For this we turn to the theory of validity in the social sciences. In this section we
review key concepts from social science research on validity, and in subsequent sections we
translate these concepts to the setting of data-driven algorithms.

Construct validity is concerned with whether the measure captures what the researcher
intended to measure. Modern validity theory often defines construct validity as the overarching
concern of validity research: construct validity integrates considerations of content, criteria,
and consequences into a unified construct framework (Messick, 1995; Schotte et al., 1997).
Messick (1995) and Gergle and Tan (2014) highlight distinguishable aspects of construct
validity. Below we review the definition of different aspects of construct validity, highlighting
aspects that are particularly relevant in assessing the validity of data-driven decision-making
algorithm.

• Face validity means that the chosen measure “appears to measure what it is supposed
to measure" (Gergle and Tan, 2014). For example, imagine you propose to assess or
predict the online satisfaction with a product on an e-commerce website by measuring
the proportion of positive comments among all the purchase comments. You feel that
the higher the proportion of the positive comments, the more satisfied the customers
were, so “on its face” it is a valid measure or prediction target. Face validity is a very
weak requirement and should be used analogously to rejecting the null in hypothesis
testing: rejecting face validity allows us to conclude that the measure is not valid, but
failure to reject face validity does not allow us to conclude it is valid.

• Convergent validity uses more than one measure for the same construct and then
demonstrates a correlation between the two measures at the same point in time.
One common way to examine convergent validity is to compare your measure with a
gold-standard measure or benchmark. However, Gergle and Tan (2014) warned that
convergent validity can suffer from the fact that the secondary variable for comparison
may have similar limitations as the measure under investigation.

• Discriminant validity tests whether measurements of two concepts that are supposed to
be unrelated are, in fact, unrelated. Historically researchers have struggled to demonstrate
discriminant validity for measures of social intelligence because these measures correlate
highly with measures of mental alertness (Campbell and Fiske, 1959).

• Predictive validity is a validation approach where the measure is shown to accurately
predict some other conceptually related variable later in time. For example, in the
context of child welfare, Vaithianathan et al. (2020) demonstrated the predictive validity
of Allegheny Family Screening Tool (AFST) by showing that the AFST’s home removal
risk score at the time of a maltreatment referral, was also sensitive to identifying children
with a heightened risk of an emergency department (ED) visit or hospitalization because
of injury during the follow-up period. Therefore, they argued “the risk of placement
into foster care as a reasonable proxy for child harm and therefore a credible outcome
for training risk stratification models for use by Child Protective Services systems"
(Vaithianathan et al., 2020).
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Internal validity and external validity are important validity considerations in experimental
research (Campbell, 1957; Gergle and Tan, 2014). Internal validity is the degree to which the
claims of a study hold true for the particular (often artificial) study setting, while external
validity is the degree to which the claims hold true for real-world contexts, with varying
cultures, different population, different technological configurations, or varying times of the
day (Gergle and Tan, 2014). Gergle and Tan (2014) discussed three common ways to bolster
external validity in study design: (1) choosing a study task that is a good match for the kinds
of activities in the field, (2) choosing participants for the study that are as close as possible
to those in the field, and (3) assessing the similarity of the behaviors between the laboratory
study and the fieldwork.
Prior work on data-driven decision-making algorithms has probed various aspects of validity
threats or concerns, often using the vocabulary of “measurement error", “problem formulation",
and “biases". For example, Passi and Barocas (2019) chronicle how the analysts’ decisions
during problem formulation impacts fairness of the downstream model. Relatedly Jacobs
and Wallach (2021) demonstrate that how one operationalizes theoretical constructs into
measurable quantities impacts fairness. Suresh and Guttag (2021) also highlight measurement
error in their characterization of seven types of harm in machine learning and describe other
biases in representation and evaluation that can threaten validity. Representation and evaluation
biases can occur when the development sample and evaluation sample, respectively, do not
accurately represent who is in the target population. To the best of our knowledge, there is no
prior work that proposes tools or processes centered around validity issues. In this chapter, we
aim to fill this gap by drawing on the findings in these papers to structure a validity-centered
artifact intended for real-world use.

4.2.2 Value Alignment
The literature on value-alignment is vast, and we therefore focus on the works most related
to our purpose of developing artifacts, such as documents, checklists, and software toolkits,
to promote justifying the use of algorithmic systems in decision-making. Documentation
artifacts designed to improve transparency and inform trust have been proposed for datasets,
machine learning models, and AI products and services (Holland et al., 2020; Gebru et al.,
2021; Hutchinson et al., 2021; Mitchell et al., 2019a; Arnold et al., 2019). These artifacts
document typical use cases, product/development lineage, and other important specificatons
in order to promote proper use as the models, data, and services are shared and re-used
across a variety of contexts. Noticing that these documentation products largely represent
the perspective of algorithm developers, Krafft et al. (2021b) developed a toolkit designed to
engage community advocates and activists in this process.
An increasingly popular mechanism is checklists for fairness and ethics in machine learning.
Checklists can provide a structured form for individual advocates to raise fairness or ethics
concerns, but a compliance-oriented checklist may fail to capture the nuances of complex
fairness and ethical challenges (Madaio et al., 2020b). Recent work has advocated for checklists
designed to promote conversations about ethical challenges (Madaio et al., 2020a). However,
checklist-style “yes or no" questions may be ill-suited for promoting deliberation. Moreover, in
centering around the question “have we performed all the steps necessary before releasing the
model?”, checklists adopt a “deploy by default" framing that may encourage practitioners to
err on the side of brushing concerns aside. To address these issues, we sketch a protocol to
promote deliberation centered around the question “is an algorithmic model appropriate for
use in this setting?”.
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Raji et al. (2020) proposed a conceptual framework, SMACTR, for developing an internal
audit for algorithmic accountability throughout the machine learning development cycle. The
proposed methodology is general-purpose and comprehensive, involving other documentation
and checklists discussed in this section (like model cards and datasheets), but this general-
purpose methodology may be complicated, expensive and time-consuming to implement,
perhaps prohibitively so for teams with limited bandwidth such as the analytics division of a
public sector organization. Of note, the SMACTR methodology does not focus on issues of
validity. For a given class of problems (e.g., predictive analytics for decision support) there are
a set of common validity issues and questions that can be detailed and re-used across contexts.
Doing so would complement the SMACTR methodology.
Based on impact assessments in other domains like construction, algorithmic impact assessments
(AIAs) require algorithm developers to evaluate the impacts of the proposed algorithm on
society at large and particularly on marginalized communities (Reisman et al., 2018; Janssen,
2020; Metcalf et al., 2021). In 2019 the Government of Canada made it compulsory for a
government agency using an algorithm to conduct an algorithmic impact assessment (Canada,
2019). A comprehensive AIA will likely need to involve deliberation about validity issues
since an invalid algorithm may very well cause adverse impacts. Related to AIA is the UK
Government’s Data Ethics Framework which asks practitioners to perform a self-assessment of
their transparency, fairness, and accountability (Digital and Office, 2018). The framework asks
the respondent to identify user needs, consider both the benefits and unintended/negative
consequences of the project, and to assess whether historical bias or selection bias may be
present in the data. This framework is helpful in its breadth and specificity. However, the
framework does not address core validity issues like proxy outcomes.
A number of toolkits are available to visualize the performance metrics and tradeoffs therein of
algorithmic models. Yu et al. (2020) propose a two-step method to communicate tradeoffs to
algorithm designers that involves first generating a family of predictive models and subsequently
plotting their performance metrics. Visualization software has been developed to communicate
tradeoffs to algorithm designers (Yu et al., 2020) and to display intersectional group disparities
(Cabrera et al., 2019). A number of fairness/ethics toolkits and code repositories are available
to help researchers probe model disparities and explore potential mitigations (Adebayo et al.,
2016; Bellamy et al., 2018; Saleiro et al., 2018).
A strain of the literature develops pedagogical processes for improving educational instruction
of ethics issues in data science curriculum. Shen et al. (2021) proposed a toolkit, Value
Cards, to facilitate deliberation among computer science students and practitioners. The Value
Cards largely focus on tradeoffs between performance metrics, stakeholder perspectives, and
algorithmic impacts. Bates et al. (2020) describes the experience of integrating ethics and
critical data studies into a masters of data science program.
Guides for best practices in selecting a predictive algorithm for high-stakes settings have
been proposed for public policy and healthcare settings (Kleinberg et al., 2017; Fazel and
Wolf, 2018). For instance, Kleinberg et al. (2017) discuss conceptual issues such as target
specification, measurement issues, omitted payoff bias, and selective labels. Our work connects
these issues, among others, to established concepts of validity from the social sciences.

4.2.3 Reliability
As mentioned earlier, “reliability is the extent to which measurements are repeatable —
when different persons perform the measurements, on different occasions, under different
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conditions, with supposedly alternative instruments which measure the same thing” (Drost,
2011). Reliability encompasses reproducibility. Reliability is also defined as the consistency
of measurement (Bollen, 1989), and the stability of measurement results over a variety of
conditions (Nunnally, 1994). Reliability is necessary but not sufficient to ensure validity. That
is, reliability of a measure does not imply its validity; however, a highly unreliable measure
cannot be valid (Nunnally, 1994).
Drost (2011) enumerates three main dimensions of reliability: equivalence (of measurements
across a variety of tests), stability over time, and internal consistency (consistency over time).
There are several general classes of reliability considerations:

• Inter-rater reliability assesses the degree of agreement between two or more raters in
their appraisals. Low inter-rater reliability could be a potential concern in human-in-the-
loop designs where human decision-makers receive the predictions of a ML model, and
interpret them to reach the final decisions.

• Test-retest reliability assesses the degree to which test scores are consistent from
one test administration to the next. Population shifts (Quiñonero-Candela et al., 2008),
feedback loops (Ensign et al., 2018), and strategic responses (Hardt et al., 2016a) are
among the threats to the test-retest reliability of risk assessment instruments.

• Inter-method reliability assesses the degree to which test scores are consistent when
there is a variation in the methods or instruments used. For example, suppose two
different models are independently trained to predict the risk of default by loan applicants.
Inter-method reliability assesses whether these models often reach similar predictions for
the same loan applicants. Another area in which inter-method reliability is applicable to
ML is the extent to which an ML model can reproduce the decisions made by human
decision-makers.

• Internal consistency reliability, assesses the consistency of results across items within
a test. Models that make significantly different predictions for similar inputs may violate
this notion of reliability.

Efforts in emerging areas such as MLOps focus on the development of practical tools to assess
and ensure the reliability of data-driven predictive analytics (Kreuzberger et al., 2022; Shankar
and Parameswaran, 2021; Zaharia et al., 2018). While these efforts are still in their infancy,
there is a growing body of work pointing to an urgent need for better tooling (Kreuzberger
et al., 2022; Shankar and Parameswaran, 2021). For example, Veale et al. identified key
challenges for public sector adoption of algorithmic fairness ideas and methods, highlighting the
risks posed by changes in policy, data practices, or organizational structures (Veale et al., 2018).
Focusing on the private sector, Holstein et al. (2019b) identified what large companies need
to improve fairness in machine learning, highlighting the need for “domain-specific frameworks
that can help them navigate any associated complexities." In addition to the above changes,
feedback loops and strategic responses can induce population shifts, also known as distribution
shift or dataset shift (Moreno-Torres et al., 2012). The literature on data shift concerns
the fast detection and characterization of distribution shifts, including distinguishing harmful
shifts from inconsequential ones (Rabanser et al., 2019; Ashmore et al., 2021). An active
area of research in machine learning aims to design learning algorithms that make accurate
predictions even if decision subjects respond strategically to the trained model (see, e.g.,
(Dong et al., 2018; Hardt et al., 2016a; Mendler-Dünner et al., 2020; Shavit et al., 2020;

76



4.3. A Taxonomy for Common Threats to Validity of Predictive Models

Hu et al., 2019)). Generalizing such settings, Perdomo et al. (2020) propose a framework
called performative predictions, which broadly studies settings in which the act of predicting
influences the prediction target.

While our work focuses on validity issues, we hope that it serves as a jumping off point for
future work on reliability artifacts for predictive analytics.

4.3 A Taxonomy for Common Threats to Validity of
Predictive Models

This section delves into common challenges that jeopardize validity. We organize these
challenges into three groups: population misalignment, attribute misalignment, and target
misalignment. We connect these groups to notions of validity from the social sciences
mentioned in § 4.2.

4.3.1 Attribute Misalignment
To make meaningful predictions, we must have data on pertinent predictive factors, ideally
ones for which we can point to evidence supporting the claim that they are relevant to the
predictive task at hand. The choice of which features to use in prediction has clear implications
for internal, external, and construct validity. If there is no plausible causal path between the
target and a feature such that any correlation is entirely spurious, the inclusion of the feature
immediately challenges internal and external validity. Additionally, it can fail tests of face
validity. A particularly pressing example of a prediction task that lacks face validity is the use
of images of human faces to purportedly “predict" criminality (Wu and Zhang, 2016), because
an extensive body of research has disproved the pseudoscience of physiognomy and phrenology
(Stark and Hutson, 2021).

Note that validity does not require all predictive factors to have a direct causal relationship to
the target variable. For instance, race is a well-established risk factor for COVID-19 related
mortality, although the causal pathways through which race and COVID-19 mortality interact
are not well-understood (Tai et al., 2020; Mackey et al., 2021). One plausible pathway is
that race is causally associated with access to healthcare, and access has a causal effect on
health outcomes (Gray et al., 2020; Mackey et al., 2021). Given the existence of such plausible
causal connection, race is often invoked as an important risk factor to weigh in allocation of
COVID-19 mitigation resources (Schmidt et al., 2020; Wrigley-Field et al., 2021).

4.3.2 Target Misalignment
In practice there is often considerable misalignment between what humans intended for the
algorithm to predict and what the algorithm actually predicts. These issues of construct
invalidity can lead to undesirable results after deploying the predictive algorithm.

In many settings, the desired prediction target is not easily observed, and so a proxy outcome
is used in its place. For the pre-trial release task in the criminal justice setting, the desired
prediction target may be criminal activity, but it is not possible to directly observe all criminal
activity. Instead, algorithm designers have used proxy outcomes like re-arrests or re-arrests
that resulted in convictions (Fogliato et al., 2021; Bao et al., 2021). The use of proxies in this
setting is particularly problematic because there are documented biases in the criminal justice
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system, such as racial disparities in who is likely to be arrested (Alexander, 2011). These
systematic biases mean the predictions are not predicting who may commit a crime but instead
are predicting who may be arrested. In healthcare contexts, medical costs are sometimes used
to proxy health outcomes. However, due to racial bias in quality of healthcare, these proxies
systematically underestimate the severity of outcomes for black patients (Obermeyer et al.,
2019b). In other settings further complications arise when the objective of the decision making
task is a function of multiple desired prediction targets. For instance, in the child welfare
screening setting decision makers may want to reduce both the risk of immediate danger and
the long-term risk of neglect. When the algorithm is constructed to only focus on one target,
then we may suffer omitted payoff bias if the algorithm performs worse in practice on the
combined objectives than anticipated from an evaluation on the singular objective (Kleinberg
et al., 2018).

Often we only observe outcomes under the decision taken–that is, we have bandit feedback
(Swaminathan and Joachims, 2015). Prediction tasks in such settings are counterfactual in
nature, in the sense that we would like to predict the outcome under a proposed decision
(Coston et al., 2020b). As we saw in Chapter 1, an algorithm trained to predict outcomes
that were observed under historical decisions will not provide a reliable estimate of what will
happen under the proposed decision if the decision affects the outcomes. Recall the child
welfare screening task where the goal is to predict risk of adverse child welfare outcomes if no
further action is taken (“screened out" of investigation). Investigation can impact the risk of
adverse outcomes if the welfare agency is able to identify family needs and provide appropriate
services. A predictive algorithm that is trained on the observed outcomes without properly
accounting for the effect of investigation on the outcome will screen out families who are likely
to benefit from services. When we have measured all factors jointly affecting the decision
and the outcome, we can address treatment effects by training a counterfactual prediction
model (Coston et al., 2020b; Schulam and Saria, 2017a). As we saw in Chapter 2, when some
confounding factors are unavailable for use at prediction time, as long as we have access to the
full set of confounding factors in a batch dataset available for training, then we can properly
account for any treatment effects in the bandit feedback setting (Coston et al., 2020a). In
settings where we have unmeasured factors in both the training and test data, we can predict
bounds on the partially identified prediction target using sensitivity models (Rambachan et al.,
2022).

4.3.3 Population Misalignment
Even if we can justify our choice of predictive attributes and target variable, we can still have
validity issues if the dataset does not represent the target population due to selection bias or
other distribution shifts. This population misalignment poses a threat to a valid evaluation
of the predictive algorithm because performance on the dataset may not accurately reflect
performance on the target population. Notably, fairness properties such as disparities in
performance metrics by demographic group can be markedly different on the target population.
Chapter 3 discussed this phenomenon in the context of consumer lending, showing how
predictive disparities computed on the population of applicants whose loan was approved
notably underestimates disparities on the full set of applicants. Similarly in the criminal justice
setting, Kallus and Zhou (2018b) demonstrated that significant disparities in New York City
Stop, Question, and Frisk error rates persist in the target distribution (all NYC residents)
even when there are no disparities in error rates on the data sample (stopped residents).
Misalignment between the model’s performance during development and performance at
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deployment pose clear threats to predictive and external validity.

Population misalignment occurs in practice often when the dataset examples are selectively
sampled (i.e., not randomly sampled) from the target population. In a number of high-stakes
settings, outcomes are only observed for a selectively biased sample of the population. In
consumer lending, we only observe default outcomes for applicants whose loan was approved
and funded (Coston et al., 2021b). In criminal justice, we only observe re-arrest outcomes for
defendants who are released (Kleinberg et al., 2018). In child welfare screening, we only observe
removal from home for reports that are screened in to investigation (Chouldechova et al.,
2018). A common but potentially invalid approach in such settings is to use the selectively
labelled data to both train the predictive model and perform the evaluation, implicitly treating
this sample as if it were a representative sample of the target when in reality it is not.

A promising strategy to address selection bias leverages unlabeled samples from the target
distribution which are often already available or could be available under an improved data
collection practice (Goel et al., 2021). For instance, in consumer lending the features (the
application information) are available for all applicants (Coston et al., 2021b). If we believe
that we have measured all factors affecting both the selection mechanism and our outcome of
interest (i.e., no unmeasured confounding1), we can use methods for counterfactual evaluation
presented in Chapter 1 to estimate the performance on the full population (including both
labelled and unlabelled cases). In settings where we suspect there are unmeasured confounding
factors, we can still evaluate a predictive model against the current policy if we can identify
an exogenous factor (i.e., an instrumental variable) that only affects the selection mechanism
and not the outcome (Lakkaraju et al., 2017; Kleinberg et al., 2018) or if we can specify
assumptions that bound the amount of unmeasured confounding (Rambachan et al., 2022).

Another common mechanism under which population misalignment arises is distribution shift
due to domain transfer. For example, when expanding credit access to a new international
market, a company may want to transfer a model of loan default built on its customer base in
one country to the new country (Coston et al., 2019). Because population demographics and
other factors may differ between the two countries, the performance of the predictive model in
the source country may not be a valid evaluation of the performance we would see in the new
(target) country. When unlabeled data is available from the target domain, we may wish to
reweigh the source data to make it “resemble" the target data. Under the assumption that
there are no unmeasured confounding factors that affect both selection into the source/target
domain and the likelihood of the outcome (known as covariate shift), we can use the likelihood
ratio as weights to estimate the performance on the target population (Bickel et al., 2009;
Moreno-Torres et al., 2012). We can also use the weights to reweigh the training data in order
to retrain a model.

In practice and even with extreme diligence, it is generally not possible to ensure perfect
population, target, and attribute alignment. For instance, nearly all prediction settings will
suffer population misalignment due to temporal differences—the training data is observed in
the past whereas the prediction task is in the future. A central question concerns the degree
of this misalignment. As a first step towards characterizing this, we propose a deliberation
process to identify and reflect on sources of misalignment in a given setting.

1Also known as covariate shift (Moreno-Torres et al., 2012)
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4.4 Methodology for Deliberating the Validity of
Predictive Models

We propose a series of questions centered around validity to evaluate the justified use of
algorithms in a given decision-making context. We next present the top-level questions,
discussing them in the context of the child welfare and criminal justice settings. We note
that the questions presented in this section are intended purely to illustrate the skeleton of
an artifact that is guided by our systematization of concepts from validity theory. Outside
the scope of the current contribution, future work designing specific sub-questions must
solicit feedback from stakeholders and practitioners to ensure the questions are accessible,
comprehensible, and useful.

4.4.1 The High-level Structure of A Validity-Centered Protocol
At a high level, our proposed artifact will consist of five parts. Part 1 prompts the description
of the decision-making task and constructs of interest. Part 2, 3, and 4 consists of questions
assessing construct validity, internal validity, and external validity. Last but not least, part 5
attempts to contextualize validity concerns within the broader set of considerations around
the use of algorithms (e.g., efficiency). In what follows, we briefly sketch each section. For
illustrative purposes, we provide hypothetical responses in the child welfare screening setting.
1. Description of the decision-making task. To center the deliberation around validity,
the first set of questions require the respondent to describe the key constructs of interest,
including the decision making objective(s), the criteria across which the decision is made,
and other decision points surrounding this task. For example, in the child welfare screening
setting, the answer may be as follows: The hotline call worker determines whether to screen in
a report for investigation based on details in the caller’s allegations and administrative records
for all individuals associated with the report. The report should be screened in if the call
worker suspects the child is in immediate danger or at risk of harm or neglect in the future.
Preceding this screening decision was the decision by an individual (e.g., neighbor, mandated
reporter, other family member) to report to the child welfare hotline. If a report is screened in
for investigation, the next major decision point is whether to offer services to the family. A
decision to screen out is successful when the child is not at risk of harm or neglect.
2. Questions assessing construct validity: At a high level, construct validity requires
understanding the constructs involved (e.g., the ideal target outcome and attributes influencing
it) and the particular cause and effect relationships among them. To assess construct validity,
our protocol will include questions about the following types of validity:

• Content validity asks whether the operationalization of each construct of interest serve
as a good measure of it. One major approach to assessing content validity is to ask the
opinion of experts in the relevant fields.

• Convergent validity: To assess convergent validity, one must assess: Is there a
standard/ground-truth measure for the construct of interest? If yes, how does that
correlate with the new measure on the target population?

• Discriminant validity: To assess discriminant validity, one must evaluate the following:
Can one think of a concept that is related but theoretically different from the construct
of interest? If yes, can the proposed measure distinguish between that concept and the
construct of interest?
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• Predictive validity: refers to the ability of a test to measure some event or outcome
in the future. Therefore, to assess predictive validity, we need to ask: Is there high
correlation between the results of the proposed measurement and a subsequent related
behavior of interest?

One effective way to prompt the respondent to respond to the above questions is to consider
what question(s) they would ask an oracle who could answer anything about the future. In
our child welfare example, the answer here could be as follows: We would ask whether the
child will suffer harm or neglect in the next year. Subsequent questions will refer to the
outcomes identified in this question block as “oracle outcomes"–that is, the outcomes/events
the respondent would like to ask an oracle to predict.

We follow the oracle question with questions about available outcomes in the data, how these
available outcomes differ from the oracle outcome(s), and whether any of the previously stated
goals are not addressed by the available outcome. These questions direct the respondent
to consider for which segments of the population will the oracle and available outcomes be
most likely to align and for which segments of the population will the available outcome likely
diverge from the oracle outcome. A key question is when the available outcomes are observed.
The answer to these questions may illuminate whether measurement error, bandit feedback, or
other forms of missingness pertain to this outcome. An example answer in the child welfare
screening context can be the following: Available candidate outcomes in the data include
re-referral to the hotline at a later point (e.g., within six months) or removal of the child from
home within a timeframe (e.g., two years). Re-referral is a noisy proxy for the oracle outcome
of harm/neglect because a re-referral can occur in the absence of any harm/neglect and, on
the flip side, a child may be experiencing harm or neglect even when no re-referral is made.
We expect on average a child that is re-referred to be more likely to experience harm/neglect
than a child whose case is not re-referred. Re-referral is more likely to occur, regardless of
underlying true risk of harm/neglect, for families of color and limited socioeconomic means
(Eubanks, 2018; , Ed.; Roberts, 2019). Re-referral (or lack thereof) is observed for all reports,
including those that are screened in and those that are screened out. By contrast, removal
from home is only observed for reports that are screened in for investigation (Coston et al.,
2020b).

A subset of the construct validity questions will direct the respondent to focus on issues of
bandit feedback and treatment effects. These questions ask the respondent to consider how
the decision relates to the outcome, including whether the outcome is observed under all
decisions and whether the decision affects the outcome (and in what ways). For example,
the respondent may describe the relationship between the decision and outcome in the child
welfare screening setting as follows: The decision is whether to screen in or screen out a
case for a child maltreatment investigation. The outcome that is observed for all decisions
is whether the child was later re-referred to the child welfare hotline. If the case is screened
in, there are additional observed outcomes: Whether the allegations are substantiated upon
investigation by a caseworker, whether the family is offered support in the form of public
services, and whether the child is later placed out-of-home. These outcomes are observed
under screen out only when a later report is screened in for investigation. The call screener’s
screening decision affects the outcome. For example, the decision to screen in a case may
decrease the likelihood of observing adverse outcomes if the family receives public services
that lead to improved parenting practices.

3. Questions assessing internal validity: At a high level, internal validity is concerned
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with the existence of defensible causal relationship between features and the target label. To
hone in on issues of internal validity, the respondent must identify available data features that
one can plausibly claim are risk factors or protective factors for the ideal oracle outcome. The
respondent must additionally provide evidence to support the claim that these are valid risk
factors or protective factors for the oracle outcome. For instance, a respondent in the child
welfare screening setting may identify the following as risk factors and protective factors in
the data: The data contains the results of any prior child welfare investigations, and we may
suspect that a child in a case that was previously found to have child neglect may be at risk
for future neglect. The data also contains information on how often extended members of the
family (such as the grandmother) interact with or care for the child, and regular supervision
from a stable guardian may mitigate risk of child harm or neglect.

4. Questions assessing external validity: External validity is concerned with the gener-
alizablity of the model across persons, settings, and times. The question block focusing on
external validity contains questions that require the respondent to describe the population for
which data is available (training population), including provenance, the locale and time period
for which data was observed, and whether any of the observations were filtered out of the
dataset (e.g., due to missing data issues). The questions similarly direct the respondent to
describe the population on which the predictive algorithm will be used (target population),
including the anticipated time frame and geographies for which the predictive algorithm will be
deployed. The respondent will also be asked to specify in what ways the training population
differs from the target population. In our running child welfare example, the answer may
be: The training population is all reports to the state’s child welfare hotline from 2015-2020
that were recorded in the state records system. No reports were knowingly filtered out of the
dataset. The target population is all reports to the state’s hotline at least for the next five
years. The target population likely differs from the training population because of a change in
mandatory reporting in mid 2019 that expanded the definition of mandated reporter to include
teachers and sports coaches. As a result, the volume of calls to the hotline increased after
the policy change and likely includes some reports that would not have been made absent the
policy change.

5. Tradeoffs between validity and competing considerations: To prompt deliberation
on how to weigh misalignments threatening validity against other considerations (such as
efficiency or standardization), the next set of questions requires the respondent to articulate
why a predictive algorithm may support decision making and to describe how they anticipate
the predictive algorithm to complement the existing tools and information available. To ground
this reflection in specifics, this section will ask respondents to precisely identify the expected
benefits of the algorithm (e.g., improvements in efficiency or uncovering new patterns of
risk). Continuing the child welfare example, the answer may be: We intend for the predictive
algorithm to summarize the information in the administrative records which the call screeners
typically do not have sufficient time to fully parse. If the administrative records contain
additional patterns of risk not captured in the allegations reported by the caller, then we
anticipate the predictive algorithm may be able to flag reports that should be screened in but
would otherwise be screened out.

Target respondent: The respondent(s) we expect to deliberate and document answers to these
questions are the individual(s) involved in the process of bringing data-driven algorithms into the
decision-making process. These may include (but are not limited to) algorithm developers, data
scientists and analysts, those responsible for algorithm procurement, management, frontline
decision makers, and community members.
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4.4.2 Protocol as a Mechanism for Transparency, Oversight,
Conversation, & Translation

We next discuss how we envision a protocol reflecting the above structure, potentially in
combination with questions from other existing protocols (e.g., focused around value alignment),
can serve as a mechanism for transparency, oversight, conversation, and translation.

1. Protocol as a mechanism of transparency. A growing body of literature discusses the
need to find better ways to empower impacted community members to shape algorithm
design (Krafft et al., 2021a; Zhu et al., 2018; Martin Jr et al., 2020). However, community
members struggle to do this without sufficient insight into the internal deliberation
processes. The protocol can help lower these barriers. For example, without the protocol,
community members may be limited to assessing the face validity of models. Publicly
shared responses to protocol questions may extend community members’ knowledge
to encompass a wider range of validity issues that would otherwise be inaccessible or
unknown to them.

2. Protocol as a mechanism for oversight. If the protocol is reviewed by an independent
review board, deliberations around model validity in decision-making could be guided by
standards that may reflect and align expectations across practitioners, policymakers, and
community members. We draw an analogy to the research Institutional Review Board
(IRB), which has a goal of “protecting [the rights and welfare of] research subjects” (for
the Protection of Human Subjects of Biomedical and Research, 1978). An independent
review board for this protocol could serve to protect impacted community members, as
opposed to ‘research subjects.’

3. Protocol as a mechanism for conversation between multiple stakeholders. If
a diverse set of stakeholders are involved in deliberating and discussing the protocol
questions, the protocol could help these conversations reach those who may not typically
be involved in making model-level design decisions. For example, in some public
sector agencies that use algorithmic decision support tools, frontline decision-makers,
organizational leaders, and model analysts may develop beliefs and goals around the use
of decision-making algorithms in silo (Kawakami et al., 2022; Saxena et al., 2021). The
process of responding to the protocol questions can introduce opportunities for structured,
proactive modes of interactions across workers who otherwise typically work in isolation.
Engaging diverse perspectives in collaborative discussions surrounding the protocol may
open opportunities for better understanding and mitigating inter-organizational value
misalignments (Holten Møller et al., 2020) that would otherwise get embedded and
reinforced through the model itself.

4. Protocol as a mechanism of translation to bridge academic-practitioner divide.
Recent research suggests that many of the concepts under the purview of our envisaged
protocol may be less deliberately scrutinized by practitioners developing algorithms for
decision-making in the real-world (Passi and Barocas, 2019; Veale et al., 2018). The
protocol may help bridge this divide between the research community and real-world
practitioners. For example, this protocol could be a means for the research community
to operationalize concerns related to model validity into practical questions intended to
guide internal deliberation processes in real-world organizations.
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4.5 Conclusion
This chapter translates theoretical validity concepts into considerations for evaluating the
justified use of predictive algorithms in practice. We showed how validity is a useful lens
for evaluating the use of algorithms because it foregrounds issues in problem formulation,
data challenges, and latent construct operationalization that jeopardize the suitability of
algorithms. We sketch a structure for a validity-centered deliberation protocol, targeted to
guide multi-stakeholder conversations regarding whether or not to develop and use a predictive
algorithm.
We emphasize that a validity-focused deliberation protocol is not sufficient on its own to
justify the use of a predictive algorithm. Rather, we see the primary value of such a protocol
as a means to structure and scaffold critical conversations among relevant decision-makers.
Moreover, validity is just one component of evaluating the justified use of algorithms, along-
side considerations related to reliability, value alignment, and beyond. Last but not least,
organizations deploying algorithms should iteratively and constantly re-evaluate whether a
predictive algorithm’s use is justified, as the conditions for a given algorithm’s justification
may evolve with time.
This framework comprises a validity perspective on evaluating the justified use of data-driven
decision-making algorithms. This perspective unites concepts of validity from the social
sciences with data and problem formulation issues commonly encountered in machine learning
and clarifies how these concepts apply to algorithmic decision making contexts. We situate
the role of validity within the broader discussion of responsible use of machine learning in
societally consequential domains. We illustrate how this perspective can inform and enhance
future research by sketching a validity-centered artifact to promote and document deliberation
on justified use.
We hope that this protocol could enable practitioners to identify and mitigate validity issues
before model deployment. We envision practitioners using this protocol in conjunction with
other tools designed to align values and promote equity, such as fairness checklists (Madaio
et al., 2020b) and bias audits. We next consider how targeted, domain-specific analyzes
of racial bias in key decision points can facilitate a context-aware approach to algorithmic
auditing. We focus on decision points that determine what data is available for training
predictive algorithms and for whom.
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Assessing Racial Bias in Police Stops

Recidivism prediction instruments (RPIs) are widely used to inform judicial decisions like
whether to grant defendants pre-trial release (Chouldechova, 2017). The RPIs typically take
the form of statistical risk assessments that have been constructed on administrative datasets.
Key decisions made by criminal justice professionals like police officers, judges, and parole
boards affect who is in these datasets and what information is available about them. In this
chapter, we conduct an in-depth assessment to rigorously assess one of these key decisions
points – police stops – for racial bias. Racial biases, whether implicit or explicit, in officers’
decision will impact the likelihood that these individuals are observed in administrative datasets
later used to construct RPI’s.

In this chapter, we develop a method to assess racial bias in police traffic stops that formalizes
prior work by casting the question of racial bias in police stops as a counterfactual one: Would
the officer have made a different stop decision had they been unable to see the race of the
driver?

We formalize this question using the potential outcomes framework in § 5.2. We formulate
an an ideal but infeasible experiment which we then connect to a natural experiment used
by prior work that leverages variation in the time of day when the dark of night descends
over the year. We propose an estimand to measure racial bias that is both interpretable
as a ratio of risk ratios and identifiable as an odds ratio under sampling bias we observe in
administrative police records. Our measure is fully identified under several causal assumptions
that we provide in § 5.3. We next address an undesirable property of odds ratios – its purported
non-collapsibility – by showing this is avoidable if we use an alternative aggregation to the
standard arithmetic mean. We provide a new definition of collapsibility that makes this choice
of aggregation method explicit, and we demonstrate that the odds ratio is collapsible under
geometric aggregation in § 5.3.2.

We analyze the efficiency theory of our estimand in § 5.4 and use these theoretical results to
develop nonparametric estimators. In particular, we propose a doubly robust-style estimation
approach for the geometric aggregated odds ratio and describe conditions under which the
estimator is √n-consistent and asymptotically normal in § 5.5. We additionally provide a
flexible plug-in approach to estimating the covariate-conditional measure of racial bias. We
use these estimators to assess racial bias in police traffic stops on the Stanford Open Policing
Project data (Pierson et al., 2020). Our empirical section (§ 5.6) presents the results of our
assessment for five cities in the U.S. and discusses implications for policy-making. Several
contributions in this chapter were first introduced in the preprint Coston and Kennedy (2022).
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The purpose of this chapter is two-fold: First, we aim to provide a rigorous, context-aware
method for bias auditing in key decision points in systems where algorithms are used. Second,
we hope this method also serves as example for how we can invert the usual paradigm whereby
machine learning is used by those in power to assess and predict behavior of people with
relatively less power (O’neil, 2016; Barabas et al., 2020). Here, we use machine learning and
statistical methods to assess the behavior of those in power. Assessments of this sort can
inform policy decisions around where to target police reform initiatives, and if conducted over
time, they provide a way to evaluate the effectiveness of reforms.

5.1 Background and Related Work
One of the most common points of entry into the criminal justice system is motor vehicle
traffic stops (Davis et al., 2018). Each year nearly 20 million drivers are stopped by the police
(Baumgartner et al., 2018). Police officers have considerable discretion in whether to stop a
motorist for a minor traffic violation. In this chapter, we build on a long research tradition
that considers whether racial bias (implicit or explicit) plays a role in the officer’s decision to
stop. Prior research indicates that officers may use minor traffic violations as an excuse to
search for contraband, and these “pretexual" stops are believed to disproportionately target
people of color, particularly black and LatinX communities (Alexander, 2011).

In prior work, Grogger and Ridgeway (2006) posited that darkness casts a veil that makes it
harder for officers to observe the driver’s race. Then, if police officers are more likely to stop
black drivers during daylight all else equal, one might conclude there is racial bias in traffic
stops. In order to yield a binary darkness variable, they filter out stops between sunset and
dusk when the ambient sunlight falls between light and dark. This influential paper initiated
a line of work using the veil of darkness hypothesis to analyze for racial bias in police stops
(e.g., Horrace and Rohlin, 2016; Ritter, 2017; Pierson et al., 2020).

Of particular note is work by Pierson et al. (2020), who compiled a large-scale dataset of
police stops in 35 municipal police departments and 21 state patrol agencies on which they
performed the veil of darkness test. Our empirical analysis (§ 5.6) uses this dataset. The
problem formulation and estimation strategy in Pierson et al. (2020) is similar to much of the
veil of darkness literature, modelling the odds that a stopped driver is black as log linear in
the darkness random variable and the confounding factors. This design assesses for bias by
testing whether the odds-ratio is significantly different from 1. They include as confounding
factors the location, time of the stop, season, and whether a municipal or state police officer
made the stop. In order to question whether these variables include all confounding factors
and more generally to assess whether their model form is well-specified, we develop a precise
definition of what the intervention and potential outcomes are in the next section.

5.2 Problem Formulation and Additional Notation
Police traffic stop data contains the date, time and location of each stop as well as information
about the driver’s demographics including race.1 Let B = I{Race = black} denote whether
the stopped driver was perceived as black by the officer. X ∈ Rd contains other covariates
about the traffic stop: time of day, day of year, location, and whether the stop was made
by municipal or state police. We also define S = I{Driver stopped} and potential outcome

1Data from Stanford Open Policing Project (Pierson et al., 2020)
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ST =t to denote whether the driver would be stopped under intervention t. We will use the
shorthand St to denote ST =t. Before introducing the interventions, we discuss the sampling
bias in our data.

Definition 5.2.1 (Outcome-dependent sampling). Data observed under outcome-dependent
sampling contains samples from the conditional distribution (Bi, Xi) ∼ P (B,X | S = s) for
either s = 1, s = 0, or possibly both.

Administrative police records only contain samples from P (B,X | S = 1). In other words,
only stopped drivers are observed in the data.

To motivate our intervention, it is helpful to consider what estimands assess racial bias.
Racial bias could be cast as a contrast of the race-conditional stop rates P (S | B = 1) and
P (S | B = 0). However, there may be legitimate differences in these quantities if, for instance,
driving behavior or schedules differ by race. In the ideal setting, we would ask whether an
officer would make the same stopping decision if they could observe driver race as they would if
they could not observe driver race. We now consider this ideal (but likely infeasible) experiment
which will guide our specification of a feasible experiment.

Ideal experiment: Suppose we have virtual reality googles that can obfuscate the race
of the driver. Further suppose we can randomly assign police officers to wear these googles.
In this ideal experiment, the intervention variable T indicates whether the officer wore the
race-obfuscating googles. If we could record data about stops as well as non-stops, then
we could assess racial bias by contrasting P (ST =1 | X,B = 1) with P (ST =0 | X,B = 1).
However, in practice it would be difficult to implement this experiment due to a variety of
political, economic, and technical reasons.2

Feasible experiment: Daylight (or lack thereof) can serve as a proxy for race observability.
Our feasible experiment defines the intervention T as the indicator for whether the stop
occurred during the dark of night.

Additional notation: Denote our data samples as Z = (B, T,X) where B = 1 if
the officer reports perceiving the stopped driver as black, T = 1 if the stop occurred
during the dark of night, and X are other covariates. For a random variable Z, we use
Pn(f(Z)) := 1

n

∑n
i=1 f(Zi). Because of the outcome-dependent sampling, we will define the

nuisance functions as conditional on a stop having occurred. We define

µt(x) := P (B = 1 | X = x, T = t, S = 1). (5.1)

For clarity we will denote the propensity to assign intervention t as πt(x) := P (T = t | X =
x, S = 1). As before, when the subscript is omitted, the propensity refers to the treatment
T = 1. Our analysis will make use of the logit function where logit(x) = log

(
x

1−x

)
.

2More realistically, we might be able to conduct this experiment during training sessions where some police
departments are already using virtual reality googles (Apex). A key question under such a design is to what
extent external validity holds. If officers would respond differently in training simulations than they would in
the real-world, then findings under this design may not be informative.
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5. Assessing Racial Bias in Police Stops

5.3 Identification of the Measure of Racial Bias
In this section, we will consider how to specify and identify our target estimand to assess
racial bias. As usual in causal inference, we will use assumptions to write a hypothetical
measure of bias in terms of observable quantities (i.e., causal identification). Additionally,
our identification must resolve the bias in the outcome-dependent sampling of our data (i.e.,
sampling identification).

Ideally we would specify as our target causal estimand the risk difference E[S1−S0 | X,B = 1]
or the risk ratio E[S1 | X,B = 1]/E[S0 | X,B = 1]. These estimands describe how much
more likely a black driver is to be stopped under the dark of night intervention versus daylight,
in an absolute or relative sense, respectively. However, because we do not observe data
about those who were not stopped, we cannot identify these estimands unless we make very
strong assumptions. Instead we will target a different estimand that is observable under
outcome-dependent sampling. Our target causal estimand will take the form of a ratio of
race-conditional risk ratios:

Definition 5.3.1 (Covariate-conditional target causal estimand).

ψ(x) = P (S1 = 1 | X = x,B = 1)
P (S0 = 1 | X = x,B = 1)

/
P (S1 = 1 | X = x,B = 0)
P (S0 = 1 | X = x,B = 0)

.

When this value is significantly different from one, the race-conditional risk ratios are signifi-
cantly different. This estimand satisfies sampling identifiability because it can alternately be
expressed as the odds ratio,

ψ(x) = Odds(B = 1 | S1 = 1, X = x)
Odds(B = 1 | S0 = 1, X = x)

where notably every term is conditional on a stop having occurred. For the remainder of this
chapter we will generally work with the odds ratio form of the target estimand as that is
more amenable to our setting with outcome-dependent sampling. However, for substantive
interpretation of results, we encourage readers to recall the ratio of risk ratios form.

5.3.1 Causal identification

Proposition 5.3.1. We can identify ψ(x) as

ψ(x) = Odds(B = 1 | S = 1, T = 1, X = x)
Odds(B = 1 | S = 1, T = 0, X = x)

under the assumptions that

1. T ⊥ B | St = 1, X for t = 0, 1

2. P (0 < π(X) < 1) = 1

3. S = TS1 + (1− T )S0
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5.3. Identification of the Measure of Racial Bias

The second and third assumptions are the usual positivity and consistency assumptions
commonly made in causal inference settings. The first assumption is analogous to the usual
ignorability assumption that assumes all confounding factors have been measured. However,
the form of our ignorability-type assumption is non-standard since it conditions on the potential
outcomes. Our condition requires that the racial composition of at-risk drivers not vary with
darkenss in ways that are not explained by X. This is implied by the stronger assumption that
T ⊥ St, B | X.

Remark 5.3.1. For the remainder of this chapter, we directly define ψ(x) as the identified
odds ratio in Proposition 5.3.1.

To recap, we show how to fully identify the covariate-conditional odds ratio ψ(x). We use the
odds ratio because it is identifiable under outcome-dependent sampling. The downside is the
odds ratio poses challenges for aggregation, which we consider in the next section. We will
propose an alternate method of aggregation to address this issue.

5.3.2 Aggregation and collapsibility
An aggregated measure can be substantively useful to summarize measures across a meaningful
unit, including administrative units (e.g., police precinct or department) or temporal units
(e.g., year). Aggregation is also helpful for statistical reasons because estimation is generally
easier for aggregated measures. We can easily obtain Central Limit Theorem-type results for
aggregated measures that describe how to construct confidence intervals. However, estimating
the entire ψ(x) curve is more challenging since we hit the curse of dimensionality, and therefore
inference requires careful under-smoothing or bias-correction. In this sub-section we consider
how to do aggregation of our target estimand.

We consider a desirable formal property for aggregation – collapsibility – that informs our
choice of aggregation method. The arithmetic mean is so commonly used for aggregation that
it almost seems synonymous, but to achieve collapsibility here we make the case for using the
geometric mean to aggregate odds ratios.

A desirable quality for a measure of effect is that the marginal effect describes the effect
for a representative unit. The property of collapsibility (Def. 5.3.2) formalizes this quality
(Whittemore, 1978; Greenland et al., 1999). In this section, we take a detour to discuss
collapsibility in detail.

Remark 5.3.2. In a departure from standard usage, we use the term “marginal” to generically
refer to a summary measure via an aggregation method that must be explicitly specified. As
an example, the “marginal odds” of B in standard usage unambiguously refers to P (B=1)

P (B=0) =
E[P (B=1|X)]
E[P (B=0|X)] . However, we denote this quantity as the marginal odds with respect to arithmetic
aggregation, differentiating it from other marginal measures such as, for example, the marginal
odds with respect to geometric aggregation

∏
P (B=1|X=x)dP (x)∏
P (B=0|X=x)dP (x) .

Collapsibility is often discussed with respect to the arithmetic mean, under which collapsibility
requires that we can specify weights for conditional effects such that the marginal effects
equals their weighted average (Hernán and Robins, 2021). For instance, the risk ratio, RR =
E[S1]/E[S0], is collapsible with respect to the arithmetic mean with weights P (X)

E[S0]E[S0 | X].
The odds ratio, however, is not collapsible with respect to the arithmetic mean (Greenland
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5. Assessing Racial Bias in Police Stops

et al., 1999). The population odds ratio is generally not equal to the conditional odds ratio,
even if the conditional odds ratio is a constant (Coston and Kennedy, 2022). Often it is not
possible to specify a weighted average of the conditional odds ratio that equals the population
odds ratio.
While the odds ratio is not collapsible under the arithmetic mean, it is collapsible under the
geometric mean. To demonstrate this, we introduce additional notation. Let f(a, b) : R2 7→ R
denote an effect contrast and let gw(x)(P ) : P 7→ R denote a statistical functional that
aggregates X ∼ P with weighting function w(x). For example, letting p(x) denote the density
of random variable X ∼ P , we describe the average risk difference (commonly referred to
as average treatment effect) by specifying gp(x)(P ) =

∫
xp(x)dx and f(a, b) = a − b. We

consider aggregations that can be written as a Fréchet mean–that is, there is an associated
distance function d such that

gw(x)(P ) = arg min
z∈X

∫
X
w(x)d2(z, x)dx.

For ease of notation, we will write g(X) to indicate g(P ) for the distribution P over X.

Definition 5.3.2. A contrast f is collapsible with respect to aggregation method g if

f
(
gp(x)(µ1(X)), gp(x)(µ0(X))

)
= gw(x)

(
f(µ1(X), µ0(X))

)
(5.2)

for weights w(x) in the probability simplex and where p(x) denotes the density or pmf of
X ∼ P .

The left hand side describes the marginal effect–that is, the contrast of the aggregations of
µt(x) for t ∈ {0, 1}. The right hand side describes a weighted aggregation of the conditional
contrasts.
For example, the average risk difference is collapsible with respect to the arithmetic mean
using as weights the density of x. We briefly remark on the weights p(x) and w(x). While
p(x) = w(x) for the average risk difference, this need not be the case. The risk ratio
has contrast f(a, b) = a

b
and is collapsible under aggregation gw(x)(P ) =

∫
xw(x)dx with

w(x) = p(x)E[S0|X=x]
E[S0] .

As far as we are aware, we were the first to introduce this expanded definition of collapsibility
that explicitly incorporates the aggregation method (Coston and Kennedy, 2022). This enabled
us to make the novel observation that the odds ratio is collapsible under geometric aggregation

Proposition 5.3.2. The odds ratio is collapsible with respect to the geometric mean with
weights p(x).

If the conditional OR is a constant c, then the geometric odds ratio also equals c. Recall that
this was not necessarily the case for the arithmetic odds ratio, which could take on a value
other than c. Since the geometric mean exhibits the desirable property of collapsibility, we
propose the geometric mean of ψ(x) as the aggregated measure.

Definition 5.3.3 (Aggregated target estimand).

Ψ :=
∏

x∈X

ψ(x)


dP (x|S=1)

= exp
(
E

[
log(ψ(X)) | S = 1]

)
. (5.3)
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5.4 Efficiency Theory for our Measure of Racial Bias
In this section we provide theoretical analysis that will be informative in constructing efficient
estimators for the aggregated targest estimand. Specifically, we derive the von Mises-type
expansion for our aggregated target estimand. Functioning as a distributional analog to the
Taylor expansion for real-valued functions, the von Mises-type expansion of a target parameter
describes two key elements for efficiency theory: the influence function and a remainder
term. Influence functions enable us to construct estimators with desirable properties, such as
second-order bias, which can achieve fast convergence rates even in nonparametric settings.
We will use the influence function presented in this section to construct our estimator in
the subsequent section. The second piece, the remainder term, plays an important role in
characterizing the error of such estimators (see § 5.5). In a fully nonparametric model, the
singular influence function is called the efficient influence function because it characterizes
the efficiency bound in a local asymptotic minimax sense. The efficient influence function is
therefore instructive for constructing optimal estimators. We direct the interested reader to
Bickel et al. (1993); Tsiatis (2006); Kennedy (2022); Hines et al. (2022) for more information
on influence functions. We will first provide efficiency theory for log(Ψ) and subsequently
provide theory for Ψ. In this section we implicitly condition on S = 1.

Lemma 5.4.1. We have the following von Mises expansion:

log
(

Ψ(P )
)

= log
(

Ψ(P̄ )
)

+
∫
φ(P̄ )d(P − P̄ ) +RL

2 (P̄ , P )

RL
2 (P̄ , P ) =

∫ (π̄(x)− π(x))(µ1(x)− µ̄1(x))
(µ̄1(x))(1− µ̄1(x))π̄(x) − (π̄(x)− π(x))(µ0(x)− µ̄0(x))

(µ̄0(x))(1− µ̄0(x))(1− π̄(x))

− (µ∗
1(x)− 1/2)(µ1(x)− µ̄1(x))2

µ∗
1(x)2(1− µ∗

1(x))2 + (µ∗
0(x)− 1/2)(µ0(x)− µ̄0(x))2

µ∗
0(x)2(1− µ∗

0(x))2 dP (x)

where µ∗
t (x) lies between µ̄t(x) and µt(x) for t ∈ {0, 1} and

φ(Z;P ) = log
(odds(µ1(X))

odds(µ0(X))

)
− log(Ψ) + T (B − µ1(X))

µ1(X)(1− µ1(X))π(X) −
(1− T )(B − µ0(X))

µ0(X)(1− µ0(X))(1− π(X)) .

Since the remainder term R2(P̄ , P ) is a product of the nuisance functions, we can apply
Lemma 2 of Kennedy et al. (2021) to conclude that log

(
Ψ(P )

)
is pathwise differentiable

with efficient influence function φ(z;P ).

Proof. We write our target as

log
(
Ψ(P )

)
=

∫
X

log
(

µ1(x)
1− µ1(x)

)
dP (x)−

∫
X

log
(

µ0(x)
1− µ0(x)

)
dP (x)

Then, let f(µt(x)) = log
(

µt(x)
1−µt(x)

)
and apply Lemma 5.4.2 to each term to get the result.
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Efficiency Theory for Ψ

Theorem 5.4.1. We have the following von Mises-type expansion of our target Ψ:

Ψ(P ) = Ψ(P̄ ) + Ψ(P̄ )
∫
φ(P̄ )d(P − P̄ )) +R2(P̄ , P )

for R2(P̄ , P ) = Ψ(P̄ )RL
2 (P̄ , P ) + 1

2

(
log

(
Ψ(P )

)
− log

(
Ψ(P̄ )

))2
Ψ∗

where φ(P ) and RL
2 (P̄ , P ) are given in Lemma 5.4.1 and Ψ∗ lies between Ψ(P̄ ) and Ψ(P ).

Then, by Lemma 2 of (Kennedy et al., 2021), our target Ψ(P ) is pathwise differentiable with
influence function Ψ(P )φ(z;P ).

Proof. For a Ψ∗ that lies between Ψ(P̄ ) and Ψ(P ), applying Taylor’s Theorem yields

Ψ(P ) = Ψ(P̄ ) + Ψ(P̄ )
(

log
(
Ψ(P )

)
− log

(
Ψ(P̄ )

))
+ 1

2

(
log

(
Ψ(P )

)
− log

(
Ψ(P̄ )

))2
Ψ∗.

(5.4)

For the first order expression log(Ψ(P ))− log(Ψ(P̄ )) we apply Lemma 5.4.1 to obtain

log(Ψ(P ))− log(Ψ(P̄ )) =
∫
φ(P̄ )d(P − P̄ ) +RL

2 (P̄ , P )

where each term in the RL
2 (P̄ , P ) is a second-order nuisance function error.

Substituting back into Eq. 5.4 yields

Ψ(P ) = Ψ(P̄ ) + Ψ(P̄ )
∫
φ(P̄ )d(P − P̄ )) +R2(P̄ , P ) where

R2(P̄ , P ) = Ψ(P̄ )RL
2 (P̄ , P ) + 1

2

(
log

(
Ψ(P )

)
− log

(
Ψ(P̄ )

))2
Ψ∗

.

5.4.1 Auxiliary lemma used for theoretical results
Second-Order Result for Functions of Regression Functions

We give a generic result for the von Mises-type expansion of smooth functions of the regression
functions that is useful for our theoretical analysis.

Lemma 5.4.2. [Generic Von Mises Expansion] For t ∈ {0, 1}, let ψt(P ) :=
∫
f(µt(x))dP for

any twice differentiable function f of the regression function µt(x) = P (Y = 1 | T = t,X).
Then we can expand ψt(P ) as

ψt(P ) = ψt(P̄ ) +
∫
φt(P̄ )d(P − P̄ ) +R2(P̄ , P )

R2(P̄ , P ) =
∫
f

′(µ̄t(x))(π̄t(x)− πt(x))(µt(x)− µ̄t(x))
π̄t(x) + f

′′(µ∗
t (x))(µt(x)− µ̄t(x))2

2 dP (x)
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where µ∗
t (x) is between µ̄t(x) and µt(x) and φt is

φt(Z;P ) = f(µt(X))− ψt + f
′(µt(X))I{T = t}(Y − µt(X))

πt(X)

Since the remainder term R2(P̄ , P ) is a product of the nuisance function errors, we can apply
Lemma 2 of Kennedy et al. (2021) to conclude that ψt(P ) is pathwise differentiable with
efficient influence function φt(z;P ).

Proof of Lemma 5.4.2

Proof. We provide the proof for t = 1. Similar steps yield the result for t = 0. The posited
influence function of ψ1

φ1 = f(µ1(X))− ψ1 + f
′(µ1(X))T (Y − µ1(X)

π(X)

gives ψ1(P )− ψ1(P̄ )−
∫
φ1(P̄ )d(P − P̄ )

=
∫
f(µ1(x))− f(µ̄1(x))− f ′(µ̄1(x))T (Y − µ̄1(x))

π̄(x) dP

=
∫
f

′(µ̄1(x))(µ1(x)− µ̄1(x)) + f
′′(µ∗

1(x))(µ1(x)− µ̄1(x))2

2 − f ′(µ̄1(x))T (Y − µ̄1(x))
π̄(x) dP

=
∫
f

′(µ̄1(x))(µ1(x)− µ̄1(x)) + f
′′(µ∗

1(x))(µ1(x)− µ̄1(x))2

2 − f ′(µ̄1(x))π(x)(µ1(x)− µ̄1(x))
π̄(x) dP (x)

=
∫ f

′′(µ∗
1(x))(µ1(x)− µ̄1(x))2

2 − f ′(µ̄1(x))(π(x)− π̄(x))(µ1(x)− µ̄1(x))
π̄(x) dP (x)

where the first line makes use of the fact that ∫
φ1(P̄ )dP̄ = 0. The second line applies a Taylor

expansion with the mean-value form remainder. The third line applies iterated expectation,
and the fourth line simplifies.

5.5 Methodology for Estimating our Measure of Racial
Bias

5.5.1 Methodology for estimating the covariate-conditional measure
We propose a flexible plug-in approach for estimating the covariate-conditional odds ratio ψ(x)
that can take advantage of modern methods. We propose a two-step approach as follows:
First, we use a flexible regression method to estimate the two outcome regression functions,
µ1(x) and µ0(x) (defined in Eq. 5.1). The second step plugs in the outcome regression
estimates to obtain our estimate

ψ̂(X) = µ̂1(X)
1− µ̂1(X)

/ µ̂0(X)
1− µ̂0(X) . (5.5)
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5.5.2 Aggregated measure
We now turn to how to estimate the aggregated measure Ψ. We will build up to our estimator
by first proposing a bias-corrected estimator for log(Ψ) based on the efficient influence function:

Pn(φ̂) := 1
n

n∑
i=1

φ̂(Ti, Xi, Bi) (5.6)

where

φ(T,X,B;µ1, µ0, π) = logit(µ1(X))− logit(µ0(X)) + T (B − µ1(X))
µ1(x)(1− µ1(x))π(x) −

(1− T )(B − µ0(X))
µ0(x)(1− µ0(x))π(x)

φ̂(T,X,B) = φ(T,X,B; µ̂1, µ̂0, π̂).

Before providing the error analysis of our proposed estimator, we briefly discuss sample splitting.
Sample splitting enables us to avoid overfitting without relying on empirical process conditions.

Definition 5.5.1. P̂ denotes a sample that is independent of the sample denoted by Pn and
that has sample size O(n).

With iid data, we can obtain these independent samples simply by randomly partitioning the
data into two or more folds. More generally, one can use cross-fitting, a procedure which
swaps the samples and averages the results, to regain sample efficiency (Robins et al., 2008;
Zheng and van der Laan, 2010; Chernozhukov et al., 2018b). For simplicity we present our
analysis under single sample splitting. P̂ is used to estimate the nuisance functions.

Theorem 5.5.1. The estimator for log(Ψ)

l̂og(Ψ) := 1
n

n∑
i=1

φ̂(Ti, Xi, Bi) (5.7)

(where φ is given in Eq. 5.6) satisfies

l̂og(Ψ)− log(Ψ) = OP

( 1∑
t=0
∥π̂t − πt∥ ∥µ̂t − µt∥+ ∥µ̂t − µt∥2

)

+ (Pn − P )
(
φ(Z;P )

)
+ oP

( 1√
n

)

assuming the following conditions hold:

1. Convergence in probability in L2(P ) norm: ∥φ− φ̂∥ = oP (1) .

2. Sample splitting: Nuisance functions π̂, µ̂1, and µ̂0 are estimated on P̂ .

And for some ϵ ∈ (0, 1),
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3. Strong overlap: P (ϵ < π(X) < 1− ϵ) = 1 and P (ϵ < π̂(X) < 1− ϵ) = 1.

4. Outcome variance: P (µt(X)(1− µt(X)) > ϵ) = 1 and P (µ̂t(X)(1− µ̂t(X)) > ϵ) = 1
for t ∈ {0, 1}.

Theorem 5.5.1 demonstrates that our proposed estimator has second-order errors in the
nuisance estimation errors, yielding “doubly-fast” rates. That is, we obtain a faster rate for
our estimator even when estimating the nuisance function at slower rates. For example, to
obtain n−1/2 rates for our estimator, it is sufficient to estimate the nuisance functions at
n−1/4, allowing us to use flexible machine learning methods to nonparametrically estimate the
nuisance functions under smoothness or sparsity assumptions. Since our error involves squared
terms, this is not the usual double-robustness property that guarantees fast rates when either
of the propensity or regression function is estimated at fast rates.
Theorem 5.5.1 also suggests that under a nonparametric model, our estimator is locally
minimax optimal if ∥π̂ − π∥ = OP (n−1/4) and ∥µ̂t − µt∥ = oP (n−1/4) for t ∈ {0, 1}.

Proof. We begin by decomposing the estimator as

l̂og(Ψ) = 1
n

n∑
i=1

ϕ̂1(Ti, Xi, Bi)− ϕ̂0(Ti, Xi, Bi) (5.8)

where

ϕ̂t(T,X,B) = logit(µ̂t(X)) + I{T = t}(B − µ̂t(X))
µ̂t(X)(1− µ̂t(X))π̂t(X) (5.9)

.
Recall that we can similarly decompose the target as

log
(
Ψ(P )

)
= E[logit(µ1(X)− logit(µ0(X)].

Then we can write the error

l̂og(Ψ)− log(Ψ) = 1
n

n∑
i=1

ϕ̂1(Ti, Xi, Bi)− E[logit(µ1(X)]
−

 1
n

n∑
i=1

ϕ̂0(Ti, Xi, Bi)− E[logit(µ0(X)]


(5.10)

Then, let f(µt(x)) = logit(µt(x)) and apply Lemma 5.5.1 for t = 0 and t = 1 to get the
result.

Corollary 5.5.1. The estimator l̂og(Ψ) is √n-consistent and asymptotically normal under
the assumptions in Theorem 5.5.1 and the following conditions:

1. ∥π̂ − π∥ = OP (n−1/4)

2. ∥µ̂t − µt∥ = oP (n−1/4) for t ∈ {0, 1}

The limiting distribution is √n(l̂og(Ψ)− log(Ψ))⇝ N
(

0, var
(
φ(X)

))
.
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5.5.3 Estimation of Ψ
Our proposed estimator for Ψ naturally follows as

Ψ̂ = exp
(

l̂og(Ψ)
)

(5.11)

Corollary 5.5.2. The estimator Ψ̂ is √n-consistent and asymptotically normal under the
assumptions in Theorem 5.5.1 and in Corollary 5.5.1.
In practice we recommend first estimating log(Ψ), constructing confidence interval on the log
scale, and subsequently taking the exp transform to obtain the estimate of Ψ. Because Ψ is
non-negative, computing sample averages on the log scale where the measure is unbounded
can provide a better asymptotic normality approximation.

5.5.4 Auxiliary Lemmas for Theoretical Error Analysis

Lemma 5.5.1. [Generic Error Term] Define our target estimad ψt = E[f(µt(X))] where f is
any twice differentiable function of the regression function µt with bounded second derivative.
Then ψt has uncentered influence function ϕt(Z) = f(µt(X)) + f

′(µt(X)) I{T =t}(Y −µt(X))
πt(X) .

Under the following conditions,

1.
∥∥∥ϕ̂t − ϕt

∥∥∥ = oP (1)

2. Sample splitting: π̂t and µ̂t are estimated on P̂ .

3. P (πt(X) > ϵ) = 1 and P (π̂t(X) > ϵ) = 1 for some ϵ > 0

then our estimator ψ̂t := Pn(ϕt(Z; µ̂t, π̂t)) satisfies

ψt − ψ̂t = (P − Pn)(ϕt(Z;P )) +OP

(
∥π̂t(X)− πt(X)∥ ∥µt(X)− µ̂t(X)∥+ ∥µt(X)− µ̂t(X)∥2

)
+ oP

( 1√
n

)
.

Proof of Lemma 5.5.1

ψt(P )− Pn(ϕt(Z; µ̂t, π̂t) =

A︷ ︸︸ ︷
ψt(P )− P (ϕt(Z; P̂ )) +

B︷ ︸︸ ︷
(P − Pn)(ϕt(Z; P̂ )− ϕt(Z;P ))

+
C︷ ︸︸ ︷

(P − Pn)(ϕt(Z;P ))

For term A, we apply Lemma 5.4.2:

=
∫
f

′(µ̂t(x))(π̂t(x)− πt(x))(µt(x)− µ̂t(x))
π̂t(x) + f

′′(µ∗
t (x))(µt(x)− µ̂t(x))2

2 dP (x)

≲
∫

(π̂t(x)− πt(x))(µt(x)− µ̂t(x)) + (µt(x)− µ̂t(x))2dP (x)

≤ ∥π̂t(x)− πt(x)∥ ∥µt(x)− µ̂t(x)∥+ ∥µt(x)− µ̂t(x)∥2
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The second line applies the conditions given in the lemma statement. Line 3 uses the
Cauchy-Schwarz inequality.
For term B, since Pn is the empirical measure on an independent sample from P̂ , we can apply
Lemma 2 of Kennedy et al. (2020) with our assumption that

∥∥∥ϕt(Z; P̂ )− ϕt(Z;P )
∥∥∥ = oP (1):

(P − Pn)(ϕt(Z; P̂ )− ϕt(Z;P )) = OP

(∥∥∥(ϕt(Z; P̂ )− ϕt(Z;P )
∥∥∥

√
n

)
= oP

( 1√
n

)
.

5.6 Empirical Results on Real-World Traffic Stop Data
We apply our estimators to assess racial bias in police traffic stop data from the Stanford
Open Policing Project (Pierson et al., 2020). We use traffic stop data from 2010-2017 for two
60-day periods, each centered around the stop and start of daylight savings time. Following
prior work, we restrict our analysis to stops in the evening (between 5-8 p.m.) and to stops
where the driver was perceived as either black or white. We control for confounding factors
the time of the stop, the day of the week of the stop, and the season. We used generalized
additive models (GAMs) to estimate the regression nuisance functions. Specifically, we used
the default hyper-parameters in the mgcv package in R and applied a spline to the time
of stop. We used cross-fitting on k = 10 folds to produce the estimates of the aggregated
bias, using k − 1 folds for nuisance function estimation and the kth fold for target parameter
estimation. Restricting the analysis to stops occurring between 5-8 p.m. ensures overlaps
for some geographies but not all. To address this, we filtered out stops whose estimated
propensity score lied outside the range ϵ < π̂(X) < 1− ϵ for ϵ = 1

106 .
We present our estimates of the covariate-conditional measure (§ 5.5.1) for 8000 stops in
Madison, Wisconsin, as a dot map in Figure 5.1. This map shows the variation in bias across
districts in Madison’s police department. Red suggests racial bias under the assumptions of
our design; white suggests there is no effect; blue suggests that daylight would reduce the risk
of a stop for black drivers more than for white drivers. We see a concentration of red stops in
the downtown area as well as near the regional airport. This map could inform decisions about
where to allocate resources for bias-mitigation, and the measure could be tracked over the
roll-out of bias-mitigation efforts to assess their impacts. To rigorously assess the effectiveness,
we recommend aggregating the measures into a meaningful unit, such as precinct or district
or department, and relying on our asymptotic normality results to quantify uncertainty.
We present the aggregated measure of bias for the city of Madison as well as four other cities
in Figure 5.2. These estimates give a summary statistic of our assessment of racial bias and
they admit uncertainty quantification. The dots show our bias-corrected point estimates and
the bars show 95% CI. Values under the horizontal dashed line indicates evidence of racial bias.
This plot presents evidence of racial bias for two cities: St. Paul, Minnesota, and Fayetteville,
North Carolina. While we do not see evidence of racial bias in terms of this measure for the
other cities, we should not interpret this as indicating there is no such racial bias.

Interpreting a null result A null result should not be interpreted as indicating the absence
of racial bias. There could still be bias that was masked by strategic behavior if officers use
other visual cues from the vehicle as a proxy for race. Or, we may fail to detect bias if the
dark of night is too weak of a proxy for the ideal intervention that obfuscates the driver’s race.
There may also be bias in upstream decisions about where the officers choose to patrol that
will not be reflected in these metrics.
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5. Assessing Racial Bias in Police Stops

Figure 5.1: Real-world results of our counterfactual method to estimate racial bias in police
officers’ decisions to stop drivers in Madison, WI. Red suggests racial bias under our experimental
design; white no effect; blue that daylight would reduce the risk of a stop for black drivers
more than for white drivers.
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Figure 5.2: Real-world results of our aggregated measure of racial bias in the officer’s decision
to stop drivers for five cities. Values below the dotted line suggest racial bias. Dots indicate
the point estimate of our bias-corrected method, and the bars indicate the 95% confidence
intervals.
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5.7. Conclusion

Additionally, our proposed methodology will not capture any downstream biases, such as bias
in the decision to use force, make an arrest, prosecute, etc. In order to understand racial bias
in the criminal justice system, empirical results from our methodology should be interpreted
alongside the rich literature on bias through the criminal justice pipeline (See e.g. (Alexander,
2011; Doleac, 2021)).

5.7 Conclusion
In this chapter we developed a counterfactual formulation of the veil of darkness test for racial
bias in police traffic stops. Our counterfactual formulation clarifies the assumptions needed to
identify racial bias in officers’ decisions to stop when standard measures are not identifiable due
to sampling bias. We provided a flexible method to estimate an identified covariate-conditional
measure of bias. Analyzing conditional measures can help direct anti-bias resources to the
jurisdictions most in need. Additionally, we proposed double machine learning-style estimators
that have fast rates of convergence, as the overall error is second order in the nuisance
estimation error. We used these estimators to assess racial bias in a number of cities across
the US. Evidence of racial bias in police stops can inform the debate on important policy
questions like how to reform or rescind the use of pretextual stops and predictive policing.
Our method is also relevant to concerns raised in the growing literature on post-treatment
bias in audits for discrimination in police behavior (e.g., use of force) after the stop (Knox
et al., 2020; Gaebler et al., 2022). This literature alleges that standard approaches to audit
for bias that consider race as the “treatment" may be unreliable in this setting because the
data is conditioned on the police stop which may have been affected by race. Our findings
can help contextualize this research by illuminating when and where we find evidence of such
racial bias.
The methodology developed in this chapter illustrates how machine learning and statistical
techniques can be used to probe biases in key decision points in the sociotechnical systems
embedding algorithms. Such analyzes are important for their immediate policy implications
for police reform, but also more generally because they shift the focus from those traditionally
surveilled by algorithms to those in power. Finally, by assessing bias in decisions that influence
administrative data, our methodology can serve as a key piece of context-aware audits on
decision-making algorithms.

99





6

Conclusion

This dissertation proposes statistical methodologies and a deliberation framework to align
decision-making algorithms toward validity and equity. We identify and address data problems
and complex sociotechnical biases that challenge the validity and equity of predictive algorithms
used in societally consequential decision making. Failure to recognize and address these issues
can cause misalignment between an algorithm’s purported purpose versus what it actually
does. We showed how missing data and selection bias can threaten validity of standard
approaches to model learning, evaluation, and fairness corrections and assessments. As
solutions, we developed counterfactual techniques for model construction, evaluation, and
fairness assessment. We demonstrated that these methods have real-world benefits by showing
how our approach identifies and fixes systematic prediction mistakes in a way that standard
practice fails to do on real-world child welfare screening data.

We presented the conditions required for the validity of our learning and evaluation techniques,
key among them the condition that we measure all confounding factors. For the setting
where some confounding factors are unavailable at prediction time, we proposed an efficient
two-stage learning technique that yields valid counterfactual predictions when there is offline
data describing the full set of confounders.

We proposed optimization methods to characterize the range of fairness properties over
the set of similarly comparable models for both the fully supervised setting and the setting
suffering from selective labels. We used this method to efficiently find a more equitable credit
lending model that improves access to historically underbanked applicants while maintaining
comparable accuracy to the benchmark model.

We explored issues of governance through the lens of validity, developing a framework for
structuring deliberation on the justified use of algorithms in high-stakes settings that translates
concepts from validity theory to the algorithmic decision-making context. We used this to
structure a protocol for deliberating the validity of algorithms that we hope will be instructive in
practice in governing responsible use. Broadening our view to the contexts in which algorithms
are used, we demonstrated how techniques from causal inference can be used to audit for bias
in key decision points. To assess racial bias in police traffic stops, we proposed counterfactual
techniques that can accommodate challenging settings with outcome-dependent sampling.

A central theme throughout this work is how causal inference is useful for promoting and
evaluating the responsible use of machine learning in high-stakes settings. More generally, our
work makes use of methods from statistics, machine learning, and the social sciences to address
key questions of responsible use, particularly around the validity, equity, and governance of
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6. Conclusion

decision-making algorithms. The methods we proposed are grounded in theory that provides
guarantees on efficiency and accuracy.
This dissertation was guided by real-world problems in child welfare, consumer lending, and
criminal justice. Throughout the dissertation we illustrated the application of our methods on
real-world datasets on child welfare screening from Allegheny County, consumer lending from
Commonwealth Bank of Australia, and police traffic stops from the Stanford Open Policing
project.
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