Machine Learning Department - Carnegie Mellon University

Test of Time Paper Award of SIGIR 2014

Cheng Zhai, William Cohen, and John Lafferty won a SIGIR Test of Time Award for their SIGIR 2003 paper "Beyond Independent Relevance: Methods and Evaluation Metrics for Subtopic ... Read More ยป

What is the Machine Learning Department?

The Machine Learning Department is an academic department within Carnegie Mellon University's School of Computer Science. We focus on research and education in all areas of statistical machine learning. Watch an interview with Tom Mitchell, Department Head:

Tom Mitchell
Interview with Tom Mitchell

What is Machine Learning?

Machine Learning is a scientific field addressing the question "How can we program systems to automatically learn and to improve with experience?" We study learning from many kinds of experience, such as learning to predict which medical patients will respond to which treatments, by analyzing experience captured in databases of online medical records. We also study mobile robots that learn how to successfully navigate based on experience they gather from sensors as they roam their environment, and computer aids for scientific discovery that combine initial scientific hypotheses with new experimental data to automatically produce refined scientific hypotheses that better fit observed data.

To tackle these problems we develop algorithms that discover general conjectures and knowledge from specific data and experience, based on sound statistical and computational principles. We also develop theories of learning processes that characterize the fundamental nature of the computations and experience sufficient for successful learning in machines and in humans.